forked from SJTU-Thinklab-Det/r3det-on-mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdotav1_rotational_detection.py
75 lines (71 loc) · 2.29 KB
/
dotav1_rotational_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# dataset settings
dataset_type = 'DOTADatasetV1'
# dataset root path:
data_root = '/data/dota/'
trainsplit_ann_folder = 'trainsplit/labelTxt'
trainsplit_img_folder = 'trainsplit/images'
valsplit_ann_folder = 'valsplit/labelTxt'
valsplit_img_folder = 'valsplit/images'
val_ann_folder = 'val/labelTxt'
val_img_folder = 'val/images'
test_img_folder = 'test/images'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='RResize', img_scale=(800, 800)),
dict(type='RRandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(800, 800)),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_bboxes_ignore']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='CroppedTilesFlipAug',
tile_scale=(800, 800),
tile_shape=(600, 600),
tile_overlap=(150, 150),
flip=False,
transforms=[
dict(type='RResize', img_scale=(800, 800)),
dict(type='RRandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=(800, 800)),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=6,
workers_per_gpu=2,
train=[
dict(
type=dataset_type,
data_root=data_root,
ann_file=trainsplit_ann_folder,
img_prefix=trainsplit_img_folder,
pipeline=train_pipeline),
dict(
type=dataset_type,
data_root=data_root,
ann_file=valsplit_ann_folder,
img_prefix=valsplit_img_folder,
pipeline=train_pipeline),
],
val=dict(
type=dataset_type,
data_root=data_root,
ann_file=val_ann_folder,
difficulty_thresh=1,
img_prefix=val_img_folder,
pipeline=test_pipeline),
test=dict(
type=dataset_type,
data_root=data_root,
ann_file=test_img_folder,
difficulty_thresh=1,
img_prefix=test_img_folder,
pipeline=test_pipeline))