forked from turboderp/exllama
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcuda_ext.py
167 lines (124 loc) · 5.57 KB
/
cuda_ext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# from abc import ABC
import torch
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.utils.cpp_extension import load
import os
import sys
import platform
library_dir = os.path.dirname(os.path.abspath(__file__))
extension_name = "exllama_ext"
verbose = False
# another kludge to get things compiling in Windows
windows = os.name == "nt"
if windows:
def find_msvc():
for msvc_dir in [a + "\\Microsoft Visual Studio\\" + b + "\\" + c + "\\VC\Tools\\MSVC\\"
for b in ["2022", "2019", "2017"]
for a in [os.environ["ProgramW6432"], os.environ["ProgramFiles(x86)"]]
for c in ["BuildTools", "Community", "Professional", "Enterprise", "Preview"]
]:
if not os.path.exists(msvc_dir):
continue
versions = sorted(os.listdir(msvc_dir), reverse=True)
for version in versions:
compiler_dir = msvc_dir + version + "\\bin\\Hostx64\\x64"
if os.path.exists(compiler_dir) and os.path.exists(compiler_dir + "\\cl.exe"):
return compiler_dir
return None
import subprocess
try:
subprocess.check_output(["where", "/Q", "cl"])
except subprocess.CalledProcessError as e:
cl_path = find_msvc()
if cl_path:
if verbose:
print("Injected compiler path:", cl_path)
os.environ["path"] += ";" + cl_path
else:
print("Unable to find cl.exe; compilation will probably fail.", file=sys.stderr)
exllama_ext = load(
name = extension_name,
sources = [
os.path.join(library_dir, "exllama_ext/exllama_ext.cpp"),
os.path.join(library_dir, "exllama_ext/cuda_buffers.cu"),
os.path.join(library_dir, "exllama_ext/cuda_func/q4_matrix.cu"),
os.path.join(library_dir, "exllama_ext/cuda_func/q4_matmul.cu"),
os.path.join(library_dir, "exllama_ext/cuda_func/column_remap.cu"),
os.path.join(library_dir, "exllama_ext/cuda_func/rms_norm.cu"),
os.path.join(library_dir, "exllama_ext/cuda_func/rope.cu"),
os.path.join(library_dir, "exllama_ext/cuda_func/half_matmul.cu"),
os.path.join(library_dir, "exllama_ext/cuda_func/q4_attn.cu"),
os.path.join(library_dir, "exllama_ext/cuda_func/q4_mlp.cu"),
os.path.join(library_dir, "exllama_ext/cpu_func/rep_penalty.cpp")
],
extra_include_paths = [os.path.join(library_dir, "exllama_ext")],
verbose = verbose,
extra_ldflags = (["cublas.lib"] + ([f"/LIBPATH:{os.path.join(sys.base_prefix, 'libs')}"] if sys.base_prefix != sys.prefix else [])) if windows else [],
extra_cuda_cflags = ["-lineinfo"] + (["-U__HIP_NO_HALF_CONVERSIONS__", "-O3"] if torch.version.hip else []),
extra_cflags = ["-O3"]
# extra_cflags = ["-ftime-report", "-DTORCH_USE_CUDA_DSA"]
)
# from exllama_ext import set_tuning_params
# from exllama_ext import prepare_buffers
from exllama_ext import make_q4
from exllama_ext import q4_matmul
from exllama_ext import q4_matmul_lora
from exllama_ext import half_matmul
from exllama_ext import half_matmul_cublas
# from exllama_ext import q4_mlp
from exllama_ext import rms_norm
from exllama_ext import rope_
from exllama_ext import rep_penalty
from exllama_ext import apply_rep_penalty
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device = "meta")
# Construct Q4Matrix, return handle
def ext_make_q4(qweight, qzeros, scales, g_idx, device):
return make_q4(qweight,
qzeros,
scales,
g_idx if g_idx is not None else none_tensor,
device)
# Matrix multiplication, returns x @ q4
def ext_q4_matmul(x, q4, q4_width, lora_A = None, lora_B = None):
outshape = x.shape[:-1] + (q4_width,)
x = x.view(-1, x.shape[-1])
output = torch.empty((x.shape[0], q4_width), dtype = torch.float16, device = x.device)
if lora_A is None:
q4_matmul(x, q4, output)
else:
lora_temp = torch.empty((x.shape[0], lora_A.shape[1]), dtype = torch.float16, device = x.device)
q4_matmul_lora(x, q4, output, lora_A, lora_B, lora_temp)
return output.view(outshape)
# Matrix multiplication, returns x @ w, both half-precision tensors
def ext_half_matmul(x, w, cublas = False):
outshape = x.shape[:-1] + (w.shape[1],)
x = x.view(-1, x.shape[-1])
if cublas:
output = torch.empty((x.shape[0], w.shape[1]), dtype = torch.float16, device = x.device)
half_matmul_cublas(x, w, output)
else:
output = torch.zeros((x.shape[0], w.shape[1]), dtype = torch.float16, device = x.device)
half_matmul(x, w, output)
return output.view(outshape) ##
# RoPE embeddings, in_place
def ext_rope_(x, sin, cos, past_len, num_heads, head_dim):
rope_(x, sin, cos, past_len, num_heads, head_dim)
# RMS norm: x = x * w / sqrt(row_mean(x * x) + epsilon)
def ext_rms_norm(x, w, epsilon):
outshape = x.shape
x = x.view(-1, x.shape[-1])
output = torch.empty_like(x)
rms_norm(x, w, output, epsilon)
return output.view(outshape)
def ext_rms_norm_(x, w, epsilon):
outshape = x.shape
x = x.view(-1, x.shape[-1])
rms_norm(x, w, x, epsilon)
# Repetition penalty
def ext_rep_penalty_mask_cpu(vocab_size, sequence, penalty_max, sustain, decay):
rep_mask = torch.empty(vocab_size, dtype = torch.float32)
rep_penalty(sequence, rep_mask, penalty_max, sustain, decay)
return rep_mask
def ext_apply_rep_penalty_mask_cpu(sequence, penalty_max, sustain, decay, logits):
apply_rep_penalty(sequence, penalty_max, sustain, decay, logits)