-
Notifications
You must be signed in to change notification settings - Fork 37
/
cage-fight.py
executable file
·320 lines (273 loc) · 9.78 KB
/
cage-fight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/env python3
"""
Stock performance comparison tool that allows users to compare the historical performance of multiple stocks.
Example:
Static chart
python3 cage-fight.py --tickers META,TSLA --start-date 2023-06-20 --end-date 2024-04-20
Animated chart
python3 cage-fight.py --tickers META,TSLA --start-date 2023-06-20 --end-date 2024-04-20 --animated
To install required packages:
pip install pandas yfinance matplotlib seaborn
"""
import colorsys
from argparse import ArgumentParser
from datetime import datetime, timedelta
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from matplotlib.dates import DateFormatter
from common import RawTextWithDefaultsFormatter
from common.market import download_ticker_data
def fetch_stock_data(ticker, start_date, end_date):
"""
Fetches historical stock data from Yahoo Finance.
Args:
ticker (str): Stock ticker symbol.
start_date (str): Start date in the format 'YYYY-MM-DD'.
end_date (str): End date in the format 'YYYY-MM-DD'.
Returns:
pd.Series: Adjusted close price data for the specified stock and date range.
"""
try:
stock_data = download_ticker_data(ticker, start_date, end_date)
return stock_data["Adj Close"]
except Exception as e:
print(f"Error fetching data for {ticker}: {e}")
return None
def calculate_percent_change(stock_data):
"""
Calculates the percent change from the start date.
Args:
stock_data (pd.Series): Stock price data.
Returns:
pd.Series: Percent change data.
"""
return stock_data.pct_change().fillna(0).add(1).cumprod().sub(1).mul(100)
def calculate_summary_stats(stock_data, ticker):
"""
Calculates summary statistics for a stock.
Args:
stock_data (pd.Series): Stock price data.
ticker (str): Stock ticker symbol.
Returns:
dict: Dictionary containing summary statistics.
"""
total_change = stock_data.iloc[-1] - stock_data.iloc[0]
total_pct_change = (stock_data.iloc[-1] / stock_data.iloc[0] - 1) * 100
avg_daily_change = stock_data.pct_change().mean() * 100
std_daily_change = stock_data.pct_change().std() * 100
return {
"Ticker": ticker,
"Total Change": total_change,
"Total Percent Change (%)": total_pct_change,
"Average Daily Change (%)": avg_daily_change,
"Standard Deviation of Daily Change (%)": std_daily_change,
}
def plot_stock_performance(
stock_data_list,
ticker_list,
start_date,
end_date,
animated=False,
show_plot=False,
animation_duration=10,
fps=60,
font_name="Verdana",
):
"""
Plots the stock performance comparison based on percent change.
Args:
stock_data_list (list): List of stock price data for multiple stocks.
ticker_list (list): List of stock ticker symbols.
start_date (str): Start date in the format 'YYYY-MM-DD'.
end_date (str): End date in the format 'YYYY-MM-DD'.
animated (bool): Whether to create an animated plot.
show_plot (bool): Whether to display the plot.
animation_duration (int): Duration of the animation in seconds.
fps (int): Frames per second for the animation.
font_name (str): Font name to use for the plot.
"""
plt.rcParams["font.family"] = font_name
sns.set_style("dark")
plt.rcParams["axes.facecolor"] = "#1c1c1c"
plt.rcParams["figure.facecolor"] = "#1c1c1c"
plt.rcParams["text.color"] = "#e0e0e0"
plt.rcParams["axes.labelcolor"] = "#e0e0e0"
plt.rcParams["xtick.color"] = "#e0e0e0"
plt.rcParams["ytick.color"] = "#e0e0e0"
fig, ax = plt.subplots(figsize=(12, 6))
def generate_colors(n):
hue_start = 0
hue_end = 1
hues = np.linspace(hue_start, hue_end, n, endpoint=False)
colors = [colorsys.hsv_to_rgb(h, 0.8, 0.8) for h in hues]
return colors
contrasting_colors = generate_colors(len(ticker_list))
if animated:
min_length = min(len(data) for data in stock_data_list if data is not None)
percent_changes = []
for stock_data in stock_data_list:
if stock_data is not None:
pc = calculate_percent_change(stock_data)
percent_changes.append(pc[:min_length])
lines = [
ax.plot([], [], label=ticker, color=color, linewidth=1)[0]
for ticker, color in zip(ticker_list, contrasting_colors)
]
ax.set_xlim(percent_changes[0].index[0], percent_changes[0].index[-1])
ax.set_ylim(
min(pc.min() for pc in percent_changes),
max(pc.max() for pc in percent_changes),
)
annotation_boxes = []
for ticker, line, color in zip(ticker_list, lines, contrasting_colors):
ab = ax.annotate(
ticker,
xy=(0, 0),
xytext=(10, 10),
textcoords="offset points",
fontsize=10,
color="white",
bbox=dict(boxstyle="round,pad=0.5", fc=color, ec="#e0e0e0", alpha=0.8),
animated=True,
fontname=font_name,
)
annotation_boxes.append(ab)
ax.add_artist(ab)
total_frames = int(animation_duration * fps)
def animate(frame):
index = int((frame / total_frames) * min_length)
for line, pc, ab in zip(lines, percent_changes, annotation_boxes):
line.set_data(pc.index[:index], pc.values[:index])
if index > 0:
ab.xy = (pc.index[index - 1], pc.values[index - 1])
ab.set_visible(True)
else:
ab.set_visible(False)
return lines + annotation_boxes
anim = animation.FuncAnimation(
fig, animate, frames=total_frames, interval=1000 / fps, blit=True
)
else:
for i, (stock_data, ticker, color) in enumerate(
zip(stock_data_list, ticker_list, contrasting_colors)
):
if stock_data is not None:
stock_pc = calculate_percent_change(stock_data)
ax.plot(stock_pc.index, stock_pc, label=f"{ticker}", color=color)
ax.text(
stock_pc.index[-1],
stock_pc[-1],
f"{ticker}",
ha="left",
va="bottom",
fontsize=8,
color=color,
)
ax.set_title(
f"Stock Performance Comparison ({start_date} to {end_date})",
fontname=font_name,
fontsize=14,
color="#e0e0e0",
)
ax.set_xlabel("Date", fontname=font_name, fontsize=10, color="#e0e0e0")
ax.set_ylabel(
"Percent Change (%)", fontname=font_name, fontsize=10, color="#e0e0e0"
)
ax.legend(
loc="upper left",
prop={"family": font_name, "size": 10},
facecolor="#1c1c1c",
edgecolor="#e0e0e0",
)
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontname(font_name)
label.set_fontsize(10)
date_formatter = DateFormatter("%Y-%m-%d")
ax.xaxis.set_major_formatter(date_formatter)
fig.autofmt_xdate()
ticker_list_for_file_name = "-".join(ticker_list)
if animated:
anim.save(
f"output/stock_performance_comparison-{ticker_list_for_file_name}-{start_date}-{end_date}.mp4",
writer="ffmpeg",
fps=fps,
)
else:
plt.savefig(
f"output/stock_performance_comparison-{ticker_list_for_file_name}-{start_date}-{end_date}.png"
)
if show_plot:
plt.show()
else:
plt.close(fig)
def main():
parser = ArgumentParser(
description=__doc__, formatter_class=RawTextWithDefaultsFormatter
)
parser.add_argument(
"--tickers",
type=str,
required=True,
help="Comma-separated list of stock ticker symbols",
)
parser.add_argument(
"--start-date",
type=str,
required=False,
default=(datetime.now() - timedelta(days=365)).strftime("%Y-%m-%d"),
help="Start date in the format YYYY-MM-DD",
)
parser.add_argument(
"--end-date",
type=str,
required=False,
default=datetime.now().strftime("%Y-%m-%d"),
help="End date in the format YYYY-MM-DD",
)
parser.add_argument(
"--show-plot",
action="store_true",
default=False,
help="Show plot",
)
parser.add_argument(
"--animated",
action="store_true",
default=False,
help="Create an animated plot",
)
args = parser.parse_args()
tickers = args.tickers.split(",")
start_date = args.start_date
end_date = args.end_date
# Convert user input to lists
ticker_list = [ticker.strip().upper() for ticker in tickers]
# Fetch stock data for each ticker
stock_data_list = []
for ticker in ticker_list:
stock_data = fetch_stock_data(ticker, start_date, end_date)
stock_data_list.append(stock_data)
# Plot the stock performance comparison
plot_stock_performance(
stock_data_list,
ticker_list,
start_date,
end_date,
animated=args.animated,
show_plot=args.show_plot,
animation_duration=10,
fps=30,
font_name="Verdana",
)
# Print summary statistics for each stock
print("\nSummary Statistics:")
for stock_data, ticker in zip(stock_data_list, ticker_list):
if stock_data is not None:
summary_stats = calculate_summary_stats(stock_data, ticker)
for key, value in summary_stats.items():
print(f"{key}: {value}")
print()
if __name__ == "__main__":
main()