-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathanalyze.py
216 lines (195 loc) · 6.79 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
MiMSI Analysis Utility
Used to run the full MiMSI pipeline, including vector generation.
Vectors will be created from the provided bam file(s) and saved to disk. After completion all
vectors will be analyzed in bulk and the results reported
@author: John Ziegler
Memorial Sloan Kettering Cancer Center
Nov. 2018
(c) 2018 Memorial Sloan Kettering Cancer Center. This program is free software: you may use, redistribute,
and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation,
either version 3 or later. See the LICENSE file for details
"""
import os
import numpy as np
import scipy.stats as sps
import argparse
import torch
import torch.utils.data as data_utils
import torch.optim as optim
from torch.autograd import Variable
from sklearn import metrics
import traceback
import pkg_resources
from data.generate_vectors.create_data import create_data
from main.evaluate_sample import run_eval
# Global variables
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
def main():
parser = argparse.ArgumentParser(description="MiMSI Analysis")
parser.add_argument(
"--version",
action="store_true",
default=False,
help="Display current version of MiMSI",
)
parser.add_argument(
"--no-cuda",
action="store_true",
default=False,
help="Disables CUDA for use off GPU, if this is not specified the utility will check availability of torch.cuda",
)
parser.add_argument(
"--model",
default=ROOT_DIR + "/model/mimsi_mskcc_impact_200.model",
help="name of the saved model weights to load (default: model/mimsi_mskcc_impact_200.model)",
)
parser.add_argument(
"--save",
action="store_true",
default=False,
help="save the results of the evaluation to a numpy array or a tsv text file",
)
parser.add_argument(
"--save-format",
choices=["tsv", "npy", "both"],
default="tsv",
help="save the results of the evaluation to a numpy array or as summary in a tsv text file or both",
)
parser.add_argument(
"--seed", type=int, default=2, metavar="S", help="Random Seed (default: 2)"
)
parser.add_argument(
"--microsatellites-list",
default=ROOT_DIR + "/utils/microsatellites.list",
help="The list of microsatellites to check in the tumor/normal pair (default: utils/microsatellites.list)",
)
parser.add_argument(
"--save-location",
default="./mimsi_results",
help="The location on the filesystem to save the converted vectors and final results (default: Current_working_directory/mimsi_results/). WARNING: Exisitng files in this directory in the formats *_locations.npy and *_data.npy will be deleted!",
)
parser.add_argument(
"--cores",
default=16,
help="Number of cores to utilize in parallel (default: 16)",
)
parser.add_argument(
"--coverage",
default=100,
help="Required coverage for both the tumor and the normal. Any coverage in excess of this limit will be randomly downsampled",
)
parser.add_argument(
"--confidence-interval",
default=0.95,
help="Confidence interval for the estimated MSI Score reported in the tsv output file (default: 0.95)",
)
parser.add_argument(
"--use-attention",
action="store_true",
default=False,
help="Use attention pooling rather than average pooling to aggregate sample embeddings (default: False)",
)
single_sample_group = parser.add_argument_group("Single Sample Mode")
single_sample_group.add_argument(
"--tumor-bam", help="Tumor bam file for conversion"
)
single_sample_group.add_argument(
"--normal-bam", help="Matched normal bam file for conversion"
)
single_sample_group.add_argument(
"--case-id",
default="TestCase",
help="Unique identifier for the single sample/case submitted. This will be the filename for any saved results (default: TestCase)",
)
single_sample_group.add_argument(
"--norm-case-id", default=None, help="Normal case name (default: None)"
)
batch_mode_group = parser.add_argument_group("Batch Mode")
batch_mode_group.add_argument(
"--case-list",
default="",
help="Case List for generating sample vectors in bulk, if specified all other input file args will be ignored",
)
batch_mode_group.add_argument(
"--name",
default="BATCH",
help="name of the run submitted using --case-list, this will be the filename for any saved results in the tsv format (default: BATCH)",
)
args = parser.parse_args()
if args.version:
print("MiMSI Case Analysis CLI version - " + pkg_resources.require("MiMSI")[0].version)
return
case_list, tumor_bam, normal_bam, case_id, norm_case_id, ms_list, save_loc, cores, saved_model, no_cuda, seed, save, save_format, name, covg, confidence, use_attention = (
args.case_list,
args.tumor_bam,
args.normal_bam,
args.case_id,
args.norm_case_id,
args.microsatellites_list,
args.save_location,
args.cores,
args.model,
args.no_cuda,
args.seed,
args.save,
args.save_format,
args.name,
args.coverage,
args.confidence_interval,
args.use_attention,
)
cuda = not no_cuda and torch.cuda.is_available()
# Resolve args
if case_list:
print("Case list is provided. Running in batch mode!")
elif all([tumor_bam, normal_bam]):
print("Running in single sample mode!")
else:
print(
"Either a case_list (batch mode) or a tumor_bam/normal_bam pairs (single sample mode) is required."
)
return
if save_loc == "./mimsi_results":
try:
save_loc = os.getcwd() + "/mimsi_results"
except OSError as e:
print(
"Cannot create directory to save intermediate files and final results!"
)
raise
try:
# is_labled is false since this is an evaluation pipeline, 50 is the coverage
create_data(
ms_list,
save_loc,
covg,
cores,
case_list,
tumor_bam,
normal_bam,
case_id,
norm_case_id,
)
except Exception:
raise
try:
run_eval(
saved_model,
save_loc,
cuda,
seed,
save,
save_format,
save_loc,
name,
covg,
confidence,
use_attention
)
except Exception:
raise
print("Analysis Complete!")
if __name__ == "__main__":
main()