Skip to content

Latest commit

 

History

History
66 lines (52 loc) · 2.58 KB

403.frog-jump.md

File metadata and controls

66 lines (52 loc) · 2.58 KB

一只青蛙想要过河。 假定河流被等分为  x  个单元格,并且在每一个单元格内都有可能放有一石子(也有可能没有)。 青蛙可以跳上石头,但是不可以跳入水中。

给定石子的位置列表(用单元格序号升序表示),  请判定青蛙能否成功过河(即能否在最后一步跳至最后一个石子上)。  开始时,  青蛙默认已站在第一个石子上,并可以假定它第一步只能跳跃一个单位(即只能从单元格 1 跳至单元格 2)。

如果青蛙上一步跳跃了  k  个单位,那么它接下来的跳跃距离只能选择为  k - 1、k  或  k + 1 个单位。  另请注意,青蛙只能向前方(终点的方向)跳跃。

请注意:

石子的数量 ≥ 2 且  < 1100; 每一个石子的位置序号都是一个非负整数,且其 < 231; 第一个石子的位置永远是 0。

示例 1:

[0,1,3,5,6,8,12,17]

总共有8个石子。
第一个石子处于序号为0的单元格的位置, 第二个石子处于序号为1的单元格的位置,
第三个石子在序号为3的单元格的位置, 以此定义整个数组...
最后一个石子处于序号为17的单元格的位置。

返回 true。即青蛙可以成功过河,按照如下方案跳跃:
跳1个单位到第2块石子, 然后跳2个单位到第3块石子, 接着
跳2个单位到第4块石子, 然后跳3个单位到第6块石子,
跳4个单位到第7块石子, 最后,跳5个单位到第8个石子(即最后一块石子)。
示例 2:

[0,1,2,3,4,8,9,11]

返回 false。青蛙没有办法过河。
这是因为第5和第6个石子之间的间距太大,没有可选的方案供青蛙跳跃过去。

记忆化搜索

var canCross = function (stones) {
  let n = stones.length;
  if ((n * (n + 1)) / 2 < stones[stones.length - 1]) return false;

  let dp = new Array(stones[stones.length - 1] + 1);
  for (let i = 0; i < dp.length; i++) dp[i] = [];
  let s = new Array(stones[stones.length - 1] + 1).fill(false);
  for (let k of stones) {
    s[k] = true;
  }
  dp[1] = [1];
  for (let i = 1; i < dp.length; i++) {
    if (!s[i]) continue; // 不是石头
    if (dp[i].length == 0) continue; // 没有跳到这个石头上
    for (let k of dp[i]) {
      for (let z = -1; z <= 1; z++) {
        if (i + k + z <= i || i + k + z >= dp.length) continue; // 跳到当前位置前面或者跳出边界
        if (dp[i + k + z].indexOf(k + z) > -1) continue;
        if (s[i + k + z]) {
          dp[i + k + z].push(k + z);
        }
      }
    }
  }
  return dp[dp.length - 1].length > 0;
};