Install CVAT and enable Semi-Automatic and Automatic Annotation
- https://opencv.github.io/cvat/docs/administration/basics/installation/
- https://opencv.github.io/cvat/docs/administration/advanced/installation_automatic_annotation/
git clone https://github.com/opencv/cvat
cd cvat
git checkout v2.1.0
# use real-ip instead of localhost if you want to share it on network
export CVAT_HOST=127.0.0.1
export CVAT_VERSION=v2.1.0
docker-compose -f docker-compose.yml -f components/serverless/docker-compose.serverless.yml up -d
docker exec -it cvat bash -ic 'python3 ~/manage.py createsuperuser'
wget https://github.com/nuclio/nuclio/releases/download/1.5.16/nuctl-1.5.16-linux-amd64
chmod +x nuctl-1.5.16-linux-amd64
mv nuctl-1.5.16-linux-amd64 ~/.local/bin/nuctl
Run ./deploy.sh
to install all available models from MONAI Label into CVAT.
# all functions (endoscopy, pathology)
./deploy.sh
# to deploy specific function
./deploy.sh endoscopy
# to deploy specific function and model
./deploy.sh endoscopy tooltracking
Currently, following sample models are available for CVAT.
Currently we can use MONAI Label models only for annotation. Other features like ActiveLearning, Finetuning/Training models is not supported.
Annotation functions are verified only on basic png/jpeg images in CVAT.
Currently CVAT supports single polygon as result for Interactor. Hence, NuClick model in CVAT will return only one polygon mask.