-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrish.py
executable file
·802 lines (616 loc) · 23.5 KB
/
trish.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
#!/usr/bin/env python3
"""
Copyright (c) 2019 Victor Collod <[email protected]>
Trish is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at
your option) any later version.
Trish is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with trish. If not, see <http://www.gnu.org/licenses/>.
"""
import json
import logging
import re
import sys
from argparse import ArgumentParser, Namespace
from collections import defaultdict
from fnmatch import fnmatch
from functools import partial
from itertools import chain
from pathlib import Path, PosixPath
from typing import (
Callable,
Dict,
FrozenSet,
Generator,
Iterable,
List,
Mapping,
NamedTuple,
Optional,
Sequence,
Set,
Tuple,
Type,
TypeVar,
Union,
cast,
)
T = TypeVar("T")
try:
from tqdm import tqdm # type: ignore
progressbar = tqdm # pylint: disable=invalid-name
except ImportError:
def progressbar(iterator: T) -> T:
"""a progressbar placeholder, doing nothing with the iterator it's given"""
return iterator
DEFAULT_WINDOW_SIZE = 3
def _trish_parser() -> ArgumentParser:
parser = ArgumentParser(description="Run trish")
parser.add_argument(
"--pattern",
action="store",
default=None,
help=(
"Recursively look for files with names matching"
"the specified pattern. If no pattern is given, "
"targets are assumed to be files."
),
)
parser.add_argument(
"--ignore", action="append", default=[], help="Pattern of files to ignore"
)
parser.add_argument(
"-c",
"--clusters-log-dir",
action="store",
default=None,
help="Log clusters of similar lines to the given directory.",
)
parser.add_argument(
"-w",
"--window_size",
action="store",
type=int,
default=DEFAULT_WINDOW_SIZE,
help="minimum size for a group of similar lines to be considered",
)
parser.add_argument(
"--unordered-line-group",
action="store_true",
default=False,
help="Inore the order of lines inside windows",
)
parser.add_argument(
"targets", nargs="+", default=[], help="Target files or folders to test"
)
return parser
TOKEN_SPLITTER = re.compile(r" |(\w+)")
logging.basicConfig(
stream=sys.stderr,
level=logging.DEBUG,
format="%(asctime)s:%(levelname)s - %(message)s",
)
logger = logging.getLogger() # pylint: disable=invalid-name
def tokenize(line: str) -> Generator[Tuple[str, bool], None, None]:
"""Splits a string on word and spaces boundaries, (token, is_word) pairs
>>> list(tokenize("a test () sample!"))
[('a', True), ('test', True), ('()', False), ('sample', True), ('!', False)]
"""
is_group = False
for token in re.split(TOKEN_SPLITTER, line):
if token is not None:
token = token.strip()
if token:
yield (token, is_group)
is_group = not is_group
CanonicalLineItem = Union[str, int]
CanonicalLine = Tuple[CanonicalLineItem, ...]
def canonicalize(lexed_line: Iterable[Tuple[str, bool]]) -> CanonicalLine:
"""Takes a lexed line and returns a canonical tuple, where each word is
replaced by the index of its first occurence.
>>> canonicalize(tokenize("a test () sample!"))
(0, 1, '()', 2, '!')
"""
wmap: Dict[str, int] = {}
wlist: List[CanonicalLineItem] = []
i = 0
for group, is_word in lexed_line:
if not is_word:
wlist.append(group)
continue
gstatus = wmap.get(group)
if gstatus is not None:
wlist.append(gstatus)
else:
wmap[group] = i
wlist.append(i)
i += 1
return tuple(wlist)
def sliding_window(
array: Sequence[T], width: int
) -> Generator[Tuple[T, ...], None, None]:
"""
>>> list(sliding_window([1, 2, 3, 4], 2))
[(1, 2), (2, 3), (3, 4)]
"""
if len(array) < width:
return
for i in range(len(array) - width + 1):
yield tuple(array[i : i + width])
class Line:
"""A line of code. It has a source file, and a line number"""
__slots__ = ("source_file", "line_number")
def __init__(self, source_file: "SourceFile", line_number: int):
self.source_file = source_file
self.line_number = line_number
@property
def number_format(self) -> str:
"""Formats the line number, highlighting the line
type (it comes from an actual file).
"""
return f"r{self.line_number}"
@property
def codebase(self) -> "Codebase":
return self.source_file.codebase
def __str__(self) -> str:
return f"{self.source_file}:{self.line_number}"
def __repr__(self) -> str:
return f"<Line {self}>"
class SourceFile:
"""A source file. Lines refer to it, it belongs to a codebase,
and has a size, in lines.
"""
__slots__ = ("codebase", "path", "size")
def __init__(self, codebase: Optional["Codebase"], path: Path):
self.path = path
self.size = 0
if codebase is None:
codebase = Codebase(path, path.name)
self.codebase = codebase
def newline(self) -> Line:
nline = Line(self, self.size)
self.size += 1
self.codebase.line_count += 1
return nline
def lines(self) -> Generator[Tuple[Line, str], None, None]:
try:
with self.path.open() as source_file:
for line_content in source_file.readlines():
yield (self.newline(), line_content)
except (FileNotFoundError, UnicodeDecodeError):
pass
def __str__(self) -> str:
return str(self.path)
def __repr__(self) -> str:
return f"<SourceFile {self}>"
class Codebase:
"""A codebase is a set of source files.
It has a size in lines, a path and a name.
"""
__slots__ = ("path", "name", "line_count")
def __init__(self, path: Path, name: str):
self.path = path
self.name = name
self.line_count = 0
def get_size(self) -> int:
return self.line_count
def __repr__(self) -> str:
return f"<Codebase {self.name}>"
def pairmaker(self, other: "Codebase") -> Callable[[T, T], Tuple[T, T]]:
if id(self) < id(other):
return lambda a, b: (a, b)
return lambda a, b: (b, a)
@staticmethod
def from_path(path: Path) -> "Codebase":
return Codebase(path, path.name)
def find_sources(
self, ignore_list: List[str], glob: str
) -> Generator[SourceFile, None, None]:
for source_path in self.path.glob(glob):
for pattern in ignore_list:
if fnmatch(source_path.name, pattern):
break
else:
yield SourceFile(self, source_path)
class VLine:
"""A Vline is a line after preprocessing"""
__slots__ = ("canonical_line", "number", "origin_line")
def __init__(
self, canonical_line: CanonicalLine, number: int, origin_line: Line
) -> None:
# this isn't the line number from the source file,
# but another line number computed after preprocessing
self.number = number
self.origin_line = origin_line
self.canonical_line = canonical_line
@property
def source_file(self) -> SourceFile:
return self.origin_line.source_file
@property
def codebase(self) -> Codebase:
return self.origin_line.codebase
@property
def origin_line_number(self) -> int:
return self.origin_line.line_number
@property
def number_format(self) -> str:
"""Formats the line number, highlighting the line type.
It's a virtual line, numbered after preprocessing.
"""
return f"v{self.number}"
def __str__(self) -> str:
return str(self.origin_line)
def __repr__(self) -> str:
return f"<VLine {self.origin_line}>"
# remove consecutive empty lines
def normalize_empty_lines(
lines: Iterable[Tuple[CanonicalLine, Line]]
) -> Generator[VLine, None, None]:
empty_line = None
line_number = 1
for canonical_line, source_line in lines:
if canonical_line:
if empty_line is not None:
yield empty_line
empty_line = None
yield VLine(canonical_line, line_number, source_line)
line_number += 1
elif empty_line is None:
empty_line = VLine(canonical_line, line_number, source_line)
line_number += 1
TupleLineGroup = Tuple[CanonicalLine, ...]
SetLineGroup = FrozenSet[CanonicalLine]
LineGroup = TypeVar("LineGroup", TupleLineGroup, SetLineGroup)
SourceId = Tuple[LineGroup, VLine]
def preprocess_source(
source_file: SourceFile, window_size: int, line_group_type: Type[LineGroup]
) -> Generator[SourceId[LineGroup], None, None]:
keylist = list(
normalize_empty_lines(
(canonicalize(tokenize(line_content)), source_line)
for source_line, line_content in source_file.lines()
)
)
# print('\n'.join(str(k.canonical_line) for k in keylist))
# keylist now contains a list of preprocessed line, along with
# where they appeared in the first place
# yield groups of preprocessed lines, so they can be later looked up
for line_group in sliding_window(keylist, window_size):
# the line number of the group is the line number of its first line
source_line = line_group[0]
yield (
line_group_type(map(lambda l: l.canonical_line, line_group)),
source_line,
)
def preprocess_sources(
source_files: Iterable[SourceFile],
window_size: int,
line_group_type: Type[LineGroup],
) -> Generator[SourceId[LineGroup], None, None]:
"""creates line groups"""
for source_file in progressbar(source_files):
yield from preprocess_source(source_file, window_size, line_group_type)
LineGroupMatches = List[Tuple[LineGroup, List[VLine]]]
LineGroupOccurences = Mapping[LineGroup, List[VLine]]
def correlate_line_groups(
line_groups: Iterable[SourceId[LineGroup]]
) -> LineGroupMatches[LineGroup]:
hitmap: LineGroupOccurences[LineGroup] = defaultdict(list)
for line_group, source_line in line_groups:
hitmap[line_group].append(source_line)
return list(hitmap.items())
def correlate_sources(
source_files: Iterable[SourceFile],
window_size: int,
line_group_type: Type[LineGroup],
) -> LineGroupMatches[LineGroup]:
line_groups = preprocess_sources(source_files, window_size, line_group_type)
return correlate_line_groups(line_groups)
def find_sources(
targets: Iterable[str], ignore_list: List[str], pattern: Optional[str]
) -> List[SourceFile]:
path_targets = map(PosixPath, targets)
if pattern is None:
return [SourceFile(None, path) for path in path_targets]
return list(
chain.from_iterable(
Codebase.from_path(path).find_sources(ignore_list, pattern)
for path in path_targets
)
)
def pairs(seq: Sequence[T]) -> Generator[Tuple[T, T], None, None]:
seq_len = len(seq)
for i in range(seq_len):
for j in range(i + 1, seq_len):
yield (seq[i], seq[j])
class LineMatch(NamedTuple):
left: VLine
right: VLine
CodebasePair = Tuple[Codebase, Codebase]
SourceFilePair = Tuple[SourceFile, SourceFile]
FileMatchesMapping = Mapping[CodebasePair, Mapping[SourceFilePair, List[LineMatch]]]
def group_by_file_pairs(matches: LineGroupMatches[LineGroup]) -> FileMatchesMapping:
# a map from a pair of codebases to a map of pair of files
# to list of pairs of matches
codebases_map: FileMatchesMapping = defaultdict(lambda: defaultdict(list))
for _linegroup, occurences in progressbar(matches):
for line_a, line_b in pairs(occurences):
base_a, base_b = line_a.codebase, line_b.codebase
if base_a is base_b:
continue
pairmaker = base_a.pairmaker(base_b)
codebase_pair = pairmaker(base_a, base_b)
line_pair = pairmaker(line_a, line_b)
file_pair = pairmaker(line_a.source_file, line_b.source_file)
codebases_map[codebase_pair][file_pair].append(LineMatch(*line_pair))
return {k: dict(v) for k, v in codebases_map.items()}
class LineRun:
__slots__ = ("lines", "neighbors", "visited")
def __init__(self) -> None:
self.lines: List[VLine] = []
self.neighbors: Set[LineRun] = set()
self.visited: object = None
def __repr__(self) -> str:
return f"<LineRun {self.lines[0]} -> {self.lines[-1]}>"
def get_run_cluster(self, flag: object) -> Generator["LineRun", None, None]:
if self.visited is flag:
return
self.visited = flag
yield self
for neighbor in self.neighbors:
yield from neighbor.get_run_cluster(flag)
class VLineCluster:
__slots__ = ("lines", "runs_count")
def __init__(self) -> None:
# a list is used for performance, but is really is a set
self.lines: List[VLine] = []
self.runs_count: int = 0
def vlength(self, window_size: int) -> int:
return len(self.lines) + (window_size - 1) * self.runs_count
def update(self, run: LineRun) -> None:
self.runs_count += 1
self.lines.extend(run.lines)
def __repr__(self) -> str:
suffix = ""
if self.lines:
suffix = f" {self.lines[0]}"
return f"<VLineCluster #{len(self.lines)}{suffix}>"
def compute_runs(
matches: List[LineMatch],
run_map: Dict[VLine, LineRun],
pair_i: int,
window_size: int,
) -> List[LineRun]:
"""find runs of lines appearing in any match"""
# the same item can be involved in more than a single pair
# the set can be avoided by changing algorithms instead
match_list = list({match[pair_i] for match in matches})
# insane stuff can be done here
# we may sort this O(file_size), which may not be a good idea,
# given that most of the time, len(matches) <<< file_size.
# we could store a list of file lines somewhere, and test if the
# line has matched using a hash set.
match_list.sort(key=lambda m: m.number)
runs: List[LineRun] = []
run = LineRun()
prev_line_number: Optional[int] = None
def end_run() -> None:
nonlocal run
if run.lines:
runs.append(run)
run = LineRun()
for line in match_list:
cur_line_number = line.number
has_prev_line = prev_line_number is not None
if (
has_prev_line
and cur_line_number > cast(int, prev_line_number) + window_size
):
end_run()
run_map[line] = run
run.lines.append(line)
prev_line_number = cur_line_number
end_run()
return runs
TInput = TypeVar("TInput")
TOutput = TypeVar("TOutput")
def rebuild_filemap(
filemap: Mapping[CodebasePair, Mapping[SourceFilePair, TInput]],
func: Callable[[CodebasePair, SourceFilePair, TInput], TOutput],
) -> Mapping[CodebasePair, Mapping[SourceFilePair, TOutput]]:
res = {}
for codebase_pair, file_map in progressbar(filemap.items()):
file_res = {}
for file_pair, matches in file_map.items():
file_res[file_pair] = func(codebase_pair, file_pair, matches)
res[codebase_pair] = file_res
return res
ClusterMatch = Tuple[VLineCluster, VLineCluster]
FileClusterMapping = Mapping[CodebasePair, Mapping[SourceFilePair, List[ClusterMatch]]]
def group_lines(
options: Namespace, codebases_map: FileMatchesMapping
) -> FileClusterMapping:
"""
{
(base_a, base_b): {
(file_a, file_b): [
(line_a, line_b)
]
}
}
"""
def _group_lines(
_codebase_pair: CodebasePair,
file_pair: SourceFilePair,
matches: List[LineMatch],
) -> List[ClusterMatch]:
window_size = options.window_size
left_file = file_pair[0]
run_map: Dict[VLine, LineRun] = {}
left_runs = compute_runs(matches, run_map, 0, window_size)
right_runs = compute_runs(matches, run_map, 1, window_size)
for left_line, right_line in matches:
left_run = run_map[left_line]
right_run = run_map[right_line]
left_run.neighbors.add(right_run)
right_run.neighbors.add(left_run)
clusters = []
# runs should be connected now, so it doesn't matter which side is
# iterated over
for run in left_runs:
if run.visited is True:
continue
left_cluster = VLineCluster()
right_cluster = VLineCluster()
for cur_run in run.get_run_cluster(True):
if cur_run.lines[0].source_file is left_file:
left_cluster.update(cur_run)
else:
right_cluster.update(cur_run)
assert left_cluster.lines and right_cluster.lines
clusters.append((left_cluster, right_cluster))
assert all(map(lambda c: c.visited is True, left_runs))
assert all(map(lambda c: c.visited is True, right_runs))
return clusters
return rebuild_filemap(codebases_map, _group_lines)
CodebaseScoreMapping = Dict[Tuple[Codebase, Codebase], int]
def rate_line(line: VLine) -> int:
return len(line.canonical_line)
def rate_cluster(window_size: int, cluster: VLineCluster) -> int:
# how long the content of the lines is matters
significance = sum(map(rate_line, cluster.lines))
# but not as much as how many lines the cluster holds
return cluster.vlength(window_size) ** 2 * significance
def rate_cluster_match(window_size: int, match: ClusterMatch) -> int:
left_cluster, right_cluster = match
cluster_rater = partial(rate_cluster, window_size)
return sum(map(cluster_rater, (left_cluster, right_cluster)))
def rate_grouped_lines(
codebases_map: FileClusterMapping, window_size: int
) -> CodebaseScoreMapping:
res = {}
cluster_match_rater = partial(rate_cluster_match, window_size)
for codebase_pair, file_map in codebases_map.items():
cluster_matches = chain.from_iterable(file_map.values())
cluster_matches_score = sum(map(cluster_match_rater, cluster_matches))
codebase_sizes = sum(map(Codebase.get_size, codebase_pair))
# the bigger the codebase, the more false positives.
score = 0
if codebase_sizes:
score = cluster_matches_score // codebase_sizes
res[codebase_pair] = score
return res
def codebase_pair_name(codebase_pair: CodebasePair) -> str:
"""Returns a string uniquely identifying a pair of codebases"""
base_a, base_b = codebase_pair
base_a_name = base_a.name.replace("-", "--")
base_b_name = base_b.name.replace("-", "--")
# underscores are mandatory to avoid conflicts
# consider the pairs ("a", "-b") and ("a-", "b")
return f"{base_a_name}_-_{base_b_name}"
def compress_ranges(range_starts: List[int], range_width: int) -> Generator[Tuple[int, int], None, None]:
"""Compresses consecutive sequences of ints into ranges
>>> list(compress_ranges([1], 10))
[(1, 11)]
>>> list(compress_ranges([1, 2, 3, 13], 10))
[(1, 13), (13, 23)]
>>> list(compress_ranges([1, 2, 3, 12], 10))
[(1, 22)]
"""
ranges_iter = iter(range_starts)
first_range = next(ranges_iter, None)
if first_range is None:
return
begin: int = first_range
last: int = first_range
for item in ranges_iter:
if item >= last + range_width:
yield (begin, last + range_width)
begin = item
last = item
yield (begin, last + range_width)
class ClusterMatchScore(NamedTuple):
score: int
cluster_match: ClusterMatch
file_pair: SourceFilePair
def json_dump(self, window_size: int) -> str:
left_file, right_file = self.file_pair
left, right = self.cluster_match
left_lines = [vline.origin_line_number for vline in left.lines]
right_lines = [vline.origin_line_number for vline in right.lines]
left_lines.sort()
right_lines.sort()
return json.dumps(
{
"left_file": str(left_file),
"right_file": str(right_file),
"left": list(compress_ranges(left_lines, window_size)),
"right": list(compress_ranges(right_lines, window_size)),
}
)
def log_clusters(
log_dir_path: str, window_size: int, cluster_map: FileClusterMapping
) -> None:
log_dir = Path(log_dir_path)
log_dir.mkdir(parents=True, exist_ok=True)
logger.info("logging per-codebase correlations")
for codebase_pair, file_map in progressbar(cluster_map.items()):
codebase_pair_file_path = log_dir / f"{codebase_pair_name(codebase_pair)}.json"
# json file format:
# [{"left_file": left_file, "right_file": right_file,
# "left": [1, 2], "right": [1, 2, 3]}]
with codebase_pair_file_path.open("w") as codebase_pair_file:
# rate clusters
cluster_scores = []
for file_pair, clusters in file_map.items():
for cluster in clusters:
score = rate_cluster_match(window_size, cluster)
cluster_scores.append(ClusterMatchScore(score, cluster, file_pair))
# sort by decreasing score
cluster_scores.sort(key=lambda c: -c.score)
codebase_pair_file.write("[")
for cluster_i, cluster_score in enumerate(cluster_scores):
if cluster_i:
codebase_pair_file.write(",")
codebase_pair_file.write(cluster_score.json_dump(window_size))
codebase_pair_file.write("]")
def cluster_matches(
options: Namespace,
source_files: Iterable[SourceFile],
window_size: int,
group_type: Type[LineGroup],
) -> FileClusterMapping:
logger.info("correlating sources")
matches = correlate_sources(source_files, window_size, group_type)
logger.info("grouping codebases / files")
file_pairs_matches = group_by_file_pairs(matches)
logger.info("clustering lines")
return group_lines(options, file_pairs_matches)
def main(args: Optional[List[str]] = None) -> None:
if args is None:
args = sys.argv[1:]
options = _trish_parser().parse_args(args=args)
source_files = find_sources(options.targets, options.ignore, options.pattern)
window_size = options.window_size
# the type isn't assigned to a variable in order to keep mypy happy
# mypy doesn't seem to handle union types parametrizing typevars
if options.unordered_line_group:
clustered_matches = cluster_matches(
options, source_files, window_size, frozenset
)
else:
clustered_matches = cluster_matches(options, source_files, window_size, tuple)
if options.clusters_log_dir is not None:
log_clusters(options.clusters_log_dir, window_size, clustered_matches)
logger.info("rating groups")
scores = rate_grouped_lines(clustered_matches, window_size)
for codebase_pair, score in scores.items():
codebase_a, codebase_b = codebase_pair
print(f"{score}\t{codebase_a.name}\t{codebase_b.name}")
if __name__ == "__main__":
main(sys.argv[1:])