Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Is it possible to running on CUDA 10.2? #28

Open
HelixNGC7293 opened this issue Sep 26, 2020 · 1 comment
Open

Is it possible to running on CUDA 10.2? #28

HelixNGC7293 opened this issue Sep 26, 2020 · 1 comment

Comments

@HelixNGC7293
Copy link

HelixNGC7293 commented Sep 26, 2020

It seems my 2080ti driver not compatible with CUDA 8 anymore (mine is CUDA 10.2). I tried to build Caffe with 10.2 but it kept sending this error:
Severity Code Description Project File Line Suppression State
Error MSB3721 The command ""C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2;\bin\nvcc.exe" -gencode=arch=compute_35,code="sm_35,compute_35" -gencode=arch=compute_52,code="sm_52,compute_52" --use-local-env -ccbin "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Tools\MSVC\14.26.28801\bin\HostX86\x64" -x cu -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\lmdb-v120-clean.0.9.14.0\build\native....\lib\native\include" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\LevelDB-vc120.1.2.0.0\build\native../..//build/native/include/" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\protobuf-v120.2.6.1\build\native../..//build/native/include/" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\glog.0.3.3.0\build\native../..//build/native/include/" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\gflags.2.1.2.1\build\native../..///build/native/include/" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\boost.1.59.0.0\build\native....\lib\native\include\" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\hdf5-v120-complete.1.8.15.2\build\native....\lib\native\include" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\OpenBLAS.0.2.14.1\build\native....\lib\native\include" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\NugetPackages\OpenCV.2.4.10\build\native../../build/native/include/" -I"C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\similarity_subnet\windows\libcaffe\....\src\" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2" -I\include -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2" -I\include -G -lineinfo --keep-dir C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\similarity_subnet\windows..\Build\Int\libcaffe\x64\Debug -maxrregcount=0 --machine 64 --compile -cudart static -Xcudafe "--diag_suppress=exception_spec_override_incompat --diag_suppress=useless_using_declaration --diag_suppress=field_without_dll_interface" -D_SCL_SECURE_NO_WARNINGS -DGFLAGS_DLL_DECL= -g -DHAS_LMDB -DHAS_HDF5 -DHAS_OPENBLAS -DHAS_OPENCV -D_DEBUG -D_SCL_SECURE_NO_WARNINGS -DUSE_OPENCV -DUSE_LEVELDB -DUSE_LMDB -DUSE_CUDNN -D_UNICODE -DUNICODE -Xcompiler "/EHsc /W1 /nologo /Od /FdC:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\similarity_subnet\windows..\Build\Int\libcaffe\x64\Debug\libcaffe.pdb /FS /Zi /RTC1 /MDd " -o C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\similarity_subnet\windows..\Build\Int\libcaffe\x64\Debug\absval_layer.cu.obj "C:\Tools\AI\VideoProduction\Deep-Exemplar-based-Colorization-master\similarity_subnet\src\caffe\layers\absval_layer.cu"" exited with code 1. libcaffe C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Microsoft\VC\v160\BuildCustomizations\CUDA 10.2.targets 764

Is there any way to fix this issue?
Thank you!

@78Alpha
Copy link

78Alpha commented Sep 17, 2021

A lot of these types of programs are heavily reliant on the tensorflow/pytorch build that is usually built against a certain version of cuda. You could potentially compile your own against a newer version, but it still may not work.

It may just a need a rewrite to the new version completely, but that comes with retraining as well.

Cuda 8 though, that's... ancient. I don't think I even have a piece of hardware that can run that low.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants