-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathCellsortICA.m
155 lines (133 loc) · 5.26 KB
/
CellsortICA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
function [ica_sig, ica_filters, ica_A, numiter] = CellsortICA(mixedsig, ...
mixedfilters, CovEvals, PCuse, mu, nIC, ica_A_guess, termtol, maxrounds)
% [ica_sig, ica_filters, ica_A, numiter] = CellsortICA(mixedsig, mixedfilters, CovEvals, PCuse, mu, nIC, ica_A_guess, termtol, maxrounds)
%
%CELLSORT
% Perform ICA with a standard set of parameters, including skewness as the
% objective function
%
% Inputs:
% mixedsig - N x T matrix of N temporal signal mixtures sampled at T
% points.
% mixedfilters - N x X x Y array of N spatial signal mixtures sampled at
% X x Y spatial points.
% CovEvals - eigenvalues of the covariance matrix
% PCuse - vector of indices of the components to be included. If empty,
% use all the components
% mu - parameter (between 0 and 1) specifying weight of temporal
% information in spatio-temporal ICA
% nIC - number of ICs to derive
% termtol - termination tolerance; fractional change in output at which
% to end iteration of the fixed point algorithm.
% maxrounds - maximum number of rounds of iterations
%
% Outputs:
% ica_sig - nIC x T matrix of ICA temporal signals
% ica_filters - nIC x X x Y array of ICA spatial filters
% ica_A - nIC x N orthogonal unmixing matrix to convert the input to output signals
% numiter - number of rounds of iteration before termination
%
% Routine is based on the fastICA package (Hugo Gävert, Jarmo Hurri, Jaakko Särelä, and Aapo
% Hyvärinen, http://www.cis.hut.fi/projects/ica/fastica)
%
% Eran Mukamel, Axel Nimmerjahn and Mark Schnitzer, 2009
% Email: [email protected], [email protected]
%
fprintf('-------------- CellsortICA %s -------------- \n', date)
if (nargin<4) || isempty(PCuse)
PCuse = [1:size(mixedsig,1)];
end
if (nargin<6) || isempty(nIC)
nIC = length(PCuse);
end
if (nargin<7) || isempty(ica_A_guess)
ica_A_guess = randn(length(PCuse), nIC);
end
if (nargin<8) || isempty(termtol)
termtol = 1e-6;
end
if (nargin<9) || isempty(maxrounds)
maxrounds = 100;
end
if isempty(mu)||(mu>1)||(mu<0)
error('Spatio-temporal parameter, mu, must be between 0 and 1.')
end
% Check that ica_A_guess is the right size
if size(ica_A_guess,1)~= length(PCuse) || size(ica_A_guess,2)~=nIC
error('Initial guess for ica_A is the wrong size.')
end
if nIC>length(PCuse)
error('Cannot estimate more ICs than the number of PCs.')
end
[pixw,pixh] = size(mixedfilters(:,:,1));
npix = pixw*pixh;
% Select PCs
if mu > 0 || ~isempty(mixedsig)
mixedsig = mixedsig(PCuse,:);
end
if mu < 1 || ~isempty(mixedfilters)
mixedfilters = reshape(mixedfilters(:,:,PCuse),npix,length(PCuse));
end
CovEvals = CovEvals(PCuse);
% Center the data by removing the mean of each PC
mixedmean = mean(mixedsig,2);
mixedsig = mixedsig - mixedmean * ones(1, size(mixedsig,2));
% Create concatenated data for spatio-temporal ICA
nx = size(mixedfilters,1);
nt = size(mixedsig,2);
if mu == 1
% Pure temporal ICA
sig_use = mixedsig;
elseif mu == 0
% Pure spatial ICA
sig_use = mixedfilters';
else
% Spatial-temporal ICA
sig_use = [(1-mu)*mixedfilters', mu*mixedsig];
sig_use = sig_use / sqrt(1-2*mu+2*mu^2); % This normalization ensures that, if both mixedfilters and mixedsig have unit covariance, then so will sig_use
end
% Perform ICA
[ica_A, numiter] = fpica_standardica(sig_use, nIC, ica_A_guess, termtol, maxrounds);
% Sort ICs according to skewness of the temporal component
ica_W = ica_A';
ica_sig = ica_W * mixedsig;
ica_filters = reshape((mixedfilters*diag(CovEvals.^(-1/2))*ica_A)', nIC, nx); % This is the matrix of the generators of the ICs
ica_filters = ica_filters / npix^2;
icskew = skewness(ica_sig');
[icskew, ICord] = sort(icskew, 'descend');
ica_A = ica_A(:,ICord);
ica_sig = ica_sig(ICord,:);
ica_filters = ica_filters(ICord,:);
ica_filters = reshape(ica_filters, nIC, pixw, pixh);
% Note that with these definitions of ica_filters and ica_sig, we can decompose
% the sphered and original movie data matrices as:
% mov_sphere ~ mixedfilters * mixedsig = ica_filters * ica_sig = (mixedfilters*ica_A') * (ica_A*mixedsig),
% mov ~ mixedfilters * pca_D * mixedsig.
% This gives:
% ica_filters = mixedfilters * ica_A' = mov * mixedsig' * inv(diag(pca_D.^(1/2)) * ica_A'
% ica_sig = ica_A * mixedsig = ica_A * inv(diag(pca_D.^(1/2))) * mixedfilters' * mov
function [B, iternum] = fpica_standardica(X, nIC, ica_A_guess, termtol, maxrounds)
numSamples = size(X,2);
B = ica_A_guess;
BOld = zeros(size(B));
iternum = 0;
minAbsCos = 0;
errvec = zeros(maxrounds,1);
while (iternum < maxrounds) && ((1 - minAbsCos)>termtol)
iternum = iternum + 1;
% Symmetric orthogonalization.
B = (X * ((X' * B) .^ 2)) / numSamples;
B = B * real(inv(B' * B)^(1/2));
% Test for termination condition.
minAbsCos = min(abs(diag(B' * BOld)));
BOld = B;
errvec(iternum) = (1 - minAbsCos);
end
if iternum<maxrounds
fprintf('Convergence in %d rounds.\n', iternum)
else
fprintf('Failed to converge; terminating after %d rounds, current change in estimate %3.3g.\n', ...
iternum, 1-minAbsCos)
end
end
end