-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathdown-days.py
191 lines (157 loc) · 4.87 KB
/
down-days.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
import datetime
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import yfinance as yf
sns.set(style="whitegrid")
def get_price_data(start_date, end_date, symbol):
price_data = yf.download(symbol, start=start_date, end=end_date)["Close"]
return pd.DataFrame(price_data)
def get_daily_returns(price_df):
return price_df.pct_change() * 100
def calculate_sell_allocation(current_price, last_buy_price):
price_increase_ratio = current_price / last_buy_price - 1
if price_increase_ratio >= 0.1:
return True
return False
def calculate_max_drawdown(prices):
max_drawdown = 0
peak = prices[0]
for price in prices:
if price > peak:
peak = price
drawdown = (peak - price) / peak
if drawdown > max_drawdown:
max_drawdown = drawdown
return max_drawdown
def process_data(daily_returns, price_df):
buying_dates = []
selling_dates = []
last_buy_price = None
shares_bought = False
shares_sold = True
holding_prices = []
max_drawdowns = []
for date, daily_return in daily_returns.iterrows():
current_price = price_df.loc[date].values[0]
if shares_bought:
holding_prices.append(current_price)
if shares_bought and calculate_sell_allocation(current_price, last_buy_price):
selling_dates.append(date)
max_drawdown = calculate_max_drawdown(holding_prices)
max_drawdowns.append(max_drawdown)
holding_prices = []
shares_bought = False
shares_sold = True
elif daily_return["Close"] < -5 and shares_sold:
buying_dates.append(date)
last_buy_price = current_price
shares_bought = True
shares_sold = False
if holding_prices:
max_drawdown = calculate_max_drawdown(holding_prices)
max_drawdowns.append(max_drawdown)
return buying_dates, selling_dates, max_drawdowns
def plot_data(
price_df,
daily_returns,
buying_dates,
selling_dates,
max_drawdowns,
start_date,
end_date,
symbol,
):
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 12), sharex=True)
ax1.plot(price_df.index, price_df, label="Stock Price", color="cornflowerblue")
ax1.scatter(
buying_dates,
price_df.loc[buying_dates],
c="limegreen",
marker="o",
label="Buying",
)
ax1.scatter(
selling_dates,
price_df.loc[selling_dates],
c="tomato",
marker="o",
label="Selling",
)
for i, date in enumerate(selling_dates):
ax1.annotate(
f"{max_drawdowns[i] * 100:.2f}%",
(date, price_df.loc[date]),
textcoords="offset points",
xytext=(0, 10),
ha="center",
fontsize=8,
color="mediumorchid",
)
ax1.set_title(
f'{symbol} Stock Price ({start_date.strftime("%Y-%m-%d")} - {end_date.strftime("%Y-%m-%d")})'
)
ax1.set_ylabel("Stock Price")
ax1.legend()
ax2.plot(daily_returns.index, daily_returns, label="Daily Returns", color="purple")
ax2.scatter(
daily_returns[daily_returns["Close"] > 5].index,
daily_returns[daily_returns["Close"] > 5],
c="limegreen",
marker="o",
label="Up > 5%",
)
ax2.scatter(
daily_returns[daily_returns["Close"] < -5].index,
daily_returns[daily_returns["Close"] < -5],
c="tomato",
marker="o",
label="Down < -5%",
)
ax2.set_title(
f'{symbol} Daily Returns ({start_date.strftime("%Y-%m-%d")} - {end_date.strftime("%Y-%m-%d")})'
)
ax2.set_ylabel("Daily Returns (%)")
ax2.legend()
plt.show()
def parse_arguments():
parser = argparse.ArgumentParser(description="Analyze stock data.")
parser.add_argument(
"-s", "--symbol", type=str, required=True, help="Stock symbol, e.g., AAPL"
)
parser.add_argument(
"-st",
"--start_date",
type=str,
required=True,
help="Start date in YYYY-MM-DD format",
)
parser.add_argument(
"-et",
"--end_date",
type=str,
required=True,
help="End date in YYYY-MM-DD format",
)
return parser.parse_args()
def main():
args = parse_arguments()
symbol = args.symbol
start_date = datetime.datetime.strptime(args.start_date, "%Y-%m-%d")
end_date = datetime.datetime.strptime(args.end_date, "%Y-%m-%d")
price_df = get_price_data(start_date, end_date, symbol)
daily_returns = get_daily_returns(price_df)
buying_dates, selling_dates, max_drawdowns = process_data(daily_returns, price_df)
plot_data(
price_df,
daily_returns,
buying_dates,
selling_dates,
max_drawdowns,
start_date,
end_date,
symbol,
)
if __name__ == "__main__":
main()