forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_voxel_generation.py
221 lines (180 loc) · 7.09 KB
/
model_voxel_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Base class for voxel generation model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import os
import numpy as np
import tensorflow as tf
import input_generator
import utils
slim = tf.contrib.slim
class Im2Vox(object):
"""Defines the voxel generation model."""
__metaclass__ = abc.ABCMeta
def __init__(self, params):
self._params = params
@abc.abstractmethod
def get_metrics(self, inputs, outputs):
"""Gets dictionaries from metrics to value `Tensors` & update `Tensors`."""
pass
@abc.abstractmethod
def get_loss(self, inputs, outputs):
pass
@abc.abstractmethod
def get_regularization_loss(self, scopes):
pass
def set_params(self, params):
self._params = params
def get_inputs(self,
dataset_dir,
dataset_name,
split_name,
batch_size,
image_size,
vox_size,
is_training=True):
"""Loads data for a specified dataset and split."""
del image_size, vox_size
with tf.variable_scope('data_loading_%s/%s' % (dataset_name, split_name)):
common_queue_min = 64
common_queue_capacity = 256
num_readers = 4
inputs = input_generator.get(
dataset_dir,
dataset_name,
split_name,
shuffle=is_training,
num_readers=num_readers,
common_queue_min=common_queue_min,
common_queue_capacity=common_queue_capacity)
images, voxels = tf.train.batch(
[inputs['image'], inputs['voxel']],
batch_size=batch_size,
num_threads=8,
capacity=8 * batch_size,
name='batching_queues/%s/%s' % (dataset_name, split_name))
outputs = dict()
outputs['images'] = images
outputs['voxels'] = voxels
outputs['num_samples'] = inputs['num_samples']
return outputs
def preprocess(self, raw_inputs, step_size):
"""Selects the subset of viewpoints to train on."""
(quantity, num_views) = raw_inputs['images'].get_shape().as_list()[:2]
inputs = dict()
inputs['voxels'] = raw_inputs['voxels']
for k in xrange(step_size):
inputs['images_%d' % (k + 1)] = []
inputs['matrix_%d' % (k + 1)] = []
for n in xrange(quantity):
selected_views = np.random.choice(num_views, step_size, replace=False)
for k in xrange(step_size):
view_selected = selected_views[k]
inputs['images_%d' %
(k + 1)].append(raw_inputs['images'][n, view_selected, :, :, :])
tf_matrix = self.get_transform_matrix(view_selected)
inputs['matrix_%d' % (k + 1)].append(tf_matrix)
for k in xrange(step_size):
inputs['images_%d' % (k + 1)] = tf.stack(inputs['images_%d' % (k + 1)])
inputs['matrix_%d' % (k + 1)] = tf.stack(inputs['matrix_%d' % (k + 1)])
return inputs
def get_init_fn(self, scopes):
"""Initialization assignment operator function used while training."""
if not self._params.init_model:
return None
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
self._params.init_model, var_list)
def init_assign_function(sess):
sess.run(init_assign_op, init_feed_dict)
return init_assign_function
def get_train_op_for_scope(self, loss, optimizer, scopes):
"""Train operation function for the given scope used file training."""
is_trainable = lambda x: x in tf.trainable_variables()
var_list = []
update_ops = []
for scope in scopes:
var_list.extend(
filter(is_trainable, tf.contrib.framework.get_model_variables(scope)))
update_ops.extend(tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope))
return slim.learning.create_train_op(
loss,
optimizer,
update_ops=update_ops,
variables_to_train=var_list,
clip_gradient_norm=self._params.clip_gradient_norm)
def write_disk_grid(self,
global_step,
log_dir,
input_images,
gt_projs,
pred_projs,
pred_voxels=None):
"""Function called by TF to save the prediction periodically."""
summary_freq = self._params.save_every
def write_grid(input_images, gt_projs, pred_projs, pred_voxels,
global_step):
"""Native python function to call for writing images to files."""
grid = _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels)
if global_step % summary_freq == 0:
img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
utils.save_image(grid, img_path)
with open(
os.path.join(log_dir, 'pred_voxels_%s' % str(global_step)),
'w') as fout:
np.save(fout, pred_voxels)
with open(
os.path.join(log_dir, 'input_images_%s' % str(global_step)),
'w') as fout:
np.save(fout, input_images)
return grid
py_func_args = [
input_images, gt_projs, pred_projs, pred_voxels, global_step
]
save_grid_op = tf.py_func(write_grid, py_func_args, [tf.uint8],
'wrtie_grid')[0]
slim.summaries.add_image_summary(
tf.expand_dims(save_grid_op, axis=0), name='grid_vis')
return save_grid_op
def _build_image_grid(input_images, gt_projs, pred_projs, pred_voxels):
"""Build the visualization grid with py_func."""
quantity, img_height, img_width = input_images.shape[:3]
for row in xrange(int(quantity / 3)):
for col in xrange(3):
index = row * 3 + col
input_img_ = input_images[index, :, :, :]
gt_proj_ = gt_projs[index, :, :, :]
pred_proj_ = pred_projs[index, :, :, :]
pred_voxel_ = utils.display_voxel(pred_voxels[index, :, :, :, 0])
pred_voxel_ = utils.resize_image(pred_voxel_, img_height, img_width)
if col == 0:
tmp_ = np.concatenate([input_img_, gt_proj_, pred_proj_, pred_voxel_],
1)
else:
tmp_ = np.concatenate(
[tmp_, input_img_, gt_proj_, pred_proj_, pred_voxel_], 1)
if row == 0:
out_grid = tmp_
else:
out_grid = np.concatenate([out_grid, tmp_], 0)
out_grid = out_grid.astype(np.uint8)
return out_grid