-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtrain.cpp
146 lines (133 loc) · 3.67 KB
/
train.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include "util.hpp"
#include "reader.hpp"
#include "tick.hpp"
#include "tfidf_transformer.hpp"
#include "evaluation.hpp"
#include "ncc_cache.hpp"
#include "binary_classifier.hpp"
#include "classifier_storage.hpp"
#include <cstdio>
#include <map>
#include "SETTINGS.h"
void
build_train_data(category_index_t &dataset,
std::vector<fv_t> &data,
std::vector<label_t> &labels,
NCCCache &cache)
{
dataset.clear();
for (int i = 0; i < (int)data.size(); ++i) {
std::vector<int> results;
std::set<int> hit_labels;
if (cache.get(i, results)) {
if (K_TRAIN < results.size()) {
results.erase(results.begin() + K_TRAIN, results.end());
}
for (auto res = results.begin(); res != results.end(); ++res) {
hit_labels.insert(*res);
}
for (auto l = hit_labels.begin(); l != hit_labels.end(); ++l) {
auto d = dataset.find(*l);
if (d != dataset.end()) {
d->second.push_back(i);
} else {
std::vector<int> vec;
vec.push_back(i);
dataset.insert(std::make_pair(*l, vec));
}
}
}
}
}
void
get_train_data(
int target,
std::vector<fv_t> &posi,
std::vector<fv_t> &nega,
const std::vector<fv_t> &test_data,
const std::vector<label_t> &test_labels,
const category_index_t &dataset)
{
posi.clear();
nega.clear();
auto target_dataset = dataset.find(target);
if (target_dataset == dataset.end()) {
return;
}
for (auto i = target_dataset->second.begin(); i != target_dataset->second.end(); ++i) {
if (test_labels[*i].find(target) != test_labels[*i].end()) {
posi.push_back(test_data[*i]);
} else {
nega.push_back(test_data[*i]);
}
}
}
int main(void)
{
DataReader reader;
std::vector<fv_t> data;
std::vector<label_t> labels;
#if VALIDATION_TEST
std::vector<fv_t> test_data;
std::vector<label_t> test_labels;
#endif
TFIDFTransformer transformer;
category_index_t category_index;
category_index_t dataset;
long t = tick();
NCCCache cache;
ClassifierStorage classifiers;
if (!reader.open(TRAIN_DATA)) {
fprintf(stderr, "cant read file\n");
return -1;
}
reader.read(data, labels);
printf("read %ld, %ld, %ldms\n", data.size(), labels.size(), tick() - t);
reader.close();
if (!cache.load(CACHE)) {
std::fprintf(stderr, "load failed: %s: please either run ./vt_prefetch\n", CACHE);
return -1;
}
printf("read %ld, %ld, %ldms\n", data.size(), labels.size(), tick() - t);
t = tick();
build_category_index(category_index, data, labels);
#if VALIDATION_TEST
srand(VT_SEED);
split_data(test_data, test_labels, data, labels, category_index, 0.05f);
build_category_index(category_index, data, labels);
#endif
transformer.load(WEIGHT);
transformer.transform(data);
printf("build index %ldms\n", tick() -t );
t = tick();
build_train_data(dataset, data, labels, cache);
printf("build dataset %ld %ldms\n", dataset.size(), tick() -t );
std::vector<std::pair<int, const std::vector<int> *> > category_data;
for (auto docs = category_index.begin(); docs != category_index.end(); ++docs) {
category_data.push_back(std::make_pair(docs->first, &docs->second));
}
std::random_shuffle(category_data.begin(), category_data.end());
#ifdef _OPENMP
#pragma omp parallel for schedule(dynamic, 1)
#endif
for (int i = 0; i < (int)category_data.size(); ++i) {
if (i % 10000 == 0) {
#ifdef _OPENMP
#pragma omp critical
#endif
{
printf("- train %d/%ld %ldms\n",
i, category_data.size(), tick() - t);
t = tick();
}
}
std::vector<fv_t> posi;
std::vector<fv_t> nega;
BinaryClassifier model;
get_train_data(category_data[i].first, posi, nega, data, labels, dataset);
model.train(posi, nega, LR_ETA, LR_P, LR_ITERATION);
classifiers.set(category_data[i].first, model);
}
classifiers.save(MODEL);
return 0;
}