forked from SNU-LIST/ANN-MWI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ANNMWI.py
192 lines (159 loc) · 6.36 KB
/
train_ANNMWI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""
Implementation of training ANN I or ANN II on generating MWI.
Created with Tensorflow 1.7.0 and Python 2.7 using CUDA 8.0.
Copyright @ Jieun Lee
Laboratory for Imaging Science and Technology
Seoul National University
"""
import tensorflow as tf
import numpy as np
import os
import h5py
import time
import scipy.io
import matplotlib.pyplot as plt
from tqdm import tqdm
import random
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Load data
load = h5py.File('../(change_folder_name)/processed_train.mat')
x_train = load['train']
label_train = load['target']
x_val = load['valid']
label_val = load['valid_target']
# Feed in array
x_train = x_train[:,:]
label_train = label_train[:,:]
x_val = x_val[:,:]
label_val = label_val[:,:]
# Check the shape
print(x_train.shape)
print(label_train.shape)
print(x_val.shape)
print(label_val.shape)
print('Data Loaded')
# Hyper-parameters
init_learning_rate = 0.001
training_epochs = 2000
batch_size = 2
display_step = 1
save_step = 1000
valid_step = 100
tf.reset_default_graph()
# Hidden layers & neurons
n_input = 32
n_hidden_1 = 160
n_hidden_2 = 240
n_hidden_3 = 320
n_hidden_4 = 360
n_hidden_5 = 480
n_hidden_6 = 520
n_hidden_7 = 600
n_classes = 120 # Set 1 for ANN I / Set 120 for ANN II
# Store weight & bias
def params(input, kernel_shape, bias_shape):
weights = tf.get_variable("weights", shape=kernel_shape, initializer=tf.contrib.layers.xavier_initializer())
biases = tf.get_variable("biases", shape=bias_shape, initializer=tf.random_normal_initializer())
output = tf.nn.leaky_relu(tf.add(tf.matmul(input, weights), biases))
return output
# Create neural network
def multilayer_perceptron(x, reuse):
with tf.variable_scope("hidden1", reuse=reuse):
layer_1 = params(x, [n_input, n_hidden_1], [n_hidden_1])
with tf.variable_scope("hidden2", reuse=reuse):
layer_2 = params(layer_1, [n_hidden_1, n_hidden_2], [n_hidden_2])
with tf.variable_scope("hidden3", reuse=reuse):
layer_3 = params(layer_2, [n_hidden_2, n_hidden_3], [n_hidden_3])
with tf.variable_scope("hidden4", reuse=reuse):
layer_4 = params(layer_3, [n_hidden_3, n_hidden_4], [n_hidden_4])
with tf.variable_scope("hidden5", reuse=reuse):
layer_5 = params(layer_4, [n_hidden_4, n_hidden_5], [n_hidden_5])
with tf.variable_scope("hidden6", reuse=reuse):
layer_6 = params(layer_5, [n_hidden_5, n_hidden_6], [n_hidden_6])
with tf.variable_scope("hidden7", reuse=reuse):
layer_7 = params(layer_6, [n_hidden_6, n_hidden_7], [n_hidden_7])
with tf.variable_scope("outputs", reuse=reuse):
out_layer = params(layer_7, [n_hidden_7, n_classes], [n_classes])
return (out_layer)
# tf Graph input
X = tf.placeholder("float", [None, n_input], name="inputX")
Y = tf.placeholder("float", [None, n_classes], name="labelY")
Z = tf.placeholder("float", [None, n_input], name="valX")
U = tf.placeholder("float", [None, n_classes], name="valY")
learning_rate = tf.placeholder(tf.float32, name="learning_rate")
# L2 loss function
def l2(f, d):
loss = tf.reduce_mean(tf.sqrt(tf.reduce_mean(tf.square(f - d), 1) + 1e-8))
return loss
# Construct tf model for training
logits = multilayer_perceptron(X, False)
loss_op = l2((logits), Y)
# Optimizer
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
# Construct tf model for validation
logits_val = multilayer_perceptron(Z, True)
loss_val = l2((logits_val), U)
# Accuracy
correct_prediction = tf.equal(tf.argmax((logits_val), 1), tf.argmax(U, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
ind = list(range(len(x_train)))
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.9
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
epoch_restore = 0
with tf.Session() as sess:
sess.run(init)
t = time.time()
loss_vec = []
loss_valid = []
epoch_learning_rate = init_learning_rate
# Training cycle
print('Start training')
for epoch in tqdm(range(training_epochs - epoch_restore)):
random.shuffle(ind)
avg_cost = 0.
BS = (batch_size + epoch)
total_batch = int(x_train.shape[0] / BS)
if (epoch + epoch_restore) == (900) or epoch == (1200) or epoch == (1500) or epoch == (1800):
epoch_learning_rate = epoch_learning_rate / 10
# Loop over all batches
for i in range(0, len(x_train) - BS, BS):
ind2 = ind[i:i + BS]
ind2 = np.sort(ind2)
batch_x = x_train[ind2, :]
batch_y = label_train[ind2, :]
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([train_op, loss_op], feed_dict={X: batch_x, Y: batch_y, learning_rate: epoch_learning_rate})
# Compute average loss
avg_cost += c / total_batch
# Display cost per epoch step
print("cost={:.6f}".format(avg_cost))
# Check the validation set
if (epoch+epoch_restore) % valid_step == valid_step - 1:
print('Check validation...')
acc, cost_val = sess.run([accuracy, loss_val], feed_dict={Z: x_val, U: label_val, learning_rate: epoch_learning_rate})
print("cost_val={:.6f}".format(cost_val), "acc={:.6f}".format(acc))
loss_vec.append(avg_cost)
loss_valid.append(cost_val)
# Uncomment the annotations under three lines if you want to save the output from the validation set
#pred_val = sess.run([logits_val], feed_dict={Z: x_val, U: label_val, learning_rate: epoch_learning_rate})
#savepath = '../(change_folder_name)/valid_out' + str((epoch+epoch_restore))
#scipy.io.savemat(savepath + '.mat', mdict={'valid_out': pred_val})
print('Prediction Saved!')
# Save sess
if (epoch+epoch_restore) % save_step == save_step - 1:
saver_path = saver.save(sess, "../(change_folder_name)/train_result/ANN2/epoch" + str((epoch+epoch_restore)) + ".ckpt")
print('Total training time:{:.4f}'.format(time.time() - t))
print("Optimization Finished!")
# Plot loss over time
plt.plot(loss_vec, label='training loss')
plt.plot(loss_valid, label='validation loss')
plt.legend(loc='upper right')
plt.show()