给你一个数组 points
和一个整数 k
。数组中每个元素都表示二维平面上的点的坐标,并按照横坐标 x 的值从小到大排序。也就是说 points[i] = [xi, yi]
,并且在 1 <= i < j <= points.length
的前提下, xi < xj
总成立。
请你找出 yi + yj + |xi - xj|
的 最大值,其中 |xi - xj| <= k
且 1 <= i < j <= points.length
。
题目测试数据保证至少存在一对能够满足 |xi - xj| <= k
的点。
示例 1:
输入:points = [[1,3],[2,0],[5,10],[6,-10]], k = 1 输出:4 解释:前两个点满足 |xi - xj| <= 1 ,代入方程计算,则得到值 3 + 0 + |1 - 2| = 4 。第三个和第四个点也满足条件,得到值 10 + -10 + |5 - 6| = 1 。 没有其他满足条件的点,所以返回 4 和 1 中最大的那个。
示例 2:
输入:points = [[0,0],[3,0],[9,2]], k = 3 输出:3 解释:只有前两个点满足 |xi - xj| <= 3 ,代入方程后得到值 0 + 0 + |0 - 3| = 3 。
提示:
2 <= points.length <= 10^5
points[i].length == 2
-10^8 <= points[i][0], points[i][1] <= 10^8
0 <= k <= 2 * 10^8
- 对于所有的
1 <= i < j <= points.length
,points[i][0] < points[j][0]
都成立。也就是说,xi
是严格递增的。
题目要求
因此,对于当前遍历到的点
具体地,我们定义一个优先队列(大根堆)
当我们遍历到点
然后,我们将点
时间复杂度
class Solution:
def findMaxValueOfEquation(self, points: List[List[int]], k: int) -> int:
ans = -inf
pq = []
for x, y in points:
while pq and x - pq[0][1] > k:
heappop(pq)
if pq:
ans = max(ans, x + y - pq[0][0])
heappush(pq, (x - y, x))
return ans
class Solution {
public int findMaxValueOfEquation(int[][] points, int k) {
int ans = -(1 << 30);
PriorityQueue<int[]> pq = new PriorityQueue<>((a, b) -> b[0] - a[0]);
for (var p : points) {
int x = p[0], y = p[1];
while (!pq.isEmpty() && x - pq.peek()[1] > k) {
pq.poll();
}
if (!pq.isEmpty()) {
ans = Math.max(ans, x + y + pq.peek()[0]);
}
pq.offer(new int[] {y - x, x});
}
return ans;
}
}
class Solution {
public:
int findMaxValueOfEquation(vector<vector<int>>& points, int k) {
int ans = -(1 << 30);
priority_queue<pair<int, int>> pq;
for (auto& p : points) {
int x = p[0], y = p[1];
while (pq.size() && x - pq.top().second > k) {
pq.pop();
}
if (pq.size()) {
ans = max(ans, x + y + pq.top().first);
}
pq.emplace(y - x, x);
}
return ans;
}
};
func findMaxValueOfEquation(points [][]int, k int) int {
ans := -(1 << 30)
hp := hp{}
for _, p := range points {
x, y := p[0], p[1]
for hp.Len() > 0 && x-hp[0].x > k {
heap.Pop(&hp)
}
if hp.Len() > 0 {
ans = max(ans, x+y+hp[0].v)
}
heap.Push(&hp, pair{y - x, x})
}
return ans
}
type pair struct{ v, x int }
type hp []pair
func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool {
a, b := h[i], h[j]
return a.v > b.v
}
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any) { *h = append(*h, v.(pair)) }
func (h *hp) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
function findMaxValueOfEquation(points: number[][], k: number): number {
let ans = -(1 << 30);
const pq = new Heap<[number, number]>((a, b) => b[0] - a[0]);
for (const [x, y] of points) {
while (pq.size() && x - pq.top()[1] > k) {
pq.pop();
}
if (pq.size()) {
ans = Math.max(ans, x + y + pq.top()[0]);
}
pq.push([y - x, x]);
}
return ans;
}
type Compare<T> = (lhs: T, rhs: T) => number;
class Heap<T = number> {
data: Array<T | null>;
lt: (i: number, j: number) => boolean;
constructor();
constructor(data: T[]);
constructor(compare: Compare<T>);
constructor(data: T[], compare: Compare<T>);
constructor(data: T[] | Compare<T>, compare?: (lhs: T, rhs: T) => number);
constructor(
data: T[] | Compare<T> = [],
compare: Compare<T> = (lhs: T, rhs: T) => (lhs < rhs ? -1 : lhs > rhs ? 1 : 0),
) {
if (typeof data === 'function') {
compare = data;
data = [];
}
this.data = [null, ...data];
this.lt = (i, j) => compare(this.data[i]!, this.data[j]!) < 0;
for (let i = this.size(); i > 0; i--) this.heapify(i);
}
size(): number {
return this.data.length - 1;
}
push(v: T): void {
this.data.push(v);
let i = this.size();
while (i >> 1 !== 0 && this.lt(i, i >> 1)) this.swap(i, (i >>= 1));
}
pop(): T {
this.swap(1, this.size());
const top = this.data.pop();
this.heapify(1);
return top!;
}
top(): T {
return this.data[1]!;
}
heapify(i: number): void {
while (true) {
let min = i;
const [l, r, n] = [i * 2, i * 2 + 1, this.data.length];
if (l < n && this.lt(l, min)) min = l;
if (r < n && this.lt(r, min)) min = r;
if (min !== i) {
this.swap(i, min);
i = min;
} else break;
}
}
clear(): void {
this.data = [null];
}
private swap(i: number, j: number): void {
const d = this.data;
[d[i], d[j]] = [d[j], d[i]];
}
}
这道题实际上需要我们维护的是一个长度为
具体地,我们定义一个单调队列
当我们遍历到点
接下来,在将点
时间复杂度
class Solution:
def findMaxValueOfEquation(self, points: List[List[int]], k: int) -> int:
ans = -inf
q = deque()
for x, y in points:
while q and x - q[0][0] > k:
q.popleft()
if q:
ans = max(ans, x + y + q[0][1] - q[0][0])
while q and y - x >= q[-1][1] - q[-1][0]:
q.pop()
q.append((x, y))
return ans
class Solution {
public int findMaxValueOfEquation(int[][] points, int k) {
int ans = -(1 << 30);
Deque<int[]> q = new ArrayDeque<>();
for (var p : points) {
int x = p[0], y = p[1];
while (!q.isEmpty() && x - q.peekFirst()[0] > k) {
q.pollFirst();
}
if (!q.isEmpty()) {
ans = Math.max(ans, x + y + q.peekFirst()[1] - q.peekFirst()[0]);
}
while (!q.isEmpty() && y - x >= q.peekLast()[1] - q.peekLast()[0]) {
q.pollLast();
}
q.offerLast(p);
}
return ans;
}
}
class Solution {
public:
int findMaxValueOfEquation(vector<vector<int>>& points, int k) {
int ans = -(1 << 30);
deque<pair<int, int>> q;
for (auto& p : points) {
int x = p[0], y = p[1];
while (!q.empty() && x - q.front().first > k) {
q.pop_front();
}
if (!q.empty()) {
ans = max(ans, x + y + q.front().second - q.front().first);
}
while (!q.empty() && y - x >= q.back().second - q.back().first) {
q.pop_back();
}
q.emplace_back(x, y);
}
return ans;
}
};
func findMaxValueOfEquation(points [][]int, k int) int {
ans := -(1 << 30)
q := [][2]int{}
for _, p := range points {
x, y := p[0], p[1]
for len(q) > 0 && x-q[0][0] > k {
q = q[1:]
}
if len(q) > 0 {
ans = max(ans, x+y+q[0][1]-q[0][0])
}
for len(q) > 0 && y-x >= q[len(q)-1][1]-q[len(q)-1][0] {
q = q[:len(q)-1]
}
q = append(q, [2]int{x, y})
}
return ans
}
function findMaxValueOfEquation(points: number[][], k: number): number {
let ans = -(1 << 30);
const q: number[][] = [];
for (const [x, y] of points) {
while (q.length > 0 && x - q[0][0] > k) {
q.shift();
}
if (q.length > 0) {
ans = Math.max(ans, x + y + q[0][1] - q[0][0]);
}
while (q.length > 0 && y - x > q[q.length - 1][1] - q[q.length - 1][0]) {
q.pop();
}
q.push([x, y]);
}
return ans;
}