-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstarformation.py
executable file
·484 lines (415 loc) · 17.1 KB
/
starformation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
"""
starformation
=====
update to some of the functions in the stars.py file
by MJT
"""
import numpy as np
import matplotlib.pyplot as plt
import pynbody
from pynbody.analysis import profile, angmom, halo
from pynbody import filt, units, config, array
import warnings
import math
import anybins
import bhanalysis
plt.ion()
plt.rc('xtick',labelsize=15)
plt.rc('ytick',labelsize=15)
plt.rc('font', weight='medium')
plt.rc('axes', linewidth=2)
plt.rc('xtick.major',width=2)
plt.rc('ytick.major',width=2)
def partial_derivative(func, var=0, point=[]):
args = point[:]
def wraps(x):
args[var] = x
return func(*args)
return scipy.misc.derivative(wraps, point[var], dx = 1e-8)
def sfh(sim,filename=None,massform=True,initstarmass=False,makeplot=True,
subplot=False, trange=False, bins=100, binsize=False, zmin=False,overplot=False,linestyle='-',color='k',linewidth=2,label=None,dored=True,**kwargs):
'''
star formation history
**Optional keyword arguments:**
*trange*: list, array, or tuple
size(t_range) must be 2. Specifies the time range.
*bins*: int
number of bins to use for the SFH
*label*: string
label line for legend
*zmin*: float
set min z to plot on second axes
*overplot*: bool
set to True if you are plotting a line on an already existing plot
*massform*: bool
decides whether to use original star mass (massform) or final star mass
*subplot*: subplot object
where to plot SFH
*legend*: boolean
whether to draw a legend or not
By default, sfh will use the formation mass of the star. In tipsy, this will be
taken from the starlog file. Set massform=False if you want the final (observed)
star formation history
**Usage:**
>>> import pynbody.plot as pp
>>> pp.sfh(s,linestyle='dashed',color='k')
'''
if subplot:
plt = subplot
else:
import matplotlib.pyplot as plt
if 'nbins' in kwargs:
bins=kwargs['nbins']
del kwargs['nbins']
if trange:
assert len(trange) == 2
else:
trange = [0,sim.star['tform'].in_units("Gyr").max()]
if binsize:
bins = int((trange[1] - trange[0])/binsize)
binnorm = 1./(1e9*binsize)
else:
binnorm = 1e-9*(bins / (trange[1] - trange[0]))
trangefilt = filt.And(filt.HighPass('tform',str(trange[0])+' Gyr'),
filt.LowPass('tform',str(trange[1])+' Gyr'))
tforms = sim.star[trangefilt]['tform'].in_units('Gyr')
if massform and not initstarmass:
try:
weight = sim.star[trangefilt]['massform'].in_units('Msol') * binnorm
except (KeyError, units.UnitsException) :
warnings.warn("Could not load massform array -- falling back to current stellar masses", RuntimeWarning)
weight = sim.star[trangefilt]['mass'].in_units('Msol') * binnorm
if initstarmass:
weight = np.zeros(np.size(tforms))
weight[:] = initstarmass*binnorm
if not initstarmass and not massform:
weight = sim.star[trangefilt]['mass'].in_units('Msol') * binnorm
if not makeplot:
sfhist, thebins = np.histogram(tforms, weights=weight, range=trange,bins=bins)
if makeplot:
sfhist, thebins, patches = plt.hist(tforms, weights=weight, range=trange,bins=bins,histtype='step',linestyle=linestyle,color=color,linewidth=linewidth,label=label)
plt.legend(loc='upper left',fontsize=20)
if not overplot:
if not subplot:
plt.ylim(0.0,1.2*np.max(sfhist))
plt.xlim(trange)
plt.xlabel('Time [Gyr]',fontsize=30)
plt.ylabel('SFR [M$_\odot$ yr$^{-1}$]',fontsize=30)
else:
plt.set_ylim(0.0,1.2*np.max(sfhist))
# Make both axes have the same start and end point.
if subplot: x0,x1 = plt.get_xlim()
else: x0,x1 = plt.gca().get_xlim()
from pynbody.analysis import pkdgrav_cosmo as cosmo
c = cosmo.Cosmology(sim=sim)
if dored:
pz = plt.twiny()
if not zmin:
labelzs = np.arange(10,int(sim.properties['z'])-1,-1)
else:
labelzs = np.arange(10,int(sim.properties['z'])-1,-1)
times = [13.7*c.Exp2Time(1.0 / (1+z))/c.Exp2Time(1) for z in labelzs]
pz.set_xticks(times)
pz.set_xticklabels([str(x) for x in labelzs])
pz.set_xlim(x0, x1)
pz.set_xlabel('Redshift',fontsize=30)
if (filename):
if config['verbose']: print "Saving "+filename
plt.savefig(filename)
return array.SimArray(sfhist, "Msol yr**-1"), array.SimArray(thebins, "Gyr")
def genCSFRfit(z,z0,A,B,C):
return C/(10**(A*(z-z0)) + 10**(B*(z-z0)))
def CSFRFit(z,type='beh'):
if type=='beh':
#Behroozi 13
z0 = 1.243
C = 0.18
A = -0.997
B = 0.241
if type=='hop':
#Hopkins 06
z0 = 0.840
C = 0.143
A = -1.311
B = 0.085
sigma = np.zeros(len(z))
sigma[(z<=0.9)] = 0.13
sigma[((0.9<z)&(z<=1.5))] = 0.17
sigma[((1.5<z)&(z<=3))] = 0.19
sigma[(3<z)] = 0.27
return genCSFRfit(z,z0,A,B,C), sigma
def plotCSFRdata(Volume):
#Duncan 14
zz = np.array([4, 5, 6, 7])
ss = np.array([-1.14,-1.33,-1.58,-1.78])
plt.scatter(zz, 10**ss, color='k', marker='D', label='Duncan+ 14', s=40)
#Kistler 13:
sfr = np.array([0.0653, 0.03, 0.041, 0.0276, 0.025])
zhigh = [4.5, 5.5, 6.75, 8, 9.4]
zhighplus = np.array([0.5, 0.5, 0.75, 0.5, 1.025])+1
zhighminus = np.array([0.5, 0.5, 0.75, 0.5, 1.025])+1
sfrplus = np.array([0.0653, 0.03, 0.0405, 0.0647, 0.058])
sfrminus = np.array([0.0326, 0.015, 0.023, 0.023, 0.021])
logsfrplus = np.log10(sfrplus + sfr) - np.log10(sfr)
logsfrminus = np.abs(np.log10(sfr - sfrminus) - np.log10(sfr))
plt.errorbar(zhigh, sfr, fmt='o',yerr=[sfrminus, sfrplus], xerr=[zhighminus, zhighplus], ls='None', linewidth=1.5, color='k', label='Kistler+ 13')
#plt.scatter(zhigh, np.log10(sfr),marker='o', s=80, linewidth=0, color='orange')
#Behroozi 13 and Hopkins 06 fitted relations
zfits = np.arange(1,11,0.01)
fitB,sigB = CSFRFit(zfits,type='beh')
fitH,sigH = CSFRFit(zfits,type='hop')
plt.plot(zfits,fitB,'k-',label='Behroozi+ 13')
plt.plot(zfits,fitH,'k--',label='Hopkins+ 06')
plt.fill_between(zfits,10**(np.log10(fitB)-sigB),10**(np.log10(fitB)+sigB),linewidth=1.5,facecolor='grey',alpha=0.2)
plt.fill_between(zfits,10**(np.log10(fitH)-sigH),10**(np.log10(fitH)+sigH),linewidth=1.5,facecolor='grey',alpha=0.2)
return
def cosmicSF(sim, sl, bins=100,Volume=50.**3,zrange=False,logbins=True,massform=True,initmass=False):
from pynbody.analysis import cosmology
if zrange:
assert len(zrange) == 2
else:
zrange = [0,20]
if logbins==True:
logbinsize = (np.log10(zrange[1]+1)-np.log10(zrange[0]+1))/bins
logzplusonebins = np.log10(zrange[0]+1)+np.arange(bins+1)*logbinsize
zplusonebins = 10**logzplusonebins
zbins = zplusonebins-1
if not logbins:
zbinsize = np.float(zrange[1]-zrange[0])/bins
zbins = zrange[0] +np.arange(bins+1)*zbinsize
from pynbody.analysis import pkdgrav_cosmo as cosmo
c = cosmo.Cosmology(sim=sim)
timebins = np.zeros(bins+1)
for ii in range(bins+1):
timebins[ii] = 13.7-13.7*c.Exp2Time(1.0 / (1+zbins[ii]))/c.Exp2Time(1)
if massform and not initmass:
weight = sl['massform'].in_units('Msol')
if initmass:
weight = np.zeros(len(sl['tform']))
weight[:] = initmass
SF,binedges = np.histogram(13.7-sl['tform'].in_units('Gyr'),bins=timebins,weights=weight)
binnorm = np.zeros(bins)
for i in range(bins):
binnorm[i] = 1e-9 / (timebins[i+1] - timebins[i])
sfrdens = SF*binnorm/Volume
return sfrdens, timebins, zbins
def plotCSFR(s,sl,bins=100,Volume=50.**3,massform=True,initmass=False,log=True,zrange=False,overplot=False,style='k-',label=None,plotdata=True,linewidth=4):
sfrdens, timebins, zbins = cosmicSF(s,sl,bins=bins,Volume=Volume,massform=massform,initmass=initmass,zrange=zrange,logbins=log)
print zbins[1:]-zbins[0:-1]
print zbins
plt.plot((zbins[0:-1]+0.5*(zbins[1:]-zbins[0:-1])),sfrdens,style,label=label,linewidth=linewidth)
if log:
plt.yscale('log',base=10)
plt.xscale('log',base=10)
if not overplot:
plt.xticks([0,1,2,3,4,5,6,7,8,9,10],['0','1','2','3','4','5','6','7','8','9','10'])
if not overplot and plotdata==True:
plotCSFRdata(Volume)
plt.ylabel(r'$\rho_{SFR}$ [M$_{\odot}$ yr$^{-1}$ Mpc$^{-1}$]',fontsize=30)
plt.xlabel(r'Redshift',fontsize=30)
plt.legend(loc='lower left',fontsize=20)
return
def plotSFHandBH(h,s,BHorbit,axarr=None,BHids=[],SFbins=100,trange=None,BHbins=100,tunits='Gyr',label=None,overplot=False,SFcolor='b',BHcolor=['k'],SFline='solid',BHline=['solid'],plotBHDetail=True,maxBH=False):
if trange==None:
trange = [0,s.properties['time'].in_units('Gyr')]
trangeA = pynbody.array.SimArray(trange,tunits)
dtyr = (trangeA.in_units('yr')[1] - trangeA.in_units('yr')[0])/SFbins
if axarr != None and overplot==False: overplot=True
if axarr == None: f,axarr = plt.subplots(2,sharex=True)
if len(axarr) != 2: print "WARNING: more subplots than two were defined!"
#SFH (top plot)
print "getting SFH..."
axarr[0].hist(h.stars['tform'][(h.stars['tform']>0)].in_units(tunits),bins=SFbins,range=trange,weights=h.stars['massform'][(h.stars['tform']>0)].in_units('Msol')/dtyr,color=SFcolor,histtype='step',linestyle=SFline,label=label,lw=2)
print "getting BH accretion history for all BHs"
cnt = 0
if maxBH==True and plotBHDetail==True:
print "WARNING not obvious how to plot with both plotBHDetail and BHmax... just doing BHmax"
plotBHDetail=False
if maxBH == True: smaccList=[]
for id in BHids:
o, = np.where(BHorbit['iord']==id)
print "BH ID ", id
if len(o)==0:
print "BH id", id, " not found in orbit file..."
continue
bho = BHorbit['data'][o[0]]
smacc,times = bhanalysis.smoothAcc(bho,trange=trange,bins=BHbins,tunits=tunits)
fa,= np.where(smacc>0)
st = fa[0]
fin = fa[-1]
tfa = times[st]
if cnt < len(BHids)-1:
if maxBH==False: axarr[1].plot(times[st:fin],smacc[st:fin]*0.1*3e10*3e10,color=BHcolor[cnt],linestyle=BHline[cnt],lw=2)
else: smaccList.append(smacc)
else:
if maxBH==False: axarr[1].plot(times[st:],smacc[st:]*0.1*3e10*3e10,color=BHcolor[cnt],linestyle=BHline[cnt],lw=2)
else:
smaccList.append(smacc)
smaccplot = np.array(smaccList).max(axis=0)
fa,= np.where(smacc>0)
st = fa[0]
axarr[1].plot(times[st:],smaccplot[st:]*0.1*3e10*3e10,color=BHcolor[cnt],linestyle=BHline[cnt],lw=2)
if plotBHDetail==True:
if cnt < len(BHids)-1: axarr[1].plot(bho['Time'][((bho['Time'].in_units(tunits)<times[-2])&(bho['Time'].in_units(tunits)>tfa))].in_units(tunits),bho['mdot'][((bho['Time'].in_units(tunits)<times[-2])&(bho['Time'].in_units(tunits)>tfa))].in_units('g s**-1')*0.1*3e10*3e10,color=BHcolor[cnt],alpha=0.25,linestyle='-')
else: axarr[1].plot(bho['Time'][(bho['Time'].in_units(tunits)>tfa)].in_units(tunits),bho['mdot'][(bho['Time'].in_units(tunits)>tfa)].in_units('g s**-1')*0.1*3e10*3e10,color=BHcolor[cnt],alpha=0.25,linestyle='-')
cnt += 1
if not overplot:
axarr[0].set_ylabel(r'SFR [M$_{\odot}$ yr$^{-1}$]',fontsize=30)
plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=False)
axarr[1].set_yscale('log',base=10)
axarr[1].set_ylabel(r'L$_{bol}$ [ergs/s]',fontsize=30)
axarr[1].set_xlabel(r'Time (Gyr)',fontsize=30)
plt.subplots_adjust(hspace=0)
if overplot==False: return axarr,f
else: return axarr
def sfdens(sim,Volume=50.**3, filename=None,massform=True,clear=True,legend=False,
subplot=False, bins=100, label=False, zrange=False,overplot=False,logbins=True,histogram=False,pltloglog=True,**kwargs):
'''
star formation history
**Optional keyword arguments:**
*trange*: list, array, or tuple
size(t_range) must be 2. Specifies the time range.
*nbins*: int
number of bins to use for the SFH
*massform*: bool
decides whether to use original star mass (massform) or final star mass
*subplot*: subplot object
where to plot SFH
*legend*: boolean
whether to draw a legend or not
By default, sfh will use the formation mass of the star. In tipsy, this will be
taken from the starlog file. Set massform=False if you want the final (observed)
star formation history
**Usage:**
>>> import pynbody.plot as pp
>>> pp.sfh(s,linestyle='dashed',color='k')
'''
if subplot:
plt = subplot
else :
import matplotlib.pyplot as plt
if 'nbins' in kwargs:
bins=kwargs['nbins']
del kwargs['nbins']
if zrange:
assert len(zrange) == 2
else:
zrange = [0,20]
if logbins==True:
logbinsize = (np.log10(zrange[1]+1)-np.log10(zrange[0]+1))/bins
logzplusonebins = np.log10(zrange[0]+1)+np.arange(bins+1)*logbinsize
zplusonebins = 10**logzplusonebins
zbins = zplusonebins-1
if not logbins:
zbinsize = (zrange[1]-zrange[0])/bins
zbins = zrange[0] +np.arange(bins+1)*zbinsize
from pynbody.analysis import pkdgrav_cosmo as cosmo
c = cosmo.Cosmology(sim=sim)
timebins = np.zeros(bins+1)
for ii in range(bins+1):
timebins[ii] = 13.7-13.7*c.Exp2Time(1.0 / (1+zbins[ii]))/c.Exp2Time(1)
print timebins
binnorm = np.zeros(bins)
for i in range(bins):
binnorm[i] = 1e-9 / (timebins[i+1] - timebins[i])
trangefilt = filt.And(filt.HighPass('tform',str(13.7-timebins[bins])+' Gyr'),
filt.LowPass('tform',str(13.7-timebins[0])+' Gyr'))
tforms = sim.star[trangefilt]['tform'].in_units('Gyr')
tformslookback = 13.7-tforms
if massform :
try:
weight = sim.star[trangefilt]['massform'].in_units('Msol')# * binnorm / Volume
except (KeyError, units.UnitsException) :
warnings.warn("Could not load massform array -- falling back to current stellar masses", RuntimeWarning)
weight = sim.star[trangefilt]['mass'].in_units('Msol')# * binnorm / Volume
else:
weight = sim.star[trangefilt]['mass'].in_units('Msol')# * binnorm / Volume
if clear : plt.clf()
sfdens, thebins = np.histogram(tformslookback, weights=weight, bins=timebins)
sfdens = sfdens*binnorm/Volume
if not histogram:
zbincenter = np.zeros(bins)
for i in range(bins):
zbincenter[i] = 0.5*(zbins[i]+zbins[i+1])
print zbincenter
print sfdens
print binnorm
print Volume
if pltloglog:
plt.loglog(zbincenter+1,sfdens,label=label,**kwargs)
else:
plt.plot(zbincenter,sfdens,label=label,**kwargs)
plt.yscale('log')
else:
sfdens_hist = np.zeros((bins)*2)
bins_hist = np.zeros((bins+1)*2)
for i in range(bins*2):
sfdens_hist[i] = sfdens[i/2]
for i in range((bins+1)*2):
bins_hist[i] = zbins[i/2]
bins_hist = bins_hist[np.arange((bins+1)*2-2)+1]
if pltloglog:
plt.loglog(bins_hist,sfdens_hist,label=label,**kwargs)
else:
plt.plot(zbincenter,sfdens,label=label,**kwargs)
plt.yscale('log')
if not overplot:
if not subplot:
plt.ylim(0.0,1.2*np.max(sfdens))
plt.xlim(zrange)
if pltloglog:
plt.xlabel('log(1+z)',fontsize='large')
else:
plt.xlabel('z',fontsize='large')
plt.ylabel(' Specific SFR [M$_\odot$ yr$^{-1} Mpc^{-3}$]',fontsize='large')
else:
plt.set_ylim(0.0,1.2*np.max(sfdens))
def SFR_v_StellarMass(sim,h,dt,grprange=[1,10],grps=False,**kwargs):
if np.size(grps)<2: nhalos = grprange[1]-grprange[0] + 1
else: nhalos = np.size(grps)
SFR = np.array([])
Mass = np.array([])
tcurrent = sim.stars['tform'].in_units('Gyr').max()
if not grps:
for hh in range(grprange[0],grprange[1]+1):
if len(h[hh].stars) > .5:
o, = np.where(tcurrent - h[hh].stars['tform'].in_units("Gyr") < dt)
massform = array.SimArray(h[hh].stars['massform'][o],sim.stars['mass'].units)
totalmass = massform.in_units('Msol').sum()
SFR = np.append(SFR,totalmass/(dt*1e9))
Mass = np.append(Mass,h[hh].stars['mass'].sum().in_units('Msol'))
else:
for hh in range(nhalos):
if len(h[grps[hh]].stars) > .5:
o = np.where(tcurrent - h[grps[hh]].stars['tform'].in_units("Gyr") < dt)
massform = array.SimArray(h[hh].stars['massform'][o],sim.stars['mass'].units)
totalmass = massform.in_units('Msol').sum()
SFR = np.append(SFR,totalmass/(dt*1e9))
Mass = np.append(Mass,h[grps[hh]].stars['mass'].sum().in_units('Msol'))
print Mass, SFR
ind = np.argsort(Mass)
Mass = Mass[ind]
SFR = SFR[ind]
return Mass, SFR
def BHMass_StellarMass(h,grprange=[1,10],grps=False,**kwargs):
if not grps: nhalos = grprange[1]-grprange[0] + 1
else: nhalos = np.size(grps)
Mbh = np.zeros(nhalos)
Mstar = np.zeros(nhalos)
cnt = 0
if not grps:
for hh in range(grprange[0],grprange[1]+1):
bhind = np.where(h[hh].stars['tform'] < 0)
Mbh[cnt] = h[hh].stars['mass'][bhind[0]].in_units('Msol').max()
Mstar[cnt] = h[hh].stars['mass'].in_units('Msol').sum()
cnt = cnt + 1
else:
for hh in range(nhalos):
bhind = np.where(h[grp[hh]].stars['tform'] < 0)
Mbh[cnt] = h[grp[hh]].stars['mass'][bhind[0]].in_units('Msol').max()
Mstar[cnt] = h[grp[hh]].stars['mass'].in_units('Msol').sum()
cnt = cnt + 1
ind = np.argsort(Mstar)
Mstar = Mstar[ind]
Mbh = Mbh[ind]
plt.loglog(Mstar,Mbh,**kwargs)