-
Notifications
You must be signed in to change notification settings - Fork 54
/
catalog.yaml
190 lines (190 loc) · 4.64 KB
/
catalog.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
aggregate:
categories:
- data-prep
description: Rolling aggregation over Metrics and Lables according to specifications
docfile: aggregate/aggregate.ipynb
kind: job
versions:
latest: aggregate/function.yaml
arc-to-parquet:
categories:
- data-movement
- utils
description: retrieve remote archive, open and save as parquet
docfile: arc_to_parquet/arc_to_parquet.ipynb
kind: job
versions:
latest: arc_to_parquet/function.yaml
describe:
categories:
- analysis
description: describe and visualizes dataset stats
docfile: describe/describe.ipynb
kind: job
versions:
latest: describe/function.yaml
describe-dask:
categories:
- analysis
description: describe and visualizes dataset stats
docfile: describe_dask/describe_dask.ipynb
kind: job
versions:
latest: describe_dask/function.yaml
describe-spark:
categories: []
description: ''
docfile: describe_spark/describe_spark.ipynb
kind: job
versions:
latest: describe_spark/function.yaml
feature-selection:
categories:
- data-prep
- ml
description: Select features through multiple Statistical and Model filters
docfile: feature_selection/feature_selection.ipynb
kind: job
versions:
latest: feature_selection/function.yaml
gen-class-data:
categories:
- data-prep
description: Create a binary classification sample dataset and save.
docfile: gen_class_data/gen_class_data.ipynb
kind: job
versions:
latest: gen_class_data/function.yaml
github-utils:
categories:
- notifications
- utils
description: add comments to github pull request
docfile: github_utils/github_utils.ipynb
kind: job
versions:
latest: github_utils/function.yaml
load-dataset:
categories:
- data-source
- ml
description: load a toy dataset from scikit-learn
docfile: load_dataset/load_dataset.ipynb
kind: job
versions:
latest: load_dataset/function.yaml
model-monitoring-batch:
categories: []
description: ''
docfile: model_monitoring_batch/model_monitoring_batch.ipynb
kind: job
versions:
latest: model_monitoring_batch/function.yaml
model-server:
categories:
- serving
- ml
description: generic sklearn model server
docfile: model_server/model_server.ipynb
kind: remote
versions:
latest: model_server/function.yaml
model-server-tester:
categories:
- ml
- test
description: test model servers
docfile: model_server_tester/model_server_tester.ipynb
kind: job
versions:
latest: model_server_tester/function.yaml
open-archive:
categories:
- data-movement
- utils
description: Open a file/object archive into a target directory
docfile: open_archive/open_archive.ipynb
kind: job
versions:
latest: open_archive/function.yaml
send-email:
categories:
- notifications
description: Send Email messages through SMTP server
docfile: send_email/send_email.ipynb
kind: job
versions:
latest: send_email/function.yaml
sentiment-analysis-serving:
categories:
- serving
- NLP
- BERT
- sentiment analysis
description: BERT based sentiment classification model
docfile: sentiment_analysis_serving/sentiment_analysis_serving.ipynb
kind: serving
versions:
latest: sentiment_analysis_serving/function.yaml
sklearn-classifier:
categories:
- ml
- training
description: train any classifier using scikit-learn's API
docfile: sklearn_classifier/sklearn_classifier.ipynb
kind: job
versions:
latest: sklearn_classifier/function.yaml
sklearn-classifier-dask:
categories:
- ml
- training
- dask
description: train any classifier using scikit-learn's API over Dask
docfile: sklearn_classifier_dask/sklearn_classifier_dask.ipynb
kind: job
versions:
latest: sklearn_classifier_dask/function.yaml
spark-submit:
categories: []
description: ''
docfile: spark_submit/spark_submit.ipynb
kind: job
versions:
latest: spark_submit/function.yaml
test-classifier:
categories:
- ml
- test
description: test a classifier using held-out or new data
docfile: test_classifier/test_classifier.ipynb
kind: job
versions:
latest: test_classifier/function.yaml
tf2-serving:
categories:
- serving
- dl
description: tf2 image classification server
docfile: tf2_serving/tf2_serving.ipynb
kind: remote
versions:
latest: tf2_serving/function.yaml
v2-model-server:
categories:
- serving
- ml
description: generic sklearn model server
docfile: v2_model_server/v2_model_server.ipynb
kind: serving
versions:
latest: v2_model_server/function.yaml
v2-model-tester:
categories:
- ml
- test
description: test v2 model servers
docfile: v2_model_tester/v2_model_tester.ipynb
kind: job
versions:
latest: v2_model_tester/function.yaml