forked from dteuscher1/NBA-Basketball-Visualization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathShotAnalysis.Rmd
384 lines (315 loc) · 11.1 KB
/
ShotAnalysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
---
title: "ShotAnalysis"
output: html_document
---
```{r setup}
library(tidyverse)
library(caret)
library(dummies)
library(xgboost)
library(data.table)
library(Matrix)
shots <- read.csv("data.csv", header = TRUE)
```
```{r}
# Looking at the structure of the data
str(shots)
```
```{r}
# Converting all character variables to factors
shots[sapply(shots, is.character)] <- lapply(shots[sapply(shots, is.character)], as.factor)
str(shots)
```
```{r}
ggplot(shots, aes(x = lon, y = lat)) + geom_point()
```
```{r}
ggplot(shots, aes(x = loc_x, y = loc_y)) + geom_point()
```
```{r}
# Converting loc_x and loc_y from Cartesian coordinates to Polar coordinates
shots$loc_r <- sqrt((shots$loc_x)^2 + (shots$loc_y)^2)
shots$loc_theta <- atan(shots$loc_y/shots$loc_x)
shots$loc_theta[is.na(shots$loc_theta)] <- pi/2 # Some loc_x coordinates are 0, and we replace these values with pi / 2 radians or 90 degrees
```
```{r}
# Combining minutes_remaining and seconds_remaining
shots$time_remaining <- (shots$minutes_remaining * 60) + shots$seconds_remaining
# time_remaining = total seconds remaining
```
```{r}
# Selecting only the last 2 digits of the season variable
shots$season <- sapply(shots$season, function(x){str_extract(x, "(?<=[:punct:])[:digit:]{2}")})
# Don't know whether things will change if we leave it as a factor or convert it to an integer
```
```{r}
# Irrelevant variables
unique(shots$team_id)
unique(shots$team_name)
```
```{r}
# Creating home and away variables from the matchup variable
shots$away <- as.numeric(grepl("@", shots$matchup, fixed = TRUE))
shots$home <- as.numeric(grepl("vs.", shots$matchup, fixed = TRUE))
```
```{r}
# Creating a variable indicating whether the shot was taken in the last 3 minutes of a quarter
shots$lastminutes <- ifelse(shots$time_remaining <= 180, 1, 0)
```
```{r}
# Numbering each of Kobe's games
shots$game_num <- as.numeric(shots$game_date)
# Ordering the data by game_num
shots <- shots %>% arrange(game_num)
```
```{r}
# Creating a variable for Kobe post Achilles tear
shots$postachilles <- ifelse(shots$game_num > 1452, 1, 0)
# 1st team All NBA
# 2001-02 Regular Season => 395-474
# 2002-03 Regular Season =>
# 2003-04 Regular Season =>
# 2005-06 Regular Season => 740-819
# 2006-07 Regular Season => 827-903
# 2007-08 Regular Season => 909-990
# 2008-09 Regular Season =>
# 2009-10 Regular Season =>
# 2010-11 Regular Season =>
# 2011-12 Regular Season =>
# 2012-13 Regular Season =>
shots$first_team <- ifelse((shots$game_num >= 395 & shots$game_num <= 673) | (shots$game_num >= 740 & shots$game_num <= 1452), 1, 0)
# Scoring Leader
# 2005-06 Regular Season => 740-819
# 2006-07 Regular Season => 827-903
shots$scoring_leader <- ifelse((shots$game_num >= 740 & shots$game_num <= 819) | (shots$game_num >= 827 & shots$game_num <= 903), 1, 0)
# MVP
# 2007-08 Regular Season => 909-990
shots$mvp <- ifelse(shots$game_num >= 909 & shots$game_num <= 990, 1, 0)
# Finals MVP
# 2008-09 Finals => 1112-1116
# 2009-10 Finals => 1206-1212
shots$finals_mvp <- ifelse((shots$game_num >= 1112 & shots$game_num <= 1116) | (shots$game_num >= 1206 & shots$game_num <= 1212), 1, 0)
# num_rings
# with shaq
# with pau
```
```{r}
# Since we created polar coordinates for the shots, the loc_r variable is proportional to the shot_distance variable
ggplot(shots, aes(x = loc_r, y = shot_distance)) + geom_point(col = "blue")
```
```{r}
# Removing unneeded variables
shots_filtered <- shots %>% select(-c(shot_id, team_id, team_name,
#shot_zone_area, shot_zone_range, shot_zone_basic,
matchup, lon, lat, seconds_remaining, minutes_remaining, #shot_distance,
loc_x, loc_y, game_event_id, game_id, game_date))
```
```{r}
# Create test and training set
# Removing NAs
shots_filtered_test <- shots_filtered %>% filter(is.na(shot_made_flag)) #5000 shots where we don't know if it went in or not
shots_filtered_train <- shots_filtered %>% filter(!is.na(shot_made_flag))
# Setting the response variable
train.y <- shots_filtered_train$shot_made_flag
# Dropping the response variable from the training and test set
shots_filtered_train$shot_made_flag <- NULL
shots_filtered_test$shot_made_flag <- NULL
```
```{r}
# Creating data.matrix
trainM <- data.matrix(shots_filtered_train, rownames.force = NA)
# Creating DMarix for xgboost
dtrain <- xgb.DMatrix(data = trainM, label = train.y, missing = NaN)
watchlist <- list(trainM = dtrain)
```
```{r}
param <- list(objective = "binary:logistic",
booster = "gbtree",
eval_metric = "logloss",
eta = .035, #.25
max_depth = 3, # 3
subsample = .75, # .75
colsample_bytree = .6 # .6
)
clf <- xgb.cv(params = param,
data = dtrain,
nrounds = 1500, # 150
verbose = 1,
watchlist = watchlist,
maximize = FALSE,
nfold = 5, # 10
early_stopping_rounds = 20,
print_every_n = 10
)
```
```{r}
# Best round
bestRound <- clf$best_iteration
print(bestRound)
```
```{r}
# Best result
print(clf$evaluation_log[clf$best_iteration])
```
```{r}
# Running the model
xgb.model <- xgb.train(params = param,
data = dtrain,
nrounds = bestRound,
verbose = 1,
watchlist = watchlist,
maximize = FALSE
)
```
```{r}
# Creating a submission file
testM <- data.matrix(shots_filtered_test, rownames.force = NA)
preds <- predict(xgb.model, testM)
submission <- data.frame(shot_id = test.id, shot_made_flag = preds)
write.csv(submission, "XGBoost-preds.csv", row.names = FALSE)
#.60374 => #306 out of 1117 on the Kaggle leaderboard ~72nd %tile
# Including the shot_area and shot_distance variables (4)
# .60321 => #273 out of 1117 on the Kaggle leaderboard ~75th %tile
```
```{r}
# Creating dummy variables for the factor variables that remain
action_type_dummies <- data.frame(dummy(shots_filtered$action_type, sep = "_"))
combined_shot_type_dummies <- data.frame(dummy(shots_filtered$combined_shot_type, sep = "_"))
shot_type_dummies <- data.frame(dummy(shots_filtered$shot_type, sep = "_"))
opponent_dummies <- data.frame(dummy(shots_filtered$opponent, sep = "_"))
period_dummies <- data.frame(dummy(shots_filtered$period, sep = "_"))
season_dummies <- data.frame(dummy(shots_filtered$season, sep = "_"))
```
```{r}
# Adding in the dummy variables
shots_dummies <- cbind(shots_filtered %>% select(-c(action_type, combined_shot_type, shot_type, opponent, period, season, shot_distance, shot_zone_area, shot_zone_basic, shot_zone_range)), action_type_dummies, combined_shot_type_dummies, shot_type_dummies, opponent_dummies, period_dummies, season_dummies)
```
```{r}
# Create test and training set
# Removing NAs
shots_test <- shots_dummies %>% filter(is.na(shot_made_flag)) #5000 shots where we don't know if it went in or not
shots_train <- shots_dummies %>% filter(!is.na(shot_made_flag))
# Setting the response variable
train.y <- shots_train$shot_made_flag
# Dropping the response variable from the training and test set
shots_train$shot_made_flag <- NULL
shots_test$shot_made_flag <- NULL
```
```{r}
# Creating data.matrix
trainM <- data.matrix(shots_train, rownames.force = NA)
# Creating DMarix for xgboost
dtrain <- xgb.DMatrix(data = trainM, label = train.y, missing = NaN)
watchlist <- list(trainM = dtrain)
```
```{r}
param <- list(objective = "binary:logistic",
booster = "gbtree",
eval_metric = "logloss",
eta = .035, #.25
max_depth = 4, # 3
subsample = .8, # .75
colsample_bytree = .8 # .6
)
clf <- xgb.cv(params = param,
data = dtrain,
nrounds = 1500, # 150
verbose = 1,
watchlist = watchlist,
maximize = FALSE,
nfold = 5, # 10
early_stopping_rounds = 20,
print_every_n = 10
)
```
```{r}
# Best round
bestRound <- clf$best_iteration
print(bestRound)
```
```{r}
# Best result
print(clf$evaluation_log[clf$best_iteration])
```
```{r}
# Running the model
xgb.model2 <- xgb.train(params = param,
data = dtrain,
nrounds = bestRound,
verbose = 1,
watchlist = watchlist,
maximize = FALSE
)
```
```{r}
# Creating a submission file
testM <- data.matrix(shots_test, rownames.force = NA)
preds <- predict(xgb.model2, testM)
submission <- data.frame(shot_id = test.id, shot_made_flag = preds)
write.csv(submission, "XGBoost-preds2.csv", row.names = FALSE)
# Not including the shot_area and shot_distance variables (4)
# .60277 => #258 out of 1117 on the Kaggle leaderboard ~77th %tile
```
```{r}
# With classProbs = TRUE, the response variable cannot be 1 and 0
shots_train <- shots_train %>% mutate(shot_made_flag = ifelse(shot_made_flag == 1, "Yes", "No"))
```
```{r}
# Building first model
# Define resampling procedure as standard k-fold Cross Validations
myControl <- trainControl(method = "cv",
number = 10,
classProbs = TRUE,
summaryFunction = mnLogLoss
)
tunegrid <- expand.grid(nrounds = 60,
max_depth = 3,
eta = .25,
gamma = 0,
colsample_bytree = .6,
min_child_weight = 0,
subsample = .75
)
xgbTree.model <- train(as.factor(shot_made_flag) ~ .,
data = shots_train,
method = "xgbTree",
trControl = myControl,
tuneGrid = tunegrid,
metric = "logLoss"
)
print(xgbTree.model)
# reported logLoss of ~ .60345 on training data
beepr::beep(sound = 2)
```
```{r}
# Current Score: 10.9903
model.preds <- predict(xgbTree.model, shots_test)
model.preds <- ifelse(model.preds == "Yes", 1, 0)
test.id <- shots %>% filter(is.na(shot_made_flag)) %>% select(shot_id)
xgbTree <- data.frame(shot_id = test.id, shot_made_flag = model.preds)
write_csv(xgbTree, "xgbTree-preds.csv")
```
```{r}
tunegrid <- expand.grid(mtry = 54,
splitrule = "gini",
min.node.size = 1
)
ranger.model <- train(as.factor(shot_made_flag) ~ .,
data = shots_train,
method = "ranger",
trControl = myControl,
tuneGrid = tunegrid,
metric = "logLoss"
)
print(ranger.model)
# reported logLoss of ~ .6255 on training data
beepr::beep(sound = 2)
```
```{r}
# Current Score: 11.32879
ranger.preds <- predict(ranger.model, shots_test)
ranger.preds <- ifelse(ranger.preds == "Yes", 1, 0)
test.id <- shots %>% filter(is.na(shot_made_flag)) %>% select(shot_id)
ranger <- data.frame(shot_id = test.id, shot_made_flag = ranger.preds)
write_csv(ranger, "ranger-preds.csv")
```