-
Notifications
You must be signed in to change notification settings - Fork 196
/
Copy pathvideo_deduplicator.py
127 lines (109 loc) · 4.49 KB
/
video_deduplicator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import hashlib
from collections import defaultdict
from typing import Dict, Set, Tuple
from data_juicer.utils.constant import HashKeys
from data_juicer.utils.mm_utils import (close_video, load_data_with_context,
load_video)
from ..base_op import OPERATORS, Deduplicator
from ..op_fusion import LOADED_VIDEOS
from .document_deduplicator import DocumentDeduplicator
OP_NAME = 'video_deduplicator'
@OPERATORS.register_module(OP_NAME)
@LOADED_VIDEOS.register_module(OP_NAME)
class VideoDeduplicator(Deduplicator):
"""
Deduplicator to deduplicate samples at document-level using exact matching
of videos between documents.
"""
def __init__(self, consider_text: bool = False, *args, **kwargs):
"""
Initialization.
:param consider_text: whether to consider text hash together with video
hash when applying deduplication.
:param args: extra args
:param kwargs: extra args
"""
super().__init__(*args, **kwargs)
self.consider_text = consider_text
self.text_dedup_op = None
if self.consider_text:
self.text_dedup_op = DocumentDeduplicator(**kwargs)
def compute_hash(self, sample, context=False):
# get hash of text first
if self.consider_text:
sample = self.text_dedup_op.compute_hash(sample)
# check if it's computed already
if HashKeys.videohash in sample:
return sample
# there is no video in this sample
sample[HashKeys.videohash] = ''
if self.video_key not in sample or not sample[self.video_key]:
return sample
# load videos
loaded_video_keys = sample[self.video_key]
sample, videos = load_data_with_context(sample, context,
loaded_video_keys, load_video)
# compute hash
md5_hash = hashlib.md5()
for key in videos:
# consider the multi stream of video in one container
for packet in videos[key].demux():
if packet.stream.type == 'video':
md5_hash.update(bytes(packet))
for key in videos:
close_video(videos[key])
sample[HashKeys.videohash] = md5_hash.hexdigest()
return sample
def process(self, dataset, show_num=0):
"""
For doc-level, dataset --> dataset.
:param dataset: input dataset
:param show_num: number of traced samples used when tracer is
open.
:return: deduplicated dataset and the sampled duplicate pairs.
"""
# no need to deduplicate because too few samples
if len(dataset) <= 1:
return dataset, {}
dup_hashes = None
if show_num > 0:
# sample duplicate pairs
if self.consider_text:
hash2ids: Dict[Tuple[int, int], Set[int]] = defaultdict(set)
hashes = zip(dataset[HashKeys.videohash],
dataset[HashKeys.hash])
else:
hash2ids: Dict[int, Set[int]] = defaultdict(set)
hashes = dataset[HashKeys.videohash]
for sid, hash_val in enumerate(hashes):
if hash_val:
hash2ids[hash_val].add(sid)
dup_samples = sorted(list(hash2ids.items()),
key=lambda x: len(x[1]),
reverse=True)
dup_hashes = set([
item[0] for item in dup_samples if len(item[1]) > 1
][:show_num])
def _filter_dup_helper(sample, hashes):
if self.consider_text:
hash = (sample[HashKeys.videohash], sample[HashKeys.hash])
else:
hash = sample[HashKeys.videohash]
if not hash:
return True
if show_num > 0 and hash in dup_hashes \
and len(dup_pairs[hash]) < 2:
# tracer is open and not enough duplicate sample pairs
dup_pairs[hash].append(sample)
if hash in hashes:
return False
else:
hashes.add(hash)
return True
hashes = set()
dup_pairs = {hash_v: [] for hash_v in dup_hashes} if dup_hashes else {}
dataset = dataset.filter(
_filter_dup_helper,
fn_kwargs=dict(hashes=hashes),
load_from_cache_file=False if show_num > 0 else True) # num_proc=1
return dataset, dup_pairs