From 14b22db4cc2ce0e16f1a6bcb9f1d7d1471581b68 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 12 Apr 2021 12:32:54 +0530 Subject: [PATCH 01/69] Python implementation done --- ...lary-prediction-linear-regression-py.ipynb | 557 ++++++++++++++++++ 1 file changed, 557 insertions(+) create mode 100644 salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb new file mode 100644 index 00000000..8d31cb79 --- /dev/null +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb @@ -0,0 +1,557 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 96, + "id": "e39b001e", + "metadata": {}, + "outputs": [], + "source": [ + "# @file salary-prediction-linear-regression-py.ipynb\n", + "#\n", + "# A simple example usage of Linear Regression applied to Salary dataset" + ] + }, + { + "cell_type": "markdown", + "id": "3f7b74b5", + "metadata": {}, + "source": [ + "### Import Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "b3be7acf", + "metadata": {}, + "outputs": [], + "source": [ + "import mlpack\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "dbf2f2be", + "metadata": {}, + "source": [ + "### Set Plotting Options" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "776b4e06", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "# uncomment below line to enable dark background style sheet\n", + "# plt.style.use('dark_background')" + ] + }, + { + "cell_type": "markdown", + "id": "c4153f6a", + "metadata": {}, + "source": [ + "### Load and Explore the Data" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "30cd5e44", + "metadata": {}, + "outputs": [], + "source": [ + "# Load the salary dataset\n", + "data = pd.read_csv(\"Salary.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "b80ac51d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YearsExperienceSalary
01.139343
11.346205
21.537731
32.043525
42.239891
\n", + "
" + ], + "text/plain": [ + " YearsExperience Salary\n", + "0 1.1 39343\n", + "1 1.3 46205\n", + "2 1.5 37731\n", + "3 2.0 43525\n", + "4 2.2 39891" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# display the first 5 samples from dataframe\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "b8d64e4e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YearsExperienceSalary
count35.00000035.000000
mean6.30857183945.600000
std3.61861032162.673003
min1.10000037731.000000
25%3.45000057019.000000
50%5.30000081363.000000
75%9.250000113223.500000
max13.500000139465.000000
\n", + "
" + ], + "text/plain": [ + " YearsExperience Salary\n", + "count 35.000000 35.000000\n", + "mean 6.308571 83945.600000\n", + "std 3.618610 32162.673003\n", + "min 1.100000 37731.000000\n", + "25% 3.450000 57019.000000\n", + "50% 5.300000 81363.000000\n", + "75% 9.250000 113223.500000\n", + "max 13.500000 139465.000000" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# generates basic statistical summary of the dataframe\n", + "data.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "50d0aa93", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 35 entries, 0 to 34\n", + "Data columns (total 2 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 YearsExperience 35 non-null float64\n", + " 1 Salary 35 non-null int64 \n", + "dtypes: float64(1), int64(1)\n", + "memory usage: 688.0 bytes\n" + ] + } + ], + "source": [ + "# generates a concise summary of the dataframe\n", + "data.info()" + ] + }, + { + "cell_type": "markdown", + "id": "6bb19595", + "metadata": {}, + "source": [ + "### Exploratory Data Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "464dbd78", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhlklEQVR4nO3de5weVZ3n8c+XhEhAJQGEhQRI1DBjjIAIAVlBEdGACKJycxCGASIM913GyYKrMo4YLl6yihMDRECZIFdFZQ0MK7dFSBA6l4YE8kpYE4JCViRCIkl3/+aPOi2Vx+7nqe483V1d/X37qlfXU+dU1Xmg/fXhV6fOUURgZmbltcVAN8DMzOpzoDYzKzkHajOzknOgNjMrOQdqM7OSc6A2Mys5B2ozs25Imi3pRUmLuymXpP8laZmkhZL2yZVNkbQ0lU3LHd9O0r2Snk0/RzdqhwO1mVn3rgem1Ck/HJiQtqnAvwFIGgZcnconAidKmpjOmQbcFxETgPvS57ocqM3MuhERDwJ/qFPlaODGyDwKjJK0MzAZWBYRyyNiA3Bzqtt5zg1p/wbgk43aMbyX7S9s45rlfvXR/srIXQ4a6CZYCbVteF6be42exJwRb3vH58l6wp1mRcSsHtxuDLAy93lVOtbV8f3T/k4R8QJARLwgacdGN+nzQG1mVlYpKPckMNfq6g9L1DneKw7UZlYtHe39ebdVwK65z2OB1cCIbo4D/F7Szqk3vTPwYqObOEdtZtXS3lZ823x3ASen0R8HAK+ktMZ8YIKk8ZJGACekup3nnJL2TwF+2ugm7lGbWaVEdDTtWpLmAB8CdpC0CvgysGV2n5gJ3A0cASwD1gGnprI2SecAc4FhwOyIaE2XnQ7cIuk04LfAsQ3b0dfTnPphonXFDxOtK814mLhh1aLiDxPHvmez79cf3KM2s2ppYo+6LByozaxa+vdhYr9woDazanGP2sys3KI5ozlKxYHazKqlwz1qM7Nyc+rDzKzk/DDRzKzk3KM2Mys5P0w0Mys5P0w0Myu3COeozczKzTlqM7OSc+rDzKzk3KM2Myu59o0D3YKmc6A2s2qpYOrDS3GZWbVER/GtAUlTJC2VtEzStC7KR0u6U9JCSfMkTcqVnS9psaRWSRfkju8t6VFJLZIelzS5UTscqM2sWjo6im91SBoGXA0cDkwETpQ0sabaxUBLROwJnAzMSOdOAs4AJgN7AUdKmpDOuQK4NCL2Br6UPtflQG1m1dKkQE0WZJdFxPKI2ADcDBxdU2cicB9ARCwBxknaCXgX8GhErIuINuAB4Jh0TgBvTfvb8sbq5N1yjtrMKiV68DBR0lRgau7QrIiYlfbHACtzZauA/WsusQD4FPBwSmHsDowFFgNfk7Q9sJ5sAdzH0zkXAHMlXUXWWT6wUTsdqM2sWnowPC8F5VndFHe18G3twrnTgRmSWoBFwJNAW0Q8Lely4F7gVbKA3jkJyVnAhRFxu6TjgOuAj9RrpwO1mVVL80Z9rAJ2zX0eS02aIiLWAqcCSBKwIm1ExHVkQRhJl6XrAZwCnJ/2bwWubdQQ56jNrFqaN+pjPjBB0nhJI4ATgLvyFSSNSmUApwMPpuCNpB3Tz93I0iNzUr3VwAfT/oeBZxs1xD1qM6uWJvWoI6JN0jnAXGAYMDsiWiWdmcpnkj00vFFSO/AUcFruErenHPVG4OyIeDkdP4MsXTIc+DOb5si75EBtZtXSxFfII+Ju4O6aYzNz+78GJtSel8oO6ub4w8D7etIOB2ozq5Y2LxxgZlZunpTJzKzkKjjXhwO1mVWLe9RmZiXnHrWZWcm5R21mVnIe9WFmVnJROx3H4OdAbWbV4hy1mVnJOVCbmZWcHyaamZVce/tAt6DpHKjNrFqc+jAzKzkHajOzknOO2sys3KKjeuOovRSXmVVLR0fxrQFJUyQtlbRM0rQuykdLulPSQknzJE3KlZ0vabGkVkkX1Jx3brpuq6QrGrXDPWozq5YmjfqQNAy4GjiMbGHa+ZLuioinctUuBloi4hhJf5vqH5oC9hnAZGAD8EtJv4iIZyUdAhwN7BkRr3eurViPe9RmVi3N61FPBpZFxPKI2ADcTBZg8yYC9wFExBJgnKSdyNZSfDQi1kVEG/AAcEw65yxgekS8ns57sVFDHKjNrFp6EKglTZX0eG7LLzQ7BliZ+7wqHctbQLbCOJImA7sDY4HFwMGStpe0NXAEsGs6Zw/gIEmPSXpA0n6NvpJTH2ZWLT2YlCkiZgGzuilWV6fUfJ5OtqJ4C7AIeBJoi4inJV0O3Au8ShbQO6f1Gw6MBg4A9gNukfT2iO4bXihQS9odmBAR/yFpJDA8Iv5U5Fwzs37VvHHUq3ijFwxZT3l1vkJErAVOBZAkYEXaiIjrgOtS2WXpep3XvSMF5nmSOoAdgJe6a0jD1IekM4DbgO/nGvuTRueZmQ2Ijii+1TcfmCBpvKQRwAnAXfkKkkalMoDTgQdT8KbzIaGk3cjSI3NSvZ8AH05lewAjgDX1GlKkR302WVL9MYD01LLhU0ozswHRpFEfEdEm6RxgLjAMmB0RrZLOTOUzyR4a3iipHXgKOC13idslbQ9sBM6OiJfT8dnAbEmLyUaEnFIv7QHFAvXrEbEh69WDpOH8dZ5mEykhPxXge9/4V04/+cQCtzEz23zRxFfII+Ju4O6aYzNz+78GJnRz7kHdHN8AnNSTdhQJ1A9IuhgYKekw4B+Bn9U7IZ+g37hmefVeEzKz8hqibyZOI0tyLwI+T/bX5Yt92Sgzs16LjuLbIFGkRz2SLDdzDfzlbZ2RwLq+bJiZWa8M0R71fWSBudNI4D/6pjlmZpuprb34NkgU6VFvFRGvdn6IiFfTmzZmZuUziFIaRRXpUb8maZ/OD5LeB6zvuyaZmW2G5o2jLo0iPeoLgFsldb6RszNwfJ+1yMxsMzRzeF5ZNAzUETE/Td/3N2Tvvi+JiI193jIzs94YRD3loopOyrQfMC7Vf68kIuLGPmuVmVlvDcVALemHwDuAFqDzMWkADtRmVj5NeoW8TIr0qPcFJjZ6F93MrAyquGZikUC9GPgvwAt93BYzs803RAP1DsBTkuYBr3cejIij+qxVZma9NRRHfQBf6etGmJk1zVDsUUfEAzUrvGxNNjermVn5VDBQ92aFlzF4hRczK6lo7yi8NSJpiqSlkpZJmtZF+WhJd0paKGmepEm5svMlLZbUKumCLs69SFJI2qFRO4q8Qn428F+BtZCt8AJ4hRczK6cmvUKeZgq9GjgcmAicKGliTbWLgZaI2BM4GZiRzp0EnEG2OtZewJGSJuSuvStwGPDbIl+pSKB+Pa1I0HmDhiu8mJkNlOiIwlsDk4FlEbE8xcCbgaNr6kwkm2GUiFgCjJO0E9kSXY9GxLqIaAMeAI7Jnfct4AsUjKVFAnXtCi+30mCFFzOzAdO8SZnGACtzn1elY3kLyBauRdJkYHeyBcAXAwdL2j491zuCtKK5pKOA5yNiQdGvVGTUxzSyBRvzK7xcW/QGZmb9qgej8/Lruyaz0lKCkM1tVKs2uk8HZkhqIYuRTwJtEfG0pMuBe4FXyQJ6WwralwAfLd7KYqM+OoBr0mZmVmrRVjxS59d37cIqUi84GQuszleIiLXAqQDKVgBfkTYi4jrgulR2WbreO4DxwIK0YPhY4AlJkyPid921s9tALemWiDhO0iK6yKOk5LmZWbk0732X+cAESeOB54ETgM/mK0gaBaxLOezTgQdT8EbSjhHxoqTdyNIj74+Il8kNxpD0HLBvRKyp15B6Perz088je/DFzMwGVLPm+oiINknnAHPJ3h2ZHRGtks5M5TPJHhreKKkdeIosTdzpdknbAxuBs1OQ7pVuA3VEvJCGp1wXER/p7Q3MzPpVE98gj4i7yZ7L5Y/NzO3/GphQe14qO6jA9ccVaUfdHHVEtEtaJ2nbiHilyAXNzAbSUJ0978/AIkn3Aq91HoyI8/qsVWZmvVW9OZkKBepfpM3MrPSibaBb0HxFhufdIGkksFtELO2HNpmZ9VpUsEddZFKmT5Atw/XL9HlvSXf1cbvMzHqnowfbIFHkFfKvkL3z/keAiGghG7BtZlY60VF8GyyK5KjbIuKV9BZNp+o9VjWzShhMAbioQmsmSvosMCxN03ce8EjfNsvMrHeivaspOga3IqmPc4F3k62XOIdsXuoL+rBNZma9NiRTHxGxDrgkzQQVEfGnvm+WmVnvRMcQ7FFL2i9NzLSQ7MWXBZLe1/dNMzPruSHZoyabpu8fI+IhAEkfAH4AePY8MyudiOr1qIsE6j91BmmAiHhYktMfZlZKg6mnXFSRQD1P0vfJHiQGcDxwv6R9ACLiiT5sn5lZj3RUcNRHkUC9d/r55ZrjB5IF7g83s0FmZpujig8Ti4z6OKQ/GmJm1gxVDNRFRn38UNK2uc+7S7qvb5tlZtY7EcW3RiRNkbRU0jJJ07ooHy3pTkkLJc2TNClXdr6kxZJaJV2QO36lpCXpnDvTcl51FXnh5WHgMUlHSDqDbFXdbxc4z8ys30WHCm/1pBWurgYOByYCJ0qaWFPtYqAlrSF7MjAjnTsJOINsnqS9gCPTm92QxdBJ6ZxngP/R6DsVSX18X1Ir8CtgDfDeeqvlmpkNpCYOz5sMLIuI5QCSbgaOJlsbsdNE4OvZfWOJpHGSdiJbS/HR9MIgkh4AjgGuiIh7cuc/CnymUUOKpD4+B8wm+2txPXC3pL0anWdmNhDa21V4kzRV0uO5bWruUmOAlbnPq9KxvAVkK4wjaTKwOzAWWAwcLGl7SVsDRwC7dtHcfwD+d6PvVGTUx6eBD0TEi8AcSXcCN/DGaBAzs9LoSY86ImYBs7op7upCtZnt6cAMSS3AIuBJshlHn07TbtwLvEoW0DdZe0bSJenYTY3aWST18cmaz/PSXw4zs9Jp4qiPVWzaCx4LrN7kXhFrgVMBlM0FvSJtRMR1ZG92I+mydD3S51OAI4FDIxo/1uw29SHpltz+5TXFP290YTOzgdDEUR/zgQmSxksaAZwAbLK6laRRqQzgdODBFLyRtGP6uRtZemRO+jwF+GfgqM4cdiP1etQTcvuHpQt3eluRi5uZ9bdm9agjok3SOcBcYBgwOyJaJZ2ZymeSPTS8UVI72UPG03KXuF3S9sBG4OyIeDkd/y7wJuDetCDLoxFxZr221AvU9f7eeIUXMyul9o4io46LiYi7gbtrjs3M7f+aTTu1+XoHdXP8nT1tR71AvbWk95KlR0amfaVtZE9vZGbWH4q8yDLY1AvULwDfTPu/y+13fjYzK52OoTTNqef4MLPBqIrzURd54eVYSW9J+1+UdEdKg5iZlU4z5/ooiyIvvPzPiLg1rezyMeAqYCawf5EbjNyly3y6DXHrVz/UuJJZL1Qx9VHk8Wh7+vlx4N8i4qfAiDr1zcwGTHvHFoW3waJIS59PK7wcRzbPx5sKnmdm1u+iB9tgUSTgHkc24HtKRPwR2A74p75slJlZb3WECm+DRd0ctaQtgHkR8ZfJsCPiBbKhe2ZmpTPkRn1ERAewIL2rbmZWeh092AaLIqM+dgZaJc0DXus8GBFH9VmrzMx6KbqcnXRwKxKoL+3zVpiZNUlbBVMfReajfqA/GmJm1gxV7FEXeTPxAEnzJb0qaYOkdklr+6NxZmY9NVRz1N8lmzD7VmBfsrUTu5zWz8xsoFWxR10kUBMRyyQNi4h24AeSHunjdpmZ9cpg6ikXVeSFl3VpqZkWSVdIuhDYpo/bZWbWK+2o8NaIpCmSlkpaJmlaF+WjJd0paaGkeZIm5crOl7RYUqukC3LHt5N0r6Rn08/RjdpRJFB/LtU7h2x43q5kK5ObmZVOh4pv9UgaBlwNHA5MBE6UNLGm2sVAS0TsSZYWnpHOnQScAUwG9gKOlNSZMp4G3BcRE4D70ue6GgbqiPh/ZKu67BwRl0bEf4uIZY3OMzMbCB2o8NbAZGBZRCyPiA3AzcDRNXUmkgVbImIJME7STmRrKT4aEesiog14ADgmnXM0cEPavwH4ZKOGFBn18QmgBfhl+ry3pLvqnmRmNkB6MimTpKmSHs9tU3OXGgOszH1elY7lLSBbYRxJk4HdgbHAYuBgSdtL2ho4giwbAbBTmoqjc0qOHRt9pyIPE79C9pfl/nThFknjCpxnZtbvevIwMSJmAbO6Ke6qy1076d50YIakFmAR8CTQFhFPS7ocuBd4lSygt/WgaZsoEqjbIuKVtKy5mVmpdTQvVq3ijV4wZD3l1fkKEbEWOBVAWZBckTYi4jrgulR2WboewO8l7RwRL0jaGXixUUO6TX1IulvSeGCxpM8CwyRNkPQdwMPzzKyU2nuwNTAfmCBpfBr5dgKwSdpX0qhUBnA68GAK3kjaMf3cjSw9MifVuws4Je2fAvy0UUPq9aivJ5uH+ofAJOB14N/Tsa82urCZ2UBoNJqjqIhok3QOWcwbBsyOiFZJZ6bymWQPDW+U1A48BZyWu8TtkrYHNgJnR8TL6fh04BZJpwG/BY5t1BZFnRUeJW0DfAmYQhawOytHRHyzyJcdPmLMYFpIwfqJ10y0rmy5w9s3O8zetMtJhWPO363+0aDI6TbKUW8kGzv9JuDNDK7Va8xsCKpikOo2UEuaAnyTLJ+yT0Ss67dWmZn1UrNSH2VSr0d9CXBsRLT2V2PMzDZXFef66DZQR8RB/dkQM7NmaB9iPWozs0FnSPWozcwGIwdqM7OSq+CSiQ7UZlYt7lGbmZVcgVfDBx0HajOrlKE2jtrMbNBx6sPMrOQcqM3MSm5IzfVhZjYYOUdtZlZyHvVhZlZyHRVMfjRchdzMbDDp6MHWiKQpkpZKWiZpWhfloyXdKWmhpHmSJuXKLpTUKmmxpDmStkrH95b0qKSWtPL55EbtcKA2s0qJHmz1SBoGXA0cDkwETpQ0sabaxUBLROwJnAzMSOeOAc4D9o2ISWRLeZ2QzrkCuDQi9iZbQeuKRt/JgdrMKqWJPerJwLKIWB4RG4CbgaNr6kwE7gOIiCXAOEk7pbLhwEhJw4GteWMF8wDemva3pWZl8644R21mldKm4jlqSVOBqblDsyJiVtofA6zMla0C9q+5xAKyFcYfTimM3YGxEfEbSVeRLV67HrgnIu5J51wAzE3lWwAHNmqne9RmVik9SX1ExKyI2De3zcpdqquBfrV/BaYDoyW1AOcCTwJtkkaT9b7HA7sA20g6KZ1zFnBhROwKXAhc1+g7OVCbWaU0MfWxCtg193ksNWmKiFgbEaemfPPJwNuAFcBHgBUR8VJEbATu4I2e8ynpM8CtZCmWuhyozaxSOojCWwPzgQmSxksaQfYw8K58BUmjUhnA6cCDEbGWLOVxgKStJQk4FHg61VsNfDDtfxh4tlFDnKM2s0pp1ijqiGiTdA4wl2zUxuyIaJV0ZiqfCbwLuFFSO/AUcFoqe0zSbcATQBtZSqQzrXIGMCM9ZPwzm+bIu6SIvh0cPnzEmOqNPrfNtn71QwPdBCuhLXd4+2a/AH7RuBMLx5yrnpszKF44d4/azCqlvYJvJjpQm1mleJpTM7OSC/eozczKzT1qM7OSq+LseQ7UZlYp1QvTDtRmVjFtFQzVhQK1pGERUcWFE8ysYqr4MLHoK+TLJF3ZxVysXZI0NU2I/XhHx2ub0Twzs55p5sIBZVE0UO8JPANcm1YmmCrprd1Vzs9ItcUW2zSloWZmRUQP/jdYFArUEfGniLgmIg4EvgB8GXhB0g2S3tmnLTQz64Eq9qgL56iBjwOnAuOAbwA3AQcBdwN79FH7zMx6pL2P5y8aCEVHfTwL/Aq4MiIeyR2/TdLBzW+WmVnvDMlx1Kk3fX1E/EtX5RFxXtNbZWbWS4Mp91xUwxx1GpZ3SD+0xcxss1UxR1101Mcjkr4r6SBJ+3RufdoyM7NeaOIKL0iaImmppGWSpnVRPlrSnZIWSponaVKu7EJJrZIWS5ojaatc2bnpuq2SrmjUjqI56s61vvLpjyBbRsbMrDSalfpIad+rgcPI1k+cL+muiHgqV+1ioCUijpH0t6n+oZLGAOcBEyNivaRbyJbyul7SIWQL3+4ZEa9L2rFRWwoF6ohw6sPMBoUmjvqYDCyLiOUAkm4mC7D5QD0R+DpARCyRNE7STqlsODBS0kZga95YGPcsYHpEvJ7Oe7FRQwrP9SHp48C7gb9037t7wGhmNlCaOOpjDLAy93kVsH9NnQXAp4CHJU0GdgfGRsRvJF1FtsjteuCeiLgnnbMHcJCkr5GtmXhRRMyv15BCOWpJM4HjgXMBAcemBpmZlUpPHibmp7tIW36h2a7WU6z9KzAdGC2phSw+Pgm0SRpN1vseD+wCbCPppHTOcGA0cADwT8AtaaXybhXOUUfEnpIWRsSlkr4B3FHwXDOzftOTHHVEzOKN1cFrrQJ2zX0eyxvpi87z15K9CEgKtivS9jFgRUS8lMruIHvW96N03TsiW1l8nqQOYAfgpe7aWXTUx/r0c52kXYCNZH8pzMxKpYmjPuYDEySNlzSC7GHgXfkKkkalMoDTgQdT8P4tcICkrVMAPxR4OtX7CWkghqQ9gBHAmnoNKdqj/rmkUcCVwBNk3f9rC55rZtZvokkPEyOiTdI5wFxgGDA7IlolnZnKZwLvAm6U1E72kPG0VPaYpNvI4mUbWUqks+c+G5gtaTGwATglGjRaPf1Skt4EbBURrxSpP3zEmOq9JmSbbf3qhwa6CVZCW+7w9rq52iI+uuuUwjHnnpW/3Oz79Ye6PWpJn6pTRkQ4T21mpTIU5/r4RJ2ywA8UzaxkmpX6KJO6gToiTu2vhpiZNcNQ7FH/hV94MbPBoIqz5xVdOGAm2SuQh5CN9vgMMK8P22Vm1itVXDig6DjqAyPiZODliLgUeD+bDgQ3MyuFZs6eVxZFUx+1L7z8Ab/wYmYlNJgCcFE9feHlCuA36ZhfeDGz0hlyoz4k7QesjIivps9vBhYBS4Bv9X3zzMx6poo96kY56u+TveJIWsR2ejr2Ct1PZGJmNmCiB/8bLBqlPoZFxB/S/vHArIi4Hbg9TetnZlYq7TGYVkMsplGPepikzmB+KPB/cmWFx2CbmfWXiCi8DRaNgu0c4AFJa8hGfjwEIOmdZOkPM7NSqWKOutEr5F+TdB+wM9lSMp3/BLYgW83AzKxUBlPuuaiG6YuIeLSLY8/0TXPMzDZPxyBKaRTlPLOZVUoVe9RFXyE3MxsU2qOj8NaIpCmSlkpaJmlaF+WjJd0paaGkeZIm5coulNQqabGkOZK2qjn3IkkhaYdG7XCgNrNK6YgovNUjaRhwNXA4MBE4UdLEmmoXAy0RsSdwMjAjnTsGOA/YNyImkS3ldULu2rsCh5GtrdiQA7WZVUoTX3iZDCyLiOURsQG4GTi6ps5E4D6AiFgCjJO0UyobDoxMQ5y3ZtMVzL8FfAGK5WkcqM2sUnrSo5Y0VdLjuW1q7lJjgJW5z6vSsbwFwKcAJE0GdgfGRsTzwFVkPeYXgFci4p5U7yjg+YhYUPQ7+WGimVVKTx4mRsQsup8Oo6uFb2svPh2Ykd7UXkS22nibpNFkve/xwB+BWyWdRLZ84SXARws3EgdqM6uY9mhv1qVWsem8+2PZNH1BRKwFTgWQJGBF2j4GrIiIl1LZHcCBZD3w8cCCrDpjgSckTY6I33XXEAdqM6uUJr4aPh+YIGk88DzZw8DP5iuk6Z/XpRz26cCDEbFW0m+BAyRtTfZW96HA4xGxCNgxd/5zZA8c19RriAO1mVVKs14hj4g2SecAc8lGbcyOiFZJZ6bymcC7gBsltQNPAaelssck3QY8AbSRpUR6PeOo+npikuEjxlRv9LlttvWrHxroJlgJbbnD27vKC/fImNHvLhxznn+5dbPv1x/cozazSvEr5GZmJVfFV8gdqM2sUqq4cIADtZlVymBaEKAoB2ozqxTnqM3MSs49ajOzkhtyS3GZmQ027lGbmZWcR32YmZWcHyaamZWcUx9mZiXnNxPNzErOPWozs5KrYo66z6c5tTdImpqW/jH7C/9eWCNe3LZ/TW1cxYYg/15YXQ7UZmYl50BtZlZyDtT9y3lI64p/L6wuP0w0Mys596jNzErOgdrMrOQqE6iVeVjS4bljx0n6ZR/c635JSyW1pO22Zt+j5n679PU9bPNJukRSq6SF6fdi/zp1r5f0mf5snw1elXkzMSJC0pnArZJ+BQwDvgZM6c31JA2LiPY6Vf4uIh7vzbV72I7hEbEa8P+pS0zS+4EjgX0i4nVJOwAjmnj94RHR1qzr2eBSmR41QEQsBn4G/DPwZeBHwCWS5kt6UtLRAJLGSXpI0hNpOzAd/5CkX0n6d2CRpG0k/ULSAkmLJR1f7/6Sfirp5LT/eUk3pf37JX1b0iPpOpPT8W0kze6ifX8v6VZJPwPuSe1dnMqGSboynbNQ0udzbb9f0m2Slki6SZJS2X7p3gskzZP0lu6uY722M7AmIl4HiIg1EbFa0pfSP+PFkmZ1/jvJ665O+vd5maQHyH6PV0jaMpW9VdJznZ+t4iKiUhuwDbAUWAR8HTgpHR8FPJPKtwa2SscnAI+n/Q8BrwHj0+dPA9fkrr1t+nl/ukdL2q5Mx3cClgEHpXttl6t/Tdo/GFic9i/rpn1/D6zKnT8ud85U4Itp/03A48D41PZXgLFkf4B/DXyArFe3HNgvnfNWsv+S6vI6A/3vb7BuwJvT78IzwPeAD6bj2+Xq/BD4RNq/HvhMgzr3A9/Llf0A+GTu9+AbA/29vfXPVpnUR6eIeE3Sj4FXgeOAT0i6KBVvBewGrAa+K2lvoB3YI3eJeRGxIu0vAq6SdDnw84h4KFfvr1IfEfF7SV8CfgUcExF/yBXPSXUeTL2hUcBHgaO6aB/AvTXnd/oosGcuv7kt2R+bDantqwAktZAF+FeAFyJifrr/2lTe3XU6v7v1QES8Kul9ZH+kDwF+LGka8CdJXyDrHGwHtJL9V1/eIXXq/DhX71rgC8BPgFOBM/rm21jZVC5QJx1pE/DpiFiaL5T0FeD3wF5kvc8/54pf69yJiGfS//mOAL4u6Z6I+JcG934P8P+BXWqO1w5Yjzrt2z/fjhoCzo2IuTXnfAh4PXeonezfr7q4d7fXsd6L7JnG/cD9khYBnwf2BPaNiJXp926r/DmStiLrgXdXJ//7+H9TGuyDwLDIUn02BFQqR92FucC5uZzfe9Pxbcl6mR3A58gePP4VSbsA6yLiR8BVwD71bpZyz4cD7wUukjQ+V3x8qvMB4JWIeKVO+xp9p7Nyuco9JG1Tp/4SYBdJ+6X6b5E0vBfXsTok/Y2kCblDe5OlxwDWSHozXT8Q3qpAnbwbyf7r7Aeb0VwbZKrao+70VeDbwMIUDJ8jezL/PeB2SceSpSm6672+B7hSUgewETgrV3aTpPVpfw3wceAa4NTIHiL9d2C2pA+nOi9LeoQsR/wPDdpXz7VkKY0n0jkvAZ/srnJEbEgPQb8jaSSwHvhIT69jDb2Z7J/xKKCN7FnFVOCPZCm054D5tSdFxB8lXVOvTo2bgH8lpdJsaPAr5P1A0v3ARbU5bbOeSs8Ujo6Izw10W6z/VL1HbVYZkr5Dllo7YqDbYv3LPWozs5Kr+sNEM7NBz4HazKzkHKjNzErOgdrMrOQcqM3MSu4/Abc5HGQI4KtkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# compute pairwise correlation and plots\n", + "# a heatmap of the correlated columns\n", + "sns.heatmap(data.corr())" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "e384ed91", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAADrCAYAAABpaOHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAArV0lEQVR4nO3deZxcVZn/8c9TVb1mTzqEkH2TLYKSJkR2CEIEJDgiBEeJGs3ooDAyiiDDZIBhRsQZRn8OOBGQRV4sRpQ4A0JkXwLYLLKEJYFEErIvZOu1qp7fH/d2Ut3pdFd3V9Wt7nzfvu6rq07dc+qpJvZTZ7nnmrsjIiISizoAEREpDkoIIiICKCGIiEhICUFERAAlBBERCSkhiIgIAImoAygWVVVVPnbs2KjDEJEe4KWXXtro7kO708Ypp1b6pk2prM599eXGh919RnfeLxtKCKGxY8dSU1MTdRgi0gOY2V+728amTWmeeHZ0VucOrFhW1d33y4YSgohIFBwsbVFH0YISgohIVFwJQURkn2cUXw8hb6uMzOxWM1tvZm+08dr3zMzNrCqj7HIzW2Zm75jZaRnlU8zs9fC1n5mZheVlZnZvWP6CmY3NqDPbzJaGx+x8fUYRkS5zsGR2R6Hkc9npbcAes+JmNgr4NPBBRtkhwCzg0LDOjWYWD1++CZgLTAqP5jbnAFvcfSJwA3Bd2NZgYB5wFDAVmGdmg3L82UREusfBsjwKJW8Jwd2fAja38dINwKVA5secCdzj7g3uvhxYBkw1s+FAf3df7MG2rHcAZ2fUuT18vACYHvYeTgMWuftmd98CLKKNxCQiUp+8ma2NH2dr40HUNn0X94aCvr+lszsKpaAXppnZWcCH7v6XVi+NAFZmPF8Vlo0IH7cub1HH3ZPAVmBIO22JiOzSlH6YhvQNwE6gkSZ/mPrUvxU2iLRndxRIwRKCmVUCVwD/3NbLbZR5O+VdrdM6prlmVmNmNRs2bGjrFBHppZrSjwJ1GSX1NKUfL1wA+9KQURsmAOOAv5jZCmAk8LKZ7U/wLX5UxrkjgdVh+cg2ysmsY2YJYADBENXe2tqDu89392p3rx46tFsXHYpID2NU0XqhZcGnG9NZHgVSsITg7q+7+37uPtbdxxL84T7C3dcCC4FZ4cqhcQSTxy+6+xpgu5lNC+cHLgAeCJtcCDSvIDoHeCycZ3gYONXMBoWTyaeGZSIiu5TFv44xBCgHSoEKKuJXFez9zcGSntVRKHm7DsHM7gZOBKrMbBUwz91vaetcd3/TzO4DlgBJ4EJ3b97k41sEK5YqgIfCA+AW4E4zW0bQM5gVtrXZzK4B/hyed7W7tzW5LSL7sJgNpl/JwzSl/w+nnkTsJOK7V68XRCGHg7JhuqdyoLq62rWXkYhkw8xecvfq7rQx5bByf25hdnsZlY9b2u33y4a2vxaRXsNT20mtv4HUh98j9dHvKOovvJ67ZadtXQhsZteb2dtm9pqZ/c7MBnbUjhKCiPQKnq4j9f7n8E2/xLc+gK+ZR3r9j6MOq33u2R0du409r7daBEx298OAd4HLO2pECUFEegXf8SSkNoA3hQV1+KZfEVymVIRyuHVFWxcCu/sjvvvDP0/LFZttUkIQkd7BG9q44sjBs7sJTRQKeB3C19i9IGevtNupiPQK1udosHi4pbSDlUHlVCxWFnVoe5f9NQZVZpa56mW+u8/PpqKZXUGwevOujs5VQhCRXsESQ4mPvZfUmishuQ6rnEZs+JVRh7V3TmcSwsaurDIKd3s+E5juWcywKyGISK9h5ZNIjLsn6jCyYoDl8QY5ZjYD+AFwgrvXZlNHcwgiIlHJ0dYV4YXAi4EDzWyVmc0Bfg70AxaZ2atm9ouO2lEPQUQkCg7kaL7b3c9vo7jNnSHao4QgIhKRYruFphKCiEgUnL1szB8dJQQRkaiohyAiIkBB73WQDa0yEpGi5qkdeP07eGpr1KHklnfiKBD1EESkaKV3PE165bfBDDyJDf9X4gPPjjqsHDFIFdd38uKKRkQk5Ola0isvBK+F9E7wBnzNlXjTmqhDy40cbn+dK+ohiEhOeP0GWP8MWAz2Pwkr6d+9BpvWhD2DjDIrwRuWYyXDu9d2sdCksoj0Nr5jBf7sl8CTgMHbP4Pj7sHKh+JNO2DrW5AohwGHYpblwERiGHirr8fehJVmd5exHkHLTkWkt/El10NyJ7v+wqUb8aW/gHEX4Iu/AummYBvqgR+Hqf+NxUo6bNPifYkd8GPSqy8FKwFvxIZdipV2uK1/z+CohyAivVD9Blp83fUU1K3D/3IlNH60+7Utr8EH98PY87JqNjbgM1ifamhYDqUjsZIDch15tFLFlRA0qSwi3bffsRAr3/08Xg77HQe1K2mRKNL1+I4VnWraEkOxPlN7XzLAgns3ZHMUiBKCiHSbfexbMPzTwQ1qLAGjz8XGnAv9DwzKmsUrsIGHRhdoMXHwtGV1FIqGjESk2yxWgn3iGvzwqwDDLPwjdvi/4s9/HerXBsNIB5wGI86INNaiUsBv/9lQQhCRnGm9gsjKq+CE30Ld2qB3UDY4osiKVJFtXaGEICJ5ZRaHyhFRh1F8HPUQREQEinHrCiUEkX1ceuN7JJ/5GdRuwUYfReJTc7F4x9cJSDfpOgQRKSa+fR1Nv7sImmrD5+tp2vJB8LxhB7EJJxCv/jIWi3fQknSJrlQWkWKR/usLkM64sW+qAV/54u6nr67Bm+ooOeZbEUTX+xVySWk2imsAS0QKK54INpDbm2QD6bcfLFw8+5p95cI0M7vVzNab2RsZZdeb2dtm9pqZ/c7MBma8drmZLTOzd8zstIzyKWb2evjazyxc4GxmZWZ2b1j+gpmNzagz28yWhsfsfH1GkZ4uNu44KO2z++KxWBsJIqaBhLxonkPI5iiQfPYQbgNmtCpbBEx298OAd4HLAczsEGAWcGhY50azXZc33gTMBSaFR3Obc4At7j4RuAG4LmxrMDAPOAqYCswzs0F5+HwiPZ6V96P03F8S+/jZxCacQOzov4PSvsEW1gCJMuJTvhxtkL1WuMoom6NA8pb63f2pzG/tYdkjGU+fB84JH88E7nH3BmC5mS0DpprZCqC/uy8GMLM7gLOBh8I6/xLWXwD8POw9nAYscvfNYZ1FBEnk7hx/RJFewSoHUXLst3c993HHkXzpLqjfSmziScQnnhhdcL2Ye3AUkyj7gl8D7g0fjyBIEM1WhWVN4ePW5c11VgK4e9LMtgJDMsvbqCMiHbB+wyg58ZKow9g36MI0MLMrgCRwV3NRG6d5O+VdrdM6jrkEw1GMHt2LbrohIj3Dvr7KKJzkPRP4W/ddHaZVwKiM00YCq8PykW2Ut6hjZglgALC5nbb24O7z3b3a3auHDh3anY8lItI5Du6W1VEoBU0IZjYD+AFwlrvXZry0EJgVrhwaRzB5/KK7rwG2m9m0cH7gAuCBjDrNK4jOAR4LE8zDwKlmNiicTD41LBPptdLbNtP03hukNq+LOhTJ2j40qWxmdwMnAlVmtopg5c/lQBmwKFw9+ry7f9Pd3zSz+4AlBENJF7p789Uy3yJYsVRBMJn8UFh+C3BnOAG9mWCVEu6+2cyuAf4cnnd18wSzSG/U8Ppidi74f8Hy0FSSilPOo+L4mVGHJVnI1bd/M7uVYORlvbtPDssGE8zTjgVWAOe6+5Z22/Fim+aOSHV1tdfU1EQdhkineGM9W679GjQ17i4sKWXAd/6DeNXw6ALr5czsJXev7k4bU8b088U/PCKrc8u++VS772dmxwM7gDsyEsKPgc3u/iMzuwwY5O4/aO99dKWySA+W3v7RHheSWSyhoaOeIkdXKrv7UwQjJZlmAreHj28nWLLfLl2CKNKDxfoP3iMheDpJfKhWWvcEndjLqMrMMocw5rv7/A7qDAvnYXH3NWa2X0dvooQg0oNZSSn9vvQDtt95XVCQTlE5cy7xQVo1V/Q6t0/Rxu4OUWVDCUEkz1LbtuPpNPEB/XffaziHSiZ8nEE/vJn0lg3YgMHEyvvk/D0kPzy/K4jWmdnwsHcwHFjfUQUlBJE88WSS9TfOp/a1YH/H8gnjGXbJd4iVleX8vay0nPiwUR2fKMUlv9cYNC/N/1H484H2T9ekskjefPTgw9S9sQSSSUgmaXj/fTbf+9uow5Ii0byXUTZHR8Jl/ouBA81slZnNIUgEnzazpcCnw+ftUg9BJE8a3l2GN+5eDupNSRqWvZe390tv/4id999Eau0KYlUH0Ofzf098oOYSilqOtq5w9/P38tL0zrSjHoJInpQM3x8SGd+5YjES+w/Ly3t5KsW2X15J09JXSW/dRHL5m2z7xRV4Y0Ne3k9yIbttK3rt1hUi+5KBZ3+WkqFVWHk5Vl5OfOAAhnzx3Ly8V3rTGtLbNu++HWY6jTfUkVy7Ii/vJzlSZHdM05CRSJ7E+1Qy4uorqV/6HqTTlE2akJcJZQBKyiCdblmWTmOJ0vy8n3Sf532VUacpIYjkkZWUUHHIQXl/n9jAKkoOPIKmd1+FpgYoKSUxahLx/cfk/b2l6wo5HJQNJQSRXsDM6Hv+JTS8+CeSH75HfNhoyj81A4sV1zdQyeCFvV9yNpQQRIpA3RtL2LH4BayinAGnnkLJfp1fHWSxOOXTTstDdJIvxba3qBKCSMR2vPBnNt5yG97YBGbseHYxI67+Z0qGVkUdmuSRU3xDRupPikRsy/0PBMkAwB2vb2D7409GG5TkXzipnM1RKOohiETMm5paFfieZdI7qYcgIpn6HX8sVrp7eaiVltJn2tQII5LCKL4L09RDEInYwLPOgFicHc8uJlZWyqAv/A3lE8ZHHZYUglYZiUgmi8UYdNbpDDrr9KhDkULKcuO6QlJCEClink6R3roZq6jUfQ56mWJcZaSEIFKkUpvXsf3meaR3bod0ivITPkflKedFHZbkjBXd1hXFFY2I7LLjrutJb90UbEWRSlL/9EKalr0WdViSK07RTSorIYgUqdT6VS0HmVNJkqvfjy4gyb0i2+1UCUGkSMX6DWpZkEgQH5Sf+ylINNRDEJGs9D3/u1BWgZVVQkkZJZM+QcmhR0UdluSQp7M7CkWTyiJFKjHqYwz8x5+TXL2cWGVf4iMmYFZcq1KkG5yiu1JZCUGkiMX6DqD0Y5+IOgzJA8dIp4trkEYJQUQkKuohiPQ+215eyqqbHyJd38jg6Z9k+Pkn6eY00j4H19YVIr3LzndWsuyqO/GGYIfSdfc9iSdTjJh9asSRSbErtiuV8/YVxsxuNbP1ZvZGRtlgM1tkZkvDn4MyXrvczJaZ2TtmdlpG+RQzez187WcWzqqZWZmZ3RuWv2BmYzPqzA7fY6mZzc7XZxQB2Pzka7uSAUC6oYlNj7wUYUTSY3iWR4Hks097GzCjVdllwKPuPgl4NHyOmR0CzAIODevcaGbxsM5NwFxgUng0tzkH2OLuE4EbgOvCtgYD84CjgKnAvMzEI5JrsbISiLX8pmcl6nxL+5onlbM5CiVv7+TuTwGbWxXPBG4PH98OnJ1Rfo+7N7j7cmAZMNXMhgP93X2xuztwR6s6zW0tAKaHvYfTgEXuvtndtwCL2DMxieTM0M9MJV5RtispWFkJB8z+dMRRSdEL5xCyOQql0F9jhrn7GgB3X2Nm+4XlI4DnM85bFZY1hY9blzfXWRm2lTSzrcCQzPI26rRgZnMJeh+MHj26659K9mml+w3k4P++iHW/f4b0zgYGn3Q4/Y+YFHVY0hMU2RxCsfRr2/qteDvlXa3TstB9PjAfoLq6ush2JpdCqn1/Dcv//W4a139E+ZhhjP/hFynbP/uRxrL9BzH6m5/NY4TSG+VyUtnMvgt8neDv3evAV929vjNtFHpd3LpwGIjw5/qwfBUwKuO8kcDqsHxkG+Ut6phZAhhAMES1t7ZE2pTcXse7l/6S+pUbSDc0UbvsQ969dD6eSkUdmvRqubuFppmNAC4Cqt19MhAnmJftlEInhIVA86qf2cADGeWzwpVD4wgmj18Mh5e2m9m0cH7gglZ1mts6B3gsnGd4GDjVzAaFk8mnhmUibap9bzWeztgwJu0kt9XSsG5LdEFJ7xfeMS2bI0sJoCL8glxJF74I523IyMzuBk4EqsxsFcHKnx8B95nZHOAD4AsA7v6mmd0HLAGSwIXu3vz17FsEK5YqgIfCA+AW4E4zW0bQM5gVtrXZzK4B/hyed7W7t57cFtkl0accUi13EPNkinhleUQRyb7AoTM3yKkys5qM5/PDIe+gLfcPzewnBH9X64BH3P2RzsaUt4Tg7ufv5aXpezn/WuDaNsprgMltlNcTJpQ2XrsVuDXrYGWfVjHxAPpP+RjbXl5KuqGJWFkJVZ85kpKBfaMOTXq5TswhbHT36r29GI6GzATGAR8BvzGzL7n7rzsTT7FMKotExswY/09fZMuTr9GwehMV44czYNrBUYclvZ3ndFL5FGC5u28AMLP7gaMBJQSRzrJYjMEnfSLqMGSfktOb33wATDOzSoIho+lATftV9qSEICISkVwlBHd/wcwWAC8TzMO+QrikvjOySghmFs+Y5BWJ1NYl61j31HskKksZedahlA6siDokkU5zB0/l7joEd59HsHiny7LtISwLs8+v3H1Jd95QpDvWP7Ocl7+3kHRDEkvEWH5HDcf95gJKB1VGHZpIp/XU3U4PA94Fbjaz581srpn1z2NcIm1a8uPHSdcngwm5pjSNH9Xx19+8FnVYIl2SqwvTciWrhODu2939l+5+NHApQbdkjZndbmYT8xqhSIbkzoYWzz2Zpmlbp67OFykSubtSOVeySghmFjezs8zsd8BPgf8AxgN/AB7MY3wiLex/8iRiZbtHOmPlCYadMKFTbTRsrmXzKx9St257rsMT6ZRiSwjZziEsBR4Hrnf35zLKF5jZ8bkPS6RtB3//RNLJFGv/tJR4eYKDvnsCQ44c1XHF0JpH3+UvVzxELBEj3ZTi4EtOZMx5n8hfwCJ74/S83U7DG9Xc5u5Xt/W6u1+U86hE9iJemuCweadx2LzTOj65leTORv5yxUOk65M0b1Tx1n8+ydBjx1E5YkBuAxXpgENBb36TjQ6jCZebnlSAWETyqn79dqzVnc1iJTFqV30UTUCyb3PwdHZHoWQ7ZPScmf0cuBfY2Vzo7i/nJSqRPCgf1m+PO2Okm9L0GaM7rEoUCjs/kI1sE8LR4c/MYSMHTs5tOCL5k6gs5ZPXf5ZXvv8HLGakkykO/eF0KvbXCmqJRo9MCO6uISPpFfY7dhwnP/J31H24lfL9++kqZ4mM00MTAoCZnQEcCuzaJH5vE80ixaykXxklB+3X8YkiedYjE4KZ/YLgDjwnATcT3KHsxTzGJSLSu7n1vFVGoaPd/QJgi7tfBXyKlvctFhGRzkpbdkeBZDtkVBf+rDWzA4BNBHfmERGRLuqRQ0bA/5rZQOB6gv22nWDoSEREusBze8e0nMh2ldE14cPfmtn/AuXuvjV/YYmI9H7uHZ9TSO0mBDP7m3Zew93vz31IIiL7guKbVO6oh/DZdl5zQAlBRKSLetSQkbt/tVCBiIjsS3rsHALowjQRkVzzAi4pzYYuTJPING5rZMWDfyXdmGLkySPpO7Jv1CGJFFRP7SEc7e6Hmdlr7n6Vmf0Hmj+QbqjfVM/vTnmAxq2NuDuxq2s44/efYcjkIVGHJlIgxbfbabZT3K0vTEuiC9OkG17779ep31hPsjZJqi5F044mFv/w+ajDEikY9+AGOdkchdLZC9N+DLwUlunCNOmy2rW1pJta3vmjbkPdXs7erXFHE7GEkSjPevpLpGgVWw+ho+sQjgRWNl+YZmZ9gdeBt4Eb8h+e9FYjp4/kr3/8gGRtEoB4eZwRJ43c6/mN2xtZ9OU/sa5mPQCHfO1gjrpqKmbF9X8okc4otoTQUV/kf4BGADM7HvhRWLYVmJ/f0KQ3m/A34/n4308mXhbDEsbo00Zx1Lwj93r+cz9YzPqXN+BJx5POO3e+y7IF7xUwYpFcC+YQsjkKpaN+d9zdN4ePzwPmu/tvCbaweLWrb2pm3wW+TnBx2+vAVwlWMd0LjAVWAOe6+5bw/MuBOUAKuMjdHw7LpwC3ARXAg8DF7u5mVgbcAUwh2IjvPHdf0dV4JffMjCO+90k++Y+fAGePex23tvb5daQbdw8xJeuSrHluLZO+MDHPkYrkiRffstOOeghxM2tOGtOBxzJe69IgrpmNAC4Cqt19MhAHZgGXAY+6+yTg0fA5ZnZI+PqhwAzgRjOLh83dBMwFJoXHjLB8DsFW3RMJhrau60qskn9m1mEyAOgzog9knBYvi9N/TL88RiaSX813TMtVD8HMBprZAjN728zeMrNPdTamjhLC3cCTZvYAwUqjp8M3nkgwbNRVCaAiTDaVwGpgJnB7+PrtwNnh45nAPe7e4O7LgWXAVDMbDvR398Xu7gQ9gsw6zW0tAKabBpt7tGN/cgyl/Uop6VtCok+CfmP7ceg3Dok6LJFuSaUtqyNLPwX+6O4HAYcDb3U2no62rrjWzB4FhgOPhH94IUgk3+nsm4VtfmhmPwE+IEgyj7j7I2Y2zN3XhOesMbPmexyOADLXI64Ky5rCx63Lm+usDNtKmtlWYAiwMTMWM5tL0MNg9OjRXfk4UiCDDhzIOc99nrWL1wYT0McfQLws3nFFkWKVw60rzKw/cDzwFQB3bySc/+2MDod93H2PxeHu/m5n36iZmQ0i+AY/DvgI+I2Zfam9Km2F1U55e3VaFrjPJ5wcr66uLrKNaKW1iqpyxn12bNRhiOSE5/bCtPHABuBXZnY4weUBF7v7zs40EsXeq6cAy919g7s3EVzxfDSwLhwGIvy5Pjx/FS1v1zmSYIhpVfi4dXmLOuGw1ABgMyIiRaQTcwhVZlaTccxt1VQCOAK4yd0/CewknIftjCgSwgfANDOrDMf1pxOMdS0EZofnzAYeCB8vBGaZWZmZjSOYPH4xHF7abmbTwnYuaFWnua1zgMcyhrtERIpCJxLCRnevzjhaL/tfBaxy9xfC5wsIEkSnFPxyT3d/wcwWENyKMwm8QjBs0xe4z8zmECSNL4Tnv2lm9wFLwvMvdPdU2Ny32L3s9KHwALgFuNPMlhH0DGYV4KOJiGTPIZ3KzXdyd19rZivN7EB3f4fgi/aSzrYTyfX/7j4PmNequIHgQ7R1/rXAtW2U1wCT2yivJ0woIiLFKMdzCBAs9LnLzEqB9wmu7+oUbQgjIhKRXCYEd38VqO5OG0oIIiIRSRfZXkZKCCIiUejJt9AUEZHcad66opgoIYiIRMJIp5QQRETENYcgIiJoyEhERDIoIYiICKCEICIiAJjmEEREBNzRKiMREQloyEhERHC07FRERCDcuiLqIFpSQpC8c3eCexiJSCYNGck+4y93reD/vvMyjTuTjDluKOfddzSVg8uiDkukKDhGKl1cCSGKW2jKPmDVi5tY+M0aGrY14Snng2c38psvLo46LJGi0olbaBaEegiSFyueXE+6Kb3rebopzQfPbIgwIpEio72MZF/RZ2gZ8bIY6WRqV1lZ/xLWv7yB5M4mqg6vorR/aYQRikTP0x2fU0hKCJIXHz9/DM//fCmbl+4gnUpjBhMONB46549Y3IglYpy58HQGThoYdagikdDmdrLPSJTF+cazp7Dk/lXUbW7Etu1gyfzXSdWFPQaDJ7/9FDMfPivaQEUio60rpECSjSk+fGsbZZUJhk3sG8myz0RZnMPOHwPA8/Ne2J0MABy2f7Cj4DGJFAt3im6VkRJCL7T5w1quOe5P7NjUQDrpfPy04Vz0m2OIxaNbVDb08CoSlQmStUkALGEMmTw4snhEikGxXZimZae90PyvPs/mlbXUb0/SWJfi9UfW8MTN70ca0/jPjWfiOROIlcZIVCToN6YfJ/z8+EhjEomalp1K3n345lbSqd1fPRprU6x4ZXOH9Wq3NnLbhTUsfW4j+43ry9f+50iGTeyXk5jMjGN+fDRHXHoEydom+ozoE2mPRaQYpNVDkHw74OABxOK7v1WUVsYZffigduu4O9d/5gn+/NuVbFyxk7eeXMe/HL2InR815jS2iqpy+o3up2Qg+zz37I9C0f8re6G5vzqKgcMrKO+XoLQyziEnDeOkb0xot872jQ2seGULyYZgYbSnIdWYYumzuphMJF9SacvqKBQNGfVCQ0b14fp3z+TDN7dSWhnngIP6d7jKqKQsjrfqv3oaSsrj+QxVZJ+mSWUpiNLyOOOmDGbEwQOyWnJa0b+EY788jtLKIAGUlMfYb0JfDjx+v73W2b62jt/Ofp5fHvMnHrnsVZINqb2eKyItNd8PIZsjG2YWN7NXzOx/uxpTJD0EMxsI3AxMJvi9fA14B7gXGAusAM519y3h+ZcDc4AUcJG7PxyWTwFuAyqAB4GL3d3NrAy4A5gCbALOc/cVBflwPdjX5k9l/NQhvPvMBoZN6sdnLjmIREnb3xkadjQxf9oidqyrJ93krH3tIzYs2cbfLtTKIZFs5biDcDHwFtC/qw1E1UP4KfBHdz8IOJzgQ1wGPOruk4BHw+eY2SHALOBQYAZwo5k1j2PcBMwFJoXHjLB8DrDF3ScCNwDXFeJDRcXdWfjvb/IPYx7gkokLefqOri0xjcWMk+dO5Jt3fIrPXTmZ8j57/77w16c2UL+1iXRT8E86WZdi2aK11G3J7SS0SK/lwSqjbI6OmNlI4AyCL9pdVvCEYGb9geOBWwDcvdHdPwJmAreHp90OnB0+ngnc4+4N7r4cWAZMNbPhQH93X+zuTtAjyKzT3NYCYLr14ju0PHTD2zxw7ZtsWlnLhvd3ctvf1/DyHz7M63vu9dfZa3/LIrnlWNZHFv4LuBTo1nZ5UfQQxgMbgF+F4103m1kfYJi7rwEIfzYPXo8AVmbUXxWWjQgfty5vUcfdk8BWYEh+Pk70nrl9OY21u8fvG2tTPHPn8ry+55gThlI5uJR4SfCPNVER52OnH0DFQO1gKpKtlGd3AFVmVpNxzG1uw8zOBNa7+0vdjSeKOYQEcATwHXd/wcx+Sjg8tBdtpUdvp7y9Oi0bDn6pcwFGjx7dXsxFraxvy/+MZlDRrySv71lamWDu85/mT//0GpuW7mDMcUM54YpD8vqeIr1JMKmc9ekb3b16L68dA5xlZqcD5UB/M/u1u3+pszFF0UNYBaxy9xfC5wsIEsS6cBiI8Of6jPNHZdQfCawOy0e2Ud6ijpklgAHAHpfquvt8d6929+qhQ4fm4KNF49x/+wSlFcG0isWCBHHmpQfn/X37DC1n5v9M5WuPncz0qz5OolRLVEU6w7M82m3D/XJ3H+nuYwnmWx/rSjKACBKCu68FVprZgWHRdGAJsBCYHZbNBh4IHy8EZplZmZmNI5g8fjEcVtpuZtPC+YELWtVpbuscgl9Qka34zZ2DT9iPK58+hRnfPZAzvncw//ryDIYfmN1Cg3Ta+WhtHY31WjIqUmi5mlTOlaguTPsOcJeZlQLvA18lSE73mdkc4APgCwDu/qaZ3UeQNJLAhe7e/NfrW+xedvpQeEAwYX2nmS0j6BnMKsSHikqyKc3Iwwbyt0cc0al6q9/exo8+/Rg7NjXgafjyz47g5LmTSDWlefY/3ub9x9ax8Z3tNO1MMnhiXz5/x6eo+lhu9jYSkZwvO8XdnwCe6Gr9SBKCu78KtDUeNn0v518LXNtGeQ3BtQyty+sJE0pvlmxKc81XH+exBcEE8hmzP8b3bzyWeJb7BP3kzCfZsrpu17/Kuy55hfFHDuG5q99k2aK1pOp3L1hY/dIWbjnhUf5h6RmU9c3v/ITIvsDp5pKgPNCVyj3YzVfV8PTCv5JOOemUs+ie97j3p29kVbepIcXGFTtafEUxM959Yj3LHmmZDABwSDWkWffa1hx+ApF9WyrLo1CUEHqwP//pQxoy7kJWX5vkhUdWtlNjt0RpjPI9ViI5A/cvx1Ntd2TTyTRl/bT9lUguBPdU1m6nkiPDRvVtsc11ImEMH5PdGL+Z8e27j6a0Mk5F/xLK+sSp/vwoJs/Yv8W9FHa1XR5j/Cn7s9/kATmLX2Rfl87yKBR93evBvnP9NF59eg2N4aZylf1K+cZV1bg7D//sHZ6+bTnlfRN84drDOaiNTeoOm3EA1y05gxUvb2Hg8HImTB3CluU7SVTESNbu/mcYKzGO/OYkTr3usEjuzSzSWxXb0kclhB5s+Nh+3P3mubzwyCpicWPaaaPoO6CUP1y3hN9f88auq5evP/0J/unJUxg3Zc97GFeN7kPV6D67ng8YVUlZ3xKStQ27yhKlcY79/kG6qY1IDmlSWXJuwJByTj1/IqecO4G+A4JtIx69aekeW1k8++vstrKIl8SY/ciJDBhdicWgYlApX/z9sfQdVp6X+EX2ZcU2qaweQi8Ub7VltdmeZe0ZNnkgl7z/WZINKRJluvpYJB/UQ5CCOPvKQ3fd6MYMyvokOOkbEzvdjpKBSD551v8rFPUQeqHjLhhPn4GlPH3Hcir6lXDmDw5h/0m6wlik2BRbD0EJoZc64qyRHHHWyI5PFJHIaJWRiIgU5RyCEoKISERSlmUfoUBdCSUEEZEIqIcgIiK7FHIFUTaUEEREIqIegoiIhLfHVA9BRERQD0FERAh6CFplJCIiQPH1ELSXUTdt29bAhd98kE8deQtf+fLv2bB+Z9QhiUiPoL2MepV02jnr9Ht44431NDakeOftTbxcs4YXX/kG5eX61YrI3hXjdQjqIXTDBx9s5a0lG3bdsSyZTLNxUx2vvLQm4shEpCdI41kdhaKvsd0Qj9keN8B2d+IJ5VkRaV+nJpULRH+5umHkqP4cc9woKiqCvFpWFmfC+EEcMWV4xJGJSE+gOYRexMy4d8E5/Of1i/nzi6s5+NAqLvvhsSSy6CHs3N7I736xhI2raznylBEcc8aYAkQsIsWk2OYQlBC6qbQ0zmVXHNupOvW1SeYc9XvWfrCDpoYUf7j1HebMm8IXLzksT1GKSLHxAs8PZENDRhF46oEVbFy9k6ZwMrq+Nskv59XgrSckRKRX8yyPQlFCiED9zuQek9HJpjTptBKCyL4kbZ7V0REzG2Vmj5vZW2b2ppld3JV4NGQUgerpB4Dtfl5aFueIE4cTjys/i+wrHEjl7vt/EvhHd3/ZzPoBL5nZIndf0plG9BcoAgeM689PHzqd8YcOYtB+5Rz/ubFcc88pUYclIgWWq+sQ3H2Nu78cPt4OvAWM6Gw8kfUQzCwO1AAfuvuZZjYYuBcYC6wAznX3LeG5lwNzgBRwkbs/HJZPAW4DKoAHgYvd3c2sDLgDmAJsAs5z9xUF+3BZmPypYdz56jlRhyEiEQmuVM66h1BlZjUZz+e7+/y2TjSzscAngRc6G1OUPYSLCbJYs8uAR919EvBo+BwzOwSYBRwKzABuDJMJwE3AXGBSeMwIy+cAW9x9InADcF1+P0r31e5o4v6blnD7v7/CkhfXRx2OiBRAOssD2Oju1RnH3pJBX+C3wD+4+7bOxhNJQjCzkcAZwM0ZxTOB28PHtwNnZ5Tf4+4N7r4cWAZMNbPhQH93X+zB8pw7WtVpbmsBMN3MMkbtu+fPL67mFzfW8H9/eDcnE8G1O5r4SvX9/PwHz3PzVS/x7VP+l8d/+34OIhWR4pXbze3MrIQgGdzl7vd3JaKohoz+C7gU6JdRNszd10AwHmZm+4XlI4DnM85bFZY1hY9blzfXWRm2lTSzrcAQYGN3A/+fm2r45396gnTaScRjnHTyWO6692/oTr55+NdL2bh6Jw11wTLUhroU/3nxc5z0+fHdDVdEilQnh4zaFX7hvQV4y93/s6vtFLyHYGZnAuvd/aVsq7RR5u2Ut1endSxzzazGzGo2bNjQYSCNjSmuuOxx6mqTNNSn2LmziccfW8Fzz67ssG57tn3UQFNjy2sWa3c0datNESlubpA0z+rIwjHAl4GTzezV8Di9szFFMWR0DHCWma0A7iH4AL8G1oXDQIQ/mwfSVwGjMuqPBFaH5SPbKG9Rx8wSwABgc+tA3H1+85jc0KFDOwx8+7aGPcpicWPjhtoWZUvf3cQfH1rGe+9t6bBNgKmnjKSkdPd/itKyONNOHdlODRHpDXK4yugZdzd3P8zdPxEeD3Y2noInBHe/3N1HuvtYgsnix9z9S8BCYHZ42mzggfDxQmCWmZWZ2TiCyeMXw+Gl7WY2LewuXdCqTnNb54Tv0e2+2eAhFRwwoh+x2O4OSCrpLTaz+/nPXuTYab/i61/5A0cfeQu33vxKh+0eXD2UeXecxJDhlVT0LeHoM0Zxxa0ndjdcESly2txu734E3Gdmc4APgC8AuPubZnYfsITg4osL3T0V1vkWu5edPhQeEIyl3Wlmywh6BrNyEaCZsfDBWcw6ZwFvLdnIkCEV3HL7TEaNHgDAqpXbuHrek9TXp6irSwJw2ff/xFkzD6RqaGW7bZ9w9jhOOHtcLsIUkR6gGPcyijQhuPsTwBPh403A9L2cdy1wbRvlNcDkNsrrCRNKro0dO5Dna76Ou+8xkbxq5TZKSxPU16d2lZWUxFm9enuHCUFE9j1KCL1EW6uKJn1sMMlky8nhdNoZO25ggaISkZ7CgWSRbYCtrStyaEhVJbf9eiaVlSVUVpbQt28Jd//m8/TvXxZ1aCJShNKW3VEo6iHk2IzPTGTFhxezbt0O9t+/L2Vl+hWLyJ5yeR1CruivVR6UlycYM2Zg1GGISFHTpLKIiJDz7a9zQglBRCQi6iGIiAiO02Spjk8sICUEEZEIaMhIRER2KbaEYDnY4qdXMLMNwF8jeOsqcrAtdx4Vc3yKrWuKOTYo7viaYxvj7h3viNkOM/tj2F42Nrr7jI5P6x4lhIiZWY27V0cdx94Uc3yKrWuKOTYo7viKObZc0JXKIiICKCGIiEhICSF6bd4su4gUc3yKrWuKOTYo7viKObZu0xyCiIgA6iGIiEhICUFERAAlBBERCSkhiIgIoIQgIiKh/w9peUCjQXWeIwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# \n", + "data.plot(x=\"YearsExperience\", y=\"Salary\",cmap=\"plasma\", \n", + " c=data[\"YearsExperience\"].apply(lambda x: int(x)), \n", + " kind=\"scatter\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5e122754", + "metadata": {}, + "source": [ + "### Train test split" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "e9fd6935", + "metadata": {}, + "outputs": [], + "source": [ + "# Split data into features (X) and targets (y).\n", + "\n", + "targets = data.Salary\n", + "features = data.drop(\"Salary\", axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "57f08701", + "metadata": {}, + "outputs": [], + "source": [ + "# Split the dataset using mlpack's preprocess_split method\n", + "output = mlpack.preprocess_split(input=features, input_labels=targets, test_ratio=0.4, seed=101)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "04fcd9fd", + "metadata": {}, + "outputs": [], + "source": [ + "# preprocess_split returns a dictionary, which we'll unpack into\n", + "# respective variables for clarity of code\n", + "X_train = output[\"training\"]\n", + "y_train = output[\"training_labels\"]\n", + "X_test = output[\"test\"]\n", + "y_test = output[\"test_labels\"]" + ] + }, + { + "cell_type": "markdown", + "id": "114442b5", + "metadata": {}, + "source": [ + "### Training the linear model" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "1e036338", + "metadata": {}, + "outputs": [], + "source": [ + "# Create and train Linear Regression model.\n", + "output = mlpack.linear_regression(training=X_train,\n", + " training_responses=y_train, lambda_=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "a9ac1c6a", + "metadata": {}, + "outputs": [], + "source": [ + "model = output[\"output_model\"]" + ] + }, + { + "cell_type": "markdown", + "id": "2feeb97e", + "metadata": {}, + "source": [ + "### Making Predcitions on Test set" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "9be6c456", + "metadata": {}, + "outputs": [], + "source": [ + "# Predict the values of the test data.\n", + "output = mlpack.linear_regression(input_model=model, test=X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "4739b0fc", + "metadata": {}, + "outputs": [], + "source": [ + "y_preds = output[\"output_predictions\"].reshape(-1,1)" + ] + }, + { + "cell_type": "markdown", + "id": "30c0e197", + "metadata": {}, + "source": [ + "### Model Evaluation" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "4fa88ef0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4T0lEQVR4nO3deXxU1dnA8d8zSUgIu4CIIAYEF8SVFHFDLKgItqh1QWu1LS2t9VWqXQSt1WpR7GLrUq24o3WhqNWqKBT3FsGAKIsiKGGXXbZAlpnn/eOehJlhkkySmbkzmefr534y98y59z5BeObMueeeI6qKMcaY7BHwOwBjjDGpZYnfGGOyjCV+Y4zJMpb4jTEmy1jiN8aYLGOJ3xhjsowlfmOMaQZE5FoRWSQiC0XkGREpqK2uJX5jjMlwItINuAYoVtV+QA4wqrb6lviNMaZ5yAVaikguUAisrauiATp16qRFRUV+h2GMyQBz587dpKqdm3KOoWcW6ubNwbjqzp9XsQjYE1Y0SVUnVe+o6hoR+ROwEtgNTFfV6bWdzxK/U1RURElJid9hGGMygIisaOo5Nm8O8vasbnHVbZ+/fI+qFtcRTwdgJNAT+Br4p4hcpqpPxapvXT3GGOMLgVBOfFv9hgLLVXWjqlYCLwAn1VbZWvzGGOMHBQkmrO29EhgoIoV4XT1DgFq7MCzxG2OMDwSQkCTkXKo6W0SmAvOAKuAjYFJt9S3xG2OMHxQklMDTqd4M3BxPXUv8xpiMo1pJUBci5BKQIxHJ0NuVCUz8DWGJ3xiTUSpD71FWdQ1ejwYIrWmVO4mcwFH+BtZQCuLTOlgZ+jFpjMlGIV1PWdVPgW3ALmAXynp2Vl2G6m6fo2s4CcW3JZolfmNMxqgI/guI9dBTiMrQjBRH00QKEtS4tkSzrh5jTMZQNgEVMd6pQtma6nCazqc+fmvxG2MyRm7gZLxpaKIJuTIw1eE0iTecU+PaEs0SvzEmY+TKIHLkGKBlWGkheYHh5AQO8yusxlG8Fn88W4JZV48xJmOIBGiV+zgVoalUhl4E8mgRGEVeYITfoTWKX6N6LPEbYzKKSB75OZeQn3OJ36E0jYJU+XNpS/zGGOMX9afJb4nfGGN8kowx+vFI2s1dEXlURDaIyMKwsgvdmpAhESmOqj9eRJaJyBIROSusvL+ILHDv3SMi4srzReQ5Vz5bRIrCjrlCRJa67Ypk/Y7GGNNoPt7cTeaonseBYVFlC4HzgXfDC0WkL976kEe6Y+4XkepJqB8AxgB93FZ9ztHAVlXtDfwFuNOdaz+8iYpOAAYAN7tFCowxJkJIV7Kn6m/srvoTVaGP0BR3vYjGtyVa0hK/qr4LbIkq+1RVl8SoPhJ4VlXLVXU5sAwYICJdgbaqOku9/yOTgXPDjnnCvZ4KDHHfBs4CZqjqFlXdCsxg3w8gY0yWKw8+z47KYZSH7qEi9AC7qi5jd/CG1Cb/Ztjib4huwKqw/dWurJt7HV0ecYyqVuFN3tGxjnPtQ0TGiEiJiJRs3LgxAb+GMSYThPRr9gR/g7eMbSVev8tuKkP/JqizUhKDKEhQ4toSLV0Sf6zfTOsob+wxkYWqk1S1WFWLO3du0rrJxpgMUhV6j9hjW8qoCP07dYFkeYt/NXBQ2H53YK0r7x6jPOIYEckF2uF1LdV2LmOMAWDvLcR93kFSNdixmd7cbYiXgVFupE5PvJu4c1R1HbBDRAa6/vvLgZfCjqkesXMB8Ka7D/AGcKaIdHA3dc90ZcYYA3hTP8TOqAXkBc5LXSAa55ZgSftoE5FngMFAJxFZjTfSZgtwL9AZeFVE5qvqWaq6SESmAIvxVle4SlWr5169Em+EUEtgmtsAHgGeFJFl7ryjAFR1i4jcBnzo6t2qqhE3mY0x2U2kNYW591BWdTVe77D3IZAf+AG5geNTF0eC1txt8HVTPXwpXRUXF2tJSa2L0htjmqGQbqUqNB1lN7mBweTsfRyoTiIyV1WL669Zu+IjCnTO4/FdL2fgkiZfL5w9uWuMyVoB6UCLnIv9C8DW3DXGmCySpP77eFjiN8YYXwj41Mdvid8YY/yilviNMSZ7qH+zc1riN8YYvyRhOoZ4WOI3xhg/KL718afLk7vGGJN9VOLb6iEih4nI/LBtu4j8vLb61uI3xhi/JKiP3013fyyAW8tkDfBibfUt8RtjjC/ia803whDgC1VdUVsFS/zGGOMHBU1OH/8o4Jm6KljiN8YYv8Q/qqeTiIRPJjZJVSdFVxKRFsC3gfF1ncwSvzEma81dsZXvPPA/AEonjkjtxZWGdPVsinOStrOBeaq6vq5KlviNMVknFFJG/u2/LFizDYDTD/NpBb7Ed/VcQj3dPGCJ3xiTBjRUha58Hla9ABqEbucgRZcgOfkJv9Z/l23iuw/Prtl/avQJnNKnU8KvU7/E3twVkULgDOAn9dW1xG+M8ZWqonOvg01zILTHK/z8AfSrN+Gkx+pYJrFhKoMhhvz5HVZuKQPgmO7tePFnJxMI+PMQVaIf4FLVMqBjPHUt8Rtj/LVtIWz+cG/SBwiVw45lsOG/0GVQky8xfdFXjHlybs3+81eeRP+DOzT5vE2lNmWDMSYrbZkPoap9y4Nl6JZ5SBMS/57KICfcPpNtuysBOLVPJyb/cADeEt5pwKfZOZM2ZYOIPCoiG0RkYVjZfiIyQ0SWup8dwt4bLyLLRGSJiJwVVt5fRBa49+5xi67jFmZ/zpXPFtm7ZpqIXOGusVREqhdkN8ako4LOEMjbtzyQjxR0afRpX5q/hsNver0m6b96zSk8OfqENEr6eF098WwJlsy5eh4HhkWVjQNmqmofYKbbR0T64j10cKQ75n7Z27H3ADAG6OO26nOOBraqam/gL8Cd7lz74S3sfgIwALg5/APGGJNmugyOnfglB7qd3eDT7Sqvomjcq4x9dj4A5xzdldKJIzjywHZNizPh4pynJwnfCpKW+FX1XWBLVPFI4An3+gng3LDyZ1W1XFWXA8uAASLSFWirqrPUWxV+ctQx1eeaCgxx3wbOAmao6hZV3QrMYN8PIGNMmpCcAuTER6BVD8gpgJyWUNAFOeEBpEX7Bp3rqQ9WcOTNb9Tsz/zFadx36fEJjjiBfGrxp7qPv4uqrgNQ1XUisr8r7wZ8EFZvtSurdK+jy6uPWeXOVSUi2/DuaNeUxzgmgoiMwfs2QY8ePRr/WxljmkTa9IbTXoKylaAhaFXUoC6ZbWWVHHPr9Jr9Swb04I7zj0pGqAmj6m1+SJebu7H+D2sd5Y09JrLQe+R5EkBxcbFP/wuMMYCX6Fsd3ODjHnznC+6Y9lnN/vvXn073DoWJDC15gv7MjJ/qxL9eRLq61n5XYIMrXw0cFFavO7DWlXePUR5+zGoRyQXa4XUtrQYGRx3zdmJ/DWOM3zbtLKf49/+p2f/Jab0Yf/YRPkbUQAqaJWvuvgxcAUx0P18KK39aRO4CDsS7iTtHVYMiskNEBgKzgcuBe6PONQu4AHhTVVVE3gBuD7uheyb1TFhkjMksReNejdifc+MQ9m9T4FM0jZWc/vt4JC3xi8gzeC3vTiKyGm+kzURgioiMBlYCFwKo6iIRmQIsBqqAq1Q16E51Jd4IoZbANLcBPAI8KSLL8Fr6o9y5tojIbcCHrt6tqhp9k9kYk4HCJ1UD6NWpFW/+crB/ATVVc2vxq+oltbw1pJb6E4AJMcpLgH4xyvfgPjhivPco8GjcwRpj0l50K//tXw6mqFMrn6JJjGzp6jHGmAZ5e8kGvv/YhzX7vTq34s1fDPYvoERRErb0YkNZ4jfGpK3oVv7sG4bQpW2m9eXXTrNkVI8xxtTr5Y/Xcs0zH9Xsn9irI8+MGehjREmQpKdy42GJ3xiTNlSVnuNfiyj7+Ldn0q4wxpQOzYD18Rtjstof3/iMv731Rc3+yGMP5O5Rx/kYUQo0t+GcxhgTj6pgiN43TosoW/S7s2iVnwXpyVr8xmSXUNkOAAKFbXyOxD+/+ufH/HPu3um4hh7RhYeviGdN8cynaguxGJM1ghvXsHPK3QS/WglATtciWl80lpxOXX2OLHX2VAY5/KbXI8qW/H4Y+bmJWWYxM4hvffz+jCUyJktpxR62P/gbgmuXQ7AKglUE13zB9gdvRCvL/Q4vJb73yOyIpH/ZwB6UThyRZUnf8Wk+fmvxG5NCFQtmoVWVkfPxqqKVFVQsmk3+sU1fXzZdbd9TydG3TI8o++L24eT4tdi53xTUbu4a0/yFvt4IFXv2faOynNDWjakPKEWG3vUOyzbsrNm/duihjB3ax8eI0oTd3DWm+cvpdgi0KNg3+eflk9v9EH+CSqIN2/cw4PaZEWXL7xiePuve+szG8RuTBfIOPZacjl0JblwNVd4i4OTmkdO5G7mHHO1vcAl2+E3T2FO5dzKa35/bj8sGNnyhlWZLxUb1GJMNJJBD2zG3svut5ymf/y4g5B83iJanfwcJNI+xFis27+K0P74dUVY6cYQ/waQxxVr8xmQNyW9J4bDLKBx2md+hJFz0pGr3f/d4hh+VPcNUG8xu7hpjMtXCNds45973I8qslV+PLFp60RjTzES38p/+0Qmc1LuTT9FkGEv8xphMMuuLzVzy0AcRZdbKb4jEPrkrIu2Bh/FWLFTgh6o6K1ZdXxK/iIwFfgwI8JCq/lVE9gOeA4qAUuAiVd3q6o8HRgNB4BpVfcOV92fveryvAWPdguv5wGSgP7AZuFhVS1P1+xnT3EW38l+5+hT6dWvnUzQZKvFz9dwNvK6qF4hIC6CwtoopH0YgIv3wkv4A4BjgHBHpA4wDZqpqH2Cm20dE+uItpH4kMAy4X0Sqn+1+ABgD9HHbMFc+Gtiqqr2BvwB3puBXM6bZm7Zg3T5Jv3TiCEv6jVA9qieerT4i0hYYBDwCoKoVqvp1bfX9aPEfAXygqmUAIvIOcB4wEhjs6jwBvA1c78qfVdVyYLmILAMGiEgp0Lb6q4yITAbOBaa5Y25x55oK3Cciohr+nLwxpiGiE/5bvxxMzwxf7Nx38Xf1dBKRkrD9Sao6KWy/F7AReExEjgHm4vWA7Ip1Mj8GDi8EBolIRxEpBIYDBwFdVHUdgPu5v6vfDVgVdvxqV9bNvY4ujzhGVauAbUDH6EBEZIyIlIhIycaNzfdxeWOa4unZKyOSfn5ugNKJIyzpN5mgofg2YJOqFodtk6JOlgscDzygqscBu3C9JrGkvMWvqp+KyJ3ADGAn8DFQVcchsT4StY7yuo6JjmUSMAmguLjYvg0YEybWMohzbhjC/s1osXNfJXY452pgtarOdvtTqSPx+/KooKo+oqrHq+ogYAuwFFgvIl0B3M8NrvpqvG8E1boDa1159xjlEceISC7Qzl3HGBOHe2YujUj6vTq3onTiCEv6CaahQFxbvedR/QpYJSKHuaIhwOLa6vs1qmd/Vd0gIj2A84ETgZ7AFcBE9/MlV/1l4GkRuQs4EO8m7hxVDYrIDhEZCMwGLgfuDTvmCmAWcAHwpvXvG1O/YEg55Iaoxc5vPpN2LZvnYud+01D9dRrgauAfbkTPl8APaqvo1zj+50WkI1AJXKWqW0VkIjBFREYDK4ELAVR1kYhMwfv0qnL1g+48V7J3OOc0t4F3Z/tJdyN4C96oIGNMHW7610Ke/GBFzf6pfTrx5OgTfIyomVMS+gCXqs4H4lq30pfEr6qnxijbjPf1JFb9CcCEGOUleA8rRJfvwX1wGGPqVl4V5LDfRC6D+NltwyjIy8IVsVJIfVx60Z7cNSaL/XhyCTMWr6/Zv6B/d/504TE+RpRdLPEbY1JmZ3kV/W5+I6Js2YSzyc1pHlNDZwxL/MaYVPjWve+zYM22mv2fDT6EXw873MeIspRCKOjPB60lfmOyxOad5fT//X8iymwZRJ/5NNbQEr8xWeD422awZVdFzf5vz+nLD0/p6WNEJtGzczZEnYlfRAKqe0eaish3gTbA5Oq5dowx6WvVljJO/cNbEWU2dXJ6SOelF18VkevcNAs34s3+9iXwLPDtpEdnjGm06EnV7h51LCOP7VZLbZNySvU8PClXa+IXkdPwnpLtLCL7A98DbsCb3/4hERkElKrqypREaoyJy2dfbWfYX9+LKLNWfnqKZzqGZKivxR8A2gKt8BZB2YQ3Adoe977dFTLNjgZDVO0oI7d1SyQ3sx5iim7lP/6DbzD4sP1rqW38lYZ9/Kr6jog8hbeISWvgFlV91021sFFV301VkMakyoaXZ7F28nRC5VVIToAu3zmFrt8dggTSe3x7SekWLvh75Cp71spPcwp+zSBWZ4tfVX8rIk8DVaq6zBUH8Fa9MqZZ2TRzHqsfmYaWVwKglbB+6ntITg5dL/2mz9HVLrqV/+LPTuK4Hh18isbEy8+bu/U2Y1T1s7Ckj6puVNUvkhuWMan31VMza5J+tVB5JV9NfRcNJXYaxUSY+en6mMsgWtLPICGJb0swG8dvjFOxeUfM8tCeCrQyiOSnT3dPdML/z3WD6L1/G5+iMY2Vdn38xmSblgfvT9nSNfuU53Vog7RIj38qU+eu5pf//DiizPryM5QKoTQd1WNM1uj+4+Es/c3jaMXe7h7Jz6P7j9NjWoPoVv7/xn2TA9u39Ckakwhp2+IXkZOBW4CDXX0BVFV7JTc0Y1KrzdG9OPT2H7LmsdfZvWID+Qd04MDvnUG7E/ydwOzBd77gjmmf1ex3bVfArPExl64wmSZdEz/ealbXAnPxxvIb02y17lfEYX/+qd9hABAKKb2ilkH86KYz6NCqhU8RmURSTfjSi3GLJ/FvU9Vp9VczxiTKhFcX89B7y2v2iw/uwNQrT/IxIpMMadvVA7wlIn8EXgDKqwtVdV5jLyoi1wI/whvKugBvUeBC4DmgCCgFLlLVra7+eGA03jeOa1T1DVfen71r7r4GjFVVFZF8YDLQH2+KiYtVtbSx8RqTKpXBEH1ujGxnLb71LArT5OaySax0TvzVqy2HL+KrQKOeaBGRbsA1QF9V3e0WUh8F9AVmqupEERkHjAOuF5G+7v0jgQOB/4jIoW7B9QfwHib7AC/xD8NbcH00sFVVe4vIKLynjy9uTLzGpMrVz3zEvz9eW7M/4uiu/O3S432MyCRXGo/qUdXTk3TdliJSidfSXwuMBwa7958A3gauB0YCz6pqObBcRJYBA0SkFGirqrMARGQycC5e4h+Jd0MaYCpwn4iIql8PSBtTu90VQY74beRi50snnE2eLYPYvCnpd3NXRC5T1adE5LpY76vqXY25oKquEZE/ASuB3cB0VZ0uIl1UdZ2rs87NCArQDa9FX221K6t0r6PLq49Z5c5VJSLbgI54k8yF/45jcNNP9OjRozG/jjFNctHfZzGndEvN/g9P7slvv9XXx4hMqqTrfPyt3M+EPg4oIh3wWuQ9ga+Bf4rIZXUdEqNM6yiv65jIAtVJwCSA4uJi+zZgUmbD9j0MuH1mRNmXtw8nEPD/eQGTOmmX+FX1Qffzdwm+5lBguapuBBCRF4CTgPUi0tW19rsCG1z91cBBYcd3x+saWu1eR5eHH7NaRHKBdsAWjEkD0Q9iXT/scK4cfIhP0Rjf+Dic049OxJXAQBEpFO9xyCHAp8DLwBWuzhXAS+71y8AoEckXkZ54i8PMcd1CO0RkoDvP5VHHVJ/rAuBN6983fvty4859kv7yO4Zb0s9a3s3deLZES/kYMVWdLSJTgXlAFfARXndLa2CKiIzG+3C40NVf5Eb+LHb1r3IjegCuZO9wzmluA++hsyfdjeAteKOCjPFNdML/6WmHMO5sf58INv5K1z5+AEQkJyzRJoSq3gzcHFVcjtf6j1V/AjAhRnkJ0C9G+R7cB4cxfvpo5VbOu/9/EWU2qZqplsjE70Y67sB73qlKVYtrqxtPi3+Za6E/pqqLExOiMc1fdCv/lm/15fsn9/QpGpN2NCkt/tNVdVN9leJJ/EfjdZU8LCIB4FG8cfXbmxigMc3Sm5+t54ePl0SUWSvf7CsN19ytpqo7gIeAh0RkEPAM8Bf3LeC28NW5jMl20a38v116PCOO7upTNCbtxb+6VicRCW9NTHLD0cMpMF1EFHgwxvs14urjB0bgzadTBPwZ+AdwKt40CYfGG7kxzdWUD1fx6+c/iSizVr6piyoNGbGzqa4+e+dkVV3rHn6dISKfqeq7sSrG09WzFHgL+KOqht+lmuq+ARiT1aJb+c/8eCAnHtLRp2hMJknkIHNVXet+bhCRF4EBQMMTv2vtP66qt9ZyoWuaGKsxGeu+N5fyp+mfR5RZK980RKL6+EWkFRBQ1R3u9ZlAzLwN9SR+VQ2KyOl1ncCYbBTdyp829lSO6NrWp2hMZkrozd0uwItuidBc4GlVfb22yvF09fxPRO7Dmyt/V3VhU+bjNyZTjX9hAc/MWRlRZq1801iJSvyq+iVwTLz140n81cv+hLf6Gz0fvzGZSFXpOT5yGcT3rz+d7h0KfYrIZDpNzjj+uPg1H78xGePyR+fw7ucbI8qslW8SIRRM04VYAERkBN4KWAXVZbXd8DWmuYi1DKItdm4SJ40f4BKRv+OtknU68DDebJdzkhyXMb4a/Me3KN1cVrPfIifA5xPO9jEi0+ykc1cPcJKqHi0in6jq70Tkz3gLrxvT7OypDHL4TZGDIT69dRgtW+T4FJFprtJ6dk685REBykTkQGAz3upZxjQrVzw6h3fC+vL77N+aGded5mNEprlL58T/ioi0B/6IN4e+4nX5GNMsbN9TydG3TI8o++L24eTYMogmqSQpi6zEI55RPbe5l8+LyCtAgapuS25YxqTGGXe9w9INO2v2fz60Dz8fatNPmRRQ0PgnaUuoWhO/iJxfx3uoqvXzm4y19uvdnDTxzYiy5XcMxz35aEzSpWsf/7fqeE9p5A1eETkM7yngar2A3wKTXXkRUApcpKpb3THjgdF4K8tco6pvuPL+7F168TVgrKqqiOS78/XHuydxsaqWNiZe0/xET7dw27n9+N7Ag32KxmQzv1YCrzXxq+oPknFBVV0CHAs1k8CtAV4ExgEzVXWiiIxz+9eLSF+8hWCOBA4E/iMih7rlIB8AxgAf4CX+YXjr7o4GtqpqbxEZBdwJXJyM38dkjoVrtnHOve9HlNmDWMZPoTRs8ddI4gNcQ4AvVHWFiIwEBrvyJ4C3geuBkXgrfpUDy90C6gPc+pJtVXWWi3EycC5e4h8J3OLONRW4T0RE1a/PV+O36Fb+uLMP56enHeJTNMaQ3uP4k/wA1yi8Fb0AuqjqOgBVXecWEwDohteir7balVW619Hl1cescueqEpFtQEcgYi1KERmD942BHj16JOhXMunk/aWbuOyR2RFl1so36UDTeVQPSXqAS0RaAN8GxtdXNUaZ1lFe1zGRBd7SZJMAiouL7dtAMxPdyr/romM4//juPkVjzL7StsVP8h7gOhuYp6rr3f56EenqWvtdgQ2ufDVwUNhx3YG1rrx7jPLwY1aLSC7QDtiSgJhNBnhp/hrGPjs/osxa+SbtpONwzjCxHuB6KAHXvoS93TwALwNXABPdz5fCyp8Wkbvwbu72Aea4RWJ2iMhAYDZwOXBv1Llm4XVNvWn9+9khupX/xA8HcNqhnX2Kxpi6pW2LPxkPcIlIIXAG8JOw4onAFBEZDawELnTXXyQiU4DFQBVwlRvRA3Ale4dzTnMbwCPAk+5G8Ba8ewmmGXv4vS/5/aufRpRZK9+kM03H2TlF5BvAKlX9yu1fDnwHWCEit6hqo7tOVLUM72ZreNlmvFE+sepPACbEKC8B+sUo34P74DDNX3Qr/9//dwpHdW/nUzTGxM+vxF/XLeUHgQoAERmE1yKfDGzD3RA1xk+3/nvxPkm/dOIIS/omMygEQ4G4tkSrq6snJ6xVfzEwSVWfx+vymZ/wSIyJU6xlEN/+5WCKOrWK6/hgWTlf/3chlV/vpPWRRbQ6oodN1WBSLl2nbMgRkVxVrcLrghkT53HGJM1PnizhjUXrI8oa0pdftnQNn497GA2GCFVWEcjLoc3RvTjk5u8hOTbnvkktDflz3boS+DPAOyKyCW9I53sAItIbr7vHmJQJhpRDbohs5Zf8ZiidWufHfQ5V5YvbniK4a09NWSgYYvvHX7Lp9RI6jzghYfEaU780vLmrqhNEZCbQFZgeNhwyAFydiuCMARh+93ssXrc9oqwxI3b2rNxA1fayfcq1vJJNb3xoid+klqbpXD2q+kGMss+TF45JhnVLtrNzSwU9jmlPfmHm9NLFWgZx4e/OonV+I3+Huh7lCNljHia1FNJ6ygaTobauLeOub7/L2s+2k5MbIBQMcemfj+ObY/r4HVq9+v72dcoqgjX73dq35L/jvtmkcxb02J+cVgWE9lRElEt+Hh3P6N+kcxvTGGnX1WMy35/PeYdVC7YRCireUgbwj+s+otsR7Tjs1P3rPtgn28oqOebWyGUQl044m7ycpreMJBCg142XsvTGR9GQouWVBApa0OrQ7nQaPqDJ5zemYSQ9u3pM5lqzeBvrPt/hkv5eFbuDvH73krRM/NFj8k/s1ZFnxgxM6DVa9z2YoyZfz9Z3PqFiyw7a9OtJm+MOseGcJuVU03AhFpPZtm8sJycvQHVLv4bC1+t2xzymsZZ9sImnrpvHio+20qZTPiN+dQRnXn1o3Mk01jKIX94+nECSFjvPbVNI53MS+4FiTGMkcpI2t7BVCbBGVc+pq64l/maq6PgOBCv2HSScV5DDsSO6xTiicVZ8vJU7hr5JRZn3AbN1zW7+ecPHbFu/h4smHFN/nFGt/IuKu/OHC+o/zpjmIMF9/GOBT4G29VX055aySbqWbfK4cMLRtCjc+1BSXn6Atl3yGfqzxN3cffF3C6jcHfmtorwsyBt/XcKeXVW1Hrfkqx0xp1uwpG+yhSoEQxLXVh8R6Q6MwFssq17W4m/Ghv38cLod2Y437l7C9vXlHPetAznz6sNo1b5Fwq6xcv7XMfspA7nC5pW76HbEvvPmRCf8sUP6cO0ZhyYsJmMyRQNa/J1EpCRsf5JbSKraX4FfA23iOZkl/mbuqDO6ctQZXZN2/gOPaMvG0l37lAcrlf26FUaUzVm+hYsenBVRZlMnm+zVoFE9m1S1OOZZRM4BNqjqXBEZHM/JLPGbJjn3pn58+vYGKsK6e1oU5jDoB71o2Tavpiy6lX/7eUdx6Qm2zrHJXt4kbQk51cnAt0VkOFAAtBWRp1T1stoOsD5+0yS9B3Zi7AunckCfNohAQZtczvr5YVz2l+MBeH3huph9+Zb0jfG6euLZ6j6HjlfV7qpahLfo1Jt1JX2wFr9JgKPP6sofl5xDVWWInFypGcYZnfAnfa8/Zx55gB8hGpN+FIJBe4DLNEJVZYh3H/2C955YTiA3wODRvTj5siICCXjStaFy87xrPvnBCm7618KI96wv35hIyZiPX1XfBt6ur54vid8t3v4w3rKJCvwQWAI8BxQBpcBFqrrV1R8PjMZ7GukaVX3Dlfdn75q7rwFjVVVFJB9vtbD+wGbgYlUtTckvl0KhkPKn4W+zdNammnH0Kz7awvxX13L1lFN8iSm6lT/1pydSXLSfL7EYk978m7LBrz7+u4HXVfVw4Bi8hw7GATNVtQ8w0+0jIn3x+q2OBIYB97sn1AAewFsgpo/bhrny0cBWVe0N/AW4MxW/VKotmvkVy2Zvrkn6AOW7gsx/bS1flmxOaSxX/WNezL58S/rG1EL3TttQ35ZoKW/xi0hbYBDwfQBVrQAqRGQkMNhVewLv68r1wEjgWVUtB5aLyDJggIiUAm1VdZY772TgXGCaO+YWd66pwH0iImFrCjQLn761gfKd+z4kFapSPntnA72KO8Y4KvGiE/5/rhtE7/3jGk5sTNZS0nQ+/iTpBWwEHhORY4C5eI8ad1HVdQCquk5EqmcR6waErwuw2pVVutfR5dXHrHLnqhKRbUBHYFN4ICIyBrekZI8emTfKpF2XAvIKAlTuiZyaIadFgLadC5J+/bPvfo9PE7BAijHZyq+mqB9dPbnA8cADqnocsAvXrVOLWB+JWkd5XcdEFqhOUtViVS3u3Llz3VGnoRMvPTjmTdxAjlB8fvekXTcUUorGvRqR9N/51WBL+sY0UKKmbGgoP1r8q4HVqjrb7U/FS/zrRaSra+13BTaE1T8o7PjuwFpX3j1Gefgxq0UkF2gHbEnGL+Ontp0L+MUrp3Hfxe9TsTuIKhS2y+PnL55KQeu8+k/QCL1veI2qqNWqLOEb03BZNS2zqn4lIqtE5DBVXQIMARa77Qpgovv5kjvkZeBpEbkLOBDvJu4cVQ2KyA4RGQjMBi4H7g075gpgFnAB3gMNzap/v9oRp+3PvWvOZcX8rwnkCAcd3T4p0xmXVwU57DeRyyDOu+kM9muVuHl/jMk22dTHD95i7f8QkRbAl8AP8LqdpojIaGAlcCGAqi4SkSl4HwxVwFWqWj2M5Ur2Duec5jaAR4An3Y3gLXijgpqtQE6Anv2TN3om+uYtwHuXnRx30t84fxOlr5YSyAtwyLm9aH9o+wRHaExm8qs5Ks20IdxgxcXFWlJSUn/FNBAKKe+9u4J163bSv/hA+vRJTtLftruSY34XuQziSXdtJzcELVrmcNP7Z3DwMR3qPMcHN89myeQlVJUHkYAQyA1QfEN/+o05MikxG5MKIjK3tknT4tU90EuvypsQV90bKi5t8vXC2ZO7GWbVym0MP+tpNm/ajaoSDCojzzuMvz80gpwEPq0b3cpvsTPECffvBLy75OW7gkwZ9zG/mja41nNs/Gijl/TdBG4aUoJVQUomzKXnt4po1bVVwuI1JtP4OZzTJmnLMFdc9i9Wr9rOzp0V7NpVyZ49Vfz7pc95/NGPE3L+ddt275P0B9+zsybph1s2e9M+ZeFKX11B1Z7gPuUSgFUzVjUtUGMynUIwzi3RLPFnkHVrd7BgwQaCUX8TysoqeXjSvCafv2jcq5x4x961bwf22o+lvxtGoJa1c9t3bVnn+QK5ASTWjWYRJNf+6pnspkjcW6LZv74MUra7ipxaRuyUlVU2+ryxlkFcfsdwnh1zInn5OQwe3YsWLXMi3s8vzGHkjXX30/c6tyeBvH3/imlIOfiszHtgzphEC2l8W6JZH38G6dWrPe07tKSsbEdEeX5+Dueed3ijzhnPYueX/vl4KstD/PdJbwZQgPN+24+TLi2q89wdDu9A/3HHM/eOeRAAEUFDyqC7T6WgY/KfLDYm3fk1tMYSfwYRER569BwuPG8qVVUhKiqCFLbK44ADWnPtLwc26FwffLmZUZM+iCir7UGs3LwAox8cwKV/PI5t6/ew30GFtCjIiVk32lE/7UfPbxWxasZqAnkBepzVg5adLOkb493c9efalvgzzKmDDmbOvB/x+GPzWVG6jcGnH8wFF/WlZcv4n9SNbuVfO/RQxg7tU+9xLdvmRSynGK/W3VpzxPcb943EmOYsGTdu42GJPwP1OLgdv73ltAYf9+on67jq6cibwDbdgjH+sa4ek1TRrfw/fOdoLvrGQbXUNsYkmwKhemslhyX+Zm7agnVc+Q9r5RuTjqzFbxIuupX/2Pe/wemH719LbWNMqlmL3ySMLXZuTPrzFlv359qW+JuZfZdBPI3e+7f2KRpjTF32ndAkNSzxNxN3zfice2YujSizVr4x6ctu7ppGU1V6jn8touyD8UM4oJ09JGVMurPEbxosui//gLYFfHDDEB8jMsY0hI3qMXELhZRjbp3Ojj1VNWWLbz2Lwhb2v9OYTGFdPSZus7/czMVhc+z84OQibv6WrWZlTOZR1Kc2vy+JX0RKgR14N7WrVLVYRPYDngOKgFLgIlXd6uqPB0a7+teo6huuvD9719x9DRirqioi+cBkoD+wGbhYVUtT9OslRTCkDPvruyzd4C2IcliXNrw29tRap2k2xqS/RI3qEZEC4F0gHy+vT1XVm2ur7+d8/Ker6rFh60iOA2aqah9gpttHRPriLZZ+JDAMuF9EqqeGfAAYA/Rx2zBXPhrYqqq9gb8Ad6bg90mat5Zs4JAbXqtJ+s+NGcgb1w6ypG9MBqvu6olni0M58E1VPQY4FhgmIrVO2ZtOXT0jgcHu9RPA28D1rvxZVS0HlovIMmCA+9bQVlVnAYjIZOBcYJo75hZ3rqnAfSIimmEry1dUhTjlzjfZsKMcgAFF+/HsmIEELOEb0yyoxJmS6qnmclv1+qh5bqv1KL8SvwLTRUSBB1V1EtBFVdcBqOo6EameW6AbED5x/GpXVuleR5dXH7PKnatKRLYBHYGIRWJFZAzeNwZ69EivFaGiZ9J8+f9O5uju7f0LyBiTcIm8uet6QuYCvYG/qers2ur6lfhPVtW1LrnPEJHP6qgbq3mrdZTXdUxkgfeBMwmguLg4Lb4N7K4Icuyt0ymv8v5KDD2iCw9d3h+pZd1bY0xmauConk4iUhK2P8nlr73nUw0Cx4pIe+BFEemnqpFztzi+JH5VXet+bhCRF4EBwHoR6epa+12BDa76aiB8/uDuwFpX3j1Gefgxq0UkF2gHbEnW75MoU0pW8eupn9TsT792EId2aeNjRMaYZArGP6pnU9j90Dqp6tci8jbePc+YiT/lN3dFpJWItKl+DZyJF9zLwBWu2hXAS+71y8AoEckXkZ54N3HnuG6hHSIyULzm8OVRx1Sf6wLgzXTu39+xp5Kica/WJP3zj+9G6cQRlvSNacaU6gGd9f9XHxHp7Fr6iEhLYChQa0+KHy3+LnhfQ6qv/7Sqvi4iHwJTRGQ0sBK4EEBVF4nIFGAxUAVc5b7SAFzJ3uGc09wG8AjwpLsRvAVvVFBaeuy/y/ndvxfX7L/zq8Ec3LGVjxEZY1IlgX38XYEnXD9/AJiiqq/UVjnliV9VvwSOiVG+GYg534CqTgAmxCgvAfrFKN+D++BIV1t3VXDcbTNq9r9/UhG3fNsexDImm2i8t+7qH9XzCXBcvNdNp+GcWeOemUu5a8bnNfs2qZox2ce7uZtFT+5mq/Xb93DC7TNr9q/5Zm+uO/MwHyMyxvjJ5upp5ia8upiH3ltesz/3N0Pp2Drfx4iMMX5StCGjehLKEn+SrdpSxql/eKtm/8bhR/DjQb18jMgYky6sq6cZun7qJzxXsqpm/+Obz6RdyzwfIzLGpJO4b+4mmCX+JFi2YSdD73qnZv/2847i0hPSa0oIY4y/7OZuM6GqXPnUPF5f9BUAOQFhwS1n2gIpxpiYsmo+/ky3bu0OPvlkAz16tOWIvp0BWLhmG+fc+35NnbtHHcvIY7vVdgpjjLFRPZkgFFKuG/sG/3hyAfn5uVRWBel31P7sd1FvPly5FYCOrVrwv/HfJD83p56zGWOymY3qyRCPPvwRzz69iPLyIOXlQXK7FvLFwI584ZL+w5cXM7RvF5+jNMZkilC88/EnmCX+BnjgbyWUlVUC0Ob8nuQd1BqA0NZy5t95Nvu1b+lneMaYDOLnzV0/l17MONu2eSthkSM1SX/781+yZ8oXlJdV+RiZMSYTaZxbolmLvwHOPKsXzz69kKoqZcv9i6DSuzXTtUdbDuja2ufojDGZxlr8GeDGm06lfYeWFBTkQGWInByhsDCP+x4YbitkGWMaRIEqNK4t0azF3wDdurflw3k/4uFJH/Heuyvo3Wc/fvZ/3+DQwzr6HZoxJuPEt8hKMljib6COnQq5/oaTuf6Gk/0OxRiTwezJXWOMyTbi33BO3/r4RSRHRD4SkVfc/n4iMkNElrqfHcLqjheRZSKyRETOCivvLyIL3Hv3uLV3cevzPufKZ4tIUSp+J1XlnbdL+eW10/ntjW/x6eKNqbisMSYDeS3++LZE8/Pm7ljg07D9ccBMVe0DzHT7iEhfvDVzj8RbNf5+t64kwAPAGLwF2Pu49wFGA1tVtTfwF+DO5P4qXtL/8Q/+zcUXPM+kv8/j3rvnMPiUJ3jowbnJvrQxJkOF0Li2RPMl8YtId2AE8HBY8UjgCff6CeDcsPJnVbVcVZcDy4ABItIVaKuqs1RVgclRx1SfayowRJI87OatN0t59ZWllO3yHvAKBpXdu6u4cdybbNpYlsxLG2MykDdlQyiuLdH8avH/Ffg1kd9iuqjqOgD3c39X3g1YFVZvtSvr5l5Hl0cco6pVwDYgqUNv/vXCZ+xyST9cbm6A//zny2Re2hiTobKmxS8i5wAbVDXePpBYLXWto7yuY6JjGSMiJSJSsnFj0/rj8wtyCQT2vayIkG/TMhtjYsiaxA+cDHxbREqBZ4FvishTwHrXfYP7ucHVXw0cFHZ8d2CtK+8eozziGBHJBdoBW6IDUdVJqlqsqsWdO3du0i916XePIj9/3xk5QyHljLNsqUVjTKTq4ZxZkfhVdbyqdlfVIrybtm+q6mXAy8AVrtoVwEvu9cvAKDdSpyfeTdw5rjtoh4gMdP33l0cdU32uC9w1kjpu6rjjD2DcjaeQX5BDYWEerVu3oFWrPJ569nxat26RzEsbYzJUSOLbEi2d+iAmAlNEZDSwErgQQFUXicgUYDFQBVylqkF3zJXA40BLYJrbAB4BnhSRZXgt/VGp+AWu/cVALh51JDP/8yUFBXkMG34Ibdrkp+LSxpgM4+cDXJLkhnDGKC4u1pKSEr/DMMZkABGZq6rFTTlHi8BBekDedXHVXVVxXZOvFy6dWvzGGJNVbMoGY4zJMjYtszHGZBFFCUoorq0+InKQiLwlIp+KyCIRGVtXfWvxG2OMDxQSudh6FfALVZ0nIm2AuSIyQ1UXx6psid8YY3ygQEUcrfm4zuUNb6+e+WCHiHyKN4NBzMRvo3ocEdkIrGjgYZ2ATUkIp7EsnvqlW0wWT/3SLaZOQCtVbdJTnyLyujtXPAqAPWH7k1R1Ui3nLQLeBfqp6vaYdSzxN56IlCRyiFVTWTz1S7eYLJ76pVtM6RZPOBFpDbwDTFDVF2qrZzd3jTGmGRCRPOB54B91JX2wxG+MMRnPTVvzCPCpqt5VX31L/E0Ts4/NRxZP/dItJounfukWU7rFA97kl9/Dm/RyvtuG11bZ+viNMSbLWIvfGGOyjCV+Y4zJMpb4G6ihj0anKKYCEZkjIh+7mH7nd0wAIpIjIh+JyCtpEEupiCxwfZ9pMQ2riLQXkaki8pn7+3Sij7EcFtY3PF9EtovIz/2Kx8V0rfv7vFBEnhGRAp/jGetiWeT3n01TWR9/A7nVwbqGPxoNnFvbo9EpiknwHijZ6YZ0vQ+MVdUP/IrJxXUdUAy0VdVzfI6lFChW1bR5EEhEngDeU9WHRaQFUKiqX/scFiKSA6wBTlDVhj7UmKgYuuH9Pe6rqrvdmhyvqerjPsXTD2/FwAFABfA6cKWqLvUjnqayFn8Dqeo6VZ3nXu8Aqh+N9jMmVdWdbjfPbb5+ootId2AE8LCfcaQrEWkLDMIbgoeqVqRD0neGAF/4lfTD5AIt3fKphexdWtUPRwAfqGqZqlbhPSR1no/xNIkl/iZwj0YfB8z2OZTqbpX5eGsVz1BVv2P6K/BrIDGTkTSdAtNFZK6IjPE7GKAXsBF4zHWHPSwirfwOyhkFPONnAKq6BvgT3mp864Btqjrdx5AWAoNEpKOIFALDiVwLPKNY4m8k92j088DPa5sPI5VUNaiqx+ItOj/AfTX1hYicA2xQ1bl+xRDDyap6PHA2cJWIDPI5nlzgeOABVT0O2AWM8zckcF1O3wb+6XMcHYCRQE/gQKCViFzmVzyq+ilwJzADr5vnY7wZMTOSJf5GaMij0anmugveBob5GMbJwLddv/qzeA+VPOVjPKjqWvdzA/AiXl+tn1YDq8O+mU3F+yDw29nAPFVd73McQ4HlqrpRVSuBF4CT/AxIVR9R1eNVdRDeWt4Z2b8PlvgbrKGPRqeCiHQWkfbudUu8fzSf+RWPqo5X1e6qWoTXbfCmqvrWWhORVu5GPK475Uy8r+6+UdWvgFUicpgrGkItU+im2CX43M3jrAQGikih+zc3BO9+mm9EZH/3swdwPunx59QoNh9/w1U/Gr3A9akD3KCqr/kXEl2BJ9xojAAwRVV9H0KZRroAL3r5g1zgaVV93d+QALga+IfrXvkS+IGfwbi+6zOAn/gZB4CqzhaRqcA8vC6Vj/B/qoTnRaQjUAlcpapbfY6n0Ww4pzHGZBnr6jHGmCxjid8YY7KMJX5jjMkylviNMSbLWOI3xpgsY4nfJI143heRs8PKLhIRX4ZSisjhbubJj0TkkKj3wmfvnC8i9yQ5luJkX8OY2thwTpNUbuqIf+LNaZQDzAeGqeoXjThXjqoGmxDLOKClqt4c471SUjR7p4jkuom+jPGFtfhNUqnqQuDfwPXAzcBTwI0i8qFreY8Eb8I7EXlPROa57SRXPli89Q+exntorpWIvOrWHlgoIhdHX1NEjhWRD0TkExF5UUQ6iLf+6M+BH4nIW/HELiK5Ls7Bbv8OEZngXpeKyJ3irYMwR0R6u/LOIvK8O+5DETnZld8iIpNEZDow2f1er7j3WonIozH+TL4vIi+IyOsislRE/hAW2zD35/SxiMys6zzG7ENVbbMtqRvQClgCLADuAC5z5e2Bz937hUCBK+8DlLjXg/EmMOvp9r8DPBR27nYxrvcJcJp7fSvwV/f6FuCXtcRY6uKb77ZrXfmReFMFnIH39GiLsPo3uteXA6+4108Dp7jXPfCm9qi+9ly8bxzVv1f1MbfX8mfyfbwnetsBBcAKvBkhOwOrwv5M9qvrPH7//7ct/TabssEknaruEpHngJ3ARcC3ROSX7u0CvAS5FrhPRI4FgsChYaeYo6rL3esFwJ9E5E68xPle+LVEpB3QXlXfcUVPEP9Mk6drVFePqi4SkSfxvrWcqKoVYW8/E/bzL+71UKCvmx4CoG31PEHAy6q6O8Z1z8Sb1C76zwRgpqpuc7/bYuBgoAPwbvWfiapuqec8vs5xY9KPJX6TKiG3CfAdVV0S/qaI3AKsB47B64LcE/b2ruoXqvq5iPTHmw/9DhGZrqq3Jjn2o4Cv8eb8CacxXgfwPiAiErz7INhFbLX9mZwAlIcVBfH+zQqxF9qJeR5jolkfv0m1N4Cr3YyLiMhxrrwdsE5VQ3iT4OXEOlhEDgTKVPUpvIU6IqYydq3jrSJyqiv6Ht5qSY0iIucDHfFWy7pH3CyozsVhP2e519OB/ws7/tg4LlPbn0ltZgGniUhPV3+/Rp7HZClr8ZtUuw1vda5PXIIqBc4B7seb/fBC4C1qbx0fBfxRREJ4syReGaPOFcDf3WyTDZn18i0RqR419AlwHTARGKKqq0TkPuBud36AfBGZjdeAusSVXQP8TUQ+wfv39S7w03quW9ufSUyqulG8VcReEJEA3qprZzT0PCZ72XBOYxohlcM/jUk06+oxxpgsYy1+Y4zJMtbiN8aYLGOJ3xhjsowlfmOMyTKW+I0xJstY4jfGmCzz/ysT+uc5dV8LAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the linear model\n", + "\n", + "plt.scatter(X_test, y_test, cmap=\"plasma\",c=X_test.astype(\"int\"))\n", + "plt.colorbar()\n", + "plt.xlabel(\"Years of Experience\")\n", + "plt.ylabel(\"Salary in $\")\n", + "plt.plot(X_test, y_preds)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "7253960a", + "metadata": {}, + "outputs": [], + "source": [ + "# utility functions for evaultion metrics\n", + "\n", + "def mae(y_true, y_preds):\n", + " return np.mean(np.abs(y_preds - y_true))\n", + "\n", + "def mse(y_true, y_preds):\n", + " return np.mean(np.power(y_preds - y_true, 2))" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "id": "2ca9a3bc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---- Evaluation Metrics ----\n", + "Mean Absoulte Error: 6776.34\n", + "Mean Squared Error: 64688553.98\n", + "Root Mean Squared Error: 8042.92\n" + ] + } + ], + "source": [ + "print(\"---- Evaluation Metrics ----\")\n", + "print(f\"Mean Absoulte Error: {mae(y_test, y_preds):.2f}\")\n", + "print(f\"Mean Squared Error: {mse(y_test, y_preds):.2f}\")\n", + "print(f\"Root Mean Squared Error: {np.sqrt(mse(y_test, y_preds)):.2f}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From f0864f7dea336c49d6e6b5d9280be21580b53a8c Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 12 Apr 2021 12:59:03 +0530 Subject: [PATCH 02/69] C++ example WIP --- ...lary-prediction-linear-regression-py.ipynb | 54 +++++++++---------- .../salary_prediction_linear_regression.cc | 40 ++++++++++++++ 2 files changed, 67 insertions(+), 27 deletions(-) create mode 100644 salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb index 8d31cb79..5847cc28 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": 96, - "id": "e39b001e", + "id": "6ef3dcce", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ }, { "cell_type": "markdown", - "id": "3f7b74b5", + "id": "2dfb76ff", "metadata": {}, "source": [ "### Import Libraries" @@ -23,7 +23,7 @@ { "cell_type": "code", "execution_count": 77, - "id": "b3be7acf", + "id": "1e65f9aa", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ }, { "cell_type": "markdown", - "id": "dbf2f2be", + "id": "19383bf8", "metadata": {}, "source": [ "### Set Plotting Options" @@ -45,7 +45,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "776b4e06", + "id": "5a975276", "metadata": {}, "outputs": [], "source": [ @@ -56,7 +56,7 @@ }, { "cell_type": "markdown", - "id": "c4153f6a", + "id": "35d20b58", "metadata": {}, "source": [ "### Load and Explore the Data" @@ -65,7 +65,7 @@ { "cell_type": "code", "execution_count": 79, - "id": "30cd5e44", + "id": "83cc80d3", "metadata": {}, "outputs": [], "source": [ @@ -76,7 +76,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "b80ac51d", + "id": "f396630a", "metadata": {}, "outputs": [ { @@ -156,7 +156,7 @@ { "cell_type": "code", "execution_count": 81, - "id": "b8d64e4e", + "id": "fbefe869", "metadata": {}, "outputs": [ { @@ -254,7 +254,7 @@ { "cell_type": "code", "execution_count": 82, - "id": "50d0aa93", + "id": "9d409b2b", "metadata": {}, "outputs": [ { @@ -280,7 +280,7 @@ }, { "cell_type": "markdown", - "id": "6bb19595", + "id": "d624dbd9", "metadata": {}, "source": [ "### Exploratory Data Analysis" @@ -289,7 +289,7 @@ { "cell_type": "code", "execution_count": 83, - "id": "464dbd78", + "id": "bd2994fc", "metadata": {}, "outputs": [ { @@ -324,7 +324,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "e384ed91", + "id": "f87abdf9", "metadata": {}, "outputs": [ { @@ -350,7 +350,7 @@ }, { "cell_type": "markdown", - "id": "5e122754", + "id": "e8ef048e", "metadata": {}, "source": [ "### Train test split" @@ -359,7 +359,7 @@ { "cell_type": "code", "execution_count": 85, - "id": "e9fd6935", + "id": "6447733f", "metadata": {}, "outputs": [], "source": [ @@ -372,7 +372,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "57f08701", + "id": "71ab1d33", "metadata": {}, "outputs": [], "source": [ @@ -383,7 +383,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "04fcd9fd", + "id": "49e00e31", "metadata": {}, "outputs": [], "source": [ @@ -397,7 +397,7 @@ }, { "cell_type": "markdown", - "id": "114442b5", + "id": "8ee51cef", "metadata": {}, "source": [ "### Training the linear model" @@ -406,7 +406,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "1e036338", + "id": "67c9d8ff", "metadata": {}, "outputs": [], "source": [ @@ -418,7 +418,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "a9ac1c6a", + "id": "530d2b0e", "metadata": {}, "outputs": [], "source": [ @@ -427,7 +427,7 @@ }, { "cell_type": "markdown", - "id": "2feeb97e", + "id": "fdf47849", "metadata": {}, "source": [ "### Making Predcitions on Test set" @@ -436,7 +436,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "9be6c456", + "id": "539a9130", "metadata": {}, "outputs": [], "source": [ @@ -447,7 +447,7 @@ { "cell_type": "code", "execution_count": 91, - "id": "4739b0fc", + "id": "c53f3197", "metadata": {}, "outputs": [], "source": [ @@ -456,7 +456,7 @@ }, { "cell_type": "markdown", - "id": "30c0e197", + "id": "3e84f83f", "metadata": {}, "source": [ "### Model Evaluation" @@ -465,7 +465,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "4fa88ef0", + "id": "c770596a", "metadata": {}, "outputs": [ { @@ -495,7 +495,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "7253960a", + "id": "32e20f11", "metadata": {}, "outputs": [], "source": [ @@ -511,7 +511,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "2ca9a3bc", + "id": "5cff7f6b", "metadata": {}, "outputs": [ { diff --git a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc new file mode 100644 index 00000000..65e5b158 --- /dev/null +++ b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc @@ -0,0 +1,40 @@ +/** + * @file salary_prediction_linear_regression.cc + * + * A simple example usage of Linear Regression + * applied to Salary dataset + */ +#include +#include + +// Header file for visualization +#include + +using namespace mlpack; +using namespace mlpack::regression; +namespace plt = matplotlibcpp; + +int main() { + + // Loading data from csv into matrix + arma::mat input; + data::Load("Salary.csv", input); + + // Dropping first row as they represent headers + input.shed_col(0); + + // Print the first 5 rows of the input data + //std::cout< x = arma::conv_to>::from(input.row(0)); + std::vector y = arma::conv_to>::from(input.row(1)); + + plt::scatter(x, y, 5); + plt::show(); + + arma::rowvec targets = arma::conv_to::from(input.row(input.n_rows - 1)); + input.shed_row(input.n_rows - 1); + return 0; +} From fd75d6d50a9323c0501dfa917fca39a2caa27946 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 12 Apr 2021 13:43:59 +0530 Subject: [PATCH 03/69] implemented LR, added plots --- .../salary_prediction_linear_regression.cc | 40 ++++++++++++++----- 1 file changed, 31 insertions(+), 9 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc index 65e5b158..879ffad2 100644 --- a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc +++ b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc @@ -5,7 +5,8 @@ * applied to Salary dataset */ #include -#include +#include +#include // Header file for visualization #include @@ -17,24 +18,45 @@ namespace plt = matplotlibcpp; int main() { // Loading data from csv into matrix - arma::mat input; - data::Load("Salary.csv", input); + arma::mat inputs; + data::Load("Salary.csv", inputs); // Dropping first row as they represent headers - input.shed_col(0); + inputs.shed_col(0); // Print the first 5 rows of the input data - //std::cout< x = arma::conv_to>::from(input.row(0)); - std::vector y = arma::conv_to>::from(input.row(1)); + std::vector x = arma::conv_to>::from(inputs.row(0)); + std::vector y = arma::conv_to>::from(inputs.row(1)); plt::scatter(x, y, 5); plt::show(); - arma::rowvec targets = arma::conv_to::from(input.row(input.n_rows - 1)); - input.shed_row(input.n_rows - 1); + // Split the data into features (X) and target (y) variables + // Labels are the last row + arma::rowvec targets = arma::conv_to::from(inputs.row(inputs.n_rows - 1)); + // Labels are dropped from the originally loaded data to be used as features + inputs.shed_row(inputs.n_rows - 1); + + // Split the dataset using mlpack + //arma::mat Xtrain, Xtest; + //arma::Row Ytrain, Ytest; + //data::Split(inputs, targets, Xtrain, Xtest,Ytrain, Ytest, 0.4); + + // Create and Train Linear Regression model + LinearRegression lr(inputs, targets, 0.5); + + arma::rowvec y_preds; + lr.Predict(inputs, y_preds); + + std::vector y_p = arma::conv_to>::from(y_preds); + + plt::scatter(x, y, 5); + plt::plot(x,y_p); + plt::show(); + return 0; } From eb2d42fd186f278e4d43f1e68b37fda43099614f Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 12 Apr 2021 14:14:17 +0530 Subject: [PATCH 04/69] added train - test splits and model eval visualization --- .../salary_prediction_linear_regression.cc | 24 ++++++++++++------- 1 file changed, 16 insertions(+), 8 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc index 879ffad2..3ef8e187 100644 --- a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc +++ b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc @@ -25,6 +25,7 @@ int main() { inputs.shed_col(0); // Print the first 5 rows of the input data + std::cout<::from(inputs.row(inputs.n_rows - 1)); + arma::Row targets = arma::conv_to>::from(inputs.row(inputs.n_rows - 1)); // Labels are dropped from the originally loaded data to be used as features inputs.shed_row(inputs.n_rows - 1); // Split the dataset using mlpack - //arma::mat Xtrain, Xtest; - //arma::Row Ytrain, Ytest; - //data::Split(inputs, targets, Xtrain, Xtest,Ytrain, Ytest, 0.4); + arma::mat Xtrain; + arma::mat Xtest; + arma::Row Ytrain; + arma::Row Ytest; + data::Split(inputs, targets, Xtrain, Xtest, Ytrain, Ytest, 0.4); + + arma::rowvec y_train = arma::conv_to::from(Ytrain); + arma::rowvec y_test = arma::conv_to::from(Ytest); // Create and Train Linear Regression model - LinearRegression lr(inputs, targets, 0.5); + LinearRegression lr(Xtrain, y_train, 0.5); arma::rowvec y_preds; - lr.Predict(inputs, y_preds); + lr.Predict(Xtest, y_preds); + std::vector x_test = arma::conv_to>::from(Xtest); + std::vector y_t = arma::conv_to>::from(y_test); std::vector y_p = arma::conv_to>::from(y_preds); - plt::scatter(x, y, 5); - plt::plot(x,y_p); + plt::scatter(x_test, y_t, 5); + plt::plot(x_test,y_p); plt::show(); return 0; From afdbc9acb16786e5741a46261d7fb8dcf40d4669 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 12 Apr 2021 14:33:16 +0530 Subject: [PATCH 05/69] added model evaluation metrics --- .../salary_prediction_linear_regression.cc | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc index 3ef8e187..a5ff7141 100644 --- a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc +++ b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc @@ -7,6 +7,7 @@ #include #include #include +#include // Header file for visualization #include @@ -66,5 +67,9 @@ int main() { plt::plot(x_test,y_p); plt::show(); + std::cout<<"Mean Absolute Error: "< Date: Mon, 12 Apr 2021 14:50:45 +0530 Subject: [PATCH 06/69] added inline comments for explanation --- ...lary-prediction-linear-regression-py.ipynb | 54 +++++++++---------- .../salary_prediction_linear_regression.cc | 30 +++++++++-- 2 files changed, 54 insertions(+), 30 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb index 5847cc28..381785cd 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": 96, - "id": "6ef3dcce", + "id": "555ce78e", "metadata": {}, "outputs": [], "source": [ @@ -14,7 +14,7 @@ }, { "cell_type": "markdown", - "id": "2dfb76ff", + "id": "7bd90910", "metadata": {}, "source": [ "### Import Libraries" @@ -23,7 +23,7 @@ { "cell_type": "code", "execution_count": 77, - "id": "1e65f9aa", + "id": "449a2f52", "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ }, { "cell_type": "markdown", - "id": "19383bf8", + "id": "8ee28540", "metadata": {}, "source": [ "### Set Plotting Options" @@ -45,7 +45,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "5a975276", + "id": "786e154b", "metadata": {}, "outputs": [], "source": [ @@ -56,7 +56,7 @@ }, { "cell_type": "markdown", - "id": "35d20b58", + "id": "e32c8a94", "metadata": {}, "source": [ "### Load and Explore the Data" @@ -65,7 +65,7 @@ { "cell_type": "code", "execution_count": 79, - "id": "83cc80d3", + "id": "9c7de4da", "metadata": {}, "outputs": [], "source": [ @@ -76,7 +76,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "f396630a", + "id": "1d59786b", "metadata": {}, "outputs": [ { @@ -156,7 +156,7 @@ { "cell_type": "code", "execution_count": 81, - "id": "fbefe869", + "id": "5a3a26af", "metadata": {}, "outputs": [ { @@ -254,7 +254,7 @@ { "cell_type": "code", "execution_count": 82, - "id": "9d409b2b", + "id": "8d8410cd", "metadata": {}, "outputs": [ { @@ -280,7 +280,7 @@ }, { "cell_type": "markdown", - "id": "d624dbd9", + "id": "78f2eea6", "metadata": {}, "source": [ "### Exploratory Data Analysis" @@ -289,7 +289,7 @@ { "cell_type": "code", "execution_count": 83, - "id": "bd2994fc", + "id": "34e12607", "metadata": {}, "outputs": [ { @@ -324,7 +324,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "f87abdf9", + "id": "ef71b4dc", "metadata": {}, "outputs": [ { @@ -350,7 +350,7 @@ }, { "cell_type": "markdown", - "id": "e8ef048e", + "id": "94e0f415", "metadata": {}, "source": [ "### Train test split" @@ -359,7 +359,7 @@ { "cell_type": "code", "execution_count": 85, - "id": "6447733f", + "id": "2cd31a2a", "metadata": {}, "outputs": [], "source": [ @@ -372,7 +372,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "71ab1d33", + "id": "9e82b675", "metadata": {}, "outputs": [], "source": [ @@ -383,7 +383,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "49e00e31", + "id": "26caf3cc", "metadata": {}, "outputs": [], "source": [ @@ -397,7 +397,7 @@ }, { "cell_type": "markdown", - "id": "8ee51cef", + "id": "91e0b6b8", "metadata": {}, "source": [ "### Training the linear model" @@ -406,7 +406,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "67c9d8ff", + "id": "5a642645", "metadata": {}, "outputs": [], "source": [ @@ -418,7 +418,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "530d2b0e", + "id": "8b2e2bb4", "metadata": {}, "outputs": [], "source": [ @@ -427,7 +427,7 @@ }, { "cell_type": "markdown", - "id": "fdf47849", + "id": "bf6ce883", "metadata": {}, "source": [ "### Making Predcitions on Test set" @@ -436,7 +436,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "539a9130", + "id": "e41657ad", "metadata": {}, "outputs": [], "source": [ @@ -447,7 +447,7 @@ { "cell_type": "code", "execution_count": 91, - "id": "c53f3197", + "id": "d3734f1a", "metadata": {}, "outputs": [], "source": [ @@ -456,7 +456,7 @@ }, { "cell_type": "markdown", - "id": "3e84f83f", + "id": "53843549", "metadata": {}, "source": [ "### Model Evaluation" @@ -465,7 +465,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "c770596a", + "id": "531b842d", "metadata": {}, "outputs": [ { @@ -495,7 +495,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "32e20f11", + "id": "c26ee546", "metadata": {}, "outputs": [], "source": [ @@ -511,7 +511,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "5cff7f6b", + "id": "8ad80db1", "metadata": {}, "outputs": [ { diff --git a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc index a5ff7141..fcc9e3d2 100644 --- a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc +++ b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc @@ -19,13 +19,16 @@ namespace plt = matplotlibcpp; int main() { // Loading data from csv into matrix + arma::mat inputs; data::Load("Salary.csv", inputs); // Dropping first row as they represent headers + inputs.shed_col(0); // Print the first 5 rows of the input data + std::cout< x = arma::conv_to>::from(inputs.row(0)); std::vector y = arma::conv_to>::from(inputs.row(1)); - plt::scatter(x, y, 5); + plt::scatter(x, y, 12, {{"color", "coral"}}); + plt::xlabel("Years of Experience"); + plt::ylabel("Salary in $"); + plt::title("Experience vs. Salary"); plt::show(); // Split the data into features (X) and target (y) variables - // Labels are the last row + // targets are the last row + arma::Row targets = arma::conv_to>::from(inputs.row(inputs.n_rows - 1)); + // Labels are dropped from the originally loaded data to be used as features + inputs.shed_row(inputs.n_rows - 1); // Split the dataset using mlpack + arma::mat Xtrain; arma::mat Xtest; arma::Row Ytrain; arma::Row Ytest; data::Split(inputs, targets, Xtrain, Xtest, Ytrain, Ytest, 0.4); + // Convert armadillo Rows into rowvec. (Required by LinearRegression API in this format) + arma::rowvec y_train = arma::conv_to::from(Ytrain); arma::rowvec y_test = arma::conv_to::from(Ytest); // Create and Train Linear Regression model + LinearRegression lr(Xtrain, y_train, 0.5); + // Make predictions for test data points + arma::rowvec y_preds; lr.Predict(Xtest, y_preds); + // convert armadillo vectors and matrices to vector for plotting + std::vector x_test = arma::conv_to>::from(Xtest); std::vector y_t = arma::conv_to>::from(y_test); std::vector y_p = arma::conv_to>::from(y_preds); - plt::scatter(x_test, y_t, 5); + // Visualizing Predicted datapoints + + plt::scatter(x_test, y_t, 12, {{"color", "coral"}}); plt::plot(x_test,y_p); + plt::xlabel("Years of Experience"); + plt::ylabel("Salary in $"); + plt::title("Predicted Experience vs. Salary"); plt::show(); + // Model evaluation metrics + std::cout<<"Mean Absolute Error: "< Date: Sun, 25 Apr 2021 10:16:21 +0530 Subject: [PATCH 07/69] Update salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc Co-authored-by: Ryan Curtin --- .../salary_prediction_linear_regression.cc | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc index fcc9e3d2..3ed2f1ea 100644 --- a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc +++ b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc @@ -4,10 +4,10 @@ * A simple example usage of Linear Regression * applied to Salary dataset */ -#include -#include -#include -#include +#include +#include +#include +#include // Header file for visualization #include From ef31601313b3b023205ea674e4f3d15111e5e3a9 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Thu, 29 Apr 2021 08:36:52 +0530 Subject: [PATCH 08/69] converted standalone cpp program into ipynb --- ...ary-prediction-linear-regression-cpp.ipynb | 261 ++++++++++++++++++ 1 file changed, 261 insertions(+) create mode 100644 salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb new file mode 100644 index 00000000..dad9f6c3 --- /dev/null +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb @@ -0,0 +1,261 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "behavioral-cycling", + "metadata": {}, + "outputs": [], + "source": [ + "// Import necessary library headers\n", + "\n", + "#include \n", + "#include \n", + "#include \n", + "#include " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "stupid-permission", + "metadata": {}, + "outputs": [], + "source": [ + "#define WITHOUT_NUMPY 1\n", + "#include \"matplotlibcpp.h\"\n", + "#include \"xwidgets/ximage.hpp\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "indian-prairie", + "metadata": {}, + "outputs": [], + "source": [ + "using namespace mlpack;\n", + "using namespace mlpack::regression;\n", + "namespace plt = matplotlibcpp;" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "victorian-donna", + "metadata": {}, + "outputs": [], + "source": [ + "// Load the dataset into armadillo matrix\n", + "\n", + "arma::mat inputs;\n", + "data::Load(\"Salary_Data.csv\", inputs);" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "deluxe-present", + "metadata": {}, + "outputs": [], + "source": [ + "// Drop the first row as they represent header\n", + "\n", + "inputs.shed_col(0);" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "desirable-experience", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Years Of Experience Salary\n", + " 1.1000e+00 3.9343e+04\n", + " 1.3000e+00 4.6205e+04\n", + " 1.5000e+00 3.7731e+04\n", + " 2.0000e+00 4.3525e+04\n", + " 2.2000e+00 3.9891e+04\n", + " 2.9000e+00 5.6642e+04\n", + "\n" + ] + } + ], + "source": [ + "// Display the first 5 rows of the input data\n", + "\n", + "std::cout< x = arma::conv_to>::from(inputs.row(0));\n", + "std::vector y = arma::conv_to>::from(inputs.row(1));\n", + "\n", + "plt::scatter(x, y, 12, {{\"color\", \"coral\"}});\n", + "plt::xlabel(\"Years of Experience\");\n", + "plt::ylabel(\"Salary in $\");\n", + "plt::title(\"Experience vs. Salary\");\n", + "\n", + "plt::save(\"./scatter1.png\");\n", + "auto img = xw::image_from_file(\"scatter.png\").finalize();\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "coordinate-canvas", + "metadata": {}, + "outputs": [], + "source": [ + "// Split the data into features (X) and target (y) variables\n", + "// targets are the last row\n", + "\n", + "arma::Row targets = arma::conv_to>::from(inputs.row(inputs.n_rows - 1));" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "blank-mexican", + "metadata": {}, + "outputs": [], + "source": [ + "// Labels are dropped from the originally loaded data to be used as features\n", + "\n", + "inputs.shed_row(inputs.n_rows - 1);" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "mechanical-laundry", + "metadata": {}, + "outputs": [], + "source": [ + "// Split the dataset into train and test sets using mlpack\n", + "\n", + "arma::mat Xtrain;\n", + "arma::mat Xtest;\n", + "arma::Row Ytrain;\n", + "arma::Row Ytest;\n", + "data::Split(inputs, targets, Xtrain, Xtest, Ytrain, Ytest, 0.4);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "friendly-petersburg", + "metadata": {}, + "outputs": [], + "source": [ + "// Convert armadillo Rows into rowvec. (Required by mlpacks' LinearRegression API in this format)\n", + "\n", + "arma::rowvec y_train = arma::conv_to::from(Ytrain);\n", + "arma::rowvec y_test = arma::conv_to::from(Ytest);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "published-illustration", + "metadata": {}, + "outputs": [], + "source": [ + "// Create and Train Linear Regression model\n", + "\n", + "regression::LinearRegression lr(Xtrain, y_train, 0.5);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "detailed-mystery", + "metadata": {}, + "outputs": [], + "source": [ + "// Make predictions for test data points\n", + "\n", + "arma::rowvec y_preds;\n", + "lr.Predict(Xtest, y_preds);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "indian-ambassador", + "metadata": {}, + "outputs": [], + "source": [ + "// convert armadillo vectors and matrices to vector for plotting purpose\n", + "\n", + "std::vector x_test = arma::conv_to>::from(Xtest);\n", + "std::vector y_t = arma::conv_to>::from(y_test);\n", + "std::vector y_p = arma::conv_to>::from(y_preds);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "related-approach", + "metadata": {}, + "outputs": [], + "source": [ + "// Visualize Predicted datapoints\n", + "\n", + "plt::scatter(x_test, y_t, 12, {{\"color\", \"coral\"}});\n", + "plt::plot(x_test,y_p);\n", + "plt::xlabel(\"Years of Experience\");\n", + "plt::ylabel(\"Salary in $\");\n", + "plt::title(\"Predicted Experience vs. Salary\");\n", + "\n", + "plt::save(\"./scatter1.png\");\n", + "auto img = xw::image_from_file(\"scatter.png\").finalize();\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "british-moment", + "metadata": {}, + "outputs": [], + "source": [ + "// Model evaluation metrics\n", + "\n", + "std::cout<<\"Mean Absolute Error: \"< Date: Thu, 29 Apr 2021 08:37:20 +0530 Subject: [PATCH 09/69] removed standalone cpp program --- .../salary_prediction_linear_regression.cc | 99 ------------------- 1 file changed, 99 deletions(-) delete mode 100644 salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc diff --git a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc b/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc deleted file mode 100644 index 3ed2f1ea..00000000 --- a/salary_prediction_with_linear_regression/salary_prediction_linear_regression.cc +++ /dev/null @@ -1,99 +0,0 @@ -/** - * @file salary_prediction_linear_regression.cc - * - * A simple example usage of Linear Regression - * applied to Salary dataset - */ -#include -#include -#include -#include - -// Header file for visualization -#include - -using namespace mlpack; -using namespace mlpack::regression; -namespace plt = matplotlibcpp; - -int main() { - - // Loading data from csv into matrix - - arma::mat inputs; - data::Load("Salary.csv", inputs); - - // Dropping first row as they represent headers - - inputs.shed_col(0); - - // Print the first 5 rows of the input data - - std::cout< x = arma::conv_to>::from(inputs.row(0)); - std::vector y = arma::conv_to>::from(inputs.row(1)); - - plt::scatter(x, y, 12, {{"color", "coral"}}); - plt::xlabel("Years of Experience"); - plt::ylabel("Salary in $"); - plt::title("Experience vs. Salary"); - plt::show(); - - // Split the data into features (X) and target (y) variables - // targets are the last row - - arma::Row targets = arma::conv_to>::from(inputs.row(inputs.n_rows - 1)); - - // Labels are dropped from the originally loaded data to be used as features - - inputs.shed_row(inputs.n_rows - 1); - - // Split the dataset using mlpack - - arma::mat Xtrain; - arma::mat Xtest; - arma::Row Ytrain; - arma::Row Ytest; - data::Split(inputs, targets, Xtrain, Xtest, Ytrain, Ytest, 0.4); - - // Convert armadillo Rows into rowvec. (Required by LinearRegression API in this format) - - arma::rowvec y_train = arma::conv_to::from(Ytrain); - arma::rowvec y_test = arma::conv_to::from(Ytest); - - // Create and Train Linear Regression model - - LinearRegression lr(Xtrain, y_train, 0.5); - - // Make predictions for test data points - - arma::rowvec y_preds; - lr.Predict(Xtest, y_preds); - - // convert armadillo vectors and matrices to vector for plotting - - std::vector x_test = arma::conv_to>::from(Xtest); - std::vector y_t = arma::conv_to>::from(y_test); - std::vector y_p = arma::conv_to>::from(y_preds); - - // Visualizing Predicted datapoints - - plt::scatter(x_test, y_t, 12, {{"color", "coral"}}); - plt::plot(x_test,y_p); - plt::xlabel("Years of Experience"); - plt::ylabel("Salary in $"); - plt::title("Predicted Experience vs. Salary"); - plt::show(); - - // Model evaluation metrics - - std::cout<<"Mean Absolute Error: "< Date: Thu, 29 Apr 2021 09:15:44 +0530 Subject: [PATCH 10/69] modified ipynb notebook based on suggestions --- ...lary-prediction-linear-regression-py.ipynb | 246 ++++++++---------- 1 file changed, 105 insertions(+), 141 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb index 381785cd..af83374d 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb @@ -1,32 +1,22 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": 96, - "id": "555ce78e", - "metadata": {}, - "outputs": [], - "source": [ - "# @file salary-prediction-linear-regression-py.ipynb\n", - "#\n", - "# A simple example usage of Linear Regression applied to Salary dataset" - ] - }, { "cell_type": "markdown", - "id": "7bd90910", + "id": "technical-identification", "metadata": {}, "source": [ - "### Import Libraries" + "## A simple example usage of Linear Regression applied to Salary dataset" ] }, { "cell_type": "code", - "execution_count": 77, + "execution_count": 23, "id": "449a2f52", "metadata": {}, "outputs": [], "source": [ + "# Import Libraries.\n", + "\n", "import mlpack\n", "import numpy as np\n", "import pandas as pd\n", @@ -44,38 +34,30 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 24, "id": "786e154b", "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", - "# uncomment below line to enable dark background style sheet\n", + "# Uncomment below line to enable dark background style sheet.\n", "# plt.style.use('dark_background')" ] }, - { - "cell_type": "markdown", - "id": "e32c8a94", - "metadata": {}, - "source": [ - "### Load and Explore the Data" - ] - }, { "cell_type": "code", - "execution_count": 79, + "execution_count": 25, "id": "9c7de4da", "metadata": {}, "outputs": [], "source": [ - "# Load the salary dataset\n", - "data = pd.read_csv(\"Salary.csv\")" + "# Load the salary dataset.\n", + "data = pd.read_csv(\"Salary_Data.csv\")" ] }, { "cell_type": "code", - "execution_count": 80, + "execution_count": 26, "id": "1d59786b", "metadata": {}, "outputs": [ @@ -108,54 +90,54 @@ " \n", " 0\n", " 1.1\n", - " 39343\n", + " 39343.0\n", " \n", " \n", " 1\n", " 1.3\n", - " 46205\n", + " 46205.0\n", " \n", " \n", " 2\n", " 1.5\n", - " 37731\n", + " 37731.0\n", " \n", " \n", " 3\n", " 2.0\n", - " 43525\n", + " 43525.0\n", " \n", " \n", " 4\n", " 2.2\n", - " 39891\n", + " 39891.0\n", " \n", " \n", "\n", "" ], "text/plain": [ - " YearsExperience Salary\n", - "0 1.1 39343\n", - "1 1.3 46205\n", - "2 1.5 37731\n", - "3 2.0 43525\n", - "4 2.2 39891" + " YearsExperience Salary\n", + "0 1.1 39343.0\n", + "1 1.3 46205.0\n", + "2 1.5 37731.0\n", + "3 2.0 43525.0\n", + "4 2.2 39891.0" ] }, - "execution_count": 80, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# display the first 5 samples from dataframe\n", + "# Display the first 5 samples from dataframe.\n", "data.head()" ] }, { "cell_type": "code", - "execution_count": 81, + "execution_count": 27, "id": "5a3a26af", "metadata": {}, "outputs": [ @@ -187,18 +169,18 @@ " \n", " \n", " count\n", - " 35.000000\n", - " 35.000000\n", + " 30.000000\n", + " 30.000000\n", " \n", " \n", " mean\n", - " 6.308571\n", - " 83945.600000\n", + " 5.313333\n", + " 76003.000000\n", " \n", " \n", " std\n", - " 3.618610\n", - " 32162.673003\n", + " 2.837888\n", + " 27414.429785\n", " \n", " \n", " min\n", @@ -207,23 +189,23 @@ " \n", " \n", " 25%\n", - " 3.450000\n", - " 57019.000000\n", + " 3.200000\n", + " 56720.750000\n", " \n", " \n", " 50%\n", - " 5.300000\n", - " 81363.000000\n", + " 4.700000\n", + " 65237.000000\n", " \n", " \n", " 75%\n", - " 9.250000\n", - " 113223.500000\n", + " 7.700000\n", + " 100544.750000\n", " \n", " \n", " max\n", - " 13.500000\n", - " 139465.000000\n", + " 10.500000\n", + " 122391.000000\n", " \n", " \n", "\n", @@ -231,29 +213,29 @@ ], "text/plain": [ " YearsExperience Salary\n", - "count 35.000000 35.000000\n", - "mean 6.308571 83945.600000\n", - "std 3.618610 32162.673003\n", + "count 30.000000 30.000000\n", + "mean 5.313333 76003.000000\n", + "std 2.837888 27414.429785\n", "min 1.100000 37731.000000\n", - "25% 3.450000 57019.000000\n", - "50% 5.300000 81363.000000\n", - "75% 9.250000 113223.500000\n", - "max 13.500000 139465.000000" + "25% 3.200000 56720.750000\n", + "50% 4.700000 65237.000000\n", + "75% 7.700000 100544.750000\n", + "max 10.500000 122391.000000" ] }, - "execution_count": 81, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "# generates basic statistical summary of the dataframe\n", + "# Generates basic statistical summary of the dataframe.\n", "data.describe()" ] }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 28, "id": "8d8410cd", "metadata": {}, "outputs": [ @@ -262,19 +244,19 @@ "output_type": "stream", "text": [ "\n", - "RangeIndex: 35 entries, 0 to 34\n", + "RangeIndex: 30 entries, 0 to 29\n", "Data columns (total 2 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", - " 0 YearsExperience 35 non-null float64\n", - " 1 Salary 35 non-null int64 \n", - "dtypes: float64(1), int64(1)\n", - "memory usage: 688.0 bytes\n" + " 0 YearsExperience 30 non-null float64\n", + " 1 Salary 30 non-null float64\n", + "dtypes: float64(2)\n", + "memory usage: 608.0 bytes\n" ] } ], "source": [ - "# generates a concise summary of the dataframe\n", + "# Generates a concise summary of the dataframe.\n", "data.info()" ] }, @@ -288,50 +270,15 @@ }, { "cell_type": "code", - "execution_count": 83, - "id": "34e12607", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 83, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD8CAYAAABekO4JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhlklEQVR4nO3de5weVZ3n8c+XhEhAJQGEhQRI1DBjjIAIAVlBEdGACKJycxCGASIM913GyYKrMo4YLl6yihMDRECZIFdFZQ0MK7dFSBA6l4YE8kpYE4JCViRCIkl3/+aPOi2Vx+7nqe483V1d/X37qlfXU+dU1Xmg/fXhV6fOUURgZmbltcVAN8DMzOpzoDYzKzkHajOzknOgNjMrOQdqM7OSc6A2Mys5B2ozs25Imi3pRUmLuymXpP8laZmkhZL2yZVNkbQ0lU3LHd9O0r2Snk0/RzdqhwO1mVn3rgem1Ck/HJiQtqnAvwFIGgZcnconAidKmpjOmQbcFxETgPvS57ocqM3MuhERDwJ/qFPlaODGyDwKjJK0MzAZWBYRyyNiA3Bzqtt5zg1p/wbgk43aMbyX7S9s45rlfvXR/srIXQ4a6CZYCbVteF6be42exJwRb3vH58l6wp1mRcSsHtxuDLAy93lVOtbV8f3T/k4R8QJARLwgacdGN+nzQG1mVlYpKPckMNfq6g9L1DneKw7UZlYtHe39ebdVwK65z2OB1cCIbo4D/F7Szqk3vTPwYqObOEdtZtXS3lZ823x3ASen0R8HAK+ktMZ8YIKk8ZJGACekup3nnJL2TwF+2ugm7lGbWaVEdDTtWpLmAB8CdpC0CvgysGV2n5gJ3A0cASwD1gGnprI2SecAc4FhwOyIaE2XnQ7cIuk04LfAsQ3b0dfTnPphonXFDxOtK814mLhh1aLiDxPHvmez79cf3KM2s2ppYo+6LByozaxa+vdhYr9woDazanGP2sys3KI5ozlKxYHazKqlwz1qM7Nyc+rDzKzk/DDRzKzk3KM2Mys5P0w0Mys5P0w0Myu3COeozczKzTlqM7OSc+rDzKzk3KM2Myu59o0D3YKmc6A2s2qpYOrDS3GZWbVER/GtAUlTJC2VtEzStC7KR0u6U9JCSfMkTcqVnS9psaRWSRfkju8t6VFJLZIelzS5UTscqM2sWjo6im91SBoGXA0cDkwETpQ0sabaxUBLROwJnAzMSOdOAs4AJgN7AUdKmpDOuQK4NCL2Br6UPtflQG1m1dKkQE0WZJdFxPKI2ADcDBxdU2cicB9ARCwBxknaCXgX8GhErIuINuAB4Jh0TgBvTfvb8sbq5N1yjtrMKiV68DBR0lRgau7QrIiYlfbHACtzZauA/WsusQD4FPBwSmHsDowFFgNfk7Q9sJ5sAdzH0zkXAHMlXUXWWT6wUTsdqM2sWnowPC8F5VndFHe18G3twrnTgRmSWoBFwJNAW0Q8Lely4F7gVbKA3jkJyVnAhRFxu6TjgOuAj9RrpwO1mVVL80Z9rAJ2zX0eS02aIiLWAqcCSBKwIm1ExHVkQRhJl6XrAZwCnJ/2bwWubdQQ56jNrFqaN+pjPjBB0nhJI4ATgLvyFSSNSmUApwMPpuCNpB3Tz93I0iNzUr3VwAfT/oeBZxs1xD1qM6uWJvWoI6JN0jnAXGAYMDsiWiWdmcpnkj00vFFSO/AUcFruErenHPVG4OyIeDkdP4MsXTIc+DOb5si75EBtZtXSxFfII+Ju4O6aYzNz+78GJtSel8oO6ub4w8D7etIOB2ozq5Y2LxxgZlZunpTJzKzkKjjXhwO1mVWLe9RmZiXnHrWZWcm5R21mVnIe9WFmVnJROx3H4OdAbWbV4hy1mVnJOVCbmZWcHyaamZVce/tAt6DpHKjNrFqc+jAzKzkHajOzknOO2sys3KKjeuOovRSXmVVLR0fxrQFJUyQtlbRM0rQuykdLulPSQknzJE3KlZ0vabGkVkkX1Jx3brpuq6QrGrXDPWozq5YmjfqQNAy4GjiMbGHa+ZLuioinctUuBloi4hhJf5vqH5oC9hnAZGAD8EtJv4iIZyUdAhwN7BkRr3eurViPe9RmVi3N61FPBpZFxPKI2ADcTBZg8yYC9wFExBJgnKSdyNZSfDQi1kVEG/AAcEw65yxgekS8ns57sVFDHKjNrFp6EKglTZX0eG7LLzQ7BliZ+7wqHctbQLbCOJImA7sDY4HFwMGStpe0NXAEsGs6Zw/gIEmPSXpA0n6NvpJTH2ZWLT2YlCkiZgGzuilWV6fUfJ5OtqJ4C7AIeBJoi4inJV0O3Au8ShbQO6f1Gw6MBg4A9gNukfT2iO4bXihQS9odmBAR/yFpJDA8Iv5U5Fwzs37VvHHUq3ijFwxZT3l1vkJErAVOBZAkYEXaiIjrgOtS2WXpep3XvSMF5nmSOoAdgJe6a0jD1IekM4DbgO/nGvuTRueZmQ2Ijii+1TcfmCBpvKQRwAnAXfkKkkalMoDTgQdT8KbzIaGk3cjSI3NSvZ8AH05lewAjgDX1GlKkR302WVL9MYD01LLhU0ozswHRpFEfEdEm6RxgLjAMmB0RrZLOTOUzyR4a3iipHXgKOC13idslbQ9sBM6OiJfT8dnAbEmLyUaEnFIv7QHFAvXrEbEh69WDpOH8dZ5mEykhPxXge9/4V04/+cQCtzEz23zRxFfII+Ju4O6aYzNz+78GJnRz7kHdHN8AnNSTdhQJ1A9IuhgYKekw4B+Bn9U7IZ+g37hmefVeEzKz8hqibyZOI0tyLwI+T/bX5Yt92Sgzs16LjuLbIFGkRz2SLDdzDfzlbZ2RwLq+bJiZWa8M0R71fWSBudNI4D/6pjlmZpuprb34NkgU6VFvFRGvdn6IiFfTmzZmZuUziFIaRRXpUb8maZ/OD5LeB6zvuyaZmW2G5o2jLo0iPeoLgFsldb6RszNwfJ+1yMxsMzRzeF5ZNAzUETE/Td/3N2Tvvi+JiI193jIzs94YRD3loopOyrQfMC7Vf68kIuLGPmuVmVlvDcVALemHwDuAFqDzMWkADtRmVj5NeoW8TIr0qPcFJjZ6F93MrAyquGZikUC9GPgvwAt93BYzs803RAP1DsBTkuYBr3cejIij+qxVZma9NRRHfQBf6etGmJk1zVDsUUfEAzUrvGxNNjermVn5VDBQ92aFlzF4hRczK6lo7yi8NSJpiqSlkpZJmtZF+WhJd0paKGmepEm5svMlLZbUKumCLs69SFJI2qFRO4q8Qn428F+BtZCt8AJ4hRczK6cmvUKeZgq9GjgcmAicKGliTbWLgZaI2BM4GZiRzp0EnEG2OtZewJGSJuSuvStwGPDbIl+pSKB+Pa1I0HmDhiu8mJkNlOiIwlsDk4FlEbE8xcCbgaNr6kwkm2GUiFgCjJO0E9kSXY9GxLqIaAMeAI7Jnfct4AsUjKVFAnXtCi+30mCFFzOzAdO8SZnGACtzn1elY3kLyBauRdJkYHeyBcAXAwdL2j491zuCtKK5pKOA5yNiQdGvVGTUxzSyBRvzK7xcW/QGZmb9qgej8/Lruyaz0lKCkM1tVKs2uk8HZkhqIYuRTwJtEfG0pMuBe4FXyQJ6WwralwAfLd7KYqM+OoBr0mZmVmrRVjxS59d37cIqUi84GQuszleIiLXAqQDKVgBfkTYi4jrgulR2WbreO4DxwIK0YPhY4AlJkyPid921s9tALemWiDhO0iK6yKOk5LmZWbk0732X+cAESeOB54ETgM/mK0gaBaxLOezTgQdT8EbSjhHxoqTdyNIj74+Il8kNxpD0HLBvRKyp15B6Perz088je/DFzMwGVLPm+oiINknnAHPJ3h2ZHRGtks5M5TPJHhreKKkdeIosTdzpdknbAxuBs1OQ7pVuA3VEvJCGp1wXER/p7Q3MzPpVE98gj4i7yZ7L5Y/NzO3/GphQe14qO6jA9ccVaUfdHHVEtEtaJ2nbiHilyAXNzAbSUJ0978/AIkn3Aq91HoyI8/qsVWZmvVW9OZkKBepfpM3MrPSibaBb0HxFhufdIGkksFtELO2HNpmZ9VpUsEddZFKmT5Atw/XL9HlvSXf1cbvMzHqnowfbIFHkFfKvkL3z/keAiGghG7BtZlY60VF8GyyK5KjbIuKV9BZNp+o9VjWzShhMAbioQmsmSvosMCxN03ce8EjfNsvMrHeivaspOga3IqmPc4F3k62XOIdsXuoL+rBNZma9NiRTHxGxDrgkzQQVEfGnvm+WmVnvRMcQ7FFL2i9NzLSQ7MWXBZLe1/dNMzPruSHZoyabpu8fI+IhAEkfAH4AePY8MyudiOr1qIsE6j91BmmAiHhYktMfZlZKg6mnXFSRQD1P0vfJHiQGcDxwv6R9ACLiiT5sn5lZj3RUcNRHkUC9d/r55ZrjB5IF7g83s0FmZpujig8Ti4z6OKQ/GmJm1gxVDNRFRn38UNK2uc+7S7qvb5tlZtY7EcW3RiRNkbRU0jJJ07ooHy3pTkkLJc2TNClXdr6kxZJaJV2QO36lpCXpnDvTcl51FXnh5WHgMUlHSDqDbFXdbxc4z8ys30WHCm/1pBWurgYOByYCJ0qaWFPtYqAlrSF7MjAjnTsJOINsnqS9gCPTm92QxdBJ6ZxngP/R6DsVSX18X1Ir8CtgDfDeeqvlmpkNpCYOz5sMLIuI5QCSbgaOJlsbsdNE4OvZfWOJpHGSdiJbS/HR9MIgkh4AjgGuiIh7cuc/CnymUUOKpD4+B8wm+2txPXC3pL0anWdmNhDa21V4kzRV0uO5bWruUmOAlbnPq9KxvAVkK4wjaTKwOzAWWAwcLGl7SVsDRwC7dtHcfwD+d6PvVGTUx6eBD0TEi8AcSXcCN/DGaBAzs9LoSY86ImYBs7op7upCtZnt6cAMSS3AIuBJshlHn07TbtwLvEoW0DdZe0bSJenYTY3aWST18cmaz/PSXw4zs9Jp4qiPVWzaCx4LrN7kXhFrgVMBlM0FvSJtRMR1ZG92I+mydD3S51OAI4FDIxo/1uw29SHpltz+5TXFP290YTOzgdDEUR/zgQmSxksaAZwAbLK6laRRqQzgdODBFLyRtGP6uRtZemRO+jwF+GfgqM4cdiP1etQTcvuHpQt3eluRi5uZ9bdm9agjok3SOcBcYBgwOyJaJZ2ZymeSPTS8UVI72UPG03KXuF3S9sBG4OyIeDkd/y7wJuDetCDLoxFxZr221AvU9f7eeIUXMyul9o4io46LiYi7gbtrjs3M7f+aTTu1+XoHdXP8nT1tR71AvbWk95KlR0amfaVtZE9vZGbWH4q8yDLY1AvULwDfTPu/y+13fjYzK52OoTTNqef4MLPBqIrzURd54eVYSW9J+1+UdEdKg5iZlU4z5/ooiyIvvPzPiLg1rezyMeAqYCawf5EbjNyly3y6DXHrVz/UuJJZL1Qx9VHk8Wh7+vlx4N8i4qfAiDr1zcwGTHvHFoW3waJIS59PK7wcRzbPx5sKnmdm1u+iB9tgUSTgHkc24HtKRPwR2A74p75slJlZb3WECm+DRd0ctaQtgHkR8ZfJsCPiBbKhe2ZmpTPkRn1ERAewIL2rbmZWeh092AaLIqM+dgZaJc0DXus8GBFH9VmrzMx6KbqcnXRwKxKoL+3zVpiZNUlbBVMfReajfqA/GmJm1gxV7FEXeTPxAEnzJb0qaYOkdklr+6NxZmY9NVRz1N8lmzD7VmBfsrUTu5zWz8xsoFWxR10kUBMRyyQNi4h24AeSHunjdpmZ9cpg6ikXVeSFl3VpqZkWSVdIuhDYpo/bZWbWK+2o8NaIpCmSlkpaJmlaF+WjJd0paaGkeZIm5crOl7RYUqukC3LHt5N0r6Rn08/RjdpRJFB/LtU7h2x43q5kK5ObmZVOh4pv9UgaBlwNHA5MBE6UNLGm2sVAS0TsSZYWnpHOnQScAUwG9gKOlNSZMp4G3BcRE4D70ue6GgbqiPh/ZKu67BwRl0bEf4uIZY3OMzMbCB2o8NbAZGBZRCyPiA3AzcDRNXUmkgVbImIJME7STmRrKT4aEesiog14ADgmnXM0cEPavwH4ZKOGFBn18QmgBfhl+ry3pLvqnmRmNkB6MimTpKmSHs9tU3OXGgOszH1elY7lLSBbYRxJk4HdgbHAYuBgSdtL2ho4giwbAbBTmoqjc0qOHRt9pyIPE79C9pfl/nThFknjCpxnZtbvevIwMSJmAbO6Ke6qy1076d50YIakFmAR8CTQFhFPS7ocuBd4lSygt/WgaZsoEqjbIuKVtKy5mVmpdTQvVq3ijV4wZD3l1fkKEbEWOBVAWZBckTYi4jrgulR2WboewO8l7RwRL0jaGXixUUO6TX1IulvSeGCxpM8CwyRNkPQdwMPzzKyU2nuwNTAfmCBpfBr5dgKwSdpX0qhUBnA68GAK3kjaMf3cjSw9MifVuws4Je2fAvy0UUPq9aivJ5uH+ofAJOB14N/Tsa82urCZ2UBoNJqjqIhok3QOWcwbBsyOiFZJZ6bymWQPDW+U1A48BZyWu8TtkrYHNgJnR8TL6fh04BZJpwG/BY5t1BZFnRUeJW0DfAmYQhawOytHRHyzyJcdPmLMYFpIwfqJ10y0rmy5w9s3O8zetMtJhWPO363+0aDI6TbKUW8kGzv9JuDNDK7Va8xsCKpikOo2UEuaAnyTLJ+yT0Ss67dWmZn1UrNSH2VSr0d9CXBsRLT2V2PMzDZXFef66DZQR8RB/dkQM7NmaB9iPWozs0FnSPWozcwGIwdqM7OSq+CSiQ7UZlYt7lGbmZVcgVfDBx0HajOrlKE2jtrMbNBx6sPMrOQcqM3MSm5IzfVhZjYYOUdtZlZyHvVhZlZyHRVMfjRchdzMbDDp6MHWiKQpkpZKWiZpWhfloyXdKWmhpHmSJuXKLpTUKmmxpDmStkrH95b0qKSWtPL55EbtcKA2s0qJHmz1SBoGXA0cDkwETpQ0sabaxUBLROwJnAzMSOeOAc4D9o2ISWRLeZ2QzrkCuDQi9iZbQeuKRt/JgdrMKqWJPerJwLKIWB4RG4CbgaNr6kwE7gOIiCXAOEk7pbLhwEhJw4GteWMF8wDemva3pWZl8644R21mldKm4jlqSVOBqblDsyJiVtofA6zMla0C9q+5xAKyFcYfTimM3YGxEfEbSVeRLV67HrgnIu5J51wAzE3lWwAHNmqne9RmVik9SX1ExKyI2De3zcpdqquBfrV/BaYDoyW1AOcCTwJtkkaT9b7HA7sA20g6KZ1zFnBhROwKXAhc1+g7OVCbWaU0MfWxCtg193ksNWmKiFgbEaemfPPJwNuAFcBHgBUR8VJEbATu4I2e8ynpM8CtZCmWuhyozaxSOojCWwPzgQmSxksaQfYw8K58BUmjUhnA6cCDEbGWLOVxgKStJQk4FHg61VsNfDDtfxh4tlFDnKM2s0pp1ijqiGiTdA4wl2zUxuyIaJV0ZiqfCbwLuFFSO/AUcFoqe0zSbcATQBtZSqQzrXIGMCM9ZPwzm+bIu6SIvh0cPnzEmOqNPrfNtn71QwPdBCuhLXd4+2a/AH7RuBMLx5yrnpszKF44d4/azCqlvYJvJjpQm1mleJpTM7OSC/eozczKzT1qM7OSq+LseQ7UZlYp1QvTDtRmVjFtFQzVhQK1pGERUcWFE8ysYqr4MLHoK+TLJF3ZxVysXZI0NU2I/XhHx2ub0Twzs55p5sIBZVE0UO8JPANcm1YmmCrprd1Vzs9ItcUW2zSloWZmRUQP/jdYFArUEfGniLgmIg4EvgB8GXhB0g2S3tmnLTQz64Eq9qgL56iBjwOnAuOAbwA3AQcBdwN79FH7zMx6pL2P5y8aCEVHfTwL/Aq4MiIeyR2/TdLBzW+WmVnvDMlx1Kk3fX1E/EtX5RFxXtNbZWbWS4Mp91xUwxx1GpZ3SD+0xcxss1UxR1101Mcjkr4r6SBJ+3RufdoyM7NeaOIKL0iaImmppGWSpnVRPlrSnZIWSponaVKu7EJJrZIWS5ojaatc2bnpuq2SrmjUjqI56s61vvLpjyBbRsbMrDSalfpIad+rgcPI1k+cL+muiHgqV+1ioCUijpH0t6n+oZLGAOcBEyNivaRbyJbyul7SIWQL3+4ZEa9L2rFRWwoF6ohw6sPMBoUmjvqYDCyLiOUAkm4mC7D5QD0R+DpARCyRNE7STqlsODBS0kZga95YGPcsYHpEvJ7Oe7FRQwrP9SHp48C7gb9037t7wGhmNlCaOOpjDLAy93kVsH9NnQXAp4CHJU0GdgfGRsRvJF1FtsjteuCeiLgnnbMHcJCkr5GtmXhRRMyv15BCOWpJM4HjgXMBAcemBpmZlUpPHibmp7tIW36h2a7WU6z9KzAdGC2phSw+Pgm0SRpN1vseD+wCbCPppHTOcGA0cADwT8AtaaXybhXOUUfEnpIWRsSlkr4B3FHwXDOzftOTHHVEzOKN1cFrrQJ2zX0eyxvpi87z15K9CEgKtivS9jFgRUS8lMruIHvW96N03TsiW1l8nqQOYAfgpe7aWXTUx/r0c52kXYCNZH8pzMxKpYmjPuYDEySNlzSC7GHgXfkKkkalMoDTgQdT8P4tcICkrVMAPxR4OtX7CWkghqQ9gBHAmnoNKdqj/rmkUcCVwBNk3f9rC55rZtZvokkPEyOiTdI5wFxgGDA7IlolnZnKZwLvAm6U1E72kPG0VPaYpNvI4mUbWUqks+c+G5gtaTGwATglGjRaPf1Skt4EbBURrxSpP3zEmOq9JmSbbf3qhwa6CVZCW+7w9rq52iI+uuuUwjHnnpW/3Oz79Ye6PWpJn6pTRkQ4T21mpTIU5/r4RJ2ywA8UzaxkmpX6KJO6gToiTu2vhpiZNcNQ7FH/hV94MbPBoIqz5xVdOGAm2SuQh5CN9vgMMK8P22Vm1itVXDig6DjqAyPiZODliLgUeD+bDgQ3MyuFZs6eVxZFUx+1L7z8Ab/wYmYlNJgCcFE9feHlCuA36ZhfeDGz0hlyoz4k7QesjIivps9vBhYBS4Bv9X3zzMx6poo96kY56u+TveJIWsR2ejr2Ct1PZGJmNmCiB/8bLBqlPoZFxB/S/vHArIi4Hbg9TetnZlYq7TGYVkMsplGPepikzmB+KPB/cmWFx2CbmfWXiCi8DRaNgu0c4AFJa8hGfjwEIOmdZOkPM7NSqWKOutEr5F+TdB+wM9lSMp3/BLYgW83AzKxUBlPuuaiG6YuIeLSLY8/0TXPMzDZPxyBKaRTlPLOZVUoVe9RFXyE3MxsU2qOj8NaIpCmSlkpaJmlaF+WjJd0paaGkeZIm5coulNQqabGkOZK2qjn3IkkhaYdG7XCgNrNK6YgovNUjaRhwNXA4MBE4UdLEmmoXAy0RsSdwMjAjnTsGOA/YNyImkS3ldULu2rsCh5GtrdiQA7WZVUoTX3iZDCyLiOURsQG4GTi6ps5E4D6AiFgCjJO0UyobDoxMQ5y3ZtMVzL8FfAGK5WkcqM2sUnrSo5Y0VdLjuW1q7lJjgJW5z6vSsbwFwKcAJE0GdgfGRsTzwFVkPeYXgFci4p5U7yjg+YhYUPQ7+WGimVVKTx4mRsQsup8Oo6uFb2svPh2Ykd7UXkS22nibpNFkve/xwB+BWyWdRLZ84SXARws3EgdqM6uY9mhv1qVWsem8+2PZNH1BRKwFTgWQJGBF2j4GrIiIl1LZHcCBZD3w8cCCrDpjgSckTY6I33XXEAdqM6uUJr4aPh+YIGk88DzZw8DP5iuk6Z/XpRz26cCDEbFW0m+BAyRtTfZW96HA4xGxCNgxd/5zZA8c19RriAO1mVVKs14hj4g2SecAc8lGbcyOiFZJZ6bymcC7gBsltQNPAaelssck3QY8AbSRpUR6PeOo+npikuEjxlRv9LlttvWrHxroJlgJbbnD27vKC/fImNHvLhxznn+5dbPv1x/cozazSvEr5GZmJVfFV8gdqM2sUqq4cIADtZlVymBaEKAoB2ozqxTnqM3MSs49ajOzkhtyS3GZmQ027lGbmZWcR32YmZWcHyaamZWcUx9mZiXnNxPNzErOPWozs5KrYo66z6c5tTdImpqW/jH7C/9eWCNe3LZ/TW1cxYYg/15YXQ7UZmYl50BtZlZyDtT9y3lI64p/L6wuP0w0Mys596jNzErOgdrMrOQqE6iVeVjS4bljx0n6ZR/c635JSyW1pO22Zt+j5n679PU9bPNJukRSq6SF6fdi/zp1r5f0mf5snw1elXkzMSJC0pnArZJ+BQwDvgZM6c31JA2LiPY6Vf4uIh7vzbV72I7hEbEa8P+pS0zS+4EjgX0i4nVJOwAjmnj94RHR1qzr2eBSmR41QEQsBn4G/DPwZeBHwCWS5kt6UtLRAJLGSXpI0hNpOzAd/5CkX0n6d2CRpG0k/ULSAkmLJR1f7/6Sfirp5LT/eUk3pf37JX1b0iPpOpPT8W0kze6ifX8v6VZJPwPuSe1dnMqGSboynbNQ0udzbb9f0m2Slki6SZJS2X7p3gskzZP0lu6uY722M7AmIl4HiIg1EbFa0pfSP+PFkmZ1/jvJ665O+vd5maQHyH6PV0jaMpW9VdJznZ+t4iKiUhuwDbAUWAR8HTgpHR8FPJPKtwa2SscnAI+n/Q8BrwHj0+dPA9fkrr1t+nl/ukdL2q5Mx3cClgEHpXttl6t/Tdo/GFic9i/rpn1/D6zKnT8ud85U4Itp/03A48D41PZXgLFkf4B/DXyArFe3HNgvnfNWsv+S6vI6A/3vb7BuwJvT78IzwPeAD6bj2+Xq/BD4RNq/HvhMgzr3A9/Llf0A+GTu9+AbA/29vfXPVpnUR6eIeE3Sj4FXgeOAT0i6KBVvBewGrAa+K2lvoB3YI3eJeRGxIu0vAq6SdDnw84h4KFfvr1IfEfF7SV8CfgUcExF/yBXPSXUeTL2hUcBHgaO6aB/AvTXnd/oosGcuv7kt2R+bDantqwAktZAF+FeAFyJifrr/2lTe3XU6v7v1QES8Kul9ZH+kDwF+LGka8CdJXyDrHGwHtJL9V1/eIXXq/DhX71rgC8BPgFOBM/rm21jZVC5QJx1pE/DpiFiaL5T0FeD3wF5kvc8/54pf69yJiGfS//mOAL4u6Z6I+JcG934P8P+BXWqO1w5Yjzrt2z/fjhoCzo2IuTXnfAh4PXeonezfr7q4d7fXsd6L7JnG/cD9khYBnwf2BPaNiJXp926r/DmStiLrgXdXJ//7+H9TGuyDwLDIUn02BFQqR92FucC5uZzfe9Pxbcl6mR3A58gePP4VSbsA6yLiR8BVwD71bpZyz4cD7wUukjQ+V3x8qvMB4JWIeKVO+xp9p7Nyuco9JG1Tp/4SYBdJ+6X6b5E0vBfXsTok/Y2kCblDe5OlxwDWSHozXT8Q3qpAnbwbyf7r7Aeb0VwbZKrao+70VeDbwMIUDJ8jezL/PeB2SceSpSm6672+B7hSUgewETgrV3aTpPVpfw3wceAa4NTIHiL9d2C2pA+nOi9LeoQsR/wPDdpXz7VkKY0n0jkvAZ/srnJEbEgPQb8jaSSwHvhIT69jDb2Z7J/xKKCN7FnFVOCPZCm054D5tSdFxB8lXVOvTo2bgH8lpdJsaPAr5P1A0v3ARbU5bbOeSs8Ujo6Izw10W6z/VL1HbVYZkr5Dllo7YqDbYv3LPWozs5Kr+sNEM7NBz4HazKzkHKjNzErOgdrMrOQcqM3MSu4/Abc5HGQI4KtkAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "# compute pairwise correlation and plots\n", - "# a heatmap of the correlated columns\n", - "sns.heatmap(data.corr())" - ] - }, - { - "cell_type": "code", - "execution_count": 84, + "execution_count": 29, "id": "ef71b4dc", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAADrCAYAAABpaOHoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAArV0lEQVR4nO3deZxcVZn/8c9TVb1mTzqEkH2TLYKSJkR2CEIEJDgiBEeJGs3ooDAyiiDDZIBhRsQZRn8OOBGQRV4sRpQ4A0JkXwLYLLKEJYFEErIvZOu1qp7fH/d2Ut3pdFd3V9Wt7nzfvu6rq07dc+qpJvZTZ7nnmrsjIiISizoAEREpDkoIIiICKCGIiEhICUFERAAlBBERCSkhiIgIAImoAygWVVVVPnbs2KjDEJEe4KWXXtro7kO708Ypp1b6pk2prM599eXGh919RnfeLxtKCKGxY8dSU1MTdRgi0gOY2V+728amTWmeeHZ0VucOrFhW1d33y4YSgohIFBwsbVFH0YISgohIVFwJQURkn2cUXw8hb6uMzOxWM1tvZm+08dr3zMzNrCqj7HIzW2Zm75jZaRnlU8zs9fC1n5mZheVlZnZvWP6CmY3NqDPbzJaGx+x8fUYRkS5zsGR2R6Hkc9npbcAes+JmNgr4NPBBRtkhwCzg0LDOjWYWD1++CZgLTAqP5jbnAFvcfSJwA3Bd2NZgYB5wFDAVmGdmg3L82UREusfBsjwKJW8Jwd2fAja38dINwKVA5secCdzj7g3uvhxYBkw1s+FAf3df7MG2rHcAZ2fUuT18vACYHvYeTgMWuftmd98CLKKNxCQiUp+8ma2NH2dr40HUNn0X94aCvr+lszsKpaAXppnZWcCH7v6XVi+NAFZmPF8Vlo0IH7cub1HH3ZPAVmBIO22JiOzSlH6YhvQNwE6gkSZ/mPrUvxU2iLRndxRIwRKCmVUCVwD/3NbLbZR5O+VdrdM6prlmVmNmNRs2bGjrFBHppZrSjwJ1GSX1NKUfL1wA+9KQURsmAOOAv5jZCmAk8LKZ7U/wLX5UxrkjgdVh+cg2ysmsY2YJYADBENXe2tqDu89392p3rx46tFsXHYpID2NU0XqhZcGnG9NZHgVSsITg7q+7+37uPtbdxxL84T7C3dcCC4FZ4cqhcQSTxy+6+xpgu5lNC+cHLgAeCJtcCDSvIDoHeCycZ3gYONXMBoWTyaeGZSIiu5TFv44xBCgHSoEKKuJXFez9zcGSntVRKHm7DsHM7gZOBKrMbBUwz91vaetcd3/TzO4DlgBJ4EJ3b97k41sEK5YqgIfCA+AW4E4zW0bQM5gVtrXZzK4B/hyed7W7tzW5LSL7sJgNpl/JwzSl/w+nnkTsJOK7V68XRCGHg7JhuqdyoLq62rWXkYhkw8xecvfq7rQx5bByf25hdnsZlY9b2u33y4a2vxaRXsNT20mtv4HUh98j9dHvKOovvJ67ZadtXQhsZteb2dtm9pqZ/c7MBnbUjhKCiPQKnq4j9f7n8E2/xLc+gK+ZR3r9j6MOq33u2R0du409r7daBEx298OAd4HLO2pECUFEegXf8SSkNoA3hQV1+KZfEVymVIRyuHVFWxcCu/sjvvvDP0/LFZttUkIQkd7BG9q44sjBs7sJTRQKeB3C19i9IGevtNupiPQK1udosHi4pbSDlUHlVCxWFnVoe5f9NQZVZpa56mW+u8/PpqKZXUGwevOujs5VQhCRXsESQ4mPvZfUmishuQ6rnEZs+JVRh7V3TmcSwsaurDIKd3s+E5juWcywKyGISK9h5ZNIjLsn6jCyYoDl8QY5ZjYD+AFwgrvXZlNHcwgiIlHJ0dYV4YXAi4EDzWyVmc0Bfg70AxaZ2atm9ouO2lEPQUQkCg7kaL7b3c9vo7jNnSHao4QgIhKRYruFphKCiEgUnL1szB8dJQQRkaiohyAiIkBB73WQDa0yEpGi5qkdeP07eGpr1KHklnfiKBD1EESkaKV3PE165bfBDDyJDf9X4gPPjjqsHDFIFdd38uKKRkQk5Ola0isvBK+F9E7wBnzNlXjTmqhDy40cbn+dK+ohiEhOeP0GWP8MWAz2Pwkr6d+9BpvWhD2DjDIrwRuWYyXDu9d2sdCksoj0Nr5jBf7sl8CTgMHbP4Pj7sHKh+JNO2DrW5AohwGHYpblwERiGHirr8fehJVmd5exHkHLTkWkt/El10NyJ7v+wqUb8aW/gHEX4Iu/AummYBvqgR+Hqf+NxUo6bNPifYkd8GPSqy8FKwFvxIZdipV2uK1/z+CohyAivVD9Blp83fUU1K3D/3IlNH60+7Utr8EH98PY87JqNjbgM1ifamhYDqUjsZIDch15tFLFlRA0qSwi3bffsRAr3/08Xg77HQe1K2mRKNL1+I4VnWraEkOxPlN7XzLAgns3ZHMUiBKCiHSbfexbMPzTwQ1qLAGjz8XGnAv9DwzKmsUrsIGHRhdoMXHwtGV1FIqGjESk2yxWgn3iGvzwqwDDLPwjdvi/4s9/HerXBsNIB5wGI86INNaiUsBv/9lQQhCRnGm9gsjKq+CE30Ld2qB3UDY4osiKVJFtXaGEICJ5ZRaHyhFRh1F8HPUQREQEinHrCiUEkX1ceuN7JJ/5GdRuwUYfReJTc7F4x9cJSDfpOgQRKSa+fR1Nv7sImmrD5+tp2vJB8LxhB7EJJxCv/jIWi3fQknSJrlQWkWKR/usLkM64sW+qAV/54u6nr67Bm+ooOeZbEUTX+xVySWk2imsAS0QKK54INpDbm2QD6bcfLFw8+5p95cI0M7vVzNab2RsZZdeb2dtm9pqZ/c7MBma8drmZLTOzd8zstIzyKWb2evjazyxc4GxmZWZ2b1j+gpmNzagz28yWhsfsfH1GkZ4uNu44KO2z++KxWBsJIqaBhLxonkPI5iiQfPYQbgNmtCpbBEx298OAd4HLAczsEGAWcGhY50azXZc33gTMBSaFR3Obc4At7j4RuAG4LmxrMDAPOAqYCswzs0F5+HwiPZ6V96P03F8S+/jZxCacQOzov4PSvsEW1gCJMuJTvhxtkL1WuMoom6NA8pb63f2pzG/tYdkjGU+fB84JH88E7nH3BmC5mS0DpprZCqC/uy8GMLM7gLOBh8I6/xLWXwD8POw9nAYscvfNYZ1FBEnk7hx/RJFewSoHUXLst3c993HHkXzpLqjfSmziScQnnhhdcL2Ye3AUkyj7gl8D7g0fjyBIEM1WhWVN4ePW5c11VgK4e9LMtgJDMsvbqCMiHbB+wyg58ZKow9g36MI0MLMrgCRwV3NRG6d5O+VdrdM6jrkEw1GMHt2LbrohIj3Dvr7KKJzkPRP4W/ddHaZVwKiM00YCq8PykW2Ut6hjZglgALC5nbb24O7z3b3a3auHDh3anY8lItI5Du6W1VEoBU0IZjYD+AFwlrvXZry0EJgVrhwaRzB5/KK7rwG2m9m0cH7gAuCBjDrNK4jOAR4LE8zDwKlmNiicTD41LBPptdLbNtP03hukNq+LOhTJ2j40qWxmdwMnAlVmtopg5c/lQBmwKFw9+ry7f9Pd3zSz+4AlBENJF7p789Uy3yJYsVRBMJn8UFh+C3BnOAG9mWCVEu6+2cyuAf4cnnd18wSzSG/U8Ppidi74f8Hy0FSSilPOo+L4mVGHJVnI1bd/M7uVYORlvbtPDssGE8zTjgVWAOe6+5Z22/Fim+aOSHV1tdfU1EQdhkineGM9W679GjQ17i4sKWXAd/6DeNXw6ALr5czsJXev7k4bU8b088U/PCKrc8u++VS772dmxwM7gDsyEsKPgc3u/iMzuwwY5O4/aO99dKWySA+W3v7RHheSWSyhoaOeIkdXKrv7UwQjJZlmAreHj28nWLLfLl2CKNKDxfoP3iMheDpJfKhWWvcEndjLqMrMMocw5rv7/A7qDAvnYXH3NWa2X0dvooQg0oNZSSn9vvQDtt95XVCQTlE5cy7xQVo1V/Q6t0/Rxu4OUWVDCUEkz1LbtuPpNPEB/XffaziHSiZ8nEE/vJn0lg3YgMHEyvvk/D0kPzy/K4jWmdnwsHcwHFjfUQUlBJE88WSS9TfOp/a1YH/H8gnjGXbJd4iVleX8vay0nPiwUR2fKMUlv9cYNC/N/1H484H2T9ekskjefPTgw9S9sQSSSUgmaXj/fTbf+9uow5Ii0byXUTZHR8Jl/ouBA81slZnNIUgEnzazpcCnw+ftUg9BJE8a3l2GN+5eDupNSRqWvZe390tv/4id999Eau0KYlUH0Ofzf098oOYSilqOtq5w9/P38tL0zrSjHoJInpQM3x8SGd+5YjES+w/Ly3t5KsW2X15J09JXSW/dRHL5m2z7xRV4Y0Ne3k9yIbttK3rt1hUi+5KBZ3+WkqFVWHk5Vl5OfOAAhnzx3Ly8V3rTGtLbNu++HWY6jTfUkVy7Ii/vJzlSZHdM05CRSJ7E+1Qy4uorqV/6HqTTlE2akJcJZQBKyiCdblmWTmOJ0vy8n3Sf532VUacpIYjkkZWUUHHIQXl/n9jAKkoOPIKmd1+FpgYoKSUxahLx/cfk/b2l6wo5HJQNJQSRXsDM6Hv+JTS8+CeSH75HfNhoyj81A4sV1zdQyeCFvV9yNpQQRIpA3RtL2LH4BayinAGnnkLJfp1fHWSxOOXTTstDdJIvxba3qBKCSMR2vPBnNt5yG97YBGbseHYxI67+Z0qGVkUdmuSRU3xDRupPikRsy/0PBMkAwB2vb2D7409GG5TkXzipnM1RKOohiETMm5paFfieZdI7qYcgIpn6HX8sVrp7eaiVltJn2tQII5LCKL4L09RDEInYwLPOgFicHc8uJlZWyqAv/A3lE8ZHHZYUglYZiUgmi8UYdNbpDDrr9KhDkULKcuO6QlJCEClink6R3roZq6jUfQ56mWJcZaSEIFKkUpvXsf3meaR3bod0ivITPkflKedFHZbkjBXd1hXFFY2I7LLjrutJb90UbEWRSlL/9EKalr0WdViSK07RTSorIYgUqdT6VS0HmVNJkqvfjy4gyb0i2+1UCUGkSMX6DWpZkEgQH5Sf+ylINNRDEJGs9D3/u1BWgZVVQkkZJZM+QcmhR0UdluSQp7M7CkWTyiJFKjHqYwz8x5+TXL2cWGVf4iMmYFZcq1KkG5yiu1JZCUGkiMX6DqD0Y5+IOgzJA8dIp4trkEYJQUQkKuohiPQ+215eyqqbHyJd38jg6Z9k+Pkn6eY00j4H19YVIr3LzndWsuyqO/GGYIfSdfc9iSdTjJh9asSRSbErtiuV8/YVxsxuNbP1ZvZGRtlgM1tkZkvDn4MyXrvczJaZ2TtmdlpG+RQzez187WcWzqqZWZmZ3RuWv2BmYzPqzA7fY6mZzc7XZxQB2Pzka7uSAUC6oYlNj7wUYUTSY3iWR4Hks097GzCjVdllwKPuPgl4NHyOmR0CzAIODevcaGbxsM5NwFxgUng0tzkH2OLuE4EbgOvCtgYD84CjgKnAvMzEI5JrsbISiLX8pmcl6nxL+5onlbM5CiVv7+TuTwGbWxXPBG4PH98OnJ1Rfo+7N7j7cmAZMNXMhgP93X2xuztwR6s6zW0tAKaHvYfTgEXuvtndtwCL2DMxieTM0M9MJV5RtispWFkJB8z+dMRRSdEL5xCyOQql0F9jhrn7GgB3X2Nm+4XlI4DnM85bFZY1hY9blzfXWRm2lTSzrcCQzPI26rRgZnMJeh+MHj26659K9mml+w3k4P++iHW/f4b0zgYGn3Q4/Y+YFHVY0hMU2RxCsfRr2/qteDvlXa3TstB9PjAfoLq6ush2JpdCqn1/Dcv//W4a139E+ZhhjP/hFynbP/uRxrL9BzH6m5/NY4TSG+VyUtnMvgt8neDv3evAV929vjNtFHpd3LpwGIjw5/qwfBUwKuO8kcDqsHxkG+Ut6phZAhhAMES1t7ZE2pTcXse7l/6S+pUbSDc0UbvsQ969dD6eSkUdmvRqubuFppmNAC4Cqt19MhAnmJftlEInhIVA86qf2cADGeWzwpVD4wgmj18Mh5e2m9m0cH7gglZ1mts6B3gsnGd4GDjVzAaFk8mnhmUibap9bzWeztgwJu0kt9XSsG5LdEFJ7xfeMS2bI0sJoCL8glxJF74I523IyMzuBk4EqsxsFcHKnx8B95nZHOAD4AsA7v6mmd0HLAGSwIXu3vz17FsEK5YqgIfCA+AW4E4zW0bQM5gVtrXZzK4B/hyed7W7t57cFtkl0accUi13EPNkinhleUQRyb7AoTM3yKkys5qM5/PDIe+gLfcPzewnBH9X64BH3P2RzsaUt4Tg7ufv5aXpezn/WuDaNsprgMltlNcTJpQ2XrsVuDXrYGWfVjHxAPpP+RjbXl5KuqGJWFkJVZ85kpKBfaMOTXq5TswhbHT36r29GI6GzATGAR8BvzGzL7n7rzsTT7FMKotExswY/09fZMuTr9GwehMV44czYNrBUYclvZ3ndFL5FGC5u28AMLP7gaMBJQSRzrJYjMEnfSLqMGSfktOb33wATDOzSoIho+lATftV9qSEICISkVwlBHd/wcwWAC8TzMO+QrikvjOySghmFs+Y5BWJ1NYl61j31HskKksZedahlA6siDokkU5zB0/l7joEd59HsHiny7LtISwLs8+v3H1Jd95QpDvWP7Ocl7+3kHRDEkvEWH5HDcf95gJKB1VGHZpIp/XU3U4PA94Fbjaz581srpn1z2NcIm1a8uPHSdcngwm5pjSNH9Xx19+8FnVYIl2SqwvTciWrhODu2939l+5+NHApQbdkjZndbmYT8xqhSIbkzoYWzz2Zpmlbp67OFykSubtSOVeySghmFjezs8zsd8BPgf8AxgN/AB7MY3wiLex/8iRiZbtHOmPlCYadMKFTbTRsrmXzKx9St257rsMT6ZRiSwjZziEsBR4Hrnf35zLKF5jZ8bkPS6RtB3//RNLJFGv/tJR4eYKDvnsCQ44c1XHF0JpH3+UvVzxELBEj3ZTi4EtOZMx5n8hfwCJ74/S83U7DG9Xc5u5Xt/W6u1+U86hE9iJemuCweadx2LzTOj65leTORv5yxUOk65M0b1Tx1n8+ydBjx1E5YkBuAxXpgENBb36TjQ6jCZebnlSAWETyqn79dqzVnc1iJTFqV30UTUCyb3PwdHZHoWQ7ZPScmf0cuBfY2Vzo7i/nJSqRPCgf1m+PO2Okm9L0GaM7rEoUCjs/kI1sE8LR4c/MYSMHTs5tOCL5k6gs5ZPXf5ZXvv8HLGakkykO/eF0KvbXCmqJRo9MCO6uISPpFfY7dhwnP/J31H24lfL9++kqZ4mM00MTAoCZnQEcCuzaJH5vE80ixaykXxklB+3X8YkiedYjE4KZ/YLgDjwnATcT3KHsxTzGJSLSu7n1vFVGoaPd/QJgi7tfBXyKlvctFhGRzkpbdkeBZDtkVBf+rDWzA4BNBHfmERGRLuqRQ0bA/5rZQOB6gv22nWDoSEREusBze8e0nMh2ldE14cPfmtn/AuXuvjV/YYmI9H7uHZ9TSO0mBDP7m3Zew93vz31IIiL7guKbVO6oh/DZdl5zQAlBRKSLetSQkbt/tVCBiIjsS3rsHALowjQRkVzzAi4pzYYuTJPING5rZMWDfyXdmGLkySPpO7Jv1CGJFFRP7SEc7e6Hmdlr7n6Vmf0Hmj+QbqjfVM/vTnmAxq2NuDuxq2s44/efYcjkIVGHJlIgxbfbabZT3K0vTEuiC9OkG17779ep31hPsjZJqi5F044mFv/w+ajDEikY9+AGOdkchdLZC9N+DLwUlunCNOmy2rW1pJta3vmjbkPdXs7erXFHE7GEkSjPevpLpGgVWw+ho+sQjgRWNl+YZmZ9gdeBt4Eb8h+e9FYjp4/kr3/8gGRtEoB4eZwRJ43c6/mN2xtZ9OU/sa5mPQCHfO1gjrpqKmbF9X8okc4otoTQUV/kf4BGADM7HvhRWLYVmJ/f0KQ3m/A34/n4308mXhbDEsbo00Zx1Lwj93r+cz9YzPqXN+BJx5POO3e+y7IF7xUwYpFcC+YQsjkKpaN+d9zdN4ePzwPmu/tvCbaweLWrb2pm3wW+TnBx2+vAVwlWMd0LjAVWAOe6+5bw/MuBOUAKuMjdHw7LpwC3ARXAg8DF7u5mVgbcAUwh2IjvPHdf0dV4JffMjCO+90k++Y+fAGePex23tvb5daQbdw8xJeuSrHluLZO+MDHPkYrkiRffstOOeghxM2tOGtOBxzJe69IgrpmNAC4Cqt19MhAHZgGXAY+6+yTg0fA5ZnZI+PqhwAzgRjOLh83dBMwFJoXHjLB8DsFW3RMJhrau60qskn9m1mEyAOgzog9knBYvi9N/TL88RiaSX813TMtVD8HMBprZAjN728zeMrNPdTamjhLC3cCTZvYAwUqjp8M3nkgwbNRVCaAiTDaVwGpgJnB7+PrtwNnh45nAPe7e4O7LgWXAVDMbDvR398Xu7gQ9gsw6zW0tAKabBpt7tGN/cgyl/Uop6VtCok+CfmP7ceg3Dok6LJFuSaUtqyNLPwX+6O4HAYcDb3U2no62rrjWzB4FhgOPhH94IUgk3+nsm4VtfmhmPwE+IEgyj7j7I2Y2zN3XhOesMbPmexyOADLXI64Ky5rCx63Lm+usDNtKmtlWYAiwMTMWM5tL0MNg9OjRXfk4UiCDDhzIOc99nrWL1wYT0McfQLws3nFFkWKVw60rzKw/cDzwFQB3bySc/+2MDod93H2PxeHu/m5n36iZmQ0i+AY/DvgI+I2Zfam9Km2F1U55e3VaFrjPJ5wcr66uLrKNaKW1iqpyxn12bNRhiOSE5/bCtPHABuBXZnY4weUBF7v7zs40EsXeq6cAy919g7s3EVzxfDSwLhwGIvy5Pjx/FS1v1zmSYIhpVfi4dXmLOuGw1ABgMyIiRaQTcwhVZlaTccxt1VQCOAK4yd0/CewknIftjCgSwgfANDOrDMf1pxOMdS0EZofnzAYeCB8vBGaZWZmZjSOYPH4xHF7abmbTwnYuaFWnua1zgMcyhrtERIpCJxLCRnevzjhaL/tfBaxy9xfC5wsIEkSnFPxyT3d/wcwWENyKMwm8QjBs0xe4z8zmECSNL4Tnv2lm9wFLwvMvdPdU2Ny32L3s9KHwALgFuNPMlhH0DGYV4KOJiGTPIZ3KzXdyd19rZivN7EB3f4fgi/aSzrYTyfX/7j4PmNequIHgQ7R1/rXAtW2U1wCT2yivJ0woIiLFKMdzCBAs9LnLzEqB9wmu7+oUbQgjIhKRXCYEd38VqO5OG0oIIiIRSRfZXkZKCCIiUejJt9AUEZHcad66opgoIYiIRMJIp5QQRETENYcgIiJoyEhERDIoIYiICKCEICIiAJjmEEREBNzRKiMREQloyEhERHC07FRERCDcuiLqIFpSQpC8c3eCexiJSCYNGck+4y93reD/vvMyjTuTjDluKOfddzSVg8uiDkukKDhGKl1cCSGKW2jKPmDVi5tY+M0aGrY14Snng2c38psvLo46LJGi0olbaBaEegiSFyueXE+6Kb3rebopzQfPbIgwIpEio72MZF/RZ2gZ8bIY6WRqV1lZ/xLWv7yB5M4mqg6vorR/aYQRikTP0x2fU0hKCJIXHz9/DM//fCmbl+4gnUpjBhMONB46549Y3IglYpy58HQGThoYdagikdDmdrLPSJTF+cazp7Dk/lXUbW7Etu1gyfzXSdWFPQaDJ7/9FDMfPivaQEUio60rpECSjSk+fGsbZZUJhk3sG8myz0RZnMPOHwPA8/Ne2J0MABy2f7Cj4DGJFAt3im6VkRJCL7T5w1quOe5P7NjUQDrpfPy04Vz0m2OIxaNbVDb08CoSlQmStUkALGEMmTw4snhEikGxXZimZae90PyvPs/mlbXUb0/SWJfi9UfW8MTN70ca0/jPjWfiOROIlcZIVCToN6YfJ/z8+EhjEomalp1K3n345lbSqd1fPRprU6x4ZXOH9Wq3NnLbhTUsfW4j+43ry9f+50iGTeyXk5jMjGN+fDRHXHoEydom+ozoE2mPRaQYpNVDkHw74OABxOK7v1WUVsYZffigduu4O9d/5gn+/NuVbFyxk7eeXMe/HL2InR815jS2iqpy+o3up2Qg+zz37I9C0f8re6G5vzqKgcMrKO+XoLQyziEnDeOkb0xot872jQ2seGULyYZgYbSnIdWYYumzuphMJF9SacvqKBQNGfVCQ0b14fp3z+TDN7dSWhnngIP6d7jKqKQsjrfqv3oaSsrj+QxVZJ+mSWUpiNLyOOOmDGbEwQOyWnJa0b+EY788jtLKIAGUlMfYb0JfDjx+v73W2b62jt/Ofp5fHvMnHrnsVZINqb2eKyItNd8PIZsjG2YWN7NXzOx/uxpTJD0EMxsI3AxMJvi9fA14B7gXGAusAM519y3h+ZcDc4AUcJG7PxyWTwFuAyqAB4GL3d3NrAy4A5gCbALOc/cVBflwPdjX5k9l/NQhvPvMBoZN6sdnLjmIREnb3xkadjQxf9oidqyrJ93krH3tIzYs2cbfLtTKIZFs5biDcDHwFtC/qw1E1UP4KfBHdz8IOJzgQ1wGPOruk4BHw+eY2SHALOBQYAZwo5k1j2PcBMwFJoXHjLB8DrDF3ScCNwDXFeJDRcXdWfjvb/IPYx7gkokLefqOri0xjcWMk+dO5Jt3fIrPXTmZ8j57/77w16c2UL+1iXRT8E86WZdi2aK11G3J7SS0SK/lwSqjbI6OmNlI4AyCL9pdVvCEYGb9geOBWwDcvdHdPwJmAreHp90OnB0+ngnc4+4N7r4cWAZMNbPhQH93X+zuTtAjyKzT3NYCYLr14ju0PHTD2zxw7ZtsWlnLhvd3ctvf1/DyHz7M63vu9dfZa3/LIrnlWNZHFv4LuBTo1nZ5UfQQxgMbgF+F4103m1kfYJi7rwEIfzYPXo8AVmbUXxWWjQgfty5vUcfdk8BWYEh+Pk70nrl9OY21u8fvG2tTPHPn8ry+55gThlI5uJR4SfCPNVER52OnH0DFQO1gKpKtlGd3AFVmVpNxzG1uw8zOBNa7+0vdjSeKOYQEcATwHXd/wcx+Sjg8tBdtpUdvp7y9Oi0bDn6pcwFGjx7dXsxFraxvy/+MZlDRrySv71lamWDu85/mT//0GpuW7mDMcUM54YpD8vqeIr1JMKmc9ekb3b16L68dA5xlZqcD5UB/M/u1u3+pszFF0UNYBaxy9xfC5wsIEsS6cBiI8Of6jPNHZdQfCawOy0e2Ud6ijpklgAHAHpfquvt8d6929+qhQ4fm4KNF49x/+wSlFcG0isWCBHHmpQfn/X37DC1n5v9M5WuPncz0qz5OolRLVEU6w7M82m3D/XJ3H+nuYwnmWx/rSjKACBKCu68FVprZgWHRdGAJsBCYHZbNBh4IHy8EZplZmZmNI5g8fjEcVtpuZtPC+YELWtVpbuscgl9Qka34zZ2DT9iPK58+hRnfPZAzvncw//ryDIYfmN1Cg3Ta+WhtHY31WjIqUmi5mlTOlaguTPsOcJeZlQLvA18lSE73mdkc4APgCwDu/qaZ3UeQNJLAhe7e/NfrW+xedvpQeEAwYX2nmS0j6BnMKsSHikqyKc3Iwwbyt0cc0al6q9/exo8+/Rg7NjXgafjyz47g5LmTSDWlefY/3ub9x9ax8Z3tNO1MMnhiXz5/x6eo+lhu9jYSkZwvO8XdnwCe6Gr9SBKCu78KtDUeNn0v518LXNtGeQ3BtQyty+sJE0pvlmxKc81XH+exBcEE8hmzP8b3bzyWeJb7BP3kzCfZsrpu17/Kuy55hfFHDuG5q99k2aK1pOp3L1hY/dIWbjnhUf5h6RmU9c3v/ITIvsDp5pKgPNCVyj3YzVfV8PTCv5JOOemUs+ie97j3p29kVbepIcXGFTtafEUxM959Yj3LHmmZDABwSDWkWffa1hx+ApF9WyrLo1CUEHqwP//pQxoy7kJWX5vkhUdWtlNjt0RpjPI9ViI5A/cvx1Ntd2TTyTRl/bT9lUguBPdU1m6nkiPDRvVtsc11ImEMH5PdGL+Z8e27j6a0Mk5F/xLK+sSp/vwoJs/Yv8W9FHa1XR5j/Cn7s9/kATmLX2Rfl87yKBR93evBvnP9NF59eg2N4aZylf1K+cZV1bg7D//sHZ6+bTnlfRN84drDOaiNTeoOm3EA1y05gxUvb2Hg8HImTB3CluU7SVTESNbu/mcYKzGO/OYkTr3usEjuzSzSWxXb0kclhB5s+Nh+3P3mubzwyCpicWPaaaPoO6CUP1y3hN9f88auq5evP/0J/unJUxg3Zc97GFeN7kPV6D67ng8YVUlZ3xKStQ27yhKlcY79/kG6qY1IDmlSWXJuwJByTj1/IqecO4G+A4JtIx69aekeW1k8++vstrKIl8SY/ciJDBhdicWgYlApX/z9sfQdVp6X+EX2ZcU2qaweQi8Ub7VltdmeZe0ZNnkgl7z/WZINKRJluvpYJB/UQ5CCOPvKQ3fd6MYMyvokOOkbEzvdjpKBSD551v8rFPUQeqHjLhhPn4GlPH3Hcir6lXDmDw5h/0m6wlik2BRbD0EJoZc64qyRHHHWyI5PFJHIaJWRiIgU5RyCEoKISERSlmUfoUBdCSUEEZEIqIcgIiK7FHIFUTaUEEREIqIegoiIhLfHVA9BRERQD0FERAh6CFplJCIiQPH1ELSXUTdt29bAhd98kE8deQtf+fLv2bB+Z9QhiUiPoL2MepV02jnr9Ht44431NDakeOftTbxcs4YXX/kG5eX61YrI3hXjdQjqIXTDBx9s5a0lG3bdsSyZTLNxUx2vvLQm4shEpCdI41kdhaKvsd0Qj9keN8B2d+IJ5VkRaV+nJpULRH+5umHkqP4cc9woKiqCvFpWFmfC+EEcMWV4xJGJSE+gOYRexMy4d8E5/Of1i/nzi6s5+NAqLvvhsSSy6CHs3N7I736xhI2raznylBEcc8aYAkQsIsWk2OYQlBC6qbQ0zmVXHNupOvW1SeYc9XvWfrCDpoYUf7j1HebMm8IXLzksT1GKSLHxAs8PZENDRhF46oEVbFy9k6ZwMrq+Nskv59XgrSckRKRX8yyPQlFCiED9zuQek9HJpjTptBKCyL4kbZ7V0REzG2Vmj5vZW2b2ppld3JV4NGQUgerpB4Dtfl5aFueIE4cTjys/i+wrHEjl7vt/EvhHd3/ZzPoBL5nZIndf0plG9BcoAgeM689PHzqd8YcOYtB+5Rz/ubFcc88pUYclIgWWq+sQ3H2Nu78cPt4OvAWM6Gw8kfUQzCwO1AAfuvuZZjYYuBcYC6wAznX3LeG5lwNzgBRwkbs/HJZPAW4DKoAHgYvd3c2sDLgDmAJsAs5z9xUF+3BZmPypYdz56jlRhyEiEQmuVM66h1BlZjUZz+e7+/y2TjSzscAngRc6G1OUPYSLCbJYs8uAR919EvBo+BwzOwSYBRwKzABuDJMJwE3AXGBSeMwIy+cAW9x9InADcF1+P0r31e5o4v6blnD7v7/CkhfXRx2OiBRAOssD2Oju1RnH3pJBX+C3wD+4+7bOxhNJQjCzkcAZwM0ZxTOB28PHtwNnZ5Tf4+4N7r4cWAZMNbPhQH93X+zB8pw7WtVpbmsBMN3MMkbtu+fPL67mFzfW8H9/eDcnE8G1O5r4SvX9/PwHz3PzVS/x7VP+l8d/+34OIhWR4pXbze3MrIQgGdzl7vd3JaKohoz+C7gU6JdRNszd10AwHmZm+4XlI4DnM85bFZY1hY9blzfXWRm2lTSzrcAQYGN3A/+fm2r45396gnTaScRjnHTyWO6692/oTr55+NdL2bh6Jw11wTLUhroU/3nxc5z0+fHdDVdEilQnh4zaFX7hvQV4y93/s6vtFLyHYGZnAuvd/aVsq7RR5u2Ut1endSxzzazGzGo2bNjQYSCNjSmuuOxx6mqTNNSn2LmziccfW8Fzz67ssG57tn3UQFNjy2sWa3c0datNESlubpA0z+rIwjHAl4GTzezV8Di9szFFMWR0DHCWma0A7iH4AL8G1oXDQIQ/mwfSVwGjMuqPBFaH5SPbKG9Rx8wSwABgc+tA3H1+85jc0KFDOwx8+7aGPcpicWPjhtoWZUvf3cQfH1rGe+9t6bBNgKmnjKSkdPd/itKyONNOHdlODRHpDXK4yugZdzd3P8zdPxEeD3Y2noInBHe/3N1HuvtYgsnix9z9S8BCYHZ42mzggfDxQmCWmZWZ2TiCyeMXw+Gl7WY2LewuXdCqTnNb54Tv0e2+2eAhFRwwoh+x2O4OSCrpLTaz+/nPXuTYab/i61/5A0cfeQu33vxKh+0eXD2UeXecxJDhlVT0LeHoM0Zxxa0ndjdcESly2txu734E3Gdmc4APgC8AuPubZnYfsITg4osL3T0V1vkWu5edPhQeEIyl3Wlmywh6BrNyEaCZsfDBWcw6ZwFvLdnIkCEV3HL7TEaNHgDAqpXbuHrek9TXp6irSwJw2ff/xFkzD6RqaGW7bZ9w9jhOOHtcLsIUkR6gGPcyijQhuPsTwBPh403A9L2cdy1wbRvlNcDkNsrrCRNKro0dO5Dna76Ou+8xkbxq5TZKSxPU16d2lZWUxFm9enuHCUFE9j1KCL1EW6uKJn1sMMlky8nhdNoZO25ggaISkZ7CgWSRbYCtrStyaEhVJbf9eiaVlSVUVpbQt28Jd//m8/TvXxZ1aCJShNKW3VEo6iHk2IzPTGTFhxezbt0O9t+/L2Vl+hWLyJ5yeR1CruivVR6UlycYM2Zg1GGISFHTpLKIiJDz7a9zQglBRCQi6iGIiAiO02Spjk8sICUEEZEIaMhIRER2KbaEYDnY4qdXMLMNwF8jeOsqcrAtdx4Vc3yKrWuKOTYo7viaYxvj7h3viNkOM/tj2F42Nrr7jI5P6x4lhIiZWY27V0cdx94Uc3yKrWuKOTYo7viKObZc0JXKIiICKCGIiEhICSF6bd4su4gUc3yKrWuKOTYo7viKObZu0xyCiIgA6iGIiEhICUFERAAlBBERCSkhiIgIoIQgIiKh/w9peUCjQXWeIwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiaElEQVR4nO3de7xcZX3v8c93JzEJBJKQBAq5EGpQCxSjbBHN0SJYTCsCR0Tiq5SosRw9VO01EftqET0eDdqi1IpFVMJFIE3oIVJBMKHVKgQTDUFAJC2XbIgQkoAEk00uv/PHesasPc7ee7L3XrNmZn/fr9e8Zs2z1rPWswYyv/1clyICMzOzodZRdgHMzKw9OcCYmVkhHGDMzKwQDjBmZlYIBxgzMyuEA4yZmRXCAcZsACS9SdLDZZejmUj6d0kfKLsc1jwcYKylSHpM0g5J23OvLzW6HBHx/Yh4ZaOvWzRJx0q6Q9I2Sc9JWivpD8sul7WmkWUXwGwA3hER3y3r4pJGRsTusq5fsG8BVwCnp8+vA1TkBdv8+xzWXIOxtiHpCknLcp8XS1qpzMmSuiR9XNKzqSb0R7ljR0v6vKQnJD0t6SuSxqZ9lbyLJP0C+EYlLZf/CEnLJW2W9Kikj+T2fULSUknXSHpB0gOSOnP7p0u6OeXdkq+RSXq/pIdSjeI7ko7s5d5vl/SnVWn3SXpnuv/LJD0j6XlJ6yUdV+Mck4GjgK9GxEvp9YOI+M+0f6KkW1M5t6Xtab2U5+WSVqX7eVbS9ZIm5PY/lr7P9cCLkv5a0vKqc/yjpC/UOr+1BgcYayd/CRwv6b2S3gQsAObHvvWQfguYDEwF5gNXSqo0cy0GXgHMBmalY/4ud+7fAg4BjgQuyF9UUgfZX/73pXynAn8m6W25w84AbgQmACuAL6W8I4BbgceBmSn/jWnfWcDHgXcCU4DvAzf0cu/fBN6TK9Mxqaz/BpwGvDnd3wTgXGBLjXNsATYA10k6S9JhVfs7gG+k884AdlTuowYBnwGOAH4HmA58ouqY9wBvT2W6DphbCUKSRqZyXtvL+a0VRIRffrXMC3gM2A48l3v9SW7/icBWsh/s9+TSTwZ2Awfm0pYCf0v2Y/gi8PLcvjcAj+byvgSMqTpfV9p+PfBEVTkvAr6Rtj8BfDe37xhgR+46m4GRNe71NmBB7nMH8CvgyBrHHpTu4cj0+dPA19P2KcDPgZOAjn6+32lkQeO/gL3A94Cjezl2NrAt9/nfgQ/0cuxZwE+q/ju+v8b9/knaPh14sOz/3/wa3Ms1GGtFZ0XEhNzrq5UdEXEv8N9kQWNpVb5tEfFi7vPjZH9hTwEOANamju3ngNtTesXmiNjZS3mOBI6o5E35Pw7kawC/yG3/ChiT/kqfDjwetfsgjgS+mDvn1nRfU6sPjIgXyGor81LSPOD6tG8VWdD4J+BpSVdKOrjWjUREV0T8aUS8PF3/ReAaAEkHSPpnSY9L+iVZ8JmQamE9SDpU0o2SnkzHXkdWe8zbWPV5CXBe2j4P115angOMtRVJFwKjgaeAhVW7J0o6MPd5RjruWbLmnmNzQWt8RIzLHdvXsuMbyWo7+aB3UETUM/pqIzAjBZta+/5X1XnHRsQPeznXDcB7JL0BGAvc9evCR1weEScAx5I1lf11fwWLiI1kQanSX/OXwCuB10fEwWTNblB7EMBnyL6z49Ox59U4rvo7/X9kTZzHkdVgru+vjNbcHGCsbUh6BfB/yH7M/hhYKGl21WGXSHpZ6qM5HfiXiNgLfBW4TNKh6VxTq/pQ+nIv8MvUaT1W0ghJx0l6XZ15NwGflXSgpDGS5qR9XwEuknRsKtN4Sef0ca5vk9U6PgnclO4LSa+T9HpJo8hqJDuBPdWZUyf+JZJmSepInf7vB+5JhxxEFoifk3QIcHEfZTmI1JQpaSr1BbSdwDKy/qR7I+KJ/vJYc3OAsVb0LfWcB/OvqQZwHbA4Iu6LiEfImqmulTQ65fsFsI2s1nI98MGI+Fnat4isg/ue1KTzXbK/1vsVEXuAd5D1STxKViO6Chi/H3lnAU8AXWSd20TEv5INPrgxlemnwB/0ca5u4GbgrWQ/0hUHkwXQbWTNgluAz9c4xUtkAw2+C1Su1w28N+3/AlnN6FmyoHN7H7d2CfBa4Hmyprub+zg2bwnwu7h5rC0owg8cs/Yn6WTguoioOazWmoOkGcDPgN+KiF+WXR4bHNdgzKwppOHefwHc6ODSHjyT38xKlwZfPE3WhDe35OLYEHETmZmZFcJNZGZmVgg3kSWTJ0+OmTNnll0MM7OWsnbt2mcjYkqtfQ4wycyZM1mzZk3ZxTAzaymSHu9tn5vIzMysEA4wZmZWCAcYMzMrhAOMmZkVwgHGzMwK4QBjZjYMbNnezX0bn2PL9u6GXdPDlM3M2twt655k0fL1jOroYNfevVx69vGcMTt7bt2W7d10bdvBtIljmTRudD9n2j8OMGZmbWzL9m4WLV/Pzl172cleABYuX8+cWZP5zw3P9hp4hoKbyMzM2ljXth2M6uj5Uz+qo4MHnvrlrwPPC9272blrLwuXrx/SJjQHGDOzNjZt4lh27d3bIy37HDUDT9e2HUN2bQcYM7M2NmncaC49+3jGjOrgoNEjGTOqg0vPPp5jjxhfM/BMmzh2yK5dWICR9HVJz0j6aS7tc5J+Jml9eszthNy+iyRtkPRw/lnokk6QdH/ad7kkpfTRkm5K6aslzczlmS/pkfSaX9Q9mpm1gjNmT+UHi07hug+8nh8sOoUzZk/tNfAMZUd/Yc+DkfRmYDtwTUQcl9JOA1ZFxG5JiwEiYpGkY4AbgBOBI8ieCf6KiNgj6V7go2TPAP82cHlE3CbpfwPHR8QHJc0D/mdEnCvpEGAN0AkEsBY4ISK29VXezs7O8GKXZjbcDHYUmaS1EdFZa19hNZiI+B6wtSrtjojYnT7eA1Sej34m2WNSuyPiUWADcKKkw4GDI+LuyCLhNcBZuTxL0vYy4NRUu3kbcGdEbE1B5U78hDwzs5omjRvNq6dPGPIhylBuH8z7gdvS9lRgY25fV0qbmrar03vkSUHreWBSH+f6DZIukLRG0prNmzcP6mbMzKynUgKMpL8BdgPXV5JqHBZ9pA80T8/EiCsjojMiOqdMqfm8HDMzG6CGB5jU6X468EexrwOoC5ieO2wa8FRKn1YjvUceSSOB8WRNcr2dy8zMGqihAUbSXGARcEZE/Cq3awUwL40MOwo4Grg3IjYBL0g6KfWvnA/ckstTGSH2LrLBAwF8BzhN0kRJE4HTUpqZmTVQYUvFSLoBOBmYLKkLuBi4CBgN3JlGG98TER+MiAckLQUeJGs6uzAi9qRTfQi4GhhL1mdT6bf5GnCtpA1kNZd5ABGxVdKngB+l4z4ZET0GG5iZNYsi1wIrW2HDlFuNhymbWaP1tQhlqyhlmLKZmfUuvwhlUWuBlc0BxsysBL0tQjmUa4GVzQHGzKwEvS1COZRrgZXNAcbMrASNWAusbH7gmJlZSc6YPZU5sya37SgyBxgza0utMvx30rjRTV2+wXCAMbO20w7Df9uB+2DMrK0Mh+G/rcIBxszaSisP/92yvZv7Nj7XNsHQTWRm1lZadfhvOzbruQZjZm2lFYf/tmuznmswZtZ2Wm34b6VZbyf7al6VZr1mL3tfHGDMrC210vDfVm3W64+byMzMStaKzXr1cA3GzKwJtFqzXj0cYMzMmkQrNevVw01kZmY1tNuclDK4BmNmVqUd56SUwTUYM7Ocdp2TUgYHGDOznFZeaqbZOMCYmeW065yUMjjAmJnltOuclDK4k9/MrEo7zkkpgwOMmVkN7TYnpQxuIjMzGyDPlembazBmZgPguTL9cw3GzGw/ea5MfRxgzMz2k+fK1McBxsxsP3muTH0cYMzM9pPnytTHnfxmZgPguTL9c4AxMxsgz5Xpm5vIzMysEA4wZmZWCAcYM2spnj3fOtwHY2Ytw7PnW4trMGbWEjx7vvUUFmAkfV3SM5J+mks7RNKdkh5J7xNz+y6StEHSw5Lelks/QdL9ad/lkpTSR0u6KaWvljQzl2d+usYjkuYXdY9m1jiePd96iqzBXA3MrUr7GLAyIo4GVqbPSDoGmAccm/J8WdKIlOcK4ALg6PSqnHMBsC0iZgGXAYvTuQ4BLgZeD5wIXJwPZGbWmjx7vvUUFmAi4nvA1qrkM4ElaXsJcFYu/caI6I6IR4ENwImSDgcOjoi7IyKAa6ryVM61DDg11W7eBtwZEVsjYhtwJ78Z6MysxXj2fOtpdCf/YRGxCSAiNkk6NKVPBe7JHdeV0nal7er0Sp6N6Vy7JT0PTMqn18hjZi3Ms+dbS7OMIlONtOgjfaB5el5UuoCs+Y0ZM2b0X0ozK51nz7eORo8iezo1e5Hen0npXcD03HHTgKdS+rQa6T3ySBoJjCdrkuvtXL8hIq6MiM6I6JwyZcogbsvMPD/FqjU6wKwAKqO65gO35NLnpZFhR5F15t+bmtNekHRS6l85vypP5VzvAlalfprvAKdJmpg6909LaWZWkFvWPcmcxas476rVzFm8ihXrniy7SNYECmsik3QDcDIwWVIX2ciuzwJLJS0AngDOAYiIByQtBR4EdgMXRsSedKoPkY1IGwvcll4AXwOulbSBrOYyL51rq6RPAT9Kx30yIqoHG5jZEMnPT9lJNspr4fL1zJk12U1Zw1xhASYi3tPLrlN7Of7TwKdrpK8BjquRvpMUoGrs+zrw9boLa2YDVpmfUgkusG9+igPM8OaZ/GY2KJ6fYr1xgDGzQfH8FOtNswxTNrMW5vkpVosDjJkNCc9PsWpuIjMzs0I4wJiZWSEcYMxalGfOW7NzH4xZC/KTHa0VuAZj1mL8ZEdrFQ4wZi3GT3a0VuEAY9ZiPHPeWoUDjFmLafTMeQ8msIFyJ79ZC2rUzHkPJrDBcIAxa1FFz5z3Mvw2WG4iM7OaPJjABssBxsxq8mACGywHGDOrycvw22C5D8bMeuVl+G0wHGDMrE9eht8Gyk1kZmZWCAcYMzMrhAOMmZkVwgHGzMwK4QBjZmaFcIAxM7NCOMCYmVkhHGDMzKwQDjBmZlaIugKMpBFFF8TMzNpLvTWYDZI+J+mYQktjZmZto94Aczzwc+AqSfdIukDSwQWWy8zMWlxdASYiXoiIr0bEG4GFwMXAJklLJM0qtIRmLc7PtLfhqq7VlFMfzNuB9wEzgb8HrgfeBHwbeEVB5TNraX6mvQ1n9S7X/whwF/C5iPhhLn2ZpDcPfbHMWp+faW/DXb9NZKn2cnVELKgKLgBExEcKKZlZi/Mz7W246zfARMQe4C0NKItZWynimfbuz7FWUm8T2Q8lfQm4CXixkhgRPy6kVGZtoPJM+4VVfTADbR5zf461GkVE/wdJd9VIjog4ZeiLVI7Ozs5Ys2ZN2cWwNrRle/egn2m/ZXs3cxavYueufTWiMaM6+MGiU9yfY6WStDYiOmvtq6sGExFD2kQm6c+BDwAB3E82Ou0AshrSTOAx4N0RsS0dfxGwANgDfCQivpPSTwCuBsaSjWb7aESEpNHANcAJwBbg3Ih4bCjvwaxeQ/FM+0p/TmWwAOzrz3GAsWZV91pkkt4uaaGkv6u8BnJBSVOBjwCdEXEcMAKYB3wMWBkRRwMr02fS6gHzgGOBucCXc0vXXAFcABydXnNT+gJgW0TMAi4DFg+krGbNooj+HLOi1bsW2VeAc4EPAwLOAY4cxHVHAmMljSSruTwFnAksSfuXAGel7TOBGyOiOyIeBTYAJ0o6HDg4Iu6OrJ3vmqo8lXMtA06VpEGU16xUlf6cMaM6OGj0SMaM6hhUf45ZI9Tbyf/GiDhe0vqIuETS3wM3D+SCEfGkpM8DTwA7gDsi4g5Jh0XEpnTMJkmHpixTgXtyp+hKabvSdnV6Jc/GdK7dkp4HJgHP5ssi6QKyGhAzZswYyO2YNcwZs6cyZ9bkQffnmDVKvU1klYH7v5J0BNmP+1EDuaCkiWQ1jKOAI4ADJZ3XV5YaadFHel95eiZEXBkRnRHROWXKlL4LbtYEJo0bzaunT3BwsZZQb4C5VdIE4HPAj8k64W8c4DXfCjwaEZsjYhdZTeiNwNOp2Yv0/kw6vguYnss/jaxJrSttV6f3yJOa4cYDWwdYXjMzG4B6F7v8VEQ8FxHLyfpeXhURfzvAaz4BnCTpgNQvcirwELACmJ+OmQ/ckrZXAPMkjZZ0FFln/r2pOe0FSSel85xfladyrncBq6Ke8dhmZjZk+uyDkfTOPvYREfvdDxMRqyUtI6sJ7QZ+AlwJjAOWSlpAFoTOScc/IGkp8GA6/sK0ugDAh9g3TPm29AL4GnCtpA1kNZd5+1tOMzMbnD4nWkr6Rh95IyLeP/RFKocnWpqZ7b8BT7SMiPcVUyQzM2t39Q5TRtLbySY7jqmkRcQniyiUmZm1vrImWpqZWZurd5jyGyPifLLlVy4B3kDPocNmZmY9DHSi5W4GONHSzMyGh3r7YCoTLS8F1qa0qwopkZmZtYX+5sG8DtgYEZ9Kn8eRLa//M7JVis3MzGrqr4nsn4GXACS9GfhsSnuebHKkmZlZTf01kY2IiMoaXucCV6blYpZLWldoyczMrKX1V4MZkRaLhGzNsFW5fXXPoTEzs+GnvyBxA/Afkp4lG0n2fQBJs8iayczMzGrqb6mYT0taCRxO9mCwysJlHWSTLs3MzGrqt5krIu6pkfbzYopjZmbtot6JlmZmZvvFAcbMzArhAGNmZoVwgDEzs0I4wJiZWSEcYMzMrBAOMGb7Ycv2bu7b+BxbtneXXRSzpuflXszqdMu6J1m0fD2jOjrYtXcvl559PGfMnlp2scyalmswZnXYsr2bRcvXs3PXXl7o3s3OXXtZuHy9azJmfXCAMatD17YdjOro+c9lVEcHXdt29JLDzBxgzOowbeJYdu3d2yNt1969TJs4tqQSmTU/BxizOkwaN5pLzz6eMaM6OGj0SMaM6uDSs49n0rjRgDv/zWpxJ79Znc6YPZU5sybTtW0H0yaO/XVwcee/WW0OMGb7YdK40b8OLNCz838nWRPawuXrmTNrco/jzIYjN5GZDYI7/8165wBjQ2449Ue489+sd24isyE13PojKp3/C6vu2c1jZg4wNoSK7o/Ysr37NzrYm0Fvnf9mw50DjA2ZSn9EJbjAvv6Iwf7oNnvNqLrz38zcB2NDqKj+CC/TYtaaHGBsyPQ3GXGgPFLLrDW5icyGVBH9ER6pZdaaXIOxITdp3GhePX3CkPVJFFUzGk7Dqc3K4BqMtYShrhk1+6ABs3bgAGMtY6hGanl5F7PGKKWJTNIEScsk/UzSQ5LeIOkQSXdKeiS9T8wdf5GkDZIelvS2XPoJku5P+y6XpJQ+WtJNKX21pJkl3GZba+XmJQ8aMGuMsvpgvgjcHhGvAl4NPAR8DFgZEUcDK9NnJB0DzAOOBeYCX5Y0Ip3nCuAC4Oj0mpvSFwDbImIWcBmwuBE3NVzcsu5J5ixexXlXrWbO4lWsWPdk2UXaLx40YNYYDQ8wkg4G3gx8DSAiXoqI54AzgSXpsCXAWWn7TODGiOiOiEeBDcCJkg4HDo6IuyMigGuq8lTOtQw4tVK7scFphzkpRQ0aMLOeyuiD+W1gM/ANSa8G1gIfBQ6LiE0AEbFJ0qHp+KnAPbn8XSltV9quTq/k2ZjOtVvS88Ak4Nl8QSRdQFYDYsaMGUN1f22tyNn6jeTlXcyKV0YT2UjgtcAVEfEa4EVSc1gvatU8oo/0vvL0TIi4MiI6I6JzypQpfZfagPZqXhrq4dRm1lMZAaYL6IqI1enzMrKA83Rq9iK9P5M7fnou/zTgqZQ+rUZ6jzySRgLjga1DfifDkJuXzKxeDW8ii4hfSNoo6ZUR8TBwKvBges0HPpveb0lZVgDflPQPwBFknfn3RsQeSS9IOglYDZwP/GMuz3zgbuBdwKrUT2NDoOjmpWZdNdnM9k9Z82A+DFwv6WXAfwPvI6tNLZW0AHgCOAcgIh6QtJQsAO0GLoyIPek8HwKuBsYCt6UXZAMIrpW0gazmMq8RNzWcFLV68P5MgMwHIsBByazJyH/YZzo7O2PNmjVlF6OpFV2z2LK9mzmLV7Fz174+njGjOvjBolN+43r5QLRj124kMWbkCM/KN2swSWsjorPWPs/kt7o0YmmVekeo1ZqJD8GuPbsBz8o3axZe7NL61ai5L/WOUKs1Ez/Ps/LNmoMDjPWrUUur1DtCbdrEsezcvaeXs7TusGmzduMmMutXI+e+1DtCrVbf4YGjR7Bnb3jYtFmTcICxflVqFgur+mB6+xEf7GCA/kaodW3bwdhRI3mhe/ev0w582QguecexvOVVhzq4mDUJBxirS701i0YMBqhVo9oT4eBi1mTcB2N1629plUYNBvBqAmatwTUYGzKNXAjTi1WaNT8HGBsyjV4Is6jVBMxsaLiJzIaMm67MLM81GBtSbroyswoHGBtybroyM3ATmZmZFcQBxszMCuEAY2ZmhXCAMTOzQjjAmJlZIRxgzMysEA4wZmZWCAcYMzMrhAOMmZkVwgHGzMwK4QBjZmaFcIAp0Jbt3dy38bkhf+CWmVkr8GKXBWnEo4PNzJqZazAFaNSjg83MmpkDTAEqjw7Oqzw62MxsuHCAKUCjHx1sZtaMHGAK4EcHm5m5k78wRT86eMv2bj+W2MyamgNMgYp6dLBHqJlZK3ATWYvxCDUzaxUOMC3GI9TMrFU4wLQYj1Azs1bhANNiPELNzFqFO/lbUNEj1MzMhoIDTIsqaoSamdlQKa2JTNIIST+RdGv6fIikOyU9kt4n5o69SNIGSQ9Lelsu/QRJ96d9l0tSSh8t6aaUvlrSzIbfoJnZMFdmH8xHgYdynz8GrIyIo4GV6TOSjgHmAccCc4EvSxqR8lwBXAAcnV5zU/oCYFtEzAIuAxYXeyvNw48IMLNmUUqAkTQNeDtwVS75TGBJ2l4CnJVLvzEiuiPiUWADcKKkw4GDI+LuiAjgmqo8lXMtA06t1G6K0Cw/6rese5I5i1dx3lWrmbN4FSvWPVlqecxseCurD+YLwELgoFzaYRGxCSAiNkk6NKVPBe7JHdeV0nal7er0Sp6N6Vy7JT0PTAKeHdrbaJ5Z9fkJmDvJhjEvXL6eObMmu6/GzErR8BqMpNOBZyJibb1ZaqRFH+l95akuywWS1khas3nz5jqLs08zzar3BEwzazZlNJHNAc6Q9BhwI3CKpOuAp1OzF+n9mXR8FzA9l38a8FRKn1YjvUceSSOB8cDW6oJExJUR0RkRnVOmTNnvG2mmH3VPwDSzZtPwABMRF0XEtIiYSdZ5vyoizgNWAPPTYfOBW9L2CmBeGhl2FFln/r2pOe0FSSel/pXzq/JUzvWudI3fqMEM1mB+1Ie638YTMM2s2TTTPJjPAkslLQCeAM4BiIgHJC0FHgR2AxdGxJ6U50PA1cBY4Lb0AvgacK2kDWQ1l3lFFLjyo76wqg+mvx/1ovptPAHTzJqJCvjDviV1dnbGmjVrBpR3f57NsmV7N3MWr2Lnrn01nzGjOvjBolMcEMys5UhaGxGdtfY1Uw2mZe3PrPpKv01lpBfs67dxgDGzduLFLhvMnfFmNlw4wDSYO+PNbLhwE1kJ3BlvZsOBA0xJvBqymbU7N5GZmVkhHGDMzKwQDjBmZlYIBxgzMyuEA4yZmRXCS8UkkjYDj5ddjv00mQKecdNihvt3MNzvH/wdQLnfwZERUXM5egeYFiZpTW9rAA0Xw/07GO73D/4OoHm/AzeRmZlZIRxgzMysEA4wre3KsgvQBIb7dzDc7x/8HUCTfgfugzEzs0K4BmNmZoVwgDEzs0I4wLQYSdMl3SXpIUkPSPpo2WUqi6QRkn4i6dayy1IGSRMkLZP0s/T/wxvKLlOjSfrz9O/gp5JukDSm7DIVTdLXJT0j6ae5tEMk3SnpkfQ+scwyVjjAtJ7dwF9GxO8AJwEXSjqm5DKV5aPAQ2UXokRfBG6PiFcBr2aYfReSpgIfAToj4jhgBDCv3FI1xNXA3Kq0jwErI+JoYGX6XDoHmBYTEZsi4sdp+wWyH5Wp5Zaq8SRNA94OXFV2Wcog6WDgzcDXACLipYh4rtRClWMkMFbSSOAA4KmSy1O4iPgesLUq+UxgSdpeApzVyDL1xgGmhUmaCbwGWF1yUcrwBWAhsLfkcpTlt4HNwDdSM+FVkg4su1CNFBFPAp8HngA2Ac9HxB3llqo0h0XEJsj+CAUOLbk8gANMy5I0DlgO/FlE/LLs8jSSpNOBZyJibdllKdFI4LXAFRHxGuBFmqRZpFFSP8OZwFHAEcCBks4rt1SW5wDTgiSNIgsu10fEzWWXpwRzgDMkPQbcCJwi6bpyi9RwXUBXRFRqr8vIAs5w8lbg0YjYHBG7gJuBN5ZcprI8LelwgPT+TMnlARxgWo4kkbW7PxQR/1B2ecoQERdFxLSImEnWqbsqIobVX64R8Qtgo6RXpqRTgQdLLFIZngBOknRA+ndxKsNsoEPOCmB+2p4P3FJiWX5tZNkFsP02B/hj4H5J61LaxyPi2+UVyUryYeB6SS8D/ht4X8nlaaiIWC1pGfBjstGVP6FJl0wZSpJuAE4GJkvqAi4GPgsslbSALPCeU14J9/FSMWZmVgg3kZmZWSEcYMzMrBAOMGZmVggHGDMzK4QDjJmZFcIBxtqeMv8p6Q9yae+WdHtJ5XmVpHVpiZeXV+17TNL9af86SZcXXJbOoq9hw5eHKduwIOk44F/I1m4bAawD5kbEfw3gXCMiYs8gyvIxYGxEXFxj32NkqwM/O9Dz70c5RkbE7qKvY8OXazA2LETET4FvAYvIJqZdB/yNpB+lmsSZkC0gKun7kn6cXm9M6Sen5/B8k2yS64GS/k3SfelZJOdWX1PSbEn3SFov6V8lTZT0h8CfAR+QdFc9ZZc0MpXz5PT5M5I+nbYfk7RY0r3pNSulT5G0POX7kaQ5Kf0Tkq6UdAdwTbqvW9O+A9OzRqq/k/dKulnS7el5I5fmyjY3fU/3SVrZ13lsGIoIv/waFi/gQOBh4H7gM8B5KX0C8PO0/wBgTEo/GliTtk8mW1DyqPT5bOCruXOPr3G99cDvpe1PAl9I258A/qqXMj6Wyrcuvf48pR9LtgzK75PNWH9Z7vi/SdvnA7em7W8C/yNtzyBbWqhy7bVkNajKfVXy/N9evpP3kq0UMB4YAzwOTAemABtz38khfZ2n7P/+fjX+5aVibNiIiBcl3QRsB94NvEPSX6XdY8h+iJ8CviRpNrAHeEXuFPdGxKNp+37g85IWk/1Afz9/LUnjgQkR8R8paQlZE1093hJVTWQR8YCka8lqYW+IiJdyu2/IvV+Wtt8KHJMt0QXAwZIOStsrImJHjeueRraIaPV3AtnDrJ5P9/YgcCQwEfhe5TuJiK39nGe4rhM2bDnA2HCzN70EnB0RD+d3SvoE8DTZEyI7gJ253S9WNiLi55JOAP4Q+IykOyLikwWX/XeB54DDqtKjxnYHWSDqEUhSwHmR2nr7Tl4PdOeS9pD9dqjq2n2ex4Yf98HYcPUd4MNpFV4kvSaljwc2RcReskVFR9TKLOkI4FcRcR3ZQ696LJWf/trfJulNKemPgf9ggCS9E5hE9hTLyyVNyO0+N/d+d9q+A/jTXP7ZdVymt++kN3cDvyfpqHT8IQM8j7Up12BsuPoU2VMx16cfwseA04EvA8slnQPcRe9/7f8u8DlJe4FdwIdqHDMf+IqkA9i/1Y7vklQZpbYe+Auy1XJPjYiNkr4EfJF9y7OPlrSa7A/G96S0jwD/JGk92b/z7wEf7Oe6vX0nNUXEZkkXADdL6iB7Bsnv7+95rH15mLJZC2vksGaz/eUmMjMzK4RrMGZmVgjXYMzMrBAOMGZmVggHGDMzK4QDjJmZFcIBxszMCvH/AeMkHfmLyFA5AAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -341,10 +288,10 @@ } ], "source": [ - "# \n", - "data.plot(x=\"YearsExperience\", y=\"Salary\",cmap=\"plasma\", \n", - " c=data[\"YearsExperience\"].apply(lambda x: int(x)), \n", - " kind=\"scatter\")\n", + "# Scatter plot of Experience vs Salary.\n", + "data.plot(x=\"YearsExperience\", y=\"Salary\",\n", + " kind=\"scatter\", title=\"Experience vs Salary\")\n", + "plt.xlabel(\"Years of Experience\")\n", "plt.show()" ] }, @@ -358,7 +305,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 30, "id": "2cd31a2a", "metadata": {}, "outputs": [], @@ -371,24 +318,24 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 31, "id": "9e82b675", "metadata": {}, "outputs": [], "source": [ - "# Split the dataset using mlpack's preprocess_split method\n", + "# Split the dataset using mlpack's preprocess_split method.\n", "output = mlpack.preprocess_split(input=features, input_labels=targets, test_ratio=0.4, seed=101)" ] }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 32, "id": "26caf3cc", "metadata": {}, "outputs": [], "source": [ - "# preprocess_split returns a dictionary, which we'll unpack into\n", - "# respective variables for clarity of code\n", + "# Preprocess_split returns a dictionary, which we'll unpack into\n", + "# respective variables for clarity of code.\n", "X_train = output[\"training\"]\n", "y_train = output[\"training_labels\"]\n", "X_test = output[\"test\"]\n", @@ -405,19 +352,20 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 42, "id": "5a642645", "metadata": {}, "outputs": [], "source": [ "# Create and train Linear Regression model.\n", "output = mlpack.linear_regression(training=X_train,\n", - " training_responses=y_train, lambda_=0.5)" + " training_responses=y_train, \n", + " lambda_=0.5, verbose=True)" ] }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 43, "id": "8b2e2bb4", "metadata": {}, "outputs": [], @@ -430,12 +378,12 @@ "id": "bf6ce883", "metadata": {}, "source": [ - "### Making Predcitions on Test set" + "### Making Predictions on Test set" ] }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 44, "id": "e41657ad", "metadata": {}, "outputs": [], @@ -446,12 +394,12 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 45, "id": "d3734f1a", "metadata": {}, "outputs": [], "source": [ - "y_preds = output[\"output_predictions\"].reshape(-1,1)" + "y_preds = output[\"output_predictions\"].reshape(-1, 1)" ] }, { @@ -464,15 +412,15 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 46, "id": "531b842d", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA4T0lEQVR4nO3deXxU1dnA8d8zSUgIu4CIIAYEF8SVFHFDLKgItqh1QWu1LS2t9VWqXQSt1WpR7GLrUq24o3WhqNWqKBT3FsGAKIsiKGGXXbZAlpnn/eOehJlhkkySmbkzmefr534y98y59z5BeObMueeeI6qKMcaY7BHwOwBjjDGpZYnfGGOyjCV+Y4zJMpb4jTEmy1jiN8aYLGOJ3xhjsowlfmOMaQZE5FoRWSQiC0XkGREpqK2uJX5jjMlwItINuAYoVtV+QA4wqrb6lviNMaZ5yAVaikguUAisrauiATp16qRFRUV+h2GMyQBz587dpKqdm3KOoWcW6ubNwbjqzp9XsQjYE1Y0SVUnVe+o6hoR+ROwEtgNTFfV6bWdzxK/U1RURElJid9hGGMygIisaOo5Nm8O8vasbnHVbZ+/fI+qFtcRTwdgJNAT+Br4p4hcpqpPxapvXT3GGOMLgVBOfFv9hgLLVXWjqlYCLwAn1VbZWvzGGOMHBQkmrO29EhgoIoV4XT1DgFq7MCzxG2OMDwSQkCTkXKo6W0SmAvOAKuAjYFJt9S3xG2OMHxQklMDTqd4M3BxPXUv8xpiMo1pJUBci5BKQIxHJ0NuVCUz8DWGJ3xiTUSpD71FWdQ1ejwYIrWmVO4mcwFH+BtZQCuLTOlgZ+jFpjMlGIV1PWdVPgW3ALmAXynp2Vl2G6m6fo2s4CcW3JZolfmNMxqgI/guI9dBTiMrQjBRH00QKEtS4tkSzrh5jTMZQNgEVMd6pQtma6nCazqc+fmvxG2MyRm7gZLxpaKIJuTIw1eE0iTecU+PaEs0SvzEmY+TKIHLkGKBlWGkheYHh5AQO8yusxlG8Fn88W4JZV48xJmOIBGiV+zgVoalUhl4E8mgRGEVeYITfoTWKX6N6LPEbYzKKSB75OZeQn3OJ36E0jYJU+XNpS/zGGOMX9afJb4nfGGN8kowx+vFI2s1dEXlURDaIyMKwsgvdmpAhESmOqj9eRJaJyBIROSusvL+ILHDv3SMi4srzReQ5Vz5bRIrCjrlCRJa67Ypk/Y7GGNNoPt7cTeaonseBYVFlC4HzgXfDC0WkL976kEe6Y+4XkepJqB8AxgB93FZ9ztHAVlXtDfwFuNOdaz+8iYpOAAYAN7tFCowxJkJIV7Kn6m/srvoTVaGP0BR3vYjGtyVa0hK/qr4LbIkq+1RVl8SoPhJ4VlXLVXU5sAwYICJdgbaqOku9/yOTgXPDjnnCvZ4KDHHfBs4CZqjqFlXdCsxg3w8gY0yWKw8+z47KYZSH7qEi9AC7qi5jd/CG1Cb/Ztjib4huwKqw/dWurJt7HV0ecYyqVuFN3tGxjnPtQ0TGiEiJiJRs3LgxAb+GMSYThPRr9gR/g7eMbSVev8tuKkP/JqizUhKDKEhQ4toSLV0Sf6zfTOsob+wxkYWqk1S1WFWLO3du0rrJxpgMUhV6j9hjW8qoCP07dYFkeYt/NXBQ2H53YK0r7x6jPOIYEckF2uF1LdV2LmOMAWDvLcR93kFSNdixmd7cbYiXgVFupE5PvJu4c1R1HbBDRAa6/vvLgZfCjqkesXMB8Ka7D/AGcKaIdHA3dc90ZcYYA3hTP8TOqAXkBc5LXSAa55ZgSftoE5FngMFAJxFZjTfSZgtwL9AZeFVE5qvqWaq6SESmAIvxVle4SlWr5169Em+EUEtgmtsAHgGeFJFl7ryjAFR1i4jcBnzo6t2qqhE3mY0x2U2kNYW591BWdTVe77D3IZAf+AG5geNTF0eC1txt8HVTPXwpXRUXF2tJSa2L0htjmqGQbqUqNB1lN7mBweTsfRyoTiIyV1WL669Zu+IjCnTO4/FdL2fgkiZfL5w9uWuMyVoB6UCLnIv9C8DW3DXGmCySpP77eFjiN8YYXwj41Mdvid8YY/yilviNMSZ7qH+zc1riN8YYvyRhOoZ4WOI3xhg/KL718afLk7vGGJN9VOLb6iEih4nI/LBtu4j8vLb61uI3xhi/JKiP3013fyyAW8tkDfBibfUt8RtjjC/ia803whDgC1VdUVsFS/zGGOMHBU1OH/8o4Jm6KljiN8YYv8Q/qqeTiIRPJjZJVSdFVxKRFsC3gfF1ncwSvzEma81dsZXvPPA/AEonjkjtxZWGdPVsinOStrOBeaq6vq5KlviNMVknFFJG/u2/LFizDYDTD/NpBb7Ed/VcQj3dPGCJ3xiTBjRUha58Hla9ABqEbucgRZcgOfkJv9Z/l23iuw/Prtl/avQJnNKnU8KvU7/E3twVkULgDOAn9dW1xG+M8ZWqonOvg01zILTHK/z8AfSrN+Gkx+pYJrFhKoMhhvz5HVZuKQPgmO7tePFnJxMI+PMQVaIf4FLVMqBjPHUt8Rtj/LVtIWz+cG/SBwiVw45lsOG/0GVQky8xfdFXjHlybs3+81eeRP+DOzT5vE2lNmWDMSYrbZkPoap9y4Nl6JZ5SBMS/57KICfcPpNtuysBOLVPJyb/cADeEt5pwKfZOZM2ZYOIPCoiG0RkYVjZfiIyQ0SWup8dwt4bLyLLRGSJiJwVVt5fRBa49+5xi67jFmZ/zpXPFtm7ZpqIXOGusVREqhdkN8ako4LOEMjbtzyQjxR0afRpX5q/hsNver0m6b96zSk8OfqENEr6eF098WwJlsy5eh4HhkWVjQNmqmofYKbbR0T64j10cKQ75n7Z27H3ADAG6OO26nOOBraqam/gL8Cd7lz74S3sfgIwALg5/APGGJNmugyOnfglB7qd3eDT7Sqvomjcq4x9dj4A5xzdldKJIzjywHZNizPh4pynJwnfCpKW+FX1XWBLVPFI4An3+gng3LDyZ1W1XFWXA8uAASLSFWirqrPUWxV+ctQx1eeaCgxx3wbOAmao6hZV3QrMYN8PIGNMmpCcAuTER6BVD8gpgJyWUNAFOeEBpEX7Bp3rqQ9WcOTNb9Tsz/zFadx36fEJjjiBfGrxp7qPv4uqrgNQ1XUisr8r7wZ8EFZvtSurdK+jy6uPWeXOVSUi2/DuaNeUxzgmgoiMwfs2QY8ePRr/WxljmkTa9IbTXoKylaAhaFXUoC6ZbWWVHHPr9Jr9Swb04I7zj0pGqAmj6m1+SJebu7H+D2sd5Y09JrLQe+R5EkBxcbFP/wuMMYCX6Fsd3ODjHnznC+6Y9lnN/vvXn073DoWJDC15gv7MjJ/qxL9eRLq61n5XYIMrXw0cFFavO7DWlXePUR5+zGoRyQXa4XUtrQYGRx3zdmJ/DWOM3zbtLKf49/+p2f/Jab0Yf/YRPkbUQAqaJWvuvgxcAUx0P18KK39aRO4CDsS7iTtHVYMiskNEBgKzgcuBe6PONQu4AHhTVVVE3gBuD7uheyb1TFhkjMksReNejdifc+MQ9m9T4FM0jZWc/vt4JC3xi8gzeC3vTiKyGm+kzURgioiMBlYCFwKo6iIRmQIsBqqAq1Q16E51Jd4IoZbANLcBPAI8KSLL8Fr6o9y5tojIbcCHrt6tqhp9k9kYk4HCJ1UD6NWpFW/+crB/ATVVc2vxq+oltbw1pJb6E4AJMcpLgH4xyvfgPjhivPco8GjcwRpj0l50K//tXw6mqFMrn6JJjGzp6jHGmAZ5e8kGvv/YhzX7vTq34s1fDPYvoERRErb0YkNZ4jfGpK3oVv7sG4bQpW2m9eXXTrNkVI8xxtTr5Y/Xcs0zH9Xsn9irI8+MGehjREmQpKdy42GJ3xiTNlSVnuNfiyj7+Ldn0q4wxpQOzYD18Rtjstof3/iMv731Rc3+yGMP5O5Rx/kYUQo0t+GcxhgTj6pgiN43TosoW/S7s2iVnwXpyVr8xmSXUNkOAAKFbXyOxD+/+ufH/HPu3um4hh7RhYeviGdN8cynaguxGJM1ghvXsHPK3QS/WglATtciWl80lpxOXX2OLHX2VAY5/KbXI8qW/H4Y+bmJWWYxM4hvffz+jCUyJktpxR62P/gbgmuXQ7AKglUE13zB9gdvRCvL/Q4vJb73yOyIpH/ZwB6UThyRZUnf8Wk+fmvxG5NCFQtmoVWVkfPxqqKVFVQsmk3+sU1fXzZdbd9TydG3TI8o++L24eT4tdi53xTUbu4a0/yFvt4IFXv2faOynNDWjakPKEWG3vUOyzbsrNm/duihjB3ax8eI0oTd3DWm+cvpdgi0KNg3+eflk9v9EH+CSqIN2/cw4PaZEWXL7xiePuve+szG8RuTBfIOPZacjl0JblwNVd4i4OTmkdO5G7mHHO1vcAl2+E3T2FO5dzKa35/bj8sGNnyhlWZLxUb1GJMNJJBD2zG3svut5ymf/y4g5B83iJanfwcJNI+xFis27+K0P74dUVY6cYQ/waQxxVr8xmQNyW9J4bDLKBx2md+hJFz0pGr3f/d4hh+VPcNUG8xu7hpjMtXCNds45973I8qslV+PLFp60RjTzES38p/+0Qmc1LuTT9FkGEv8xphMMuuLzVzy0AcRZdbKb4jEPrkrIu2Bh/FWLFTgh6o6K1ZdXxK/iIwFfgwI8JCq/lVE9gOeA4qAUuAiVd3q6o8HRgNB4BpVfcOV92fveryvAWPdguv5wGSgP7AZuFhVS1P1+xnT3EW38l+5+hT6dWvnUzQZKvFz9dwNvK6qF4hIC6CwtoopH0YgIv3wkv4A4BjgHBHpA4wDZqpqH2Cm20dE+uItpH4kMAy4X0Sqn+1+ABgD9HHbMFc+Gtiqqr2BvwB3puBXM6bZm7Zg3T5Jv3TiCEv6jVA9qieerT4i0hYYBDwCoKoVqvp1bfX9aPEfAXygqmUAIvIOcB4wEhjs6jwBvA1c78qfVdVyYLmILAMGiEgp0Lb6q4yITAbOBaa5Y25x55oK3Cciohr+nLwxpiGiE/5bvxxMzwxf7Nx38Xf1dBKRkrD9Sao6KWy/F7AReExEjgHm4vWA7Ip1Mj8GDi8EBolIRxEpBIYDBwFdVHUdgPu5v6vfDVgVdvxqV9bNvY4ujzhGVauAbUDH6EBEZIyIlIhIycaNzfdxeWOa4unZKyOSfn5ugNKJIyzpN5mgofg2YJOqFodtk6JOlgscDzygqscBu3C9JrGkvMWvqp+KyJ3ADGAn8DFQVcchsT4StY7yuo6JjmUSMAmguLjYvg0YEybWMohzbhjC/s1osXNfJXY452pgtarOdvtTqSPx+/KooKo+oqrHq+ogYAuwFFgvIl0B3M8NrvpqvG8E1boDa1159xjlEceISC7Qzl3HGBOHe2YujUj6vTq3onTiCEv6CaahQFxbvedR/QpYJSKHuaIhwOLa6vs1qmd/Vd0gIj2A84ETgZ7AFcBE9/MlV/1l4GkRuQs4EO8m7hxVDYrIDhEZCMwGLgfuDTvmCmAWcAHwpvXvG1O/YEg55Iaoxc5vPpN2LZvnYud+01D9dRrgauAfbkTPl8APaqvo1zj+50WkI1AJXKWqW0VkIjBFREYDK4ELAVR1kYhMwfv0qnL1g+48V7J3OOc0t4F3Z/tJdyN4C96oIGNMHW7610Ke/GBFzf6pfTrx5OgTfIyomVMS+gCXqs4H4lq30pfEr6qnxijbjPf1JFb9CcCEGOUleA8rRJfvwX1wGGPqVl4V5LDfRC6D+NltwyjIy8IVsVJIfVx60Z7cNSaL/XhyCTMWr6/Zv6B/d/504TE+RpRdLPEbY1JmZ3kV/W5+I6Js2YSzyc1pHlNDZwxL/MaYVPjWve+zYM22mv2fDT6EXw873MeIspRCKOjPB60lfmOyxOad5fT//X8iymwZRJ/5NNbQEr8xWeD422awZVdFzf5vz+nLD0/p6WNEJtGzczZEnYlfRAKqe0eaish3gTbA5Oq5dowx6WvVljJO/cNbEWU2dXJ6SOelF18VkevcNAs34s3+9iXwLPDtpEdnjGm06EnV7h51LCOP7VZLbZNySvU8PClXa+IXkdPwnpLtLCL7A98DbsCb3/4hERkElKrqypREaoyJy2dfbWfYX9+LKLNWfnqKZzqGZKivxR8A2gKt8BZB2YQ3Adoe977dFTLNjgZDVO0oI7d1SyQ3sx5iim7lP/6DbzD4sP1rqW38lYZ9/Kr6jog8hbeISWvgFlV91021sFFV301VkMakyoaXZ7F28nRC5VVIToAu3zmFrt8dggTSe3x7SekWLvh75Cp71spPcwp+zSBWZ4tfVX8rIk8DVaq6zBUH8Fa9MqZZ2TRzHqsfmYaWVwKglbB+6ntITg5dL/2mz9HVLrqV/+LPTuK4Hh18isbEy8+bu/U2Y1T1s7Ckj6puVNUvkhuWMan31VMza5J+tVB5JV9NfRcNJXYaxUSY+en6mMsgWtLPICGJb0swG8dvjFOxeUfM8tCeCrQyiOSnT3dPdML/z3WD6L1/G5+iMY2Vdn38xmSblgfvT9nSNfuU53Vog7RIj38qU+eu5pf//DiizPryM5QKoTQd1WNM1uj+4+Es/c3jaMXe7h7Jz6P7j9NjWoPoVv7/xn2TA9u39Ckakwhp2+IXkZOBW4CDXX0BVFV7JTc0Y1KrzdG9OPT2H7LmsdfZvWID+Qd04MDvnUG7E/ydwOzBd77gjmmf1ex3bVfArPExl64wmSZdEz/ealbXAnPxxvIb02y17lfEYX/+qd9hABAKKb2ilkH86KYz6NCqhU8RmURSTfjSi3GLJ/FvU9Vp9VczxiTKhFcX89B7y2v2iw/uwNQrT/IxIpMMadvVA7wlIn8EXgDKqwtVdV5jLyoi1wI/whvKugBvUeBC4DmgCCgFLlLVra7+eGA03jeOa1T1DVfen71r7r4GjFVVFZF8YDLQH2+KiYtVtbSx8RqTKpXBEH1ujGxnLb71LArT5OaySax0TvzVqy2HL+KrQKOeaBGRbsA1QF9V3e0WUh8F9AVmqupEERkHjAOuF5G+7v0jgQOB/4jIoW7B9QfwHib7AC/xD8NbcH00sFVVe4vIKLynjy9uTLzGpMrVz3zEvz9eW7M/4uiu/O3S432MyCRXGo/qUdXTk3TdliJSidfSXwuMBwa7958A3gauB0YCz6pqObBcRJYBA0SkFGirqrMARGQycC5e4h+Jd0MaYCpwn4iIql8PSBtTu90VQY74beRi50snnE2eLYPYvCnpd3NXRC5T1adE5LpY76vqXY25oKquEZE/ASuB3cB0VZ0uIl1UdZ2rs87NCArQDa9FX221K6t0r6PLq49Z5c5VJSLbgI54k8yF/45jcNNP9OjRozG/jjFNctHfZzGndEvN/g9P7slvv9XXx4hMqqTrfPyt3M+EPg4oIh3wWuQ9ga+Bf4rIZXUdEqNM6yiv65jIAtVJwCSA4uJi+zZgUmbD9j0MuH1mRNmXtw8nEPD/eQGTOmmX+FX1Qffzdwm+5lBguapuBBCRF4CTgPUi0tW19rsCG1z91cBBYcd3x+saWu1eR5eHH7NaRHKBdsAWjEkD0Q9iXT/scK4cfIhP0Rjf+Dic049OxJXAQBEpFO9xyCHAp8DLwBWuzhXAS+71y8AoEckXkZ54i8PMcd1CO0RkoDvP5VHHVJ/rAuBN6983fvty4859kv7yO4Zb0s9a3s3deLZES/kYMVWdLSJTgXlAFfARXndLa2CKiIzG+3C40NVf5Eb+LHb1r3IjegCuZO9wzmluA++hsyfdjeAteKOCjPFNdML/6WmHMO5sf58INv5K1z5+AEQkJyzRJoSq3gzcHFVcjtf6j1V/AjAhRnkJ0C9G+R7cB4cxfvpo5VbOu/9/EWU2qZqplsjE70Y67sB73qlKVYtrqxtPi3+Za6E/pqqLExOiMc1fdCv/lm/15fsn9/QpGpN2NCkt/tNVdVN9leJJ/EfjdZU8LCIB4FG8cfXbmxigMc3Sm5+t54ePl0SUWSvf7CsN19ytpqo7gIeAh0RkEPAM8Bf3LeC28NW5jMl20a38v116PCOO7upTNCbtxb+6VicRCW9NTHLD0cMpMF1EFHgwxvs14urjB0bgzadTBPwZ+AdwKt40CYfGG7kxzdWUD1fx6+c/iSizVr6piyoNGbGzqa4+e+dkVV3rHn6dISKfqeq7sSrG09WzFHgL+KOqht+lmuq+ARiT1aJb+c/8eCAnHtLRp2hMJknkIHNVXet+bhCRF4EBQMMTv2vtP66qt9ZyoWuaGKsxGeu+N5fyp+mfR5RZK980RKL6+EWkFRBQ1R3u9ZlAzLwN9SR+VQ2KyOl1ncCYbBTdyp829lSO6NrWp2hMZkrozd0uwItuidBc4GlVfb22yvF09fxPRO7Dmyt/V3VhU+bjNyZTjX9hAc/MWRlRZq1801iJSvyq+iVwTLz140n81cv+hLf6Gz0fvzGZSFXpOT5yGcT3rz+d7h0KfYrIZDpNzjj+uPg1H78xGePyR+fw7ucbI8qslW8SIRRM04VYAERkBN4KWAXVZbXd8DWmuYi1DKItdm4SJ40f4BKRv+OtknU68DDebJdzkhyXMb4a/Me3KN1cVrPfIifA5xPO9jEi0+ykc1cPcJKqHi0in6jq70Tkz3gLrxvT7OypDHL4TZGDIT69dRgtW+T4FJFprtJ6dk685REBykTkQGAz3upZxjQrVzw6h3fC+vL77N+aGded5mNEprlL58T/ioi0B/6IN4e+4nX5GNMsbN9TydG3TI8o++L24eTYMogmqSQpi6zEI55RPbe5l8+LyCtAgapuS25YxqTGGXe9w9INO2v2fz60Dz8fatNPmRRQ0PgnaUuoWhO/iJxfx3uoqvXzm4y19uvdnDTxzYiy5XcMxz35aEzSpWsf/7fqeE9p5A1eETkM7yngar2A3wKTXXkRUApcpKpb3THjgdF4K8tco6pvuPL+7F168TVgrKqqiOS78/XHuydxsaqWNiZe0/xET7dw27n9+N7Ag32KxmQzv1YCrzXxq+oPknFBVV0CHAs1k8CtAV4ExgEzVXWiiIxz+9eLSF+8hWCOBA4E/iMih7rlIB8AxgAf4CX+YXjr7o4GtqpqbxEZBdwJXJyM38dkjoVrtnHOve9HlNmDWMZPoTRs8ddI4gNcQ4AvVHWFiIwEBrvyJ4C3geuBkXgrfpUDy90C6gPc+pJtVXWWi3EycC5e4h8J3OLONRW4T0RE1a/PV+O36Fb+uLMP56enHeJTNMaQ3uP4k/wA1yi8Fb0AuqjqOgBVXecWEwDohteir7balVW619Hl1cescueqEpFtQEcgYi1KERmD942BHj16JOhXMunk/aWbuOyR2RFl1so36UDTeVQPSXqAS0RaAN8GxtdXNUaZ1lFe1zGRBd7SZJMAiouL7dtAMxPdyr/romM4//juPkVjzL7StsVP8h7gOhuYp6rr3f56EenqWvtdgQ2ufDVwUNhx3YG1rrx7jPLwY1aLSC7QDtiSgJhNBnhp/hrGPjs/osxa+SbtpONwzjCxHuB6KAHXvoS93TwALwNXABPdz5fCyp8Wkbvwbu72Aea4RWJ2iMhAYDZwOXBv1Llm4XVNvWn9+9khupX/xA8HcNqhnX2Kxpi6pW2LPxkPcIlIIXAG8JOw4onAFBEZDawELnTXXyQiU4DFQBVwlRvRA3Ale4dzTnMbwCPAk+5G8Ba8ewmmGXv4vS/5/aufRpRZK9+kM03H2TlF5BvAKlX9yu1fDnwHWCEit6hqo7tOVLUM72ZreNlmvFE+sepPACbEKC8B+sUo34P74DDNX3Qr/9//dwpHdW/nUzTGxM+vxF/XLeUHgQoAERmE1yKfDGzD3RA1xk+3/nvxPkm/dOIIS/omMygEQ4G4tkSrq6snJ6xVfzEwSVWfx+vymZ/wSIyJU6xlEN/+5WCKOrWK6/hgWTlf/3chlV/vpPWRRbQ6oodN1WBSLl2nbMgRkVxVrcLrghkT53HGJM1PnizhjUXrI8oa0pdftnQNn497GA2GCFVWEcjLoc3RvTjk5u8hOTbnvkktDflz3boS+DPAOyKyCW9I53sAItIbr7vHmJQJhpRDbohs5Zf8ZiidWufHfQ5V5YvbniK4a09NWSgYYvvHX7Lp9RI6jzghYfEaU780vLmrqhNEZCbQFZgeNhwyAFydiuCMARh+93ssXrc9oqwxI3b2rNxA1fayfcq1vJJNb3xoid+klqbpXD2q+kGMss+TF45JhnVLtrNzSwU9jmlPfmHm9NLFWgZx4e/OonV+I3+Huh7lCNljHia1FNJ6ygaTobauLeOub7/L2s+2k5MbIBQMcemfj+ObY/r4HVq9+v72dcoqgjX73dq35L/jvtmkcxb02J+cVgWE9lRElEt+Hh3P6N+kcxvTGGnX1WMy35/PeYdVC7YRCireUgbwj+s+otsR7Tjs1P3rPtgn28oqOebWyGUQl044m7ycpreMJBCg142XsvTGR9GQouWVBApa0OrQ7nQaPqDJ5zemYSQ9u3pM5lqzeBvrPt/hkv5eFbuDvH73krRM/NFj8k/s1ZFnxgxM6DVa9z2YoyZfz9Z3PqFiyw7a9OtJm+MOseGcJuVU03AhFpPZtm8sJycvQHVLv4bC1+t2xzymsZZ9sImnrpvHio+20qZTPiN+dQRnXn1o3Mk01jKIX94+nECSFjvPbVNI53MS+4FiTGMkcpI2t7BVCbBGVc+pq64l/maq6PgOBCv2HSScV5DDsSO6xTiicVZ8vJU7hr5JRZn3AbN1zW7+ecPHbFu/h4smHFN/nFGt/IuKu/OHC+o/zpjmIMF9/GOBT4G29VX055aySbqWbfK4cMLRtCjc+1BSXn6Atl3yGfqzxN3cffF3C6jcHfmtorwsyBt/XcKeXVW1Hrfkqx0xp1uwpG+yhSoEQxLXVh8R6Q6MwFssq17W4m/Ghv38cLod2Y437l7C9vXlHPetAznz6sNo1b5Fwq6xcv7XMfspA7nC5pW76HbEvvPmRCf8sUP6cO0ZhyYsJmMyRQNa/J1EpCRsf5JbSKraX4FfA23iOZkl/mbuqDO6ctQZXZN2/gOPaMvG0l37lAcrlf26FUaUzVm+hYsenBVRZlMnm+zVoFE9m1S1OOZZRM4BNqjqXBEZHM/JLPGbJjn3pn58+vYGKsK6e1oU5jDoB71o2Tavpiy6lX/7eUdx6Qm2zrHJXt4kbQk51cnAt0VkOFAAtBWRp1T1stoOsD5+0yS9B3Zi7AunckCfNohAQZtczvr5YVz2l+MBeH3huph9+Zb0jfG6euLZ6j6HjlfV7qpahLfo1Jt1JX2wFr9JgKPP6sofl5xDVWWInFypGcYZnfAnfa8/Zx55gB8hGpN+FIJBe4DLNEJVZYh3H/2C955YTiA3wODRvTj5siICCXjStaFy87xrPvnBCm7618KI96wv35hIyZiPX1XfBt6ur54vid8t3v4w3rKJCvwQWAI8BxQBpcBFqrrV1R8PjMZ7GukaVX3Dlfdn75q7rwFjVVVFJB9vtbD+wGbgYlUtTckvl0KhkPKn4W+zdNammnH0Kz7awvxX13L1lFN8iSm6lT/1pydSXLSfL7EYk978m7LBrz7+u4HXVfVw4Bi8hw7GATNVtQ8w0+0jIn3x+q2OBIYB97sn1AAewFsgpo/bhrny0cBWVe0N/AW4MxW/VKotmvkVy2Zvrkn6AOW7gsx/bS1flmxOaSxX/WNezL58S/rG1EL3TttQ35ZoKW/xi0hbYBDwfQBVrQAqRGQkMNhVewLv68r1wEjgWVUtB5aLyDJggIiUAm1VdZY772TgXGCaO+YWd66pwH0iImFrCjQLn761gfKd+z4kFapSPntnA72KO8Y4KvGiE/5/rhtE7/3jGk5sTNZS0nQ+/iTpBWwEHhORY4C5eI8ad1HVdQCquk5EqmcR6waErwuw2pVVutfR5dXHrHLnqhKRbUBHYFN4ICIyBrekZI8emTfKpF2XAvIKAlTuiZyaIadFgLadC5J+/bPvfo9PE7BAijHZyq+mqB9dPbnA8cADqnocsAvXrVOLWB+JWkd5XcdEFqhOUtViVS3u3Llz3VGnoRMvPTjmTdxAjlB8fvekXTcUUorGvRqR9N/51WBL+sY0UKKmbGgoP1r8q4HVqjrb7U/FS/zrRaSra+13BTaE1T8o7PjuwFpX3j1Gefgxq0UkF2gHbEnGL+Ontp0L+MUrp3Hfxe9TsTuIKhS2y+PnL55KQeu8+k/QCL1veI2qqNWqLOEb03BZNS2zqn4lIqtE5DBVXQIMARa77Qpgovv5kjvkZeBpEbkLOBDvJu4cVQ2KyA4RGQjMBi4H7g075gpgFnAB3gMNzap/v9oRp+3PvWvOZcX8rwnkCAcd3T4p0xmXVwU57DeRyyDOu+kM9muVuHl/jMk22dTHD95i7f8QkRbAl8AP8LqdpojIaGAlcCGAqi4SkSl4HwxVwFWqWj2M5Ur2Duec5jaAR4An3Y3gLXijgpqtQE6Anv2TN3om+uYtwHuXnRx30t84fxOlr5YSyAtwyLm9aH9o+wRHaExm8qs5Ks20IdxgxcXFWlJSUn/FNBAKKe+9u4J163bSv/hA+vRJTtLftruSY34XuQziSXdtJzcELVrmcNP7Z3DwMR3qPMcHN89myeQlVJUHkYAQyA1QfEN/+o05MikxG5MKIjK3tknT4tU90EuvypsQV90bKi5t8vXC2ZO7GWbVym0MP+tpNm/ajaoSDCojzzuMvz80gpwEPq0b3cpvsTPECffvBLy75OW7gkwZ9zG/mja41nNs/Gijl/TdBG4aUoJVQUomzKXnt4po1bVVwuI1JtP4OZzTJmnLMFdc9i9Wr9rOzp0V7NpVyZ49Vfz7pc95/NGPE3L+ddt275P0B9+zsybph1s2e9M+ZeFKX11B1Z7gPuUSgFUzVjUtUGMynUIwzi3RLPFnkHVrd7BgwQaCUX8TysoqeXjSvCafv2jcq5x4x961bwf22o+lvxtGoJa1c9t3bVnn+QK5ASTWjWYRJNf+6pnspkjcW6LZv74MUra7ipxaRuyUlVU2+ryxlkFcfsdwnh1zInn5OQwe3YsWLXMi3s8vzGHkjXX30/c6tyeBvH3/imlIOfiszHtgzphEC2l8W6JZH38G6dWrPe07tKSsbEdEeX5+Dueed3ijzhnPYueX/vl4KstD/PdJbwZQgPN+24+TLi2q89wdDu9A/3HHM/eOeRAAEUFDyqC7T6WgY/KfLDYm3fk1tMYSfwYRER569BwuPG8qVVUhKiqCFLbK44ADWnPtLwc26FwffLmZUZM+iCir7UGs3LwAox8cwKV/PI5t6/ew30GFtCjIiVk32lE/7UfPbxWxasZqAnkBepzVg5adLOkb493c9efalvgzzKmDDmbOvB/x+GPzWVG6jcGnH8wFF/WlZcv4n9SNbuVfO/RQxg7tU+9xLdvmRSynGK/W3VpzxPcb943EmOYsGTdu42GJPwP1OLgdv73ltAYf9+on67jq6cibwDbdgjH+sa4ek1TRrfw/fOdoLvrGQbXUNsYkmwKhemslhyX+Zm7agnVc+Q9r5RuTjqzFbxIuupX/2Pe/wemH719LbWNMqlmL3ySMLXZuTPrzFlv359qW+JuZfZdBPI3e+7f2KRpjTF32ndAkNSzxNxN3zfice2YujSizVr4x6ctu7ppGU1V6jn8touyD8UM4oJ09JGVMurPEbxosui//gLYFfHDDEB8jMsY0hI3qMXELhZRjbp3Ojj1VNWWLbz2Lwhb2v9OYTGFdPSZus7/czMVhc+z84OQibv6WrWZlTOZR1Kc2vy+JX0RKgR14N7WrVLVYRPYDngOKgFLgIlXd6uqPB0a7+teo6huuvD9719x9DRirqioi+cBkoD+wGbhYVUtT9OslRTCkDPvruyzd4C2IcliXNrw29tRap2k2xqS/RI3qEZEC4F0gHy+vT1XVm2ur7+d8/Ker6rFh60iOA2aqah9gpttHRPriLZZ+JDAMuF9EqqeGfAAYA/Rx2zBXPhrYqqq9gb8Ad6bg90mat5Zs4JAbXqtJ+s+NGcgb1w6ypG9MBqvu6olni0M58E1VPQY4FhgmIrVO2ZtOXT0jgcHu9RPA28D1rvxZVS0HlovIMmCA+9bQVlVnAYjIZOBcYJo75hZ3rqnAfSIimmEry1dUhTjlzjfZsKMcgAFF+/HsmIEELOEb0yyoxJmS6qnmclv1+qh5bqv1KL8SvwLTRUSBB1V1EtBFVdcBqOo6EameW6AbED5x/GpXVuleR5dXH7PKnatKRLYBHYGIRWJFZAzeNwZ69EivFaGiZ9J8+f9O5uju7f0LyBiTcIm8uet6QuYCvYG/qers2ur6lfhPVtW1LrnPEJHP6qgbq3mrdZTXdUxkgfeBMwmguLg4Lb4N7K4Icuyt0ymv8v5KDD2iCw9d3h+pZd1bY0xmauConk4iUhK2P8nlr73nUw0Cx4pIe+BFEemnqpFztzi+JH5VXet+bhCRF4EBwHoR6epa+12BDa76aiB8/uDuwFpX3j1Gefgxq0UkF2gHbEnW75MoU0pW8eupn9TsT792EId2aeNjRMaYZArGP6pnU9j90Dqp6tci8jbePc+YiT/lN3dFpJWItKl+DZyJF9zLwBWu2hXAS+71y8AoEckXkZ54N3HnuG6hHSIyULzm8OVRx1Sf6wLgzXTu39+xp5Kica/WJP3zj+9G6cQRlvSNacaU6gGd9f9XHxHp7Fr6iEhLYChQa0+KHy3+LnhfQ6qv/7Sqvi4iHwJTRGQ0sBK4EEBVF4nIFGAxUAVc5b7SAFzJ3uGc09wG8AjwpLsRvAVvVFBaeuy/y/ndvxfX7L/zq8Ec3LGVjxEZY1IlgX38XYEnXD9/AJiiqq/UVjnliV9VvwSOiVG+GYg534CqTgAmxCgvAfrFKN+D++BIV1t3VXDcbTNq9r9/UhG3fNsexDImm2i8t+7qH9XzCXBcvNdNp+GcWeOemUu5a8bnNfs2qZox2ce7uZtFT+5mq/Xb93DC7TNr9q/5Zm+uO/MwHyMyxvjJ5upp5ia8upiH3ltesz/3N0Pp2Drfx4iMMX5StCGjehLKEn+SrdpSxql/eKtm/8bhR/DjQb18jMgYky6sq6cZun7qJzxXsqpm/+Obz6RdyzwfIzLGpJO4b+4mmCX+JFi2YSdD73qnZv/2847i0hPSa0oIY4y/7OZuM6GqXPnUPF5f9BUAOQFhwS1n2gIpxpiYsmo+/ky3bu0OPvlkAz16tOWIvp0BWLhmG+fc+35NnbtHHcvIY7vVdgpjjLFRPZkgFFKuG/sG/3hyAfn5uVRWBel31P7sd1FvPly5FYCOrVrwv/HfJD83p56zGWOymY3qyRCPPvwRzz69iPLyIOXlQXK7FvLFwI584ZL+w5cXM7RvF5+jNMZkilC88/EnmCX+BnjgbyWUlVUC0Ob8nuQd1BqA0NZy5t95Nvu1b+lneMaYDOLnzV0/l17MONu2eSthkSM1SX/781+yZ8oXlJdV+RiZMSYTaZxbolmLvwHOPKsXzz69kKoqZcv9i6DSuzXTtUdbDuja2ufojDGZxlr8GeDGm06lfYeWFBTkQGWInByhsDCP+x4YbitkGWMaRIEqNK4t0azF3wDdurflw3k/4uFJH/Heuyvo3Wc/fvZ/3+DQwzr6HZoxJuPEt8hKMljib6COnQq5/oaTuf6Gk/0OxRiTwezJXWOMyTbi33BO3/r4RSRHRD4SkVfc/n4iMkNElrqfHcLqjheRZSKyRETOCivvLyIL3Hv3uLV3cevzPufKZ4tIUSp+J1XlnbdL+eW10/ntjW/x6eKNqbisMSYDeS3++LZE8/Pm7ljg07D9ccBMVe0DzHT7iEhfvDVzj8RbNf5+t64kwAPAGLwF2Pu49wFGA1tVtTfwF+DO5P4qXtL/8Q/+zcUXPM+kv8/j3rvnMPiUJ3jowbnJvrQxJkOF0Li2RPMl8YtId2AE8HBY8UjgCff6CeDcsPJnVbVcVZcDy4ABItIVaKuqs1RVgclRx1SfayowRJI87OatN0t59ZWllO3yHvAKBpXdu6u4cdybbNpYlsxLG2MykDdlQyiuLdH8avH/Ffg1kd9iuqjqOgD3c39X3g1YFVZvtSvr5l5Hl0cco6pVwDYgqUNv/vXCZ+xyST9cbm6A//zny2Re2hiTobKmxS8i5wAbVDXePpBYLXWto7yuY6JjGSMiJSJSsnFj0/rj8wtyCQT2vayIkG/TMhtjYsiaxA+cDHxbREqBZ4FvishTwHrXfYP7ucHVXw0cFHZ8d2CtK+8eozziGBHJBdoBW6IDUdVJqlqsqsWdO3du0i916XePIj9/3xk5QyHljLNsqUVjTKTq4ZxZkfhVdbyqdlfVIrybtm+q6mXAy8AVrtoVwEvu9cvAKDdSpyfeTdw5rjtoh4gMdP33l0cdU32uC9w1kjpu6rjjD2DcjaeQX5BDYWEerVu3oFWrPJ569nxat26RzEsbYzJUSOLbEi2d+iAmAlNEZDSwErgQQFUXicgUYDFQBVylqkF3zJXA40BLYJrbAB4BnhSRZXgt/VGp+AWu/cVALh51JDP/8yUFBXkMG34Ibdrkp+LSxpgM4+cDXJLkhnDGKC4u1pKSEr/DMMZkABGZq6rFTTlHi8BBekDedXHVXVVxXZOvFy6dWvzGGJNVbMoGY4zJMjYtszHGZBFFCUoorq0+InKQiLwlIp+KyCIRGVtXfWvxG2OMDxQSudh6FfALVZ0nIm2AuSIyQ1UXx6psid8YY3ygQEUcrfm4zuUNb6+e+WCHiHyKN4NBzMRvo3ocEdkIrGjgYZ2ATUkIp7EsnvqlW0wWT/3SLaZOQCtVbdJTnyLyujtXPAqAPWH7k1R1Ui3nLQLeBfqp6vaYdSzxN56IlCRyiFVTWTz1S7eYLJ76pVtM6RZPOBFpDbwDTFDVF2qrZzd3jTGmGRCRPOB54B91JX2wxG+MMRnPTVvzCPCpqt5VX31L/E0Ts4/NRxZP/dItJounfukWU7rFA97kl9/Dm/RyvtuG11bZ+viNMSbLWIvfGGOyjCV+Y4zJMpb4G6ihj0anKKYCEZkjIh+7mH7nd0wAIpIjIh+JyCtpEEupiCxwfZ9pMQ2riLQXkaki8pn7+3Sij7EcFtY3PF9EtovIz/2Kx8V0rfv7vFBEnhGRAp/jGetiWeT3n01TWR9/A7nVwbqGPxoNnFvbo9EpiknwHijZ6YZ0vQ+MVdUP/IrJxXUdUAy0VdVzfI6lFChW1bR5EEhEngDeU9WHRaQFUKiqX/scFiKSA6wBTlDVhj7UmKgYuuH9Pe6rqrvdmhyvqerjPsXTD2/FwAFABfA6cKWqLvUjnqayFn8Dqeo6VZ3nXu8Aqh+N9jMmVdWdbjfPbb5+ootId2AE8LCfcaQrEWkLDMIbgoeqVqRD0neGAF/4lfTD5AIt3fKphexdWtUPRwAfqGqZqlbhPSR1no/xNIkl/iZwj0YfB8z2OZTqbpX5eGsVz1BVv2P6K/BrIDGTkTSdAtNFZK6IjPE7GKAXsBF4zHWHPSwirfwOyhkFPONnAKq6BvgT3mp864Btqjrdx5AWAoNEpKOIFALDiVwLPKNY4m8k92j088DPa5sPI5VUNaiqx+ItOj/AfTX1hYicA2xQ1bl+xRDDyap6PHA2cJWIDPI5nlzgeOABVT0O2AWM8zckcF1O3wb+6XMcHYCRQE/gQKCViFzmVzyq+ilwJzADr5vnY7wZMTOSJf5GaMij0anmugveBob5GMbJwLddv/qzeA+VPOVjPKjqWvdzA/AiXl+tn1YDq8O+mU3F+yDw29nAPFVd73McQ4HlqrpRVSuBF4CT/AxIVR9R1eNVdRDeWt4Z2b8PlvgbrKGPRqeCiHQWkfbudUu8fzSf+RWPqo5X1e6qWoTXbfCmqvrWWhORVu5GPK475Uy8r+6+UdWvgFUicpgrGkItU+im2CX43M3jrAQGikih+zc3BO9+mm9EZH/3swdwPunx59QoNh9/w1U/Gr3A9akD3KCqr/kXEl2BJ9xojAAwRVV9H0KZRroAL3r5g1zgaVV93d+QALga+IfrXvkS+IGfwbi+6zOAn/gZB4CqzhaRqcA8vC6Vj/B/qoTnRaQjUAlcpapbfY6n0Ww4pzHGZBnr6jHGmCxjid8YY7KMJX5jjMkylviNMSbLWOI3xpgsY4nfJI143heRs8PKLhIRX4ZSisjhbubJj0TkkKj3wmfvnC8i9yQ5luJkX8OY2thwTpNUbuqIf+LNaZQDzAeGqeoXjThXjqoGmxDLOKClqt4c471SUjR7p4jkuom+jPGFtfhNUqnqQuDfwPXAzcBTwI0i8qFreY8Eb8I7EXlPROa57SRXPli89Q+exntorpWIvOrWHlgoIhdHX1NEjhWRD0TkExF5UUQ6iLf+6M+BH4nIW/HELiK5Ls7Bbv8OEZngXpeKyJ3irYMwR0R6u/LOIvK8O+5DETnZld8iIpNEZDow2f1er7j3WonIozH+TL4vIi+IyOsislRE/hAW2zD35/SxiMys6zzG7ENVbbMtqRvQClgCLADuAC5z5e2Bz937hUCBK+8DlLjXg/EmMOvp9r8DPBR27nYxrvcJcJp7fSvwV/f6FuCXtcRY6uKb77ZrXfmReFMFnIH39GiLsPo3uteXA6+4108Dp7jXPfCm9qi+9ly8bxzVv1f1MbfX8mfyfbwnetsBBcAKvBkhOwOrwv5M9qvrPH7//7ct/TabssEknaruEpHngJ3ARcC3ROSX7u0CvAS5FrhPRI4FgsChYaeYo6rL3esFwJ9E5E68xPle+LVEpB3QXlXfcUVPEP9Mk6drVFePqi4SkSfxvrWcqKoVYW8/E/bzL+71UKCvmx4CoG31PEHAy6q6O8Z1z8Sb1C76zwRgpqpuc7/bYuBgoAPwbvWfiapuqec8vs5xY9KPJX6TKiG3CfAdVV0S/qaI3AKsB47B64LcE/b2ruoXqvq5iPTHmw/9DhGZrqq3Jjn2o4Cv8eb8CacxXgfwPiAiErz7INhFbLX9mZwAlIcVBfH+zQqxF9qJeR5jolkfv0m1N4Cr3YyLiMhxrrwdsE5VQ3iT4OXEOlhEDgTKVPUpvIU6IqYydq3jrSJyqiv6Ht5qSY0iIucDHfFWy7pH3CyozsVhP2e519OB/ws7/tg4LlPbn0ltZgGniUhPV3+/Rp7HZClr8ZtUuw1vda5PXIIqBc4B7seb/fBC4C1qbx0fBfxRREJ4syReGaPOFcDf3WyTDZn18i0RqR419AlwHTARGKKqq0TkPuBud36AfBGZjdeAusSVXQP8TUQ+wfv39S7w03quW9ufSUyqulG8VcReEJEA3qprZzT0PCZ72XBOYxohlcM/jUk06+oxxpgsYy1+Y4zJMtbiN8aYLGOJ3xhjsowlfmOMyTKW+I0xJstY4jfGmCzz/ysT+uc5dV8LAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEWCAYAAABWn/G6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA9MklEQVR4nO3deZgU1dXH8e+PRRiVxQWRRQTDouDOiCQoEFHBFTQaMW+iRhKj0agxIYK+ibhjNBqNb0wwGsWoQBCVBBUQ3IMgiLIZlMgoA4RFFhUBZ4bz/lG3h+6mZxhguquHOZ/n6We6btWtOt0902du1a17ZWY455xzuVIn7gCcc87VLp54nHPO5ZQnHueccznlicc551xOeeJxzjmXU554nHPO5ZQnHpeXJJ0oaWHcceQTSa9K+lEOj3enpGtzdCyT1D48/5OkX+/kfr6UdEj1Rpey/7MljcrW/msLTzwuhaQiSRvDH3Di8WCu4zCzN8ysU66Pm22SukiaJGmtpHWSZkk6Pe640klqBlwE/Dks95a0Jfw+fCFpoaQfZuPYZna5md1ahRi3ScRmtreZfZyNuML+xwOHSzoyW8eoDTzxuEzOCn/AicdVuTy4pHq5PF6O/QOYDDQHDgCuBj7P5gF38v28BHjBzDYmlS0zs72BxsD1wMOSOlfT8WqSp4HL4g6iJvPE46pM0kOSxiYt3yVpiiK9JRVLukHS6tBy+p+kbRtIukfSp5JWhNMpBWFdou71kv4L/DVRllS/paRnJK2StFjS1UnrhkkaI2lk+G98vqTCpPUHSRoX6n6W3IKTdKmkD0ILZKKkgyt47S9Juiqt7H1J54bXf5+klZLWS5oj6fAM+9gfaAc8bGZfh8dbZvZmWL+PpH+GONeG560riOcbkqaG17Na0pOSmiatLwrv5xxgg6TBkp5J28cfJP0+0/6B04DXMq2wyHPAWqCzpEskvRXegzXAsMo+73DswZKWS1om6dK0uB6TdFvScn9J70n6XNJ/JPWTdDtwIvBgcqtcqafsmoTfiVWSPpH0v5LqhHWXSHozxLg2/E6dlnTMSyR9HH6fFif/LgOvAmdU8L65qjAzf/ij/AEUASdXsG5P4EOi/4ZPBFYDrcO63kApcC/QAOgFbAA6hfW/B8YD+wKNiP7zvzOt7l2hbkEoKw7r6wCzgN8AewCHAB8DfcP6YcAm4HSgLnAn8HZYVxd4H7gP2AtoCJwQ1g0AFgGHAfWA/wX+VcFrvwh4K2m5M7AuxNs3xNcUUNhfiwz7EPAR8M9w7OZp6/cDvhPe50bA34Hnkta/CvwoPG8PnBKO3wx4Hfh92uf4HnBQeD9bhM+jaVhfD1gJdK3g9a4CjktaTv88zgFKgE5Evw+lwM/Cfgu283n3A1YAh4fP5CnAgPZh/WPAbeF5N2B9eK11gFbAoenvR1KcyfsZCTwfjt+W6Hd3UFh3SYj/x0S/I1cAy8JntBdRKzTxu9sC6JJ0jH3DcRrH/fdaUx+xB+CP/HqEL6wvib5UE48fJ63vBqwBPgEuTCrvHb589koqGwP8OvwxbwC+kbTum8DipLpfAw3T9pf4ojse+DQtzqHAX8PzYcDLSes6AxuTjrMKqJfhtb6Y+CIKy3WAr4CDM2zbKLyGg8Py7cCj4flJ4UutO1BnO+9va+BB4D/AFqKE0aGCbY8G1iYtb/NFm7RuADA77XO8NMPr/XF4fiawoJI4Swhf8Emfx5bw+7CGKKkNDOsuSf58qvB5PwoMT1rXkYoTz5+B+yqIcZv3I7EfomSyGeictO4nwKtJMS9KWrdnqHsgUeJZR/RPQEGG49YP27aJ4290d3j4qTaXyQAza5r0eDixwsxmELU2RJRYkq01sw1Jy58ALYn+I98TmKXogvo64KVQnrDKzDZVEM/BQMtE3VD/BqLrJAn/TXr+FdBQ0bWGg4BPzKy0gv3en7TPNeF1tUrf0My+ACYAA0PRQODJsG4qUTL5P2CFpBGSGmd6IWZWbGZXmdk3wvE3EP1njqQ9Jf05nBb6nCgpNZVUN30/kg6QNErS0rDt34D90zZbkrb8OPD98Pz7wBOZYgzWEiXbZMvC78O+Zna0mSX37ko+1vY+75Zp239SSRwHESXpHbU/Ues4ed+fkPrZlv/OmNlX4ene4Xf4AuByYLmkCZIOTaqXeF/W7URcDr/G43aQpCuJTu8sA36VtnofSXslLbcJ260GNhKdrkgksyYWXahOqGyY9CVE/y0nJ8NGZlaV3mBLgDbKfMF7CfCTtP0WmNm/KtjX08CFkr5JdDrplfLgzR4ws65AF6L/4AdvLzAzW0KUrBLXg35BdOrqeDNrDPQM5cpQ/U6i9+zIsO33M2yX/p4+BxwZrj+dSUicFZgTXkdVJR9re5/3cqKEktCmkv0uAb5RhWOmW03Uaku+ZtcGWFpJna07NptoZqcQnWb7N/Bw0urDgCIzy2qnkN2ZJx5XZZI6ArcRfcn9APiVpKPTNrtZ0h6STiT6cvu7mW0h+sO9T9IBYV+tJPWt4qFnAJ+Hi+UFkupKOlzScVWsuxwYLmkvSQ0l9Qjr/gQMldQlxNRE0vmV7OsFoi+yW4DR4XUh6ThJx0uqT9SC2QSUpVcOnQdultReUp3Q2eBS4O2wSSOiL+x1kvYFbqoklkaEU6KSWlG1RLcJGEt0TWWGmX26ndfaa3v7rOA42/u8xwCXSOosaU8qf52PAD+U1Ce8Z62SWh8riK73ZYqhLBzndkmNFHUauY6oZVgpSc0V3a+zF9Hpui9J/Tx7EZ22dDvJE4/L5B9KvY/n2dBi+Btwl5m9b2YfEZ3uekJSg1Dvv0SnaJYR/Td9uZn9O6y7nuhC/tvh1NDLRP/db1f4EjmL6JrHYqL/Zv8CNNmBuu2BT4FiotMomNmzRB0aRoWY5hH15qpoX5uBccDJRF/eCY2JvmjXEp3O+Qy4J8Muvia6yP0y0cXreURfbJeE9b8nakmtJkpGL1Xy0m4GjiW68D4hxFUVjwNHUPlpNohO/52e3BNtB1X4eZvZi0SvdWrYZmpFOwmndn9I1DlkPVFPu0Qr5n7gvNAr7YEM1X9G9I/Ax8CbRJ/Zo1WIvQ5R63MZ0enXXsBPk9ZfSLi/ye0cmflEcG7XSeoN/M3MMnb/dflBUhuiU0cHbu9UkaQ7gJVm9vtcxFYTSDoL+IGZfTfuWGoyTzyuWnjiyX/hHpZ7iboBX7q97Z3Llt39DmPnHBCuV6wgOhXYL+ZwXC3nLR7nnHM55Z0LnHPO5VTWTrVJepSoO+1KMzs8lN1N1MPoa6Kbwn5oZuvCuqHAIKJui1eb2cRQ3pXoTuYCoi6e15iZhZ5UI4GuRL2ILjCzolDnYqLhTyC6A/rx7cW7//77W9u2bXf5dTvnXG0ya9as1WbWbPtbbpW1U22SehL1fx+ZlHhOBaaaWamkuwDM7HpFI9w+TTQcS0uirpcdzaxM0gzgGqLupS8AD5jZi5J+SnTz3OWSBgLnmNkF4f6HmUAh0Q1ms4jGo1pbWbyFhYU2c+bMan8fnHNudyZplpkVbn/LrbJ2qs3MXifqA59cNilp6JK3icatAugPjDKzzWa2mKhvfzdJLYh64EyzKEOOJBqTKlEn0ZIZC/SRJKIBGyeb2ZqQbCbjF1Odcy5vxHmN51K23v3bitSxm4pDWavwPL08pU5IZuuJRvetaF/OOefyQCyJR9KNRCMZJ8aKyjQWlVVSvrN10uO4TNJMSTNXrVpVedDOOeeqRc7v4wkX/s8E+tjWC0zFpA4a2JpouIpitp6OSy5PrlMchnNpQnRqr5hoCPfkOq9misXMRgAjILrGk76+pKSE4uJiNm2qaNBkl0sNGzakdevW1K9fP+5QnHO7IKeJR1I/ojGceiUNQw7RhFFPSbqXqHNBB6JBDMvCDIDdgelEk3H9IanOxcA04DyiTgsmaSJwh6R9wnanEs3dssOKi4tp1KgRbdu2Jbp85OJiZnz22WcUFxfTrl27uMNxzu2CbHanfpqo5bG/oimMbyJKAA2AyeGL/G0zu9zM5ksaAywgOgV3ZRjcEaKZAR8j6k79IluvCz1CNEDlIqKWzkAAM1sj6VbgnbDdLWaW0smhqjZt2uRJJ09IYr/99sNPiTpX82Ut8ZjZhRmKH6lk+9uJZnVML5/J1vlKkss3ARmHsDezR6naKLTb5Uknf/hn4dyueW72Uu6euJBl6zbSsmkBg/t2YsAxue975SMXOOdcLfDc7KUMHTeXpes2YsDSdRsZOm4u146azexPK73Nsdp54slze++99zZlf/rTnxg5cmRO4+jduzdt2rTBkm44HjBgQMb4KnPJJZcwduzYXd7GObdj7p64kI0lqfMTbiwp47n3ljHsHwtyGouPTl0DXX755Vndv5lhZtSpk/p/SdOmTXnrrbc44YQTWLduHcuXL89qHM656rNs3cYK142+rHsOI/EWT400bNgw7rknmuCyd+/eXH/99XTr1o2OHTvyxhtvAFBWVsbgwYM57rjjOPLII/nzn6MJE7/88kv69OnDscceyxFHHMHzzz8PQFFREYcddhg//elPOfbYY1myZMk2xx04cCCjRo0CYNy4cZx77rnl68yMwYMHc/jhh3PEEUcwevTo8vKrrrqKzp07c8YZZ7By5cryOrNmzaJXr1507dqVvn37eiJzLotaNs08mWyrpgU0rF83p7F4i6eKbv7HfBYsq3TCxh3WuWVjbjqryy7vp7S0lBkzZvDCCy9w88038/LLL/PII4/QpEkT3nnnHTZv3kyPHj049dRTOeigg3j22Wdp3Lgxq1evpnv37px99tkALFy4kL/+9a/88Y9/zHicPn368OMf/5iysjJGjRrFiBEjuPXWW4EoEb333nu8//77rF69muOOO46ePXsybdo0Fi5cyNy5c1mxYgWdO3fm0ksvpaSkhJ/97Gc8//zzNGvWjNGjR3PjjTfy6KPV0ifEOZfksy83szRDi6egfl0G963SDPTVyhPPbiDR8ujatStFRUUATJo0iTlz5pRfK1m/fj0fffQRrVu35oYbbuD111+nTp06LF26lBUrVgBw8MEH0717xU3uunXrcsIJJzB69Gg2btxI8mjeb775JhdeeCF169alefPm9OrVi3feeYfXX3+9vLxly5acdNJJQJTk5s2bxymnnAJELbQWLVpU91vjXK138z/m89e3isqXmzdqwMovNsfaq80TTxVVR8skWxo0aABEiaG0NBqD1cz4wx/+QN++fVO2feyxx1i1ahWzZs2ifv36tG3btnxkhr322mu7xxo4cCDnnHMOw4YNSymvbJTzTN2gzYwuXbowbdq07R7TObfjPlj+Oafd/0b58i9P7chVJ3WIMaKt/BrPbqpv37489NBDlJSUAPDhhx+yYcMG1q9fzwEHHED9+vV55ZVX+OSTT3ZovyeeeCJDhw7lwgtTb9Pq2bMno0ePpqysjFWrVvH666/TrVs3evbsyahRoygrK2P58uW88sorAHTq1IlVq1aVJ56SkhLmz59fDa/cuex4bvZSegyfSrshE+gxfCrPzV4ad0gZlW0x+v/fW+VJp14dMe/mvnmTdMBbPHnvq6++onXrrcPVXXfddVWq96Mf/YiioiKOPfZYzIxmzZrx3HPP8T//8z+cddZZFBYWcvTRR3PooYfuUDyS+OUvf7lN+TnnnMO0adM46qijkMRvf/tbDjzwQM455xymTp3KEUccQceOHenVqxcAe+yxB2PHjuXqq69m/fr1lJaWcu2119KlS/62LF3tlbgHJtEdOXEPDBDLqaqKvDRvOZf/7d3y5YcvKuSUzs1jjCizrE0EV9Nkmgjugw8+4LDDDospIpeJfyYuDj2GT814cb5V0wLeGnJSDBGl+nxTCUcOm1S+3K3tvoy6rDt16mR/tI+dmQjOWzzOObcdFd0DU9m9Mbly7+QPeWDKR+XLk37ek47NG1WpblxD6Hjicc657WjZtCBji6eie2Ny4eNVX3LS714rX/5Jz0MYenrVzwbEefrQOxdsh5+KzB/+Wbi4DO7biYK0myzjugfGzPjBI9NTks7sX5+yQ0kHKh5C5+6JC6slzsp4i6cSDRs25LPPPmO//fbzkZFjlpiPp2HDhnGH4mqhRAsg7pGdX/twFRc/OqN8+f6BR9P/6J2LIc7Th554KtG6dWuKi4t9Dpg8kZiB1Lk4DDimVWw92L76upTjbnuZDV9HLZROzRsx4eoTqFd3509axXn60BNPJerXr++zXTrnYvXw6x9z+wsflC+Pv6oHR7Zuusv7Hdy3U8o1Hsjd6cOsXeOR9KiklZLmJZWdL2m+pC2SCtO2HyppkaSFkvomlXeVNDese0DhnJekBpJGh/Lpktom1blY0kfhcXG2XqNzzmVL8dqvaDtkQnnSubDbQRQNP6Nakg5ELbg7zz2CVk0LEFHX8DvPPaLG92p7DHgQSJ44Zh5wLvDn5A0ldSaauroL0BJ4WVLHMP31Q8BlwNvAC0A/oumvBwFrzay9pIHAXcAFkvYlmma7EDBglqTxZpbbmY6cc24nmBlXPT2bCXO2jtY+48Y+HNCo+q9vxnX6MJtTX7+e3AoJZR9AxrG7+gOjzGwzsFjSIqCbpCKgsZlNC/VGAgOIEk9/YFioPxZ4MLSG+gKTzWxNqDOZKFk9Xb2v0Dnndk5F98/MWLyG7/556/iFd5xzBN87vk2MkWZHvlzjaUXUokkoDmUl4Xl6eaLOEgAzK5W0HtgvuTxDnRSSLiNqTdGmze734Trn8k+m+2eGPDOHYePns25jNLZiiyYNeXVwbxrUy+08ObmSL4knU19lq6R8Z+ukFpqNAEZANGTO9sN0zrldk+n+mU2lW9hUugWIZgM9/pD94ggtZ/Il8RQDByUttwaWhfLWGcqT6xRLqgc0AdaE8t5pdV7NRtDOObejKrtPZvGdp9eKewbzZeSC8cDA0FOtHdABmGFmy4EvJHUP128uAp5PqpPosXYeMNWiW9snAqdK2kfSPsCpocw552JX2RTUtSHpQBZbPJKeJmp57C+pmKin2RrgD0AzYIKk98ysr5nNlzQGWACUAleGHm0AVxD1kCsg6lTwYih/BHgidERYQ9QrDjNbI+lW4J2w3S2JjgbOORenp6Z/mldTUMfFp0UIMk2L4Jxz1WFTSRmH/vqllLIDGzdkxeebYp2Cujr4tAjOOZdnfvT4O7z8wcry5Ut7tOM3Z3WOMaL4eeJxzrksKFq9gd73vJpS9vEdp+dkcrZ854nHOeeqWdshE1KW/3JRISfv5BTUcU3Wlk2eeJxzrppMmLOcK596N6WsaPgZO72/OCdryyZPPM45t4tKy7bQ/sYXU8revP7btN5nz13ab2WTtXnicc65WmrIM3MY9c7WUbrOPqolD1x4TLXsO87J2rLJE49zzu2EFZ9v4vg7pqSUfXjbaexRr/ruy49zsrZs8sTjnHM76LBfv5RyCuze7x7FucdW/+y4cU7Wlk2eeJxzroqenP4JNz47L6VsVzoPbE/iOo73anPOuVpmyxbjkBteSCl7+bqetD+gUdaPHddkbdnkicc55yox4P/e4r0l61LKstnKqQ088TjnXAb/Xb+J7nemdh6YM+xUGjesH1NEuw9PPM45lyZ95IHq7CLtPPE451y5F+cu54onq2/kAZeZJx7nnGPbVs6fvt+VfocfGFM0uzdPPM65Wu3Kp95lwpzlKWXeysmurE19LelRSSslzUsq21fSZEkfhZ/7JK0bKmmRpIWS+iaVd5U0N6x7IEyBTZgme3Qony6pbVKdi8MxPpKUmB7bOefKrd9YQtshE1KSzvQb+njSyYGsJR6i6ar7pZUNAaaYWQdgSlhGUmeiqau7hDp/lFQ31HkIuAzoEB6JfQ4C1ppZe+A+4K6wr32Jptk+HugG3JSc4Jxzru2QCRx186Ty5a4H70PR8DNo3rhhjFHVHllLPGb2OrAmrbg/8Hh4/jgwIKl8lJltNrPFwCKgm6QWQGMzm2bRHN0j0+ok9jUW6BNaQ32ByWa2xszWApPZNgE652qhtz/+bJtrOR/fcTrPXPGtmCKqnXJ9jae5mS0HMLPlkg4I5a2At5O2Kw5lJeF5enmizpKwr1JJ64H9kssz1Ekh6TKi1hRt2rTZ+VflnMt76QnnjnOO4HvH+999HPKlc0GmuWCtkvKdrZNaaDYCGAFQWFiYcRvnXM122z8X8Jc3F6eU+XWceOU68ayQ1CK0dloAK0N5MXBQ0natgWWhvHWG8uQ6xZLqAU2ITu0VA73T6rxavS/DOZfvNpWUceivX0opm/qLXhzSbO+YInIJ2exckMl4INHL7GLg+aTygaGnWjuiTgQzwmm5LyR1D9dvLkqrk9jXecDUcB1oInCqpH1Cp4JTQ5lzrpZof8MLKUnnwMYNKRp+hiedPJG1Fo+kp4laHvtLKibqaTYcGCNpEPApcD6Amc2XNAZYAJQCV5pZYgKKK4h6yBUAL4YHwCPAE5IWEbV0BoZ9rZF0K/BO2O4WM0vv5OCc2w0tWPY5pz/wRkrZR7efRv26uf4f21VGUSPBFRYW2syZM+MOwzm3k9I7D/zilI78rE+HmKKpPSTNMrPCHamTL50LnHNup4x4/T/c8cK/U8q880B+88TjnKuRSsu20P7GF1PKxl/VgyNbN40nIFdlnnicczXOSfe8yserN6SUeSun5vDE45yrMZas+YoTf/tKStmCW/qy5x7+VVaT+KflnKsR0jsPfL97G24bcERM0bhd4YnHOZfXnplVzC/+/n5KmZ9Wq9k88Tjn8pKZ0W7oCyllIy/tRs+OzWKKyFUXTzzOubzzg0em88ZHq1PKvJWz+/DE45zLG6u/3EzhbS+nlL3761PYd689YorIZYMnHudcXkjvPHDSoQfw6CXHxRSNyyZPPM65WL3y75X88LF3UsoW33k6YZZ7txvyxOOci016K+f+gUfT/+iM8za63YgnHudczv1q7PuMmVmcUuadB2oPTzzOuZz5cnMph9+UOj3WW0NOolXTgpgicnHwxOOcy4n002qHHtiIl67tGVM0Lk6eeJxzWfXup2s594//Sin7zx2nU7eOdx6orWKZlk/SNZLmSZov6dpQtq+kyZI+Cj/3Sdp+qKRFkhZK6ptU3lXS3LDugTA9NmEK7dGhfLqktrl+jc65qJWTnHR+c2Znioaf4Umnlst54pF0OPBjoBtwFHCmpA7AEGCKmXUApoRlJHUmmta6C9AP+KOkumF3DwGXAR3Co18oHwSsNbP2wH3AXTl4ac654HeTFm5zaq1o+BlcekK7mCJy+SSOU22HAW+b2VcAkl4DzgH6A73DNo8DrwLXh/JRZrYZWCxpEdBNUhHQ2Mymhf2MBAYAL4Y6w8K+xgIPSpL5PN/OZdXXpVvo+L+pk7NNvLYnnQ5sFFNELh/FkXjmAbdL2g/YCJwOzASam9lyADNbLumAsH0r4O2k+sWhrCQ8Ty9P1FkS9lUqaT2wH5Ay+JOky4haTLRp06a6Xp9ztdKxt05mzYavy5f33KMuC27pV0kNV1vlPPGY2QeS7gImA18C7wOllVTJdDLYKimvrE56LCOAEQCFhYXeGnJuJyxa+SUn3/taStnC2/rRoF7dCmq42i6WXm1m9gjwCICkO4haKysktQitnRbAyrB5MXBQUvXWwLJQ3jpDeXKdYkn1gCbAmiy9HOdqrfTrOJf3+gZDTjs0pmhcTRFXr7YDws82wLnA08B44OKwycXA8+H5eGBg6KnWjqgTwYxwWu4LSd1Db7aL0uok9nUeMNWv7zhXfZ54+5OMnQc86biqiOs+nmfCNZ4S4EozWytpODBG0iDgU+B8ADObL2kMsIDolNyVZlYW9nMF8BhQQNSpIHFV8xHgidARYQ1Rrzjn3C7assU45IbUydn+fvk3Oa7tvjFF5GoieUMgUlhYaDNnzow7DOfy1tkPvsmc4vUpZT6+mpM0y8wKd6SOj1zgnKvU8vUb+eadU1PK5g47lUYN68cUkavpKk08kuqY2Zak5f8BGgEjE/fhOOd2X+nXcc45phX3XXB0PMG43cb2WjwTJF0XukDfCPQEPgZGAWdnPTrnXCwmzFnOlU+9m1Lmp9Vcdakw8UjqRdSDrFnohfYD4AbgM+BhST2BIjP7NCeROueyzsxoNzS188DDFxVySufmMUXkdkfba/HUARoDewFlRHf+C9gU1vtIf87tJi5/YhYvzf9vSpm3clw2VJh4zOw1SX8jGmBzb2CYmb0eukGvMrPXcxWkcy571n9VwlG3TEopm3FjHw5o1DCmiNzurtIWj5n9RtJTQKmZLQrFdQjjmznnarb0zgPHt9uX0T/5ZkzRuNpiu92pzezfacurgFVZi8g5l3X/WrSa7/1lekrZ4jtPJ0xp5VxW+X08zsXgudlLuXviQpat20jLpgUM7tuJAce02n7FapDeyvntd47ku8cdVMHWzlU/TzzO5dhzs5cydNxcNpZEIz8tXbeRoePmAmQ1+QwbP5/H/lWUUuadB1wcPPE4l2N3T1xYnnQSNpaUcffEhVlJPBu/LuOw37yUUvbqL3vTdv+9qv1YzlXFdhOPpB5Es3keHLYXYGZ2SHZDc273tGzdxh0q3xXpp9VaNmnIv4b2qfbjOLcjqtLieQT4OTCL6F4e59wuaNm0gKUZkkzLpgXVdox5S9dz5h/eTCn76PbTqF83lplQnEtRlcSz3sxe3P5mzrmqGNy3U8o1HoCC+nUZ3LdTtew/vZXzy1M7ctVJHapl385Vh6oknlck3Q2MAzYnCs3s3YqrOOcqkriOU9292h569T/c9VLK3Q/eecDlpaoknuPDz+T5Fgw4qfrDca52GHBMq2rrSFBatoX2N6aelPjHVSdwROsm1bJ/56pbVW4g/XZ1H1TSz4EfESWwucAPgT2B0UBboAj4rpmtDdsPBQYRXWO62swmhvKubJ2B9AXgGjMzSQ2AkUBXokFNLzCzoup+Hc7FredvX+HTNakzlHgrx+W7ykan/r6Z/U3SdZnWm9m9O3NASa2Aq4HOZrYxTGs9EOgMTDGz4ZKGAEOA6yV1Duu7AC2BlyV1DNNfP0Q0fM/bRImnH9H014OAtWbWXtJAovHmLtiZeJ3LR598toFed7+aUvbBLf0o2KNuPAE5twMqa/EkOvk3ytJxCySVELV0lgFDgd5h/ePAq8D1QH9glJltBhZLWgR0k1QENDazaQCSRgIDiBJPf6Iu4ABjgQclyXyeb7cbSO88cNE3D+aW/ofHFI1zO66y0an/HH7eXJ0HNLOlku4BPgU2ApPMbJKk5ma2PGyzPMwBBNCKqEWTUBzKSsLz9PJEnSVhX6WS1gP7EU3rUE7SZYQBT9u0aVN9L9K5LBgzcwm/GjsnpcxPq7maKOcjF0jah6hF0g5YB/xd0vcrq5KhzCopr6xOaoHZCGAEQGFhobeGXF7KNDnbkz86nh7t948pIud2TRxD5pwMLA6jXCNpHPAtYIWkFqG10wJYGbYvBpJHMGxNdGquODxPL0+uUyypHtAEWJOl1+Nc1lw44m2mffxZSpm3clxNt93bmCVV99XKT4HukvZUNAZ7H+ADYDxwcdjmYuD58Hw8MFBSA0ntiKbjnhFOy30hqXvYz0VpdRL7Og+Y6td3XE2y6ovNtB0yISXpvPebUzzpuN1CVVo8iySNBf5qZgt29YBmNj3s712gFJhNdLprb2CMpEFEyen8sP380PNtQdj+ytCjDeAKtnanfjE8IBrm54nQEWENUa8452qE9M4Dp3ZuzoiLCivY2rmaR9trCEhqRPTF/UOiFtKjRL3MPs9+eLlTWFhoM2fOjDsMV4tN+WAFgx5P/R30ydlcvpM0y8x26D+jqtxA+gXwMPCwpJ7A08B9odVya9KU2M65nZTeynnwe8dw5pEtY4rGueyqyrQIdYEziFo8bYHfAU8CJxLdtNkxi/E5t1v7xZj3eebd4pQyv47jdndVucbzEfAKcLeZ/SupfGxoATnndtAXm0o4YtiklLJ/DTmpWqdGcC5fVZp4QmvnMTO7JdN6M7s6K1E5txtLP63WpWVjJlx9YkzROJd7lSYeMyuT9G0gY+JxzlXdrE/W8J2HpqWUfXzH6dSp450HXO1SlVNt/5L0INHI0RsShT4fj3NVl97KGXZWZy7p0S6maJyLV1USz7fCz+RWj8/H41wVXD92DqNnLkkp884DrraLZT4e53Z3m0rKOPTXL6WUTf55Tzo0z8Zg787VLFUaq03SGUTz4TRMlFXU4cC52i79tBp4K8e5ZFW5j+dPRHPmfBv4C9HYZzOyHJdzNc68pes58w9vppT9+9Z+NKzvk7M5l6xK13jM7EhJc8zsZkm/A8ZlOzDnapL0Vs7A4w5i+HeOjCka5/JbVRLPxvDzK0ktgc+I5tJxrta7b/KH3D/lo5QyP63mXOWqknj+KakpcDfRiNJGdMrNuVqrbIvxjRt8cjbndkZVerXdGp4+I+mfQEMzW5/dsJzLX4ffNJEvN5emlHkrx7mqqzDxSDq3knWYmV/ncbXKp599Rc+7X0kpe/+mU2lSUD+miJyrmSpr8ZxVyTrDOxi4WiS988CJHfbniUHHxxSNczVbhYnHzH6YjQNK6kQ0/E7CIcBvgJGhvC1QBHzXzNaGOkOBQUAZcLWZTQzlXdk6A+kLwDVmZpIahP11JeoMcYGZFWXj9bjd21PTP+WGZ+emlPlpNed2Tc5vIDWzhcDRYb91gaXAs8AQYIqZDZc0JCxfL6kz0QyoXYCWwMuSOobprx8CLgPeJko8/Yimvx4ErDWz9pIGAncBF+xMvK52MjPaDU3tPPDAhcdw9lE+OZtzuyruG0j7AP8xs08k9Qd6h/LHgVeB64H+RFNtbwYWS1oEdJNUBDQ2s2khzpHAAKLE0x8YFvY1FnhQkmx783w7B5zxwBvMX5Y6s7u3cpyrPnHfQDqQaCptgOZmthzAzJZLOiCUtyJq0SQUh7KS8Dy9PFFnSdhXqaT1wH7A6uSDS7qMqMVEmzZtqukluZpq9ZebKbzt5ZSy6Tf0oXnjhhXUcM7tjNhuIJW0B3A2MHR7m2Yos0rKK6uTWmA2AhgBUFhY6K2hWiy988DB++3Ja4N9fFznsmFnbyB9uBqOfRrwrpmtCMsrJLUIrZ0WwMpQXgwclFSvNbAslLfOUJ5cp1hSPaAJsKYaYna7mUnz/8tlT8xKKVt85+lIPjmbc9kS5w2kF7L1NBvAeOBiYHj4+XxS+VOS7iXqXNABmBFmR/1CUndgOnAR8Ie0fU0juiY11a/vuHTprZxfn9mZQSf4aFDOZVtlN5AeBywxs/+G5YuA7wCfSBpmZjvdgpC0J3AK8JOk4uHAGEmDgE+B8wHMbL6kMcACoBS4MvRoA7iCrd2pXwwPgEeAJ0JHhDVE15KcA+DyJ2bx0vz/ppR55wHnckcVNQQkvQucbGZrJPUERgE/I+oKfZiZnZezKHOgsLDQZs6cGXcYLos2bC6ly00TU8pevq4X7Q/YO6aInKv5JM0ys8IdqVPZqba6Sa2aC4ARZvYM0Sm393YyRudi4ZOzOZc/Kk08kuqZWSnR/TaXVbGec3njnaI1nP+naSlli24/jXp162T92M/NXsrdExeybN1GWjYtYHDfTgw4ptX2Kzq3m6ssgTwNvCZpNVGX6jcAJLUHfHRql/fSWzk/6XkIQ08/LCfHfm72UoaOm8vGkuhy5NJ1Gxk6Lhp6x5OPq+0qG6vtdklTgBbApKReYXWIrvU4l5du+ccCHn1rcUpZrk+r3T1xYXnSSdhYUsbdExd64nG1XqWnzMzs7QxlH2YvHOd2XknZFjrc+GJK2biffotj2+yT81iWrdu4Q+XO1SZ+rcbtFvKt80DLpgUszZBkWjYtiCEa5/JL9q+wOpdFH674Ypuks+CWvrH3WBvctxMF9eumlBXUr8vgvp1iisi5/OEtHldjpSecM45swf9979iYokmVuI7jvdqc25YnHlfjvDh3OVc8+W5KWdwtnEwGHNPKE41zGXjicTVGpsnZ/nJRISd3bh5TRM65neGJx9UI1415j3HvLi1f3nOPuiy4pV+METnndpYnHpfX1mz4mmNvnZxSNmfYqTRuWD+miJxzu8oTj8tb6Z0HftijLTed1SWmaJxz1cUTj8s7//rPar738PSUMp+czbndhycel1fSWzmPX9qNXh2bxRSNcy4bYrmBVFJTSWMl/VvSB5K+KWlfSZMlfRR+7pO0/VBJiyQtlNQ3qbyrpLlh3QMK/xJLaiBpdCifLqltDC/T7YA7X/xgm6RTNPwMTzrO7YbiGrngfuAlMzsUOAr4ABgCTDGzDsCUsIykzkQziHYB+gF/lJS4JfwhoukaOoRHopvTIGCtmbUH7gPuysWLcjtuw+ZS2g6ZwJ9f+7i87J0bT87L+3Kcc9Uj56faJDUGegKXAJjZ18DXkvoDvcNmjwOvAtcD/YFRZrYZWByms+4mqQhobGbTwn5HAgOIpr/uDwwL+xoLPChJVtF0qy4WXW+dzGcbvi5fzqeRB5xz2RPHNZ5DgFXAXyUdBcwCrgGam9lyADNbLumAsH0rIHmU7OJQVhKep5cn6iwJ+yqVtB7YD1idlVfkdsi8pes58w9vppR9fMfp1KnjnQecqw3iSDz1gGOBn5nZdEn3E06rVSDTt5FVUl5ZndQdS5cRZlZt06ZNZTG7apJ+HeeBC4/h7KNaxhSNcy4OcVzjKQaKzSzRX3YsUSJaIakFQPi5Mmn7g5LqtwaWhfLWGcpT6kiqBzQB1qQHYmYjzKzQzAqbNfOL2Nn0lzc+zth5wJOOc7VPzls8ZvZfSUskdTKzhUAfYEF4XAwMDz+fD1XGA09JuhdoSdSJYIaZlUn6QlJ3YDpwEfCHpDoXA9OA84Cpfn0nHl+XbqHj/6ZOzvb64G/TZr89Y4rIORe3uO7j+RnwpKQ9gI+BHxK1vsZIGgR8CpwPYGbzJY0hSkylwJVmlphT+ArgMaCAqFNB4hvuEeCJ0BFhDVGvOJdjZz/4JnOK15cvFx68D2Ov+FaMETnn8oG8IRApLCy0mTNnxh3GbmHx6g18+55XU8o+uv006tfNzpnd52Yv9XlvnIuJpFlmVrgjdXzkAlet0q/j3Hx2Fy7+VtusHe+52UsZOm4uG0uiRvDSdRsZOm4ugCcf5/KUJx5XLca9W8x1Y95PKcvFTaB3T1xYnnQSNpaUcffEhZ54nMtTnnjcLtmyxTjkhtTJ2V685kQOa9E4q8dNnF5bum5jxvXLKih3zsXPE4/baT8eOZPJC1aUL7dqWsBbQ07K+nHTT69l0rJpQdbjcM7tHE88boet+HwTx98xJaXsg1v6UbBH3QpqVK9Mp9eSFdSvy+C+nXISi3Nux3nicTskvfPA1Se157pTc/slX9lptFbeq825vOeJx1XJ1H+v4NLHUrubxzWCdMumBRmv7eTqVJ9zbtd44nGVMjPaDU3tPDDmJ9+kW7t9Y4oIBvfttM01Hj+95lzN4YnHVejGZ+fy5PRPU8ryYZ6cxGk0v2nUuZrJE4/bxvqvSjjqlkkpZe/95hSa7rlHTBFta8AxrTzROFdDeeJxKQ4ZOoEtSaMoXdjtIO4898j4AnLO7XY88TgAZhat4bw/TUspW3zn6Ug+OZtzrnp54nHbdJF++KJCTuncPKZonHO7O088tdj9L3/EfS9/mFKWD50HnHO7N088tdCmkjIO/fVLKWVvD+3DgU0axhSRc6428cRTy/S6+xU++eyr8uWTDj2ARy85LsaInHO1TSyJR1IR8AVQBpSaWaGkfYHRQFugCPiuma0N2w8FBoXtrzaziaG8K1tnIH0BuMbMTFIDYCTQFfgMuMDMinL08vLSwv9+Qd/fv55S9p87TqduHe884JzLrexMCVk13zazo5NmrhsCTDGzDsCUsIykzkRTV3cB+gF/lJQYjfIh4DKgQ3j0C+WDgLVm1h64D7grB68nb7UdMiEl6fz2vCMpGn6GJx3nXCziTDzp+gOPh+ePAwOSykeZ2WYzWwwsArpJagE0NrNpFs3fPTKtTmJfY4E+qoX9gp94+5NteqwVDT+D7xYeFFNEzjkX3zUeAyZJMuDPZjYCaG5mywHMbLmkA8K2rYC3k+oWh7KS8Dy9PFFnSdhXqaT1wH7A6uQgJF1G1GKiTZs21ffqYlZatoX2N76YUjblF734RrO9Y4rIOee2iivx9DCzZSG5TJb070q2zdRSsUrKK6uTWhAlvBEAhYWF26yviQaOmMbbH68pXz6sRWNevObEGCNyzrlUsSQeM1sWfq6U9CzQDVghqUVo7bQAVobNi4Hkc0OtgWWhvHWG8uQ6xZLqAU2ANezGlqz5ihN/+0pK2cLb+tGgXm4mZ3POuarK+TUeSXtJapR4DpwKzAPGAxeHzS4Gng/PxwMDJTWQ1I6oE8GMcFruC0ndw/Wbi9LqJPZ1HjA1XAfaLbUdMiEl6Qw97VCKhp/hScc5l5fiaPE0B54N1/rrAU+Z2UuS3gHGSBoEfAqcD2Bm8yWNARYApcCVZpaYiOUKtnanfjE8AB4BnpC0iKilMzAXLyzXJsxZzpVPvZtS5iMPOOfynXbjhsAOKSwstJkzZ25/wzyQaXK28Vf14MjWTeMJyDlXa0malXRbTJX4yAU1zLWjZvPce8vKl5sU1Of9m06NMSLnnNsxnnhqiC83l3L4TRNTyubd3Je9G/hH6JyrWfxbqwa4bvR7jJu9tHz5xye248YzOscYkXPO7TxPPHls0covOPnerUPd7N2gHvNu7htjRM45t+s88eSpI26ayBebS8uXX76uJ+0PaBRjRM45Vz088eSZF+Yu56dPbu0ifc4xrbjvgqPjC8g556qZJ5488XXpFjr+b+r4at55wDm3O/JvtTwwdlYxv/z7++XLd33nCC44bvcZtNQ555J54onRZ19uputtL5cvN6xXh02lW3hgyiIa1KvLgGNaVVLbOedqJk88MRk2fj6P/auofLlBSDoAS9dtZOi4uQCefJxzu518mgiuVliw7HPaDplQnnQG9+1Eq6YFbA5JJ2FjSRl3T1wYQ4TOOZdd3uLJkbItxjl/fIs5xesBqFdHvHfTqezdoB73VJBglq3bmMsQnXMuJzzx5MCLc5dzRVIX6b9cVMjJnZuXL7dsWsDSDEmmZdOCnMTnnHO55Ikni9ZvLOGomyeVL3drty+jftydOnVSJ0gd3LcTQ8fNZWNJWXlZQf26DO7bKWexOudcrnjiyZJ7Jy3kgamLypcn/7wnHZpnHnkg0YHg7okLWbZuIy2bFjC4byfvWOCc2y154qlmH6/6kpN+91r58k96HcLQ0w7bbr0Bx7TyROOcqxVi69Umqa6k2ZL+GZb3lTRZ0kfh5z5J2w6VtEjSQkl9k8q7Spob1j0QpsAmTJM9OpRPl9Q226/HzPjBI9NTks57vzmlSknHOedqkzi7U18DfJC0PASYYmYdgClhGUmdiaau7gL0A/4oqW6o8xBwGdAhPPqF8kHAWjNrD9wH3JXNF/LqwpW0G/oCb3y0GoD7Bx5N0fAzaLrnHtV2jOdmL6XH8Km0GzKBHsOn8lzSNAnOOVeTxJJ4JLUGzgD+klTcH3g8PH8cGJBUPsrMNpvZYmAR0E1SC6CxmU2zaP7ukWl1EvsaC/RJtIaqW9kW45K/vgPAoQc2YtHtp9H/6Oo9Zfbc7KUMHTeXpes2Ymy9wdSTj3OuJorrGs/vgV8ByVfbm5vZcgAzWy7pgFDeCng7abviUFYSnqeXJ+osCfsqlbQe2A9YnRyEpMuIWky0abNzY6PVrSNGXtqNfffag8NbNdmpfWzP3RMXpvR4g603mPp1IedcTZPzFo+kM4GVZjarqlUylFkl5ZXVSS0wG2FmhWZW2KxZsyqGs62eHZtlLelAxTeS+g2mzrmaKI5TbT2AsyUVAaOAkyT9DVgRTp8Rfq4M2xcDByXVbw0sC+WtM5Sn1JFUD2gCrMnGi8mFim4k9RtMnXM1Uc4Tj5kNNbPWZtaWqNPAVDP7PjAeuDhsdjHwfHg+HhgYeqq1I+pEMCOclvtCUvdw/eaitDqJfZ0XjrFNi6c65OKi/+C+nSioXzelzG8wdc7VVPl0H89wYIykQcCnwPkAZjZf0hhgAVAKXGlmiQseVwCPAQXAi+EB8AjwhKRFRC2dgdkIOHHRP3H9JVujSvsNps653Ymy1BCocQoLC23mzJk7VKfH8KkZx1hr1bSAt4acVF2hOedc3pI0y8wKd6SOT4uwC/yiv3PO7ThPPLvAL/o759yO88SzC/yiv3PO7bh86lxQ4/hFf+ec23GeeHaRjyrtnHM7xk+1OeecyylPPM4553LKE49zzrmc8sTjnHMupzzxOOecyykfMieQtAr4JO44gP1JmzcoT3hcVZePMUF+xpWPMUF+xpWPMQF0MrNG299sK+9OHZjZzk/IU40kzdzRcY9yweOqunyMCfIzrnyMCfIzrnyMCaK4drSOn2pzzjmXU554nHPO5ZQnnvwzIu4AKuBxVV0+xgT5GVc+xgT5GVc+xgQ7EZd3LnDOOZdT3uJxzjmXU554nHPO5ZQnnjwh6SBJr0j6QNJ8SdfEHROApIaSZkh6P8R1c9wxJUiqK2m2pH/GHUuCpCJJcyW9tzPdTLNBUlNJYyX9O/x+fTMPYuoU3qPE43NJ1+ZBXD8Pv+fzJD0tqWHcMQFIuibEND/O90nSo5JWSpqXVLavpMmSPgo/99nefjzx5I9S4BdmdhjQHbhSUueYYwLYDJxkZkcBRwP9JHWPN6Ry1wAfxB1EBt82s6Pz6J6L+4GXzOxQ4Cjy4D0zs4XhPToa6Ap8BTwbZ0ySWgFXA4VmdjhQFxgYZ0wAkg4Hfgx0I/r8zpTUIaZwHgP6pZUNAaaYWQdgSliulCeePGFmy83s3fD8C6Ivh9gn+rHIl2GxfnjE3iNFUmvgDOAvcceSzyQ1BnoCjwCY2ddmti7WoLbVB/iPmeXDyCH1gAJJ9YA9gWUxxwNwGPC2mX1lZqXAa8A5cQRiZq8Da9KK+wOPh+ePAwO2tx9PPHlIUlvgGGB6zKEA5ae03gNWApPNLB/i+j3wK2BLzHGkM2CSpFmSLos7GOAQYBXw13Ba8i+S9oo7qDQDgafjDsLMlgL3AJ8Cy4H1ZjYp3qgAmAf0lLSfpD2B04GDYo4pWXMzWw7RP9DAAdur4Iknz0jaG3gGuNbMPo87HgAzKwunRFoD3ULTPzaSzgRWmtmsOOOoQA8zOxY4jeh0ac+Y46kHHAs8ZGbHABuowqmQXJG0B3A28Pc8iGUfov/e2wEtgb0kfT/eqMDMPgDuAiYDLwHvE52ar7E88eQRSfWJks6TZjYu7njShVM0r7LtOd5c6wGcLakIGAWcJOlv8YYUMbNl4edKomsW3eKNiGKgOKmVOpYoEeWL04B3zWxF3IEAJwOLzWyVmZUA44BvxRwTAGb2iJkda2Y9iU51fRR3TElWSGoBEH6u3F4FTzx5QpKIzsN/YGb3xh1PgqRmkpqG5wVEf5z/jjMmMxtqZq3NrC3RaZqpZhb7f6aS9pLUKPEcOJXoNElszOy/wBJJnUJRH2BBjCGlu5A8OM0WfAp0l7Rn+HvsQx50xACQdED42QY4l/x5zwDGAxeH5xcDz2+vgo9OnT96AD8A5obrKQA3mNkL8YUEQAvgcUl1if5RGWNmedN9Oc80B56NvrOoBzxlZi/FGxIAPwOeDKe1PgZ+GHM8AITrFacAP4k7FgAzmy5pLPAu0ams2eTPMDXPSNoPKAGuNLO1cQQh6WmgN7C/pGLgJmA4MEbSIKLkff529+ND5jjnnMslP9XmnHMupzzxOOecyylPPM4553LKE49zzrmc8sTjnHMupzzxuN2eIm9KOi2p7LuSYunqLOnQMCLzbEnfSFuXPLr1e5IeyHIshdk+hnPpvDu1qxXCMD9/JxoDry7wHtDPzP6zE/uqa2ZluxDLEKDAzG7KsK6IaHTk1Tu7/x2Io14YdNK5nPIWj6sVzGwe8A/geqKb3v4G3CjpndDy6A/RAK2S3pD0bnh8K5T3VjRf0lNEN/nuJWmConmK5km6IP2Yko6W9LakOZKelbSPpNOBa4EfSXqlKrFLqhfi7B2W75R0e3heJOkuRXMmzZDUPpQ3k/RMqPeOpB6hfJikEZImASPD6/pnWLeXovlW0t+TSySNk/SSojlXfpsUW7/wPr0vaUpl+3GunJn5wx+14gHsBSwE5gJ3At8P5U2BD8P6PYGGobwDMDM87000wGa7sPwd4OGkfTfJcLw5QK/w/Bbg9+H5MOCXFcRYFOJ7Lzx+Hsq7EA3fcgrRHfV7JG1/Y3h+EfDP8Pwp4ITwvA3RUEyJY88ianElXleizh0VvCeXEI140ARoCHxCNDpyM2BJ0nuyb2X7ifvz90f+PHzIHFdrmNkGSaOBL4HvAmdJ+mVY3ZDoC3oZ8KCko4EyoGPSLmaY2eLwfC5wj6S7iL6430g+lqQmQFMzey0UPU7VR2D+tqWdajOz+ZKeIGq1fdPMvk5a/XTSz/vC85OBzmH4HoDGiXHkgPFmtjHDcU8lGnw1/T2BaKKv9eG1LQAOBvYBXk+8J2a2Zjv7yYtxz1z8PPG42mZLeAj4jpktTF4paRiwgmimxzrApqTVGxJPzOxDSV2J5ka5U9IkM7sly7EfAawjGhMumWV4XocoQaUkmJCINpBZRe/J8UQz0SaUEX13iMyTAmbcj3MJfo3H1VYTgZ+FUYiRdEwobwIsN7MtRIO21s1UWVJL4Csz+xvR5GEpUw2E1sFaSSeGoh8QzRy5UySdC+xHNJvoAwojhgcXJP2cFp5PAq5Kqn90FQ5T0XtSkWlAL0ntwvb77uR+XC3jLR5XW91KNIvpnPAFWQScCfyRaCTg84FXqLh1cARwt6QtRCMGX5Fhm4uBPykahXlHRoV+RVKi19wc4DqiEYD7mNkSSQ8C97N1KPoGkqYT/SN5YSi7Gvg/SXOI/s5fBy7fznErek8yMrNVimZZHSepDtE8LKfs6H5c7ePdqZ2rwXLZ/dq56uKn2pxzzuWUt3icc87llLd4nHPO5ZQnHueccznlicc551xOeeJxzjmXU554nHPO5dT/A1Ad0r6+EUlKAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -482,24 +430,40 @@ } ], "source": [ - "# plot the linear model\n", + "# Plot the linear model.\n", "\n", - "plt.scatter(X_test, y_test, cmap=\"plasma\",c=X_test.astype(\"int\"))\n", - "plt.colorbar()\n", + "plt.scatter(X_test, y_test)\n", "plt.xlabel(\"Years of Experience\")\n", "plt.ylabel(\"Salary in $\")\n", + "plt.title(\"Experience vs Salary (Predictions)\")\n", "plt.plot(X_test, y_preds)\n", + "plt.legend([\"Linear Model\"])\n", "plt.show()" ] }, + { + "cell_type": "markdown", + "id": "twenty-qualification", + "metadata": {}, + "source": [ + "## Evaluation Metrics for Regression model\n", + "\n", + "* Mean Absolute Error (MAE) is the sum of absolute differences between actual and predicted values, without considering the direction.\n", + "$$ MAE = \\frac{\\sum_{i=1}^n\\lvert y_{i} - \\hat{y_{i}}\\rvert} {n} $$\n", + "* Mean Squared Error (MSE) is calculated as the mean or average of the squared differences between predicted and expected target values in a dataset, a lower value is better\n", + "$$ MSE = \\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2 $$\n", + "* Root Mean Squared Error (RMSE), Square root of MSE yields root mean square error (RMSE) it indicates the spread of the residual errors. It is always positive, and a lower value indicates better performance.\n", + "$$ RMSE = \\sqrt{\\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2} $$" + ] + }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 38, "id": "c26ee546", "metadata": {}, "outputs": [], "source": [ - "# utility functions for evaultion metrics\n", + "# Utility functions for evaulation metrics.\n", "\n", "def mae(y_true, y_preds):\n", " return np.mean(np.abs(y_preds - y_true))\n", @@ -510,7 +474,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 39, "id": "8ad80db1", "metadata": {}, "outputs": [ @@ -519,9 +483,9 @@ "output_type": "stream", "text": [ "---- Evaluation Metrics ----\n", - "Mean Absoulte Error: 6776.34\n", - "Mean Squared Error: 64688553.98\n", - "Root Mean Squared Error: 8042.92\n" + "Mean Absoulte Error: 5341.51\n", + "Mean Squared Error: 38284079.88\n", + "Root Mean Squared Error: 6187.41\n" ] } ], @@ -549,7 +513,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.7.10" } }, "nbformat": 4, From f401c132f394c1de3d40903ee502493542c6521f Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Sun, 30 May 2021 09:43:53 +0530 Subject: [PATCH 11/69] added markdown explaining the dataset & approach --- ...ary-prediction-linear-regression-cpp.ipynb | 82 +++++++++++-------- 1 file changed, 47 insertions(+), 35 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb index dad9f6c3..7dccda57 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb @@ -1,8 +1,26 @@ { "cells": [ + { + "cell_type": "markdown", + "id": "94323844", + "metadata": {}, + "source": [ + "## Predicting Salary using Linear Regression\n", + "\n", + "### Objective\n", + "* We have to predict the salary of an employee given how many years of experience they have.\n", + "\n", + "### Dataset\n", + "* Salary_Data.csv has 2 columns — “Years of Experience” and “Salary” for 30 employees in a company\n", + "\n", + "### Approach\n", + "* So in this example, we will train a Linear Regression model to learn the correlation between the number of years of experience of each employee and their respective salary. \n", + "* Once the model is trained, we will be able to do some sample predictions." + ] + }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "behavioral-cycling", "metadata": {}, "outputs": [], @@ -17,31 +35,32 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "stupid-permission", + "execution_count": null, + "id": "db43325d", "metadata": {}, "outputs": [], "source": [ "#define WITHOUT_NUMPY 1\n", "#include \"matplotlibcpp.h\"\n", - "#include \"xwidgets/ximage.hpp\"" + "#include \"xwidgets/ximage.hpp\"\n", + "\n", + "namespace plt = matplotlibcpp;" ] }, { "cell_type": "code", - "execution_count": 3, - "id": "indian-prairie", + "execution_count": null, + "id": "9065ebb1", "metadata": {}, "outputs": [], "source": [ "using namespace mlpack;\n", - "using namespace mlpack::regression;\n", - "namespace plt = matplotlibcpp;" + "using namespace mlpack::regression;" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "victorian-donna", "metadata": {}, "outputs": [], @@ -54,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "deluxe-present", "metadata": {}, "outputs": [], @@ -66,25 +85,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "desirable-experience", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Years Of Experience Salary\n", - " 1.1000e+00 3.9343e+04\n", - " 1.3000e+00 4.6205e+04\n", - " 1.5000e+00 3.7731e+04\n", - " 2.0000e+00 4.3525e+04\n", - " 2.2000e+00 3.9891e+04\n", - " 2.9000e+00 5.6642e+04\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "// Display the first 5 rows of the input data\n", "\n", @@ -104,19 +108,19 @@ "std::vector x = arma::conv_to>::from(inputs.row(0));\n", "std::vector y = arma::conv_to>::from(inputs.row(1));\n", "\n", - "plt::scatter(x, y, 12, {{\"color\", \"coral\"}});\n", + "matplotlibcpp::scatter(x, y, 12, {{\"color\", \"coral\"}});\n", "plt::xlabel(\"Years of Experience\");\n", "plt::ylabel(\"Salary in $\");\n", "plt::title(\"Experience vs. Salary\");\n", "\n", - "plt::save(\"./scatter1.png\");\n", + "matplotlibcpp::save(\"./scatter1.png\");\n", "auto img = xw::image_from_file(\"scatter.png\").finalize();\n", "img" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "coordinate-canvas", "metadata": {}, "outputs": [], @@ -129,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "blank-mexican", "metadata": {}, "outputs": [], @@ -141,7 +145,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "mechanical-laundry", "metadata": {}, "outputs": [], @@ -168,6 +172,14 @@ "arma::rowvec y_test = arma::conv_to::from(Ytest);" ] }, + { + "cell_type": "markdown", + "id": "99955e22", + "metadata": {}, + "source": [ + "## Linear Model" + ] + }, { "cell_type": "code", "execution_count": null, @@ -236,9 +248,9 @@ "source": [ "// Model evaluation metrics\n", "\n", - "std::cout<<\"Mean Absolute Error: \"< Date: Wed, 2 Jun 2021 08:04:40 +0530 Subject: [PATCH 12/69] added various markdown sections & fixed styling --- ...ary-prediction-linear-regression-cpp.ipynb | 217 +++++++++++++----- 1 file changed, 165 insertions(+), 52 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb index 7dccda57..d7ebb112 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb @@ -11,7 +11,7 @@ "* We have to predict the salary of an employee given how many years of experience they have.\n", "\n", "### Dataset\n", - "* Salary_Data.csv has 2 columns — “Years of Experience” and “Salary” for 30 employees in a company\n", + "* Salary_Data.csv has 2 columns — “Years of Experience” (feature) and “Salary” (target) for 30 employees in a company\n", "\n", "### Approach\n", "* So in this example, we will train a Linear Regression model to learn the correlation between the number of years of experience of each employee and their respective salary. \n", @@ -20,12 +20,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 86, "id": "behavioral-cycling", "metadata": {}, "outputs": [], "source": [ - "// Import necessary library headers\n", + "// Import necessary library header.\n", + "#include \n", "\n", "#include \n", "#include \n", @@ -35,7 +36,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 87, "id": "db43325d", "metadata": {}, "outputs": [], @@ -49,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 88, "id": "9065ebb1", "metadata": {}, "outputs": [], @@ -60,12 +61,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 89, "id": "victorian-donna", "metadata": {}, "outputs": [], "source": [ - "// Load the dataset into armadillo matrix\n", + "// Load the dataset into armadillo matrix.\n", "\n", "arma::mat inputs;\n", "data::Load(\"Salary_Data.csv\", inputs);" @@ -73,24 +74,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 90, "id": "deluxe-present", "metadata": {}, "outputs": [], "source": [ - "// Drop the first row as they represent header\n", + "// Drop the first row as they represent header.\n", "\n", "inputs.shed_col(0);" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 91, "id": "desirable-experience", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Years Of Experience Salary\n", + " 1.1000e+00 3.9343e+04\n", + " 1.3000e+00 4.6205e+04\n", + " 1.5000e+00 3.7731e+04\n", + " 2.0000e+00 4.3525e+04\n", + " 2.2000e+00 3.9891e+04\n", + " 2.9000e+00 5.6642e+04\n", + "\n" + ] + } + ], "source": [ - "// Display the first 5 rows of the input data\n", + "// Display the first 5 rows of the input data.\n", "\n", "std::cout< x = arma::conv_to>::from(inputs.row(0));\n", "std::vector y = arma::conv_to>::from(inputs.row(1));\n", "\n", - "matplotlibcpp::scatter(x, y, 12, {{\"color\", \"coral\"}});\n", + "plt::figure_size(800, 800);\n", + "\n", + "plt::scatter(x, y, 12, {{\"color\",\"coral\"}});\n", "plt::xlabel(\"Years of Experience\");\n", "plt::ylabel(\"Salary in $\");\n", "plt::title(\"Experience vs. Salary\");\n", "\n", - "matplotlibcpp::save(\"./scatter1.png\");\n", + "plt::save(\"./scatter.png\");\n", "auto img = xw::image_from_file(\"scatter.png\").finalize();\n", "img" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 93, "id": "coordinate-canvas", "metadata": {}, "outputs": [], "source": [ "// Split the data into features (X) and target (y) variables\n", - "// targets are the last row\n", + "// targets are the last row.\n", "\n", "arma::Row targets = arma::conv_to>::from(inputs.row(inputs.n_rows - 1));" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 94, "id": "blank-mexican", "metadata": {}, "outputs": [], "source": [ - "// Labels are dropped from the originally loaded data to be used as features\n", + "// Labels are dropped from the originally loaded data to be used as features.\n", "\n", "inputs.shed_row(inputs.n_rows - 1);" ] }, + { + "cell_type": "markdown", + "id": "8da116b5-83f2-4acd-8ac3-0d68adbd83ca", + "metadata": {}, + "source": [ + "### Train Test Split\n", + "The dataset has to be split into a training set and a test set.\n", + "This can be done using the `data::Split()` api from mlpack.\n", + "Here the dataset has 30 observations and the `testRatio` is taken as 40% of the total observations.\n", + "This indicates the test set should have 40% * 30 = 12 observations and training test should have 18 observations respectively." + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 95, "id": "mechanical-laundry", "metadata": {}, "outputs": [], "source": [ - "// Split the dataset into train and test sets using mlpack\n", + "// Split the dataset into train and test sets using mlpack.\n", "\n", "arma::mat Xtrain;\n", "arma::mat Xtest;\n", @@ -161,15 +207,15 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 96, "id": "friendly-petersburg", "metadata": {}, "outputs": [], "source": [ - "// Convert armadillo Rows into rowvec. (Required by mlpacks' LinearRegression API in this format)\n", + "// Convert armadillo Rows into rowvec. (Required by mlpacks' LinearRegression API in this format).\n", "\n", - "arma::rowvec y_train = arma::conv_to::from(Ytrain);\n", - "arma::rowvec y_test = arma::conv_to::from(Ytest);" + "arma::rowvec yTrain = arma::conv_to::from(Ytrain);\n", + "arma::rowvec yTest = arma::conv_to::from(Ytest);" ] }, { @@ -177,80 +223,147 @@ "id": "99955e22", "metadata": {}, "source": [ - "## Linear Model" + "## Linear Model\n", + "\n", + "Regression analysis is the most widely used method of prediction. Linear regression is used when the dataset has a linear correlation and as the name suggests, \n", + "simple linear regression has one independent variable (predictor) and one dependent variable(response).\n", + "\n", + "The simple linear regression equation is represented as $y = a+bx$ where $x$ is the explanatory variable, $y$ is the dependent variable, $b$ is coefficient and $a$ is the intercept\n", + "\n", + "To perform linear regression we'll be using `LinearRegression()` api from mlpack." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 97, "id": "published-illustration", "metadata": {}, "outputs": [], "source": [ - "// Create and Train Linear Regression model\n", + "// Create and Train Linear Regression model.\n", "\n", - "regression::LinearRegression lr(Xtrain, y_train, 0.5);" + "regression::LinearRegression lr(Xtrain, yTrain, 0.5);" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 98, "id": "detailed-mystery", "metadata": {}, "outputs": [], "source": [ - "// Make predictions for test data points\n", + "// Make predictions for test data points.\n", "\n", - "arma::rowvec y_preds;\n", - "lr.Predict(Xtest, y_preds);" + "arma::rowvec yPreds;\n", + "lr.Predict(Xtest, yPreds);" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 99, "id": "indian-ambassador", "metadata": {}, "outputs": [], "source": [ - "// convert armadillo vectors and matrices to vector for plotting purpose\n", + "// Convert armadillo vectors and matrices to vector for plotting purpose.\n", "\n", - "std::vector x_test = arma::conv_to>::from(Xtest);\n", - "std::vector y_t = arma::conv_to>::from(y_test);\n", - "std::vector y_p = arma::conv_to>::from(y_preds);" + "std::vector XtestPlot = arma::conv_to>::from(Xtest);\n", + "std::vector yTestPlot = arma::conv_to>::from(yTest);\n", + "std::vector yPredsPlot = arma::conv_to>::from(yPreds);" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 100, "id": "related-approach", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c801c911f58343879350d4e837eb8e1b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: c801c911f58343879350d4e837eb8e1b" + ] + }, + "execution_count": 100, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "// Visualize Predicted datapoints\n", + "// Visualize Predicted datapoints.\n", + "plt::figure_size(800, 800);\n", "\n", - "plt::scatter(x_test, y_t, 12, {{\"color\", \"coral\"}});\n", - "plt::plot(x_test,y_p);\n", + "plt::scatter(XtestPlot, yTestPlot, 12, {{\"color\", \"coral\"}});\n", + "plt::plot(XtestPlot,yPredsPlot);\n", "plt::xlabel(\"Years of Experience\");\n", "plt::ylabel(\"Salary in $\");\n", "plt::title(\"Predicted Experience vs. Salary\");\n", "\n", "plt::save(\"./scatter1.png\");\n", - "auto img = xw::image_from_file(\"scatter.png\").finalize();\n", + "auto img = xw::image_from_file(\"scatter1.png\").finalize();\n", "img" ] }, + { + "cell_type": "markdown", + "id": "0a10abbb-6b3a-423f-a573-1c650ac60b85", + "metadata": {}, + "source": [ + "Test data is visualized with `XtestPlot` and `yPredsPlot`, the coral points indicates the data points and the blue line indicates the regression line or best fit line." + ] + }, + { + "cell_type": "markdown", + "id": "c24be191-959f-4244-8921-c1ee0ea98b3b", + "metadata": {}, + "source": [ + "## Evaluation Metrics for Regression model\n", + "\n", + "In the Previous cell we have visualized our model performance by plotting the best fit line. Now we will use various evaluation metrics to understand how well our model has performed.\n", + "\n", + "* Mean Absolute Error (MAE) is the sum of absolute differences between actual and predicted values, without considering the direction.\n", + "$$ MAE = \\frac{\\sum_{i=1}^n\\lvert y_{i} - \\hat{y_{i}}\\rvert} {n} $$\n", + "* Mean Squared Error (MSE) is calculated as the mean or average of the squared differences between predicted and expected target values in a dataset, a lower value is better\n", + "$$ MSE = \\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2 $$\n", + "* Root Mean Squared Error (RMSE), Square root of MSE yields root mean square error (RMSE) it indicates the spread of the residual errors. It is always positive, and a lower value indicates better performance.\n", + "$$ RMSE = \\sqrt{\\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2} $$" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 101, "id": "british-moment", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Absolute Error: 5753.06\n", + "Mean Squared Error: 3.9482e+07\n", + "Root Mean Squared Error: 6283.47\n" + ] + } + ], "source": [ - "// Model evaluation metrics\n", + "// Model evaluation metrics.\n", "\n", - "std::cout << \"Mean Absolute Error: \" << arma::mean(arma::abs(y_preds - y_test)) << std::endl;\n", - "std::cout << \"Mean Squared Error: \" << arma::mean(arma::pow(y_preds - y_test,2)) << std::endl;\n", - "std::cout << \"Root Mean Squared Error: \" << sqrt(arma::mean(arma::pow(y_preds - y_test,2))) << std::endl;" + "std::cout << \"Mean Absolute Error: \" << arma::mean(arma::abs(yPreds - yTest)) << std::endl;\n", + "std::cout << \"Mean Squared Error: \" << arma::mean(arma::pow(yPreds - yTest,2)) << std::endl;\n", + "std::cout << \"Root Mean Squared Error: \" << sqrt(arma::mean(arma::pow(yPreds - yTest,2))) << std::endl;" + ] + }, + { + "cell_type": "markdown", + "id": "17cd38d7-214a-4f5a-8c4d-0517f834e804", + "metadata": {}, + "source": [ + "From the above metrics we can notice that our model MAE is ~5K, which is relatively small compared to our average salary of $76003, from this we can conclude our model is resonably good fit." ] } ], From 006a9065980214f88d1db75ddedc9b617ce96ca4 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Wed, 2 Jun 2021 08:21:28 +0530 Subject: [PATCH 13/69] added various markdown sections to py nb & fixed styling --- ...lary-prediction-linear-regression-py.ipynb | 131 +++++++++--------- 1 file changed, 69 insertions(+), 62 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb index af83374d..e1652efa 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb @@ -5,12 +5,22 @@ "id": "technical-identification", "metadata": {}, "source": [ - "## A simple example usage of Linear Regression applied to Salary dataset" + "## Predicting Salary using Linear Regression\n", + "\n", + "### Objective\n", + "* We have to predict the salary of an employee given how many years of experience they have.\n", + "\n", + "### Dataset\n", + "* Salary_Data.csv has 2 columns — “Years of Experience” and “Salary” for 30 employees in a company\n", + "\n", + "### Approach\n", + "* So in this example, we will train a Linear Regression model to learn the correlation between the number of years of experience of each employee and their respective salary. \n", + "* Once the model is trained, we will be able to do some sample predictions." ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 1, "id": "449a2f52", "metadata": {}, "outputs": [], @@ -24,17 +34,9 @@ "import matplotlib.pyplot as plt" ] }, - { - "cell_type": "markdown", - "id": "8ee28540", - "metadata": {}, - "source": [ - "### Set Plotting Options" - ] - }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 2, "id": "786e154b", "metadata": {}, "outputs": [], @@ -46,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 3, "id": "9c7de4da", "metadata": {}, "outputs": [], @@ -57,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 4, "id": "1d59786b", "metadata": {}, "outputs": [ @@ -125,7 +127,7 @@ "4 2.2 39891.0" ] }, - "execution_count": 26, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -137,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 5, "id": "5a3a26af", "metadata": {}, "outputs": [ @@ -223,7 +225,7 @@ "max 10.500000 122391.000000" ] }, - "execution_count": 27, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -235,7 +237,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 6, "id": "8d8410cd", "metadata": {}, "outputs": [ @@ -270,13 +272,13 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 8, "id": "ef71b4dc", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiaElEQVR4nO3de7xcZX3v8c93JzEJBJKQBAq5EGpQCxSjbBHN0SJYTCsCR0Tiq5SosRw9VO01EftqET0eDdqi1IpFVMJFIE3oIVJBMKHVKgQTDUFAJC2XbIgQkoAEk00uv/PHesasPc7ee7L3XrNmZn/fr9e8Zs2z1rPWswYyv/1clyICMzOzodZRdgHMzKw9OcCYmVkhHGDMzKwQDjBmZlYIBxgzMyuEA4yZmRXCAcZsACS9SdLDZZejmUj6d0kfKLsc1jwcYKylSHpM0g5J23OvLzW6HBHx/Yh4ZaOvWzRJx0q6Q9I2Sc9JWivpD8sul7WmkWUXwGwA3hER3y3r4pJGRsTusq5fsG8BVwCnp8+vA1TkBdv8+xzWXIOxtiHpCknLcp8XS1qpzMmSuiR9XNKzqSb0R7ljR0v6vKQnJD0t6SuSxqZ9lbyLJP0C+EYlLZf/CEnLJW2W9Kikj+T2fULSUknXSHpB0gOSOnP7p0u6OeXdkq+RSXq/pIdSjeI7ko7s5d5vl/SnVWn3SXpnuv/LJD0j6XlJ6yUdV+Mck4GjgK9GxEvp9YOI+M+0f6KkW1M5t6Xtab2U5+WSVqX7eVbS9ZIm5PY/lr7P9cCLkv5a0vKqc/yjpC/UOr+1BgcYayd/CRwv6b2S3gQsAObHvvWQfguYDEwF5gNXSqo0cy0GXgHMBmalY/4ud+7fAg4BjgQuyF9UUgfZX/73pXynAn8m6W25w84AbgQmACuAL6W8I4BbgceBmSn/jWnfWcDHgXcCU4DvAzf0cu/fBN6TK9Mxqaz/BpwGvDnd3wTgXGBLjXNsATYA10k6S9JhVfs7gG+k884AdlTuowYBnwGOAH4HmA58ouqY9wBvT2W6DphbCUKSRqZyXtvL+a0VRIRffrXMC3gM2A48l3v9SW7/icBWsh/s9+TSTwZ2Awfm0pYCf0v2Y/gi8PLcvjcAj+byvgSMqTpfV9p+PfBEVTkvAr6Rtj8BfDe37xhgR+46m4GRNe71NmBB7nMH8CvgyBrHHpTu4cj0+dPA19P2KcDPgZOAjn6+32lkQeO/gL3A94Cjezl2NrAt9/nfgQ/0cuxZwE+q/ju+v8b9/knaPh14sOz/3/wa3Ms1GGtFZ0XEhNzrq5UdEXEv8N9kQWNpVb5tEfFi7vPjZH9hTwEOANamju3ngNtTesXmiNjZS3mOBI6o5E35Pw7kawC/yG3/ChiT/kqfDjwetfsgjgS+mDvn1nRfU6sPjIgXyGor81LSPOD6tG8VWdD4J+BpSVdKOrjWjUREV0T8aUS8PF3/ReAaAEkHSPpnSY9L+iVZ8JmQamE9SDpU0o2SnkzHXkdWe8zbWPV5CXBe2j4P115angOMtRVJFwKjgaeAhVW7J0o6MPd5RjruWbLmnmNzQWt8RIzLHdvXsuMbyWo7+aB3UETUM/pqIzAjBZta+/5X1XnHRsQPeznXDcB7JL0BGAvc9evCR1weEScAx5I1lf11fwWLiI1kQanSX/OXwCuB10fEwWTNblB7EMBnyL6z49Ox59U4rvo7/X9kTZzHkdVgru+vjNbcHGCsbUh6BfB/yH7M/hhYKGl21WGXSHpZ6qM5HfiXiNgLfBW4TNKh6VxTq/pQ+nIv8MvUaT1W0ghJx0l6XZ15NwGflXSgpDGS5qR9XwEuknRsKtN4Sef0ca5vk9U6PgnclO4LSa+T9HpJo8hqJDuBPdWZUyf+JZJmSepInf7vB+5JhxxEFoifk3QIcHEfZTmI1JQpaSr1BbSdwDKy/qR7I+KJ/vJYc3OAsVb0LfWcB/OvqQZwHbA4Iu6LiEfImqmulTQ65fsFsI2s1nI98MGI+Fnat4isg/ue1KTzXbK/1vsVEXuAd5D1STxKViO6Chi/H3lnAU8AXWSd20TEv5INPrgxlemnwB/0ca5u4GbgrWQ/0hUHkwXQbWTNgluAz9c4xUtkAw2+C1Su1w28N+3/AlnN6FmyoHN7H7d2CfBa4Hmyprub+zg2bwnwu7h5rC0owg8cs/Yn6WTguoioOazWmoOkGcDPgN+KiF+WXR4bHNdgzKwppOHefwHc6ODSHjyT38xKlwZfPE3WhDe35OLYEHETmZmZFcJNZGZmVgg3kSWTJ0+OmTNnll0MM7OWsnbt2mcjYkqtfQ4wycyZM1mzZk3ZxTAzaymSHu9tn5vIzMysEA4wZmZWCAcYMzMrhAOMmZkVwgHGzMwK4QBjZjYMbNnezX0bn2PL9u6GXdPDlM3M2twt655k0fL1jOroYNfevVx69vGcMTt7bt2W7d10bdvBtIljmTRudD9n2j8OMGZmbWzL9m4WLV/Pzl172cleABYuX8+cWZP5zw3P9hp4hoKbyMzM2ljXth2M6uj5Uz+qo4MHnvrlrwPPC9272blrLwuXrx/SJjQHGDOzNjZt4lh27d3bIy37HDUDT9e2HUN2bQcYM7M2NmncaC49+3jGjOrgoNEjGTOqg0vPPp5jjxhfM/BMmzh2yK5dWICR9HVJz0j6aS7tc5J+Jml9eszthNy+iyRtkPRw/lnokk6QdH/ad7kkpfTRkm5K6aslzczlmS/pkfSaX9Q9mpm1gjNmT+UHi07hug+8nh8sOoUzZk/tNfAMZUd/Yc+DkfRmYDtwTUQcl9JOA1ZFxG5JiwEiYpGkY4AbgBOBI8ieCf6KiNgj6V7go2TPAP82cHlE3CbpfwPHR8QHJc0D/mdEnCvpEGAN0AkEsBY4ISK29VXezs7O8GKXZjbcDHYUmaS1EdFZa19hNZiI+B6wtSrtjojYnT7eA1Sej34m2WNSuyPiUWADcKKkw4GDI+LuyCLhNcBZuTxL0vYy4NRUu3kbcGdEbE1B5U78hDwzs5omjRvNq6dPGPIhylBuH8z7gdvS9lRgY25fV0qbmrar03vkSUHreWBSH+f6DZIukLRG0prNmzcP6mbMzKynUgKMpL8BdgPXV5JqHBZ9pA80T8/EiCsjojMiOqdMqfm8HDMzG6CGB5jU6X468EexrwOoC5ieO2wa8FRKn1YjvUceSSOB8WRNcr2dy8zMGqihAUbSXGARcEZE/Cq3awUwL40MOwo4Grg3IjYBL0g6KfWvnA/ckstTGSH2LrLBAwF8BzhN0kRJE4HTUpqZmTVQYUvFSLoBOBmYLKkLuBi4CBgN3JlGG98TER+MiAckLQUeJGs6uzAi9qRTfQi4GhhL1mdT6bf5GnCtpA1kNZd5ABGxVdKngB+l4z4ZET0GG5iZNYsi1wIrW2HDlFuNhymbWaP1tQhlqyhlmLKZmfUuvwhlUWuBlc0BxsysBL0tQjmUa4GVzQHGzKwEvS1COZRrgZXNAcbMrASNWAusbH7gmJlZSc6YPZU5sya37SgyBxgza0utMvx30rjRTV2+wXCAMbO20w7Df9uB+2DMrK0Mh+G/rcIBxszaSisP/92yvZv7Nj7XNsHQTWRm1lZadfhvOzbruQZjZm2lFYf/tmuznmswZtZ2Wm34b6VZbyf7al6VZr1mL3tfHGDMrC210vDfVm3W64+byMzMStaKzXr1cA3GzKwJtFqzXj0cYMzMmkQrNevVw01kZmY1tNuclDK4BmNmVqUd56SUwTUYM7Ocdp2TUgYHGDOznFZeaqbZOMCYmeW065yUMjjAmJnltOuclDK4k9/MrEo7zkkpgwOMmVkN7TYnpQxuIjMzGyDPlembazBmZgPguTL9cw3GzGw/ea5MfRxgzMz2k+fK1McBxsxsP3muTH0cYMzM9pPnytTHnfxmZgPguTL9c4AxMxsgz5Xpm5vIzMysEA4wZmZWCAcYM2spnj3fOtwHY2Ytw7PnW4trMGbWEjx7vvUUFmAkfV3SM5J+mks7RNKdkh5J7xNz+y6StEHSw5Lelks/QdL9ad/lkpTSR0u6KaWvljQzl2d+usYjkuYXdY9m1jiePd96iqzBXA3MrUr7GLAyIo4GVqbPSDoGmAccm/J8WdKIlOcK4ALg6PSqnHMBsC0iZgGXAYvTuQ4BLgZeD5wIXJwPZGbWmjx7vvUUFmAi4nvA1qrkM4ElaXsJcFYu/caI6I6IR4ENwImSDgcOjoi7IyKAa6ryVM61DDg11W7eBtwZEVsjYhtwJ78Z6MysxXj2fOtpdCf/YRGxCSAiNkk6NKVPBe7JHdeV0nal7er0Sp6N6Vy7JT0PTMqn18hjZi3Ms+dbS7OMIlONtOgjfaB5el5UuoCs+Y0ZM2b0X0ozK51nz7eORo8iezo1e5Hen0npXcD03HHTgKdS+rQa6T3ySBoJjCdrkuvtXL8hIq6MiM6I6JwyZcogbsvMPD/FqjU6wKwAKqO65gO35NLnpZFhR5F15t+bmtNekHRS6l85vypP5VzvAlalfprvAKdJmpg6909LaWZWkFvWPcmcxas476rVzFm8ihXrniy7SNYECmsik3QDcDIwWVIX2ciuzwJLJS0AngDOAYiIByQtBR4EdgMXRsSedKoPkY1IGwvcll4AXwOulbSBrOYyL51rq6RPAT9Kx30yIqoHG5jZEMnPT9lJNspr4fL1zJk12U1Zw1xhASYi3tPLrlN7Of7TwKdrpK8BjquRvpMUoGrs+zrw9boLa2YDVpmfUgkusG9+igPM8OaZ/GY2KJ6fYr1xgDGzQfH8FOtNswxTNrMW5vkpVosDjJkNCc9PsWpuIjMzs0I4wJiZWSEcYMxalGfOW7NzH4xZC/KTHa0VuAZj1mL8ZEdrFQ4wZi3GT3a0VuEAY9ZiPHPeWoUDjFmLafTMeQ8msIFyJ79ZC2rUzHkPJrDBcIAxa1FFz5z3Mvw2WG4iM7OaPJjABssBxsxq8mACGywHGDOrycvw22C5D8bMeuVl+G0wHGDMrE9eht8Gyk1kZmZWCAcYMzMrhAOMmZkVwgHGzMwK4QBjZmaFcIAxM7NCOMCYmVkhHGDMzKwQDjBmZlaIugKMpBFFF8TMzNpLvTWYDZI+J+mYQktjZmZto94Aczzwc+AqSfdIukDSwQWWy8zMWlxdASYiXoiIr0bEG4GFwMXAJklLJM0qtIRmLc7PtLfhqq7VlFMfzNuB9wEzgb8HrgfeBHwbeEVB5TNraX6mvQ1n9S7X/whwF/C5iPhhLn2ZpDcPfbHMWp+faW/DXb9NZKn2cnVELKgKLgBExEcKKZlZi/Mz7W246zfARMQe4C0NKItZWynimfbuz7FWUm8T2Q8lfQm4CXixkhgRPy6kVGZtoPJM+4VVfTADbR5zf461GkVE/wdJd9VIjog4ZeiLVI7Ozs5Ys2ZN2cWwNrRle/egn2m/ZXs3cxavYueufTWiMaM6+MGiU9yfY6WStDYiOmvtq6sGExFD2kQm6c+BDwAB3E82Ou0AshrSTOAx4N0RsS0dfxGwANgDfCQivpPSTwCuBsaSjWb7aESEpNHANcAJwBbg3Ih4bCjvwaxeQ/FM+0p/TmWwAOzrz3GAsWZV91pkkt4uaaGkv6u8BnJBSVOBjwCdEXEcMAKYB3wMWBkRRwMr02fS6gHzgGOBucCXc0vXXAFcABydXnNT+gJgW0TMAi4DFg+krGbNooj+HLOi1bsW2VeAc4EPAwLOAY4cxHVHAmMljSSruTwFnAksSfuXAGel7TOBGyOiOyIeBTYAJ0o6HDg4Iu6OrJ3vmqo8lXMtA06VpEGU16xUlf6cMaM6OGj0SMaM6hhUf45ZI9Tbyf/GiDhe0vqIuETS3wM3D+SCEfGkpM8DTwA7gDsi4g5Jh0XEpnTMJkmHpixTgXtyp+hKabvSdnV6Jc/GdK7dkp4HJgHP5ssi6QKyGhAzZswYyO2YNcwZs6cyZ9bkQffnmDVKvU1klYH7v5J0BNmP+1EDuaCkiWQ1jKOAI4ADJZ3XV5YaadFHel95eiZEXBkRnRHROWXKlL4LbtYEJo0bzaunT3BwsZZQb4C5VdIE4HPAj8k64W8c4DXfCjwaEZsjYhdZTeiNwNOp2Yv0/kw6vguYnss/jaxJrSttV6f3yJOa4cYDWwdYXjMzG4B6F7v8VEQ8FxHLyfpeXhURfzvAaz4BnCTpgNQvcirwELACmJ+OmQ/ckrZXAPMkjZZ0FFln/r2pOe0FSSel85xfladyrncBq6Ke8dhmZjZk+uyDkfTOPvYREfvdDxMRqyUtI6sJ7QZ+AlwJjAOWSlpAFoTOScc/IGkp8GA6/sK0ugDAh9g3TPm29AL4GnCtpA1kNZd5+1tOMzMbnD4nWkr6Rh95IyLeP/RFKocnWpqZ7b8BT7SMiPcVUyQzM2t39Q5TRtLbySY7jqmkRcQniyiUmZm1vrImWpqZWZurd5jyGyPifLLlVy4B3kDPocNmZmY9DHSi5W4GONHSzMyGh3r7YCoTLS8F1qa0qwopkZmZtYX+5sG8DtgYEZ9Kn8eRLa//M7JVis3MzGrqr4nsn4GXACS9GfhsSnuebHKkmZlZTf01kY2IiMoaXucCV6blYpZLWldoyczMrKX1V4MZkRaLhGzNsFW5fXXPoTEzs+GnvyBxA/Afkp4lG0n2fQBJs8iayczMzGrqb6mYT0taCRxO9mCwysJlHWSTLs3MzGrqt5krIu6pkfbzYopjZmbtot6JlmZmZvvFAcbMzArhAGNmZoVwgDEzs0I4wJiZWSEcYMzMrBAOMGb7Ycv2bu7b+BxbtneXXRSzpuflXszqdMu6J1m0fD2jOjrYtXcvl559PGfMnlp2scyalmswZnXYsr2bRcvXs3PXXl7o3s3OXXtZuHy9azJmfXCAMatD17YdjOro+c9lVEcHXdt29JLDzBxgzOowbeJYdu3d2yNt1969TJs4tqQSmTU/BxizOkwaN5pLzz6eMaM6OGj0SMaM6uDSs49n0rjRgDv/zWpxJ79Znc6YPZU5sybTtW0H0yaO/XVwcee/WW0OMGb7YdK40b8OLNCz838nWRPawuXrmTNrco/jzIYjN5GZDYI7/8165wBjQ2449Ue489+sd24isyE13PojKp3/C6vu2c1jZg4wNoSK7o/Ysr37NzrYm0Fvnf9mw50DjA2ZSn9EJbjAvv6Iwf7oNnvNqLrz38zcB2NDqKj+CC/TYtaaHGBsyPQ3GXGgPFLLrDW5icyGVBH9ER6pZdaaXIOxITdp3GhePX3CkPVJFFUzGk7Dqc3K4BqMtYShrhk1+6ABs3bgAGMtY6hGanl5F7PGKKWJTNIEScsk/UzSQ5LeIOkQSXdKeiS9T8wdf5GkDZIelvS2XPoJku5P+y6XpJQ+WtJNKX21pJkl3GZba+XmJQ8aMGuMsvpgvgjcHhGvAl4NPAR8DFgZEUcDK9NnJB0DzAOOBeYCX5Y0Ip3nCuAC4Oj0mpvSFwDbImIWcBmwuBE3NVzcsu5J5ixexXlXrWbO4lWsWPdk2UXaLx40YNYYDQ8wkg4G3gx8DSAiXoqI54AzgSXpsCXAWWn7TODGiOiOiEeBDcCJkg4HDo6IuyMigGuq8lTOtQw4tVK7scFphzkpRQ0aMLOeyuiD+W1gM/ANSa8G1gIfBQ6LiE0AEbFJ0qHp+KnAPbn8XSltV9quTq/k2ZjOtVvS88Ak4Nl8QSRdQFYDYsaMGUN1f22tyNn6jeTlXcyKV0YT2UjgtcAVEfEa4EVSc1gvatU8oo/0vvL0TIi4MiI6I6JzypQpfZfagPZqXhrq4dRm1lMZAaYL6IqI1enzMrKA83Rq9iK9P5M7fnou/zTgqZQ+rUZ6jzySRgLjga1DfifDkJuXzKxeDW8ii4hfSNoo6ZUR8TBwKvBges0HPpveb0lZVgDflPQPwBFknfn3RsQeSS9IOglYDZwP/GMuz3zgbuBdwKrUT2NDoOjmpWZdNdnM9k9Z82A+DFwv6WXAfwPvI6tNLZW0AHgCOAcgIh6QtJQsAO0GLoyIPek8HwKuBsYCt6UXZAMIrpW0gazmMq8RNzWcFLV68P5MgMwHIsBByazJyH/YZzo7O2PNmjVlF6OpFV2z2LK9mzmLV7Fz174+njGjOvjBolN+43r5QLRj124kMWbkCM/KN2swSWsjorPWPs/kt7o0YmmVekeo1ZqJD8GuPbsBz8o3axZe7NL61ai5L/WOUKs1Ez/Ps/LNmoMDjPWrUUur1DtCbdrEsezcvaeXs7TusGmzduMmMutXI+e+1DtCrVbf4YGjR7Bnb3jYtFmTcICxflVqFgur+mB6+xEf7GCA/kaodW3bwdhRI3mhe/ev0w582QguecexvOVVhzq4mDUJBxirS701i0YMBqhVo9oT4eBi1mTcB2N1629plUYNBvBqAmatwTUYGzKNXAjTi1WaNT8HGBsyjV4Is6jVBMxsaLiJzIaMm67MLM81GBtSbroyswoHGBtybroyM3ATmZmZFcQBxszMCuEAY2ZmhXCAMTOzQjjAmJlZIRxgzMysEA4wZmZWCAcYMzMrhAOMmZkVwgHGzMwK4QBjZmaFcIAp0Jbt3dy38bkhf+CWmVkr8GKXBWnEo4PNzJqZazAFaNSjg83MmpkDTAEqjw7Oqzw62MxsuHCAKUCjHx1sZtaMHGAK4EcHm5m5k78wRT86eMv2bj+W2MyamgNMgYp6dLBHqJlZK3ATWYvxCDUzaxUOMC3GI9TMrFU4wLQYj1Azs1bhANNiPELNzFqFO/lbUNEj1MzMhoIDTIsqaoSamdlQKa2JTNIIST+RdGv6fIikOyU9kt4n5o69SNIGSQ9Lelsu/QRJ96d9l0tSSh8t6aaUvlrSzIbfoJnZMFdmH8xHgYdynz8GrIyIo4GV6TOSjgHmAccCc4EvSxqR8lwBXAAcnV5zU/oCYFtEzAIuAxYXeyvNw48IMLNmUUqAkTQNeDtwVS75TGBJ2l4CnJVLvzEiuiPiUWADcKKkw4GDI+LuiAjgmqo8lXMtA06t1G6K0Cw/6rese5I5i1dx3lWrmbN4FSvWPVlqecxseCurD+YLwELgoFzaYRGxCSAiNkk6NKVPBe7JHdeV0nal7er0Sp6N6Vy7JT0PTAKeHdrbaJ5Z9fkJmDvJhjEvXL6eObMmu6/GzErR8BqMpNOBZyJibb1ZaqRFH+l95akuywWS1khas3nz5jqLs08zzar3BEwzazZlNJHNAc6Q9BhwI3CKpOuAp1OzF+n9mXR8FzA9l38a8FRKn1YjvUceSSOB8cDW6oJExJUR0RkRnVOmTNnvG2mmH3VPwDSzZtPwABMRF0XEtIiYSdZ5vyoizgNWAPPTYfOBW9L2CmBeGhl2FFln/r2pOe0FSSel/pXzq/JUzvWudI3fqMEM1mB+1Ie638YTMM2s2TTTPJjPAkslLQCeAM4BiIgHJC0FHgR2AxdGxJ6U50PA1cBY4Lb0AvgacK2kDWQ1l3lFFLjyo76wqg+mvx/1ovptPAHTzJqJCvjDviV1dnbGmjVrBpR3f57NsmV7N3MWr2Lnrn01nzGjOvjBolMcEMys5UhaGxGdtfY1Uw2mZe3PrPpKv01lpBfs67dxgDGzduLFLhvMnfFmNlw4wDSYO+PNbLhwE1kJ3BlvZsOBA0xJvBqymbU7N5GZmVkhHGDMzKwQDjBmZlYIBxgzMyuEA4yZmRXCS8UkkjYDj5ddjv00mQKecdNihvt3MNzvH/wdQLnfwZERUXM5egeYFiZpTW9rAA0Xw/07GO73D/4OoHm/AzeRmZlZIRxgzMysEA4wre3KsgvQBIb7dzDc7x/8HUCTfgfugzEzs0K4BmNmZoVwgDEzs0I4wLQYSdMl3SXpIUkPSPpo2WUqi6QRkn4i6dayy1IGSRMkLZP0s/T/wxvKLlOjSfrz9O/gp5JukDSm7DIVTdLXJT0j6ae5tEMk3SnpkfQ+scwyVjjAtJ7dwF9GxO8AJwEXSjqm5DKV5aPAQ2UXokRfBG6PiFcBr2aYfReSpgIfAToj4jhgBDCv3FI1xNXA3Kq0jwErI+JoYGX6XDoHmBYTEZsi4sdp+wWyH5Wp5Zaq8SRNA94OXFV2Wcog6WDgzcDXACLipYh4rtRClWMkMFbSSOAA4KmSy1O4iPgesLUq+UxgSdpeApzVyDL1xgGmhUmaCbwGWF1yUcrwBWAhsLfkcpTlt4HNwDdSM+FVkg4su1CNFBFPAp8HngA2Ac9HxB3llqo0h0XEJsj+CAUOLbk8gANMy5I0DlgO/FlE/LLs8jSSpNOBZyJibdllKdFI4LXAFRHxGuBFmqRZpFFSP8OZwFHAEcCBks4rt1SW5wDTgiSNIgsu10fEzWWXpwRzgDMkPQbcCJwi6bpyi9RwXUBXRFRqr8vIAs5w8lbg0YjYHBG7gJuBN5ZcprI8LelwgPT+TMnlARxgWo4kkbW7PxQR/1B2ecoQERdFxLSImEnWqbsqIobVX64R8Qtgo6RXpqRTgQdLLFIZngBOknRA+ndxKsNsoEPOCmB+2p4P3FJiWX5tZNkFsP02B/hj4H5J61LaxyPi2+UVyUryYeB6SS8D/ht4X8nlaaiIWC1pGfBjstGVP6FJl0wZSpJuAE4GJkvqAi4GPgsslbSALPCeU14J9/FSMWZmVgg3kZmZWSEcYMzMrBAOMGZmVggHGDMzK4QDjJmZFcIBxtqeMv8p6Q9yae+WdHtJ5XmVpHVpiZeXV+17TNL9af86SZcXXJbOoq9hw5eHKduwIOk44F/I1m4bAawD5kbEfw3gXCMiYs8gyvIxYGxEXFxj32NkqwM/O9Dz70c5RkbE7qKvY8OXazA2LETET4FvAYvIJqZdB/yNpB+lmsSZkC0gKun7kn6cXm9M6Sen5/B8k2yS64GS/k3SfelZJOdWX1PSbEn3SFov6V8lTZT0h8CfAR+QdFc9ZZc0MpXz5PT5M5I+nbYfk7RY0r3pNSulT5G0POX7kaQ5Kf0Tkq6UdAdwTbqvW9O+A9OzRqq/k/dKulnS7el5I5fmyjY3fU/3SVrZ13lsGIoIv/waFi/gQOBh4H7gM8B5KX0C8PO0/wBgTEo/GliTtk8mW1DyqPT5bOCruXOPr3G99cDvpe1PAl9I258A/qqXMj6Wyrcuvf48pR9LtgzK75PNWH9Z7vi/SdvnA7em7W8C/yNtzyBbWqhy7bVkNajKfVXy/N9evpP3kq0UMB4YAzwOTAemABtz38khfZ2n7P/+fjX+5aVibNiIiBcl3QRsB94NvEPSX6XdY8h+iJ8CviRpNrAHeEXuFPdGxKNp+37g85IWk/1Afz9/LUnjgQkR8R8paQlZE1093hJVTWQR8YCka8lqYW+IiJdyu2/IvV+Wtt8KHJMt0QXAwZIOStsrImJHjeueRraIaPV3AtnDrJ5P9/YgcCQwEfhe5TuJiK39nGe4rhM2bDnA2HCzN70EnB0RD+d3SvoE8DTZEyI7gJ253S9WNiLi55JOAP4Q+IykOyLikwWX/XeB54DDqtKjxnYHWSDqEUhSwHmR2nr7Tl4PdOeS9pD9dqjq2n2ex4Yf98HYcPUd4MNpFV4kvSaljwc2RcReskVFR9TKLOkI4FcRcR3ZQ696LJWf/trfJulNKemPgf9ggCS9E5hE9hTLyyVNyO0+N/d+d9q+A/jTXP7ZdVymt++kN3cDvyfpqHT8IQM8j7Up12BsuPoU2VMx16cfwseA04EvA8slnQPcRe9/7f8u8DlJe4FdwIdqHDMf+IqkA9i/1Y7vklQZpbYe+Auy1XJPjYiNkr4EfJF9y7OPlrSa7A/G96S0jwD/JGk92b/z7wEf7Oe6vX0nNUXEZkkXADdL6iB7Bsnv7+95rH15mLJZC2vksGaz/eUmMjMzK4RrMGZmVgjXYMzMrBAOMGZmVggHGDMzK4QDjJmZFcIBxszMCvH/AeMkHfmLyFA5AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de5hddX3v8fdnMnESCZCQBIRMQqiJWuAgLSOiOXIo+AhWBVqlxlNKqrFUD1Z7eUzAcyzFy1OCtqj1iEZAwkUgTWxDPYICsdVSLiYawk1KLJdMiBBCggkmQy7f88f6bbJms+eSmVl77b3n83qe/ey1f2v91vqtTdjf+V2XIgIzM7OR1lZ2AczMrDU5wJiZWSEcYMzMrBAOMGZmVggHGDMzK4QDjJmZFcIBxmwIJL1N0qNll6ORSPpXSR8uuxzWOBxgrKlIekLSDknbc6+v1rscEfHjiHh9va9bNEnHSPqBpC2StkpaLel3yy6XNaf2sgtgNgTviYg7yrq4pPaI2F3W9Qv2L8AVwLvT5zcBKvKCLf59jmquwVjLkHSFpGW5z4sk3anMKZK6JX1K0nOpJvSHuWM7JH1R0lOSnpH0dUnj075K3oWSfgl8q5KWy3+EpOWSNkl6XNLHc/v+RtJSSddK2ibpIUlduf3TJX0n5d2cr5FJ+pCkR1KN4vuSjuzj3m+T9LGqtPsl/X66/8slPSvpBUlrJR1b4xxTgKOAb0bES+l1V0T8e9o/SdJ3Uzm3pO3OPsrzWkkr0/08J+kGSRNz+59I3+da4EVJn5S0vOoc/yDpS7XOb83BAcZayV8Bx0n6Y0lvA+YD82LfekivAaYA04B5wGJJlWauRcDrgOOBWemYv86d+zXAIcCRwPn5i0pqI/vL//6U7zTgzyWdnjvsTOAmYCJwC/DVlHcM8F3gSWBmyn9T2nc28Cng94GpwI+BG/u4928DH8iV6ehU1v8HvAM4Od3fROD9wOYa59gMrAOul3S2pMOq9rcB30rnnQHsqNxHDQL+FjgC+E1gOvA3Vcd8AHhXKtP1wBmVICSpPZXzuj7Ob80gIvzyq2lewBPAdmBr7vUnuf0nAs+T/WB/IJd+CrAbOCCXthT4NNmP4YvAa3P73gI8nsv7EjCu6nzdafvNwFNV5bwI+Fba/hvgjty+o4EduetsAtpr3OutwPzc5zbg18CRNY49MN3Dkenz54Gr0/apwH8CJwFtA3y/nWRB4xfAXuBHwOw+jj0e2JL7/K/Ah/s49mzgZ1X/HT9U437/JG2/G3i47H9vfg3v5RqMNaOzI2Ji7vXNyo6IuA/4L7KgsbQq35aIeDH3+Umyv7CnAq8GVqeO7a3AbSm9YlNE7OyjPEcCR1TypvyfAvI1gF/mtn8NjEt/pU8HnozafRBHAl/OnfP5dF/Tqg+MiG1ktZW5KWkucEPat5IsaPxf4BlJiyUdVOtGIqI7Ij4WEa9N138RuBZA0qslfUPSk5J+RRZ8JqZaWC+SDpV0k6QN6djryWqPeeurPi8Bzk3b5+LaS9NzgLGWIukCoAN4GlhQtXuSpANyn2ek454ja+45Jhe0Do6ICblj+1t2fD1ZbScf9A6MiMGMvloPzEjBpta+P6067/iI+I8+znUj8AFJbwHGAz98ufARX4mIE4BjyJrKPjlQwSJiPVlQqvTX/BXweuDNEXEQWbMb1B4E8Ldk39lx6dhzaxxX/Z3+M1kT57FkNZgbBiqjNTYHGGsZkl4HfI7sx+yPgAWSjq867BJJr0p9NO8G/jEi9gLfBC6XdGg617SqPpT+3Af8KnVaj5c0RtKxkt40yLwbgUslHSBpnKQ5ad/XgYskHZPKdLCkc/o51/fIah2fAW5O94WkN0l6s6SxZDWSncCe6sypE/8SSbMktaVO/w8B96RDDiQLxFslHQJc3E9ZDiQ1ZUqaxuAC2k5gGVl/0n0R8dRAeayxOcBYM/oX9Z4H80+pBnA9sCgi7o+Ix8iaqa6T1JHy/RLYQlZruQH4SET8PO1bSNbBfU9q0rmD7K/1AUXEHuA9ZH0Sj5PViK4EDt6PvLOAp4Buss5tIuKfyAYf3JTK9CDwzn7O1QN8B3g72Y90xUFkAXQLWbPgZuCLNU7xEtlAgzuAyvV6gD9O+79EVjN6jizo3NbPrV0C/DbwAlnT3Xf6OTZvCfDfcPNYS1CEHzhmrU/SKcD1EVFzWK01BkkzgJ8Dr4mIX5VdHhse12DMrCGk4d5/Cdzk4NIaPJPfzEqXBl88Q9aEd0bJxbER4iYyMzMrhJvIzMysEG4iS6ZMmRIzZ84suxhmZk1l9erVz0XE1Fr7HGCSmTNnsmrVqrKLYWbWVCQ92dc+N5GZmVkhHGDMzKwQDjBmZlYIBxgzMyuEA4yZmRXCAcbMrMVt3t7D/eu3snl7T12v62HKZmYtbMWaDSxcvpaxbW3s2ruXy957HGcev++ZdZu399C9ZQedk8YzeUJHP2fafw4wZmYtavP2HhYuX8vOXXvZyV4AFixfy5xZU5g8oWPA4DNcbiIzM2tR3Vt2MLat98/82LY2urfs6BV8tvXsZueuvSxYvnZEm9EcYMzMWlTnpPHs2ru3V9quvXvpnDS+3+AzUhxgzMxa1OQJHVz23uMYN7aNAzvaGTe2jcveexyTJ3T0G3xGSmEBRtLVkp6V9GAu7QuSfi5pbXrM7cTcvoskrZP0aP5Z6JJOkPRA2vcVSUrpHZJuTun3SpqZyzNP0mPpNa+oezQza3RnHj+NuxaeyvUffjN3LTz15T6W/oLPSCnseTCSTga2A9dGxLEp7R3AyojYLWkRQEQslHQ0cCNwInAE2TPBXxcReyTdB3yC7Bng3wO+EhG3SvpfwHER8RFJc4Hfi4j3SzoEWAV0AQGsBk6IiC39lberqyu82KWZjTbDHUUmaXVEdNXaV1gNJiJ+BDxflfaDiNidPt4DVJ6PfhbZY1J7IuJxYB1woqTDgYMi4u7IIuG1wNm5PEvS9jLgtFS7OR24PSKeT0HldvyEPDOzmiZP6OCN0yeO+BBlKLcP5kPArWl7GrA+t687pU1L29XpvfKkoPUCMLmfc72CpPMlrZK0atOmTcO6GTMz662UACPpfwO7gRsqSTUOi37Sh5qnd2LE4ojoioiuqVNrPi/HzMyGqO4BJnW6vxv4w9jXAdQNTM8d1gk8ndI7a6T3yiOpHTiYrEmur3OZmVkd1TXASDoDWAicGRG/zu26BZibRoYdBcwG7ouIjcA2SSel/pXzgBW5PJURYu8jGzwQwPeBd0iaJGkS8I6UZmZmdVTYUjGSbgROAaZI6gYuBi4COoDb02jjeyLiIxHxkKSlwMNkTWcXRMSedKqPAtcA48n6bCr9NlcB10laR1ZzmQsQEc9L+izwk3TcZyKi12ADM7NGUOQ6YI2gsGHKzcbDlM2snopeB6xeShmmbGZmtdVjHbBG4ABjZlZn9VgHrBE4wJiZ1Vk91gFrBA4wZmZ1Vo91wBqBHzhmZlaCM4+fxpxZU1p6FJkDjJm1nGYZ/jt5QkdDl2+4HGDMrKW0yvDfVuA+GDNrGaNl+G+zcIAxs5bR7MN/N2/v4f71W1smILqJzMxaRjMP/23Fpj3XYMysZTTr8N9WbdpzDcbMWkozDv+tNO3tZF/tq9K01wzl74sDjJm1nGYb/tvMTXv9cROZmVnJmrVpbyCuwZiZNYBmbNobiAOMmVmDaLamvYG4iczMrIZWm5NSBtdgzMyqtOKclDK4BmNmltOqc1LK4ABjZpbT7MvNNBIHGDOznFadk1IGBxgzs5xWnZNSBnfym5lVacU5KWVwgDEzq6HV5qSUwU1kZmZD5Lky/XMNxsxsCDxXZmCuwZiZ7SfPlRkcBxgzs/3kuTKD4wBjZrafPFdmcBxgzMz2k+fKDI47+c3MhsBzZQbmAGNmNkSeK9M/N5GZmVkhHGDMzKwQDjBm1lQ8e755uA/GzJqGZ883F9dgzKwpePZ88ykswEi6WtKzkh7MpR0i6XZJj6X3Sbl9F0laJ+lRSafn0k+Q9EDa9xVJSukdkm5O6fdKmpnLMy9d4zFJ84q6RzOrH8+ebz5F1mCuAc6oSrsQuDMiZgN3ps9IOhqYCxyT8nxN0piU5wrgfGB2elXOOR/YEhGzgMuBRelchwAXA28GTgQuzgcyM2tOnj3ffAoLMBHxI+D5quSzgCVpewlwdi79pojoiYjHgXXAiZIOBw6KiLsjIoBrq/JUzrUMOC3Vbk4Hbo+I5yNiC3A7rwx0ZtZkPHu++dS7k/+wiNgIEBEbJR2a0qcB9+SO605pu9J2dXolz/p0rt2SXgAm59Nr5DGzJubZ882lUUaRqUZa9JM+1Dy9LyqdT9b8xowZMwYupZmVzrPnm0e9R5E9k5q9SO/PpvRuYHruuE7g6ZTeWSO9Vx5J7cDBZE1yfZ3rFSJicUR0RUTX1KlTh3FbZub5KVat3gHmFqAyqmsesCKXPjeNDDuKrDP/vtSctk3SSal/5byqPJVzvQ9Ymfppvg+8Q9Kk1Ln/jpRmZgVZsWYDcxat5Nwr72XOopXcsmZD2UWyBlBYE5mkG4FTgCmSuslGdl0KLJU0H3gKOAcgIh6StBR4GNgNXBARe9KpPko2Im08cGt6AVwFXCdpHVnNZW461/OSPgv8JB33mYioHmxgZiMkPz9lJ9korwXL1zJn1hQ3ZY1yhQWYiPhAH7tO6+P4zwOfr5G+Cji2RvpOUoCqse9q4OpBF9bMhqwyP6USXGDf/BQHmNHNM/nNbFg8P8X64gBjZsPi+SnWl0YZpmxmTczzU6wWBxgzGxGen2LV3ERmZmaFcIAxM7NCOMCYNSnPnLdG5z4YsybkJztaM3ANxqzJ+MmO1iwcYMyajJ/saM3CAcasyXjmvDULBxizJlPvmfMeTGBD5U5+syZUr5nzHkxgw+EAY9akip4572X4bbjcRGZmNXkwgQ2XA4yZ1eTBBDZcDjBmVpOX4bfhch+MmfXJy/DbcDjAmFm/vAy/DZWbyMzMrBAOMGZmVggHGDMzK4QDjJmZFcIBxszMCuEAY2ZmhXCAMTOzQjjAmJlZIRxgzMysEIMKMJLGFF0QMzNrLYOtwayT9AVJRxdaGjMzaxmDDTDHAf8JXCnpHknnSzqowHKZmVmTG1SAiYhtEfHNiHgrsAC4GNgoaYmkWYWW0KzJ+Zn2NloNajXl1AfzLuCDwEzg74AbgLcB3wNeV1D5zJqan2lvo9lgl+t/DPgh8IWI+I9c+jJJJ498scyan59pb6PdgE1kqfZyTUTMrwouAETExwspmVmT8zPtbbQbMMBExB7gd+pQFrOWUsQz7d2fY81ksE1k/yHpq8DNwIuVxIj4aSGlMmsBlWfaL6jqgxlq85j7c6zZKCIGPkj6YY3kiIhTR75I5ejq6opVq1aVXQxrQZu39wz7mfabt/cwZ9FKdu7aVyMaN7aNuxae6v4cK5Wk1RHRVWvfoGowETGiTWSS/gL4MBDAA2Sj015NVkOaCTwB/EFEbEnHXwTMB/YAH4+I76f0E4BrgPFko9k+EREhqQO4FjgB2Ay8PyKeGMl7MBuskXimfaU/pzJYAPb15zjAWKMa9Fpkkt4laYGkv668hnJBSdOAjwNdEXEsMAaYC1wI3BkRs4E702fS6gFzgWOAM4Cv5ZauuQI4H5idXmek9PnAloiYBVwOLBpKWc0aRRH9OWZFG+xaZF8H3g/8GSDgHODIYVy3HRgvqZ2s5vI0cBawJO1fApydts8CboqInoh4HFgHnCjpcOCgiLg7sna+a6vyVM61DDhNkoZRXrNSVfpzxo1t48COdsaNbRtWf45ZPQy2k/+tEXGcpLURcYmkvwO+M5QLRsQGSV8EngJ2AD+IiB9IOiwiNqZjNko6NGWZBtyTO0V3StuVtqvTK3nWp3PtlvQCMBl4Ll8WSeeT1YCYMWPGUG7HrG7OPH4ac2ZNGXZ/jlm9DLaJrDJw/9eSjiD7cT9qKBeUNImshnEUcARwgKRz+8tSIy36Se8vT++EiMUR0RURXVOnTu2/4GYNYPKEDt44faKDizWFwQaY70qaCHwB+ClZJ/xNQ7zm24HHI2JTROwiqwm9FXgmNXuR3p9Nx3cD03P5O8ma1LrTdnV6rzypGe5g4PkhltfMzIZgsItdfjYitkbEcrK+lzdExKeHeM2ngJMkvTr1i5wGPALcAsxLx8wDVqTtW4C5kjokHUXWmX9fak7bJumkdJ7zqvJUzvU+YGUMZjy2mZmNmH77YCT9fj/7iIj97oeJiHslLSOrCe0GfgYsBiYASyXNJwtC56TjH5K0FHg4HX9BWl0A4KPsG6Z8a3oBXAVcJ2kdWc1l7v6W08zMhqffiZaSvtVP3oiID418kcrhiZZmZvtvyBMtI+KDxRTJzMxa3WCHKSPpXWSTHcdV0iLiM0UUyszMml9ZEy3NzKzFDXaY8lsj4jyy5VcuAd5C76HDZmZmvQx1ouVuhjjR0szMRofB9sFUJlpeBqxOaVcWUyQzM2sFA82DeROwPiI+mz5PIFte/+dkqxSbmZnVNFAT2TeAlwAknQxcmtJeIJscaWZmVtNATWRjIqKyhtf7gcVpuZjlktYUWzQzM2tmA9VgxqTFIiFbM2xlbt+g59CYmdnoM1CQuBH4N0nPkY0k+zGApFlkzWRmZmY1DbRUzOcl3QkcTvZgsMrCZW1kky7NzMxqGrCZKyLuqZH2n8UUx8zMWsVgJ1qamZntFwcYMzMrhAOMmZkVwgHGzMwK4QBjZmaFcIAxM7NCOMCY7YfN23u4f/1WNm/vKbsoZg3Py72YDdKKNRtYuHwtY9va2LV3L5e99zjOPH5a2cUya1iuwZgNwubtPSxcvpadu/ayrWc3O3ftZcHyta7JmPXDAcZsELq37GBsW+//Xca2tdG9ZUcfOczMAcZsEDonjWfX3r290nbt3UvnpPEllcis8TnAmA3C5AkdXPbe4xg3to0DO9oZN7aNy957HJMndADu/DerxZ38ZoN05vHTmDNrCt1bdtA5afzLwcWd/2a1OcCY7YfJEzpeDizQu/N/J1kT2oLla5kza0qv48xGIzeRmQ2DO//N+uYAYyNuNPVHuPPfrG9uIrMRNdr6Iyqd/wuq7tnNY2YOMDaCiu6P2Ly95xUd7I2gr85/s9HOAcZGTKU/ohJcYF9/xHB/dBu9ZlTd+W9m7oOxEVRUf4SXaTFrTg4wNmIGmow4VB6pZdac3ERmI6qI/giP1DJrTq7B2IibPKGDN06fOGJ9EkXVjEbTcGqzMrgGY01hpGtGjT5owKwVOMBY0xipkVpe3sWsPkppIpM0UdIyST+X9Iikt0g6RNLtkh5L75Nyx18kaZ2kRyWdnks/QdIDad9XJCmld0i6OaXfK2lm/e+ytTVz85IHDZjVR1l9MF8GbouINwBvBB4BLgTujIjZwJ3pM5KOBuYCxwBnAF+TNCad5wrgfGB2ep2R0ucDWyJiFnA5sKgeNzVarFizgTmLVnLulfcyZ9FKblmzoewi7RcPGjCrj7oHGEkHAScDVwFExEsRsRU4C1iSDlsCnJ22zwJuioieiHgcWAecKOlw4KCIuDsiAri2Kk/lXMuA0yq1GxueVpiTUtSgATPrrYw+mN8ANgHfkvRGYDXwCeCwiNgIEBEbJR2ajp8G3JPL353SdqXt6vRKnvXpXLslvQBMBp7LF0TS+WQ1IGbMmDFS99fSipytX09e3sWseGU0kbUDvw1cERG/BbxIag7rQ62aR/ST3l+e3gkRiyOiKyK6pk6d2n+pDWit5qWRHk5tZr2VEWC6ge6IuDd9XkYWcJ5JzV6k92dzx0/P5e8Enk7pnTXSe+WR1A4cDDw/4ncyCrl5ycwGq+5NZBHxS0nrJb0+Ih4FTgMeTq95wKXpfUXKcgvwbUl/DxxB1pl/X0TskbRN0knAvcB5wD/k8swD7gbeB6xM/TQ2AopuXmrUVZPNbP+UNQ/mz4AbJL0K+C/gg2S1qaWS5gNPAecARMRDkpaSBaDdwAURsSed56PANcB44Nb0gmwAwXWS1pHVXObW46ZGk6JWD96fCZD5QAQ4KJk1GPkP+0xXV1esWrWq7GI0tKJrFpu39zBn0Up27trXxzNubBt3LTz1FdfLB6Idu3YjiXHtYzwr36zOJK2OiK5a+zyT3walHkurDHaEWq2Z+BDs2rMb8Kx8s0bhxS5tQPWa+zLYEWq1ZuLneVa+WWNwgLEB1WtplcGOUOucNJ6du/f0cZbmHTZt1mrcRGYDqufcl8GOUKvVd3hAxxj27A0PmzZrEA4wNqBKzWJBVR9MXz/iwx0MMNAIte4tOxg/tp1tPbtfTjvgVWO45D3H8DtvONTBxaxBOMDYoAy2ZlGPwQC1alR7IhxczBqM+2Bs0AZaWqVegwG8moBZc3ANxkZMPRfC9GKVZo3PAcZGTL0XwixqNQEzGxluIrMR46YrM8tzDcZGlJuuzKzCAcZGnJuuzAzcRGZmZgVxgDEzs0I4wJiZWSEcYMzMrBAOMGZmVggHGDMzK4QDjJmZFcIBxszMCuEAY2ZmhXCAMTOzQjjAmJlZIRxgCrR5ew/3r9864g/cMjNrBl7ssiD1eHSwmVkjcw2mAPV6dLCZWSNzgClA5dHBeZVHB5uZjRYOMAWo96ODzcwakQNMAfzoYDMzd/IXpuhHB2/e3uPHEptZQ3OAKVBRjw72CDUzawZuImsyHqFmZs3CAabJeISamTULB5gm4xFqZtYsHGCajEeomVmzcCd/Eyp6hJqZ2UhwgGlSRY1QMzMbKaU1kUkaI+lnkr6bPh8i6XZJj6X3SbljL5K0TtKjkk7PpZ8g6YG07yuSlNI7JN2c0u+VNLPe92dmNtqV2QfzCeCR3OcLgTsjYjZwZ/qMpKOBucAxwBnA1ySNSXmuAM4HZqfXGSl9PrAlImYBlwOLir2VxuFHBJhZoyglwEjqBN4FXJlLPgtYkraXAGfn0m+KiJ6IeBxYB5wo6XDgoIi4OyICuLYqT+Vcy4DTKrWbIjTKj/qKNRuYs2gl5155L3MWreSWNRtKLY+ZjW5l9cF8CVgAHJhLOywiNgJExEZJh6b0acA9ueO6U9qutF2dXsmzPp1rt6QXgMnAcyN8Hw0zqz4/AXMn2TDmBcvXMmfWFPfVmFkp6l6DkfRu4NmIWD3YLDXSop/0/vJUl+V8Saskrdq0adMgi7NPI82q9wRMM2s0ZTSRzQHOlPQEcBNwqqTrgWdSsxfp/dl0fDcwPZe/E3g6pXfWSO+VR1I7cDDwfHVBImJxRHRFRNfUqVP3+0Ya6UfdEzDNrNHUPcBExEUR0RkRM8k671dGxLnALcC8dNg8YEXavgWYm0aGHUXWmX9fak7bJumk1L9yXlWeyrnel67xihrMcA3nR32k+208AdPMGk0jzYO5FFgqaT7wFHAOQEQ8JGkp8DCwG7ggIvakPB8FrgHGA7emF8BVwHWS1pHVXOYWUeDKj/qCqj6YgX7Ui+q38QRMM2skKuAP+6bU1dUVq1atGlLe/Xk2y+btPcxZtJKdu/bVfMaNbeOuhac6IJhZ05G0OiK6au1rpBpM09qfWfWVfpvKSC/Y12/jAGNmrcSLXdaZO+PNbLRwgKkzd8ab2WjhJrISuDPezEYDB5iSeDVkM2t1biIzM7NCOMCYmVkhHGDMzKwQDjBmZlYIBxgzMyuEl4pJJG0Cniy7HPtpCgU846bJjPbvYLTfP/g7gHK/gyMjouZy9A4wTUzSqr7WABotRvt3MNrvH/wdQON+B24iMzOzQjjAmJlZIRxgmtvisgvQAEb7dzDa7x/8HUCDfgfugzEzs0K4BmNmZoVwgDEzs0I4wDQhSdMl/VDSI5IekvSJsstUBkljJP1M0nfLLksZJE2UtEzSz9O/hbeUXaZ6kvQX6d//g5JulDSu7DIVTdLVkp6V9GAu7RBJt0t6LL1PKrOMeQ4wzWk38FcR8ZvAScAFko4uuUxl+ATwSNmFKNGXgdsi4g3AGxlF34WkacDHga6IOBYYA8wtt1R1cQ1wRlXahcCdETEbuDN9bggOME0oIjZGxE/T9jayH5Zp5ZaqviR1Au8Criy7LGWQdBBwMnAVQES8FBFbyy1V3bUD4yW1A68Gni65PIWLiB8Bz1clnwUsSdtLgLPrWqh+OMA0OUkzgd8C7i23JHX3JWABsLfsgpTkN4BNwLdSM+GVkg4ou1D1EhEbgC8CTwEbgRci4gfllqo0h0XERsj++AQOLbk8L3OAaWKSJgDLgT+PiF+VXZ56kfRu4NmIWF12WUrUDvw2cEVE/BbwIg3UNFK01M9wFnAUcARwgKRzyy2VVXOAaVKSxpIFlxsi4jtll6fO5gBnSnoCuAk4VdL15Rap7rqB7oio1FyXkQWc0eLtwOMRsSkidgHfAd5acpnK8oykwwHS+7Mll+dlDjBNSJLI2t4fiYi/L7s89RYRF0VEZ0TMJOvYXRkRo+qv14j4JbBe0utT0mnAwyUWqd6eAk6S9Or0/8NpjKJBDlVuAeal7XnAihLL0kt72QWwIZkD/BHwgKQ1Ke1TEfG9Estk9fdnwA2SXgX8F/DBkstTNxFxr6RlwE/JRlX+jAZdLmUkSboROAWYIqkbuBi4FFgqaT5Z4D2nvBL25qVizMysEG4iMzOzQjjAmJlZIRxgzMysEA4wZmZWCAcYMzMrhAOMtTRl/l3SO3NpfyDptpLLtFTSWkkfr9r3OUkbJK3JvQ4suDzfL/oaNjp5mLK1PEnHAv9ItmbbGGANcEZE/GIY52yPiN1DzNsJ/FtEvLbGvs8Bz0XEl4Zatv0oh8h+A0brem5WMNdgrOVFxIPAvwALySamXRsRv5A0T9J9qZbwNUltAJIWS1qVnjXy15XzSOqW9GlJdwG/l55H8rCk+2stVSNpvKQlkh6Q9FNJJ6ddPwCOSNcd1PImkhZIWpy2j0/nHJ9qPEvS84Eek/ShXJ4L0/2trdyHpFnp+SlfJ5ukeHi6r4lp/yu+E0ntkrZKujTd692SDk3Hv0bSinSN+yW9ua/z7Nd/NGsNEeGXXy3/Ag4AHgUeADqAY4F/BtrT/sXA/0zbh6T3duDHwNHpczfwl7lzbgRelbYn1rjmQuCbafsY4EngVcAsYIWpBcsAAAJ+SURBVE0f5fwcsIGslrUGuCOltwF3kS3w+DPgpNzxPwXGka2i2w0cBvwu8DVAKe9tZGt1zSJbgfpNuWt2AxP7+k7S9xDAO1P63wMXpu3lwMdy39dB/X23fo2ul5eKsVEhIl6UdDOwPSJ6JL0deBOwKmspYjywPh3+gbTsRjvZSr1Hs2+dr5tzp30IuF7SCrIf1Gr/HfhCuv5Dkp4m+4F/aYDifiGqmsgiYq+kPyYLOl+NiHtyu/85InYCOyX9KN3X24F3kgUjgAnA68gWQvxFRPykxnX7+052RMStaXs18La0fQrpQV+RNRn+aoDv1kYRBxgbTfay7/kxAq6OiE/nD5A0m+xJmSdGxNbU9JV/FO+Lue3Tgf9BVqv4P5KOjYg9+dONcPlnA9vJgl5edUdqpGt/LiKuyu+QNIve99BrN7W/k3Z6B8U99P7tqL5+zfPY6ON2URut7gD+QNIUAEmTJc0ga+LZRvaX+OFkQeQVJI0BOiNiJfBJYCrZUxXzfgT8YTr+N4HDgXVDKWzqI7mcbKHTaZLyTy08W1JHupe3AauA7wPzlR5CJqmzcq/96Os76c8PgY+k48coe9LmUM5jLcg1GBuVIuIBSZcAd6QO6F1kP5SryJrDHiRbofiuPk7RDnw7De9tAxZF9vjqvH8AviHpgXT+8yLipdRs1J9PpuawivcAnwe+HBHrJH0wlfvf0/6fALcC04GLI+IZ4HuS3gDck663jaw/pU/9fCf9PYr4Y8A3Jf0p2arGfxoR9/VxnqcGunFrLR6mbNbE6jms2Wx/uYnMzMwK4RqMmZkVwjUYMzMrhAOMmZkVwgHGzMwK4QBjZmaFcIAxM7NC/H9uTSjoTqrWJwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -297,15 +299,19 @@ }, { "cell_type": "markdown", - "id": "94e0f415", + "id": "739be4d1-2a46-49f1-9bc5-b07d598cbe28", "metadata": {}, "source": [ - "### Train test split" + "### Train Test Split\n", + "The dataset has to be split into a training set and a test set.\n", + "This can be done using the `preprocess_split()` api from mlpack.\n", + "Here the dataset has 30 observations and the `testRatio` is taken as 40% of the total observations.\n", + "This indicates the test set should have 40% * 30 = 12 observations and training test should have 18 observations respectively." ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 9, "id": "2cd31a2a", "metadata": {}, "outputs": [], @@ -318,28 +324,13 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 10, "id": "9e82b675", "metadata": {}, "outputs": [], "source": [ "# Split the dataset using mlpack's preprocess_split method.\n", - "output = mlpack.preprocess_split(input=features, input_labels=targets, test_ratio=0.4, seed=101)" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "26caf3cc", - "metadata": {}, - "outputs": [], - "source": [ - "# Preprocess_split returns a dictionary, which we'll unpack into\n", - "# respective variables for clarity of code.\n", - "X_train = output[\"training\"]\n", - "y_train = output[\"training_labels\"]\n", - "X_test = output[\"test\"]\n", - "y_test = output[\"test_labels\"]" + "splitData = mlpack.preprocess_split(input=features, input_labels=targets, test_ratio=0.4, seed=101)" ] }, { @@ -347,25 +338,31 @@ "id": "91e0b6b8", "metadata": {}, "source": [ - "### Training the linear model" + "### Training the linear model\n", + "\n", + "Regression analysis is the most widely used method of prediction. Linear regression is used when the dataset has a linear correlation and as the name suggests, simple linear regression has one independent variable (predictor) and one dependent variable(response).\n", + "\n", + "The simple linear regression equation is represented as y = a+bx where x is the explanatory variable, y is the dependent variable, b is coefficient and a is the intercept\n", + "\n", + "To perform linear regression we'll be using `LinearRegression()` api from mlpack." ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 11, "id": "5a642645", "metadata": {}, "outputs": [], "source": [ "# Create and train Linear Regression model.\n", - "output = mlpack.linear_regression(training=X_train,\n", - " training_responses=y_train, \n", + "output = mlpack.linear_regression(training=splitData[\"training\"],\n", + " training_responses=splitData[\"training_labels\"], \n", " lambda_=0.5, verbose=True)" ] }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 12, "id": "8b2e2bb4", "metadata": {}, "outputs": [], @@ -383,23 +380,23 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 13, "id": "e41657ad", "metadata": {}, "outputs": [], "source": [ "# Predict the values of the test data.\n", - "output = mlpack.linear_regression(input_model=model, test=X_test)" + "predictions = mlpack.linear_regression(input_model=model, test=splitData[\"test\"])" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 14, "id": "d3734f1a", "metadata": {}, "outputs": [], "source": [ - "y_preds = output[\"output_predictions\"].reshape(-1, 1)" + "yPreds = predictions[\"output_predictions\"].reshape(-1, 1)" ] }, { @@ -407,18 +404,19 @@ "id": "53843549", "metadata": {}, "source": [ - "### Model Evaluation" + "### Model Evaluation\n", + "Test data is visualized with `splitData[\"test\"]` and `yPreds`, the coral points indicates the data points and the blue line indicates the regression line or best fit line." ] }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 22, "id": "531b842d", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ4AAAEWCAYAAABWn/G6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA9MklEQVR4nO3deZgU1dXH8e+PRRiVxQWRRQTDouDOiCQoEFHBFTQaMW+iRhKj0agxIYK+ibhjNBqNb0wwGsWoQBCVBBUQ3IMgiLIZlMgoA4RFFhUBZ4bz/lG3h+6mZxhguquHOZ/n6We6btWtOt0902du1a17ZWY455xzuVIn7gCcc87VLp54nHPO5ZQnHueccznlicc551xOeeJxzjmXU554nHPO5ZQnHpeXJJ0oaWHcceQTSa9K+lEOj3enpGtzdCyT1D48/5OkX+/kfr6UdEj1Rpey/7MljcrW/msLTzwuhaQiSRvDH3Di8WCu4zCzN8ysU66Pm22SukiaJGmtpHWSZkk6Pe640klqBlwE/Dks95a0Jfw+fCFpoaQfZuPYZna5md1ahRi3ScRmtreZfZyNuML+xwOHSzoyW8eoDTzxuEzOCn/AicdVuTy4pHq5PF6O/QOYDDQHDgCuBj7P5gF38v28BHjBzDYmlS0zs72BxsD1wMOSOlfT8WqSp4HL4g6iJvPE46pM0kOSxiYt3yVpiiK9JRVLukHS6tBy+p+kbRtIukfSp5JWhNMpBWFdou71kv4L/DVRllS/paRnJK2StFjS1UnrhkkaI2lk+G98vqTCpPUHSRoX6n6W3IKTdKmkD0ILZKKkgyt47S9Juiqt7H1J54bXf5+klZLWS5oj6fAM+9gfaAc8bGZfh8dbZvZmWL+PpH+GONeG560riOcbkqaG17Na0pOSmiatLwrv5xxgg6TBkp5J28cfJP0+0/6B04DXMq2wyHPAWqCzpEskvRXegzXAsMo+73DswZKWS1om6dK0uB6TdFvScn9J70n6XNJ/JPWTdDtwIvBgcqtcqafsmoTfiVWSPpH0v5LqhHWXSHozxLg2/E6dlnTMSyR9HH6fFif/LgOvAmdU8L65qjAzf/ij/AEUASdXsG5P4EOi/4ZPBFYDrcO63kApcC/QAOgFbAA6hfW/B8YD+wKNiP7zvzOt7l2hbkEoKw7r6wCzgN8AewCHAB8DfcP6YcAm4HSgLnAn8HZYVxd4H7gP2AtoCJwQ1g0AFgGHAfWA/wX+VcFrvwh4K2m5M7AuxNs3xNcUUNhfiwz7EPAR8M9w7OZp6/cDvhPe50bA34Hnkta/CvwoPG8PnBKO3wx4Hfh92uf4HnBQeD9bhM+jaVhfD1gJdK3g9a4CjktaTv88zgFKgE5Evw+lwM/Cfgu283n3A1YAh4fP5CnAgPZh/WPAbeF5N2B9eK11gFbAoenvR1KcyfsZCTwfjt+W6Hd3UFh3SYj/x0S/I1cAy8JntBdRKzTxu9sC6JJ0jH3DcRrH/fdaUx+xB+CP/HqEL6wvib5UE48fJ63vBqwBPgEuTCrvHb589koqGwP8OvwxbwC+kbTum8DipLpfAw3T9pf4ojse+DQtzqHAX8PzYcDLSes6AxuTjrMKqJfhtb6Y+CIKy3WAr4CDM2zbKLyGg8Py7cCj4flJ4UutO1BnO+9va+BB4D/AFqKE0aGCbY8G1iYtb/NFm7RuADA77XO8NMPr/XF4fiawoJI4Swhf8Emfx5bw+7CGKKkNDOsuSf58qvB5PwoMT1rXkYoTz5+B+yqIcZv3I7EfomSyGeictO4nwKtJMS9KWrdnqHsgUeJZR/RPQEGG49YP27aJ4290d3j4qTaXyQAza5r0eDixwsxmELU2RJRYkq01sw1Jy58ALYn+I98TmKXogvo64KVQnrDKzDZVEM/BQMtE3VD/BqLrJAn/TXr+FdBQ0bWGg4BPzKy0gv3en7TPNeF1tUrf0My+ACYAA0PRQODJsG4qUTL5P2CFpBGSGmd6IWZWbGZXmdk3wvE3EP1njqQ9Jf05nBb6nCgpNZVUN30/kg6QNErS0rDt34D90zZbkrb8OPD98Pz7wBOZYgzWEiXbZMvC78O+Zna0mSX37ko+1vY+75Zp239SSRwHESXpHbU/Ues4ed+fkPrZlv/OmNlX4ene4Xf4AuByYLmkCZIOTaqXeF/W7URcDr/G43aQpCuJTu8sA36VtnofSXslLbcJ260GNhKdrkgksyYWXahOqGyY9CVE/y0nJ8NGZlaV3mBLgDbKfMF7CfCTtP0WmNm/KtjX08CFkr5JdDrplfLgzR4ws65AF6L/4AdvLzAzW0KUrBLXg35BdOrqeDNrDPQM5cpQ/U6i9+zIsO33M2yX/p4+BxwZrj+dSUicFZgTXkdVJR9re5/3cqKEktCmkv0uAb5RhWOmW03Uaku+ZtcGWFpJna07NptoZqcQnWb7N/Bw0urDgCIzy2qnkN2ZJx5XZZI6ArcRfcn9APiVpKPTNrtZ0h6STiT6cvu7mW0h+sO9T9IBYV+tJPWt4qFnAJ+Hi+UFkupKOlzScVWsuxwYLmkvSQ0l9Qjr/gQMldQlxNRE0vmV7OsFoi+yW4DR4XUh6ThJx0uqT9SC2QSUpVcOnQdultReUp3Q2eBS4O2wSSOiL+x1kvYFbqoklkaEU6KSWlG1RLcJGEt0TWWGmX26ndfaa3v7rOA42/u8xwCXSOosaU8qf52PAD+U1Ce8Z62SWh8riK73ZYqhLBzndkmNFHUauY6oZVgpSc0V3a+zF9Hpui9J/Tx7EZ22dDvJE4/L5B9KvY/n2dBi+Btwl5m9b2YfEZ3uekJSg1Dvv0SnaJYR/Td9uZn9O6y7nuhC/tvh1NDLRP/db1f4EjmL6JrHYqL/Zv8CNNmBuu2BT4FiotMomNmzRB0aRoWY5hH15qpoX5uBccDJRF/eCY2JvmjXEp3O+Qy4J8Muvia6yP0y0cXreURfbJeE9b8nakmtJkpGL1Xy0m4GjiW68D4hxFUVjwNHUPlpNohO/52e3BNtB1X4eZvZi0SvdWrYZmpFOwmndn9I1DlkPVFPu0Qr5n7gvNAr7YEM1X9G9I/Ax8CbRJ/Zo1WIvQ5R63MZ0enXXsBPk9ZfSLi/ye0cmflEcG7XSeoN/M3MMnb/dflBUhuiU0cHbu9UkaQ7gJVm9vtcxFYTSDoL+IGZfTfuWGoyTzyuWnjiyX/hHpZ7iboBX7q97Z3Llt39DmPnHBCuV6wgOhXYL+ZwXC3nLR7nnHM55Z0LnHPO5VTWTrVJepSoO+1KMzs8lN1N1MPoa6Kbwn5oZuvCuqHAIKJui1eb2cRQ3pXoTuYCoi6e15iZhZ5UI4GuRL2ILjCzolDnYqLhTyC6A/rx7cW7//77W9u2bXf5dTvnXG0ya9as1WbWbPtbbpW1U22SehL1fx+ZlHhOBaaaWamkuwDM7HpFI9w+TTQcS0uirpcdzaxM0gzgGqLupS8AD5jZi5J+SnTz3OWSBgLnmNkF4f6HmUAh0Q1ms4jGo1pbWbyFhYU2c+bMan8fnHNudyZplpkVbn/LrbJ2qs3MXifqA59cNilp6JK3icatAugPjDKzzWa2mKhvfzdJLYh64EyzKEOOJBqTKlEn0ZIZC/SRJKIBGyeb2ZqQbCbjF1Odcy5vxHmN51K23v3bitSxm4pDWavwPL08pU5IZuuJRvetaF/OOefyQCyJR9KNRCMZJ8aKyjQWlVVSvrN10uO4TNJMSTNXrVpVedDOOeeqRc7v4wkX/s8E+tjWC0zFpA4a2JpouIpitp6OSy5PrlMchnNpQnRqr5hoCPfkOq9misXMRgAjILrGk76+pKSE4uJiNm2qaNBkl0sNGzakdevW1K9fP+5QnHO7IKeJR1I/ojGceiUNQw7RhFFPSbqXqHNBB6JBDMvCDIDdgelEk3H9IanOxcA04DyiTgsmaSJwh6R9wnanEs3dssOKi4tp1KgRbdu2Jbp85OJiZnz22WcUFxfTrl27uMNxzu2CbHanfpqo5bG/oimMbyJKAA2AyeGL/G0zu9zM5ksaAywgOgV3ZRjcEaKZAR8j6k79IluvCz1CNEDlIqKWzkAAM1sj6VbgnbDdLWaW0smhqjZt2uRJJ09IYr/99sNPiTpX82Ut8ZjZhRmKH6lk+9uJZnVML5/J1vlKkss3ARmHsDezR6naKLTb5Uknf/hn4dyueW72Uu6euJBl6zbSsmkBg/t2YsAxue975SMXOOdcLfDc7KUMHTeXpes2YsDSdRsZOm4u146azexPK73Nsdp54slze++99zZlf/rTnxg5cmRO4+jduzdt2rTBkm44HjBgQMb4KnPJJZcwduzYXd7GObdj7p64kI0lqfMTbiwp47n3ljHsHwtyGouPTl0DXX755Vndv5lhZtSpk/p/SdOmTXnrrbc44YQTWLduHcuXL89qHM656rNs3cYK142+rHsOI/EWT400bNgw7rknmuCyd+/eXH/99XTr1o2OHTvyxhtvAFBWVsbgwYM57rjjOPLII/nzn6MJE7/88kv69OnDscceyxFHHMHzzz8PQFFREYcddhg//elPOfbYY1myZMk2xx04cCCjRo0CYNy4cZx77rnl68yMwYMHc/jhh3PEEUcwevTo8vKrrrqKzp07c8YZZ7By5cryOrNmzaJXr1507dqVvn37eiJzLotaNs08mWyrpgU0rF83p7F4i6eKbv7HfBYsq3TCxh3WuWVjbjqryy7vp7S0lBkzZvDCCy9w88038/LLL/PII4/QpEkT3nnnHTZv3kyPHj049dRTOeigg3j22Wdp3Lgxq1evpnv37px99tkALFy4kL/+9a/88Y9/zHicPn368OMf/5iysjJGjRrFiBEjuPXWW4EoEb333nu8//77rF69muOOO46ePXsybdo0Fi5cyNy5c1mxYgWdO3fm0ksvpaSkhJ/97Gc8//zzNGvWjNGjR3PjjTfy6KPV0ifEOZfksy83szRDi6egfl0G963SDPTVyhPPbiDR8ujatStFRUUATJo0iTlz5pRfK1m/fj0fffQRrVu35oYbbuD111+nTp06LF26lBUrVgBw8MEH0717xU3uunXrcsIJJzB69Gg2btxI8mjeb775JhdeeCF169alefPm9OrVi3feeYfXX3+9vLxly5acdNJJQJTk5s2bxymnnAJELbQWLVpU91vjXK138z/m89e3isqXmzdqwMovNsfaq80TTxVVR8skWxo0aABEiaG0NBqD1cz4wx/+QN++fVO2feyxx1i1ahWzZs2ifv36tG3btnxkhr322mu7xxo4cCDnnHMOw4YNSymvbJTzTN2gzYwuXbowbdq07R7TObfjPlj+Oafd/0b58i9P7chVJ3WIMaKt/BrPbqpv37489NBDlJSUAPDhhx+yYcMG1q9fzwEHHED9+vV55ZVX+OSTT3ZovyeeeCJDhw7lwgtTb9Pq2bMno0ePpqysjFWrVvH666/TrVs3evbsyahRoygrK2P58uW88sorAHTq1IlVq1aVJ56SkhLmz59fDa/cuex4bvZSegyfSrshE+gxfCrPzV4ad0gZlW0x+v/fW+VJp14dMe/mvnmTdMBbPHnvq6++onXrrcPVXXfddVWq96Mf/YiioiKOPfZYzIxmzZrx3HPP8T//8z+cddZZFBYWcvTRR3PooYfuUDyS+OUvf7lN+TnnnMO0adM46qijkMRvf/tbDjzwQM455xymTp3KEUccQceOHenVqxcAe+yxB2PHjuXqq69m/fr1lJaWcu2119KlS/62LF3tlbgHJtEdOXEPDBDLqaqKvDRvOZf/7d3y5YcvKuSUzs1jjCizrE0EV9Nkmgjugw8+4LDDDospIpeJfyYuDj2GT814cb5V0wLeGnJSDBGl+nxTCUcOm1S+3K3tvoy6rDt16mR/tI+dmQjOWzzOObcdFd0DU9m9Mbly7+QPeWDKR+XLk37ek47NG1WpblxD6Hjicc657WjZtCBji6eie2Ny4eNVX3LS714rX/5Jz0MYenrVzwbEefrQOxdsh5+KzB/+Wbi4DO7biYK0myzjugfGzPjBI9NTks7sX5+yQ0kHKh5C5+6JC6slzsp4i6cSDRs25LPPPmO//fbzkZFjlpiPp2HDhnGH4mqhRAsg7pGdX/twFRc/OqN8+f6BR9P/6J2LIc7Th554KtG6dWuKi4t9Dpg8kZiB1Lk4DDimVWw92L76upTjbnuZDV9HLZROzRsx4eoTqFd3509axXn60BNPJerXr++zXTrnYvXw6x9z+wsflC+Pv6oHR7Zuusv7Hdy3U8o1Hsjd6cOsXeOR9KiklZLmJZWdL2m+pC2SCtO2HyppkaSFkvomlXeVNDese0DhnJekBpJGh/Lpktom1blY0kfhcXG2XqNzzmVL8dqvaDtkQnnSubDbQRQNP6Nakg5ELbg7zz2CVk0LEFHX8DvPPaLG92p7DHgQSJ44Zh5wLvDn5A0ldSaauroL0BJ4WVLHMP31Q8BlwNvAC0A/oumvBwFrzay9pIHAXcAFkvYlmma7EDBglqTxZpbbmY6cc24nmBlXPT2bCXO2jtY+48Y+HNCo+q9vxnX6MJtTX7+e3AoJZR9AxrG7+gOjzGwzsFjSIqCbpCKgsZlNC/VGAgOIEk9/YFioPxZ4MLSG+gKTzWxNqDOZKFk9Xb2v0Dnndk5F98/MWLyG7/556/iFd5xzBN87vk2MkWZHvlzjaUXUokkoDmUl4Xl6eaLOEgAzK5W0HtgvuTxDnRSSLiNqTdGmze734Trn8k+m+2eGPDOHYePns25jNLZiiyYNeXVwbxrUy+08ObmSL4knU19lq6R8Z+ukFpqNAEZANGTO9sN0zrldk+n+mU2lW9hUugWIZgM9/pD94ggtZ/Il8RQDByUttwaWhfLWGcqT6xRLqgc0AdaE8t5pdV7NRtDOObejKrtPZvGdp9eKewbzZeSC8cDA0FOtHdABmGFmy4EvJHUP128uAp5PqpPosXYeMNWiW9snAqdK2kfSPsCpocw552JX2RTUtSHpQBZbPJKeJmp57C+pmKin2RrgD0AzYIKk98ysr5nNlzQGWACUAleGHm0AVxD1kCsg6lTwYih/BHgidERYQ9QrDjNbI+lW4J2w3S2JjgbOORenp6Z/mldTUMfFp0UIMk2L4Jxz1WFTSRmH/vqllLIDGzdkxeebYp2Cujr4tAjOOZdnfvT4O7z8wcry5Ut7tOM3Z3WOMaL4eeJxzrksKFq9gd73vJpS9vEdp+dkcrZ854nHOeeqWdshE1KW/3JRISfv5BTUcU3Wlk2eeJxzrppMmLOcK596N6WsaPgZO72/OCdryyZPPM45t4tKy7bQ/sYXU8revP7btN5nz13ab2WTtXnicc65WmrIM3MY9c7WUbrOPqolD1x4TLXsO87J2rLJE49zzu2EFZ9v4vg7pqSUfXjbaexRr/ruy49zsrZs8sTjnHM76LBfv5RyCuze7x7FucdW/+y4cU7Wlk2eeJxzroqenP4JNz47L6VsVzoPbE/iOo73anPOuVpmyxbjkBteSCl7+bqetD+gUdaPHddkbdnkicc55yox4P/e4r0l61LKstnKqQ088TjnXAb/Xb+J7nemdh6YM+xUGjesH1NEuw9PPM45lyZ95IHq7CLtPPE451y5F+cu54onq2/kAZeZJx7nnGPbVs6fvt+VfocfGFM0uzdPPM65Wu3Kp95lwpzlKWXeysmurE19LelRSSslzUsq21fSZEkfhZ/7JK0bKmmRpIWS+iaVd5U0N6x7IEyBTZgme3Qony6pbVKdi8MxPpKUmB7bOefKrd9YQtshE1KSzvQb+njSyYGsJR6i6ar7pZUNAaaYWQdgSlhGUmeiqau7hDp/lFQ31HkIuAzoEB6JfQ4C1ppZe+A+4K6wr32Jptk+HugG3JSc4Jxzru2QCRx186Ty5a4H70PR8DNo3rhhjFHVHllLPGb2OrAmrbg/8Hh4/jgwIKl8lJltNrPFwCKgm6QWQGMzm2bRHN0j0+ok9jUW6BNaQ32ByWa2xszWApPZNgE652qhtz/+bJtrOR/fcTrPXPGtmCKqnXJ9jae5mS0HMLPlkg4I5a2At5O2Kw5lJeF5enmizpKwr1JJ64H9kssz1Ekh6TKi1hRt2rTZ+VflnMt76QnnjnOO4HvH+999HPKlc0GmuWCtkvKdrZNaaDYCGAFQWFiYcRvnXM122z8X8Jc3F6eU+XWceOU68ayQ1CK0dloAK0N5MXBQ0natgWWhvHWG8uQ6xZLqAU2ITu0VA73T6rxavS/DOZfvNpWUceivX0opm/qLXhzSbO+YInIJ2exckMl4INHL7GLg+aTygaGnWjuiTgQzwmm5LyR1D9dvLkqrk9jXecDUcB1oInCqpH1Cp4JTQ5lzrpZof8MLKUnnwMYNKRp+hiedPJG1Fo+kp4laHvtLKibqaTYcGCNpEPApcD6Amc2XNAZYAJQCV5pZYgKKK4h6yBUAL4YHwCPAE5IWEbV0BoZ9rZF0K/BO2O4WM0vv5OCc2w0tWPY5pz/wRkrZR7efRv26uf4f21VGUSPBFRYW2syZM+MOwzm3k9I7D/zilI78rE+HmKKpPSTNMrPCHamTL50LnHNup4x4/T/c8cK/U8q880B+88TjnKuRSsu20P7GF1PKxl/VgyNbN40nIFdlnnicczXOSfe8yserN6SUeSun5vDE45yrMZas+YoTf/tKStmCW/qy5x7+VVaT+KflnKsR0jsPfL97G24bcERM0bhd4YnHOZfXnplVzC/+/n5KmZ9Wq9k88Tjn8pKZ0W7oCyllIy/tRs+OzWKKyFUXTzzOubzzg0em88ZHq1PKvJWz+/DE45zLG6u/3EzhbS+nlL3761PYd689YorIZYMnHudcXkjvPHDSoQfw6CXHxRSNyyZPPM65WL3y75X88LF3UsoW33k6YZZ7txvyxOOci016K+f+gUfT/+iM8za63YgnHudczv1q7PuMmVmcUuadB2oPTzzOuZz5cnMph9+UOj3WW0NOolXTgpgicnHwxOOcy4n002qHHtiIl67tGVM0Lk6eeJxzWfXup2s594//Sin7zx2nU7eOdx6orWKZlk/SNZLmSZov6dpQtq+kyZI+Cj/3Sdp+qKRFkhZK6ptU3lXS3LDugTA9NmEK7dGhfLqktrl+jc65qJWTnHR+c2Znioaf4Umnlst54pF0OPBjoBtwFHCmpA7AEGCKmXUApoRlJHUmmta6C9AP+KOkumF3DwGXAR3Co18oHwSsNbP2wH3AXTl4ac654HeTFm5zaq1o+BlcekK7mCJy+SSOU22HAW+b2VcAkl4DzgH6A73DNo8DrwLXh/JRZrYZWCxpEdBNUhHQ2Mymhf2MBAYAL4Y6w8K+xgIPSpL5PN/OZdXXpVvo+L+pk7NNvLYnnQ5sFFNELh/FkXjmAbdL2g/YCJwOzASam9lyADNbLumAsH0r4O2k+sWhrCQ8Ty9P1FkS9lUqaT2wH5Ay+JOky4haTLRp06a6Xp9ztdKxt05mzYavy5f33KMuC27pV0kNV1vlPPGY2QeS7gImA18C7wOllVTJdDLYKimvrE56LCOAEQCFhYXeGnJuJyxa+SUn3/taStnC2/rRoF7dCmq42i6WXm1m9gjwCICkO4haKysktQitnRbAyrB5MXBQUvXWwLJQ3jpDeXKdYkn1gCbAmiy9HOdqrfTrOJf3+gZDTjs0pmhcTRFXr7YDws82wLnA08B44OKwycXA8+H5eGBg6KnWjqgTwYxwWu4LSd1Db7aL0uok9nUeMNWv7zhXfZ54+5OMnQc86biqiOs+nmfCNZ4S4EozWytpODBG0iDgU+B8ADObL2kMsIDolNyVZlYW9nMF8BhQQNSpIHFV8xHgidARYQ1Rrzjn3C7assU45IbUydn+fvk3Oa7tvjFF5GoieUMgUlhYaDNnzow7DOfy1tkPvsmc4vUpZT6+mpM0y8wKd6SOj1zgnKvU8vUb+eadU1PK5g47lUYN68cUkavpKk08kuqY2Zak5f8BGgEjE/fhOOd2X+nXcc45phX3XXB0PMG43cb2WjwTJF0XukDfCPQEPgZGAWdnPTrnXCwmzFnOlU+9m1Lmp9Vcdakw8UjqRdSDrFnohfYD4AbgM+BhST2BIjP7NCeROueyzsxoNzS188DDFxVySufmMUXkdkfba/HUARoDewFlRHf+C9gU1vtIf87tJi5/YhYvzf9vSpm3clw2VJh4zOw1SX8jGmBzb2CYmb0eukGvMrPXcxWkcy571n9VwlG3TEopm3FjHw5o1DCmiNzurtIWj5n9RtJTQKmZLQrFdQjjmznnarb0zgPHt9uX0T/5ZkzRuNpiu92pzezfacurgFVZi8g5l3X/WrSa7/1lekrZ4jtPJ0xp5VxW+X08zsXgudlLuXviQpat20jLpgUM7tuJAce02n7FapDeyvntd47ku8cdVMHWzlU/TzzO5dhzs5cydNxcNpZEIz8tXbeRoePmAmQ1+QwbP5/H/lWUUuadB1wcPPE4l2N3T1xYnnQSNpaUcffEhVlJPBu/LuOw37yUUvbqL3vTdv+9qv1YzlXFdhOPpB5Es3keHLYXYGZ2SHZDc273tGzdxh0q3xXpp9VaNmnIv4b2qfbjOLcjqtLieQT4OTCL6F4e59wuaNm0gKUZkkzLpgXVdox5S9dz5h/eTCn76PbTqF83lplQnEtRlcSz3sxe3P5mzrmqGNy3U8o1HoCC+nUZ3LdTtew/vZXzy1M7ctVJHapl385Vh6oknlck3Q2MAzYnCs3s3YqrOOcqkriOU9292h569T/c9VLK3Q/eecDlpaoknuPDz+T5Fgw4qfrDca52GHBMq2rrSFBatoX2N6aelPjHVSdwROsm1bJ/56pbVW4g/XZ1H1TSz4EfESWwucAPgT2B0UBboAj4rpmtDdsPBQYRXWO62swmhvKubJ2B9AXgGjMzSQ2AkUBXokFNLzCzoup+Hc7FredvX+HTNakzlHgrx+W7ykan/r6Z/U3SdZnWm9m9O3NASa2Aq4HOZrYxTGs9EOgMTDGz4ZKGAEOA6yV1Duu7AC2BlyV1DNNfP0Q0fM/bRImnH9H014OAtWbWXtJAovHmLtiZeJ3LR598toFed7+aUvbBLf0o2KNuPAE5twMqa/EkOvk3ytJxCySVELV0lgFDgd5h/ePAq8D1QH9glJltBhZLWgR0k1QENDazaQCSRgIDiBJPf6Iu4ABjgQclyXyeb7cbSO88cNE3D+aW/ofHFI1zO66y0an/HH7eXJ0HNLOlku4BPgU2ApPMbJKk5ma2PGyzPMwBBNCKqEWTUBzKSsLz9PJEnSVhX6WS1gP7EU3rUE7SZYQBT9u0aVN9L9K5LBgzcwm/GjsnpcxPq7maKOcjF0jah6hF0g5YB/xd0vcrq5KhzCopr6xOaoHZCGAEQGFhobeGXF7KNDnbkz86nh7t948pIud2TRxD5pwMLA6jXCNpHPAtYIWkFqG10wJYGbYvBpJHMGxNdGquODxPL0+uUyypHtAEWJOl1+Nc1lw44m2mffxZSpm3clxNt93bmCVV99XKT4HukvZUNAZ7H+ADYDxwcdjmYuD58Hw8MFBSA0ntiKbjnhFOy30hqXvYz0VpdRL7Og+Y6td3XE2y6ovNtB0yISXpvPebUzzpuN1CVVo8iySNBf5qZgt29YBmNj3s712gFJhNdLprb2CMpEFEyen8sP380PNtQdj+ytCjDeAKtnanfjE8IBrm54nQEWENUa8452qE9M4Dp3ZuzoiLCivY2rmaR9trCEhqRPTF/UOiFtKjRL3MPs9+eLlTWFhoM2fOjDsMV4tN+WAFgx5P/R30ydlcvpM0y8x26D+jqtxA+gXwMPCwpJ7A08B9odVya9KU2M65nZTeynnwe8dw5pEtY4rGueyqyrQIdYEziFo8bYHfAU8CJxLdtNkxi/E5t1v7xZj3eebd4pQyv47jdndVucbzEfAKcLeZ/SupfGxoATnndtAXm0o4YtiklLJ/DTmpWqdGcC5fVZp4QmvnMTO7JdN6M7s6K1E5txtLP63WpWVjJlx9YkzROJd7lSYeMyuT9G0gY+JxzlXdrE/W8J2HpqWUfXzH6dSp450HXO1SlVNt/5L0INHI0RsShT4fj3NVl97KGXZWZy7p0S6maJyLV1USz7fCz+RWj8/H41wVXD92DqNnLkkp884DrraLZT4e53Z3m0rKOPTXL6WUTf55Tzo0z8Zg787VLFUaq03SGUTz4TRMlFXU4cC52i79tBp4K8e5ZFW5j+dPRHPmfBv4C9HYZzOyHJdzNc68pes58w9vppT9+9Z+NKzvk7M5l6xK13jM7EhJc8zsZkm/A8ZlOzDnapL0Vs7A4w5i+HeOjCka5/JbVRLPxvDzK0ktgc+I5tJxrta7b/KH3D/lo5QyP63mXOWqknj+KakpcDfRiNJGdMrNuVqrbIvxjRt8cjbndkZVerXdGp4+I+mfQEMzW5/dsJzLX4ffNJEvN5emlHkrx7mqqzDxSDq3knWYmV/ncbXKp599Rc+7X0kpe/+mU2lSUD+miJyrmSpr8ZxVyTrDOxi4WiS988CJHfbniUHHxxSNczVbhYnHzH6YjQNK6kQ0/E7CIcBvgJGhvC1QBHzXzNaGOkOBQUAZcLWZTQzlXdk6A+kLwDVmZpIahP11JeoMcYGZFWXj9bjd21PTP+WGZ+emlPlpNed2Tc5vIDWzhcDRYb91gaXAs8AQYIqZDZc0JCxfL6kz0QyoXYCWwMuSOobprx8CLgPeJko8/Yimvx4ErDWz9pIGAncBF+xMvK52MjPaDU3tPPDAhcdw9lE+OZtzuyruG0j7AP8xs08k9Qd6h/LHgVeB64H+RFNtbwYWS1oEdJNUBDQ2s2khzpHAAKLE0x8YFvY1FnhQkmx783w7B5zxwBvMX5Y6s7u3cpyrPnHfQDqQaCptgOZmthzAzJZLOiCUtyJq0SQUh7KS8Dy9PFFnSdhXqaT1wH7A6uSDS7qMqMVEmzZtqukluZpq9ZebKbzt5ZSy6Tf0oXnjhhXUcM7tjNhuIJW0B3A2MHR7m2Yos0rKK6uTWmA2AhgBUFhY6K2hWiy988DB++3Ja4N9fFznsmFnbyB9uBqOfRrwrpmtCMsrJLUIrZ0WwMpQXgwclFSvNbAslLfOUJ5cp1hSPaAJsKYaYna7mUnz/8tlT8xKKVt85+lIPjmbc9kS5w2kF7L1NBvAeOBiYHj4+XxS+VOS7iXqXNABmBFmR/1CUndgOnAR8Ie0fU0juiY11a/vuHTprZxfn9mZQSf4aFDOZVtlN5AeBywxs/+G5YuA7wCfSBpmZjvdgpC0J3AK8JOk4uHAGEmDgE+B8wHMbL6kMcACoBS4MvRoA7iCrd2pXwwPgEeAJ0JHhDVE15KcA+DyJ2bx0vz/ppR55wHnckcVNQQkvQucbGZrJPUERgE/I+oKfZiZnZezKHOgsLDQZs6cGXcYLos2bC6ly00TU8pevq4X7Q/YO6aInKv5JM0ys8IdqVPZqba6Sa2aC4ARZvYM0Sm393YyRudi4ZOzOZc/Kk08kuqZWSnR/TaXVbGec3njnaI1nP+naSlli24/jXp162T92M/NXsrdExeybN1GWjYtYHDfTgw4ptX2Kzq3m6ssgTwNvCZpNVGX6jcAJLUHfHRql/fSWzk/6XkIQ08/LCfHfm72UoaOm8vGkuhy5NJ1Gxk6Lhp6x5OPq+0qG6vtdklTgBbApKReYXWIrvU4l5du+ccCHn1rcUpZrk+r3T1xYXnSSdhYUsbdExd64nG1XqWnzMzs7QxlH2YvHOd2XknZFjrc+GJK2biffotj2+yT81iWrdu4Q+XO1SZ+rcbtFvKt80DLpgUszZBkWjYtiCEa5/JL9q+wOpdFH674Ypuks+CWvrH3WBvctxMF9eumlBXUr8vgvp1iisi5/OEtHldjpSecM45swf9979iYokmVuI7jvdqc25YnHlfjvDh3OVc8+W5KWdwtnEwGHNPKE41zGXjicTVGpsnZ/nJRISd3bh5TRM65neGJx9UI1415j3HvLi1f3nOPuiy4pV+METnndpYnHpfX1mz4mmNvnZxSNmfYqTRuWD+miJxzu8oTj8tb6Z0HftijLTed1SWmaJxz1cUTj8s7//rPar738PSUMp+czbndhycel1fSWzmPX9qNXh2bxRSNcy4bYrmBVFJTSWMl/VvSB5K+KWlfSZMlfRR+7pO0/VBJiyQtlNQ3qbyrpLlh3QMK/xJLaiBpdCifLqltDC/T7YA7X/xgm6RTNPwMTzrO7YbiGrngfuAlMzsUOAr4ABgCTDGzDsCUsIykzkQziHYB+gF/lJS4JfwhoukaOoRHopvTIGCtmbUH7gPuysWLcjtuw+ZS2g6ZwJ9f+7i87J0bT87L+3Kcc9Uj56faJDUGegKXAJjZ18DXkvoDvcNmjwOvAtcD/YFRZrYZWByms+4mqQhobGbTwn5HAgOIpr/uDwwL+xoLPChJVtF0qy4WXW+dzGcbvi5fzqeRB5xz2RPHNZ5DgFXAXyUdBcwCrgGam9lyADNbLumAsH0rIHmU7OJQVhKep5cn6iwJ+yqVtB7YD1idlVfkdsi8pes58w9vppR9fMfp1KnjnQecqw3iSDz1gGOBn5nZdEn3E06rVSDTt5FVUl5ZndQdS5cRZlZt06ZNZTG7apJ+HeeBC4/h7KNaxhSNcy4OcVzjKQaKzSzRX3YsUSJaIakFQPi5Mmn7g5LqtwaWhfLWGcpT6kiqBzQB1qQHYmYjzKzQzAqbNfOL2Nn0lzc+zth5wJOOc7VPzls8ZvZfSUskdTKzhUAfYEF4XAwMDz+fD1XGA09JuhdoSdSJYIaZlUn6QlJ3YDpwEfCHpDoXA9OA84Cpfn0nHl+XbqHj/6ZOzvb64G/TZr89Y4rIORe3uO7j+RnwpKQ9gI+BHxK1vsZIGgR8CpwPYGbzJY0hSkylwJVmlphT+ArgMaCAqFNB4hvuEeCJ0BFhDVGvOJdjZz/4JnOK15cvFx68D2Ov+FaMETnn8oG8IRApLCy0mTNnxh3GbmHx6g18+55XU8o+uv006tfNzpnd52Yv9XlvnIuJpFlmVrgjdXzkAlet0q/j3Hx2Fy7+VtusHe+52UsZOm4uG0uiRvDSdRsZOm4ugCcf5/KUJx5XLca9W8x1Y95PKcvFTaB3T1xYnnQSNpaUcffEhZ54nMtTnnjcLtmyxTjkhtTJ2V685kQOa9E4q8dNnF5bum5jxvXLKih3zsXPE4/baT8eOZPJC1aUL7dqWsBbQ07K+nHTT69l0rJpQdbjcM7tHE88boet+HwTx98xJaXsg1v6UbBH3QpqVK9Mp9eSFdSvy+C+nXISi3Nux3nicTskvfPA1Se157pTc/slX9lptFbeq825vOeJx1XJ1H+v4NLHUrubxzWCdMumBRmv7eTqVJ9zbtd44nGVMjPaDU3tPDDmJ9+kW7t9Y4oIBvfttM01Hj+95lzN4YnHVejGZ+fy5PRPU8ryYZ6cxGk0v2nUuZrJE4/bxvqvSjjqlkkpZe/95hSa7rlHTBFta8AxrTzROFdDeeJxKQ4ZOoEtSaMoXdjtIO4898j4AnLO7XY88TgAZhat4bw/TUspW3zn6Ug+OZtzrnp54nHbdJF++KJCTuncPKZonHO7O088tdj9L3/EfS9/mFKWD50HnHO7N088tdCmkjIO/fVLKWVvD+3DgU0axhSRc6428cRTy/S6+xU++eyr8uWTDj2ARy85LsaInHO1TSyJR1IR8AVQBpSaWaGkfYHRQFugCPiuma0N2w8FBoXtrzaziaG8K1tnIH0BuMbMTFIDYCTQFfgMuMDMinL08vLSwv9+Qd/fv55S9p87TqduHe884JzLrexMCVk13zazo5NmrhsCTDGzDsCUsIykzkRTV3cB+gF/lJQYjfIh4DKgQ3j0C+WDgLVm1h64D7grB68nb7UdMiEl6fz2vCMpGn6GJx3nXCziTDzp+gOPh+ePAwOSykeZ2WYzWwwsArpJagE0NrNpFs3fPTKtTmJfY4E+qoX9gp94+5NteqwVDT+D7xYeFFNEzjkX3zUeAyZJMuDPZjYCaG5mywHMbLmkA8K2rYC3k+oWh7KS8Dy9PFFnSdhXqaT1wH7A6uQgJF1G1GKiTZs21ffqYlZatoX2N76YUjblF734RrO9Y4rIOee2iivx9DCzZSG5TJb070q2zdRSsUrKK6uTWhAlvBEAhYWF26yviQaOmMbbH68pXz6sRWNevObEGCNyzrlUsSQeM1sWfq6U9CzQDVghqUVo7bQAVobNi4Hkc0OtgWWhvHWG8uQ6xZLqAU2ANezGlqz5ihN/+0pK2cLb+tGgXm4mZ3POuarK+TUeSXtJapR4DpwKzAPGAxeHzS4Gng/PxwMDJTWQ1I6oE8GMcFruC0ndw/Wbi9LqJPZ1HjA1XAfaLbUdMiEl6Qw97VCKhp/hScc5l5fiaPE0B54N1/rrAU+Z2UuS3gHGSBoEfAqcD2Bm8yWNARYApcCVZpaYiOUKtnanfjE8AB4BnpC0iKilMzAXLyzXJsxZzpVPvZtS5iMPOOfynXbjhsAOKSwstJkzZ25/wzyQaXK28Vf14MjWTeMJyDlXa0malXRbTJX4yAU1zLWjZvPce8vKl5sU1Of9m06NMSLnnNsxnnhqiC83l3L4TRNTyubd3Je9G/hH6JyrWfxbqwa4bvR7jJu9tHz5xye248YzOscYkXPO7TxPPHls0covOPnerUPd7N2gHvNu7htjRM45t+s88eSpI26ayBebS8uXX76uJ+0PaBRjRM45Vz088eSZF+Yu56dPbu0ifc4xrbjvgqPjC8g556qZJ5488XXpFjr+b+r4at55wDm3O/JvtTwwdlYxv/z7++XLd33nCC44bvcZtNQ555J54onRZ19uputtL5cvN6xXh02lW3hgyiIa1KvLgGNaVVLbOedqJk88MRk2fj6P/auofLlBSDoAS9dtZOi4uQCefJxzu518mgiuVliw7HPaDplQnnQG9+1Eq6YFbA5JJ2FjSRl3T1wYQ4TOOZdd3uLJkbItxjl/fIs5xesBqFdHvHfTqezdoB73VJBglq3bmMsQnXMuJzzx5MCLc5dzRVIX6b9cVMjJnZuXL7dsWsDSDEmmZdOCnMTnnHO55Ikni9ZvLOGomyeVL3drty+jftydOnVSJ0gd3LcTQ8fNZWNJWXlZQf26DO7bKWexOudcrnjiyZJ7Jy3kgamLypcn/7wnHZpnHnkg0YHg7okLWbZuIy2bFjC4byfvWOCc2y154qlmH6/6kpN+91r58k96HcLQ0w7bbr0Bx7TyROOcqxVi69Umqa6k2ZL+GZb3lTRZ0kfh5z5J2w6VtEjSQkl9k8q7Spob1j0QpsAmTJM9OpRPl9Q226/HzPjBI9NTks57vzmlSknHOedqkzi7U18DfJC0PASYYmYdgClhGUmdiaau7gL0A/4oqW6o8xBwGdAhPPqF8kHAWjNrD9wH3JXNF/LqwpW0G/oCb3y0GoD7Bx5N0fAzaLrnHtV2jOdmL6XH8Km0GzKBHsOn8lzSNAnOOVeTxJJ4JLUGzgD+klTcH3g8PH8cGJBUPsrMNpvZYmAR0E1SC6CxmU2zaP7ukWl1EvsaC/RJtIaqW9kW45K/vgPAoQc2YtHtp9H/6Oo9Zfbc7KUMHTeXpes2Ymy9wdSTj3OuJorrGs/vgV8ByVfbm5vZcgAzWy7pgFDeCng7abviUFYSnqeXJ+osCfsqlbQe2A9YnRyEpMuIWky0abNzY6PVrSNGXtqNfffag8NbNdmpfWzP3RMXpvR4g603mPp1IedcTZPzFo+kM4GVZjarqlUylFkl5ZXVSS0wG2FmhWZW2KxZsyqGs62eHZtlLelAxTeS+g2mzrmaKI5TbT2AsyUVAaOAkyT9DVgRTp8Rfq4M2xcDByXVbw0sC+WtM5Sn1JFUD2gCrMnGi8mFim4k9RtMnXM1Uc4Tj5kNNbPWZtaWqNPAVDP7PjAeuDhsdjHwfHg+HhgYeqq1I+pEMCOclvtCUvdw/eaitDqJfZ0XjrFNi6c65OKi/+C+nSioXzelzG8wdc7VVPl0H89wYIykQcCnwPkAZjZf0hhgAVAKXGlmiQseVwCPAQXAi+EB8AjwhKRFRC2dgdkIOHHRP3H9JVujSvsNps653Ymy1BCocQoLC23mzJk7VKfH8KkZx1hr1bSAt4acVF2hOedc3pI0y8wKd6SOT4uwC/yiv3PO7ThPPLvAL/o759yO88SzC/yiv3PO7bh86lxQ4/hFf+ec23GeeHaRjyrtnHM7xk+1OeecyylPPM4553LKE49zzrmc8sTjnHMupzzxOOecyykfMieQtAr4JO44gP1JmzcoT3hcVZePMUF+xpWPMUF+xpWPMQF0MrNG299sK+9OHZjZzk/IU40kzdzRcY9yweOqunyMCfIzrnyMCfIzrnyMCaK4drSOn2pzzjmXU554nHPO5ZQnnvwzIu4AKuBxVV0+xgT5GVc+xgT5GVc+xgQ7EZd3LnDOOZdT3uJxzjmXU554nHPO5ZQnnjwh6SBJr0j6QNJ8SdfEHROApIaSZkh6P8R1c9wxJUiqK2m2pH/GHUuCpCJJcyW9tzPdTLNBUlNJYyX9O/x+fTMPYuoU3qPE43NJ1+ZBXD8Pv+fzJD0tqWHcMQFIuibEND/O90nSo5JWSpqXVLavpMmSPgo/99nefjzx5I9S4BdmdhjQHbhSUueYYwLYDJxkZkcBRwP9JHWPN6Ry1wAfxB1EBt82s6Pz6J6L+4GXzOxQ4Cjy4D0zs4XhPToa6Ap8BTwbZ0ySWgFXA4VmdjhQFxgYZ0wAkg4Hfgx0I/r8zpTUIaZwHgP6pZUNAaaYWQdgSliulCeePGFmy83s3fD8C6Ivh9gn+rHIl2GxfnjE3iNFUmvgDOAvcceSzyQ1BnoCjwCY2ddmti7WoLbVB/iPmeXDyCH1gAJJ9YA9gWUxxwNwGPC2mX1lZqXAa8A5cQRiZq8Da9KK+wOPh+ePAwO2tx9PPHlIUlvgGGB6zKEA5ae03gNWApPNLB/i+j3wK2BLzHGkM2CSpFmSLos7GOAQYBXw13Ba8i+S9oo7qDQDgafjDsLMlgL3AJ8Cy4H1ZjYp3qgAmAf0lLSfpD2B04GDYo4pWXMzWw7RP9DAAdur4Iknz0jaG3gGuNbMPo87HgAzKwunRFoD3ULTPzaSzgRWmtmsOOOoQA8zOxY4jeh0ac+Y46kHHAs8ZGbHABuowqmQXJG0B3A28Pc8iGUfov/e2wEtgb0kfT/eqMDMPgDuAiYDLwHvE52ar7E88eQRSfWJks6TZjYu7njShVM0r7LtOd5c6wGcLakIGAWcJOlv8YYUMbNl4edKomsW3eKNiGKgOKmVOpYoEeWL04B3zWxF3IEAJwOLzWyVmZUA44BvxRwTAGb2iJkda2Y9iU51fRR3TElWSGoBEH6u3F4FTzx5QpKIzsN/YGb3xh1PgqRmkpqG5wVEf5z/jjMmMxtqZq3NrC3RaZqpZhb7f6aS9pLUKPEcOJXoNElszOy/wBJJnUJRH2BBjCGlu5A8OM0WfAp0l7Rn+HvsQx50xACQdED42QY4l/x5zwDGAxeH5xcDz2+vgo9OnT96AD8A5obrKQA3mNkL8YUEQAvgcUl1if5RGWNmedN9Oc80B56NvrOoBzxlZi/FGxIAPwOeDKe1PgZ+GHM8AITrFacAP4k7FgAzmy5pLPAu0ams2eTPMDXPSNoPKAGuNLO1cQQh6WmgN7C/pGLgJmA4MEbSIKLkff529+ND5jjnnMslP9XmnHMupzzxOOecyylPPM4553LKE49zzrmc8sTjnHMupzzxuN2eIm9KOi2p7LuSYunqLOnQMCLzbEnfSFuXPLr1e5IeyHIshdk+hnPpvDu1qxXCMD9/JxoDry7wHtDPzP6zE/uqa2ZluxDLEKDAzG7KsK6IaHTk1Tu7/x2Io14YdNK5nPIWj6sVzGwe8A/geqKb3v4G3CjpndDy6A/RAK2S3pD0bnh8K5T3VjRf0lNEN/nuJWmConmK5km6IP2Yko6W9LakOZKelbSPpNOBa4EfSXqlKrFLqhfi7B2W75R0e3heJOkuRXMmzZDUPpQ3k/RMqPeOpB6hfJikEZImASPD6/pnWLeXovlW0t+TSySNk/SSojlXfpsUW7/wPr0vaUpl+3GunJn5wx+14gHsBSwE5gJ3At8P5U2BD8P6PYGGobwDMDM87000wGa7sPwd4OGkfTfJcLw5QK/w/Bbg9+H5MOCXFcRYFOJ7Lzx+Hsq7EA3fcgrRHfV7JG1/Y3h+EfDP8Pwp4ITwvA3RUEyJY88ianElXleizh0VvCeXEI140ARoCHxCNDpyM2BJ0nuyb2X7ifvz90f+PHzIHFdrmNkGSaOBL4HvAmdJ+mVY3ZDoC3oZ8KCko4EyoGPSLmaY2eLwfC5wj6S7iL6430g+lqQmQFMzey0UPU7VR2D+tqWdajOz+ZKeIGq1fdPMvk5a/XTSz/vC85OBzmH4HoDGiXHkgPFmtjHDcU8lGnw1/T2BaKKv9eG1LQAOBvYBXk+8J2a2Zjv7yYtxz1z8PPG42mZLeAj4jpktTF4paRiwgmimxzrApqTVGxJPzOxDSV2J5ka5U9IkM7sly7EfAawjGhMumWV4XocoQaUkmJCINpBZRe/J8UQz0SaUEX13iMyTAmbcj3MJfo3H1VYTgZ+FUYiRdEwobwIsN7MtRIO21s1UWVJL4Csz+xvR5GEpUw2E1sFaSSeGoh8QzRy5UySdC+xHNJvoAwojhgcXJP2cFp5PAq5Kqn90FQ5T0XtSkWlAL0ntwvb77uR+XC3jLR5XW91KNIvpnPAFWQScCfyRaCTg84FXqLh1cARwt6QtRCMGX5Fhm4uBPykahXlHRoV+RVKi19wc4DqiEYD7mNkSSQ8C97N1KPoGkqYT/SN5YSi7Gvg/SXOI/s5fBy7fznErek8yMrNVimZZHSepDtE8LKfs6H5c7ePdqZ2rwXLZ/dq56uKn2pxzzuWUt3icc87llLd4nHPO5ZQnHueccznlicc551xOeeJxzjmXU554nHPO5dT/A1Ad0r6+EUlKAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU1fnH8c+XECAiiAtaSEBQEQVciUgVkYoaBBf0py22Lq22ttal1hYFqYqigsVaW1sX6r5UsBTBqggqKi4IgqiIiqBECSCLCCqChPD8/rgncWaYhACZmUzyvF+veTH33O25d8I8c86591yZGc4551xNa5DpAJxzztVNnmCcc86lhCcY55xzKeEJxjnnXEp4gnHOOZcSnmCcc86lhCcYVytJOkrSvEzHUZtIeknSL9O4v+GSLkvTvoZKeiS8byvpG0k527CdqyTdU/MRxu1jhqTOqdxHXeEJxsWRVCxpXfgPXv76R7rjMLNXzKxjuvebapI6S5os6UtJqyXNktQ303ElktQSOAe4O0z3krQp/D18LWmepF+kYt9m9pmZ7WhmZVuIsZekkoR1bzKzVCfhW4DrU7yPOsETjEvmpPAfvPx1cTp3LqlhOveXZv8DngP2AHYHLgW+SuUOt/F8/hx4xszWxZQtMbMdgebAlcC/JHWqof1lkyeBH0lqlelAajtPMK7aJN0paWzM9M2SXlCkl6SS0ESxMtSEfhazbGNJt0j6TNIySXdJygvzyte9UtLnwP2Jv04ltZb0X0krJC2UdGnMvKGSHpf0UPh1PVdSYcz8NpLGhXW/iK2RSTpP0gehRjFJ0p6VHPuzki5OKHtH0mnh+P8qabmkNZLeldQlyTZ2A9oD/zKzDeH1mpm9GubvLOmpEOeX4X1BJfHsLWlKOJ6Vkh6V1CJmfnE4n+8CayUNlPTfhG3cLum2ZNsHTgBeTjbDIuOBL4FOktpJMknnS/oMmBK2313S66Gm9o6kXjH7bi/p5fB5PQfsFjOvfHsNw/Quku6XtCScl/GSmgITgdYxNe3WimlqC+ueHP4eVitqYtw/4Rz9MXxeaySNkdSk/LMK53+1pFWSXpHUIBz/emAWcHwl586VMzN/+aviBRQDx1YybwfgI6Jft0cBK4GCMK8XsBG4FWgMHA2sBTqG+bcR/fLbBWhG9Et+eMK6N4d180JZSZjfgOg/9DVAI2Av4BOgKMwfCqwH+gI5wHDgjTAvB3gH+CvQFGgC9Ajz+gMLgP2BhsCfgNcrOfZzgNdipjsBq0O8RSG+FoDC9lol2YaA+cBTYd97JMzfFfi/cJ6bAf8BxsfMfwn4ZXi/D3Bc2H9LYCpwW8Ln+DbQJpzPVuHzaBHmNwSWA10rOd4VwGEx04mfx6lAKdARaAcY8FA4x3lAPvBF+EwahFi/AFqGbUzj+7+VnsDXwCNhXvn2Gobpp4ExwM5ALnB0YkwxcQ6N2c6+4ZiPC+tdET7vRjHnaAbQmujv8gPgN2HecOCusF4u0d+7Yvbzd+DWTP9/re2vjAfgr9r1Cv/pvglfnuWvX8XM7wasAj4Fzowp70WUJJrGlD0OXE30xboW2Dtm3g+BhTHrbgCaJGyv/AvtcOCzhDgHA/eH90OB52PmdQLWxexnRfmXVcI2JgLnx0w3AL4F9kyybLNwDHuG6RuB+8L7Y4gSb3egwRbObwHwD+BjYBNRYuhQybIHA1/GTL9ESDBJlu0PzE74HM9Lcry/Cu9PBN6vIs5SYL+Ez2NT+HtYRZS8BoR57YgSwl4xy18JPJywzUnAuUDbJH8r/yZJgiFKjJuAnZPEWPE3ElM2NGY7VwOPJ3y+i4FeMeforJj5fwbuCu+vByYA+1Ryfio+f39V/vImMpdMfzNrEfP6V/kMM5tBVHsQUQKJ9aWZrY2Z/pTo12FLol/ls0KTw2rg2VBeboVFTQ/J7EnUFLI6Zv2riPoxyn0e8/5boEloYmkDfGpmGyvZ7t9itrkqHFd+4oJm9jXRL+kBoWgA8GiYN4UoafwTWCZplKTmyQ7EzErM7GIz2zvsfy3RL38k7SDpbkmfSvqKKPm0UJKrqSTtLmm0pMVh2UeIaWYKFiVMPwicFd6fBTycLMbgS6KkGmtJ+HvYxcwONrPRVexvT+CMhM+sB1HCaE3yv5Vk2gCrzOzLKmKtTOvY7ZrZphBj7Oeb+HezY3g/kqi2M1nSJ5IGJWy7GVGydVXwBOO2iqSLiJo1lhA1OcTaObSNl2sbllsJrAM6xyStnSzqMC5X1bDei4hqO7FJr5mZVefqq0VAWyXveF4E/Dphu3lm9nol23oMOFPSD4magV6sCN7s72bWFehM1DQzcEuBmdkioqRU3l/zB6Imp8PNrDlR0xFESS/RcKJzdmBY9qwkyyWe0/HAgaF/6ERCgqzEu+E4tkbs/hYR1WBiz21TMxsBLCX530oyi4BdYvuXKtlfMkuIEh0AkkSUsBZv8UDMvjazP5jZXsBJwOWSescssj9R06urgicYV22S9gVuIPoyOxu4QtLBCYtdJ6mRpKOIvsT+E345/gv4q6Tdw7byJRVVc9czgK9Cp3WepBxJXSQdVs11lwIjJDWV1ETSkWHeXcBghXsaJO0k6YwqtvUM0RfW9cCYcFxIOkzS4ZJyiWok64HNLrENnfjXSdpHUoPQ6X8e8EZYpBlRIl4taRfg2ipiaUZoypSUT/US2npgLFFz1Awz+2wLx3r0lrZZhUeAkyQVhc+riaILNwrM7FNgJt//rfQg+hJPFvNSoqa9O8L5y5VUnniXAbtK2qmSGB4H+knqHT6bPwDfAZX9gKgg6cTwOYnoKr+y8EJSY6Ar0dWArgqeYFwy/1P8fTBPhBrAI8DNZvaOmc0naqZ6OPyHg6i54UuiX46PEnWYfhjmXUnU5PBGaNJ5nujX+hZZdD/ESUR9EguJakT3AJV9sSRbdx/gM6AE+EmY9wTRhQWjQ0zvEV09Vdm2vgPGAccSfUmXa06UQL8kapL5guheiUQbiPoXnif60nqP6Avv52H+bUQ1o5VESefZKg7tOuBQYA1R0924KpaN9SBwAFU3j0HUbNdX4Uq/rRVqZ6cQ/Y2sIKqJDOT775yfEvWtrSJKpA9VsbmzifqEPiS6MOGysI8PiWqVn4RmuNYJMcwj+jF0O9E5PYnoEvwN1TiEDkSf0zdEFyTcYWYvhXknAy+Z2ZJqbKdek5k/cMxtP0WXoD5iZkkvq3W1g6S2RF/UPzCzKu+/kXQTsNzMKruUuV6SNJ3o4pD3Mh1LbVfXb4hyzgXhPo7LgdFbSi4AZnZV6qPKPmZ2eKZjyBaeYJyrB0KH+jKiJrw+GQ7H1RPeROaccy4lvJPfOedcSngTWbDbbrtZu3btMh2Gc85llVmzZq00s5bJ5nmCCdq1a8fMmTMzHYZzzmUVSZWNwuBNZM4551LDE4xzzrmU8ATjnHMuJbwPpgqlpaWUlJSwfn1lg/y6dGrSpAkFBQXk5uZmOhTnXDV4gqlCSUkJzZo1o127dkRj3rlMMTO++OILSkpKaN++fabDcc5VgzeRVWH9+vXsuuuunlxqAUnsuuuuXpt0Lot4gtkCTy61h38WzmUXTzDOOVdPffPdRm6dPI/lX6emZcATTC234447blZ211138dBDVT0+o+b16tWLtm3bEjt2Xf/+/ZPGV5Wf//znjB07druXcc5tnwdeW0iXayfx9ykLmFW8LU+k3jLv5M9Cv/nNb1K6fTPDzGjQIP73R4sWLXjttdfo0aMHq1evZunSpSmNwzlX81at3cChw75/GOfZ3ffkhANapWRfXoPJQkOHDuWWW6IHJvbq1Ysrr7ySbt26se+++/LKK68AUFZWxsCBAznssMM48MADufvuuwH45ptv6N27N4ceeigHHHAAEyZMAKC4uJj999+f3/72txx66KEsWrRos/0OGDCA0aNHAzBu3DhOO+20inlmxsCBA+nSpQsHHHAAY8aMqSi/+OKL6dSpE/369WP58uUV68yaNYujjz6arl27UlRU5AnLuRS7dfK8uOQybfAxDOvfJWX78xpMNV33v7m8v2SLz2jaKp1aN+fakzpv93Y2btzIjBkzeOaZZ7juuut4/vnnuffee9lpp5148803+e677zjyyCM5/vjjadOmDU888QTNmzdn5cqVdO/enZNPPhmAefPmcf/993PHHXck3U/v3r351a9+RVlZGaNHj2bUqFEMGzYMiBLO22+/zTvvvMPKlSs57LDD6NmzJ9OmTWPevHnMmTOHZcuW0alTJ8477zxKS0u55JJLmDBhAi1btmTMmDEMGTKE++67b7vPh3Mu3pLV6zhixJSK6cuO7cBlx+6b8v16gqkDymsSXbt2pbi4GIDJkyfz7rvvVvRlrFmzhvnz51NQUMBVV13F1KlTadCgAYsXL2bZsmUA7LnnnnTv3r3S/eTk5NCjRw/GjBnDunXriB19+tVXX+XMM88kJyeHPfbYg6OPPpo333yTqVOnVpS3bt2aY445BoiS2Xvvvcdxxx0HRDWuVq1SU013rj676ok5/Hv6ZxXTs68+jp2bNkrLvj3BVFNN1DRSpXHjxkCUADZu3AhETVO33347RUVFccs+8MADrFixglmzZpGbm0u7du0q7i1p2rTpFvc1YMAATj31VIYOHRpXXtWD65JdXmxmdO7cmWnTpm1xn865rbdg+dcce+vUiulhp3Tm7B+2i1tm/OzFjJw0jyWr19G6RR4DizrS/5D8GovB+2DqqKKiIu68805KS0sB+Oijj1i7di1r1qxh9913Jzc3lxdffJFPP610pO2kjjrqKAYPHsyZZ54ZV96zZ0/GjBlDWVkZK1asYOrUqXTr1o2ePXsyevRoysrKWLp0KS+++CIAHTt2ZMWKFRUJprS0lLlz59bAkTtXv5kZv3poZkVyyWkg5l5XlDS5DB43h8Wr12HA4tXrGDxuDuNnL66xWLwGU8t9++23FBQUVExffvnl1Vrvl7/8JcXFxRx66KGYGS1btmT8+PH87Gc/46STTqKwsJCDDz6Y/fbbb6vikcQf//jHzcpPPfVUpk2bxkEHHYQk/vznP/ODH/yAU089lSlTpnDAAQew7777cvTRRwPQqFEjxo4dy6WXXsqaNWvYuHEjl112GZ07196aonO13TuLVnPKP1+rmL79zEM46aDWSZcdOWke60rL4srWlZYxctK8GqvFqKqmjfqksLDQEh849sEHH7D//vtnKCKXjH8mzm1u0ybj1Dtf551FqwHYo3ljXrniGBo1rLyRqv2gp0n27S9g4Yh+1d63pFlmVphsntdgnHMui706fyVn3Tu9YvrB87px9L5Jn2Acp3WLPBavXpe0vKakrA9G0n2Slkt6L6ZspKQPJb0r6QlJLWLmDZa0QNI8SUUx5V0lzQnz/q7QYyypsaQxoXy6pHYx65wraX54nZuqY3TOuUwpLdvEkSOmVCSXAwt24uOb+lYruQAMLOpIXm5OXFlebg4DizrWWIyp7OR/AOiTUPYc0MXMDgQ+AgYDSOoEDAA6h3XukFR+5HcCFwAdwqt8m+cDX5rZPsBfgZvDtnYBrgUOB7oB10raeVsPwpsQaw//LJyLPP3uUjoMmVhRAxn32yN48uIe5DSo/oCw/Q/JZ/hpB5DfIg8B+S3yGH7aATV6FVnKmsjMbGpsrSKUTY6ZfAM4Pbw/BRhtZt8BCyUtALpJKgaam9k0AEkPAf2BiWGdoWH9scA/Qu2mCHjOzFaFdZ4jSkqPbe0xNGnShC+++MKH7K8Fyp8H06RJk0yH4lzGfLthIwddN5nSsujHVu/9dueecwu3+fup/yH5NZpQEmWyD+Y8YEx4n0+UcMqVhLLS8D6xvHydRQBmtlHSGmDX2PIk62yVgoICSkpKWLFixbas7mpY+RMtnauPHp3+KUOeqOhxYPLve7LvHs0yGNGWZSTBSBoCbAQeLS9KsphVUb6t6yTGcQFR8xtt27bdbH5ubq4/PdE5l1HLvlrP4Te9UDH9k8I23Hz6gRmMqPrSnmBCp/uJQG/7vlG9BGgTs1gBsCSUFyQpj12nRFJDYCdgVSjvlbDOS8liMbNRwCiILlPe1mNyzrlUOOe+GUz96PsWlFev/BEFO++QwYi2Tlrv5JfUB7gSONnMvo2Z9SQwIFwZ1p6oM3+GmS0FvpbUPfSvnANMiFmn/Aqx04EpIWFNAo6XtHPo3D8+lDnnXFaY/skXtBv0dEVyObhNC4pH9Muq5AIprMFIeoyoJrGbpBKiK7sGA42B50Kn1Btm9hszmyvpceB9oqazi8ys/BbTC4muSMsj6tyfGMrvBR4OFwSsIroKDTNbJWkY8GZY7vryDn/nnKvt2g16Om766hP35/wee2Uomu3jd/IHye7kd865dBk/ezGXjXl7s/K83Jwav3y4Jvmd/M45V0uZGe0HP1Pp/JoeHyydPME451yG/PPFBYycNG+Lyy1JMqRLNvDh+p1zLs3KNhntBj0dl1xmX30c+ZWMA1aT44OlkycY55xLo4H/eYe9r/q+SeyIvXeleEQ/dm7aKC3jg6WTN5E551warNtQxv7XPBtX9uGwPjSJSSjl/SypfMpkOnmCcc65FDvtjtd467PVFdM/O7wtN556QNJlUz0+WDp5gnHOuRRZ+c13FN7wfFzZJzf1pcFWjHqczTzBOOdcCnS5dhLffLexYvqqvvtxQc+9MxhR+nmCcc65GrRw5Vp+dMtLcWXFW/EI4kTjZy/O2j4ZTzDOOVdDEod5+cdPD+HEA1tv8/bGz17M4HFzWFcajZy1ePU6Bo+bA5AVScYvU3bOue0069NVmyWX4hH9tiu5QHQ1WXlyKVd+Z3828BqMc85th8TE8vivf0i39rvUyLYru4M/W+7s9wTjnHPbYOKcpVz46FtxZdvT15JM6xZ5LE6STLLlzn5PMM45t5USay0v/OFo9m65Y43vZ2BRx7g+GMiuO/s9wTjnXDXd++pChj31fsV044YNmHfDCSnbX7bf2e8JxjnntmDTJmOvq+KH1H9zyLG0bNY45fvO5jv7PcE451wVrp3wHg9O+7Ri+qCCnZhwcY8MRpQ9PME451wS320so+Of4genfP/6InZo5F+b1eVnyjnnEpx973Remb+yYvq0Q/K59ScHZzCi7OQJxjnngtXfbuDg65+LK1tw4wk0zPF70reFJxjnnAO63/QCn3+1vmL698fuy++O7ZDBiLKfJxjnXL22aNW3HPXnF+PKFg7vi1Q/htRPJU8wzrl6K/GGyVvOOIjTuxZkKJq6xxOMc67emVOyhpP+8WpcWU0P8+I8wTjn6pnEWssj5x9Ojw67ZSiaus0TjHOuXpjy4TLOe2BmXJnXWlLLE4xzrs5LrLVM/N1R7N+qeYaiqT88wTjn6qxHp3/KkCfeiyvzWkv6eIJxztU5Zkb7wfGDU74xuDc/2KlJhiKqnzzBOOfqlBETP+Sulz+umN6rZVOm/KFX5gKqxzzBOOfqhNKyTXQYMjGubM7Q42nWJDdDETlPMM65rPebh2fx7NzPK6aLOu/B3WcXZjAiB55gnHNZ7NE3PmXI+PhO/Pk3nkCuD05ZK3iCcc5lpcRLjyF6Xv3T7y7N2idA1jWe5p1zWeWTFd8kTS4A60rLGDlpXpojcpVJWYKRdJ+k5ZLeiynbRdJzkuaHf3eOmTdY0gJJ8yQVxZR3lTQnzPu7whCnkhpLGhPKp0tqF7POuWEf8yWdm6pjdM6lV7tBT3PMX16ucpklq9elKRq3JamswTwA9EkoGwS8YGYdgBfCNJI6AQOAzmGdOyTlhHXuBC4AOoRX+TbPB740s32AvwI3h23tAlwLHA50A66NTWTOuewz/ZMvNqu15LfIS7ps60rKXfqlLMGY2VRgVULxKcCD4f2DQP+Y8tFm9p2ZLQQWAN0ktQKam9k0MzPgoYR1yrc1FugdajdFwHNmtsrMvgSeY/NE55zLEu0GPc1PRr1RMT2sfxeKR/RjYFFH8nJz4pbNy81hYFHHdIfoKpHuTv49zGwpgJktlbR7KM8H3ohZriSUlYb3ieXl6ywK29ooaQ2wa2x5knXiSLqAqHZE27Ztt/2onHM1btxbJVz++DtxZbHDvJR35I+cNI8lq9fRukUeA4s6egd/LVJbriJL9ug4q6J8W9eJLzQbBYwCKCwsTLqMcy79EpvDHvjFYfTquPtmy/U/JN8TSi2W7gSzTFKrUHtpBSwP5SVAm5jlCoAlobwgSXnsOiWSGgI7ETXJlQC9EtZ5qWYPwzmXCn+ZPI/bpyyIK/PBKbNXui9TfhIov6rrXGBCTPmAcGVYe6LO/BmhOe1rSd1D/8o5CeuUb+t0YErop5kEHC9p59C5f3woc87VUmZGu0FPxyWXZy87ypNLlktZDUbSY0Q1id0klRBd2TUCeFzS+cBnwBkAZjZX0uPA+8BG4CIzKwubupDoirQ8YGJ4AdwLPCxpAVHNZUDY1ipJw4A3w3LXm1nixQbOuVrigodmMvn9ZXFlnljqBkU/+l1hYaHNnDlzyws652pEssEpZ1zVm92b+5D62UTSLDNLOvBbbenkd87VI0eOmMLihBsivdZS93iCcc6lzVfrSzlw6OS4sg+u70Neo5xK1nDZzBOMcy4tEi897ty6OU9felSGonHp4AnGOZdSJV9+S4+bX4wr++SmvjRokOyWNVeXeIJxzqVMYq3l9K4F3HLGQRmKxqWbJxjnXI17e9Fq+v/ztbgy78SvfzzBOOdqVGKt5aq++3FBz70zFI3LJE8wzrkaMXHOUi589K24Mq+11G+eYJxz2y2x1nLXWV3p0+UHGYrG1RaeYJxz2+zOlz7m5mc/jCvzWosr5wnGObdNEmstEy46koPatMhQNK428gTjnNsqlz/+NuPeWhxX5rUWl0yVCUZSAzPbFDP9M6AZ8JCZfZvq4JxztUfZJmPvq56JK3tt0DHkt8jLUESutttSDeZpSZeb2QeShgA9gU+A0cDJKY/OOVcr9LltKh9+/nVcmdda3JZUmmAkHU304K+WknYHzgauAr4A/iWpJ1BsZp+lJVLnXNp9u2Ejna6Jf17fnKHH06xJboYictlkSzWYBkBzoClQBqwkeub9+jDfBxNyro5K7MRvu8sOTL3iRxmKxmWjShOMmb0s6RHgZmBHYKiZTZW0K7DCzKamK0jnXPos+2o9h9/0QlzZghtPoGFOup+w7rJdlTUYM7tG0r+BjWZW/rDsBsAFKY/MOZd2ibWWvgf8gDt+1jVD0bhst8XLlM3sw4TpFcCKlEXknEu795d8Rd+/vxJXtnB4XyRvBXfbzu+Dca6eS6y1XNq7A5cft2+GonF1iScY5+qpFz9czi8eeDOuzC89djXJE4xz9VBireW2nxxM/0PyMxSNq6u2mGAkHQkMBfYMywswM9srtaE552rag68Xc+2Tc+PKvNbiUqU6NZh7gd8Ds4juhXHOZaHEWsvjv/4h3drvkqFoXH1QnQSzxswmpjwS51xKXDPhPR6a9mlcmddaXDpUJ8G8KGkkMA74rrzQzN6qfBXnXKaZGe0Hxw9O+dIfe9Fut6YZisjVN9VJMIeHfwtjygw4pubDcc7VhB/fNY0ZxaviyrzW4tKtOjda+uBDzmWJ9aVl7Hf1s3Flb19zHC12aJShiFx9VtVoymeZ2SOSLk8238xuTV1Yzrmttd/VE1lfWvH4JnbKy+Wda4/PYESuvquqBlPeUNssHYE457bNF998R9cbno8r++iGE2jU0AendJlV1WjKd4d/r0tfOM65rZF46fFRHXbj4fMPr2Rp59LL7+R3LgstXbOOHw6fElfmg1O62sYTjHNZJrHWsmPjhtzQv4snF1frbLGRVlJOOgJxzlXtg6VfbZZcAL75biODx81h/OzFGYjKucpVpwazQNJY4H4zez/VATnnNpcsscRaV1rGyEnzfMBKV6tU5zKTA4GPgHskvSHpAknNt2enkn4vaa6k9yQ9JqmJpF0kPSdpfvh355jlB0taIGmepKKY8q6S5oR5f1doI5DUWNKYUD5dUrvtide5THll/orNkktlDWFLVq9LfUDObYUtJhgz+9rM/mVmRwBXANcCSyU9KGmfrd2hpHzgUqDQzLoAOcAAYBDwgpl1AF4I00jqFOZ3BvoAd8Q0291J9PjmDuHVJ5SfD3xpZvsAfwVu3to4ncu0doOe5ux7Z1RMP3VJD4pH9KN1i7yky1dW7lymVKsPRtLJkp4A/gb8BdgL+B/wTJUrV64hkCepIbADsAQ4BXgwzH8Q6B/enwKMNrPvzGwhsADoJqkV0NzMppmZAQ8lrFO+rbFA7/LajXO13X9mLtqs1lI8oh9d8ncCYGBRR/Jy47tG83JzGFjUMW0xOlcd1emDmQ+8CIw0s9djysdK6rm1OzSzxZJuAT4D1gGTzWyypD3MbGlYZqmk3cMq+cAbMZsoCWWl4X1iefk6i8K2NkpaA+wKrIyNRdIFRDUg2rZtu7WH4lyNSjY45atX/oiCnXeIKyvvZxk5aR5LVq+jdYs8BhZ19P4XV+tUmWBCU9QDZnZ9svlmdunW7jD0rZwCtAdWA/+RdFZVqyTbdRXlVa0TX2A2ChgFUFhYuNl859Llr899xN9emF8xnd8ij9cGVT6ebP9D8j2huFqvygRjZmWSfgQkTTDb6FhgoZmtAJA0DjgCWCapVai9tAKWh+VLgDYx6xcQNamVhPeJ5bHrlIRmuJ2A+KFlnasFNpZtYp8h8Y9beuea49lph9wMReRczanOVWSvS/qHpKMkHVr+2o59fgZ0l7RD6BfpDXwAPAmcG5Y5F5gQ3j8JDAhXhrUn6syfEZrTvpbUPWznnIR1yrd1OjAl9NM4V2v8fszbccmlV8eWFI/o58nF1RnV6YM5IvwbW4vZ5ufBmNn0cF/NW8BGYDZRM9WOwOOSzidKQmeE5edKehx4Pyx/kZmVP7r5QuABIA+YGF4QPeb5YUkLiGouA7YlVudS4dsNG+l0zaS4snk39KFxQ7+n2dUt8h/2kcLCQps5c2amw3B13Em3v8qcxWsqpn9+RDuGntw5gxE5t30kzTKzwmTzqjUWmaR+RPehNCkvq6zj3zm3ueVfr6fbjS/ElX1yU18aNPCr513dtcUEI+kuomN70ycAABT9SURBVHtVfgTcQ9SnMaPKlZxzFfYdMpENZd8/COzakzrxiyPbZzAi59KjWn0wZnagpHfN7DpJfwHGpTow57LdguXfcOytL8eVFY/ol6FonEu/6iSY8gGOvpXUGviC6B4W51wlEu/Ev+usrvTp8oMMReNcZlQnwTwlqQUwkujKLyNqKnPOJZixcBU/vntaXJnXWlx9tcUEY2bDwtv/SnoKaGJma6pax7n6KLHW8t8Lj6DrnjtXsrRzdV+lCUbSaVXMw8y8H8Y54H/vLOGSx2bHlXmtxbmqazAnVTHP8I5+5zartbz0x160261phqJxrnapNMGY2S/SGYhz2eTulz9m+MQPK6abN2nIu0OLqljDufrHb7R0bits2mTsdVX8kPqz/nQsu+7YOEMROVd7+Y2WzlXT4HFzeGzGZxXTh7Xbmf/85ogq1nCufvMbLZ3bgvWlZex39bNxZR8O60OTXB+c0rmq+I2WzlXhJ3dPY/rC7x8l9JPCNtx8+oEZjMi57LGtN1r+K6VROZdhq9Zu4NBhz8WVfXxTX3J8cErnqs1vtHQuwaHDnmPV2g0V01f06chve+2TwYicy05V3Wh5GLDIzD4P0+cA/wd8KmmomfkjiF2d8ukXazl65EtxZX7DpHPbrqoazN3AsQCSegIjgEuAg4meQHl6yqNzLk0Sb5j824CDOeXg/AxF41zdUFWCyYmppfwEGGVm/yVqKns79aE5l3qvL1jJT++ZHle2pVrL+NmLGTlpHktWr6N1izwGFnWk/yGejJxLVGWCkdTQzDYCvYELqrmec1khsdZy388LOWa/PapcZ/zsxQweN4d1pWUALF69jsHj5gB4knEuQVWJ4jHgZUkriS5VfgVA0j6Ad/K7rDV2Vgl//M87cWXV7WsZOWleRXIpt660jJGT5nmCcS5BVWOR3SjpBaAVMNnMLMxqQNQX41zWSay1PHVJD7rk71Tt9ZesXrdV5c7VZ1U2dZnZG0nKPkpdOM6lxq2T5/H3KQviyrblCrHWLfJYnCSZtG6Rt82xOVdXeV+Kq9OSDU752qBjyN/GhDCwqGNcHwxAXm4OA4s6blecztVFnmBcnXXRo2/x9JylFdONchrw0Y0nbNc2y/tZ/Coy57bME4yrc5INTvnu0ONp3iS3Rrbf/5B8TyjOVYMnGFen9P7LS3y8Ym3F9MFtWjD+oiMzGJFz9ZcnGFcnfLl2A4ckDE45/8YTyM1pkKGInHOeYFzWS7z0+MeFBfz59IMyFI1zrpwnGJe1kg1OuXB4XyQfUt+52sATjMtKibWWQSfsx2+O3jtD0TjnkvEE47LKrE9X8X93Tosr8yH1naudPMG4rJFYa/nnTw+l34GtMhSNc25LPMG4Wu+pd5dw8b9nx5XVVK3Fh953LnU8wbhaLbHW8t8Lf0jXPXepkW370PvOpVZGbhKQ1ELSWEkfSvpA0g8l7SLpOUnzw787xyw/WNICSfMkFcWUd5U0J8z7u8LlQ5IaSxoTyqdLapf+o3Tb486XPt4suRSP6FdjyQWqHnrfObf9MlWD+RvwrJmdLqkRsANwFfCCmY2QNAgYBFwpqRMwAOgMtAael7SvmZUBdxI9CO0N4BmgDzAROB/40sz2kTQAuJnoqZyuljMz2g+OH5zypT/2ot1uTWt8Xz70vnOplfYajKTmQE/gXgAz22Bmq4FTgAfDYg8C/cP7U4DRZvadmS0EFgDdJLUCmpvZtPCsmocS1inf1ligd3ntxtVeV4x9Z7PkUjyiX0qSC1Q+xL4Pve9czchEDWYvYAVwv6SDgFnA74A9zGwpgJktlbR7WD6fqIZSriSUlYb3ieXl6ywK29ooaQ2wK7AyNhBJFxAeBd22bduaOj63lUrLNtFhyMS4stlXH8fOTRuldL8+9L5zqZWJBNMQOBS4xMymS/obUXNYZZLVPKyK8qrWiS8wGwWMAigsLNxsvku9/v98jbcXra6Y3qtlU6b8oVd69u1D7zuXUplIMCVAiZlND9NjiRLMMkmtQu2lFbA8Zvk2MesXAEtCeUGS8th1SiQ1BHYCVqXiYNy2+Wp9KQcOnRxX9uGwPjTJzUlrHD70vnOpk/Y+GDP7HFgkqbwdojfwPvAkcG4oOxeYEN4/CQwIV4a1BzoAM0Jz2teSuof+lXMS1inf1unAlNBP42qBDkOeiUsu/Q5oRfGIfmlPLs651MrUVWSXAI+GK8g+AX5BlOwel3Q+8BlwBoCZzZX0OFES2ghcFK4gA7gQeADII7p6rLwh/17gYUkLiGouA9JxUK5qi1ev48gRU+LKanJwSr9p0rnaRf7DPlJYWGgzZ87MdBh1VuI9LZf27sDlx+1bY9tPvGkSog774acd4EnGuRSSNMvMCpPN8zv5XUq9t3gNJ97+alxZKganrOqmSU8wzmWGJxiXMom1llvOOIjTuxZUsvS2KW8WW+w3TTpX63iCcTXu+feX8cuH4psbU1FrSdYslshvmnQuczzBuBqVWGv59y8P54h9dkvJvpI1i8XymyadyyxPMK5GPPh6Mdc+OTeuLNUPAquq+SvfryJzLuM8wbjtllhree73PemwR7OU77d1i7ykfS/5LfJ4bdAxKd+/c65qGRmu39UNQ5+cm3RI/XQkF4jGEstLuDnTm8Wcqz28BuO2WtkmY++r4kc9fnPIsbRs1jitcfhYYs7Vbp5g3FY5657pvLrg+0GpWzZrzJtDjs1YPD6WmHO1lycYVy3fbthIp2smxZV9cH0f8hr5+GHOueQ8wbgt6jrsOb5Yu6Fi+uh9W/Lged0yGJFzLht4gnGVWv7Verrd9EJc2cc39SWngT8c1Dm3ZZ5gXFKJV4ed36M9V5/YKUPROOeykScYF2fe519TdNvUuLJU3zDpnKubPMG4Com1lmH9u3B29z0zFI1zLtt5gnG8On8lZ907Pa7May3Oue3lCaaeS6y13P+Lw/hRx90zFI1zri7xBFNPPT5zEVeMfTeuzGstzrma5AmmHkqstTx1SQ+65O+UoWicc3WVJ5h6ZOSkD/nnix/HlXmtxTmXKp5g6oFNm4y9EganfH3QMf60R+dcSnmCqeN+/fBMJs1dVjGdl5vDB8P6ZDAi51x94QmmjlpfWsZ+Vz8bVzZn6PE0a5KboYicc/WNJ5g6qNfIFyn+4tuK6a577sx/LzwigxE55+ojTzB1yKq1Gzh02HNxZQtuPIGGOf7gUudc+nmCqSMSLz0+s1sbhp92YIaicc45TzBZb+HKtfzolpfiy4b3RfIh9Z1zmeUJJkuNn72Yy8a8HVc2pO/+/KrnXhmKyDnn4nmCyUJ3v/wxwyd+GFeWl5tDy2aNMxSRc85tzhNMlknsaym3rrSMkZPm0f+Q/DRH5JxzyfnlRVliZvGqSpNLuSWr16UpGuec2zKvwWSBxMSye7PGLP/6u82W86FfnHO1iddgarFn3/s8Lrnsu8eOFI/ox1V99ycvNydu2bzcHAYWdUx3iM45VymvwdRCZkb7wfGDU7455NiKTvzyfpaRk+axZPU6WrfIY2BRR+9/cc7VKp5gapmHphVzzYS5FdPHd9qDUecUbrZc/0PyPaE452q1jCUYSTnATGCxmZ0oaRdgDNAOKAZ+bGZfhmUHA+cDZcClZjYplHcFHgDygGeA35mZSWoMPAR0Bb4AfmJmxWk7uG2wsWwT+wyZGFc297oimjb23wDOueyUyT6Y3wEfxEwPAl4wsw7AC2EaSZ2AAUBnoA9wR0hOAHcCFwAdwqt8HPrzgS/NbB/gr8DNqTqI8bMXc+SIKbQf9DRHjpjC+NmLt3obwyd+EJdcftmjPcUj+nlycc5ltYx8g0kqAPoBNwKXh+JTgF7h/YPAS8CVoXy0mX0HLJS0AOgmqRhobmbTwjYfAvoDE8M6Q8O2xgL/kCQzs5o8jvGzFzN43BzWlZYBsHj1OgaPmwNQrearbzdspNM1k+LK5t94Ark+OKVzrg7I1DfZbcAVwKaYsj3MbClA+Hf3UJ4PLIpZriSU5Yf3ieVx65jZRmANsGtiEJIukDRT0swVK1Zs9UGMnDSvIrmUK7/hcUv+MnleXHK55sROFI/o58nFOVdnpL0GI+lEYLmZzZLUqzqrJCmzKsqrWie+wGwUMAqgsLBwq2s3ld3YWNUNj99u2MhB102mtOz73fnglM65uigTP5ePBE4OTVyjgWMkPQIsk9QKIPy7PCxfArSJWb8AWBLKC5KUx60jqSGwE7Cqpg+kshsbKyt/dPqndLpmUlxyyW+Rx4S3lyRd3jnnslnaE4yZDTazAjNrR9R5P8XMzgKeBM4Ni50LTAjvnwQGSGosqT1RZ/6M0Iz2taTuin7+n5OwTvm2Tg/7qNH+F4CBRR2rdcPj6m830G7Q0wx54j0AcmJqK+X9NttycYBzztVmtanBfwRwnKT5wHFhGjObCzwOvA88C1xkZuUdHxcC9wALgI+JOvgB7gV2DRcEXE64Iq2m9T8kn+GnHUB+izxEVBsZftoBcR38/5gyn4Ov//4pk3s0a0xZQq6rbr+Nc85lE6Xgh31WKiwstJkzZ9bY9j5fs57uw1+omP5tr725os9+tB/09OadQUSdRgtH9Kux/TvnXDpImmVmm98Njt/JnxJDn5zLA68XV0zP/NOx7LZjNMxL6xZ5LE5yEYAPVOmcq2tqUxNZ1lu4ci3tBj1dkVz+1G9/ikf0q0guUP1+G+ecy3Zeg6kBZsYlj83mqXeXVpTNGXo8zZrkbrasD1TpnKsvPMHUgHPum8Er81cC8JczDuL/uhZUubwPVOmcqw88wdSAAYe1ZZMZ9557GE0Smr+cc66+8gRTA/od2Ip+B7bKdBjOOVereCe/c865lPAE45xzLiU8wTjnnEsJTzDOOedSwhOMc865lPAE45xzLiU8wTjnnEsJTzDOOedSwofrDyStAD7NdBzbYDdgZaaDqAX8PET8PET8PETScR72NLOWyWZ4gslykmZW9iyG+sTPQ8TPQ8TPQyTT58GbyJxzzqWEJxjnnHMp4Qkm+43KdAC1hJ+HiJ+HiJ+HSEbPg/fBOOecSwmvwTjnnEsJTzDOOedSwhNMFpLURtKLkj6QNFfS7zIdUyZJypE0W9JTmY4lUyS1kDRW0ofh7+KHmY4pEyT9PvyfeE/SY5KaZDqmdJF0n6Tlkt6LKdtF0nOS5od/d05nTJ5gstNG4A9mtj/QHbhIUqcMx5RJvwM+yHQQGfY34Fkz2w84iHp4PiTlA5cChWbWBcgBBmQ2qrR6AOiTUDYIeMHMOgAvhOm08QSThcxsqZm9Fd5/TfRlkp/ZqDJDUgHQD7gn07FkiqTmQE/gXgAz22BmqzMbVcY0BPIkNQR2AJZkOJ60MbOpwKqE4lOAB8P7B4H+6YzJE0yWk9QOOASYntlIMuY24ApgU6YDyaC9gBXA/aGp8B5JTTMdVLqZ2WLgFuAzYCmwxswmZzaqjNvDzJZC9MMU2D2dO/cEk8Uk7Qj8F7jMzL7KdDzpJulEYLmZzcp0LBnWEDgUuNPMDgHWkuamkNog9C+cArQHWgNNJZ2V2ajqN08wWUpSLlFyedTMxmU6ngw5EjhZUjEwGjhG0iOZDSkjSoASMyuvxY4lSjj1zbHAQjNbYWalwDjgiAzHlGnLJLUCCP8uT+fOPcFkIUkiam//wMxuzXQ8mWJmg82swMzaEXXmTjGzeveL1cw+BxZJ6hiKegPvZzCkTPkM6C5ph/B/pDf18GKHBE8C54b35wIT0rnzhuncmasxRwJnA3MkvR3KrjKzZzIYk8usS4BHJTUCPgF+keF40s7MpksaC7xFdKXlbOrRkDGSHgN6AbtJKgGuBUYAj0s6nygBn5HWmHyoGOecc6ngTWTOOedSwhOMc865lPAE45xzLiU8wTjnnEsJTzDOOedSwhOMq9MUeVXSCTFlP5b0bIZjelzSu5IuTZh3g6TFkt6OeTVLcTyTUr0PVz/5ZcquzpPUBfgP0ZhtOcDbQB8z+3g7ttnQzDZu47oFwMtmtneSeTcAK83stm2NbSviENF3QH0ex82lkNdgXJ1nZu8B/wOuJLr57CEz+1jSuZJmhFrCHZIaAEgaJWlmeK7INeXbkVQi6WpJrwGnhmePvC/pnWRD1EjKk/SgpDmS3pLUM8yaDLQO+63WUCaSrpA0Krw/OGwzL9R4HgzPB5ov6byYdQaF43u3/Dgk7ROelXIX0Q2JrcJxtQjzNzsnkhpKWi1pRDjWaZJ2D8v/QNKEsI93JB1e2Xa26kNzdYOZ+ctfdf4FNAXmAXOAxkAXYDzQMMwfBfw0vN8l/NsQeAXoFKZLgMtjtrkUaBTet0iyzyuBf4X3nYFPgUbAPsDblcR5A7CYqJb1NvB8KG8AvEY0mONsoHvM8m8BTYhGyi0B9gD6AncACus+SzQu1z5EI08fFrPPEqBFZecknAcDTgjltwKDwvv/AhfHnK/mVZ1bf9Wvlw8V4+oFM1sraQzwjZl9J+lY4DBgZtRSRB6wKCx+ZhhaoyHRqLyd+H5srzExm50LPCJpAtEXaqIewMiw/7mSlhB9wW/YQrgjLaGJzMw2Sfo5UdL5h5m9ETN7vJmtB9ZLmhqO61jgBKJkBLAjsC/RYIcfm9mbSfZb1TlZZ2YTw/tZwFHhfS/CQ70sajL8agvn1tUjnmBcfbKJ758bI+A+M7s6dgFJHYiekNnNzFaHpq/Yx+6ujXlfBBxNVKv4k6QuZlYWu7kajr8D8A1R0ouV2JFqYd83mNm9sTMk7UP8McTNJvk5aUh8Uiwj/rsjcf9Jt+PqH28XdfXV88CPJe0GIGlXSW2Jmni+Jvol3oooiWxGUg5QYGZTgIFAS6InKMaaCvwsLL8/0ApYsC3Bhj6SvxINdJovKfbJhP0lNQ7HchQwE5gEnK/w4DFJBeXHWoXKzklVXgR+E5bPUfR0zW3ZjquDvAbj6iUzmyPpOuD50AFdSvRFOZOoOew9olGJX6tkEw2Bf4fLexsAN1v0+OpYtwN3S5oTtn+OmW0IzUZVGRiaw8qdBNwI/M3MFkj6RYj71TD/TWAi0Aa41syWAc9I2g94I+zva6L+lEpVcU6qeuzwxcC/JP2aaATjX5vZjEq289mWDtzVLX6ZsnNZLJ2XNTu3tbyJzDnnXEp4DcY551xKeA3GOedcSniCcc45lxKeYJxzzqWEJxjnnHMp4QnGOedcSvw/KM+fji8RHCgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -431,12 +429,11 @@ ], "source": [ "# Plot the linear model.\n", - "\n", - "plt.scatter(X_test, y_test)\n", + "plt.scatter(splitData[\"test\"], splitData[\"test_labels\"])\n", "plt.xlabel(\"Years of Experience\")\n", "plt.ylabel(\"Salary in $\")\n", "plt.title(\"Experience vs Salary (Predictions)\")\n", - "plt.plot(X_test, y_preds)\n", + "plt.plot(splitData[\"test\"], yPreds)\n", "plt.legend([\"Linear Model\"])\n", "plt.show()" ] @@ -448,6 +445,8 @@ "source": [ "## Evaluation Metrics for Regression model\n", "\n", + "In the Previous cell we have visualized our model performance by plotting the best fit line. Now we will use various evaluation metrics to understand how well our model has performed.\n", + "\n", "* Mean Absolute Error (MAE) is the sum of absolute differences between actual and predicted values, without considering the direction.\n", "$$ MAE = \\frac{\\sum_{i=1}^n\\lvert y_{i} - \\hat{y_{i}}\\rvert} {n} $$\n", "* Mean Squared Error (MSE) is calculated as the mean or average of the squared differences between predicted and expected target values in a dataset, a lower value is better\n", @@ -458,7 +457,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 23, "id": "c26ee546", "metadata": {}, "outputs": [], @@ -483,17 +482,25 @@ "output_type": "stream", "text": [ "---- Evaluation Metrics ----\n", - "Mean Absoulte Error: 5341.51\n", - "Mean Squared Error: 38284079.88\n", - "Root Mean Squared Error: 6187.41\n" + "Mean Absoulte Error: 4136.06\n", + "Mean Squared Error: 24922668.74\n", + "Root Mean Squared Error: 4992.26\n" ] } ], "source": [ "print(\"---- Evaluation Metrics ----\")\n", - "print(f\"Mean Absoulte Error: {mae(y_test, y_preds):.2f}\")\n", - "print(f\"Mean Squared Error: {mse(y_test, y_preds):.2f}\")\n", - "print(f\"Root Mean Squared Error: {np.sqrt(mse(y_test, y_preds)):.2f}\")" + "print(f\"Mean Absoulte Error: {mae(splitData['test_labels'], yPreds):.2f}\")\n", + "print(f\"Mean Squared Error: {mse(splitData['test_labels'], yPreds):.2f}\")\n", + "print(f\"Root Mean Squared Error: {np.sqrt(mse(splitData['test_labels'], yPreds)):.2f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "9f0899be-5069-432a-a3d3-b5c7f33c8417", + "metadata": {}, + "source": [ + "From the above metrics we can notice that our model MAE is ~4K, which is relatively small compared to our average salary of $76003, from this we can conclude our model is resonably good fit." ] } ], @@ -513,7 +520,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.10" + "version": "3.7.8" } }, "nbformat": 4, From 470f6e1b4373fa39f9032b413dc370c3674fa9ec Mon Sep 17 00:00:00 2001 From: David Port Louis Date: Mon, 7 Jun 2021 07:16:56 +0530 Subject: [PATCH 14/69] fixed minor grammer mistakes in markdown Co-authored-by: Marcus Edel --- .../salary-prediction-linear-regression-py.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb index e1652efa..2740c079 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb @@ -500,7 +500,7 @@ "id": "9f0899be-5069-432a-a3d3-b5c7f33c8417", "metadata": {}, "source": [ - "From the above metrics we can notice that our model MAE is ~4K, which is relatively small compared to our average salary of $76003, from this we can conclude our model is resonably good fit." + "From the above metrics, we can notice that our model MAE is ~4K, which is relatively small compared to our average salary of $76003, from this we can conclude our model is a reasonably good fit." ] } ], From 162523532625ff1356fab99277907940d96f750a Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 7 Jun 2021 22:27:45 +0530 Subject: [PATCH 15/69] included function to download dataset --- tools/download_data_set.py | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/tools/download_data_set.py b/tools/download_data_set.py index 51a22ec7..260a369c 100755 --- a/tools/download_data_set.py +++ b/tools/download_data_set.py @@ -133,6 +133,11 @@ def iris_dataset(): tar.extractall() tar.close() clean() + +def salary_dataset(): + print("Downloading salary dataset...") + salary = requests.get("http://mlpack.org/datasets/Salary_Data.csv") + progress_bar("Salary_Data.csv", salary) def all_datasets(): mnist_dataset() @@ -140,6 +145,7 @@ def all_datasets(): stock_exchange_dataset() iris_dataset() body_fat_dataset() + salary_dataset() if __name__ == '__main__': @@ -161,6 +167,7 @@ def all_datasets(): stock : will download stock_exchange dataset iris : will downlaod the iris dataset bodyFat : will download the bodyFat dataset + salary: will download the salary dataset all : will download all datasets for all examples ''')) @@ -187,6 +194,9 @@ def all_datasets(): elif args.dataset_name == "bodyFat": create_dataset_dir() body_fat_dataset() + elif args.dataset_name == "salary": + create_dataset_dir() + salary_dataset() elif args.dataset_name == "all": create_dataset_dir() all_datasets() From cecf53af158d58574d0dd01f0887fcb5e87b12aa Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Tue, 8 Jun 2021 08:10:09 +0530 Subject: [PATCH 16/69] added url to fetch dataset --- ...ary-prediction-linear-regression-cpp.ipynb | 52 +++++++++++-------- ...lary-prediction-linear-regression-py.ipynb | 2 +- 2 files changed, 32 insertions(+), 22 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb index d7ebb112..2cf55ab8 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb @@ -20,7 +20,17 @@ }, { "cell_type": "code", - "execution_count": 86, + "execution_count": 1, + "id": "189dc5ff-22c4-4502-89a8-75e5ce51f3e1", + "metadata": {}, + "outputs": [], + "source": [ + "!wget -q https://mlpack.org/datasets/Salary_Data.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 2, "id": "behavioral-cycling", "metadata": {}, "outputs": [], @@ -36,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 87, + "execution_count": 3, "id": "db43325d", "metadata": {}, "outputs": [], @@ -50,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 88, + "execution_count": 4, "id": "9065ebb1", "metadata": {}, "outputs": [], @@ -61,7 +71,7 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": 5, "id": "victorian-donna", "metadata": {}, "outputs": [], @@ -74,7 +84,7 @@ }, { "cell_type": "code", - "execution_count": 90, + "execution_count": 6, "id": "deluxe-present", "metadata": {}, "outputs": [], @@ -86,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": 7, "id": "desirable-experience", "metadata": {}, "outputs": [ @@ -114,22 +124,22 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": 8, "id": "associate-fifteen", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "863dbaf827314170867bda7c7092f00b", + "model_id": "912d932e54c14571a0ac726764dac35f", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 863dbaf827314170867bda7c7092f00b" + "A Jupyter widget with unique id: 912d932e54c14571a0ac726764dac35f" ] }, - "execution_count": 92, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -154,7 +164,7 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 9, "id": "coordinate-canvas", "metadata": {}, "outputs": [], @@ -167,7 +177,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 10, "id": "blank-mexican", "metadata": {}, "outputs": [], @@ -191,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 11, "id": "mechanical-laundry", "metadata": {}, "outputs": [], @@ -207,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 12, "id": "friendly-petersburg", "metadata": {}, "outputs": [], @@ -235,7 +245,7 @@ }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 13, "id": "published-illustration", "metadata": {}, "outputs": [], @@ -247,7 +257,7 @@ }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 14, "id": "detailed-mystery", "metadata": {}, "outputs": [], @@ -260,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 15, "id": "indian-ambassador", "metadata": {}, "outputs": [], @@ -274,22 +284,22 @@ }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 16, "id": "related-approach", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c801c911f58343879350d4e837eb8e1b", + "model_id": "88f7de7663bd431382ce760f7f8a08a0", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: c801c911f58343879350d4e837eb8e1b" + "A Jupyter widget with unique id: 88f7de7663bd431382ce760f7f8a08a0" ] }, - "execution_count": 100, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb index 2740c079..20a66613 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb @@ -54,7 +54,7 @@ "outputs": [], "source": [ "# Load the salary dataset.\n", - "data = pd.read_csv(\"Salary_Data.csv\")" + "data = pd.read_csv(\"https://mlpack.org/datasets/Salary_Data.csv\")" ] }, { From 41a1dab4e19f28a0c002446df18b837944e0be88 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Wed, 9 Jun 2021 07:41:33 +0530 Subject: [PATCH 17/69] fixed minor style issues --- .../salary-prediction-linear-regression-cpp.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb index 2cf55ab8..fd8f62f4 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb @@ -118,8 +118,8 @@ "source": [ "// Display the first 5 rows of the input data.\n", "\n", - "std::cout< Date: Fri, 11 Jun 2021 07:43:50 +0530 Subject: [PATCH 18/69] modified download_data_set.py --- tools/download_data_set.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/tools/download_data_set.py b/tools/download_data_set.py index 260a369c..01fcb57b 100755 --- a/tools/download_data_set.py +++ b/tools/download_data_set.py @@ -144,8 +144,9 @@ def all_datasets(): electricity_consumption_dataset() stock_exchange_dataset() iris_dataset() - body_fat_dataset() salary_dataset() + body_fat_dataset() + if __name__ == '__main__': From 7e3b620796201a67bb2a8f3cf960524ab6d1fd35 Mon Sep 17 00:00:00 2001 From: Anwaar Date: Fri, 11 Jun 2021 20:45:57 +0530 Subject: [PATCH 19/69] Failed segfault --- mnist_vae_cnn/mnist_vae_cnn.cpp | 25 +++++++++++++++---------- 1 file changed, 15 insertions(+), 10 deletions(-) diff --git a/mnist_vae_cnn/mnist_vae_cnn.cpp b/mnist_vae_cnn/mnist_vae_cnn.cpp index e6247f23..2286e0e6 100644 --- a/mnist_vae_cnn/mnist_vae_cnn.cpp +++ b/mnist_vae_cnn/mnist_vae_cnn.cpp @@ -60,9 +60,18 @@ int main() // Entire dataset(without labels) is loaded from a CSV file. // Each column represents a data point. arma::mat fullData; - data::Load("../data/mnist_train.csv", fullData, true, false); + data::Load("../data/mnist_train.csv", fullData, true, true); + + // Originally on Kaggle dataset CSV file has header, so it's necessary to + // get rid of this row, in Armadillo representation it's the first column. + fullData = + fullData.submat(0, 1, fullData.n_rows -1, fullData.n_cols -1); fullData /= 255.0; + // Get rid of the labels + fullData = + fullData.submat(1, 0, fullData.n_rows - 1, fullData.n_cols -1); + if (isBinary) { fullData = arma::conv_to::from( @@ -76,10 +85,6 @@ int main() arma::mat train, validation; data::Split(fullData, validation, train, trainRatio); - // Loss is calculated on train_test data after each cycle. - arma::mat train_test, dump; - data::Split(train, dump, train_test, 0.045); - /** * Model architecture: * @@ -171,10 +176,13 @@ int main() 0, // Padding width. 0, // Padding height. 10, // Input width. - 10); // Input height. + 10, // Input height. + 14, // Output width. + 14); // Output height. decoder->Add>(); - decoder->Add>(16, 1, 15, 15, 1, 1, 1, 1, 14, 14); + decoder->Add> + (16, 1, 15, 15, 1, 1, 0, 0, 14, 14, 28, 28); vaeModel.Add(decoder); } @@ -193,9 +201,6 @@ int main() 1e-8, // Tolerance. true); - std::cout << "Initial loss -> " - << MeanTestLoss(vaeModel, train_test, 50) << std::endl; - // Train neural network. If this is the first iteration, weights are // random, using current values as starting point otherwise. vaeModel.Train(train, From 209f0ce3e44391324ed14cd0f0f0878d80801d2c Mon Sep 17 00:00:00 2001 From: Anwaar Date: Mon, 14 Jun 2021 18:53:47 +0530 Subject: [PATCH 20/69] samples generating code from models repo --- mnist_vae_cnn/generate_images.py | 77 ++++++++ mnist_vae_cnn/latent/allSamples.jpg | Bin 0 -> 2999 bytes mnist_vae_cnn/mnist_vae_cnn.cpp | 55 ++++-- .../samples_posterior/allSamples.jpg | Bin 0 -> 3519 bytes mnist_vae_cnn/samples_prior/2dLatent.jpg | Bin 0 -> 49806 bytes mnist_vae_cnn/samples_prior/allLatent.jpg | Bin 0 -> 31073 bytes mnist_vae_cnn/samples_prior/allSamples.jpg | Bin 0 -> 3069 bytes mnist_vae_cnn/vae_generate.cpp | 185 ++++++++++++++++++ mnist_vae_cnn/vae_utils.hpp | 4 +- 9 files changed, 305 insertions(+), 16 deletions(-) create mode 100644 mnist_vae_cnn/generate_images.py create mode 100644 mnist_vae_cnn/latent/allSamples.jpg create mode 100644 mnist_vae_cnn/samples_posterior/allSamples.jpg create mode 100644 mnist_vae_cnn/samples_prior/2dLatent.jpg create mode 100644 mnist_vae_cnn/samples_prior/allLatent.jpg create mode 100644 mnist_vae_cnn/samples_prior/allSamples.jpg create mode 100644 mnist_vae_cnn/vae_generate.cpp diff --git a/mnist_vae_cnn/generate_images.py b/mnist_vae_cnn/generate_images.py new file mode 100644 index 00000000..a36f69ca --- /dev/null +++ b/mnist_vae_cnn/generate_images.py @@ -0,0 +1,77 @@ +""" +@file generate_images.py +@author Atharva Khandait + +Generates jpg files from csv. + +mlpack is free software; you may redistribute it and/or modify it under the +terms of the 3-clause BSD license. You should have received a copy of the +3-clause BSD license along with mlpack. If not, see +http://www.opensource.org/licenses/BSD-3-Clause for more information. +""" + +from PIL import Image +import numpy as np + +def ImagesFromCSV(filename, + imgShape = (28, 28), + destination = 'samples', + saveIndividual = False): + + # Import the data into a numpy matrix. + samples = np.genfromtxt(filename, delimiter = ',', dtype = np.uint8) + + # Reshape and save it as an image in the destination. + tempImage = Image.fromarray(np.reshape(samples[:, 0], imgShape), 'L') + if saveIndividual: + tempImage.save(destination + '/sample0.jpg') + + # All the images will be concatenated to this for a combined image. + allSamples = tempImage + + for i in range(1, samples.shape[1]): + tempImage = np.reshape(samples[:, i], imgShape) + + allSamples = np.concatenate((allSamples, tempImage), axis = 1) + + tempImage = Image.fromarray(tempImage, 'L') + if saveIndividual: + tempImage.save(destination + '/sample' + str(i) + '.jpg') + + tempImage = allSamples + allSamples = Image.fromarray(allSamples, 'L') + allSamples.save(destination + '/allSamples' + '.jpg') + + print ('Samples saved in ' + destination + '/.') + + return tempImage + +# Save posterior samples. +ImagesFromCSV('./samples_csv_files/samples_posterior.csv', destination = + 'samples_posterior') + +# Save prior samples with individual latent varying. +latentSize = 10 +allLatent = ImagesFromCSV('./samples_csv_files/samples_prior_latent0.csv', + destination = 'samples_prior') + +for i in range(1, latentSize): + allLatent = np.concatenate((allLatent, + (ImagesFromCSV('./samples_csv_files/samples_prior_latent' + str(i) + '.csv', + destination = 'samples_prior'))), axis = 0) + +saved = Image.fromarray(allLatent, 'L') +saved.save('./samples_prior/allLatent.jpg') + +# Save prior samples with 2d latent varying. +nofSamples = 20 +allLatent = ImagesFromCSV('./samples_csv_files/samples_prior_latent_2d0.csv', + destination = 'latent') + +for i in range(1, nofSamples): + allLatent = np.concatenate((allLatent, + (ImagesFromCSV('./samples_csv_files/samples_prior_latent_2d' + str(i) + + '.csv', destination = 'samples_prior'))), axis = 0) + +saved = Image.fromarray(allLatent, 'L') +saved.save('./samples_prior/2dLatent.jpg') diff --git a/mnist_vae_cnn/latent/allSamples.jpg b/mnist_vae_cnn/latent/allSamples.jpg new file mode 100644 index 0000000000000000000000000000000000000000..1527e60b90f3e7003c6e628e030aca9386b11a0a GIT binary patch literal 2999 zcmY+Ac{~&TAICS>m~tOs2pfqMnWL``6t;37ldD3Gtz_gZl-pwE&Mc*oD_5D!k-Oy> zxtVgG9b=91tuKC~-{bN7eLtT+KcCn0`Fg*1$9HD{LP!&Y2>=KL0D$ZZ*qsCz19*9O zKs?;MAP|U;j~9GE?BD@@{sU4XqJmKZEblK z{nL6{1{x=|wRT$o{Ja1N#|a=%7_i#`kY~fWf%^yW-vi{}=$`~?$JGX&Ds&fWp#c-hIr^SYO}k1sm#c2ICgXjphmY+QUo zViGPbJtH$K`*9B8IjNxVMNx4{>8sZ@m;pnzZf%i=0dWvX)*km2FtV&<2;^h zQ?i1tyP@Grq=0!4D{8?}AdHo-YDp6*BBwdgL0WV$bDC(sEo0m~RzD%EgnaGBbf;sY1s1s$gKHqIyrF+vo_Kjp z%Pc~bke3-oawU@&B3+(sl(tq;in~;BpQ3m%e54n}qaDt=;T=YSI8-DSrJW-8)1^tG z)>;Z`z@+Dv`l1N%iP}c_#^~&NR)u!Z$U%w(?E|6nPt0NCi6YDStwff! z6wJ^6FB>$$ekvvSW~C4`rfOf;n=^d19=N7OJJ@`<-+wwZK}0EQ@}u=7~fFG5~wbW zPPMlJN8jbV_=Nts>g$uc7#TBIFmn4rx%Be;db<381^RjIzLcKOMkoF{H{5})UC#H2 z#>fW9h*kVE_tLjMsINRSD=X8&8*Z!6}19 zjy)WG9p5qXbDke|0c}RLiHl3M=C3swRGzv^VXbo+M8d`z=T?-Bcicu-mX81B@jQ&++@)$kVg3v5Eaw->?%~y~ z6}l>iXz0)=i=BaChqDY;%!jeEX}X*588Ct6P$%f8)M1^^u;31TYLQW}FjgEY+5Riu zJ>4=>DeVI6@n&b>E6N-QDzv zalu>g?iDoO85$8$N-68=58u4$HW;DXn&yfYEpsji#X22BFp*T{Cd=6!+z0y0fy|4!aeK53=I2g6`$*olpHZxhos=4$`B%rQr(2$7UmgO`xb&UmRP??j9D6QBOa=bc8 z>aS|Iq9E&C!ZR^3 z_Nd`V3wp9Ui2nD^54C1ySA9&IPVgJiXr56zM8pEq+rpK+Q5ZzGEDSeoA18AQp6WHI z`;c01=%Um3O}QcToAM7W5oi6bQUyaJQzuG+`m%NMx!*4GYaZ~atuNoKLT%nn&0U+Q zP2fs*^8r9PkzZ<_A~&8URHJ2_>@&i!B;DS5+$@}`g$cp;H|7X9>(gw&VD`pnhh3t4 zO@9Q_XLbR1q$*g{=+A=uj)s9+3p3vY1TZu^juyF$iU!0+C1UH2-1GO0SAs|N#utfL z7l~Jko4K{e|G@0PVDBc^ft?TVBeaH_{t;LLqcQxARj9WG?z1(eDi{QUFLeX23L;T1 z^5~7qgn`dm=NCQYE@7)-Y!pw$E@qBOMQX%M$tL4XhyQ1sBQ9OEkxeMtKp$M zY*-F5WWzWoyN5dK#EJt{feO_s1j*s3_Ko4f`z_c7s*K1*Ja^bm=_DCLYK~eHq!E|O zxVTSFRr-`;Zfm=~=fZ0VozP#Sg|*#t})Esla&7P#+A zpQIG>&f5;Fx#vTxp=pTI=133+0g=+KB(9Xt^W^lW&QXKE3({qEb+DHVX?n%i_e8XM zEn|bk@>cLT&A7)i4WV4X39u3I@PFTFwqjUh8G^ly>d!-HwtSrE)C6hIJ*(7Sx#d?r zkS3EP>>MqgNHZQw3kb9U-Zx`=6!zvhbEo0Kt7e}(gw8r!Wc_T3XeUfNBQsg%=@~y~ zHd3eHm^>_NVd?ZpK$TCk%G15z_Tixl4TfKLZqh=wPs`LFPkw^-7Tc3Lzn{7K(gZC~ zq+B4oAA#*P`{?HKDN|RpOV#>*(`#G`yBZKOG}}~PYl@diQZhNTA88~!^8cTOaa?2H zl2N>8F^M5y0eIi_sZY*I)Po(Vq~sG0N{Y|Ebd`XRMwf0#9V*%6d5R4S47U4d2`x0? M`O(MCj_gkS2XVcs_5c6? literal 0 HcmV?d00001 diff --git a/mnist_vae_cnn/mnist_vae_cnn.cpp b/mnist_vae_cnn/mnist_vae_cnn.cpp index 2286e0e6..51b4c7fd 100644 --- a/mnist_vae_cnn/mnist_vae_cnn.cpp +++ b/mnist_vae_cnn/mnist_vae_cnn.cpp @@ -46,8 +46,10 @@ int main() constexpr int batchSize = 64; // The step size of the optimizer. constexpr double stepSize = 0.001; - // The maximum number of possible iteration - constexpr int maxIteration = 0; + // Number of epochs/ cycle + constexpr int epochs = 1; + // Number of cycles + constexpr int cycles = 10; // Whether to load a model to train. constexpr bool loadModel = false; // Whether to save the trained model. @@ -84,6 +86,13 @@ int main() arma::mat train, validation; data::Split(fullData, validation, train, trainRatio); + + // Loss is calculated on train_test data after each cycle. + arma::mat train_test, dump; + data::Split(train, dump, train_test, 0.045); + + // No of iterations of the optimizer + int iterPerCycle = (epochs * train.n_cols); /** * Model architecture: @@ -107,7 +116,7 @@ int main() * size 5x5, stride = 1, padding = 0) ---> 14x14x16 * 14x14x16 ------------- Leaky ReLU ------------> 14x14x16 * 14x14x16 ---- transposed conv (1 filter of - * size 15x15, stride = 1, padding = 1) -> 28x28x1 + * size 15x15, stride = 0, padding = 1) -> 28x28x1 */ // Creating the VAE model. @@ -197,24 +206,42 @@ int main() 0.9, // Exponential decay rate for the first moment estimates. 0.999, // Exponential decay rate for the weighted infinity norm estimates. 1e-8, // Value used to initialise the mean squared gradient parameter. - maxIteration, // Max number of iterations. + iterPerCycle, // Max number of iterations. 1e-8, // Tolerance. true); + + const clock_t begin_time = clock(); + clock_t cycle_time = begin_time; + + + // Cycles for monitoring the progress. + for (int i = 0; i < cycles; i++) + { + // Train neural network. If this is the first iteration, weights are + // random, using current values as starting point otherwise. + vaeModel.Train(train, + train, + optimizer, + ens::PrintLoss(), + ens::ProgressBar()); + + // Don't reset optimizer's parameters between cycles. + optimizer.ResetPolicy() = false; + + std::cout << "Loss after cycle " << i << " -> " << + MeanTestLoss(vaeModel, train_test, batchSize) << std::endl; + std::cout << "Time taken for cycle -> " << float(clock() - cycle_time) / + CLOCKS_PER_SEC << " seconds" << std::endl; + cycle_time = clock(); + } - // Train neural network. If this is the first iteration, weights are - // random, using current values as starting point otherwise. - vaeModel.Train(train, - train, - optimizer, - ens::PrintLoss(), - ens::ProgressBar(), - // Stop the training using Early Stop at min loss. - ens::EarlyStopAtMinLoss()); + std::cout << "Time taken to train -> " << float(clock() - begin_time) / + CLOCKS_PER_SEC << " seconds" << std::endl; // Save the model if specified. if (saveModel) { - data::Save("vae/saved_models/vaeCNN.bin", "vaeCNN", vaeModel); + data::Save("./saved_models/vaeCNN.bin", "vaeCNN", vaeModel); std::cout << "Model saved in vae/saved_models." << std::endl; } } diff --git a/mnist_vae_cnn/samples_posterior/allSamples.jpg b/mnist_vae_cnn/samples_posterior/allSamples.jpg new file mode 100644 index 0000000000000000000000000000000000000000..092300d946a6f4749e30240490367c949b8cb00d GIT binary patch literal 3519 zcmV;w4M6h$*#F=F5K2Z#MgRc;000310RRC1+Wgv=4-_35A08bV92_7dE+-%&EF&BoC^soAFflYVG#@89JvcHvE;BST|G)qX2ml-c zFaZG(0RO}Q9{>OW1pxs80RaI300000000010s{mE1_uZU3Jd?l0JRVR0s#X90t5pE z1q1{D00Dgg0s{a95d{(Xb($mz{*4NnC+Tr5k9JlU=)z7wJ?o!%q=Cx1kaJ9C=iaXAdQIN3bL3jY%t$Sqa4E8BcW@W;A|NARnyLvI z&uSx%N#t0fLhi=_RAid!tbQAKj_^j`WD##80z-pX`o@QOpj@ zp?F7D@dR%*tOP)vWo`kgTBeb6q)p{q6el?OO;c7o39DLmm3OMSOK8hut~*rs-W=65 z?S^Yt3g_h@b*#^sT&n^I>J2}ua58Gmo|SifaIrycB(gEUL>VTX=98&H+6uQ(Ex6`X#DP_i)M!Z9ZRPSb5_$Ev1d-p(u*Z)@j`T01RkY z{*}LL@c#hBbITgNgF(H39%;wvS(?s`aiU+noy*43CtZg)tmkff=j&Y$h5Qk#c(I(= zsw`>NNe%^8*ZeK0cy>Uyn+le|bU77}56kOF*a!h$Pd#eoo{y<&8%>pz(kVCvSAu@D zx{i;1quhBn(3s`xwDzh_PT&Vx-O>CXsOtm}V}To^NP5(MBJj=UhMpw4k~i}?U6qar z+D%Vqrrci~M48QWPw?NwiKhL$S_Xg&Ui66*^ln*cWxL}cUuI%2%H#!=o}c#8i1NEvP9nTiq0f!ev;oE~du!@eK7*Kd5d zVs?#rW&?`!e~4N!x6w2!a1FDhS#=#+yzgB^j^5fh&RIvzRCIe-Z?#BaxN@n>1Az0lG zMg?<$h^@a4=x?q($-Jad0M6OK72J4d!`f}8uMF_F+{syFIo#gW=bG=C{k?o;Ai0&Y zMN@`B9mH}sMPN;Lx@MSuBkQrml3XiC9?+m<06&#o_>+5Wq-gd&6|^kP2hTBT^BkSH z&39i7^x3Ya)UK_g^DZHPh{w6D+aCvN78*s=*N^7iPKDh=ZnM+>%K&$YV2H zM;?Cj0h;zbH(AkbEn(5DwGXnz3}njV_};O6PjwB)h8`xA%&6p~jnvnfh9bQK;r{@J z^zD4hJ?RB4$SoduVO`bD^!L}x9+ez6nogX)V~E!Tf$v^D;*Dwby?W;GvutLf=d z*4ga*HK;|bTqzrI3Kq+5t|+J_vG`Yg;qMaI>Ao2IG!mFEmO#vN_k~#T$Br%aXtcFO z^Q4A9o%7bXE4%i-a$Q1>*s97*Y#CUt4^dvL@WLxeZS{R`TalW=#uC9!KY0CxdCt47 z&#r1x-AnSLH}2vc5qk>GRLc9;qvK+n~&er8%zKOFUvjMnN-Y&h;G|vX<`ZQ1H z-S6{cWgyp?lB{up2WnJ}T4h!{P>>1quVC<{zLBRy&pxFTHi;Q-qj@#wekj(hbvwxt z!X`^$Az;sq%~&BpT=%Y%!YKn>N{=X658VWSE7bMKG%pKye$P>w{y8pPM%W=>OB(S# zQ&4?ZRGRW$JjTc#gRrXmSYvBoXT5qSh5R3@-Rdx0q$TWQjLhGjP!cVUnj6+IZu|Hn7@T={ijEO^AZcE4F_M^K}58 zY2i_&P)^k(WcmvB-weZ~=-M>@0P#DDI48AW!PsueuPM|d(rxW#w6d0I$&)+Cz{O+j z3_f19*!W~wO`u*_$*8TR#F7UrPBH-LSGBJbX*zs1c6w7h?E?PtUd-Or!(C1;?&O&8 zT;$Yi5otgkz3b8~^?gsmdR$s}hT=md#w4EPV6o5e=e1V&y0+(8(`Aj-u3pUz#twdL zSDuC3ymhXV!WWk|_ZL?7_Z~~j9s%8fpRINTmZv!pFvy>zp9;MSDNH*5a$so z{uS+6>b!B*wzQ2M?j~EAolJ2sVu$#>tI&K=;xnoEFxgy2n_^rdC)O$EIB9%Hl*TJ&!fNZu0goxPp0-F0;s^V>grHRIcVcta7M z^!VeA?xRT|69NG}YszGir=8`H<(-Q$ zKBkm`<En@>(nDdj0+xS9||Qn~}zYhr^e zlDF?9Xa4|r=72f;X^;1*wB#9VQ`~&NN}Y8}#M9cvCuO!{mO;?{YM|uQh$*d=Y^fmo zQ(2kLS&2UM=*DTxpo)(tJxv0o1GO~eIZ{FPG_u@HI6*9o;RX~F&{I$Y%_$k{SMB^k zt6EvfX9fJ}ZsP?5oMN+w%t<|I$rd$VJKlblnP zMrl}lze;JEPcO^f+dsRWDFFF%PhL(bMDs)n$1AAMK-i^g%a>0rrgDdk tnq8P-n2*>8cAUQr9ncG?(R@JhVE7xK~Nfo66qR17#gHI1cnZ2q+1Y- zcg^75|NVS=@uPEJ>t0KaLp;~@^UutmWzby(8F?Adty>__E#MdE&pb#HgpG-bg^7WU zg@twJ4mJ)R2|gY!E*=H(Jwg&1N;+B^N@{9)CN5Tb1`bAQ>W6}C9FMvA`1t5pg~fz; zM7enRc>c73aIw)IqdmTLiwN|m3q%KmW86Z0f&PBoLc5KQfr*8E2L~7U0Q@cp?bhwv zXy~^wFwoI~PX_?M4?-uxAb!9tfq75e6pO)ygeNF22b=MERXeH1*bx)2nQQPJ95V9z z6qL*?tPk1P`S=9{g@m6-N=eJe%E>EeYH91}>ggMpTUc6I+t}Kdzbq8~NCtf{p|OT?{A%f{Gy1;?i$fWQ+JYxlU!9A%-(= zHHyF4)!TE~W;Ebn%6|iUzQTg2*|HV4Sv8we1#3UlUq?Z93MNWCqT|mVL!EUlnmqZn8a@&8~y_Az8TXw%Van; zY$Z!pr(kw;7SXVSYA?ljI#k?c3aLb0ZqTX@D->>?3oClrUG+`b?16B%FmQk6V1=fs zisbPDUZ(O9F*XllmP45)foVH3i5bcgD%=G13za@G zN%1QCTArU_xe>UOxUVbUGzM!O^~|w2!{XNxAZN+tgwDU~fR;g@>;&Jf?aguI)hkhP zQSsU$wN{+qf=8d#)Vyu3m>^)=4Xjj7mutVLaPE}~;Dgw`#sv=@9a4`U`I@0{wSGT0!y69ULR(VR@OsS&S78c z;AXLse*T8>LcKw>k**U6-KxcxKcJ51wUHZ}waV4p2fdi}%^BwWr7ORlUQ4QB6AmFW zON|X)*eqdZo$A$pb*jGG6VV_C&%rCbr@@&{LgyLPy3f^_&A04DW1} z#Ju(CB5(4}t8lXf)g;DvY39`PZnr-mq9x{I@>$a8L9|ufQ5_-v-t{$#a#h0Z&vU-e zE|;+N&6XEhHI3sx$vKzug&-d9h-7XS>{ZZkg&_Q~KA03m8M0{zTWaXPGtw14CjF>N z6p*CXT*<}ke{LRP6sv-bTu}M<#3V6eOlkk9@417?cz|Ggys_QAQo}s&C?=ux44h-t zd^TbJ9r0UV9CPJ1YvLH8+RPcig0Jol$*`e3;#&)caAhw~H?(9b-JxZ8qar+l;axZmJiqftAREnIVr9o&>Qgr6Q8jStWw6=1 zE|yukA@7uncNrTou4zIHaM7m)F`C-3WPd<9!cM;D#-5X9{) zg+w(H5=;t@{(vNt9}?T>Ypi-OHSB?tk1wMh-KDbm3gm71uMh>-8Y{x0eG%a}VVX)9=51ivsg=72WV})Lp7S)yCQD5fD#*!4%!;oo-$2;8w zE#Ga{Pbv8aTV3z)4+c9!G&>t@Cix>@x}*jz{9bKQ?b0cBS}}Ly7^v(fKggkW8*hFA zELYWEp>_Ex7n>t=;JL98o46^RyDsxuUO2wn-kAJm4J5@Gh#Nxtzj1#+3g?fA4LS+K z!v=?n@zm+KhE`;2gr7`i{c?OBs-Z;zjy)Dh^OyAl%Q1Nc47F{= zgE_d?nLJ7jjP4B=$x=V6dP5;nW%6cCp6kJpWlQL^!dNdn_^_W7dU6~rV{0ssux%1^ zbU-!ldQs{Ol4h2OuOB6DNa@o3#Fu5>bYL~&(`^+tK>TE~g`I5!!6-*(ZVlVh&GDW+ zFg@~sCr;CUbZ}^DXWDFTdl?7SHAb%YQ#9&|<^m#w6R8lw>|(;`nbJj$Oyf(l8gX^e zZ+8uig*z$4dLbC~=pb9yGZhlYO~#VT*NXB7x3uTxC4=RMeIh~sN&78!0e*akl9-p- zg_hnkAY^VaBDS~Z=mjX+N@u>mpNR@kk{RyfO!sIsFn&`$Jm$rT)0i(29D z<$-v`jy9(e7zz(-;NSpHY?$8Ym96Y|&$;D4AU_J&X>afjA+DZ;8_)XkJ^=w_SPQL< zHWAh&e^w!X=|}sq@8A<5yU@%=hKmu|r;YRU+DA8GS~xh?EyiQNzwkdCZgOxAaDg5) z`_`#>TdPFvs5ex4Vqx)b4%~W4sGw^^XLnW+F}A}awP8W4!tnsp9|CS;sycc7(> z^1qVwi-hYf%~tLnPBp!VKYW_Ed>6V$gm>@$E&%X8))=J3+JTP(Nbp^3oc zr!d=7DiNs3_LfL*n?G4Hj)#DtPk9z zL?WrlObG~R+_PRduS-k_BdOyI-wzm!>oH5(`t9pssM#$Q;3`kRgQ=wPZ0piu&#Nek z=csAe6kZqfRm$YCiXhoEjjv9@C-Ms083FUUpthMDoI zZMh5*%kL;Fd@!F&tM6%#i>kAy^uO>T7dqXFS8`vN?dIl&y4^xe&F3-+5;N4PmC4vq zudgR0Eaj_l?<*~+1M8ViU}lRgc8|Rf_hIT)9?sCbM^X6r{$@7*{%|9YqzePs8Mz^E zLcGe~E9C-@q4NtOh1`o=I&e%he*ZpIx=_&sMWGOCYO?W(qzjYH!d>861cgke8b$ZN z7g+pf$WpoMM6u?jqy1{Gl2t~VIn-aUPUqV;epg&B>QYZK5`dZi|483)J8+#&bTAP# zq`04-J(ex)A@C3?&-j_UH@asvT}0!PkgJgroAZ6Y-6BpkUuxmK(h$#Q8jjOtp+(~h zjgzIObX0h3VOA!FFYn^x;;FTu%9JmI`F#XKs(u*HbwO8uMZ}mATpwF^uRbMAVk-A| zBpQ;t<3jatPKZ@wr+mgGYEuwD)T`KjKW4b2fM9f$v9dzuo#fGG>5Aty9&rE+gX3f? z7CaQxzL^wj7`5~Bfn{F#x>LE#-n)(uJ9dw#ZN4|E6jM~k`MpXRdkWM6+eqU^zB8qcL@9dNBmJF+Cp9@T$F6R1FHYT_zfk220 zj61luXgsazGDBwh5rESd1k78+=N4hsdI(xo*6|kVZ>f-%(q9`ORHMfm6SE^~Yr@n{{?Gh8{{np;b zU-?C#iW62Fl-C@CE83d0X?L?zX}hm-Socx=WRSq6h?_Wq~3*J2Lx7F0Txt}A>)K|3i=y{eH9DP*nPNjuJ#~TK9b(hO22M#Wcc3!8y zBtX!0+10&0yN2MaOPA3qX&`e(F{!whGM&&q-*sOACS~Lp%;hH($#B2KVxZWcu`$U&;!|gx8<1BLc{rf4;SjYux;vPoHN6B1lx07 z;cL-*r7k{o?(uOKkm2@QpQH(pak>$?2*;THlRu!G?(CH7%@Xg%C0xHVvhUH3G4Ui` zq_44OqdZ!gQ*?>iaSq}o;nKdGqY?Iep9y7g4LG}Jl}{987b^tOvHI_S&s!Jpr93B$ zXbeyADe8Ju^J|q~IIc;TZEaBr*oyTARY1@Qu-FWze6qxJsznkq`#gn_7_9AH+R9V{|oojT=_tn?m(yLHwSf7qP|8Tz9qPz0DxL}k+eblmPPy?6WB})h~ zQoLH)KtdXZEjRt;meF^DCoTp{G%dlsnz~tx40Rx1-F)v-gBth|TCb(khN?4KvI(}) z^gA`TEXZW@?GoGZ8aB=k;s%eIOQVi!3p`$sEDn&A$vu~8eT}nq1gti7w6RBK@KN-b z9KY>*h1{`KorA+NU)0Dg>S++0<#G`81V?ikdj8^;9n`OkyQT8ioPd|^y)|XEomSSy zR5rOUq0(n)m5*IATnv6wH3tvs$Y${@ABmNYH5A7TlLL z8a`9rO!D6F`RxVR1U+&m@tQ(m;Ayq_=BLcAs6MpfvoEHBL>z~g%zchLU}f9*m>HGz zT89jHScbIsn}SF6W928DMQ?wDd})4B!CV)T8@xnsu;G~oYNwu#_sAFXsn9v%DzyGC zL}b3nXP-l(?A*#VX{dXQcbfVWt{SH~K^hSfo1rrrcJQHQYBk=YZ=LOo{~PV2>9C5> z++gews<8RZwYXuQM<$8L#a^_{C4Hz2Vl*+A8L|jiGop*;x1K!TF0lDonN2S-Px>Y# zHi8tsVwmn{?8?STJ6qX5jX5yI?A;z1jF}wS(Tz|;FgMPS2(QT6g~|3w9BS%~lIHIy z@`;p9`1DU8hIX@^(YK_EUa!(BXwj)WFnezcz?Wd~)ESNNeI2 z#X8Q8KmTepKJk(|Cn`z;=A_mnIDKlghr21@89Pb&E&((DQx@0|9&h8{g_Z9f$Z~89 zt02)<%DoAXvn26t$iT3LY1mnATUC4aDf@J3S_l%6q z<*J{&MAT~bLOeey152I3qPu>x*G%#4`hi6rJzxa!-s|snEg{&u(#)`a4=z3$jpExU zxZ}SsI>`3CL}Im}bUwk)kH257)!f=>}VH3!#lB3=z zzC{9xw^u&NW?@<(J&@Gq2EmkSBU0Q=ZhHd6BpnOBqBWoAG=%BP;WJ-d>D6qK*WeMPl1X%}W&{I>`OJNMenD$asOOsoxPNj0cr!d+n4+7hM8Xt6@dVc-s{6Y@Li?78ZBnlF*49G)J{zgtYvOgV(p3ghM2s3(M{cN=HbP$_t?U9=4_bZ*AQj$fcL)Rlzh%oNG&AiST~B}JRKJd z#^rS)xxK{%>}Ans9|eF=ISp0kRcwoJR1fiH>5hTrW}N5Lblm+7%`cPAGe#57Z0|D! z%ZuJJOra&1a;V8iSiqlJJD!J!p5+51l#^>Cc(vajK0v&$W@lizgqls=&>Sxf@7PQ` z6-Ei2E5K!BR~mMz_R>vWWm2p{$VorhFNg5?3WfoO!=;ain!y%^{c_lZMf4nMGQJD+ z6lXrA<4N-q1v^zoDg31>wTx9H>@70Nv`lmT9uERr?=Rh8O-*!0)u&ov!-&|Z}W=}^|5kpeD0p% ztD`8p>{;C6)L>xHn?EXai)1U%MW?2m{ZJnO!8ffkTiY_l`NlREFRUAJsC}s?U(Ogo z-&XP0wvtX#$r~#U;@(h*M@kKohsjfuf^uK;MYP5p-Tkr|wjBR} zzN^@kAfb&z*+F{6LBW{WgFdQ~HXS+IXAeA~wo*!~bhpwM%;hDHaex^lXpeKb`@LgX zFF?(rkPeuYTnUhI0A`DBW<7ve-#XT}(|O*C&nFKY_ci4*q-h0(M_H-^SrxI5ar8^c zvStPT2W@o`d%vfBpZ@`ssV9vpoHJS$+5E<80Hn>o4<~S&uR$x_r)!7bUjjWSjLs@Fvj(o^ zkEFW~s$4cDHh%A;0u6HjX3K(1h?3{nsWN~5Zof;rtVry`AAQUWFcz*fb3qU{*t(RO za_xo!%f!DHg<&O8P;8qN`dE4uT(bBL>nzKo^)J~(G5U2OL z9)Y}H!)*l>W#3mpXCmDv1|!-r>wvKtY_&4{aPf}VE9qVj!%Cgq>4mP}ELU^5Pou21 zhI@J!f;d+cF7v10T>QDRBG)Q69qSfk!g-d@%F-g)*2p{rxi_y6*Uuh5NE-F@tFRLXtPo=v_e^H@1#YsES{>j)xrJPv$M5fs-LpS;i zwOYjMGuw}`g2B?Uwu#AZ)1<@x5_&nugtKuM&2oZB!5XkYX`*eX`lNZxaaEudR*P>I z+{U4q_ClApI7;ZV7xD3ki^-#j8~sBYTe{EaooNpBV9xkXI^_L}A*74WD&}WT49@|9 z1WSWa1`!l-^gV;0(?BT0ivLHd?{qPwwv;dwy5loF5X<=K0RUJOC_6oWbjy}j`qLAh zybBz8*C#j|&3@E6SBJA}2}2e})gkZYVS4vM3|eU>QZy!4-}IQjNb4=CP@CR2Q^ln! zwo)fir->r~_qc_0gQ=nCPeI#YC#!fg;?)&-9-=S0tZPL%byHnL@|&bLSug))X-+)| zmq<-KaM{7|jfix3NlQh}`B-l)@`rOQzW0=~cfJL?$`jp>KgEJ~5Un4$l04bi@sfHk zvoxPZ9x~hdPkAj2XRNP&>No(12%g{0cNOZ=&C>C<*{t zdtq*Y%p;6pf)ZlQ&kVX!kVEVV?r=g+iI7s~iITeSRDE8Hzdm3{F?-1yy@=f4^$tIg z0XWRR+FDqs>`McZu<~X3prH`lef!f>vzFUE6{56vYpbElq*R74o#llqctFIwH;CmF zQDstaoh^zk#pL*2mvog)X^FliF7K2guit))l{AC=q1>)6UtT60yNeKB{cBJ6)tXg( z-BC<_*=g~0;Y(*%HxnxmlT}iRt$5P6uY{|uw>IyA;&K?>gX^>J%2`fVF!A_=_77SM z^FMotib~4ZA&R7eSZAjL9@g^*WK(yPnc32{n^3byK%fE{e)ccbJ?*@#7-$aGCh7@A zikNs4YdXwCIAMrIGI_*J>v=F>h;DNCfP~(4fhnx(nPIO$VREwHWL4p-mJ2f?q(P&B zkl{qMXM8ANlf8UJdYxMtC#Bxg%K>PeN8KrZY3-@#P+y?^7QfO%wzw&n&2Qfw^;9Z6 zLKv^{bnMjX*G>VVg`uXe=nR!e$!ffjEZ|PJX+hCy$*f(`8?scy`n_oNVwM-XWU=W%~wg#N-mv)F<9kUUThX>>ZqX7c=JN$yk zuBxS>Gq(90Hr;zXiWyQ!RSbekbbxR7nm|U7GMU5(SeC}7cVeE~lj1#m8I?^GWXXL9 zBpL3$&%>>`XFI+yDo8wVAU0xKgtdkQGY&7!u6)L{N!6Ej3|`b#Oj&t|5=^n;^eBLD z%I7gNIfqWyhSL@Z52+{A2zxS?&7pb+um>7(Dm#Tm`0DrSH{Jk__doSQp-8AS#M>9Oh?F(Agm@o* z_MmrmR{L)$?w1lO_+RLfGb1OQ1*un4Q-_7ydilOpa5;>{Q@tTF3?_{nmPD*WlaRhB z0z51o+VE_#$?h>t(NUJMp!zM6t{&SFOyNRFA2&yo6{3VJqCyh|an{JKI>)nJyjrNA7Rb!|FPw<~Uo1Ud*eD#t7mBe>iT9 zcF5g{qY^@qT4CjCLwTo_2;w{0XS)XNm;P0QaWlF(EYT~AFFLvA0-A$2F_`m5^L;)5 zQdBkQVr(6{cNTe&>tH45_GnQ;&3j(9ZrnrecRxieMPg&|o)FB*c{cW(GpVYvUQ2j( zGI9?*_Oyx*U$zs^o^xTLBOj`o@AEN()>dz$wCpG*JdrEz+}(;WGm^b7hA%zfk(TPG zF7t3pj*+T>=KN|vi4+%30x*1;8p)ys!?9-RAGuMI z+2Z?@0P7eb*KtfT<)0fZVYBHIxi?kf-K!F!I!R(Exgkx@QMzyR`!IoK`+M!7hx7YF z9Wmf91eP!EZY!@jKkyiRB=Z4YbXxwi&oJ%4>YkCEostkLr>6rKptPEQC@q|dTNPgC z*AyDgeahWC-a;I3TV559z1?YZ;iKbCjy+UY*lt&p;^W++F>blE8wktnmG|V+`+Dt` z#YJ^>cYBuK=Z;t2#s|R4u;0t|y$sKYGkDBV^lAS5rKJwolz*UL>wRp}<^T%6Ca1g~ zN!B$tUYmSqs8jPSyok{}4#*JjjgR&-MYq3$0|q^wjXm3i_;4L)V22xzU?8dLZ2l?! zN9M|`b*`;MAgOKTldaMEwEl7n8r5!g?F*R0dz#{R&2}l#<)(0imV{j;qs42HDQwef zl3j=`*MWI3fO|nEZ#;nau&PIUE}SK!Zgp-0vI?iKft`f=Vb$${wC~jF1?x)F^-e>3 zzw#?~*B;I9;LyVj-R<9F`L?6mcR!h%Q*27zUoq-`&_?<#C6M;hgy>W1rxu3Mndw;? zPjoZTZm+-f({QB{!}oRSy#B>=su{Voecff}#^?z%@4d=F{513&tT*g={=D$hYC{IK z`)W;%;q;=0DiVqkn%oYcjD)*BHKEz zu>e@7bBr91pxuVQUvZ{tcZy?9GIpO_;&(MLw7pjatopn)YT$yW%TjmErb6YIw$$4E z=o@oPU7UwATKr8O%HxW>vD7DEjvvX%44dKfO~4O0Evnb5-Cm9#%81^_vF(9iPDtNV zM!N!okE|m5Do$2gc)J=~^0PbJX)@~)T%2>{O&$Yw_RizOIe>8~ui>2HKCAciLpF*r z(xL03ZpD8_3o<|f)`wevrxh;@W5 zG{3Yi_rbub;NJ;EN9-|sYwt^N=b+c|_j-TT{EawPMwH|;C^134fna`Ew3Fp4^E38v zX4_mYstwx7Z@*cm%J=;-8Q`y(>Tt+ikDiShoKO;)KoCE1i)Z@Ri|go`o)fGXImLKL zmRx3Ss)aEsF+BQ!*6SvJLQrk8il@ruQ!s9;1o zl?LEcR{c0X7`b!N?t8#^dwg>yn-yIIMmg_cmwv-|`Esq0v|^>H-u~ReC&BaJ)>(z* zu}Tw7MQ}3q0}L3sQz|C*W^;TZV2!G6SD88CpsKe$F-fLV^%WF$g*wO7r#^uO1w;UN zg@n9ai<&taULb=uiVkMHMdF#iCak<7BpKTb&sw?l<$XrziAhZ%@=0MM_FD%*F^|n< z28a;T_tx;W;ZApzx!(=mIl;IB9F8{@Y~698W&q)C9?S?PxuQJ$sa+9}(qW74f_1Op zs~|GU5f#;X2T>mO7VSZJ3>9}AVw!MuUmNb=DsS-Uk#&DLZYak zX6*_pReV`A*-fVYn!#9E{`EyWSqciY#(>-1o^zZTaREUlGWQpae&_qn#pZC1sWpv) zJd3pa^JwiLxT$-G8n!Qq*|Qq~lOT-Fojg0Q2_7?512OsHY-mxVprq*NB5L2=P@Yi$ z=Y(g?!>uu9&5rzJkrcQ22#H-A^oS`zqB)bi>gP<_Pu-^_S09l}m)UMxJJ~!?1F>!! zm4rau-kxB1(9#@h7rcQm@W1xacWG=`e7^Vf>#)17Q|fHnzWT!-&US_rYc_jK}s*dNN6q;2*+BK&misvYK1A!c7qMv2yYoCx({S@jAvIHX8=7t6#mkv8mf| z8I->L2f8AFMxE^}4CtR@bdZVsrGWE?{`og59me}^Q4DDG$6 zfSEiJ%oG7IQ=jJ_^Um(pY3#{_m|Fr_cY!RpYahXK0NagKns-wMMoR+0{_|t}MN2j@Jk1C>AU^0?2G1 zN7x|XpRkmsdPq})BM`Pxwf!%d>^#njt8gJ4}^ZrG%5dh7S0W`}+qM2%xgGZ+LNKem~`EJmUe$gtJJ`WWm z94KJvB*&~Q%9=9YJ&YRws0i|HXIliYkO(JvOj$LbR!J@68gM$}^Jjq$nZBsX;TX`>|?l2u; zI2v6_>cYpT)#AV2eLMmox--IN{GvFd>k@*6GGB({KZxIe3w~zDFLS7qx zEYll`JZJ>APjMX#&3iy)R{q? zeiIqX*(w$#YKJvY#p3_n6bGJft838xtro64;v+k+y9aK&2O?l3W zgWR@aQPRzz`Aw+~7~J-Hf*dqP4MMeh;#}5^NEZJyn0HkB@k(QdO5My+W-UZ-Fmt9* zx5W@*ITSMzz&2NqXVzcb|p|!GlSSY#oghtg%p{RG4|m( zE1Sb4&C(}-h+4JKbzE_kd-&OsB{(yL;?;@5t$r$dYj&|&<)!Vfbq((TeX=s3Pgb$A z>r`W0C3(F;$KtD7$QhoK?@hV$2V_`(nghH8^epj9cn$9HJ67;^`l1u^ey)P~5O@z;MiBL@;a1Bo}%W$18?nWJ7HfS=c%o#r!tiqv&G(q^m5iN=(_* zUk31`yKv1$JvE=0ti0(5NS$gHG5@|OMZgonCJ07) zM3&tOE+5G@X*zPU=+zZ-sA?Mh0d+~o65jolWau78e@Z1L4^srXa}aOO-u=1vSakG@ zA>%C~>YtM5+Y?M)7-7XQ{80Da;$M4#?70D=muDnHPj*t~z>sVurtJ3lZanza-Ct=` zem$?7tb>(ZeS~@-x}CLX*IL>_bJ^UOEl;(oZA7U!7uR>jddUYVk4GRqt;n?sFB#>N zAFiBO=q+h;pa2e2sQjnIcMFF@O0+#fbm#_;vkWTg4@g_uokaf((Cl>vnKBj4KLNLIfG?m7Z zIx*Ci_cl#;O|r`k7%r7z1(^!6MBuy2(=paqNV7!v z8l9;1q%`>@vWjN047@ts%xVm;pcERiJ$-y$p*qd^K%88VM@gWUi0yBZ4$$EXudip8Fx0VLFAUsZJJ7lF7cPY5mPu2Ga90eiA#l!q`Hn9( zKjFe_e=g-I{ROp^+XD^YA2Q-}?P3MLB=>FdwE)>#7gZOW^OyDEP8qiLuig?CB26TB zMYhJcmJFjWS7VhU7+F2RUw)eN&R;&E5k8oV^Q@G1mbafyB~axn3j;b(QkSnVx-0$G z+)JzEjmLHAR&86yR>A#mTOlGF*~0y8WtBI!)yXjz>e6*hAfvLU`@wrepYtajMrew{ z09t0$a=e>~g|O)Or+uJDac||P;NyrUL8QDbGP^7>rSH=|Xin_kEtfV}A=(%fHnGw1*6J(gd0lmsuU!*Q$G)5T&H-faE?bmVl9 z9l4L*Xy8g(bDmHsCNdX*@t9BHyZxf0kJE(hw^)j9P>|XBNvIjw-0aq752X3HIQeTw za`LH4gF~TNy|C~o|7IJSjITx`@>a>)xJ^iX@Jbk^SUFbfGkqllnmkukd3gf%w)myE z)BxMEWq7rZ{WE;7?Q{gdt(fNdSGf9}qPs0ep5WVAKc~}Q-=Wx67)18kUVys&7(^(v zq#{-Hdr7+>@pn9$>WC?@Qe}WJITV!H()#Xj|G*E&$^xor{?65g-evB|DdvrpOSkhJB3RjKJ6Vz*Wm{Sus5V-xwXy>5ZPTEw44{ohomaa= zRb}`lQIY<>)JwOo(0}S^cg`y0j!1N;@A9OPJddm57!e|E-zC1o?-vg&tL8cJNQ3+>Bx-c1L|Nz(H04+bXPAvxovVg_G)uB*IFG- zrmOn#vhJN- zO}AB`n|{Hq?xQRK*LCv)#Wv(X6EN@~OG;-MsKcpyi2e`7@Wj|o7gb%gMtS>#{$pa& zUM^^#Bt;|3QNXq1gTg)Dsu0Gz0Eq!m$EWC>1)W_!$d;aS=HQ3fy`vdu_Jgho`6u^ z_to5L%=%WGW&OUWZNV)_y?|GeX1LqqH%09jCrg+|s)@e!b&-hn3o4u1E15#NS#$1A zo)m4dFgL&OA+ORW9v_+-(Uc-}Q%q-c1NmMN?$T0vO*mwzqQ#HX*#Vs*pM3M=)y6|y z1Dh|Zf*zHF$_sqL`#Je`+?K$C9_1aMzI|&w`v@4HIF6) zGVPb#6%^$HN{3NhHG{^lcV@QL7i8vY?DrpvFqUNTjOUC4O)gOxp?nQw0}CjsY3j|T zH|0yd&(yoZIlJR-OnlKPQpVX2WoFJ3pWNKJ>4epFJn>BX9-5#n<3+E2r{rGp^`B z4TTvl|6&->pIXz<=xf`1M`QOcdhbCM0wDp462u6OYDWPd+;1>1>`B!+a7*A!Tt!+c zbq9w{l_>o@hUP^TDinnI)8rbc3N;`|YAk5p#KL8}r?~a)?C4)hQUyOF4Zd&REpKgi zks^;Cpm%;&A<_7yX2xHj6r(cP(s=j*=@yRj0Eo7brYqpLXsCmS*?p-z3d)9TI=feMCLE0xc$KoD zZ&VAOO!J1kvzz#Gm|NY{RYjqr#5H#|{7S33^3v73y7t7;TCLFOz6MYq`vug;E-I9d zn16*$?#cK)Ueb7PT$*ycng6SBwW&}VjP5OmxVkmfPzG#Q5aLIZd3b2X1OC|r8E=*- znVb13%55<3qkFH&sNz2Q38arr#ckB!>=127K$o1G!r|5lB6xV%HA@5myzKp{?Z&_+ zXWk)G_=NyI@^Wns?v6WCc6iDm^Xw0Z3p_3=T{=H|3F>xmB(_C7w7fsZJJlSH^r5G1 zS4kNY&kbe*x3QTUV2Zs@vcDHbIa+A35t|YPyxuiBKz7kuXvLs?BD>$iaK?S4`)I~l-l zg51WU=q0UQ@hfuh2(?WS2}kjlJdElEE^}iKlf0%A6zgC93dBQvAXB@KNhvhX9d{Aq z68LD6N_)ycCVIf)hr$#l64D?Yb&m}pauWm}!ki?H|A5}`_rQG z*Qp{zmCrnX?^hfaG?<1kTBG!PW%BGBhl2w; zQ4h#`VYR^n%k##VCV)O1nE|y%8o+1@4p^eP!hY`4)73`xpgw^1P-U@XH(3YwPl^QR zG}Xq0Z$x!5D+&!~<_xeI-{SW+nIWU3QS|i+-}_^)WUMB0L^_*tiCec@N}VduI~#mW zDZ?2wmzulYUd+i7JGX6-%()|C)ksHt3B!M(Qd?DBbHWgbigL$t21E$SXz%bYKlVP4 z)#L=So|gdf1#NEdo9~AindX_z&=i-5D^bRe*zCiS<;{@1^zryXk@)WuixSm#D%+m&BooNC4!?Dpak7c5i^U>Uilb;p~qS#GgEe0V!MB^qwOxLoYagu!)Xq|G%e9jb%P-^1HykCGLJG=% zRtDX}yZ)yM_F|k5yzl5nljm23$V$S@Ei~Hpl3Ch#UVj5`RCzB;knrZ9x+13WRmt!N z1MWS%(|a0A#RSV;5FrpxVl!Rx7peSS-+rg?T7aByG_6m)Ukt-Rc|}q==6bWWUCA zSSZ?e^@@<^E`{4lp(^jZ$`*adij#L#O_dNe^D*pOef9IruiPg+?78fC6kV=#<}Y>C zmAN0yYMYy8+#5zw*uoZC`L==bRJGT-A(vq>>xTlM-q(`^SQsflS|vMx+F2xYJ7nY9 zfeSdV(e-95F#lIVTT03|+9iKwU29aQp(-I?yzND)-J2l%{Oeu@vc86ze1~gCHya)J zoWlVSEeNUnVw78*5Gh1){J_Jn-O0Yeyr1<$uIBgwU)s;&SzOOKH|-=;)y`0UB|xI4 zyH$itU>&$*Yy*CjlkWO4^y~$J?GyOoc_O89ThyYAp5sR8(^aP=@<@$gSL@)%%;IG( zMmj3o(AlFsT8E*x5f?k3S$wTpSUAQ1fK-n77k|T_W|Ai>fP9IaF}$||*?jB7cun4| zWU^}3H&sU{)$4u0QN%l$OgVlCw4pS{T&=>nH?uV$Z-JtgAuSEi{--VwMF6^H)xx?* zUMr5(@Okn8eJrwHtq?e^xz=)-FIvaHO-nlNafgeOVPZ=!hh5PP=wEk*Mt$u9+cXd2 znGe~Yv!E!fVrBkC%~x(CpGcmDZRlBX8CSU|kxM{{(H(VjW^Gkh?+ThL`n^WN-! zi!#d!Zzvu}972yrkiUK>`jn)#$i@D`FiVj`>1fbvN z2#)Th+$`SveWOa#`Cs+=34=FVTI-3~W#lA!g)690Yo#ymbGcuOdY*DfAgZ}{AX%4T zBs#71WPS6QcgbJ=Qy}{(Z1ISnJA;nHv3=VlrD&Gq$bCA+3ul*FDwNvmZ&K#+BKNAI z_iB6R51U}|ZAslDj*e158BJOjSJ7-EuAJp1la%A%=0 zQ;*3avKO=2?WQ0Xd^Uln#?Z%Tt5q#bI_!M~#EhXkG?!SW(h@+D`r9eWo$zPM4@!c5 z$o)1GgG}&4gyuV9JUCWrWfXdZ_}9{I4zr5hD<~s7DmbPZ%1=8s>V3z#3ZF`Tm?2Ki z9MmTaGh{^v=uyzDZm!w1N8@Q)M7gh3wKZNA#kJxPPgQ)CJCJkJJflOmt(u>cDr;xT z)K5G9qRY9K?p^NT9?MD~uwE&Q+2Ef+Wbm7^((soVzf0=G7Jzao<+JmOE9V(QxAgk; z8Yz#5mXB3XO|hIy%sU(xJD4Z@?03}0b(vSwgS=Kn`hQMO=-QgnZ>6XVXSDyCUAe z#3up%YMx;8>i6GbMZ2kBaEuIatvsrwOVGM|1d@8_eeDO9P;)LC9 zaiQQ!@-J9r-SAh$@!mG;2#Oc80)RJ@2gLKjHrP5ZkS1)_iIm; z_ymAyR!v_i`lgod)xqO8w{Dy$h7Mn zytF{z^rSV)zlPbY1iw9SC=~q(bi1;6t!t0+;mvip4IP=0ZR=a2)9HA`yyG{`v%uR? z+aZ0Y52c=a@kXuj{|LR>SO}J+e-zWT#sBOd|EepDpLyv+(F18b&hc}?HR$B;ICK`5 zGDY^pP$xt!ktal1gBY6PsGExbN^=u}fsGTD%NL*YSx_Cq^`21S2Kg?D!3}FK$LZfNGF4Zu*2lPNr|36;AH+$% zzn`&L{I@4I0*$(l3=@OYAAf2ojNk}8eF%N_II`{f)WrD%8R+lP)u%xW&Glh%>k>FJ z^46wpFe-y2%So7koH1#i4r@7Z;MBsS^a`v>TS)cHxwB~0V87Y1!uo?=^XbF-_jnAC zMLjl~SDta)+E&;N4gin)Dx7+ zq*{M_zyaO`+#;87e(a97 zc05}qY5fDBYxdud6W#b&fvt%W9)7P-K>@1I#-Xcw7tEw77lk^E$yNB*#|&M$u~7cT ztaQ?xiY$OBBMV?aV-5zR*O9Z1BMryaVdN+O+y9zccq{R}P}NPW|DTE(8Wh<|J5>Cq z`c?^WnuXR2gPTs;O}y9;O4GtnZ81A@zPDb2q%)VU^O9BZ=u;1TU|dh=e^chKDO2Jz zYQEbWOI=A*EXnF<81A%UUrMs5OL?gnhvq;2_zbqUZGc(5(od%Zw@k)h>H~nP9eJ2? zbG3;OZ_cLn({p}rsQwlmyRSAKh3(yK186`NFSRC{FEeTJwwNM ze&h{~NFZ;}pz#mr&NkFJS(u-RYdqwWsE${3&9}2(%2JObbKjGJbjScX6VJABavbN1 zo=pFu>*tYctLg1b1$H=Lh__&9-cTXr;~vyCUEyTu&Xb3ea#>(mc$XcL&B&S-7ex^f z3vqzTIDy9v!If!gl9L6Uiw8IDwva1{)6iMe5;CxH0#?P2l113(4ob1Sc+TOg!zF^g zWBpc+PqBj67?wiN;=zXU5pXCXsUw_RJHB{hbMOosbpK5V;7%P?S2D)Zuzq3 z@Kd}Lqhw&G!4|th80B4@#;-zZ9&#C(n6RAD@4bzMr>{2Y?R#Jl&2!+OkP5j@{wL%* z`)k)DF2H*S+(m+c2??pFF-vD;&W)R)akJw02M7Y0c7_U-^>s`Gs0@yoM{+a`KTJL>Xo7B|*48cF#c(X8(}R?0#2I*#qE z*I-k)7jFA4rQh0BNA7JY3%P@@3B1_A_A7yjh@lhvrX}tPVdI@$6N#zBbvoa(&$qwo z8-JBL)ek>O4Bj7hGZ9CG=dU&;$0$hNzeAa=qJ0I(|zz^++hDGU9_0Cst_Xv}r4 ztaUp$Y>e_?V8||_pI1D{7anZ^{@)X)eJ;lpA5IA%ZFty?RumClxLO(^#YXay0kvF1 zFWl}MdDZMvHV-d-!bZ2RcvGo_`O&YO;02}$dbI)ZZ>;4$q)3}`3Wie|Mn@XW2b*d9 zKep~NpsFog12qZ)5)um1(n=%UDJ?0T(%oGmDI$$@OG`<&h;$>}-3?L_ddFPoKIhzf z|IhU?=aS8aXT9$??&~M5H98lB$+thoCdXS5!g_qTqrJd&R;-6H-)`!CHQDb#qRWf~)_gfTdU=JC2&2+XdzU2$@A64hLeDm~RQEvI{?E;x60kZswS zi6!Xz-5Fr?=3j+}|Jp4Q9-Dc(wb((I4X9uh`*}>y@fpCWR4B1$*s7+ex&5}MZl1$` zOV_{DQqSlxX(re|yC8!3!GFlbN1WffDs&jirub!2LUWbRxFGeFCJSC;wPIzl<0RDE zOh=s)wJfCh=)DvOz?k5y(%OrixH*n8%z2_4*PcN3)OX0Ykf`qb6*s1bl2(Mm1p&jRId=eNZ})DJFPdy z7ZecLN7Ci~;L{-qGdZFPwc34NJ0X}q-<`kE>rC3>IOLN5(W{nk^z5;ev0H@{a+LDT zh!*&X_F+c73^!_q^7$fsO)XB}Gj3S1PBzo6ngRF6iq<1{JVW~uAB9G5k>6T*cq}CT zu!z@rL6MD8&yjI77PtN4|U7<7#cr zRlh@fJ6RN6zK6s#99b0{t&}X>?^shK?+sKclnvy>M%zJwQOcA@bM`&e2aoWn z692Y0^bu+!#kedo%+gEf$+Kvh=GpzBxWnVn>wPgsS^=`U{qD$5-dkC{qy*EIxN1G|4=D@ib@ir>|~;+;dpG9OA# zzWIcv%81q+b@$^c5dd4!T&uOQ24OP1ME8hyY|dLQn}X76DujcB2Z;;s!@^E0!<8pK z4=i|AIH$;FvkFOKU7E(z=$LZib3*Df;bZ{IM?EaK|otP9`pUkSW)Tr z>SnMdTkut8o4-j$**o>kafP-!b5uszuEH2MXJ#2EaBgLcwaDz&)+`RbYv!b-)s(j( z7@5wh-WDCd?P(H-`+FDn^jeZYuLn4G6~?mKVh3lx1;eq-HM@}e25xt&_r0DLOq=(5 z((3~;g4HsiB$L`n*n@M;gq$MxPE~%|ubFv+x!MU&;kZunMQ>ASw>YNlrlwRq5`FeU zB`nD9Z&z}_j`l3(lddIe!d?s)_|n4p=0CUMsqY`vdMK0qi>1lmt}1(wve<4_*GUy2tZ2dGbZI;o!>zNhI|^mmyaq(V9o%rLm;$Si zokpANLPA;n+>4Z-a^>-+KoK*E`f;0=s=d+N^d2Y?iX*1O`+SK#aev^9Mp2+}8om9* zQ(rCHC2J9Wb|yW8EVRY6+k6^uIY;SXu+}V{de(8YY?CG_E>R%fes!Qrt9m2}S``;T zReM8cb)k9VwAy41zHC(lC~EGvb5Gvt+CZuE>Wpt%P6RMAbH}Y$!MR41CqTOV^&J(X zwIYVAI|EDqz*WSZB#dcAf>t0tSZn4VkI(l|_kG6Jbn$wop>_5wa&eSHt1E-XAGn9A z&-jFiGX~Sq4Ey=tv$sRdx>EGc`eh9YianIt2>v_lo7I=zHxa%E?C2IgJc9JGa2p6| zbe&g6GGlchO-9%{ZIk2ZX>6Mdrp7w7f;gF%v}EzMP~3+YHpK|GGs+2k5U;9kU1z{5o;-eyNzO!12VlbG6H+Z;7}pLP(iULymr5E2V)NW(4|HeZYjOg1R=n>XMXx znr7K=iguiuVB9hHxMwYqVBQmGo);%lvd4byPsKMcPr6IRtp&ChS{`#w=X^_4h356U z{egQ!BmXq%BpuDXCW1c&_f?U?9#xb2I8&RtLDkXS>4Lr}&^rOqs8uMMHW*agcD}np zxT0MGIF7*b{_>$p`&pJ9)qMb7z&!rI4Szhg9KL4A)BY6~sX0*gLOGs)avY@lOAP!gTIv)DFG_M!8o{SI}2&J0^QEL}er*r+~lz}X^5{pfI^QDU6JN^cZ=Nm8{k1+%J? zKX6FqJNKFzbzg_}Knl_a(o`ZkL|n_^fmN&cnYvCMBd%&zs! zO;VV;DoDT37%fsu)6yTd$pRmg;L7@6I+^6jA2#nAE2AbQnv z^#~stym^UY5AkASYk`0Y{C5cyREC?DotGpu8Yn4erJ{$#b>$2B{JUm7_jLxf(?d!E zH-h&!9^%V<>5Um(sWQ4Zn+$a3y|-U;Nz@&$Y0 z+=EwtO7|#V0rPr*SdHOLwQ8Xv1?EM(-xu2mF4@3NbY%wfmdpKa4NaKx{HUWGVfEop zgN8qFk7pT50}MxgPZlA+D#Ig6IWJ|!1BRvqGc;_ZK;3h?nSP4^TJc^<%+v&_rWr)SfbK59|-rj@qd*i9q<`Gt2|7> z4Rgv#Vd@HfAm`Zcp5H>jPXmjPfpI3S{Z!v+KVjpis1YyI`8t;B^pq#w@v?c!{dddS z9F?)<2^J7EageRLHUK{j4~v@`W((ZmZl;;JLAQYekJ2=UjuFJ6L=Wj%%NwKRLV^SK zO>sId{G4ki7_&9dJ~R-%-w7FjCDQ68llL~st%#0ULnoY9sIQ&|?tO}0@|t?|W)IKt zw3HJxL4lzmK!G$|y7!8G(HUWwseRvTn>?J;HS3HbyD|^)(yDIDn@;{L+xOQvkoiJS zOEx-QOkLRgFiQ2>0>LVb@y1y=Nw74G5vsg;p%eEV)kZ60Q5wa$;Ivy-6kRrTbfX2A zh?MbLyj1{kv{JKv9*bxCTok~m_W4X?2My`bB(9mic zu`CIE5V5$&gzbv(89K@LWpm}Zu4a0(Z*Tc``h!p%JVwJ25zRkoJi^hyW6EHg1wkv| zHrF(X(+&WUM0+XIy{EqB20#%mW>(1x>9?P|TD^z}^=OH*(8D`_#&w?V8ut4z`>Matpc2o`ZGkEDnA=a7wMORa_CgsXv6Snhv` zDy_fZ#=+N(e>C#+Hg5LXB%n5lRFzvt`3y1ZUzVz>9NeS~{c(Q;hqxE0JW3`EHgSJn zGzs3Pey?E|3uVVx6;ENwuFrgX+#*1hWcWrFdnurxSv$F*z{v(YJe!0)pKu&as`4q^ z3j32+FmcNo82JcP%&X?1oN$tw*I(rVxwKmRobYuw6>zyqEtwpvqBrz#VNk+l3IS-f0pCQg28GyUZzEu0 zVy94KOxYdwZy}$wZ0Yxp+#Zc~nB(o+&{YgEI5F_ebQXU5siPhK$VqzeC@tbaR6*yN zTc2HDL##Jl3J77Top?TKYP|VHXN@;UfgvxwH}i7HxfG+DI^L|ClGb5kx^WT0Brvc1 za4+qH(GYd^V0p;JDMF)6W&&@rO+_8SyOE<(?rU95zb4tc(YP@Tpia?mHzopYw zulv5x%{_aBLDKEx+F+G?*I(p{2r6>&R1L6*s;uFJ+l#pRRNZ0wgTv)eCIWQjUANP7g5HiX6r!FAU{|GtA_2 zgQPZqa`{#8Y2|k2SxA!yOAx&+_f_ZpDndISZ^TrJ%SmNG)Zl@#&*+p&{j+uE?^)$p!AHF#>}t6LUBHPaYq{qt<1zeNXGrgn zO30LjuoBLD^?xH$jV8{^zCE~e)j6c*>Yb&Ie&_eGM_f5{yW}7fK!+dPI080oS&D?bD*lDpALg>jJ~Kfl;b@hQPqwQLIadvN+OT2&F7aF^1H z2Kyq4Z-lg7yw494ZLdM3GO7uteUUdpY#F;jGM1CIfGS165!_QAnL{_?%)7(Sv{YF( zt@(@d6{%jN_mI5i(eK=NN)8XAiL49i{eeGlDj}B1q~AeEZ1zZ95VMLb|Dwc^pj;SF zISk5lF%0k*%8Px~lA0o+pzRHu(T)GSjazTpT3}F9g{3X+D=d62%x~GnGki=q1U8Q_ z9*_T22+=5pcb67+0e|9tCAAP$JW}2xcof90EG8&d)#n&tF*4< zDTFk?(_D9lpo_D>+@kYNy?vX^ zNXWTZKnTmWGYN>EJZrWI*AJ1;zlkjq!JAi@q1$Qh_99rXkI-KCLy<+<<>w!n0Xpj`ceCPQ8Lr{OneyqUi`Wg5Vaoa<&3{yZTvlzB(HIh>uW;KFwmE8*;! z4p6Q}pj_2_obEWe8D8y!2^|xVo5Ef*3a`92+ix0I>QlLMw;=npDj6O=sxydQKPr$?|c2C2Hc7qvKL2MdTtr?cjMoT7?iTd0h}s z+x<(88(J#15y+TXHP-Ucdu=*zxM9vz&C{Bk&>+paqC->$%!(mVUx`Yi+2`ug>!{Zu z?07Oc9`VRUk@ZW*F&(^OQ@qmGxNW`0jSN_a(7j-nalGTm#7$KQV~)M1)UCtXq)n5m zUKAIO*V9*f7=*gQS#axh9=7jfY4VvH6H2xchB;ma?k0tu)F|C-J+R|dwh+)JvG7FA zDR0ow#Ue%8Pnw;$)~Bv8h_j!`ehznMW)@{#ndpXQfY(=tF>rbHhjl7$H;K5m4g282 zycF;*=cn^g6~55Mtwqp`q%(FYZzLOiQg7+nM#AK6@|~BfcpUj7oXdH;BkcpnEjj1? zdrtL89}IqwMu|o9g*LbnY?PL)HaCHANfQ+5dM?phIa;koXX->5jkzrtFn%8FrR^Lh zK={l$4mlFeegUU1pBn^=oWTw-nWaB)xT2p#Nw2U0oQeK_CxMjNELF}>v?S=~Y0Z-# z*`9Tz-V4R;MNoW82mr3fKLyx}?jjhpfFqpQNo^G;B@N(gP(^u%r`!GurB*VUcliDQW9hpkQf} z{k17>UA~#ZMgX??OA5wal>fn*j-g!jmufHwldyTZ-4W#hgh60Y+Eydya-q(BBa6Dsj5CE3r1hqBUpb#JVjgpH6lkYEZbF+ zu)78g*QIaUl?RO3O<>Zi_^1yA7Etc3GL^yRMYLFxgcWGB>fuThnODc*#x0ooVRHUF z4|CW`{dRj(+kC9c4YK!)O+o2%QssdgVqIZFB9kpu-N&^xgN~%EwUz?wr_lQp3Co1J zCAUZI@L1=jn_Hi`kv$O<^qOEy1aFk<20Zu)_8V{XwB4M6tOsM64_?_Boo7P^bOC9~ zg{Lzy0{gMV82Y-=By}d2lwFGp50ES_y@MOlFexaWB5@T_8bV98fHgs4#$d-fE&B0E zn;T+*-qtyR@efG5Pyz%Vvqg1MwG}?H(3o6&wr^>1{+*yC-Jr&??Jic#pmeJ^cRP;+ zH<+O*_|6&Ks;uh6GoG?76{eH_@v3*<*OT5;9@ERy#YO>aKlTj`!)2hq5gACqS zXp>l;7)_@use>j__Q=l%*K>mxRNi6H>4OrWpLj2PvYPZ{$K zr;0PMbnoP(A;zE(ZSU#rE`NY#y2DOdO$H8eJKw;4i{_h;n8%a6Y?pDFwtxex+YmR% zgkUdb3M^e38Q$xm{W35N(2Q?6W#7?P%_)^+M?Iwz4v$#<1cxLmw?9{Y?PZs|buP4l zErF98g`4t_&itCehuBZ2EKC&ox*bZc2C)FXO3XFI21@M=-#*|0WL6&z$c#DML_}UT zk6oR!Hz|U??aly@zQMrKxE98#EQMBH^`GiJk_I%0s9|k@-iA&r8I-P+zElq9VQF^M zQMhn=TfA!<4PR)(n#MRidcij`83Rjt%^nV+(jRw5RDNEjKS7wtnA(~+`-<2&%AOp- zeHZr$hkep9$+gny8+rUv@gMY6bcI)_Ivk6l79Zm9*9uvel@&EF{CE}net^P?(=B|} z@Uf(Cu}UZW{Ndx8_BQDR&uOQN56ju7aQ1$zLiL@kes>HgIL5wtc`xjGA`W-_F)I4! z5_Qu!_Lw6QY;WRr$G%4C+EK}vLf5y>LZPv9jk17Y-VkLz&ZGUb8K5N z-!(-GM{uzHVjZDwx?lP0onHx)Ghtvtw(%DXIZw67^JNIW8o7-fOvt3$rIJt!cA}yl@yuOPkAn}FQZ|$bpZ&T%LdR2x# zS^8qsO278-SLz0$PC${V|9IoO%##do%mBvyt)muWYj}Y{cKkVz91FK5uNpPLQ&=l)nQXsdbh z-Y{H zDK15k4Ie>&Z;P4lyc;u;boPEP)GVytrW3qR zkXfyI$vV}1C9O|1X7QVxm)Az=L5&4P#rl`>49Dc%6_N7&p%b3VJHbWQPl+QNRZVZl zZ6y5^hI)_E=@ut~@WN%f>z4VWv~l-R)X0{#avCT0bEIBoxp2lz;Kad7luik&o~tjw z+8=;c2YfngF1k1&6MGheBVX=ZU)wgAQFTMT_Ia04m=;QB)9ncedqh1oJAVOer+vR# zfVgVGuGuU~2rCQz*F-WLtV0RXRX@Bih(_9W*t*J!jN*ZS?M%?vf9@lXY?N%HBl%sG z27AvcO_KP9(PaI2V4C)zng>0(o98B1jL=X77?>5a)@@NV>w=7t@wMA}EG|`O^zQfC zRF}1v7C4k!wSP(+54eaAhCsL zj_q!E&oBzG7dmS*EZr3vnMVtxX^T3}3g5^SYD>Pqz0^!8meN};(y|O{|T*3dOOeWPKSjcte2QYNdrAPkH&gRL7W5( z$Zj)fuOWO3U}>lOT!TRK|95rL->Ze7+03jjKqd{}AaP9nbs$&2#4UIk1#&9^s_VCB zZ+XR5ase`9b~O3-D7*%Nf>>tGnDM->ey397e!wU(x9eBoWt!EVy{&kY#vj?&@XTFDDK>V3 z6faXrtBovyN9HZ4~H` zT)V{deiUK8Jm~rZ2Te;dFt3jeUdHMqoduDq1u`60$uBx07nGr@IE2}@!aBv{@i}^%h&mjT zZ}#K|gf?(C-rj0ce9%ch%dE(>A3mea9hxWSVn!FGayo)aDv|+aD|UCkoTDccCds}X zWr}-BW$=U*gwCc9q(>Mli7&mskh2SN6Wi;$-74CYo2m53vU+y2DCJL(6?4LgSq6>6 zQITvJf?CQu>d8TUDowPlS0ca23{(Y5=KUHh=bp;Ni_95X6;Zs3Cv^<@*?y~N#!KGh z?MmFGk=<oUzS;m|E9B##JdLHi;g~7)1q0QTTH^Sz|u}YjJKBd1jS6DkqkJmQ-=hcw)UP+Zyk&Qa`M zez-fuH(G&xkb)w~jn6X8W8a*|sIO@n{gkF9G_MrZRJZ))H<<;6;?c`ow&(2xv=BBy zQdf{UUtDxRC~kzkwBR_%%i?X^3W!V4*5B5G z-@dB2cKI+U@6NtC=0j9GcQ2*P0Ut+tQF#;hx3SVwJSTes_TZ!*t$(VI2-X-EWHJbx zxv@+D&juaEvM$2YPk9(A?^7Eh*mLZpv=DdhvOa?~Dx zR_edOZ2%v$-Yl+7mbG< zErq>}c;Yrev%(;HCB98#9MMyYkCx^ivTkR;r}gz=L(qh3Usk*hSaR4j#;(EO)MYL0 z9v6W>_Z*C)_QEH$eVOuV);_Z8#}>)+7>O#g%!=R!w8!LMoKdH$=(ZShxn21il%*lK zY7boeQjc9pNBZRZSVf6j$A(5ZuHT~|OgJ(m1-fKdGAew@GW$p4>uL7FPMnmNyU!cP z@7?Uy0|0wP)c8(NI!tY?Wj*gp1MXu3)c~$1-z_b5kHR`C45}^fiXwj_1B^BeEznAJ z>%tk{Ok?I@sK|D)uMDl7wM_ro7_R`}$}m2v;v|3UjS{-7p%Z;cKryl%aI5v^mHSo6 z$h*-9emHQLO-DfEpfR2>Mmzc>v>j)5%(6FYnf7-I@R)M%f{@J!VGbTbscm_x2xm=fn#0_Mp>03#>(2<2%lqAqNRh`T*$B7Ath524*n%=G{ z0T9w+1O+{ZYFBbFCVZ@E`N`w26?v_OIQ1=PuT7t{hXB)Cb;;v7zgw?|aZ%3yfcv>o zDUD9%`x1|{eXXl0n;dR;!l$5t2u#OnA9r|F^61vSo;>EL09{5=8`2)Hvwl zRv1mlrt`?4E*6RV5hQW4OM^Hqne?Gn0ns0)v;SkS|BY4FHt^lJrzick7ZL4Q>Lb=x z48?7jFA#TquwW23ow73v^RotTWXU}P%8!{U+$-z@x;ir6?hJi-Occ0+OR^AF#>M0m ze~Xr^Db2OaIC}a)yexOx{A?Vow(-OIxp?yvO0j|LS*IOc-r)r3vSLv{aX1h?duy58 zSRZ$Jtd$sU1S7QgTS7yK7H#ro4cYXP0RcUy8Cikxh229D0k0=tE#tMJE@TvBR?~uk zRk98oapOgG_L@O~G zFS0S*?lbRr{~x#jb{(F68`Cfmtmr#i>SmpP>FSl_;e1wcp_KLG{fUd2%+H)>54UQl z?|*y1Ps{GbXkI4400d1Mrf}>P-b)Pf@)cT%KSZLU|F?h1NFMHI79)C^fi+M~+9#h~ z#~*G@AmSf_YN7C9U2aFTJb61ooC_BUZ_;$*VQ!A0Q4K5Y=l?rHLTZSqD!OA{Fv_D2 zC|r@rNC_INq1{P-EST`Ao9zPusBZy;vzoh5Qz$RjO7zR8;C1YRG%1xLWl=RKCS!gF ztz%9=YC1%OgneR(kOxK7Ze=Jch@HO>+6I=nW{akx~U4$?k*F?pS}gS zEuxLPrCU5y^JQe1jE|fhhciamepOCg7idWBRf6PLV(v5dzXuq+a?`v-eN-3uDd_*a z*j$rgyp%>A@sYF3mcllH)3nvRc2U3?EsW6M{+)iHbfI}kM_K0*=6dU3qPGsVrO7^C z`dnQI&e>#3aht$u+UOIv23}0dE0tCdmm^H|dkfhgKr~O{XzhxQh9H-ienUo4oNPRE zIKvjciA-~s>D1qac~e`C!B)%oq#T?c>jhr2A-pjV%Rv3IP3 z5YYna+ZxuFK-UBzT|3AaDe+mlU;lNC5!WGK3m=@ZBJr2QK56O7xaLhw&C+v()Y+%0 zUyTd4S*q_=t=4EiR&Ox?^I&IGE})V=j(J)8GYiIR4XY!0w)bY|w>eQ+KjU_|?@TvF zG(XCV>GzNew01bh#f_^d;%K?=qbhLv{s?=Rm%*9zB`((5e<1c1H*B8SmFwySS~=Zxx>`*{?CboPwI7A z1*#V2CM6t~CO{^FZ{|L-8^5Po)GxhEDV( z_!2@$C}R@StAW{2Etu*^!c`tJ{QDvNyWoOfzKdyev5-f8#jemQHsZaR{8&xb-2A1w z{>Sxt`VDC&9sc5JDaC8Wo)gmL6y<`hP2P!&3vy(7{L}lT%i?gcvn!>;b$U1p)S1h4 z$-!$ZenO0%K(p*1%_=ol&E4M9XGQ+@T27Ac>yhkDae9DwGVyVjhS2fKYX|S0zIRWP z9BE!f4Y`&IAHKkxwrxtgWFy7SNpUWD)y`SqvrL${^06n|xADB)=w44W&)6O{JpXq4 zdT__0oE)ppK}e}}Q6qIV)_hUuHc~txWKbr||HRFW8aV^Qm4DYfkRBEMUK(@6zpQ6@ z&MH9@>wx%k0Vnz~Em(SAnV_jP7ST7!a(@GCs&98yJrlr@VQW;28pUAbKuY%jK<1uf zOzQ}KYi(gBN2*QRXG6*H=S5qud-711YQM>z-XRf_I5WaaRYALeqF8sB!ktM4A=w=v zbcKE1tz;P$169nb#$vcD!`=Q1-_=ACtj+kb01DZ?Kz*0wnJuQmP?ul=LTtKJ>veWV zT}Gi`oJTK=$fiYj^=J$CR%YC_f>C0gsbMbWL@iP)_BNFeOeng0(dXym}LlAA! z*{Bl}6LIB5S>=;(iTCJRr$LLNvsUH5v80E}k)@l<@-@#SI!U9z0=D&dc2fBPXb;oG3O%3b<^f5gm=A4zp>MMcEIxz@JkI^KPl8iMZ@A*qVE@ z$H>mD^w>0rgG~MWls(}w*vVhXrW(gD{L=bX$=b`?^ETrg*%s%zGU&~Ofkj&gn5>@e zNcRW>!25k)$|ln-FA)Z1t?WSE-t%8ae%n2Ku}a73;{iAj>NHZuh~^i*aEGE@_RCWg zBb6Tr;}h6dKLmy$f4iJW+HhQpc-4LTv=R5{C*lV0wRJ@ny@)r#Z@1T613wJ;n;KZP zL{=#{RnNg`3jp7;GG+J(q8pz^jhYs_k}$ee?y+JIUchEqcTY(T1mFR56+Y~vfQ9L2(zvJT`n~H)9lO99w1BPLcnt}Q=$6P$JFA7ua2t zNz@(XsJ9?!cAMG4CnYK%9qy)&UhLYP+=>waVX&>cizZRjam=dR#KPNmc3%EjChf)v1j(49+paH;fu3K}N#=-y=tIl3;)a+XNO29VY;g%dsERI7Cfh z78B&rLR~?s%YHZu_B2ivGS6SpheF0>FZuQj$bdn4G&Yb&(-E~3;_4R%^)i_F-MQtq zHNb7+Fm8JkjOe{Zxc&z8=)wqQgol-;(Us;(m`dKs{qWZiVEM5;?ELIH_)Ls8PEmXR zATnfh$Z4|lKt>0$yPniYRlyHVl_Ts_SRL5hh--JhxOxSshQG^` z$k#Ji3egfr?P(nuZXitMl^k<=nk-W_O^#s0FULEP247VNmXDQ82#uV4z}uTp4DI!F zdN2xdYCbqyA9A;)3-DgpgH!gjzKYO^f?l9v^L^GwHNy3(CwChNi#er7ov4#vRuLK? zt&=(e0?fFDvAlOD{fxuU9%KY*^+rld-271gO*;~ln*TXl7^_1F=Uu}p*m~=5##Ac~af|_pr^GvhzOWu;gZzUnP3ubLrel1Yk~>rQPn=Xa zL#*xvefnHRZ?Qs((hlYEoUHjQH2vCkRY_sPdd_7=_Suxqa6c;nW+O^bOQ*S=CHTOc z15^0XM80ud3UO4_kg8w^y;yk0=PyP2zFeAMltGEvrO#PhMr0Y?6E(1{&D=X@vO5d6 zyizHu;Mb&s<)HH7DzyH~bg7tRfX;27afM}&nU{hhqsZrx#s}V0#k*}F;e`W;jJ$Y@ z08GjvLWoS&d8e;a{5#gfDdI$i-3XkX_>Q{q^lwm15N)%%z?yh$^o`Z8$HD<_9cD(3&`E{A2_KR ze_2%Y5I(c)M3kSpUKssp>C%t(B1sasON9=tsxQ+T;~%>SUuXUK zQkhy%`~6BXh^FetZ4?2Qe^m#?#gY{47Ejij9)9Pr=Kbh=T_o)6*|@iSx;A}HO^vi5;)eJIG;oIUFI zU<%kb0Pa?2snCH#LC@N5a4j;brf@{T0)R^h0^SlOx#dOR)e}Y9NTD1pEnYCA3)L;^eWD!#^f!{U>8GYF=ElkG29qm%k zinP9aWNo8^kNPWvQIO|Et4Wyc;9fVZNv-g{?d(EvTU!f3vv#4h=R%apvre; zPuLmViR(iTZG-e1?Fl-Nt}|?{`C#d?-QCcC=S`~R&;dJ^{t|VK*`097qxCysjT2Gl zP;pS^uzh=02JNVW6$SGSF+jKZ40d#VqvyZm3M=#0`W1&u6xeA>Tt9Zn)Z$DmuZbGV`D5e!{YXx84|AR=c-q8Ulv>fkW3T8fsyK zUk_rrYj~jcd__m}O5_-yGNLENh{fXpT|Cghh9w!`ZyfX7Q7-;lI(xtKsB&Y73&lys zB?q?3Mv{(ATcWB#f#On$q-tB2s9D3BG->9b73(e^I6bl^^Z@K}qwC*eB=yH}a$i?`4y_}&33E_$CtH;(XUk4j%_rR`q`^d)2 z39+1u0dMN5teVPqo@kFLl3JRZ(v_N`w_WBa(!4*j>w$A5EAke6OlN=P;@IDe7hBtQ zaMt%nRzB}UBZX4|dX{>tXDpA8N+P6=K2GyjNZiX7n|xh|yD>y1^ppU;!o} z7OCsr`0eyF7e?$SO-^_jx)y6Nq<@V3&WtR#sK%ACA@FfS7v#`n2|HNK#`hzq#f^+- z8Ycw3-8nKr%nBM~4#Ahaq3ao8I$Il&kJI=-(+Xj#MF%e#wkXOXX6ljl@;^SKe!qhF zL*F@Mm?J9QW<~qvbags#7hqmDh0zGk8*PH5o=pwyUtyT`paJUf2QHM6y%4!b6~_+& zrf|2I2NaGvaQWw_7gzK@vW;gzmDJOf5xSR77Rf2LcJN5K<@LB~0){W3d)Wx))90uH zd`3ivfaM$64EXHhKR(leZ*LWqLYd0yQ8P2JOlxY0`+cTW0A#4#JVZbnG%i;)X5GQf zY$eTs69?ADoi^#o17G_wbKd(+uf~?K0f=d$7H9avr@c3`C_tmI=heS4$G2mAzW-G? zv7Cu{=lJFM8qTJRMu+AgdN}>Z6(bgJ^qla0sM^gtuTU+4cyHNz&wb&!2OK4If89+ zx`sEwQeZKe)TU+1|C_v^L0VuC1aaWx&`vPO>B@~S7yvoa0l~U5EPnvE z9R>hRk}PT8$?p*pMG9^BX;r?PsPc&Qi=UqYJ3u!?A1rLY4Ug4J1UWNUJWZOXf6?4A zcmM43W0-yY2WWud3Zn58{)geJ_<6=mQqy&*9q-DeLfmh);Py&!WDnPUOc^Vhb+`=kX9(=A zsjN)L(A%Ls7A7IrEt#WDJq?}qTBj)kax<#l z)HMB1EA7x&NYUK?z8eH`{+>m+X0NbH)ofxlFTd;X_|Ph4pUo&Dem6;YPdQ8vRY&iJ zpH?_7S?NyyG?Fr)8P}91qz> z)e^_q?%lrJ9=zOAEKNL23Q!t(S!Bv`oH*E1cB%T_wXgwC4VkCGDWB=&m(x~&L-})l zl%%)d^@!_z;Sy7vRCQ(JsCr@xO zq2PNQ)Zy(wo7c8UQ8}Ss{Rb|t8;=pvv{0aFf8fx17`~3#V?MD|p1IHezT`k=gej)w zam{7rvhlQD9N@IPf)4xXkNVkn-a}5e^~2(EeQv5@o*Y^Edv~45S??XeWt~bFk6qOj z5{u4w(nCjWUC=fB0~a_eOx54!cBPa{{xpNSp%9(r=Wop9-aVy7Ig$9aaxr(#H>@Fw zy`gFMOJ58xf2|*N+9AB(#-Ui+$9f*oWa1@R72c~8e#f6Qf*!itS&%AfUNXTPw6{yR z5~04GDa)~SjpOQBFiXGxs18y!S(wu`c?iVfte)39ho$VGM>A@h0{82_h%hA%Zy-YT z`_5PPs-@q43Z%?@zSo9tdj@u<6TCS9jnX--t%}~onZh~oCDTYUE7P>5!tTEZ39tp* z7}t&zSwB^`#$s7%c;eA<@gB^pA)@i~YK(i;0$WdJd!ax(-*5MPy(7J0P)OEQajSfA zi7>f$CooANuxz2!;#e1SNo74$BM|y7y~CQm1&xw1{r+)YBp9r!IJu)JhL5z`ZM^BB zMgbCHHP_T1ZZhew-J_^q3FJ1E?vB?TR<+N~eedP?J|nLSZq0*)MxMHfNvztt8dp({ zyk=74X0Yk?#qSkddJ+l@cJAR~(`ohJs-E~xxDg_G zbr#`81{I@Z$9Q~J&2CUs461+*xd}{BkM)6aFun4Z!D3fV9;e41tb+_4J3%5Ug#Hs% z?yPsi)iRMDf&0tK)DXi>H#Qkg_%YNNiu4m4Erp9Ytt&J>K!S^ah!hHr00=dy$3W7| zz8p-tAyb+>FIhj3t85&eHcjW03;4{51pW91 z==VU-FJl)4zS=Hsfzx%0n0~GT)myk@LDk|vuX%iwIjtcBNG$e9HIpQ(RGv+VEuR@a z?KB)lVkgNyl{!VT%%O-#F;HsET4bR0`}YpQv1oBbnzVW??-hT!dMrjEMUVZ|Fw44SJG(acetTDfXG$}vL6*@+499wwufP*W zkxduP-B?n>?r?Lv-{X-~4FWdnTg!$c*|F->r7pwpJ>6w7I0<|N)A`$t{z@Qs_prrY zyyw8)DHt@(P4G)3+Ty!C3wu|)22q}?m>g__d4Sp~*pqNSCIrdc;f6 zwt7o<8#WK4*gaznifTc@JH2}yV-`WCvp^s zrGZ=IZF~G<&I04ngF)Men4xo8^W}bPEIi}k!N;9%P&kk~0FgO@bN){H2?l)l*jGdD zb_8GwRIS&|{xTdrHiLnn&%Ht&kt6Ma_t+hvQJJ*je6_jHq>1WcQXSYOZc}`qA?%Py zY$+oeZRQO3gG2%}G-usPEWKG}${SeUHAUG$HwlC+dS8Y_s+)}^5+u~*{o&`eq->p8 zDCw}M#r0Fva7q>=_`9pBO)S-k0!+5&Pj6+g5qLlLm&5kp)gVHK4L}K<%*3`)>N3dz*w?SSAh{+^93)a< zI5~{wTJRAR4_~|mxiwKT|98@J zBd0Ej*BF_(K)e1MC4J17z}N?28=QO-k5DcCj;w~!%g?-U-WZx@ogV+=fTfhtuVL6W z^wxA9dbnW_5{V5LhdZ?M7(wK{jjP?VoCZ}()YKPd7Do|qgN}P(iJL6FejEV2#l_QH zG-X(@?cbHOKm?&GXC~ZJun*0SRWe2f&p2E{!HtWnpV{C)XG7i$eddSJl+PaF)rFN9DQy|KJxUA7QTP(*yYE`0~M)?cQ02CFoeXtd|{kZ)AulOVC zS5=a<*oj`_PnOe^BU>)I@{!2+JDnasqmFC%3$y^<#m<@ICgH}Q7k|xym(SM;Pt8Is z11(93oNY<6P)dip;267eKx3uvD!ZHsk0-2@2C!~tYO8NfkH4qCR7sB`L%7=-12oHU z%?4KDtou<^Da(iowrIb+44ho@BrTH1-LeF|OA0U%?JX>UX5r@Z@`GYC;1q+ns9V0P zUT>8gJCS-iTzr?3^sTys{e0sIadAH#I61)Ok}4=7x5X+cz{FZ)*Q;Rap20=wOC3%{ z70K@up>OF>Ar9OmF!G4Y!2Qd2LoOxN`>oQWCu-?3Rd>03?*y-|G`S!0f;cF*#a<;p zr_{(^ao{Ds?S2c0qTMra%abE;$@pCMnGVc*4Ca|_@)%fngmePG6Vg>Bep^!gQ+~wu z#5G>FibPrHZ5vvOYpEauHWx+O9~1oS-|J7a}*E0sp)y=sSoC`s!tV! zkiKz&2(O@}9~zc~7-eW}jCQV=Sh5c|kQlskX}!B@U0>2O4ZFY_=RAzc0aL~Y#&3f}OXRhLM5fb(A?+t`EjL5qoGm{j; zc!G__tIM@;ZyY>4Q84$Sq*jnXqFWdoJ1G>ers{cJx?(G={FQ2f;o$vXEPnVSq0jGr zO%P63RyMRED7CC5;u_$9v}T_B__Rc8_i{*|1Y6l*50ooA+Lt=dqnROn8cH;g;U={_ z>fE)zQHikz-i%#3-es{%J-3+W;s#-uw0Wl`f>q{QkJCiDk>ZRVVuJr}JPfsGwglkP z5GwCeM*W@lJ2&M4(ZddO4~#&n@IP?s;rm)b9hl=tGObPY|`kVzVww^HvcG(nlE(?Zb+`=h4B+tAZGls&z4&F9ChC>nMYqKhin!5 z<0-#YcMRzU4OQ@&Z7@8guEGm=)6)`(nkq{(S07V%gGs%C?@@cY5mc+1rhdjXSG2yA zUOcddC5EPM*dWowrwfB6TW91F*;)paNX`e6MLxl5J3b|aMQ;?9TjYC_RvSE3zxui` z3mRyl>4$~oMiD)<+;;Yl=U0UJ@dd3oToGJoovGZr&Y4cft*jEn|roA$Pc1e-_j_XfjldnNo z*mbjPqYdHw;MB2)#kMrD{C>^Hq}NR~9<4U<6@gPR=S(@vS?}JEcX|3f?U2TTfuj6p z<9#h*cBPB=O~id&+Fbnrh1-+xEG}^sHc7a5VQazkiNddfmF0dMgL$;#gGMN zMYgV~y_to-25b-fDZV6!L~gI3JV6_DX;}x?PJ*jz zi#JTjP4i_Ty(I^4ud)3ZvnrW`+Lx@UMzh3acGR5Sv>e9vM(h{YYk3^IbDN-!L*Q_a z@RnlFZw+iS>{@P5akXB%-?VLI16OEH7 zBRLGn`5It9E{dv4J@NNdO!pS(sdJ3J5lz8p1_jl!{vAn^fW{SJFpsWOlk>=(QRg31 zNoPC5aS+w>&36VtisGf6qt;K!ygw@ti8WP~NjjAf9^`+{PvK~|#*ID`Z=4Rq(b#9g zoIG;*KV8YVe1Yl%w!!TKrOP>S9+Td=_dq)QY@T#s0?cz+>WMF4dfp=4i{+Z9HM1`6 zl}aguj}?}#pHgnxM%rVluT+rptUj)h*%+wq%Z-=y&|KTdmR*g6XLQP235Ig~(kmoV zI-$!>g56>QY-Ax)&Gz6CT^_59GItsiC3iBM^J46;O6`^0zgi(2L|vUY0|Kx>fMk6 z&=bzD`jwMY94wf4X}ul~vF?Ps-8%h~;?`vWw=P~~oy)!l#GLVA2W8OA>WaAOha&u8 z28niI1Yp;>iU^H#I&mj7IC+IOtYM5C2&tz)5QNYgfn5g<9H3x5Y(wX)pgN1ilyH%z z0-aktR`&<0)lCB2o=ciplvQ(xAY!U-L#2-mbJe&KYjsh!QJ*q>l+($*nsb$y1RbpP z0kry*zJs_=Uc^n0TvAaAFCFsFmC*r@uv%k|)-Jl}fbL|9gM-56SL4A((k+V0W@mb; z$GyTra<;V5;7GFG;VU#uK%Y8NWRK=%>fX%7mX(AuZZ?sxS&cC(dKSCm z=q@zy-prsadx-5}I}~Oc_P$lkb@EF71OjhsOZO%^AG- z$J31TpXV33ds`q2pbROk-v<#HyOf9q&XO~ESA?-{f0>?BoE* zyS%)zP_QpPFPxO~!=N?0ZL0aJwq+5UpCG#MpdowU_Z4CRR+D=Wrx$Jz_8MTlX77ee z0J<8<>IHh|9*Y(jJhK^9e&2Wj=KkxMt9Y~z^ZP&x31m1wPBlbI^rtfuR;ti#%y-cE zL7e`-1T7Z?A19FW;?q#`gE#?NN&;r#g!?ZQfYxU3b)T;Wt2i`;qO8IZ5@4-eoBfcN z>Ds{XgQ#&mK7kXHdg9R>Odqec(=Z1hIz=~89c+|{d#nR~<-S2!wU*JG_ecB^fFO9V zmJVWzGQpywPx!rg^+CXN;p@l-D;JMiAe>FP8(A|AwWY@;rGwI7uV(G%0s_kCYx85x5Js%i&;nk&kfX?Y@$@bnD zLkFd!P--*-vC_5LmY5RKMn#J}v#)>7(1{4rBuh)akb)MVbL&^BSCBqjFRClMiNlJu zE=R)<>vTW7cFEZKB>sY4-e=~YcabeO{^4<*?C%v!Py>)=+9F!2{NnhgQ z%VTTXcM*}=3Yf2QtLpkNg@sOgmZj-kWY^DZhQ9hTm()uC1&MKm*PiS{Is{s8ZvkzZ zOqVj~@}CVmEQyM~rYEX%^8%vgNj5??GzBg#gCb}mDsx2};!WG*@wu*;&W(*S+zhg7 zQHY^mt;}VAV%hKx-}M6MmsUyBcytkW zY#5EHhjy0y7igQd7!Bql^Z3P?c3Z!15Y&Na=5BggmHl-I4afK^;ncgRcXOfMV+*0V zxltl@!sgi!4AVRcTr*A`Eu@cQfamwT&_9aOE$1AaDMok!>DQ*_WLE*_er{CUV=?l7 zoYeX(4SgKAaP3|T+QDD9juo4)e4KEeOPpMDA(ty1t$CG8Tz)l_W|3<2bFxch**(Wm zpmf-M{#LFt6zFlKx!DU?IL{_~-_Pke6Ot?}NpHrj#m<91pTvZ}EQegEw}^@SsmpBc zZQ#^{1=P8xcoNF`+x~f#x&>77Z-fqOP&eu%iRdlOv_!iwP|FBW z0jG=0Si5UaY(Le>PcSNyUQ`_DIO~ip)5-UvK3@F-fxsPm`_Pf0dB(rUE`HTClRKM$ zxFjwam49e(CzlE0S48(v7ZI6rW8@;54 zz2df7Z?EhLGxtT$bsyriW}vU~e)B6Sh8+7k2M7Uy6HfxG+JG%10eJBTJ48Ej4xcQ4;Bbqr)l+R(>LFz}>jMM=w(H02uQg>IYy9z&o%h zPi@8L#>H#p9iB3HT7xu)N)4pvB2-d2(Da00**($S3g#7)hmWvy)jQ5`Rr z@RC*RzvjHgTP5sZuit*8Eg{_DUq?AiV3?n2^|_S#{C z-((#Vux736yI>sfQry*X;-F<3z^skV>^C&~Rf|;aI>F9Z zbv&Aa|G*2EHC&e;Uz0zCT1s$uYwNjHTps?(WM0OcWh0C`_T>bZporKVZC-__TeMX0 z6tKq3SdkqV`%a0*WVn@M#WY{(2H_(H$!gY_or)-2y9qmTwc|jE+hoG8D;??6_s$%! zH4-VpSEo5TO2NN$WSEoBg>GbYNii|10gFuyo(iRMbCA-y^IJ`?ATF@_eN#|?=av#X zH{00J8x>;07R{)CsLodxDxYFA4QCS-@Od&T37haQT|~=*O5-fir1$S5F29)IV}{oE z7gb)%tjn>3RanM36Mnt%@zK|JLuV|=$^)Qi!S|f!%(bh_raq_12j*UiV3Rt@LBy*1 zMaTP*)2ts))~=c+N-nD2w>nM$w8|HVamICt_l$7qp>e`!1~E9j@<4e~u7ZRfNgx$L zq-DBB71aU=<%%Z`Z7@|zn9%InND*!Cak7%IlL?%<(RtJYLUoVce&9P!0LoD?Af7;Z zyEC5{i3k>UU^@s5tq_sZC1oVtCf+&4Lt%9U>VxwNN=TB!V#vZ`nW%&!+8WREoIH7A zXZ!r0?lavi42JzuwK@g@mFUsv5Azt#pSr_`ybXL#&O2SQ7bEubcja{}ALqHknT!Q- z>=42t`op!lHg>&5$0f{$13!ubJoiYjaF=dPEV^)sdJM#I9LI~%&!KbeUY^R+J9;$3 zqVMEL$s+`8!+WB2UCBoW1pYb*= zqdBy~%(>2jIelzj#KYkZPgF?lAvBxk;qu%CTEm|i(s~yh#%N|BCdT934_32{S2(b$ z6F-s0%5Z0;rrH5Xq|#%3DMFVyWcQu_c1__)IOpX)z&Y6sdWsAdhhkqmNO^7!|4`kv zIMVs2#XJ}kl|4AT&SK@HhJ>RrK}x;?psF?}#Y6r^2A zY&s>)XvBUjem_4~)xQ44pYUFy>^uFh+ru#GdiaHn{M*3>lCKVHJ6@`-j9RIIR+vo;Yv*JO z*N14cNzHPz!QW%<47Xw`Yw0h^olIL5{3TYjVLQI|G)o#NWgMWxiAg`%c3frLlIi_M zzGj3MF`pXgw54h$uE8b_aBWlmXT2Vu>_ zmTMtdCqWn&z<(QZ=`<+}x+9)UuN*O*q;UnYFCPav?$h!IEKoI$`1D5NvN^wBb-`WB zS6!L>?9lzL{PHo|drwMTRUi1>tVS$a3NilD$_YF-)#kEam1|SCZD!-0e$u$@kjB<@ z6{Dj*awTa{p@6aF-0vF5QWI>P2#dm9_#^5yU3IQ*ouhTu@#gtNYM#U5NNYc3kf+7E zwwH6?x%2nwYXqf|B8MHv<)7=flUyHA^f}cZTiD>l{>7#!e!rG5hv~|w!m8rQuvN`H zlio~QnPW@iw9j6N9A@~S=4OCXs5aj1&(i z+qg>Hr~Ua+g^n1tN1A}DqA}>$Vrzny;_H-O`N&RDqq(;@rd9~JEf{diRZz|wTuE5aZU6b1N+&hc;|Vf3 zH|7|dnYYuVOLjP#m&6-LWglk6qjwl`*g&xr((|&t$m_SBq!*VwlM^LPx*4#R#LUY? zqfD-Oo2)??k6y|~yPE@9DtC+*mb1i?^$#Wn`~&VuRiPBZmJ6DtYuZ-+476 znXX0jKwuE`Tn~b5EZ3UB|0?(VN~NSy`adR@y|}FK5|0mPWR)eSI$0LJ5Epp^_&X1~juyDMEGbsDK8-8f4s8?4C5Crp)5C?go@fwLV(F2ArH z1>wPvL0}KgkckVJ&F97;>s>tuN>MXL`T(iD8yN8& z1nM8VrU``i@anbf5eZb${t1nS%5w%6oc~I0)iGn?>INmgZ({6e|3f7Lp}7=)E9q3F zSkb>ZBPa4j&x}x``2koPDVCx?@nf#wgwTc4;;p#Y;PAiKRpg#eXEwj0@J+M$C~&*N zzo*)z`C5sB7-4D(p38U&Bg|-=S6Krh;u6Mkx3*-!@BH)y4j3F48xr1ra7{UxUatS4 z(hFMRLl%hb5giXfobaphiORB*F?}Inif1Jw>!iBps4tkRQ`|pOPy?-H_D;Oq*J84f zch3>vHE4gFf>>Se08v{WQ+#xR4-m^7(|&}-g$OlWZ50aUJ17IcrdWuHy_G9Pi?1)P z5iM4u698f3hC&|8>BYs5?GEe7;G|9*-i#`x?vWdW*$bTDgWIIty%YRP0vU46@u7jG z?h;_R0DI=sju_VB;fD|@WGBdLRYnuiYC;TOZ=&K$+6b*N;$ zqg#8J#N;}3tDrt}xSd(u&6rh@t)l3qktVO<@fH&NVf|K8OtJu6K+mLyo2F(CwNveS{#I3#~IWCQM5S>3(SCS7ZB^cj!!k?^LG z_j|VrkxE9vJjwv5L9q}@R3E!WZdoFHKjQw9LMTC(9c8kkxV3$!)G&jm`b10qMftN~ z^?qvj=sIlUtrJ#9dw@f^Z8&14t_aAFFA$_J== zMqlsrdsB1jawB~nI?! zD<0~^mfy6^beCu5XGeotEQ@DBz(aJo+ik1IY2LR$Wp{edAxqgtfLI*CJsf=GbOJ#e zf}ekm1xu502K%LShAc_nJ`jWYXOI5DHopjgtT5fN8gw7skd(<uNNQqwF^W&!|XMA92(+a?!=(-Y8(c?+J4~Q$r->PAU^4 z4TIfG@Rtgq(L&j)v^lD+8Z;Ne%8iztgpWKf~zcE>Q0NFZFK&^y0lqPeAeB85Tq%a*5%G z&z8Mtb2Sy{;rsmAcCkNkfR{q?8fjwz#Y==WbO}3Gojx(z>ohL6ODCjWVk>&HB;xV$ z@8Rh~y@_W~Emkep1cP<6p_(d_v7zn_tb0@=pO714YHb-k<9yT)Q#OZ$L^2D7Hd+Ni z9|F|T5LCekjTQ*Sj3WlQgb+oE@FyY*SuB!#w!m-83~e^-xa5jF1#J<`@VaL_q{=%y zl;Lu`WkjQ6%p~B2$JJ%gM{RZn1GP<7(Dge**Pr`VqtjHH?Q}A@tG)Flp0Zl0XgAJr z6jd?ht-1N zA;|DEu3M{Q#SrONyu|gg3EQkLA;l>uu_rEFUyyFDE<}Ij^K=02Dyu-@nbi* z7KsI>?NPP7*IetAf?RyIvYEd<{n~}?TO9f+((?*$9rV@O0~{!)El{+2LCp*3jf;NT zZWbAXhIX_U;_rB^M5S@)gM0fa;em}?oU5kdbn@7@h7kBUcQ)tad!{+ zSP79+cys{Dvx!;w#{v8Pa30`8za(Jhy_@&9Wm~3foJ%@a7lq8G;JA}i9Y&$aqi6s3 zXKuvwN={P!75d(_v>%fE3kH!TN}_-rjz<44J2Wq7)(tqR{CAwfy=zQC2?Yi*o7p`7 z=p)-h*vYnz%zxx?(1)O$mXLJxrD8(n^%ImXuM~R)K}7-*{r={>nD{Ws4jW!Uz4`r@ z8xB56w4}Vq3z&QVxFHu{kXXPVA2uBU5K_qqGW?`~TNvJVq=^PEX;pRW?V-gx$pBTN zO(AHQ08~I*9R=@!_p(n! zXP^PMNEa)zn?W6PTcbk0&_U>ujbzayb;gM;6F7zsfn(S;G>G;YiIxBTATr{Dcy6RP z(AjqU@Evy0PP(Oy1(9>A1;miGvx?cidqNqO1@iZ^!e#fF0Th&|$-54g$mNfv2y*G) z{SOraV8$G82s0wx9I_VJt=H$`>>`z8b*}>~I7;(%h_W=#13XBTl}@#dck%w6vaG7W zphpuTx%_i?`Kzrjr2)`Lf2J>qqq)1b zFb)EZ&@ab~4t*leu9fK@Xq*!hxwMQI^jB<9B~m@E2U1|^b?0ud8*T`lhzyQTA4IyG zNY$y_jf$!bsaX|>F+{2157!%jvz#yx%d^|TXdtchH3TgSE{O5bE29J!Q;K>jvl_oB zwo>uP0r{@>NN@+mz1yhb?m%`rEIoYI5r9oO$m2>k98$}7ER;ChWDEX53a*9Ut@BY? zkgfDwJ5%u3NJZhOdkI;mjVaZttLtav(<2|(Tud%pwckiCwD!FeTeYBiw`fSme~;JYYcdj++L1dm-1SXkHll_y#lSM_+pGe!P};VeRpe z)|Lk6!D?5RR~87^p!gY=V46&5Mwo!`7^IzMWoq@y?!31)}N^AJe0I7;fr- zc&WOrEj&teYJ!;9&zNEOh6Vt_By)3;AB_u5U#;dP?-82e4!__zE9cl7^U-QQ-=7I^^K2YFTfljC3`hEYM)X~cC5P$rR&tkU;<|ZQ^Ftl*rE^QoG zlL6(?NeIXVK8H;tZum2ftm_2Ns#d+dL1auOo7Ka+t13$(o2Immu`4M*X>&=*#n$Ny z(v+&g#2;t(xuN#XrpVMylMpVGn%qXH(m_*%U>E%76qeIp_;Uj=5i@4jTCg5Rzp9tv zC*<^DZPs4DH=S&Xv9G?C9icn-w!x*U3Q)dYGn>S*>n%|#`?9^>%=L+$ueLPLA0unD zpl^+y#B|G9udgg zIriZ|%D2VqJyt7~JE7{_Bj85aMBK-K1bvw^NYSgF)t@wZKg&8nMe zYUU8aJ#M{5MuDhq@70c>Y25zd5Yf5Bpza+Fqj}KeGg0BIuRgk4i1Ak1&Op8ep+hK> zK4XE5!r(%$7ViWvnADWaQTFM(tV5!n`w|UmKI^8LSwpREPEHC0#NbU&wPWCPf=aaS z)}XOWd6>F?Oc@P_KG#CT;v)DGB1$Ixan*u#*#gR0EQ5_hFekr1r)Ap`?Fk-lt>vb3 zpuSn0tDpq)o$~wQ-C;EQbI;{HnmjFMV6FxyHtP!(h~V;_s-@0aEpiQ)RY^L-JphVNw%GKmR5TqJaA8hMD$2yoA>GYFz{9P0@V>~E7;)z zCV<&+6FZM*$mJq(jlBaVm*T#waK)p6q)6M^8V;CUQoI;E`M@hQ>e{5~vavCUeFE`F zBfuj?>^emR`kBigORN9jE~3n~Z93+?NeI2YieHL7D^khm^k4v0-mBz|RZPPQwAIDO z-H1j?K}1rTbvgTXdtopjlIVp;m%F7ZuKt`HWG<)r->lI`0B)KBxOwLp!%e6(yh(Vp zw&c58Ch75RlIj9jiH|1|&D zcfRC>>&rbeqnXzSo}q|)qFC5;=d)nAwYa#$DeYS`gr%(N^5|*o!Au81!Ho|CE?mAk z3aZt6W*+#y!G3Cn!TM{eO1=vw^AzOjMcGX#9;3R>E_V+NlMWWjbSuH$HA88-$;HR1 zwVp-Z0axcM_sQyt8-qF6+w^Iio(+ZZWFcRCO6&FfLN=)C%|M@pn78W-4 zEgWoITpS$CtNk&52jGz7Qrzd4#iM*_j?d~sB@mpDL%{Z|vV;27k9~GQ3)c`rBAUCj zbo386I3IFx3ki!n5fu}cdoHh_sHCi-^;%m;S5M!-(&~-1jjf%%o4bdn7uee;^j+Bd z58)A!iAf)mQ&K;DhJ4A*%P%M_DlVz2uBol7Z)j}l?COU1^!D|C8yy>;Kp-c7q81jH zmRDBS);BiM2Zu+;C#PrU7r#*ef}7f80Q;PxGGXpbWWmBQ0UdiwA}4h!fyfypHm#%M zqS{Az3ZmUOXAj#g*@o#|ogiv2W zI|sR_HU1d&z?|Kf9TJbOos>H_ou#u$9lyP)?yK49Is#Fr;<7fQL~gjT^>WjMB1l5TEaQLd>0;8A!At#DcvEImx^TNoG>wMGLtR8gYxw)Hq-XmI`LK-xdufl_j6_E7Q_Twglbh;^lr1ThNse0=@1LWv z<7>md)2DQP+tO-{93ExkIjEa>X{N+LJQ zrJ4H+S@;f(#$L@^KITdL#G z9@7eG?t(RD05`kyoYWUS(=6u_nz_Ct7WWD zj3Z6;anvO#?AdiBcN1eeaz@|&4}k8iRdJJ=1dN`X+{#8IenGk z>m9o-cfcUQ)J-#wYHpgLntr_TulwEO7(Vq^z5}4!R1(jTBr$7~UPT^c#Jpu3AgN~z z>#2J!a$#kXJNT&limJwmM>$nB(fvY$)H+S2BUoL9N@h)H(oDYgRUC)!Qe znYVEZ2Ft;sTZU~kh^6o4`3?6XOa$qb@TW(7HeoGy9rE;lg3Gnr4&Ar%56w-y2G56q z;fPv0kBnEKp8)l>71c~y0M&Ge23&_@2Jia4=(i)Ci-vG6SZGvlRm=a}dLA@Ur6rM9XBysBjc+ieRdes;CQYHji6D1)-ZGSrJ znBgip`E+d21tJPfPV0lWi8&T z`hL`Sl~NmY?z!x&wAoWt+qix8B!6Jxm-I`i@mP|TUNgo0$fXX^O;FB$O0Clu<7tg0 z%6__7E|=?asjXaT!ce8^TC_&3ANv?g#+LxFn{k+~dlzayx+PwQtO5j&d<*>&+gapc z-Yh!g^Po2B>e(e}MBeaykqQ>R$+#9pow8O}-$x{Nug-imKN=Y;&CeQ<2E{E<_gXC# z!{R#Whw38S+$2LCx)W#@KgQn4JpRrZVm9i)+wu}R7a_Fq)tB_Umj-4nqyMa>4hZ=o zc8to&W~*Wbm~Hj;(pj6xl*G-0L~%|Kt8znU?KW6b{1 z@kJW{tEr18Pm*rkN>XOnTVA-1656;^6ZEc5rdv^`y==(SkcD`I0_>~#$;h~Gq1=Xv z>R-*m4hR$$^I&DL!7w!(P8{=tkP$LjyZ>6;xJ;S@=`?Y)CjHh>cE%Z#GZv#MoMC{` z3{g0L;r?<`n~EX-#m^2i;150?mflwzD3K^h7igZSs@s)fvzd-#>w~!WLLc^b-gPb> zD3bV!uIB{;V2?PN)IBnZ#&?85{XO_-HWvA1+1#Hga@4+Up{Dula5utZYsEn{ON6&^ zsB2A>x)7N$^yC4aCVa3S|4Qa_O2vnDavT$ z5mR@)3{Q0>?Q^zx;5+n8SXnB|aqukZFh0^;F%bd`6Bb*>n7mQ+k5oF3vp@cdjZ$Bb zvL0PhPLzmn4A8f+kiO9hLCHaq<$Wx zEXfJ|Ic+BZci|lw;MrB|d*_PlY$7qXbF_EYwAVqPpFzp={hweXfIq?LzrQ{9baMgU zfxkbf!ut()i_8J%4k4szIw7HQ_$P1k^n1#r_b|ysG0Cng%Fqc}$rw(O z)TNmAs~TSR3s=0Si@($=KBs~9xbht1NvH`sd;8yLP@(}{KF3GTguqU~drl`qK6fL! zA-$aq6xT}ku7^HGDgF2`vvF10`&cj}kUR0=k3#uG^{7m}lX8Q7;hcTg*Eeo?({e5k zdI#8d6~EnN3lJZJ{x{nQXVL{y63`K|vmietxmhC5FdpM>w;NyOXhX~pjD|5du5iIGdQ{Ueua zeyR>$ctIN?drB=;QixijP+ckTc2YTZ!Zv^}e5L$pZ0A*XDAfBW-YZNzQ^pO%2{X^Q z4r<{+L;)XB`hmtDJs(}=gER$hJjdu@ng9yFh6PS}3oWcV=emk}N^RXS?8#@VZ82 z3%k!9TA9lIFlVgj&{53AzRK9Ks)At}nla&@I{g=)8*44_<~{N9tZd724j7_(E4{G< zK_gzkbe%5b2x^QM*P;4I8z61%jVxTVnMimg_k_x@|q>D|8jp+ICSvQZ{*O zN=ARa%#Wbz2%bAABu~JMab&W6%#`m{M;JB*gj37VE=c+3QPsolJ{N zEwvTFQ&mPSJp90Ke`a1Bbh{>2&7=P}!<=_u*M-jOxcufEP*dO?>8&pKab$+aMV*#z z?Z#Uqwkr8Im4VoI{8R{xv*r}b@l18m0HHL^7tVHSquU43FfAD`FRCB0-hYw=jXrlx zr0$pxRkyLDZEm!dQr^;FiQyRa#>e|Oz&G;n+mzs`8(hdT)2`df@;DE7NlX_Q`;K10 zIzH9wL7bb43_a0WLPzdkJZJK%NN2zUvk-rwzCMvy2t?jDD+AYdonip^?|dXv1w=x0ZdZalC;RL z!Rl>|P4TT9G*exo$5wY039&K|hdEnU^iuY|TQ6O)15aVA1?w|yZ|m)^2D=5LHL5Zn zL{48_UtHMr&9+j@yHLV$ROrR%g0~e_N~Y6^Hm{hn<=qxlX=@b@axlKLTAmh3Dm&!| zI?XCt(bFcrqVfqg+Sst1M-_!*tNXZ7FT6t&s!nFBQ3n@FjJn|CHjBGWyLI2_&Mpo8tIQ zYOAqfRLJnr`|q^3|=tNTMc#;wBuBsX1?UwQ!rrJe&C1PCN$GKgIw>&DnI$N zS~^S4zRamPVZ48zU@VujP)&XgFhOVOI`)1hL2#542J7wP7byIyBXlGBoW zwe{0cWY5SM7?!{)|4q!y$Lci+k{SV)==w1Oj_j0r+4AXu-$y458C*ajAVXo&WqCs` ziMFz+&85IRFE0Z=jOk&C ze)hw1tA?poUo!i7TGr@N3JEJM+CyWf&=%3ufO{3jFS{SBoF7d34NE60!YeT3%>R(t zgVR0twDk2x0-vPbqKw6CzGLB;8CwYNhc2OiJ&$2L1Kz!i?~eURCCe4!p6a;xPJ~R( zq;#IiR~=E?KYFOh0=kr_XwoJ(CBG~SY?G}Zogorr^Vl48TuTJWBU#h~75UWh5{jX*R5eond0K3;Pn$Y7;+ zN+|dwzs~C}_nb4%?YVv$gf4oj31)hrY4 zMIU&@+QtN85UJL;n04rw_eFk6)EkdiUDin4nSL2+b|k!s+2_YI5(bD}$f*+E3a>Hz zTm3}^e!h1=u4u~j!pF+Nm_te=q;Sa5cJ`hzH_A|-2LXOyW`#4KWxsvRI&HVL5J<|K zoTN`^en`?FB{B4n$;g-S7bUo@>S~&E70-iadkPEL@ z-E_3enJp6>%pLT4?)3j@9qlsEhu4BySfOha86C-eCR*NZ9In>DW9 zzci{qc%*Hm{km@e@>NXQ!D@)c>ZM-s`J=$SMsi<_6RHDuu)V%VuU%FLwM~*2#OBZ- zWKN#)Q)wJq*q{5r%gdvl;2S8GjbGpkIXE2pzXVQ=DiOkIm(9N((5r$l0s!=#UPj&I z&AUK1f60M#iIjdR`#K;<5siPMomU67|BrxbV?}6JCR0^yEdwO)5@FneLTPPt?f3S}|9 z{#FASN9Fw(Z0}FHDd;zV((x_tmBhl3G@^G~4KeH1PNsG$yfSmM0yfGj@Bgd-^hyHB zE9`Ii>g%}BN9*cpZ`>YmxMk!)#R z-kGaYBC8zl0A8k)yJZf382@~zZvDnO%6_7g5w|@P zT|@zCiNKHdOy{tAdGz~?>PSNyl~w>>WId` zacZjQs#?r36xD#R*w#Dd&Iv=v_=DR_GRSbFQQAs&x+P@ z%^n#fgioEy!b&yJZ(vFDmpdGz-=PyHI7q-@jVJ8cUsoKf!$|EA-zgU!@&@bZKpO7T zXi246E@a-gngTnDLi8{`QXESUh{&@L`Sl%CQh|O`mo(qJLq9qWoj~6L1vz`hPV~Kw z8p9!K&7J;<+B`YETR~_R(Ipf(3pYl`MKHik?x(%79aL&(cUiknb%2pTB$2(zNm=S z4KE!3No?QF^AGF6Uly!n0G@K88|>r`RP{5OYY?2q4tX6&f?-_->mC`VsjAy!oRPEN zY4D80v=#6e&2U!Q?M0uP6Jtu0@YmLZEtR#*W9Y&jsVO*ie@cJbIG5*u@ga*rW$Bsu z(HkD*$r!am8Jif~{Ak2T3&8Ufn;mJCMYh-TndH~R475o_AbjVLrL(cL)D0xqX>63! zqf^?r)(Qd#cGb_awTjgFQU#}Yi30rX{Vls**=DD<)_*E>U=>W);c&@pC;;dMVR1B# z@8jkCN+!*5^Kfut%zYR;$A1O<+z>Q1xSvY=VhQ-7akbV@W?^cNe9k{*@ZLSE=5&B` ztw{Akqr2L9YRW0gJ{|Z;3&L@ zF3CmdhoiObWMrn`$SVW=Fp}sLw;+5(KEh8-8Tr0L#AHwA=|CjdT(;Ezp+a=*;<66GGEi+3Sn)gGPmp~<%6t218yfFRijM7*dWozcu8X-3yFzr)S|h}mYl{If z>J&1Z`9%mee`iQQ@)&&HLH$Vd*v=~CA_e93eOwvC?|edZgMvd;(F`~}u7dhz`x+#|+UX0gv$A23N7$RLw#ub_`|{XX$@*=U zXSyQoxmC>B7+YdeK*i_Z%WG#;Bp9AETV>qFu#7OQ+o3oIa5n7FmGo$YnImCGL5ak# z3C?w3{)Z0w^d=$@=|0@CcZK+7bEKKQ{7Lr01y1Vf68Ymt4RFWpRb&rBQknDF6_zGa zh#}+F^3=2{WrHZD{2^<+c22y6m&=!t8dA9K&R|ZhR9R#5Sz74ig4|8WHCif9xp77p zB~6v%@((7|NxI*6IYKrGuk7W9Q3 zn0>?f%)^D=^0No)WlnT~3vfnZ3h}v*um(q_D`8;zvHcy$+}2}*WjxPz9%mW)V-~tI z?HYCQk=M-)k>KnPyFHih566U;68qjH=dt0&YH$%U>Xu!J?w2*yeU=((9pncpbdlZD z;jDGO<_;DrO~}J)Qqr&vSc!4_2GZ<8fC5XqK=Jen|G;U_^pDi}2DDllB5k1ymz8Y` zEl1^yDRMl}`?Nf+E=o#EP@mqeIHI9aJxwns7h-!0^AGVrN>oD}^;3v(->BjcJE!|U z&cE}(uS==3?@7jl{dG0Jevh4@>3R( zaf}+)x<~_qg_@H`tK0OH?Xo6rdQp8=a~Y7!1YuMKnk$P^Z<_F8>ZFM%oSmIk*hjT1 zzxMy>HrnEg9HM_-DIRoSma=1{8@V&4+GGs$ z`Ygm=GlEHbNYhre?SNghtJ;!NX+3c8U}+Aa9$y~muG zuQ3WSt2(oFm(sp&w5KAEuY_5RX%Z#~uiGdvhNXTT%w#pN84j>SHBJZ@<{GA52Ah*l zVZLD_#Iz&Lxu1T`vOoLTt;p#9d&Di3+}-K5eDHEyn}VOE%P=l?g$}XoJ^JHEn730a zqWsMSG(Y-jd{dF#V=s$_y}O3J1;#OgfoYP@Yev$qdTZSxL0XDo<@uL5oNvb-zs3|) zc$UTyAKxUQkfo43U3%($?V5n zG1rWh^F4>e=D2fM%`}vdhP2eU&8BO`5?oj}e|_IXva%Lgwh9Sk?VM@Z_|zZt+7s?J zD=^MB;b&Pg+v!GCPf~G7ihoe1{la&=4uPapjq*!n5~%}@w#bq1{|0p4<`vmpRxaAS z%WADY6`8#*XkvutJN8-XFW!e5gNJfJEOEmc4+|_guwG744}-g2#A%}gN_`0jUrqDN zZHuyetDKN!vN!bgjj)C{Jm^&~#A^k1Coo|zP`^*}a#^*1aw_e{w*!CSPFK!{EwwTD zr<%1cCemF@HPxE@p_+Bl?t@nC+!DINi#yMxbm2|;+lu_E&TyF-MzR%sqU_k(2dym! zLs8DEv1uA4KBf`5;`p6X5^Bv2hr$e(aZ=-Ti$&tZ$W*M%qg6F`wnNzALO_(4*J7#N z+UM-C9XFvttIl`{i^eP(d%}{l>esE|t749{g_o_EYLZ_l8YIpVE`K7x;v-|w6y6AU z7`-k-C^W>kyEHiNw01b7>c}0M&C$|8d|D`AnZuId_4T$psQD|kp{C>zUIys%Du)^u zz#Z;-%{@-3jn*mjryF!L;@3QN3%(%wrj6rKd@sbC;}$?I2wih%lDb$UPS)uFRB1}@ zFPhUliJ-diehV}Z)L$rIW<`FE^xv;mY-&Plw{{;2iF;%V4yrCFVHW_C(F)m+@q-QUpDS)eHLcuSMScQTP&WW#B3RLu_Qn|_yU=I^>7phlhmRf$5?lO z)Ep+By#j1RE?p@HG!;e&Gho;ngJ0Fq7doymMH9Pyc?k_1Isxnstsx($=uq3N+d@*z zn{FJrUiTY6VT?;)n;86$o#V$b#%GOI)Agd1Gdgv)Bt=6VO*e0jT^(nr}o^iSa$+L2j~-1;y_K5d+Xe%8X<4QteQun`~8h`jd) zt8-+A0Y)SK|)nA2tTpAr5)BQryYks5XOV7$ASe^Ac>$N7>T#b&Kd^~4oMO2O|( zspD94wlaDlFQiDYzNP0dK@*7(kTOK;vczec_=&jw#Y2UWfz&C*0zHGK~4_SS#%b>@# z$^8|-cr_ir738Wm0#tOGcNUtb09=@fDv-m`mzrq26?mk9oDc-@ku&AWPOL8pe zG{-0xPl3Drq@=L9fsQh8=bp@J5R}T7c1aPfg}Cm6gir%|QV6835;w2v{3ZXu*KF$bom>>lZF}7l zAG1s9?8#IL&N(OhgP1vfcC$;O8~R=+TiD6GFGS z80Z$8%kgbfG;v$Ue=syRM~KKf;(?Ea4Hu;%Hv(8MiKY~>VzAz5Gg64_vh)y?`lv^4 zis#XkbEd@3Vc5qs-?uIHt#f=qg+Rk8;s=9Kr&FkwI57*QjuWaFWaO?Nb3S&+3 zrUnS6l;BK!H|=Y7eU8*cIZLJ*XK&lv+(q*Vqm87G<@LsRdUA?o?M*HECVAI^6Na)C z_51R_cG@zb)Kv?PR;DffrG0KG?C7IEWJ!`717jgwUGlWg`ThxpSm~FL4~yC#eQYAs zKkEEwC&#k-W10zLn%<*u>X^X6Ynwvkwhz(qd(5d6yLrQ{1|I6s8RvR|hv#v%;A>Z9 zwk&g{8BoJMN3fkYkFM9tv=3fCnHuP3cI_WUc)qmDx1!v@iPWynNcDJaP104E7RisXEriVq&Cd{QyiUWADLOUkjddRqB;0 zW`JToAR}uL0~MR{&K!Ks)j_3f3K)$^b4*Tcv^@k#fUN4}pQ=1$#9S>8i`~krtp_z1 zLB9u$K7OHTe?qfgmt1fq*_^?PGxqHB6UW??BkCpNezvdn3OmMMyGBS*n~;#1x#AS6 zx9mg$RzhpBAE~S|`SxIi4tW$V!z?&UHdGQulXv z-_%fQQaC&1LQ+4!EB*bipJmnR;>cs82IrA+OIiGK* z8d^BaON~VY9dzZUXNo+JP0wMsP4hHP(DiRgYuB1ipuVN1rqi2R-bwuujLg}q6+!GQ zD&K#|EI(jg9H15RWD4^s>{hq;HN^%8bSWo&8?$*Z`5WN>0qTuAfZt%z`b%Q`xmh%_ z!tXw0cJ|UY#0kL(CT}9fu<38u_Fkvr?`Ew=HM-Y|#LAor@keWf)B^3En>t4`Hj{R? zYA!0&3)ctx$ynwquWTT3npyTLj>}mx>Ib{Mj*2GDB2QS}-K9Ywb3Rc9R7$kRd^htb z7e>~Ch75JSHnyb>LX;=dPsGaNG2rs`G=)NP|4v~sPm|78two(i9%k(QU$Lp2sf9*w zrdYZaq2TS9wrBo!Wsl{3?{;iOfeh#MDE(Ny!WgpKhrCn1mYUe3hK?t;+pI>_x|1eX ztJ*PLeEss4K3$z-fj+(Yk-14RTF@ww1#lM7tL6{!?=h~N=sPZFwC3x+7=7Ha+8Q;# zGX#a64${sMWGpJKKNd8xEZ?k$)YbcYd2=P&aaeT!0zJMZTYACKQQSRBLtZ=}a6-MA zMd{Jcx{v>1+a39{aQe*@lTn-jx>J?ej@IlDfnl!vhsj7xjQj)+)oz}sotkRyzdgi0 zsFww`4pQQ*HT~g9qQUX8B1S_$wW3`6EDa_ZNOmP-StvblJ7aiqv)cz5L!tM*3qP}V z+Z1ot!Qs(4vD0%+cH3Wgc%VT^*%IST)XvVzbl7U5HT$(N1WQafQ2yty;@c{E3WaVr zM!!g-c5i~O*5BvkWcS&jvLHnu{V#0+}Jr0`~0EbV$*a%?s3JL$uf=!KK2N*kocnt|`#zCM>ND%_6xYB75}G zZXpW5*hGaCorHd#?nF&D4UNnRDJW`6aQB^f{mW+R?`O?$yK*~-@H_JJ7kW>1%{CfN zVJ|!iD;ce9(6Fza(gLAfNaWoZd&xsbbkAk=4K86YQKIs}r$psFh$|zRJp{4A`?+4O z)v#y=a}>jPv8ZLp~LDwl*1k|f2SL&?qzTsCZvUl zD+(y>_CAPUAB&&&eT}H+avW-6+MH3?)>XvZW>a;+HVpW(KzEZ#v#`{2o0$t5`4O4j zE(uvZO}_#7;5K9z^7L+%fwkLPbkEek{+g2#yA$pDoVg7_AM35>XpS9oJ%M@Xz(|MV zA>i||o%;tlWAogKrT@_Gh>k27e+cz6w!wTf9re>eQ08Z*=#;0k65ORqEK$d;-$J?Y zetWS4i~`RA?WD7bZP8>(3;r@?G+LuBJ?0vXl7J8_^%^4BnspUBGp7_}0GFIfaANgXdOjmvClT@0) zv0tB;KCCXe&JQl zYrW@xc@AjAUV{h&hPxy})~Le?*kGEY$#dxzHAjJ@n~?2h9$tu62$)*qQloiv7lJy$ z50T#Di#fH|bj@#;QIf1`4fVshZblWzKMzC|(Z)(8f}Neks==|W{T zbH#T4%oF7d)_zp8)ylU4EjI^SnGA}L->(ovK_W*Ro*PxJ1MT-Z#b+|pm~(ieL-6UQ zX)0e|yTh)QsB?4A0$(Am`SlEiKH%(gLr=22@@Ir=mwAapt4V7K-V&b_6xq>o^XVN? zS9>h*I*zHuy-4|n*@+>zmRwgG#^*giImPcDOs?}?=8mI`6wcz>pdIl&)h3W{p8*%X zHIx0FNuxzbc3+3KYfqh{A1BmcBVm)`r_w!__@`^s(S?WkUTd_a7t&!xpi~Zq+nxy( z%IzE4dqr=DOe<(?iBXUT>hPiV2o|P;^em3rBRy!0Z7AadV;?vtfMuk8-uG>?S?N)x69*91?xN#7QJ1x)X>ue9e)bP1k5^Kmo zeZkm-iBC#)M=7jF@g~4wC?b7iM5Q&)_Oxkbp}z86^AcxlNY1#>6qIki!-GzNC7}o# zQ?R6jppOn-{}vH(k+FjuB7V6g2x}hJ{#;3ph1*@ zl#s0!%o~I7!ET{1=2%3!od{xty{OxPIY>9oNL*@s=Wr~w_=;rE@*M0Hy z6d4V5b7Hv=;yjy1>d%iYO3CT8G@@~bg-Ss-iLWh0;+_Kg_?VbCZNkmzCX0^f79l~( z0>z@l?KY#Ws(PRqj&D6(odS#G1W)b~1`S>(Yc3j*yvYH3qJAONjdKKz$p6IjyNT&1 zSuE~ z_6XI)EoE)xc6Qw@+V1~d|Vx3*SwQc#i|gx61YjBP@vy2b12-P~YC+#8-JqslyQ6(*R1 z%Gny-eH%0Hzq7H({caO!5htMi%9#*bcvHOD*w)7(HfuroDH-WjT5`|g?B^0waww#? ztBo<_LOw|+kptrTN75~m-?*@ANJb-b_2l9_*jMjV?yuxK7E^@BR#c4Rf|hE1U7|9Z zg-8(-fO^o+3P9G9Fa!0No^GajE5zJKYX!)E739F$(9@Zqb-C*^1hfXKsoZQGV7v z2ru%99Nn<=u60yH`aYOXN0^`6uM~XXHIo;Vvi%gEXvL9g?dYk<<1VHT`*AtJ}>5C`vw0Im3yu4 zC-`M@Y%aw?0tYv&ox!kqq4^u?&EGpLJ@aTjI_uLYqax7(QQ=skY@ znppiZpP%kKdXtsmCTkVQgcU6`wwc6kVBFf0D5MxB&x9uh`sO&peBu=qj#2;~4L!#@ zy`65g*ea)`xL+4$S$O6#K5Z=Dwz+O8CA}^z*NfoP*suR!*^*$Yl_>%-Vt&mWgv<=> z0al%1cHKp6uA5g;!$H~7AqkK< zelk8L=semuwQGo?>-G39U+rCH_4EMSsB0fgy^8OxCj2xPKiiD6E4eq@vb)jEv&M#Q zndpMoPcee`6C!^Js)6?ffK6xmc_XD@*xeLe8pPA#b<_9vTp(*#mi{7zi>(T~-d-sm zgS>12nD38YKW)Dl?Ola)?*0tM4=H3s7K39^OI=?HYc5%8SY%!Xio2So(DkvX9K_=} zYp!Vir5omrl!0L!DK<29Plq>6L!K@PkAOR`9W>zvVdJBFyj-`F(y`iaRVHAQ`REN+ z^ndybKPi8KW`g#9kfz)~STD5wDEgYgKQ}NjT|?g{KJ3QKd3*n@;LAatcsY)&KLJem5yD>+qo=^go%3; zH#pU7YOW4?9q3Au<$If9i*gAGJGJ|mwzToJ%Tx(ZmbEv zdrI-m$U9$)Q}iXq_zhf~GlkHN^6|Z6t;nM}aswl<(}GEcqa(wPLDG3O(^c|_X1=#A zwj{GUBmitUv&)|bhj#DF3yqwp3frv^Pc!ODEzT&Y zYj$HcadaO$kd{;8^}p;(@73Bgca3j8euZ@9DrnrYYq~Sz!k)2;)(M88c+>@zu9GnTDo@9TAl5#8Pi#o{TxRC@$LG zgVu|!hVqNfOfvyIsNb^c{(t zTGWqCDQ4A11r@5O!YMOKMBB^UF_jDR=8vCf-3|MxDOa;3yneA$b4`0@Sy(!Vd2mg~ zNkoBUc<`wFF~BBC^Iqm$jDFQbdCmA|UQXMVAGP21l}bLWo=5a^CTU<}N2+}^>xyQK zto1LM-F$!F%XyTbXB=lg7gh4`7gslhxOOS8!KJ!#;;3iT5Q9-UPGo`i|3>AK|2yi9 z8AaOP0>9kRrV9ADNXW!J5exM%VDGn)kXs{x>4wN_$vhd!)lXII$RO$0aeDtyuVNW%Q zq)NU-zlvAd&?)l(?eKD_ilJDWJ5#q$E8^-yutHzKL2G@{g(~)d%j5pdM2DnQN$jNzJo^g?#dd zN*$69PfCI;K1RpN8&pp0)zoD0tl9dlpjLbmUhf;OVxA+mYyUgB%sA01r_(k8c~oa4 z^yL8|?f+4A<(_z7?w_BxanlkX5;z{Gaw99HY2eHhcK=(2nfQNZCI7EkL7g&T-(Osu z|EA6J(Uzn+k8?w$8M1Hb5&~OUt#`O``MgQ)6F5WDL&?x6z`%bJL6=v0lh*W*cY2)1UpflX_n?iAUol) z*{o^(j`3gi$k^EAyq~C_`s)=xr&XTxk@4itwwy{SL7hmz0Z!zbr8W%VNZib4qA!47 zzt@Zq_k!Gbe0Wk_3_@2;j2OAhH%vgqCW_v^Je8gCIhM6|%&@dcmEoQ!)Au|=mq3PJ z7Gki>{p-b1=E5xJjF!M!eYl|gK%GqaZ;n~Oz5hrsw=-v zd`a0TC%j_-|C7m3b985?%t0ueXP3#VPrM3~AkVtyN+xHZ+&;pF;Vll04O=$#oGrvL zm?U{{>q~97NcLWHgUn4Hr$Ep8R9BTsb|t-?*R%j_%S0FB*rbJK2~}0#js~40WIF-3 z%veJTQyqPm>U&ftQaNPQ)A#@&FtB69;get>P8!44Se&2dP;p07Nw zh_-n@$%NE8;*kOlJHg;H(}`su`VFKN7)@|74DF`>9VEM z;*2n`^1SeerQ+tnz4`zHk7}LIH|1?@A zkN5&6+}N9`sUx^c9^>jtLN<>aZsCNC?(X6@feKh@sXTh22I%T3yB-qhDa{asadSSA zfMTtS_f}+co?Tq2Jvl1Zfj3b@9Lsn%xzH{JqCK>B@~WR05b7rLtZTI8WOsSSNHR0a+fp0b ze(Mg3S}I_ZCtw@-XneJ>(WQ`826bs+`Wl8iZRO?qDQ|{Xu%dv+HhQI zA^-t$eHqKH37MI2yC+Y_JkhttzF4+#qHvAAM^f+Qr|VWQiPE#JzuT)WNA)yL`sMhg zF0Pw1QcyA)FztFP8tX-RF@8K~((nG_yD)d9?21e4q66=jbPCVN43?$2jiW}w4U$3# zbqFTcX-Qp-Z0WW^dHV|4DfAa~`d6v1U{ojNDu^qE`Z)rRN8E6pqu+ptg5){L5dbXi=Hi zunHf;*cOHR8qvEY=lv8r(x0&*EA7J|-wq_uVNul**wpUIj`Fo=<%Ihj*s~D9q(^M) z>R7ks9047!WbDYO(M+;d47h8@hXH8JDqQ!(C%x*^mqRh~a;S6G9nMR|*jnA0L=Kc@ z10zxdf5kBKPKFu!L2>eoIeUai)}#wxQI!t(2x13jvpcN?)Te+N6Y zqo1S2=Ofyrejlk5(lgrOm*i5U3RJuk@a$1hxitD+fzw_4Sd7m}%A>`~r&|WIv~Ntw z_0MAmXnq6I%L~NHmC&o@Os8FaGzfAh>w4+ePf1M~6G44kng++^?|m{_!!jV}9KPrI zwu@wavYWsWKV7agxKCOtkKYMSmLrgnl*ArvTZAUb`ZQR%cmC}{HxG=tW{SOR7x{v? zj|-Xhep$46wwz=lui}F&yAl|8*yiQ^@X_XLref^9t9Q&_TK2jR=={`+s>R&aD%dX> zbzU%G4x^=!ezj(|*1H->FVFXR(#`uyVh&sXw$eMAD4AsXxTRip$bo?`(*Ua3=@z(J zZ67|Eda5(TJI$X}wHD8K3KPHBb$E8Yc;Ly)GkVurI&WNMvKY!?=$o7{o;q6)MDeJA{qH4deUj*q=kZu`3r34we1St_v8irDuVdxlAP(d020U1i9W9Vk+ zZlwn4?t!5Z(C2J?p5N!3_q_klzP{^P_lDVX-)pV?KKI%8=^64P%7Z>%#0nunTCdw# z>3G`$-?;x1cdpanDs@jX+r6J_ycwr`X7hsu=2|{aXp`(oEB@28`K$Sf643O2y-I2d zksmve5uhed{3@_|b;O!ipVgi(G*`dUB#3uWrG*_HO0J_F<{uKutg`)7>WAj?^W^`1 za_%l<&;6;1dPmcN%Tc#>oWFTsU_h0yqO`7i;c@L`HM!ukagN7EGr0S5tsFbhNM=TN zmcba_3akpSUHruDJef8R5|%AzGb&|rUi$oK2eSKff8)*Ai}mSDZTDA&-RiK%bqz+( z<8SRjiw~V6F{c59>OVZT$Y_&-nqm(ccA(LKB6FF;?ltwwpdi`2%-mU?(Moj7XhM34 zANrw>I~Qi}T)V=a+ig#)P@-UBCAaPiWR5S_{rxmrZ)KEjc9)SNIolpf&kwuh&9>-1 zfo7H*|FZ69V7gRBYYcbT-p{WQ2Ko~DkKAiweb)u{txzb$hPL{^-vD3eM8q$=t(xO& zy3x~FX{CEwVrOg?Ye^Ufvm+J%bDWXaaBC{9mv^Rd6#t?U-D#lZ4lYaOb1e`08y~-? z%el9^NuS$MgBQ<4+W5VdoVv`tbJ7PUaa+**LxafIQywycYE|$1>Zc=2g@wUH^A-K56!eW1?g)B3vGUO@jaSo4u8&y`HuX93j{ z@HjlXy8(zDvF}=U?e>(VIJ9DAYV=Ei`TwL6y+aka%X&Iw zGIDO9J*Nr;=k`A}(c^H1wOB<{p73iU)|zkIzNX05IQ%bsZEvXotFQjG8cPJPWFw!i z=}P)$pgOIfb_J}&6W1pubAwW8)iEZ&)quzzVl`o#R3W!x($Fd^&NO*9TGq|=p-f<| zpg%mo;m#^j)vfCRgVQw9RIcMP(Wi8X!3cmkk~ zOezvhN@n#(hBvqT!gYmQxd+l@7ndCyFXk4QI52pxTni*zXmsb(fFC0dCKZ6+;wcEB>;l1fI}7(;MR7ilLWRlax%0`VA#l!{g2*FFALjeb9gHYw#-nTKte8 zJ73KYMkVszf9IFOqMB z8HEbEaQlCt<1(LjYRmU;YepTqvoTExC#Bk|>!G$0 zO1$@}7_?q0-A*_PPB=yK^L93dmbo+2{)j#j#o!;zq68Wyhbr$+ory={ z9PUQRshBAT@RF-BXMBDnT|%Q`?z?lc_)+pK|C?G-JJqkdXFUH(y8SDO*G`Za`x?D# za1uar1!;+x8hJc6Fstlv9wE(9bn$$dW8%*1OUVK6j0!j`0lOvRfh@a- z&O1ta zkt-h>9)0T(-cqbgUSSzLc!*!1&r+bvg>I}`TCen1|Tq zSiS##t>MyKNiUg-?1zQnN-I94^P7NJ)%`w@kny(oLE!ch;PR}2!XYXw&%&v#85>qIO z5wh$~aVNaQwtlSkOO0$`H{r`L+w=Kw*6ouSCNOnnT#wR99)+z@8jtATYJZK`4`eo8 z+%eu8Yj1_2xGE*_W|F%QS99Cm#xmWrrotKi|i`Ote&yu-0NHKn0P`R_Bp1)$5nzyx2p6PsQJohnP z(#ZH0ZvoDl+==S9x~!H)V$}f2Apthpv&r!=BZB-oex2 zFZ-v24VsMRDZS0MLOe)ctqwa|N#y)`BMlTz${W`P4oB{4oAnnOFU*5GQ2#3TcMyPaj^@GWo2;!uAEFm&+Tl3@BIf*j62yuTVpf(Hw=8r#>mcR?*RoAXGiN~8*z)vympS0Ewg(hJKN$L@$v5T{=cNkG%(eJ;Oii<1 zc71~(8PCw*Cw$07c5x^2A_UhYtF|)SB8rC{7?4Epl=hmFN=D;u0dpd&?f_bthg%gU_MWE~-Vri2;n6TC~7A2bFHrwT5p_d=>h(=45gT zUa9PLX0YJ0b$;~{|2DIMGj{P=)l?0SdTMSRToY>&BxE4_(BZ6cp_M*n+jwDsCir#$ zg(Tt_eb=djwzn|A^GN^%F-=@TT*6(l0SUJ`y9%YCk@2G9r(# zwa6wRb-`C4&`sFYGP#vD5obC|QWwXYr%bF974e?0%PJw$*bB$eBcE>e`>|%m&W79V z$|ijJms&Ww?AC4p_PbHGV346Kn&Jh4HtbYBr@3w95v~@^+v6rCFXZD@ELuINzw65TH^m}lT%$J9S%!WP z99emc-Y)D>QaTo580Be}!V#6!uEJjxshrai!c}8=cXInA4}V}^wtBti3Bt`}@QyRL z$_woCG+py2chipi#>??6b9o<|Jy8c84+kAd;cpR3>)@_?vzh25(~sC|uNc<(XiM6@ z(_P8#6vEj|SV)f&rMy?7aEJgQe9BqogKj>rK-Cm>5aG7UF#JdhpS%rf>TQDj%%7nKAELNmJR%Py-5HLV%AY;y7RbKcB09vmhxUC zlZJ3FJ=d2IyoF}UE?LT2Y)f)}yXaz_i8AO@#Z?1F*K?j?Rt+1SyZ_y~A&}nVe*L!r zgIq7xTUhuZ2%YRLZDgcu+An^4HCX>dhGNzbJw#IRB^boM8*GwMwXRfRszkNS`KjRg zQH1jNi;5m%TMk`6V1m@g4$(if;~p1WvuCqmKrgzSw@gt+E3jD`c&EDg2t8c?7xk{K z?D?KF-tw?>kWxl;^fweST*S6wDifHHJ-35hShA=8Gih7#9T{B(d;fYtJR1zdn zdiSF9((gxEr-i&aF#EVdNj!T2(JHU|#L=7~1d8g-^V8G1vwg?Dg|ZrTlrUVM5Na01 z8_GwrN;3^7?cnSZHd~mBGWw}(TGhtGO!ED^NC6n;-DmjCE||xn$Avd`3RPcIT)+C_ zzN+q<0u?4LNhSJ0DSQAGUIsU&B$=Luh%5StyisEqeQ{RQ!a25Fj`d96{PfOft<4jU z+=RozfWEZ1&5Vli%52eu@JTT915h9(4H>UTIs52cacZN0QB)mqg9%6Q@Y z^6_LlExs#ILq@pFQN}cT75pdMDmCV9ctso1oYGjSaQEFDr0sAmJ%}vIfExK(!wEx! zTl9PYr%0#^O-D>-$+t(N(om*6buB^p0mFxk=s|1uu&M<5$Q0E@@U7NhVTnI$!>tg1 zNo@e>y=iRFH8;53uK;ib0nI)A!@b9A+gYBMjf`}K-Htmxvam8BMOF$lctr&3aarT& z(SL)cehw8%_9DriL+3zcSwD8@PkGI9LQ^;?Ia{SOCL!Hk+l22OOQTEFL1UIf^0E%c zD{ZBZp%qx35Q6ID#>BSa8iXz31)|PhvN!-q`WosC^1lvNR&tSCeSj9c$F5{#ByXHe z#_#UVEEI)`x-s;8vYH;niJx1bidbHym@CcXd5Za^W~?tRWC4dU6bG8uH74zwTo7@@v?!yX(#H+#FG)T@`0$B_kkWpmm{Rq zDLYgsDehhHK6D(cK_y7k4RxsK8n1qxNOp0dvU|CzMnq~ju2GoC2^he0WpTXM2aXES|f#4YcO8pC}0zg2Q z{gqC-qM{v&;}3UfW@p`7yUD4EpECn#?}7=Gd|FVeSH4(BB3k`h1~mp_rGeeW#&ebL zI6n#XotJ4(pacv2UmS{viAqM@?G+BWufl1^;vzLk8C55G=9`qcTnv6lk%-&lCe&Op zXz&F`b;%$LE~saVtRt*`I`jbg0R5+lC}wFUQ!5B+4}!6Jw03x*e0a1q?#W&?0q^ z1ZjumHb}F6%tv}HP+|3YJAqEwodv$h+`sO@0MlwIGGht3bjw@n|t_eg_NmTtW&f=n_m=PS-kfP zV1A%nb=xd*srVNcwlphS@j;AwLi?7lFWPyT?Y0TfX1P$j(rj#4Y8^k_3uAs(JM<6E zUGOrUaB6CU4Jd&#X>?*Toz)UrVm#y`s>&31U{?HgX&$no6}FNwa7q8os*`~}>Hz@H zKl}z4`E}AtHp`)UvZZIZ%4%tuRQ8~~SCjXLKaC&X0!`}}`)5!xd5{WWKGIv35(`EH z-YFdd9|7KX3~C=bGyA|&{@jPQm*$CyCA?7MR^iVqES3~mw3&k0h%;Fc0&rx&64G)- zF6>*z$k~H$4@2$gvDx)3JDEKxS>u_{vBQ-#v6>%vMTIs*B^-|YnLSpT>42RBt!2n> z?uD1}CZYu5GBQvU);n0>`c{^M*~9;#@BNEz+s_j-NYK=L5d%2}LzR>FE{Ah+f@|g7 zZnAz5e3}{7!Vv>ipU(P_KQtz^B3d_n_dbk#k1n0hnj=pjemPETq}H_A?bOhi8nKckRz1#at$13_snA4^LPs(}j*crVRX3*m*I z-;y8cBGoQ+w>PJ892s%aY=%4H*V!MhrU@ro8LPz9V=#l0q&~1+DGhO5{{4n@>s;(} zAkZL150AUnD;q5A3pQ$FOMG3(?yl4B%~eH}a{HX1N$|pmPGcz?C4IQg7L|ZlCUEao zg~Sj(-}0AQC2hvj3q6wQ9h7PXY(eJ$EnuK7tUfoPhFFW{X3or1$ zC?u;;F4X478dDtFNp0BWJy-qew$_3HS@s6YZvGFHU!fg3ZuqVo5B>a9;YD3H9V_o7 zKBgn6UA_biqHs9NES|G>+@Qeo8sRMl#IlRzK3b1i-H5p(mTz%Yif`6POK3Bw3`sKX zc*KS==Eb=)SFqI!oyUSzx-%X&9O{3oOMZlh-*zMCs~?(*G}-3cSPYu4irCTW<~Pg7StdyE7Ev`osUP!C(K{)mc^LtbMltW7Wu}zh*-#=neJ|+L)(7=m!yT$rF zJ#eh)X+m>?N1u<6o$fZ%H`KQ2V@w}j*r_viNyNMd$p>S5h!87UGgIchH)SqMk+ z*%3Q?vLL9Wf5DHtM^P?X;FOhEn)!>oeW}QDG4{3+C6MQ~@uf=Gfr#9by)3U*hb^X+ zyc+IQuFoGI?A8H8h}?#bXt&fxY53gf)2-yi3j4SlXU)SK=Ti&A3T8yts1uB2xerYb z!Z%|eD5oe3?;AyC{e{StRLm_a$jc_HUV=KdmAnT2gqglhOMwMShZRQUcx9)x%?M?7 zvFF<&<~Z<#F4~Tbj<#xzbE8zJgWNYez8d?{Z@FT!@Mh)iP373g=p{9c7QR=IeG%#$pxY6z?$QdiV+k`KzsvI#+LB`bn$o zSFtp;Bt{q78z5w^lZ-!5I=eEgGwTILsO{<)+MoL(XN(Qo#)dXSjOV9-E}c}x@z!d= z>P^V&^K?y2tBHX~_V=}yLwFvgu}WCVaOtP8vuHUj+prTGDfg2SQ+0LJkAtd=*%bynHQQ7;N4FcXG2ulR!4Tw> z_`|LR?~pBw|Id&7?fpa6s9uIkebMaP1$(+9BZoUO&0V%+F^?!B6SSwNO&yZ$q1Jfn zPtx$spzekjZ&zTHnsnzgj*+khC8>A6T}@VE+P>dJ`cVnX6L$U7`7ByW)91bneVXmI z;bly+PmZ~ob%FfZ`Q0>O@r|!r4PgGn=&5{_O91jRJP4J-lC)F$} z@)-YeHP<~t3QzIz{8%FkU0Vz1A%1ISzWpdjC7U|xH!s_(aY2#DZN3^J)`gWPp(@N1 z3>|9|N%~@viDSk;Z_;{8*J^5`Y>AE94&l<;G7eIAIuhgvtlu`-iTMfaY3F({@&x;< ztk9EPI;Df+ye!+~p7&0O3=VT&s`D$%WA-`4tz3r{(*!isY^~i3O}T2)DEUTQXq45E z!{%+W+&@H?-v;D8Pnut24!OKEkj$>Nvtj7reftb67KT#1m8vnGlO#I?C)_q-3{COL zSyZ!q>-1j&vPS5*bE>KuCY-cq#t4&a#YwV3H=zpt7b=&!*%5`p?*QI(^B3QTM}#1k zJi*sWEA%gBfJiI;!SVYl_q^}FP^GTC>*}MH<9f&yH0gkOno`jU>-R4x{x( zTmV=4Z&cFX#cD4g?%2qwuC8ybSNAhCGfG=}6qNvJtP4VEeB17P*)q1Ft~2$t&%7+x zy?C4<=MP8PDloBvai`@0TBM0zOi$FyYuP1hV3kD;56Q;F6`@57Deb)IXLIZ%+B_&&-b(TrJb0Z15<>DL(WpLXrrddQ`%-oU!)4L+ibwEGNMsw?SF9Y zjJP6B0_b=Ca7|SY@;}iP^-5ZH!AtCsj3+csUUiIGDBU*lcsK<*8dCL1J`@b^15qwR8rHQ-4HJe0@p*~9Q8n4V>NB6ktBnU*;_FEr~c zU;BQ+_EdS6IZ(P=@;5yWnX9EN11}%Z9Gm1RtgUW8|H?q;O`^r!6ltnxItflQMC^w-uip>k8TH6qa*m)ibrUrh72T@xF+r=E zcg#d*60i0(C8z$u>B%A){Kgjrng|?D4VP;kL*-CM>2CxV^yezNyW6?KmHU9s2jGX= zwb-A@WThzq&)r`F9_Tuoqa3$6AbmVS=CX=x#Pt}Ud*T_%Sb=2-uvTf3rL6&lGuxL+ zd$r|?!FQr--vww&qLmK6Dimk&m4GJxjQ-2|$|?jwP-F=t;tx+|-N#19r3C;>rF~&H zQ+;WJbT2bkbIq-(5{fY3KlVjOXzE~uztqS2%$|(iQ!YAY54@M5;dOWC^7lqIEPtCW z0isB8TS4>@@u~Q(sbJ4*l393w?Q8BL*s(j$d80uB(7WKSFaa8al?w9p(|siR$S|96 zy2D0hJ-H79t4I4@LZTlc(-9Jeb;G-6f^Iq(9s2rMKNw(4k?C}gxAwb-jLm50v4j5O zqz2UQF>wp&ntg}Nn9{qp<>OsFK1kT4?dP<8e|M8_g|ClJk>pG&4O3v%k~hpvWpp%Y;3-b=ixAgH(T6uQ{hol; zlSj@?nzPK6&Fnco>#>Ky5^erJ0H8@N&b@di&agw)p58X&T{AJ_N=-u_CjZ3|h6x;n z;kaJ)oR;zNxX1e;{FK|Mrwwes+98^2--{Mn(>e*nCNeqUy*URP^m;!(pYjT{N2o(R z)U0@X^mOYI-s1EbA7yQy`jbHW?vqT{WU#MCC zIrmd$dzcAF>$Pd-#}kI;`fv<1 zS&xs{tj1eyTmY=0$waR*%t?0q-5^Vy|11_-%+zyKvRrc|edi;alr7T7TYs}zBHMy^ zPiD6gyB}B7o;6%F!*h@?Yx2U7JiDQ&MY{P)x!BpsTDbYIep;EgfoTHyWY*TwwfK3;LNMC>2L2P1Zg664j(K*6Qa4J#% zO&(_SV<7R85e<1pa|=5{M(v-D9uwYZdmH$&#uX`YhAq>s5M}GHhXX}`W)dQ2(V;h4 z4;9%x9p{>)W}4m$tGX4dqYKO^kGxCKH_M!l!z|_J;P{ z>3XL!Z#O^HzvGHxzNCPr{-?>_P~RFeM!~9&+f4eZr5<={`*_Nvl;D86PjjmQl%e4R z-_?3B_*e5ne*jaGGf5vqF-zX@r)V^hsJm8(SkgNy-F1F*F~sG zwI?ZDHa0S&zH~F0Z#VQ=NHx zd5Y5RYQ|q4Ek9Rx(XCLSr@hZKGQ=*)q7w=1PbtP&%iyuF(h zPr^X(>$1P))u0g8{pLGc;CDJa*%VVN6oNG%w54xXC(t_ zFFg&i3hed;a#rU}qHVP1(hCwAaj5TcP+ohJ%NV@_1RZ|+Is7HO0OXw*6)$Atw2|l< z^AL!+I>V7lSnf@;5+86WPEM8TRg9|i##bQZxhUQ2SIw$j>aOfztoK+S5womYf1orrE1KM-qn)LDNwxvKAXfL6WHvcYUka78edCCdd~Pd#i%Gm4HAelv z%NYH22Az3QNh{^vJhVnNHVh2%wrHx#?BEdC)303_K$lEe%wN_uG`t@`SaQ;OLw>wEb=NB+LF2)*8$o#&Jgrtmn9BCTR~R zyQv!eNI-Gt{-<6~?zbq{SfoNPcas+G)*qW(XPGWm=P!$mA4pDc=~SLLcpZ%rrf!Jsf3qGr(1EXh_d}o>vsbLM} z$BZcwafR=0$v|gOPx6c)aN!*zM-Gn%3UhxW?-KZ&JCX9|SC4EBDKld4nlxMFG8dKb zbc2}b+*NqfWgqIivPS!3!B_?se{;Z@w+d&_QLi> zRW(*`;&@tq=VeI7-?%wFL`~I357R7nUsm*=m5#PGKAGF89p=0Ll+!=1a+9+G*&6w2 zrrQrngRB-^r=y4~U`D49w22R^+d}!*2fB&4VkJ&!FbfRhe0$f_p6;%ec%ceZwoz7W z4u`y1wfko91t8(_y*x8bg1B3irVdj*s?UH|;c!}ysJKHi>F!rYoXs#n;IJX+N7V@m z=+Ju$W}Doq+NAyUHy^0x-M4sW{h#C+8^Q1I?C%T^&V^_j0NSt2cs!5h2i)W8S7~li z;!pZ**t-Nm%s~NiEE2wndNDHGo(5A*n}nVHl1vs?DhwS`yiu+Ol$R~TsOHs9%3#=@ z6sYAAw0O4Z0dr$wj7pT1A3A(~$#mdp-<)eiNQ_pE7c0RJThtURahVL{_`!OVr5||^ z8EH#%+T5Ir65ZhHq@;1v7qskZ%n93OKbHf9XEm{0Q(1ntw?mb9sZo}k3n*>O$5}4+H7D`z zn|qrQZ_8V(alM59&VA((w8`NjxarX4r&0huG9C5UhZ9PKW{UR7*n5Zv^ofN+to*RFeM8S)H$WqMeH zC=4(n;@;1nK zmdtp3!tlStVKY9_aPNx0c)$Ei@U?>@KS%1I3ksL88Qv9R<)rBVQ6=x5bN#@>^NGNX zcM?UtDg_hkrcF{&=3XC-k5YLcBVQ`FLWX{eO8Er>Y>SZQ{=itF zl7{nDIE>2WNl(jE(9-HWVS)Faor&gkOcDFnk+z8gzPtr|Bnpun$NSl_uO&Fy$<_>t z;ha5Qm*x@tj;a3#2b64%OLfsfrle~Hf74di-z z*B>|);MI8zyWIl8Ut;z{M?9gEPMer2|8@Qvd>P{QI3kJP|2C1#!z_T_2ieRvW8MGT-wYv89Lgv6)-3c~|R7v4`7pKMu$ zP}F_hgYmkVO(tRI3^YIN#LRzsm3cWLJZx^w(v!3rpUk^=wPNG1A5a<1q%!&09*r#A zx`uWU^Z9@fh$%VI9g#ZL< z-5$o|gZ5KpE_^c{0>J43jycjdrg=s8P^IHNe|oWDyIniQkD$e9xGm@sftVDVSI$-Y z^%2Jwyeo@)nB&V6PBpU&5Zu?5U6Wq=tu#=E7xM**pp2|+xawd$Ko#}j$x0&&$%ZowC0ChJApJYl6Tc64THR*C4GYWT!E?3&9+@;oFBW*iP!vi z^($h!K7h!04c?s=*U}x?*TtE3g_%;gbiOy;drPxim4K;br7!=e_plBVeM}?!)gaT{ zY;MP(%FMLSDnp-d-!I{n;OpRs9hAhXYBlsBpYw@dfb!%e=tJp4f1TB<(YxDImnNcK zmtM)Y28?IPa0Ap1Og=3aO(yOkJm(BvJxW&mMDGG^iCyW^cMGWO?UeL4E*)-lbpBFS zPqT?e*GVSsq3hfjcv2#pGS(*4r!C$zW|G6lWT-|UOqlzNud3hvvgP27@Q(0*>$f5! zx%fPEWKnZ$NkSd+I!LQfW;dQ0Y*dAc@7UojNL0`2yX|Tg%+~$6+SSK;IbD`t$7Zxv zY)Az_)t#dy(@*{{6xqcO5h=BjGLO^%099mugG%~8P_5B)@^u+w2Y*q_y+HonMg+1i z{Lhre*s=uVzx>59GgiPnxe~h!?%tTX-%KJG`3?;m&JV4=IDN`GS}SVwv7Ww6y0sN} zU*$#%>hqxVkkQ;ZnCcQ(saR6@cepPx#;LjhOsb|#rcG7D6A{Q^4v*FRs2(~pt1-^; z|AO!cxApn=t*YuHR@j@quUQ#nsT_LmwF~h3gY)z9D)#82lV0x=@Q!+tULp1W`0e(S z)lrLXy3bAUZU>vHg!tP7mFIgpvvb=n4z!g~^ts}N{yK*wS6#jy#wN60GfpXY`)dEo z9?oM2xPaLhd^1eoM1p~4EAHCtN*HtoJnN0?sGgDb3_d=`quB)J=Xw@9P%oN2x2{jA zlgil0GJip`BmHny>q2=9E+EneCN%;)rRgp_y!aTfA|uK#K*|dfdl9t;f&6=;!*4TY zFnz2+NB{?26e>3ybI~8Y{H>uUrxWoq?+%ZKWZJrY_HzqN9WFndpT{#eal=M>8w%*g zaT{Za;p2bq#z`A6S}}%HXA?Zs#MfBK3`<_%9M2wGs;nLN=#rqF>U?+e2L*5t4;NxXkyarwQZR^HRM lum|lCI>9=?O~-#8cCz*_WkTW#T)vd)zEHnJ1pepe{{t(PyUPFo literal 0 HcmV?d00001 diff --git a/mnist_vae_cnn/samples_prior/allSamples.jpg b/mnist_vae_cnn/samples_prior/allSamples.jpg new file mode 100644 index 0000000000000000000000000000000000000000..77d7f1e6434542cc763d2690b73031fbcfe0cb3d GIT binary patch literal 3069 zcmY+@dpy(o9|!R7+^<>XHb%wDeX)&^NYUIWv|LwmHSQ%x$0{Y85~Hx( zyU1OkO(wU92<4V>j#K=mbI$Ma`+YwDecqqP^YePYACJ%Gz~&eLcEUJf01yZOK*9}d z4gt1+l!Sz>(NXq@=X8l#HCByqv789Aw8%1w{?DU78wdQ0Q(LTxYkIp*9q%i`FwV zHbJ3KyL2q9%n=9SNEBl81t2R0Kt+r}pzXkBGq6jDi-UeH;GYE&5fu}ckd%^^kriIx zfB_MZsHljTsJOV8nDF*RVI2_LF1}-r$zh3|#{(s`h>D10T7i`IktZ*eJl-zCkY`9K z(lW{_st~ok`*d{m^iif}Xmg7LwsuD`_709to?a)gC%t`qgMvds!@?sXW8=u@;u8`n zscDzff6cgZHS1<}PA>iTJjVS(CadVd!{SF3l~tUl)it$sO|P0;THD$?I=Q^Qcm4c< z_k-gfCni5lO@E%5U0VLOB3NDf*tSexz#L(wk||o zv)+k%+Ryvo&*C)vj6@Yw7AM#q;ts9DXO&v}6gCawcra0*uK-#lzq zLg*%dtv>&d7gDzgbYVWbbHYXkx&qO3J+ajm%r0q$(HLWS+-MAwWp92$WA4l*&_o}+ zaJVS^RghurjCaO>Ig8dEV~H)x8L$6=9hnab$er5+jMOi=bB;AugVdNumW+XCi=3}%Th7GZSniYKwJnC!*yO>gmFL?&L_W6agtx0~_@aTk zk*xC}Mrj4G5R1>)LWSkfEUD1CJG(DKCSxxjAMS6QzPw;~2AeaXa4ow>>j^F6pEUXO z@wpMKO3hJe5dp16?5`6BLwbfVnJ?`8%dQyp$u}?)XENfj44u}kWFPChmZZ{9k?B%l z2Wxc-qj`5aM0vEgnM1L;dG~OUG^-}y#(p35ORipxPqJE?>I=gPJdaEKiFB0n7=C@D znKkmafm5xk%5=$UhH3AWp2Q-uR8t~?gKo>b<)PFY-E{86{B4}rGU#y`;gJ#zy`&Zg}mMN2DKA27VYkbL7ao`|{#O z5U2LF3cuuI=>^)c3+|PE@}Z*=FSG4)^%JI*UIkCEfMD(C&@ z11DBCC-{AjIU+If%meDX=AX1;U4Yfu{o26Dqi7+`54s#qz?u7{ z2t3dPI;}8jEwKG)ozF-r7lBLbWp(j5#6*lTk;CSZB&Y z#1LU5VOD}LtMk~52X|`r3uwAcQ>*6;p3RHPJA1(-KJg-{V%T_pO5)sL11I^UHZAq) zfoh#b%E2Rk#V9s>kSL#x&jU8J7kmzZ;|5lKU=(!IG42hG2Gou=-4{7~0!eI@9}7eISBz`gThcxT_Sm32sMfj|aR%C#EvWH1Y7wM1JCRw!t)4n#A?}q``Skvyg_qK?V z7|Lq7agG`!ANk5a3B@Jh`*uIQG(!nx@Ko;&;5-V;`)i-8&BXX{s`?3<@6&tjUHCdT zuZ7lK2em-@nKd^zyfNMvUCF!NW6`S>?t44X-y}j#jtM4|raUpdZcAvnYhJyg+UebZ z6~4D&zeG+^J6V?PhO%_l4Tbb@YwxP!!L#dKj)d1sI-sEvwU@Fv?Q_0$My2twD5Sqs z%8lXMGV^5iSto9T#j3jVTcV!L!J78gi*v6fje00a5U8;^ASgewSal%aH!Hztq1pu& zJyve2_PX-yQsiL0X+5&(wj_b=eVA0Mfj@aP8NM$(`lftNcc$!ymhFh=NApS0890UdxJTQ<8Mdh;Hukv+f|zo7s}nB1j&gU(0Y>|2f) zax$Zw7L?m9R#D>iIp3=PJfSYV1?Mcem1{mI-cESkzXUZvW7kS;YW=C4lKWZ>U!hrP z5J|B`d^MjFfOdSVMeYCM8rKd`5oW2g_}7)S%WYYSsE;f^>pOFA4;t1{{=6B0V@85+ zyvD?S^?z_h5H2vXVO1ji>>Mxz_JVi8&r#UQ5Fna14XG&!rbGDk{5#C>-rw*ArbD|$ zP}_w`CrR@K>yn`y4Rn*}f z7G=CPOkcUuDP8( z+*>#ZB<`J7T}Vac$g07)|C1{_&Qe;WdLR%eKjI^veaIoD=NR=k{QlB-&=Irp+H%u) zq)X49F3TNl!@SOvhCX{X5L$G6u#i}FJHE*4s<=hA;?#Ysa8XkP^_}`d&lUvpnBJFr zWv)jky%Lcj8ueZz-Jgd@_Yk>;K8b9(zD~=ZXUO7WrK48ah;PRxsVg8xp3Thh_5yds z;jBa$FI$d5%SKH0S!nOxX#-6%MI>_zX-D$)n7P`pyKF0)jt3R#{){vv+y<6}0(so~ z>Oz)DD9R1hj@>CheG*}AJ#{#bq?FO)uV$m~rBO^3%GbV363!53BfMm2*-BIQw{_eo z#Uz-cE_prD`)_$*ESURHNn6+8ja|ioV1vh!si_X)PAR`nM0}(%6QxF5p1kN_9W&T` F{~yvRwMPH| literal 0 HcmV?d00001 diff --git a/mnist_vae_cnn/vae_generate.cpp b/mnist_vae_cnn/vae_generate.cpp new file mode 100644 index 00000000..576e0285 --- /dev/null +++ b/mnist_vae_cnn/vae_generate.cpp @@ -0,0 +1,185 @@ +/** + * @file vae_generate.cpp + * @author Atharva Khandait + * + * Generate MNIST using trained VAE model. + * + * mlpack is free software; you may redistribute it and/or modify it under the + * terms of the 3-clause BSD license. You should have received a copy of the + * 3-clause BSD license along with mlpack. If not, see + * http://www.opensource.org/licenses/BSD-3-Clause for more information. + */ +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +#include "vae_utils.hpp" + +using namespace mlpack; +using namespace mlpack::ann; + +// Convenience typedef +typedef FFN >, + HeInitialization> ReconModel; + +int main() +{ + // Whether to load training data. + constexpr bool loadData = true; + // The number of samples to generate. + constexpr size_t nofSamples = 20; + // Whether modelled on binary data. + constexpr bool isBinary = false; + // the latent size of the VAE model. + constexpr size_t latentSize = 20; + + arma::mat fullData, train, validation; + + if (loadData) + { + data::Load("../data/mnist_train.csv", fullData, true, false); + // Get rid of the header + fullData = + fullData.submat(0, 1, fullData.n_rows - 1, fullData.n_cols -1); + fullData /= 255.0; + // Get rid of the labels + fullData = + fullData.submat(1, 0, fullData.n_rows - 1, fullData.n_cols - 1); + + if (isBinary) + { + fullData = arma::conv_to::from(arma::randu + (fullData.n_rows, fullData.n_cols) <= fullData); + } + else + fullData = (fullData - 0.5) * 2; + + data::Split(fullData, validation, train, 0.8); + } + + arma::arma_rng::set_seed_random(); + + // It doesn't matter what type of network we initialize, as we only need to + // forward pass throught it and not initialize weights or take loss. + FFN<> vaeModel; + + // Load the trained model. + if (isBinary) + { + data::Load("./saved_models/vaeBinaryMS.xml", "vaeBinaryMS", vaeModel); + vaeModel.Add >(); + } + else + { + data::Load("./saved_models/vaeCNN.bin", "vaeMS", vaeModel); + } + + arma::mat gaussianSamples, outputDists, samples; + + /* + * Sampling from the prior. + */ + gaussianSamples = arma::randn(latentSize, nofSamples); + + // Forward pass only through the decoder(and Sigmod layer in case of binary). + vaeModel.Forward(gaussianSamples, + outputDists, + 3 /* Index of the decoder */, + 3 + (size_t)isBinary /* Index of the last layer */); + + GetSample(outputDists, samples, isBinary); + // Save the prior samples as csv. + data::Save("./samples_csv_files/samples_prior.csv", samples, false, false); + + /* + * Sampling from the prior by varying all latent variables. + */ + arma::mat gaussianVaried; + + for (size_t i = 0; i < latentSize; i++) + { + gaussianSamples = arma::randn(latentSize, 1); + gaussianVaried = arma::zeros(latentSize, nofSamples); + gaussianVaried.each_col() = gaussianSamples; + + for (size_t j = 0; j < nofSamples; j++) + { + gaussianVaried.col(j)(i) = -1.5 + j * (3.0 / nofSamples); + } + + // Forward pass only through the decoder + // (and Sigmod layer in case of binary). + vaeModel.Forward(gaussianVaried, + outputDists, + 3 /* Index of the decoder */, + 3 + (size_t)isBinary /* Index of the last layer */); + + GetSample(outputDists, samples, isBinary); + // Save the prior samples as csv. + data::Save( + "./samples_csv_files/samples_prior_latent" + std::to_string(i) + ".csv", + samples, + false, + false); + } + + /* + * Sampling from the prior by varying two latent variables in 2d. + */ + size_t latent1 = 3; // Latent variable to be varied vertically. + size_t latent2 = 4; // Latent variable to be varied horizontally. + + for (size_t i = 0; i < nofSamples; i++) + { + gaussianVaried = arma::zeros(latentSize, nofSamples); + + for (size_t j = 0; j < nofSamples; j++) + { + // Set the vertical variable to a constant value for the outer loop. + gaussianVaried.col(j)(latent1) = 1.5 - i * (3.0 / nofSamples); + // Vary the horizontal variable from -1.5 to 1.5. + gaussianVaried.col(j)(latent2) = -1.5 + j * (3.0 / nofSamples); + } + + // Forward pass only through the decoder + // (and Sigmod layer in case of binary). + vaeModel.Forward(gaussianVaried, + outputDists, + 3 /* Index of the decoder */, + 3 + (size_t)isBinary /* Index of the last layer */); + + GetSample(outputDists, samples, isBinary); + // Save the prior samples as csv. + data::Save("./samples_csv_files/samples_prior_latent_2d" + std::to_string(i) + + ".csv", samples, false, false); + } + + /* + * Sampling from the posterior. + */ + if (loadData) + { + // Forward pass through the entire network given an input datapoint. + vaeModel.Forward(validation.cols(0, 19), + outputDists, + 1 /* Index of the encoder */, + 3 + (size_t)isBinary /* Index of the last layer */); + + GetSample(outputDists, samples, isBinary); + // Save the posterior samples as csv. + data::Save( + "./samples_csv_files/samples_posterior.csv", + samples, + false, + false); + } +} diff --git a/mnist_vae_cnn/vae_utils.hpp b/mnist_vae_cnn/vae_utils.hpp index 644ea3f5..6438402a 100644 --- a/mnist_vae_cnn/vae_utils.hpp +++ b/mnist_vae_cnn/vae_utils.hpp @@ -21,7 +21,7 @@ using namespace mlpack::ann; // Calculates mean loss over batches. template, HeInitialization>, typename DataType = arma::mat> -double MeanTestLoss(NetworkType model, DataType testSet, size_t batchSize) +double MeanTestLoss(NetworkType& model, DataType& testSet, size_t batchSize) { double loss = 0; size_t nofPoints = testSet.n_cols; @@ -49,7 +49,7 @@ double MeanTestLoss(NetworkType model, DataType testSet, size_t batchSize) // Sample from the output distribution and post-process the outputs(because // we pre-processed it before passing it to the model). template -void GetSample(DataType input, DataType& samples, bool isBinary) +void GetSample(DataType &input, DataType& samples, bool isBinary) { if (isBinary) { From a6196afa7693d252787948aad2342f89a444219f Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Wed, 16 Jun 2021 09:01:57 +0530 Subject: [PATCH 21/69] python nb completed --- .../avocado_price_prediction_with_lr_py.ipynb | 902 ++++++++++++++++++ 1 file changed, 902 insertions(+) create mode 100644 avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb new file mode 100644 index 00000000..cae70dca --- /dev/null +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -0,0 +1,902 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1d9db683-caad-494c-89c3-8081092849c4", + "metadata": {}, + "source": [ + "### Predicting Avocado's Average Price using Linear Regression\n", + "\n", + "### Objective\n", + "* Out target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...)\n", + "\n", + "### Dataset\n", + "Avocado Prices dataset has the following features:\n", + "\n", + "PLU - Product Lookup Code in Hass avocado board.\n", + "* Date - The date of the observation\n", + "* AveragePrice - observed average price of single avocado\n", + "* Total Volume - Total number of avocado's sold\n", + "* 4046 - Total number of avocado's with PLU 4046 sold\n", + "* 4225 - Total number of avocado's with PLU 4225 sold\n", + "* 4770 - Total number of avocado's with PLU 4770 sold\n", + "* Total Bags = Small Bags + Large Bags + XLarge Bags\n", + "* Type - conventional or organic\n", + "* Year - year of observation\n", + "* Region - city or region of observation\n", + "\n", + "### Approach\n", + "* In this example, first we will do EDA on the dataset to find correlation between various features\n", + "* Then we'll be using onehot encoding to encode categorical features\n", + "* Finally we will use LinearRegression API from mlpack to learn the correlation between various features and the target i.e AveragePrice\n", + "* After training the model, we will use it to do some predictions, followed by various evaluation metrics to quanitfy how well our model behaves" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "916a3d8e-547c-461a-a90f-7bcbd60c7504", + "metadata": {}, + "outputs": [], + "source": [ + "# Import necessary libraries.\n", + "\n", + "import mlpack\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "0f700cb9-6292-457e-883c-7f849d89240d", + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "sns.set(color_codes=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8d54f581-e4fd-4e41-aee0-0085441d46c0", + "metadata": {}, + "outputs": [], + "source": [ + "# Load avocado dataset.\n", + "avocadoData = pd.read_csv(\"avocado.csv\", index_col=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "1b4c813d-d1b6-4e9d-8664-3a48c73724fb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateAveragePriceTotal Volume404642254770Total BagsSmall BagsLarge BagsXLarge Bagstypeyearregion
02015-12-271.3364236.621036.7454454.8548.168696.878603.6293.250.0conventional2015Albany
12015-12-201.3554876.98674.2844638.8158.339505.569408.0797.490.0conventional2015Albany
22015-12-130.93118220.22794.70109149.67130.508145.358042.21103.140.0conventional2015Albany
32015-12-061.0878992.151132.0071976.4172.585811.165677.40133.760.0conventional2015Albany
42015-11-291.2851039.60941.4843838.3975.786183.955986.26197.690.0conventional2015Albany
\n", + "
" + ], + "text/plain": [ + " Date AveragePrice Total Volume 4046 4225 4770 \\\n", + "0 2015-12-27 1.33 64236.62 1036.74 54454.85 48.16 \n", + "1 2015-12-20 1.35 54876.98 674.28 44638.81 58.33 \n", + "2 2015-12-13 0.93 118220.22 794.70 109149.67 130.50 \n", + "3 2015-12-06 1.08 78992.15 1132.00 71976.41 72.58 \n", + "4 2015-11-29 1.28 51039.60 941.48 43838.39 75.78 \n", + "\n", + " Total Bags Small Bags Large Bags XLarge Bags type year region \n", + "0 8696.87 8603.62 93.25 0.0 conventional 2015 Albany \n", + "1 9505.56 9408.07 97.49 0.0 conventional 2015 Albany \n", + "2 8145.35 8042.21 103.14 0.0 conventional 2015 Albany \n", + "3 5811.16 5677.40 133.76 0.0 conventional 2015 Albany \n", + "4 6183.95 5986.26 197.69 0.0 conventional 2015 Albany " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Examine first 5 sample from the dataframe.\n", + "avocadoData.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f22211f2-7881-45ee-b061-8a3fb1773695", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
AveragePriceTotal Volume404642254770Total BagsSmall BagsLarge BagsXLarge Bagsyear
count18249.0000001.824900e+041.824900e+041.824900e+041.824900e+041.824900e+041.824900e+041.824900e+0418249.00000018249.000000
mean1.4059788.506440e+052.930084e+052.951546e+052.283974e+042.396392e+051.821947e+055.433809e+043106.4265072016.147899
std0.4026773.453545e+061.264989e+061.204120e+061.074641e+059.862424e+057.461785e+052.439660e+0517692.8946520.939938
min0.4400008.456000e+010.000000e+000.000000e+000.000000e+000.000000e+000.000000e+000.000000e+000.0000002015.000000
25%1.1000001.083858e+048.540700e+023.008780e+030.000000e+005.088640e+032.849420e+031.274700e+020.0000002015.000000
50%1.3700001.073768e+058.645300e+032.906102e+041.849900e+023.974383e+042.636282e+042.647710e+030.0000002016.000000
75%1.6600004.329623e+051.110202e+051.502069e+056.243420e+031.107834e+058.333767e+042.202925e+04132.5000002017.000000
max3.2500006.250565e+072.274362e+072.047057e+072.546439e+061.937313e+071.338459e+075.719097e+06551693.6500002018.000000
\n", + "
" + ], + "text/plain": [ + " AveragePrice Total Volume 4046 4225 4770 \\\n", + "count 18249.000000 1.824900e+04 1.824900e+04 1.824900e+04 1.824900e+04 \n", + "mean 1.405978 8.506440e+05 2.930084e+05 2.951546e+05 2.283974e+04 \n", + "std 0.402677 3.453545e+06 1.264989e+06 1.204120e+06 1.074641e+05 \n", + "min 0.440000 8.456000e+01 0.000000e+00 0.000000e+00 0.000000e+00 \n", + "25% 1.100000 1.083858e+04 8.540700e+02 3.008780e+03 0.000000e+00 \n", + "50% 1.370000 1.073768e+05 8.645300e+03 2.906102e+04 1.849900e+02 \n", + "75% 1.660000 4.329623e+05 1.110202e+05 1.502069e+05 6.243420e+03 \n", + "max 3.250000 6.250565e+07 2.274362e+07 2.047057e+07 2.546439e+06 \n", + "\n", + " Total Bags Small Bags Large Bags XLarge Bags year \n", + "count 1.824900e+04 1.824900e+04 1.824900e+04 18249.000000 18249.000000 \n", + "mean 2.396392e+05 1.821947e+05 5.433809e+04 3106.426507 2016.147899 \n", + "std 9.862424e+05 7.461785e+05 2.439660e+05 17692.894652 0.939938 \n", + "min 0.000000e+00 0.000000e+00 0.000000e+00 0.000000 2015.000000 \n", + "25% 5.088640e+03 2.849420e+03 1.274700e+02 0.000000 2015.000000 \n", + "50% 3.974383e+04 2.636282e+04 2.647710e+03 0.000000 2016.000000 \n", + "75% 1.107834e+05 8.333767e+04 2.202925e+04 132.500000 2017.000000 \n", + "max 1.937313e+07 1.338459e+07 5.719097e+06 551693.650000 2018.000000 " + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Basic statistical summary of the numeric features in our dataframe.\n", + "avocadoData.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "525649f0-825a-4554-bde5-0e38ee1b50e1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Int64Index: 18249 entries, 0 to 11\n", + "Data columns (total 13 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Date 18249 non-null object \n", + " 1 AveragePrice 18249 non-null float64\n", + " 2 Total Volume 18249 non-null float64\n", + " 3 4046 18249 non-null float64\n", + " 4 4225 18249 non-null float64\n", + " 5 4770 18249 non-null float64\n", + " 6 Total Bags 18249 non-null float64\n", + " 7 Small Bags 18249 non-null float64\n", + " 8 Large Bags 18249 non-null float64\n", + " 9 XLarge Bags 18249 non-null float64\n", + " 10 type 18249 non-null object \n", + " 11 year 18249 non-null int64 \n", + " 12 region 18249 non-null object \n", + "dtypes: float64(9), int64(1), object(3)\n", + "memory usage: 1.9+ MB\n" + ] + } + ], + "source": [ + "# Concise summary of various features in the dataframe.\n", + "avocadoData.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "8330ca8c-3f69-43b2-a588-5bc254f6f46a", + "metadata": {}, + "outputs": [], + "source": [ + "avocadoData['Date'] =pd.to_datetime(avocadoData.Date)\n", + "avocadoData.sort_values(by=['Date'], inplace=True, ascending=True)" + ] + }, + { + "cell_type": "markdown", + "id": "f00da70d-2312-4c8b-a4f3-0e556949a984", + "metadata": {}, + "source": [ + "### Exploratory Data Analysis" + ] + }, + { + "cell_type": "markdown", + "id": "518c81eb-3bc0-46a0-9650-b71d3b89a15c", + "metadata": {}, + "source": [ + "* In the below visualization we are intersted to see if there is any trends over time for the prices of conventional avocados." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "8cb1ab09-9c42-47f5-a240-7112e52514c9", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABewAAAG/CAYAAAAq6Ze7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXxV1bn/8c/aZ86cMCOj8yyogAURBRwQcKJ6sa3W+tNqBWm9OLRei9dZrEKrRa0d7LWjAwUKoiDaOiEqQkVUZFBAmSEh85n2Xr8/TjgSkpBgQhLC9/165dWw915rPfucxbY8Z51nGWutRUREREREREREREREWpTT0gGIiIiIiIiIiIiIiIgS9iIiIiIiIiIiIiIirYIS9iIiIiIiIiIiIiIirYAS9iIiIiIiIiIiIiIirYAS9iIiIiIiIiIiIiIirYAS9iIiIiIiIiIiIiIirYAS9iIiIiLSZkyaNIlp06Y165h//etfGThwIH379qWoqKhZx25Offv25csvv9yvY7z77rucccYZ+3WM/emrr77iqKOOIplMtnQozWbjxo307dsX13VbOhQRERGRNsHf0gGIiIiISNO54oorWLFiBW+//TbBYLClw2m0K664gv/85z/4/X6CwSD9+vVj0qRJdOzYsdbr77777maNL5FI8OCDD/Lcc89x9NFH13pNPB7nN7/5DbNnz2br1q0UFBQwYMAAxo0bR7du3Zo13oa64ooruOCCC7j00kvTx5YuXdqCEX3NWsvw4cMJhULMnTu3pcNpFiUlJTzyyCMsWLCAsrIyevTowVVXXcWYMWP2+9iTJk1i9uzZQGq+W2vTz5ZTTjmF3/3ud61mboiIiIi0BVphLyIiItJGfPXVVyxevBhjDK+++up+GaMlVg5PmjSJpUuXMm/ePEpKSnjggQdqva4lVvju2LGDWCzG4YcfXuc1EyZM4LXXXuPhhx9m8eLFzJo1i+OPP5533nmnGSNtO95//30KCwv58ssvWbZsWUuHs9/F43GuuuoqNm7cyN///ncWL17MLbfcwiOPPMLTTz/d5OPt+Xf87rvvZunSpSxdupTrrruOESNGpP/8u9/9rsnHFxERETnYKWEvIiIi0kbMnDmTk046iYsvvpiZM2emj//nP/9h0KBB1RLar7zyCqNHjwbA8zyeeuophg8fzoABA/jxj3/Mzp07ga9LfDz//POceeaZfP/73wdSSehBgwZxyimn8N3vfpdVq1al+y4qKuL666/n5JNPZsyYMUydOpXLL788fX7NmjX84Ac/oH///px77rkNXiWdl5fHueeemx7rpz/9KXfeeSfXXnstffr04d133+WnP/0pU6dOTbdZsGABF154ISeffDLDhw/njTfeAKC0tJTbb7+d008/ncGDBzN16tQ6E/7xeJz77ruP008/ndNPP5377ruPeDzOF198wXnnnQdAv379uPLKK2u0XbhwIQsXLuTxxx/nxBNPxO/3k52dzXe/+9306vUtW7Zw/fXX079/f84++2yee+65dPvHHnuMH//4x9x666307duXkSNH8tFHHwHw1FNPMWHChGrj3Xvvvdx777313uM//vEPLr/8ciZPnky/fv0YOnQor7/+OgBTp05l8eLF3H333fTt2zf9rYWjjjqKdevWpfu+9dZbOe200zjrrLN4/PHH8Tyv3r4Bpk+fzogRI+jbty/Dhg3j73//ez3vfHUzZsxg6NChDBkypNo8f/HFF7nkkkuqXfvHP/6R66+/vt6YAZ577rl0XOeffz4ff/xx+nUePnx4+vgrr7ySbuO6LpMnT2bAgAEMGzas2n3C3t/bZcuWcckll3DyySczcODAOj+ImjVrFps2beJXv/oV3bt3JxAIcMYZZ3DHHXfw6KOPUlZW1ui5MHbsWO6//3769+/PY4891rA3osqeZYCuuOIKpk6dytixY+nbty/XX389RUVFTJw4Mf1M+Oqrr9Ltv+nzQERERKStUsJeREREpI2YNWsWo0ePZvTo0bz11lts374dgD59+hCJRFi0aFH62tmzZ6cT9s888wwLFizgz3/+M2+++Sa5ubk1Ssu8//77zJ07l9///vcAnHHGGcybN4933nmHY489lptvvjl97d13300kEuHtt99m8uTJ1ZKqFRUVXH311YwaNYqFCxcyZcoU7rrrrmoJ/7oUFhYyb948jjnmmPSxOXPmcP3117NkyRJOOeWUatcvW7aM2267jVtvvZXFixfzl7/8hUMOOQSA2267Db/fz/z585k5cyZvv/02zz//fK3jPvHEE3z44YfMmjWLf/7zn3z00Uc8/vjj9O7dmzlz5qRfn2eeeaZG24ULF3LiiSfSpUuXOu9r4sSJdO7cmTfffJNHH32UKVOmVFt9/9prrzFy5EgWL17M0KFDueeeewAYOXIkr7/+OmVlZUAqefzyyy8zatSoBt3jsmXL6N27N4sWLeKaa67hf/7nf7DWctNNN3Hqqaemv9kwadKkGjHfc889lJaWsmDBAv70pz8xa9Yspk+fXm/fAO3ateM3v/kNS5Ys4YEHHuCBBx5IJ8frU1lZybx587jgggsYPXo0L774IvF4HIChQ4fyxRdfsHbt2vT1u8/zvcX80ksv8dhjjzF58mSWLFnCE088QV5eHgDdu3fnL3/5Cx988AHjx4/nlltuYevWrUAqyf+vf/2LmTNnMn36dF5++eUGv7f33XcfV155JUuWLOGVV15hxIgRtd7zwoULOeOMM8jIyKh2/JxzziEWi7F06dImmQvdu3dn4cKF/OhHP2rQe7E3c+fO5aGHHuKNN95g/fr1jB07ljFjxvDee+9x2GGHpfeZaMzzQERERKStUsJeREREpA1YvHgxGzduZMSIERx//PF07949nUyGVHJ315/Lysp44403GDlyJADPPvssN910E507dyYYDDJ+/HjmzZtXrTTGjTfeSEZGBuFwGIBvf/vbZGVlEQwGufHGG1mxYgWlpaW4rsv8+fO58cYbiUQiHH744Vx00UXpfv79739zyCGHMGbMGPx+P8cddxznnnsu8+bNq/Pe7r33Xk499VQuvPBCOnTowM9+9rP0uWHDhnHKKafgOA6hUKhauxdeeIExY8YwaNAgHMehU6dOHHbYYWzfvp033niD22+/nYyMDNq1a8dVV13Fiy++WOv4s2fPZty4cbRr146CggLGjRvHP//5zwa9Lzt37qRDhw51nt+0aRMffPABN998M6FQiGOOOYZLL72UWbNmpa855ZRTGDJkCD6fjwsvvJAVK1YAcMghh3DssceyYMECABYtWkQ4HKZPnz4NuseuXbty2WWX4fP5uPjii9m2bVv6Q569cV2XuXPnMnHiRLKysujWrRs/+MEPqr0me+v7zDPPpEePHhhj6N+/P4MGDWLx4sUNej3nz59PMBhk0KBBnHXWWbium17VHolEGDZsWHqer127ls8//5yhQ4fWG/MLL7zANddcw4knnogxhp49e6Y/3BkxYgSdOnXCcRzOP/98evbsmS7F89JLL/H973+fLl26kJeXx3XXXdfg99bv97N+/XoKCwvJzMykT58+td5zUVFRrXPI7/eTn59PUVFRo+dCx44dueKKK/D7/em/441xySWX0KNHD7KzsznjjDPo3r07AwcOxO/3c9555/HJJ58A3+x5ICIiItLWadNZERERkTZg5syZDBo0iIKCAgBGjRrFjBkzuOqqqwAYPXo0Y8eO5a677uKVV17h2GOPTSckN27cyLhx43Ccr9dyOI7Djh070n/u3Llz+nfXdZk6dSovv/wyhYWF6XZFRUVEo1GSyWS1FeW7/75hwwaWLVvGqaeeWq2/Cy64oM57u+OOO6ptfrq7va1c37RpE0OGDKlxfOPGjSSTSU4//fT0Mc/z6uxr69atdO3aNf3nrl27pldY1ycvL6/aiu/a+s7NzSUrK6ta/8uXL0//uX379unfw+EwsViMZDKJ3+9n1KhRzJkzh4suuog5c+akV1Q35B537zcSiQCpFc/1KSoqIpFI1HhNtmzZ0qC+X3/9daZNm8batWvxPI9oNMqRRx5Z77iQmucjRozA70/9M+bss89mxowZnH322UBqnj/44IOMHz+eOXPmMHz4cCKRCNu3b99rzJs2baJHjx51jvn000+zYcOG9H0UFRUBqfdv99d09/7re2/vu+8+Hn30UUaMGEG3bt0YP348Z511Vo3x8/Pz2bZtW43jyWSSoqIi8vPzARo1F3b/+90Udn//Q6FQjTm8ay58k+eBiIiISFunhL2IiIjIAS4ajfLSSy/heR6DBg0CUnXXS0pKWLFiBUcffTSHH344Xbt25Y033qiWzINUsu7++++vUVIGSNeaNsakj82ePZtXX32Vp59+mm7dulFaWkq/fv2w1lJQUIDf72fz5s307t0bSCVDd+nSpQv9+vXbL5tl7qlLly6sX7++xvFd3yRYtGhROvG7Nx07dmTjxo0cccQRQOp+Onbs2KAYBg4cyDPPPMPmzZtrTYp27NiR4uJiysrK0ondTZs20alTpwb1P2LECCZPnszmzZt55ZVXePbZZ7/RPe6L/Px8AoEAGzduTG+229CY4/E4EyZMYPLkyQwbNoxAIMANN9yQLpezN5s3b2bRokUsW7aM+fPnA6kSOfF4nMLCQgoKChg0aBBFRUV8+umnzJkzJ/1tjPpirmuubNiwgTvuuIM//vGP9O3bN/0th106dOhQbX7v/nt9722vXr2YMmUKnucxf/58JkyYwLvvvluj9M3AgQOZMmUKFRUV1c7t+rbBrpX5jZkLu//9bk7N+TwQEREROVCoJI6IiIjIAW7BggX4fD5efPFFZs6cycyZM5k7dy6nnnpqtfrxo0aN4plnnuH9999Pb5YKcPnll/PLX/4yvYK4sLAwXVqjNuXl5QSDQfLz86msrGTKlCnpcz6fj7PPPptf//rXVFZWsmbNmmrlXc4880zWrl3LzJkzSSQSJBIJli1bxpo1a5ryJQFSZXv+8Y9/8M477+B5Hlu2bGHNmjV07NiRQYMG8eCDD1JWVobneaxfv5733nuv1n5GjhzJE088QWFhIYWFhUybNi1dF70+AwcOZODAgYwbN47ly5eTTCYpKyvjb3/7Gy+88AJdunShb9++TJkyhVgsxooVK3jhhRca3H9BQQH9+/fnZz/7Gd26deOwww4D2Od73FP79u358ssvaz3n8/k477zzmDp1KmVlZWzYsIGnn366Qaui4/E48Xg8/cHO66+/zttvv92gmGbNmkWvXr14+eWX0/N83rx5dOrUKV3exe/3c+655/LQQw9RXFyc/gCrvpi//e1v84c//IHly5djrWXdunVs2LCByspKjDHpb65Mnz69Wn31ESNG8Kc//YnNmzdTXFzMU089lT5X33s7a9as9DdUcnJy0nHu6cILL6Rz5878+Mc/5quvviKRSPDmm29y7733Mn78eLKzs4H9Nxf2p+Z8HoiIiIgcKJSwFxERETnAzZgxg0suuYSuXbvSoUOH9M93v/tdZs+ena5FP2rUKN577z1OO+20dAIS4Morr2To0KFcffXV9O3bl8suuyxdo7s2F110EV27dmXw4MGMHDmyRu3tSZMmUVpayqBBg7j11lsZOXIkwWAQgKysLH7/+98zd+5cBg8ezOmnn87DDz+c3ji0KZ144ok88MAD6W8PfO9732Pjxo0APPTQQyQSCc4//3z69evHhAkTai07AnDDDTdw/PHHc8EFF3DBBRdw3HHHccMNNzQ4jkcffZQhQ4akN3MdPXo0y5cvZ+DAgQBMmTKFDRs2MHjwYMaPH8+NN96YTjQ3xK4NO3f/1sS+3uOerrzySubNm0e/fv249957a5z/+c9/TiQSYfjw4XznO99h1KhRjBkzpt5+s7KyuOOOO/jJT35Cv379mDNnDkOHDm1QTDNmzOA73/lOtTneoUMHxo4dy4wZM9LXjR49moULF3LeeedVW1G+t5hHjBjB9ddfz8SJEzn55JMZN24cxcXFHH744Vx99dWMHTuWgQMHsnLlSk4++eR0n5dddhmnn346F154IRdffDHnnHNOtZj39t6++eabjBw5kr59+3LfffcxderUGvswAASDQZ5++mm6dOnCZZddximnnMKDDz7ITTfdxDXXXFPt2v0xF/an5nweiIiIiBwojG3I909FRERERL6hX/ziF2zfvp3Jkye3dCgiIiIiIiKtmlbYi4iIiEiTWrNmDStWrMBay7Jly3jhhRfSm4KKiIiIiIhI3bTprIiIiIg0qfLyciZOnMjWrVtp164dV199NcOGDWvpsERERERERFo9lcQREREREREREREREWkFVBJHRERERERERERERKQVUMJeRERERERERERERKQVUMJeRERERERERERERKQVOKg2nS0qKsfzVLJ/T+3aZbFjR1lLhyGtiOaE7I3mh9RFc0Nqo3khe6P5IXXR3JA9aU5IfTRHpC6aG7Knlp4TjmPIz8+s8/xBlbD3PKuEfR30usieNCdkbzQ/pC6aG1IbzQvZG80PqYvmhuxJc0LqozkiddHckD215jmhkjgiIiIiIiIiIiIiIq2AEvYiIiIiIiIiIiIiIq2AEvYiIiIiIiIiIiIiIq2AEvYiIiIiIiIiIiIiIq2AEvYiIiIiIiIiIiIiIq2AEvYiIiIiIiIiIiIiIq2AvzkGKSoq4tZbb2X9+vUEg0F69uzJ3XffTUFBQbXrpk2bxty5c/H5fPj9fm666SYGDx4MwGOPPcZf//pXOnbsCMDJJ5/MnXfe2Rzhi4iIiIiIiIiIiIjsd82SsDfGcM011zBgwAAAJk+ezMMPP8z9999f7boTTzyRq6++mkgkwooVK/je977HW2+9RTgcBuCiiy7itttua46QRURERERERERERESaVbOUxMnLy0sn6wH69OnDxo0ba1w3ePBgIpEIAEcddRTWWnbu3NkcIYqIiIiIiIiIiIiItKhmr2HveR5/+9vfGDp06F6vmzlzJj169KBz587pYy+++CKjR4/m6quvZunSpfs7VBERERERERERERGRZmOstbY5B7zrrrvYsmULv/71r3Gc2j8veO+997j11lv5wx/+wKGHHgrAtm3byMvLIxAI8Pbbb3PzzTczd+5c8vPzmzN8EREREREREREREZH9ollq2O8yefJk1q1bx5NPPllnsn7p0qXccsstPP744+lkPUCHDh3Svw8aNIguXbqwatUq+vfv3+Dxd+wow/Oa9fOJA0KHDtls21ba0mFIK6I5IXuj+SF10dyQ2mheyN5ofkhdNDdkT5oTUh/NEamL5obsqaXnhOMY2rXLqvt8cwUydepUli9fzrRp0wgGg7Ves2zZMm666SYeffRRjjvuuGrntmzZkv79008/ZcOGDfTu3Xu/xiwiIiIiIiIiIvJNGd9S/Jn/j0D2EPyZ38P432npkESklWuWFfarVq3iySefpFevXowdOxaAbt26MW3aNK699lomTJjACSecwF133UU0GmXSpEnptg899BBHHXUUU6ZM4eOPP8ZxHAKBAA899FC1VfciIiIiIiIiIiKthfG9jz9zPMZEU392dmJ8PyFZcT82OayFoxOR1qpZEvZHHHEEn332Wa3nfvvb36Z/nz59ep19TJ48ucnjEhERERERERER2R984UfSyfpdjInijzxMolQJexGpXbOVxBERERERERERETlYGN/qOk5sAuLNGouIHDiUsBcREREREWlmxvmYQPgqghn9CGachS/wJJBs6bBERKQp2fZ1HM8CAs0aiogcOJSwFxERERERaUbGrCUQvg7H9xHGeBhTgi/wJ/zB+1s6NBERaUJu9DqsDYMl/WNtGDf2fcC0cHQi0lopYS8iIiIiItKMfIGn2bMUgjFRHP9LQGGLxCQiIk3PS1yEjZ6FiQfTPzZ2Kl786pYOTURaMSXsRUREREREmpFxVmKMW8uZIMb5qtnjERGR/cNxXsFn3sZA+sfHMny+51s4MhFpzZSwFxERERERaUbWOxJra/unWBzrdWv2eEREZP/w+5/EmGi1Y8ZE8ft/T6pGjohITUrYi4iIiIiINCM3cRUQrHbM2hBe8hygoCVCEhGR/cCYzXWcKQYSzRmKiBxAlLAXERERERFpRtb2JhF9Es89FmsN1mbiJr5DMn5HS4cmIiJNyNoedZxpDwSaMxQROYD4WzoAERERERGRg431TiAR/ROpkgimpcMREZH9IJm8kUDgNoyJpY9ZGyaRGIee/SJSF62wFxERERERaTFK2IiItFWeN4hEYjKedxjWBvG8HiQSd+J5I1s6NBFpxbTCXkREREREREREDmrGrsdQiMcRYDKbrF/PG0Q8PqjJ+hORtk8JexEREREREREROTjZIiL2JhxWkUqTJYnb60g4V7Z0ZCJykFJJHBEREREREREROSiF7S04rMAQw1COIUaQp/DZtxreiS3F5y3EscvB2v0XrIgcFLTCXkREREREREREDjrGbsbHpxiS1Y8TJWD/gmtOr7ePgPtngvYJIAC4WPKp9E3Dmu77J2gRafO0wl5ERERERERERA46hp3UtZbVUFhve8d+QNA+WbU6vwxDJYZNRNwbtdJeRL4xJexFREREREREROSg43EoUDOxbgngUv9GsQHveSBa7ZjBYtiBw4omilJEDjZK2IuIiIiIiIiIyMHHBIkxEUsYiwHAEsSSS9xcUX9zW1TVak8OxpY0aagicvBQDXsRERERERERETkoJZ0L8WxPgvbPGLaS5FskzOVg8upt65qz8NmPMXussockrjl+/wQsIm2eEvYiIiIiIiIiInLQ8kwfoqbPPrdLOBfhd2fgsAFDtGqVfoiY+TGYzIZ1YisJJP+NsYW4vj64vuP2OQ4RaVuUsBcREREREREREdlXJkyl7//we7Px239hTQEJ5zI8c2KDmjvuKjIrfoghCSQAH0nfACoiD4FRyk7kYKW//SIiIiIiIiIiIt+ECZP0XUqSS/etnbVkVN6MoWS3OvgJ/O67BBKzSATHNHGgInKg0KazIiIiIiIiIiIizcjx1uLY7TU2rTVECSZmtEhMItI6aIW9iIiIiIiIiIi0ao67kmB8HuCRCJyN6z+2pUNKsR7+5Dv4E+9gTR7x0Eis06UBDT2oka5PMbhNGqKIHFiUsBcRERERERERkVYrFP0D4ehvSdV5t4RizxILXUY08pOWDcwmySyfgD/5IYZKLAHCsT9QnvkAycCQvTb1nN5Yk4WxldW7JETcP2p/Ri0irZxK4oiIiIiIiIiISKvkuF8Rjj6FIYbBw2AxRAnFnsOX/KxFYwskXk4n6wEMCQxRMsvvABvfe2PjUBGZjCWCJQSAJYLrO4Z4cB/r4YtIm6IV9iIiIiIiIiIi0ir5k2/WcSaOP/EvXP9RzRrP7oLxF9PJ+t1ZwJ9cRjJw6l7bu76TKM2cTSD5Msbbhus/maRvIBitrxU5mClhLyIiIiIi0txsJcHKFwkk3sQ6nYhGLsXzH5E+7SRWkFE6Gcdbh+c7lIrsW/H8R7ZgwCIi+5eTXE248jmMu4VEcBDxyGgwEVKpq9oS2A4QaFDfxiskVPk8vsTHuP4jiUUuw/o6Niwwa/En3iFYORtDknh4JIngGVVJ9WDt4wHWNCzlZrxCfLG1OO5mCHYiGYkBkYbFJiJtkhL2IiIiIiIizckrJ2fnFTjuZgxRLA7B6BzKs+8kET4Xf+w1skpuBlJJHye5hJyisZTl/IpkaHDLxi4ish8Eoq+SWfpzII7BI5B4n3D0r5Tk/YlE4CwilVNqaeUjETy73r6d5Hqyd16BsTEMcWziXcLRv1Oa9/sGrc6PlP2CUHRWeiV9IL6QeOgMKrLvJxa6GH9ycY1V9taEcH0nNOC+XyOz9I5q9x2q/Csl+X8GJ7ve9iLSNuk7NiIiIiIiIs0oVPksjrsJQxSgqiZzlIyye8EmyCy5s+o41f43s3RS8wcrIrK/2QQZZXdjiGLwADBEcdwthCv/jnXaUxGZhCWERwRLGEuIyshNeL4e9XYfKX8EY8swxKv6ToCtIKP0/nrbOsnPCUVnVEvIGyoJxt7Al/yQpH8I8eBILKGqnww8sijPnArG983u29tCuPKvVddYAtEFZBWOJ6vwRwQrXwSbrDduETmwaYW9iIiIiIhIMwrGX8UQq/WcL/4phvJ0kn4XA2CL93doIiLNzpdcDbg1jhtiBGILiGZeSyI0gpLAaQQSrwMeicBgrNOhQf0H4u9isHv0Db7kcrAJMHWX1QnE34E92qZECcTewg30oTLjdmKhy/En38eaHBKBIVWlfPbO536BqSX5bohX3fd1ZJTcRahywW6r+z8iWDmPsvxfgdnzvxQi0lYoYS8iIiIiItKMrMmq9bixLtZkNnM0IiItyzqZGFszYZ86l73b7/nEQxfte/8mjLHxWs4EgL2vgk89k2u7JoA1X8fm+XoT9/Xex7gyqO2DitS5bHyJVYQq51f7gNdQSSC+BH/8fZKh/vs0nogcOFQSR0REREREpBnFImOxhKsdszi4vkPwgofh+g6tsZ7TAq7v6GaLUUSkuXi+Hri+ntg9UlSWCLHI2Eb3HwtfjCW0R99B4qERVRvH1i0RGlrHGUM8fF6j4vJ83XB9veu8b3/8fagqlVNdJYH4okaNLSKtmxL2IiIiIiIizSgRPJNo5HIsQTyTiWcy8JwulOf+EoDSvN9iTQ4Wvv4xeZTmPdmSYYuI7DfluVPwnENSz0OTiSVINHIpieCwRvcdzfwRieCAqhr4mVjCJAMnUJF9S71trZNDWe4UrMmsel5nYolQnn0v1tcJAOMWEil6mNyNF5Kz+QqCFfPA1lZGp6ay3EfwfN1Ste/T9z2GROhsrJND7YUxgliTvw+vgIgcaFQSR0REREREpDkZQzTrRmIZl+NPLMNzCnD9J31dj9jJp7j9v/HHXsefWEoycArJ0OCWjVlEZD/yfF0pKZiJL7kMx9tB0n8C1tewGvX1MkHKc3+Jk1yLz12D6+uJ5z+8wc2TwQHsbPcq/sRisC7J4KnpGvXGLSZ38+UYbyeGJLiQWXgPvqyVVObdWG/f1teFkvwZtd53PHQWGWYypkbu3yEWaVN+y2QAACAASURBVNzqfhFp3ZSwFxERERERaQHWab+XcguQDA0hGRrSjBGJiLQgY3ADJ9VR1b3xPH8vPH+vb9bYBEkGB9Y4HCp7HuOVppL1uy61lYRL/0o0+3tYXwNWwtd1304mZfnTyCr6byBGaqtch/K8+5vuwwwRaZWUsBcREREREREREdlHgei71TaF3cWaIL7ECpK+bzWq/2TwRHZ2nIc/sRxwSQZOABNoVJ8i0vopYS8iIiIiIiIiIm1WoOJdIoXT8CXW4QW6UpF/PYnMxn+DyfN3xcb/g9ljc1hDEuvrCIC/8j0yCqfhi6/9ZmMbH8ngSY2OVUQOHNp0VkRERERERERE2qRAxSKyt0wkEP8Ux1bgj68me+sdBEvnN7rvaPblYILVjln8uP5DcQOHEah4l5zN/00g9sluY/8PwdJ5jR5bRNouJexFRERERERERKRNyij8FcZWL1tjbJSMwkcb3bcbPJqK7BsgEYCYAzEHaztQ2v6RvYwda5KxRaTtUsJeREREREREREQOfDYJ1lY75Iuvq/VSx92aur4RnMRmMrY/BZ6LoWpb2MROMrdPrRp7bR1jbwObaNTYItJ2NUvCvqioiGuvvZZzzz2X0aNHM378eAoLC2tc57oud911F8OHD+fss8/m+eefb9A5ERERERERERE5OPkqP8Fb+m0KVg6iYNUZZGx5CLzUynbP36HWNtbJAXyNGje8828YG8XsdszYGMHyN3ASm/H8HesYOxttKykidWmWhL0xhmuuuYZ58+Yxe/ZsunfvzsMPP1zjutmzZ7N+/Xrmz5/Ps88+y2OPPcZXX31V7zkREREREZEW4cUxbmmNFZ0NYi3GLQEv3vRxiYgcJJz4V+R++SMo/xiDxdgY4eLZZG+8HYCK/B9iTbhaG2vCVOb9AMxuqXabSD2T63qee5XgVVQ7FKh4r8aGs7v68iXWUpF/XcPGFhHZTbMk7PPy8hgwYED6z3369GHjxo01rps7dy6XXnopjuNQUFDA8OHDefnll+s9JyIiIiIi0qy8SjI33kXBqqHkrzqPvM+/jb98cYObB8oWkff5xeSvGkHBqmFkbroXvOh+DFhEpG0KF/0NbPUPPo2NEah4Fye+gXj2SMoLfoLn5GLx4zlZVORdSzT3O6mLvRiZmx+gYOVQ8leNIG/NRQTK3k735SS2kL3+BgpWDqdg5dnkrP1/OPH1qXES22rP71sLiWLi2SMob3fTHmNfQzT3u/vr5RCRNqDZv3/jeR5/+9vfGDp0aI1zmzZtomvXruk/d+nShc2bN9d7rqHatcv6hlG3fR06ZLd0CNLKaE7I3mh+SF00N6Q2mheyNwfq/PCW3wyl76ZrEPsSX5G7YSKmz7OYzCP22taWfYJdedvXCXoL4dL5hP2VOMdqI8JdDtS5IfuP5oTUxtu0BnBrHDdOiIKMHZj8o6HDVVh7Jbjl4Msg2/jYNZu8T/8XSl5LJ/19yc3kbLwdc+L/QebR2Pevhfj29BiB6Mfkr78W0/8VLLXUwLdgLOSECnE6ZEOH7+P1uBhKP8RkHkt2qB2ayc1Pzw/ZU2ueE82esL/nnnvIyMjge9/7XnMPzY4dZXjeN/iqahvXoUM227aVtnQY0opoTsjeaH5IXTQ3pDaaF7I3B+r8cOIbydv5LmaPFZ3WixNd/VvKu/58r+2zNvyGoBerVvMYL4YtfIPtGz/HBmqvt3wwOVDnhuw/mhNSlwzfUYT5ELNH0t56MYoqO+El95w3X5e1MclC8ne8WsvzPEZs9RPEc0eQmSjFqda3xbpRyj6fQcjfE3/sE4xT7TTWQrE9AXdLMTnrf0yg4r306Xj4OIp7PQWOatg3Fz0/ZE8tPSccx+x1YXmzlMTZZfLkyaxbt45f/vKXOE7Nobt06VKtVM6mTZvo3LlzvedERERERESai5PYiDXBGscNHr742nrb++JrMdRcSGRNAF9y375FLCJysItnfAtjXao9Vi1YMvACnfba1kluwZpAjeMGiy++Die+oUYyH8DYKE78K8o73ZK62jPgAR5Ya/D8XXAjx5O14c6qOvekf/zRj8lZP6ERdywibV2zJeynTp3K8uXLmTZtGsFgzf9zC3Deeefx/PPP43kehYWFLFiwgHPPPbfecyIiIiIiIs3FDR1aawLH4icZOaHe9snICVh8NY4bm8AN9miSGEVEDhbh4lfAq0pv2a9/HLcSX2zdXtt6ge6YqtJmu7P4SEaOJxk+staEvjUZuOGjcCPHU9r1IayTg8VgcUiET2Jn7+cACJUuYM+tZQ0QqPgAvFo2qxURoZlK4qxatYonn3ySXr16MXbsWAC6devGtGnTuPbaa5kwYQInnHACF154IR9++CHnnHMOAOPGjaN79+4Aez0nIiIiIiLSXKy/gFjuKELFczE2VYfeYrBOmGjB5fW2ryy4gmDJPPAq0ivtrQkTzbsY68vdr7GLiLQ1TvzL1LPUq54a95wATmILbqhnnW2tL4vK/LFEip7b43keorLd9/EC3fBCvTDRVRgvVa/eGj9esD3x7CEAJLLPpCjzW/grV+H5c/BCu3/wurekfBTIqP8GrcUXXQXWw40cAabmB74i0rY0S8L+iCOO4LPPPqv13G9/+9v07z6fj7vuuqvW6/Z2TkREREREpDmVd7oFN9iTcNHfMW4piYxTqOg4vt7yCwBesCvFPf9A5rZf469YivXlUJn/XWL5Y5ohchGRtiWReQqB6Cc1VsobmyAZPrze9pUdbsALdCVS+CeMW0wyciIVHW/EC6YWiZZ1+Am5n/93ekW8MQHKD/kxVK28D+2YQ9bGKVgcjE2SDPWktPcv8IId6x7UAiZSb2y+ihXkrL0N45YCBkyQ0l73kcg6ud62InLg0g4XIiIiIiIi+8o4RAvGEi0YW/c1XgJ/+XIAklkngPn6n19eqBel3R7e31GKiLR50YJLiRT9oyqpndoc1jNhYvkXYf0F9XdgDLH8i4nlX1zznFtB7ue34HiVXx+zMXLWTaLw6BfwxTeSteFhjP16I3F/dA05X9zEziP/DJ4PTNWGtbsusKQW3ttkOulfK7eS3DU34nhlux2sIOeLmyk8+gVsoAH3JiIHJCXsRUREREREmlig5D2yv7gDbFUxZeOn9ND7SWRrVaSISFOy/gJ2HvoMBaV/xN3+RupbSwWXE8sb3ei+Q8Wvs+tDgOqDeoR2voK/4hPYY08Tg4svthFfdDXJyHEEKpaldpDctSmuB26wJzh7SdYDoZI3qLWkjnUJFc0n2nEvHxiLyAFNCXsREREREZEmZBKF5Hz+U4wXrXY8Z83NFB4/E+vPafwg1sNf9iFOsphE1gnYQLvG9ykicoDyAp2g102UmwFYfw6JrJPA7Lnd674z7k6MTdY8YWM4yR04iW3pvUiqnTY+nGQR5V1+Qu7n48CNYazFYsAXorzrxPrHThbWuiEuNo6T3PH1dYkiAmUfYv3ZJLL6qMa9SBughL2IiIiIiEgTChW9WrWyvjoLBHf+i1j7CxvVvxP9ktyVEzBuqkyCsUkqOn2HykOubVS/IiIHqsjGp2HpM2RVpbmsL5OSI3+FG657w9mGSGT2BXxA9cS5dSIksk7B+nLwV3yCY2PVzhubIBk5GuuESQSOJVD2ETZVuB430JNkxvENGPvkvY4NENn0f2Rs+iPW7LrvCCVH/Ao30vsb3rGItAZOSwcgIiIiIiLSlhi3tEaJBADjJXCSJQ3rxFr8pR8R2vYi/rKPv/4AwFpyV0/ESWzD8SpwvAqMjZOx9e8Eihc24V2ItAJeksDOhYS2vYgt/7Klo5EWZpJlBHcsILh9Pma3Z2mg5D0ytvwZvHj6uegktpOz6r9r/fB0X7gZRxPLGYhHCOsarGvwCJHMOI5EVj+i7S7GBtphTTDdxpowFZ2uxvpzyNj4ewLlKzB4GCwGD190HZnrpzZg7KOI5QzCM+H0Mc+ESUaOJZHdn0DJYjI2P4Oxu993ITmrJ4KtpZSOiBwwtMJeRERERESkCSWyT8Vu+Qtm900KAZwA8Zz+9bY3yTJyVvwEX3R91YpMcCOHUnL0VHyxDTiJHTVKMBgvSnjrP0jkDmyy+xBpSb7KteR8OgG8GGCx66aS2e48yntNbJJSJ3JgCRS+Qfbnd2PxARZjXcp63Uy8wwjC22bAHiXIDBaTLMZfsYJk5jGNGjuWfTbBbQuxNgBYcCGafQ4YB+vLZOeR/0d42/MES17H+vOobP9fJHK+BUB4+z8xtay+DxUtoKzX7WD2vo62rOfdhIpeJlz4T7BJYvkjiRaMAuMQ3vaPOu67FH/FpyQzj2vUfYtIy1HCXkREREREpAklM08gkXMagZJ3cKqSKdaJEMsdjJtxVL3tM9Y/iq/yc4xNsCstaSpWkbn+cWIdzsbio7Z0peOWNt1NiLQka8le+VNMcme1D6dCO+aRyOlLvN2wFgxOmptJFJG95m6MjVV79mWtfZidOSdhkqW1PhPBwbgVjRx7J9lf3Fu9jr11yVr3K3bmnoIX6or1ZVHZ+QdUdv5BzfZerMaxVB9JUhvK1lP4wjjECs4nVnB+zVNuWR33bTBu+d77FZFWTSVxREREREREmpIxlPa+h7IetxPLOY1Yzrco7fk/lPWaVH9bawnteLXGRoPGJgjtmE8y42gMNUsdWBMilq8kprQNvsov9vJNkpktFJW0lGDRG9hav1XhEdzxGvH8odjdysbsYnBJZDVulXmw6I3URrE1uAR3vFpv+0R23xpb0logGTkSTOPW0MbzzqpWLmcXg0si84RG9S0iLUsJexERERERkaZmHOIFwyk9fAqlhz9CPH9ovaUP0nZfyVnteAKcEKU9bsWaUFVpCPCcMG64G9EOFzRR8CItzItj60pX7FECRNo+48UwtdVkty7GixFtP5JkpCf4IqnDOFgToqz7f4NTM6HdlGPXxyMbbLVtSMBWHW+kaPvzcSO98Kru0eJgnRBl3W9KvxYicmBSSRwREREREZHWwhgSOX0JlCyptrrY4pDI6QdAvN057IwcSnj7TJz4duJ5pxMrOBucUEtFLdKk3MzDwfhqHLdOiHiBvklysInnnkbGl7+pecIJEs8bCE6I4qOepH3yLWLrX8EL5BPtcBFuxpGNHzvvNDK+fLKWsUMk8urfMySwcxG4BhyLNaSW13uGQOmHYN1a53mDOSGKj3qCUNGrBIveaNL7FpGWpYS9iIiIiIhIK1Le62ZyP7kO68VwvBieEwInQnmvm9LXeP58XNMV68vE83UEE2jBiEWamPFTdtjPyV7989RKZpsEXwQ31INop4tbOjppZl6kB5VdxhLZ/FzVJsSAEyLW/jzcrKoNZZ0g5pALKQ0Obdqxw93rHDuZdWy97Y11wTPgOmANGJv6caqW2jeWEyTWbgSxdiMa35eItBpK2IuIiIiIiLQiXrgbO0/8O6Ftc/FVrMbNPJJY+xFYfxYAgaLFZH96R1UiM0Fo0z9J5hxL6bGTwdE/8aRtSOR9i50nPENo64s4iW1Eup9Jsa+/5vhBqrLbtSTyBhLcPh9jXWLthpPMPqmFxh5GMrtPg9rGsvoQKny/6htTpqo8jiGReXija9iLSNulp4OIiIiIiMg34FRuILRpLk6iiETBAOLtT/+6vIG1+EuWE9ryKtYY4h2Hk8xt+OaH1p9NtMt/1TzhJcn67C7MbnW8Ha+SQMnHhLbOI9Z5JAD+4o8IbnkVjCHecRjJ3OMbda8iLcELdaWy+7UAZHTIhm2lLRyRNIZJlhHcMh9/6UrczEOJdT4PG8hpcPtk1nEk69pE1rrYDa+R+cW/8AL5xDqPwMvottvY5QS3zKsauzexziOabmwvTsYXfyCw4y2sP5eKXj8gWXAqAIGytbsiqPa//orNDR5bRA4+StiLiIiIiIjso8D2t8j+9N50uY7g1n8TznqekpOmgBMkY800wpteTJdQCG9+mcpDLqby0B82alx/2Wepusd7MF40nbDPWP3rmmN3vYjKw65r1NgiIt+UE91C7pIfgVuJ40XxnBCR9X+muO80vIzujevcS5Dz4URsxWrCyUosPiIbplN21E+JdzwTJ7qV3CXXY9xKTHrsv1Dc99d4GT0aN3aygvxFl2HcclIl6jeQ89EtRLt+m4ojxuHEt6VT9bsYALc89YzW3iMiUgsl7EVERERERPaFFydrxYOYXfWMSa1yN2WrCW16iWTucYQ3zal2Hi9KZMN04p3Oxc3s+Y2HtsaHsbXXPbbGj69sde1jb5xBvPO5uJm9vvHYIm2JiRcR2jAbf9lKklmHEet6ITZU0LDG1uIvWkxo83ywHvFOZ5NoNwDMnqlZ2SVjza8xiWIMHgCOF8N6cTJXTqG0z9TUsfJ1hDbMwhfbRqKgP7HOZ4MvXG/foS3z8ZWtTH9IaXDBc8la+RCF7QeSsWZarWNnrZxCSZ9f7jb2P/HFtpIo6Ees8zlfj20t/qIlhDbPA+sS7zScRLvTwBgyVz+GSZbvuoyqAAhvfIGKnlfUE7nmi4jUTgl7ERERERGRfeAv/YzaNgs0XozQtldxkqXgJWo2tB6BwkWNSti7WUfi+TPwxSurd+2EiXUeSXDHIvCStYztVo3d6xuPLdJWOBVfkvPBOIwbx9g4gcL3CX85ndJTHsPN7F1v+4yVj6aSt14UAwS3v0O84xDKj75VSfs6BAvfSyfMdzFYAsUfpp5P298h65P7wEtg8AgUfkD4yxcoPvVx8Gfuve/N83F2/5ByFy+Bv+QTgoXv1jq2v/ijqrEXkfXJveAlMbhVY09Pj52x+nFCG1+s/n53OJ3yY35GcPtbu/3nILXGnqr9ZENbXvr63O7TIn2905CXTkQOQno6iIiIiIiI7APrBKktYZ86F06d31XLfnfGV9W2EYxD6TH34fky8ZwI1gSwTohY+yHE259VNXYt/8wzjkovyMElWUnoy+lkL/lvMpffi7/44/SpjFWpVdHGxgEwXgLjVpLx2a/q7dZX9jmhzS9jqpK3qfZRglv/ja90xf64kzbB1rXBqvGB55K54iGMF0sn1o0XxYltIfzVP6o6sAS2vUXWh7eT9Z+fEtz8Wro8mK9yQ+19e0lwY1jjx1qwrvn6x5J6LlYb260+9pfTUyvvN86u+X5vewt/ycdYb1eJst1r1Ff9bgJYU/Vhg93tB8D69OGOiNRJK+xFRERERET2gZt1JNafjXUrqy2a9Jww0a4X4GYeQcbnv6nZ0EsQ7zCk8eNnH01R/xcI7ngbJ1lMIrcvbuahAMQ7nkXG2t/X+nlCrAnGFjkgJCvIff9HOLFtGC+GxRDcvpCKw28g1m0UgaL/YPb4S/L1imuv9g+9qgQK3691Hwm8OIEd7+HmHNPUd9MmxDqdQ3jTixj79bePrPET63Amvop1dezNESe49XWiva4gY8XDhLb8O73hdmDnRwS3/ouyE+6GZDnW1p7/9pV9QbxgIKHNr5J6MFatgvcc4vl98VWsx9ia30oyXpzgttex/ozdat3sxosS2P4uNpALbrTmeQxupDuxziMIb5yZGmPXAnzjI97+zNo/2BURQQl7ERERERGRfWMMpcffT86yiVgvAdbD4BHrcj6JdoPwF3+MtT7YowSDxYcT3Y4bLMDESwit/wfB7e/ihdoR7TmGZEHf9LVO2Toia5/DV7aGZPYRRHv9F15mt68780WIdxxeIzQv1IGyI28ha+UvsFXJIGNdyo76KTbYwPrcIge48IbZ6WQ9pJLxeDEyVj9OrMswrBPEuLWUjnIC1FdX3PoyqvaS2KO98aeSu1KrikN/iL9sNf6y1VVpc4ObcQgVh0/AJEow1qu1nfVn4itdQ2jLv6rtzWG8KIGiJfh3LsM6GeBFa+TVrQUbzMMUFqY+h7G7PogxYCxObCfWH0l9SFPr2Fm7vd97lDkzAaw/AzfzcJzolhqzxjpBbCCLit7/D3/ZSvylq1L3bQxupCvlR/wkfa2/8EPC66fjRLeRaHcq0Z5jsMG8+l9UEWmzlLAXERERERHZR27WYRSd9jyBwverVrmfhBfpCoC/aAl4HqmkUFWDqoWdgaIP8MKdyVl0HU68GGMT2NLVBAr/Q8URPyTW4wJ8Oz8h54PbwMYx1sNX+gWhLf+m5NRHcHOOrDe2eKfhFBUMIFD4LhhDomAA1p+1314LkdYmsO3t6hsvV7HGj79kJYl2pxHc8lq1FdnWQjz/1HrLlMQ7nEHG6sdrnjAO8Y5nNTb0tssXoaTPo/hLV+Ar/wI3ozvJnOPBGGwgGzdyCL7ytdVqzVsnTLTbxQSKltT+rQY3SqBwMdHuY8j4/HfVvjWR+s1HvNM5ZH46BWN3L1ljwRp8JZ/jhTphTRBsrOZ8aD+IRIfBmM+m1BzbJol3PItkRg8COxay+9earAVrgrjZR4MxlJz0q1rvGyD41UtkfjYNvBgG8JWvI7RxHsXf+g02mP8NX2wROdCphr2IiIiIiMg34QRItB9IrPOIdLIewPqzwfjBdSDuS/24DhY/1p9DeN30dLIeqioeezEyVv8W3CiZKx5L1UuuWvVp8DBulIwV0xocmg1kE+80nHjHYUrWy0HHBnNr3WXCWBcbyMYp24rZvaa4BWPBV74tfW141dPkLbiI/PkjyH77hzjFq9J9lx3/v1hfBM+XgefLwDphyo65HRtq3xy3d+AyhmTOMcS6nE8y94RqH46UnXAvXrgTXtXrap0g0a6jSHQYgrfrmVqjvyA2kEOs53dI5J5E6rsUqR9wKD3hHnAccPfc+bWqzrw1kKjAxMpTZ/aYE8EN/8ap3AReoMY5bACn4iv85Ruwnq/6XAJMIoFJlgHgK1tL6PPphFc/R3jN8/hKVqbCcONkrnyiqn5+VWReApMoJbz22aZ5zUXkgKQV9iIiIiIiIk0o3vEMMj59MpUM2pWG8cAkXOIdBpO95Laa5RUAi4OvZA2+0jW19usv+Ww/Ri3SdkS7XUygcAl4X9cWtzi44Y64mb3xl65Mbfq5K7tqAQy+si/AemQuuZPg9nfTSVR/2VpyF42n+FtP4OUcSqLdAIoGTSdQtBSwJPL7gi/S7PfZlniRzhSf9if8xcsx8SKSOcdiwx0ASHQ8HVb9umYjY4h1GgpA2clTaRfYQuWnM/CC7Yh1uxCqbfJd+zcnAtveTp1zna8vs6mSPf7ytQSKlqWe5Z5T/RtTuAQKP8Rf/AmOZ4Hq560/hK9kJdafRc77N4Mbx2BxKjYR2LGU0r7/W/XBkqkRmbFJAtvfp/LI6/f1ZRSRNkIr7EVERERERJqQr3Qt4Md6ButR9WMAP77ydXh1lDkwNokN5WN94VrPW5/qY8tBxFqCG14j+60fkfva5bhv3Y1TsblBTZMFJ1PR+0qsE8TzZaZWw0e6UnbSA6kSLP7MqitN9Q/WfGGI7ayWrCd91pL58W6lUXxhEu2/RaL9QCXrm4pxSOadSKLjkHSyHlK15EtPuh/Pn5P+VoPny6TshDuxoXbp65y8w6k8/HpiPS5tULIewMvsnkqwewabdLAJB+s6qbI2vhBeIBccH+m5smu+OAG8YD5esB3WmlSbxK72BuMlscFcMlY8iXFj6XI9BovxYmR+Og0bzKl1w1tAe46IHOS0wl5ERERERKQJ+YuWg7trBf1uSy7dJP7C/8/eecfJcZR5/1vV3TOzWWFXOWfLlm1ZwUnOBtsHToeP4zBHPPJ7wB3h7gUDx2HusA8TjhcTzB3GgA3GAZwwsnGULFnZyjmswips0MYJ3VX1/lGzszM7s7vCMpYs1/fzmc9qu6diV/V+9NTz/J71pMbfRNCytkBj2+ARVU1Gl48iPfZaEvW/L7wv46TG3fD6DcLhOMEktv2CxO4HEcp6yZudC6mqX0TbRT/GJAaWnkmP/1syo96G17YZE1SjqqbmJFhSY6+nbPf9xXtszLXEGl8uWZ/Aeto7TgzRoDM5uuAB/NYNgCKqOSObJHhgwiGzCZpXFZjtDRBVTUENPsNGW3TnHQErQq8E6ZEXkam7kIoN3yquVEdkhl+CDgYT2/9c9qLIVW6UQVVOxu+Wv+mF7NqPjg0mqp6O37oRkafRb2Sc1PibjmlsDofj1MQZ7B0Oh8PhcDgcDsebEtmxl7JNP8VvXo8JqkhNegeZ8W8fMOnkQIiwvYTMQfa3qIto6Dkkx76Dsh33Y7RVW9YVdXSc9W8AJCd/AK91K0HLK9ZwJAThoFmkJt58XP1yOE42/MZVlG2+G9m5D10+iuSM9xPVzYWwk8TO+xEqXzpKI6IkiZ2/JTnz48dUvwkqiYbOLbqemngzMtVI/ODTGBlD6AyZYQtITvkAXmtp6SkDaD8b5ZJqomr5V/HarHyVqhxP57yvocuH/znDd/w5REkSW39JfP+fwGgyoy4mNf19mKBqwKIds79O9ZKP43XV567pxDDa594BqWaMMnlJaQEERhj8ls347TswkQeeLqjTqAC/dQvx+sdKv+9VhOzYjQ6qkV1NWc/87tsGYgkQPh1nfoWqpZ/G6zhkc5NLQXLS9YR1576aWXI4HKcIzmDvcDgcDofD4XA43nTIroNULf40IkpaqYKok/LNP0V2NZCa+ZHjrLy0PIbBek7KroPEdz2K0XkpEFNtxHc8QGrmRwgOL8M/shW0sIcHBvzDG/EbVxENm3d8fXM4ThL8w8upXHlrzstdtm2ncsXX6Zz9L+j4IHtYBeRHqQit8BtXHX/j0qPr9H8mOfUDeF0HUGUjMXErQaIGn24lc6LOIiGV1OSbQUcMevaDkJco1OvYTfVzH+LoWx8CP4bjNcZoqpZ+Aa99N0LbQ5x4/ZMEjWtou/hHIAcwbckYbRf+D7JjD0HLOsKaGejqKQAEh5bQk6E4b60Zgde5H695o/W+734fAxiDIMJregWvdXufgjvBoZdRwTCkaaZAlsdA5A0CIYjv+h0yeTTXutGQ2PUEmTFvQ1eMKlmvw+E49XEGe4fD4XA4HA6HCWBX3AAAIABJREFUw/GmI7Hj/gJdYQCh0iT2PEZ66t9hgioS635CfPejYBQIn9TkvyY98/32y1oR3/Zr4rseQ0RdRENmkjzjI+jqiaiK0VY/WWcKG5VxTPkoEjt+23fbU/6Osk13ZY2YImdIEjpN+aa7aBs2D6IMFS9/Bb9pHWAwfgVdZ3+aaNSCv+SUORyvKeUbf1IgSQN2nZdtuouOOV8BrSjUHrc7Rqhe++o4MLHBRCVySrSdfyfVS/8RwrbctfToq0iPu574tvsKjPVke2lMRGLbL0id9qEB2/UPLqVs48+QnQ3o8mGkZryXcPTFr8GI3sDoiIqXv4Z/ZBX2vVZOctYnCMdejt+0Bq9jb85YDzbnh0w1ERxaQjjyomNronI86crxBddUYlh3jXlXBQaDQdoDIg3GeIWVCYPf+AoY1R0IVYgB4yXwj27pVbet3+s6ZCNJdj2EyPtbITAYlSax/dd0nfXPxzQuh8Nx6uEM9g6Hw+FwOBwOh+NNh9eyqUAzuBsjfWTHfoK9zxDf/ViPmcVEJLbfj8CQmvkByl75LrH9i3IGR7/xFaoWfY72S+8kM/JiyrbcBTrMGeUNAuPFyYy4kPiOB/ppey9eV0PJPsvOfQBUPfdxZFdDT9+iTipW/AcdF9yGqp11HLPicLx+yK79fVxvQERJENK6G+chAMRf3oyhy0dy9PIHkG078boOENaeA1k5HL9lQ8kyAvBbNg1Yt9+whIpVtyOUfXd4nQcoX/MduowiHHPZazaGkxqj7fPNo/L5T1kP+uzvIuqifPW36Ayq8Dr3gA6LqhEqide6vdBgb7Ja9H1Jm+mowCNf+AlKJaUVCHRQiexqzJOzyctJYgQy2VIoddN9t/ugNZt/oS+81q0Y6ecM9t2Gf4HGP7q537IOh+PURg78FYfD4XA4HA6Hw+E4tdCVYzCljDQ6RJfVEd/zRAmfSIjveBiRaia2/4UC72ABoEJiOx4Cv5z2c+9AVU3AyAAjA1T1JNrP+zZ4cVR/bZcPR8cGleyziQ1Gtu4sNNbTY0IqW3fnnzMFDscJxZTwbLfXB1kteOEV30MQZaVMXg909STCEQtyxnoAXTGm5HcNoCtGD1hn2caf5Yz13QiVpmzjz46rr28Egr3PUv3H9zHokWupfvI9xHb/AQDR2VBgrM+nbP0P0eUjSiaYNTKOLh8JgHd0G9HvP0rNI9dR8/g7SKz7MeRFYyRe+SE1j1zLoEevp+b3b6dsxX8BoBN1IErUDahBp+XVUeKtqyOMSGQ98Hs+AERWJ79PDOiysQiVwSiBiSQoiYkkxggbqeVwON60OIO9w+FwOBwOh8PhOLWJUtDLQJaa/E7wCrWmjYwR1s3HxGoQvTx7e74U4XXsxchinWphIvyWrQDoqgm0L/gRrZfeQ+ulv6D9wjvRlWMByIy4OM+qk63WgA4GYRJDSU15F8aLFxiAjBcnOe1mgsZXSnZLYHX5HW9iVLponZ80hF3WszmP5LSbMV684Jrx4nb9J4YS1s0r3mdejPTkv3nt+qUj6DpS1LeC+2FXwX5NTrHJn/O3cPe/u6b2SgwddhV5hss+ImhEqrEoouBUItj/IuWvfB+ZagRAplsoW38XsV1/wG/qO2pBppoI6+aCyhTPuc6QGX4esrOBykX/ijmyCbSBME1895OUr7gNICtv9hhobcsZQ2z/c5StuB0TH4SKD+39SgYDmREXgYhTGgEEmPhQ0B5EAhPaD5GHwcPEBmF00evevtM1mEQNKjYMjMzWl/0oSWb4scn8OByOUxMnieNwOBwOh8PhcDhOSUTnQcpXfhevycpURLVnkJzzGUx5HapmKh1zvkz5uu8jU00gBJnRl9F1+idA+hhEgcZ8T6USVTGqQHO4G4NAVU8svJZNZJlP0PAyRnsg82RxDIhkGyLVQnr8dXgH1xA0rMjdDuvmkRl7DfLoNhIlxmoAk6g9pnlxnFqIrsOUrfwefuN6ANTQmXTN+QymYvgJ7hl4R9ZStvoHyM6DICTh2EtJnvVR8BNkxl5jczds/RVCpzEyRmrKu0hPuB6Aztn/QvmGO4ntf8Ym+ayoo2PmJ1E1r42HfdnL3yTYvyj3ezh8PsnzbwEpQWVIrL2L2J4/gVHo8mEkZ38SNexsgub1GB1HiHShAVnHCJo3EpYPw2tcT9mq7+eN+xKSZ30M/AS6rNbql/fCxAcXycScSiQ23VMysiCx5Zd0XPjNkmUMoGOD8BtfwZgEwnT1vJUNGBIEh1fhtWyFKF143hFmCA6uQHYdIr7rMdBQ8EoXENv3AqkzPoLsasm1l6teS4KDy4hqJiO79hd5/xsMqmosqnoSsm0vqJ6IECMA37NJY00MTIiRebVrAUYgwi5ksrnEuAXBwWWEYy8vOS8Oh+PUxxnsHQ6Hw+FwOBwOx6lHlKLyuc8h0q05w7vfuI7K5z5H+9U/BRkQ1c2l7bK7EWGH9fTN87jPjLmU2L5nC4w0BkiPuxpTVof2K5HplkKZZGMIR5w/YNe8tl0Ig5VAyCKEwPgxZNdBvP2L8Q+vKyjjH1xNsGch4YSr0ImhyFRTkQEpecZHj3FyHKcMKpNd50dzUSFe4wYqn/ss7Vf/D3R7sBuDSDVj/DIIyovr0SEi1YqJ14BXLA9C2IWIkpjEsRuVZdseKl76Wo+R1iiCvc8j0q10XfAVEIL0xBtJT7gOEXZigopCGRwvTteZ/0TX6Z9EqDRDR40kauz4c2anTxIrvkOwf1HBHgoOLYPl3yR57hcpW3EHQcPy3MGc19lAxZKv03HJfyGP7oQwwuDRY+IVgMJr2YaqnkzF4q8iom7jdHbcqaN0XfhvpGa8l/JX/rvAeG28OKnpvbzzTzFk1+GS10W6FV0xEl0+Atl1sPi9dvqH8Dr22WgH42GypyRCCAQZvPZ6/MNrrGd9rze2UQrZcQCUyj6qvPvW1R7ZudcmCY8i8k32AoHXuov2i75DrOFF8mvP9oDOcz6P17Gf+PbHCzttQMtKdMWIbDsSVK/TArLRFjIoisIQGLy23SXny+FwvDk4dY9vHQ6Hw+FwOBwOx5uWYP9iRJQq8JIXRkPUhX/g5Z4vCoGJVRXJ4yTP+TyZ0ZfaZLFYj8fM2LeQOuv/IDoPIVJd1sMz/6M9gn2LB+ybGjQZo61ecffHKIFQGXTFKOKbf13aE3XTfQC0X/pjVPXEbL/AyICuM/+RaPjcVztdjjcowYEliChZIOEk0IgoTbD/JQD8huVUPfF+qp78CNWP3UzZ0m9aqRaw0iCbfk31ozdTtfBjVD/6buIb7+3R8IiSlL18O9WPvYeqJz9C1RMfKNw//RDf+nCxIVJn8A+vQeQbb4WHiVWX1KwHwIthYlWIvpKIvgpie58tMgwLINi/BJFsJmhYVhxFozLEt/wW2bozr4TMfrIG2KO7iG97qEA7HUCoEP/wK4jOg4SjLyVTOxdjRO7dEQ4+k8y4q16z8Z2M6IoRJa+bxGCQPu2X3omqmdrzXhM+ydM/SjT6YlTVOLtOItHzzowERsRQ1RMQyaMlkr8KezCabs/eK/HEjUBXTshbpz2yNAaBqpkMsTI6Z3/B9jVPo75r5oehfBjB/pdK5yQJk/awILdu8yRvsr/r8lElk+kaQNVM6msqHQ7HmwDnYe9wOBwOh8PhcDhOOWRnA0Kliq4LlbEyFcdAcs4XSM75gtXA93uEaGTXIesVGYXke9gKDLJ9b08FxiA6D1u7UPmwnOEmHDaf2M5nKPT2BOUPwcSqkemjJfsjUlnphFg5HZf+ALS2Xqd+sZ6+482B7Dxo12dvVBLZeRB5dAflL99WcAAUNLyMWPqfdF30dWI7HiWx5YGC+/GtD2H8MjLTbqR86W34R9YiskZFkWqmfNl/0XnJf6IGT+2/b+31pXNBeAGy8xCqvJ+EnHmI1FFEpgMzpP/2/iz61Io3yM4GjAwQOiyQvBHC4LXvRSdKJ8sFgVAhomUbwhR7e2M0susw3sGVBA2rreE567ftH95AbNvvyEx/x2sxupOS5Mz3U7Hyv4oiC5Knvc/+4ifouOR7Jd9r0aAZkLF5Bozp8XMXYUhYM52ECovt8djZ9ZKHMUKWXIsGMEEZKj4Ur+tgccTU8LmgQsrW/i8m9MF05zrwSWy8n3D8VXgtW0vLpxmF7DyIUabQNV90V28wsTKMstJootdy0aZEpMtfCJFuQ6Tb0BXDS0fYOByO1x1nsHc4HA6Hw+FwOBynHKpmEsYrQ6hk4Q0vhq6ZWLpQX/iFqvG6amwvj0yLET5q6AwAZMtOypbcjkw22TLlw0ie/3n0oAkEe1+gtzkPQKZbEckmVPnwkhrXumJkrwLSSjk43rSomol2fUa913kZqmai9XLv7e2tI/zGjYjOg8R7GevBRnPEtzxAOGZBgbG+p9EMsS0PkjzvX/vv25AZeEd3IkyvhK4qY/fQQGQ6KFt6h5WHkh4Zz8c/+8NE4y8duOxAiHzja/51iaoej1AhRokCr20jBdGQGZiyWvzDq0tomkM09DT8huXZHBgFFYPRGBkjvvm3eXNuv9U956eywT4aeT5dcz5PYsPPkF0H0WW1pGb8PeHYywq/WOK9Ft/8m2yS2XyRCIGRhsSme20UhkpTKghDl49CV40rKTFjymoRmXZkZ7M9U+mu3mQ17OsXYUQMMl2gIN+EJqI0sb3PI5TCGIrbNhojAzASE+VXDggDErwjG61UjujdtiC29wVS8/6pz/l8TQi7KHv5O/gHV4P0QEhSZ32IcNKVf9l2HQ7HgDhJHIfD4XA4HA6Hw3HKEY2cjy4bihE9BhYjA3T5cKLhs4+rbpMYTGbcFVb3vvsaArwY6Sk3QKaTiue+hNfRgFAZ69Xfvo/yZ78EUcpeL1WvDJDJRqKa6QWevWBlGKLBM4+r345Tj2jEHHT5MIzMW+fCR5fXEo2Yh+w4UNr7V/rIriOIdGvJekWmDdl1xBoce9/DIDsaBuxbeuqN1pCaf6jlxcmMvwKTGDRg+fKXvol/2B4YiCgF6Q7KVtyJ17hpwLI5Mh34O59B9soJkZ7+N0WzYoD0pOshVokKhmQtqHkyJhqiurNJT78JZFCYoBRA+KRPezd48ZL7G+EjVBqRjaDJl9MCEGFHP57/pwbhyPNpv/IntF73CO1v+d9iYz0gOg8jm7ZB1HOQ5LXtsYla7Td6Plrgte7BBNV2zoseChCUEQ6eWfqdWj0NkWyyBwQmT6ZMSyt41Nlg91BYLJlDFCHa9lpjPRTWn9X1ETq0hv7ea8nY9eQ1bSBnrS9oW5Q+UHq1pNuRTVsRqcLorbIl38I/uDq3x0TYRWL1T/AOrX3t2nY4HK8K52HvcDgcDofD4XA4Tj2kT8el3yKx4ecE+14EIQjHXELq9Pcec9LM/kjN/gS6chTxHY8gwk6i2lmkZn0QU15HsGMhaFXwfWtMigj2LSGqPR3ZtrfI81joCFU1hvKDa0BLjMwz3mmJf2DlcffbcYohPDouuZ3EhnsI9r1gZTzGXGzXufSIas/Aa92F0L2MfzpEV49HV43Ba6svqlZXjUFVjysuBxjhoWpPH7BrpryOjsvuILHuZ/iN6zBBBenJ15OZev3Aw+o8jNe4pbh9lSG2+SGSC740YB3xl79HsPvZngtenK4rbkMPnkB65s0gfeKbfwM6AzIgPe0dpGe+B9F5BJkqPsgwQLDneaKxC2h7611UvPRvOa9tVTWWzvO/Cn6CaNjZeK17iiMLhEDXTEBXjUW07Cn03hcGUz3iNXk3vWFJt1G2+Jt4Tdutt7fRpM96L+HUt0FYHNGUQ0UYGfR4ufc2zIuAYP9y+04VuqcKLfEPrSU579MljeNGeES1p0PUHaFSQiM/ygACrQRCmlzTRtuOGBHD4CFQRWWNkWTGXkpi431FVRuDTcJ8vBhNfNVPCXY+ZaVuVEg09gJS8/4PItOeOxAr6JlKE9/8IF3Dzzz+9h0Ox6vGGewdDofD4XA4HA7HqUmsktTsT5Ka/clXXYXoPIxsb0BXjcZU1ObdkGSm/TWZaX9dXCbVDL1kRgBQGUSyifS0vyaofxZCjcAa5Y0XJz3lOggqIOwEBKjCJJwi0/6qx+E4hQkqSJ35EcLRlwIGNXQaZD3uM1OvJ7b7KdCdOU9748VJT/orTLya5JkfpmLJ1xF5sjnGi5E680MQqyQ99Tri2x/NSbgYBMZPkC6x7kuhq8bSNe9zeE3bMfEq9KAJRdohorMR2b4fXTUKU1EHgEy12DH0SvwqMMiuIwO262//I8HuwsSyRqUp/9MX6LjpfgDSM/6W9Iy/LSorU805DfvCtkF2ZpPlltfSeeX/K9m2nfOFkOks3N8Tr8LEawhrphJr3ltYyAiiqskDjiuHVsimbQh0wfN+I1O2+DZ7SGMU2Wkj/so9dl34fRmvRd49USBNY4w11mMiG9VgBJheiY2jJPhx0tNuIr71QQjTth4Bwo+Tnn4Twb4lduf0OggQAkxQCakOK3ujeonQg62vt2t//nfK66zkjsnY4AojQBiEhPTEawaetAEItvyeYNef7FrOrmd/3xJi8WqiCZdl91hx0lvR1XjcbTscjuPjjf9WdzgcDofD4XA4HI7XGhWSeOkO/AOrMF6AUCHRmPmkzv/MgMYxNXRaVle8VzJQGUMNnWE9jy//LokNv8A/shYTryY99UbC8VdYL9zqcaW9nmsmvIYDdJwqeIfXk3jx9h5vdOmRXPAF1PBZmLKhdFzxXRIbfol/eA0mVkV66g2EE94CgBp+Np0L/p3Ehl8i2/eiK8eQOv1mVN0sANKnvxddOZr4tocR6TaiujNJnf73mPLavrpTQLD5EeJrf5U1DCp0xTCSl37ZGuZ1RGLJd/H3LevZY6PmkLrgn1HVY0t7PUufaNjAnr/xDb+hd6IIARiVwTuwHDVqXp9lVfW4Yu/47raHnzVg2yYx2O7vjb/EP7QaE6skPeUGwolvBcA/sKJkOf/gmgHrBqt7nnjxNoTKGlqFJLng86gRA/ftZEV0HsFr2mqN9fnXVZrY5t8TjTkX/+CK0nkDRswGIfEatyGksuozWR14JOhBkyjpmW9bAOERjjiPYN2DCN1j0A+rJ2AqhqOGTgcRgCpcE8YPUHUzCbY8WrTWrMyNQbRsy1r2+2g9ddTq2+vCgwSjDF7zjj76fOzEtjxSIkdFhtiOhWTOeHdJCSYjPKJhs467bYfDcXw4g73D4XA4HA6Hw+Fw9CK25h78hqy2b7dn4v7lxNb9msxZ7+m3rBp+NqpmAl7LTkTWQ9h4MdSQqag6KyViKkeQPPfzJcunZn+Y8kW3Wo98TE4fPzX7w6/Z+ETyKLJxCyZeja6bUSJjouMNQbqdsudvRUSFRrmy579Bx/U/gXg1pmI4yfmf7bMKVXs6nZf8Z+mbQhBOuJJwQj9JKFUG79B6MKCGnw6+ze3gHVxLfO291ns/68Ev2/dT9vytdP3V94it+zX+/uWFe6xhFbFXfkHmnA+SPu2dxDflJWgVHsYvIzP9xgGnRWQ6Si9pA7LtAGpU9ntt+5Gte9HVozE12US4QRnpme8ituHXWckTMFKCX0Zm+g0Dtg1gKoaRnPUhvBFbMPHKgj0mMp32O1mdc0T2VpS0BtT+ZHEynZQ993Wr6Z9H2Qv/Sed1Pzqm3AAnIyLd2re3d7KZcNJVxNf/EjIdObu4IZsT4bSbckZzo3y61WcMBrT1gjeqRwpHiB6nd6MNGEX5n76YlTHrWTRe01Zia+8lM+N6jDJ5GvpZIoWqmZR9ZqUWm8DrPNJP2yCSLaBN7vv5yCPben7JdBFseQKMIpx2FRzjcxZhZ+kbKgPSJ3XGzSTW/6ongkZIu8dOO3WTHzscbxReF4P9bbfdxh//+Ef279/Po48+yrRp04q+84UvfIEtW7bkft+yZQs/+MEPuOKKK/j+97/Pvffey7BhwwA455xz+OpXv/p6dN3hcDgcDofD4XC82TCG2I6nCmRCIOuZuP3JAQ32CEnXpV8ntvVRgt3PAIJw4hVkpr79mAzjaviZdF72DeIbfo3XVo+qmUD69HehB/8Zkhl9YQzBK/cS2/QIeD4YY6VRrvwapnL48dfveF0J9r7Uh/euIahfTDj1+GU1+sM7sIrEi3f02BqNIbXgn1Gj5xJsfbxIGkoYjew4hGytJ7btydJ7bMdTZM75IJmZf4OuHkNsy8PI1FH8CfNpn3gjpmzwgP0yXsIeeJWSPB80AVSGxAu324MG6YFWqLrppC75IvhxoqGnEWRMNlkooASqcjgmfmyG0mDd/cTWP9izx2JVJK/4KqZ6FGrwZLwj2wqemwH0kLEDatj7e5eUllgxBn/PIsLpbz+m/p1s6Oqxpb29kdaDXko63nYXZUu/jX9oNRiI6s4gef7nwIsR2/oHjBEFz1tkjzv9+kWgs3I5nsnJ21ideYE8sgWiVAmFegi2PoGuHJFdB736p8Hfuxgj46BSRWvNAOHwswh2PpM9mOnRuCfbtmg/QAn3fHsveygTbPw9sdU/z92JrfsNmRnXE8553wCzCmrINPwj64uu6+rR4AWE06/HVI0ktulBZKqFaNhZpGe+E1NeN2DdDofjL8vrYrC/4ooreO9738vNN9/c53duv/323L83b97M+973Pi666KLctRtuuIF/+Zd/+Yv20+FwOBwOh8PhcDisq3Cm9K0wz7NVR3gNryDSHahhp2Eqh/Xc82JkTnvHq/ZU1EOmkrzoy6+qbH94+5cT2/JYgaYxUZrEc/9B8u3fe83bc/xlEemOkl7JqNDeey3QCq9hLSLdiho2s2edp9pIvPBfRd79iRe/Rdf1P0KkjpYWIpEeIt1eLBnVTZTV/RaCaMz5RGPOB6Curgpz5NjyOBh8K4HTS9McDQJJbM2v8A6ts7IyWY9s7/BmYivvJnPuRyn709eyBuSeEciWXQSv3Es4O3tgl+nCa1iDMIZo1NkQs1rqXsMaYhseztadfTZhmrJnb6Xruh+gy0fhme1FfdblI/N+UXgH1yJSrai6GZiqEYCNHKBEImB0xs7pMSKbdiCP7kVXj0LXTj3xETZ+HO1XIaN04fMSGlXVHflQTvK8z+IdWIMwmmjkWRCvtPf6iagQXU3ZwxGBUbLwJiA7DvbZLaEyiPaGIu/77vKiZQ+6egx+y/ZCu3u2PZGo6a7JHhDkf0eAbO+7bQA6DhNb/fOilmObf48adz66rtgZNp/07A/iPfNFe3hldC5aK33OR3PfiUbNJxo1v/9+OE4dtMI7tB6RbEHVTsNUjzrRPXL0wetisJ87d+6f9f0HHniAa6+9llgs9hfqkcPhcDgcDofD4XD0gZDoIZPxmguNagZQtTMAkEfrSSz8qjV8GwNaEU6/msyc951441c/BFueKDKwCgyy4zCidR+mZswJ6pnj1RANn0VsvVfsnSx9ouHHr0MtWvdRtvCr2TVj5UPCKVeSmfch/PqXrK53b4dvpfD3LCYaPR+veTuid990iBoyGVU7He/IxiJjpB465bj3kAiToGwCz25Nc5t0FOg8QrDjTz0a8N1ldEiw61miMXNBh6U9rrf9kXD2e/DqXyax6LsgPMAQN5r0+Z8gmngRwebHEWHxHqOrGdmyC39/aQ17r2GN1T1vb6Bs4Vesh7XJzvnky8nM/zBq+CwrHaMKtd7xE6gRA2v7E6ZIPPMNvKYdOcOxrhlD8sqv5g4cTgSivQGRbAclMNJkEw4AShDb8SzJKVfi7V1O4sXv5KIQ4kaRPu9jRJMuwXhlmDxjfz6qZiwGUeLwyF6JxpwLy4oTCBtADZ6EbNlT2gneCLyj+4gmXmzlz/LXuQFkgBoyBRNUQLKruGOBTzR6LvH1vymq2x5WSOLr7u9jxqynfery/g919eBJdL71DmKbHsJr3o6uGUtmxjvQgyf2W85xaiLaD9l3S6aT7vd5NP5C0hd8csDoHsfrz0mnYZ/JZHj00Ue5++67C64//vjjLFq0iLq6Ov7xH/+R2bNn/9l1Dx1a+Rr18tSjrq7qRHfBcZLh1oSjP9z6cPSFWxuOUrh14eiPk3V96Lf8E5mHPgtRCEaB9BFeQPlbPk3F0ErSv/9PTLqtoExs+1NUTpuLN/n8v3j/TJhG7ViKSbbhjT0TWTv+mMqldKqkgorwPIZUgDyJnsfJujZOJnTZBNJalfAkVwweOxFZZedQN+5B7V2LKKvBm3wuIogPWLcxhvSjt6GTreRb5WM7n6Vy6hwUHShd6IUOILSm3LQhh08hXGtyfetWchGyjNoRtZgrP03mgc9YL3QdWWkaL6DsLf9ERR/P/ljXRFJI2y8jch703VTFNVEfETRChVT5yd5FckiVprYiIrX4u5iosI7E0juJnzaXTLIxO1v582IQUUhNuSHss+2IobUVZB6/DZM8SsGc73qeiqlz8KdfSmb3AvSOxT0RCn4Cb+xsBs88FzHAQUfmmXtQTdt6PP8Br6WemnX3ELv6C/2WPVZ0015U/RpEWRXe5PMQQWLAMko3kFEq+7wKveC9VCO1lZrUou8USSwllv6I+GnzyJRVY9JHi9YaBmqG1FAiBiVH7cg6Mme8DbX2cStVYwRIjfQl5X/1f8k89e2+csbiqSSJEeMIDVaSh7y2RYzaUcPIjDobveMlitbD0MkMGVpN2vQ86YK+iwRxke4txGNvAb5JHdt+qJsBk7448PfeBLzZ/6aknvwCJtlccMAb1C+hfMoc/DOuOoE9O3GczGvipDPYP/3004waNYrTTjstd+1d73oXH/vYxwiCgMWLF/OJT3yCJ554gsGDB9auy6epqQOt+3rVvnmpq6viyDGGFjreHLg14egPtz4cfeHWhqMUbl04+uOkXh9yFOLq7xDb/AiyZRd6yGQyM67DmDrkllco62or9tgMU3Qt/x2p6jP+sl1r2kli4b9bmQZjpRqiiQvIXPCxAT2Tg1HziTXtLtION8bQJIbDSfI8Tuq1cRIRbH6aWJSHTPNeAAAgAElEQVR1IZf2/7pWekPStvopwhlvI/bSD/F3LbbfER5Ij9Rbv4IeOqnfumVLPWVtjTl5j25MOk3XsofRdVMJKOF4DCQ7k8gDT+JH5OzmAGiBDiOat65FD5mEuPq7xLY8gmzegR480e4xMaLkOvxz1kRi2Cy8/ctK9u1o7bkkhi22kjN5plgD6LrpdHrDKTfFW8kYMDLG0VVPE49U3qCy98OItlVP4YcKr4R/vgFaWzPEhp9hpbR6t107neadWylvO1JwD4AwRWr5wySHzIHZn8CvnU2w42kwmnDS5UTjFkDjwBJIFRsWFkUWoEOizc/Res7A749+MYbY0p/g73iB3FoTktRbv4yundJvUdEWUm5K+cELdISdc1NirRlN28on8RXIbO7X3MwZMAhaj6Yp6y5baDPHAI2N7fiZcmJR3lNTHkpJmjpiJFob8Si9znVXO9Hq0uvcCEPzptWU7V1belyHd9Kyr54yLRFo8PISEWswOqRjzCWU7Vhcsu30mAvpcO/IY+bN/jdFdBymvHlvccRTlCa14mGSwy84MR07gZzoNSGl6Nex/KQz2D/44IO84x2FOo91dT0JLy688EJGjhzJtm3bmD/f6Ww5HA6Hw+FwOBzHgmg7iFe/AoREjZ+Pqaw90V068RiDPLwVeWgTJlGNmnAexMp7bleOID33I8XlonSfhi0RJnv+3X4Yr34ZILJznpfIzxjkkW3IgxtLtt13nzXxP92WDWnvwd+9GDX6LNSE/v/THU67Bn/ns8jORoRKY4QEGZCe/3HwgoHbd5xcdLVkc2F6xTk7O5vxdr+Ev/ulvAMaa6yNP3MbyZt+aGUQtMLbuyoriTQaNfYcK7sSpSDq1kvv5R3c2QjDpvfTMYkIU+SsmPn2ZyHsHgJM5TDSc/7hVQ6+b1LnfYKKh1djstI23c2Hk6+ERBXpef9A+ZP/glEhQocYGYD0Sc/7qJ0rnZVmodDr2XjliORR0CU0UoyBjibo0x8bMIr03A9R/uS/YlSmsO35H7HSQ31JU3TnzxASNWQ6tLcCGjV0ho1OyEMe2Y5sWI+JV6ImnA/xrNyNKqF/D9nDP52V+Okf0dGIt2cZGI0aPw9TZZNVe/XL8He+WLzW/vRNkn/z46I+FtSplX3/9D5MAEys3NZpSsQ9aIWI0tm1n00sS56XuhYIVI+kTf5Psj8zGWLrH7brtGCZGxKPfwHRLdVcpFEPQviYqO91LqJ033NudHaPAMiiSBCEQI+Zi64Zj2zdU9C0KR9KNPXq0vU6HKVQmT7fLb1l8hwnByeVwf7gwYOsXLmSO+64o+D6oUOHGD7c/hHYtGkT+/fvZ+JEp7nlcDgcDofD4XAcC/66RwhW/6ZbGJdg5a/IzH8/asZbTnTXThxaEXvmW3gN662RyIvBsp+TvurL6Lr+vUF17dSS140XJ5x4EQD++scIVt2XN+f3Es57L9FpV2XbvgOvYZ015nh+tu1b0HWl6+5GNu2yiSd7IaI0/panBzTYE5SRvOZb+Dufxd+/El0+lGja1ejBE/ov5zg56SeCXBiDv/XpksYYkelCNu9CV9SReOwWa4RWGfBimEQ1qbffmme8LaHmbgSmn7aNhnDCAmTzLoQqbl8P7X+PHTeJajpv/CnxVf+L17AGE1SQmfW3qOz+NNWj6br2+/hb/2i1vQdPJJx2DaZ8CKJpFxgJyoDUWa/nrEFW+HnW4N4IhDF2bkp46FtkXttPZtuekG17qDWclzBsGy9GNHEBAN7mhcSW/TxrHDYEK+8jnP23RLOuA6OJPfffeHtXWpkhz4dl95B+y/9FjzgNNeosvP2rCrxsDQI1/LR+DerdeJufIrbs7mxBQ7Cqp+0+11qYRDZuR/dzwKMHjQM/UWSwt+O+mGj0OcRW/6pEh2JEY+YS270ME0obZSK6I02sLJJBYhKDIdXS2x4PQTn+5sdtQECv5yWETUibvvBjJJb8oPBmdgmEky/DVNbiHVxfHBWhQlTdNNSw02yi3Lz6jQE9eBxq7LkUniD0VK+GzQQg+Vd3EGx4iGDbHwFDOPESwrP+DqTTHHccO6Z6FMZP2NwY+ddlQDj+zedd/0bgdTHY33rrrSxcuJDGxkY+8IEPMGjQIB5//HE+/OEP86lPfYpZs2wynIcffpjLLruMQYMGFZT/9re/zYYNG5BSEgQBt99+e4HXvcPhcDgcDofD4SiNaD1AsPr+IhmE2LK7SY09B1Mx9AT17MTibX8er2F9j4Ep+5/Y2DPfIvXOO60nWpTG27UU0bIPM2QcasK54MfAC0id/0kSi//bengahfET6JqxRFMuR7Q2EKy6r2jOg+X3oMbOQR5Yi9ewLq9tldd21us5yuDtWlLcdpSxhtUSiK6mYxu8HyeadjXRNOeh+bphNPLAeuSBDTaiYsqFUDZo4HIDkajKJtTsbfATmEQ1Uvfh3SsEqIjYy3cj2g5nNY0FqBQizBBb+r9Es67HeLEi+SQAE6/CxKsBiSly7ReQqCaaegXBzueQrfsQUQrTLcdz/idfs2gO0bIPb/dSMKAmzMcMGddzM1FF+oJP91nWBBXoitGYtMJUjMFkk64KDMbL7rXIzxrfreu2iVXaj5BF0hIGMIlqTFYXpbeeer6d35QNIjzrXcXa6tIjdeGnSLxwB+go+26Jo6tGEk6/BtHRSGzZz4vfLavvR42bi2zahbdvZc8hSfbdEn/mWyTf9RPS8z5E2ZEtEGVshI1n32fpcz868Fx3NhFbdnefbYvOPt4/KtNjiI8yeLuXIZr3YAaNRk06H/x4z7if/xYYhdCRHXflCMLp10CQIJzxNvyNj2NCu6ZFzCeaeFH2AFXYj5bF8Q0GUpd8jsSTt2C0sFrzwkpIpRZ8Btmwoe9BG9A1E+whTPb3gqHVzsA7sBa0sec5+c87VIDBtBy0ckr5bQuDaWsGPyBz1rsI1txn+25ASAOeT+rCT9mKpCScdRPhrJv6ezx/McTRA3i7loDWdo8NPbZ8KY6TDCFJL/g0iWe/WbjHymsJZ153onvnKMHrYrC/5ZZbuOWWW4qu33XXXQW/f/zjHy9Z/rbbbvuL9MvhcDgcDofD4TjVsf/RLp1C0duzjGjmNa9zj04O/K3P9Ol5LFrqIVZJ/JFbIExayQU/gb/i16SvuxXKB6PGn0/X4PEE255CJFtRo88hGn8eSB9vz8ugS6QKNODtedka4ku2nUQ012MSVcQfucX+HqWybd9H+rpv9BnSntM+dpx86IjYwtuRh7ZYKRgvIFh1P5m3fB496vjyHURj5xKs+U2xlIgXEI2di4lV2qiM3l7uQqJrJ9v3g+nW+ujJWuvtXkbm4k/1XMvDANGEC1Fj52DW/Aah0zmvZozAyBjR2HngxUhe/Q38PUvx9q+yRuqpV2KqRx3XmLvxX/k9/uoHrSc54K99hOjM64jOOQbDZleL3WPpzuweixMsv4/0dbeiB4/HGJmX/FRgslZYO+65sPo+UL32uBcjGjcPb+dijBZZPfWeeSk1l6VQY+bQde237bulqxk16myi8ReAF+DVP1O6kFZ4u5fiHdxYWt5CR8gj29HDp9N1ww8Itj+DbNqBHjyecMoVkKgesF/enuV9t71ridWE7zOyAEgetXOe6uiZ8xX3kb72VkxVHWr0OXbc2/+E6GwsGDeACgYhQy8XVWIyHjrI5jXsd34FOtLoMMgebAkMBqMEJqPQQ6eVLGWy4wnWP4JWHgKVCzox2t7zNzyKbNlrvfkFIHT2vsQg8LY+h2w/gjHdpjeRWxNCdUKUwSRT6NDP9t5Grhgl+pZGeh3x1v+BYMV9Ockkf92jRKdfQzTv70501xyvAjXyTLqu+y7BtqcRnUdQI88kmnChjTB0nHSc+DeAw+FwOBwOh8PhOG5E2yH85fcTvHgXcveKPINxf5bcN76FV7Qdxl/RPe7lpQ3lJelPZxqCl/4HUm0545eIUoiuFoIlP+/5WvUoMnPeR3rBp6xchTwWf6iBLOuG2OL/QSRbc6Hrtu2jBEvuBmENot3GJMj7mag5hvYdrzfetheQh7YgorS16akQEaWJPfO9P2O9lsbUjCY84wa0CNCRtB8REM58O2bQWKIpl6KHTkYTs/eUjxYx0hd/2q5X1b0WReFPDWiDzoTFa02DOLwDUzMq23YMHfr2Q4zw9LdjBo/N1aeJo00Z2iRAvEae9W0H8Vc/gFAZhNH2ozL4ax9BHN0/YPlgyc8RXS15eywNqTa777XBZEIKDjG6zamHdmKqRxLO+uvsnHt2XgkIT7sGM3g8JjEIa+S3yX+NlhgjMDJ+TBrxAKZqBJlz/p70gk8TTbokLyLB5AzjRgn7yemx5z2o0rXaH7EKwpnXkr7oM4Rn3HhMxvqC8iWvG0w2YiR/rdhEvXGQPsHSexCdzb3mvJ1g8U97qurqgP074MAeOFSf060X7UcIVv4GoaPcUxE6wl//hD3kLB9kjegKTCTtR1tJHaRHYuHttptaZNe21ZuPP/ffIGVPX3tHQwiZG7fRHjodoNMBRnnYLLHkDgGsTJSH0Xkpao3u0bbv1TZGgMrgr38sm5Q2b60ZQ+yJr+emRRzZib/kHvyX7kYe3DzAc+5FmMLb+DTBCz/BW/cEpAdOTgw2V0Gw4t7sHlMIjN1jG/6AaNptv6Q1cs9Kghd/ir/8N4i2Q8feL8cJwVQOIzP73fbdMvkyZ6w/iTmpNOwdDofD4XA4HA7Hn4/ctYzYsz/IhjkrvO2L0XWTyFzzRdSE8wjWPFBcSCvUuPmvf2dfQ+SeFcT+9P28cb+Erp1A5q++ZLWb+0FNuQTZXF/keWyCBGbwWOS+V4okL4TReHtXFstY9K57/HyCNb8F1SuyQYAaNx/jxUu2TZDADB6H3LemdNv1Kwkv+xR4CSvXQU7GGuPFiaZePkDPHCcCb9vzfXo9i8YdmGH95y0YCJPRmMjv0bOPfEymZ/3oEKTyEFpjhIDIw0RZIyRkjYX5WBOk3PWSNUIqaT3ohbGe5wa8vWsIsbIfBW2rvLZVSOzxbyCbdtsoFenhr32czBWfQo+fc1xj9vasLG201Apv9zKis2/sv/zelSX3mNz3CnL30j5KCbz93ePunvOsYV/5mEzWC3/qZcgj26zkDPTYub3YgPkxBkKNm0ew9Bd53v+AEllJoHMxVXXII1uL15vwBsyPcUxtr/hl8Q3poyach6kajjy8tXjcMkDXTSG25z9Kz/mBdaA13rrHCJbdZ68DorUBf9PTpN79fWT9ytKRYspK7ETjLyBW3y1tk9WE1xJChR42FaJ0Lgik+74wYLTCxAfZJMMa8LLSR1njuokniE5/O972lynw4NcSNESnX4PZvw5/88KSkQVq+uWYJfcUtU1WNsnb+nzJuRaAPLoPAH/VQ/iv/B6i7F+eLc8RTbuY6MIPlixbQGczid99CTLZSDEvRrD6IdLX/TtmUP+RLrJ+VeGYc4MK8Xa/TDR4DLE/fBN5eHvP/l73BJlLP46edN7AfXM4HP3iPOwdDofD4XA4HI43Miok9vwPrRdc1qAhojTyyE68bS9CFGY9PCn8aFkso/FGQoXEnr2z17hTyMadfRpB8ommXY6um4omhgolSvloGSdz2WetV2Vfug5510XzPrxFd+M/9T3k1hdy82lqRhGedRPGCzDCw0gP4wWE57wbUzUMNe0y9IgZGD9uHS29GMZPkL7snwdoW4L0SF/+WYxfhvHi1nPXT6BGnoGafNGfNYWO14m+pC2M6Un0mWzDW/U7/IXfwVv5MCRbj63qln346/9gvfYh58Hvb1yIaN6Lt+U5azDPrk1hDEKFxJ77QU5Kpk9kXtJZI63ncLf0iBCIo/vx1z1Rou2nEM31eFueRzbu6olS0QqhMsSeu9MmWz6m8e3He+ke/Ke+S2bN0z0HVUKU3iciv9/9VdzP/u63vEAcPYC/9rHicW96GtG0BzVpAWr0mRg/YfenF+/Z38fSt/6IojwP7p6PwQMVoSYuQI2YiVI+KuOhMj6K4DVp21TWEs55j32vSc++27wY4Zk3YgaNQU28EDX6rOy4Za9x+32vN6NBRQTL7iuOaVAZYs/9CJHuyOZZKEHXUbwtz2fPb/JLZ43wyfZcVILWAq3tz5yMmOdn59SzBy+RD9oDJMarsH9DkSXmXEA6jR48ke5Ew4WfGNbkJvP61PPTmOxa68dZXrQdwl/zO0SUybZobILxrc8jjuzou2CWYOkvIJkXKaYykO4iePGuAUrSd1JbIUB4eNtfyhnrIW9/P//j3D49ZVERctti/Ke+h7foZ4imPSe6R45TEOdh73A4HA6Hw+FwvIGRh7dRygtORGm87YsQnY2gAGSBzjTSQ9avRs0a+Xp29zVDHi5trBBRBm/7ItRpV/RfgYrQ7R0I5SGMttISeNDVBkKgxs3Fq1+ROwwAMFlPUgC5/SX8536STQypkfVrMOueJLz+38CPEZ11I2rCuXh7ltnmJpyHqR6R7bxP+i1fRB7ciDy4EcpqiCZeAPFK+93x8/D2LO/VtoeaeC4AesRMkn/zA/xdiyHdgR5xOnr4jH7Eox0nEjX9CmTjziKvZxMrwwydgDjaQPDwl0GFCBVi6tfgrX2c8IavYQaP7rdur35VTjakAB3h1a9E1q9BlDKeGYM8shNTWQcdRwreIAYw5UOtl+wLPyjyZDeAmnge3p5VpY2oOsLbsxK5d03JhLWoEHlkB3rE9H7HJncuw3/mztweS+1dS1BZR3jj19AT5sOK+4oLCWkTNA+AGn2W3WO9xqVHno6ecK49ZCmRVFZNPA+vfnUf3v0R3p4VREPHk7n888hDm5EHN0C80u7vY5ae6Ru5dzVZcfxCjMHbvZKoohb2bMEoelIRZwxixzI4znwJYD3K1djZNk+H0TZiaFB2jUpJ5vLPIQ9vQTash1gl0aS8cXcbyHtPOjZaqhQCkAfWo4ZNLt0hAyCRR3YgSr3/DPirH87KE+XXanLJgft+b9pDIW/Dwj7ug7/5mexhRPdBVt7fWE/m/X0ujmIB0LU24qK39r+VEvKR9atLNxyFeLtXENX1MS9ZvPrVxVENGJtPQ0f9yrip8XMJlv68+Ib0UZPOJ3jp56Ujh4RAHtqCHj2r3769YVERwaNfRzTV28gCIfG2PE904fvRMy490b1znEI4g73D4XA4HA6Hw/EGxngxrPEhG8ZvAGGsU68fBy9mvVGVsHIWgBAGI0WPLnImibfxWeTeVzAVQ1Cz3oqpm3iihnRMGD+gT9dEPz5geW/9QkTboR7PY4zVE37ux2TGzSa84EPI5j3QdTSrKRJgKocSnvdeiDL4z/+0wBgpojQcPYDc/Cz6jKtsH2tGEZ15Q+kORGnEkXrEvu2YisGIoVMxddZgH57/QWvo6Wym28JlyocQnve+nvKJKqLTrh5wnI4Tj5p8AXLPcrz6bG4JIcHzyVxpozn8RT+zkhW5ZJQhRkX4i+8mfPuX7LXDO/HWLUR0taDHn4067TIroeTFsh78veWXpL3n9aUZbzBeQPqaL5F48HOYfO9n4ZG+5osgfTIXfYzYCz8s2GqmfDDhhR/C2/h0n23jBYhUex8TEvZU19GEt24h8sgudO141KyroKoWVIT//E8KDf5hCtF2EG/DU6izryU8/wMES35GjzHUEM5/D6Z6eB9jzhtDKtktB9/retoani/+BLHn/1/hvfLBhBf8A96WZ/rw7pc9etBRBo7UI/Zuw5TVIIZMweQb7Dua8db9MW/cb4WqutxtuXUx3vIHEekO9MjpRBd9ECoHW6mvUhEbQoIf4L/wP6AyvTMS4G18GjXvnZCotG2vX4g8vBM9dBzqzKsK2hZHdtm11tmMHnsWauZlECvrmYfqEUSzri89sUKgh8+wB4i9kXFQyeJJFx4ECVt3qb9jwoNENcZ4oJW9nx2ykUDl0JwHvdFYY7kAIbOyT14M8LDrNH9mstI0fnaflIg4M+VDcn8jSqJCyCR76jWi8N5AUvN+zCaYlQYT5Rn9hcHEqsAPSj9vKW2/B6KvqAqR7/nfB2WDCBd8mGDRXdlDIjuYcM477SFNn39nTT/vnTc+ctuinLEerKwTUQZ/0d1kJp+XW8sOx/HiDPYOh8PhcDgcDscbGFM3yRowVH7COmv0iKZehKmdhPfy/VkjR3coPhBp1MT5kO4k+O2XEF2tCJXBCIHcsZTo0n9AT73wRA1rQEztRExQjghThdf9ONFA3vWA3Lm0tCHGaJvEsG4S6Xd8G7lvDbL1AHrwGPToM0FIRMPmkgY7692/JGew75N0F8EDt2STXnbP+ctEF38QPf0i5P6NmJYWjBBZO4mA5ibkgc3oiXMHHJvjJCNMw+H96MhH6AxgMEogmg5g6qYgDmzMGeu7ERg4sMl6wm9ZhP/i/1oPfGMQB7ci1z9NeNPXURPnEyy7t7hNIVATz8VUDEUe3lbgCWsAE6vADJ0AQpD6+7vx1/4O2bgTPXQi0Vk3gp81FWiJVgmEyfZbBBjKIMqgJp3bd9uTzkduerak5zBCgNaI5n0ED/2bHZeOEA1b8DY+Q3jDV6z3bwkvdqFC5I6lqLOvRU2/HDXmbLw9KwCDHjcHU1l7TI9ENmyx78Re3t7i0HYwGj1lAalRswhW/xbR2UI0cT566iUAds5fLqHlLgRq0nkQpgge/DKivdHubwRy13KiC/8ePfPyvsd9/ZcxdRPwXvgZ3oanbZWA3L2K2J41ZG7+DmrCfIKXSng9G4WaeB7Byt+XUh23Y966CDN2FsFDX4Wou+3NeJuezbUtt72E/9xdPWutYStyw1OEN90K8Ypjmtu+UNMuwtv8LEL3vHeN9FETz0WPPdseKOcnQTY2eERPnYeaOB//xZ9bKbfuv2PKGtzVxHORax5DJDvzyto9hjDoMbMw657sM1eDqR5h101rQ+Fy8OOomVdC8wEb2dAbA6p6JF7z3qJ1nvuKVjnpnSIPerC69FpkPfR7xt09BjVhHsFL9xRXLDzUpPNLTXMB0dSL8Tc/jciToDLSQ42f27fkTR5qysWoUWfi7VkORqHHzsFkD3eiGZcj968r9rL3Yuhh0was+42Kt2Np6cgC6SEObsGMPev175TjlMRp2DscDofD4XA4HG9kogwm0hSG3Qurudt5FLqOYvAptExZ+RfR1Yq39klE19GcJ6swBhFl8J//WY/OdEsD3jN34d//Fbznfgath16/8bU04D3z0+K2hSRz9ecx8UqbKNaPY7yAaNol6PHHYNQOykpfN6bHc1BK9LhziGa9HT3m7B5PxyDRp56yiZXbf2iF3PQC/kO34j/8DeSWRda7GvDW/RHR2ZSTKsnN+Yt3gwrxn73LemoqiYk8m2DSCPxnfpxrR+zbiPf4t/F/+1Xk8t9BurN3VxwnCd6GpxFtRyATYSIPE0kIQ/u8o0zf3qieb9fDoruthnXWgC2iDKKjCW/901AxhPDij1pdcT9hP15AeNGHoXIoeuJ81NSLsvfj/H/23jvOjqu8/3+fmbt3u3a16r1X2yq2JBe5N1m2ZSMbbHALBEIS8JeEAIF8gUB+gYTkGxICCSQ0GxtwkXuX5SbJktWr1XtbldXualdb7505z++P5/Y7d7X22hjwfF6vK+3euXPanDlz93M+z+eRohIoriA25ytpBrGlHmlqxp5qQZqboaVO30/MSeMnSUUH4/uYlgbczYugrHdw3Rf/GVLRB1vRL8/XG8CaIoiWEln6K+hsBy+hmvZ86OwgsvQ+KCou7FmevMcAymvwJ1+LP3lOPlnf2Yaz5mkiC76F+/z3MYe3pI+5UfWX9xwkrtdExCSSVSfGpayK+OzPELv2KymyXt+vJnbZX2ruiYy1Jz7700hlP9wtr6XIeki4nXsxIssehHgHkTcfgHg7JhHVYKyHiSf6HWvT+QLZKnmxRF77X0zbKax1sL7R3Btx/dlaF1obE5FHBVBSrnXHMuv2te4lv0xENfwye675MUxrI+6mlwqX203EZ92BrRqC7xfhx4vw/Si2vD/x2Z8CsYiJkv8cM9jyvpi2JrUsy3uORaA1+YyD7FEzOVY4BeA4xK79EpRWJa5nFHGj+CMT907VQCwBeWAMUDMcW9k/wL8erFMMxWVIRJ81ufeBmAhiUnE12f0WkI42KOlF7PK/RJwIgqMv4xK/4C6kKmGxFmvHWfsskQXfxn3u+5iDm1Nd82beju07Wudo4v6XqkHEL/509y9cWTX+pGvwJ1+XIusB7LBpeJOuylpbJFpG53V/263NgA8a5uhO3Bf/k8iCv8dZsUBzHSQhFmfnW0Se+iciT/wjzpbXUt+HJFpaYEpJqK4P8Z4iVNiHCBEiRIgQIUKECPEHDHN8T4rYy3pfLO7e1diOlgLJ/gTn0GacfWsKhPwLpuGQkjhP/0tCcWmRkwdwdi7Dm/9NpN+I96VPqT4c203k6e8VrFv6jKTjzh+rT3fnaeygyWkS4wzwz74WU7c3R3lskIq+SPXgLs+VPiOQ0io4fSJPkWnPukb9pF/4D5wj29Nh8yf2Yfauxb/uCzh7V2UpHlOwPubEPoh3ZFgrZFg3dLYB4Gx8GXfFI+Cp9YWpP4S7bTHx23uugg3x3sPZvULJ6BQpl7ie1mLq9qnyeMfirPtQ3Aj+uEswJw+AzfeoN34cZ/cK/HNvwh87G3/oVNxD6q3uD58OJZWJDxriF38a75zrcY5uQ0oqscOmpTYJTN1+Ik9+RxXXqXvsLbyP/F2CMA+IJPHjOHtX4Z93c5d12wmX4RzYgohV+5KE0lhKS5A+IzBHtpNNsKr9k6ndjVQNRsproOlYVvSBRIrxz7rmzIPe2UbRI9+AtlNqMQQ4h7fiX/Ax7NTr8IdNw925KlWnGtQ72BHndOFpnoYdcyEdQ87J6Pe0lFe7s291cN4Ax8Wc2Iup3R6ogjfHd+PsWR1YnwGc47uQw1vAI2FvlqE09wXn4CbsWddi1jyWbxNvHNdBZw8AACAASURBVOzY2URe/3lw3Sf2Yk7uT346+5gfx9m3Bn/mrQXHozswTceRhpO68SNWp1dTE6bxqD7DgiIqAGfvmlR+jzxYD+fQpkSkVWDPMPUH6co/H2uR6iF03PFfOIc2YtpPYQdMTOWPsKNmwvJfIbk5KJwo/tiLMNWDcfZuyJvnOEVIv9GqZt/2plr8JJ1lxGBHnIVzZHPKwier1caAn0imvnsdvhfFsRpNZp0oZtdamHQVxDspevSb0NKQWj+cI1vxZ96CPfcGKCohNu/bmBO7cRoOIlWDsIMmdWuOnxHG4F1wN/7ka3FqtyDF5dhh07tn1fMBw9m+FHfx/QHP0O9CWRXuqz/F2bMm/fyu24+zayXezV/Fn3y15hbIuMcFoKgUGTDug+hOiD9S/P5ve4UIESJEiBAhQoQIEaIwistSyu1MCCAllUrgBil4nQhSXN4FEWKRaBnu4vsxXmcqcZ0RC/FO3DcDLCHeY7hLfpVXt4l34r75YMaHirCjZuJPvLLbZD2gyuOxs7E2gvUiWD+CRCuJX/elM5MZxuDN/QqU9VZVYZEqi/2z52BHTMfUbs8i6wGM14lzcLNusMTag8v145oEUJLEbrZaFDEQ68Bd8YiqYJNH/Ti0NeFsfqXb/e8SJw/ivvgjIr/+W9yX/gtOHnxvyv2QQmJJ26ac6+n54BbhX3AHMmCsKnuTCt/+4/AvvFM9qAt5aMcT88j3cHYsx6xdiFn3Ms725enoGID6Izgv/QTz2oM4L/9cIzIScJc8gInn3GNeJ+6SB3TtCEpoC+qFnvGzP+4S/PGXpjcKABqPa6QPjlqZSMI3OxZXmyBRuyd9pX8GA45DfO5XkGgF1k/cozaCP+5iJVCT/d70MpGHv0Hk4W/gbHgpNVbO5kUpsj414l4Md8UCVZg3NWTUmf6f5lOp5pv9G3Gf/Gciv/kqzpJfa8RSEr6HszN3zLUuKanECqp89x2sr+psrNX1uqDk2yDlvQscQ6MCOlrTlikZ54GBjlb8827BDhif4qeT6u34nL9R1XNRAd9xN/E8sFbV4Yl2Wz8xLoWeE+8A7tLfQNZc08gDd/H9SAEPeQBiHUi0TNX2GWNqfYMYF4rL1eKp0LiW94ZIIioje2DAFKXU4M6rv8B57keYV36F+/h34cAm/UxJBfGr/gpLFOsV6csW4V3yaajsizl1InCei+cl5lo9ggHJPG6g+RS2uLrLMTN1B3D2rVVrJavnGy+OOb4bc3gLzpY3oKUxa7PPeDHcVY+no66MQQaMw590FXbw5PeGrM+A9BqAP/FK7Kjz/yDIenwPd+mDOc9QDzpacdc9h6k/hLNndc7zO6abWgffRoachT/tZo0sKCpBikqhpBfx679KYL6BECHeJUKFfYgQIUKECBEiRIgQf8CQviPBLUK8zjx9oT/hUqT/aNxVCwLPtaNnQkkF5sSebKW5cZDeg6GyHyaArDUAx3a/Z30IhFhM3f7AQ+a9qLu9GbN7AyIuRnwlDzs9nL3rsdPnnrl5vYcQu/NH6j/e2YIdOEGJIcDUbocgj1s/jqndjojThbe3jwS4LYNGAJiT+wMTCRo/jrN/PXZGgWSQ3YSp3YH7zP9LeVjTdJzI/g34N38VGRSqB98d0mroTIgxqtIsKiE+75uY+gOYxiNI9WC9ryGhrjeISL4Htqic133u+5iju1KqbmfFAsy+dfgf+RqcOkbkof+Lzh7UPmPNs5jj+/Bv/lvdQAqAObEXqR6kCVwbj6RIVkio3KecOeGxc2Bj1nkpuBHMyf05guqkwp4Uue3sXYd0+phkEeJidq2HGaehtBL3+f/A1O7I6PdjmL3r8Of/Hc6+dYVzVNTtx5zYG1i3qTugdhgbFuKsfDxddtMJnF0r8D7xXSjt1UXdX8OfcAmRPRvIlHSLdcApRvqMAKvUct79jyDDztb13I/nicH9s6/RDb1CSGzMeh/5NtTtw921FCnrjT17biongT/5StxNC7OS+YpbhD/xUqgepIlOY41kzlexDv74iwvX202YY7uCNfAnD2HinRSe5wY78jzcV39J9kYm4IE/ZhZiHCLLszeRdV/DxY69CL+xFnfjixg/4znnRvHHXwLGwX3oG5pINHmso4XIs/+Gd9PfwrCzcN5+HZGiRC4HEIowmxfD+Itx9q8vMM+LlOQt1O/GIxg3kupn0P1tarcFbsgT78Q5tFWf3X5ANIcbwRzfiww/J6DmDzfMqaPB0RzWwxzYiOnVL/h4vAPn0Gb8EVPwz5uPP+lKjVqKliFDziqc4DdEiHeJcPsnRIgQIUKECBEiRIg/ZHS2YTtjCbVqxgsXc/IwlPfGu/JzWClSlaoXwRIlPuevobgcO2oG/tS5CbVYqXrRVg0kPvdvlEEopJiLFvCAf89g0l7y70PdzvoXobMNk2E3YrwYzsrHVf17JohgdryFu+RhnMWP4Lz1JJxu0GMlFeAGjJtbpMeqByE2wNNYIkhpr8Iq2GiZRk0EWKQIIGVdqzW7A3fJg9ke1gkVrLP0/Y+o+GOFVA8K1v46ieud/FyfEdixF6XJekBKKhLe3jnzRUCqBytpfHR3lgWL8WKY43sxR7bhvvYLUmR98jhgDr0Np+u7aLVRO525X0KKq9Jrhx/Bn3QldsR0/ZgXw1n1NJFffYXIr76Cs/LJ1P0jZVXaXt+kXxbwPZ3H6dbk/+zFcFY+kW0tY331pV//AuboTsyRHZhYDCxgwcQSKtjDWyDWHjzmvpewXykQxYIDXjyLrAd0nehsw1n/ohKwheo+tBVz8rBuxuT6rXd2QqwtocYOuv91Yyd20zfAOFlicNt/DP75H4OKPqpGz4E4EaRX2l+cfqPwL7oHO21eOoEw4M/8KHb4FF3vo6WIW4QdPAn/orsg3om0t+a32xiorw0azXeGQut2pAgpqUTQfuXlPagaiNm7NsPrPaNtgLNtGXbqXGzfMXn3SGzul8Bx8Gfcgh0wDusXpVXyvYfjz75L7WQyyPrMWiIv/0TvpcNbs+eDH8ecPIg5sBkprw6ea9ZqxEnAep2ElFcnEsIH9Nu4er4bsEnjFiFlvZCy6py7O6Pu0sr8998pvDjOmueI/Opvidz/ZZy3HodYRqL31lM4r91P5JdfJPKbr2O2LAkku3+foJEkBa5JaS8d8wDyXdwipKwq/UZZFXbMBciwKSFZH+J9QUjYhwgRIkSIECFChAjxBwxTt1+tEhLh8skXPpp8zlrM6ucQiaTYH7EuzurnU39Y+7M+RuzuH+Jdcy/xj3yT+Mf/FSr6gDHYs67MI4gkEsU/5+r3uWMGe9YV71vdzqG3U4kXsw+4mPrDZz5/+WO4r9+v6tCWBpxtS4k8/PfQ1oQddwE4ASSKMdgxs/BHTAcb0USXvoP4riYjNVGoHoA96yokZ6NEIlH8KddAzRCkeiCSG3ofiWKnznknQ5APkYL2N4WiHUKcGXbqdXkbX6kolt5d50ugehBSM0QTbopJvSRSgp16HaZ2R3A0h9epZH7dgUB1L6AkqEgev6Zkp7KGztY3kfZYeu0QB7NlObQ0qrr/yX/FWf0spukEpukEzprncZ/4HojFjjpXk9VqbaRsnayj87hAywSDqT8UHEliPcyht7Xf8aSCPoMcj8UwR3aoVUpQvzDgeUgBUlEQjSoqULdzcDPmSFd1b8fsXZva8Mou3MfUHdChtU729bROor2Cc3AL1kYT64PBehE4WQctDdgxM4PJQcfVdedMcCN4132R2Mf/Fe/qzxO/7Xt4N34VIlFMw5FActiI5jvpKfwp1+Sva24UO/kKqOqPOIk+e66ui54Dvos/chrO3nWBZRrAHNgER3fD0QPpc30X67lEXv65fu74XjiyTzeMkrsgdUc1j8K2pQXLpuM05ujOLL/y1HGvE3NkG3bKtcH3d2UfpO+I1OZs1vEMn/uklU7W81tcpKgUO+q8YAsb42DHXZioO+cZmVF3jyCC++y/46x8CtN0HNNch7PuRdzHvquEd0cLkYe+ibN1CaalAVN/GHfxgzhLf9uzet9vVNQgA8YgOfeRRKL40+bquhVkbWMMdkLPI01ChOguQsI+RIgQIUKECBEiRIg/BOzfjPPQP+D85HM4j3wHDm8HEipW31NvX8/Rl+9gxUBFDebAJkzj0WyPWz+uSVBrd6TLL+2FHTEN6TcqiyDwL7wNO+rchCKzTBWZY8/vsfVKd+BfeDt21HkZdUewY2dhZ3ykx2VLRU1BBa6U9Qo6kkZHC86GhdmKS7FqN7LhZSipxLvhS6oaTXrcl/bCm/cVKC7DeXtxou6En3FS7RvvhNMNmhiz/xhNgosSmHbgeOzM+QB4138RW1KN77n4cRffd/Gn3oAMmdSzQTFGVfwWrGdSL7H87pLZHtyK8/D/R+N37sF5+B/h0NbfTb3vI2ToZPwLb1dv+mip/t9nGN6NX+rW+d4NX1LiL1Ks90GkGP+C25BhZ6USEQeioxWKSws6pkv1QIiWIxb8uJN6iQUpKlP/7TXPIbFOrFXRrvgWibXjrH8Jc3ibqoxz15b6I5gDb+NsfiNByueoor04nDqe7YOfiWgpUl6d7cOfbDNARQ10JvNABHi5d7YmNgQCVOxOEVJeBSUVWD97nlv/zHVLRR/obFOfd2tS42Jtwn+/sw1zuiFYZGxF+16syue0f39CYR0pUauTNc9hPE/XButiBH1/7QsQLcW76au67ifXlpJKnUvJaI2mE5gXfozzP5/Hue8rmPWLINeypVd/7IjpOgeS/SvrFdhvQBMA9xD2vJuwYy/IfpaMnIZ/0e3Qegrp6MBaR8fVd/RnAWfLmymf+bx2ARhwX/zv9DVJ+ttbg7Q1w5EdOEsfyvIsh4TX++JfQ9/hhRtt3II5RwSgow0ZOA5/+HlZ95D1DN7cL+iamtrsyomQsUBJRUbkQE7URyQK0RK86/9G7/1EneIW4V3zl1BejQwci3/x3Ym1IREh13uwPmt66FVvju3GHN2Tf383HcfsW4+z6VXobM+PUtv8OrQ19ajubqH5JOaFn+D8z704v/wyZt3C/HleAN51X0D6j0bcaCrSxD/vZmT0eVBUjHfDl/CdUn2+xl18ieJd/RdQ3vMothAhuovQwz5EiBAhQoQIESJEiN937FqDs/CnaYL46G6cp/4de9NfwfCzwC0hKzmkCPgGO2E2pnZXwh84B76HObYXGTKx67rdIvw59+K3NGCaT2hi19/VH61uBH/O5/FbGzFNx9/Tuu20ubiHt2YpJ8VxkQFjINNaIgDm5CFVouZ4ZBvfwxzepmUNmUT8U/+FqdsHGKT/yJRqzzQeLax6PrBJybgj+7GeSRE+cmgPHNwKI8/BrHkJaWtXIg8l/lj/Cpx9BVR0kbSyG7DDp2C2r8p6T6xBRkzrUbndwr4NOM//WBMsAqZ9D87TP8DecC+MmvL+1/8+wk65FjvxUszJA0hp5ZmV9Zkor8a77R+hsRbTflqVs9ESPRYpJsMqPQ0B3GL8c67RRKs5hzAujJiCHTldFfOZx62LjJiKaajNUKmb9Nm+xRzYDCXlwfZRXqeSfScPF57n+zZip12Hs+aZrI0viURVNdyrHzJgNBzbnUUIEolip1+PSWxYBiJSjJ12He7+DVnRB+JEkD7DoPdgbJ8RmJaczSAx2KqhWndJJbQ25LXfTrgI03A0eFwEXRfi8fx+Jz7vNBzFTp+Ls/qp7LwhkWLs1Gt1zAPV/T7O4W1YQAaOJf7JH2rUi4husiYJ7dZTOL/9tm62iOimzbIF0HgUufKewmMGUNkXGTgWju7Kij6SSBR77vVdn9sdOC7+VX+Gf+FtmFNHkV79dfMFMAffLjCmBhpqkTEzMPvW5c11I2BrhmFq9xa8Js62ZYG5WABoqoPh56gFkdi8vAF24sWqgk+WnVM3bgR2roQdqxJNS+YsAOfBv8d+4Rfoxiw5Mnujv3e0pKZOnoe954MIZukC/BgY39HTfINZugAZMRXcCPasy7HjL8TU7UdKKqBmSFdXodswx/YSlHTaxDsxtbt10z8oT4QbwZw4gIx8H9fstmad552tiXneAssfh/rDyDWfPvP5pZV4t/49nDqGaWtC+g5PWzYlxly8dAyQWDBLH0NGTg+2KAoR4n1AONNChAgRIkSIECFChPg9h7P04WwvZxJKtiUPY+d/GenMTThrEMeBwzuhqi8Sieadj1uEVL4D1WRFDVIR8HkvhnnqB5hD2wGBknLstZ+GMdO7X/aZUN4bKX8XRHT7acySRzG71wAGmTALufg2KClDhk7Cv+Qu3DcT4fvWRwaNw7/u3jMWKxU1EGCnI5hsst9xdAMgFyXlSOup4MSyfYbiLPwZJh5D2Rl938QT17v/CMzbi7NVjyJIvBOzbiFy6cehvQWz9FHMrtXa7/EzkUtuU4L1TDh2IPj9o/vPfG4P4SwpNM8fwv6BE/YAREuQwRPe/fm9ByM5t4FU9dd8CbmJJ90o0nsA1B1R0WnOZLPiQPtpOLovuK5jB5DzouD5OScnErTG40hHYXW/dLRBaQVyOj8ZNoD0HaqbhXvW4WQkgLW9BmFnaQSNP/cLuC/9lya4dlyMMfgX36Hnna5XpXYs5z4sctUyauBY/Cs+hbv4AWU/rY/0H4U/9wv6uUM7gxt+fB90tCKnT4NNq98B9Sc4vBOJlgSkhU4QtXEPSnshp+sCSXvbdygMm6zE+pbXExt/HnbCbOz5t0BrU2F1f1Vibelow7y5ALNjpR4Zex5y6e1QWqkq43hnliWP8WKwZQly/s1QXpVXdiZSY350Z2rjwL/4E8jQyfl1iyDjztO15UxRSUns24iz9DE4dRzTqw929q0wbgaSyvkRMNd8QWoGo/SVl2V1JMaFfiMCyPr0+basCqekElob89sTLQHHxfvYt4ks+DaSmVy532jsVZ/GvPVEeqMgs24BPA/n5V+CgMlg3A0gvg87VqQ+KzYdJWCcRIFOEeIZjCtZkTDiA50xOLIDTh7SiIvE88DgI6cbYM86GD8LGo7iLH4IDu/AFBUjU69Ezp/XY191qajRJMc581EiUejVF+lsRWp35ifctf47+27xLmA2vho8z7evQC68pfsb19UDs6JMAKjdBXU5kUPW12f27jXIhG5YT4UI8R6gS8K+oaGBp59+mjfeeIPt27fT0tJCRUUFEydO5NJLL2X+/PnU1Ly/N2KIECFChAgRIkSIEB9qWB+aTwYfqz8C9Yc1mWnOH9XGWqjdiZ15A87yR5EMOwDBaKK/0ef2uHnOA9+ApjQ5JR2tOM/8EHv712Hw2B6X/67hezgPfwea68FXlaDZ8ibmyC7s3f+oZPpZl+NNnA2NR9WeI2hDAtTzItOSoXqAWoZ4TTmknOBPuPDMTTt/Pu5r9+WcidrODByDaTyeeNcgklReCjTU6jUPUvdbH2p3Iql+n0z3e+syTO0u7N3fKWgtoY0QtSoJQuPRM/arRxCBxmPBx04VeP/DiPSE0F/HzoQlv825v1HCfuwsnI3/AtZBsBmnOhCNaiLRgmN+PJFcMslSZpZuECspdX+mOjjFnxWV4F14K5GXf5rdfFAl67DJ8OZjUHsglYQVgOOHYfEjcMUdUFqJP//voKUB2prpO2EiJxs14aWMOhfiv0iclNE2T9TWApAJs/HGng8NR/T+ruyTricofwXovV5/mJS/fGbZFsyhbcjELgi7ohK8iz5GZOFPlNCWZJCMgaISGH62VnPpXUrQN9dBZd/0ZlplDTJ0EhzeivG99DWLRLHn3QDW4jz6T9B4PK2C374Cc2Qn9k/+CXNoW3ZEQmrgRcfhDIQ9JeX4H/mqjnlHC/QepM+XxNg4j/4zNB4LrDtLeZwzTwHYuzEVQQNA4zGcl36GeHGk4PqSsAUbOUWJYMmdaxY7YiqOE8EUsPMhWoLtMxynpVGvRfKaCNheA/SX/iPxPn8/HNikeTwmXAwViWiuSBGIycr3oG0wiFOkXvaFQkm2LNWksgnvnlTdFkB0PUcTMudCvDjm+L6cfAl6nonHMEf3IIPH4Tz0jxpRARoxtuZFOHUcmfvnOQUGXJMuIKOmQSSqm8GZ2wmOi51wIQydiLNzRX6UWp+h0Gdot+t5NzBHdhRU91N3qEeRZub4vsC8ICbeidTuhpCwD/E7QkHC/vvf/z7PPPMMl112GR/96EcZM2YM5eXltLa2smfPHlavXs38+fOZN28eX/7yl3+XbQ4RIkSIECFChAgR4sMD45An7UsdM9Crb7Da2zhI70FQXIZ3y98ReenHSPNJLaf3YLy5n8tLlPeOcXx/FllPRkud1x7E3vUPPSu/J9izHmk5BfEMebG1SmQf2Ayjpup7blFhD+OX7oMtyxJEhwNTL4Or74KWU0h7G8YmOL0ELC5m/xYlOrqAnH05tv4IzsaX02+WVeHd/m0wRq+dL6nCkz7NxnX0egcQFQKqFNy7oUC/G2DfJhjTRduMUR/s9ub8Y2VnIPp6CmNUpdsWUHdpN9W7f6zwPVj2NGx4XUn0gSPgqjth0Gj1W/7o1/X+Tm62VPXX+ztagvQeiBzbD77+6a9zScCLQ68+el1bT+XXWdpLzydt86EwCIn7ofcgrFuM43dmuX1YNwq9B8LE2dj9W3B2LEsdk0gU//ZvAeCsfSlRcrYy2dn4KvaKOyDWCQv+DY6qAr++KApXfAKmXApHdiBuUU5EhtEk1Ye3w7gZcGw/vPobjSKIFsPUy+Hi+UrqJRnbIBSX60ZpXr8Bz1NVbkDUkkSiUDMIJlyAv20F7NmYXiBcg3ziGzn1lKk6PAf+nD/HPPRdqD+hbzgGZs1DBo2DfRuhuT7LssZYX73a96yHpJ1UbqHWTxPv3UFFTf4G5oG3obkuv+7WJszudciEWXD8ALzy6/SYT7kULr4FIkU4Sx8NjKDhzQXIFXcW4JMFcGD9IqxvcJzsy2atwax9Se18Go9mqdz1bKNjvPxJfN9owuNk3cbCiYPp8Vn+LKx/VfNCbFkLV90BQ8YhsZjufdoc+szxE2uxkvmBXHi/4cih7Yhv89dzx0BpVcA9ht5jGCTWkXePpOZirB2z7mXw87352bUWmV2v9/iO1bDkMWg6qZZys2/W63ImRIrw5n0R96l/07wQoOvNnM/pBlNJOf719+K+8gv1+ReLDJmIP+cvz1x2DyG9B8GRYHU/VX17VnZqzHPeh4zcGSFCvP8oSNj379+fRYsWEY3mf4mfPHky8+bNo7OzkwULFgScHSJEiBAhQoQIESJEiPcEYtMMRZ7BroXqATBonIamZyoM3Qhy7hz9ud9wvLu/p2o+R4m29wSHtgW+bQA5deK9qeNdwhzbC535ykQ645jj+5EkYQ/qw+0WZavPX/wlbFmWHnKxyIbXlagcP10VzL6vSmOUaDIIHNtbMMlnJuxld2Jn3w7HdqnCNml3IZJB1meaGqPvV/UD3+aTWwLSawDmxAG1UsjrdwxTdxDpirAHZOaNsPyxPF9xmTWvG73qGWTmPFi2IL/u82963+v+vYAIxGNQFM2+uAvvg53r0uNybD/y6P+Du78FNQOhzxC8O7+ram0rUN0/XeS48zFvr8qpx0C0Um0teg2AllP5/tm9+gX706PkongeMvZczJLfYtvjuhaB3kNFJci4mdB4HLtjAxJ3U/uNIi4sewZu/PMEKR40DolMrr/6lm4IJm+oeAxe/hWU98LUHw5OkOrFMHWHkL7D4JF/TefviHUg61/ViJt5f4GMPx92rMhbUmX0NO2346T7lOp3QkE85lzM4t8ifjxlyaFRS1Fk/Cw4uA3ZvRmTETkgPvDEf8Kf/1twnzPxxgKkKcMyywqy4kUYOwNz8kiWojnVtngnpu4gmIiOV27HHEc3aXoAc/JQak5kKs2NF0NO7IcBo+Dhf8ke8w2v65jf9LnC0TstjQlLHUPeboMYKKnA1O5RlbvN3LxO0NxH92InX4KzLCdXQ5IZH3G2+sFbJ6twEQd80U2wNx6BrSsSVmTAiYPIgn+HO7+OiUTBuqk6E2fre8aFkl6Y9pwkq8kmDj8LWb0wI2Ij4yNWoO1Ufp8TPRPARIpz+pN81oBEijHH9mH8gPvIjWhE1vED8OIv02tH6ynktYd0bk+7PP+8TFgLL/wCv83DJPovnoWX7ofP/DMUFSMjp+J9+gfQcExJ/DNFcBSqx49DUfGZP5uAnDsHs21ZtrrfjUD/kVDzDvKDBMAk25ETWGQAKeqhyCFEiHeAgoT93XfffcaTi4uLueuuu97TBoUIESJEiBAhQoQIESIDjgslldBxOl9kX6lKMjvv/2BeuU89bQWo6I29+lPQJ5F87uAOeOq/0uqw0gq49a9h0MietW1ggD87iWZW9iz5aY9x/FDih3z9vySPHdgGi34Np+rAdeGcS+Dyj6kFwtblgS7VsuF1mDlHbRx8A6KknNqQAH3fgRVAJAJDJ+VUYhIF5V5so5sFezdhPeXfMj9hrQNrFsFZF5DH/iT9tTvOrA6U6dckbBWeV0LUjSCz5iFTrux+v94lZNrVakWw+nmM9TRJ6Mwbfyd1f+BY/5oS2R1tUFwKs2+C6VdqxMGONfl2H54Hq16A6/5Uoydeuh8OJhKxDp8Acz4JVX1g90YkRf+lIe1t0NKIHN6Demmnj4s1SO1+iHuBZKII6lEfiWJvuBfzxA9VYQtQXIrM/ZySb6sXKsmeQVSaeBzZuQ5ON+p8zlXI6qeg/iicyvGBTzbxtYeRy27FRIryNxUiCXX/mpfzCGrjxZHdG+B0AzLns9rmfRvTxQ+bjNz4BfX2Nw6Q3TbBIANGQaQIe+O9OE/9AEkqj6Ml2Os/r/1+9bdBPUJON0LtXhg8OqDPCbSdhm0r8q+378HK55Hx05VAjndkt62oGHoPQgadhvrD+cpjXKjqT08gne2JjcOMjQgA10JHh455rjWbF0f2bFLSvrJGk7zmorRSN56diEaLZUxVAWT4JMRKYdZIpQAAIABJREFUxlzIJN3RqIqtq7DWwXFs1snWGji8K0tZT2Y5gkZyvL0sm/gWdO6ufB7BYsTk3AeJc+uPItamCN3sAQPaWyFliZN5LPFe9UACzlRy3omod38kinTGsxX6URf6DUNEoHZXgNLc0427J34UGNUgy57SiLGuLHL2b4HTpxIWSwmdvwgS61DV/tkXQ+0eWPiA2ms5Lkw6XyMTot0g330PFj8GG5foz1V94Oo7YdTZZz6390DszV/EeeU+ON2g4zJ6GnL1n5753DNAagZh3GJ9FmXOxUhUNwRChPgdoVtJZxcvXsyaNWtoamqiqqqKGTNmcNlll73fbQsRIkSIECFChAgR4kMFEYHWZiguSau8ALngZnhzASbDV1UixchFt+gv0VLk+s9h25qhvQV6D8Qk1eJtp+GRfyOhAdVz21vgN/8EX/hR9/6wLoSh4zXBYntzHuVgL/tEdt/aW5VzDkh8WqjfPYHE4wGJIROIdcKJQ9lkhmeRzUuVrLvh01nJ7LILtmozUFQJseYsewbjg4zJzgsgjSfAGEx1P7oFkcJWHVZgzybUQ9zVcUvWbdQ+QYpKktrM/PO7M7bGILNuRGbMhY5WVU32MHlht2GMEvTnzaVPuaG+VX53dX+Q2LQU3siIauhoRRY/rgRmv8HBOSrEIicOKSn9m3+C1ma13QDMwR363me/BycO5pH1gG5KNZ5IMoMavZEuXf9rPJrj2Z2G+Fbb9MxPkc5Y6l6TWAye+7nWfWS3EnyZhL1JzO/G48jk2bBlab7KfcIsTfyYfC/nfDndCCPP0cS3GZEmmgQ0rn7n614LIK3RTbLGE+oVf/MXsZ3tcOIA9B+OKS7Tz5RXIWPPgz3rMJmkf6QImXl9qt+2LZZWXvsePPsz7XdzfaGVB47s6pqwb6orfL3rDsF1n9Kk1V4s1T8xjqqdx8+AQaMx297K8uAWN4oMn9xjqxCcEkiR9RnSY99BnCI4vj/YP9+N6PW+cD68cn9wBE1ZL6S8Bk7X5cxXo7lWGk4AawI87EFqhsDWtzBisjYTUm08sovCMIl8Hzb9e7pm5MA2GDgy3d7M+8GAdHZq9FKObZ0kCflTJxMn5URMJT9r1bpMAtZ8G62AEZMhlhtxJRCzGiU2dCJm65tZG1fiFsHQiboJErRBApqfwPd0HSiEhqNg86MyTLwTOVmr99Gj/56OqPA9ZNtK3Yy77W8Kl5vEwgd0MzI5H07VIU/9GD7+FRg06sznD5uE/eS/aF8i0Xek0O8SI86Bimqk6SRGdD7rPVaia1OIEL8jdEnYx2IxPvvZz7JhwwbOPvts+vfvz549e3jwwQeZOnUqP/vZzwItc0KECBEiRIgQIUKECPHOILs2wMLfKOEOyKSZMOdOTFExMu0q/dCKp9Vft7QCmf1RZJImOJXOdnjxV7AroRYtr0Lm3oMZNRmWPE4mWQ8JtadY9ey9/KM9arf95HdxHvlnpKFW33Aj2MvvVEINkPqj8Owv4MRh/X3QSJj36RSBLbs2wsJfp/s9cQZcd1fPifsBw5Ha3XnEmWBg4ChY+WKwAnfXemhrRYwJJu0dB5rqse2tkMNNiWMwO9fD6KnIns3w5P+kQvalqBhu/Txm5KT8MrMaYZDK3pjTjXmHpKovjJ2KbHg9kcgwQ2nqCKa0FOKdCUV1br+BWL6VRkE4bsKm4gOA4+JUVOrmyYcBy54JVsG+9Szc883gnAXGgf7DYfd63Qzz0uS0eBba2zA718GAEciJA/lz2YtD7wEZKvdcTw4DQyZgrcExQsrdRcC3BtO7D+zeAJ3tWcS4Eavr0c61YC1WTJZQXTAgFlMUxV7zKZzjB6HuQPp4zVDsnD/D1O7RvSubYyPigHEisO9trCnGse1pmlTAmmLYuwn6D0eO7SvYbxGBlQth+fNqzeM4yKw5MPtG3fya8xlY+ihsXqzj33sg9sp7oN8w2LEWaWsFL2NjzAp0dmB2rlWroZNHgsXLQ8cFvJmBqn6BVj+p6+1G8K//C5wnfgAxVfdLpBh73Z+r8r73QOytX8F59VcJC7QIctbFyGUf77re7sCLBawtCXrdj+uae3Rv/kZJYvxkxOREPobHdL0vLkMuuEmfb63NSHMTRkAyBs5aB3auh5oBWF8V9FnX2yasi9xIIjlqwKBX9y+Yb1UEaGkmKJREQBXy0RKsABmJYQXAEUxRCYhRf303+2TrG4gUJ8YsP+pJAGoG4hOBuJ+1nuMIZtgE2L8VcSKaRD7zXDeim7dTLklc7wfg5CG93pMuQi5PbJhX9VPiPRelFdlJgoPQJ7lZmP2gk6Ji6DsE1r6Sn/zc95Aju6DxuK4vhdDeAttX5yeO9WKw4nmYf2/XbUtVaDRC472E42Bv/zpm0f2wf6Ne7CHjsdd8ShNmhwjxO0KXd+j999/PqVOnePHFFxk0KO1zefToUT7/+c9z//3389nPfvZ9b2SIECFChOgZpLNdv4xW1Wj4cO7x1mb1b6zuizFBIaM9qbsDWpoK1h0iRIgQIUBq98LTP8v2Jt6+Bjo74NbPKYk7/WolNvy4/hGdyT48/t9wZE+a6Gmuh8f/G/mT/4s5diBY7Skgx/enNXvWVzVgSTmmrKL7jS+pwP7Jd9Wiw49pIsVkmbEO+PW/KOmRRO1eePB7yF9+j/jB3fD0T3P6vVatez7azT/YC2H2fNjwBiI2U5eoRPSFN8J93w5WHicT0559MbI5X/3LtKtUtZhSJGd8wgpSu0+jBRb8MOMkVAH58H8gf/0DTImOUcExv/gWZNGDeUpULrkVRp2j9g6SQzBZkBlzlDRMKk9zWihF0cLK3w8JxFq1QCopw5S9x0TPu0VQ0leAllO6aTJhFrJzTTapH4nArLnI5uUQSxK8GTM9HlcF/qgpmE2Ls4oVQROrVlQjg8dq8sbM44AMGIXpNwScEmw8czMhYSs1/Wqor02razPhxeBkrXp028x2JUoXo3Yj697AnqiDWMZ3z/oGWPsqDBmTsDEJmOfRUkzjCfA89cTPnOk2Do0nkNFTMRvfyA9WiZapXde612HZs9qOJFa+pPkDzp+jBPDldyjR7ftZSmSpr4VYQH6MWAypOwLnXYtZeF/+mLsRTRScfC/eCc2noLIak4x0KquEyRcg21ZmX283Audfj3hxePwnqu6XBEMci8OTP0U+9z1MtAQGj8W/8x/UVqi0AlOR7yuerrtKz8k9Xn9cnyPDxupGAKhVUwAMIMVlyLCJmPWv5avgi0qhlyawlbMvQc66OP851lyv62fO9TSAHD+gm6yJyKK848VlUN4bk3zOZC74JqPdef74if8TSY3z+6XKd6kZAnZNRm8TJ1uDVPfHHN2PwUnkftdCU8lv42fYJI0UQVkffQ5kwhqNFGk4lreZBwlivE43wRk0RhO8e3F9vmXmYrn0o8hz/5v/LJn9kazvENLeqiR6dV9Mcudh5GSo6I2cOpGKnBDj6HhOmAlvL8/ZSEjASUSxdEXYNzeoDV0u4U9ik/+DRlkv5OYv6DNa5MybGyFCvA/octYtXLiQr3/961lkPcCgQYP42te+xve+972QsA8RIkSI32OI78HLD8Pm5fqlSAS56Aa48DpVD7U0wVM/hdp9+uUuWorc+EnM6LPeu7rffithtCvIhdfDRXPTX2JDhAgRIoTirRfzEwl6cdi7GWlpShMuxmjodwak4biS4EGex6sWIS3NUEBdSJOquGXLSl2zfQ+sj4w+C+b9KaYAQROISERfmdi2Op+wENFN4l0baN27Ib/ffhz2bUVOn8JUVne//lyUlME9fw+P/yfSklCrV9bAR/9Gx9D6wapLsUhRCVx7DxzZB/WHkxwlMmAkXHG7PjdtkO2MUWuFxU+QtxcgiX+WPAXX3oFsXQULH0qP+ajJOuYlZcjkC2DrKti/OV33sLNgwnlKNjuRABWugZPHobRUlclBPtPvRGH/RwjZtkajWDxNkiojJ8JNn0ltoHxgqOoHQUmaq/vpZt0FN+pGVnJOCciIaZiagXD8YOLN3Bga4NhBaD6FxB29/smPWJDTLUoSnqzLE9iLAA31SHND4Xl+aDdU1RTsksQ6UFl+wLmSIA2XP5eYkxkEYywGy19A7vhyQL8SvztF0H+okp3xzuzPFBXrsW1rtN+5aGvXe2j5C/lrUzwGK15Swj5VnQORnHJS91HAmHd2wqFdiHXA2Cx+V6yjRGZ1P1j8FKx+JRXhIOdeBld8VK3MrrlbN1PWv6qblwNGqi94n8HpNTV3w86P67GplyA71sOLD+raai0yfALc9GlMWYVGFix5Cla9qoufWGT6pXDlxzCOgzQ3wv3f1U3HZNOnX4q57i7oP0zHN2eTRoqiahuzfQ3iOxiTrYKX9k5oOI6pSRC4Qc+xaGmGMj+DSBZ0Tc2qO+N4URQGjtC/M+prtYystdeFPoMRUfI9U5ek897AxJmYlS/kTTUR1DIuER2Wf70F6k9AUTE2Hlev+qQ1FGheiN79A/zvkxUYzSVxusCG3fY1MHB44CERkFhndrFBwqix0+D6zyBLHtON5opqJevPvljL6eyA5+6DPZsTZL+LXH0bZspFOjc/8TV47SFk11pdC0afA1fdqRtbg0cjtXuC8y30HRLcpySq+wUmnRbjZFkQfeD4MFiyhfi9RZeE/YEDBzjnnHMCj02ZMoUDBw4EHgsRIkSIEO8c0linSsp+gzHue/Tl4LXH4e0V+sUp+WVq+fNQUYWccyE89B/QcEzVhD76B8ATP0E+9Q1Mn4E9q/v1J7TuTLuBt16AiiqYOrtnZXcT0toMzY36ZbkkDGEMESLE7zEaA8g6UFXX6UZdOwFpa4GmelXBlSa84Jvr9XM59i6I1bD0pNo6wPsXATm0C154MJs437sFnvwpfPyvetav+qP57QJ93jScwD95LPi8SKLfCcI+sN/dQb9h2M/+K+zapJ0few5OQn0onfGENVDOuAhKCi1/UUlLL+OZfOI4rFqkJIrjBhIORIqgrjbjjSx9P9TVaqLP5x9AMghDs28LPPm/8Ikvat0HdmfXvW87rHpFyakgVSMoeTvm7II+0++Zx+8fIOTIXnju/ux5vn87PP4TuPNLH1i7AGTQWDh1IljlDnD/P0Onh5AxH7atRUYuzbOryIJvYf8OLc/P8esAVbm2NYM4+bEmbaehqaGLuXYI+g3RNYSAtaW4TBXUQXBcXRdakpZHOT1vb9VNvUL3mFsEI8+Gqr5I47FUslBxXCUkx0yFJc8El+2L9iuDkM5Ce4tG5XQVcdqVLUZJGRw4qOMiOWUUFemY79oIa17NXhvXLVHl8sXztN+zP6KvXDTV529ygq6pTfXIsQPwzM+zyz64HR77L7jna1rv6lez154NS/V6XTIPfvmPKXuyFNYvQfoNwZx7GVT3QxqOpUhacVwor1JieNkLpGxqkmUbdOOiuQEShL20t+pmUVWfdGRRrB1wEfHzPeqdCGbkJKjuh61P1C0grospq4Jx58KQsbB5KbajQ4llAyYahQkzNKLCovPc5t1l0Hcw4Cihn1v3qCnQmjMe6d5B22nELQHbSt5cs0aTMFvAyd4cTqUqaTxW+B47cVgjCwrdYwVOy8P48/QVhGd+Dvu2Zv+tuPC3SFUNZsREtc654c+AP8s/99yrYMNixPdT0WoSicK46amIioIoLoVzr0LWvZYTOVSkEXAhQoTomrAXEUpK8sOjgILvhwgRIkSIdwZpasAu+DHUH0+FMZob7saZOL1n5foebFia/6U+HlMlZ9/B+qU/90ui58Ha1+Ha7GSB76hu68P6JYXrfp8Je/Hi2GcfgB3rlfTxfZhxBc6V80N1f4gQIX4/MXQM1B9LSP4yYH2oGYD4PvaFX8OW1el1bdpsnGtvg35Dg0lxN6J+yaUVyK71KqZMHkuSBSMmwoqFASp3Dw7uRJobMb16v/t+xWKB6U8FTVxXNHI8/vHD+c8i39N+Wx/74m9h88p0v6dehHPt7emkul3Arn8TefE3aYbDONh5n8Q5ZxZ0diI+GDeDnBGUBOloh5WLghW4K1+Gz3wrOGTBcWHEJN3w0AozDiYUmfEYrFiIjcWyjkvcYg7t0mfzqgJ1r1gIH7s3f56gRWMtxD3yRzzx+4dZYb/y5eB5XrsXOXUSU93DhJw9wZ63Ed+oIjcBsQb2bkcO7tS8FUFY+iyceykc2B58fPg4OLQbEZMzXY1uVJ04AjUDdWMtF737Q3Fx4FwTQS0yBo1EnGKM35m9trjFmjQyFkPqDuf7yBuj30NT/vnZbUsfD7jHjKPrluPAJ74KSx5Htq/WiifMgEtv1bWvUGSAiJKCfQbCydr88nv3P7M95KCRqjDOvUeLEv22nkY32BzlsRfXfj398/xzvZhuyF08r+u6Bw7XDQubY0VUVKybeateQbx4ds99H44fQuqPIW+9hHTGyVp7OuOYVYtg9Nn5ZH0Sbz4H510Bn/hbWPIEsm0VIEoEX/ZRHXPfx+bm1gCMYzFuBBGLfflRWP+mrueeB2fNxLn+LqgZiOCA5Pil4+iaahzkqruwj/wIUm5ERThX3oFxI1BZgz9sCmxdmz7ZGsz0KzV+w0SC5xoGThzBj4NxDI6bIJ5FPeid/Ts0v0FANJaIYE43adsC7zHBtDTpz1ayAkkkaRVV3TfLti1dNmo3c+KwPqecnOe3Rb8z9ADS0pQm6zPhxeCtl/Q+6woV1XD31+H1R5GD2zUaYfqVcP7c7jXg0lvVcmf1Qp13g0fD5bdBn0FnPjdEiA8BuiTs4/E4jz/+eGDGagDPy0+GEiJEiBAhug8Rwf7mP1RlIkLyG6g8/Uukz99h+g3W330Pag8kvC+Hdc9nPh4LViUBtDZBS2OB7Es230fxnSLW2UXdBRRN7yHsogWwc0O2WmTtG6oWmXH5+15/iBAhQrxjXHA9bF2tyu7kd++iKMy8BlNciv/aE7B1Tfa6tnE5Utkb56I5yNRLYNOyNCFpjBI4M66CaBT+/QsqOkwS0yQ8dq+5A+77TnCbXFdzkPSAsBc3okLDHBW7MSBuEeWXX0/HumWqps3s94yrMCVl+K8/BW+vyu73preQymrM7K5JAdtYh7zw65wGWeSZX2JHTcAkCD3xyRPB09RQmCRta8GUVSLTLoNNS9PEmzFKWMy8Bg7tKbxRES1G6mr1aGaSQSOIJ5jTp6CjQN3trXqNk5Y4ue12o6qILISM6AS/7iisXQJ9BuDOvLzwOX8saKoPfj8ZxfJBEvbtrSAG66XngzEoiXWyCz/njla48DqNYMzdtHOL4MIbkDefD7bDAmg4hgwYpYS9oPPRqDqZASMxyQ23zMmcOIwAoyZD30E6n5Ne1G4EavqrdYYVWL0oP4olWoZTVokE5ZBIfqi4FGZcDetey7/HkpY1JWVw7d36ykWO5Up6XBLq/qtu19wfWereKFx1W4HBysDIiUq81x1Jj7sb0Tk09hwYPBI2LoNOP3tdm3IxprwXtu10sENKZzucSd0/QuuW44fSa6IbwVT1hbFTYMmzwWX7Hub0KaQlSchnq8GloxMTtIGRRGe7/l9cBtfcpa/cOpJzKLds66rn+luLYOPy7PV86xpseSXulbcg58+B1YvwO9PX2ykuhguuQ2Kd2Ed/rJZDScTj2Cd/jvP57yK7NitZnzmlfB954Pvw1R+RvxpnoO4I4CAWfD97TbatbZrMO2HllH0fGCTugesWuMeM2t2MnQq7N+qfRol7zBhgwAjd1LIm4+FsEPS4be/A8eIIRjf0Mks22v/UKMc64ehBKC3TaO3uCJRamxMbLQG8XnPDmc8H9am/5f9077O5MAbOu0pff4SQliY4eQx698N0YR/2xwZpadbnVnVfTHWfD7o5f9DokrCfOnUqTz31VMHjU6ZMec8bFCJEiBAfKhzZq1+WcjdGfR+75g3cuXcguzZjn7ovHadfXIpz++cwA4d1XXZxqSauagnwRRw0SlU4QV/QIlH9Q6QnKC6F8spgT8ZBI3tW9hkgvg+b3sr/wzUeQ1YsgpCwDxEixO8hTHVf5JNfh8VPwsGdun6fPwfOuUjFM2sXB69rq16Bi+bANR+HvoPUE7mjTYm0S+envO/tdZ+Cl+5LP26MQW7+CxzXVX/j+mP5G63Wh749tEfzbMJLPTu9qyAYz8et6Qd/kuz3DiirgFlzYMps7feaNwr0+1U4A2Evbzxd+NjiZzD9BqX9v3N5w7HnqAI3SMHYf6j+f/XtOj6rFumYj5wEl83HVFZjSysJJogMUtYLaWzIJutBfxdBiorVli6o7n5DNKIiw9IofbqDGXM2DBmNOG4qSWDquBvBDNaEl/5P/iGrfH/hI3DHF3BHTwpo8x8JRkxQYi7Ib7nfGfyW32dI38HIscQmTvI9BDNgkF7TQug7GONEkHl/hjz5P6Q9MhzMjZ/BRCLKwweogwFszSBY/Ax4AVaMu7ZgLrwueK4JgMExDnLHV9SL/u0V+qHJ58PseRjHwd+8EnI8zUUMdMSQ+mN6Lx0/FNCvQZpr6fJblPxfuRDaWykefzad59+IqeoGCTTmbL3eueuacaD/UExpOXLbX8GSJ3XDovcAuPQjmJFnvgeMcZBPfFltJt9+K9HvWYl+qy2PfPLr6hW/b6tuLMy6BqZdlijBQb0o80o+oyjHGAd76S3Ioz9JF2EicOktOI6Lb63uuQRJtt1I4agGgK5yWNWc+VkghXIWoLY2suqVgMiCOKxZjFwxHzt+Brz5Ctg0TWX7jMCt7ofdvDI4ksz3kS2r9Tt+0P5PPI7dvk6v+bF8S2ep6oskyfg8E/vE7zUD4EhLKkgqdViAXr3VXigeC9ZB9RmEuWAO9sd/D6fSm4ZSXoFz91exOzdpTgmy70FBwMaR8qpE5Ff2vBBjMaUVGMCuW4osekyjTqyFqhqcj997ZrK0pn9wtJbjwvDxXZ8boiDEWuwLycjAIt3MHD0ZZ/6nMUUFNhL/CCDWYl98CDatSPTbg1ETcW75zB91v99PdEnYP/jgg7+rdoQIESLEHz3kRC3SeBIzYEj6C1RLM4F/0IuF5kbkVD328Z9lf0GNdWJ//QOcv/4eJpFcSE6fQmoPYnpVw8BhGGP0D51rbodn78tQDxn1z7ziFkyvGmTKRfoHVvLLs+Oq+m7qxd3v1+kmpPaAJgYclFH31R+HZ3+ZX/eVt2Z008KhvUhnO2b4mPcm6ZvXRWRBe2vPyw8RIkSI9wmmZiDM/8u898X6GrkUhIQS2xgHmX4Z9BuOtLdhho1Oeb1LazOy8BHwcr76P/MAMmoSXDgHtqzQPCrJP96LonDRDZhoz2wwxY2Qsh0IPIYmIpz/F/nHxaryPggd7WeuvFAiP4DmUzD3Hk2umIsREzGV1cg1H4fHfpyvwL3mdm23MTD9cn3lov9Q2L0x2He47xA4tD/xS66fssF4MWyfoZj6YySTBafyS/YdglNajl9cjmlrzilbYOBIpFcN+D6+VQWoHhEc8ZCqvthnHwzeDPjtD+EbPyk8Zn/omHUNbFqukRM2Y56ff+17lnRWvDhyYDcgmBHjUt/Tznhen6FwLPeaGKTPUJyqPsjw8ciBnWlSManQvf4epL0V+9SvwHPI9NyQZx7AGTEeoQhDHJuaD2lduxFB2ttT9WW0CDo7kFgMcYoQz0scTat/xdV8CCZajFx8EzJscn6/m08BBmuzyUgTdfU78NW3wyM/zL/Hrs64x6Zeoi+gql8ldXWn6RZmXKnWkB2t2dd7xlWptdEMHw93fbVgESICR/YjracxQ0dhyisz+lAMl9+irwCY6n5wU4DvN2kNjvYxvTaor3nXCnvpaEcW/A+SaW8V9+DJXyD3fgcixamystaHZFROAfcEAMp76Wbvvq35x264J/Wj7WhH1mr+BDPjEpykD32hHBmui/F9zUUShHinPnse+Lf87/CH9mAXP5uOjMiF7yENJzIieHPXVJD649DURNIKzmTO45a2RPJ1E3y+AKPOgSN7A/PAyMjJcHAXtDUH50OJRJFlCxP5GjLK7oxhFz0OlVWAk1z9s/smICUVYN2cdgHiINEy5NAeZNFj2fPh5HHsQz/C+Ytvdam0N0XFyCU3wdJn8qNYLuymrU03II0nkRO1mJp+ulH+ewIRgaMHkdNNmCEjUgKHHpe7YhG8vTo7kmTvNuzLC3BvuPM9qeP3EbLylfyIyH3bsQsfxb0xPyInxJnRJWEfhGXLlrFr1y6mTp3K9Ok981cOESJEiA8DpKMd/6H/hmOHVfnge5iJ03E+cg8MGRWsci+KYsachWx8K1j5YC3sfhuZMA370qPIumXqBWkt9O6He9f/wVT0wkw8DymtgGXPQWOdquovvQmTVJLNuVMV72te01DX8dPgousxxWdO0Coi2IULkLVv5tR9L6aiCjPxXKSsHN58XpMpDhwBl8zDJJSJcqIW/zc/0tBWg37pv3o+7qzL3/VYAxAt0eRSQaHvQ0f3rOwQIUKE+ABgHLew2nvgCACk/gT+r3+oG5PGgOdhLr8Bd/YcZMuaYJJGQLatx5l2EfKn34RlzytRU94LLpiDmVggSd07abvvq3ox/0gqUWTBc42jyue6I/kHBw0/c93jzkEO7Q4+NmEqZtAI5J6vwXP36TMyEoHpl2Gu+ph+ZtRk5I6/gTef1fDufkP0OdaNSDEzYgJ2xSvgpzdaRAA3qiTqhuUUVKJGorBnK+I7GMemiB+xDuz6/9k78/g4ijPvf6u6ZyTZkm/5vu/7PjDmDFfMQrgCIYGQQLKB3YQkm+xuNm82757vu+8e2c0m2SSwISFZbggQDAbMje9TtmxZPvB937Z8SJruquf9o3pGM5oeycY2BDK/z0cfSdPTXfVUV1dVP/V7fk8NcmA3Ut8Iac1z5ZYKYjWqehF4PhLmRzVYK6h3XnTSSgVgVi7EGz+9Vfs+ilDl7aN+/qLr52XlMO1qGDH5nFzfvrcW+8wvciQz9Ke/hB6q0g2IAAAgAElEQVTcAms5jfdqWvxcZn4B+4t/goYGMhs7Ey/E69YHu2IusdRiEaR2OfQagN22kbzEstqgho2HOU/HnO505FW3XljRYLzcCBmtUENctL3dVIt95r9zytW3fBk9ZBRq0Ejszm15448EgSOYlJQhd/650+I/sMtFCV10ParX2a/XVNt2mFEzYMlrkdNSIboUPeb08ijJscOY//lPt7GglFu/T78K7/JWNOZPBz36I7s2o5RkOesVVPZulWEv66pcNGmzeyYR01wNHYfs24WSVO610ajufcmjiWcQ3fPbv4m88TRUveM05jt0gevuzox7ZsHryOvPNpX79izk4pl4l1+PGjIO2bM9nsHfvU8LZYPdsbngxrQsfavlCNkwzPjWmwnHOMe8n0SOH0fEbRzlBI2YRrdxk65n83pr7TbNJbfu6SgTwI25NiaSRBTKS7j6N99sCAMnD3T1rfHO+mj8VlvWFdDPB7VrK3bp20hjKu+gHD3i8ij06BfXYk0YMRWz6C10cAQQJ88zZAq6taSxpwExBvvsL5GNa9yGizHQewDe7fedNRngrOtWd9StmY4dAR2tmaZehr7y7POdyZK38vOlhAGsXoTM/Oxp5d/5KEKWvBUfQbN6MXLtZ91atogzQosO+29961tMnz6dW291i9YHH3yQH/3oRwwbNowf/vCH/O3f/i033hiTubyIIooooogM7IuPOv35LMeErF+JXdgLb8bVbgG64t2mCc7zobw9aux07Bu/zTmv6aIGOXUSqhcjKxfm7mQf3IP57UP4X/gzwDkN6Dcstm6OuXTRGTHqMzasXoJULcgv+5mH8L/4LXf9vsPgc/lli7WYR37stJGzP3/jeaRnP1TvAWdcnzSUUuiZn8M+80CulrOfRF9xS8snZ9el/hSyeR1oDzVoBCpZDOUroogiPkR06OokJJoxrlXHbogI5rGfRCzBLIfCuy9je/Z3rMYCzMR05JFq3xmuvSv/O2cJKWuBuXwam8P6k7djH/+xCylPey38BPqq09CZnnYVzH/FRXGl6wOosnIY7+Y91Wsg3PsPBS+heg2Ez3yj9bKao/8wt0m8e4uTSwDH7u07xCUYLsByFUAFKRdNZ5VjVkb3Wmsg1YCcPOGkhkQ30zUW5OB+lyi0UFTD0YMZqZxslm/66+rQvjO39TxAdm/n1JZjSEl7VM/czRkxBtmyweUS6DcY1T43x4I01Lv5G9z8XdLkGFLtOsLMGL3zs63vyePYpx/Mc1bYp/8b9fV/yGFmx6JQBE2qEWst9smfZ2l3Rxs7q5dhh46L8hqEkT5201c0AZw6CaOnw9ZN5PYHAa+NiyQpaJQ4xnSyLaSasdotqC69kFMnsE89kG/3Mw+i7v8HbCBZ4SFZZYc46SdA9eiPXHwjcmAPqkv3vPv9fmE3rUWWvosECtJyI0E98vhP8b7aMvMYwDz+MzhyKMf5LIvewPbshx7mNiuksQHZtA7Eur5WmjumybEjyPZNUNYGNWAYynP10Ffdhn30P5Cw2bj2ydtbtUvqjkCQnXgjQmiwRw7iXfJHyIp33bifXp8nkqgLP+kiSURyn/tMB5BMXeTSm5CS9sixI+jRk9C9B7k2PXIwx1mfOXPuy9jh45AuPVxkVHOmuVfiZIEy0jPNy1Zw9GBs3g/AJcsuSevIS86mGABlbRF0jNM7+k7OBkcMg14kkgqKeRoqOkZ1d8ezmwuA0raQdHUT8XL3IzwfZQ1SXyAnSRjAqeNuM6BAd3TnFpBXa2xwGulxdoUBcvJEU1Pt3YXs3wWdujo2eXSDzFMPQN1xtzGXxuqlyMARqJET4yt1mrDvznbO+jBoWoPs2Ix9+Wm8G879OHwmME8/CIf25z7fy95FevZFjTrLTdzGAhGAxrhnUn9M3ykL2W2t21RLFh32Z4oWHfYrVqzge9/7HgDWWn75y1/ygx/8gGuuuYZ33nmHH/zgB0WHfRFFFFFEC5AwQNavyne6BwGy9B2YcbVzIvcagF36FjScQo2YiJpyBSpZgh44Clu9xIWKNoPqPxTzzC/yd7KthZ1bkBPHzlloXxzsojfjy961tfWyd2yKfzkNAuzyuXhn4bAHUINGoT//beyCl+HQPujZHz3jk0524TRgqhZiX3rSSQQBIHif+Qp60Flq+xdRRBFFvA+ICLJ5vWNUq8hhIIBVyIbVsHcHnDxOHnMxSCFL30ZPvQy7+M38ucTzUP3jN3TPFXT/EVHZzeaLRPK0ylZ9h6C/+JfY+S/Dgd3QrY8bz6Ok7C2WrTXmys8gs35DWttb0KhrPoc+zww3pRT6s/cjK+Yi1QudM3zcDNSEi5xsXOS4ivUZ+kls116wOysBpESqHn364vl+jBMUMs6ssIXIBWOw2oNUTPSeJ6gPWcNeGhswj/4U2bODY1ohVlA9+uDd+dUoWe9ewl//p3PgIS46b+oleFffjFIKs7YK+9yvQUXztxj0TV/EGzn+/NZ77Yp4Z58IsnYFasqlLV+gR1/YvTX2c3VoHxw5mH/9IIVd8jbeZX8U5XvN6g8CNlT4/Ychc18htq8A7N/toj13bs4vu2d/t4ZqjN9MsNWL0amGeMK0gNQsh6r58WWLwLqVyOBR7n7v3p7ZiVTde7v7XXJ2DFy7uADz+NgR2LcLuvcueK4c2geHc515gGvzxW+hh43Frl+NeeaXbidNAGvQN34eb/Qkt4n6+u+QRW85ZnEkC+l/4Ruorj1QvQag7/4r7PxXnIZ/ZU/0jJmoboXrlEEYE5kLCAptLKqsLfrLf41d/DpsrIaycvS0K1FDo00GNIhxY4/kno9S2E3rMI/8JNPfzNJ3MV174t33XeSdl2Kd6gLIOy+BcpuISmU5tq2CVODmqd6DkO0bmpIWp9G1FxSw3Tn8fbz+w7BewpFxss/1S9ADhmNWLkROpmI2YpSL3Ej/3fwYgnTv4WScms1TgkKNnITuPwyrE2Biyh44Amlbgezakt9fAHr2LzjeC6AGDIe3ZsXbrTU0FNjMAyeFJFE9m9slgOchQQrz+APIjk2ZTQlV2R3v8/c7B+v+3YX7+Vk67GX53HyygAmRNUuQ6+/40Jjmcuww7NtZ2O6zddj3HoRsqc3fZunY9eOt5d53SBQV1mxS6FTpJMSKOGO06LCvq6ujc2ens7x27VoaGxu58sorAbjkkkv49re/ff5rWMTvBWzdUczcOdDYgDf5InTfoqxEER8/SKoRu341NDaiBw1HdTwHWc3DIP5FBjIOa6UUjJiENyJGemDIGOjRB/Zsb1pEJpIwZhqqU9coNDoGWrsXrPKzN6EgCu2ia+10kFtw2EtDfeZ9LZtpo5RAIX3LM4Tq2Q/v0/mayK1BDu5zzvowAJoWmeaJB1Df/r957KkiiiiiiPMOkchJ40Lsc+aVVCoaU+PpeXLqJPQbCv2GwLYNuXPJ0LGoLGkZ2b8Hu20TqrwCNWQUyj9j9cx89Bviym9e9pAxqJ5Nofq5ZY/M0f5W3Xrj3RyvBQ0gQYBsWIPUn0T3H4Lq4jZn5dgR7ItPgFE5Cf3sc79x32uN9Uy0WbJ1I3JwH6qyB6rfoNMOl1eej5pyOUy5PP9gsiy6flbEBID2USaEkw2IqJzbKgLqRD3KWCffE+e4Kylz0nAFGJmUtoXSCkgda/YdAaMy7W6txS56G9m9Dd27P2rqped9kwPAzHkO2bXNOXXSNdu1DfPqs3jX3U742M+i/D9ZNV82D+k7GHr3xz7767z52z77MLrP36Eqzh+Jgcb6+IhIE55WvgUp7wSyFWjWH8o7uoiBjIZ8Mxw5iIm0q6VZEmOlwDTUQyF2r9bQWO+iWH79g8gRmmZ7Jx3bu6E+Cu2IQf1Jt96zJn89F4auTZrLQmTjRB3mteeRnVtz5CFl93bMK8/g3+A0jyUMkI1rkRPHCSaMA7/15xZAjhxsqlDTpxCGSMMp56oVQbZtitj93VD9h7gNtVbaXE4exzzzEAS5zkj7/P+g+wxE9u1ClryTG4WaaiB89Kf43/x7N4Z06YGacAmy35VN19zEx9l2636DUF0jp7PnxycRFpCIaKLalKPHTMdWdHF6/QOyNuJEAzZ/7BGFNQb72E8RaSZktn839pVnnA57AY+9HK+DU8ed67jZPCVhiD11IurnKpPbI1N22454Ihi0Y+jnHe/g5qph42H9yiYnsJ9wc0z/YdC+C5ysy7dLaVQiWTiSBCAEm2iDip6lpig2gXZdUN37wIjxyLqVSMrdT5X0UX0HQ/9hSEOD60sWcqIA/AQ6mY54ihnvUSjlpfON59td0QkJUqi03E921ELaUd/QENtPRaJ2f+slF+WR5TiXfbsws5/Eu+iqws93Q4Fx40xQ6BrGuFwFH5Y0TGNDRMqKmUNPJz9OK5AK50PIu99tO5z1tT8ISP0p7IY1YAx6yMjTnjv1lbdgd7znxkVr3AaR76Ov/dx5rvHHFy2uwjt27MjOnTvp3bs3ixcvZsKECXhRGNepU6cyfxfx8UY4/3XsnOeb/l+1BPoPIXn3+wgPLqKI31PYbe8RPhIlWhOLEUFP/wT+lZ86q+uq0jbQsYtjKOUcUKhBI1s/X2v0Hd9AVi5E1iyBRAI94SIY7nKIqGFjkKXv5idoSpZApy5nVfdWMWQMsuTtZgq5uMVzp8oWT1V9ByNB6HQS0xAQT+OP+HDzo5jqJfFJa5VC1q9GjZv6wVeqiCKK+IOG0hp69YNdW5sfgf5DUb36x0reCKCGj3ds79vuc1JmqxaC1qjxM1Cj3EaxWIt57hHs2qpIGkWDn8C/+xvormeXIC6n7OpFbv4bf2Em5FysJXz2N9ia91e23b2D8Nc/duO2tRhAj5+Gd91nsDXL4/PEWINdW4U35ZIWry2nThL86j/h6CFHb9caOncl8cWvn/XmrQwfj+zejdI2Q4YUq5xzqbIHcuxInkNOKZAjB6Bn34hB3sw2P4EaNRlVUorduj62XD12KubNFynIuPZ97JGDhD/5x8yGgFm9HF57Af/+76M7nL2ucUuQVYvz75kJkeolMOXiPGc94FiRS99FHTtMIZaEXVuFN+2yc17fNNTAkTD3lfxIEj+BGtR61IJsXOs2THSWprlVsLEWLvokcXaJOH+izHmuELkfXvsdatwUZNeWfKdeGDpmvzGY8s6oI/tQYhE00qYTumMlJBJNCVtzDNZubBk4AvvaC85BmykYRCm8QSPdmLVxTbzRoycjP/zf8fd79TLkU3cg+3cTPvyjSKPcsv/VZ9GjJuDdcBrsXIF4dj+gPaShnuDhHzlZjPTz3aEziXu+6eQpW2hzu7aqQJmCrVnuJJua9wVwmxx7diCdKgl+/WM4uC+37Lu/gWrTFrt/D+Gvfpix2wjO7hvvREJTcD8Oax27/6WnsFWL3Odag/bwv/A1dM++0HcwsnVdXrJb1aMvast6xJh4B/DKRagxLTCP23VADjTJtuWdf+QQsn51fD/fvB657Y8hUeqSQmeTerSPGjMFAJusgIaQtMy/NITgt8VTCkZPcnkByLpzEUtd9eoXsdwlb8NVROE3niI4cQKxrm5pdSCxCqoW4k25GBk8Dlu9KkoAC9IIesg4lFLYlYsi6aX0taPfoUV2b4N+Q7Eba921VdO1Vc/eLqoi2cY5t3Ps9lBjpiK7t2M3rEFpF2GXrrNYQXWudBJJhdr80AFkxYIYlrtBaqqQT92ZFU2cBc9HDR8Xd5fPCC1FFtBKrobzii7dosiXZvB81LBzYPe6aghj+vm2ze75+j32o5raVZhnHo4ihwQjFn3VjfgXXNbquapLd/RXvu/y9+zaApU90Bdc9XuVaPijhhafkltvvZV7772Xf/qnf+LBBx/k5pubMqAvW7aMgQOLLOuPO+ypEznO+gy2bsQsnffBV6iIIs4DJAwIH3vAMd5TjW5XOAyxi97GbtmQ+Z49uJ9w/luEi+cicS+MBeB96k7HJkwviPwElLZBX3HDaZ2vPB896WK8L3wb73Nfd5I50cpHX/RJaFvhrglu8ZNIoj/1+VaTVp0u7KEDhAti7G7TDpCcxb5IxFCJypYwxNSsJJz7OmZjLZJ+6UuWRGxHlftjQdq2Oyf1ft9obIx/ORWLxEgTFVFEEUWcCeyRQ4QL3iZc9C5SdzTnmIhgd2wlnPsGpmoJkiVF4V37WbcZm37R83woKcW75lbE87CBzYzD7lq4t+JjLleI0h563HS8u76Fd+c30aOnZMZqW70Us7bKMdUbA6ShETl5gvDxB5DogmIMprbajefra5rG89NApuzP/1lU9tRM2fVLF2LXRozJIHDz8KkThI81lV0IYi3hYz93jo5UY0Yn165agqyrRvbvRaybp6xVWKtcGxmLHNrfar3Dl592G+7pa6caYf9uzJznTtt2u30zqcceIvXYQ9idW5sOHD0KKMR6WOMhxnPM19A6lmwh0wVUIomaeZub+9OekEQSOnZBT5oB46dDnGO9YyV6zNSC1xYAYwgf/nE+ez8MCH/z49O2W44eJlz4DuHCd1zyw9M5RySepQ7OiRukCjIyJdXoHKQmpl9aE0nonD+onn1RIya4+5BGIokaMT4nkqQgjIugEaszP6Dc59aCSuQ/34CUlLkIG1eLZj+4Y0edQ89asEZhjHJ/BwbxfMwrv4VDB5EAbKiRADhyCDP7GfB8rE7mlS0iSNt22BN1aSpy7o8I5ugRGDouIxHedC5YL+FILQXkXTAhIkL42INOhz+9Pg9S2Joq7Jrlma/KsSNZfe1w0zVayBOBMZhXn3NyINnP96F9hLOfcv1Q+QXbnFQrfa2xQASsUkiqETPneacp3tiIpAL3+8BewtlPR3Y/gD1xElvfiG0IsKmAcM0K7OpljjGPyjEvM96XtkXWVWNXLm7SDU81QsMpwkd/7sbtsgp3vnVM+Mzv0gqne19ofAhDqOiQcWY3L1vatgfrDjTvayK4dkk1Et/PjZsnrvsc4iexxnN9USeQdh3Q0y7HRlELItodN57L47FmOXbzejh6zNkhTXaJKDc3ah8prchpt/S9Fb/ERaIYl3DVBh4mSF9fwb49yInj2OceibTw053YYl95Djl8wOU6cDc49ycIXbRGWQWgm8Z76wEaSstRnoe+7g7wk4DnNr/8JLTriJ5+hWtzdGRT1GZREmEpKyft0mtuFwIqDCDVEN0P3P0w0WuONW5D/bo73MZc+r3RT0BFe/QFVzbd47pjhIveJVzwNvbwIU4fXoG6KWLlgz4gKO2hr4/ez7PtLm+HvjDL7uNpu9/CHj5Y4GoxCANi+7nY+HfM9wG7dxfhvDcJly0onCOhACSVwqxcSjj3Dey2zU3rvFMnnbM+PW4EKecTee13bjPuNKDad8K75ja8e76Dd/1dRWf9WaJFhv19991Ht27dWLNmDd/73ve47rrrMscOHz7MPffcc94rWMSHC7vgzYLHzMI38aaceaLKIor4fYNs3Ri/qA9SmBUL0QOGErwxGzP3Dfc9rQhffh7/ljvxx7TOBld9BuHd99fYJW8hB/ai+g5CT74E1ebs9WpU2wq8P/k+dsU8ZPM6VMcu6KmXnbPJMXjzZcy7r+fYffKLX4L+I7Grl2X0lIFoAa/g+DGnDyrQ+OC/O9meMHAss86VJL/8dRf+rD2yQ9bdNQS7cgnekFHnpP7vB3r4WMyK+fnMKAE9uPWoiCKKKKKIQgjmvYl5/cXoP0X4yvP4192KP3k6YgzB4w9hN21wTgHfh5d+S/Ker6F79nE63n/yfezSd5C9O1G9+qGnXIoqb49dPj9yVDhpsUxOQVHIysVwzU0t1sssnYs0RpI7aaSd/Qf3IWVtSD3wH1Gy02g8b9+B5Ff+DNVSUtnTwMm5Mfr24OaSA3ubZCBiILu3xzvGghRm2TxojBK3ZrF/nU6zoPa3/PIpIkhNVb4D2Rhs9TL4VOsh3o2PPYSsXZX5P7V2FWrsJEpu+4K7dnzBsL4682dzSZz0LfLGT0e69sIufcclcB86Bj1+unPmA3bSFZjXnkUrV38rPt7kK6IrqbxrZ8wT5SIK4nDoQKs2A87B8crzmcqGr76AP/NG/GkXt3ieUgo1YKjL15DjNVSoAcNQPfrEn5hIoEdNRA8Yin33ZQiaOUS0h/4A1hX6hruQERNcFIuAGn9BRje8NagBw1zy0kJ2+z40BrkMXC+BHjMFu+095Ej8PVNde2JWLUOCyGEUQcCxP1cvx65eHt/Pa5ajL/yEczpalTu2WGDlEmzDqXiFFAH75kuodh2QZvlRnZ/Od+PYwGHIptpm63CF6jcEDuxpIaJiHt7YKYRL5hPO/m1UgBC++jv8q2/Av/BSWurn4nnROjbfbqmpghsiZ15DmN/mY6egh4zCvvVifkSmn0APHY1tU47s2RGzlhRUr/6YR36GBLapYQSwgq1ZgVx8NfboUZpHLZAyhIvfJXnTndg3XgAb5DLJ/SR62BjMmy/Fj6mpxoitXeNY7ln5UEQUbNmAXHF9/nlE9ieSYCVyiJPD9gbQSmOTpdi63LlEAOVZqOyRxXJvdm2Fu1Edu2LCJNggcmx66A49IVHi5HkLIJz7GnbXNgg0SouT2ASsdfkFZOUiOHkyM/6nKyaiIBVgd26JWO9ZG4KOBu7ya9WuKtCRLGb18qgNYgWUXDTH+vgoE9m6CbEWPXIiqnNX7JJ3oO4wDB6FHn8hqqQU2bC2oN3s3oGMGIutWorS5NittOBNuBDz+izIsivNejdYfKXQIye4spe+jRw9jBrSVDZAuGIx4QtPNTXKnBfwPnEtiUuubF6bPKgho5B1K0Fyk/Wq3gNyZO8+DOjh41Ff+kvskreRo4dQg0eiJ8xosrtqCeHvnoy+LTBnFt7lM0lcelWr11ZDRiFrq/L8C6pHX1Ti7OwWEYLnn3DrEGtBe4QvPUvi81/BGzi01fPt3t2kHvqRG/vCEHwP1Xcgyc/fi11fHd/PrcFUL8O/4rr8Y0WcV7QqTHnTTTdx0035i/y4z4r46EIaGzCrq5DDh9C9+6GHjXShOoVYD5CzwLG7dmDWrUElk3ijJ6A6nt9w2SKKeD+Qxsaonx9E9+qDHj669X4eBtid2zDz3mgKJ4y6fvjbR/AGDzstZ4Xq2AXvmlvPgRUx1y4tw7vwKriw9QXEmcDu3oGZ+3qe3Yd//RAlf/H3OXrKue9ZjhGWev5JOF7XtFhJNSL79xC+/hLekBaSt8bIOpwPSN0xzOoVSH093pARqL79nbOg/xAnNbR+dfTCo5wz4MIrUR3OQV6DIooo4g8S9sA+zOsv5c054YtP4w0diVm/xjnr046WlBt0U4/9gpJv/62LrGpTDl16IzaB6tzT6ZFDlo6yormOdbZDye7bg6mpRnkaPWocuktXAOTYsSbnRBYkZbBBgJnzlGOuRuxJTCNy8ADB7GdJ3nLnWbVLWIB9LWnGfUswJv7lEiAIMA2NkdMrPx7fRoxray1m/luYtavRFe3wr74e3SWSdSvEhDsNhpzZtD7HWZ8puno59oKLW75GFhs8Tmc6g/adkMq+SJsT6M49M9F29tABwtdmQagwWa974avP4w0fHfWbg/nX9hMohFwXw5nBHj5I+Mrv8vv5y8+hh45Ed+zsIkk2b8Ru3ogqr8AbOxHV1pEYvGtvI/zFvzWxg/0EJBJ4196G8hPoG+50SWVNRBNNJKFzV/Tki9xmxfjpzjmXlS9Bjb8A1b1X1J6FywaQIMCuXYXdtxfdrTt65LjTdrAopVDDxsKw03PSZ8PZ/a9RlGdkt5+220ff8Hnscw/H2H0xcvIEQnV8nSp7wOaNZLPuM7ZakFRDxGYna9MPt6llDJJ5xmLGltAx3hEV46tULsl1GCCiwYJN52RQkSxJGDq7//tfmtnt4113e6QjH8TLs9QddVEcs5/N72tzfoceNjJD4G3ez92Gg7T4fCvPw7vxLpdU1ma1eadK9JRLUMkS1OSLkeXzcvva2Cmonn3RlT2QlYscKzVodCxez0N/6g5UIuF00PPGXEFCwaYaIbTkN6ogBw+gKrujpl6CLGtW9pgp6F79MIXW0VGbO7tVk+M9y24NWM9HIpminPGhXUf3zhMlLs3rD23KkdK2UHcyr+5itHvnUh4iNsN+V0oy/UFESD32i9wkx6HBbn4Ps2JRy/NBGLjkrGkWerN2C4/XRTWKeW8BaGiIZDpj2lxwkS5xjHBrI9miFqI5WuprYjPnqm698a6/I78IY9DEFyGhgRP1OPZ+rkipGHHRWmFaJCi3r2U78anogHTpi5R0QHXqmYkUkuN1hC88mfeMmTdfxhs+Ct21h9vc3rYZ8956VFkbN6ZWuGhp75qbCbe91xTF4vnu+b7+s/Ht8UGjooObQ0vauzVV2u4TdYS/eyLf7rdecXZ3aznpvXf1zYRbNjTZ7fsucfKn8u/vmcKuW4NdtSzreXBrvOCxh9B/9X9azD0kIgSPP5Sb1yRlkG2bMIvnohLxUmCun38w7+dF5KJFh/1f/MVf5Gl8+b5Pz549mTlzJoMGDTqvlSvig0GwZzeN//p/3USUSmGSJaiOnUh+5ZvoaZdgF8az7PW4KS5kb9bTmBVL3ICmNeHrL+Pf+Bn8CVM+YEuKKKIw7MH9pB74YRTiFfXz9h1I3vtNVP8h8SHYiSTemEmYVcvjnfpaY9fX4I3/ePb1QnYrrbHr1qDHTMbOfy3/O23KkbbtkK3v5a8ujcGsWo5/5XXxOvGJJLolfcxzBFO7huDJh90i2oSYeW+hR4wmcevnUVrj3XI3srEGW7PCJcsZd0Ex2XYRRRRxVjBrVsaPeyjM2lWYqiXxrMiTJ5H9e6GklMaf/7tzZqQa3Tw2ZxbJ+76FGj8NefmZWJarHj4GgOCNV1zEVLoOb76Kf9Uf4V90eVOivOYQx8az61Y3OevTCsHWYtdUwVk67MXkM8kzx1qRdlO9+sUfSCTR46ZiF84t7HwWhU2lSP3L/4Z6JyligVTNKkuEMSgAACAASURBVPzrP41/wcWO/bt5fe5cphRqSOvRVmbem/k+EgCBcO6bMGAosn5NrLavGjUB++yjYCMWdNTkYhV47gSzeSPBbx50dQsDzIK30f0Hkbjzj7FrVxVIgGoxtatQ4yZj925HieRO09rH69kXW1qG1NfnJ7xt0zpBwdasindsAXZtNeqCS0j95gFk+xa3MeEnCOfMInnXvegBg1FduuHf/zfYFQtIHtlDqmMP9KQLM1GJ3sgJ6MoeLhLu+DH0kFGoUZMyTgrv2tuQEeOx1UtAKfTYqaj+Q5wNxhD8z4PYbZubyn51FskvuLKl7ph7xurrM88Yr8yi5E++hWp3HhPWAqpzV2f38gXI3h2o7r3RE2c0bWSMHI/u+l3M8nlQdww9dBRq1ESUn5bKUfl9SZTzBybKIHUivuAuPZwv0aSfNRXJIyjEE/zuveK1nhMJ1NgpyNbNcKiAVETXXqghI5GtWzPjh6Sd1EZQvfqhPC9zv2VP2u4LUW0rsLt2xF5WBLBg1lZTyLlka1bm6GfnLkedY1YNGenIGc2f74HD3ObL8LGo+76LWT4f6o665IujJ2WYwd41NyPDxri+JoIeMwU1cJi7TCKBd8+3kLVV2A2robwd3qSLUJXdozqqZvWJBgtLCxJSChrdHOFfcwt22FjsqsVgBT22qWw9ZjJmW8wa3FpU737O7nXV+XYPGIrq3tslrj51vKmtwUUWTLgAPXQ04avPxgxrykWorq4inmkebfr06o9s3pz5LCN71rU7HNwPdcfzTw0CwiXzSc68gXBd/MaUN/ki7JYtBSYSYO/uTDRBHrsf0ANHAC/F19tzURPmtRiZYN9HjxiLrV1dcB4DhRo6Glm7MndsVArVb3CreuaqoiNy8kSGPZ9dd2lTDps2UKjN7RsvZf7Osws3JsruHaR++VNXtyDAJJOonr1J3v1VTO1qYrXmrcGsrkJd3o3giYexG2rd+sX3CV97kcTnvoQ3dASqQ2f3fFctQHZtQ3XtiZ40A1X+IcufAnbHNlK/+i/njE7b3aM3yXu+iqldE2+3MZjqFeirWnbYq/YdI7sXIru2oip7uE3lc2B3uHxh/OZVGGK3bcYbVJhlL4cP5kkxAs7+5YtI3nWvk0hrjkQSPfLstf2LOHO06LDv1y9/ERwEAVu2bOG2227jBz/4AZdddtn5qlsRHxAOPfRgs102x5oK33qVxMwb3EvgysW5J7XrgL70k9gt72FWLG0aNIwBDOHzT+INH3XWYdJFFHEmkDDErKnGbN2M6tiRxKSpqPIKAIJnHnX9PJvtffgg4euzSVz/abxPfRbzwuNkRP6SJW7hOnwcbN5UqMRzpkP3e4lC2oLidui9GVe6ENGjhxyDwE+AVvifvrsg4TF9XVVSgvepz2F+91hum/cfjB45/nxY01R8kCJ46je5i50g5RgL69bgjRzrXtSGjkYPHX1e61JEEUX8AcGaWN8SQI5QcnMop3ua+t2TcOJ47jwWBgSznyNxyx2ISoJNNZ2SvlyfoY5Znx0xBWAt4Wsv4o0aR9PLfJyzQ5wnO+d45GAKCuiNnwHSLM08FqxtXeNW+T7+LV8gfOqXEQNSwPcdw3X8NFR1lXPa5Z+JKisnePYx7Mls/W9XePjib9GTp+NfdzvBf/+rk3azxjkuS9vgX9t6xJyciHE8ZY7VQXn7aEOkud3aOQqsBiRXogEBqyL5pF/lbvCkUtgtm5z8yfHj8f1JLHLiRKRDrfLbXDxQCmu0a41mx61tNTi7hbWDgFjMisXIti1NdY/6ZOrxX1HyV/+A0hrVthzv4qvpVFnBgQP57agqu+Nfc0tsMSpyuOrIeZkNU7UEs2UTBEFGCkOpprKDWc+4yMD02i5iRwazniF5x5dat/0sodo4uwse79It3u70Zo6WvM8Bl5jyZIzD3vPRvpfpa3nPd8SK9j/9RcInfuHaxYRuvdatJ97kGRBawpoVsfXVfQaC9nOjQtJVkyYnpYSWYOc+7J4D6MAnOdZkFFJEJ8HEjGttyiN2coHGsgJt28Ghffn93EuitMK/9lZSOzZjTzZC6J5vXZYgcd3tmcu4Nr85toi0hJMeEO8gU76PGjsFPTaG2JOpd7M2B1RL7xbZORwSpdhEO7euTpSho8W3KD9iz0vs2OLP/DTB9s3QUO/up+dBshT/+ttRWuPfejfhoz+P9Nqti7zp2tMlXt21EwnJz4Qogj1yOJ913/xr23dmNpjStislsO8A1oSZXA55jXX4kHum+w+FrRtyD3fvjTduCsHT/1OgVAUGhCRICmuyytYW0Gjfx2gv/r2uUyWqUxf0Jddg3p6DTbnv6KTGmzQD3bNvlH9rV3xf8zT+J28m2L7JtXmQckxuP4H/qdNgmpe3R+wOJBqbAXRa9qe8PRwvMNcI2EK5FNJfESF4/Fcuh0K0maYaU8jO7YSL56F8r8Bckt60X9nkrIcMiSt44mH0/3Jsb1XWBu/C1uVzPkiICKknfpUbzZFKIbt3EC6ai0omiB9cWlirNYOz+4rWv3imOHYsGq2bPSdB6CITwWnUV1dhdm5HV3bFnzgVVVZGjq5ec4hFte+I/sQfYd98qSkZuJ9Aj5uK6j3g3NtSRKtocdX1ta99reCxBQsW8G//9m9Fh/1HHHLqJMGu3fkHTIhZtZzEzBtI3PR57OiJhO+8CqkG9Lip6OmfQGtNUL08ng2mNXbjOryxE8+/EUUUAUhDAw0//0/kyOGINeUTvvkaJV+6D921O7Jre/4Eaxw7IHH9p/HGTUX37o9ZuRga6tHDx6AGDHNs6zETMXG72daih318Nc29MRMwSxfkPeMiFm/YKFRJCYl7/xK7bhWyZSN06Iw3flomDFL17ofs2Jrb7p6HF+n+e2OnoHul2/wUetho1MDhqAIJ5c4V7NZN8RSYVApTtRRv5JmHshdRRBFFtAZv9HiXCyVs7hAQvBFjEBNidu8k7yXR86FLN2TjuljGpK2pRqbOAJ1AghAiiQERp91rq5dD3bGCyTxN7Wri5DLyEc/QO1uIuOSEaakMx4JUkaO99TLEasLAQ4lFiUXwUIGHL4J3wSXYTetjz/NmXE7jr34GMZsV1gi2ZhW6Tz/ClI8yGmUtIh6S8vGl9Zq19E4vKHhvnXOUKkBZ0okSQWHXrMyrU9P/Ctm1o+llOhtBCrNiMbpn7xbrZlctRULl5sLssgOD2bUD6htcHXUWK9oqOHmyFatBjxgLb75CRkcvU3WNHjHWESji3h2CANm9E9W7b6tlvF+Eyxc7KZLspKwCNDQiu3dg19fkO+ysdZ//XkODaMRI5ICkKckhCm/SBYR7duW3e0kpqmdfCjOio6sPHkni/u9jqhbBiTr0oOGooU5WUo8YA3NeQGyYIaSKBbSPHjmO4HdPFnwYZNcOLND48x9lvmP376Nh9UqSf/xVvP4DoaQMORG4cS3t6PWT+JOmowcPR17+Xb571wp61Dho155w53YIUzljCyVJVK9+yPE6TJCMEvsCysMEydjAmPODuOdbYPjouLAA941hjkiSev1VwnffyMixhIsX4E+bQfKPbnCbdiFu4y/7+fa1W5d37EwYJFBhI8oqRDSCjy/OBShWRWOquCgctBtTgXD+WwX7mlnwrqtkSz7BIJJIyrJfRIGx2H37CrdTJBOWvPvrmNXLMAveBGvxpl6MN2mG+1oi6b4XU7YaN9n57desabpmtCGqBw5Ad+sB5RVursyGn8CfPB0AazxM6IN1Y68JfZRxG0/+xGkE2zbn97Wkj+ozAOX7JL7+v7HVy1xug6498MZNRZWWFbC5CbqyB0FtLeTMUQCC16EzsmdnwTYXUdC+I3L0SH7EVGkp6tgR5MSJrI2WSC4oZTDLFlHyxXsJX45Jsu75eKPHE855MX48B+z2LXgDh7Rq34cBObg/fj4LAuyKxSS/eJ+T22oO39n9YSPPWQ+ZtBJyvI6G//oPl4g2lcIkEgRvvErpfd9AVXaFtuWQnZwbnFN+wjT354wrsYNGYKuXggnRoyag+gzMU14p4oPBadAk4jF9+nR27IgPU2uOf/7nf+bVV19l165dzJo1i6FD83ehf/zjH/PYY4/RtavT0pw4cSJ/8zd/A4Axhn/8x39k7ty5KKX4yle+wq23nh8t6D9MtMDoiqCHjCIZl6zJZTfJX1CkaRGApBoJVizDbn4P1bkLiWkXojt0PEd1/8OEWItZX4upXgmJBP6UaXh9CoSF/4EgeOcN5NDBJnmWMARCUk8+Qsn93waaCIxpzUSlyJl8VOeu+DHJlnS/gXhTZmCWznfXVRq0xr/+VlTbig/CvLOCrTtGuGQRdv9edN/+JCZPQ5WWtnqe7jMgsntejt0db7+D+ihyQfk+3uhJMHpS3vmJW+4k9cB/uMVrKuUYWe3a41/V1Maqc+UHn8CmpQVHcTFSRBFFtAK7bw+Ns57HHtiP7tGTkutvRnduym8Rrl1D6rVXkPpT+CNHkfjk9ehkEt2tJ97FVzqmuzFuraQ9/KuvR3Xo5KRhIG9ZJmm/ZyEPsDFR6LbTFE4z8HLmuYJjmzumytthjx7NYj5GDL5EAuW5sT+WediCVurpIs20zC4b0mzQVs4NQxqfegRJGQQNaLchsn0bpmoZ/pQLCAcOQTZvzDlPDRuJN2Bw1uZJjNPeWsLnn4H6elc3fDAC4UlSLz5H6Z33tFg3Xd7OBSbE3DZdXoFNO40ll23sqtGK4UoVZhYr3cSeb3ZIwElunDgRW7aEAZJhyDvd8YIE5v37CJYsRI7X4Q8fhTdmnNNar+yGd/k1mLdebZJf0h7eJ2aiO1e2YFtBPYlzBskwUXPvtwSmSaolFqdXL6eP/x5h1XIQwZ84GT1w8DlzdNgD+12b1x3DGzYCf+wEx2AtL888o2Kz+pJSTqd//FTHhN22KSMFhFIkbr+7VTmOjG2pAHMyhRxvxKtP4WfCLgQTKhANYeSIVdZt8BhLrKwEkA4tafzNQ4jkxsEIkHr0Ydp8/x9J3n4Pqd/8zCU7DQNUSQn07o83aTpm0wa3OdCseUXA7tuLN24yZvUKzKaNSGBAa7SvSUZ2N8561kXCpDt5aMCcJPX8M5Tec58z7+ABgsULkGNH8YaNxB83oUWN6Jx6GINZvZKwtgZV3o7EtOnort1aOUuhE0n8624lnPVUpmoKoLSMxI2fxR48QPjOG7kRU0FAuHg+/sTJpHMOxI8tmtSs55ATx6M+H9kSnCL1/NOU3H0vjU/8DwQGQUXjnkX27yVctCDrGVW5fQ1AK6hoD/v35g8ciQTK83Mcw02/3dylvNzEyDnI7qflHZEufd2c1K6L6z9KQe8BsHl9ftlK41dURGlhsq8f/W1Aae362q/+K9rAseD5qF598aZe5HJzvNVMBjQMCZcsxJ8wGT1mInpNFXbTeiQijqE0ic/cnekvKlniolIKwB466Pra0SN4Q0e4vpZIIDbdyeM88uDCHeIHa6+kFNOlJxw9ksf+p30lArnJjzPtIsipU07a5ZobCV5+Hhu6F2nta7wLL0P36F34+YYPxMErxmDWVBOuXY1qW0Fi6gXo7oUT1WdVDnC3ualPujWTpxSqXQf8mTcRzn6uaXPc89EXXIruWSD5+QeE+KjBCEqRmj0LyY4UCwIIQ1LPPknpfV8nefvdpH71k4wUEMkSVPee+BdckrmM7t4LHeV9KeLDxfteZe/fv5+KitNzVF1xxRXcdddd3HFHy0kWbrzxRr7zne/kfT5r1iy2b9/OnDlzOHr0KDfeeCPTp0+nd++W2SNFtA7Vpi3Jvv1Ibd2S+yLo+3inoUHvjZ+CqVqav7NqLXrICOTkCep//O/IyZPuO55HOP9dSu+517EmijhjiLU0PvowZuP6iEWgCKuWkbjiapKX/X6Fm32QMNVVsXrrcrzOaZF264XduTP6tMkxkBhxemzqxLU3u/5euxqVSLiFWcff/wSkZtcOGh78r0wmeFNbQ/DOG5Td/230aeixJq69CW9CZLfno8dMpHxYf+pjQtSbQ3eupOTP/6Yp0W/P3i5y4TRfDs8XdP/B8QeSSbyJ0z7YyhRRRBEfKYRr19D4m4cy/9tjR6lft5aSe+/HHzCQhuefwSya3/T9BfMIly2h7H/9Hbq0lMQVMx3TvmYVaIU3ekIm8auprkKiUH2lbKS/rMAIsm9PZpkWp7+revd1ijs2y5ki7sUuMWEqundfzNtzYpzugjdyLDYMsdt3ZM4FwVqF1j66W0/0sFH57GPtoUdPONsmRSkPa9ObDFl2R3rOLcHu3I7Ux4T8G0PjkoX4Uy6g5J77MbWrCRe8DUrhX/QJvKHp6LjCL75iLPa9DfkbJSLYdbWt2uVddDl2Yy0x3iP8i68kLG2DXbE4/0Sl0KPGET71P+l/s4t2n/XqA8mkk2zJRjKJP/kCzM6dZNi6zcoW1ZRsMs6fotDQrgPE6dx26ARAsHolqaceyyRANbU16HlvU3rf/ahEksSlV+ONGIupWQkovNHj0ZXOUelPnk6we2cM27sM1eN8OwhacAhaix41FrtmVW6uCe2hR53eWjH1wnOEyxZnbAtXr8SfNJWSG+Lle84EwZpqUk8+ktPmwdx3KPuTr+ONHOeYrs2fb89DjxqH8jwSd92H3bIRu2lDVrJd9y7vEs7G9TX3QViz2jlxY8o2tTXRc5rluIuie0ztGrzxUwi2vIfKI3cpVK8+yInj8TzzUyex1qL7D6Lkz/8OU70cOV5HpwnjqOvcG6UU4cJ5ju0tLqrIle3GjnDxArxhIzF19c6xLE5OyhoPe/IUHmDW1eY/IgJm43pEBFNbQ+Pjv2mye91agrlvUfan30AlS1q8XxIENDzwY+z+fe59TWvCJQtIfvqzJMZNgIp2SF1dPuu5rI2LYj9ahwkVSjsnorEKGkKXr2JdTfwGbhgSrl2DP+kCgmzZqTQ8H9Wnn9PnjrP7vQ3Y3bvi9bGDgHDlckpuupVUTX4ybQD/4k9AQwPB9piyEyWo3mlyWXxkgRo+OtpwzB/4VRT92jj7BcKF87OesVX4YyeQvOUz+JMvINiyHtXctkQS1ae/G89jYLdvQ4zBnqrHBAqVTlasNOp4vYvIrl0bH6UWBAQ1qynp1YfE577skq9urEW1bYs3dtJpa5aH62tpfORXbpPLGtfX3n2Tsq9+E3ugQI4IwBw+jDd0BHZdTWwOC33VtQT/9LdRNJdzuKfnWNm7x0XlxUJlHMPmWB1WfLABoLD46GPHERH0hCmYDWvzn29rUX0HnJbt7xcShjT890+xe3ZFPhFNuHQhyRtvJTGpZT+W6lyJ1T4i6b7eFO2hIq12e7QOYzxUJGcoykMdPd60QfRhISIgxqZrsOKe7+ZzgQh2xzYkCNC9+zWNqXXH0P0Gogef/wj3It4fWnTYxzHogyBg165d/OxnP2PmzJmnVcjkyWeXQHD27NnceuutaK3p1KkTV155Ja+88gpf/vKXz+q6RTh0/tJX2PP//o8b6MLA6dR164F/WWENxTR0vwF40y92IXBiHbtDwL/186jSUhpfeNY5TNMTnDHuJeqpxyj7i+8VQ2veB8zG9U3OenAjdhAQvP4q/sQp6Hbtkfp6gkULMe+9h+rcmeRFF50Go+MjDq/AcCYCnodtdIuMJkQ76w3xYXxx0D37fOi76meKxmeeyNXnCwIwhuDlFyn5jNtENVu2kFq0AE7V448diz9hYg57SPfo7VgU7wMqWYI/6YKzsuFcQ/k+ic/dQ/DIL9wHxoCn8cZN+lhLHBXx8YQ9cphg/jzsnr3ovn1JXDgDfZqEio8zzPbtBAvmIydO4I0aTWLyZFQicdbXbXzykfjPH30Y/a3v5DjrM0ilSD3/NKW3fx6xFrv/AOH2PaAVqmsfVOdKp4Xs+5kX5BxWpAj4CUT5KAnz/cd+EqyJmPjN5zmFrW/A79IV78prMXNezDColdZ4192Cat+BcP36rHOaftv6RiQISNxwG40/+wGcOI4Yg9IedOhI4tobT6vdxFpMTQ3BimWO2Tt5Kt6IESil8Dp0wBw6lG+376MSLXOLTH194YN792b+9EaMwRsxJv87yWTuHJmBQpeUYrTGpgw5GtxK0MmmF9tg2TJSr89BGhrQg4dQeuNN6PJyvMHDCEeMQWpX51557CR03/74PXuT2ljrNNOz4N/8WbSfZqIKJmwqS3uOCam0JnnHl0g9/DPXP0I3j+lho9BjJmLrjmNFo6zbeAEXMSFa45e3Q7XrQHjwYKRdHtmmDbokiU4kSH7xPlI/+Ze8DZrkF+9DwpDUM0/kOvVSqYhxv4jkDMfS0127o7t+Mq9l9fjJ6LWrsBtqo76kwfdJ3vGl8+4wUO06uGjM5kgkUIkEietuIbVrh3t3Sb8TVVSQuK7J4R6sWE7qtTlIfT160CBKb7rZRUzs2U24bFFeu4TLFuNPuQCvZ+ubEfbYMYIF87E7d6B79SYx4yJ0+/ZRmz+ed205uJ9g8QKSF1+Gf+1NhLOfJ9sT619zA7pTF2e7UngDh+INzI90F51AmVT+2KJ8xBgan34cSQVRolQFDSlk/z6CRfOdQ9qVkHdds3cvKpHM6Knn2BraiN4ae2qOQ1m1aZthf5ZWVnA8TRrx/WizQWVkVpSKQks8j2DpIpewO03oiRI0p377JP7IMbGO4XTZzu7HYtr8IMHCeSQvvQJrLcGcVwmWuqSziUmTSVzzSbTvEyxbjN23t+l86+xN/fYJ/JGjMY0WTb7f3QQWm0o5Njc6V6Y/tDQ+9Rj+iFGOzd7cf6y1i3IZPR69bg12bXXEFPcARfLOL7tnzBS2G993Tl3J3gAWF2Tre+jefWHcZGzV8miDGZQn6OEj8IaMQKxF1awirF7tIpK0Qic0JXd8KSLsFI5i0Vrjf/oOwuZa9OUVJG68HXtgP+GCebmRBakU4aoV+FOnY+sb3BzS7L7aUNwmnPYQCdxhUS7ATAtKa0eIe+pRCMNoHvbcvHr4EMGCd130iuRzmwUgyg+hlEL1H4TuPyjWQltX557vHTvQPXq457tjR1f2k4/mP2OHDhHMfzeSEcp30IqACkIYOhqpXZtfnvLQ2ovsVu5+5djt1h34fizpTVW0d9Ec897JPR4EhNWrojZvLPB805Qf4SxgrSV443WCRQvdMzZhIomZ16J9n3Dl8miDKe0TsRBYUs8/jT9mbIubamIMcqqBON9AuHEj/vjJpN55E0LbtC4xIUH1Svxp0z9c4mmHTrB7R+xaUJWUtNzmUSdSZW3wp118HitZxLlCi6vgq666CqWysncDnufRo0cPrr32Wr761a+e08q89NJLzJs3j8rKSu6//34mTHCsnT179tCzZ1Mm5h49erA3axFexNnB79qVkr/4W+zaaqdv1qsPeuCQ03amJ675FN7Eadj1ayGRwBs1LpPo09Ssjt2NlrpjSN0xVPsO59SWPwSYmtVNzvpsaO0c+UNHUP/Df0fq690iUWvCZUsp/cIX8YcN/+Ar/AHBn3oBwZzZuQtrpdDderiXhbgXNMCsb50l91GFNDYg+2LGSmsJ19VQAqTeeYfUqy9n2s1s3kSwcCFlf/rV0w75/SjCGzwM/Z2/w6xZCY0N6MHD0d17tn5iEUX8HsHs3EH9z36a2Qw3mzcRzJ9Hm/u/ga6s/LCr96EhtXABqVkvZLR9zeZNhAvnU3b/N87KaW9TqQLOXeDEccLlSwuea9bVIiI0PPqIY3VG87hZvx5/4iRKb/k0/tQLSe3Zk8dMVO3aobt2Qw8cgnlvXZ50hD98FHb7dveSFjZjRopgVq9CLphBuG0XxiZQobu++AnYtovEFJCtm4lzpAhgaqrRXXsQHkuhTCR9oTVypJ7kiROoNm1bbDcRoeHxRzFr1+baPWEipZ++lYrLLuPQ9h0xdrdHde3e4rXthnWFDzZvixh44ydhFi/IP6A13qgxBJ27w+49NHkVxdnf1Tlf6596ArO06b7bVSs5tWY1bf76++jyCkru/DJ262an+6wU/iVXoCOWqfZ9Sv/qHwiXLcKuXYWqaI935bXoinZOWkUUmGytZ8GGHnjuvUz3HUDJX/69Y7GfOoUeMNg50wA9ehzy4ouIbfKGWiMgCm/0WExDA7y3JefaWA/bYFHde6CUIvn9f8a8PQfZsxPVqw/eZde4xIzbthRkmpqVy2HGJfnHspFKEew+hIQ+yrj6idF4+w+iz7O8oz9tOqld2/PW0aptOapHL2f3N77rNhMO7ENVdkMPHZGJDKx/5mnM4kWZ82x1Nadqamjz3e8Rri/AwDUGs762VYe92buX+p/82PVbYzCbNhEsmE/ZV+93z0YcozoIMKuq4OLL8KddhDdslMtJIYI3cgwqiohoDd64SS5iullkgTduArJnV5YjEdJSK6QM4crlqNKygs5EOXoYOXokkvtSme+4vIc+duf2zP9xkSStIXn5VZxatTrymqY3O92f/qVXELz6UjxbHIXdsS1WQiQNu3tXvAxYGGBWrYRLr6D+X/8FOXggcyh4+y2ClVW0+e733H2JK1tp7I7tUH8qksVqJlOSShFWVxWu1+ZN+Ld+lmD2C7HX9saMdxt6t92F3bUDu3kjtGmDN2p8Rg6zIDtXQDp2QhIlSH0z5rFVTdH3uhSrSiFiJws+ymvjfEZhSLjrICKR1rsFozzCvQdI9h+ElJRBQ33+/fYTaN93G3qDhmLemO3YvyPGoidNc1EH62tjx3UJAoLaNci2rfF9LeFjt29DDx9JuHwlmfFcBDEaPXgQcmC/2/hsjjAkXLUSf8y4+BsiRHJsLcMeOMCpH/2nq38YYja9R7BwAWV/8lWUp5GGxthnLFi5AlXRnrj5GRRWBLWqyuUhiJIMZ+zWCrttC97wUQTLVuTbPXCQI/SVtUGO1+WtLRITJxd+Tw5ShLU12B3b49tcg922FW9IfvLvM0H9f/wAyfL7Be++Q1BVRZu//j7hqqoCuRQ9oLOrYQAAIABJREFUzNYt+EML+z1sC+//smMbZsM6CNLzZ9owIGVIra6m7EN02CemTKdxw3oImq1HE0l0vwH4EyYTLp6fu8miNXrYyI/1u/3HFS3esXXrWlgEn2Pcfvvt3HfffSQSCebPn8+f/umfMnv2bDp2PHda5507l5+za33c0LVHR+hx6fu/QGUFjMyXmdhZWkJ4LOb7QJfuHfHKi/fkTHG4Qzl1MXkDlNa079Ke+vlvOwmi9EtDxOgInnma7v/+/06bvVRZ+dFiaMr1MzmwcysNtbUZVr0uLaXb1/4Ur107thfYgPJKk+fEVlN3nKNz3qBh7Xr8Lp3pMPNKSgb0P+vrggv5q5u7gJMLl6ASCdpdfjFtJk1odVPNpkoK251M0qlMsf3V2ZAdDplKIfv3UraploqLLix47Y9a/4hHBfS95sOuxMcOH4++8dHArp88m+t4CkMwBpkzm8pvfu3Dq1gMPqh+Yesb2P7iC7mOkiBADh2ipHYV7a+4/P1fOwzZ3sLxdpUdOVTgmE4maHd0H6fW1+bes1QKs2IZ7a+7msTVl3Nox2ZOrVjhjnkeyvfp9vX7SXZtx876RsckbXZtr6GRjt06sBeJ9T+VVLSl3bH9nKytQRrDJueCCQmjsk8WclwJdOjakSMvPOfmB2cNWIGwEXn5RSr//JsA1Neu59icNzF1dbSZMI72V1yKLiujYeMmTmU56zN2Vy13dk+bRn11NaeWL894klRJCd2/8XWSXVuWEzjSuQMFlpmAarXf2bvv+v/snXeYXVW5/z9rl1OnZyaNBEiBQAIhBAglBJBeREBEUZCAKHpFLFy96kV/13KL2LHhtVwVUa+0EBIIhF4SSkJIIW0yJZmZlCmZPqftvdf6/bH2nDJnn0kw0rz5Ps88mcw5e/W9yru+7/dlV8NWnI5uzSYVCsNQ1H36U8THVdK8e082rfx/ZUsr1REYXBVwSeN5qIcWUfe5m1FSMrg1wUBKghDEUwniY+LZvVi6pY09Tz6D17UXLIuKsipqP3IVSimGpI5LUJi3vjAYrlfv8lfoXfY4KpUiPL2ZMR+7DmtMDan+TpKGWWiARYBhUmUrdj//PIUGoJxBosZ0scbU4LR30OtIMgmPUEZSabrYddWk+uPsCWBjAhiZ9D7bvPfhFxjq7fU1sv2xKF0yD97P+LPnY4QKL9Xe6NyhpGTwxVcYeF5fxJQvOI2yU+dpFu05Z9C1fRuDL65CSc2INaJ2wVhz2jvpbW4is6OV0KFDVM2Yjl1XhTeUoCXPWJ+F5yEX30/5nGPoMU1fbzoPpkF5TTkV+6jH7t/+N6Tz5J38i1j58EPUfvRqdpd4v0PlcerqynW9t21iYFM9oIjW1lI2bXJ2rMlEkr6nniHx2nrMygoqzz+H6FGabS8XXsOulmYy7XuzrOjQmBomXP9R3K4uko4siC8xPBaNdAa7qpJksC0RO2QjwmGSCh2TQul3TBgKA0X12Gp2jdTV9qGU7nvDMOh78hl6lyxDJpI406ZQ97HrsOvGkE6UkRAjGdUChEH1mAr6yuIE+eAIFNXjqtkdKBulvzFmfA27VXCb22Uxos1bGMwz1mfR20t083ooHy3vKnZn27G47lUTaglIWT9hmYydegiD1y9k7+9+l7tUMAyqr/4QFTMOB0Amk/TvbGFo4xbMigrKDzuU6GRtPB0skTboNm/LBmbOlRoEUc8hnupjaM2rhWus6yI3b6Kir5N083YGuzrAyZt7Mg7OksVMOP8MBodSWvVmRL4q7ebe9bpymPqJorJ19feQDrpsUBDq6YKKMr/NRUGbChTVY6voTqVxs/XJ/WumMowZX80uFHLYsyBvrIbjUcom1NFtmKiRl3JCUD5pHFX7eL/3/PF3+v0eLtgw0eKhRdR94noSJd4xM+1gVxkkXRCGyHo9CEOhpMI2TFRPd/aZ/HorT1IetRhIpXGC6p3OUFcToyXl+hcPhfUKOxlC4+roNk3UyDnfNCmrrmCoMYU38v0WCuG6VFbGiB7A3m9o7XoGg0i6A/2E165CVJSRCHhOCKgeW0WkRN51deUkJ9ZSMsSxaWJ17EabwwPmvdYdb/qeVinF0Ko1DDzzPMp1KZt/CuXzT0VYJqr2JHp2NjP4zDO6sv4cP+5znyM8vgr5kQ/SsaeNTFtbdk9lVlUx/hMfw6w4eEYLwjv57PqOuWKpy2OCzZ8/nwkTJrBt2zbmzZvHhAkT2LVrF7Nna+2ykYz7/cXevYNIuZ9X9v+HUFdXTud+6FH/LRAnnQoj2Q2GgXHoYXQnFSTfnHz/kSFnzoGnnylibSilGJowhcTd9wQyfLyhITq2tWLU7Jtt82aOiTcT4urrCe9qw2vdgVFRhXHkUfRiQn8G84gZePVbCw+vto1xwikHXFfZ18fQD38IqZSWfGpqZmjNWiIf/jD27P3TPS0FJSXJO+/UerR+nyfrG7BPWE/kyn1ropozjtbsiPwxYdkYJ55Cx+oNYFhA4SZMpTP0rHyF1IwA+QDevePjIN58HBwbbx2U65JpKZYuRCmSGze/o/rhrRwX7rZ6lGECI9bITIbela+QmX1gMo1U10D2cJyDmDiJxPRZwZYnwDx5Pl0vv4ZKF7PBlCfpfOk1QmdWwOVXEz71TLztTYiyCswZR9NnWaj2PpyW1qw7u35Q/5Oqb6AvVgORaLEHQCiEnHsynS++ikoXMiZBoRyPzpdfQ5o2wnUDWa59nkWmeXtgcyQ3b6Wzc4D088+TeSTn5Zbe0UrvU88R/8IXyLy8RgfhC6z3GsZfVM3gpiaUZyKkL/kjJZ1rtxAKjW6wz4ydnA3UW6wFHdnnuFOJBE4KlLABLX0jDZvenXsZGLe3NNVXStqfeL5kusmNW+jo6Cf5u9/hNTRkLytSDU1YL64m+tGP4rW1kfjxj3MPOQ79jz3BwOZ64rfcUsAazkGAhM7OARJ33YW3fn32k9Trm2n54m3Ev/pVnFfXlmCLenS+tAY1FGTm0Nj15/sIzT+dxJ136ktAKUk376D/hReJ3XwzKp32NZBVUZu7jtpnmydeWh3IPFYKOtZtwTz88Ozf3ujcoZQi+Yc/4NXX59q8sZnuF1cTve46SKUYer1BSxxID4XCSys612wiFKnSffKLXxTUe2DFS8Q+/Wm8toD51kdqSz3GFR8IHi5KkJxyFOl91CO1dVvg39P12+ixy1FWCJXOFLFg5bHH09HRT+quu7S0VX69V64iunChrvePfoTq78+yLhPrNxJ+73sJzZ+P89prZHYNXzfqMZbZ082e517BqKsdUa9hI7fASbuoytrCe6W8wjmVdVjTp6HWbc5R3xUoT+tg90W1p3Ugw15BV9cgyb/8BW/4EhNIbdpC65duI/6Vr+CuX1eSKr735dcw5p4MeWMhi1icvmi1ZoQHsvsVPWYMKqugq7NwHrBDcOKpdD/1QnG+PnqeW0HotNNQGzYU9ReGSV+sBjF+AmrP7qJnxZhaBidM0V5MUhY9bx43l87OAZIvvobn2QhXz/nKsul5aS2pmXMhnc71t/+uJTZsJHTxxYQXLMgaZ4PavHNDPSpo7lCKvhdXkXAF0nGKultmMnS8uBqvYVuesT53ISIzLu1rNmmj9MhY3wqUEuxqbMMeJb5WYmdHyc+GdncRvfhi2LipmHUdidIXH1PyHcu0tNKjwshQFJUYPhMNj1UDdexckocdiTKM4jO2ZZGeNmuf81Ry05bA9SSzfQd79/RmJdCyefsvled4KFdT1vW91LDHg/7dcRUMJBAlvFS6tzbjbgpmk2daWmlfX6/tY97IvYVgYNUaYp/+jPawGQkpSU07msyKl1H5nmB+Xyql6OkeYvAA9n7JJ58t+Vnv8y8SufgiWL+hqL+VHaK/YmxOOisP2TWlekJJKSDjuLkkGraXzNtp73rT97TJv/4Vd9263HzevIOe518i+olP6EvYsy8mfNw8ZGM9RKKYR82iPxQCv1zGjTcTatmO3L0Lo7YWY+oRdKdF9vODyOHtPrsahhiVWF6SanvllVeybNkyMkHSG0Amk8lqy/890N6eu+PavHkzO3fuZMqUKQBceOGF3HvvvUgp6e7u5oknnuCCCw6yIt8pUOkMqSeeYuD7P2Lwjp+RWb0mK6Nkn7YA8+hZYNsQCuso1DVjCF/90be51AcOlc6QevLpwnoHuU7+nWGMn0jo4sv0IhMO+z8RIgs/jgiFsu6ORZASEQ696eV7u2FMnIR98nzMo2cVBDcNX/VhxNixehyGw1q+afqR2Geds1/pqkyG1FPPMPD9H+v+XrU629+ZJ57QgW2HN3F+XIHU/fcf8JhwN23C2zkiAFQmg7NqFbJT829kby/JBx5k4PYfMPSr3+I2NObqfeXViLHjtE5vaLjeR2C/51yIRAhkFgmxT4mDgziIg3ibYfiyJAo8T+B5Bp7ns6tC//hzfSmISESzv4M+8+c1mUox9Ls/0Pfl2+j78m0M3f1nLXfjQ/YPkFy8hIHbf8DgL3+NszUXqC76yc9og00+olEiH/8UhmURvub6IgOScdjhhM45HxGNogwTKYf7y0BKgTIMRFSv3XJggPRLr5J69iVSz7+E29jkF15kdYhR/s+wq7YdQhgGkRtugrIyvcaFwmBZWKctwJpxNCSSue/nWkQfrpNJcBXDgcyGf8A3VgijtCZqKIRKpcg88ggq4yCl0D9pF9nbS+bFFxHRqN6zjIRpIqJR+h59Atnfj8woPNdEegYq45JevBgVKGeR17a25Wv3F5edsO5v5bqkn1/BwA/vYOBHPyG98sUsSzLz3HOowcFCI4zjkH7ooX2u36I8F7BzuD9z76CN19xcYKzXGWb0ut7SQuL3vw9MV7W04PX1obJpF77fCq2FnG+szz4rJcl770UNDQUygxXo/cooMGqqSS3SHhVZ9q6UkMmQWrRI96dhZ+uebXMFwtdLHw0iGhtRLyN7SSOiUd1M61+n/1v/ScMNn6H/2/9J5vXX95kugNyxo8BYrxPL4G3dityxg8wLL2gj5sj+XrpU7/NGq3fZKAw8O4RRXkHo6mv0mSec22uGPnQNxihGyP2BcF1kwgl4Rw28zm5kS0uBsT5b7/p6vO3byaxcWWCsL6h3Ok3qvvsC800/8MBwCSicP/x/0xkMy9Y66yPKpiQI28bb2+PPiaIgLZV2dXmtnExLwftrhlDJZIGxPgulSP71r4hINMsuLYBpQiSCefQszBPmgTBQCD2XRaJErv+E9lItlbfhz6kLP44or8j1p2VhnXgy5rHHZcdqEEQ0htvVDZhF74hMupBOE/n4p/19eB5CISKfuBnheUhloTyB65i4GQvX0e+JCsXwWltxN27U3mPK0Pr9joPX2IjX1ETmxReRvb16HvbnZJVx9DydSvkM8uL3V0mBskPFbOrhZk+n8ZqbAo8OKJCNjai9PXn9PPyvL8PiOCP+lr+WAdEYAM7WegZ/+WsGvvsDkouXIgd8Y1omgxyeB/N/PBCOhzXjaOzTzwDbyp334mVEbrhJGzlL7Y1M09c0z6CUQErDbzc9bry9PYh4HPtD1+J6Nm7G/3FtrPdeniXDyaEEyUceZeC7P2Tw57/EeX1jQd+WypusVF/xO6aEgUykCv5W8Hs6A8JEeuA6hj9WTN2Xno7FokrELFAKiEb9mAbF/SGiMT2OlFnU5lJZqO4ecubEkf1tIMwDi0kioqXPoiIWxTxiBvYZ79H7i2x/x3P9DXgdHST+/FcGbv8+Q7//I+ntuYvX8Mc+WbRfE3V1hK64yt8vlnAdKmVr+TvB27MHd+3a4vl8eH3zYYypxZp3Gtbs4xEjxpcQAvOwKdinzMecPuMtDSjrdXaS+Ms9fpvfhdfa9pbl/Y+Ikgz722+/nZ/85Cd84xvfYNasWUyZMoV4PM7Q0BDbt29n48aNnHLKKXznO9/ZZyb//u//zvLly+nq6uKGG26gqqqKhx9+mE984hN89rOf5dhjj+WHP/whGzduxDAMbNvmu9/9bpZ1f9lll7Fu3TrOP18HQb355puZPPndFfjxHxXKdRn8yc+RXZ1ZWY3k7t24TU3EPvgBvdn5yEJkZweyrRVRWYUxZeq7Ptiscl0Gf/oLbTAdZj3v3oPb0EDs6g++6fnbp87Hmj0Hr6FeG2CPmJHV5bXmLyDz0OLC22bDwJwyFRH/vytBJOJlRD/3JWTLdlR3N8bEiRjjJuzXs8rzGPzZncj2jsL+rm8gds3VuFu2BOtc+jIM4gC0pN0tW4JjFngebmMjlmUx8IMfa1alJ5Ht7biNTUQ+8H7CJ52AiMeJfvaLyJYdqO69BfU2p0xFhMKokYxMy8I+9dS/ucwHcRAH8eZDGAbG1CNwtmwjn94opUFo5jFva9neThiTJiPK4qieEZrPoRD2afORrsvAt/4DUrl5z12zlsFtDVR88/8h+wcY/P4PUUntMUV7O4nm7UQuvYTw6adhVFUT/eZ/4a1ZjWzdgTF1OvZxx2fTso6ZjfHN7+A+/wxqoB/rxHmYw7ris2cjFz9M/qFcKVBpD+vY2ciBAQa/9yNtQPc82NNOYvt2Iu/VeZvTj8TdsqlYw36mDpZtjJ9A7KvfwGvcBokhjCnTMPxYQWo03VLTAtdDSVOnKHJMWBCo9nasE07EfXV1ocHPsrFPPgWvrS2rj17I3pc46zcQu+F6Mo8uC8zaOnY2g7/4uc8gZES7OMjduzEPPbRk0TUTVBtbsjZBhTZgmZb2PvzVb/F2tGTX79SedtyNm4l9/AbcTZsCGXYIgejo0MaMIAN3WRnmsbO1ISNPJx5ASkF43im427YFr9+Og9vQAL29JeuVeeEF3whaaAyRUiCExFm3LpDULADZvB1jwoSSrGdpmBiHH47cvj0w79B5F5BZ/kTgZ7KlBWP8eKQdRaVyba7ZngbhE08qWadhWCecSGZzAyPnLRGKYowbR3rli6TuW5Qrck8vyf+5C3XVlYRPPXnUtN2GhmDdcMfBbWzE3RAcWwsp8Xbu1LEgStTbnDlTG9cCnrfnn67/PeY4rGGPTsA8cgYivH/GndHY3t7OnXo8O47fZLn3zdu8WesSl6i319CA+/rrweNc+WmXis2RyeDtKmaBawjIOHr+UKY2ChYwdPU76G14veQlqtfWhjlzFu7a1xCo3PuLwDr6aN1fJSBbWzEXLoRF9wck7GEdNweVSJJZuxnl2gjlZo3UmQ2biIwbj33yKTgrV2hd8WFSs2VjnTRPBxCtrSP6lf+HbNyGGhzEOHwKRrU2zobOvwD3tYDLBP+z1AMPoFy/HfLn1IiN19aGNX068W/8F87aV5HNTRiHHoZ9wjxd/JYWpCfAywvSqgykY+Bt3IQXjwefOzIZ3G3bcOvrUU4hjV0btpX22EVoCZPh+T5PikUlk5Ri4Mt0BrW7dBxBr7MLkclQPPH4n/sEzVIxCyzDIP3CSlJLct75mc4unFfXUPbFLyBNCyUNPJl7XvnrlDD0H0IXXMK4Sy6gc/U6iMUxpx2RJXAZh03B27SxKG9j4iGozk5kxi1exyQ469YTueQSUvcuLgz0KyG1eBn2CfMQjsPgD36sL4CHvVhaWwm/5ywiF5yHfcqpOM89V6jBb1lYx89FeF4J7zyBQGgP7lJwXIjGUYlM9hmU0OMHBbU5D5mgNleWpef0kTEbQiFCpy/Aa2wEDM2iL3i/JW59PcK/DCuCoORFwf4idN55uK8EyJABIZ+8GzrvQqyTT0U2NUA0hjn9yGx/ezt3MfjTnMeU7OikbctWYh9biHXkEVhTp2N8+7u4K59H7d2LOfs4rGlHABC+8gMkv3d7YN7h977vgOq1L3gNDQFjAf1+19djHfXOjUno7drN4E9+rt9fpZAdnQxu1m1uzygOeH4Q+0bJ3fv06dP5yU9+QmdnJytWrKC+vp6enh4qKiq47LLL+O53v8uYMWP2K5Ovfe1rfO1rXyv6+69//evs77ffHvxCgA50+81vfnO/8jqItxbO2vXIvXtHaGA7OKvX4J39HsxaPUaMurEYdWPfplL+/eGs24Ds6ipmPa9Zi3fOezDfgmB/Ih7HyjMSDMOeNw+5ayfuqlf8TbTEqK0lcs21ufJvayC1/ElkVzfWYZOJXHAu5oTRA7sNQyWTpJ56Fue1dZo5dOrJhOefUsBmf6di+LaZw6a8oeecDa8jOzqL+3v9Brxz34OIx1E9PcUPep4+7B8AVCIRfOZWCpVxSC1/Qhue8jdZjkPqwYcIzZ2DME2/3ofDYYcXpCEMg8hNN5H69a98o70AzyV0yXsxDz3sgMp9EAdxEG8+vK4gJht4HaWU1Auh0hlSTz+L8+prYJiETjmR8IL57+qgVEIIoh+/ieSv/huVTOgTqusSOu98rOnTSS1/ssBYPww1MEj6ldXI3btzxvphOA6ppY8QmncSImQjd7SQXr0er70Tc+8QomYs1uRcQEkjFCJ0zvlFebirXyPQxKo0o1juaUclEoXzeSaXt9vVjZLgSYNh65IQEq9DS/RIKUkteojMK6+C52GMrSV2zdVYkw7BrKnBDTI2WhZGZaVmqco8lt1wuwCirIzw+y7D27UT1dbmB7YTGIceSuiCC/FaWsCVI+qmy6fSGYyKCiLXXkfqz3fndxSR6xYiYjGcnv68Z/Kel8H60fkwyspQpoXK4EsK6HwNQ2LWjcXb1oDX0loU08BtbMLbvgNRKpaSlIhYjOgXbiX5nf8q7BPTJPrPX0Kk0yhhUmjBEXrMGRYMDZaymWujWLbNi2GNH4+jhvs5L220EV/E44EG+awhzPWQ0sAwCtOX0gDXI3bzLQze9tUiiabQZZdrUk04HGzEDYUgnUYlM4CRZeYCYAi8PR3sK6yzu6fDN07l/1WgEmnN9l68NPC51IMP7dNgL2IxzbYcaby2LEQsVkxQ8KFcV8974TAykcq7KAEhJEYsjGEYRG76JKn//mVBvxlTpxE+P/e+i3CkdIDK0RCKQDpVbKexwxjxuP/u5i7SsvmVlenxUKre8TgqnQkei8P1HgVmTU3gswBEIoiqqpy0RH7ZTROjuho3ncrpgg8zd4XSZ0fLwuvYi/TQMkV576/b2Y09fxQZT9tGdnTiYiE8N9tnQkiUZSHbO3CbmrX8kydz8RIyLunlTxCefyqhiy5GdnXi1W/TlzHSw5wyhfB7L821r2EEBs40amuxL7iIzGPLcvUWYJ99DubEiXlzS+GcipS6v4arMecEmHNCYeKhELjBmuYyndHjPGg+t22MeByVyjPe5j/vyqxHglL+fOB/xzAkQijcdCY7d+SPRSmBwSREokgpMIzCgSqlwEB7/uli5TN69UQRjsXyLlWLmhTleaSWPlI4jj0PlUiQfvpZX+bL99AoeF75Aaw1rOpqrJFtCjjbmvTdSf6TCtyWXb6Xz8iR7rf5wBDpl1ehBgJkM1JpMk89C6ZRYKwHIOOQfvJpQqfPJ3Te+ciODh103rT0WDvscMKXX67HqGmiHNfvE10nw1AYY8YghMALipcA2qvOGH6HR5ZdYJjmCLmdHKTUbPHIwutJ/vq/Ub29em72POxTT8OcPRu1Zo0/ZkbM2ZaFKCvDGDsWuXNncbksPRYPBEZVFaH3XaaJiPlJn3kW1qGH6zoMDJB64hncjZu1t+OZCewT5yKEILl4SeGluVKoTIbk/Yso/+q/AOBt3kp6zSZkfz9WSiKqxmCOqcEcOxbrtPm4K1cUCBWJo47CPjZYMvbvBRGP6/d75CWrP5/reg+Sevwp3I2bdB+euQD7pLlvOyk2+dDSwn2FUnofe98i7Nu+/PYV7F2MfZ7I6urquPzyy9+KshzEuxDu1gBdQNCLdXNz1mD/jwa3vgRryjDwmre/JQb7UhCGQeT9VyLPORe5sw1RWYkx8ZDsBJ5es5bk/96X3Qw5fX04m7dS/rlPY04cnXGuXJeBH/8c2d2d1UZNLV2G19hM/IZrR3323QxvW0NwfwNe03ZCZ55J6t57C79jmpjTp2McaGBlwwxmyQEYBm59Q/CB3/OQe/dijh39oswcP4HYbV9Hbt+OSqcwD58yqpvvQRzEQbwzoBxHX5gHwAvSth/5vOcx+LNf4u1pzx4KUssex926jfgnb3zbN/0HAqOujthX/1V7FiWSmIcfrg0cgLNpU8nnnA0bUF3dwQxcIZDt7cihIYb+54/ZNdTt7WWwvoGyf/o41pTDRy2XU0JHFsDdsAHZtTd4PpcSd/cuvD2dwPDl+LDx1sT1+3vwjp8jW3Kux3JPB4M//CllX/5nrDlzSC9bVlw308SaPRsefgTlDBYz8ASIWBy3aTtOWxc4BkIobQBo3kWopTVY73i4jH51rJkzif/bN/GaGkEIzKnTsoZCVRTgMAdvdzvWKAx7Y/x4sCOodKIgDSkt7BNPxGlqDl6/XRevqZnQGWeQbG4uNBAJgTF+PEatlncpu/17ZF56Ea++HvOoownN0yxYt6FRSxmMbFOlcLdsxZxyeMn1W5k25jHH4K5bH9jm1ty58Od7StRaZCVWRjJVAYjEwbSz0g6FRRNgWsi+fjwiKOUhlG8YtGxkQhu07VNOwVm5srBdbBv7tNM049oKMCZIhbN5K5ELiy+r8uFu3FzCWqdw2nYGM8Wh9N/zYM+ZQ3ppgMFfCOzjjiP9zPPB7F4hUI4LEyehtjWT6zilDckTJgFgTZ1G7L9ux1v1CrK3F3vO8Rjjxu2zXPsD+7TTcF54odBD1g5hn3Yaxtix2jC2a1eR51DojDMwJ00i/dBDpev93IqisZhfb3HYYagdO4ofnzQJa8YMLb/myaJ2C807WacflLdpYs+ZQ+qZ53w2N+TmLf+/jovbugtU4bwmpQm79mBOn67fsYC+D515Jk5jEzjKN8bnLrRwJE5DozbEB3kWWBbezl1Y06cRveFGZGcnsqNdE8z2sW/O1V+R2dqIRwQhdZ8p04YtTYQvkIQWLCC5dWvx3FJdreet0dJOZ/KhadOPAAAgAElEQVS6OZ/WLFCexDr2WFi8uPhBIbCOP570i68QOPEIgXI9lBVGpvO02lHaSG8L1PrXUUrLVYHw5/u8clRUoTp7iuICKiWQsTgqIcjFkBlhQK6oRCoDoXRg0vxnAeSu3aXXwE2boaoCpUTRnKeUQBr7JhqoVAaF9iTLEdqF72Gzq8RT2pPEzZe3GQFn0yaEZZcea21t2DOOJLrwemRXF7J9D0ZtXXbuEKEw0gyh0oUX31IKQkfNxJ59DIlAVQtB5IorSD24hMD+Bn999uWUCuZd/X3TshBVVcS++C/ItlbUwADGpMkYFTp+jHXMMbBoUXHCQmDPnYuaMkV78IwY56KqCmPSpJJttr8ILTgD66R5OC+tBNfDPuXU7NlaJhIMfP8O1OCQP256SNy3iPDOXUQvv1R71gVAdu1FZRzSK18itewx7SkEOKvX4G7YSPkXP4+orsLt6MUlhPBy77fZM6Q9+t5EoqI1axbcH+A5JAT2iScik0ld76FBX84IEvcvItTWRuz9l71p5dofuE3Nef/LzV3e3m5UOo0Ih9+OYr2r8daJGR3EuxbK80g+8Qx937id3tv+naG/3I/s1zfMoqoyWNdUiKy25z8ijKpKlGEgPYF0/R/P30q9Q+ptVFZizZyFecikrOFFSakX9fxFVSnIZEguCXZXz4fz2npkb19hIDPHwdm8BW8UF8l3O0Rlif4WAlFehjVnDtac4/VGGH8c1NQQveaaA87bGDsOKSxfl9DEzZh4rkCaIYyqKoxS0d5HMHhGrZ9hYE6dinX0zIPG+oM4iHcLTDNYFxyyxunR4GzagtfRWaRp7DbvKHnIeTdBGAbm4VOwZs4sbA9/nh4JbbsyEJUlgpx6HqKsjOQDDxUbjxyH5IPBrOB8GJWldaxFZVVwYDd8Fmw4Qk7zJd+jQrM33fbOAmN97mFF8p77McrLiXzkGrCs7DqFbRO94QZEJII4ZBJSUrDWSE8glYVRXkZy0XC9hc9kFbl6+2kWZY1eJwFUMkVy6XIG/3g/g3+8n+SyJ7KBaI1YqXVHYNaNTvxQiSReMu3r9eL/CBQCt2UnRnl5nj5wHiwLUVGOddRRmHNPyOrFKwVEooQXLsx+1dnaQGrla6Q37yC9cg1Og44rIMrLgy93QBsrasegTLtYb9kMYdbUICpqij4DkNi+rERpiIpyVICOvFJgHHooXucwG1OM+AHZ2UX6medQqRRI4TObNfM+/cTTqFSK8EUXaakly9J6vZaFdcwxhC+4QDOHS0gdGFX71mpXmUzwePE8zAM8zItYjOiNN0IsltMdj8eJ3ngjIhbDGDs2sM2VYSPKy/Gah+e+EV5LebrHhmFgn3wK4Qsu/LsZ6wHCF16oDTWWrQNIWzbWzJmEL7wQgOjHPqaljmxb94ltE7rgAqwjj9T1XrgQLDv3fls20euuQ8TjGOPGjVLvMmKf/CSiurqwLSsriX3qU6hUCin9y7WCNATK1XEHItdfjydCuI6F61h4IkTk2msR8Xj2EqjIeKuEjiWRNQaPmNcQ2mPqM58pWuuMo44ifM45kCyl7S1QyaQ+pwbB8wrOa0ZdHdasY4qM9UopUi+uou8/fkDvV7/N4P/8Ca+zSyfR2IzX0gaum9ORdz289nbcrfVY06YRvuSSXH+FQhhjx+qgkf686DQ2M3DHL+n96rfo/+EvcLY2+FUoHH/5v6tURrf5NdfiupbWLM9YuK5F+KqrMMrKSl8IWJY+N4wZG9jmqqIGUT5MNNLzvJ7v80xGUhY8k5+OUEAy7cvv5M3J0tedHxzKpqUDk4qssV4pzfYuqZ/vOIhQ6fnB8OcOr7uH3T/7Pb3/+m36vv09Us+tzItHMlxWI69efv5l8REeDXl5Q+m9AXptN6oqA25P0d5u+WOttlaPtby5Qw4M+u9JcX9nVr2KWVuLffbZRUlbJ52EfcQROj6DouicKhV6rSvP8/bI73fb9mMhKTKvrGHwj/cx+McHSNyzGK9dryEiHCZy7Ud97f68sXblBzAqKjAPOwxz7okFa6gyTMLXX/93I34YkQjhs84mfO55BUS4zIqXkIODKEfmxlrSIfX8SuTAQOm9sGWhlCS1bHnWWA9orz4/NqPX0obb1OR7ulgoZYGr8Lr24mzU5AvZ08vQH/+qx9q3vkfq2RV/l3iGIhTS61golJvPTZPw1R/GqKwks+Il7Y3pFXpjZl58BdmnPRbd5hYGfvorPbd8/2c4m7YecLn2C0Xzuf9/BepdoMbwTsS71+f5IN4yDP3+L/olH9aSe/lVnE1bqbztnwmfcjKZ514oPLAIgQiHsY484m0q8ZsP+/jjST76dN6khJ6IHPWOrrdKJLQbdgD2x0DjNDaVZJq7O1r2W1bn3QZ7znEkH36iuL8zEuvoo5DtnaRe2QCZHPPQ6xwk/dKrRM5ecGB5Hz/Hzzu3+ClpgAPWUTNAKRJ/+kvhhsMysWYcecCuiAdxEAfxzoUwDEKnnUJm5UtFLNjQWfued7zm7aXjY+xowTr8H1MWyxg/Hm97SwDTFMTEQ7DGVOPWbys4aijAKC9HVJQjfWPNSJRm5+UQueRCBtcHazJHLjyfgc1bg9m/hkCl0kEe7dkvuRtLew54O3ehPI/EkuXItAHSPzRJg8RDj1H+hWmE5s7Feb1QV1xJE6OqAlFZqWXhgtLetTu7ByxieytQUqE8j/4f/1Kn4X83/fQLuPWNlN/6aaovOZ+9//tAceKRMNbUqSXrlc3fD5hbwET1FM6GTZTf8kktsTAShoE9+1jcph2kn18NmDnPgb4MQ7/9E5X/fDOZ1zcz9Ls/5zwqmrYzeOfvKLvpOuwZR2COH6f7Pv+QbtuEzzgdc9xYUkseKTZAmRb27GNIP7cCpUyUyj/gGxCxcXfvKa07LMAcOxZz4kStPy7z9uB2iPCZC0guCaizDzmUwG3dGchkVa6Lt6cd6/DDiH70ozrgYFcXRl1d9sLJHFuHOWE8XtvO4nqfue+5Z1irPegdVBkHc8oUvObmoufMaVP2mTaANW0aZf/2b8jWVs1onjQpy4YMn3UGbv02VEGcJxPzkImYdbWFhJR8lDAi/j0hTJPotdci+/qQnZ0YtbUYVVW5YlZWEr/1Vrw9e1CDg5iTJukg22hCTuKh5XgZw9c9R7/fix+j/MgjsU88AWfD6wXsfIXAiESznphlt92G29qK19SEOWVK1rPF3a6Z93I4xkWuxDhb6olcKkkufkxrXPtjWXmC5JLHtdbyKJrmck/HKC2ikFJiHXII5d/5Ds7rryP37mX82fPp8XwTRtBl3HDp7BChM8/A3bSlcI00DIxxYzHH7ZtJn1z6GOlnV+QYuOtex9myjcqvfB53R0vwuEhncLe3YB99FKHTT8c+6SS8tjZ9YTR+fM5Yv3Ubg7+6K1s2b6iFwV/9gfj1H9bGuMA2E+C6SCkZ/J+/ZD2YAJAw9Mf7sGbNInTCXJy164rWMREKYY4fj9zTHlhftbcb2Rcg+zKcNwo1Muh6/vOWhXI8kCMuHJTSF8uNzUgJQhnFDHuFvkSkeC1RCvAU5sRDcF/fFOhZZIwfj+wfYOC7P/V1+BVqcIjkQ8vw9nQQ/+DlBOvE63KKRLJ03ggiF56PszJYTz188UWo7m4ya14rbnPb3qcHu1O/rcQnAtmh9xyRiy/GPvdcnCeeACmxzzkH0ydZKaVQ3sg2B6Se043Jh+Ju3FSs3V83FmEYJJc9QerJZ3PjfMMmnK0NVHz5s4iaagZ/+2fIkxxCwtCfHsCafSxu607Sz68CzNyQdRSDP7yT6tu/MWq9DxTpdRvAyRes8SvuKLy2nYTOWkD6kccK3n8RsrFPnofa2x18wSIlbkMT5vjxwbE30hncpmasqVPo/+5PtfSiHB5rj+Lt3EP8I1ceUL2UUiSXLMdNidx87pnIJcuxZ83E3dZQwpvDxGvbiezqZuAXv82bWxIM/vZuYtd8gPDcv0Gu7Q0VvsTfBTpWw7tYcvPtwsEWO4hR4bV34mzaUqhRLyUqmST98moiZ84ndv11JP/8v/pAIiVGTTWxjy18S6JRy94+Eg8uI/P6FoRlEj7lRKIXn4sI7UtB88DgNG33tcVG6JYqrd9pHbJ/wUxLQbkuyWVPkV75CspxsI8+ktgVF2PWaPaL7OsnsegRMhu3IEyT8CknEL34vH3WW0QiwYsTmq21Lxg11TmdyoIPjOxBLv3iaoYeWKo1gg0D+4TZxK+9CuMtjE7+94bbvMPXBs2vtwBh4O3cTerJ5/KYh377ZhySyx4nvOBUhG2RXr2W5LInkb19mOPHEbv8IuwjRjdEZPM2R7a5n/euPdjHHkP4/PNIP/Y4mJrdY02fRuyaq/erbsrzSD72FOkXXkFlMtgzjtBjrXYU3dA3gPSr60g+8kRgvYvznk7sikv+bnkfxEH8oyNyyUWooSGctet9iQpPxxU5Y99GM6O6OlhqYFjT/B8U1iGHkAnQDleGhTWuDmdroz745uvzKnB7BjUDvoS2tyjb9wWpWVdH5ANXkLr/wZzRwDCIXnM1RnkZ5vhxuD09xfYEYWJUVkAkHKi/L8rLMMaPLamXbsTjOBu3ILt7fEaW/y3Xw9vdjrutEadxB8W64iD7E/qyIBIJDHwn4jEtpeII357jpy00L8zE8PMeITXkG4bd+kbGXnIePa9txNm4LZu/CJmUf/6W7Ncz6zeRWLocubcbs66W6PsuIDRzhu6TErrDXm8/IhYj/smPk/jD3VnCgojHiN9wHSIcZih7UZC3fgNyRyve3h6Si5YWez5kHJKLHsb+yueJffwGEr+7SxuvfaNw5Ir3ZeWRYguvJfG7P2YNxCIUJvax67VXQ3UVqm0XystjnQmFcFzMykpEOIIK0DQXUT3WdN5/KMz7cp23MWYMXvP2QNuUOWYMbuN2RgY4BUBpg/4wjKqqAqPxMGI33kDi93fhtbbl5X0p1tT9MaobuptHlE0pIBwi9skbGfjP76H6+nJ1rqok9slP7Efa4HZ1M/jL3yN9hqgxro6yf7oBa0w11rSpRK64jNTiJfrLnoc5eRKxG67br7TfChiVlaPOwWYAe9rd2oDb3gHOsMY3ID3czi7czfW4Ddt9RnHevKfAG0whh4ayBA9r8mSsyZMLE7dDWgICyH/PFPqCxd3aUOyt5XqaibppKxgmUrng5Z0DhNKxWEf1yBAYhqG9g59ZQerpFahEkt31O7AuOR9r4njMMWNKr2O1Y7AOP4zIlZeTWuRL9kiJecjEgv5OLHuS1PJndPktk8jZC4hdegEqmSL9zAuFe3/fKzn15LNYUyaDbcGIOBCE7IL+E+Ew1rRpRbVLLno42Ftr0cPEr/uQtnFLyNe/F6bEiMZIP/V8Cakvj9RjT2ljdUB/y6EMcmAwoK2zOWBNm0LmldX60XzGuSExDIFVV0tq6zbwROF8byjCY8eR2dlO0Y2cPycbdTWgDJT0/Asg/1NDr0siHEE6AsMsjF8yHNTaHFeXPYcWzG2miXXIRFLPrUSmUoWG1rRDeuUrRC88B1FejurvpwjhMMZ47YUiKJyalAIjHsMoKyPyoQ+S/Os9uS8ICL/3YqxxdSRXrdFyOypvnVMgEw6yf6C0RzRgVFcVNxnDlwfDnhVpUkseI7N6rb6k70sRu+wijLK4btOCS2v/dwXCsnE2NYCkQCJNGBKvbTdeMknqiWcDve9Ty5/BnDQhOJ6J55F6+HEya4dJCCP2D8kUmc1bCR1dHP/hjUD29tN/5++Qu7Qnv1FbQ9lN12FNGIfcM0ygKB5rbmc3kQWno3p6NbHF3yPHTzoe49JL9H6ghIecUV2tPSqCdORtG6O6ivTzL+qYKPljzXHIrH6N6MXnYlRV4mxtILF4GV57J0Z1FbH3nk9ozjH7rLPX3ILbsjMvZgPgSWRfP866jRhjaoJj4EiJqKok8ddFJeeW0PGz31TJS1FZieruLv7Aske9YD2I0jhosD+IUeG17tQa2oyYrDKO3uyfOR/76BlY3/w6cvcesG3MsW+NfrtKpen73s91gBepUGlIPbsSt6WNis/u36b+b4W7rTGYheN5eC1tB2ywH/ztn7RbpL9JdNZtpL+hmcqv3YowTfq++7OsXpsCUs++iLujjYrP3TRqusKyoLwStXdv8S37KBqxwwiffBLpJ58ZkahARCNYM44gvXodQ3/O01yTEmfVWgb7Bqi45eP7Wft3HtymHSOM9cMQeK07cbe3lGBsgOzuwdnWRGLRw1nmgtfSxsCdv6f80zdgTx/9cOs27SjB7NJ5W4dOInL2WYTnn4bs6EBUlL8hY9vg7/6Cs6k+F9Ngwyb6G5qo/NqtGOUHpr+fWvEKiQeWFtf7n67HPmJqQN6bs+P8QPM+iIP4vwBhWcQ+cjXyfe9F9vRg1tbut6yVPXcOyYcfHZGgQNgW9jEz34TSvjNgzT4Gdc9DqDyvJX2qBmvmUSQWPaLd9yUUHAKlRHZ2YR0xHef1jUUsOvvoo/cr//Bpp2LPOwl342aEaWLOPCp7oR055ywGG5oKNawtC2v6NMzqKsJnnk76qecKD2Ihm/DZZxGaeTRDQhu3RrLcw2cuwN3RWmxYAnBcvJaduE3bg9cxy0R2dum8n3620JvLtgmffab/NyNHkx5uFARKKtyWtlHybiOzZxLOthYKg92apJ97GesDl5Jes56hu3Oxd7yduxn8zZ8o+9hH8Do6KLJyoPMmo9dO6/DDKP9//6pZpQKMceOyB1bZVTpAs7OlPi+Ac2Gjurs1Q9UoL6fsszcju7tRiYRm0A5r83seQ/cuRaZVzlgpJYl7HqLiK58lNHcOmbVbKLDUKIGIlWuCxLjxyKYW/XnWiiSwJkz08y7z8+5BJYYK8o6+9yKc1WtgpFUcQeTiC0iveKVIGHW4+91tzYRmjT6ejfIyym75dGDe+4ah+3okw9YwIJ3B2VSP158G18jVuy+Nu6me0OzR5yaZydD/7z8sMMTI9k76v/0Dqr7/DQzLInzKPEInHI9sb0fE4rqtfZhHHYm3pb4oXXPGkftZt7cHzo5WKNAkB1CQdnC2t+A2NoOnWfU5CAjZeLvaMUYjkKQzUGJuAUN7awTJeaUzeC1tqEgMEiM0zRUgBSIWQ0yahGxtKz6X+F67ifuXkn5pdTaPxPrNsLWRyq98Dvu4YxAPLkEFGOxDx2smaXjeSYTmHo/cs6eovxMPP07q0adyz7keqeXPIDMOkbmzNWFm5P5fSpzGZqKXXYRYtATFiLnNMAntB4vVK+FdILv2Yh46Sevhe/nxPRTK05517rbGkuk625o0kzWov4XC27UH5bOli5jkShE+cS6JP91f7LUkDYyphxE671xSz76cS9P/GE8QOu9snG3NqL5io7hCYB0ySduzRwTUHo5xoBn2BjKfze3Pj0Iq7GNmIcLhYq8lO6T3NHf8Kk8mpNDjytu1h/A5Z5Ja+miRV2L4zNOxJ09CmSE/pkph3qFT5umLo6dXIpWdswEYBunnVxE543ScxmZwVfA7tnP3qAZ74XstBMYkCUdRUtJ/x6/0mPHrnln1Gu62Jipvu9W/lxnBsB9eVxxXx+cguM1l265iw69fGHdbg9ZJLwGnoQnV21fy88yqtQdksJdS0vut7xf0l+zqpv87P6HqO1/3383g9d9rbkGccRrRy99H5ILz8Lq6MKqrGTdlAp2dA4jycqyjjsTdUl94zrZtwueehTXlcIRta+m+/L2RYRA6ca72vCsZH2M33p5OBvI8aGR7J4N33UMsnSZycnFA5Hy4rW3BfZLO4G7fQXjBfDKrXyv8jmFoaa9DJuLtCpYpVgOD+qLvTdSRt4+dRfrZ54v2yNbUKW8JmfcfEfu1s1JKce+997J06VJ6enpYsmQJq1atorOzk4svvvjNLuNBvI3Qm5ogeo6JObY2+19hGJiHTHzrCgakXn4VmUwWumg5rt6Ytu7EmnzIqM8rpUg99xLJx55GDQxhjqsj9v6LCc3Um3KVyTD04KOkX14Djot95FTiV70Pc1wtKpUOZrIp7fp9IPD2dJDZ0lDE6FCpNOmVqxCRsF/vvEnacXF2tOK2tGEdOgmnvpGh+x/G29WOiMeInruAyDkLUJ6H7OhGGCPYAxIyr22Ej1w1atmMygrKPnkjQ3f/RV8YKIU5YTyx669BGIY2zgbArW9EJhKIaJTU8y/rNu8fxBhbS/z9FxOapRdzOZig7ye/yd6ii1iUsoUfzH7+dsGoq9UsmpGbdsPAqKnGHFON29Nb/KAntebx0uXFhxnHIfHQo1Te+k+ojMPQ4kdJv/QqOC7W9CmUffBSzPFjMepqUZaJyhQu3EKIgkOHCIcwJ7+x4D5eZ5cvdzVirDkOqRdeJnbROW8ovXwoKUkueSy43osfpWzhh4LzzjikXniJ2EXn/s15H8RB/F+DUVb2hgNcG/EYZTffROKuP2vNS6UwxtYRX3jNGzC8vfvgbmvSTJ8CA4/Qh6zmljx2cbE1UymF07xTu5nnGzokOA1aNkK5LomlT/ieQ2msKYcRv+pSrEm5i3zDsggdd2xR2axpU4l+8P2kHnhI7yWkh3XUDOLXfAiAyPnn4ja34tbXZ8/i9owZhM+Yj+zrRylDBxAtKLaB3NujmYmhUDEr07YxxlRj1tbi7WofoeGr2d5GVSWR88/BaW7VTD0/79CsIwmfcbr2BBtux/w29f81x9SUyNvCGFNN9+LlxWywjEN6xStELzqH5IPLAlnuiQcfIX7V+4racbjsRqU2kLg7d9N/5x9QvdqIJGqqqLj5BqxxdYh4DNnXH+iZYE0+BL1hKjZ6j9wBGjU1UFPoHeZs2Izs7S/0avAk3t4enM31ZLY0jWgrDTkwhBwawtvelssrrwhuw3b9vUyG/p/+Fq/Z11cPhyi7+nLCJ83BqKwgctWVDP3vgzkGoCGIX/t+fSEuDKSUIEewnlEYh+y/LrtRUw011fv+Yh7MSRPxOjoLGLYIhUBgVFcx+Md7/f7Oq7ff36HZM7V33iNPknruJVQ6jXXYZP2OHXoIqUefDg6C7Hqklj1J7NILdHa2jRkQEDF+40IGf3pnQTwIY/Ik4h9f+Ibq+LcitXodySXLkd29GNVVRN93PpET9238VYlSWu6gkimMulrclp0oWTjWhOtg1BR7UORDs3+13E3Bm6B0X5o11RCyA5jmIYwxNQgr5D9XzP4lFEINabmvkWmroQxyaIj0ylXFhjHHJfn4s5R9+ArKbvkUQ3/4k758E5odG7/uI1m5ILd1F0P3LsHd3oIIhwkvOJnYJeciTJPU488G1jnz3Epi5yxAOU7R5a0wwKyrRYRChK+4jKHf30M+5Tp25UW5vNt2MXRPXt6nn0zsvTpvUVGO1903ol0UZllMezWNvDT2f/d6+sE0S3pUCctEJVO+LW/EOialPs8g9Jo28mEEXk9f4QKXzVsh+4bIvLQa/bYWfq4A58XViGhUl3Fk6YTSDFtFgFa8DiSbIxwUM6YRBiJkE7vxBoZ+9T85j6lwiPjCazCiUWTPyPbMpSVTKcIL5qMGE6SfeQ4MAVISOnUekQvORSZTvpRPQJv3DuDWN+J17QU3bz6XCjkwSGbdRsyxdToGxkhDq+cVnNeCYFRWgLBAusXv2GGTceubfA+afC8Widc3QGbd636smOB6Z/u7CLpdVUV5ngdNQdYo18MYWwdsDiy3WVeL3LWn5PPGOG0rSq/dSGLxo8iubozKCqKXnEPk1BNLNUcW6adXBMf28STJhx7VXofJYs8/AGtKjogootFizyEgevUH6Pv3H2lZGx+hubOxj5gOQNln/4mh39+t5fyEwKioIHbdhzHicW0baGgu2d+Dd90TzHJf/CjheXNHZbkbNdWl2f21YzAnjCdy6cWkHlyq94pCkwfiN+p1yqioCCYj2JrlrqQk+fhzpJ56AZVIYk6aQPwDl2JPOwwAmUgydP/DZNasB6mwZx1J/KpLMav1WpFev4nBP96XbXtz8gQqbrkRIxYjU9+sL+Xypx4F7vZdKKXeVHb/Pyr265rjjjvu4L777uNDH/oQu3fvBmD8+PH85je/eVMLdxBvP8wph+pJY+SNmGUSnn/K21MoH27j9ix7quDw5Ejctn1rySYff5bE4kdR/YOgFN6eDgZ+/Secen2A6r/zLtIrV+sNqJQ4Wxvp+/6d2pXQDhXdY2TPc8aBBdRwd+7xNwMj6+XibGvC2Ue9neYW+u+8C2/nHpRUyIEhEo88SXLp48jOvWjGm+EHA9I/KKPIzV5JGRj4x5p6OBVf/wrl//IFKr72ZcpvvQXTP6TqYEIl6tW6k9STz5N4cBmqbwCUQrZ3MvCbP2eDLPV+6wdZYz2ASiQZuPMPuk3eRoRPPqE4uLIhMMriWDOmE7ng7GI3L9sidMJxgNQucwHwfIbewK/vJr1iVXasufWN9H3/l8j+AUJzjkFl8vX5/AOYKzGPLHaxLQXlG+JVnuHB29UeHDTacQsCrP0tUKm0PnAEwNvToW//g/J23Zzx4SAO4iDeVFiTJ1H+r1+i/Cu3UnHbl6j40uffMi+5twte267iQxSAJ/PW3xKMrd3tqL5+lDRygd1cvYbq9RUG/nAPqWdX+gE9FW7jdvp+9N94e3sKUlOeF3jBHz5xLhXf/jrlX/wcFd+4jbIbF2aNP+mX15DZ1oJ0DKRrIB2D9IYGMus34e3u0Iaxkeu7BHd7K6G5xyGsEXOuEIhwCPuYmdhzZ+eCyWZ/DER5JUZlBemX1+Bs24GSZKUaMhsbyazbWMIDbbii+gBcdAkkBCIUwj52FqnGHYFascKy8No78Lr1hfjIIIVeexf2jOlZ41VhtoLwWQuQyRR93/lZ1lgPoLp76fuPO5CZDKEFpwbu54RlYU6aWNJ7rqROax6c1p3BshWZDG7rLtytOd3i/ECgeBJnT0ewfq7/OUDvf9yB19yaezadYfAP95DZ2qilFR99hhyrUr9BBUcAACAASURBVIAwSD7yjB57kahvrM/rb6XHsjmmNjjfACgpffZmic8Dxrl9/HEoaY7I20CUlSOqKvE6h93p88cieB3674N/eoDkUytQSf8da26h745f43V04WzfkZdToRHLyQaU9cvmuEUBAg3LouILt1Dxra8Tv+ljVHzr61TcegvGG7zELPV+j5Z3avU6hv70AHJvj94jd/cw9OcHSK16rfDZgDYXkdKMSRGJ6Pdb5ren/xON6ws1H1JKZCKpL3N8GNWVWEdNB9PWRuThHytE5JwzsY+bhbDtQmqw760VmjN8MVnCSJNxkHu7i+YtJQ1kTy9ee1fwBbKUeDv0XtEcP46KL99K+VdupfxLX6Diq1/Mksi8rm76fvwr3KYdKE8hEylST69k8K57dTql+kgqKIsjysopeIcQKCmw5x6Hl0z6xnrIH2uJ/30Ib2BQ5/0jnTdSoZIpUs/k8hZ1tcX9gYAxNdpAWOL1dxuaMSZpUlr+9KQZ8mBMnIjMSiMVvkNgaMa1RI+HvP4c9ixz6xuCM0Yge3qzclrFn0KmcTteKj94al7eSkAmX8qmsGxKKWTJc6TQ5xgpGbz7PryEi+cY+icpGbz7Ae1lMUqsCdm5Vwcxvvh8yr/1NeKfvonyb36N2BXvQxj+Gj5yjfTh7mjz9we5eC3ZeqQzeG27iJx1evHzpol16CR9YT4KjAo99yk1ok+UIHT8bDKtbSXO/i7Otu3ZGB3FCQs9V5Q0kgpEIuUHnh3xkUIHjz3vrOH/5n+EAqIXnQsVFdkPRwa1tiZNIrNhM4N/uEe3r1LI3j6G7l1C8oWX2RcyDU15/yucz9MNO4heVoI4LASRM07LlTfgDAzQ/5PfogYSBX/LvLyW9Gta5sesq6XiS5+n7EtfIH7rZyi/7UtYh2rDf6n+Ng+ZgDlhXDZo70iooUSwR1Ie7JkzENEAGWPLJHTS8Xg9fSQWP46XVrgZAzdt4PalGLpHS39FLjxHX6IWJGoTec/pCMNgaNEjmjw5lNA2sNZd9P/sf3Dbdmlvjh//mszqdXpv53k4G7bQ971foNIZnJY2Bn91NyRT2b72WnfT++0fAyDbu0AVz+cqmQr2tDyIfWK/dh+LFi1i0aJF1NTU8I1vfAOASZMm0dp60Kjyjw4hBOWf+QRDd9+DW6/d74wxNcSvuQqj+u3VuM2ybwrgMwa80U9SyvNILn82mP27ZDnxqy/T7uPuCPav65BasQpr8iE4GzYWs3jsUIHnwd+MfLdyyP6uMo5v5CxRb1eSfORJVMYpYC+olEPiyRcIv2d+UZq5suuJXSZT7Pzpg/St0K5W1qETKb/m8gJ2oBACs3ZMiXIH/1nE4/rwGMg0f5zIBRlUIjgg7tB9S6j83JsrczQajPIyym+5iaG778kG/7GmHkb8ox9CGIbWff/w+0k+sDRrpA6dNJfYle/TDI6ieAca5pga3D0dOA3bizaZynVJPfcSorI8gN0vwDDxmlsw9iGpo5Qi+fjzJB57DpVKY1SWE7/iAiInHYdRW1PoqZEtmIk5cf8ZdkEQkbAud8BhyKipwqgb86blfRAHcRD7DyFE9tL1/wLMsSWY5paFWTcGUR733fmLD7jmoZMgFkUOpnzjtoYQCmtMJV53L86GLcVGA9cl9dQLxK+6FG9vDwN/etAnBwhCM6dTds0VmJU5d3lhmjoA5ggkljzur6F5ZXMcEosfo+LT1+ddshcazowJ4xCRMLHrP8LQb+7OXiKLSIT4jR9F2BaZ17cSFJBP9g8iBxMMPbQcmSrMW6V13mUf/UBJtqe+FAhT/oVPMXTXX7Ou2ubk/8/ef0fJVZ353vhnn1C5g7rVSd3KEYRA5CAQEiAkJHIwwYzB9zVmmHEYe/zaY8+s+d3re9eyZ2zPvL42jLMZbDA5g5AAIZAEQiChgHLOqUN1d+Vzzt6/P3Z1dYVTkmzA9nj0rNWEOnXODrXP3k/4Pt+nnehnbtVOvfZWsnsPVrStXBdzaCOKSooipcCwDLyeXqQnEGUIXSUE7sEjuC+86q+bSEnmlcV48V4Ug8UyC5c9bViLmphOIy8T45jc2/k+pDPV5yWT1Uh6SclaAoUQClHNWZ8Xd89+ZGdPqa6n9FpMPvE8kbmX62yRYqewJzUa9MNNiHAYlSzXufSzRLB6UclCW45D4qlXyLyzClwXs7WZmtuvwR43SjfVHaf/kWdx8lkE9iljqbnjeswhdTjV1loipee6WlaDIZC9feRWrfNHXL+2BGHag98vGZcqOH5z23aR+N3zeIeOgmURuugsYjdehbAHzWKjJobxB1A5eD29etwbtc1kTxpLzR3XYeZR7M62XfQXt33hWcRumoOwbdLP+2eapJ9/ldC5Z6Icl8TTr5B5e2V+zpuI3XYNgfGjdQFVv0xQy8Jsbcb5cIvvnKtkGtnbh1FXS++vHyf3/trCixQ4ewo1n9U1qGJ3f5rko0/jrFkHCEQ0QuTWG7BG6CyFmq/cp9/vPGDKbG/TOnJ+LVVFg9s2orY2T6tRhtmuiWE2DvEFDyEEZqsuGuvF+0g8/Cy5jbpotj1hLDV3Xo/ZUE/6tSWonFuSWaCyLtnV64nEe/Moaz/vs4B0BlnmzBu4llu3idxK/wLiAIn/fAKzqcHX5smtWY/X04u7dbfPrAi8PQchGDwm6tke1kqmjK5HKcAysYe3k333Ax96FYFS2s4T9fW6pknZniqiEaxRw6tkketsPlUF0awUqGwW1TfgdK98B91OP4qxov+PRqq2LRCaLqunF+UoBnCnytXrOPfBhxgNQ6oWMjbzjtbeh54m9+4HhXfBPuMUau+5Xfs1/LJz8mvNHNqAMk1krjSobwTNfCHuFmL3fIbUI08h+/tBgX3aKUTvuNm3P8UiU2m87v78OVb0myDIfbhFP69i3vScOlt3EJg0Fm/vgcp90zAxmxoxGocgOyt5xUUkrG3BQtCk9LrVMQxv1z48w0K4bknz0rBwdu5FhMK4Xg9Q7LxWaJ5Bi9QTL/jvay++RmjaecdGXGfKqLSKxi0ch9BF5+Hu3YezbEVRp01q/v4Lhf9NL/+A1HMLkX0JRDiEefNs1PlnI3t6kVUAgcknXyJ45hTc/YeJ/+jXGtwJiHCI2s/fTmDiWMyWJkLXziP9zAt63QgQNbVEP/tpQAc6B3wGxSKCgXzWQ3URpknt391H8qFHtT8KMFubif7VrRiRCMmF8/EyTkmGnMx6ZDdswTvaRfC8s1CpFJn5r+n9UxgEL72I0JzLkekM2aUrKs8K1yU1fxHh6RfoTJJi+10pVCpDduVaMm+vyDvqy/aOvgS5jVsxhtQjD1dSFYpAoDKIcFJOSE7IYe95HtF8MZqBlyqZTBKJRD65np2UPxsxamLU3Pc/tOHhun823NLCqvLSCxDm4AampEQl04hQsKCMq2SqKqrCO9KpkWrCqAQQOC7u3v3Ebr+BzKuLUW6GgmZrWpiNDVhjR32kcakBDUupwsE5cJYJ267Mdhi4D8A0cHbuLePmzV93JKQzmGNG4u3YXXF/6PLpAPTe/xDengOF+XF37yf+b79gyD9/GbO+9th9z/+jghMR8Dq7/JVuwDtyFHfbzqrP9Q75R6n/mGINb6fum19BJpI6lTUcKrkePOdMAmedgUokdTG5okMpdPklZF57q4L7NzzvCs1HaBpQHmx3Xdy9BzD6a/3Ri0oj1Y/HgZ9a8CapVwaDUzLeR/9vn9WpuadPwho+TPMLFyuplknwkgtPaF6qiTAMwpdPJ/3q4opxR+bNwhrWijWiPR8YK2t7+kdr+7+DKKW0MykYLHEynJT/uiLTGe1cPQZS8qR8dAmcdTqp51/RaLyiwq9GNIw9eSKR664i+dDjJYarECAahmAPa4W6elT/YcodHWpIA97howjLQpUVxBOexN17AJXL0fOvP83XoNEYtdyGbcS//1Ma/udXqqPkyCN2+/p9r8muHl2sO8/tW3z6K6Wwz5iMyuXoe/ApVFqCyreT8uj75eM0/K+v4O2rdJgDCMvEPXIU2ZugHOEG4B7tKRjjFQ4iNegHN1uaqf1/v6idyAKMIhui4bor6X9/XRmvsEVgyqmIWLTIWV/atvSUNogDNiojUUVOdyEE7t4D+nytIu7e/che7Vgp5x0Wto3X2Y05bgzOB4NOzPxlzInjqz63IKEQA1QfA/NSwGMEg3hZl3Iu54HvuIeOVgX3I8DZtnPQYC7h/gevs0frTXk0W4kumXP0NV/wBxppWYSCU56HSmUQkVDJ+uz79RPk1m8p6CfewcPEf/yfDPnGfZhDhxD/3k91RmreGeps2Eb8ez+l4dtf1ZznfmvNtnGPdFUFfyAV3gAKtlyflDrL1J40DmfjVp+bBebwdtwDh+n98X8O6iWOQ+btlcj+JHWfu82/3RMU5bh63PksUgBn4zbi3/8ZDf/rq3id3cTL235nJbI/Qd09tyP9qBUB2RNHKUXffz5Jbt2mAtLWO3CE3vsfYsjX/xprwpgC93bJWnNcrAnjSC9a5j+vto13pJP+F14n997akku5levoNwzqPnsLIhggdtdtyP5rkIkERktTofYG5JGof/+3OAcOaUdl+2BhXGVaFR57pQDTQOUcwnOvIPXk86W6YsAmPOcyjLpa7Cmn4Hy4sVQXti1Csy5FuQNz3je41rZsJ/6vP6Xhf38VJ4+sL13rCiVBHunEPu8snOUrK6dl6ml4nd2aXqZ8rSmFt+9gJW9+kbiHDuvgU5EtB/nfRub3LT+O6vzzZTKFMAyU51M3wDSxThmvC33LsjPDEdiTJ8Kjz1Z1hMrObmhoRHZW8syb9Q1Yw9oQdgCVy1UAfIMXX1BAPRfv9wNjVHagtFBm+bzs3o9SwhfwrZSAZErv96ISXKwcD/fAYVQmbzMUFbxVWRdn/0EiN84j8cCvKx8ejRCYOJa+R18gt3xVySVnzUb6fvko9ffcQWDqafmssdKzKDxrBkZrEzI74Kwf6JxC5iT25En6qxPHU/s/v4HqTyCCAcQJcoXLrm6wrfzYSg8bd9/BYyR0CWQyhX3GZDJLllO+VEQgoIu0z5tF8ndPo7KD4xJBm9DsmZg1MUT9EGRXF6KoJYXAPmMy7oFDqBwoytaap/QZ6nhoZ335j6r3aa/LpwApeV+M4x7TiSuCts9z9bgHgIaxW2/Evela3A2bsBobS+oIZld9SOLRwb1FpdIceexlIsnMMX0aKpFAui4937lfv6cD6zudofeHv6bxO9/QQetnFkI2P1aAeJr+3z5N/Rc/S+TqK0n85omKmkOhWTNOiMvdaKin5u/+Gq87jpIeVhFQMrdpe36/K/vFHe0zMZsaCc24mMC085FHujCGDsHIr0WvO44wzcrMOKXwDhzG2X8IlXMqZ911cXbswj3U6eNnUiglcLftJHL1rEo6oIBNaNb0kxz2f6CckJV/6aWX8p3vfIdvfetbgFb+f/jDHzJz5sxPtHMn5c9LRDhULaHxTyLW6BHkPvRBstl2AXWRWbGGxJPzNRpAGIQuPofYTbMR0UhVx7fZ3IjZ2lxi+A0+28LqGIYRi2q02CNP4e3ZD0JgnzaJ6G03fGRuLqutGWWaqOygwqMAYQmsMSNwdh/wRR8AGj1VhoDTkkfVGILY3/4Per/976j4oGFgjh9DZN4VuHsP4u476I/2XrKC6DXH5hUXkSgqmfS3CUaP9Fd8AaN5KNaYUbBome9zzZaPIWvhYxIjFq16TRgGwqeoUHj2ZQjDIPPaEq0Ax6JErruKwJRTdeE6P6S5ZWJ1tOnnBexKlI4hjptiqaQkvXCJL8In+eJrBE+fRM1f303y8efIrV4HUmIOayN6+w0FNNhHkdDsmSAEmdfeKow7fN0cAmdMBqDm3rtIPvEcuQ/ybbe15tv+/fhw/7tJ5oP1JB97Ke/4EoQumErslnknHff/RcU9eIT+B58qUH/ZY0dQc9fNmA1/2iy2v1QRwQC1X72P5CNPaaoCwJo0jtgdNyFMk+C5Z5LbuJ3MO6sH74mGGPL39yGlxNvnV+RU4G7djflXQ5GOo6loir9jgtnRRnbVhwUaj4J4EtmXJPfhFoJnVC/0qTmPYwWkV7EYDfV4nd14KQdRxugjMcmt3ojqTWpHbHEGn5TIZJrcus2Y7a06gFyBcvewmodSUfwmP24wNCeqyuPeiikaCt8p6mu0EuwTGtVB6MrLSL/8qjaOBRhDGojcer028Kq1LQRG81BNL+IJSswaU6MDMQTe9kqQAoA5fBiiphfv0OE8X3TpuM2hDWQ37dTFT8uM0+yG7VQvIajFHtZKNp/NUTKtdgBrWGueL9kHSQ460BCLIfuSeaf+wGWJObQeo3kopUUhC10D08ZsaULZ9qBzK39JhEzMlqFYo0aQ83OOG0IjSZUitXAJ6Vfe0kEgyyJy1QzCs6Yh433kPtzik0nikXptKYFJY5GZbOk6V5oSJLtmo0Zt7j9UudYcB6u5USMTeyoLGRoN9ZhNjf4oWENgtbfp39wur1EB2DZWRxupV5f6ovNzazfhxfuOC0w5lmTXbNTvt/Ib9wZyG7f6t/3hZrx4nx53d6XT3hhSh+ztJ7dmY+XYHZfUwiWIaBgpDQxDljQvpUFq/ht6zvcdqESTOy5m01By75Q6MQck9/5a+OwtqFyO/kdeILtyHSgwamPE7riW4Gm67ldu8w56f/IwZPLBnqBN3b2fJnDKWOzRI8kePOJjVxkYzY3YE8aA65J+6TVUOo0IhwjNuYzgJZp6NfZXt5B65mVdeNbzsFubCN14LVZ7G9kP1uvs3OJxSYXMZvU1X4ozAZ5C2QFid9xEfM8B5P6Dg1dbmoncdSsila4KNDI7WlE5p0CFVi5WazOyp093qwgFqwaimLal7VA/p70QWC1NOvOH0t8TIbBGjdAZHJZVqd9blg6kWTYq5/o6xkVjA+62PT7zAt6+Q8j+BJ6jimtCAyCVgbPvMIERHSQ3bMWgaPdSegsNjxpO9sBhvWeUNa7Q4KeseN9vyvKdM3QxVKMs40kKyDioTK5y38s77lUqS+CUCYQ/dR3pp18qvGtG01Bq/+5eALJL3/Nt1vlgA1JKIrdci7PnAPLIEd2OYRC+fAbWiHayazfqvaWE1kM7jnPrNxO6UBcSFUL42oLHEqNhSNG7XTQ2IbDaW/H6EriHjlYGMZQOfmdXb0RKE0N4JddkytWI63Om0v/UAlSqv+jRAezpFyITKdyu/rzuMNiAVAbZDzZhdQxkPVeuF5nJIfvT+jcoy+ZAgZdIYTYO8QXeiUj4uEhza9RwnZHld22kzu7JbdlJ/2+fRXbrMyNwxiRq7rweIxwi+cJrFe+IyuZIzX+Tun+4r2q7IhYltXBJpX2eX/CJZ17RviS3rOit6+Js2417uJPAmVOIZLOkn1+QB1gFCM2aQeiK6ccc84B4Pb30P/gkznZN5WYOa6H27puwhrXg9fTju68BXj4jMPXmu6Sefz3PzmAQufwiIvNmYjTU+9O1CYHZ1oK7/3BFgBX0enL2H9E1oCinvM1nPTQ0EJh6mh73c6/8QeM+KZVyQtb9N7/5Tb7+9a9z9tln47ouZ555JtOmTeNf/uVfPun+nZQ/osh8eq45pPb3LjgnpcTdsQ8jEsT6I9FZBC88m/TCxXrTKZClmZitzVijhpPbsI3+h58r2qg9Msu0sldz+zWEZ11KeuHiSvTv1VdidbRhjejA3bUH5QxuaoZlEbr4PN1UWwu1X70P70gnBAJYPhRByvPwunsxYhGMMkR2NTGHtaKwKDfilAv25Ek4BzurILYEyjCrI5MQeJ095N58D68/C95gpFzuOEh29QY9l/lARgkixPVOiEc+cO5ZZBYvrYjQi2gUs66W0OwZpOcv8pnzWQROGU8iHCpwohXaFhC95Zrjtn2iUljn9bV/NAenMAzCsy8jNGtGAU0woMhabS1YY0bgbt9dYsgJyyI0/QIIBEjPX6Qj4QMTY+oUR+t4dDiZbFVuWdmp+ZRFOETsrltRd96si+R+jOlqQgjCs2cSmnVpxbgLbX/mVtSnbwbP0+lyf0Gisjm8vsQftNaUUsiePjCNEqqM3NZd9D/4VMk7lFm+GpVzqb37po+t7yfljyMynSH+/Z8XFQzUxUvj3/8ZDf/7qwVEa+EsiYYxIuFqjzspZSITKU0F1lBXguwxmxqp/fLnNUJSiBKdx9m1j8zKDZQg6HMeicdeouauG4/RmMwXX4xArpRGQXkQOO0Usus2FaFEBxF65BycA4cKDnslJV5XvOL3jsy7guSTL5Wh/2wi116p0aC2hXK9Ip5W3Ya7/7A2jv0Q166Dd6QL+7RTyL6/pgKhZ9TU6HurqRZKaWSvYebRoEVtK1Bl+mTqndVgCCLnDxbSTG/bQ/Llt8AZdIzLo330/+ZZau+59RhtgzmkDkJRyJVyHysP7CmnYI8ZQXbJuz6OaYPwnJnIrh5yq9eXIg8DNsGzpmiDvD+FH7pf9ZSiUzMbt+MdPErworOxQvocDZwxGeO5V5DuIJ+5ME2Mmhj2aQN0K1VQsIe7EbX10Jsu/Y4yoLY+f14OfF7WN9PEnjQelZVl1xUqq7AnjUMpQfbdVZW/dzSGUVtDatE7pF5eXJgX5XgkX1oEQRtrWDPC9gFgSIl34DBeY70vV63K6bVmnTaJzPKVVdsOXz2L5KPPlRQbFAGb8NWzMOpqCUydTG7NhtLrlkX4iukYjfUYNVFkvA+Vd7YI08CoiRI4/VRSC5ZoPvHyDBrb1BkVJ+iwl8k0MpXGbKwv7C3e0U7fAokqm8M70oW3378ugbBMvKNdhK+ZRfKRZ33HLbt6iu4tjsgp3N378gWWRb6Qb+n3vP2HqbnzerLvrymlArMtAqefilFfq5/ttxSlQkpJ/y8fJ7dhe8GpKHt66fv5o9R/7XOYjUPo/eGDpe9Y1qH3/z5I4/f+gfAVl5B9b3W+7fx3bJvAlFMw89RSoUsuwJ46BWfnPuxR7Zi1g9ncwraJfuo6IjddDa5Hc0cjR49qx6N3uLOAdC/Z1/JzXtUkAsg5ZJa+h3soXmIT0dlPdvFyIpdPQ7na4CrPHFaBMJHr5xFfvb7k+kA8NHr79fT+6KGiOhFFojSveHD6BWQXv13RrcB5Z2LUxAieO5XsyrXgDPxm2jkcvvJSsms2+vNgO67e72trUam0D7OUwAiHj4HuB+fQUYQ9kLVUtpYOHCZ6yzySL7+FpGzOgdClF5FdvQHKssFU3sluNjcWKMgq5jSfWQQCJYvrkuQDmzkPWcIZXnSGAkro9zB8yQWMuHEWh3ce1IWPi22LauMGyOXof/g53KN94Obb8QTJBUuxTxmPd6TLP1iYc3APVVKf/D5iRCMEzz+L7IoPKtH9s2eQXrsJd+tO36wGc/RonK07ddBElb3/nod3pIveh55GxQey5PL3J7PEv/0j6u7R1HQq4yGL9hgh8pncYweLt5aLCIXyepT/da8rjjlxvP5dy7LUrNEjjwtyDM6cRvrF1yrHLSA8eybu4U567/9NybuQW7uJ3gd+y5C//1yh/k25qEwGqzaG0daCzNeTK5bojXNJvbumtMP6Tt3Grn3a7+MDuBOWqc+5lqGELjiHwFmn4x3txmyoP2FfkPI84t//OTLej8zXNZS7DxL//i9o+D9frRpIBD3n6RVrSD69YHBeXEi9tgwMg+i8mQQvPFcHQIv3EMsictVlJF5+Q/fBL4Mm52A21OP2+dWaEAUWjtD5ZxM483S8I12YjSc+7pPiLyfkQYjFYjzwwAN0dXWxf/9+2traaGr6yy5K9t9JpOPS95vnSC9fC4ZAGAbR6y4jetmJFZVNLX6P/sdeKiiSIhSg/it3ERjV8Ul2GyMSpu5r95F87DmczdvBNAmecwaRm+YhhCD50huVykzOIfPOKmI3ziY8ewYiGCC9YDEqkcRoHkr0pnnYE3Uhz+gdN9Lz/V8i00lAgWURvfGawmaU276H3l89XUh9tUcMo+6eWwqoyNRb75F4+lVtMEhF6JzJ1N55jaa1OYa4u/f7G6emSXbVBuyxI8mt2YhwSxFbyrSxO9oQ0SiyP1kZhQfMthbSDzxcyYGbc0i+9Aa1/+MWncrvlWUf2AJrdGV19Yq+7zmgUW5FtysFKplDZrKEZk4ju2Yz3q5d+auCwFlTCZyiU8vrvvJ5ur/780HDWQii184oSW/7Q0V5Hv2PvUz67dUF4yp6zUyisy46zp0fnwjDAB9u2Np7/4rkM6+QfXelTl8eN4rop67FqNOGY93X7iP5+PM4m7aCYRI4awrRm68+rqIjQkFEMOBbG2AgC6XwXdP0LwL7MUi1cf8x2v5TiPI8+p9YQHrpysG1Nnc6kdkXn1AGjrNrP72/fAqvpxeUwmpvoe6eW7CaGkrojQZvcMmu/BB5y1W+6NWT8ucr2ffWVtZCkQqZzhQQ1+nla+h/fL4OvklJ8IxJ1N11/QnxTP93FZlM0furp8lt2qHpbkJBaj9zHcEpE0q+53cep155y/cdy63drNGjPjzQAJgm7pGuEjqRwYYE2VXrcQ8PGPXF+4B2Rnh7dVA8vWIt/Y/O10awlASnTKD27hswQkFC084DwyD94muad7phCOHrZhM8cwpevK8IYFCM7jexR3Xoc9S2keWIa9vEam8hvXSlPvuLkI1KCbyeJKq/ekF5ze/bhJQGQkrNCU3+7BcWoXxgue+JV0i/9k7htv5fPU30mpnErp5B57OvFzkpxOCcf7gF2Z+sirg2mxvxjnaj0j4FzoUgu/JDgpMnELx2Dpln55dMeeSmazACAYy2FoJXzCT5wuK8M0cjzMM3zC1C9/ug4PN7eWbbLnq/N0jBkHhsPtbo4TT+w+cQtkVozhX0/eb5QZS8FNTOvVKfe36UF/m5M8eOwFu4FCo8IQJvx74qaykvyaymTrHLs/PyaNB1W8iu2YTnmhiGN2iUS4HTm8Tr6SU5fzEyU4oeVBmHSQcDeQAAIABJREFU5MuLafzHvy0BsxTENLBGdWC1tegzv/xdCNhY7S1k3luni84WoUFR4PWl8bp7CZ47lcz7G8iu3coA1C84eQLBc6cCELn5arLbD+Id6dHXTYPY7MsL2ZjRO28h/sAjg7Ua7CA1f3ULwjSxRraT232oJKNCoRA5F+sEsjllOkPfr58mu34bGAYiYFPz6asJnzVZZ00EyhG4QDCANawF2devs1jLnIbK8bBamxDjRpF5bwPZNVsK4w6cOp7guVM16rGCAgFAoDyFCAaLHCxFv5nS7ZvNQwnNuYz0C6/qaJYCUVtH5Oarjztm1dtPbuN23+yA1IIlGDXRqmCh5HOvUvPp66n78udIPvEC7q69EAoSuvg8IlfP0nMqJfEf/Bpn22BRYGt0O0O+9v9gFDlo/XRFs70FTCtPy5HvLyBCJlZ7K6z8sOq4RCBA6uU3fW2i1CtvYbY2I10QRmkmjPQMsm+vIjB+FIgAqDJ7TARwt+zSe4dvxjNg20Rvmkdu+x7k3n2Fq0ZrK7FP68Bw9PbrMepqyLy5HJXJYA4fRvSWa7HaWsiUOBNLRWVzBCaNI3WwM595NNC0QlgGZmuTnscqKFt7WEuRXlJ0v2FgjWons3AJUgko47BG6KwcmfNQnh5+scNPSZD9KczmJp3VVNxnBUZ9fVHw3GdfUyD3HvK5lg8mHCxFcRsxHwpfy7+mGEJALn/Ol6Omcw6pBUsITz9X3182byIYwOpo5aNK9NZrMWpjZBa/jUpnMDva9O/d3obxwQaUNBBClmQ1KGVox3q8vwgVXRwJAa8vibttj3887kg3DKlDFrLUirJBDEVwRLsem2VVvv+WiT2yncx7a1FZx9fvYDU1kHh7FZ5jlDwbFGrTLpRSx7SL3E078EQAIYto2pRACQtn4za9L1ZwsXu4u/fjHjyC2TxUZ3OViYhGwLap+8bf0n//r3G37tQXbIvI9XMInn0GiflL8lNaqq8pFCRSWFMn42zfXbGelONhDWvWWWqvLCE5f4n+XErCl5xDzS2zj0sNk9uwTTvF3dI938s6ZFasxWxtxtvpX0s0MGksid8+5+sDS7+2jMhVlxK9eR5GTZTMG8tQqTRmeyvRW67BGj6MwLhROGs2IERpYFspQXDMCERNDHe3T70E0xwc94KlGoQxMO6Lz9bj/guy9f+YckIO+6VLl9Le3s7o0aNpbNT8STt27ODgwYNMmzbtOHeflD93OfjLZ0i/O1jASQGJZ17DrKshdPbkY96b27WP/t+9WPrOZnL0/MsvafrRP5UoWp+EmE2N1PzN3TgHjmIEbaymwcJ5sqvH/yYhkIkkZuMQwjOnEZ45reLAUEoRv/8RnealbwLXo++Rl7SCZpnEf/ibEsPc2bWP7u//iqH/58vk1m2l/4kFpSjYlesBqPvsIELPPXgUZ+8h7ImjsPIoWq+zp2Dwlojn4R06SmTOdFLzF6P6PQpEf5aFNaIda2Q7wfOmkn69lFpGKRA1Mb3lV+WR79JKHDblhOrKgUA+kHEs8Y72AEaeb1ZSOJxNC9WfJLloObndh8GxGdAs0ivWY08cR+jc04j/7EnNtT9wOClIzl9G6NwzSn7bP0T6n1pI+p3V4LgFZSfx/CKM2hjh808vfM/t7EFlclhtQ3/vg0XlHNzDXRh1sRJ00IDI/iReTx9mc0MJT7UIBIjdei3hK6bjpTLYw5pK2jaHNuiCgvkX7URpl4RhEL32ChJPv1KR1RC9btbvNbaTcuKSePZ10stWla61l95E1ESJTDvrmPfKRJKef39Qp/3mxd1zkJ7v/Yqh3/kK3lF/LkhhGsje/j8Lh71MpPC6eyvW+UmpFO9IVxWUnIfXFSe3eSd9D79Q8p3smk30/vIp6v/m9j9KH5Xj4B7qwqiJYtb/fmnefyqJ//hhnN0H84a1h8w5xH/2OA3f+Bz2cQxr77A/Uk5YJl5PL6JjGHLP/gp0oD1hLLKrR3PYO2Uc9ijN++mVOQKKRDkuuW27tXO3+Pdet4Xenz/BkC/eCUDownMIXXhOhd5i1tcSPOs0sh+U8u8K2yJ82UVgW3n+XUr6oHIKa9wovKcXMoBsLLL8EbaF29WjmWoG/dSFcStPt00oqgs0Skrut08ZT3bnvhJn/YAkX3iD0Hmnkdm5r+IaoCl7enqJXn8l/Q8/W3mO3TAbryuu6fYct8QPahgK71Anbk8vySdfQymbQS+tQf8jLxM6ewru4S6S85eWOEO9zl76fvkk9V+8s6ojcgCkUuysHxB35156H36B6LxL6Xvo+QK6VD8c+n71NMHJ41CBIKTTlUg2JUo4/stFSYW3rxIVqEVopHtnT5W9xdFZBdv2gBJIb1Af0x4xgdcdR/b5ZxbIeAKjNkbovDO0o6aoDcOyiFw+DWNIHWZdDV5XzyAC0TQx62sJTJ5A6sU38s6myrUme+JkVqwju2nX4HiA7MadpF5dRvTKi+n92RN43X2D8+oqEi++SWDiGMzWocR/8hgqnSvcq9I54v/xGE3f+Sr2pPGwuJz+RSAisZIaXTKVxuuMa/qhoiyX+E8exdm6p7C3qJxD36+fwRpSR+C0CZj1tXruB5x6poFZV0tgykSsjlay764uDerZNqHzzsCoiZFcuIzsxp0l485t2kVq4TIC40cUnKwV2QGWhWhthrWbfFGRRmsLzq79JF54C5UZcCILRGeS3p89QcPffzZ/Q9nPnb/f7eopvGPl+5p3pKtQvLj8VRECvMOaMsYa2UHd1+7zddD1/uRRnG17Su53d+4n/uOHafi7zxQ+83r6kIkUsn7w97DHj0bmKjuusgprwmid3ViemKDQ/PmOg/ShGANQiRS5fGFwlMj3Le++E3q/lp09KKnyPPIDTjsTpIfb2VM9s9I0dLBj0XKcfd15m0jbTN7hPpKvLCE291KEaRK55kqCl1yA15fEbmsafGZgkIasDPyLsiwCp4xDvbaitF0lIBTBrK8lPOsS0q8sLtszIXjJeRjRCKGLzyHz9srSzCPbInLlpfT97vkiZ31R40qQ23sQ5XgoZeUdwEV7CzozI3rDHPp+8Sgy5wzOacAmev2VuIf9KYYK77Kfs32gB8e4NiDh2ZeSfmlRxefBaWfr870Kdat3pAt70ljMoUO0juAOvt8iFiE49dj+khMRYRhE5l1BZN4VFe+J5sIXes8sy3owwqHBfbb4Vch/TcZ7K9/tIjGkwqirxztahkaXAnvSOMyO9kK2dml9DA+zox1U3qXt07YRieB196H9AWVnScbRPok8cMKL9yP7k1itjQUwhXu4C5VTeeaBwmxo/vz9h/MgR58z2tU6tDVuNO7+QxXbmj2iQ1MXWRZ1X75H90fKkrocvsWoyTvwlSA880IyS1ZoYOZAH2yLwJRJmI1DSC15n8TLpQCQ9NKViIBFzQ2DNrjfuJ0DRyBXqa/hStxd+6i57Vri37m/sm/1tQTGj8aLV9anAO2nwHERwQCRqy4jctVlFWstNPNCks+/ls9cKlprQhC9bjaZD7fofY+y9eApzKENpJauJPHSmyV7R3rZKj3uG6/07ddJObackMP+29/+Nr/97W9LPotGo3z7299mwYIFn0jHTsofR1TOIf7Ge5XRyZxD8uU3j+uwTzy5MG9cFD1TAUqSXrSc6JWfbEAnu2E7vb94CpVzUFJiNjcw5G9uw2puxBoxjNy6St4zYRj51NGiz8qUR2f7XryevsrUOU+Seus9RCBQyf8ldRHI3KadJOb7I/Qy76+n5ra5oBSd//MBTXmRF3vCSIb8/d1Yw9v8Oc1tG3vcCIxQkCHfuI/EU/PJfbgZYZmEzj+T6HWzEEKQ276vgv9PKYFKZJFKoqTyP7MVODv2+WeeGwaZ99ZjHydrwhrVoTk2laI4ki6Ejmanl6yqpAPIrzWraYjmn6uYc4/04hXU3DLnmG0fS5Trkl6yslCoqyD5tsPnn47X3UvPA7/DPXBUR74tk7rP3kDojIn+Dy2T5MK3STy3SCPmXI/g5LHUfe4mjFAQ5bj0/uezZFZu1Mqg5xG98iJi112GECLf9qO4B44Mtn339YSmTipp4w+pjxCefj4Eg6ReWoTs7cNsaSJ24xwCE8f83s86KccX5XmkFq/wRTak5i85rsM+/c7qQhr/4EMVKpsju24r9qgOsj5OeyUV5tA/Lfe/cl32/vAR4ks+0E5LzyNy+fnU3DjrI9f2+EsVa2S7PxLVMrGGt2mESvlacj2y67dpuiWfwODHKcnF75F4cqH2WbiSwISR1N97y581LY974AjOvsOV6EHXJfX6O9TddcMx77fGDNdUd2XGmvI8jKYG5KGeyjNWGrj7jmoUbS6HdEvXu7AE9rgR4EnSu/b7tCoITBhNcsFS3987t2lnBb+23ztV81c3YDY3kn5zOSqTxR43itjNczEb6km99Z7mHvXh9s6t3Yw9ZrjmmZWlnM/K8/LBfFMbaWXjxjBxD3eWBBkL9wtBZsU67RyuIvH/eAzTUyWOxsHnS12s7NwzEJZF8vlXdYp9UwPR668kOGUSsi+Bl3VQZXPuKUF43AgSz75epKcWc0nroL3s7fef8y27kfF+TevnoxkpYZBYsMS/3woyS1ZCzqnQkQfa7n9uEcqRKE9gmININqU0Alflee99t04B5oRRqDff9WlbISxL65J+qEjTxBo+DJnMFH1Y6nyTqSx+zvri/49ccwWZ9buQqbyTxxBEZs3QxY+B+q/dS+KZV8h9oMEqgbNOI3bjHI1yHzsC98BA/Z6itebotZa8/1HfMzS5YBmhsyaT274HcmWoxqxDcuEygqeN93XcKdcjs2oD2bVbKq4ByEQGr7MHo6GOvkfnk166Shfm8zzC086k9va5yO5enO17K/cWxyW58G3q7/0U9V/7PIlnFpBbpZHdgTMnF8ZtDm3Q1598GWfHHoxwiNCMC4hcqbl9kwuX+Y/71bcJX3I2ClW5txgQmjgGXFkVgYvrkXx1GSpTmsWich657Xtwj3aDaYHnVqxVTBO7rQXpuJVtm4LQmBEYtTFyG7cjvdLrhqmwxo0svcdnQWfXbK6sIaHQFDxoEED8p4+T27YXYZn0CIh9ag6Ri88iu3qT5sHOFs+bANsi98FGAhPGkN5/BKRXNjYDq60Zs6WxApkNYAwdgj1hDOkFS0ufm+/bwHuk285BcUHOYAB7eJtGtB7wqVMldNu9vyymN8zvTTmH1KtvE5t7KTKZIv6TgXHr6zW3zCYy/RxUtui9VmX/mXPJrFiHXzaYyuRwD3cSmTuT5JurUH3JwgNkMEzsRm1rWadPxnt1BSW2nBXGahmK7BqguylFHoNCxZNgByCbLvuOvm42D8U+ZRwqWotMDQLrjFiEwNTJGLv2knr5jYqdRymFMAwC40fhfOj/DgfK1pqfxOZdBkB6wZva6W4ahGdcSOymq5DpjD+3t2Fgje5AGAb1X72H5DMLyL6/FpQicMapxG666mOnWC1/T6yR7XqtOWVBf9vCHj2c3M69eDvy52zZOxyYPIHkc69Xbctz3DwneqVk3vsQd9/hqntL8sVFyEQKMXBWFbetIL1mI+RrMZSNUD/DMFCpNPGfPUFuy24NVlOK2E2ziM48r4jWtfIsklkH6ckqZ7DSzARrtvhmDuY270FJWYJ0N8pQ70ZDPd6BIxVNK6Xr2Zl1NdR//a9JPvUyuc07EMEg4ennErlqJoBG1vuh3N9YQey6y1GZnB735p06s0QpYjdeQfSy8/H2DgTkK8ed23+E2uFt1H7hLvoffBKV0BmQ1riR1H3hLv3fw5pxfXRNoyZaUeS3fK0ZhkHD//oKvT9+UI8fMBrqqPvrOzFiEVKvLK1YD0oJkJB+bx3Jl98qOmvy1zMOqTfeJXb9FScLz/4BckK7S1dXF83NpfQJzc3NHD1aecCdlP9aIlPpKtZAPr1q4HtSkl25CZlMEz5vMkZEc1G5R7srlTtggAPv4xClFO6+I6hsDntkW+FQ9Lri9Nz/u5LN0DtwlO7v/Zqm736F6LVXkNu8o3SzDNhErr7suBz9sqfXPxLteXhHujUVgZ9BkOed9kvdBsAQqGSa7n9/qMRZD+Bs2U3fQ89Tf/f1BE6bqAt6DRjWhkCEg4Qu0gVtzCF11H3uNv++d/cxiJIrEtNEdvfpTRVViZKTION9WvuveKjUv/VxJHr1ZeQ2bK2c83kztYHjV8gXkL39eN3V5ry0beV6OLsPIiwTa0TrCTkCVSZblbdQ9iZQStH9gwc1KkoqvaSzEP/ZEwz9p3ux2o5NAZb5YCOJ5xYhiwyG7Prt9P7qGYb8zW30PTafzKqN4LoF5Eby1XcwG+sJX3wW3f/2nxo5Xdz2z59k6D9+HmtYs3+jv4eEz59K+Pypf/D95XP+x5SBtrFM7BP8vYvF6+7F7YxjtQ3FrKleMPjjEpVz/NNtoSqSq1i8znhlABXtNJM9vVjjRpF5by0lnKmAUVf7J68B0P/kq6SXrQHXKzhM0otWYA6pI3rZ+Sf0DOVJnN0HtJNgeGs+Ff0vV4JnnkrqxUV4XfFBJ5BlYbW3YI8bqT/3EWGZyN7+j8Vhr+f8IBgCe0RbYc6z67dVZIrltuwi/tMnaPjKZ6o97k8uXrwPYRqVqolU+SwwLdXGHZ1zKblVH+YLtOa/HLCJzLwQIxjI02xUnrEykcSoq0HZ4SJnRb4tF+xxo7EnjCT9xnKk45WgI42QTejyi0i97U9zICwTGe8/Lr+2ME2ic2cSnTuzcl66eiud9QCui9fdS2T2dLLvrysqTKvHHZ5xgc6UyaOZK3QLwOvuKyBwSweu51wmqlPqyL4EZp3emweO6cI2b5oFR1zwzMlYo0bgHu3GamnErNNr36iNoVwfh4ACYjW4W/ZW1VPdw10FY7dchG3ixfuQ+dI+5TqT9FTVQIT2kymcw11V2/YOd4MrEcKoUI2U0ij/qvqaElg1Nfnr5YhqgQoEMdqaq6AiXURbc4WzvFiczioZqkUSf+BRDWwZEKlIvPQWgQmjCIwbgRGLUPPp63EuPh+E0Od33lCPzLpYI80zZWvtknMRkTAqmfJpEVQyrdt0ffQ5Bc6+Q1jtzZDNlfspEdkcXk9v9XpMnocX7yP9zhrSyz7QGXL5+Uu/vRqzNkbglNHV13l+zoxohNo7b4A7/QODVnsrtffeibP3EEYsgt02SMOjElXGnUghImGkZ6CR3EVBDqkQkWjerzrAYV80bqEpRDOrN/mP25HInj4ic2eQeqHSqRe+8hKMaBjCMciU8ZJ7YI0fhT1xNP3PvFFxr/QEoZknQK9ajVZcafuz54FHNaDI9Qpz3/e7l7GaG7S95VerKefg9fQRvmIambdXaTugaK2FLjxLZ42N6MA9eLQCgWt0DCvwLg8G0/S/hQDCEexJY7BahpLbd2TwXbNN7IZ6nVExqkOj1NNlbV9wJkZtTGck+Q07lUFJSc9/PIazTQeIVH6IfY+9gtnSiAiH0IjryowKImFdHN0HeSwsE9nTR9+j8/POeigEIlIZun/wIEO/eQ+9P3iQ8v1BxRN0/d/fIpV/gBUEErDq63ETmfKL2r4MBonf/zvk0XjJ82U8QfcPHqTu9rmovDO3fF8jHCF0xTR/ylvTJHLNZb7zWS6xeZcVHPfFYoRDRC6/iNSid1BZHWwVhsAIWETnXFr4Ts0d11Fzx3Un1NbHJdbIdl1AuXxeHA9r7AhqW5vo+T8/rrjPbBmKPWIYUgoMo/IskRLo7dcgG7cye8frimsaoCp7i9cZ1++v8F+L3uFu33VYeIaU9PzsCXKbd2nbIf8eJZ5ciNXccEzqRxEOF85OX75119N+DR+9RWVz2lYLVHceWxPG4Hy4xffZ1vjR+t8tQ6n7G399WOapBMvnVDk6syD+8yfJbd5ZYjP1P/Wq3tdyPtSKA5Kn/wqeOp7gv37T9yvRG+fQ+6OHNKA1338RsIneOPuE7GizvpaGf/qS/7j6dC0E3/Vw8GipXlAkKuuicg7iZOb17y0n5LAfPnw477zzDhdeeGHhs3fffZeOjk+Wo/ykfPJi1MYwggE8n7RZe7T+fTPrttL9fx8tWFK9v3mRyJUXUH/rbEQ4DPhHZc2G+o/cP/dQJ10/fATZm8g7khV1d19L5NzJpJas9KnerVCZLLmNOwlMHos99XRdVEvoVD1R30jowmMjXAGsUe3+KPeAjT1xNEYgQGbVhkqFQSrs0e3YY4aT/WBjxSElTBNsC++Iv/M7s3wN3H09kasvI7NxF8JxAYWSBtG5l58QqtEeO5zsqg0+bRuYLUMLBl6xFSmlQGBgjxzm72wM2AQmjjpu21Z7C0O+dg+JZxfi7tqPURcjctUMQueejpISIxL2dVrao9qxRw7Tyohf2xP0wZhZs4WeXzyj16ICIxam4Uu3Y3ccu9CxiISrtm2NGqYzKuL9lelvjkvyjRXU3THvmM9PvLwEL1PKgalyHpm1m/F6+0m/vdo/i+WVpVjDmpF+bbv5tj99fH7RT1Iy67bS87OnC3MuoiFq/n+fg9gnT42RWbeNnp89VdJ24xdvxz6BoIHKOXT/9Cmy67fnU1w9IhdPpe6OuZ+oE1iEgtoQ80lHtEYcvxZDYNzIAp1OudijO+h7fAHSFQhjcL0oCW5n7x8FcV1NlJR6Ty7bE1UeFXkiDvvM+u30/PSpfHAPRCRIwxdvJzDyo9ew+HMVYVnUf/1eki+8TnbVhwjDIHjBVKJzZyCEIDB+FOmjPZWcx1JitTR+5PazG3bQ/dMn9b6vQISDNHzxNgKjhpFc4IP2zCOPy9Hef05id7T6F9u2LQIT9VmS3bST7v94YnDcoQANX7iNwJh2zKYGAhedT/r1ZQghte4QqSE488I8SnZIieN/QKyOVpz9h3UB1nIRgvTytQRPG0/g8ktIvriUwTNYEL16FoZhEBg/kvThzgr9Q6Pcj8+vfSwJjBlOOhio5Ni3LOzRHZhDh1D/jXtJPvsqztZdGLEI4VkXE5p2NkIIzOYGX93F6mjFHt7iP+eGQWDSaJQhcHw4dBVaZ4m1N9G5t7PMca0wDIHZ1oRyPXp++QyZVZt0cTzHJXz+adTfdS3Z9VurBuRTry3HHt5CtfJsRiyCMawJ14deRuVcHaxXAk3NrwZAogX+5uDpk8itqUR7DhTFM6ORY7QdBttCZXK+uBm7vdlXX1NKoJTA6+1HehodZ5j6upLgeQIj55F8fjHSKzsrlNb3ks+/odt23QrjXQGBjhZS1fgTELiHOnH2HqrUk3MOyVffITBuBNmte+i5//FCQVARsBnyN58iOH4EZkM99f9wH8lnFuJs2YmIhglffhHh6efptdbW5It6Noc1aZRpFaoCPKVtF8vO8+8X3RuysEd1kF62ujoi07ZJvr7cH+X++nIil59fhbvfPCEdGSDx+gr6nnwVYZgoKbFbG2n48h2Y9TWYw5p0Ydryx7c1kdu0E+XKMj5l/ZumFr9H3eduRFlWSY0KACNkYo8ZjlxQSpVZLF5fktCM8+l7/i0M5RSA2RKb8BXTcI/2FFGElkrmnbUaTVlA/xaJZZL7YBPW9HNOaG78RHb1ktu5r5QuE43YTCxYRmzWhbpAqk/dAHt0B2Z9LUO+eR+JZxfibNqBiIQKaw0g+cEmhGNgmHJw3J6Bu2Yr0XkzcD2RLxxbLArLthGGgX3eWaS3vULBpeJB5Jwz9VlRX0tw5sWkXlqUz9IREIgQnqUzKqyOFtw9ByvGbLY0Inv6cHbsq8zmyOtUsdnTSFpBhJMtNffsIMGxIxBC4Oza71MvwcXqaCH34Tbf+XZ27CPx5oqqmUPOuq0ETh1DzucsUEph19USnDIe9+CRyv3BNLA7Wsit31q1bWVbvtguKcGwAxiGQc3nbqfvgd8yGOkR1HzmxtLisn+gBGdeSOKdDXjJuN4MhSA68zzMj0jL+lElu3ozStigBuu1DNSJyazcQPTyCwhccQnZ15YM3mQHid2XdyYbJtLzMIyycwyB1daEdH0yaAxFePxIrBFtZFdvrsygMRSBSWNw9x7CzXmYpiokZEhPIBWETx2Ps2U3/pFr8PpTBWd9sai8jRy7/nKNCC/fk4M2gfEjyW3ZVQhGFAfWFCJPLet/jilAmUbVUw4gOG4ESWEh5OC+phQowyJ06rhj3KnF6mghu7WsLqEAa0gNXiqjayyV+1xyDon5S7Ha/PU9BYjoifiCRmJOmEBm9WYGth57xDCCU0897r3HE2tEG9kPdxTpJ1oMUxE4fSLMX+p/oyIf/Dkpv6+cUE7CF77wBb74xS/y3e9+l4cffpjvfve7fOlLX+JLX/KPvJyU/zoiDIPWu68tTY8RAhEMELvhCqTr0v3D31Uc+KmFy0mv3Yp9DOSxVeSw9+L9ZNZuxdlXqYhWEyUlnd97CO9Ij450Z7I6fehXz+IcOKoR2X6pawrtJF2+jvSKDXiOiZuzcB0T51AP8V89e9y2raYGTQdUPC+mqQ3YC6cSOvc0zeVbvPEEbIKnjcca1qypTgJ2qbYTsIndOAtZBUEDgCdRUtL1bw/j9Wdxc7rvXk7Q9+hCHB9Fvlxi11ZvW3gamaOUQEoDz9N/IEAYmEOHEDr3tNKI9sC4j0PlMSDW8Dbqv3gXQ3/wLRr++UuEztX88MIwiN0yu8C7mPfB6r7dMEu3fd6UgrImJSjDwIiGCU87E7czTs9PntDIk0wOlc3hdfXS+b2HjstbKAyD2KfmVKxzAjY1N87Szvp8FLr4D6VwT2DO3aM9DKaPD6aRK09oVGO+fyXPJs/H2Zvwz3KRSlME/QnF7eql54HSOZfdfWz/x5/4O2c+RtE0QY9XtN35/YdOqO34I/PJrt+uUXLprOYLXbaG5GvvfqL9FkJQc+tVBU7GggRsam6efdz7rVHtef7Pwc+UAuVKHdzp7UejRQykp/+UMhCmVRWt9fuKyjlk1u8gu3lXJT1PtXsct3pmwbH2vLx4Pf30/PgMXFYLAAAgAElEQVQxZCKNTOeQmRxedz9d33+oJHPlL1GMaJia265m6L/+A43f/Tqx668sZEtEr7oEEfTZz6+e8ZEzKrzeBN0/ehSVSA++Y/GBOc9V5cAUlonsO0YR0o9RvL4kmbVbye0+iFL+Bl+5GLUxwpeeV3Z+G4hQkMjM8/S4f/i70nH3Juj6t98gMzkya7eSXPQ+nmMM6g5dCXoeeByAmlvnamfnwDmm0O/3LbORvQmE6aNaK4XXHcc5eJTki0sLKGmV50bue3QhbjxBdM4lulA4ovBsZVtE504vqQfhHu4is2ZL/uw5MQlMGa+D9paJHDhjLRN7xDDs8SMBsFqbiFx3JYHp0wjOvozgRWcVHLo1t84tPb+Lxi2iEQgEK/ctKTFHdhC5eTYUnX0D11EQuXkO4XEjUbL8DDUgWoMRCtL31OtkPtiskWjpLLge6fc20P/iW7iHqnEeg0xlMPM1CyrOd3TBSrcnURjTwLikBOnIwX1cCa0vuXmdKW+oWs0Ng2MpHhdgDG3EPEZQzWgeiqit8b9fCKRU+TnT+ppSRv7fGn0qe5MoZSKlgetYuI6F51mAgcrXwFCq7KyQuu9eVxwKnMiVv4kwTEIXn+nb79D0c5B9SR0I95lTr7sXmUjT/e8PI/uT+h3L5JB9Sbr/v4eRqUx+7hqpu/d2hv7gWzR++ytELj2/dK2Vn6G2Re2nrtJO4SpGvwgGsIa34WUHnLuDf15W6qB5fl8oH7cwTa0HpnyQwYBKZTAiYaJXXlS6txgGIhQgMusi3/uKJbtpF/1PvobKush0FpV1yO05rO0s0OMrp9awbWpuvUpze/tsgUIIZCKFNbwNmVUV45ZZpcddLciBznI9+s//gXIUrmPh5PR6Uq7iyD/dr8EufvYW4B44itfZ46uXKdfLFwbOf/dwN33PvUly2WpklSBbuXh9/agSLufBP2fXQeyJo7GGt5bOm2VhtTUROFXX3jKbGqi75za91v73V4nMuGCQliHh6ACYm3+HXEu/Y1lPU90UnPVl66k/g9vdR98jr1T0uf+p13EOdpLdspvES8vwcvmzJGfixlN0/+gRAE31GfDRFW+di9eXqFpHS/b0YU8YpYFOVgCl9P6grABmaxOB08ZjjRqOkrLy/Q4EEdFIddCzAmeHH20bhYCGMXIYvnsHAtHRSuSyCxCRcGk9toBNZOb5GDXRElR08d6B0u+ZMGykNMrsVAMsC5nO0vPTp3ALc6rnNf7rF/E+Br2k5wFdH6OI64PUGyvJrPUPMvyxRPb1o6REDpxDrt7TcT28nj5y2/eReu39ojmxcNOS+I8eyetOet26roHrGLju4DkmLAvpVq5zJQXKtAmcOyVva4iSPykNQpecgwyFAAPPswpnkZQGKAOztRGVXyvFZ+zAn8yj+/3Ei/djj+nAHju8VG8xTayhDQTPmIiX0bVKBs7Iwp8UupAu+LaNAnEc+8Ya1oJ0jcLeMLA/SAeskcOO+5sN8PsXzxlKYLa0oBJpf2Aouu6H0dJY6PuADPTbbDt+5n1i4Ttk1u8oWsfg7DlM76MfncrcPmV83llf6vOQnqHPmmPp6idQZ+KkVMoJIeyvuOIKfvWrX/Hkk0/y5ptv0trayi9+8QtOP/304998Uv7sZcjMc0kKi+RLi/G64tijhxO7dibWsGb65y+r+uL1P7OImisvIPPBpkpFzjKxxw1HSUXvw/NJLtWcxngSq72Jxq/cgRk7dnHE3KZdOoWxXFyP1JsrCZ46luyqDSVFLUAbiIFxI+h+4ImSYlgD92bWbUOmMgVan2pSe9f12KM7SC1egcrmCJ55CrEio7nhHz5P8pW3yLy/HmHbhC89h8gMjdiwWpto+NbnSbzwBs62vRgNtcTmXkpwygStpPrwCgIYtVFyW3aj0plKxdx1SS5+n/pPzz1mv63WoTR8614SLywabPuq6QRPn4hSChGL4vaUOdCEIjxBG+y1n7kO8/RxHHn+TT3uqaXj/ihijx2J5xj59HXAA6MmplFTQPiyC0m+t7lQzATHIDrjIoxwiMQr76A8n7XoumTWbSV85qTKa0USPncKRixC8sXFeJ1x7JHDiF47E7ujFfdIHKnQxmyxCIV1Ig5LNXhgFd0MUiFqIkipKp+NwrDAHt3uH3AI2AQmHz+C/0lKatlq375JxyGzdivhs0/5BNteo/mLy8XzyKzZQvic6igB5Xqkl6/zz2p4dTmxK08gRfsjSOisUzGiYRIvLsY70o01oo3YtTM1p+lxJL3iQyQmQhUhOiRg2WTWbCEwaTTpznglolSIgvPoo0hq5Ubiv3iOATJKYZo0fPk2guOGH/M+EbAxG+t8kceBMcfPxku9swbpZ/A7LtnVmwmff9oJj+EvScyhQ2j4x78m+cIb5DbvwqiLEZ1zCaGzPjpKJrV8LcoXyqbIfLCJwCljSR/pqTzflcL6iGjv44lSir5n3iCxYDnCMkFKzKH1DP3qnZhDjp/dU3PLbOzhraRefRuZShOcMoHovEsxYlESry73d/5LRWbVRr33lOsOefoctzOOPWE0oqUNd9dBBqBLwREjsEd1oLJZ//3ctghOHkffU4t8VSqlIPHsIuruuobAOVNJLnqfASXACMYIX6CdpzLr0H3/42Q37y5kDoXOGE/D52/U83QMEYZBZM50un/69CAw0bWIzJlecJQe+e6DOFsGaV7iv36Bpm/eTWBMO4EJoxCtbbg7DhTGHRgxAnvMcNz9RzSiWQrII7qV0kHr9NtrAYWXp5YpHrOUkH5pCbkqQT3Zn8Y50k3qzff99/PXV9D0z/eQeMLfCLVHDSM4cTTJl5YiZSU6MDhhFP3PvJkvjliJ/0+/tx5lmshcOX2M0sjl4a16UJ6sUNnC509BJtK+tf4U+pwKnzmJ5MK3QQ2iAwcKYgaGt+q2Ha8wbwNzZgQtXfsCfJ6ODuJGq1PAGbEoHI2jpE5eLXGYAcK2+f+z997hdlzV/fdnz8zp5/Z7ddV11Xsv7k24G9uA6diGUBIMoYXwC29IQgx5f0BCAFOTkAA2GLCNsXHBlmxLslWt3rssWV26/Z5+zsze7x97Tp9zr4wpSV6v5zmPdM+cmV1ml7XW/q7varjrLRjhMMnn12lnr2EQvuEy6t5yLTKVRmZt7ZQpEWEKArMmkdq029t2kLpPI1ctrFk3gMD0CTR95v0knlyBPNeNMbyVyK3X4J8wBpnydqgjBIHZk0lv2aeTelbOQ9MgvWUfwTlTSJzRuRrK2q3AGjNco55PVNPmWG4kZ+S2pZgj2kguX4uMJ/HPmEj0zddgNgy9LsWfW199AK0U2dPnyZ3pwj9tAk1/9QEST67EPn0ea8Qw3e6JY3D6vZ2ReSdOess+HX1SsXYJn0l6yz5840aSq0HhFJg/nb4Hq+eQUqD6Evq5qjr/lR6PCpmt7YSRbsRR1zceJLP7SOH7vp88Retf30lgaocnmrtQfqySC73QMpxkBiEE1owppA+cKMwTmXEITp/8GriSPfR3IHuq061b9XWVzhJ7fGXNJ8YeW6nntUcktnO+l9zJ8/indND8Vx8g/uRK7FPnMIe3Eb31GvyTxiIzWW8d2DTxz5iIEIKmT91F4vn1pNduA6UIXjyXyPWXIQyD1LodHtGYApWyhwQi2Yb3XlI4lDvZqdcOUWKqunPIOaMT1Iv24TgHjhRYVmVaYs2YXHiOlNVrrhASa8xwlBAu/VPJNUMRmj2Z9NZ93jkqHIfUy7uIXve76/d2dz+5o6eqI9yyOeLL1hGcM/l3fvbrFd+ksQUneakYARP/lA7iL7xciGYqiFQ4Pf3kjp/F7BhJ9mD5QYzjgDWskdyJsyjbqYreAUFy7Q5tp5pmNQpeCP0+El70LdqGsA+dwBo/isz+E1S+b9/wRh0h77VXmAb+6RMQQhC+4UrS+39RjLywDepvvBJhmshYCmm7ukUB3e+Oxa5+rI7RZPYfry67vUGDGweR9I4Deu2rjN4xTVIb91B30+B5GlNb9lU1TSlI7z9Gvb/2mqoUBKeOJ2HoPi99hLAsgrOGHoeJ5zwixXI2ybXbaXjfzd7AkguU5MrNHt/qlqTWbq+itMqLAp1X5w15zXLBvTZnzpw3HPT/iyUwcxIBD+eg5kP3FhlPYo5qd7NjFyemUoAUmM2NJF7aSnLtDmTG0WgFwDl2lt4fPk7rZ97r/l6RPXIKp6sfX8cIfMObC8/3Lljh9MUILryWxLNrNOokv4n4fYQWzcRqbyncn0eyCeEav4ZxQQ57YRgEL55Hrj+NTGYIXrFAGzmuGJEQkRuvxBw7FuGzCM4cX4aGsIa30fiRd1Y91zAMQtdfQmrZuqpr9e+/vTZKVipkX5HSRSZSpPceK5Zdgi6xhrd6li2EQDS3QG9FaKsSmCPaC+1uueFS5ILZ3vUYouzBpPP//silCyjhLewZoOd7j9DyiXfR/Y0HUcmSQxolGXh8JYHpHbURPlJdEIIXIDB9IoHpE6u+10hAEypNa5UPGRxCarXfMlGJFEoaBfRJXoTQIYNmUz3hqxaV04lYJmZDlNClvzvv/O9D7HPdnlQDKpMr46izO3vJvnIas7EO/5Qxv5cEo85A3DtPhCOHfN8qZ9dELsga6Llav03vPaYTO88Yj/BfuKLhnzqeZpd+w7OOtkNm/zFkMkNg2jjMer22OP1xnTyOCg5uqZCxJNFbriK9Za8+zMy30e+j7h3Xv+6kV3ZXH30/fKyM0kMB3d94kOHf+CuMoL/wu+yRUxiNUQKTxyIMgRCC+vfeQt8PHioaqIZA+DQCt/A8R5LZd1S3e+rYAg+1fa7HRQBWhPtnnZp8iP+TRGZt4stfxhlIELliLv4xg9N4lYrV1kzDB+/4ncvWfX4MmUwTmDIWs1H3uRxIFLgwy3/v6LF20+WkN+7SB8glYy36tmuHNHRer6S37ifx3MuorF0Yj/J0F93ffYhhf//hIe8XQhBcMgdRX49MeLXbCw1qI2NJZEzvs1W6g2kgEyliT6/R0YIl3r7M4ZPEnniR+rctJXLDZdoJm58HbpRa+OolJLf+NF/DytKxe/tJbztAcs32MgNW9sfp/s5DDPviR+h/aDmZA6+W8Wundxxi4Dcv0nCH5uSVWZv4cxtx+uNELpuDf5xGmDt9MXp/+Fj5upqz6fnewwz/188Qe2ZdmbNe3+TQ+c/3M+rf/pb+Xy4nd/xcWbuzh08y8PgqgrMmgGnq91URNu/0x1w9UXO1l61rSusAKulNtyFMExlPVgEzCrcn01itTfimjSe3/2jFzYKGu28jtf+Yp3NISsjFkm4UUeV1vRbZZ7ogFIFsvOp+Ea3XPNKBEE4sARiuc09imGCObEedPFd0gpfqyAJEKEj4ivmk1m7HSaRQtu4ZEbCov/0aDZIIR6AvXkFFoCBah5OqxXGrf2u4FA56Cy9S6wgBoq0ZTnfp607FdcsqjK26O66n7o7rq0sIBiAQhmz5XqwcjUq0z3ZVO49w51jJ/p05eprkul2YzfVEr1uMUWLM+yeOwf/p99PWVkdnZ5F6UwQDEAyhYvEKXmGFOXq4HqNeh2a2g9PdT/S6S0it2YZMJAvrmvD7iNx6FUYwgNHWijpxtmDX5N+X0aYPKYUQhJbMIbTktdvE2WN5+pOK95mT2ANxfCNa8U8Yg/9T1ZzIKl3k5a/iahbuPKlMMIzWh2QsQeDS+TrnQoW9Jvw+zKZSerPKeQB2JqsjYISqKlumcohwkeu98rqIhBh4ek2Zsx70vtT19QcZ8e//D/lcDfm2FaktBHb/ILl/HIl9rofYoysBo0ztiz+xmtDiWfhHaUCQ0xsjc+gERjREYNq4C3Lm6+iAGvqscvXUWvcOxGsjTU2jMA9840fT9Mm7qn5iBPzUvWUpA4+tKCSYFZaBEQ4SuUE7CoXPR3jpJZjDh6OkIjijoxAh7fTrNUtJUeHw02NFyuIBammfSwmqd6D2WFMUQFVKlawcJddjy9aT3XcMpUydcsGVnm/+nBH//rcoVYrmzovSB42GiQp75EuQAmvkcI1+94qydeRrijjzEhlP1rQd7BpUtn8sMdtb0cwsFftYVmKNGqb9AwXkelFvEYah9Zq0d84SmZOah76GqExO6+e2x/1SkX31bEF31wj2Un+LwO6LY7YPg/0eCVDbWhE+H9E7riP+q+VF28GNiIzedAUylaHnOw+VUw3akr4fPUFg0lj3sNDAtsvHkmGAk0i6ZZ+sLru1JHeIVGQOHUf2xfFPHIXVqhkiZFzrB5XTWNjOBUWZFv051eu9SqTBzNPSuVfyc8jy4Rs7gsCcKWR2Hy7qkj4La3Q7gdlFh73THydz4DhGOEBg+viCI76UP79sPLh8+cI0ara7UP9sjsyeoyhHEpzRUfCbaTvae110uvuRjtBphit0D6UM95ToDVqc1yo1rfsf/OAH3HPPPQDcd999NR/wqU996vdfqzfkv42ELplDYsVGz2vBWZNIrt+FVAZCSfLKllICDIv07sPElq3HSVdkNHcUqT2vIBMplCPp/OefYXf2gRAoRxKaN5mWj74V/+SxNbkig3MmI3wW/ksWkfnVcgyEDrlyDAKXaeSOf8Z4Emt2F6zDPNeW4fNhNjcM2fb46u30/tdTxb+XvUxwwRTaPqkd4fGVW+n9+fLiKaUhaPv0uwhMGTvks6M3XEFq3R5UTFOeKMCa0EFg5mTkQKJ2u+fqRTq+aiu9D5aULdyypw5etszkyB077Xkt9fIeGt5+7ZB1j6/aRu+Dy8rKbv30OwlOHTfofU4siayRhT6z6zDZA6/qUPdKydokVm0hOHMiqZd3V510K6UITBm87CFFVP1HP7vKiPeW4JwpJFdvrQo5FkE/5vDWYihc6bOVIM+eF7hoLvEXdwAOAoW0BaEl838vUQ2vS1zUoFcPKEeipKLnx0+R3LBHjwcFZkOEts/fhdX8+vitgzMnklq7oxrZAPiHeN8i6MdsbfTkW/ZfwPwEiK/ZQe/9z5ShEFo/+Q6CM2o74S9Usq+epfPrPy84RZTj0HD7ldS/+TLd7jXbvds9rQOzuYHWf7iH+DOrye4/itlUT+TGywnMqD6Ieq2SXL/TM4+EciRpF+Xee/8zJNbuLPSLURdm2OfvwmppIDBrMhP+349z8sFnsc904usYRfSWKwtJm7MnztH5zw+Wtbv+1itouO1yFzHlPdculJbnv6skNu2n5/u/KuxF8eUb8U8fR/vfVBvpv2/Jnjyv+9xV+JXjUP/my2i4/UoC0yeQXLm5aqwJwyAwtQOzsZ7WL7pjbe8rmI11RG64nMCsP3zkT2z5BpxUpe6gx5Dd2YvV1jTo/blTnZz/2s/K233zpTS89SoC08eTeOHlKiewME380zpw+mNkTvYU1vNCYk+psEa0kly3s9phkLOJr9xC/duWElw0m4HlmxD59dyBwII5GJEQZn0dWXXGE01qNjUQf666XkhF7kwnuXM9JNfu8Cw7sWoLDXcsJbXtIF3ffrh8rE0eQ/sX3k9q4x7PyAIFpDbvI+GJmgKyNqm9r5AYpOy6Wy6vGVkQnDuF7JGT1CK2Ek311M/sIH3yfLWjVSnN5U6N1cHtyJbPfoCBR58jtWpTgaO58UNvwxrWQuwff1ijZOj/8ZMa8VVVd+1A9E/vIP7UGo/SBU5XP/bJ8+QSWZBFc0pT10Bq3U6iN1xMYtk6VEkCOaVAWH6C08dj1EWw5s4k8+L2grfTMIP4501HSonsS3iWLbsGMIJ+1xCv6jL9Uh2J7WhaglIxDImwJcF5Uxk40UVlwk/TZxTQ5LXEPtVZ8xAlsXYndTdfqhMGV/aru7ZIKTn/pR+TO1bk7+5/eAWtn30PoVkTBi/7dCcyZaOkgWHIQpuVNEiu2Yk1oqVmVIPM5jDqIrR88R4Sz64hs+sQRn2EyPWXEZw7FYD0ziMox9D5K0qend55hNcrMuHl6HDpBPoGT0ofWDANfvq0O4dLUNNK4JswmsDUDmKGkT+BKYrLrx/77TrtSCnhepZSIKSJfarTo17FuqmBZEGPLetzZUA6R3DaeGLKAulyZLvPVoZJYNp4ur//iPeTHYfMtv0Q8GMnbUxT25LKpaAygya+0e2aj7rifqUUwu9j4Dcv1uyz2GMrafnLd9L3yApiy14uRCGJoJ9h/+dOfCNby73VFRKcPYn4b6u5//UcNggtnEF2lzcXfGjBdFTO1onNK9ZNZTv4LiA3T2DuNOQTG5AqpQvNCSKzZ2DUaYBHasdhur//qKaeUYCUNH34NiJLZhCcO2WQskcCBlKqCu5vbfOE5s1gYOcR9ENLDo/dg8/Qkllkdh1ClI1DbTPVLZxO7Nn1Fc46V2xJauMe9w+veaAPrmvlS0iu20lgytjaUUtetvNrEDEY6vlPrIamtx3Qa6qs2IOFQWrjHoLzdJSJqtBbyNr4J4zCPu6dbFv2xjCGteLVqXqcm+ROnveMglHKPdT2+3CSxTxu+bKllPinTyD28HOeZWf2HUNJSeSaJVjDmkk8uwanL4Z/+gSiN12B2VSv9S2P6amkIrFeX6s+kBdIKRGmqfvNq+wDr6KkxOkZ4PzXflZwrivHIXL5XJruvsmN/lHVkWQ+g8AF2YI1ou8Ba+QwsHzumC2ZR8IkPE/vRY1/8U6Sq7eQeknnbAxePIfI0osK4ND+J9Yw8OTqwt/CZ9H2uffhH9uuozFKIgcLeqwhEZaJ3d3P+a/+tKTdkshls2l6/80IIUjvPUrXt4vrtnIkzR+4hchls/FP6yCzZZ9ni0MXzWbg6bXYdnX+ACFUTZqvN2RwqXm8fPbs2bL/1/q8If+7xT9hFJaXUuGzqH/HdfoET+YNFBMpTffkXKCSGexOjYws5z0DbJCZLD0/fILcmW6Xoz4LOZv0jkPElr2see48OPKUIzHbW8meOM/AoytxskLzLWZNnJSk65u/1Ep5SwtUcWwJqKsbMumkTGfLnPV5SW89SGLtTrInz9P38+Ua5ebyc6pkhk637KGk54dPkOtPY+d82DkfTs5H9ug5Ys9uwKgLa3StR7uNYc3kTnXS92BF2Sm37BIDKnv8HPFV20jtPFIIq1TZXG3OtD5vZ3qp5E510vfzZVVld33zIe+ydxwulC1rIOj0RYUTS1aHjrpin+kmOH8a1uhhKJ+FlEJv0D6L8KVzy5IvlpV9oY4+R3nq6wLKEP/ZV8/S/V9P0fPAMuyS6JO6W6/UCYHzp8YC8PtouPMWhFQoStEkJRuo1IdUXd/4JU7K1vkWchYyJ4j9dj2ZQycurP5A9sT5197uIUREQgXERl6UAgwDI+AnsXo7qZf3FsdDJovd1Uf39x593WUH5kzGN3Z4GZJX+H2EL56Nb2Tt3BmgEXCNd7+5PJeDi9iof2c1WrBScmd76Lv/mfJxns7Sdd/DSK9DpdcgSko6//UXyFiy8FxyDgNPrCF94FUCsyfhGzeiHMEc8BFaMqvQbrO5gYb3vZm2L3+C5r96/2t21stsjuSm/cRf3K4PS11xOns9Q7BVzsbpj5Ncu5Pkul1l/eJ099P1nV8VfhuePJamj7+Htn/6JI0fvqPgrFdS0vn16nbHnlpLet+xggFaJUJoROX/UJG2pOf7j1YZHNl9rzLwzPo/aNlKKrr+9Rf6ELi0z59eT3rvUQIzJuCbMKqMQ1cEfATmTy0kdjYb62l4zy16rH32A38UZz2A3ZnP31GxZubUkHNQSaXnWGW7n91Aevcr+KeN15yoFXtJYN4U/ONGYA5rdZ2YFbpDMKKNDdsuhC1LKQr/V5lssexErmQ9N0is3Ep69xFESwPVBpzWkczmRmSiBtLcMPQe6oGgBV22lJKu7zxSPdYOnaD/yTU48ZRnRAW2RCbTg+YGcXpitcvO5jBCAerfurR83fJZmA1RItcsxhw1zG1naZvdn41so+32qzCi4TLklfD7qH/X9QhfkXO8DOVZsTfV33Ed7d/5W4b/2z/Q+nd/UVx7cvrgJ/++8u8MBCpnY9RM4CaGDN/OxRJgq+LvS8Zq+tBJ/FPG4Z86HmX5cRwTxzFRll+v8+NHkdq8n+S63fpwSOFGDKbo+tZDnocrpZJHHFb2i66KQBl5Z335OJbSQBkGVlsrSFGhnwuUPzxkNJlMpjXtjNe1eBKzrQllq2o91lYYrY30/2plmbM+/4Oub/6ywG0upWTguU0c/fpDDLywufh9Mu1Cg0WJ3aGdAzKeBMPUkRyVZUu0wwsw66PUv/NG2r78CVo+98GCsx5wDzAFOj9A8dleh+ivWQbjka8x9/Ni1UcJLJ7hOrP1WJLSAGHQ9MHbMVobUbZyuZqF+9F9brY1u4huA8cxsW1Lj0VlaLR3Ml3tjSutWzxJcfyU9wuACviRNkhpYds+bNuHlBbKBgJ+vQbjsWYqsHtjWBPGaeefbZHL+bBdHnlz3GhQqvA+y8e5AJ8fpy/mmc5SoaOTUtsPEX9uk6aWyOdT6IvT+Y1fopTC6hjtubYYo4frtUd4zzHR0kTosrkYjdVUSCIaJnztEiLXLNJRhCXRj8Lvo/5tb8IIab1GSklsxVa6/v03DCzfVMbt3/mth5HxVNn6kNywh9Tm/TixJN3fe1TbzylXT83a9P7wCeyeAb3uepX91qUYoUDBoV6ZH0NKfRiRR+aWXs+vo8E5kynjC3c/KIF/wQyceNr9bbntr5TA6R2g2iVe0vexVE26DplIudEcNXJvRIdOxjmYqKyNME3v9x340+qhsnfAO0+ElNidfRitzahCtFTxo8zA0Dq0nQNDeLe7PuoeNNaoVyKDCoWqytXPMLRPo1YeKkcWfBKBmZNo/uwHaPvyJ2h47y2FqJ88uLO6zg4qkS6JOigvGwwc2y6sPdUV12V3fedX2F39OndWKovKOiTX7SK5fjdmc4ObiLeiT220njiUDLLeCwEN770Z4S/JQWH6MKJhojdfrn9jGESuWkzr33+U1n/8GNEbLy/oWOl9x7MZzOIAACAASURBVIg9tRZyJetaLEnnv/5C5zrw0mHRh8/Kduj6ziMV7bZJrttNct0uZCpD130Pl9m/5Gx6f/I09vkeGu68GUyjSqfyT+vAN0LrFd7jQaBq5EJ5QwaXmhrZvffeC+iN5LbbbmPhwoX4fw/Zt9+Q/3nS+ncfJvbYSpIvbkHZDoEZ42l8/20Y4SCh+VNJb9lXzSPvOASmdegQ3ypKET2x7YEE6b3HPLjiNFLNN6oNZVgoKUsQHQKlDI3w9FmaaqdClC1J7zpC6uU9VdcA7HO9OLEkZl1tDv3YstqJKQeeXEtw7iRv49aRpHceIbyoNp+6TGdJ7znq3e4VW/CNbUcJEyWdqnYn1+5ChII1F7z0zsOEFkyl67uPkt79iv7S0CGU7V+4G2XmQ7bL71MuGmsoia/ZUTPB66Bl/+1dmG1N2siqcAgqBWZLPbhYDU9kgwJhGgTmzSB16LweUwJkzsA/T/OoK0fS9b1fk951pKpsq62RwSR7qtPze6XA7tenz+fve4T01oPFvnhhMw1vu4qG2y/HbKqn7Uv3kFi+nsz+Y5itjURvuAT/hNH6ACdvXJSJAGHoU/4a3N3xF7cRmDw4d7hyJF3ff4z0zsPFdocCtH/h7iHbPZSE5k7RKHc3IW9BDI0u6Pruo578nNlXz+L0xi6Ia7qWCMOg5a/vJrF6K6kNuxCWReSqBQQXz7yg+wPTx9P6hQ8Rf3Yd9pkufBNGEb3h0qqQPy9JrtvpzR2KILXtIJFLa9NFDSWZgyc8D6ZUNkdi5TaCU8fR8tm7SKzZRmr9ToRlErlyIcElF9buIcs/corzX/+FawAqlJTUXbeYpne9CWkrT5QNgHIUsec3e77v3Mnz2N39WC21I5eyh09qapXK52ZzxFduJXrVPL3HVCr2lnmBSJb/npJcva3cc1QiseUbqb/pkj9Y2dlXTnk6t1U2R3zFFoIzxtPy6feRXLud1LodYJqEr5xPaMnvPr5/b1IrL4iiZoKyvGSPnvakvlKZHPGVWwjOmoCK1OOkII9bkSlQdXr8Jtbu9HyuTKSwu/qwRreTOVbcM/LIpdDksWSPnfY0blUmR+yFLZiNEc/5hdBreWjBNGJnu6uRyULgHzMcX8dIckero+QCU8eRXLurpoEYf24TrX95B/Fn13k8G4IzJ5DefoBsJSWOK+FF00m+8DK5V6uBOn43v0X0hkvwjWkn/twGZCxBcN5UIkuXYIQChGZPIrlsAypXsZf4LIIzJmDVRxh27z3EX3iZzM5DGI11RK+/hIAbuecbO5Lcq7rdpff7Jw8dMeWf2kFq11FKOz5PwRGZO4XM4ZPeehFgBgKIgM/T4SDCQbIH86H2Hij4hObXziZtnLSigJFKKzIJByEE8Rc2Vz9bgdM9gDzXiwj4kOlcWd2UAiMccCMPRAHlWupoEcEASOWNTHbnUXzNDs+lSSYz2Ke78I2qfTDuGzfCWxc0BMGF00ht2o8UFkLmoFA/AYZFavMBEi9u836wI0lvP4R/3HBOf/7foIQGoe+XLzDya/fgHzcCT7irzyK0cDpOf9IFDhXRwYUoxwtKSSRAqqo+ZwigzwWJ34/KpTx1cN+ooRMJ1r35KpJbjxbHjIDwohmYrY3EX9hclhC5+HBBavM+ggumkX7lLFWRQ7aDv2ME/iljyR54tbrKk8YQXjyT/vuf9m7S5DHEnvCKQtEVHPjNapTfh0wXo+gKZQuJNaqdzCOrPO4XZI6cBstCKROlZAENnnf+mpYfs7m2Tiea6omv8NBbADkQJ3f8HNmTXShZHXkgT/dgjR6GCAQK+dQK88UwiFw6B8MwGPa1TzLw4DOkNu0BBcGF02m48xYMw4BwkLYv/gWJFRtJbz+AUR8leu1FBGboKBK7N8aZv/lB4X0m1+2m7+EXGPmVv0DZEvt8b5X+oDI5Ys9tdA9RqiewUorky3upv+ni8rLrIkSvu7hQtlKGm1dElrTbXaOCAdeJSEmkiTuHDIPU5v1g+lF2lrI5ZlikN+9zE2Z72f4KYfmopAkr/Y1v7HDvwyOfRWjBNIIzJjBgmRo4UtJ84fcRmv36AAW+UcN0smt3bSs83zQJL/7D5ey6EJG2x2LtinIUyRp6C0qRdZMI19rnfGP14VT+ULK0X0OLZ5Lcsr9m2U4yA46X4aD/ts/24Js0mszeo1W/MEe0DEnlGZgxAdTz1Rcsk+DsiQw84+Wv0fu77E3hnzqOjEcUjDWiFacvTvbk+Sq9SaZzDDy3EaR0Oewr1g/DILlhNw23XzFo3fPRDl7rvUIQvnQO1rAm4svW4/T0E5g5gch1F2PWAjCVSHzlVm9bMpUme/gkCJMyPipdE0ADNLMnO6vbnXHbXVL3smc7Dol1u2l4y5UELltEYmWJfeMzqXubZmlQIr//Vpf9BsL+d5MhCW8Nw+BjH/sY27bVUK7ekP/1YhgG0RsuxWxpQWVyBOdMKDi7g/OmagPy2OnCgib8PiLXX4TZXF8yX0tXK3dzjyW99Tu0QpJHueQRHWXXk2nsjGsIVFKNZDX/bs0TXSFqIrnzMhhHtkykCjx5ZZGpAsjaJdz5iszBk2RfOY3VXE9ogabxUbZdu91ZN9JAeLdbJjPa5PMyypVCZbLEnttEatcRKEkC5aRzdH3v17R89PaCoep2RdHIk0MbIyqV0UZgRbuFUjoB0/ObSe8+WsY152RydH3/MYZ/8c8wWluwz3aWvzOh8E2dqNFahlk4jCitm4iEyR4/R/9jLxUd/gqQDt3ffZTgfZ8ivnoHqZ1Hygy8fLuH/+MH9S22Q2r7YezOPvzj2glMH6f51u1yjrqyCFkhSGzcW+asz0v/r18kcsUcrOZ6zIYo9e+4rrrTbEcbel7vzDLd038vDynlfP41JLZyqw7hrujzzu8+yoh7PzTk/aDDtJNbDiBTGUKzxhcM9cCsSfgnjyV7+ETZ/G696WKsYc3IGsgFYRjITI7Xuy0LyyR6zWKi1yz2vK6UInv4FJnDpzGbooQXTClDBvpGt9P04be+5nJlKut9gKXk60bZqUyuJpIt72QUlkn06kVEr170usqqKtuRdH7joapxFX9hC8GZ4wuop1KlvnQeOLVymjhOYXwoxyG55SD2+V78Y4YRmNGBMAQymSnnoCwR+3wvgRnj8U/r0MnG82Mt4CN82VyN2MB930dOkzl0CrMxQmjhFIzfI5e63dVPatshMA3CC6cU+PVfT9mDoSZr9cfvS4p7SbXkHfnCMolctXDIJJB/bBGhAHhRqPmsgqNQOZLUjiPY53rwjW7T+VQMFwlbc45lSO09Rmr97nxJhWuJZRupu2oeqhY3uGGg0llEtA7oqq5zXZ0euzUceyqVQYxuq3JWKPcPIxwicsVckut2av7jrA1CIHwmjXfdjLBMGu++ha6v3q/1CEeCZSJ8Fg3vuYHkIJQdMp3FaKxzQRQVZdsKoyFK04ffwrnPf7fqUD10zSKdvyIS1du+KtkjBYhocZ6YI9qgrhGl/BitrQXOU/+kMQTmTiaz63DZ/A4umlGI5jCiIepvvxpuv7q6AdEojhQlyC0FhnLfxeASuvkyUruO4bXP1t18Oamv/azQF+X82SBzOczRIwrJOkuv+8aNQg3C5YqCxJb95A5UJ9vL7TlKavcrhT20SqcyBDKdxRwzEnno1aq6mR2jNQpViILvuvS60dykox49URAgMzZ2d2kUS/Gish2cdAYfoKQkvfMVcme68Y1sJTh7PMIw9D5r+QtrWKFsCWZ9PU53Pzqpa3m0aF5PrQX8AJ1j4vzXHizT5QDI2pz/6oOM/Od7aHjvjfQ/+KwGOygFfgurqYHINYuIPb8JKKJ6S6U0miJ77Czpfccx60KEFk0t5GhRSh+CVI+H34PDPhiCRMr72UPk/lFK0fnNh8ttGwWp7YdIbtxH7mxPcVKW30j2VJcGf3jQlCgzAD6LxvfdVMwz5RKcC59F4503aYDWlfNJvVThCzA1ur/3J97OfACVyWIEw8iBTIW9plCY7pqdf9cVtmLOReD6LMjZVSmVjFAAy4089NJbzBFtpDfuLX5Xaa+lMm5/GtXpmnIOwrJouOtm+u9/umysmQ11RN+0RNfBsojedjXmqJGgFKEFUzBK9FAjHCQweyrKCmJEQ/jGjypcO//PP6+2VXMO5776IC0ff6ubCLRa7NNdyHSuyK9dunY4TuGAwQgHqXvzldS9+UqPp+gnS1nqCnLt8xK7RB+WlPzE3QeVUlA5v6XU+rNhAhWUdvmfOA5SGRhCVs0DKQXCNGi86xZ6f/yEjupSFPJ6Ra+7CCMSInzJHE3Jm9briBE0C/ZKXpKvnGFg7V6MaIjwwimFiIbBRFgmje+/hb4fPVl83z4Lsz5C9PoLT2abPX6e9N5jGJEg4UVTy8pWUpHec5TcyU6s9mZCcydeUAJQIxJE50mR1XkiomGkGy1bNR6E1omUof0PZba+0C9AAXbGQUhRnKNuvgq7M4Zh+ZDUsA0Ms5qGq6wzbHJdiTK9J3+v3T94VBGA0RBBOd56i2isd9WBGigI20bUeesthKPaF1QWIZcXhX22R88xL9u9ZI4NJlK5BRYAKEr3OUJTVfkt/JPG0DxpcGCel9jnvfM1qKyNTGY0R73XPisEMp1xcxJAZbud7hhOjTxPSIXd2Udq9ysaIFI6+XMOnd94iFHf/rTe51XhkYUihAtMEW9w2L9muaAMdYsXL2b79u3Mm/enTYD4hvxpJLXjCF3f/nUBASYeWkn0+kU0vXspwjRo/eydJF/eTerl3YiAn8jVCwjOdCkaTMPD8aVnrjmmHaulQSczKRXTIDR/MoHpHZ5hUCLgI7RoOok1O13jrULcRSI4bzKJFVuqLhuRkD5MGESsEd6hTgo0VY9EG0mlm4QCJfSmonI25//lIbKvnEbZEuEzEX6L9r+/G9/wZqy2Ruwz3RUVMwjOm0xg+jhv9L5pEFo8HSPgJ7lhT3VUg5QEZ07g7Fd+WkjwW7yoUc9G0K/RKraNEEWkCgjM9uZB+wQgtGAq8Rd3lr9TBTLrEJg1nvNf+3n1YYhSZI+fI3euh9y5XnCqF+r0riM0vedaje5wFMLQmemUFCjTILxkOom1u2puPqkdh4mt2AqZin5zy3b6Yihbcu7LD2jHYc5GWCa+0W0M+/x7iV4zn9hv12n0R6Ff9LsNL5rOwG831OyTgafW03z3DTWvG+Eg1shW7JMVKH5DEJo/hcDUsZ4REyLgI3QBiI7ECo9TdqXInerE7hkYkks+vecond/UlCbKkfQbq4hcNZemu65HGIKWT7+X1MY9JDfsQvgsIlfOZ+TS+XR1xQkvnEbsuY1ViE0RDmANG5xj+vWKsh06v/GIRqy7c6z3/mW0/92dgyIDL0RC8yeTeGlb9RxTEJz1+rjiA1PGeI5jEfARvmjG63r2UKL7yiMqKZMjvmobwmciVR6RWURNgTYyCtEuHg4gTAO7N8buv/4+uf4kKucgfCZWexPtX7hToxY9pPhMQcsn3kVq416SbmRB+Ir5hbwdynbo/NavyOw/XlD4xAPLGfa378M/Zmhk4lAy8PQG+h59EdCc0H0/e56mD91M9LJZ+qDjW78is+9Vt2wDcf8yhn3hziHLDl8+j/5frfK8Fpo/2fP735f4J432PHgSfh/hJX/YsfZ6JXzRTAaeWlNF4WIEfPhGteH0xzn7pQeQAyVjra2R9i/ciX/iKM/kixiC0OLpDDxVnfA9LwNPriW4YKpOKlspSmGNbCO9rxqFCpDafpjmP7ulyuENIPwWoSUz8I9tJ/Hsy25CzuIcE6ZFcPZEjHCQYff+BYmXtpLZeRijuZ7otUs0qhjwjxvBsC9/lPjzG8mdOIu/YyTRa5dgNtXj7/Y+UFMKjKCf5MZ9SEcglEC5PNNKakqM5Kb91L1pIe3/8kn6Hvgt2UPHMaIh6t5yNZGLZ6OUIr33VfDg9k7t0AcFsRXb6P3xM4Vy01sO0vfIKkb8y0cxDIPmj76d9JZ9JNbtQAiD8OVzCc6fWl3hqvor0ruPVugOAhxIbj805P3JZ1/G26ku6H9yLTKdA2m4Sdny65x2oNjdA2SOnAHb0HqJKLY7ffAkLR+5nfhy7zxP1ug2+h9ZVdNp3vfQCsJLppM9eq78QN9dE31jhumyZUWfK4PsoVP4O0Yi8YGT0+jg/HXHoO6SWaQ2e3P3AuROdzFoFItp4sSSnPvSAzh9ca0z+SzM5jra//5unK4+ZE6iyuqmE1zG1+6k6Z1LGXhqTdWhpDANgnMmkj54gswO73cXvngWPSXjqFTy9kLkivn4Rg8j/vwmZH+MwNwpRK6YjxH0E5oziYHHX6pe+0yD4JxJKKno/sFvSG09iJJKO8seWM6wz7+XwIQRBKZ1kNl3tOC0169EEJg2vmZ/XqgIw8DxHGtiSORh7sR57UipEJXREVMFHnOPsWaf6cY+11t05JVeztnkXj2L2dqICtej0n16IEkDQnUYLjVF8wduJTF5LLEnXkImNHK18c6bsJrqdfLknUe8iiZy+Vz6Hl/tYa+5iEujmuu49LpvbDvCMKqrLgShi2YQnDORgV+vLFvzlQJh+YjMn6LtpYpE2Cj0GmhWgxTyf+eZHCKXzME3olWPtd4BAnMn67HmOmHjq7bT88DygjOw9xcv0PTuN1F3/SI91v7jSVKb9uuxZhn0PrCMYf/nPQQmjcI+XX3wC+j8GF0Dnu9TKQ0qCc2ZSN/DK8r7VYEyjILeNLR4vRNFcMEUz18rpXXY4OyJ8NALns8LzZtEfNU2ZNY7KaeOJDGQNlVrqs6ILbBGtCGVD6EvoGyBr71dH+QD1oSxOKv2FGxwJyPwTerQzmml6Pnh05zYuE/ra6ZB7/3LGPa5dxOYMnrIHgkvmYXV3kL8+Y3IngECsycRuWrBBTn8lVL0/OfTJDfsLawtvQ8sZ9jn3kVgyhhkMs25f9J5+/J6i1EfZvg/3F0GEPGS4KyJ9Bmm62Au0R18PsLzJpNpbSC993j1XpJz8E8ajX/6eNLbX6l6rn9CO9mDJ8DWNGBl7QGSWw7QfNf19PzoSQ1wK4taUtRdOhunP14Cgqjozyvn0vfIKqB6H2MgjczaZQdclZLachCJAY47XkBTuQlB8uW9+MaPJHekOqEtQN2tl3P+3h8jPfSWzKGT5HoG8F40BSqdIzh7AuKh6mVTBHyE5nnPkTJxBOXs4+4ajUIEXh/YSClVtW7pJ4MSgsCM8aS3VQMNfaPa9Fh2fT/lIlwQgKrNeCAV8VXV9jHow4LMwRPu4X35ugR6zb2Qw6k3pFouqNdGjhzJRz7yET7/+c/zrW99i/vuu6/weUP+d4hMZ4m9uJPeR1eT3FrCO57O0vWdX2vkdyanOcNyNvHnt5De7yKOLBNrVDvW+A6s8eOwhhedZUYtPjnTwJCK5o/cBn4LqUykY6AMCxEN0fDWqzHrwjS+/RqN5HFXJBHw4Z80mtDCqSVoF1H9UQIRDBYMGChxDPn87qZTW8y6iF60VPn9KDBHtuZXRI9ytVI58MxG0odOItM5ZE4jDpyBJF3fexyA5g/dqhfrfAIkv4VRF6bxjqs1P5kbqujYhv44gKMwwkGCsycSmN5R4OIEwDKpv/UKzKY65ED+xLq0boCtkVNNd9+ERh+5nINoJan1Y3cM2icAIhxycxaUcxOiNKe5sh13QXed7S6vmRBCG24F30t53WQio9GqykBJA2lbOLalIwwcAyMSdlE/roFT8myUQuVsZH/C89nYCpVz6P6Pp7B745qvLaeQ6RyZV8/S//garLYmgounVfSLQISCNL5j6aBI2KGiNQCaP3grIuAvf9/RMA3vuAYjEqLx3ddWj/PxI8pCMLPHz9P3+Dr6n34Zu6u/8H0t3mEhjEICJpnJEV+9W8/vzQcLB2EqZ9N536/diBZ3fmdtEi/tJL3rqH6OaRC+ZDatn3kvLX/5Tp3w2a1n/ZsvxWyqK/IWmwbC76Plw7cNmSciL3ZfnIFnN9H32FoyR04zFG9vXmLPbyFz4Liut6M5/GQ8Rdd3Hrug+weTwPQOgnMmlSlUwu+j7qaLXzfNkBEK0PS+66vet2/scMIX/X5ob2qJyg0W3WNj1EehMK+LnKYITbMkwtpgqVxTsSxwJD3/+Vuynf0aneW+k9ypLvoeWaXHg2VVr6mguavRzozwxbP0WPvEuwjNm1IYa7GV27TDPD9O8+/727++4DFTS7InO+n/9UvaOZyzUVkblbPp+a/f4vQniK/cRmbvsZKyc8hEmq5vPzpk2VZjlPDlc8vaC/qdN7136HwKr0eMoJ/Gu26sHmujh70uWqc/htRdvwSrtbG4trio3uYP34YwDXp+9AxO10D5WDvTTd9DK1zKHA8eWglGKOg6y71FZW2yZ7qr7lUKZNrRh/K1eEkdByPgo+num8FnIaWhk35ZFtbINqKXz8U/cRShi2YgAkXeUhHwE3nTIp0AERBBP9boEVgTxmONG4vZWn74abU20vju62n73N00vOPaAter8FneegtgDmvG7om5nOUmyrFQjgXKABscd/80GqL4Jk3AGD4aY/Q4/BNc5JfCbbcHt7cjkbZN70+eKZSd/9jn+uj/xQpdP0NgluqKo9rLdDGlFKk9r9L36BoGnt+Gk6cWUoCdb0txf1cKSA/Nh6r5lL1FxlNuRER+zSvl5hYa5Z3TSTClY2HnfEhH82uTdTAbo/hnjq8eL0DbZ96FHCRKTibTGvFd0S4QCMOnAS9Seve57WiO+qxESRPHtnByFtK2UMrAPl10zlbpklCgRKslypH0PrBcO5bSOuJMpbPY53rp/dlz+uBX5PutIn9V1sbfMYLwpbPL99CAj/Dlc/GPaaf5Q7eU5SvIVyVyw0UwBH9+XvzjR9H8kbfQ+td3UXfdRQWEvBEOohyqxqJy9LXk+j2kth3Sep3tuBzgGbq+9QhKKpruugmCARz8ul/xQzBA0103XlC9BhMjEiLPC+7YVnEs+axCJyjbIbFhH72Priaxfl9Bx5NZuzrqwBWnZ6CAnq/SkdEOmFoRciprIzM2vT97DrtzACcLdtbS/3bH6H1geeG3vkljMcaMxRg+Gv/kCRiukzEwYWThoKn0g4LApDG6Dui6VNpqSspBxyKmtg2lBOmIwkdJMEIh/KOHEblqgeazt00c2wSfn/Cls/F3jAAl3OFeYbdIw7VVtF2hn6vX7DKUMuDvGEnzh2+n9XN3UXf9xQXnrd0zQM8Dywt9qLI2KuvQ98sV5M71kty0j9TmA8WxltZ8853ffMRtd402q6Jt4bWeK9c+8eSKlnk09u8oCs1nLo3qPldghMPkugdQjqqqm3IUmeOdIGq4l5TeB3C51pV054C0yDszlZJ03vcrZDKHkxU4OROZhfTeV0m8tBO7N0bvT5bpA7l8BRxJ38OryJ3pJrX5AMmN+4r6mpsjr/Nbj9SguqwW/7gRNH/Ifd83XlLlrM+d66X/yQ30/WY92VPFQ5fU5gMkNuzVYyHnaB9AKkvnN3+FcqQeF2e6y/QWp2uAnh8/O2SdfCNaiF67uIzzXAT8hBZPwz9pNGYo5D0ehImwLIxwuPoaAhEI4qQzJWOxwobOOYTmTUaj+4s5DfK2f+iy2TTfdWPZWp8fE+Er5mHVRwvPrdzHAE+AQ6lotDfaP+DqLUqZIDV1nDV+lJu3o2SsuqBKqyHqRqEIpOPmFMqvuUpp1oBBIqd87c1Er19SnkvNddb7p4xx26pIHzpF36/XMLBsc0GX0uKdv07P09dnt+QjJarsMTcUQoS8fWD4Axpd7/M+IDZCAZe+2GPtyU+3rv7iOl+y16hsTkcNevrn0PrnBc7BN6RcLkgrymQyXHut5iU6d+7cH7RCb8gfX1InOjn5qX9H5WxUJocI+vC1NzH8799Hes+x6uM7QGVyJFbvJDB1DD0PPE98lcttbhj0PfwSLX9+M9FLZxC5ZBax5zZDBYLYamvEbKrTygtBlMrq8FnHxAzWFRb+uhsuwj95DIkXtyFTGcKLpxNaOFWjLRQ1+Dn1J7l+rz7dFKWhOQK7sx+nPz7oaXZwRgeYFsiiwgTaII5eOov4qh2D9KggtmobKqsNLX2/VkSyx8/j9MUJTBrN8P/7UeIrt2Kf6cI/ZSzRK+ZqY2LrIRwbKKXDUSaOhNjqnYRmTSC17wwyo7Tio0DZkNx1gobbYDDUFIZB9Mp5+Ea20vvL53G6+vCNH0HznTcOyj+dl+T6PSUJXsqfn9p+hNCCKQz8dkuF8i0QkZDmqa9xoisQOp8BriJdIsqB+Oqd1F09j4EV212uvOK9TlYSmj2RXvVCzXY7OZv0gRMlCXncd5JVxFfvpOndS2n7+NtJrNvFwFNrUeksoUXTaHj7Ugy/RfTKOfT9wgtNAnXXDU1bEpgwkuFf/SiJFVvJne7EP3kM0SvmFZTqujctIjBxFPEXtyETacKLphFaOK1wEt3z8xXEnttanGOPrKb5gzdQd+VswhfNYOCZDVUod6MujDWskdz5Ps588QGXbknPb6ulnuFfvIvskdN4WQwqkyP+0g5CcyYM2i4jEmL4P/05ibU7yew5itnWRN3SBVjDho7WAEhuO0zntx/Xw8W26X9yA+HFU2j96JuHPFSLr9zmeZCSO9eL3dWP1Tr0eK4lQgha7nkb6R2HSL68B3wW0cvnEpg6NF/yhUj06gX4x4/U7zuWJLxwGqFF0/7gYYKBqWM8lUQR8BG5ZCZWayOxZzehSqNc3EO90NxJOH1xBn6zGqhwPgcDmC0NOjdH5fNth+S6PTS+a6mbKJCy+4XfR/SyoZ3HiVXbPd+30zOAfb4X3wVECNWS5Ia93lEPhiC19SDxmmXHsM/14hs+eNnhJbOIr9kLyuVcFSbB6ZP/KMl0o1fMxd8xnPjKrchYktCCqYQXT/9vH5JqhAK03/thkut3k951BLO5nujShfiGt6CkpsKpMvRsh8SGvYQvzLhBrAAAIABJREFUmw0Y2ngt7P/awZNYu5voVfPpPnjSU3eIXruIrn99xL2X4oGMuy9ldh0lMHUMmQPHy5dOQxCco/lzjYY6ZM5CKQekwsmZ+BuawDIQQtD8oVtJL5lJcv0uMASRy+cSmDZOF2M7nPuXR8gcOqX1Mb9F7y9W0v75dxGcPIrBJDBxFPj9UMG3LHwWdVfMJXusmn++VGQ6y4lPfh9VwsGfXL+X5g/dSP3SeQSmjyOz79WKyS8IzZlI4qVdbmLI6nU7tnoHTe+7lr7frKP/sXUFg63v0TU0vfsq6m9cjLQdzn3tITIHq9vtnziC/MF/qQghavq7SsXX1lgTgWe1NyMCPtLbvNHeocXTUf/2FHnEPeTbKArvv+HNV3B2z0mEzHMqGwSmj8dsrHPneNzz2UYoSGLNbk+nncrZ2Cc6CczoILPnWHmfG4LQ7Ikk1+92jebqPk9s2EN4/hTS+05RphcpEykVVlsTufP9eMLoABAkNx+oRqk7ktTG/bR8+BZvJ6sQhC/WB89N77+Z8KLpJNbtAiBy2exCPhIzEsaa0KE505VLcSV8hBdMwzAMRDSEilfTJRiD5J7KS3LTAfT8V2j6AfT8dSNJUlsOeqIDZTJD7vg5jMYoWBGUTGjnhzTAihTQva9HQhfPIH3obMU7FwgF/o4ROP0JTv/D/ch4WtNvBf0Yv1jJiHvvrqkTKaWXQv+wRuSe4xUOKIESCqu1kUxfovb7NgwSG/ZqyqxSHdlWJDbup+Vjitjz2+j5SdF5n953nL7H1jH6Ox8nuWk/nn1uCJKb9iOU8LDW8lU0iv1R+hP3u+zxc6i0jaqIzlUS4qt3Ubd0AUZrM07WLB5SZQ2MlpbC7/Jgqoqe02uI1M7p0j7TfSLRUbe1ddHU5gPIrFPl9HMyNqlN+0ntPlpzrGVfOVNsp0e7Q0um0fvDJwtflDrOgjM7SG054NrnFS1TkNy4n4ZbL61Z70I7a4QWZHcdc9fzaj0hte0w9tle3WZFcY91+yD25DpN7+g51gS5U92F/1fVB0XuZDdOX6LaFkw7xFZu07qal9PPtklu3Efm4Elv9G/OIXv4FIEpr51+pFQGnttC74MrUUrryP2PraX+totpetvlxFZtL8vVkBeZyZE5fIrEhr3VOWSkJLVdAyWFMTiOtund1xKaO0nn2XEk4UtmEZw9ESEEiTUVFCX5dktF5vBJUtuqedwBMgdP0vC+PJ2rh33u95PcchBhBVDZbPn7NgTpTQcIvOUKfNMmkd5+qGQ9twi7ubfM5nrPA0MR9BcOWmtKzU1eO72Ta/egnHxy9dLbFPFV2wnOHE/i5eL+ntcH/eOHYY2sESGrKCScb3zHUoKzJ2pWB9shfPFMgnMnuWuHouv7T2igazaHsCx6f7mKYZ95W4n97D3OnWQayz94VMVgIhA19FQNskpvPezpA8seOYPZ2ogZCeH0VegmPpPIpbMQUoEy3PWhfH4LYSClcqOWyvcaDOl+U8MPRbUe94ZcmFyQw/4rX/nKH7oeb8ifUF756sOaZzc/39M5sqe66Xt8HcFJI2rep6Qks/8E8Rd3Fp0Z0kEB3f/xW0JzJ9Bw2+Wkth3E7h5wubwNhM+k5c9vQwhB5/ef1Ciq/GKSc8ie6aHvsXU0v/caQDs7AxNGVpU/1JR3+uLkQ3SVEgiXjw1HFjjJnHiK+Jo95M72Epw0kshFUxE+CyMSpPGuG+j76TJNVyJ1+FJw5nhC86Yw8NTLtcOF0jmcnlK0d+EqylaFsq2WBhrffk11vQeSBfRBxdPJHe+i+2fPI+NpwMjviwBk9r5K+pUzGOEAjkfCPSyzsJkHJo1m+N99oGbfpU930/vERmQyQ3jBRIIzNNe73R0rQbmVSE4hk2mE6fN2yguf/sYj6Sxop53M5JAlhxyl7ba7YyjT9KZAkgaYJkY4SC6WLqmfft+G30RIVdJX5e9EJouKXeTS2Z7I0+j1S4g9vxmns7/oBBEQnD8Z/7jh1XXyEOH3Q7QO6nKISFQjqkqvh0KIaD3C8CPC4QIPcubwaWLPbauaYz0/WkZ43kTqb7mE5JYDON39Wkn1WQhD0PrR2xFC0PWDp5CxVOHdq3SO3Lk++h55ifC8QRzyMh8+qMgcOkVi00GEzyR66UxoK/IGGwE/dUsXUbf0tfGty2yOzu/+pswRqjI5kpsOklpymPDCwUN6ZawG96HtFJyvMpkmtmYPudM9BCYMJ3Lx9EFDL0tFuJRFofkXEPb4O4h/3HCa777pd7pXOZLkloOk953AbKmn7opZmA1DJykyAn6a/+wWuv/rqSI3qM/CP2k04SUzyLx6ThuuSrkKsCtS6Igew0Khr5fz75r5/3jXVyqMgI/mD91Cz38+pSM8HIkI+AhMGn1hVEC10Cji9SNVqIXwU+56XSshtxBDooNUzub8tx9H5RSUZHVI7zxKctMBIhfVTlBeeIYjSW49RHrvcczmOqJXzMJqLCr6MpkhtnYPuVPdBDraiVwyHaME7eQf0/47j7U/pRh+H9Gr5hO9an75BUXtdy5d75WAPIKzTBzpJq0UqApLUCmBr73ZNX6E516mbIfmP7uZs/f+GCdpo2yJ4Tcxon6a3nedpm769uPlkU+2Q3rXURIb9hO9dAbCdXKH5lTTa8VWbNcOB3ddzP/bed9jjP7Oxwc1doTPovkjt9L9g8eLTgHTwDd+JJHLZpM5dq4WYwYo6PqP35Y56/PS86NlRK+cQ/MHbuLcl36iD3+zNsLvQwT9NL3vehKbDxQd2RVPV1lJ9lSXdtaX9ItyJL2/XEV44RQ6N+wlc8Cj3d96jJHfvKdmmy9E8hRpSmqOZADDUAgDfO0tNL79Kk5/5rtV0XINd1yF4bdQCA+9R2m0mCM5/63HNAq/ZH5nDp4isXYPVksDztnuaqeDArO5AelBcQKQX2Bb3n8TZ+/9sYvczYHfp6M47rqB5PbDg/a5TOc5pKvHjEzbxTrlB0Xp30rVnGNKKY3AVSZS5gpIPyGUBhQabiShEARnTSA4q1rPiK/eRfbwKZQNhXXR7csx3/tL2j7xds5/5adV97V+YuhI0OKa7DH/ZVEHrxKh32fPT57Tjoz872yJ0xen5yfPMezTrz0nTqlkj3Z6risyrVAoun+yHKc3XthzVDqLk83Rc/9y6t98kaZ2cGkhCnuwi3I0IxE8ATtKU3madRFNKaQo27+Fz9J/57y95spWSFvSc/9yKkXGU3T95zP4WutQ0nUilfS5kq4tVqM/9NqjysdgxVhUtqxpGzi9cXLn++h76KVyR6gt6X9sLZHFU5D9pVHHJXcrHbVQ5PSuaHeJvZE5epaeh17E6UsQnj+Rxjsuw7As0q+c8bZ5gNTBU+ROeVPeqJxTnmPCo90CE3wBVNbNN1PyzgJTx+MMJDXlS+WzlcJ28784WYfuHz5NcudRjFCAlruWElk4pVBG0UZ2VwpD/ytzdu21xZYl0VYgXV3RMFy9UErIyQLaN0+zKAzlvs9iQtf8gWPePhcCpJ1DZqTHQaTC7k0M0m6wS+ZOlQhqz/0LFLt7gJ4HV6BKcsQpJANPbiCyeCpOT94BWumwl3rvK6GWLGt3fg5cgASndxCc3lH1vdPjkfMHIGsX81J4iYZJk09Gnq+bYZRUSLoLTeWaqlyn+cb9pHcdq1jPFee//Thjf/BJWj/1ds5+8ccFOmEh9Hhou+ctQ7bXCAdr+g7MhggqnaPmPpfKoAyf5zWEr/q8q+Rv4S8eJBiRMKKuHmwHEY0U9LDkpgPaWZ/P4eXqN/l2DyouhZfTnyD20i6cnhjB6WMJL5xcRhuTPdFJfJ0+6AkvmVoB3KjWU/UZmirRY6vnkQBa7nkLnV//paYSU4BpYA1rpu6Gi0iu21OktK6436wPw4n8AUnFmirNgj5ZU16nufb/VxnUc9HV1cVXvvIVDh48yMyZM/mbv/kbmpr+sLzEb8gfV5xYitTRc9UTyHZIrN1D4+2XeHPgBnxELplFfG01lzqAQpHa+QrhuRNxpKU3dMc9dbZNMEyceIrMca+yJfE1uwsO+1qS31y81mGlBDLnlCli+U1SCIXTn0TGUpz+0oMFGpD4SzvpfXQNI7/8fsxokLqr5hGcPJrE6p06GefCKQRnTkAYArsnrhcxj7IzJzq1QlPrVLU/gdVcO1Fa9qS3ggcCpy9J/KVdNe/t/eUqIpfN0pzrueqohqH4zAFia/Zw7D+fKTjVYiu2E5o7gWGffItrv1Q3Oh/tEF+3z/OZdk8Mmcri72gne/RM+Ts3TcKXzPB8rhZ94JLcsN/bgBQa3R+cO5Hssq2Fe/L1wu/HbKqroVR7bWZeRQh8UyaQ69yFJl4EiUVgxoXxmWdPdnHm3p/pKJasTTzgo+/R1Yz80vsx68PE1+3VzpJCn+8gNLuDYZ9+G/H1e71pbwzd7uiVsxnxpQ+R3LSf9P5XsVobiV45B7OxDpnOkjlyutoZ6YZcN7376tqI60tnoZSi+0fLiK/eo50FhmDg6U2Y/x977x1mV3Xe+3/W3vv0M11TNOpCvSAkgYRkejXGYAwEY2Jsx3FsBzewnRvnJo5vnGKnuTvGYLgEsLHppvcmgRAqqKCukWY0mhlNb6fvsn5/rH36PjOysXPvzY/3eYaDzj57r7VXfdf7ft/v+5n3o79v2Um9eyVJ7essRva4ItMmsQ27JzXY5+dzyfeAFIJM1yA9/+uefJsHfYw8uJHWf1Bt/v+qOGmTnr+7F7NnSCFRfQYjD22k5a8+QvAk+DmlruOYAqSrAAuBgwECEm8d8DRcC59Ocvth4pv2Iy133RPSjRwSOIkM9vA4gQUzSB/oLH6GrhE+QxmlI2uX4p81lfiGnTixJKGV8wmeesqkqCKA0NrFmKV5IFBj1ZgE4T6ZhM9YxPizW8pQ9FJKQivnIdMZRh56rYyOQIuEMKY2TPjs1MEuvDRUFcWye1KDvZMx6fnWLzG7BlyHnM7Iw6/T8pfXEVw0A/PEMN3fvFuFfbtry/CDG2j9h08UGfX/O4nQNQJLZ5He01E21kKrFxCYN8370C4E4fXLiL91QCGmHZkzfklH0Xklth0ieOpcUtvKuT8RyolnD47h2L4cws6xNYTtAyFIH+72DPnN9nd0/cTOqSIARIHYsRRmZz/+mRPnTMgc7cNOyhwjgbQgdXTQpX2ovNdJKUi+XSFprZQktx0ksnYRrf9yE7HXd2F29uGf3UJk/XK0UAB/q3feH1DJdBNbDnjmFcg5Hzfv93xvJ57C6u7PVsObZ3oSCa1awPADG1TiuuxzbYX4Da+ejx4NM+1HNzP68Kskdx5Gq4lSe935BOdNR8piw13he0kJ6SM9lfOCvLqb6g+cTvqdo7gWOPeiur/q0jOwegYxO/vKud79Br6ZTQhNo/VfbyK2cTdmZy++WS1E36favHKuFoEWCpI+WjmiItV2AuFGnYiierm6tRCEVpxCcufhYh1BE4RWziNz9AR22oacY1fxGePA+IZ3qL6gxMlWIrFXdxUkGi1ot4xFpqOP4KKZtH73Cwz98gVk9wCidQr1f3zxSemwodULGH14Q1kOLKFphFbNR4QCmB29ZQ4a4dPxz2khsf1QuV7kSPX9u5TE1oNUGrTx1/eS2H64fO1yJInth6n+4FqQQjnThXT3YBed7qh+8446VoaV8LolJPcfR3WvC+BwBJou8M/JgrO8zy2xTXsqGlqS2w5iXFI5aXn23OClr6n6gVZXhVOYZNwtS6uOoFXUD9T7JrYdxIuaTjoO8S0HVRLUCm2e3HUUb3Zg1WZCCEYef5Ph+17JXRk91sfYs1uZ+ePPkz7UU6FukDnaix1LZfN6ll/vHixHHmffuyqC3TOgDOoe/Z14cz+hFXMqlo0U2LEkxz73w9xYtseT9P37w0TWLabpix/CkVoRkEmiULNCkxjNlfQaAYEA1Vesp+9Hj1LYrllnaM2lZzB838sFoI+CZwuJxKUo8jqfayA03UsNzf+u0tnffUbk7FNJH+4qt00IoXSDdyGJbYc8c+s5acvVK7wNx9n6B5bPIb75MNkXyL53cEHru+b2zrKceZ6JJAQWzyT5dlvZHuqf0aRAcUURciJvH09ZhFbOZ/iXL5S/kU8nfPpChu5/zdMWhGWTOnAc37QGRLRaUddKiRQKuW+0VNIb8hJa5ZZd0uzCbxBes5jRp7ZRdjEnGkkP3n6AdFuPostBKIdJVrLt6K4Lo09uVvqDpXjWxp7fTtUFK2j4+MXENuz2fm/bIXXgeM4hWUr9BwK9Jkpqfycn/vl+18llM/7qLnxTG5j6t3+MFvAx+uRbDD/wWnHZ56+g4RMXk02q7r2mCsKrFxJ/453i/UQIAgtmIPwGmc5BrITj0tdKsCTprlGcjEVw5Tz4z2c9mlMjvHYxyb2dVBrn2fFGSd1yAK+Kd74nE8mEq8Pf/d3fMTAwwPXXX09PTw//9E//9F9Vr/fkv0ommjVCoIWD1H/6csWNaijXu0qGuYjg8jkKCeIlpuLqG370Day+UaTLsylNkCmT/p88rmay5bkruwrWxKLXKqN33lvtLgi6gRbyIx3NDRUVub8cd6GA/p8+gUyk84iulIk1MMrIgxtyZfhap1D7kQuo/+RlhJafkufldvnMSsuWUqECPVdQ1agTXFMyEQJYBCZ6tnp89QfX4WtpyPOD6hoi6GfKTR+asFxQSM3Bnz/t8s27hoy0SXLnERJvH/Y4ChSIBHvUezxI28GRkobPXoEWDuYoj0TQj9FUQ+015wD5pGm2LbBdvkTHPefawxVQOpaNk0wTfyt7mCpEywjs8TSOlEV0HIUignkkavpYPwP/+SJ9P32K+JZDOcNLan8niU37kKZU49hWiX+Gf/FSCV+dt/Tf+iROPJUfa2kTa3CcoQdeU3kibvNo893t6nDnFfKaq7z74TOIrF9Gw6cup+bK9+XmxmSiBf3Uf/YKxXGd5dcP+AitmEdo1QLSB44T27gnf7B1VL6AztuewSoNpfstZcJp4F50HIfhRzZx7JbbOfa1Oxh7Je+sEi7veWGYcHb+CyEYuK2kzVMm1vA4Q7965V3V+/+0jD61hUzXYBGiQ6ZN+n70mOehtVCctMnArU8iTZXESzo6MuOQ3tdJfPMBV6n0Nk4pSIz7/1JDOroy+hfMt/pPX45RHc7P74APvb6a2uvzzldfSz21f3Q+9X/yAUKnzT8pYz0oVI6TQ7rm+9spTSb3O4h/zlSiF5+e53rXNfAZ1F5/AUZ9NVUXna6Sy2bXVE1DBHxM+cJVk4d3nsQ4n0jGntmGebw/fygwbbe/f6PCcW9/WtEnFKwt9kiMoV+8lHtGpmuQgXteovc/niT25gHPA+cfSlTZL3P4Ow8Re3P/763shk99ABEOYjs6lqVhSx2tKkLdDRcCYDuifH9G4NgyP45x54Dj8qlKQAimfOaDCI8w7dobL0EzNAZ+/jROPKV4QAEsG3sszuA9L2btW95yEkPVHk94XzCt3NhPHuii45bbafv4dzn2tTtIdagEuU4qw8gjbyClUNzbloF0BE48zeBdz2HURnJo8aI/oaFXhSYZq+pDiwSpvmQNDX/6QaouPD3H7aty8njrLr7WBrVPerWLI7HHk1gjcbLUHoX7vzQtZTR3PRCF8x8A/SQStzlSRQblEGFu36M4rLNiJSVmUsNK4NIaTCaFh/B8vXMBOwKMxjqXUjZLvaF0UAcw6quJnnca/lOm5fl/fYa7tnw4tzZaowli2zsYf/s48bc7sNw8RZrPqNjmypE4ia5ZE1VjxdawTB3L0pXRzfAhdI26T16qKGiy656ho1VHqLvxEkUDkgOmFOtcZvfQb9V2xZIfJEZDDU1fvIZlP/8aTV+85qSM9aC4nquuXK/Wc02AJhB+g+oPrVc80OecSmB+YZvrxW1eCYn6h+beze2xFYo37XykR24Pzuq5CezxpPcckypyN3mgq+hete5pOfRvJfVBSnIRnxUqjl4dRqI4zy1LU2uyLXCkwKiJ5rjuy85rhg9N12n66keUtTYHohEgNBpv+aOJh3HutxWrRjavR+naAsqJM9E+7FhWkbE+V2zKpO9nTyEq8ECD0sulJcvXW/dcKm1J41euc88mhe8tmHLLtapeEnc9z/Jv58+welUYKTTPfU6vjdL77w96AnLim/Zhx5Lkab5E0ad0NDRDr7yeN9aiVXvzoQPotdUVnp2lPBUTlD3JJpnlHnf7s3Cs2bZrqFy3BP+imUjdp65L9S5TPn9VjgrQjqcYeWorvT9+guHHNqvI9pMQO5YsoWXNizUSQ6/zBkkIv4Ew9ILkxyXtYp+8sX70hR0c++odHLvldhUJn42GdsrHWVZHFkKQOpp3fBd+pntGQNMKnA0ldZQCo6Ga2uvOV7YgXcutqdFLTsc/u6WiLUhmLKRtM5Q9K2fHoyNxkhkGbvdOLl4oRn21otQspHE0dKIXrcY/u0XZpjxFqMjgiUwmmgDdyNuGZH6MiqoI1uAYw/dvwE5ZOJZqSztlMfLc26TbeiZ+b8t23QiipM1dHQHo+/FjSrd3AZYyZZI5PsDYM1vdsl/L5e9DqueOv7yT9OFutLoqz/7G8CEMndqPXoDeUF10HtOiIeo/fTmO4zB41/Oqbo67H0gNTJv+Hz+m+sdrPLkREnqdt41B+A00nw/Hte2VjjVnsvn9nlSUCRH2W7du5dlnn6W6uprLLruMD3/43YUCvif/94keDRE+ZSrxg10FJyDlNY2cpRC0kfVLCSyYTnzTHmQyQ2jlPPzzpuX4Qyt7+CTxTfvK+doAq39EJUB7FxI9axnxje8o3rACnlohNMIr5iINDZnJvpOrDGT/qWneSHbbIb55Pw2fvLj8WoFUX3o6Q3c+C8iiskFQffkaMl0DpPceK7lLgs8gMLt5wmdXvf8MRn+zyfvaBadhx1OMP7HZ83r9DRcgLYdMzMaxdTecSSVytVOVE6dmJbmnQ23GpTVPm8Rf3zPhvRJUktMKXlVnaJzggum0fu/zJN7ci9k7TGDOVEKrFyhFJrsZeHj4HUdhh7xcs64j1904vTeD9J4OAvNbSZeMcwydqDvOR1/cyeB/vujyI0pibx4guHAaU//yWuKbD3h70TWNxI42qs49tWK7OMk0mQ6P3B+2Q2LzASIr54FeXm+ZNom9sZfaK84k9qIHX7sjCZ02r2K5oAzygQXTSO8/XvbekfcpbsHIGYsIzG1V8zuRJrjiFAILpitOxLcOeCbVFbpC91edt2LC8ieSwKKZnodLEfARPWc5juNw7Mu3Yffn0Uf9tz7N+MY9TPub64msX8rQ/RsVxspFizmOwFcbQasKkW7zQD7ZDoktB+EzH/id6/1/WuJv7AGPiAsnlsQ6MYxvamW0eWr/BFENG9+h/rpzGHumHGmOIwmvmqcMgve/WnZdr6vCaK5FCMGyu/6CY09uwewexD+7mfDpimbs3UrsjX3Ypjp4FPa3ljAxu4fwT5sY6T6Z1F1/AZF1S0ls3Q+aTuTMxfhc9Ly0bTJjFnZ2TXXUgdNOTr6mBt25VDrURcBH9NzJuftjr+/xRh4n0mSO9ak+LbW0OJLEVuXAHN+4l/7bnsmta/HNBwk800zr33zkD85jX1q2eG0Pgae30fqN69912enOQTIj+VBoaUF6IEnmxIiK5tN0HMfKI0nd0O34G3tp+PhFjD7yetkzpW0TXj0fLRxk2k+/wtjjb5DccQijvpqaa8/BP60R6Tik9h3zbPPk9sM0ff5KhFHOlywCvgn3iVwdnAl0Kukw+vzbDNzxfO478/ggXX95F01fvhJnNObumcXIRYDYW/uZ/q1PMProJqRZojNpOuHTF5A8cJzEm/vLyxYQOn1iarDAKa1qHy/V94QgevZyUkd6KoEiAeWcdYqoKaSa325YfnDxLJJ72rOanDpgA+EVk0e5xbcdKu8vt26JbYeInL2Mji/8FFyaA6tvlJ5/+DW1V6+j/o/OmuS9p7osTMVtLoUgctYyEtsOqSSY0kHXVR1sW4Cmk9h+iJrL19L09RtI7TlKam8Hek2EyLqlOYqz+I6jnPjOA7nyEgNjJLa10fqN6wkunu4aBb3bPLGjjUT/aDniUgoC81oIzp9B/4ETee8CEtvWMQwf/pnNmL3DmAnAckPj0bATEpm2yHRXigRFJVScRKLnnUqmo7dMr9KCfvyzJtaRT0ZqrzqL8OkLSby1H4DwmkX4p6uIBGHoNP6Pj5La005qbzt6dYTI+iW5vFYToQPfrUTWLGT8ld2eKNjI+qUKHLOlJHeArqn5ubvd85lSAmkL88RwxXLN3hEyHX146cgSiL2+FzV2vdGg0bVLGL71Kc+GCK9dSOT0hQze+0qBQVKNMyEE4TMWotdFGWzrKTivqd9pwQD+uS0ITWP6T29h5P6XSR89gX92M7XXnYceDZM67I1iz1YlcsYCRn79avmaq2lE1iwisesoyXc6s9+SXVuEgJqr1zP6xJve/S0gsflAxTZN7TxC4+evoO/7j3isa4LqK89k4I5nVQSWoEhvyf7KP6uZ6f9R8N6zmqj5o/MxqsOq7Q0Dx8nu/3mEeeSsZYRXz2fg7pdUMmUt/2yha0TOWMjwAxuoJCMPv557ZkmrAeCbPsVzbZFAeN1ixp7d5nGvun/s+e0UG35Lnp/d4MqGUtZAPNlkE0oXK6xXll9bAraDOWa6yU0l2GAJAyum1iWzf5Tjf30PMpVxqd0MRh59k2l//7GT0CMnNjhGz1pGand7+TsIQWD+tIpzON3WrWh+JkHZH//mvaQPdOf+PfTLVxh/eSczv/dnrmMqi7ou0Hvcea3oeoRLrSTJ6QdJEz0aqvBuAhFQ4IXq968htOIU4m/uA8cmfPqi3FotXSeKp+9LovTRUueRlKT2dyIte1J90BxNYVk6IgtqEwbmaEatV+EgTiJdBp6RgG9aA+EVpxDftLfsmf55rfimTUGvq8bqG841oZx4AAAgAElEQVTdJaVQeX/OX0Fi+2HsdCljggBLMvrGnpwh22s9V/81XD0098ru0NAwuwcV8KPsZS1ir+9ROe689EDTIr7lAOE1i4hvaXNplQrWFlsSXDQDYei0fuczJLYeINPei6+1gfDaxWhBP/EdbRXnWWp/J4kdbaAbOO56reou3DVxP1XnLCf1Tnu5XUTXCS6crkAJ2WleMNakFDiZzElT074neZlwZUin01RXK0RDfX09yWQFzuD35P9pmfv169CqQgpprAmVdHZGk6LDccWYUkPNFeupve48AvOn5xZGo0GNj3IPn44eDlbcfKR00UEVrp9MhvvgwulEL1yJFAaWbWBLH1IzaPjcBxXnWQ55Verh1xAVPbIU1Sl5oIvenzxFz78+wviGfGLC6gtX4j9lau55uOit6GWn42uspfHLV3kg9ASNX8rztZl9Iwzc/TLd33mQoUc3K889YFSHqfnw+8qqZUyfQvUH19Lw0fPRasv5qgMr5hKY1czwI29gDcVwMg6Oo+NYyivb95MnmQyBO9GmKXwGxpQKCCefjh4J5natorGQvd+NSrDHU6SOj5BsHyLVPaoyirsiZSEKjuJPL8Ska+TPhXK7B+dSFI0W9DPlcx9Eqw4XjXP/tCnUXnMWdjzF4F0v4qQtpO2iN1Imyf3Hib91UI0XL01EgNAnMTxNxDmsa7nxVozQc5UuQydwylSqLzsjh2wQfgPhM2j4s8sUKnISmfLZy9GqQvlxbej4Wuqou+bs3G+MhmpqPriO2uvOI7hwRl7xMfQK7+0iF1DRMMNPbaP7Ow/Rf+cLZE4KXaciSZq+fJV6H3/+3SLrlhA67RTGnt5WZKzPSuqdY6QOdWMnlbFOSk2N8yxaLCMVYslFVZW2aaVIi9+3mANjDNz7iprfD286aQQPgHQksc0H6Pn3Rznxw8dJ7GrPXauo0EtZcT3N3TvBuid8Bv5ZzVRfcWY+osqnK17sT12KXhOh+uJVypkTyM8hLRxQ/eiOEz0UIHruCuo+qgzgvw9jPShKECkFjqNh2zq2rRAhTsaZBP2Xl9ThHnpvfYbuf36YsVfeKaOa8s9qpvaac6n98Fk5Yz3AyFPbsPpH82uqLZAZm76fPDEpJ6owdBpv/jAi4CsY5z7CZywk7BpBpSOJvXWQnu/+hhM/UP2dXasr9pmUar2usKZLS3Hk9t/+bB6hg3LOpI+eYHxj+QHm9ykVy27vY3zDxM7fk5HeHz1e/qWE3u//Rq3JrjFaSq1oXxE+HSdl4sjy/cRxNMUrDIpfNBRGhqqRkepinuNKa7quIXSNppuvVv0d8OX7e9V8wmsU/ZF0JLEth1R/f/9x4juO5vo7i9Dz0qk0n8HA/36hrMsl0PeTJ9x6eaPkpCXxtTZQc81ZSM3Asn05nan2YxdiNFTjm97kvcfq/lweSWtonIH7XlPr2gOvY42oCDNpO9hmFvUosKw82txKmRguGqzweta5oNdEFNrdPdDlP9V8F0LDSqvEjtnvsmi4k3GaiQr7mNAEwtDp++lTyLRd9t4jD2/C8XCWFYntuLy9pW2ukHjWaMJF1etYloFlGUipI22wYqlcPULL51L3kfOpfv+aonwkfV7jHDjxg9+A7WCb3gheK2kSnNeas48VjSUBgTmtitLGq94m4DgM3Pk8TjKNY0q17pkSJ5Fh4K4XVSRppfY+icN49OxlBJfNzu8lAR8i5Kfx5qvzkayTSLq9j77bnqX7nx9m9PkdOAXgAiklZt8YyY4hUseGMfvGivRf1eZzVJtftiZnrC8ULz323Yre2pQDOhXPMR8CScMnLsaYUq3OD5pQUagN1TR84mI03QNNna2b26+ezway/PyeIgt1UVHybAGaQDM0Gj79/rJbteowDZ+6FCdlVoxicVIZIuuVXicCfqTQEQE/IhhQa6Wrk2mRIPV/chlTv/UnNHzqA+huFKXm1yEL6il5b60uijGlhro/vsDVW9Rvhc+g9rpz8LXUEVq1EK9xLnUDTWgIF0le1qZCTKy/aBq+1ikV2zwwq5lCRHmhnlpYH3NwnET7CMmeOIn2EawBF8zmSBxTetRd5aDIt3nxs1Wbmx4G8Vx3u/nkDO8zk64hTRsrlvE8b8V3H8MxbYVdcMC2NWxbRVfYDkjTnjCRqBYMVG5Xt16Vrut1UayxBMVo8GwbgzWSYHzDHjIdffm1WyojZ/9tz+BkTAbvfglnPFmUL8VJpOm/3YMCpLT86rC3ni0ERn2VQmJL1ZaF+5xtofLhVTp/FETXpDsH6Lvjebq/8xAjz2zPnZETu9uLjPVZMXuGGXtpF0ZDdW5/tCwVMSWlQsLn1+usUb8QUY/KeVTh/O9rrgXAsiz67niRgV+/ycADb3Hi9uexXCCg5xyQruqnCU/aOHWjnPCMDGCeGGb4N5txMk5O93fSNmOv7yV9qBvHkgV6Q0HZttK1rJTlWTc7ZSOEoPHLV7nRGAamqfZoY1Yz1ReuJLHveK7dSv9SO4/lfBCe67IQ7jzQ3Pmf1UXdCIUJ9Hfh6pKOlGVzzJECDJ3xl3bjubZIMF1AbHx3Bydue5HBR7dx4ucvMebq/ZpvgshE166h+lQUjSWJAJ9OaPV8wmsXKbtO1i4R8NF084cL5m6FsfZfdAb/7yYTalWWZfHQQw/llJxMJsODDz5Y9Jtrr732D1e79+S/RILTGpj+g5tIbDmANTBKYO5Ugktnn5TSHD1rKSPP7wLHKfIgCgGhFXOpOqESyBYhBIUgMLsJX0tdHvVcaPTwGVSddzJINIdUxxCOMJAuAsHRDdKdg0TXghCay91YIkItVoEF00gfOF6x7OHH3mLowddzPJuJ3R2MvriTad/4CELXaP3WJ4hvP0TsxR0Iv0HNVesJuN5mIxpmxu03M/70FpK72xXty7XnYLjc2cn9x+n+pwfVJmY7JPd0MvrUVmZ85+MY9VXUXXs2kXWLGXl4IzKZIXreqUTW5LmOZ/7ki4w+v43x57YhfAZ1N5xPeNkcAOKbD3pGNdijcayBMXyNNRXbNLh0luf3WTSoCPgZe2Zb+SbjSMKnnUJwxVxSXjy4fhVZkDzQRfc/PqAUF0u998hTW5nx7Y9TmV9XAJqb20ZDSFk01rKbp9ZSh9k1WnBPFqHnEF6hkp7N+MGfE996EKtvFP/sZkLL5yA0QXzrIUWbU1SmQpKNvb6PhmvXMf6CN8o9vGpihJ8W9BNcPJPU3o6SsaYTPWc5oSUzXUNgMResFBrRsxX6v+66c4metUzREhk64TWLMCqEXpaKPZLAjNsqW7yb1d0ZSGIn0mjhwIT3RtcvYezJt8q+dzIW4VXzsMeTdH79bpUEKmMpjvtXdtNyy4eIrJwgoa0roVPnMv2Hnye+eT8ymSa4fE4uAmXstcpGvdFnt5M62O15ILGTaezBcfyzp5I8mEVmuW0qNaKnT8yN//uQ1OEeuv7+1yrixHZIvnOMkae2MeOfbsTXVHn+gTI0nPjuoyR2deTQC/GtbdRcchpTPnYe0fNPU/ygRWsqGE21+JpqJ3x2cOEMhFYB/Xu+ipaou/osouuXkNh2CKHrhNcszOXcEIZO89c/Qnp/J6mDXRh1UcJrFk54OPt9iTKYFh5aXSMwVE4yViCjz+9g4O6X3SggSXLPMUaf3c60v7thUrRHbNM+dV+JOCkTs2sQ/4yJeThDS2cz/Yc3kdi8HzueIrR8DoE5Klm1lJITP3iMxNtH8/29rY3qC0+l8RMXUHXBaQzd+1IZksVoqMZors0txWXoQMflz/fYx2XaIvb6PqrPmxzh/7tK6mB3hbJNVfb5k+/xlcTJWMgKtHn2cJzA/FaE3yhD+mbHeXzbIaStDiNFe4lPI/H2EfSaCMf/6h6sofHcujb+6js0feEDVK1dSHj1fBLbDhWPO0PP8dMHF89k+o8+r/o7liS0bDaBuVPdciS9P36C+Na2fH9vb6PqvGU0feoiqi9cyWBnv2cUizalCunIsvOtALAcjIrRNQI9ohCbqfYBHEp0pvZBAMbf2JtDfxa1i7TJHOsDTeP4N+9Tc8GySbjr2vR//Bj2SAzHkVC6j9kQ27iXpj//AIP3bXAdXK7RyZE5BO7IY2/hOb+logJJHeiBgv7KXkvsKY1kLJfI2kWMPLix3GApIbxmAX33vFzSmvmyY5v2V55jqLXe0xDqSGKv7SGwsLXk2ZDfuCbWsR3H8UbgAc5YktSRE6BpObRwvl6CxKb9NH3xcsW9W+KYFIZBZM1Cev7tEW+Dge2QOtpLcs+x8j1WShK722n+2tUM3Pqk5/3RsyZfV4Sm0XTL1aQPd5Padwy9OkxkzUIFtjkJGduwl/7bns1F7yT3dDDyzHZm/OPH0IJ++m59htimAwVz7AjR9Yto/ly50blU1Jj37u93K7FN+3I0bkV9pkG67QTBhdOY9q+fIfH2YcyuAYWKXOUmIayO5H5fWjcpBL7WKaTKInuV+FobSHcNKUSxx7DTm2qJvm8psY3vlOUsiKxbrBzyPj82PoRjARKp6xAIgekQf7vNmzLIdkhsbyMwu5mmL3+YdFs3yT0d6FVhImtPrr99MxrRayJYA8UADuE3qLlI5UqovngV4dNOIb71gJrXpy/I6UPxN71zawmhkTrcQ2TdEvXehfNYE0TWLiJ8xgK1j3k45iPrl5B4uw0pDKRdjKJF6MS3teGZBNgV6UjiO47Q8+2Hct+lx5Ic/6u7af7Kh/A3Vrv50EpvVGuq0DXvRzuS+LbDiHAAJ5by7O/AspmYg+PE3jhIztvjnpnCS2blci04Tsk4BVJ7O6m5ZCVsb3eXhyxQS639YkoNkTktjD233RN5HD13Gen2E8Re3V18VnUjSfzTp6i6j1plrxc9e7lqV08RZPrHsF/f55kfAyFIH+omseOo54ROHeiaFOUeOWMBQ/e8WJ4fw9CJnrmYvtuewSly4Ko2VfpYN9H3LWH8lV3l771qHkLTiL11kN4fPZlf1/YeY/TpbUz/9scZfX5HxXqNvbKL2g+cTmxbe94rmy0bjcCCafimT8H0YBbQaiP4ZzSiRUPYI7GyNo+459D2T/6wKDde5lAP7Z/8PrPvvRnHxj3Dlp7PUSA4F1jnmYNmksU1seNoCX2yu0dnbMbfOqgc3xXKznQOkHynoyAxesG1jn6kaTH0yGbsdPGenNzfS7pzwOVqz+ssBbXH7B3GP72hos9BOspGNvbijuL+1jRCp83FP20KxpQazO7BovtEwEfVhSsJn74A59bnyGOrXYCoLQivXcTwo+Vn86wMP/A6/jnNDP5ngW6TsRi4/XnSbb00f/ZSBcryWF/Cq+cTXj0f57ZnkQX6nGI6EETWLVGOjs9eTvrS1aR2tyNCASJrFxWACLPRWgXtkW3iyUCO74mnTHhKXbFiBY8++mju38uXL+c3v/lN7t9CiPcM9v9NRPMbRF2KDC8ZfHATI0/vQJoW4VVzaPr0RRjRINZo0s3eXbzmSqnhJDLUXL6W5N5jpA92IR0HoetoIT+NX1B86k03XUH33/1CcU3bNkLTCJwylZor11WoSV7i29rUBltwsJUZi5FHN1NzwanoNWGcRLr8Rtcb2HTTFXT/r3uLy57bQs2V67BG4wzdv7HISCPTJukjvcQ2H6RqvZtEcdV8Iqu8DYCaplFz+VpqLl9b9L2Ukr6fPq3QEVkjVNLGMZMM3reB5s8ruo7xNw8zvrMHmbGwjEMElszGiOaV25qLV1NzcXmiJxHwntbSkTnkU7pzkOHHt5LpHiK0aBp1l6/CqIui+Q2av3INfd91HXUub1r1pasJLZlFfFsbjtAQTkmYpKNhJ9I0f/FDdH75pzjjBdE4QtDyF2qd6Lv1mSLDU5bnbfBXG6g+e4kysngg2nzNtdiJrPFFFI819y+0eDZm105KkSgEw+rdNYWWia4rT/onLQdMj7A3JM54gsDsFmqvPouRhza4SAi16zd+8UMndeBo/PPL6f6bu7HH4upQoGv4ZzRRe/X7FNqzyBjpli00Nb+ybdDaQE3rb0/70XvrMwXKqwaWRCbSDP7yVVq+dMWE91ojiYr97cRTjD7ztuKyz276jnJy9P30aWbfetNJOf30qhDVF5UnqNMCBjmkpSNASDQhlcMt5C+KzCgS00b4DBcdJIqQsUKT2GP5NSGxq4PhZ3bgxFJEz5xPzYXLFdLkXUrfz55BpgrGuWkjrSQD977C1K9MnEsiubujyFgPau0ZfeZtai5aQfVFK0ntaSfporBFdj27eXLKOmHoNH/tWk788/1Afn5XnX8qoVPn5H7na6kvW7dyzxCC4OKZBBfPnLS836fI0nmd/ZRURAZlxUmklbG+cK9Im2S6hhjfsJeaC09F2g7jG/Yx+upehKFRc+FyomvnI4SojCaVMrfeZrqHGH5iG+ljAwTnT6Xu8lX4CiKS0u0DjG8/hjWWRGp+fFMb0II+kns7i4z12bqNPb+TmotPo+r8FSR3t5Pc0aYOBrqG8Ok03aKQiVLo4NjYlnJQCySa7qAFAqreFc5Chbk7/hCiBYzKZYfepYNnEoSO0DQ1zr/9axdK5YBQ4erh1fPJHB9Sz7Cdor1ECOEm+tpKpl/l3gEBNmBZ9P/sWaKr5zHlU5fS3dmv8qrYNkLX8LXUU//R83PP0iNBqi44raxuqQNdRcZ6UP09/vJuai4+jeg5y4lvOUBsW7tKCChAD+k0f/UahKissktADwfBZ5QlnAfwzWwkdbCb+JbDZTrT+KvvUHPJaVgDcQrRijlxE1r23/4cdjyTN0LZDk4mzcBdL1H74bUV91A7lsIeU3sJjpNzzgsBUtewx5NF+3vxpyx4pKDYsS8r55orfPemWuo/fhFDdz/vOpGUAa7h05di1FWBWWpALyhbz8+rUruCROBYNtJyPA/sZv8ogfmtJW1S8PwKXMgnK5rfUHuui+hUDg2J0KSKlG2spfaG8+m/86UcVYnQJY1/dhFGQzVO3EM/BqRpKX1J13BsW+kn0t2DNYlm6GiGxpQ//yAD//F4kftBn1JN/Y0XnFT9hRAE508jON87EWSmd4ThJ7bR0zmINqOB+g+ejq+5Bidj0f/z51REZE6HtpC9I4w+v4PQkpmMv77PjZpw3ztpMr5xLzWXrCQ4d2LKHZXY01Frqtummq4ogd6t2LE0hXzJgOov08khd5P7u+m/bxNm3yi+xhoawyEiS2dihAM5mqji8xYgNPytDaovSsepUPm4pHXQ0zam+ldSf+OFpNtPYPWN5AyXxpQaleDQtOi7/Tkc03G57wFL4vSPMfLs28hEBf58VLJTUNGY8Xe6iG3twKiNYLQ0EFo8fdI2E0LQ9NVrOPEP96kkkbaNpmmEzlhAZH3+3Go01lBz2Zry94t5O72kqZyxDTdeQPJgF5nuMRxbqiS8U6I0fPISNE2j6Ysf4sT3foPj8owLIfE1RWj45CWMv7TTBUFoxW2raxPqktm9vPdHTyo/R+G6JiR9//EU0791Q5mzLSt2Iq1QrZqGLF0EdQ0R9GHMmUpm99HyPtc1jKoI9li2XYrXPXs8U6AfiPL7pYogVY4tUbSeIyT2UIJ0xqkw1jSceJqGj55P+sBxzJ6h3JnIaKhmyp9coiKHEopetegRQmCNJSc8VwhNoFXSbaRE+H0In+7drno+kjp5qIeRJ7djDowTWTmb2vefhh4JotdEaPjMZcpZmXXiaIK6j56Hb2o9Viy7ppbsJabqo/qPnkdyTwfWiWGlv6MizKb86fuRlq3OyEV6qoU1OM7Ik1srvxfKyGuNJpEI1ziu1kWhSaQbZd/y9Y/Q+ZWfQeEZW9eY+lfXq1wyFds8xcD9Gz31CqSk/wdPYI+nXcO1Vr5PmjYiGEAmkh57aD76beBXbzD8+BakaWM0VjH1a1cSmtNM5kQ2artUt4BM56DSzwBK5yBSbVs+I3ceK8blCey0RfzNg55t2v3PD6tcDp5eMQGawGisVQnYbXevAITmoAV8aEE/dR85l9ThbsyuAXdN1dFrIjT+2WUANN3yYXr+/pcu17/SI0KnzqHqghUkdnVUfO+ke01FvWTzWqgzstCUHWjw7pdz13N3a5Lxl3bR/NlLabrlGvr+7YGiDtdqIzR+7oMqCbHQKFawBFLTsEcTMEN9E5jdQmB2S1nrSKEjZHleFCnFu06u/P9XmdBgf8899/xX1eM9+b9Yjv31faQKwrBiGw8Q33KEU37+OeJbDnl66IRPJ/FOB9XnLKXl6x8h09ZD+kgPekM14RVzc9QrxpQaZnz/cyR3HsHqH8U/t4XAvNbJE/kBsc0HPXnFpeWQ2N1BZP1iRh56o/ga4G+uU2FtkC97YBT/7BaFzBOCxLY2ZQQq2aBk2iReYLD/XcQZT5LpGysOsUdtqrGtbTQDx/7216T2Hs/dE3/jIEe3HmHuzz+rDuUTSPVFKxm6r4RnWhME57Zg1ERI7Oqg658fVc4IR5Jq62X0+V3M+pcb8TXXEFo6i5W/+jrHnt2Ok8wQOnUOvuY6VY9th1XiYLQiXjPhM0ju7qD6/OXM+tmXGX91N8kdbRjNtdRetR4t6MeOJTFPjHg0iCSxrU0hn7wUfgHRc5Yy8uzb3o5ulEKf2NnueVFaNlb/aC6s77eTvCG99sozib5vCYkdbQifQXjVfPToyaHBMl0jpIdNsDWEBOno2MfGsIbjZDr7vV/KdohtOkD1OZUdaZOJk0hj9njwmjqSxNtHJ70/sb3Ns781n0Fidwexrd7z30mZmCeG8bdW5lOfTGqvPJPu72Qdxupw60gJQlJ31ZmMv3HAE2mGUImhMj0j5XPMyY4TGHx4M0MPbc6tIam2E4y+sJuZ377hXRntnVSGzPHB8guSImqbShLffsQ7X4JQ99dcspLmr1xD+ugJ0oe60GujCp1zkpzgwYXTmfkfXyCx7RBOIk1o2ewJee//b5GKCXEFnuj3Qkke7Ebo5ZEFMm0Se/MA1ecvp+vbj5Dc15Vr++TeLqq2H6XlpkupvmSloiIp7Bch8LXU4WuqJbm/i+N//2B+TT18grEXdjPzOzfgn9bA0GNbGPz1GznHWbqtl9EXdjHzOx8jseOod38DiZ3t1LauovnmD5Nu7yV98Dh6bYTwynm5sFPfrGZSh/pyjSGR2JZGaPFMAvOnogV92B5I85qLyo3Jv08JzGtFC/m9y77wd899AaAZGvqUauyBcsos/+wmAILzWpn5k8+T2H4YJ54iuGRWjp82un4Rww+/4YmMjqxZQOdf3+vmv8mj5JACK26S6RwgMKeZ6f/6ZyTfacfqGcI3YwrBxTNPSm+J7/Ce39K0SOw8ijB0xrZ05pHqUmLFJUNPvk3zZy7KHai91r3A3Bb0qpDLVZsXEfBRc/HKimNNOg6Jne2uzuD9DumOPhWxJIvXVBxBfFcHtVeeUeGNFbow/vYRpCkpRJxKCZiQ2HkUJ0fP4lF25yBZiqOyZ58k9Ln6wtMIr55H0o0ADK+aV0Q9U7Hs44PqQIx3m2c6B3L/Lr3uJDITU+ZNgjTTNA29oQprcLyodhLwNdXgn92sQuTtQgQeSFsQXrsQ27bpu2sDFCQ0lLag7/ZXqT3/tIr1FhpI2yF46hxim4+SU7ykKiviRiyOb23HzOhouoMALEfD7E1hDcbwN55cgthKkjrSS+ff5qPU2NfF2Mt7mPH31yMzpms4LhiLEpyUw/jr+3EyFk6qOCGulCBTDvEdRyY12DsOSLswrF+tqUJ/90lnVdK+woSbSi+RQuJYNmMb93Pi+0/mfp85NkDXNx+g5UuXYTRXo+hPJKUc1Xo0TOiM+dh3vAzSQXPzJTi2An+E1yyg/xevIi0jZ9iR5I056c5BwktnMe3bnyK1twPz+CC+1gaCS2chNEHqUDdOxi5rc5mWxN7YR2TVKRVwqICuAD3H/se9WEMxtc4Ipes0fvxcai+dfC8KzGpmxk++QHL7YeyxOFPXLyIeLacG9WxzhPc4F+q8aPaNk+5LKqeWm9w+PZDG7B1FrwphxU0cLYi0XPoPXcO2/chUhsjaBQze+3JZmUITRNctYvBXG7z1VASO6WCNp8rXVCmwEyZ2ygQhyqKqsoby6NqFDN7jUbYQRNctxmiopuft4yAtdEONB9sSaIEggTktpPZ3ebZX+sgJtOpIxcgiLeAjfWygZBzn65XuHkSkLaTUXZRtfqxKKRjfsJfwqXNIdifA0hEOSFvD6kuT6R1Vuprt5J6fz3kgiG06QGT1KbD9iGfdfa0NVK1fRPKdY+X5McIBAqdMpercZYy9sKNYbzR0omsXIjTB6Kt76fvZ88qoL1V7jD63i1n/diN6VYjY9mNYTgBMV7cx/MS2H6P60tWufdN7L5GOJP7OcZIdYwih5d7LPJFk/K3DhOa1ID2cuNK0iW8+SMtXP0SsQuRx/dXrGPjFayX0bGptsTMOqYPdhE+dzaw7v8L4c9tI7T+Of1YzNVeciWZopDv6VEScR5vH3zpUMdILIL7zKALhqf9IqfbIqvNPZfSZbWWRBZE1CxG6Rue3HiC5Kx8dZPWO0fkX9zLjH6/H7Bv1XlukouijwtlASgG2pOrcZYw+u73IniMMnfDp8xh/7Z2K7+UMx4i+fyVjz273LDswu5mq85YxvinLB6/0b2kraprgwmkITaP1Wx8ntb8T81g/RksdoeWzczRg/mlTmPmjm0i83YY9EiOwYFrOAD728q6KdRvfuA9RFcIeyIL63D1QCoSUBJfPZfS5XZ5nYDRJ6sQwkZWnMOv2mxl+9A3s/jHCZ8wn6jpAk7vaPaOKsBzi29oIL5tVsW659nPKIyKz1Gx/6PxZ/x3lPdb/92RCSR3pLTLWZ0WmTfrveU1xzXuFCwqB5qLorMEYI6/sI7mnC19zDVo0QqggTFi44WC/rWSOD3qGIklHYg7FyPTF1OJVYqYxh9N5xHWFskXI725e5KhKhJAIHbSTNNJWFJ+ONKHcaypxTIdUe3+RsfDluVwAACAASURBVD73XhmLgbtfo/lzl0z4+JpLVypjqovQExr4aoI0f/lKRb9w63PF4YKmjWPZ9P/iNVq/ohDXejiQS8ZaKFokiNQ0pJlPGiU0iSZAC+dRk1XnLqeqNKGioXuHzKKM6nYshW2S48rNXRM6Zt+4UuqgHD2E6nMtFFCH5BI0GI7MoUVSbb0MPvIWZtcwwUVTqb9qDf7mGrRIEBEwPMMoC42ZRkM11ReWo8EnEiklvbc+h8wog4REV4hF22Tg3teoOnsRdsZWhnyZVYAlaAqZeDJiDcUYenQLiXc6MRqrqb/qDMKLp7kc9N73ZNtESknsrcMMP/U2TjxD1dp51F6+Ej0cQIsEFOrEzqMiAcVpGgqghSpQ6jhObv6njvQy9PAWMl1DBBdOpf6qM/C3nIzzRLjRO7LsOydt5YaBF/pHC/oVOtVzjkns8SRDD2wqiaCxME+MMPbqXmov+d0NisLQK4ZQn4wjoLDNiy9oufa2hmOMvrqfxK5jGFOqEJEI4aWTI9Vyjwr6J4yo+kNKbEsbQ09uxxlPEV07j7rLV6FHJqZmAjAaqrBdvuwicaO2JhKt0nquSfRokMSuDhL7jiMLEnPLlMnYhn3UXbGaqnOWEdtyiNhbR5COQi3pER8tX1VRDb23vVC8dlgOjp2h765XmHrz5Qze93rxWMtYmH1jjL70jupTr9BUXRStqYHZzZ4Jy1PtQ3iN88SeboSmMfXr13L8b3+FnVIc3Zomqb3gVMIr5qi6mDYjz+9i7NW9oGnUXryc6nOXvGsUjNAEU//yGrr/8X6VVAy1zte8fxXh0yany5pMWr/5UTq/ekcRWkyEA0z9n9fl/q0F/TmamkLxNdUy5dOXMHD7c3k+Wilp/tIV6FUhzOFsvokSlFyBTVlogvCpc6AgMqVQur/3JOObDoIt0RuqmPZXCi3mjKcrHj6deJqeHz9TvuYBYy/sZsqNZ4OmjBm2rRXsc2q9VW1+LV3/65fKWOEWVHXecsIr55LpGgJfORBB6Dpa2K8i3CpQDel10QK6m8K6KbBBlvPUa7uRQmAXGaYK7pcKdawFDGxPnluBUZunAind3wvRlgP3b2L4ye3ItEXglGamfuFS/FPrcteN2miO+utkRAJGXQTH0dCEU6x6SHCkjhYO5I1/pUu+EBj1Ue/13NDVNSDdNcSJHz9L+mgfIuij/srTabhaIYVlKAxyvBzLEIlijyZxkiV7s9sn428cInN82BsVmbHov28jemMNZu9Ieb0NAz0cxBzwngfmYBxrJEFs435AK3AYALbSd2Z8Y/Loa2ssyfBjW4lvP4peF6H+itVETpsNQN/PXyyKUsN2kLZD3x0v0fjJc5EZ6fnedjyjUJdF9c5fz1+rLDkEedG9xd/Hd7Qz9Pg27OE4kdVzqbtiNUa1ogOQtsPIi7sZe0kZ16ovWErtBctKcimUfErFadz7s3xC6ULpve0FZn77htz8LaWQ9M9sJLGjw51jOkVBkRIS24+6OhEgtRL1RCJ8qg8zXUOMvLSf9JE+/LMbaaitIjCjAXS9wIlZ2C4SO25i1EcV2ruUKkQTGPXVjD67U6E2s+NRKp2r/+5XqT536YTo4axofoPImQosFW6sIt4/Puk9AEZTDWbXoPc4jwTou/MlZLJgrDkSmTLp/fmLzPjWR+i7s4SC0HKwhmMMP7mNKR95H403fYDeHzyFbav30nRo/tNLVM6vUAA5llB5b6Si7VDrlsRXGwGn0ngALRpQTj2nHKmqN1ajV4dp/PMP0Pejx3O5dIQQNPzJRfimVDP2+gEVmSgNrILXk2kHmTbVmcdjzRWGjhbw49gaml6MlJcSpOHHGS9Fkmf/X0LSwjGzdDalUVHKQdx350t51DPuvLIt+m57gZYvXeaOk6wjIH+/k8zk9hqvs6Dm9xE+bS41l6xk9JntoAsQam5N/ctrEZqg/vpzSLf3kT7SkyvD11rPlE9dhDRt+n/+YkkUmo01lmDo8a1Ur19IbNNB97q77mUsEnuOq8TGAu/9HRCaRu9PnsxH2BRI/50vMft7n1QRaFme8sKopnAA/9R6aq9ex8jDm4rujZ6/nNDimaSOla577qcjMd0cWsldxxh4Yjf2wDj6vgH05ilUr1+gdGhHGXRLy9bDAZeayUP/BgUesSsnndVCfmo/eDqp/cdJHzlB1vttNNfS+KeXYI8ni4z1hdL1L48RWTLV85oK6VI5D+yCHDcAmuYoqvhQgJor15A52kvqUHeugqHpDTR++hISezu9n41bx9qoJyZAOc3rMHvHc9Ga+UqBk1H5XvRoECEEocUzCVWISk4e7GH4+b1Yg+OEu2PUf6gKoy6CFq2co04LB9AlWANJSvtbSoHu113kPWXXccDI2kSO9pNsH1V5M2oGCC6OY9RFsFMZZSfzeG97bPJ8piISQo7Gy9tO095D2P+O8p7B/j2ZUEZfrswjHdvaxrSvX8Xo09vKrknTJnLaHDK9o3T8xb0qAY7tkO4cIL6zg5YvvZ/qdQveVd3M4cqLRqZrhOSuDqStIVEefunupCJlYg2O45sAARReNhPHzCJhChA6tqDqnHJD9m8jMmPn9JpiUfUbe6Wyxze27QgTY4PAGogRf6fHDblVHLLmmEVifxeR5TOxBmPlN0mUsj+JVJ29hMFHtlGIdpMOOGmH8GSc5abt9oEHWsRRYcD4fDhJRV+gQtAF2MrIJ7S8ElFcd4Ugir5vCckjG8mpS1Khi/yttRg1EWLbj9L9r4/nURPHBxnfcICZ37mB0JIZKgqgxGCvODLfHRrUiacxPZKnIiWJ3ceoOmshOFn0b0HDuMiIycQcGKf9q/fgJDNqjnUMkNh1jObPXUzNuYuJrJ5HfNvhIoOg8BvUXKJQTQO/2MjwUztyaJTM8UFGX9vH7H/9GFXnLGPkia3lSFQBkVVzkRmL/jtLkMeaIDC3BaMuSnxHO13/8phSbrNtvnE/M799gzoETiDx7Ue8Pfy2JLG7s4CDOv+brAffSaQ95pequHQgeaDbWwnLWMQ2H3rXBvvomgXE3jpUhCYRfoOaiydHklWfs5SRx97yQP9KImfMwxqK0f7Ve7ATabDc/n6nk+ZPX0DNBe9ubfpDy8Cv3mDosa0543ama4ixV/cy+99unNToXnvZavpuf658rM1uLKKe8ZLg/FaySZ+K1nNHo+qcpcR2Hi0w1mfnoESaDondx5CWw/jmdnAdatIBa9ym//43afnsRRUjKpJ7jpM6dAJh6GVRADJjEdtymJabLmH4kU3lYe0SImdMnG/BTqS8DXKIHA3A+JYj2JbIGWukZjD25lHq/yiNFvTT+a0HSbX15vqkt6Of2PajTPvaxHRZJyOB2c3M/ulNJHa1E9HAmt5YOXH5byn+xhrm3HUz4y/tIt12gtDSGVSddfJOqOpzlhFZNY/ErqMITSO8YnbOISYnQnsfG/R0nBRK2013YPWO5v5tD45z7Gu/YNb3Pq4OdxUs21LTSR/prfjcxNajhE6dQ2xru/tNdp8zqHITGMe2tWOlNDDdAgy3v6/LUPW+RYrqr7xkomsXYnYPMfLE1vKCfTrhJTMq1Mo9oFr5cPoypLkpEfoExw1dp+ny0+m5/3XPsiMr5ijUcyGi093fs4CMzn94mMTb7bnbUvu7Ofqlu5jzk0/hnyRviAj6lSGoqN6KXz84ZyoquqsceYgQ6A3VgBdfq0ALBYmud1G2HobM6JkLSXcN0f7lu3L7lTRtBn6xkVTbCVq/dgVmxwCF1Ck5RHRbL+Nv7C/Yx/LrFgiS+7swu4e9QS1A7PUDNH3yXE4c6kGmC5w0QmA01WK01lUci6lDJ4i9eaBie6YOeCN3C8UeT9LxlbsVwtiyoWOA5L4uGm84i9rLV5I6dML72Qe7FcVchfeWlsQc8jYsgXI2TCqeukP++6HHtzFwXz6/VaZ7mLFX9jL7uzeiRYN0fftREnuP5yOqjg0Q29zG9L/5MNKq5NZSZ4NKDjOZMjFa6/A11WB2Dxd5h0TAR+1lqxh+qjLH9fimg+7+5a1TOmmb5KEeOr/5QC5SLH18kNjmw8z45jVIZOVzixBE1i6g/84Xy+stBZF1C+n+zqPekXCOJHWkl/CSkwcc/LZS+/7VpPYeLxnnYNRX4Z/VRNIDlAYqp0C6vc87R47lENt8mIbr1jP6ygEcDJVZFJCGwegr+6k6Zyk1F61g8IEs17RaNxwXMR9Zvwi+/xSVxoOvsQ7CYezBWAk3t0b1ectwHIfen7+CnS6OgO27awNV5y0j9uahAh26QK+RKqI0MH8aibePlK3XgTktSq8QQjnjCs9jCkuN7cWt74pjyZxz24vDOt01Qmp/hTZv73OT6XqfFaUUyolR4SzouEjvhj8+jzk3nEPXhn1o0SDhU2fnUL1awMe0b36U9JETpDsH8E+ty0XXp470qrFeKqZNfEsbRlUY6QE8k2mT+K4Oskk/Kam3EODYjnJc5yQ/oZy0jV4dRkTCOIlY/gFSRTVF3UjrhuvOpuai0xh5civStqm57HT8bvS4TFaOkEu83YFAo+d7T+W+swbG6fn3J7AGz6X+itWIaKWylxGYNYWub/zS89kNHz2boUe2QAkFcba/9aY6Mt0jJI6OIE0dIR0kArsnTvpoH6kjfR5PVeKMJvBNb4LNhzy9IL6WeuyYiRzLngtcfcRR+e6Mljo0v4/Wb1xP+mgv6WP9+FvqmP6+hQwMxKhas4BeKNsnpYTg/BZFC1NhrEkE8S1tnuuD5jdIHewhssob0JGVkRd303fHy/m9Insm+u6NNFx9JuMv7PS8r/7adfTd+Qpe/S1B5Q3wcGhn300LBRh96R16f/5Sedn/fiOICkZ1ifJITiKhJTMZ26DyYwjXiYWE4IzG99D1v6O85+Z4TyYWy/Y2bElw0haZriEcqbsbaf7PtsAcjDHwqzeU8Sy7oEllqOi7/aUcIuB3FaMuWlZulq/LN6WqAAnvIhuyhyxHTmocskYT3ghdTVP8t0BmYJz2v76ffdf+kP3X/Yjj3306n5V+AtGCPu8s86B4HWu9wzwlnBQFy8D9b7jG2wJDZrbNvZBe2d/YE9NKAKQ7h9zFtqRdpI41oBwBmROjdP3wWQ5/7k46/uYBYq4jQPHnq4W6sL+QIKqj6t2yjgCZRaMIxRNXG0ZKgWOrjOVmxoeZ8WFZuuIZtSXp48P5+uQ+BdZQEseyFQrWNRwD4EicZIb+ezcgdI2p//Naxa2cDa/TBHVXryc4T3n37WSGvvs20fb5uzhy8z0MPb2z6BCeOTFK9w+f4/Dn7qT9rx8g5hoPhN+oSJWghQNk+rLG/NLNFTKu0cdJZuj/VUHZT+XLHnzwzeI5htvfd7yEtB2aPnspgTktiIAPEfIjfDqR1adQd+VarOE4w09sL+ZTNm2swXFGX9mDf2odjZ+5VL1DyI8I+dEiARZ/+0a0oJ+qc5cqo2L2/YRAr6ui5RYVzdF724tKGShs85RJ/92vebZHoaQ6BiquPZneEZyUayCSgjxiReBYAukrpz/JSVbZ9kRzKm5QULQ+/b9+k7bP/ydHvnwPQ0/u8E4u6CGNf3YJRnM9lm1gmj4s2yCwYDp1V3nzwheKr7mWKX96cZ5PUyjKqal/cTVa0M/AQ5ux4+kiB4xMW/T971cmpYb5fYjZN0b3T55X4/x/3k9s29Gi66O7Ozn2rUc4/Nk7Of4vT5LqUJQR1liSoUe3FCHRpWljDcUZebGykzIr0bMWE123sHis1UaZ+tWrcr9J7O8uKPuJXNl2LIWT9kAHahrp48M4Y2my60XRdQlO0qTnR8+UGCrU78Zf2YudyagQbgm2rbl/Ctmihf3o0SC2bWPbouC6QjgatWF8jTU0ff4D+fkZ8qOF/Uz9H1ejT5IUOkuL431RGcWGHnqruM0tG3skwejzu4nvaCd1pK/4etoivv0oqQkMx7+NCEMnsuoUGi8+rcxY76RNBh7YTNsX/pO2L93D4GPbPRF/lSR9uJfRTe2Mbe9m9PUjpI72/1Z106NBqtYvJnrmwuJooQk48vUK+3NWku19Rcb6Qun6l8dUIkSX57VoH9R8Sm+ZIAGyMaWaTG/2QF2Mmkr3jGHHUww+sEnxoUpN/ZkO9miCkWd3YtRX0fjnlxWtLfh0Wm75EHo0SP0fn0tgXgmaTdeY9o3rcjqL41A8jrPLkKXyKEDxezkO2LEMvqYapJsgNX+vQBo6voYqZn7m4hydUU7+P/beO8yyqsr//uwT7q1bVbdyVVdV59xNaAkNkhpQBxGBJg1RRh0Yf+qoYxpER2cUdWZQ5zcOKAaiKAZASQIKiohNamgams7dFbtyTjefsN8/9rnh3Htudf9e9X3f53lZz3O7q+rcc/bZee21vuu7NMHCL16hpqLM6h3+/V1KnczYrM9YnxNXMvL9p9WPGZvxh171xtqPmXjktdx6aeQSQBf0ByoaTo9WeHkqsuXlnX5aZQjhOQ5A+PairKPCqK+m9VMXIipMFQURCSEqQrR+9mL0aITh254KNBDHXu7AmUkiwiZSajiOjm2ZOI6OlBpaJIQWzeu4ecm3T3ZdKmlzV/Vr5YkriZ59DI5rYlkhbCeEqK6i/cZL0TTNK5uCtctb1ypCnqMiWLTw4XNUTD6+XUUQFsx3mbYZ+9nzyJRVFnGtVZgBRsj8z04i450NRGm9pcCsrz7su5U7H2gR5dgZ/9kLJfuYM5dk8ontJPcOkNg7ULKmJvcNkNwzgJsoY5CX2X/Ki67rtN94GUZzTX48mTp17z2RqhNXFST8C7g3Gpnn/CAwm+vyhqNs+7oSmbYYufMPGNFIWUOL2VqPNTSDg1Gqn2NgDUzhJjOBOplrOQjjr2uKqDpuOTXnHOet6wrgo1VX0vr5y1TekjJjTYRMNQfK6FVuMkPq4JDKOVSUFyR5YIjErj6EYebPFPknI4XuR/UHPd+2cOYyufnvODquqyOFIN03zewfduNMJ8iuS9m1yY2nmXrstYKxVlS2ly8hvmugdB+SkDwwqta8oPMYIIWiYConelUEDKP02ajzeWhBHSISvLYI01DjWFP7YPG7GS11WKOzuK5WtN6q+W6N5qMuwi21RM88mqoTVgaO3fCKVmrOOoaKNQtzZzS9uiKHFi/W5/TaSrRoReCzhKlj1EQw2xuC622YGAUJOYv3MVDTzp7NlPQXQpDuy1ObGg1Rmv7uHTR/8G9yxvq8BLjjpcqpM3J7qUMNYOy+LbgZG3smk2tH9VHnqHTfJJE1C4kctxzH1rAyBlbGwLE19KXN1P3NcbkI9+J6u65AM3XG7vkjTsLCtYUax46Gk3IYufMPmG3zONQ9JgTpBtl6QJhmge5WNM6lhmaocZTqHWfswVcZ/dkrjN7/CnO7lVPZTqSyfraSd0/PWdjjczhBdgdHgSP1uspAH4l0ZW5/nn3pIAevv5O9l93C/vf/gKmnFNWNtBzG7nmuJDrXiaeZeOgVjMYaGt53NlZGz7W5ldGpfucGKo9agjNXmhNAPVjZ54KjufLjbfTuP5YpeytGQxRXK7XtuWiYRxAhH3s9G7ngrUtSAzRShybnu+0tmUfeMti/JfOK6+bRiMUigblXOnEyAtvScWz1sS0d1xIk9w4Q394deBhx5pIqBOfPkKarTgOpqbCfgg8IGi46ifoLTixNwGpoVG5YcljDd3LfYLBh23GZ23oQO5Gm86P3kNyjvicth7kt++n8+L2HfW8tbFJ98qqSRIkibFB3wYnUnX8Cgbq7hLrzS5PMFkvizUOByGQ3YyvEVcCzVfTA4R0oiR29wcqrrpHY009maJruz/yU2ef2YY3Mktg9QP/Nv2bq97tUvU9ZA7rp769QiIYLTiSyfiHIAGyDK6k58yjv4KkXRD0IpOttBrogsTM4pE7aLunu0bLjLfFGDwBTv92NldSwMxq2pWHbISZ/sxsnmUFaDj2fv5/Jh7eRGZwm3TvB6L1bGPjv3wCoen/2p8w8txdrZJbkngH6v/E4U0/vRAsZhFe3ldRLAtWnrCG5pxwaTSATFtJy6P78/Uw8VFD2j7cw8L8VUiL+Rm9gf0vHxRqeRq+qYPHX38eir17Dgn88jyX/9fe0fmozQtdIHhgKVD5l2ibuGWJrNh3F8js+RusnLqDt05tZfvvHqDl2KaCMtzMv92JZBralY2c00hMZ5l7pwk1ksILaXEJy7+ERePZ0ouy1zMgs0nGVQlkwlrKGk1THiGfMLyraU/KyzsKg6wgNaTv0fOF+Jn71KpnBKdKHJhj9yfP0f/MJjkQSuwdIDcYUJ6rnRIztHiHVewTh+LbDxGM7sG1TjcWMhmUZTDym0HOJN3oD1ybpSjJB+Qr+gmKNztL1mZ8y84c9apzvHaT/W08w6SH75rZ1s/NT9xF/vRdrdJa5lzvoufEXJDtHSB0cQpgBYy1jE38tmI+0UOzxOaZf6PGPtUmL2ZcUJ3XstW4OfeWhgrI7VdkdI6Q6hgPLxnHVODfLq0JC13NO2iBJvtmPuagpR7WTR9Fpio9y5QJcq1BR9vZUV88h6KOnrGX57f9I6z9dQOun1ByrPObwSX0108BcGJx/oOLoxaQ6Rsq2eWx7F4ldfX7aiex11yVRdl36y4h0XHq/9EvGf/kqmYEpMn0TjP30Rfr+4zHkYQxXALE3eun9118R396j+ntrJz1fuJ/k/qE/+90UhVLR+3q/61Xz6w7T86Bc7ZEZopvWgW6U6i26RvXbV1N3XjDlmggbRNa1l6X0SHUMk+ocDV7PLUflxnAlk4++ge3k1xbbMhl/9A2klGiaxuJ/v5ZF3/wAdZtPoukfzmHFfZ8msnaRMuDWVJGnbcvqhhp6S50Xjq8Qma6jollcRwOp4yYzVJ2yRkUtyvw8kFLgZiSVJ6/CmoyTGkpiOcoQYNsathsivndIbZblhoSUxF4KThoHkNw/hHQlh778K8bvf9kba5OM/eIlDn3tEaSUNG0+GcyQtzd4HyC0tIVwewOhZQsCx0N4VRupnjGv3qKoTzXlWAWqTlzF8js+xoJPXkjrJy9k+R0fo+o4hbxLd5dHF8a2dVD5tuW4bqGzQuC6OpUnrMSorybQWoBAr45grm33DHn+NpdSI3zUIpzpBNPPdaroAYmKxoy5zPxJtWdoeWtBVFJ+XQutaCV60kpFzxIg9RceXk+Nb+8O1CWFrpHuHaf2nA0eyKPgWsig9py3kT5Ubh8VuCmLhitOzRn0fGPN1ai/4pTDvlv5sjeQ6h0LNDCrOdZDco/fWJ+7nrZI7u3HTWTKri3p3nHCq0oT+AGEVyhnlrmgjqW3foj2L/wtLR97L0u/+2Ear9oEQOPVp5etU9PVp5fvF1MnetJKpTcFSLprFLOtntCiRi9pc15E2KD+ghOJ7+7DTcsS/dxNS+K7VURkCYVJ1pj5VwYa2LNJpv5wQIEnPN0hMyeZ/aOKEqk8cWWgfl553DKkR79YTpdM7BkIdDLLlEVidx9zr3aWWbsE6a4Rsvz6Jc+WAqtvCteRvnEMap7GX+1kbmtH2TrHXu3MJ9guLVpFqaRspKv71mvX1ZGe4Q4R/G4gaP3EecHPRtD8D++k9pwNZc/ndRdtpOrEVYHrWuTYpYRa6wgva0biv59QmIYLN2JNxECK/Hvn9hovIeafIWZLLSJaGbDu6UTPXK/O7kGiCaJnrKf+vOMRZshfb6lhNNQQXt5CSbhTQbtZ/RPBCXWlzJ1T5xVNp4R+SHpAlepw2STj2C7JzmFc2y0da64gvq0blcfDQBqh3HVXD4Eb8vINqLkfdB6TtkN8zwD58ZL/P9U3pfZCUTpNJFB57FIv/5Tm359dpXsIQ58/b4DtkDw4TM+Nv2Du5Q6s0Vnir/fy5id/Quy1bhJvHCJLIeY6eDlhwHV0nKEZrLE5r15FdgfXwJqMU3PWUaXrGqi8gatamX52DwPffAJ7MqYAa3Mphn/wB8buf5nM4GRwNIfjqnM9MP7QdpSpNtsnGtN/OIibsXHipc7f3F7SN56bqyXfAZIHR4LBMY5L7LVuqk9aiZvSAmx7OtVHwI6hInwD+sSR2FMBLA9vyWHliA32nZ2d3Hbbbdx000253/ft2/dXe7G35P8bEmqvyyGoij1toZaaAlSzVuDhV8p/ZmxWIb0DRDoSQkrZn3uli65//jn7P3A7h772KKmuI0PJVR23nOg5GzyFx/sgaP3ke9EiIWrecTRVJ6/BcXVsx8B2DIyWelr/6b2HfbY1HVcopOL3lpAenFaJvAJCAu2xOeZePbzxacFH3k2ovT6/SQlB5fErqDv3OJIHh3OcoP42F8y9oYzS9mySoTv+yIHr7uTgh+9h/FfbcouvXlsG+eBIxUObVZKLvMnlFYm8GA3VKku4U4RcEhKjtpKxX7ys6I8KDMgybTP6oy1I22HBR85Bq4tiOzq2rfokvKqduvOOx56MYSXdHIpefTRsKUh2jmHl+CpLUVXWqOfpDhLXRaurDOxPUAgfa3yO6Wd24aadvAJouVgzcaaf2c3sSwexRmZKOM9j27qV5/6Bl9VYL673vQq5kBqYyRmQC9EBye4JzLY6gpUNiVZhMPtyB5mRGZXwK+vlTtnMbesm1TOGUa7ejotWgLgKL2uh+uQ1mK0FnL61lbiu60OiOY5ACoHRpJBoya5RDvyve+j92uP0fPkxDn78x2RmFB3V+P1bvf4mN/9lxmH03udVjghNFCFVFOLvSPJACNP0UHFFHn5XoIVNhKkQPGqcGNi2kTOaVizNIzWDxrlRV4Wjl0Z7uBLCixqZ29qpktYW9Xf8jd55wzfV8yTDdzzrP7TL7Dw4fGTB3CtdpAencDNufiymHWI7ekl2jqLXVRYhk9QcxHHRa8oj7P4SMv7LVwLH+dhPXsBJW4zc8axCduQuSg/9/yeM2srgqCohMBqjADjxNMP3/Emtax+6m7H7t+Jadr7sVKZ0rN2nyi5tc1X2SLbsICOwjLPv0gAAIABJREFUJjAaqwm1NSge+eJXCxsYTdVoxY7fAgm11pLsmqAQWZv9OfZGH+m+SSihQVA/T/0uTzmnVYSoOmElVcctnx85XySLv35VSb8bC2pZ9C+XotdWBjtihUJpGfVViFAAWkzXMWr/umMptr2HdP9kCTIxsWfwiIzuw7cX8Qp7c2zknsPPMVCRNCP3buHA9Xdx8EN3M/rzl3JjN+whvUvWDk3L7a+D33+GPZfcyp6Lb2HPpbcyfO/z6t5FDcEABwnC0DHqqmj/3EVoVRVokTAiEkaPVrLoS5ehV4Zpuup0Qsta/GULwcKvXanQZmXyYOhVYRWJFgQ0EGrvjr/eQ+rQBDLj+uZQct8Qyb15ioKKpS00ve9s6s45Dq0g2iCP/vMjtqzJJKIi5PtbNqJRSsCFmd/vKrqX3Pfmtuyn/2cv4SQz4AjPMa8jM663x2TKncdBqDZxHP+aqD7KMRR/o5dU95iXR8brj7RCwSb3DFB1wnJq3n08jjSxHYU01+rqaL/xIgAS+0dK0X0S4rsGFT9/AMJeHfw95GQyw9j9rzBw27MM3PZHxh98BdeLatMqyqPRzdY6Un1BkYOQ6p3EqKsOdkQCFasWYA/MFN2b/9nqm2bise3Y8RTSlj7dYuyBrTiJNIn9w4HrWnyvmp+LvnJFzoCbHfKRY5bQcLHi37en4nTdeD97Lr2VPZfeStfnH8g54o2G6sB9zLUc9NoITVefQdUJyxGmjl4V9iIDV9B01enodVWBNlCJROga8Ve7CRxrCO+ail7s/+/fsv8Dd9DxiZ8w9fvduT2i6eozMNoacoZaCRht9ervNZUen3OpGPXV6HWVJcZ+ABEy0WsqC9rSv7a4LohImMVfvhwiYaX7ejowFWEWfeXy/LOEILJuEdUnrfZF5IYW1NF47ab8e3vv3njNGYTa6mm4+GQqNxZRVxoai2+6onBolIpQNCNtn9uMDFfk9HPH0ag+4yiqjluGG0sXjZX8eHHn0khRpt6OBqZa0yaf3MG+a77PnktuYd/V32fi16/nXsFxHLq+8IBaby++hS3v/AbTzx2ZDWLy168rY6UjfevexCPbcGIpUr2TpQheF5KHptC8KBMofXeEwKipRBhB/W1g1FV59C6lIm0HTAPhRdEVP1uYOnrEVIm6gyJJ0naeaqL42d73wouCaSeFqd4t/9j8ep0Vvb4qF2lW/G6hhQ1Urm2n6pTVJX1acexiak5Zw4Lr3omxqMG3JoJgwafPR9d1UocmC8ZI/v9U/zQAbTdsRq+vUc5lx8SRBjV/s4HqjSsxm2u8s4CWMyZmzxaHo0c8nLhpC3s6G3FZ0D4CUl3j6JVhtVfXRFSUkxd13H7DRRj1VUTWL6Lp785EhBTyW4RDmG31LPqSiuYodz4XYQO9oapshKFeX+W9n83oL17m4Ifu5sD1dzFy75ZcVLDu5UTx95eqR0V7w7xnfK06guvlBfHPX3DSDqmDwyR29/v2UCyH9MAUsW3dgF5wT0HEs6MhdKMoGW7Bz1IgHakopQL2WL25TkUUGXp+7mZtTbpGqK0eOc88EIbOyD1/8kd6e+04fMezhFqz6H5dfaT3P6CFDS/KLGhdU2t6snMMF3/EJBLshIpsHLnzj4HtPf7AVkR1RaAdCVT07fSze3BmSqmfZcZm7Ocvodfmc/v41iVQeeKCGgVACkRtRVlHqczYzL7c4T0z7xRT7Q7TTx8+IrrYseu7dBjQy1sSLEdksP/Nb37Dtddey8jICI8++igAiUSCm2+++a/6cm/J//tS/97jkFL3FGpdbZCeF77+wo04c8UbW16s0Tlc7yBQKFkl0hqaYep3u+n/378h1TGKM5Mktr2H7i88QPIwRjFQG2vstX4czHy4oAgzvUWhDtJ9k8y81K08894imh6JM/On8tybWckMzuTetVjs2TTxMglSAOZeLo96yMrsSx0kB2LKY+koNNnsq4dIdY8x91In0kMyFX6k1EjuHsBN23Tf8AumntqJPRnHGpll7P6t9N38OAANF59UElmgaAmWo5m68lSXeOFLk+AESdXJq3BzCXPzh1QnKak6fpnyCgc0mpvMYI3NMXzPFtJDMciGV0qI7Rhk5rl9JDtGwC0MvfQ+jsbMCwdwZoPHmpSCzHiMmjPWB3rojdY6HC+JYDmUTPLgSIFBvwBdkFaoqfibh4JRU5ZDcv8QiR19gZujm7FJ9Yyr5HCuXtSfOsn9QzRdvSmwrUHQeMWpxHf0FvFre+9muSQPDAf2N4ZO5YaluSRo5aRibRtSZlEZBWgSW6PmzKPITMbo/szPcWfzvIv28Cwvbf42AInd/cE881JiTaiM934UjYqSqD5lfm5ugFB7A6CVzAMQhJY1E920vgShI6WGNENEVi5A1FUXhBFruTWsYv1ixU2YFiXrmnQNKjYsJbajN7i/MzaJwxgT3ZSFXYZDtxyCrVDiOw8F93fGJbFvkJozjwqot0BrrClLp/WXkviuMv0tIN07ERxRASQ7RgivXKCS0hVflJKaM9erSJIb72fqiR1qXRubY/xXr3LopkeRUpLY1e+j+coVLRSvuFUmAV2qc4TwihbMxmgpOtDUqX/v8dSeuR6hBxiuDZ3qk1ZSc9ZRgWsLpo7RXFtgFPcfet2ENe9+UI6n+f9EjGiElXf/I4tuupLGazex+Ob3seK2f1CRPcubEUZQm0PNWeupOXN9IP2L0LXySLK/kCT3DgSj+x2H5IH520VaDtbQdPBzj6BNpePS8/kHmXx8B/ZEDGtsjomHX6P3Kw8jpaRh88ZSw7iuU7FuIWZTlN6bH2f6qV0FVifJ5MOvMfTDZ6k9XyHkg3SH6JkqYWLVcctYeddHaf/CJSz64qWsuPMjRNYtBCC+d5BEx2TBuqSQTSN3bUEIQeWGJYFjserElYSXNKmDWvE4DxnUX3ACiX1DwW1uO4d1krgZuzydXtr2+HOD6y0RxN4orzPFXuth+rXuwMOrMDTSh/IGNd9zpYeIS2UTAPrRgaDh2IJ4WdSzTXzfINbYHFNP71EoOk9XtGYyTP1mJ67teoa+0v1bZhysoRlVTvFeInWVZ8Vx6fniL5l87HXs8Rj2+BwTj2yn50u/QrqSyhOWl9WRK49eTKYvOLon3TOunENlULCVJ6ycl6/dGp8jtr3bcybiazfpSpI9Y8hcDp0i1GVaHfRnX+pUTg5bU0ALVyfeMYE1GcPN2Bz88I9I7R9We4YrSe0b4uCH78G1XWrODNq/BaIyQqitHmHqtP/zZpbdeh3rvnoFy269jvbPXqioJ2orve8XV1wgIhXEXu8tW+/Y64ewJmJ0febnzG45gDOTINM3yfAdf2T0JyqHwvij20l2TuLYes4omOycYvyR1wi11xNe2qSSWRaICBs0bD6B6KlrAlGyQhNET1+DK5VDyvHQwUpHUfq9m8ww8eQO7DmH/HjWsGMOk48Hcxn7qu9KZp7vwiWU130IMfN8Z85Zvujzl7Ds+x+i6f1n0faZ81n1s08SWdMOgGuXmWOOREpJ/3/9FmfOolDfmnpqD4kDw+BzMhc5S0zDQ//qpfqcpiEzNuMPbWP49j8qGhepzgwjd/2J0fu3AtD5oXtI7c2vUW7aYvDbTzG7tfOw7ZJ481BwNIepk+oZI9U97vVJfs11XZ1M3xRO0kKIMmcmoVF9yiqVF6u4LyyH6KlryHGaF7WpEAJpOWqvCfn3GhEyqX/vCWpdCzyWKVqr0NKWspZKc1EjVRtXBK8tErVXLGsOvG601hFeUEfF6jbFF19YclglxZZSkhlP4YqCsSZCWFMW0nGxp+NYExkcqecBQSJEYo/an1Od2TO+f23JDEwjbYepp3eTmc7k1mPpakz9bi+Z0VkarzilJIIG78zceNVpQQ12xJLunwpOiikh/qai+YisW8iKOz7Cwi9eSvsXLmHlXR/NJcsGqD/veLW/f+4iFn/9Kpbd8veYC5RhOCjyPxu9E2qqCXRGSvCizCW9Nz3MxEPbsMbmsCdiTD6+g54bH0DaDo1XnErggDEMqk9bg9FeCiaQEkRNBGEX5u3xG9adjK10h6A9NGUR39Ov5nHQ/BZC5beZRxT9ouadkcl9pKsTf+MQFccvxc24pe9uSyrfthTXkoFzDKkAeeVAVtbYHKGFjSq5c4DUX3ACoSVNZdvFbGsg9lq3R/NTtJ4jSHWOlqVAw5Vopk7kqIUlYCERNmi46CRi84A/4zsO0XRluf5W0SDFRnwoMO7PpCgXQSMRRdE7/vU8dgT5Dqs2rgz8e2hx47y0j29JeTkig/2tt97K3XffzVe/+lV0b/Fet27dESPsv/GNb/DOd76TtWvXcuBAcOjqbbfdxvnnn8/mzZu59NJL2bJlS+7ad77zHU499VQuuugiLrroohzK/y3560t8Zz/ZUNJCRUZKwczLXZgt5bzZgnB7AxCMqpCuQK+PMPrj53GSdp4zzRG4KZvR+14EFB9l1+d/xa6LvsOuzd9h3/X3kDigjF7Tz+3Dmo7jZsi/X9ol9nqvQj3/9CV/gkLUAW30vhdzXuzp5/Zz4KP3seeKH9D1uQdJeAqhXh320QHl0EeuUHzeejBHtgREGT7E3Hdcyei92XprOT43N2Uz+pMX0KpC5LgDfYcZQNeY2bLfq7fMtZuTcojt6CPVM0b0tDU0XHIyImQojlVTJ3LMYlo/ca7i5tRKPeFSgt6kFArXcui+awv7PnAXe676IYe++VsynjFs6okdBeOhgOfO8Q5vZULupKOS/k7/rtgzq9p4+K7niO3q9/0t/7NQxvyQHmgMANArTOL7hnNZ0Qs93ZnhmFKCZGl/5suQSFsW1EnkFEInaeHEM7iyGMGnkke5aRvXy/Xg5/ZVXJF6bYXiApXkFFvFQwu4Ej2ks+Dj5+I4ivrEshQPaGh1Gw0XnIiTyB+QfO0ilXE4espqas4+NseXbtkGeksdrf/0nty3Z54/yMGPqXHeecMDxHcpugtrdC4YwaNrJPYNMfjtp4INMJbL6C9exmisDqy3a7to0QpSh4opWlQ5yYNKgXJiSfZ/6Efs2qzm9+6//R7Tzx8EFEIwH9Kb/4iQQbi1DifpENQuUmo4aQvpFIQwZiN/ELgOzG3tJIvQ8a9rMPazl0n3TqC4mov7m7IGlKxoIaMsJ6vuoZal4zL6wKvs++Ddao7d/CSZYeUkdOLz9HfaUmuUoOS6NZ7IIYRnXuzg4Md+qvr7nx8gtrOfv4SYjcH8v9J2MZvKoz2N2krsyTh20i1B0bhCJ7FviNmtnVjjMR96UWYckh0jJPcP51D4gWU3VpUtW6+JIIRg0ZcvI7y0Sa2LHjJqwYfPoWLlAoz6Khb9y8XotRFEheKtNZprWPzVK9DCJnbSoWQfkwodmJ8epesWCMKL6iknes1fDmlSefQiGi8+mUgBpYI9lcBOBLQ5Osl9wxi1lV69KwvqHWXxVy5HK4PkLpbZl7s4+ImfseeKH9DxmfuJ7eg7/E2A0RQNRqIaOmbDYRxPhlZ2LziS3Dhzr3aRGZnBSbsFe6hLsmuUxJ5Bqo5fpqhphDp4gcBoqqH9ny8AIP5ysJFo6rdvYvVP5tB+ft0BUofyTgZh6FQetYjIuoU+A8HQbc/kEJKFvMHJ3YNYkzESXROBaNBEh4pMXPSlSwkvb8mNc1FhsuAf3klkTTtmYxXS1PGj0BWlnOHN7VTvBD1feZQ9V/6A/df/iInHdyjD6Hw80wJCHpoSKKm7Xl9FqCV4/gKYzVHCC4J5bKXlYDRUev0QvH+7uV9Kkai4kO4eK7uep7vHGX94G07S8kLivfGQtBl/9LWcDqnuz+/frquKMOqzY1XDv9cAQhDb3kNmsChay3JI900S39nH7Cu9gTqy6whSPeOURUUKSA9MYSfcgLEmmPrNToyGvN7ja1OpoprctJN/WOGDbYleGQq4lv/dnk0qfdByURG2OriKkmbysdcZf2ibPwImW3baZuKR10jsG0aKYl1SYM+mFbe9J2ZzDXUeqjb3BiHDi6jQfTqT66IQrY1RTy8pihyUYDZVM/HodhXhULCIyLTN5K/fwImlGPvFy7m6Fs7BMc94vPALF1OxstU3x1o+eDaVRy9GrwrTdsNmXCOs9DHLxDXCtN1wgaLTyqGxtYJnq/+NhmrGfv4yQTL2gEpc6touvf/xBLsu/i67Nn+HvdfeyawXNRDfcYhM/6S3h3q6j+2SHpzOOTFGfv4yB/7hXgbvfInem3/Hvg/cjZ3KOttKz2tZlKU1OqecLwEy9P1ncDPB+hgI3IxDeEmT7285fU7XMBuqytZ7/MFXSPaOBzqfpITB7/4+8L5CMVpqAu1a0nYLaKUKdUXvdyEwG6tw0T393PQ+Bq4L4cVNJA+O4AqztM00k+T+YcJLm/0RD9kzsGZgNFTReMnJ1Jy1HmEaaJVhhGkQPW0NTdecjqjI8sgHiAevd12w7cKzg8orIoTGxJM7cRyRu5adJ1bCJXVoQiWjD+hvx1aN1f65zUTWtKl389DizdduouptS0ns6ldRS0VjLTM8Q2xbNxOPv4GTyODaGo5jKIdI2lVAs+lEbl8tqhQIZSAe/9W2ItsAOClLUYMOzHhRiP6xJkwjB7b7vytGXWVZlLvZ5EWCJjIM3f08PV9/kt6vP8ngD5/DnvUjobVIiMpjl1CxvMWXw6zhoo3UvuNohKnnzufVp6yi5dpNuMkMmYlUib4mpSCxb5jEnkFSXUWRYpaDNTbH3Kvd1L3jaGrefSz+85LJkn+/Ek3TyAzPBfa3PZPBTgbnOwBw41ZZtgQAJ5YmvLSp4FxSUL5pYDZF52O0g+oKXMvxHDtm7iMluJbNyPefVXoK/ig2x9EYvPV3OLOp4D3UFbjJTNncHiJkIEydpTdfg1blN9pXbVxB05Wngc8pVNguau1yUtlEv0XruS3V+XU+pHlFiPbPXEDluoVqPERCiLBB45WnUb1xxTz2NTCaqqk9cz3hY5f4WCZAsPBLKgdNFhFf+hEYLVFcSjnqpYRQe2OBEzFAp5onx1NW2j97AcaCOt9zteoIi//jysPe+5YEyxG5OSYnJ1m3TiGDsguP8ELkjkTe9a538f73v5/3ve99Zb+zYcMGrrvuOiKRCPv27ePaa6/l+eefp6JCHWgvvvhibrzxxiMq7y35y0ns1a4ChT/7vwqbSu4dZOEnz6Xvpod89yjTrKD+guMYvX+rd+ApUIylAAHObBo7XhxirSZ21nB+4MM/9oUE2WMxum54gDW3f4DEm/24qUIEkCrdtSSpjhGFtAsyNjou1kSMuW09DP/oxZzXOLFvmO5/e4TlX7uE0ELlbFCI3sKHKKVahE0YmPatZdlNIrS4ifnEmU1gzWT5vfz1ju/sp/ad65V9Tpae1cymKPE3+3CTwfVOHhyhYlkzTZefQsMFJ5Dun8BoqFboUk9Cq9pI7B4GJELk+REbTlO8ZH3f+i3x1w/ljH+zLxwk/mYfq7//d8Q8B05x2VIKYtu7FdK06L2z7RLfHYxCB3BjaR96pkQyLuaCOjJ9fgNwrs2XNDL38GveBuXvL4HAmY6rTc0VCOEfi0LkN7Ggeil0R5abs/A6ykGgoUL6XI3i/kSAM5Mim/Cs8Lrrajl02/C9Wz20Wf7e+N5x0gNTZTdHCWDopHrGmfjdPo8fEpCC9HCCySd20nLlSUw+vZuhO/6UG+fJ/SP03PQYy76y2UtaE9Apjkvs9UMkO0fL2gvmXu2i/m+OJrbLjxqXUmAsqEPTdZy5VOC9WdqrfR+8x698Zhz6v/lbzOZqak5fw5iHePPV2ZFUHb+U4buCqS+EJkj3jpctO901xsxz+8r2d2Z4FimjFHM1Z+uWnpiff0/oGpF17cR3HPKpOhKofruKLOj/76eZ3dqdM2jMvtxFfOcAq7937bzoA80wFMq9zLqWGZ4m2THG4A/+mO/vAyP03vRrln75QqqPXTTvux9OIscsJr6zv2R+ayETs6Ga+vdsYPq3b/pocUTYoPGSjaS6RhEhAzfh4quAC/FdAzhzqUD0L45LsmOExks3kjzgR/kIU6fquCWYDVHqz3sbU0/u8BmJsmUDmI1Rlv3X35EZnMJJqAOGVoAKrDxmMSvv+DDp3nGEoRFa3JjTcZJ7BxVFB4UIYA0trGMNThFoDQDQBDWnrWEw9JQ/lNiTlmvLcw7/JSTdMxbc5qhoiWYUinflnR8m3TuG0P31PpxMP7efge/+IdcnqY5Rer/2OEu/eD7Vx8/PwV+7aR1j973ofysBmqlTfXIwOicrrje3i/fIckb8YknsG/Qcfl6h6m7cpIpaMuqrGP/1btyMntsj7bE0Y796nZbLTyj/YAlz23pQSQLV+qHuV+UkOw9P95cZng4cTRKIbe8mMzxHVnXP79+Q6la83kZDNcu++T4yw9M4sRThJU25NaX6pJW438uum/l6O0moOnEF6aEZuj73oKI5kyrh8vC9L5IZnaXtuk2YCxvIDEyWrGsVq1qJblyOqAh5c9i/BzdfcxqV69uZLRPd2HzNqVTG0ky91u1H8RkakfXtmE01aq+ldP9GCA/lHtRqav+25lJl13NrJkGyexzpQ5p7112haJsiFchYpuheDVFTiRYq59hSh/Vkx6hqzyKRGZvUwRFvLOslegsoUIrryFx+4HzZSueIbS8/1lK94yz/1pV0f+qnvnmSLabt439D31cfC243TeAmreBr3vul+yYRpl6KXLZd4rsG0CLlHX7xnX3Yk3HFa15QX/V+6tmV69vL3u+mFfd2oQ6tdDgDJ+PQdM0pTP4+Cygr1LkEzdecSt9/PB4czWHqKs9MGZqC7N+N2kqW/ufV+Tm2uDHn4JSOy9AdW7xIVK9cC4bueIFVtyzBiEawUqWODBDo0QjScgN1Lmm5uK5L56d/QbogF44zm+TQ1x5n+X9eRrJjxE9Jl703ZZHqGCEzFmPs56/6rrkzSfZd80OOeehjKINY8Fic294d3CZAZmCK6DxrthY2qNt8ArFtXSXzu2JlC6H2+vI89rbLzLN7Ay8JQVk9r1AaN5+gzrKFZesaFcubCS+sL79xSDAao2i11Thj2WTfSlzXpGbTOlKdo0jbLTgfeJJxSB4coWHzCQogkikYELpOZHkzYS//TOtHzqHpmjOwhqcxF9R6ESRe5JCmKENK9jmhganjulkdJjsPPEOdoSvjrtR917M/x17rVuepgP62vRxRRk2EJV+/Emt0BnsmofYSb5wnD46URVwn9g8R29GnkM9FZUtXrU3lLbiQOTThRTwXnpkk0oa5Nw5httYGOualpaLzak6ZX3+YT8zGaiqPWURiZ7/PcC/CBo2XbkS6ku4vPqSivrwxO/XMXuJv9rPqu+9DKwMcyT1HEyz40Ltouuo0MkPTmC35yNjUoQmklN7a5u+T+I4+wgvrA50JbsoiuX+ImlNX0fbhc2j+u03EtnZiNlZTtWFpvn0yDoF7jYT46+WAFkJFSHlJhCFA5zIMak5fxfQf9pToBlrIoGJpk+rPoH1MgjsZz+VR8eljroa0pQcc1bBt/3gAQfLQBJqeNZYX6QZAemCaxks2MvrjLb7xqoUN6t6zAaEJQm31rP7xx0jsHSAzNEX1CSvyVLOGliurRDRRdq+QKOdq9NTVzL1QClSuWLVA6WUhg8U3XY41Oos9Eye8uCmXBLvh8pOZfHR7YOnNV59K7M1+YtuHAL1AF9To/eoTHP3gR5FoOXrlQl0RJGY0gtFcS3pglrwtCEAjeuY6ZDzNLEGg7PJUW4WS2DtIajSNtI1c2U4C5l7qpv5d6w97/1tSKkeEsD/66KNzVDhZeeKJJ9iwYcMRFbJx40ba2trm/c6mTZuIRJQXbO3atUgpmZ4ODnl+S/6fE606kjNmFnrnsot0un8aB72Ab9HjkxMG6f4pwkvUxPbzmoHQdczmaAGvmV+kA7Nbu7Gnk6UeQBfl0U5aBc8teDcHXMvFaCqD6HIlelWYoR+/hJuyfc92UzYjP3kREDlElw99AQjTxJ5KlvBrgzoQWKOz87apCxTzBWbLcS1JaEFtjsPY93xNULl+YXnEtavqDcoA1vmFh+m44WE6Pv0g44+ppHLScUl0T+TaKosiV86CQdL9U8S29xbxUKuD+9TTu3FSZRBZgJOy0SpUsr48B72ea6fKdeXXAGFohJfP4+gI6eBFNZQgVbx/8t7oIo+442I2R3HswvGbHzeu0Ivu89dLIsiMxMrOA2t4DimClDSVnEbxlmoE9bcUOnNvHAqgUFFK1OAP/giODET3S6kOcaM/f6UEySbTNmO/VKjB4R+9EDzO71Xj3LXdEu5f1/uOCOWVtGLRoxFiOwYC9ZjMSEztLoYo4sdXHn+joZqp5/YHGjEB+r71lOIH1kP+/pbgCoNUx1hZ9IG0XW8O6WXKrsJckM1yH4Ae0LUiKgD/9cMlSJNSkugoRcG6jiC2c5DMyCzTL3Uoo0P2uiOxE2kmnnyT8JLGQLS4CBuEWms9RGNwvbVIiJF7Xyw5SMmMzciPlPPDTmTo+MwD7Lzwu+y88LvsvvoOZl8pfxgvlKmn9xTNAfWxZjNYU3Farj2dlvds8NAipjrkbD6RunOPxWyuwbUdb6wVRJoIQbi9DnNBbSCfOrpGqDlK9XFLWXDdWQodX2EqY/3xy2j/9HmAMn7XvmN9vuyQKrv+PX49JdReT2RVq89Yn2tjXaNiRQvhJU0+o7WZ47nUCj6qzc2WmrLGqSwia+l/XglGAZoFqP2bY6g57fDJmwAS+4fp+OyD7Lz4e+y59i5GH3ztiJDkao8NoLXQhMqhkr2iCSqWl9Z7PpFSMvyjFwLH2vCPXihzV170aAVLbroUc0GNQjqFDEKLGlj671fkDMyJAyN0/HO23ncy+sA2Ve+qPO938X5wJOLEyuyheHzjD27DSdm+PdJN2Yz/+nWcw7R7lvM4z2WeRzq5HnWSNRXn0Dd+y67Lvs+uv/0Bfd9lKA+pAAAgAElEQVT+PXbW8CTKRA9IMBZk8514+kgBGrQ4R0uotU6N8wIH4Pgjr5fdxyaffJOxX25TRqKC8mXaZvKJnTixNFZcXStek62YMkYt/6+rPaRa/h3rLjyOurPWE2qppe1T74FCugFDY+GNF2DUVFL7tiW0fvhdaFXh/Px+2xIWfe58hCZyvKfFuqReV0lk7Ty6RYWBZpZHi2nhUME+5L8uLYkWNnFjQcZrgT2ZpGJ5k9fPxXuNxGyMYjZHSynrABEyMJujIEQuosJngAYqljUFrrdKDxYFfM2F48FrX13HGp5F6n5dEkBqBpn+acLLm4PbTNcUPUM0OAJIr6vEbKouQEUW1BtBqK2WUJmICVBjM0txUDwW3YwMbK9Cca1yaG5wYjaprgkw9ZJnY+gkO8cJtdUF6i3SclSfHEak4zLys610fOaXdPzzQ3T/22M5Z9zc9l4yI7O4Vj7ywbVcMqOzzG3rKTtWhann9otykhmaIdUzETgeBr/3LGZzTXBOkrAaa0N3lMnvYbvMbO0saJMiHVpAZEVL8L0oXTDcXld2nIcX1hNZ00rbx89Bq65Q0VymTtXRi1j0hc3z1hnw8jyVypGu+ZHVrbR94t2+siuPXsiif/HKLhvFInATaezp4gSKAgTE3uxXfWbmaWOzlBiEDcyWKJFVC2j7p3ejRyOIihDCNFTZX7zIV5RREyGypi1nrAdlPJaoCJTCvF7ZtUFFyATNAwGWgxvgEMv9XBEqyH/l72+tOqyiyB2Xkfu3cfDTD9Jxw8N0felREgcVQCco4WVWnFimbPSOtKWitaoPjqLTqkKIqnBZ7n5pScymKFqZcR5aoNbEVM842z/2U3Zd8j32XH0Hwz9+qSxyvljaP/Me9Oa6XH4sRxrUX3giVccsJv5mH+n+KV9OMWm5ZCbjzJWJvAsSPer1dwGNpVYZCtTXJPm1KcghIMJGgY4KRmUFde842mesVwWU2jSyUnnswvIva2j+CLFinctyiL3Rr/IFFpz9HVsnM2uryNkSW01+XdYaqgJsIl5/Cx29usL7rlbwHKUnCdNEeM6EYt0ge9asP28DDZtPQIQNdTYwdRac97YSwEzl+oXUvfMYX164TP907nmFIiWkB2ZyNqrSL6g50v6Z92AubPS1i6itYum/X+77utlSQ2R1W85YD5DpnsDVSrn9XaGT7pmk/39+R9bIrhxzau93UzbTLx4EXcevh2bbRsN1XNKjebtGTk8F4jv6CbXXB0bAomtEVi8IqLBfRn70omeXyOupMm0zfO8LBIIE35LDyhEh7L/4xS9y/fXX88tf/pJEIsH1119Pd3c3d99991/lpR555BGWLFlCa2s+tPuJJ57g+eefp7m5mU984hMcf/zxf5Wy3xK/qEN94SIPWW+jXh0htqs/Z3TPUshoGkgbUt3jNF/5dvq/9aSPmkaETGrPXqceo4kcXQhk9Sblho29Xsh5Wlg2JDtGiazIG3hzjgAPfeUKQc3pq0keGC7x+IYXNeBaTo5zlaJvJPaPUPfuo9UimXun/APctOMpKxqu6xa8u1rsrEl/lnppO6BrebTmnjySPMhjHVnTSqitjnT/VE7BEAKEaVD/ng0M3v4cwSIVlcmBEbq/8mtk2sZ1IDOeYPjHL+PMpWk8/1hkvFy9h0n1jAcm1JKWQ3zXgBe6n98Ms++mDkMGNWeuZeLJ3b5nS6mhVYeoWNRIxYrmwKTC9e99G03vP42ZZ/aWeJMl0Hz5SSS7JtSmXoywA6Su03z5yfTd/LgfgRsyqDljtcdPbeAG8m9r5AotuSwQhoE1Fy+od+FYE2Qm4wVokJLbcWYSZZ6t/uYf535JdY8TWddaHt2vayQ7RgOfLTRBum8CJ5Ypem9VcKJjTEUOlCAPVTSBC4SXNpOY6vW/sldW5XHLmHp8R9my7ck4en0NTsKPfnRdjdDSZmZf6CiHW8CeiJE4MOyFWRf6lQVCCpLd4zRffjKHDgwr/mTvHbSwTvSUVRi1lVSsaSf2er9vnLquQu9WrmsHtvvqk117jIbCEOlS0UL+JIHF89tNWtizaRRyqfDZiuc91TMOueWwYF2zJXPbD7HsXy9g7Bcv+x0DmkCvrqD6xGVIz6BXjFQRuoY9ncgb/ook7UWnHPjIfbmcDqCiW3q/9gQrv30FlasKkvU6Lgjh4+O1JhMQEMUCKkKp9tSVrLnhfGoufzv2ZEwZsz1EVsWyJtBDQLpgr5C4tkb0jLWEW2sYufM5X90kgOVQdbw6eNS/+1jq3nEUmeEZ9NqIL0eD0DXaPvIuWv7uDFV2c41P+f1zpOmyk0jsHvCPtZBO9UkrMOuraNh8PBOPbPevPWGDpitU8sXR+1/DcY08olTA1HOdNF95CmZTMM1QVlK9E3R98ZHcs52ZJKP3v4o9Faf9f52Z+56UEhwXYeQPdOHFas1Ndoz4kEDC1Gm88Lg/p0mQloNdtNdlJZ+Mfn6JrG5l5ff/nszgFELXCxKAQerQJF3/8nCuze3pFKMPbFP1/vBZGAtqsUcUOigvgvARHCbmo/sRYVPxrUu1OuXnsAQbnNEYRmst9nBp6H14VYvHpx6sMyFVUs3Ozz6INRnPobqn/3SA5MERVn/nasX3XOyA9Q5qIvt/kLHxCM5Asd2DBb/5darY7n7s4bncg3xrl5SkBiZxJuKohGz+SBN3WIEUwgsbWHvfR0n2jGKNzFF9/FKfw6DurHXUbFpDcvcg6FB1lD/ip+4d66ndtIZ0/xR6XQSzwJhR9bYlzL54EFHQ3xJB9cbl1L/zKIZu/V2g7tBw/nG4KZv4zsK6e9elILy8mVT3ZO5OX70FWHPBNH+599qwBKkbSMv16Qauq9Nw4fFET16RoznytXjapvqkFWjRSF5HyL2XKt9sqYVcQrviNVd63LtB+5TAqK0i1T2OtCSyaA8FSPVMUHPGaq9N/W2mRyOYzVGaLtvI6M9fLl3X/vYk5RSvjCBTfioI1xHUbFpLZEVzLql2Mbq/+aqTmX2ll9J91tPfAxHoecn0l4tqUrzgyY6RAKe7VHl/ukZpvPgE5l7p8kdjmTqVxywi1FLjUYqU7rHZ9x/47rNMbzmYj87dM0TX5x9i1S1XehEVxTq2xE3aJLvGaLzkxNKyDWVADi2oCTwTZMuOvVGIgvW3W3pomujJyxm8xSkdaxmH6Mkr4H+eKdum03/YR3jlAlIdI6VnpmXNVK5tQ6up8OUzykrLtacRPWUV2l1/wsnYOeeh0BSSteZ05ZiuPWMtNaeuJnVoAr02Qqghv/e50hsNQW0uCWwXALcId5hNul3MQ157+hpqTllFemASPVqBWV9QtqvW1pKyXUmqbyo391yvXpoHuo3vGqD1ujNwUtkWzz/ASUqiHtI7W3ZmaBq9OnzEuYbMxmq0umqc0UJAj0rkGd20jsxgHtRY3D4iElYdEHjwEMiUTdPfnsTIj7aUzO/GS04EYPCHf2LqD/vy0Zr7hun6wsOs+vYVKpoK9fji+S0qQt6ZK2COaooqNLS4EWs8VtLmxoI6lcNJF17ukMJ6CdA0om9fwfCdJqQKki4INY9qNq0hMzpL5+d+5UUJKcqW8UffIDM8y5LPnTtPiysZue8V0qMFZz4Hxh7eQe2mtSrJaAlwTSJTNomDI9RuOjIQRpC4iYzK8+S4JXYHqWlET1qhKHfTti+XlDB0ajet9T3LSWYgpOdorAFqzlrL7LOlqOnKYxYR3bAkOGIKaHjvBgXeQnj9XagjCKgwFejHmx++M7KrdFilSxXnHVH7mJxLlz1/I6Hm9DWkDr1acI/XKAgqj11Mpm/Ci7QptQ2YjdUIIWi55jSaLj0Ja2wWo6Ga1mVNjJXJe1Uomelkrq7F49yOZQpAjHnJXreGZohv7yM1FKdQl7RjDlN/2Efje46Zt+xk1xhuBrJJcHP1dtR5y56Il8497/fZFzt9ES6FeqyUKJq+kv5SD4rvGWLRp85Bj0awp+K+saaFDerOPjxCPtUzXtIeQoAzm8JNWeiRUJk735JyckQG+5UrV/Kb3/yGZ599lrPPPpu2tjbOPvtsqqr+8gnuXnnlFW655RafM+Cqq67iIx/5CKZp8sILL/CP//iPPPnkk9TXl+eGDZLGMvy7bwk0l0GVTBzK8jUXez4lmdEYkZYaZXwp8EC6jjKqVkVCLDxvAxHbpet7v8+hthect4FVnzoXpOSAqeMkHJ8HU2gu0WVN1LTVMlGmbCNi4kwmS8qWqLLNmSSx/aOKJsRn4IVU3yz1DVX4w6/yz3ctF/qncF2BpvmT5rquIDM4gzA1LylKwRQSKqwopAmam6OMv9DJ/v/9e5L90xhVYZZccxLLrz+N6Omr6XWBokSvQnPRNEFLSw3V37qK7f/rPlKeoqaFddZ/9lzajllI30Q88NAupUCfTDC17TWcRKHRAJyEzcivXmPV1ScjpQxAUSo0WbQmEpxUEtAciVkTITMW94d/evWONteQDDxICWRG0hCtoOH269h65W1kJmI5RS96zCKOvfF84t3juGgI6fr2bVcIKsMVOIZKaKNpfoeC62pUV5gsfvcxRByXzlt/5/GTQsu5x7D6M+/BtR32eu9SIq5kwVELGQgZJeHEQtdofNtiBgemPQU+X2+JQGguptDQNI1A3LOElpXNdJUxpghNULe4kfHA/gQ9ZJDuzoY/l84D58Ao1csamQpSPBxJ69pWOtwstY/IvpLSe22X2voq3/wpLMc0TNx4JjcPCsV1BcZMkuplTUyNBpfdsryZAwOzBI2HuVd6WXTlRmZf6iq5LKWixWhc28bMs/tKDu+aodGyrpWGt6/A3j9C749fySX9jK5oZsO/XoRWYbKnQ/EW++stSe0epmF1q5q/0r9+CM1BZFxqNixkfCiIC1PQeOwimpujTGztZv+3fk/i0CR6JMTiq05kxYfOgLpKdhc9O1u2QBDxJSj1t7k9FqNtZQvmly9h7789hONRKRjVETb811VEW2sZWtvG5EsHS95MCo22oxfSW2EG5pKoWFCD3jvhM9YXytjdz7Pxjg+Q6J9m33/+lslthxCaoOnMVaz//LmE6isxoxVY0wmC5lH7CUup9PaR1mVNsMwfMZMcmMJJ2bkQTVB7hdAFzp4hRDyDNEJgZfzGR93EHJyh4aRlBYUFI+4AaI6WlP3nSvPZ63D3n0b3PS/lxlr10kaO/crFmFVhmj5+Dt2mzsAvt4GUCENj6Qc3seiqt5MamiG2rddD8eY9EdJ2STyzl1Uff+e8Ze+65ZmSSBSZtpl6ag9Hf/Jd6FVh+h7cTvcdL2DNJAk3VbPqE2fTdt7RANR9+xr2//uvmdzaiRACs76SNZ+/gIYTlv1ZbSKl5EB1ONBBFG6JBuoUxX9LDs2w9z9+y+QrvQghaNq0knWfP5dwYxW7vvMH3LSDdAr3MYfJp/Zw1D+9i1N+8TFeufy7ZAoSHVcsrmfjXdf5DqlBYh2zkMmndpdEJmkVJs3r2xn9+TayKOZcfREITVJXE6H9Zx/lpQv+Byeer7tRX8VJd1/P0MNvoJieS9drhEDuHMCeSXkHMW99SEsyo3PoXcrA6rp+JrQsCqq2uZrAPcwro5wel5VOq1yEnES3XBzH9fQa//6uSZfmRfX010WwppMUB+dWNKn+dtI2B295lsHH3sTN2ETXLGDd599N7TFF9CZl0NdG/zT7vvE08a5xtLDJosuOY9XHzkIzdfbvy+pzhe0iSOwaoUaCRAfp+HQHKQRhqSHNYAeNEFBpGswZ2QiIonprkpZljfQG3q2kxnuPwnslAqFLxEQCvWcCR+oIN59AUkpwdR29d5KGk1Yw+vtdpcYKodF+VDs9OUNGUb9rGm3r2+kNMrIIaDh+CfVrWhkPl+o1Wsigcc0CJrf24KKhFYRnKOdYmlpDp+kfziKzf5Splw7kdM76k1ax9oNnkJmM58AA/ocLrF1DRCNhMAPWczOEOTRXhhNZVbamKkxD0VguHNuhk5YzdHswWjzcHCUcCKBQv4cdWHLqKqq+fhkHvvkE9mwKKSWNZ6xh7RcuwKgKK6NikR4spapbraax608HStZkN2MTe3IX4Yg5T9mSJaeshOvPovv2ZxU4RkC4pZYN/34ZoboqsrSOhTqXcnALWta3MVTwPF8JpoHeMwlGCDJp/3AyQ2jdE6B7COcAnavtzDX03PtSjrqi8Jo9m6G5OUr0ng/x6rU/VMZAbzy0nHssqz3HdPjmK3jj0w9iz6m+NapDHP0fl1G/WFG/9D/0Bgf++5nceKxe1czGO67BqK5Qa2NQmwtBw8J6BmWpRc91Begazc1R0uMx9v7nU0y8oPITNZ6ynPX/ci4VHuJ6ZucAe29+mtjBUbSQwcKL38aqT5yNHjYINdWQGZ0pKduoq6JpUT2dGT/ljeOq85pwJcahSTSzeI4JtJCB1jlO8zlH5f/cWj7qJEismYSH7i8STWDtHKR50yrGQgZ20vHpsUaloPmodqaf3o1tOYE7RuPqFlrOXkcFkr6fvJhPSnzV21l2/VnYc0l2P7O3VPewHOZ+/SYtZ61mPBRCpv3zW4RMmo9uJyQlQ70TJedJzdBpXd9Gz5cHvHf2G1mTHRO0rWujS2g4juurl6a71K5vY0F7PTU//CB7b3qEmIf4r1zWxPp/u5iqpU0c+J/fe2CfgvfOOMxu7SLqytyYCGzz2SS7f7cnsN6zj+0gsjDbh6X6u+nIw+7B80nG0OgSGuBPsCqB2vXttLTXEf3h36t6H1BaRuXSRtb928VUezpv5+1b6L7zxVyzGtEwb//FdURaamj86qXsuuF+pgoiAaJHL+S4296PZmiYt3+ANz7oB+LqtZUce+MFjG85wIhmgF1gW5DgagYtxyxi/9N7y9pj9OmESl7sFC0uXts1r2ymJ+CMLCVoukZVdSTwPoDq+mrmJhKk3ekAnUmjrrHav5d4axGUt3sVymh9FbEytqBwtAIzZBDvGKF4bZJSsODEZXR9/znFc1/QLk7SZvS+ray99pR5I1pjWilQL/uz4Xk4XadUXxNCUt1Wy4yktE+EMto3LG2kw5JFNo28k6WlrY7If13Fjk/+DHtGnRn1CpP1X76EphXBkXnF4jpFNi4hEVLS0l6PNl9OpP8X5c+Zv39tOeJUvZFIhPe+971/zXfh9ddf54YbbuB73/seK1asyP29uTk/OE4//XTa2to4ePAgJ5988v/R8ycmYsEI2/+fS3NzlLGxOaTt4CQt9KpwDlU5czA4uzaoZJypRCZvlCr0qkrBbCxJaGwO45SVrNq4jPTAFKGmavSqCiam1QIQXtpMfI+/DOnqVJywDKs2OFEICLS6KlID0wULUYHXVQqm+6eI7RogiNNcZmwGX5nnCOZKpvYNA9moAenVK1vvDMKsKEU9e4fqpOXQ/ex+uv41j/a2Y2m6732ZuYkY7defhkJN+REZ0tXQW6oZG5vj4L88RnoqlWtTN+2y95vPIFe1kImV8vdmqzg7NMPM9j7vuf6NQKbg0JYDJX/PXZcwM50oUZyzHO82IGqrkG6RE8ert91UxdSTxUllvSbN2AztH2b6Tx0kJx1kJm9Qmdo9QedvdiPTGRxbB1dDegdI5cnXGX212wsVFR7Xe4HRU0A8bTM2Noe+cTkr77qO1MFRwgvrMWojTMwkSc2H+JSQqq8kvKxRhTUXIVErzl6LfHJXAMpdbXaWlDh2aQb77FdHO8ZybVqMJnElZCpVkmHvbOJ/tcow1tgc5fpsrm+KhnPWI1/tKUFFGQtqGR+a8YxORePBQw/NTCdyUS7F4gCZuTTZeZBHVajnzI3M0nTpCUzv6PMZ1bUKg9qz1jLWP1UWQe+mbVjUAMI/jrNittZhnrwM7tRBFFA06AK9NoK9rImeLR30/my7h1pWD4j1TPPmt35H2wfejjVrURJmKWGuc5zJjjGPJxL8/amTjqWpvfQExp/dXzLHhICKd62n9/9i7z2jJLmqfN9fmDSVmeW966723kitbrUMsoAAWZAHATIIJ0ADA3cGRhcQVjBYDcMMdhiBbEtqSSAE8qbl23tbXdVls3xlZqWJjIjzPpxIH9lqZu68d99a2mvFUqsiI845O47Z5r/33nSYw//4aA71HDfovftNouEIrTecRrb2Qb6wAghTMH6cPNZWMs1w7zj7vvZnrJgCQh7R5qTF9n94lEX/fi3+NbMRrx4pVG4VBW9TNdNpC//CFmLbekvmQ8VJsxl4qdTQn6HY0XHZ9k13y3zylkBYgtEXDhM5OMKif7+Wxg+dyuC/PlfyrKe1mhmfzsxoNHueFFNkex921o+Qt+9ZgvDLRwhNxZ0w6lyOTUVRUExBeGc/VlcmvZrAiqVQ/R7X8GBh2Vhxo+Ac++9S/NAIR3//ZsFcm+mLsOuOJ+n83DkAVF6xjgUXrsYYieBrrUH16oyNxYju6Jd5MIvsUyJtMb6jn+q3QPlM7RvCdXPRVQb3DBLbNcTQ73Io2NRojL3f/guxZJqaMyXCr/mL76UhnsJOptFrg1iKckLoomxfy/C8/oo1jNzzesn6r79qbcH7bcOkrqqCyYSRVVCsZJr9N/4BM5KUUXYIRl86zPSBMIt/+UEmt/cjLEoEftuEoT2DVMxvYv6vb8SYjpM8MExwcStaVQUTZVD/+aQsaUUYZsn6tg0Te14jVtZAU7iKhK0wtLsf+40e0gkFO50Toa1pmyOP7DhOSjy5F4W39Ljmz7fiFkPbjjlp7bQiWVX+bsRBiZc7a/J5bkwlMCdm8M2uzTowLLVoP8wjS1ExEmbpuB2lb2xgmvorTiH8+1dLv/fV8nsf/eafiW7pyxo7ogfCbPnUvSz8l6vwteecbMZEXKZgzgs9r5hOsvWzD2TnsZ1M07dhG5GhaWZ94XyM0RgyqjFfNlFIDk0zuLMffF7suIHIJUaXhRd39hNc0VaCQHMCKEjYYBq2Y3AvHff4wBS2oqC4nN9C1xjc2e84lQpPO2HB2OZe4qm045wpUrdMGNp8lJoLVzL64kFEKrdBKF4PoVO6iABVp88n8vLhku9VffYiorpKaHUnse19BUZ7xasTet8KrJDPKYpXOG4rkcbsamDyty+DpZDOczZomiwUOLirn+SxSUZf60MYub6PvNzLwfu34GsOoegawrCw8mxbGoLJ3QOYFZ7sfp75ZqqqgGExsmsAy0nnIQqPMUBhZM8g1uxcntySM6W5Cq0mgDVVutYbP3IasX3DZUAtEE+l5bsWtjDvlzdiTs6gBrxoFV4m4wbEDSkzCSUrh0pSwYbBXf1Zp20B2YLxrceoPrN8/uykotC39RiH/v0VRCqXvmhmMM6ObzxB15cvcAwsal46kwxzBJGydQUUtEq/w1cTRJGMnDQZ2T1A9flLmfrrnhKeoID3jAWkvv8kMjKwcNzpkRgjIxGO/eAZjISKncqdAYNPHib0vl68bdXs/8pjmHlgITNusvMrf2Txb68jtqOfo9/9a0HbscOjbLriVyz7/fVZnudH7wgnr/XEwBRyrpSuf1AYGZpi38fuIT0eA+fbjL92lNc++p8s+c11pEdiHPzsA1mjup0y6d+4nem+Sebc9h4qVnaSejpasLEKFALLOxgfmCoT4apixE3C2/tc6wbYKZPwjj7U1Z3OWATWjCEN+W6p/1wofmA4u8YKXy6Y3DNI3fWnYSYpknMFZgJY1IJaFYAMejnLU7ku4pZgbCxG4L2rWHDuUlLhabzN1Wh+D2PjMeIHw6BrUKbt+pvfgRr0YRpWLvRAUVF9XtRVnYTaa1D+sruk5lBgeRsxr+6sIfdozcmZJFpNCGu4sF6UbWn413TJ9evz0PmdK2WxV1ug1wSIA/HRKGObexzjcCEJy2ZwRx+VTn2drKwY8GYjMhKHR8qOe2rvIEprzthffKYY5OSq3PfWjluXqpiqTp9P5NXugpoHis9D1SWr5bu9Op3fvqJg3AkgMRpl4rkD9P3qlYI91YymePnSX7DqsU8C0PqPF9EcN0j2T+Btq0EP+RmflMDAHR/5A1ge8tegOZZm6+1/ovmDa7CS4GY2TIb8cq8vSWsj7TFj2/uovWCpq30gtGY2E0PTJdEaGbLSgkReKqNinict21nyaqnMpCpMjsWwXGRdNz3FjBtY0wk8zZWojrFcaatx3u10MPNuQG2toe6cRczctrFIJlNQg17EwmaiR8Zc9VBjMsFI/2Q2CthOWxJ5HvJlZeSkyxzOUBoQqurogUW6vVAwMqmrXdoWAkZ25uoRFqb8UTGTJiPhCAf+4VFSkxbCdPRQS2HX1//Mkt9cl1eU3p2sdK4+YrZpIeWikYHJt3z+/wsqp7v+v0WqqhwXWH5Cu8gHP/hBVy+Q1+ulpaWFd73rXZx33vFRYm9FO3fu5POf/zx33nkny5YtK7gXDodpbpZhzvv27WNgYIA5c+b8t9p7m3IkLJvB37zK2B93ISwbLeSj7WOnU3f+IoLL25jZ0e/6nKc+iBGeKVrsucVvDEjFdeL5Qwz+chNWNAWaSsOFy2i78TSELUh0T5S8FyDyei8NFy+XSKXi/gJoqoMih1Lvo8CcSGTD4UoM1zZ4W8p72BW/TmhFB7FtfVnhOUOqZsuisx4PJi55DRF4a0KE736zNLdvymTsj7touvyk0gJFzvPpyRTxI6MyXYlRiHqykmnGn9hLxewGouFo9u/5FFzcwuTTh0rGnEUAvEX6BX9nHUJTsdKFyAbNqxBc3MrkpoxnvnTcxrFp7ETaXVGypQAzsmGbw5c8r27KZPj3r9N05Ul5BjGtYHx2yiawsFmmUTELvfSKV8ffIaNt+n+5ibFHdmbPVf/cehb+8P14m8p7TTN5N7u+dikDP3+O6GtHEELg66yj/bPn422sdPLy5kIk88ethQIINCwTCpGH8iDVGoLg80DCKPlevo46UqMxaRAvRrFbCua0gae5ilT3WMkeLARULGxi+tVebKsQBS8EJPsjWIpbjkvZd+OJWPUAACAASURBVGEj847qaqlCoCoEFregDU2RdsJui9d5YGEzwaVt1LxvFaMPbneM/gre5jpabjoznwUlJABfRw2oakkKJoFC1ZoutJCfud+7goGfPi2FaEUhtLqT9s+dj6IqhO91X2MTT+6j+bq1jszpNm4FoRUb6zP/FghLYWb3MKZQ0YqQLhYa8X3DjD66073tp/bT/OFTC5C52ftCQaASXNLKiEvPhJDfY/L5g1IBFHnMs2zS4zPEtvcz/WoPVrp4/xAk+6OY0SQze0ekASl/PtgK02/20X7zaZRzF/haqpl8/hBW3CgwSAjTxhiNEdveR90Fy0mPxRjdsDnr5PF11TP3jivKvDVH6alM6oTSb2KMzuCfXQ9eDSteuL51r4LPWd/Tr/XQ/68vYE4lQFWoe9di2j9+JqpXGvnD92xm5KHtiLSFWuGh9aOn0nDh8cNOT4TC921xrRMx+cwBWm9YjxbyEb5vi9zfMm1/ZB0NF63A217jnjtVV/HPfetIAP/sehn6XrR3yJymIcL3bHadi8N3vZ412ANoAR9awHfig3Zo+o0e+n/2IuakdO7VvXMR7Z94B6pXo/7S1US29BHdMkBG26o6ZS615y4GpCOr719eYNo5N7zNlXTeei6hFW1Mv3REFuPMV7IsgTmVILr5WDYHdMG4hIwEU/JqBnirA3jXzeVvocjmYwjNQf9mXw5C9RLdPiDRYGaxEUbuD57WGnq/8YRjpMlTRlImw//5OrO+cB6umx7gba0mcaR8xFTiyBieugDpogKHGQoubUOp8mNNpkocGf4OifxLDk5z4NP3F8yJ+ouW03nLWYiUXTY6z05aWDOlhqeMV9U2beouWklkcx+RN/vIfO/Kk7qoPX8JRjhKdHNfCdrbNixGHt5O52fPIbqtn6PffCIrm6lBL3Nvv5DQslaO/u7VkmeFYTL90hHMj52OVlNBejyByJPHFEXgbQ7ibavGNkwsK+fkBFB1qJjTSMXsBhnSb5gFc0rx6nLfcS3nJZ2uaoUHkUYyrWhPFSn5DpnaqPR72WlB5OWe3PsKR8fU80do/fBpzP6nCxn8+fMYo1EZdXfuYlpvlumuOr50AcfSFrG8OiOVp82j/dbzAWj73Pkc+eKDpMPT8pNoKk3Xrsc/q57+n7+IbcmoxPx5btsqow9sxd/VwMyh8QJZzzJlShpvSxU933nSmUdF8/yu11nwow9gJk2EWTguywL/nAZ8HbUITcVO5Xhj2aD6FHwdNSi65jjG8p5X5Df1tL01EnnOdy/n0KfvzhkLgdDJXVSfPp/wvVvKPhfbNpBrTlXwuCjIWm2Q9GgckTeXFEXgaQqg+j0yZUXRM0JIo4t/Vj2qXy+JDFR8Ov5ZdYw8uM2Z53k8NSwir/WQHouBorl75BQFX2u1lNeK01YqEFzeLvnq1Uu+meLT8XXUYoRnXCMmBTrGWAxPQ4j0SJTi9aDXBzEnE0xuOgymKLhvp0zCG7ZSvX6OPJfznRm2wIwkmX65m+G73ygdE2COx5k5GEZvqMQcjRasb5DfIrC4lUydiALEtSrwNoeYfr1HpsQoatuOp5l+uZvYrkGn7kHemA2L6OZejNEoka0DjsyUd99WiGwfou69Kyi3n1uxNFaitKB0tgsz8l50xwB9P31O7uuKQs1Z8+i45Wy04xRmBpyaRS6yg6rg76ontq3fkd8LDZWKrhHdcozQyg4mBidLp5Oq4m2tQQjB6GO7CP/hTexkGsWr03z1yTRdeZJMz1Su7Tn1qB6Nzn94Hz23P4Ydk0gM1e+h44sXoPo9+DrqaLrudMK/25SNJNFrQ7Tf+i75Hk11R1wrMu1serww1Vbm3vSrPdScnUs7k58WMUPCsF1VD2GJbH240T/uYviuN5xxazRdeTLNV5+Mp6nSfdyKTOvo66wDr44VL/yNVqFm0/TGdg5w7M7nSTt6evWZ8+j87NknZKRs/9w70YIvMfn0XoQl8DSEaPvkOQSKUv25jXvwF5tcZCYgbTPx7AHqzpNpc9SAl8DCloLfRbYey1s/hWtw4vE9zOzKpPItPcd6v/ukk3ateKJJuUavC9F2w+nYcYPpFw5mfxY8aRaz/vdFpMNRKZdQuPUJAUJRsjXYbKuwbUUTCMMisKRF6ojF26Km4jteNK5D5ozBoS88ROqYA+xTFZqvOpnWj56Kf3Y9is9lT/VoBBe3Urmyg7ZPncPQr1/M1hfzNFUy53tSJ3KXDaRsYevSgT3wy01MPLVfOmBqA3R8+h1Ur5+Dr7M2r20K2q6Y34R45gASWlfKc8Wr54H1iu8DoQrXVL5CgJ2wiG3vIzUaLbC3CEs6oSafP0TD+wrttMVULBcUtK2fmMPybSqkE4pJWLduHQMDA6xdu5ZLLrmEtWvXMjg4yPLly6mvr+crX/kKv/rVr8o+/61vfYuzzjqL4eFhbrjhBi688EIAbr75Znbt2gXA7bffTjKZ5Ktf/SqXXnopl156KQcOHADgRz/6ERdddBGXXHIJt912G9///vcLUPdv03+PDv3L84z+cZcsgmjamFMJ+v7lBSJv9NJ8zbpS7c6hjlvPxyyb31NgTMaJbu2j7yfPYUwksNI2VtJk7PE9DPzyZaxosiRsLUPJ3glQZF7oTB5DIRzZXIDi9RSgHYvJSsj87a6Hl5DGo+DKDtdnm69ZS+OVayTiKushlJdtqbRcf7pT2Ka06KxAwdteQ8JJY1Jy37KZORR2R8ghlaFk3yQi5cIXSxDd0Ufbze+Qfckr4AIKilen9j3H30QT3RMF/Sngi6Li76pHoDtOity4LQMq13VhOwVvi8cFkI4msdKlA8v8Lnl0Iqto2HbuAkgNTh83+sVKWVSeMhvbdEL289oXlk3FklZGHt7O2MacsR4g2T3Ogc89hOrVCZ08y/XdjVfIfI1ayMes//Ue5vzkWmZ9/f3M+8k1WSHJmy32V0q+zlpsQ6Ii83kmt1eZK7LpqlNQivImKz4PLdetxxyTTi9ha9iW6lyygIydSNNy3WlZnufzFBSabzyDZN8ECBUznbuEraHoGvFd5SJkJPln18vCNHl/k6kgBKF1c2i8eq3Tdr6XXI6v7qKVxHYNMvbo7gLjeLJvmoFfvCzzTxb1O9t3VZPOId2LbWlYpupcmsxpfqp0yPo765j3g6tYet8nWHr/J+j62iV4nGJViSNjuJGwBMbQdF6BJRdyqdMgSUHRNCI7+sFUZAFtU3EuDZGG+NHxrGBXvA4UTcUYnC43VRC2oPKU2VmUQwFPgOrzFpPsmSgR0OS4bFIDU8QPjVI4z+RcEwJSA1NOsUw1by7JYkLpcITKk2fLcP/89wq5ZBquOJn4kVHXQsB20iThjLn5Q+tZsuGTzPn+lSy66yYW3PnBE1JEMsqLK18Mm9Ca2VgJ4fRJyc4zyxAEV7Qzs3eInjuexBidwU7b2CmLiaf203fncwCE799KeMM2rHgaO21jRlIM/OoVJp4/+JZ9eytKHptwDF2F+5biUUmPxhh5YCsj928tbPvXrzLx7AF8rdWEVnU4RZBzz6u6RsMlq96y7aarTikp/qT4dGrOX4zqdU9/BGAch98nSjP7w/R850mMkViO508f4NiPnwVg9KEdzOwOZ3oFAqZe7WXiGSm7Hf3GE0y/fEQ+m7ZJ9k/T/dU/keyfJHlswjVXtZ22SA1MOQhTl4Wk4JxDJ0ZmLIUxGiuISEkem8BOWdj5e66tYaflGpPFNt3aVlBRsFzyOAOkR2MEl7Wh1QZc77d94iwn56n7BmEnTFo/dqbrPW9rNf6OWoLLOhBF57MQKoGVEsm5/+P3ZPP+Z67xP+1m9E+7sqlh3PYekUU9uitaRv8UY4/sJLozT3EXMP1GH+N/3UdqaDqbP7pwULIuUHoqzpF/eiwPSAH2jMHhLz2CGTeYOTLmGumleDSM4SiBpe2u4w6tnIW3sRKloqJUXjMVKk+dQ+jkWQU55uW4FbnvrOrInqcuwyY1KVMAue2pgLus5jwsbEjPpMrwVM5NgNDqWSz4xYdZcvfNLL3/E7Tfcl4WlamqKl23XcTSh29h4W+uZ+nDtzD7y+/LIgCP/fBZUuEEVlqeoWZKYfCuN0n0jEs5GqVknoNCsmccJegHIWXJzAUKIg16TQBzfMa13+mxGVkQM53hW94lFNRgBf75TY6xPn8/Bzsl8M1vQvH7iqL/FDLoQC0vhZFtmCSGprGLHKaHv7gRy1AKZIfpN/qYfOlwVi9xm+cZnoM8j42RaMkeGlw5i8ICh3KuBVfMwkqaMs+0m7iq6VSeOkfuH/nyh6qgV/mpWj+X5NHSNCEAilcjNRRxN9YD2KDXBqg6Y37peeDVabz8ZIKrOxH5xTAzl2EROmkWiaNjSPS+hm0pzqWh+DwYQ9M0X7deGojynlV8Os0fOhVjeNox1hfJPQJiuwaJHx7NKzSa123DIn4w7Dgh3Sm+Z5iWD5+Gki3YnWlbysgVXfXg8ZBLDeWsb1vKoan+KXeUeyJNamCK5NHj7C2DEczxGdf1bU0lSPZPlTznPA2WkLnci/md6X+Fl2TvBN1fe5zkYETqwIbF1ItH6Pn2X0r4lApHC+a5Xl1B9TsWSONb/ns9Gk1XriHRM+6qQ4u0xcyhURouW43q81JgaPTqVK6bg7epkokn9zP0H69hxVII08aOGwzfs5nRR3aiV1dQc/ZC97avWIOdtuj51l9JR6zsGkzHLHq++5SMvj82wdB/vI6ZdNZoWiU1kuDYD2QdhboyQIrqsxZghCMoLtGTCEj0jJf+vfhnmlZiOxYCuW4Ni/Gn9jP0m1fzxp0mfN8WRh/egV5VgVYbLDE9CwGVa7sIrerAyjohcwZRKykInTybZP8k3V97HGNgGmHaCNNm+uUjHP3mXzgRUj0abZ88h6X3fYIld9/Mwl9+hMo1s0/oWXO6fL2V6NZc/YvsXMtbM9OvHS3/YgHGSC7SO18GBgUrmnRqJ7mfc5maQZ1fuIDF936SrjuuYPE9NzPn9ktlOtl4GkXVSkBhoKCoGng9ecb6HM+FJcFXVevmlKbTQu4fJ2KwP3DL/aSOTebZFATh+7Yw9sQeQqs7JdBRU3N7nioR9DVnLQCg7r0rWPbQLSz8jxtYct8nWPTr6/GeQApua2yGvp8+x8RT++W+bdqkR2P03PEUM/uGCa7ocOSWvHEJub4rT5lNxsbgRuXlEknGsfJ1YOy0TaJnAuGWnz9tM7NvOK8/AmM0dhxbYOn7raiLM+5teks6IYT9yy+/zG9+8xvmzcuhtS6++GL+8R//kQ0bNvDud7+bz3/+89x8882uz992223cdtttJX/PN/I/9NBDZdv/3ve+dyLdfJv+C2QbJn0PbnNF6A394Q2q1s1mwc8/yJEvPJBTtFSFto+/g9Dydudv7kqeOR5n+O43syG5GbKSJiOP76b5mjVl86ULAf7ZddiKhlVkXNM8CqFlbUR3DOKWj10I6enXQn6JuihCHiMUKubU0fXNS+j95uPEtvTKIWgqjZefTOPla5g5EHYQWcXIY1UWKFMUaTguaFj6NmQqCbs0Ik+AKgR6g7syn+mfMVQupB5SwzG8LdXUXLya0Yd35m4oCnO+8h6pxDnFetyo8uQOEAqiON+aLQXzxOFRhJstU1eZeqkbNeDFFqLwYBVSN/HUSIXZskDTcu+XOXEViZrSFayifd2yITCr7rgGvfR4nOlXjmILDbtobJqmMbNzkPA9m12fTfVNYozHmP21izj2nSeIvnHU+d4K9ZetpvmatQAkesc5+MVHZSQIgKrQ/rHTaP7AqrIGWFDAtEuUyeLfNF5+MqpXY+T+zViRJJ7mKlpvPIPKU2YT2elWCFAehMIWjD+xN4ugF9l7kqcTj+6iYk4DyeFCRKZlgzAtQqccT9BTSHSPYSZtsHI5k4UAW6hMb+rGUx/ERkOhsM4EupeZHQMSzVy8dxgmk88epO2m01ADPuyZQuOWsKFiXgOJo2NZREIBg1WFqZeOEFycQ4C4FQ8VVhm0qGWj1QbRgt7ct8wj/+w6Qqs6GHlgqytX/F11xPMEkmK/dnTLMfxz60kORQp1awGYFt626hJlIUuKytTLR2Tu9nyUm3DSLzyxj8ZLV7oj9FQV/+w693B8AEuiM7Sg1zEoFjLG215DoncCW2gowizooi0UYruGCoxpxZT5zuPPHqT/3zZJRdEW1Jw5l9m3nv2WBV6Dq9qhDPLRP6tWKgya6qQEcdoUoKka0a19jD2+u/QsSVlMvnCYto+dQXjDVtezZvj3b1B3zn+9EBhAYF4jib7CAqeWLee6p6mS8ANbMV3aHvrDm9Sdt4imj5zO5OaHHCezPC9rz16Mt6l8pFeGKuY10vW1ixn8xYukesdRA17qL1pB8wdPzRqCzKlSAdh3AijVt6Lw/VtceT616Qjpj5/ByANbSwwlImUy/Ic3CSxqJrZ3yHFmFj4/unEnoeWtqH6PRNnnkerR8HfVlXe4CU7IQWRGU/T88zNEt/WBoqBX+pj1d+dQvXY2FXMaUCs8znzPQ2x6Nbk/rGhn6vmDJetY0TV8HTXotQHXgrveVsnzhT//IN1f2ZitP6L4dNo+fTahFR0EFjaROOjmSFUILGmh+vT5VJ+/hKln9uX6FfQx93uXI4Qgtn3I5VmIvNnHxDMHEGbx6Q4IGPrdawQWNJEwQdML7YKWCXqlH29DiNRQxBWjEVjRxqG/e8g9muPuN5n9j++Sad9Km0aYNkO/e919XxSC8B/eoHJxM7HuUsOaSFv42qqJbi8tGgsQ2dxHajiCNeOeT33qpSOYkwmEqiOs3PcWAtA8RDYfA6RMVBLPKcBbk49kLGWM4ndHiwnk2eRvqyF5JONkLSR/Z64Ol6Iox53Xqq7iLcqvaoSjxHYMlCK20xYjD26nYn5jXrHdwvYDC5sY2bijRAS3HSNs5M1jeJoqHcR1IXlbKpl6pVvKjcUsEzD2x13ED4alobvgnuTwwJ3PO0hXd+Sh4tcRQjD0+zcZeWhH9mdNl6+i9bq1xPeH8/a8wncM/uZVAvMaiYxEZYG9bOOy/Yp5Euw1+Uo3fXe+iBU3QAiq1s2m6wvnoQW9RLb0lfBFCDnX2m46XTprimotCUUluKwV1aMx7wdXMvBvzxN9sweAylO6aP+UrMUQWNgkDedF57gwLHwdNXibqzCGS3UAT3MliqLQcev5hOsCTDyxBzuVxj+ngbZPnY2/s47J5w9hKzpWUUSX5tOIvNEj1393pu28KFfDwtdeS3B5GxMvdTP9ao+zQBSql3VS+84lRLf3ZZ37xXwxI0mim4+V9DlD0a190mFtuOdT97ZXU7V2NpObupl6Ja/tpR3UvnMJ6fEZd4CWohDfN0LteQtRfXqJ/KJWePB31WNGksQPj7rzvNPh+eB0yfs9jSFCK9vLjsvTVElgTgPoHswi45bu0wjMa2Tk4e0lhSktw2J6ez+p4Qje5kqG79lCeMO2LHMbL1tB20dPRVEVWj92JtG9Ixh904BA0VQaP7AG/+x6Ev/5hqv6LQQkusfwtdXQ+MH1hH/3MsKxsGrVQVo/dQ4Aw/e4R6mG79tC0/tX0XLjGUR2hwvbfv8a/F0NTG06ItdOfkoOIWWiqRcPM7N/OC+qwdlz0xax3YOkBqdpv/kshGkz+Zc92YrD1WctYNYXL8CMJt2jElWFwIK3BmuGlrdLx1heejS5/lV8nTX03fm8q9wSvn8LNectwBiJSxBSHl9tW2FqUzeKV6YFtK3CmgWKVyfyeg/xgyOl+fPTNjP7hkgNTBWkhjseKbqG9n8QiaxUeBBCEL5/G8P3bSGThrXx4uW037ie2rMXMPGnPe4PqzIiOn5gtGD9WzJwAm99AE9diPihcOkZikLlqg7Z9gPbGL5vq5MCERovWkb7jevxtlQiyKTCzTvHUAk46QtdzwqkbDG1qRtbOLVYMlNRgBm3SPZNFpyzxZQcmMIYjrrua8N3vU7De5fR8YV3c+Sf/oiZdCJJdA+zPnd+ic7jZqR3yxKReb+tqUy9dKQ0sjBlMnzvZhouXC7lFjNPthEgNA9TrxxF9XswE2lXG5jHAZWWI09rOd1DrufE0fKOMVlEGCJb++n90bMyraUQVK5qp+tL56NXV6B4XVJ5OaSXAbS8TcenE0LYd3d309nZWfC39vZ2jh6VHrmVK1cyMeGe2uRt+r+brGiqrHHJcAR1f0ctyx74BPN/+WHm/Pgalm/8NPUXrgQySp+7l04YFrFDo9n/z/eMYjrvV8sgcBUFf1cdQilGLStYaSRa2iPvuSGPlRq/kytecRATTlEwoRJc2Y4e8qOqKnO+djFL/vAx5v7oGpbedzMtH14PINFibmFxtmDm4AjGdFIqonkInEz7Fnaet7dw3DYKqd6psogMIXCKOrqTSKWJHx5l9OFdhe8WcPSbf8U2bZqvXuP6rN4YQgv6sG0FYavO5fxbqFgpC2M4gqK5fE/TJtk3gV4TRBSh2CRbFPSWqixP0mmNdFolnZaFYgUKdiSJ4veVfE9Q0GoCmJPlva7CtIgfGcPOhpflIRtSNqmhaSk8lqFU74SDVLuQFY99hmUbP82KR26h7fozZP9tm/2feQgrmirwsg/88hWi2/tlWHzGu57pk9MVxauXhOLlkzEckQUVL1nN3O9fSduX3svcf76C6tPnFbzIbR6jaSR7xpFoIjWLihIOTxPdY+jZQoRFl67jq6lAr3cvDl65bjbJwWnstMC2VUxTXpalISyYORgm1T+JMAVpQyVtQNrAQR/JcSXLoF2ELSN1Wj9yKorXWzDXFJ+X1htOIzUYyRrsCxBbtiDuatAqJLeIjCwPk2laPrwum+4oQ4pPp/X69VSe1IFe614jo+NTZ2EnzNJ+OWROJ6k8eZbLOlDwNFWjampZOUkIIRVHJC+yKDcnb7QRjlJ71ny0oE863jL99qj42qsJrmhDKVOsR9FV7KSJf36jsw7zLiC4sh1jKILi0Z09EedSwVJIHpss72gA0FWiOwY49tMX5DpJmYi0xdTL3fT88NnjPCipcmWHRKkU8MNRGi5fRaJ7PJsGJX9PtVIScZ3ozk8lkoeyseVcLEyRlrufCpdH9p0oaVlDWdE3V3VUXXXy9pa2nUG5H/y7h/OEV3lv7E97mXr16Am1H1rRzsKfXcvyR29h2f0fl2hETUagtVy/vnSee3VabzztvzjaHMWzUSylPE8NR8ruuenxGYxwBDur0+aeF7Zg5tAI1WfMRassmue6ire5ktDqTtQyyqqiqwVpCMxYivjR8ZK+HPnan4lu7ZMIJcMiPR6n+1tPkugZL992UyWVJ3XSfPXJqC57R/17lqJX+qlY2Oy+xlbI4qp6yM/CO69lwW8/ytwfX8Oy+z9O3XlLAGi5fn1W7ilALuoqTVeeTGzvMBPPdZM2NNKGIv87Izj20+fBFlgxd3S/OTFDbNdgnlM3Dx0MWPE03o4aBJm9XnEuFYGKv7OOuotKUY9CAH4PvqbK8pEF4zOIlJXlScGzQp6vyb7ydWSSfVN0fXR9SW5nxadT9+7FaCHfcds2hssgMm1B8tgkqeFpWcC46Ay101LmwaNRXHxdGvTlnuqd5W5kqVjUhJ20sui74nHj0en6+vsoJyPP+XquLpidtkgcnSBdpgaDOePM8zzHRFkkqi1I9U/S+uG1BXM8S7pK87Wn5BkSi+RzILZ7gNYb3RHXrTecRmzHQOl7kQZ8K2mSHJjO2+vz9g4gOTCd7XfxGZs5x8IP7WDkoR3YKRM7Ka+RB3cwsnEn8bK1tcCcSjDr8+ciZaqM3CH/DQqz/v58Zg6O0PO9ZzCnEhLZmLaJvNFL97dkjvX0RL4zINf39GQCT02A2vMWgdebh1JXUT0emq44CQBPXZCuf7qQ5Rs/zfKNn6brtguzqXcaL19dktNa8enUnrsAT22AiqWtpcYjoGKJBDCoHo3WG89k6QMfZ/kjt7Dgp9cQXNwKQKJvwqkNUMhzK2WRPDZJ4xUnubZdc/YCPHUBRh/ZSXRLPzkkO0S3DxJ+cDvGYMTle2YMsTbpaK62Vrbfzr/NWEoaaQQlEbIgixmOPrKT6c2FbUd2DBHesB1jJIrilvddQKp/iqpTZuGpD8paMRnSVIlQX99Fk8Pz4nlcc9Y8PHVB2m48zXWet1y/Hn97jbzn8k3qL1pGcEUbplGslyiYhk1wVbtTU6xUb8GU8sHoY7sJP7ANK2FiJeU18sguwg9sA6Dnn58hNZxxmikISzB8/3Zm9g2TjpXneXomSbx7jIHfvYGRVBwZXqLce779pOzCeDz7TP73kDWMbHp+8GxJ2+EHthPbO4wxHHEFKtlJk9RwhPjBUVdAnjDtrFzU8alzWPHoLVIfe+wzzPriBYB0HtddsKRErlG9Gk1Xueu3+dR42UrpwMnb7/F4qD5jHt7GStJlIoesWIp0OOqkE8lE7sgIAYRCqn9KjtslQlekTFKD0/Kcc4vm0DVSeY44K24QPzpeEPHz36Y8Y3WJvppMM/bEPobv3SL305SJSJmM/nE3w/dsJrSsDcrUVmi88mRmffV9Zffz9i+cR+Plq0C46LGadGSO/2Ufw/dswU6kc23/aQ9D92xGC/qov3A5itdbYK9RPDrN16w5LhhIC3il7mJRoiMruubq/MynxJExV5kJIB1JYactur/+BGYsjW3LqB4zbnL0u8+cGKq8jJ0HFKyhCIrHXZ8zBqYxhiMSAFqkK9qGRWpgGq1aFuMtQeCjoNdUlLWvCRSsMmsga9NJHge8lZbyXPftT8iI55SFbdhEtg9w6LbHAfB21rm2rYR82ejAt+lvoxPi2tq1a/nyl79Mb28vqVSK3t5ebrvtNtaskRvngQMH3k5R8/9T0msqXAv3AQScfGypcJS9tzzE3ps3cPALj7Lj2t8zvVmGV/k7a0sWJciFWbW+y8nDXuoZFQLwaih+Pfv7/AMmsLCJmb3DuJKmMvnCYeyUlUWxFbRsXQAAIABJREFU5yvNlg3WeJK6dy8htH4upqU5l4pSV0nXV6WSZBsm3Xc8w45r/8CBLz3GjivvYujerQghpPLmNi6kwJE4Ml5gWJL5FaXSNv3sYYTiFqok3+lf0IBtywIepqXmXQq2QOYOLMNTJeCl/zevuvPFFow8vIOW69ZR//6VBc375zaw+LcfwraE5E9WaJbfwrLBMgX+OQ15qOe8nntk7u3UmJvxyzFO9U6RyTOZCSHO54sS8JAed1dGp9/opeqUTtd7AggsaHJQC+5edjstIeKufEOii/OpuEL5xNMHsQ0rr+9Kljf9v36V0PI2FF+hggmArhGY14BeV+HaNkBgcRNm3GDnR+9h9w33cfRbT7Pz6t+z/4uPYds2VWtmFSLnRd64FzZiFYTE5Qn8AqyUyfjT7ik/7Jk0yaEIS377YfAXKiOe5irmfO19stCSyH9vhr8yV3RgcQsWmkQ/oCPQMS0VKy2omNeIbQl3nlsCNeCl4aIVdNxylkSH6RI5O+d/v4fK1R0omiyYY1oqlp27bEEByrosKfK3xYKQbUtkVaZtb3Mliq7i76qj67b3UHmSnGeLfvUhAotyeSG1aj9zv3kRFXMb0Cp92DYF/TItWXjI21LFxAtHXLuUGo5iGemyhm9FUWReUpfvKYQs4Kj6PSz4yRVUnz4XxaujVnioe9cS5n3vMhRFIbi8zd3+o6l4GoJEdg5JQ1z+3mIqTG7qpmJOfR5yKVf0TvFoBJe2kuifKrv3JLonGL5vq0tEhcX0a72Y08cPc4x3j5d8L5DZiSJbB7FSZsG+kb93yLWZUXoLOCrnWqWvQNHPv18updvfQuN/3efKFztpkhjMhMy7ta0y+XK3a+oXgIHfvvY39cOtiG79u5fQ8blz8LZWoegqvlm1dP3TBVStnf03vduN3FOkSJ5rVX48de5IGf+sWmk8KffNTBvVq7PgJ1dQ8475KD45z2vPX8T8778fRVUIrWhzl1BVmctZWDa9P32RHdf8nv2ff5TtV99F/69fQwhB4tgk8SNjpfUx0hYjD+9E9eq03XIOaNIQIwDh0Wn/7DkoqoJ/Vh11l61GKEr2vlZXSdN1axFCML1twH2NvdoDSMPe/r9/jD033M+Bv3+M7VfdxcSLcs/QA146v/hOLGcvNS0VS9Hp+ur7UHVVRmskMmtBholbKZvpzX2kpxJ4Gt1DrX2dtQSWtjh7YGE6D9sGRdeddKeZPSez/h1HimXLKBu3PdWwMSbjZR2RoDhGjtL1LaeARnBpS7mHCS5rJdhVT/37T0Ioao7ntSGar1sn5/1xlrF/dp07mkuXxoKKuY15xp/cnqvoGhXzGqh05lqJoUMBX3s1i+68CkvVCnni8TD/nz+Af3Zt9tzJv2+hULmqHV99SBrt89eupjDnO5egh/wAjD11gB1X3cW+v3uEnR++h4NffjyX1sWy6f3ZJnZcnZvnx/79FYQt8M8qP+7AkhZUv5dFP7+moGaTt62aRb+41jHcujsSALSqCmrOmEfF0nZMW8rPpq0RWNFJ9elznbo+pZR1VmSV8vw2nLNOlbyxhFJyxgoU/J21jGzYVoKCtVMm4Qe2Zc9wN/K1VaOF/HR8XtZVEyhk4j46/v58tAov4Qe3l9YkSdvE9gw5RrVC50Wu7/JvLdefilIdwrR0qVug03DlGnythVFNiqKUoB99rdU0XLmmYJ6r1UHpyAOm3zyGZRU69CxLIbK5r/TdReeBnXCrWST/30qY+FqqmP+D9xNc2Y7iUdGq/TRddTKdt54DwPADZXi+YTu+2XV57ysiry6Lo2Zk13w5VgCaRuWaWVi2kv3OmUsocr8dfsAlWjNlEn5wG76OGncAlaYQWNKMoqnM/+EHqD13Iapflw6Qc+az4MeXo+ga3uYqGq46JW/P1SAUpPWG0wGoWj+HwMrO3Dy3NPxL2qk9az7GaEzK4EXr2xYQ3TXM9Ou9rkY3xaMx/WqP4/xx11vi3WMM37cFM2EV7NdWwmJ4wzaMsRjRbQMlOplImQxv2EZ6LC736zyeC2TfzIkkIw/vwEpl3u0AswxB7ECYZP8U3o5qLKtwDVqWgqcxRHoyTnRrf0nbtmES3rCNirkNqJ7SJA1qhYfAvAaZDqb0i8korCJ+FetjAM0fWodWV5k7nxWFustWHxctnSFvUyWN165zvreGaelQGaT1Jgli8JV5h6chhL+zDjtt5eklmvNfhcDiZjluFzCBWuEhsKCR4NJW1/kgDIuKrnqEEPT/+jW2X30X+z//KDuu+T29P33RPZ3c30h6XcDR74v2VAE171hA+L4t7pEFD+9ECMGy+25CrfYX3K+7YAltH13P+MM7KLe3TDyxn8jWAWwlp8tk14mikuiRuoNb2yMbdyJsQfO1a1Hrq3L2GqFTf/FK/LPrCMxvLHHeAChejeDiFoJLW/Ic1/mORAt/V33Jc/nkm1VXRmaSgLnIG70YkWReisbcfjrx7Fun25T2lUJZMbO/++bWu0dMq85cm9eQLYacPy61wkNgYROKrmFapfuSZYGiqfidaLJiuUavDVAxt75cwCPo2nEji4JLWxh5dBeWUbhv2YYg2TtBvHvMVd8TAsyI8RYZCd6mcnRCBvs77rgD27a58MILWb16NRdeeCG2bfPd734XAI/Hww9/+MP/0Y6+Tf8zpGgqFbMb3BEdy9sRtuDAl/5I/Mg4wrCwkybmZIIjtz9JcnCato/LfKulHj5ouuz4+XlT/dO0fXS9K5Kt7fpTMUZi7sYWyyY1OO0IUGqeQV7DcnIP2mmTyZe6mX4zgwKSm116KsWxn74EQO/PNjG56SgibWHHpdd36N5tTDx72NFnXbzFQvZPIkGLc1zK/hgT8bxNtojfuoqIpRF5inL+JYQqkThKTgG0RS5fnK+1+ri5iTMoto6bz2Txf3yE1lvOZe4PLmfRz65C0zRZvNDJx5o2teyVQR/52qtl5fG8dwrHgBpa2e4Ib6XoQFCc3Nk5XhcaIxWZSqgMibRNcHVHdoMv5nnVGfNQyxVoUpDKZ56wkP+8EBQYbmYOjhL+016SA9O5vx0dJZfyJf97KCT7pqg9ewF6VQUWKqYlD0Rb0wguaSGwqJma8xa7tq1WB9BDfvbf+gjGULSAZ7GdQ/T86AWCK9sKjQT54z5zPnh013eDMxfLpDERQKp/kr5fvIppFK6T5FiKsb/ux86c9i5kxlLYjnGueJ5babJGeLe+KZqK7SBe6965mLZPnU3NRatpv/U8Kp1aArZlYznFl90cX9n3WTYzB0aJd48j8m5kcibm598VyIJbloOQr3vnYub98weY893LmHfHZVStydUx0ANeFvz4clb9+dOs+vOnWX7vjVQ69/3zGrFF8RqVqYIqljaXXYOKrmKEY5JvRWyVfkAFrdLn/r0BtUoaQD31Qbq+fAErH/k4Kx66mY7P5ApWtXzwlGxOyAypPp3mK09CURTsZGaN5qNFFFLhON7mSmrOmJdFk2WUPdWv03jR8mxkgW2TXYuZ1F9mwiDR676GhWWTnsw544yxGaJ7hmWoZOZvIxGJVrIK5yK2SvzwKIqmZftavHcoHq18FIsC9nGQLsW5LY9H2bl2pHCuWVHD9SgSAhJHyyOHUY6fc7UcmvZvpbpzFzLv+848/977/48Y6wF39C7OOZZI0/ax012jWNpuOh3SdtlzMDN/PbUBZv+vd7Fyo5znnbeeixaShsDma9bI3+XxXfHpNF62Ci3oZeB3bzL29EHpuJ9JYyctRh7dw8jGXaRHY9m2C84pW5AanMaMJOn+1tOk4zamqWGaGumYxaH//RfslElk+wDhDbskKjGtkU5rJIdjHP3OM2DZTnHW0vPbGJNOq0O3/ZnY3mHZt3gaM5Ki55+fZ+bgqEzV85OX8pwhCsIUHPnus9gpk3i3zDtejPayLYkmd+W5V6ftptPwNlSSK9qY3zcV/N6y31N+DCeHttue6tVJj85kZZJ8knuEcJQw+XtpmJMXyFzurR9e5xodpHg1mq44ifHNfQw/sBMzrWS/SXJ4hu5vP4OwBZbp3rZlKXhqA9S9a3EhXxTQfDqNl60kuLzVcfrlKba2dAQGFrfQdNXJqD6PVHad/LyKT6fh4hXolX4OfvlxbINCWTNhc/hrf8FTE0AJVmCLvHu2hrBUgiuk0lu9rosVj3yC9r9/F+1fejcrNn6CqtWyhlJ01xDH7tyEGTNkDQzDIrpjkCPfkCjYwbu3MvbXA1L+jqcRhsXY4/sY3rAdvaaCugtKx636dJo+IOVvf2ctS357XfacW/LrD+EvMCy7e0LM6SRD924jsnM45wwVENk2yPD927FmUmXPMVuApyh9Tz55Gytlfl67VA5WKgNolb6Cs6O4X/7O2qwhJnuOOW13fvZsrBmDYz9/lbQzj0xHzj32s1ew4gapwWncrBWKrpEem8H1pmwNgCPfeApjZMYZv1y/Q/dsI7YnBzKyDIuBe7cxcPdWrDynSmzvMEN3b5PRM5m9ZSTOkdufAiA9JQtK5881IRTS06mCMyk5ME1sb7ggZZkWLJ9SKbOvVsxpYP4dl7Ly0U+y/N4babn2lOxeaU6789yKJB352t3BowW8aI7z1m0+aLUBQitLa2+AghIKoNdUlHX4W9EUWshHw4XLS+UWn07TlTKqQa/00/HZc2j97Hm0feZcOm49D71aRlHG9o8w9Iet2GZGlgVjLM7h22VExfCG7US2DubmOXJdDt69lfRYTNZMK97XhIIxGJG6qEu+aGFYMv/9ceSP1MA0xkSG54Vyjxk1MEZiZQ25ie4JMiZxO69fdmbPFRA/PAY2pWdJGtJjMSoWtZboogIV3/wW0uMzZfPIp4YihFZ34OuoAT3nyERT8dQHqV7fJSOPXfYHpSjtYXoqQXTPcIks1P2dp0kOxbLr10yrhDfsIrLdPbInn2YOjjL4u80FBT+NsTiHvy73VDwe93NM02VKSbv0DBVCQa0KEFrdjq+zpoA3iq7iqQtQfdocGi9dIeWWPGea4tOpPW8hnvogIxt3MfLoHkQqbz9/+iADv3vzLcf1VlRz3hKXNSYN+NXrZpN2SZ0IEk0t0ja6X2fFvTcy57uX0XrLuSz5w/V03nouAIlel+LFDiWPTcg91aZgjWT0MWMsltUPShz6SRNhWnTf8QypoVw0B7YgvHEP01v6qVjU5JrL3TZsAitaabh4hUwjilJwfteePR9vGYBDbvB2GZlJ9j/RO5FX1DnvniWI7s6lJ7QNk9jeMIm+wpoXNmqJXpPZSzRdo+nyVSU2MNWr03ztGoLLWvHPqS9ch7qMHKo5cx7GdAqQ+lTGliOjtVXMlEn7TacV7pkiI5+fJvcF3PdrvDq173K3aQig4bLVxA+P5aUpy5trKVkXBke+LZYlAcxY+WwIb1N5OqEc9jU1Nfz4xz/Gtm0mJiaoq6srCGmYO3fu/1gH36b/WbKSaab3jyJsBVWRK1MgvY0Tzx8htKxVCnFFQodt2Yw+vlcax4SKmmdNsYUCuk5kuxOeLdzt7hVz6qjomIdWXcHw3W+SHpuhYl4DbTeeRmBRM2rIV4KQA1A8KqGVbcT2jmCkisN6FEBQMbuBoftK0SLCsJjc1E164jQmnj1cgk6ykyZD921jwe0XyI3WtlGdXNNCIAucnDyL6O4wZqR401EQQhCY1wi2zdQrPaW4Cl1FqZBFioqRN3Ijh+CCRkzhZqASVK/rItE9zvige5hX9amzsW2bA196nNjO3GGiVfpY/ovL8bbX5BnV897sCHKxvWFpMM2fDwJsRWP8ucNUrmxjbDDiHAo5UlWbqnWzGHvqkEuv5Ls9s2rd0i1KXqgw9uf9WJaKqogCnlu2wsgju2m5fAWTLxwuQXwoukZgUZMjjEs5KYvucd4hbEF6Ksnuj28oSL1TsaCepT97P8mj5VCyYCUtVL8H34JW4kNHAcehkYLgyV0ARLcPYdkqqporbGALBXvaIBmOkOgpNeoJAeNPH6JyWQu2raIoIvNm54BVGdm4m6qTOhgbnJZrqGhcNad2MbWpB5G2SteYAG9LNWN/eap0nqdMhu/bTtWadtcce0JAaihG37+/kufIyHIcIeDI7U8SWtnO5PMHUUQhzxVNlXlBR2Ps/Oh92W8W3rATrcrHqnuvQ1EVl3c7yoXjS57e3M+R7zwj9wEh0Kv9LPjGBQTm1hNa2cbk84dL9iZFV/G1VGKnTLrveJapN/pkzsm0ReOFS5j1ydNckcoFpJbJrwsolkJoWQsTI5HSNSoEFXPq8NQFSY/HCvR+gYwUUTQNW6iOalT4vRX9rY9kf2ctNe9awtgfd5HJEKzWVVJ/0XLQyvMUZwo0X7eWyc1DmPGE3Js1hdar16LXVKBVVWBa0qlXSDae2hDYYWfvKnq/LVArvNiGydYvPkb4hW5Ur8Pz9yxi1i1ngJ7Z00r5als4YcbuPLeNnKPQLWeyWnmcnObKiYVfRrYNcOTbz8hIHiHQK33M/8YFBOc3SENJmXPMUx+QiLSR0uijwPxGak7tYvj37vU1AvMbTqhvxyPbsOj+/nNMvdKb5XnDuxcy+zNnlDWYnyhVntTJ+F/3lRodNBVfRw2B+Y2ofg9Dd72OMRzFP6uW1hvWU7myXSrgam7eZUjxqFSuKY+QzZCvrZoFP76cwd+8wszeYfQqP01XnET9e5cihCD86G6ZjiSPrKTJ0APbWfZvV2AbJpZVOH5FE4RWtjPx3OFsTt8sCenYnXylh/GnDpbk7rcNm8jOQVLZUGKXuSog0TMhlVuzkGdW0iK8cSehJc2uRhhh2ky+fNQBIricz6as5VH7jvloPsnz1FAEf2eNTPO1uoPB+zJ1OUonqhk1SuoJFLRh2ISWt0qnf3GuZ9PCP0sWXheIkn0NRZE5SwUlsoFcOFIJXfzrD3L0638m2TMBiqxlMuf2i1B1laN3vVkqr5k2sb3DpEajCEXDtoU8Y512ha0inDnedPUaJl87hp2KOvdVmj9wEt6GEKN/2ouNjl30zVUHBVv/zoX4FrSS2prLk28bKjXvlGmMYrvcoz0jm/tI9k1hzrg4zRUYf/YwNad1EX5sD8d+9nKWb0eV5+j6/DtofO9ihjfsKJ1raZvo3mFSw1FGNu4qQR7bKZPwgztpvfokOj51Fv72WkYe2YEdSxFc2Ub7TaeX5Lt3I63aj+VqpFWoO3cBB774R/e2H95J63UnYzs56QvPMQUUlcqT2ontHiqVLVCoOrmT8WfcZEUwIym5l3TWylQHReSfJdGxc26/kL2ffDAvLYFC06VLCS5pYfSJ/e5rzLKZfLGbylXtJHomSorPC9PCP7sOxaOViTTVSA5OEzswUnLfSpoMP7iD+cta6PvV6ww/sCN7b/B3m2m+ciWzPr6e4Qd3lnxvkbaJHRqRIBJFdQFRSJ4qikJ6Ms6hr/6V+NEJVCdKsePmU2m+ZBnBJc2u9W9Uv05wSTNvRf5ZtXJtFpGvswbN7ykrv6NreKuDxJ37omh/8FQHyn/veJpk/xT+2bWuoB5fZw2KotB4xWrGXurFnJHnrKIqNF60Cl+zjB4ZfWI/PT9+Kdv40e89x6zPnEHzJcsIP+TCc9Nm5vAYyb4pwg/tckH/Woxs3EXL5SuxDav0LFEEoZVtMjLQjS+AnTDL1jsBqDtvISOP7XV52kHSBj3udUEcncbbXEWqP5JncMz0zaKiPoiVst3PEgvQNaZec687ENnST9cXznbPI68phJa3yvz6N5/Bodv+ki0IqmoarTedgaJrVK7plLUaTLtANwBFRnpaNr13bmLsqUNZuaX2jC7mfOkczKkEsd3DJfq/nTIZ3rCDqtXl0b8A4Y27SlG8lpBnc88Esf2jKEJFUe0sb21bJTUQJbo/XDYzwOgT++m4aT3zv3cZw394g8lnDyJsQc075tH60VNRdA1PXZCFP72Cwf94ldi2ftSgl8ZLV9J4qUwjPLxhh/tce2wP7Teuc7ELnDhNvHDERUaW/zOxqZuKrjqZqqiIvA0hVK9GcmCKPZ/eiB2X51nvT16i+tROFn7rva5FncHR0VM2NSvbiOwKlyLGDYvA3Ab8XXXE9o1RyFeBvymIGUkR3T5YGs2RMhl+YDuNsSXYmgfMvILhAoSmM/lCNy0fWEnFqtkkn+/O3reSCjXvXvqWPDPGystzdspm6o2+MvchticMwNhTB+n9l5flTyyBr62KBd96D76mEKhaDnGZ925QQFdpuW4dnsZKRjZsw5xOEFzcTNtNp+PvkOfc/O9czPDdbzLx9AGEJWuGtV4v0wca4wn39Q3M7Buh9oZTCa6ezeQrvWQ2qdDsJmrOnEd6MoFlSRE9f/cwLfDpGtHNfViqB8x09r4tQCga06/1lo2+zUTX5WpEFZEKeo2/9O9v01vS36TNxeNxEokEAwMD9PX10dfX99YPvU3/V5M1Y2Cb0sMoQ780bFsiV41wrDwC0LQxwjFm9o+AULBsxwtuSQ+fnbYxRqLZAqZuqOdMRfPas+az5BfXsvKhj7Hg+5cRXCwFS19LlQxnLfaqpm0Ci1uc37kjPoKLm7N9t20nV7PTF0VTSY3mjGlS+Mn1MT0pkahCkeF0RlrHSOukTR07LUOVZHG5YoSdbDu0op1495QrukAWQZkq029AgFoTgJKK6PKKHRqn4eLlOYSYg6iQKFiF6vVz6PvXVwqM9SBRKns+sxE7ZhT0tbjv6fEZJ7Igbz4IDSwwhqNUnT4nm287/1nbVqk6JYdeLuYpgDURL4vIEqpGol9WLbeF6oQa61i2DqikwlECi1uyOa6L2/F31kpFkZwnV5BDlRgjM+y79ZGSPPmJQ+N0f/dZrFi5fG0SSTPxUjeTLx4t/FQC+n/1OsZ0gkSv03eHZ5YtoxaEJUj1Txe+L5/nlnCQ/i48R8GcSlB9+lxsW8M05RxMmzqmKddp1bqurEHSbY3Z2aJQpWROJbO5Wl2/iSWwHENEMcIeIDUSJbC42UGDSVSkZUm+6w1VqF6NXR/bUKrYRlLs/ezGouLBReiihIkxGuPw15/EjKSw4mmshElqOMb+L/0J27BovW4tqpNbVNZlkIir1o+sQ/XqHPv5K0y90YcwLKwZQyJZ/ryfkUd3u3/q/G/r4ijM503LhxyUe55krPp0Wj+8Ds3nof0Tp6P4/h/23jvMrqu6+//sc85tc+/0KmlGM+rdsmVLLrJs01wIrmAICSVvApgETCgOBgN+IQFCEpoJISSEEpMQsI3p7nK3kbtsdY36SFM0vdx2yt7vH/vcc9u5spP3IW9+v8free5jec69Z/e9117ru74rgvRD/qUSiFiE7vecC1L54ePV4/1yiVsBJp84wujd+/FcPSdc1yI3lObQXz8UjFdYn+r6K/bfdDfOdK64/3mKE99/lnT/mJ+IqHp9g0FkXj1EImX9UPi3ME1kxuHYt7dx8jEdtRT0+b37GfnZDvBUTf59Ix45pbNCRMyakSbCNPHm7KqohmCvUeXtn9s7yvSzx3FLuaDHtRHEnc5pjs2ciz2aZt9f/FpHDlF7jXkzebqv2xyKNF/w3vOoW9pOvDckBFvAwg9dWKzDZJZDX3+cI9/8LV62GoHiTOeYeuZ4Ffp/4J+3MfXbo0jbw52zkXmP8fv7Gb6jmJRcKcXcvup2F0TaHjPbB5l5abjM0NX1tjMwE+XzXMQs5r39TEx/rjae3UffTZex8BOX0vuJS6j3Q2kjLXW0vXF1OXrI0GjMjsurudLDJNHbwpK/fBOn3fEeVn/vHbS9cQ1CaPqWQjRI5Vx1JnPaEOkU5kMpKkog6mLYYz7nesk5pRQox8MZT/v7efW7latwRmtxf2qxx9MlhvHS3yuyhyeCsitFOppn38vW4hUXgSGuYVMvvTddqvv8k5piDPAR8iXtCc5gAVJpEETIGazQYdZdb9sQGOYKe6qIWXS99QzMeCSgjCvsa17h/z1t8Ne6Y2XdhR9ODrHOBpZ+5Ro6/2QLXe+5gCV/dw1RH5mbO0XUkjOunYsKge2Y2LZGJiu/XQD9N99LdiSHnbew8xZOzmDwRy8yu3OY3NC0j+qsqFdekhuaZfAnPsK2RJQj2fvnP/f14/CxVgrsiUx4vgWlOapzJ6Y59vdFY33hh0e++ij26Nwp55o9kQ5PpguBoVoYgtYr1tL5jnNpveYs5r9vyytObNj7sdcG7SiMt1IQaUuSWNSK5yPhKvU5Xba/pqrOMQNhGTRdsCxUB0ZB4xZNNRImwtJRqt3v31xEB0oRoAO7r9N5hw589j7cTCGJsO6zsXv2M/PiIM5EJtTAJPMu9kSGjmvW632txHFfiEqw6mPMe+em0LrNe8dGnMksKiQ3B0D2yCTpQ+NlxvqCjNz+EulD4yXgjYrxdpS+s6ii86NMh5YKpRT9n7mXdP8Yyo/ekTmX4//8FDPbB6k/vZt4X0sZ37uImMR7mmnYUHSSunN5pp89Tnr/WNlZUusc67lus+adDuOoBpQniC1qRVXo39LXGeOLW3XEdIgYlokzkaHnuvDx7gnG+37yQVQDSE8x8tOdzDx/Ant0jiNffbTKU3Ds75/QkQh7CzkPKvrcVtgTGdzZGpEFaRsjEcELlmDJWaIE+cmcjvSsMc+JmvTd+PrQd5tNCVKru4K6hJY/5/iRhxXvBkTEom7NPJSqzvOmlEli5bwg0jRUF3SkzmFH9VyTWQczHqHrrWfoMfHvmkoQ/N3L2By4+d6Sc1jrEQe/sBVnOkfHVeswkzGUaQTzQcQitF++lkhTgqEfb2ds64EyXXHqySMc/97TOJPZmrpi6b6hPMnMS8PMbB8sSXAL2cMT5fttSZvt8XRwlpTd1/y+CXNYBe3zDZBmIsKC925m7X/8L9b95I/p+eCFWPVFI2RsfiOLPnUp6+54D2v+9V10XHN6MYplJjwaVOacmveOVyruZDbU4K+A7LFJ4ks6/LO9uMYUEF2o6a52f+DngbG+INNPDXBJDCwBAAAgAElEQVTi1mcRCQ2KCZ2LdVGSq7r8fbHCLhKJYjUnSCztBEq42D3t6o0tbMOdztXkcnfG0jgTGa3zKbPsrFGOxBlNM3bffiYfPuS3y/84iv0f/02Vk75SiudvtShFuDNetxqZ90jvG+XoLY/pO2rawcu5ZI5Msv/G36CUKttfq97vSp3f7tLVrP7uH3LaHe9hyecvJ7GoSONjxCPM+6Nz6L3pMhZ+8lIWvP98rIa4//vCu6vXd354lpE7dzD97IniWlCQPjDOsW9v0+OstB3BKbEtgIk955IfmUXaCs+nlHI9CyktlKvnkhEvzodSHVpYBkioP3NhqK4Z7Wl9lcP+vyivCGF/4MABbrjhBvbu3asvS0oFm8KePXt+pxV8VX63YsQjoQa9gsKRWtlRkzuwYUM3Qz9+Ac8TVCbsEoYkc2hCGy2VxCgBjehFbASc4LVk9qUhFCZKeRR2HOV7+Ca29tN4bh9TTx+rQg+LqElqVSd1azqZePBoSaP8rOZCULe4FSMRwc5WtF0oGlZ1MrtjGM9RVe2SnmL8gX5yJ8IQ7vpSPv3MANnjswhhIERJ5IHPkVYrQrLQP/2f/E3J+0qfC8bv7yfalsKVVhVy0YwbzDw7wOg9+0Lf705kyU+XJtOqrntyZUcossiIWTSc2c3wj1+s8VsY/smLKGEgnWrPqzCk5pmVBkopDLMwGTSXv2kZiMB/GKJwSI1W86SFUF6AwJeeDrmbfmaASHuK3OAcpqHAUL5SbyAMiPc2ka8RlTD52GH6/vx8joYmOlVYrXUc+/a2KuSCEHrMjt7yuH+ZIRT9q3zkYXhEhaL5/MUM3/ZiVauVgtTaLoZ+vF07m8rmogBDMfQf27UTQwoMQ5WsMd+4bgqs5kSokSm5uoO2y1Yx8dhhBOg+Fb4TyBMklzWRG5zFc9yQsiWR5jpG7+vHtUuPEQM88E7MkR6YqFL+CpI7NFGyhqrH253MMnbffjxbt61UZM5j6qmjNG3uw2htJn+oqGB7OYP6DQuRrmTsgf7wyII7dtB59brQegX1Oz4dOp4A6YMTdF17Oiv//i0M3fo0szuHiLTU0fX7G2g+XycSbtzYS6SrjfSBIh1K05oe6pa164ilkBeLqEnjpoVVf6+U4dtfrELQKVcy+9IQXq5wswxf3+l9ozhjmeqIKdtl5Bc7SziuK38LwoOGM3sYu2cPQsmyuSYsi2hXfUDdUPZuv8/XfOvqmu1uOnuhPi9CSgeNvm84q4exu8PLTvS1EO1sxB6apvSmppQIkIW5E9Ps/fg9OFNZHd3hSnquO5uuq1Yz/kB/KHWO8hRTvz2i0Z5HJxCifI2BoGGDTmJufS7K4L89S/7ENInFrcx/1yaSKzoA6LvpEvZe/1OUXVwP7ddsIO4b1vo//yATDxbRQSN37qLrrevoff/ZKKU4/v3nGLptB0ZEOwHjCxpY8TeXEmmMc/LuPchsec+5GY/hn+5g3ttOJ3dihr033q0vwYZAOpKF122i6+o1AExtG+DAFx6kAJw2LIPln38D9Wu7iHbW03jhCsZ+swshdBlmMknLxTpc1su59H/2AWa2D2FEtKO+ZUsfi2+8EMMyaLt8HaMPHAoM1EoKWt+0PqAq+K+KMA1/A656ghCCyUcOaWOzqD5DT/5sJ70f2gx3mn6/lfw6qqNnhu/cSeg6kGA1xLXDLeRybSQszesbOArKf68kpNbOw0jsqkIfGZZBak2nn1A3fA06c3lk3qX/c1uZfn4w6PPmzb0s+eRFNKxfwOhv9vpUI6U/l1h1Fg3r5jF8mwWy/AzFMqlfO49oewprXhu53cWzUGQMUmf1okThkm+UnwdCIYxSXuKQuvtO5RP/vp3j3y1Gmxz95jZ6P3gOXdespXXTQuYOjVfnHfAkib5mna+otF0KPBcwNXIyc2SyKoLHzbiM3LmDSHMipF5apO0y+vNwJ67MujrsvbZNjbolrWXGoqDVEZOGM3s48f3aVAfHf/Csv++EzzUzpve2bIgRqRCdM7tjmD0fuyvot4F/eZbGc3pY+cVLalfal6ZNvVjdbWQPlYTxC8HST16MEIJYbxOZQ9NV451c0kLTub0M/MMToe9NLm9n6IfP4Xl+JJlZnGsKwdAPn6NhQzeZg+NVZ5FyJHV9GuUeW9TF7I6R4Fn94k5Sa+eRHZjShpYKNKdG/++g86q1OulkJdI8ZpFa3Um0NUnLxWsY+el2hH/qqHiC1ss0IrPjqtMY23qQ3OExf88XxPva6Lh6vR6LWrk5JBz9+qM1dcEjX3sUJVVIVKMebxHTeX7SByar+3xpM/kTM2QOT4S2e/inL9Fw+nw6376Rg5+7D+GH/0nPoPMPNwZRhYM/fonjP3guOEui7UlW/s2lxLrqaTijm2V/fTlDtz5N9ugk8YXNzH/nRlJr55E+OKZ1MQFl9zGleegb1s1jxLLKkM1K6ciahnXzEUpTlVTrHh6Jxa1IT+LkDJRT1CeFMogvbiU3OKOdCw5l/e5mdbutptrnyYnvP1OD6kfrRM54mrolbaHI43hfM+MPH/AvZ9XjPfXYEWJvXufrAhXzWAmULWlYv4Cm161kcuve4i9Nk2VfuQrQczLMuSQsk7rFrSD0Hbrs/YZJ46ZecGtpTHo+ubNhzj5dV3ssTXxxq0Y9V8y1uoUNCNOg5ZJVDP+qH3fOB+5JQdtrVxPtqGfsvv3hOpNUTDx0gM6r1rLym9cy9G/PMPPMMcz6OB1Xn0brJVp3GPnZzpDoHY/RX+1hwbvOqprjAFgGDRu0c3rmpWH6b74/SAArBCz9zGtp2tTjr7GQnlEKETExElaZoyFoumXQdG4fR3k0pN8g3vPKHKGnkrplbaR3j1T9PbagsWY+wVcqIhFBZd3QaOvEwhZO/nwXrl1w8BRl5oUhZneP1HQOj/xsJz3vP4eZbUeqnikFzRsXMh4aXa+BCJkD44w/eiiIxAieeTD53AmWfKohnMsdSK2fT2p1J8IwUBUhzUbCov60eRz91m9LOOaL4tmSiQcP0Pb65aHvBrBakvoeEbJfgx7z3JGJkOeKSEsdI7/YiZv1yteQhNzwLJn9YzXLVfCKxnt290n2f+o+pONR2GWW3nQRzef1YsQtvHTleOtv1Z82n6EfbQ9lmRi7dx8NZ3X7xvZyXVEJEDkZ0FaF2S2kI2nc1MP0SyNVkaTCEiSXt3P0G48jfdaBwBEoDXLHZ1FebbrMV6W2vKIe+9znPsfZZ5/N008/TSqV4plnnuFtb3sbX/rSl37X9XtVfscic25Vss7g36ZBpLUOz5bVaG5XIeIR7FnH36gqPPzSwJ2z/XcZuK6hEbiu4fPMgz0cjrgoiDOVBUNzWnuuieejivE0H13LhUuIzWsAywzqRtSiecti4j1NSJuqeoHOPm5ETLzgvlzyXAm8vCI3PINywryXgqmnjvvPwm9xRX4ujXSQJVELAPmjk2VcqqV9roSBPZ4ORXQVKFGyA1MVyeP0x8sp7LFMYDCr9HwC5A7W5lMGiHXU03bJCox4idJsGVgtdbS+fjnOZDgSBTTyoZqDWrdZSQOZLmRZN3GdiP64Ee3ldQh2o6DeJehAI2qRHZhCueC5Fo4dwbEjeJ6Fl1X+fFgGysDzLFwngudGUMrAbE5VKYZl4inaL1sFkTAki2DpF96IO5OrmbuykMm9+JuSdihwhuaoNVdQgkRvk49gKV9jAFZnE7mBaQjh/lRSkBuY9KNYCtzvhY8uz5vKsfADm1ERSydR9RMbG3GL7vecQ8OGbpS08DwTx/H71NVRDc2vXYGZiNYo2yDaliJ3rNToXjLeNuSPhztIgm6vRPeUjLd0PLLHpko4KEvmeVZij6U5+s1tZA9NltfLUey+Xofx1+L+dOdq850XRKrw8dQV1/+Idzex6KaLOe1H72bVN68NjPUAR255gszRSa1d+Z+ZFwYZvG0HkZY6Oi4vRx4LyyDSlNDz8GXE8aNEPE8brDw/p4KwDJzRU3GiC408DEv4oyB3dKqmEqXQRtJ5f3AGZl0UKUw8z9QOsWiE7vecrb9XAyHkzeWJNNfRceUaiFo60ZknUKZBpDFB2xtX6dBRVb0OpNRlz3/7Bo3YMsxgnhuxCAv+REc19H5wMyIW0URDykAJEyMeoee6c1FKsfcv7iY/PIvMuprzPO8x8E9PM7tzBGcyE5q8UXkSdypH38cuQu/nxTUGgqYti4LEkfWnd9P9/i0suO4Cuq87PzDW66iG+7DnwMlHgs/InXuY3TnCxG+PlRnrCzJ82w6yJ6aZfOwIw3fsROY93DkdaZI+PEn//35Ao45y4SgbzYWs2Hvj3eSHiu1WtsfAPz/D7M5h7NE0/Z/bijvn4KY1QsiZzrP3xnvxMjaTjx1h9J4DeI6Ja0dwbYvcaJb+mx8A4Ni3fsvM9qGgbjLvMfH4EQb//QWUUuz7xL04UzaubeHaFp5tMvijl5itQTESJvnRNOOPHGZmx3CAVlKeCuwXlehApSA7VIOjWuhoisSiVrxciWOzkOwvL4j3NFVxiga/j5jIvMf8d28Mfd7z/vPwbDesaAC8jEPjWT0kKlGwMZPU2nkkV3WeMueCO5Hh6LefYvr5wbI+n3zyKCdufR6zMY4KQ7krA6MuhtWaRDqi6gyVtsBqTTLwvWeZ2z1a1ifSVez9yF2a2sDnbq7UmZQUKEfWRMmZiQiZQ+NlxvqCHP3mNnLDsyx+9ybNwV2yBxlxiwXv2qijOUJ4hXWnCnLjaZRdPD9KPzMvjmDWhydIBc3t7dVwLAPa0a+q9bVCWVYqRtfvn14+Z0wDMxWl46o1AW9w9Tnn57CoPdzIvEfPBzbrdxdUCKGNfAv/9DyklOy54a6qfXd62wCD/1GN8q6U47c+T/aQjvArjifs+9jdAHg5QsfbyyliHfXUnz6/+qUCej9yIfnRtNb7pBXoe1JaKGmQPzlHfFGrNqxVnLFGMoaZjDLwL88wt3es7Ayd2zPGwPeexZ3OhQJLALJHp6g/fT51y9shWno3MEmu6KB+/XymnjnO8M/24OZNfz+2yI/m2f8pzSM/8N1nyBydxXMLuqRF5tgsA997Fml7Nee5EY8EUYth4kxmtSORcP1c2ZJ4T2u1zqUMYgtacKazNdudOzaFM53jwOcexMtR3HNzcOAvH8KZzjH93AlO3Pq8H3Wo0fm5EzPsu+m+YG9Nre5i2Zeu4LT/eDfL/+YKUmvn6brldUJbpYzgThOgu6UitW4eydXzIBrF87R+QDRC3YpO6k9fQGJJe+h4i3gUMxllx5/cWXKv8vU5V/HSn9yJO5VFhvBIowTTzw+eMheMM5UN9MjKNaiUwJ7MsvBPzyuP1lT+GvuzzeSOFHTMalGuxExF/Wjeom5QAGcZ9TGmXxhk/MGjZWe/nTPp/9T9KKVIrp0furcklnViJiLMf/dGpBnR+VRsE0damKkYXdeux6gxDwE9R0MdDboPnaksXlaGrm/Xv8L23/wA+bFssc88xcnf7GPyyaM409kyLvqgT2wv0FGj7Sl6P/Ia1v3o3az+p7fRdumqwADo1sg7JPMuRtRk/h9trNhTBVZdlK5r1+PO2ez75L24M3mdf85HN/f/76064ikeCfbsoF4KsAwN1PizzaFlz3/3RiKNCRrP6w19rvXA/zspzLXgQlnYzz9wfkldFTM7hhl/5DD2y0T0lUqso97/ffFvSoEwdGSEM1WIsC8/Q72cJH9iuvJ1gcicS9PmPo1qr5rnBq2XrNT3nRBRtoczlcGdKJyxFed3XiFMgXSq9walQLnoffv0+RC1ivu5HznUuGkh9miGsHahBNnBYruyx6YYf/hwGZDKPUXkP0BqhWZyCLMNxJe0M719SOtAFVHoMq/IT6bx8iJ0fUtPhK6fUvGyDvtuvFtH/mYcHVGVcTjwVw+SPzlHtKO+Rm4tQbQjhVfjrqtcSW5gqsRYX77+9ZfK+6FUpOORWNKGcqp1aMwIVlPC3wNEcFYUbGDK8TTt6Kvyn5ZXZLDfu3cvN9xwAw0NDSilqK+v5+Mf/zi33HLL77p+r8rvWCItiSAkuWzTEoLGM7sZum0H0jOQvnGm8G/P1eHGlRyypZI/mdbJcFwTJU1fedf/lp54WU7F+rVdyLzUZUr/4xkow6RpUw9G1CS2sB03S1A3Nw11q7SCOf3U8dD3yoyrvcmz4Ui2mReGGLvnQPD/lZIbnMVqSmgu1xBJLm+vOgBKJbW+SxupPaPsIig9A2FFaNgYjrJVCp9bs7azQEmlE6e5othvhXGTULe2VgimChKbGE1JnDkZOBW8vEIaFmYiQtPZC0PbpYDW1y6rUTffUTGRLlEOy58rz/+9ElXj7XmCxrN6UI4KDNGV/aI8xdRTx0Pf7U7nUYYIHa1Sfbb9rRv0IVpQ5iUYLQ2kFrdVhaWWipGKB0p+UJ/guwJVF+5FL0SxHPvOszXX2Oiv9p4iJA/yo9ky1Edl2fWnzcOoi+FlQHr+GnRN7DkwW5Kc/OXuEiNHad0Eo7/eh5s51fou0DeEj7fVUhv1JCyDWE+zTqhcNd5gJmM6J0HNixKM3R0eSeKlbbJDMzWTDaXWdNWsV0Fazu0rllWxllteu/SUv5WOx/hDh3wezJK/5z1GfrYLgMSqLpxM+RqLdDWfMmlcUP8z5uO5hn+p9/+rDKQrqVvRUXuNADrUqfqdev9RKFfVnOfSUUTakohUCi9fGCsTJydILOvATESIzW8Ir/Na3ed1K+fhpvHPAxMvZ2B1NWMlY5qCya1eB9IzUC5EO1Ks+ce30HbpSmLzG0idNo8lN7+Bzis0vUrjxoWs+Ns30bhpIbH5DTRvWcyqb1xNclk76b2jZTRAQZtsl5Ff7KbhjAUYiWojrRBQf9o8Uis7WHnLVcQWNoEpMJIR5r/rLJZ+5mIA3LTNzut/xa4P/pqDf/cYO973c/bedB/S9kjvHcUOMcx5OV32sW/9NrzDgcNfeZzB23eUhLYXfqwpbuzxTM09FQzS+8a04hzS7uGf7WZs6wG8MHqWvMvE40cZumNnFUoVT5HuHyM3OMPJe/uRFb+XOY/hn+8mvX9MJxoLLXtXzTYXRCnFkW9uY/s7bufQ3z7G3hvvZfs7bic/PKsjBRT+fCnZO1y9D7uT4UixwjyfePgQKizawzSYfPwoTef2hidItQwSvU3Me9vp9N1wEVZzAkxBpC3J4pvfQPtlq8gPz9VcY860jTAEbVesxXMIqAI8W9B+xVqE0Alea52xsYXNjPx6b2ifD965E3sknI9VKXDTLse//1z4uxWcuPV5hn+2M/S5l3OZ2TFCkS6rrFdAGdpAGtanEZOmzX0c/8HzVc8KcuJfnyfWlmT1t99C+++t0ut7bReLP/k6uq5dj1SldDYVZSNI7x7V+lFIRIUznafh9AVlIISCGDGLhtPmB/z7YVK3qKUs10TZZX611mFbLlqGMqNFKhAPmi5cTqQxQdO5vT4tY4UeK6Fly6Iq2sey1kUtGtbPZ8VXr6Dp3D5i8xto2ryIlV+/itSaLqaeOFrTgDt0x8tTvw3fGb4Ole0x+dQA+ROzhPV57qg2gnS+9YwAgFPQmaIL20gsbCbSVFezXKu5jtF7+vEcIzCeFvrImXbJHpvi5G+qo7WU7TH6671+osvqTivUQQhB+xWn4eU1dYJUJl7epO3ydQghGLz9peo9VSmyxzRyv1bZJ3+9l7olrYiQkH4RMWg+r5doV/gZCBDrrAe0s7pSP9cGRZOpbeFUs1NPHceIWqEXi0K7Jx45XGPvUYw/dIjhn4bs51KRH54le2Sq+odl7TuFHovm12+/ch2ebeg+l7rP269YhzAEo/f0I93yuSKlgZeVZI9MatqrEHGn8ow+UEDvVs9FmZe0bFlUs95N5/Yi4pHyPpfFPk8saiHe04SnIniO6Z8jmgYi3ttMx+W1ebCt1joa1i/QCVYp1xVFzKLx9AWM3Lmrij9f9/kcmUMTzO4eDepSehdM759AKYU0TGQONCGCCa5BbkYiGqLayBk2JoByFMk1nTX9gS0XLiF7OIyeVWAPzZE5PqUToFc4kL2sy9AdO/TdIgTgYcT1nvXyUkO3BzAEXW8+jcWfej2pdV3E5jfQ/sbVrP72W4i2Jpl87EiNPDAe41sP0ry5L3CIV96Jksvbab9kJYtvfgORtqR2BDQl6LvhIua97XQAln32Uua9YwNGXQRMQby3mVXfvIbksvZX0K5TS3JFB6u+cTXNWxYRm99A49m9rPjy5TSe6dPaDc+y/R23s/fGezn0t4/xwjtu58g3t4Xud5XSvGVxQPNV1m7DILminVOdoY3nhDspQEeaTD05AIZVpNJR2rnlKZOJRw6XOaLLRIEwSkEE1WXP7BxG2j4LgSxfB2M+mKX9inV6ffrGX882aL9ynU5i7IYV7DuGJvJI22Pvp+5nx/t+zsG/e4xdH/w1j7/jJ7hpm3hvS/DdasO6QLpSR4aVrM+CwV0IgT2WDWm3/v7Mc0OACF3f+t52aoP95BNHQ7+ipGLs/n6fWjWk5QIQRqCfVEqsq57k8o6yfiqruxSkD9ZwwCjIDcwwdu+B0LLdvMfc7pM19ZqCHetV+c/LKzLYx2IxXFcfOM3NzQwODiKlZGrq1Af8q/I/X4QQrP30G0r4mAVYJmZdlAV/vIn8aJpqz6X+2KO1jAVaNAquGu1VUPAqEz5VitWUCLidSz/SgVh3ExOPHWH8wUNVns0jX3sSdy5fE2ELkDsV+leqU6BwBUioW9nle1VL2usbPusWtwU0HlVeVQnerIMw/bZI0zek6nYKy6Bh7byaHt9ob2tgaCgcmJWOFuWFjReajibt0vK6pUW0tVdAcwt6P7QFe87mxPdf8KMaLFxHo69zR2Y49v3nqFvVWeV5LSjfiaVt1JoLoDf5ms8VJBY26YOssu5KkFjero2NhHh0EWAI8ifDkQjKVXgzdpDHoLzd2rnhZW2GfrAdpUykZ+G5mq/NHslw9DvPYDQkysYh+LeCaHPSH+9ifYL6SXAH0xqBWKEMFNpijxUQ+NUfmXNLMrGHtM1TLPqLi4prt+TTfsVqjKjFno/eXWKUL/QpvPjO28iPFZBJ1fPFmc75yn4txVrU0ND8fp2yab10eUV79X97/vRcjKiJ8sLRoNIVyKwb7lpSoFwZhMKGiTOWIdKa0heX0jUIRDsbg+/JvMv4Y0c5eU9/2fxped1SVMl4BmOKoKEEVTj0i73s+OBv2P/XjwW848qVNVGyXsZB2i4HPveQfzEsrrHp54YY/vnu4LuZo1Mc/MqTHP7GNuyxIoIs068RkUUUuv54ORBKVe0Jhf/KQtK0GpyoZiKKKlH2y55LEKbgyNeeJDcwU74GXcWej9wFQN+HzseMW0VuYFNgJCL0vO8cpCvp/9yDVX0y8/yQNi4Z4WsARDAFox0pOq9eT8dbz6Lz2g00nNFd9q7kyg463nIGHdeeSeebTyfRp7k53dm8T+dXvm+iNAKvcWOPTqBaQtNmxC2azuujbonmk0yt6qT7vZtpvHA17VdvoOva9cF3D3/9SdL7xpB5VyO+8h7Tzw1y/NYXcGbyyLwMLgDFfUsjftyZfE3F1p7IlBhSKvZzR9UI9fd/L5Vud1iCZQXuVJbZnSP+AJf3t/IUmcMTNfk9lSNxZvIlTqnyurkzNt4py65d74KMP3Q4MJx5GQfp57DY95kHNFLTC0NcC6QjkFmn5hmKEuSGZv1ImYrf2pL8aJp512ou61KjvRGz6LnuHG00A1rfsJzFn7qEng9exOLPXELzZm00KkQWhpWtXP3+w3/3ONIWeI6pL6E29H/2IT1e0XKu2FIDl5D4NAjVfa7Snh6TEIedEJqeITc8G/Jb/f3c8Bxe4KAtfwbU5BwviJWMsuBdZyEKKDhPgGkSaUnQcfkanJnaY+748yHamqTjqtP0+n7rhiJ44WUAWfZ4OMJWRyUq6tfPI7W2q4yG0YhZNJzVTXJlu06oTXWfF87V3uvPL9eRhc43svDPzkMpxd5P3Et+ysbJmzh5EzdvcPJX+5h8aoDkunk+kq1irkmDujVdZVywZWWbZkBHWbe0jY63nF7c1xbrfa30XKgUmavt6A++c4rIw9zJ2ZrHu95DJfs+cR/K1xU918LzLDIHphj4/nMkFmlDSGG/LYIaBIm+lsAZoCMiCzqXRh3a09lqw7IvXs5FOW6gU5XWCTTNgj2R5eAXH9aRBxKQeu0d/OLDOJNZsgdr76mnKltmXc1f/Sfl6F8RMbEaE3RevZbU+vmhOjJK0ztID6qjkn1Ahe1WG3cLZeccvLxb8/w24lHcuTwyJFGosj282Xzt88IQAeLZdV36v/goz/3BHez/q0eCu790ZM2yRSKCM5XlwF89pB1IPoOLciUH//oRzRM/nUMbg/SdR0oTlECYoiavd0Fyg+H5LQpSt6YzdM9VCpLrNGglrM+VNBCGwe6P3Y0755Sdz17GZfeH7yLaniKxtDWsWJbe/AaSK9tpPKsHohFcx8R1TIhEqF87j/r188gGOawqxtuWuDM5ZFbnBpCeietYeh4ooSMhFRz75lPVBduS3df/RkfHy5C5JkEZgtbXLA+fi5ZFtD1Z05ivlI7OlaFR5pAbnCO1ooPGjd1ljlAjbpFa1Un9GS9vsC/c16vPORE4CZrO6WXlV65k3Q/eTu/15xNtS+rmj6VRtle1tyhPkRuepeNNq4m0JP2zWtfbiEdY8K4zsVI62qrl/MWs/9E7OOvu93H6be+i7eIVZfVb8K6NbPj5H3PW3e9j7XfeSnL5/72xviCJRS0s+fQbWPeDt7PsLy8NojEB9n3mAfLDczoiMqMjIk/+Zh/jDx0OvuOmbca2HmL0/oMaiOJLbEFTSdL6kjtpREexFKjpwsSMW4hkrHpMgJaLlmCPpZG20kAbf79XPuNBbnBWR2Ojo31dx/DZFNB7ximiBgHyQ75uoaptIjLn4s7Z7L95q3ai+uhhYMwAACAASURBVHupchWHv/IE+eFZwikItXgZh+O3vsD0syeQec/Xz12mdp3k8NefROXcoM9K7++FO5aZiPrrzN+3groZWPXx0ChwLQJ7sni/9lwTx7Z8pgj9nSBHjCuZfOo4I3f1kz1WjAhwZ8PtWMqRuNN5zDo9l7WzuyQ63zQREiKdjaF3YKutviLfWYUIfw0qcBx0ZI9t4jjF90y/OOz/uyK/navIT2SgIu9XsL4xwmm2X5WXlVdksD/zzDO5+24dInnJJZfw3ve+l3e+852cc845v9PKvSr/PdJ54RJWfuVymrcspm5JKx1vWsWaf34L8fkN+uAPNSboxRlpqY00T63pCjX4acOJIHO8dggWoDlawxLPCMHofQc4/sPtPkK1Ohxp8Ecv1UR7IqD5okVlCadKJdqRIr6wqaYRBUvQdkEfUpR7TZUCD4OG0+chIlbRq1pAEPle1bplbURak6FlN27sRiu1ouhtllqJkZ6BFY9Awehc4MQvIEb8g6wmCg4wU1G63rIeT0Y0itvzD18rQfMFixj41rYqw5IuA4Z/uouhn+zw6yXK6qakjrgwUtHwfkPQccUqMKv7XCmItCcZ/umukHprGb5zD8orGCOrx7swT8PHTCE9GVwsS9vtOiZKCo7+w9M1x3vkZ7tpu2ARrmMEhn5t+NdJ99ouW45OplM93koZWN2pYEwD5bmgmApRE42ilMCsj/uIy+rKKQVGfYzksjbqTuspjRyHRIKut6wnNzzrI86q3+/NOdT1hnMyKiWw6uNE21M1y06uaNchpqHjDYneRtouXoXjFJNyKQWOZ9G8eRFTz54ILvCV73Ymc2QHaxsM0ocmSPQ113xev7aT2V1jRURXYUxcg4lHjwAwu2eUZ675CQe++BiHvr6N5//wpxz7l+cAGH/wMK5rlqM9pEBiMfnEMbyszbaLb+XwV3/L7I6TjN1zgKcu/XdG7z+okeYd4ej++nVdjPx6X5mCWLrGBn+yA4D9f/UI29/1M0Z+uY+hn+7h2Tf/hIEfvADAzK6TvsJXYQDyYPLpAVDhcxElqF/TqRWmEqO+UiCsCC0XLQaPqmel9Ru9rz90DXpZl9ndJ2k4YwHn3voHtFy0hLolrbRfupI1//Rm6ha1cPLXe0PzpQAM3b7Tp5UKW/+FUHbF/s8/wovv+QWHb9nG/s8+zHNvuz3IheBM53jxj3/Bnhvv5/A3nmLnn9/Nzj+/Cy/vklrd4VO7GeX7pjBp2dKHMAQr/uaNdF93DsmVHaTWddH7ofNZ/AmdlFG6kufefjt7Pn4/o3f3M/DdF9h26b8x9ewgypNMPHy4CumqEZn7EKa/V/pUVcX+1GNUSo1SKWZd1Dcehe/ntaJvlAIMQWpVR2jYrREzaT6/j9m9tTk2p58b1BfGGvuidmqXG3ULdROGofOhhPG8+2W/nAzfuSsUDZobmPaNIOFlg6Dr2nWgque5khotp+sVftYgFVZjnLq1PRqxj9C5WYwo9afpvdqdzfPie37J7o/fx+FvPMWuD9/Dzuvvwss6el+S1WVLTyDqooxvPRh+gRUw8egRjRjz7zPBZUei13Wk5MtV7aYmRUJQD69wma9+TsG4WePdTtatORcKf284swdPRvFkBE9auLZJakMfZl2E1gsXh9YNoO3ipSilOPB3T7D9f/1cr+/PPcJz195G5ugUZtQMHa7CPG/a2F390H8uYiZCCJq2LMXN++OJgZuHpguWIoSg5aJFeLKoz+GPlzIj1C1pwWpN4uR1BIeU2snv2CaR1iSZA+Pa2VthEHQzHkN37mLwh9tD+lT36+Ct22ne0ufTeFXoBoZJ3ZIW3Dmbl677Fbtv8OfaR+9lx5/9Bi/j0HLRopp9Wr/u5SPJUqs7ahrt2l+zmDCfvPK36YlHj9bkHR75xV4az1yAMs1gvw32PMOk6axupFJlz/RH67xm1CK1OtxAVr+2E2FZfsSujhwt1ZExDB1BE1I35SnGHz7sJ96uMc/HsqRWd1T9FiC1Vv+96+p1LPvLS2jc1EPdsja63rqetf/0ZqyGOM1ndSMikUA3LZyhIhKheWMPQtTWz0XEIrUyvN3JVe2klrX5BjBRpptgWrRcuIjGDQtCeZF1DqoFNJ/fF37eSEVyeRtz+8d4+nU/ZPTeg+RPzDL2wCGeft0Pmdl1kuTSltplX7CY8YcPV78X/Z3xBw/RfH5vaNnKVT76N1x/B+i4anVIn+HrpoIT//piTRTs4A+3I8xq3u7AkGuZpPsnQu4VguzRaaSUrP3HN9P+plXagSvAaqtj1TevpH51J0IIzLYGnDmBUpomyEkLjNYGfdettacqEJZJcmV7tV4iDRKLmjn+by+EdwiQ2TsGniqeNaXrQOpcUuOPHPGjeYrPpdR0gen946fscyMRqWEILf7/kk+/nt7rzye1tpPkqg56rjuHZV+8LDTxaaXUr5+nz6KKfS+5vP1l+a2lW6DpLd9bpE/NZiajrPnHa1jynrOpW9ZGw1ndLL35Dcz7/TNetl7/LyU3OKMpUCvzPOSKUYnjjx3l2at/zMEvP8HBrzzJs2+5jZG79gMweq8fxVIx3tIVzO0dpeH0eaHl1i1pxR7L4GUkXkXkv2sbjD96rIqrvCgatNO0pU/TnnkWBboc6Wk7SGpVgR6y+tcKqF/ZXlO3IGow8fiR8PPfU4w+cBBRFwm9p4KgYWM3J3+1tzpiyvGYePgwJDR1buidCYOGDfNrRlQ1nd0TAAkrywWIz2tEGQUaaL3vF+mENGVU7sQMz73tdvZ/9mEO37KNF9/zC/Z//hGUVDRumB/aaSJi0LSpm5YLF+nIINfybRqm7/g2SK3tYOKxo6F34NmXThLraaitC0ZM2i5ehusaoIpOL5S2mbRetAR7PBtyF9RlzTw7SMOZC0LXd6KnSSd8f1X+0/KKDPa33HIL11xzDQAf/ehHed/73se1117Ll7/85d9p5V6V/z5JLGml+aJlNL1uFU1blhJt9w3KZphy6RsALcNHXNdAmvc2lW38Uuow9sJ3X47DXmac8MuEVHizeR8dXG24UkqQH01jNiXLLpOBIidMrKhFpKsh9Hn9hgXacxqCANB9YhLtrEc6mvfbtvXHcSIoGcFqjGOlYgSoCX8z1fxeBsKVGI2J6rLRCVC0aANbkSuysNmDM+dUtVkbhA08x6tphwDtbd71kXtLlEjf2Jdx2XvTVuypHOE89AKZ83yuV0E5j6WumzeXp+U1S/2xBk8KPN/ja6biROIRol2NoX1af0Y3+fGw0DJdT2ciSxiKPPCGC1GCoAfXM3A9gedphcUN2kXo7+0aHJhCaCoTkYoDmo/Vc31+fJ/WIxo4X3z0kCyiA0AgZj3MpkTxwlqinNefscBHuoSvsVhXPcoqjn1BCpdAKxlj+Jf7mNo+gp2PBJ/8lMf+zz4c8OeGigIRs0IPbSHw6R+aQ8sGffASsUr+Vr7WlaPY9eF7QBm4biTIK4AnePF9v0TOhVFS+Q49qXD9kPXqskFmPZrO6wst22isQ5hGcJmrHBOZd1GuZM+N9+PM2jhpBzfj4uU9Bm/fzfTzQxrRJQWeFyny7/pcz/Zkhh0fuaeKlgKg/ws6WZU944buLbmTWc1jW2ONubN5Jp86ztgD1ZzmA9/frpHBQX9UIzpyg8WcAtVzEaz6GN1/fCYiGtFh364JVpRYdyPtFy/DatT7nucaOI6F41h4rgDDwIxbOtdESNlKiYC3tGF5O0s++VrWfPvN9H14C/F52nFaQNgGZ0EJQtLLuViN8ao2A2AIzHiEk3f3M/HYMY2SyWn0kT2eYe+nNWr/4JefJHtsGpl1kTn9md09xsD3XsBMRFBGieJZWPseWK3auWJETDovX8Pqv7+KVV+9grY3LA8Q4ge//CT5wfLzSnmKPZ+4H+XpiAq97+gk2q6fV0DmXZSngj2yqt88MJuLlHTBu/1/x9pThK2RwhjoKJga55QQWKkoPe/diPC5nD0pwDKJzWug/bIV1LTW+e0rjm/x3YV/u1O5wKAnK893o1D2pjL+bSNmEuuqp/2y2knAClKTV9ww8GZPjdCv620msUQjfLXBonhhWv75NwRzrWouGmAmo4w9cIiJJwZw8gZ23sLOmeSnHPbetBWlFIe+9luyR6bK5trcvnGOfuc5DD9MuUDvpvw9HwRGMq7zCDiyqmzlSby0jVkXBQxcx1+DtqUv0RETlT41Mkn6lFaFSLLC+av7TZxCNxA1Lp4E/eROlHCxV841QEm9HryME6CzlKcYvfcgk08O0HHlKiIhNGmxefW0vWYJJ+7az9gDh1B2cX07k9mgz+N9baFl163s8PssvG5WU5L8yByHv7YNLy9w8paPghcc/NLj2BNZou31PnKwmFtHSgsRiyEiJrs+fA9eXpVxmntZya6P3qMTAdt+kysiaDIHJ0+JZPPmbO0UlwTzpKAbEI0gIiaH//4pMocmy+Zaun+cI//4DNHmOlpfX03RJizB4hu21Cy3IM1bFhcv1KX9F4tg1BXp2arHW+BN197Ppe0SaUsiXf3dMj3SE/p+EaqPoXVLV9L34c2IuIUUGhghhYGIW/Rdfy6qgCJXJedcYY+VivxoOjQCT7k6/82pxJuz6fvz87TBsgAYsgyMhEXfh84LvtewYQHLv3AZa751Dd1/dBZWg95Tkivbad7cixGLBGNqxCI0be4lubK9Ju2diJrgSszmZDgqsjGJEbPo/eC5EInguPp8liJCtD1J51VrSK1sp/m8hVWo56ZzekitaqfzylXEOpKoiKn7VAlE1KT3z87BjFu89Ke/Ca3bzuvvwojqvhdRfZ9xXRNlWETbknRdvQYv69Toc31v6LxCly1N09fPDYhYLPyzs3VUnqh91kRLIlzL56IgMr8embbRoBmNUi8g1cHAm3OwUrX7XHmyxt1Ar+dCnsv5795I86VrSW1ayoL3nOdzW0P60CTDt++pevfor/uZ3XWy5jmmlEbZ58YK0QXlZecnHZ+b+xRiGgF/ful9TCHAED6HdflzlKby8LIOUoWjYKUUKNurCSYo7LfCNGi7eDmrvnYlq79xFR1vWh0OsguR3g+cq9HLpna+KcPESETo+3CRX97Lu4xuPczgHbuZ21/kHdf6fUhuLSUooMitVIxl7zuXNd+6hhV//UYaN/a8onr9vxQv49Q8h720gzOVo/+vHsHLebhpFy/jIvMeh7+2jdzgrI/YDhlvQ7+79wPn6IS7wtcNEIiYxaKPbMbLOHi2BqLZTtGmAQb5kbTet2qAHK2mOO5MAVxRPiaeDUbUCNLFVs+1ot4Sdn4bkai2BYU5YF2tM9UtLkZzlb4bINqYqJkvQbkSGawRndvHdQt7h47+ibbWBbYFWWLTkI4i0pHynUvVkWRKgTCEjvSu0A2UAhHX6Pi9n34Qezyjo0hzejwnHjvGybv7ibTUId3qu4F0FJH2FJG2VEkEfsk68CmMg/lQcRdUroS8R61citLBP/+rGS7AwLVljcgC3T53Nk/v+8/GqIvioc8KT5mIWIRFHy3manhV/nPysjur53m8853vxLZ16IZhGFx55ZX8wR/8AXV1tTkKX5X/70jmxAzPvvUO9n/hcY58+1l23XA/Oz50DzLvklhYC4ELkaY62l+7uKhQF5DH0kAKSyNs0P/vSQPpGywLSKaGcxacsl4NZ8wL5ec04hpNQvWjYv0QzO4cxfWMIExIKm3I9WyY3TtKbjCtn6viZux6BlNPD4JRQO8UlUj9ewGGxeh9B4sX4Yp+mXzqBM0X9OGp6nZbjXHM+hjp/snqsl2DsYeO+Aiw8HeDID9S+8KROTStlbgQy7dCIOIW7kw+9N4+8+IwjacIZbQaE7S+ZnFNzsSOK1Yx9dwQnjTxpBkgRTxp4sy5ZE/MkDsxFyBLiwe2wdQzg7X5yv0LSzhSRf8tMBr5fKUFb6/m0hREOgqGr3CUTbQGIlopwDQY/Ek4t69ScOiWbVhNNYyNQOO5C7GnHNwK1KTrwdzBqZKLa0i7TYEhTJ2gUxWUAopoEgmDd+5G2ZWVU8zsHw/oG0LbBWQOh0e5KAX2ZB6B7/ioWN+uV1BIyjkNQc9llIGTtmsmIXXGstSfFb7+ldKJAEsdgZVKhaeUNt4GCJviXHLnXNzZPPHuxtD3N565gJmXhnEz1aHnbtZl6Jd7Aoqj0PpJQWZPjeTNCkYeOIg7Y4fO88zByYCmJUzMVIKBH75Y0456/N9eovY8hmh7fc1LVqRNn9fJFZ24noknLKQycR1B3aouRNSk+byFuF7pGhJIZeLYBk0bu33uwfCy4z3h/V2QjsuW67Er7IlK+HNJ0HRON83n9da8EDRt6mb453urEdcKcidmyA5MM/nkQNV8U7bHybv6md15Mhz1pWD03gPVf6+QAo9mqQgBypHM7hkjOq8ehZ9TwFdqFQbJ1e2nQJtpI2nnpUXjdek8B+j4vRUkV7aF7j0Aref3Eu9tKj9L/HOu/jQfTWVFsDO6r6U0cHLg2AIRNfR+HoqyEXRdvZrkqo5Q4ywIWi/oI7GkJXhv6TlXQHJ1XbOGlX97KS0XLqJ1Yzc9793Emm9d+YoQNq0X9oVyXRqWQWplR5lRq7T/CtJ++RqNEPL/riSI9kZinSmaz16INMyquSgxadrUzYk7dgYOw1LJHJ8he2ya8UeOhs610XsPgqEd7QVu71LdQhgGTed0h5ftCZrO7qF5S1/5GkSvQYVBw5oOKh2ope2uW9SiL57SRKri+et6BqIuGjrWBZESP2IqbLIJWs7rDTXigtYN5vaNhVJbyJzL8C/2YhgGnb9/Bh6mf1YLPCy6/lCjHg//x0uh6zt/Mk3myBSZo9M19tRpP8eMCOlzAZbB2EOH9SUTyj6eLRl/5Agn7zkY6rxy0w7pw5PkTsxW/Vahz8/8YNoHRIqyZ1IJ7Gmbtotr5zxp/73lnLznoI/uKz/HvLRH5vAkY1sPVUfvOJLR+w4CsPSmi+j76GaiHUnMVJSm8xZy+o/fHtBHnErGHzoSeoYqaZA9Mk3DaUVEZtERCI1nzqf1dYtD93PPE9SfMY+JR46G9inA+MNHfH0v/CwRpkm0PYXRVB/odFKZGE0NRH0jSS0dWSp8I0bIc0C50HhGONIUoPW1S0guaeW0715D15WrqT+ti64rV3Pad99Mckk4NUpZC4Rgyadew+KPX0Dj2d00bupm8ccvYOmnXoMQgtbXLQ49o4VlkFzRxuS247huxX7uGkw+dUJ/0bRwstqxoZSBZwucvBEY6ZfcFFL2p1+L8GmcYks68BxfN8bCVRGfzpLaNKW+sUxVnCVuXmDnhHYKbOwONdYaEYums3sQUQs7b/hJGHXdnSxg6bOgYX3IXANSazpJLmsN3XuEgK7fW0nbZct9gFDFXJSC9suW0fraJWV0d0Gfm4LUqlNzewtTcHLrIZ6+4scM/XQv448eY//nHuXpt9yGdCXHb90e3mfAwA9fxJmxa57fucHZmnkinLEsC/7Xhpr3DiMVQbm1bk36vGu5cFFou5VUOpJDGKF7KsIgsbQ1nNIOaLmgr1aTX7HU9TWz7ntvpvOaNdSf1kXn5atY951rSPnRFumDEzzz5ts48HdPcPjbz/LSB+5iz2ceQnkSecpozFra8/98qVvUHM5aIwQtW3qZeOwonqeqzzFHMrb1EC0XLSpP1OuLchX1azoQ8Yheg46vG7gGdk4gYhFExECG3LGl0sC3po0LQvP6GHGL5nN7GPlVeE4xgJG7+lFYoXqqkqamR1VmxVz0I0VM02ceqBZd9kLaXr8UKcrvoZ4HyrSoX9eJ9MJ1RaWg6ayinaryHEuubGf8sWO4jvDtGiU6lSsY33oosAtV/l4DNE1yw+nAplP8aMqt9JFJsgPTVeekjqjYy8Tjx5AFO1Jw/xa40mBs62FGa+gtQghmdp4M1ZHx6zB3dBoNQqzuc+XCwb99ouYZO3Tbbh/MGy7ReQ0YiQhOrmKuZQUi+iq6/r8qL2uwN02T48ePI8Osk6/K/y/kmb+4D3siq8PfHanRYnvGGPj3HYiYFaDmKhEfyjCwGuL+gjfxpIUn/XAoZWAmIoEHvxI9IJWBUeDxyrmM3HOQoz94iYnfngjCxSNNCXr+eEOZwiFiJqlV7bSc3wtWmPFIi2GZfli5vux6UnOSFy5V7qxdfO7Xu8CX70zbGuXr/9b1LFyv8HsDYRrM9RcMdhXoIVdhj6UxU3GqORMFxHRyRemHpnv+uz2pL5zOdB4I56HWhwqhyF7wn+dcsPx2Vhg7lQKVdYNNPOC/LpQj/aRYoQYmfXg1buyprpfSB1Ciu7HEmVAx3q7Cy7qae7jQbrfYbnc2jxk1y+paeD8A0QgIfUkL0IOFBLH+V7wAfViJPNbRGrVF+E6O8LKVErg10OAgsCeyrPjCG0L7pf2yZRim8JFmxbnkejqBlDvrBOGdYePtTDu+0UqH1TmOjwCQ2igoIibZ47PBYVtGE+RpVEZNL7oEN+PUbLeXcbHnbL9sUyO6XB/tiYmX8zDrNAJDqdJM8AYiYvh9VluiTQlkSBSLAqyOejxH01aU8goG6EVX+Znmi2gS5a9fYQik7SESMTwPHNfAcU1c18CTIJIxzStuF2gxyudL+sAUiHBbg7bL1DZ6ATrRJvh1M8vqhtJcz+Ehv4J4T6M2etW4pGmkyCmMblmXxR873zekaAOWlHrPW37za5CuZM9NW/Fynk4w6yNFTt57iMltJ5g7OBnSJ/pjT+WItIY76YVl1jTOFMSsj+PJMMSGwGpOYc/kA6RNob1K6b1DeoXxDitcBHtLaJ84Xu3f+n1WkMyxaQb+fSfHf7KbXEkEWGU4bfB3pSMHsoPh0V4zeybBMGo6UayGOPWnz9NnjRQaueiZ/pgJ6pa10rBJJ/rWe54R7HsiGUdETHKjek4E55h/zmVOpJF5l4NfLSS1LdYre2yGY995gbY3Lq+xn0Pz5l5/vy+UawbzqVC2UZcIbbeRKjow69d1sezm13Hu966l65o1rzgctusta4l21oGl9xxP6X5cfOOWIB9Boc6l/8UwdLu/8lukMoJ9y/Us8oNpjv7z85iNMc2xXnl+S4GZjDLXX+Dur0Bcego7XTs/jnI0x2qBdsWr0C2UArMhHlq25wnMVJTMifCcJm5eoQR4hbpU7uemBQpf5wppm4NOWk/4eBtRC6M+HtSz7LnSxq0lN26pmg9KCZZ++kJk1qmpm+SH02RPzHD0n55Duvr89zwT6cKhrz5FfixDtkbEpXI8zVvuFs6D8j1VOp6OTpBmSJ8bIA0yR6b8RlegwaQiOzCDfTJdYrAqQck5Hl6uNNKzYj4AbtYJeVaYL9Bx6XJiC6rpGeO9TbResMgvW1+UXZ8HXindLi9XiNCpjmIpdRh1vmkVZ/z47Zz1y3ex4vMXE20p36cnnx1k519sZefHH2Ty+eHg75rDvsYZmnfp+/B5mMmYn1RTJ0Q2kzH6rj8Xsy6Kikar+xRB06aFZI5OhSfM8xSZY9VGivLvSA7d8hT54bRG8iltdMoPz3HoG0/j2V5gwHA9I6AnVArsCTtIrl5qrFC+tUQZgsUf34IIoY/qvGZVgMaOddXT+4FzWP31N9H7gXOIddWXfdeZyTP0i/0c+9eXmH7pZJmhUBgCoz6hIwu9CEZ9IjB+dl6+kviChjLjl4iaLP7YZoyoiWfreVq5n3u2wnM89n/x8ap650fSHLrlqaDs1osWs/KvL2Xlly6l9aLFQdljDx1m4onjxT71FDLrsueTW1+WZ9q2bfZ//rFCjYOPPZrh0Ne3kVzaStvFy6rQ/a2vXURqRRuH/+GZIld1ifR/6XGkKxF1cUrzBhWclSIRw4iYLLrhfG2MNPT+ZiYixBc203nVaupXd/gO88q5aFC/touO31tBvLuxWDdDYMRMFn1kM0bU0rR1IWsMAVJK9v/VY1X1tk9m9BlTY88DbXgr5t4i+G/w8bmcQ8sGzGSkpv5udTRgNcR93aG4DgqmGrMhRufvrSC+sKm63R8+T3OWG4W+rtBTdUk4OVlVtlKQOV4cx9zQHMd/vJuBH+0kO3CK3HAhEutI0fv+s1n99TfR96HzNA0voJRi900P4kzbuGkXmZd4OY+JbccZuecgVn2sNtq7MRG8Y3z7MMdu3cHgz/eVcb2D3j/HHj3G0R+8xOjWI6fUEf/bxBCoSDSkzxVGKo49mUM54edYbiRNx6XLSPQ1FfVNoaMa+z50DmYiwq4b7vPzDpX83lPs/Oh9eP59Kvhh6f0965FY2ETnFSvL8zzFNMinfm0n8hS85F6mQKdXva8phGYGoMQm4lpFo7eCRE8jnVeuqo4cOreH+nWdWA0JpH9HtR398aSFFBZGxESqcJ3J8/VskSxE/pWfYw0be5jdMxrSJ/oz/tSJEnBXhb6lDN/eQcjvfXvNKUBt9ngGZyrnI+yNEvuaCRLyJ+d0TpMwEb6dyAiPgFcYeDNFNoXi+vejBfCjPWocCdJ2MRKFs79azLjFzr+4X98zS+0SnmLnx+4Lf+mr8rISDr+skA984AN89rOf5frrr6erq6sMMWacIoz2VfmfL+5snqmdI9WcabbHybsO0HpBr94sFBjCP7wpKMY5Ru47WBPpPvnUCcLRwwJQZE7MIHMe2//0bjyf5sCIW9T1NLD+m5dg1kWIzm/Ctk0MlFaIbQOrqxkMQaS1Dvtkpsp+ppQg3tuIsIwQhL7+cqQjWbC+VT1XQGJxc80+s5oT5IYLBppqSR+aYnr7cOiz/EgadzoXcBqHlV24QHlKVfR54SDQbayyGyqNLlAIHNfANKWuodLKnGFApDGujXSlZftjZFqKxjO69AFXobwYcYuOi5cw9uAhXNdECIVhqKKBwDSY3Hbc50uu7lNQuBk7QIdXlo0HnZevYODfdoAEw/DRcD6ye8HrFpMfSfvG4pKfK61wqMAKEV529sSs5oK3K/mgFfHuRnIjGX881wxxtAAAIABJREFUFEIUwvN8Jd7m/7D33tF6XOW9/2fvmbec3qvO0VHvlty7ZVuu2JjmEAxcAjdAcvMLKYQSakgAExLadSAkXAiLwCWhBRvH4G7LlixbsmTJkqzejk7R6b28ZWbv3x97Zt42c+TfzfIvN2t5r/WuVzrzzuwyez/72c/zfb4PViz6MKMBqyJB1rGR0vUS3XlI9IzMQ6mEz7XZ0xORayw7kaZiaS2zPYWhsUaR0SbXghM+l0Azc2Y8QBpZUoHwjRKmr+kF+q0dTfrcbOH78opSpt2NNy0z0QdF6yxWW0blyhzHfP5cDRQYET3PhZSoedcYB/1JTM4pkRqep2FzF33/cqBEqZBlNrHGcqYOjaJVbovTCHAlw1u7IznmQRilWHlVhi1xrYk1lpMZDpE9QNvb1tHzv/YaKqWifidaK6je2GJkkxu+xgYfPsH8mfDIh2RnDfHmCjKhCZYFTbetYOboKFk3VmCtEEISa6xk6uVB3HR+CLgpzpzLwEPH8pTT0nL673fTdMty+n68v+R92zUJys6DsB/41ZGIK4KhR08ydWAIV0nD3CHM87WWKAS9/3s/jTcuoffHB0qM51Z5jIoV9VSubWTm0HDhfJCC+qs7qdrQHGqQkEmbxpsMt3b391+m58cel76AM9/Zy/IPX07bXStRGoQm1FejHBXJ7+nOZKna0IyQpVFTMmnTdMsyRrd2k3UtULmHK4zcGNvew8jTZzwHX1G9cy5zJ8ZxpsL5mFO90ww8dDxS6R74zXFk3EJJC+HqgjEXcYuxbWcZ3rpA3WcmmNo/GPrssR294ZX+fygyYWPV15LtzQT5PlCGN1zYkvLljUwdHcW2fNlgkE4Nl7Yz+PCJvORrRf3+9XHjNNClAyOEYHT7WS/JafheMv5cH9UbW0zfC+Ya1F7RET5J/PuFiaILeylCwuizZxnb3hN+u4KRZzxOUuEG9grf2KPTmrEX+yPrdmayJNuqmT3qgw3yZCqQWFTN7JkJ4wwqklsas8c7KU3WKZwPrgLXASspQkWmaZ9m5OkzocYt5SgTseA7BkoeYKIqai5qY3LvuZL1XXv5okjjDQi0gLme6VCdSWvBXPckrtK4xfucFlgoZCj/Nbm/RZ6Bcvds+uHd9P1wH8MPHwMBzXeuof3dG03/lTZUVfl1+HXbkqoNzYzvHS64BlB74fk56gEOfvxJxnb0Bf8f29FLw+ZO1n/pRhpvWmbodorfiyUMqtmWbPrh3Qw+eIS546NUrGqg+a61xOtNREUUuGPk6TORTi0wCdV9HSfiEYxsPVMaxeIohp8+Q7y9ygMKFY+9RswZ563j6YpSmgkTRMsqjV0WR8XLUKk5hKfHuq5FouP8CHqAyf1DHPzoE0aXzjjIuE3tJa2sv/cGhC155ZNPMbotJwPHnu+j/toONnx5C8ISzA1ncVPGMYIGNStIj+cDHEJkj4DRZ7tLzmp+GX78FCs+ctWC7R548FhoQl1nJmMoRzzdNbTP2/ui637iNCs+ejVLP3w19dd2MfyY2Xcab1lhZCIw5EWElBRt2j6+qw/lSoTQCO8co5VgYs8AWmsab1hGeVcdg786TGZkls5bVpG8chEyYTP46+NGBhTTZgjByNYzdLzrAjZ8+y5GnjzF+I6zxOrLaHnTWiqWm2jHyg0tjL80lNcmM/41axsY39Yb3e+nT7Pmc9czviNcZre8cTWx+jJGn/Qj9HIyFwRNt66g55/3kRrNe/de3fEqi6EHj6GxcFWpjjx3YoK6z3Vw6tu7g5wnphgdquGaxciEzYZv3cXIUycZf87r911rqPCS6NZd0cHYjp7C/gmovrCV8Rf60K7ARZbUPbrtLAD99x/l1Dd3m7O5hu5/epnF79vI4vdcEP6uX2WZ754kMzJfsn+784pzvzrCmr/YTPd39pTogjJh0XDNYkPP9pfPMv58H27aQcYsTn1rDxv+dgu1F7eSnUyx7388TGZ0HnfewUra2H8f58Lv3EGi6T+POWK+Z8o4KFTRmCvB8OOnaLgmitbHk6W2hdVUg3NsEpRCSImTtYm1GEdI1LkiOzZPuj8/IX3hs/39Ib6ojmxampOrBjctiXXUm8iha7sY+s3x0Oc337GS7u++FNpu8ACWOtw24Hp6WtcfXE7dFZ0MPXIMHEXDzcupu2oxQggGfnPcA0EUFpXVTB0cAiFxlQ5kC+SADZmxedxUvrMi17bRrd1kF0iIPXtijBxVb2HRGnSwuYXrkiIWDnTKgQei7A4mur5xy1Km9g2UyHTtaqovaKb+mk5Gnj5NPh2ERlC5polkRzR7hhYQa6kkMxJOqSvLYjRc38Xgg8dCzsCCljtXcea7+0L17+xEGmcmE0lT9nqJLq/K2v6Zz3yGBx54gJtvvpkNGzawfv161q1bx/r161/r9r1eXuPi84Ip79DlOj7vN0bhtiDnMfTDtE3ov4xZzJ4YDzv3orLKyxQdVQRkFEc+v43sZNqgHLVBO86emaD7h/tx57Ic+fw23LQ2nKMZGycNg4+eYmLPAHZtjgc+/6O0MKigmIfY9hDZ+WFRIiJZlhkUzOk59CcCpEQmcmjwkmdbMjpBixCorCIXyFjkdS2gARE4jvEaB7ymCGRFLAgrcxyB4+SQ5nZFwvPsSpxsjGzAre8hqFwdHfUgLeyqBEv/5ArjRfeaKOIW1Re2Un/tYqaPjWPQYB5XpN82R5MamlvQWKHSbt6GXFi3m9HE6srQwqDus17bHddGaZuaC9s85GHxveaTmUgRtmn6RaVdVn7i2tLfSMnqL2xBZZzAEeIfBH2Ej9ZAIuepLvgAdnmcPf/939HK48DzxkUryeAjp0LXR1A0ngM0fI2JmGSuPyxqwXwKef9D5lLKxafpcJVB7/nIBpBopYI5nMlYZDK2N5/MQTIz7WWxV6LgAyYqYtG7LiDZVhUgH0TMhGav/Oxm8ML3/Oc7jvCofYyRJ+foK+63qVvbvvc/l4jLNy5ZSRtisRAkCoarXOMlWCwcF63BmXEXBIPLmAxQTsVrTCmBFoJYW3VQZ37dSkuEEMTbakL7XbGmBas8xrKPXG1QMHlrrGp9E403LvXyHYTJNbCrkqz/+m2h7W5582qsuMUrH3+qtN+O5uDHn8RNO7ip8MiC9NBccHDzEyu6Tk7X065i0Ts2kGivQgsTEuoqw4G76jPXB46p7EyG/geOcfK+Fxl85FSg7KsQihG/qJQTJALU+fPBmwvOnEP7b28guSiP8sdDi6367GaEFKz42DWIMhtHW2SzEhcLqzpO1x9chlUWY/nHrjZyzUt8LctsKtc20njzMmZOjNPz44OotIt2lIk0y7ic+MYuMqPz5NZU0VwDCKFtyy9W0mb5x64pQHQKW1K5uoHGm5eTHp4DP3mTv8a0QGchO5FiPkLuqYwmm40eUzARV/489vf3gI8z5RjOYe9QmD/mGoFyFKk+H3lc2DaV0ahMLk+DH/UUoAHPg9Z8NeXcr44xdXA45xxyTZTWoU8/g9aauf55TNRSjKyHZAWLmTMzOPNO4NwrGFMNKuWa/DdhByVHkZ2IPqAB6KzL8o9egyi3cfPnWlWcpR+63KBrPf1AuWZc/IRfsdokmZG5UJCDdjTZiVSkccivG0BrE4mRydo4ro+MxBOs0cWuKwMdIlO1IFZT5tGE+fufDPZCQzOiOPqF7YTtQ6/8+dOgKEj8aNqJh+gXzJ2ZCN0LtauZ750i5sk91y2UuXiH2mV/dlUhj64U2FVxlv7xlQuPmRboBSKEzXwN08dMGLw2nvTQe4UtkTL8wA4ElHRSSuquXkLdltXUbVlN7dVdAdhJqfCIiKBuOxZ6ndj5I1XGd/UXGOv9MvpsDxP7Bmh502rKltQiy+xcfxIWKz+9OaA3ideX0/m+i1l97y10vPdi4l4eAuWoSLov7eSQuaEfJQrySPjfWgNxz0ES9U6VRmccwjisc+/Bp12xvGgOg0z07zn+P3eRnciYxMie7NBITnx9Z8DDnplIcfTe59j9vn/n6L3PeTqmWQeHPr3V8EenHDPvUw4TewYYfOwU4y8NMLqtNy8JqPmMbe9lfM85jn/jRbLjaUN14HqoSQQn/+cuVMbJob2LZCrS8I5H6ZORaMu8YvJ+hQxp2kVnXZb80eWh1xf//iULIpD96AIhBHZ9BXZzLXZzLbH6imCOREYGa9N2lTFoTNeVQSSn1qLAaWNXJ7GbarBb6og3VgaUaZnxlNkfXF9vMedYlCbj5d4QtoVd57WtqSbIOQAw2xO2x2Ki1DILjKuC+qs6qVzXWHKpfFkdTTcvY/mfmXwIOa55Mwfb7lmPXRknudxPMlxYd2JJvWdINNdKdGSM3hi2DpSSyKSRDzJu0Xz7KlZ/4WaWffiawFgPsOSPrsCuTgT6u0xYWJVxln/k6uB9F5xDvXeCh+g+9c3d5r1lleEDT7uc/cF+5rqNYVgrzdjOfk5+czdnf3TQ6DqvoijHDSJNisclM5qirKOGRe9YXxC5KOIWTbevoHJNI8NPn2FsRx/uvLc+PUDgoc9sRTmKU9/aQ+rcLO6csTu48w7pkXmOf+WFV9W+16rk5nrp+9aOMlShVrjMjdclGdnazdjz/R4XvY2Tlai04vBnngnNL5Ff3AX0WI2RHaf+bjdOGrJpi2zGwklD7/8+yOypcZb8yZVYFaV7Usvb1hCvTQaRfSVyDXAy2Yh9EDITZv0JIcjOucz2ppjuS5GddoMzx9ypyXA9NavJzmY8mkJDO5zN2mQdK3DgmvnrhurImTE/KiPCtiCEB+4IvWjyY0TcqzXGwRjL2ZKCvwNWVQKxgE1DA403LaNyXVNBRIWIWyz/6NVYZTGW/D+XY1UncJRNJmOTdS1E0mbFx6/Bdd0SO5Lr5vbhWHUydO8GIGkjEvHQaE2lBLIgN16pXeJ1xpb/s/KqDPZPPvkkTz75JE888UTw8f//evmvXWK1SeINFYVhPVqglaT2ykW0/9a6yHtb7lhBejg6qeXsqUns+mSJgun/v3JNowk9L76eUQw9eprx3ecMV13+dW3CswYePoHrKi80O8fv5Tgm27cfDqtc3/joCXDXINSRhQfL/Lb56OEwQau1URia71xhwhddz7joP9uF9t9eR93VnaFGQbsqTiJIuBXidfU2Z+X6h1/zfPNsE/rWfMcKlCtzCq0fou4I2t++zvPKlj5bKzyPb3jdwiPPE4k4TtanaDDCXMfjIIShidCUvBOtYPbMBNXrmwgrwhbEGvLDzor7jUHSeIij/GejYfDxM6T6ZsIPKxomdg8gy+xwgwCC5jeuoHx5AzqeQOEZXxGIhirijeX4Rgo/v0KOJ94k/22+dbmXxFbkzTXz/8UfvBiViqBIUNDzk4MFG1twzTOUtb1ldehc0Rqab1nmof/Dr49uPYsIRQCa/8c7qwr+X3K9udLrU+4Q4B8qXCTZ2Wx4WLuC9EgKuyLOpu+9iWUfvoqm21ew6N0buehHb6NmUysII0cCWhYtvTllDtJRdMq+sbntjatxfOeht1Ydx6yFxe+/kKHHT5tnaz9HheEOzIynme+ZwiAqCysRQoCCtresiRzzppuXgZCBbMlfY8qVoGBy/7Ch2AkSGxtlUDmC8V3nmD0zGdrvsV0GASsSMaNM69waUzFjjBJCBPzTgVPQox3T2oSHXvrAPVRf1Ioss4k3V7D63i0s/7OrcaYzONOZUDXP5CuIdqhpLWi9cxWuIwoMWMYRBYvftwnXcZntncfJePPEFWRmYfasQefM907x8JYfcfLvdtP708Mc+8oLvPiuX5EZT1G2NDxqSWsTvh1vrgq9DlC2uAYsgZLxPKeyOUj6hqv06DyZKY32Eh2qLKRGXRwv6WPTzcvZ9L030/7b62m+YyWrPrOZ9V+7DWlLhp8KR/9qRzG6vcckPwyMj/kiUFC+qtGIsJD17YcPz5yaJDNnjJGuC9kUTJ2Yxve0BhEdwc3msKsREegfU7J5VB7FdSsFZV01pgpVqDBrJRAVcRo3dyFDeOIB6q/pNAZcXSqTtYb00Dzly+q8fcnXG8w+VbPp1aF/FyoDDx0PfSfZ8RQzJ8ZxpsMjC9IDs5QvqTVjUrKXCC8/Rqi93vxMaezaRITMFSz+3YvMXJvUQVJNlYXUmCI7naVqfZNH45S3f3s0K003L8s5gYufjbHj114ekdtHQOMNSwO9pnjMtYbO920KGRPz9OqNLUZPCRsWTHSeO+sG+5oP3HA8eTBzaiJ60Fxt5D0ReyiS2Z7piJthtnuKzjeu9nLO5BzmrpeYsmJ5HZmxNKkJBzfrraMszI85xsESgXL395JEWykljV+SHdXkck+UFmFJqkLySGgN1RtbaLo9mqO+4fouAE5/dy97f/9hzv7oAGd/eJC9H/gN3T/Y79cQWbcGJl4Kj9Yc33Uusl6/9P70UPg+B/T+5BBWwuaCb7+RFR+/hqY3rKD9nRu48J/fSv1V50/QWLW6ERFiPJJJm+bbV5Bsqw74d/P3MaUlyY5qmm9bFnAF5881LIuq1Q3UXdFRekKVUHdlB3VRawTDx+zL5rDrGsHwU93ht2sYfuIUU4eGef7OnzHw65PMHhtn4Ncnef7OnzF1aJiZ42OhiURVymHg34/T95NDkTpT308OMfLUmci6h544Q+W65tD1XbmuGQ9BVXqrt1+cr/iOw/DqBe13r2fDt+/Erk+CJbDrEqy773Y63rWRpi1LItWHuqsMir77B/vZ+8HfcPaHBzj7owPs/f2HOfM9w/FuVcQj6y7vqg3OUMX99rs1vmeAnW+/n9Pf3Ufvvx5i5588xssfesxQYmljbCtQKrXRW7QyzqX9H36CVz79DL3/eogz39vHrnfcz9gLxpmVGc455XNFkJ1IU7+5M7LftVeYnF+1Vy3Jy80BLhZVl5s1JG2Jq21cRwbzPJuVyKRxGEy9PBRa98yhUdrvXh1eMVC+vI7RbT3hIllrhp+OmON5JdlaycU/vpvFv3cJTbevYPH7L+bif/ktyjpraLx+SW6v0ead+GfemsvaGd12NrRu5SiGt3ajHcWBjzzJK5/amhvz376f0edLHYilRUTsNTlZKZIJj1tc4CpwsgK8RJ6Dvz4ZGkmiHc30K8NB+wobrhnb2bdgZNBrXcqX1GJXlhq9ZcKi+bbl1F/TGUqnKRMWDZu7GPhNRL+VZurAEInW8MhiqzJORVc04lokbEa39+Q5kHLFnXcZfqobO2lz2QP30P6uC0h2VFO5tpG1X7mF5X9ylfec6PU9fXA0z8CbX0QAfjzw8ad45c+fZvLlIaYPjnDk89vZ87sPAZCZTEfqqXOnJ805zKs3Z+My80ZID3CZZwPTwXXF4vdfGDouIGi+ZRmuoyPlWurcbNCO4jEFQXJxNbbvzCB3thBxi5bbV0TrqF79QoCOxQJju9ICJysRCTOH5vqnSQ07aI+CUbuSzBRMHRklO54KdKwg559/XvftHFp60X+mKG/MpLQZevx0oN/5Z3TX093OPXCU8MgD8zc78TqP/f9JeVUG+0WLFrFo0SLa2tqIxWLB/xctWjhp6Ovlv0aZH/KVlXyPGEy9MkaypZKWN60quSfRWknHezYiopDH2nj2665cHFzP/zZcqQsUrQ06MB3B7zU8T7p/LgjRy/Fnm7anx+aLUFO5b+2hvP0QquK2uRmFjFmhfdIaRNz2UAql6B4tLGJVCaYOjgTIfh/xoRSkRzML9zvofri3WWvB5L6RvP4Ufub7plFz0Qji83k2ndksR7+0AzetcR0v03xaM7ajj9EdvUSLDOMQWPNXNyDipb9Z+YlrzkuftfD7nit4B8ahkTN6a62JtxtKjlKPr0G4HfnCdrKzDk5G4jgWTkaSGZzj9Hf2GrocH52Sj+7FJJ1KtFaZTd7jevW52tGCWFVi4TF1fNRiHvrHEZ5BL4ZVZtBdBWhuT7GvWN20gI/d9C/RUmE2Vzfvo4yhQUq54AHNVxxK5rHGOHDcUioPv/jKm5tWjO8dZvSlUUZfHCJVguIqli0isHjmG+PzDY9KQaK12jP4myzzjmN5RmtBrKbc8NArgeuY92nmqzCI3KhOe8VK2uFjrqFiTRO+Ey5sDQLgeAqoKuRyBlCu6yW9K+23O294iY984TlURnkJecwam3hxgJGtZz0HUiHSHATClthVJoxQxixibXVQVYXVVI1dmwvjXajrMiZDk5ABxBvLcPUCcwLJkb/YhipQ2k3/jn91J0opjn5pB5nJdHBoUPMO6eFZTn17D3ZFHKQMfd/Jrloql9cFa7sAYSsEydZK+n52mNlT4zgpbeZERuDMuxz+rEFcv/KpZwKDRPBxNQc/9nTQ2rLFNSz5H5ex4s+vpf7aruDwM3tiLNyI6mrm+6eJN1URKPL+txZgeQhbq5Qr0lQYx5nOcPYHB4DcPqW1MQac/OYeMuNRiG5hjNIRIlt7FGh+OHxx3YHRSOecTvk5LoQ2KP/Wt67Jof8FiJik6wMXkWypjDhEERhG5nryo39y39PHJoKfjr7Qz54P/IaHb/4xJ7+1Z2HEYl6JQrobJKYO+hrIvrxlb3IqhLfdqogT93IxlMxFKYlVJ2m5a3VwPf93wrZMFMsnt5YewpTm4MeeNNzjaX8s8oEQMHlwJGhXiW6hQGjBqk9ea5zP/nO972V/dDnSloH+UqLXIInXlNF4y7LSTtuS9V++iXh9mSe3hJfbw8hMhCRWkwzy+hTvcwaxdr4x92VL6R4aayjDnXeCewoiAxV5XKfF/RJBfw9+4mnPaOS3zThPD37iabOO8yKu8j+x+jIqltblDsT5HyEoj0hOnnuxmpkzUyXzAWD65AR20qbrgxeXDnlVnGUfvpLZUxP0/PgV00fXyBQ35XL2BweY7z0P5/P5bbALlkgeWm14hcEYFBu3LGPlJ66j6wOXkGwr5Wrv+clhDn/hOXp+episF3UnbMnqv7wBmbQD+SHLbKrWN9F8+wrKl9Tiv8P8fQwhKO+swc/TUTzXlEdls/zDVxKrSQZc7yImidUmWf6nV3hOxvD1HasrI1ZbFq6q+rSQTjTaW7uagx9/unQvUZi/OzoSLZ4Zm8+hi0P2udnucEqK/DJ72p8Thet77tQUoAt0Jr8eH9Tjl8n9Qxz76i6OfWUnEy/nqF5i9Tm5l99GYnawF8bqyylf3Yasr6FsdRuJJmPkk3GbJX9wKVp7YBUvwk6W2az8+NXM9Uxx9gcHzNh4EZQq7dLz41eYPT1BsqOmoM58mSrjOcRr2HlNu4rDn30GlXICGhRnLsv0kRHO/ftx5vtN4tbSfU4w1zvN4COGcs+P8tMZhUq5HP7ctvMij4tlS9AHoGptM/O903R/fz8qC65j4ToWKgv9PzvC7Mlxjn9tJ850tuSceua7+3BCjKv5xSqL0/q2NQVnBz/Kc8PXbjU5z8KixTVBZIFyFMNPd3Pk3h2c/PZLzBXxzNuVcdrvXsfKT15H+zs2EKs25xkhBSKRn6OC4N9Va5sXbDfA4GOnmXx5MDfmWYPAP/y5ZxfkO/frlhF5f2K1Seb7pznzvZdNpJ8rUa6Fymj6f36EmeNjCzz5PyhQX+MipDAytcwOUNOyzKZiRT1tb1lDsrWSrg9clIsUlSCTFm1vW0vlKhM5EXZG9ru97ss3oYXI2SW88926e280EVVWONo73lTJzNHwcdUaJvYap7KwJBWrmylf10bFBYtMTjyv5ORT0fp2ZcBhH14BTL4yzNj2UprFmSNjDD5yKlLXw9MnDG2srzPnvlESrbWnY5TawNxZResbVmE3lNqrRMJi5ceuAV0q03wdSVi5c2GJfu4BytZ87gaImRxL2ayFi01ycS1tv7XWy9UQfmaKN5Qz/HQ3E3sGUWmNUpY5T2YUR/5qO27a4cCHnwwdlqP3mrxWhfz7uX4H46kBpJdw1+QI0lqas6kXEaW8CBxzPveiw7IqIk/b6+U/Ul7ViE5NTfGRj3yEjRs3cuuttwIGdf+Nb3zjNW3c6+W1L3Pdk17yxdIye9Iculd+9GouuO82ai5upXJNA8s+fAWX/ORtSClZ9NbVOeMFOaEIko571jG+81yAcvcPZ8oVhqct41K5sq5E7xYxSfOty867t6YHZ0N/o4GJFwcoMbKZp4Mm4P31Pb4+ClG5AlzBot9aY4xx+YdKD+Xe+uaVDD/ZHdm+sZ39TB0eM+GDyg/NFUaxyGqmjowEY1XQbg0+F2B4MX0Z3xmFrBKc/OYeUOFHGQ3MnRyPRHsrpZnYcy40E7yadxh67DSJ5grCnw4Vy2qJN5Rz1a/fxaJ7NlCxqp76zYu5+MdvpfnWFVQsqfVCy4s7qLFrF3bgaA2J9kqMZzzv7967qb24jdkTEwVGBF9pQUkmdg0wfXQsr2pvvjqa4SfPUHdFe/iYeQf+gYdORhivBL0/Obxg28saqihfVh+Ek+bmg0Xj9YuZ2DvoIVeMAwAfXa0kg4+fWmDMBQ3Xd1J/bUdJv9AgkjFqN7TgG+CL+yUwayisX0KYEEztqFBlSGuBO5slNTTLjjt/zrkHT5DqnWZy7xB73/8IvT87vCBNgddEjCMj1z7fmASCvvuPhPZba0HvT17B9eg8ivutFEEG+7B+A0zuG/SiVorG3JUMPnISXXxj3v2l60cUXE8Ph9Nt+D+Y3FeaMwQ8hN7DJ2m8YXH4ra6i4ZoOUsNzPHfHzzn3wHFvzIfZ+8FH6PnJocBZFtXvmk0t4e2SgpbblnPuV8eIGvPuf9rHxN5wznKUZnR7D5MHhkv6ph3NyNaz1GxsNujHogOBiNm037mKxhu70FhBVAu+zNSShms6GXj4FCpw6OXamBlPMX14BGc6nAN4vjca2Rv85lxYTgBT5s5M0vamlQi71Ikba6wk1pDETamcAzFP9mRH0vQ/eCzy2UNPnmH+nJ9ktLTMnpksGK/iorIaY+QK2ceQzHn350pOMc9MGoN4dso1CUB9GiTXIjtjDlBRzh2AWF3Si177kAvDAAAgAElEQVQo3WPTQ8Zpd/x/vsiBDz/J9CujzJyZpOfHh3juzl+c11ABoFwV2W8pBVZ5LC8ywezrWkGssYzoBQgIQeP1XYhYrED2aS1AWjRc18notj4vNDrnPHUdE/kyfXyM7FRpFIuRp3MMPBTB1Yxg+GnD/au0LK3bc+oKW2I315i14EWSKBEznKPBgITVbv625rObWfc3N5HsqCJWl6T5DSu46pH/hlUep+n6xd5zi9aYEjRctzji2aARAc9s2JhroHptY+h8kUmbtjtXEDgCSuo2EZHdDxwNfW3uvMPUkVGcyXAHTmZojqo1DbiOLtDXfPneePNSGq9fjIyXvm9p2zRs7jSH9ogp47oKZyobusayo6ZNycW1KOxgfJSwsFtrkFIwsq0nT27lPTetGNnWu+D6BkHNxeHRKrWXtUXdFJSyjujIgrLO6Gt+me+dZudvP8Dp7+xl8DenOP2Pe9n19gc8AynUXdbOJf/yNha//yIWvWM9az9/Axu+dqtxAmxeHGp0kzGLhs2LGX7sTLgzUmumj46hHEU2laOcdB1Bdt6jlIwYL601AmHetx1St210Lqs8Gu2d7KgmM5qfoDJvrxlNLbS1gxZkxlKhz9YasuNpGq8P398Bmm9eQnY8LLG8MNShjjK6ikez5dP0+U43gJPf3MPLf/IE/b88Sv/9x9j/p09w4r7dALS9caUBpwSGK7MOrLIYVavrGd87wM6772fkmR5SfTOMPtvLzrc/wPhuY5DLTju4jnGGam30JSctUVll0N4hHVeOudZ2V65ufzy0Nkm+q9Y05GRKUb/RMHNiPJSSR6VcBn9ziulDY5H6+ezxcQYfPlUENPDeidJMHx4h0VoR+j5iDUnmTpnIxPz9XSlQDgw/2c3o9p5Qo7/KuIxs62H4mbOhzwYY/PUJ6i5vD71WfWGLoRiqLscNjGEe+lXYBMmyQor/V5V12feHj3HkCzsYeOgkvf96iN3veYihV4G+nz1ZGv3ul+GnztJwbWeo1iJtSdP1ixl85GTomKNg6uBI6d/zSvnSWmK1pUAombRofeNKRrf3hqP7sy4jz5yl5Y7lBQlK/SIsSdX6Jppu6Co950pB/eXt/+mGxpqNLVz6k7vp+uBFtP/2Olb/xfVs/NYbTMJloOOeDVz43bvofPcFdLzrAjZ+8w6W/sGlALTcutQ4QRXkHF5mDVZf0IxVGUdWlKGF5RleLYgnsevKKeuqIVZfXqLjCtui/U2rmDw4HCkzZ89MohzFvj96gsOff46Bh07S85ND7H7vrxl84gy51oTpLTBzajz0ub6zoe+n0Wfsvl8ewa6JBs2VL6kuGI/8b61h7myU01wEtrEr77+Hjt/ZhCyPIcosWu5ayTWPv8f8rCKWx4CQ0xW1ktRduYh4c0WhLuk5S2Qyhl0eZ2L/MM4c3l4o0FmYPjGNM5MxOQtkzhBuxkQgYjGatixh8JHT4VSjUjD58lA0DanS3jwPl5lG7grC6XwESmmsqkRgf8mfa1qZ9RvYs/KKybEI+v9yx9n/reVVSabPfe5zVFZW8tRTTxHzws8vuugiHn744de0ca+X176EGWdzF/MWqx3DaqzFaqjBqiwLFO14W6VH6yDIZo2XzUdKyLjthcx6iz9IEmWUMCEFa/7iOmI1CcOhKYw3uXxpLV3v24hVHkMmLEMZ4UrvY0J/Ei0V0SGg+vxIcuI+f6gg61ger5kM2i5ilhdmLdE+KkJLEJKyzppI7n7tasMTGWQHL0QmAIi4DIzOxV5TrcFJ5biB3YCGxRwUM+Npk3tPmVAy/7p/v7SjEdFor+48RGbBYVELI8QjHiBsaRwsodcEyUaj9CpHYzVUIutqsBtryBczqz59DWGb9qZv3RZlswpKWRDWXoRcxBjVzZgbxHM2Y+FkPaVEg0jk+l3iRU+5JBorPJ67fD43M66V6xtREfygWnNehI6VkLgZVdBe/9uZV2Sn03lJDouUiVNTNN7YFdRV/M5qL2hl8PHugmf6z3GmsrhaRc81RZDDImyuoQHLozcIm2txi0Of3YabUSbxoDKIK6XgxH17UHIho5lBuRsOzlw4no9qT7RUeE61/HHJjU92OpNHQ1S0xrRJ5uaLr+J+y8q4iQIIqKMK38n04THmu6ORj6n+mbz/la7vKGQQmPFWHtdnWMmOp5g6NFZi/PUNwPO9MwYVFsI3efKbe9Cuju53RQztKpSjS+eSzvHIRhU35RKdowJkMha5hIVlEFPrvng9MhlDJmJoYXhWG2/oouG6TlTKDdDrJlGyNx+0wM24ZKfS3mHZD4P2HF8ZDZ5xRmuCJMtKhVOPRJUwlIzWgBS0v3U1VRe0IMviaCSyLI5VkWDdF673KKnA7BXSc9SavQNMVENUER4FUuhe4l2Pah8a7OBQ6ofx5tYQUCTzig4sSjP1yjADj5zETSmyWdtEqqQUZ394kPm+aXSEM98fl6i9QgOZyRR9Py1NNOzOZDnxtV1RQ5L7nYcALlkHyvzRzRYbr823ymisuIVMhq/DZHMFFctq6fydDcYJg0QjEbbF0j+6lERzhUEu+gZmZaF99G/a84YvNK9ktAFWO4q4Rw1XzCOPFMRqE/T94ijzZ6cMV6xj42Qt3LTi8F9uf9W5Aeqv6uTSf7mbK351D6s+eS2WJ5PctE+vVPpRGTegCnSVKJT3GqyYTc55W/htxk+y7os3oKXMQ9ALajY103TzUpN3JLinUJ7LhM1cX7hjTTnqvAc8N+WgM5p8fc3XNSd2D1C+uIau/77JcMrb5iPjNkv/8BKSrZVeVFPIGotZefI8fI2pjMuRL+xAZTXKsYzzK2N4dc89dIKZU+OBcTJfrmmtmeueJN5YtmDdJvqg9Ho+PcHMiXGO/O0u9v/5M/Q/eNJ7z2BVhkcdaI2JeDpPOfaVnThTmcDwplIu2ekMx7/2YvCb7ESa2d55ps/OMT+YDvamss5quj6wyZwxvOEStmTJ719I2aIqk3jdl+d5c01rY/Q79pVdpCeyZFNmHWRTkJ7Mcvxru5AxK5ejquAjiDeVUbaoiq4PXlhSd9fvmbrLPKrAUuOUDOZp/l6Tv5fImAytGzxnoZW/NgrnOZagbFldoG8VRJLZ/pkjutjlPpWAZzD3ndsIZNJm9tQEff921Lwvb92qlEv//ceYOTFO861LqbmoDVd7nMZODG3brLv3BoQlOfSpZ3NGpzyQ1SuffgYn5dD9/QN5fTNFpV2O/vUL5uwQoh8IYaJUm29ZSt0Vi5DJ3N4vy2Ks/aKpO0pvErb0kKrhYyJskVdvyJgL7zdhRRvD1Yav3lRK7yQFG75yUzBP8/d3/BxTtjSO7zC5rA0HtojIfwFGV3Qi17fCTTmc+d7LeX0z3zqtOPLFHV4kiSidx0CioZyBX59k6sgomVkHVwmcDDjzLke/uGNBXQ8475gnWytZ+qFLkHELETNjIeMWi9+3kfIltQsYvvXCdgfMnFn7xRuMDSBpBbaBmguaab1rJcIqTSAOnj5lS5q2LKH+qkVYZbZBoScsZNLMc2lLln3oEpJtFVjlxu5gldnEG8pY+fGFkzb//1XidWV0vGMDyz50OQ0hNDjlS2rp+sDFLPm9S6hcnctJ4KbDzpnG0awdxcn79hRGZSiNO5fl2F8/jxCCdfdej7ZM3jtfPlSsbqTtLasWPJ8LIRh69DTTh0dzRmIvEunol57HTeV0uRLdAoiXezSFITIVCKVe84u0JRURdJsiJov2uWL9hSDXQ9Sz/bLkAxdx9SPv5ppH32OQ9X7J+PuEyb3hOHage7gzDioLPuVuvl6iHKPbnPr70mS8Oqs4/LntxBvKWPHhy8GycbVN1rHRls2id66jcmU9whaheyia8zqe/DxLUUV7Nqz8nEI+pZfQArvSd5KUyl4Rs7y8OKLofRpW/qjcN6+XhUupCzKkPP/882zbto1YLBYMdH19PaOjo69p414vr30pW2QSRrrzTsEGqDVUr60HoPt/H+LUd/cbI5OG0efP0ffACS68bwvDT3XjOvkh2toIDi0Y39VP610rOfuD/YUGKgGVK+pM8qr6Mi7/xd2MbO0mNTDrcVe2I6Sg7rI2MnOQM/jmDodNNy42yIUI7vBYYwXuYUNzUNwvMILY5+jKf7bSAoRmYs8AQorAoJl7AAw/0U1qIe7+05NowhUK7SnQPue28HRNX6BZEuZOTgThwn7bjKfSJBltvKWLcw+eCRR10Cb5I5qVn7iKvR94OLLfdjJhnqd0Ts7q3HfdpeGoLZm0afVQC30/KzXCaFdTf/UiMhMpdv3OwwYNlHIRtqDv/uNs+uoN1F/WSutty6m9uIVj9+5gvn+G6nWNrPrzK7HK4kFER9iYmWHIV0TyizDbgG3hpvKNOGZcpFSGF1BAKVrcPLPu4tYggsL/uz/mrbcvp28qy3zPDGGlYlktdl0CJ4LaounGJRz7criBauz5PpLN5cY4V9wyIciOp2m+ZSn9/3a0xMgrExYN13Rw+K+eixgXOPfL42bTdcC3K/pGL2NvE5FzTShFeWc108cnQ+daw+bFnP3XIwX3gse77Wjmjk9gVcRwZrIlc7FiWS21F7YYxb0IhSOTNm1vXMHUKwuhcDzqm4h+Z0bmqb20nfHd/QUoPmEL2t6wfMEolexkBmeBBG6T+4fz+ltanKlcYriSNVikiOYXIwM05351DFdJUDo4vysPxdD3iyNM7R8OrVkrmHx5iMr1TUwdKP1N4+bFTOwbQsRsVCZTsP61gqHHu7HK47gz4X2P1ZdRvqSGkRD+X2FLGi5vp3xpLTPHx0v6XXOxkSt1l7Vz+c/vZuTpMzgzWeoua6NqrUnYNrS1Gzdr+unPJaUNP/jY830mxF4X7jVKC6TQqLSXXDXvusYYcGQUp0xeSXZUM3siRP5ogxaRMYuN993C5N5BJvcPEW8so+nGLuyKuAkN9X5b3G8hoP1Nqzh53+5QI2/rXSuZPTPJzLEQhJGG8qU1jO3qR827ofI83lZJrD5JdixVcnv50proyeYZH4ef7cGZ96VPbky1A6M7+gLjW1jdY7sGCvpZfD0aaQ4jz/TApyMvA2af1Cr82dMnJnFTLqVJuYzMrF7fhJW0SxB+MmnT9qaVaK2ZOTWDoy3wE8RLi9nTxmisg/EoeXwgT0L7LaC8M5xiRWuwqxM03bSEs/98oESeCylpuqGLfR96HCdV+k6ys1lmTk5Ez7XQWgvLyLbecKO/EIxu70UmbTJBu/LlvcKqS3jvo3TMfT3plS/vxMmjA3JdzdD2AWb7pkl2VDN1IFymVyytMTlsIubS/NmpBdfYwMOnIvs8tsPkDen8bxtovH4xI9vOAoLGGxZT1m4Mt+1vWc2x4+PooncSr0tStaKeeHM5maHShInJjiqmDoefg1TKZeixM2ht3l++IcV/BfN9MzTftJTxfaMluqCdkJQvq2Fy/0huD8tzFk28ZKhOzj1ymiNf2mnWqtKMvjBAz0+PcOk/3WYMwJ5zoFDfE5GJdP2itTbI6uLpojTjXi6WgUdPc/jenYbiQsHoC+dM3d+7DavMZub0DI62wTHRT0KavwE037aM0ZdGcgvHm2uWbVG+opaRF86Ra7QI2j7y/Dku+OoWHCVQjgj2SN9g33TTEgBmTk/jahsd1G0xc8rU3f6W1UwfGSt537HaJJUr6/FD/f26c3uJpnJlPXZ1gkxRAk2RsGh/8yqGt3YzsrUndExrNrYw/Hg3TsiZCSWYPjxKsr2yCBRgSqK1gqYtSzjyV9tL3onW0HRjF6M7wjm4laMY3d5LvLGM4Z1DQZ4XNDjzcO7Rbmo2tZAZT4f0G7KTGYY8pGxYGd/Zz6o/u4zT//BSyXQRUtC0ZQnCkqy79wamDg4z+dIAdk2Spi1dAQVL3RXtjD5bOG4aqLu0lcoVdcSqE6SLEKMyadP25lVM7BlgPgIpW7W2iaYtXUwdGCnh95ZJm6o1DQgpuOrRd3L2+/uYPjpG5fI6uj6wCbs8jtaaWE103VERfJ6Nn9Y7lodH4QpouW0px76yKxc1nLe+pw4YrvUoX+XE7gFW//mVnPrWnhKKJxGzaNrSxeEv7PDORLm9RCPIziumXhmh9qKIiEuM/hCvS5I6VzgXZdKi7c0rAVj0tjXUX7mI0WfOopWmcfPiIHKn7U0rDcq3eMwTNtXrGjhfqV7XyBW/vJvhp7vJjM5Tc2ELNZuaEcJE0Jz65p6Se4QlabppCUIK1n5+M/a5OU4/ftLsu1u6iHmJrmM1SS750ZsZe66X2dMTlHVW0XhdeETQf6Uy+OjpyMjmqQPDhta2WDxoQ9Wnsi5nfngYJ1AljXwY2zvG3Nlpai9sZfZ4+Bm9YkU9g4+dDuXPF1IwuX/YgL5UkdzzzueLf38j/T8/EjrXZVWMxe/ZwNCjp0Pr7nj3enRWMbajt+R+YUlqLmj2NtaSlgFQd3GLcXqpUjx57VXh0S/5xZ1z0cjcvurpa2jNwGOnyYyE2YoEKu2aiMuI9e2fM6fPTONqC+WtcaXNPqa1puUNyxl6pj84swf6mqOp2dSMXRPHmSylYRa2AahAtB7r53HLb7OPmFc5o0zkuLTevoz+Xx4NchAAIKH28vb/8uvsP6u8KoR9VVUV4+OFB8r+/n6amsITTL5e/usUrTVWZZlJhONY3kfiKkgsqiUzluLUd17OITYwIcqTB0cYebaXmZNTgefMFE8xUJAaSdH5znVUrm5ASRtHWbjCxq5Osvbzm4M2pM7NMvbSKMPPDzG+fzTgrp0KONOKPcbQ84sTSNuORA9ZtsSZV6EeW1cJXKk8407ps5U2IZ4qqwJkseMa1KbWkJlIgSW9BIKGC9ZxzHXHNR5+3zBn/ibzvMmG89GExOcl+fBQV24GsnMO+TzJ/kFEa+NBTzbVhLTbM7qK3JIu7rfWYFX63LgCPyw9uN/RyITF+i/fgFVmBzx6Mm7R/rbV1F3axujz54JxyP84jmC2e5rT3z9IZjQVGEq0o1Epl0N/tSMQ9jPHp5g5l2Fu2GW6N8Vcn6GjsCviiETpO0VAoq2SSJoS7yNidsFY+eOnlDQ8qxFeersqTmpoDuUUHqr975Hn+qlcWW+GrKhtwpYkWiq45MdvDg43+Z8lv3dhJPII8Lg7deimrbWhhaha3cDi917gIYkwiUljktWfuzbgNA+faxBrTHrz3PK41vO4YrVAxmSecapoHQhBeVdtyDUz1xJN5YaTN2TMQYAtkdUhyEUg3l6NjFts+PKNhXMtYdH2phXUXdEemSDNN3xHrTGtzeF59aevJl5fhhJG9ihhU760zrwTD9lf+mxj2FBpbegNij5KQTbCoO0Xuy4RJOop7rerBHZ5zKu/dI0mWivJBtQukvykjQDZmaxJxB1WtFFQM1NuMDZBuzVkJh2shJ1TLAvWvxfxYC2Qu8O2WPuZa4Lw0/xWrLv3egCmPWNMcb/GXs4Z6mZPTzHy4jDDLwwxcXAsQN9MvFTsCMm1berIGKrIcetfV0oiy2ILynO/nP3pUba98X623vRz9n9ym5HlGNkTtn41mDEDnJks4wdGGX5hiLHdI8z1egdZKQKZ6Hi84I7joUcxsmfFR64oeX6ys4olH9yEXRE3ESpFe4mrBDIR85If43GOmz3aR0Bats3G+24pkW0yYXHBN25GJu2o84BBBwb0C0Xr2wVnJqfoh+0lsZp45HXz/OgIh8g5nF9iuQNF8bNjNfHIg472+rb+b7aYsHhp5KawJU03ddGwuZPJ/cMMbe1BpVQucVZK0ffACWZPT5JsKg99toxZ3jopXd8AsiyGVRG9vsuX1VLeWU3X712Io3Pv09WS5R+7jHhDGfNDfr6WQpnqZrQXdSFD6/bzCQH0/vI42+56gK03/ZyXP/4sGc+hY9peqvYLSyATtjEcmr/kfZv8FSK2gIFXw0z3BKnuGcLm00t/8LhxwETIc2feLYj2Kp5rImEHSNWS+ZCwkYnoo0y+g6Kss5rOd22g813rA2M9QMvty2i8rhOZsBBxiVVuY1fF2fDlGxFCsOm+W0pQoSIu2XTfLVgJK9JI4qPMCsckNy5IwdD2fsxh2NcDjbx3ZhXufNZDB3ufPH1NxCRuyuHol3d5vOGmDSrlMNczTd8DJ0g0lnuI70J5L2wRRHqkhufY92db2brl52x/86/o+/eco0166OJAB/b2WGFbuGmXI0HdeHW7Xt3HmTo8ysBjZzyAiqfrplzO/eY008fGyEz6TuPCueKmMU60qGgOJcw+mNLk75E+t+7wc+eYOjLGwKNncAvqVgw8eprpo2M037KUphsWF77vyjgb/vZGk4Qwom7lRe9t+JsbsSvjWOU2Im5yNzRdv5jmW5ZSe2Fr0bvOvfO6S1rJTKVDni1w0xokXHDfzbmcIv4vYpKN990MSqOskHMPkOioRsZlKErfrG+Lw198ITRqqu/fjpOZyizYb7tiYSRqormCFR+9HOlFN8mkOTss/9NLSbYZHnwhBDUXNLP4vRtpf8uqwFgPRj8p1rnQkJlyEUKYc0l5zMxnT57XX9lOy23LqFrTGKFjC6rXG4N905augvdtVcTY8LdbArniTKZxMpJsyiRuzE5kgjZv+PKN2FWF77vh2g5abl9GvKEM7ekAjr9/e0keE00VLP3QJSQ7qkpatuqTVyPjNtrV+MkfHacwH5JVGR0FI2yjg6/8+BW5MU+YMV/2R5dQ1lHNzFnfmVC6v7vnQ9gLwfq/uRG72ut3TCKTFvVXd9D6huXB78raq+h453o6372hgGar8YbFNN+yxGuTRJb5Y37jq6adsSvjtN21kq73bTQAH+8dJxpNv4Utvf3dnLuX/sHFlHttEEJQv6nVzLW3rg6M9X7JjKYY2zfC8PNDjL00uiAI7/+morVmaGsPez+8lZf++GkGHjkTOOkyEbRxfsSVjEVEsUiBM59l6Mlw+qZ9f/Y0FSvqChzK+efzmk0tJpohtMFgJSzP5lGs1xj9PBaP03rXilCd6cqfvJmKZXW0hSRgbtjcQeM1naTH07ja2F98HVop4yd2My52xDoykRoC4rGSM5MGkotMIl6lFMf/fh/P3P5vbL3lFxz+m11BLqbczl98bjHn6wVs2tjVC6xvKZjrmab358cKwB0q7TLyXB8TLw15e2ipvuU6xiFw8XfvCK1/w1dvJJ4ne0vOejErj3q49Ey1kOnYTAnB0t+7iGRHNa62jO6gJbHaMlZ/6uroAXm9LFheFcL+7W9/O3/8x3/Mn/7pn6KUYu/evXz961/nnnvuea3b93p5jUtmLMX88Dxa58J+AbS2GNneT+M1i0I57lXKZeDxM6RHU6HhLVobpHlmIs3U6VmD2vMMcOkZzezZacoWVTG2a4B9H30GnVVoVzP1ygi9vzjOFT+6ne4fHIxs9/juQewK/zBUfFjyQsC0QfoLCBys/iYw+KvThEtSAd7ZR6kcN785UIGrDQ9ZrKmcuZ4573keEsU7MFUsrTOhpHkGJt9YJ4Vi+Ln+ooOr3wdTR2pwLvK6k4aBx89Etr3vl8fAttGZ0ogJEIZGxNuMiq/7ntC6S9t443Pv48gvD+POZam7oj1QggYeO43WEldrhPAP2Gac+n55jPHdg4b3vKhkpzKkzs0y9Ewvx7+RCwGb2j/Cznc9zCX/eBO1l7SEUn1oLWi5dSn9D54ym0lY17UIUMiFYwYagZSSusvaGNt1riBJk28g7n/wRMhDzXOGnu7h4m/dRN8vjpZQ44iYRcPVHUy+MorjyJK5Nnlsiq6kTeXqeqZeGSl5a403LGYh9ialQLuK0RdHcIiDk0UDUtqMvzRC8w1dxNsqmOv1lc28uSYVzdd1cZidof1CCOJN4dyd5lDvh2hHrBMhg3kV/M0fcw3juwaY758FJb1zuQ7W0/iLhgu99uJWrnzwtxh5tgd3JkPd5e2Ud3nJyYiuW2GMmFqXrjGBwp1zme+bYX5CeXkMBEoKZnrnSY+kqL+yg8Ffh6EyBbGGclJD86AlrqZgngNk512wJTqri9aQRghBZVctJlGPDvpt+AABaSgilJY4rllDAuGx80ja3ricycPhfI5mTDx+SlG6fsFwQc6cnjJjLnJvRGsY3XmODV+6DhmXuEVgUZm0aX/LSiYOjRa8x8IxF8ydm2V+3EUoiZTGqaG0YHTPENUbm7y9Qpb02x0xBsPufznMyX/cHzj0Jg+O0Hf/CS77/q2B4y6sTL4yWsRDWdA01Fy29O/+Ra8v+z66lZFn+4MrQ0/2MLytj+seeouH3hWmzUX3ayHJTKTY+Z5HyE6kUWmXCQGDT51l3V9cSdN1HSY5cv49aFxlBXvjyPMDOI7lvW8zZjN9aZypDFoItLYCR2r+XoKQHkIuf3/WXgJHmD09QfOWLq598p2c/dFBZo6PU7OxmUX3rEVKSbKzxutXYa+0Brs66dVdKlO1Nx9F3Eal3WANBNcQ1KxvJt5cQWao9L1VrKqn7DxI8/OV5hu7GHz4FPlzUQPCktRf3p4zVBfvY97/Jw+Pkc1KtKMQHj/9+P5xVMpldEd/KC2VVprRF87RfvdqZk5OFCLGBCTbKijvqqbmkjbGd/UXDKsGGq/tpHpdI7HqBJmi5NsyGaPjbatxXZfj3zqAzkMvKVdw9Cv7aL9zFc5cfuRQoUydPT1J001dDD/VXbDPClvSdqcxouz/1DaGnsghVYe39jLyXD/X/OrNNG7pDA3BVimXphsXc/SruwmXuTDjJRIuni/+ezj5rX2h9wFkh1PMD8xHPFsw1zdjHMd58jb3bIE751B7+SLGnu8tGfOmaztItFZFIvDlq6B+EVKw7vObmTk2xsTeQeL1SRo2dwbOuvKuGq596l30/Ogg00dHqVrfSOc71xtDZWuFoc0o7p2A1jcsY2zPIOP7hsOqpXxJLX33n4gYFxh6qofmm5cw9PgZL6LMe3RM0nLbUoMSD0NUp10GHzvDhi9dy8m/K0WiakfTtKWL1IUf7coAACAASURBVMAsz731wcBZ4sxkOfyFnUzsG2b9Z6+k5vI2hp/xZWZuj228qp3pI6OF6LmCurtNkuEQDmuVdhl9/hxDT/eEc9hLwcQh38FbPC7m/0NPdIfcaK6O7x5k7IL+UF1SZRWjz/dTtbqetZ+7jpl3jzPx0gCx2gSNmxfn0TZF1W36W7WmgSsf/C1Gn+0hM5Gi9mKDAgdo2tLFqX/YWxoRGbdourGLsz8NzxNj2qcpX1TNtU++i54fv8L04RGq1jTQ+d82IG3J5IERz1miivQSwfBTvWz66mZOfXtv6e4tBM03LeHkdw6U1OmXoccWOBNhjGPCCok6BlruMLKn7Y0rabiqg5FtPaA1Ddd2kohwfhaX8ZeH0W6p3jJxYAStNdPHJ8ikBTorEFogpM34oUmc2SxNWxZzPIJmreHGTpPc8TPX0PnOdYzvGSBWk6BxcydWmXFCzJyc4MUPPI5Ku2hHMXlghP4HT3LJd26mek09lavqc+97LEXtRS1UrjIR6EZu7jHAm+D8rNFKGCeBlFzxs7cysrWbgUdPE69PsuT9m0yEOXh5SkL0WK2ov7LdOL5D1lmLZzRvvWMF9VcuYuTZ0jF3Z30KtNIyc3KShisWRhBXrqjjyl/l+l1zYTNVq8+Pjgcz51Z/8mo63rGO8d3nSsb8P1pGdw/jEkNls6aHVozRF4dZ9PY156XcmD09ya7ffcxER2YVkweGOffQKS7+h5uoeRXo///McvjenQw+fhbXi/iYfHmIgce72fTVzQGAKqz7rqNpuWMZ5+4/XkCHJGKSxs2dnHswOkotPTBH0/WLOfH1F9FFZ2AZt2m5ZQlVa+oZ29kfEtVoUb2h0UtwGtRKYPNQgNLUXLqIvoe6wXWMjiwk8YYKtDC67qqPXMGiu1dz9p8PoF1Nxz1rqV5nQMMDj3SjnPw1ZPRvsgap3rC5k8Ffl0Z8Vm9qYb53Bu0DZDyZqrycQiPP9rLyDy/ihXt+w9yZXARP37+dYOjJHq575K3mjBzh+6pY2UB2LMXMkdKEvfHGMhquaDc0xSE2tuablzD6QrieqlIuQ8/2MHtqMlQeCwETLw/RePUirn323Zz8+otMvjxExfJaVn/CMBoAJsJU6ZzM1eaMWX95m0frGV40BsQRNtcEBmg4cWCYqROz5JyEmrmhLMPP9tHxtpWRz369RJdX5eb84Ac/yO23387nP/95HMfhU5/6FDfddBPvfe97X+v2vV5e4yJi0hPyPr+mzw0M2VmH2bNTHn1Ljkfe5zacOjiKXIDnTiYsTv2v/WQmMzjpPO6ylMvhL+5EKcWhL75gkFee0FEZw+l94h9eXvBQL+KSeJOfIEUUfJSGRHM5gaBABoh2PCNgor0yelAsY+QPUO/FnMhColM6QDnmf5QSOPNOgbE+922S1iVbTRLRsDEHPE9vzkvr3x9cX4DHVkgBMasIoe/XLbBr46adGjKORSZrIip8QQ1G2RzYcY6efz/L2QfPMvhUL45nEMuMpXNOimBMzX3p0RRWuV2Uc8AzrCqNiEtO/N3e0HYf/NzzzPVM42RE6ftUgsGnekm2VwYGpkJvsE2sLuHxxJeOOdrM8zWfuZqyjiqschuZtJFJi5oLm+l67wWGJzdkWLU2m2Pl8jqW/eHFyLhtUJTlhn9zw19fj10R48CntoPHhZw/14aeOIszl2Z+JFPiwVca5odSCHII3eLrGsnIjnOMvTxEds4l61o4rkVmTnH258eZ651mfjAcsaWURGWy5pClS1Fy8fpkQRb74n4jJWWLKkN3CStpEatLFtWZN+YIkh2VAU+89uZL0LY8Y5NdEaf1DctZ9Pa1gbEeQCntRf5IMlkzV/0cFn6+grC6NRK7Ksahe3cZ5dGnsHA0zkyW49/cS6IhCSFJRLU2aBFh5wykBfNcg11mk/CdCnn3GeOuwK7Kcfv5/fajGIQlcWezJrmnkjiuTda1cJWJeJgfmMdK2hFz0aDztciFqucjUZQWJFqqQBlHhuNawXzRHs2JtCUXfG0LJGJklU3GtXGxaHvrSuoua6MQ/ZK/BgEFr/zlDvN8JK6yPMOxpOdfjwZiSWszz7KOjeOjxYRx2p38h/0FCr1Kucz1TtP/69NYFbHINRirTkRTOGgM5VXEwRQhmD83U2CsD27NKI58ZbdBnLmlssdxJFppun90mMzofE559uTCkb/eRS4cNQSJ4tU9/Ewf/lzyIwF0RnHkb3fnOSKKDzQC5ao8e3XxGgNRZuapjNssef+FbPjyjXT+v+y9eXhd1Xnv/1l7n/kcjZZkybIsWx7BeAAbYmOMDQQSIBOZCpmTpk1um7bJze1tmraX27QZ2gSahAxNQpImJYGQoQRCmIMxNtjYeJ5tWbYsW7N0pCOdaQ/r98faZ59pb5ne3vSmz4/3ec6jYZ+911rvXsO73vV9v++7lqM5KEstoLlrSxV6KRokN1hN81GQ7HCGSJdyQlWuJegagUSQ1V+/ERlQKPG8EcAwdUQkxKqvvFa9s6A3GjTuODtsw6L35yfZ8cGn2Pnhpzn/qx7XAak3xhzEZUnZUoAWULkYZDXSXAISHXPK4NQ9+7CyNqbpjIOMJH1hivO/7EaPB1WUnBOdYzqJV4UuCMQDzH7dApo2znXRnGhCIa7/USGus8M5N/9Nod22LcgMK87iFXddjx4Lqc2cUPpqvbWLxqvbOXn3Huy8XWY/2BLMaZMz9x1x21JuGyi9B+IhFn/yKsJzajFlkLwVxCRItKuBrv92OdnhdJmz3u3nhs2xf3iJkee9I+QsSzC2e9B3jEkpCDWES8Z45dyjxmhh3Sq1FQvfCTVGsOzqfmjZEG6MujZTZV+zbEVhkB3JKXR1pc6Hck6kmnfdhOOENbMm+//mBZ6+9mc8fe3POPSZnS5KDiCfzNH/TB+9j/Ry7tFzJA+WU91oAY3OD67ksi9cR+d7V7j8tnbWIp+xsS1RZlPZUiMzmCY+v95Tr0LXiHXWMlOC82A8xOJPXEl8YT1atGC3BKhZ0sjCj61B6MITUAPK+T76gv/7Ht3Rz+G/24FtltuyUkL/I6fJT+bJjeQ97FRBdjiPCGi+PNjmlOHkgfAWYzJHwOHXL42QsyVIyy5D/3mJHvdeIwt602NBNA/eci2gqbGPQqP2P91H78O99D16juT+UromP4df8f/JAyOce1TZyP1P97no1nBzjKWfXo8W1hWSOxpAC+ss/av1al8yE6e5g6zP9E2ROptmsjfH5JmMG82lxwPOXqna/g7UBAk3xVj211dXl/1pVfbFkohr0YCnraiFdHRdZ/nnN1WpJja/loV/tsb9OzQrypy3LGHObUurnPUTx8d47g0P88SVD/Dkugc5+JkimKSwDhbWyNL9mp23lVM8Zyseealh5WzyIxnO/eQ4ozsGMEyFsC21FQ1TMPaikzB3Mk//M32cc973eMn7Pv7F3VjThnsIKk2JlTE59o/FXA16OEDLjQuY+3uXuM56gOxQBlkFbFFzfm6oiNpu2tzJZZ/fzJI/X+c660E5Jr3me4mOpmss/8LmKp1H59Wy6BMq0ai0bIa393PuV730PtLL0PMXXPtanyEqItRw8UPzyna/Umd9qcS76pn7zkuY/bqu/2vO+tSJceW0zlpuf7GzFmMv9ZPcO3TR+4/f/TJW2nAPQd33/YVdF7nz/61MnUoy8MRZ11kPYGUsxncPMv7yEIXUY1V7SVso7v6PXk7NJbPcdUSLBoh11rLkz19DePYMB2saBOvCXPK31xSBXELtZxZ9fA3RuTU0rptD+9uWqgiUaMCNUlt59/Vqn1mG2C78LPocjn3+JZUHxtaxbB1pqQTeZ+874lYjPr+eS+7cyKWfudZ11gOkz6fcPVjZs22V3yYzmMUq3UuaOpYN2ZEceizgAGQ0bFnc0wAE4kGGtvaVOesLYiRznL3vmJM/q3oxklJFNK788g0qMqhEREBj9TduAmDFl66r2mNH2uIs+dQ6Mn0pz3VOSpjunijJ81Yudr7IJZnrz2AYOoYMYVpB0n3K5jezJtjqYMKdc535NjOYQ4/6cNxLlfMhOrcGW5bvzy1LQChAoCbM4Tt3VNyo6nP8rmoAwavyyuQVIeyFEHzgAx/gAx/4wG+5Oq/Kf7bkBtLOJqsc0WVLDc2UjO8ddvi4SidX5dzNjGRpWNWkULQeEu+q5/R3DmG7a0vh2YLsWI6p4+PkRqu5dwtcmOsfvJWBx854ov9ab+6icc1sDv7FVqS0S7AvABrz3rucnn854nvSrgVUCKHlwQ1cu7QBSXVYrFoIlQGbGUl7OOXVd6bPVoYhVpQtNH+dI/HjzxUOdDvcliB9bsrzFD3e1YCkF9vWXDRnYQEXmgDD4Ri3Sh2SEtvS0ANKgyfu2U/fz05hOkn/pronOP/oGdb/8KYSp3i15JM5ale3MHFyisLpOUh1EhsKYqVNz9NggNxgmv5He9zNoQCKiGzB8HN9rP3Wa+l7UKHcS9+3HtBp2tCONAplVku6N0Xj2lau+vGbSO4dJNs/RWJxIzVLleEt/ZvlHmTMfccyWm7oZGxnP1pIp3H9HDcJmN/CCXDh0R6yA2kPpLlgdMcA0dsWgeO0r7wOgsFnz1XwUCqxDYUms/PSJ8pF0PdQN8GmGOkL1Qj8+KVNZQmIvcZZ8w2d9Hz/cJVWrZxF88a5eHMDKkl0NVBIlVCFgjV8bioRGzDt0kSFOFQzzhjxLVuQG0x7c4tKGNs1yMrPX6NyHhi2q1Vl7wnabu0i3TfF5MGRap0gaL5hHuH6KEfv2ofAdqqh3lmsI06oIeyL9sSWJA+MlPE8u9dt6H/0DOH2GqZOTXjqJN5VT/3ls0nuGXJniqI/V9C0rg1VTPXcIpw+PrStXzm7LIcTMaAzsGWABX9gIjTHoSxlBdpEUQEUULZeep3cN4wWDypKHqfsQl+rmZ9g4uCwCmGuQIzYWYvhLefo+shKjtz5osfDBUv/51Xs+W9PV/VTNa8BUhBujZEbqHZA161oov+xHu96A2M7B2ja1I4ldSxTuv4U29kACE1j8OleT5SblTZJn/Z+V4UDnoHHzsxQdj8tN8zzvV5MeuU9vqe7J2meIU+aylXiPadquj5jGHimf5rO2y/h6Od2YGeNYl/TBImuBqJzEoztGcKUIWwHYiSFShCZHcpQe+ksgg0RckPTaiw492uRAB1vX4q0JS//yXMkD426hzip4+OMbL/Aqs9vYHhLH4YZUMdeAgq2g65B6lQSNWcq/YiS6B2hCyaOjGLZxb6LU7aZkQw8c5YVn7maE187WLbJsyUYWWje3EE+mWNw5yiGFUA4zg9jSjC6e4jInASpUxPYdmnCX7WGJvcpJ9DwCwNksxrknfcX0BnYOkTXR00Gn+2tti2cw4YLj5x2bIPqXA1CqoS9U6cnSZ1XBwbYCtw1eTrD9Nkpxnf75eZQa4WRzOEVIQeCgcd60GMhjGTWk9M02pxAiwQVTYsovk8pVbRG043z6PtlT5n9IqWKSgwmNOZ9cDkDW/qx7Oox1vmh5YztHCQ3lgVsNOd9qhpqhBoiTB4b99b5/lHloBIalm1X1E1D03Rs22brrQ9jlPC5nn+4h+EX+tn06zdhThq8cMfj5CdyyLxNinHGdw+y5OOrmff2mdFgk0dHHVrD0vcpsQ0YfOYcq754LSe/uofKxUpKaL6ug+5vH8TIees82BQhkAix5nu3MHlwmPTZSWIL6qhd3oQQAstQSZC9cj1ICYNPn/V934NPnCG5f9hjrRAgJUPPnGXi8Kjn9eSBEddZ7zUn25ZE6t4IPCkBXdB26wKGdw67jVXRYxIRCRJfUEegJoSZqrarArUhB5DjXXYgHqTlhnmc+po3OGT2DZ3kJ3K8+K7HFWd73iYFjL08xJKPraTz9qXO+l1uV8mSws4+cJwTXysePk+fnuD8w6e5+v7XE6oLM/umBTSum8PYjgsgoXH9HJf+xXaS+Xm9bztvMXF4lF0f/Q12XkUdT3VPMPh0L2v/+XrqljcSmR0n3TtZ1p3UnLoEUMjMhtfMUXlfKsqe+7Yl9Hy3GmUvAoLm6zqY9cw5+p/so2C/F9bv5nUqB03Txg6u+c0dnPvXQ+SG0rTcNJ/GKy/O8wwweXKcHe9+sthm0+bCwz1MHBrlmgdvKRhg1TdKSJ0Yq+5IKMfU8HN9BOpDytFW8owCLWH/4z3MvrGTF971OPmxrHvANb5niEUfWcH89y4jud87Amby0KjqkzMcsoztGiieDpZW27QZ3dlP/aqZqYOlX24ehyqzacPccp3fOJ/Gq5TOpZTs+9QLjO7ox8o4a+iJJIO/OceaezYz5y2LOPu98kh1iVLl7NfNn7Fev8sytmvAMxeLlbEY3dGveMlnkOTeIc+9Q+r4GLZplyUb/V2SsV0DnoA9K2MyuqMfHArYyr0/QmAbNnokwOpv3kTq6CjT3Yq7v5AXoPXG+Rz+m+2eemlc2wrAhSf6yNtBKBx0hwKcf/w8bW9agtAECz+2hva3LWV8zyDBmhCN60r4yl1gS7lIUJFiHu2Shs3w1vMs/tjlM+rFTJm+TA9TpyYY3zuEaZXsJaXEtAJM9aQINUaJL6gjdWK8TLdaJEDHO5fS/6j/3mHoqbMUAJaV0dYgsPIWueEsOSNAIYO3RAOhkxnMEOuopfHKOWx85g7O/fgI2f4pmjbPo2nDXIAZo44zw2kCDrjLa08kTZvUqSQ7P/S0ihyyJKmTEwxu6eOKL1+LNeXvs5g+maRlcwdQTZEkEUTm1tB6axfnH+8re6+mLQCd+pVNLg1j1f2GTX4sS6gx4nn9VfGXVzQrvelNb+Lee+9lYGDgt12fV+U/WfS6YFVCrOIGVijDW5ZeK16XtqD2klmF+a/sI0I6kZY4Zs4b9WwbKsGTnwTiQc49dBqzhCdecZMptOeFJ87RsrmD1pvnU0A243yW/eVVhGbgBpMSIrNj5DO2+3cpImuqP+tOwkXEadFZDwLpMjBU68U2pZ8PEykh3Bbz5VuWQvMF0BcOSmovmeXNJRdU6P1IS9zNSZAvcOTaAjQNvS7kRg5UccnZGtnhDL0PnHCd9aBCmDMXpul//CyaBzdv4ROIB7nwaK/nSbc5aaIFi5t40xIOWlq4GzjV1xQawLAUv29hI2zlbeLz61j652vRwgG0eAg9HiSQCLH67s0uKrmIDlKfAkIzUKMc68e/so+X/ug59t+5mxc/9Ay9v1BUOJHWuG+7wk1FNEyoMUrrzV203NDpOusvJuG2uJNxvYA8LvBUKmdlpLU0GqSIRJdIwrOijO8fKXtPpb+PH5o58XeoNUr6Qtazr41sG3AQ9iX9q/SDoP+xs25kSenHNDVGdw/6HnRIKTAs0+lr1c+2TP8NUPEhXs7KIuJ7JrRYpC3hi2QLxAPkJ/IYWQluVI7zE42pMymirQnPetsSgjURUmdTjj+2gAZTqIzcmIFEukZv5dwCgtSZJIUNcWm7AMaPjGFOGD78+YJ8Ms/qr13voNGL9ZYIVn5xMyJY4Lz3mlsE+WSOnn85Wo5yz9tkhzKc/+VpIm0FiqRKtIkg0hZ3NwDVYwyV/HRaepadGckTqAlhm5YTgVN+f6ghQrrXoU6rarfGVPeky55QqVNpq7Dbtd+6CS1WjkEINoRZ/ZXrCM+K4ieBeJDMhYzzTM1BujmcyFKQGZgmN+5tfNqmRET0Ks5ht/y6MFo8iGnhfETJR/WCWHvCM7+GFtYJN8V81xKAYL1a50584wBPrHuQx9c8wJNXP0jPj48Vyw/rVM4tAPF5NeTGc77zXn40y+ybOqlf24phBsibQQwziAyEWPmPKgfNkS/sLstvg602j8fv3ovQBKu/fD2hWTH0WBA9EUIL6cx//3Iar2xldOcAE4fHyvqilbEYev4Ck8fGMNMWBee1eie6ej95CMQCiq+5MG+WrKeBmhBCE1hZ6TlnmlMm02dTDid5+RgUukb6/DRn/vUYxmQeaTg5baSGnbM5/uV92KZf/huFBjdSebq/cxg7ZxfvNSS50Sy9Pz+JppfTD5b+rgV0lXm+7HpxbQg2hjnyD7uxMlYxf4gFZtrk2F17CPnQT0ipUFHBupLonwqEbrA+THyhV+QQiIBGoDZEoLnGva+AgpVSI9xeh7BL5qMKnYtQkOSeAt2W5uqlMLck949Rv6xR8c5aOnmzGHkkghrB2pBTXqXd4swftWFEUM1V5QhdiM2r5ez9J8gn81V9PDec5cIjZzjzo+Pkk7my0HQra3HiK/vcHBvnf32G39z0EE+85ic8+/pf0v/UWfVFXcPOe8/nxpRJ+mwKGw+UOxqZvmkSi+p9dK4TcniXJ4+N0/0vxzn53WOc/sFxUk7yv1BdGAK6i3Qr2MhSqnYXOcI9ENl1YSyz/D2VRjZosYA6FPLo57al+JD9Ii7QBNkL08pHUTWfQ+Z8mqkzU84aXa43Y8rGylpcdd/NDv9+ieiCq/71ZvRwMTdHZdlaJEB4VpTlf3u1mpedIkRQY/lnribUGKH3gROus74gdtbixNcOYKYNRMSZM8ueLRARHTNtcOKeA1VrqJHM0fvACfW3YdH3cA8n7z3Gye8eo+/hHveAw5aian0HsCwNLRzg6Bf3OONbXZCWVFHJ//iyyqdw12Y1jp3cHGiCOW/sounauW59gjUhZt+0gNmvW1DGE9/1hyupW1nhQNYEq+7ejKZpTJ8vHHiXv+/pC8WD3UAkwII/WM2yv7q6yllvGxZnfnSMbb/3GNve+Rg9PzzqtnvvJ7fhJdOnJ5k6O+nLka9FdBW940G1CWreMlOm+46Kot5fPmXS+9OT5EazZe/bylqc/OeDmFNGiX1WISXdc+i58+z88DNsve1XHPmHl93D7mBNqCq/BajxUZxv/aVI/VgxxijyX5fp/KqizicOjzHyYtFZD6ofJ/ePMrZ7CC0UVKjr0r4mwRYBrPTMuZh+lyVYG0Loar1195I2ENRekc79+Na1oD7j4cz/awn49DUR1AjWhZCiuOe1S+Zyy9Lc6J3BZ/t4+ZPbOfD3L7Pnz1/g/MM97nOWf+6aKoS+XhNk5Zc3M3lsnMHn+rCytmsjW1mb5KFRRnYo32B+PMeZn5x0573BLecpRJB5RXKrCyp6T5rSic4r9w0U3qeZNdn7F9t4cv2DPLHuQXZ9bIsb1TRTvqRATQjbJzePLQVaQLDyH64lUB/BlLrKtSg1Wq6fpw61BDP6c0KN0ao1rjD3RGfHOf5PezGnTZXfwgqonFQ5yZHP73afo0cCzP/QSpb91dWus77wXr3237ZUtmK8s04BUcyij8y2BQR1QvURjn95H+a0qXxS0llLMhZHPreb0KyZx4nQ/cvWw0Gmz0w5+5byOdfKq2gmBI49V7LXc6bfyn3aq/LK5BU57P/kT/6EgwcPcvPNN/Oe97yHBx54gGTSB2n3qvyXEjM5E/cvFGknqq9LBLOunVvBTabEztvMWtfqoBJ9JmoBTRvmVDk7tIjOvNuXce6nJwG97EBBId918qNqol7+vzdw9UNvpvN9l9L10ZVsevYdtL9lsVP36km84Ig0knlwQxAV7Yr6XccYyfkbcAhsE6Tw49cGhHA49KvLBkFuyNv5A4rPreAE9aqDbQvmvKELEaqe8PRIkKb1bUQ7aysQG2qzZgkNmfOmfilswpL7RzxPuhVn2nminYWEt9X3N6xvx0qbXkAYJDC2dwStNuQiX9T7VEiY+tXNistRior37fzP0cmcNy5i46/fyvI717PisxvZ+PjbqF/dAignomUXUHnOgmwrQy4/YbDnk1s5c18xa7mdtTjy2d303HeMjrctcnjFhWuMFH6f955LvBRWLsFqaqjC34FwSCUoLqlbod2WKZn71kVl3y8+QDDvPZc4GwPvvpY6MTFDPwd72i90QPFiWs74rO4T6gBl+PkLrhPTTd7mOIQHnuh1HaxeZffd342KmHCSztgFmgTvhK+V4hdpAsqYmPPGLs9reiJI3aWziM2r9axb3aoWJg6OIhFuvdy6GYKhLecxbcr6QOF329ZAF4xs7/e04mTeZvpMqsRYLi1b0fkMP1tNzeK0CpmXZMdySKlX6dyWgnR/mvxQFtPWMQuOTEvD1oNkBtO+FAUgkJbig9U8nMt21mJ42wW6PnwZfjrv+v0ViFDAc4zZUvEDe0fQCMxJg7rLmjCype/VOeC0BQ3r2hh87rxnX5MIBp46i3RptoTbbvf3jEWkNc51z/4eyz9zNR13LGPV3Zu59vG3E4iFaHtjV7Xzx5H577+U3Jj/GMsMZLBy0nd8T59OEe+q97xeu6qZSHuipL0VG/NIkNk3dXrPuaZN86a52Fb13FD4OzeW58D/3sHp7x5xw7vtnM3xu/Zx8lsHqb2kUR1WVDRNi+h0vGOJSnToM5/npyyGt19gcMtA2XfMtM3Ln3geO28x3VMdKgy4dAOJrjquefgtrPziJl7zD9ex4Ze3seBDKwAY3T1YFtrtts2SjL087JuzQAJ2TtJwZWvVEJRA07XtZZRble2yDcnYriFPKhEpYfzlIUZe6C/jDC+5nenupO8OTtqCySNj3mMsZzGyrZ/aSodZiTRc2YoW9qd3CiRCpE54R3SM7x9m9o3ziqi6Cml7QxcL/3Clb9kL/3Alne9aphL1lojQBImFDUTb4kz3pDzn88mjY6S6/SNNjGmTwef6fMsefKaXOTcu8LBbBDKgE5tb43s4bJuQWFyvDmkrjA8tEqDj95Yy+Gw1TVBBBp7uZWT7Be/3rQlSpybo+dExDv7NDvKjWaQpyQ1n2P+pF+n9+SlPrvRCG6QNoy8PYeWr1xo7D6O7h+i8w1vn8QV1xDtrGXt5iJ0ffoahredJn5ti8Nk+dnzwacb3jxDvqlMJt0sOaSVqzW29dQFdH5n5ffuOMUlJ8nNvUUkrvdZ/ZUtmhrOeNpUtNTLDGbWGevHvBjRSJ5JEWxPc8MK7WPyJNbRdN4/FmruPwwAAIABJREFUn1jDDS+8i2hrAiunEpF6lY2mI6Wk5/6TmJbuJgI1bZ0z959CSsnwtn7P8a/pquymq+eqey21PqnDVp2mq+eSOpH0dJrZeZvhbf1IKdn9sec4+c2DTHVPMNU9wclvHGTXx7ag8tzoZet7QTdoivpl4rA3CGPyyBhSSvqfPkcuZWPmnSSntsb5J/qcBOIXl7XfuYmr7ruFee++hMWfWMN1z9/ucpmnfPLnpE4k8aNuKoiUkpf/dCsnvnGQqVNOu//5ELv+WLU72++PFj334Ena37qoCoShhXTa37yIeGctsc7a6uTqEZ15ty91aCm8RQvqDD59znN824bN5PFxB1BT2R7lcEJCzw+Psv/TLzC+d5h07xTnfnGK7bc/Tm4kQ/N1Hd553gyLlus7fOtVWo73Bfw9hY6M7xnyPMiwMiZjLw8x9FwftqW7e9zCPlcimJwhV9LvujRvnouRLY9EVonZYfaNnRe9v/1tiz36mkbbGxb8TjvsWzZ3eJoGQhe0vX4+Kq9Y9d4Bofaa5x85zb4/305uKIM0JfmxHIc+8xLd3zsMQHYwi60HlVPZ1jDRsewAxmiO0ZcHPfu5lbEY3TmAkcqz/V2Pc/aBk6R7U0wcGuXQ3+7kxNcOABUHuo4U9oqB+iiBxmjZAbHaI2sOKBO2vvERBp/uU5FHhs3oiwM8d8vD2HmTYH01IKdQVqQ94Z//ytm3DD53nvykA4KwwUZjYEs/uaGMm5vE6/nR+XXMectCZ23DHWOmpYAebW/sYsTJ11Yp02dSLhjATxKLGp31vGJPJHVinXU0XdehwH8lewtbCiwTai+bxdjL3vRQ0+dSzjrps7cIaIryDo/9mNSRmmB42wXPqGM9pJE8NEp0QW1VJKktBVo8RCDyqsP+/0RekcP+xhtv5Ctf+QrPP/88b3vb23jqqafYvHkzH/3oR3/b9XtVfssSmhWZAV0gCDWG8TPotZDGqW8erOKZVY4pwYXHzvpSqEgkWkhj+f9aR91ls9DCOoFEUC2atyxg7tsXo0cLPJXVqImC5Cdy9Nx3kt6H+zj7b+fo/XmPu1n3QqlKlBEWnquQpLalYZk6pqljmQ4PqgBjIu8abLYl3I+UkB3JOCf03s4pPR7E9uBaVwsQRDsSM9pheizgOrUrTzbRBPHOWpb++doiQlAI9FiQy7+8GS2kM/DMebcupfWyszammOEABZC27TkJg+IltfMSywLD0MnnA+TzAefkWGBNzrBhkBBujyr+YSmwLc3RqcPPGwwSrCkgbDyQh84Enz4/xY4/2MKuT+zgpY9t5+VPbMescvpU3i/QEjpDWzw4rCWcuOcA+fG8g2wsovhAbaKs7Ax8OY5E5tdVv28JNoJIW9StR/kJv0LX5MfzyjCyBPm8Tj6vYxgaNgIzaxdDCj1EjysEjS3BMDTnfs01HELtMyf8yo1nnb5WwVkuUc4855TcsjR342s7J+UiqLn9uhItZtuCmktqyt5DdaQOih/8wVM8d9tjPHPTIxz67G5yIw6ay+MwoPAs25Qs+eQa4ovqy8sOaFx5743Yts3EqcmqukkJQ9v7QQM7L9UGxtSwTM3pi2CmDVIu9UtFfwAmjoxjeSTTA2X86TUKmajKLtWrSjAWaol5tkuF3CseWy+dSynQwjrd3z2CMW1iG6relqWQLse/uh/btv3RILYk1BDxdnxpEG6Okh83sIVW0pd0FdUkNLJDGUS4nKKo8LuUGpGZEBsajO0ZcvIJVI/P0989UuJrc9DgpeNF14oBF4V3gnB/1x3ExukfHuPAZ/Zy6gfd7P2rXfQ9ckbdoWms/qfN6jC1pC/M2tDO3LcuRgv6G5BaWEeLBDxRkbYUROfGmTierB77EkZeHCR9tpJfs/h7biRH6sQEtqZX6dySGtNnvPswqLUkPjfBBaeNldJ972GEEKz+6ma0mohCyRsBTKnT+b7l1K9uITwr4qBgK9ZvGyKtMQ78L6+E1TB1coKsT8gr4C6NUkrO/fIMhz6/jx1/vZPj9xwk6/Dmh2dFESHFk2yZ6mNbCi0Vapw5Z4EW1Zk8M+Umsnc/NkyeTnmsCcWb85N5wk2RGcqOuHZR2XUbpCkJNkbQIt5zcqguRKgxgm1Y2BbuvZal5oNwc5T6Fc3enOYBjcSiel/aOCnxjMRwr1uQOT+teESp7ovj+0epWdJA53svdftZYb3o+tgqIq1xmjfOZf77LlWc1YkQejRAbEEdq750rVtnNY+Vz5nSwglx9qqfROiaSrDsOe8p53D3T08WNFGqFcwpi+yoP3UToPr5P21Cr41gmEHyRhDTDjDv9mU0rp2NEJpjy5Xac2ptE5ogNMs72lOaklB9mJOO06FSjt29F90n0ksCaKKEhqecmx/ATBk0bWhn/geWo4UCjs6DxObXsvquTQAc+ceXy6NYpDpgPfqllxVX/FRlYkkBGqSOT5BYUMfCj62uqtviP7ucWEeNb2QQCCJuHijv61o44PS1atsBoaEFC3qpXkP1oE64OarWOVOUjBN1EFDKrz3v9mVs+u4tzLt9mfu/cEMEqQeqypYS4vPrGNs1xOSRceXcKdQrZzNxeIyx3UOEm73ft23ahBrCCv2vauocIqm2TJ2ZUmhQj0S/AOHmCGO7h0geGsVMW25fMzOWKnvXEPEFtU671dqu1nABukaoPjyjk9aaNun+zmGsnI2bp8pU/ejMfcf8b6yQmsUNLP7TK5h3+7Iy+g894Y1yD8SCF03kOb53mPEDI9XtPjLG6EuDM/Q1iC+oZeFHVtK0QVFoBBJBtLDOrHWtLHL67+q7NhHrrEGPBtATQfSwzvwPLKdpQ7vDje598KxFAmQH095zjyWxDAstEa5eZ1GJwq2syYlvHixrl5VTc1bPfceYPj2JhYpsKbXfLaH7UhuWStAnGlyPBmbaqgGKh14ERNVaI0IaoYZwSaS0ikIvRKJLw57xffwuiJSSC4/18vw7n+CZGx9m36d3uLkcpnpSTp6p8nlPBLUS291fuj68guZr29FCmtvXGta2suTjV/x2GvN/SQIJtc8P1oXR4wH0eBA9HmTl568h3BwjsaCQA6zchtZCOuGGCEe/WJ1wHuDUtw5hZU1Ofv2gyhNR2K9Zat9/+vtHVUSGz1bYSOXp/dkp5TcpORizshZnf3yc/HhWgS3t4j7VMAoIboHQIDeqctQU12eVyH3yxATnHzlNfqzav2BlLU595wi1y5s896GEAg5gZSafh+TEPQfK93SWxEwbdH/vCLGOGtD1qvEthaB2SQNje0cdmyiA6fiSbFvl15nuSfkmpIVizpL+J8+x7fYneea1D7P3L15kulfRucY6ahChkgjZwp5IE9QsbeT8Q6cp9ysACOy8ojL2BRPYIMLKzrdtQT5f+k7ANCB9YZoCxVhp2VIqOzPcXA0EUvpUEdOZgVxF3dTv+WkL2764T+VVqZZ/14ydSCR4wxvewB133MGqVavYunXrb6ter8p/lkh8kCqALmha11r8u0KicxJMHB5DoSJLUepqcJ9/pMelOal8trQF6XNTBBIh1n7rRl7zr6/nss9uYMNDb+aST12F0AQNPtx/QoAW1rAyJi+8+2nOPniK7GCGdO8UJ75+iL3/s8CD7CQnKqmbQiJpWEnDCQcud6RKJ6x7ujelIgc8rucnckTbYlQjaBUVTs3CWvRwwLdsO2P5IvBtG0Kz1EbJcupS+EipoYV0tbB+57hKvGZoGHmdXEbj5L2Owe53moxg4OEznjotVqJYl8q6SQm5ZBbbRUgXELYa0tZI96c90X2Fv83RvLsoV+p07OUh4vP90fuR2XHyk3mee/NjTB5NqqSjlmR42wBbbn3U/Z7f/ZP7xzz7sBDKyZr0QTVhw/A2P0R0UZrXzcE01ftQTlYd0wyg18UI1ngfehUW3onDY9h5ylFyUmAZGv1PnKXGCZn3LPfqVsfpXPpOHNS1Lcg4G0+/dzLVM0mhr5X2VSk1sCEyJ+6MA8rqJm1BYmGd2gg76O/Cp4DAD9fFfRzuRTn4d7s5dvd+pntS5IYynPu3Hrbd/pQbUlcphedpAUUnMHk2i2Hqrs4tO8jQ9kHyw1mwcVABJWNQaip8ukD15TG+pS2dQwPvdzZ1asIXkSWB/KCiIPIqGymYfdNcvJCJIAjUhYjOTfjqvGZxPSMv9ldQcqlrVtYmdVyhf73nXKhb3giaqPYJ2DDnlvmM7hrEzImq8W0aGmP7hpxNu4deNBV55BdpEmyMcu4X3R76VDJ9bor4guqIiILULK73n9eEcmQc/fJ+jt19AHPaBAlGMs+Bv3mJ3p+rcgd+cwGLoDM2NQw7wOj+JPlkjviCWt+61Syup/nauVimXja+DUPHRifaFsfK4/7PNNWBh2Xq5FMmQ89f8K43AkzJyEsDmBmqdG5lYWzfMFqosJY4h2dO9AdoKmGW3xhzbOIzPzqFMSXVQY1UY6LnR93kx3Ms++QaLKuyXRq2pbP8r9diTvjzXKr13buvFQ7qj/zjXo5+cS9T3ZOkB9L0PXyGbbc/RX48x+wbOzCzVPVzMy1p3tTuGXVQUJsxmSd9dqpK56apM3lo3Bf5DwIrbdLy2hnK3txO2y3zsS2t/LotCNZHiLUl6LhtYTVCL6LT+a4lJBbVIYLBcttCgm1qzLl1Pm2vm+fp5NUjAWZfP9dJpFepUwkIJo/N7IwYerYPv/k8eXgMO2/RfV93sV7OenHyW8fdTVTXh1ew8dHbWPnZDaz9zk2s+/EtRFpiSMNybbeqOVNC1IeOB4RySnkkAXW/ERQkT/gjPge3+qPzC3L2J6fJp0r7uaDnwR5yo1li82sq5vrCexHEF9Wy4D3Lqg5hhC6oXVpPpDXmm9jVzlpYOcs7qkEqh6Duc7gDuP2g60OXsfHXSudrvv1a1t1/K5HZMaSUvk6/1LEkqRNJbC+AhQ2DW5TOFrzvUjZveTuLP3EFS/77FWze+k46362iBoM1/oesofoIdSu8k0zWX96kork0H9tB4Ngt3vNeYnE9TdfMQdrlERVIAUInPq/G476ixOfXklhYhy3KbQ8RCTL/jiUkD4x4ohetrEnywAjz37W0+tBNVzZNvLPWpRyqlNTJJPHOWhJddVURW3pEZ/67ljK+fxgzbZf3Nykwp23G9w9Tv6q5JCq5eN3Kq3b5IlGl4oH3jN4xbEZ3eiM5/z0y750eKPewTsc7Fl303rG9M7R73zDz3ubzDAHz3r4YLaiz8gsbWf/grVz22Q2sf+BWVn1pkztGIrNjrLv/VtZ8+7Ws/OwG3rLzvXR96DIAapf428iJRfWeB7iuDdw9QeftSxGhYHlfCgXpeMdipronkVa5TQQK8DH8fD8jewaxsh72exZfdG2pzHvnkqq+qIV1Ot6+6KKHJM2b2zGmZdVaY6Yls69TOaY8bX9BGf3X76Kc+s4RDn5mF6kTE4q67PFett3xFJn+aRUJ7nFoZudUX7uYaAGNFZ+9hqt/9kYu++wG1t1/C5d/WVGr/q5L/eoWNj52G6vv3syqL17LpifeStOGdgDm3V7dl9AE0fY4NUvrlW3sIdKUTB4d84xMlJZk+IX+GYFjWkhndMcAdq7aO62FdCaOjqsxYRX3qVI6YCNbMH0mhZGxq/0xlmDw2T4Gt5yvem5BhrdfoPP3FiPC5ePXFhrRtji1yxqUb8ZnvzZ1esLTEypNyeiuQZqvnYNpiKrxbRo6rTfNY3zvsOc6Jm3B4NP+kX1SwnRviu5/OcaBO19i8liS3EiW/qf62H7HU6T7pmje2OYZhYaUtN00j/ED/pS4A0+fm/Hwd/JIUu0zrCI1YeEd2aZ0gTVe+4v8eI7GK1uqwF9SqjW2bnkjpl+EniU9D19elYvLK3LYSyl58cUX+fSnP82GDRv42te+xsaNG3nmmWd+2/V7VX7LEkwEIVCNBgd1upcfz7v8X2WILRusrK1O9x00qFFAqlsqI3iwNgS2cBDZmvuxLBUqHJ6twph2/vHzPPvmJ9nx0e08deOjHPuqkxRJ8+6eUoII6lx4vJfMcBorr7jPbAlmxmLw+QukTpVOwhVoTRRnudfJZGFDaruTZAVyCZXsU4QDHjoTzgSmEZ9fW3xmSTkiqBGdG69GBpYgBGsW1CqkkaWp7N6OQ8KyINaR4MLj58g67bYcp6CZtRl+YYBJn41GQRrXzpAASaA2YIW8AUbBCVKkpNGDQQexJ1ydF2hRApGg+368PpH2uJPktFqnZkYSmR1DhBTSvIAsLiATG1Y2ceyf9nui//NjOS48Xp0cpSBSQnxRne919SU8N74SXCMndWqC37zpMX61+qf8avVP2fa+Z8g7yWbP//qcoxfNfSe2hOxQDsusdsCUVm7UNTCr9TJxJIk57X2/lJAdzkLZ5q/kfimIdiQK4LCq8R1qixKdHXf7bmlflRLQID+a9342kBnMgKY5fbkEPSgVkjHamfBptKpDZiDNhUfPliEbpCkxUga9vzjtOgMr611wCJ781hGstOU4CpTOjYzFiW8ccjhoi/UtG4O6SqBamki7rI3OwZifzgM1QaTUsD3mNcsQhFsKyeUcJ64zLxaelz2fxS5J9lv6MTOS3Ejed4xlLqQx3YiP8rrbeQg2hsr0VKm33FDG2VRXlC0E4wfGMCYNvOZFxU1uEe/0dmxrAYFWG8DK2J5jPzuQVU4OD5EojtbaZY0I3WMtCmrKgeO3eZUgIho9PzzhefnoXfvJDmXoe6hHIROdw08sMKcNen/aTe2yBm8e+ZBGvKOG8QNjhf9Q4LYHB92YLdWZ8+wCL60UxNq9x0Fh4zzpUpxU98Wp7hS2m6C5NFeLsw7PhLiWkBvJcO4Xp6vRQ9MGZx88hTllOpFape1SvOHZgZwvoltKqFve4Dprq9cxQW4kQ+/PujHSltuPLVOST+U5+5OTTBwcU/ZDRT9H19TBk6ezr3wMeunclqJk/a2WUGOEiYPjDgK4XOcioJM6liS5b9RRc/n17EgeM22w5E9XUXtpY8E/AgIa18xmwfsuIT+ew5yuRj0LXTC2b4xQQ4SVn9tQ5hjTogEuv3sjgVhQca7aDi+pO7co5FN8kf+hlpQgwoV5pno+l6bk5LcPY2WtEn07dtOUydn7T7nPCtaFmbV+DjVLGopOo4BW4qwvtqtwmOGH2JSow4hANIRllrfLNFX4diAaUraoj8Tnz+zAzY/nOPvAyfJ+bit04JkfnyA7kC1xBhTrLqUgeyHLrNe0Mu+OpWWHmeGWGKu+eM3MCQiFckhYhqi2mSxA6MTmJpx8C+WihXWi7XH372BtiFnr51C7tNHVuRDF/DuVEqwLYeUtz4gMKSE7qKISjJTBsa8e5vi3TnDsWyc4/tVDGFNqM113aaPns7WQRnhWhLXfvI5ISR1B2aBr7tmsImR0h5qskCvJibhIOJFvqh9rZR8n9x69Pz1dVGKJQq20Rfr8FBeTy+/aSLhZgVskAjSN+e9VERXhpohnjhuVFyRK49rZdL5nGZZU9rVh6gQbY1z+pWuUbmsVjWFpvS2riIa+4u6N1C1rUJHB8SB6VGfJn62mce1sjAnDx7ZQ0Ranf3Dcs91YMHFsvGiGVKzfCIg0x7xRkwInF9J/TBZ++DLabppXRB6HNGbf0MGij6646L3G5AztThos++QVxBZWRKICV3x1k/vt4R2D7P4fO9j9P3ay+5MvMrS9PG+eEILapY3MWj9H5W9wJD6/thjxWfIRAUHtojoVuYCHTp17uz50KfWXt2BaOoYRwLR0apfPYvEfrUSP6r45KsyszejOobL/lf4+stObkqJUuj50KQ1XtJStJXWXzWLxH11c530PnfHV+dmfnaZmUZ16bmW7g5pvlMm/R8y0yeEv7ePJ6x7miU2/5ODn9rh7ov/Qc6cNur97rIybH1uV1/39Y2p8eziQtYjuJqR+JRJpjdO0fg6xuTOvL79rogU0Gi5voXHt7DI91F82i0v/Yo2KQokH0CI6NYvqWHvPZndNqZyTC3v7QH3YmxYORecXbYt7Hj6LoEa8s4Zoa9wzclBaNpHmKFIr2FuV+1QNy7SRlveeJzeSx5gyPe0eKcGYMqhbPotFH1mhInGdMkINEa74yiaEEG6C08r5QQtpDhjBu92RliipExMIvTrfkRbSSB4cwzJKJujSdgFcJIolkAhy8p8PldnItiUxMhan7j1C6uQkNh554IRO8uAY4Yawt15gRhsYINoW890DS1uoyILC8yrmj9jcGk5840iVHwvAMgSDWy/MGA0aqn1l+f9elXJ5RQ77jRs3cuedd9LS0sL999/PQw89xIc//GHa2tp+2/V7VX7LokcDNCxvcekXijQMOq03ziPtJCEqpYWxLTXJ5icNYnNr3SSmpaePtq0xa32bm7xPScl1qSFswdbbn2J4W4lRZktOffcYx79xqMzRVCm2LRja3o+VLZ0sC8gHlYxHC1WjD12n2XDGmdjLRQjlnEL6TTYChEKTKl05CRhN4fyugabR9rpOT37d+IJa7Kzi3ZG2VqZT6ZzgdrxjUZlTqKAzKTXa37yQkZcGMTOlTjtVV8uQTBweI95V59vuumWzZkDBqwMHv/dp5m1CjZESvZWchCOIL65HaoU+JMr6lG2LEuevh05tqF85CzNPVdmWqTFrwxzG9vgjJ4a39Tvorup2SQlG0nCdlFXtFsLlqqzqa1LpNT+e5bl3PEX67BQFbsnk/jF+c8uvAeV8Lt5aqhcY3jZQtUkolG1bMLbbr10COyfJJ6v15vZjNx+Cd3/ND2fpeKsHX2NEZ9GHLqPlxrllzyuVUFOMXDLv+WwpBdnBNHq04LwumR9sDYSGzNi+OpdSUcv4cT2P7R7yRBcVniUCGqO7hrBdFG7J+DckxmiOxGJvB/Hsmzq8UYnOcySC2kubfMtuuroVK1tIPFksu0DTYkxYWFY5IgOE48wQDr93gRYK9yNtDStrkRvN+o6xzFDan49RQH44P7POjyXRwnoJJZXzMQSju4ac8Etv0YI6Cz5wSTUSNagx6zWtmElDzVse85qUggUfXFamx2LloPPdS2m/dX61k0WopLAtG+eokG6v8asJsgMZ/LJ1W2mTyeNJzw2enbMZ3TVE+y3eZeuxIC2b2sn0TeM3xkZfGPS9BoKmjW3FulaIngiRnyg4/KslN5pTOVO82i1hbNeI79wiJf7tzqt2j+8f8aFAU5E/NSuavJ8N1HSpiCi/dWzyxARWRSQIqPE5+Fw/Y3tGHA798utWXpI8ODojd7+ZMvFFD9nQen2Hb1LqRR9dQfLgiCcaTFo2yUNjjO0Z8Qz/1oIKDTbw7AVGD0xg5BWlhZHXGNwxwshLw0w69EjVz5aMvDiAbdgc/tIB8rmSA78MHP7iAaSUxBbW+a7BtYsbZnzfVtou01P5dwTDOwf916kX+j315X7bPQjwuqj4t70QnYpbQiO+sM4ZwxV2DRqJxfV0vrHLZ3xD85o2RNh7/GvxAJMnk56OTGmqvpafIVIkN54j3TdNz4+6MfLK3jAMjfSQwel/UYeA9Zd7Ax2a1reWUwhU2Li2JWm9cV4JPUxRCs7Qi0nnHR4I3IjO/PcsZep0ytVDpZgZC9u02f7+33D2Z6fJj+fIj+U4+9NuXvzgs0hbsuC9HpEFAY26y2YRa08QiATY9Ms3cvUDr+eSv1zL1T+5mY3/9gYCkQDxeTXoiXC1vWbpzLm5U3HgViIPUfalCGpMnfaLgoHhCketl5z63nEyI6YTzaRh5AXdPzxFpj9Ny6bqSBUpFYVCy7XtZPrTnP7hKffgHAm5MYNT31fO9FhXAyqRfGnbdKILFJ9xuCnKuh/cxNUPvJ41X9vEdU/dxrx3qNxZM6F09WjQQRd6j6O+R86QWOydDyXeVUdsboK6SxurOPS1sM6C9y7jPypaQOOyO1/Dtb96E1d8ZRPXPvImVn5m3cyHVo7M3O4AmcE00305lcvB2RtIPcTAs2reGdrWz64/287E4XHMKZOJo0l2//cX6P+NP7q2IC3Xz1VRkxX/l5ak5fq5ypnnWS+dlg1zGNkxyPCuUTfyQdqCsf1JBp+7gJm2fF6X2i9l+/3purK++cqKMrJziKGdo2Vryci+JINbZ56PAUZ2+CP4R3cOMv/dy6rWQXWIUV9Cn/J/JtKWvPj7Wzj7k27yYzmMZJ7eX5xm+3t/M0Nej1cmU2dS3hF2lmRkxyCzN8/17JNCF7S9bt5/qOz/6tL+xi6ue+otrP3aZq6+73Vc/ePXE5mtDjFsm6p9iUJZC8wp09c3YFvQsqld9aWKsaAFNebcPJ/Ody2pOpgWuiA2r0ZFyPrZa8DYriEfu0T5Wgo2rNc6J4I6udEsJ759vGz9ziRtTvzzEUBx/xcia4t+CZ36NbOJtMRovHK2Zy7FrvdfQvLQmHeOipytfBIz5DO0st7Rd+7+fSCjIpMr221JRnYOkTw4gpnD8S8VfStmTuV5Kk00XvZsCa03dbhJ3yuv2zZkh/1Q7qoei37/Ul9zb8mfrCJzYbp6728pXVz4dS/1VzR7+sDCrTE0jxyMr8rF5RU57L/+9a/z5JNP8vGPf5yFCxe6/3+Vh+i/vtimzdixZDEhjSXczNCjL4861A/Fyb1ovCpEsuGegFef0mUGMyWTdPX19OC0ojfxkFP3HsOYNLz5WG2BlbNJ9aQoneRKnz11bor4gnJ+6yKqQyPRVeu/gAjFDeiVGFMi0WNBMhcKRppOEd2nFpV03xTDu0aqM2zbkOpJE55VSpFSqlcQIZ1z/9bj0y5Bz49POafNhSRChUVYIC2wcjaRObVVbQaQekAhWH3QvWga2eGs97OlmuCTx5Ml9SnX+dDWfqx84f/VG/OwTz4EABEUDO8YRJpezxb0/OtJh4bIOSCpyCQfn18DDk9teV9R3491Jhznvyjj77UsgdB1ciNZFx1Wfr9GZiTHkbsOeDoEzZTBuV+ecXRGld5sG1W283tl3UC4BXcwAAAgAElEQVQQrPc7JVcbkNi8GredpR/LFCQW1PrqVEqFdFv231djh0Jl7Q7PqWXuW7qwkhaGoYyBMv5Nx+GsR/wpNwLxcEkockU/DmjEu2r9da5pRNtimIZdlkXetAQ2glhHAj0RcvNGlPZj2xIEEmGsvO3OB6U6t/ISPa6z7nuvRYuVRMKgjIWVn1mHCGiew7/wv0Ak4IkeUM5yHSPtP++howyZsnoph5nUdeoubaSQ50MltlMfKZVz2sxL32dbWekbJi2l4sguGGxV41sKoq0xLMN2ytbcjxQQ70hQs7AO4UFdoYV1Yu0Jmq9uo25VS/lzdY3L7ryKWFspErO8PwDkh3LYFA1vdxwIhUYNNURov21RGZe7kddY/Ker0EI6ia46n8gkjdg8/2gOgEhr1DsRqaYQo6GGCGu/vplIaww9qqOFdeKdtbzm3uvVZkFTZZX20wJFTcyh07Hs8uu2VBuWzEAWy2POtW0ws5Do9EN3CWdeE5gGZWPIMDQMU1B7SX31OlOyTkZmxzBylpM0sXqMxdp90L+6INIaY+LIZNW8pTZwGrmpfFldK9+3kTKcDuKx9g+kHZSvxzonVVSTFLpn2ZapEawJEIgHPHVeQA6+5vuvxdYCZTprvWU+7bfMJzon7o3ADWlEW2NE58arroE66Ag3Rzly1wHFK17iqLWzFkfv3o8W0rxDy1HhwgNbLihOZaOoN9uQTPVMMvrSEKMvFcKcq/U28vIQhQPj8rENSEHNktqypPWln3BzDHPK9H22kZo5ARqa8D+X0lR/kcIDDSYFtUsbSiitqtd3acL5LQNV9wKYeUH6/DSiJlKW5yWfVzyxekNMbYw9hreUkB3KoHs4zN2qh3ROff+YQueXcMxbWYszPzlFfjLPVd/Y5EaEFuoVaY9zxT9dixYudYCU6xQhCNaEuPJb1xFtj6NFdLSITqwjwVXfvp5A9OIb10UfXs7cN3WhhTSFmgzrdLx1IQvedwk1i+uKTsYK3YUaoww930+mP12GILTzNtN90wy/MEDD5c0s/9QaAokgeiyAFtJoXNPsIs0Bzj/Zx0sf38H+zx7gpY+/SL+TIyk3liM/YVa3W4eRl4ZJdU+V2IDF61IKpk5Pge5BzeZIpG1mlGx+PEfvzwuRQ4XIPvXOun94nJ4fn8TIa06upcL4V+tJz/2n6P7BcXWgYRXXZyNtcfan3eSTOcb2elMNjO8r/3+8o4b6FU1lzurYvBpEWKuyU0VII9ZR43uQCFC/opH8lHeUWj6ttHX5XdfQeEWz6g+xAIFEkOV/uZaG1TNEz/47JdwYoWFVE+GK3A7Skpz49lEe3/QIv7riF2z/4BYmHJqu+Lwaz9weWlgnNi/B6R+eUDRFFWPs3L8p2qojX9rvzKlFKcypbtnfKZb96G2/ZsJJnDq+bxRb6JhGuR1rawHG944y981dVbQ+gZog6+97HQBH7qou28paHL37gMqP42mfo7p7vEB/VnFdCgKxi4/vo3fv91xLjtyl8mbYeZsXP7KVh1f+jIdX/Ixfr3uIc786q3Q7w0GK0DXqLm1kxZ1XEagtju/6VU2s+cq1F60XgLQlJ797jCc2K51ve/+zJI8onY/sHGLqTKrMmSkNSXYow+BzF6cRBTh6zyEeueLnPLziZzxy+c85+IW9gMrj5oV6lqg9rh4NcNV3ric2T40nPaITaYtx5TeuK4u8+P+jpLon2fknL7DtA1t5/r1bOHbPYfcARWoq70e5qEPzQG0AaQnvvYPQ0MM6r7n3BjXOCzpvjXHlNzYTqg9Tu7SBlZ9ZR7A2VOxrK2ax9p7NgNqb2B42tB4LEOus8Vkr1DtPdNV5RiXblrrWc/8pNbfY5WPowuPnyAymGd07WvLMYjkTRyeRUrLq79cTdSJhlS9EMO+dS2ha34aZNpG2t9/BSBlEW2N4O5MEtUvqCTbHPO0aEdQJNISdCFqPvV7exkzbzhqllfjnHABkyuDMT097+gZMU+PcL864fj2vvUFiUY1HX1ASrAkRSIS47M7XVPkG5n/gEmoW1hV1VWH7SwmB2hC5Scszx1R+2uZiCcxfFW95Rcccq1atKvv7+PHjPPTQQzzyyCNs27btt1KxV+U/R/JjOfKpaueTlJLRvaNEO+LO31QxEkhUQjDvQS/IDRdIYosDufQZ3T886XGf82xLkk0qJIri2Cod4AJsVOip171SUYW03tTB6P6kqqkoTi51lyiOeXfiFOX3SiGIddYo30Flu6Ug2hYn058ua1fpc7LDWcXZZmtYyJJnCHQUCq5mSR0phwqhtIzOdy4qSRpbLZnzaWIdCYrzXaFyDkebrpLL2bYO2CXP1hBCcUUjFLJXiBJDS2pITVObO89nC4xJ0yPUvyiT3RNFK7ZKBKlTk2jxINaUUaXz+hVNDG/3R4tMHBtn7T+tZ3C7QqMXso9rQmJLwYL3LuHEvccwp8GyKHnfqjp2znYQ+OVGgeIZdxKsIBy9lfc1K20x8pJ3aKuUMPRiv2NMVBoc6jn5oZyT2FWrqpvQILagBrYPevY1EdVpv20BA1sHHTR5uW4737uYk/ceRebtKp2CIFQbZuu7fkN+tBzFO3EsxYG/20OwJgAucrl04y8wUgb1K2eV9dNSSSyuo+2muUwcHnPRbIX8Eq3XzyXaHENLhDErEMS2rVG7rIHaZfWYLjip2NdsS1B7aSOZ0Ryp4xNljpjCxqhmSR0Dz15w32dRd1LNS9MWh7/0MtkkFPq+lGD05un+/gkSCxLKMKVS5wrhqyivNLDtknZrTvv0Gfo5jO4aKTnbKZ9TbQsWvH8JR798yEFeOAccQmLZgmW/v4yzPz/j+2wtHMDMFcd16U+JooCQKJoiIYovrJDYqXZpPVa+0DOLOrdMwaz1s4m1x7ENWdWXrKxF4/oWTv3gBIPPD+PyLAEY8OxtT/HaX9+snlvRj9WcCpMnkmiRAOYUlMOXNcb3jTJxcoJT3z9FufEn2PdXe2i7uYP6y5sZ3D4EFWMoGAsSqgmrBJLCQy8CahfXO/k/rHLN2jDn9QqR1bCyiU2/eiNTPZNoQUWFU/ya2lyUv0+lx2AsCJEAsmJutG2Izo4zcWAU0B2nfalTQMfKWcx/9xL6n1R80wW9FdrW9cFlnP7RKaRZObeougRr1MGyQk2Vz1tSSmoW1WHllI5L3gi2JUgsbqDhymasXPXG2MxYNK2frRKNoWNZ5c8GGN4ygJ4IYE1VO3rDbVGmev1oLQRWxiqLrqlcQ7VIAKEpVKtVkgdHCEUtY2VswnNryB4pp86xbUgsVCjYU9897hwQWU6rBReeGmDpH6eZfX07hz+3p8Q6KToDmq9twzJshrb2I0rqhoBQU5RQfdjl96yUqZ6UQ59QPl8KoQqwJCQPjpaH+jtiZSySR8dnXEN7HzyNZWvKd14xviXQsmEOejyENW1SOcaW/dlKTn73qM+znSSHJWKbtsq7XqAmdBybgurxjS1JdNagxcPkRvMUbS4JaLS9bp7vGgoqkiV1LlVmtyi9qbKHdw6SvZDDpZoq6MzSyPSmmeopIs0r7VQzbZFYXM/o7uGy64UyEkvqGXqu35NaRgvqTJ9JMX1umvSwjZUvriVWv8ngc/0Ea4KUdLMSES4Suu6SRq795RtIn5sCAbG5iYvyU7tP0TUu/Ys1LP6jFWQH0kTb4gQc+qCmq2ZDQMc27Kr+MP/dS5g8nnTGcLlYWRV11HJNG+1v7KLt9Z1Mn00RrAsTaY663zv/+Dn2/c1ul2po+swUez71Epd/7krCjWF1OFWJPrSUDTpTUksjZRCsDWOl02XdsfB+ggnvRJwFSfVMooX0qrKlKRnfP1pyiFK+xoJgdO8Q+dFcSZRdiZ1rw9TplE/UEb7/L5WWzXMw/7p8jZVIzBy0XDeHhf3TnPzm4eobdUH76zvZ+6mXQCo7tHTvkDk3jZSSUF2YK795HZmhNEYyR2JBrWcEx8VE2hIEr7gfAhz4+z30/arX7Q+ju0fY9v4tbPrpa2m9vp0jX9yLnSsenglN5Wlou6mDsz/d6qk/LaQz1ZNi+qz3epF22n3gs3vpe6RIoTjw4iDD+0fZ9OANTBwZw8wUZvOiHWtmJMnD47Re187yT61l6Z+tZnTnAJHWGHXLinRQvmX3TWNOGYoqy5JVtiKaRuO62UweTXrOLY1rW8qe56XzwtxVKZnz00hbsuWdTzHVXfyOOW2y9y93EW4Ik1hWr5zjHmXXLFFOtbabOpl9XQfTvSmCtaGy8X0xOfj5fZx76Iyr87E9o2z/wBY2/eS1TB5PekapWWmTiaPjtL22Gv1bKkfvOcTJbxcTJUtT0vOjbqyczfy3L/DVeYFqo2ZRPRt/cQuZvimkLdVB2b+jL/9XF9u2wS4/tMkMpHn+Pb9x8zjl83lO/eAEU70p1n5x3YzPMyZN0FRUWOVaUqC6SXTVcc3PbyHdN4U0JfH55TpvvaHj/2PvvaPkuK5z39+p6tzTPTkj50wQAAMABgAkxWCSZlCwgiVLulawJFuW9GzLlnUt69rPkqxg69rKMikqUJavaBEkRSIQAEGCYCaRgRlkTMBg8nTuqjrvj1PdXdVVPZTse73etbnX6jWhu+vkffbZ59vfpu36btKnJwkkg0TbK8CHtk3dnPqhO4+VlELRQXmo9pQIIUDA/Pcvoef7JzAtZVOUznqgMf/9Szn6twfKe4HTltRCOlM9E+VItNL7pSoXRvNYeYvj3zrK1Lk8Rl5X7xXh5A9P0XXbHERIs8/v4NTnpiUgoDHz3nkc/dJrHptICOi8cSbGVJEjX3gFM1fxV2mRIHPftQgrY9ggymq9qEBtIuR15Jd2FqlJ2/bWfO3zvkfPVi5Gq96XUqJpGlo0gJkxPHXv/s25WJbFq5971RElp8brxHd7mPuuxaBrUJVHotT34YYwUycmMQ17HyvXSmCOG5hZ81e6zHxD3PIrJ50dHR3l/vvv5+677+auu+7i0KFD/Nmf/dn/ybq9If8BIssnUq8zwMya6pDpg9gqoQvrpuEWTS5RSadKt6qmVblVlRJm3T2ndsUENC1vdv+j/JKEmyJYhtOZ5hYrbzL0TIVb0OmoTZ1JYxoGVtWto5Q2h5ghiM9M+HIiSiFoWttG3TyFYi+1y7RKt66CxKIG4jPq7HYrTnP1U/GThZrCXH3fFvTGCAVDo2hqFAyN5Mpmln1qNQ0r/HlFAYINoTJNkXvM1O/pc2ksw7LL1jEt3f6pqAgirTEoh5dplRcQn5Wk4vTxPtuypDKifDpdSoU0qaVRpFSJofIT3n43LRg7PEHDstqJo2JdcSaOTiB1reysB5vnLqAxcXTCcWipShAlBZHmCBXOY6cIEDoNSxur2luZL7EZcbKXsjXn2vjBWsny1DMs4TxIVIXOW4KmlZXQMddcRNFOHP7iAbtsreo5cOAvXla32FXfVX0DZtFk8ph/0rqz/3La5uYr1RXX79KEpsuakbpG0Z6nRVPDMAUirJOYk6B1fQfN13a75jHRMMs/vRbLsChMViPw1POnTkxx7l/P1Cz76NcP07SqWaHwnPz4gAhp1M1JIm36Bct2nJZ5Dy11adD/RClRYYmWS7X1+DePkh8tKD1U3ecW5IbzJBc3gK5RNAIUTfUyTIEMqYR4IuDwGFdJ09oWvNyAdtuERq4/W57HklLdFZ1OYdIkuahWqLIgubgeIysxLVx9XkJ9aJFAmb/f2W8SCM+oY/j5ITsEs7rPBb3/dIIDf/VqmVqq/AJMS3D0ywc59vVDdp87E2JDfjhPZqBy6K3+vtAEsRl1Lj728ksX1M1L8uzv7nFdHDmftf+9ezn7s9Pl+jrXUHHSIDeew7D3F9Uvuv0TEBrpC2kKdi4I13gLjYv2RWGmP82zH36GJ+/eyY47tvPCp/aTH1Nho6ZvZLvqp/RQusZFpiB9PkPj5U56Jd3xUhyWR/7+kHePRenFo189iFn0Jswq9YFlOst16y0Q9G2/4IM8VvU+8Z2jHPyrV8uoIef6NkzBob95DcrT3P1sKSG5pJEt2+8oJxMt1VGL6Fy/9VaiHdEaUSwSLah4gaVUyCX3Hgpm1iC5uMHeY0t5QRRqFU0QagkzcXTCt8+Hnh0iM5BhYGe/GzUp1cXTyQd6GN5/CRlQyEnXnNADjL40zNDTFzHMyhormiqiIdWfpZgulrmsqyXcqrizDcPdp0WbA1tITUUe1JASAr6WW7Dt+k6bfsW9vi0J0nZub/jhDWhh3aafUWtsxt1z6bxpJsmFjTWerBKsApz6yUkeXvsQD69+iIdXPcSed+7CsA+WgXrV7ur1HW6Lkb2YdaD0S2tUAw2Gnr5IYn69L7pYj+rEZ9cRaYrY463sFtPSy/OhYVmj7TTwjreUgkBdsGxXVutzdVEqy4du5x5pWgJZlMqO9fH1WAWTaEeMo187aDutKn1q5kyOfPUgse44mu5j+Aiod9gVQgjisxLKtvw3OJaCiRCJhQ1lZz1AbjjnQNA55gOC1Nk0se46z0UMKPqSaFfFmaIFdRILGjzOvCNfPejOC4CNPP7qQWJdcf9kvJqKeNTCtQ/kWlin8fJWxT5ZZbdIXRDtmh5hH+uMq6S3PmXXzUlQTJnlfcq1x0ooThhVVFyUf7eKaj7+e2Tk+Uv2PHc/WwvrjDx/iYUfXE7HDd3uaoc0rv3Zm+yPCjtySLPtd3V2QFNzyCpaHPryQXbcvp0n732SPW/fxeirtZMPVsvogVF2vXUnv7js5zxy5S84+KUDvxKFSX40z/mHz/rMB4Pe7x9HjwZY89WNEAmV9Z4Mh7j8bzcQiAWpm5dQuYOqxCqaRLtihFv8OdVDTWEK4wXO/+KMt+y8KlvpnWr9ULIPKpFggWiA9k0zXM56oHbZjWFiXRVubvdZUK1vgaipW0p52MYOjrL7bY4+/8JrmPb8rcUlH2oIkT6fcjnrnXLgr18huaABEXRHLQKIoE79koru0YIaifn1v5azvjBR4NxDpz19bhUser53jNgM/yg1ParydryelOinquXcz08r1HKNPk8ucevU2MwE8dnJ/zLO+slTkzx+w6M8vErt0Y9du5WR19T6P/XDXgXAcBgQVt5kcFc/mYGMjQb3SqAuWDXPHWcHQdk2yI/meeFTz7Hjju3svGsH+39vH5mBCnhh/Og4e9+9h5337GTHb2zntb96FdO+1Ln0nD/169jBMUKN/pzmpfl89menbTtHRQNYUsOSKoHt2X8+rRgThPD4Y8yiSaw7TqQ9qiJaTWH7Y5SO1SI6ZsHk9IO9FLOmouCxyzHyJie+fbRMYeynW2RRcuGxPk8kKIBhwvCLl5hx11xaN88AUbEd6lc2s/BDy4m0RWtyvScX1zPVW4tFQpA+mylH/nptf6hbUO/423s2CDaEMGwbvNoHlu7LcvqHvb4Xclhw5KuH0OMhbwQs6tyiIr1LfakhpW6PmcpZpC7U35BfV6bttWKxyBNPPMGHPvQhrrvuOn76059y4403kkwm+drXvsatt976H1XPN+T/kEwe93fmVcS+obORyKUXaGgBjWX/z2r/bwU1Zr91PqHWCJblVBYVPtaO67rRIt7kjlJC09pWFn5kGSXngsugl4LFH1+J0L28ZhWjX2Oyp4IMdn4fYOSFEdRlglZR8FYpeR00rGjEEgEMSznE1MFdUYd03DiDhR9YVnXrqg4GptSY8475tG+Z4eGKk1IjPreeQCzAqR/0UkhZrvfHjk4x9OxFFnxwqaq3T78u/thKxanod7rE5jw28e9zKbAKJnPfsQgtEigfZCQK0bjo95ZjGpQdo1UjCmgE68PlMXH3uSAxv57GVf6cx2jYNCRqLuWLlZclNYy0QectM30dz1LCrLfMY/hFJ99yZfOxCjBxYgzTkxiqIrnh3LRJULpvm10uy1P2W+fZVD3+c01FgpTq5JX+xy/U8u0ige5bZjoMhYoDGimY+ZZ55IayNYxRwcgrwzbHtXCNp2U7NC89X5v3H4ni/awx3paE5qvaVV6Bcvtsx3IWmq5s5exDZ7jwyz6ccy03XGDve/eopHeOfnQdZnImF/dUODqr12d+KEf9yiYsw5uIyMxLmq5ooZg2kLjnealPM+fTNb1eVs60L700O8LCsf5tR0zL1W0UfdpdzELzulY6b5xBdQ4MKYGARmKaZD+WYTHVO+lwXLudoAM7+5j3nsWe/igZQ/PfvRjTKPHnO9a3/UqfTdF0eRsWzj4DiaBjczeXpkmCljo1ZfMKV5L4mpbS1RLByMvDmDnL1SfOPh98csAzj62SIwlBYn7SdiRWiSnpuGkGhbFCzbyyk70T5Edy1Fpjoy8Ol/vBbaRqGEVInbIRmVXjbRkwfnAUI2Ow5+27uLRvSK0JQ9K/o5+9v73bpoWjRtmC/m0XPHPBKXPesgB074EeYNknLyN1chLQPH0OGmMHR8HCf/0LGH1xxPNMZzkXd/mHpgsBhZE8k70T5blTPZdGDw6jJ7yOaWmr2XBThPP/eg6TIAUDiibqp6EztOsi4aYI1XuFeoDt+LWRS+41phwdWihA/cpme48VrvelrhOMh3wpUACsokXq9KR/Mk5TMvLyMJMnxjFzlqfPraLFZO8kF5+5iKxaYyCwDEG2L8389y3xJGDTIzqLPrTc5i319qmFhlmwEHZCa8/6lgoR1nRFq0d3lT476865YB+CnKHl6uJdfebI144om6UoKBjqdfbRPtLnUiz5+MryNHbVQYNFH1pO/44+dWmXq9ByjL02yq437wCg+QqlWxTFknpJBK0bO0mdnvR3/FkwtH+IzptmEIhV6KWkBKEpZ3vH5m4W/85S3/EW4YCiXqsx3tJSicotqWFYjgsWU8O0D4lqrCqH9dLBHYSdz2UJelhFwZReWkij7bpOwi0RsoP+PNWZC2li3XGar2jzUEvpYZ15717sX+n/TZI6PYkWCXjtWEswfmiUzhu7lQPaWTUNArGAx2lcLVJKsv3+kSTpvjTRzhiBZEjZG1aJ4g+kBR03ziQ+P2k/x/lM9TM+L0nHjTMwTb08RwuGoGjqBBpjRNund9hHO2O0XN3u7fOQzvzfWYwe0R062blPCfRIALNg4a/PVWJLq4ZOrZEmxSVTvZMeJycom6d0Jlnz5Y3c/Py9rPnKBq75lzdxy/NvtnOCgGE4aUhV/aVUtGhSSl7+zIuc+kmvipyQMHFsgmd+dy9TJ2vnBChJ6swUz7z/KSaOjINUUT2nHzzJS59+/nW/mz5Xg1fcgtGXh7GKFi/98YsUM5VzTTFr8tKfvohZMJn37sWe8dJCGi1XtBHritO8vt1jG0ig+co20mdTvtRtmDB+eEzR1pS+UzV2gbjbGVhMFz0XTQs/uMxXny/43aVE2qK0Xdel9DYVG1sPB5TeiCqaEdNlWyjdoscCpM6lePp9TzF+2NHn/3yal/74BQAW+ZUdVWWPvFSx36tt6OxAho5NXQTrQ6BplbppgkBdgM43vX5+jOkkfS5VjoJzOeVMFbXQfn0XwbqgHQlXsQu0sE7Xze6y/fpcFmssJktFe7Vv7lZJ1Kn0uWb3+X9VsQoWu+7ZQe5iBUFSGCuw9127yY/lGD806kslpAU1Uicnic5O+Oq1cFuMSHOEjhtnIMK6y37XwgEWvH8p0pTsffduBnb2Iw2JNCVDz1xkz9ufxMgapPvS7H3PHsYOjFICR5z9+Wle+MR+QM0nP8mPFcja7fE7J0spGH1txAFqq4C3JDB6cJSOm2ZgGNW2g0CEgtTNTdJ6bafjzAQlf0zjmlbFKmC6ny1t4NfoqyPTUpiJoMbUqUl1brQqNpFp2+/Dzw8xuGuAvu0D5AvKj5Qvagy/Ms7pB08RaggrKsHqNgMdN85QibxriJEyCPvsk6U+bLumA4S3T0trNdufVTkLfXxgY6+N1KSFAxg/PGrnM9TKQFzDLJ0VNSJtUQzPpXhlv62mH3tDfjWZ1mG/ceNGPvvZzzJ37lx++tOf8thjj/GRj3yEYPCNDL//WaR+2TSJZzRB02XNVBaaAxWJJLmwnuTCema/Y6H7hg7B2q+sR9M0YjP9OLYVQreYKvpy+0oJRl4ydWIKA5Vko2golFqhqGFIQeZ8huSShrIBXe1kbb6smbo5CcVhbrlvXaUlabmiFTwGvSj/OXF8AsuUNnqpcsmALhjcPcDoa2N2uHMViiakMX5gnIHd/gmDpk6lKEwV6PmnE56weDNncvTrh0n1TCE1jWr0n4Ug05clWSOZJggaVzbZSLtaSLQASz66grnvWogeDSCCOqHGCCv/dA0dm7qIdvgjMKSEQF2AhpVNmGZVvaQ64Datama8d6oG77DA1Kwyz7jLCWI7bQZ2DtjJVarG2xSceegskycn3eNUHjvVr2be9GxO5brXB30z3APUzUvQv6OPQlHdwLvKNuDs/zoHQa1yIHXMNcuCSGvc7l8fB5GErptn+IxH6QPQ/2S/o906RUOnUNQxTMG5n5/zdciVW68JAsnSTbcbiS4ldKxvr/ldgPw0tFJWweT4t0oUClV9LuH0j09x+CsHfb8/eXyiMvbVa9BSB7WEHaXiRNgaNqJShDRes9G/ajxUv5QMg4N/cwAz5+fBsS9xpgHbaCGNptVNDiPJebEFsVl1HP/msZrtPvXjXvJp0xdVYVkCI2fUvqAx4eKzFyvPq6r35OkUJ3/Yi1GlFwEMQ6FfhR+a0/5+bFacS6+MuOZS0VCI34t7h2ha7U2mC8pAjM2oU9yh0vlMUf5ApCVS4w5EfSa5pAER1T1lFw2FLE2dnVIo96p+M4XG4K4B5cyv0W+hxgihhto0CckV9baT06v3AOKz6xzOxMp4C12QXNLAhV+et7kqKxWQhiQ7lGPIHq9adUsub6x5OVSSjQ9sxpC6S7e03zSDWXfNJe6hOKus3+TCel+jW30AmtY2l9+vfomgRn7SP9mmlMqxFihTT3jnYqgxQsu6Nt9LVKEJop1Rjv3jEds5VfjxnmQAACAASURBVIkcMHMmR/7+MCKo9Gf1901THQKtvMR3jaHQTad+csqn5oruKj2Ymk6logV1f4c96tBbNzeJHqtEZJUepod16mbX2cm2vWWDJD+eZ/57FrHgA0sJxANoQY1gMsiSj69k5m/OoTBZ8L3gkRJyYwXMEj2bs1+wdWTOJNgY9UShgfJXF6eKZRRTOerABlMITZDpTzO4dwAja1GKnrMsDTNn0ftAD5HmCCs/dwWGVZmLhtRZ++WNBGIBDtrRXK793YLU2TSTpyYZfG6IYlFUEPCWTrEoGHr2EoW0UZNHPjuUJRALsOSTl9s6oRK1tezTl6MFNUZrRExYhuIsr3knpglHDgvvBa4WDmBklW1QctSXHPfSdizUL20ksarVbpN6P1/QWPLxVQhN1ETgRmxe+xV/djlSd0dkdt4+Zxpb7X+PxGfWOVBwjnbrChWpRwNs/MEWGi9rRgQEIiBouryVjT/Ygj5NgnFQl4SRNv92R9ujZC9myQwXKRYruVBK9trg7gFSJ6dq2kyp0ykGdw/Ya0BzzFXIjeTJDb9+ss61X7yarltmoYU0REAQmxFn3d9tJLmoYVq9ptcFKU4Wa9qKRt4k1Brx1amhGmhop8Rn1/namnpEd0Uk6yGdji0zSC5wR5aKGvY7mkZ+JE//9j4b9VkRq2DR808nXrduPf90oozsLn83bzGwa0DlHJtG9FjAl9JGAmbRYnD3APmxvFvvmgqpPbCjn+TCeq74+43EZsYRAXVW6rp5Jmu+tB6Aof2XfPM8DT0/TGxGjWgOAYkF9TYYQHMhbA1ToIU1EgvUGrz0wiW23baNR9Y/wsNXPsxLn3kJI6uQOLPumcvi319JMBFEC2oE6oIs/OAy5r5D8d5f/tdX0f0bs9FCOiKoE+2Ks/YrG6hf2khyQb0jKsOxl0R06hc20HvfCU/drbzJ4J4BMgMZZt49l5YNHaov7b2gYU0rc96xgPjsRDkPlwtoYIHQNbSgxsYfbKFpbQsioCECGo2rmtlw/5Z/N+VErDuu9qrqsoHkwiRaUGPNlzcgI6GyPpehEJf/zdXlsodfHGbbb2zjkatVn7/4py9i2BRdfrmSSl0YiAVY/T+uZMbtdp8HdKKdcdb+7fppI9D/s8vx7x7zp+WScORrh0ku8s9BZRUl8dl1DD17yWNbWBImeiaxLIulf3QZViDost9bN82gcVUzQ/sukh3KucqXlsRIG/Q9cYGTP+z1RD1ZeYuh/UOkz6cUgt9HQskgdfMTHl9Oaf2LgEbAPpc4+dhLv+vhAIO7BnwBeUbWJH0uxdDT/kClkVfG0OMBzKL72eUyDMoRAn5iFqRiNLC8kYGWpS6vjvzdIYoZ03U+L2ZMjv7jEQoTeVIXsp4zkWUJBnYNqsjCGlK/pIFQfdjXVpRSXdLUzU16/DWmBSKqEW6K+AAg7T4wJPXLazMeJBcmFQBK+kTAShxJ0f39UL4YwTfkdWVah/3ixYuZmpritdde4+DBg0xMvB4a+w35v00iTVHiNRTprLvm0HnbDA/aRC18wey3zmOid4Ke+0+RL+oUirbBXtTY//vPY1kWEyf854w0pbqZlF70viU1UmdSTPSOYxXxoGilKRh8epA5vzUfpPBR4oIZ98ym/fpOXyRqfG49sY4YssbtY6QzxtTJyaobQtu5XJSMvjLC2MFR343TKlhMnZ6syUuIsHlu/RIgAqmzKaZOTyFCgap+Udm4J46Os/yPLvP9rhbWmP3WedOGtxpTKrR9ycdWsvmR21j39WvY/NitzPzNOQBE7JC56vEGCNSHmfO2+Ta6TyuPt2mq8LRZb5lLccoo37qWDTx7DMZfcVLHuA/VliUYfXWYEhrXvYEIxYeWMV11ctaxMF7A8nPQ2P/K9WXQEyHf8Y521zHy6gjViXLVfNGY7Jm0aS28cw0Es986BxWY4XXQgLAT4fjPNUvC6Csj5Xa7bvilYOLEBCJUO5IkkAzTfHUb5Y3WWbeATqg5UhMtZkpBfjRf89nSEowd8Kf7kRJGD4yUEQDVBgPAVO9EGWFdPZ4EA9Qvb/QgbEHNmUhnnMy5NBX0f+W7UgqFPLb/71f28P5L5fGufiUWN9BxfZfnO6Xf2zd3lROpgRs9CCqEc6p3ConmQpqaloYWCjB2cKw2Qs9Codt8RSjE2KFxpCw5dgWForq0kFJj9OCoHQLtZ/GoREtGyvLt86kzKdqv7fCtGxIaLm8hubTB1RfO35uvaqtBS6HEzFmEmuJIqpHJGuGuOlKnU7aR50aiSQMmjo7b89i/7FlvnsuyP1xZ/p9z7OrmJbAyVk2fuZQqsasWDng+Y5mS9k2dChXpwysuDUtxGtd4LoA1bnrmUun90hMP/e0ROzy+0i/9u4ZInU2x9BMrXc9z/r7iT1aXaUg8ZQsIN0TpvKEbpZucc1Uw7x0LyA7mfOsGSvc0rXZeyLulbX0Hiz6wpJzvpXwREA4w4845BGJBChOFcn2c5WT60lhFC4muklbZ87hQtENkLVyoyGoJxILkR2tHVIy/Nua7tstjUrBsOq3qjlOHia6bZxCIBlwUDSIgCDWGFTKpKl9BRQSjr44hhGDh+5dy48472PjjG7lx2x3MfftC1fYLad/vCiEwMia6TZdh+USxaBGdyZ5JpHTbRKaloUVDpM9O2Qcw7/o2CpLU2RRWsVLXst1iSEZeVZEkB790yD4cV7776udfwypa5IZK1G/u/Vna+1Rx1Kx6T72mzmbI2Ag6v7lm5ixyozle/JMXbTRbqV7w3B88j5E2GHzWP4eNZVikzqfLzjzXcEplSwbjwZrjFawPqdD3qohIsKM5wkGOf+c4Q89ccr0vi5Idd6rIgqa1Lb4ouJar2wHY9bbd5Cdl5SLC0Dj1kzP0P+mOcMmP5ss0W9UiLalohdK1UXXVEu2I0X59pyfEXA/pLHjPIkA59Tfet4Wb997FzXvvYsP3NxHr9rf5q6VpXatvu5uvbCN9PmXTq4FrLlqCoecv2bkx/G0mI2My8tqo7ahwAw0s043GNAsmqf60x9GsRwOs/vwVXP/QzVzxj9dx/b/eTKs9HqV9zE8aljbaCPuqdtkNTZ1JsexjK9Ejbr2nRwIs+9hK13eK6SLZi1nXRW/bNR3lnD7OZ5s5k9aN7TXrVV0Pj1iQOuePNJemZOJ1o6UVGh/Tqy+1kObqc6tgkRnMuvrcSJvT6tTJ3omauTlKkQUtV7Wz6eFbuPaf38SWbbez+n9cWXbu5i7mkD6RQ/lLecLNYYKNYe9clNCxpYvWDe0Uy8uqsr6LOTUek72T7PvgPlJnFPe2VbA4/8h5nv+EiiwQQjDvnQvZ8thvsPbv1ZlowfuWlCPb9IjOZX+xjpufuYubnryDLY/dRttG5WRvv66TUGPY7TDUVFLbzpu6mTg+4Z8fw+7zsw+dpf+pSxSKtu4oagztH+XUj08p6jjptZEtKdDsfot1xVn/3U1s3nobm35xCxvv3zJNInt/8RvvcFOYUHPUcx6zTI22Td1YBYvnPv4cxVRlTyhmTJ7/1AsYGYOpU1M884FnSJ1OIU3V5xceu8BzH38OgNlvnetbl65bFPe9HtZZ9dl13LLvbm7adQdbfnkb7dd2/lrt+s8mE0dq0a8qkOG8316IVnURq4U1Wq9qVcCQorRtiypWASkwUgZ73raHwriTXkpwfusFzvz8DFOnpyrJax26w8yaTPVOMnF0XCHvq3VLUPlzlnxsuX9U4geXoum6x5dTskMsSxCfm/ScBVU9BJGOqCq7Rg6aqTNTpM77o/uLkwUKI3mkqH52CaQpywnFvT4wdbFUiip2+w3saPCcydSZlOfZqmxD6SPph3IXjB8eY8F7F/tfbAlY9slVyjdg91vF/leXu1ZBYgUCWA6gUNHQsCwdEQgpgBL++42RN5n/24s8YJvSa9EHl2HkLRegtRTlryKXK/ur3/k8daZWfqs3ZDqZ1mH/wAMPsH37djZu3Mj3v/99Nm7cyIc+9CEymQyG4U1k9Ib83yl3PnEnZrXjKx5k9efWceEXF7w3j6hF2fujUxz4fw+UF2IpDNySKnnb6QdPI80azgJDEu2OORKmONH7kJifYNgO9/dzhE6cmKL3gZMOpFpJaai6nXnwDH07/FHuE71TZAYyGEV1GHa2zbQgdcF2FPge2gVGwaKYrTH/pTJ+Egtq02Ik5iddCfdc781LklyQdGw+lT7RwhoNyxuom1lH+y0zXWgUy4Lln74cTdMw8/7c/lICmkIAb797J49c+0v2vm8fv1j7CPv/UBmumf6sb9SCJSE/WqD3gZNUuOREebOSEk7/+DSh+qDvgR+gblHC879Sn5br5/jbKaYh0eMBVz4EJyI71BBG6Jo3L4Fd93B7hHRf1osusKB/1yBMU7ZlSIKJUM2QPEyBJXXPXFJ1hUhXFMPyzjXDPqzmRnL25920NlIqhEBibrLmmLRe0crFpy95Nk5LqiiV7Gi2/Hd1u6UUJBcmHe1yPBvF75efKOA3lwAyfVlCDSEvgt4ek/ishCOawj3ehUnD4Szz9nkgFkQvc/U631e/xzqiIISiL6gq27Kgc0sXubEiRSePtM3PPXp4gp4f9NTUayd/cAo9HsQ01VwrcxqaqrxgfYj6xfV2u92oCrNo0bCkoTz+1fNBIujYUuvQIdFiOkbeyb+rQgxLa8xIm1iFada3LmyUqz+y4dDXDvlGyBgmnP7pabKD+ZpzbbInRaQlAp5js5L6ZfWkzqR937v4zBCJ+QkflLs6uDYsbyQYC/nORQlIQzLzzjl03jrTNZ5aMsLG+zcRn1/n0+ZK26dOTVHMWC4kiyXBQqNvWz/JxfUOxLXjmwHN1uXeNVTql7pFCQ8Xc9m5relMnZ5i5NURD8rOzJv0PtDL6QfPeBHX9j7W+0AvrVe1O+iFKnVHE8S746z50lVEZiYomnr5lVjRzLJPriLS4UVrW7KkiwQ1OYhQXMn1Sxu56h82ljlC9WiAeW+fz6rPrEELaWr9VyHwTAtiM2JoQc0Oua3MY2lfilpC0Li80ZcvWo/qJBclp+XbbV7bQrAphGFVrW9LEJ+ToG5eotw215jpgua1LQSiAa798RZarm5DaCrSov26Tq55YDNaQLPr5T/POzd3Ii3Joa8eZuvGx3jybXvYeu1jHPvOcaSUGDXCfaVUzmd3ZFBlHQjAyJk0LKm3/+W2iayCRXxOAmohcHUdPaw7HOLu962CxYXHL6iLb0cVpCkpTBZUVOA00TuJ+dPv3/GZdZ71K6UqSo/qHPnaEf8uteDI/zxCbjTvr9cs1fZwW9R7gARisxKKWtHn0VIqmiEzW5uH1swZHPvGMZ9vK4Tg4L5BhvaP+KJ/B58eYvilYQqjBdczS+Uc/KKKQJs8OcmOe57k0U2P8+j1j7PzLbscB3no39nPo5t+yeM3b2PrhsfY/wl1ifGryJq/uZLZb56nnCFCcd+u//Z11M11O+0CscCvjbq9+Oywf7ufuUQxZYfP+MyH/HCBhuUNNW2mxpWNWHZuDqfNY0nFI68QlZIj/3CUh69+lJ9c9a9sXf8oR/7xKKVIxsxQlkc3/ZJf3rSdp37nGR5a/TCH/v4IAI1LG8uOFqfokQD1SxsU7QNefS6BurkJZt01hxV/slpFVggVYbHiT1Yz6645gHLU7//D59i6/jF+efM2Ht30OP271HljcM8gBIOevYBgkIt7/C+lnBKrwd8f7YqSmF1XM2/AdDmgStKwvAEphMdmMnMWdXPqkFJy9BvHeHj9Izxx63a2rn+Uw/9T9Xnd7DpfnSo1aL68Wc2HGlJ6b2DPII9tfoId9+7isesf59nff45iSl1QRTujvpFDkfYIuUs5spcK3ug8S9C3rZ+LT130jXgWAY3BPYP03NfjjSwoWAw9O0S6L41lWTz1/qf5xVWPsPf9+9h69WPsftdTKrGnQ/SQTigZclHUaUGNa3+4mbZrOxC62kvaNrRz3Y+3oId1NS4+wSxWwaJuToKj/3DUvuhwgFZyJse+cYxAXMdf54IWUvM7dTbFzrfu5vFbtvPEbTvZfveTTPa+Pj0SgJSSY98+zsPrH+WJW7fz8NWPcujvjiAtSW44R/aS/+Vi/7Z+BvYMqIgvp6PUUnbNhccv0HN/D2bR2+eXXrhE+nyaVZ9ew6x751a8UEI569f8zZXudgY1T5//V5XGVbWjCxqWNRCfWceS318JgQpFUrApyqq/WFv1ae/5PDOUceTHc8vhrx0mOT+J0IXn/C3CGslF9TSuaERqPrqlYFE3L0Hnjd20bupy6fv6y5qZ8/b5TJ2ZckQVO1kN1Dn24r5KPkJ3G2DswDgNyxt9k5xbRZPEPD+WB1skBBtD0wI0kovqweG0L+0VIqLTuLIJPebHOGKfU7vj1LKZpIRQU6gmyt0yJFpI48p/3IgIVHwDCFj539cSaYnQfHkLJiX7t2T/K/s6MT/BxJEJz7MBCuNFzKKJaeL2I9lnAyNrcem5S8iA7rKvi6aG1HSGnr1Ebjhfpu917t9SUqY4quUbqJvz+jku3hCvvC7zf3d3Nx/5yEfYtm0b9913H62trWiaxp133skXv/jF/4g6viH/h+XBDb/AdCZXM3UKExb7Praf8SPjKGdFNb+uIH0urdADQLVCkMDooVEKfqhF2+iXOakQfFHvrevSjy0nPQ1STd3qqoQcLqSajeaeODbB+FF/xIlVsLj00iVKyUuc7S6h/6YTgSAQDbqUd6ldCBBBjaUfVbfJTuNSj+oseM9CgvEgiYX1vsil1vXtJBfW03R5M1rYEWKNQhzMecs8Lj47xPlH+lVYe9lRofPSZ17FLJhVGcEdfS4h059h9zueYuLYpKtuFx7v47UvHCQ3pC4rqpN1gcDImkyenKo53uPHx5lxx2zfsoONYdKn/J15lQ9WDnWeHhcaoZaoh04H1IYQnRUrUwFJHI5v29ma7c/ZRkAVuhcNq3zB4V82Wmm8K0mTTdsRhVDJxKyixJIaBaPCyVp6/lTPFPjMNWnz6xYminj5Vu12WIKVf7a65pgs/fhyjJTicndyaJb4l8deGVPP8mk3spQUz+fZUlA3N1leC555jgqDDjRH8UYlqDFJ9aXKfeo5GEswimbN8c6N5mlc3lRjTBTCLzY36Y3GQKEVFH1LBSlRQQAIzIJk5CVvDouSXitMFAg0hKhO7gjK4R6dFSPaFfdtN7puh/yqPq+gxbTymCx635LK5x19KhEs/ehyRedRo2w9qmP5haXb/0qfSde2TS3J8IvDlOeiISgaKi+HEGodKGdjSZdW8gaAwMgYrPyjVVCuW6Xc+qWNBEK1nUGyKInPrKP9mg6PXtNCGvPeucBO8u2di1KqNXbphWEubL/o6vNC2uSVv3wNmZHTRjWkzqcQQc0z3tKEqZNTdN88g2Bd0HWwFkFBvDtG61VtZZ3n1C3lfkmZ5T6tREVp5b0ofT7tyFngEAvGDo0x0aOoQExHwleVqEkweWKSSHedTeFR0fempSEDAYKJIMe/1UN6MO/ql/HjU5z5+VmCdSH857kGQvH7+u5jUE5u2XJlG9f9+AbWfnUj1/zkBpZ9YhVaUEMIQcOqFp+IKI3mK9tVUlk/5JJdRtebugnVh1zIRBHUiHXFaVvfzqpP+0eSJRYmqZuVoOmyNqp55ktlxzpjdGzpQrhytSj+6vm/rZDwsa44V3/zGjb94mY2b72FK/9ug30hBcv+cAV+CymYDNKwrJFj3z5OzwMnMbMmZs7ESBsc/cZxTv/zGRXVgH+fSgsCiYBvn0vURWXbNR0eZ58EQi1RNUd9ppJ6tsTMWTWpBrSwzmQtfu2sydTpKcKNYd92ownfCDanBGyUu99eEmqO1Iy2BFS9fKIOy3rtQprG1c1lkEBpPCWC5nWtmFmzZp9bpkrYWkuCdaFpw96HnxsmP5q39bnm0ue5oRxjNZPOq9w5Rtpg97v2Mn5sAqtoYRUtxg6Ps/udezBzJqMHx3juUy+Su5THzFtYBYv+nQPs/+Tr84qDciKu/JPV3Pb8Xdz+8j1s+peb7MiZX12sosXkySlyIxUHnZSS/LB/u/OX8rZ9XuN5hsXct8+vqc/nvn0+hp3rwc+WNDImPff3cvx7PZhZEyNrYmRMjn+3h94HTgKw486dZceAKhSOfeM4Z7eep2NTp0rmqTuiG3VBpDVCx/WdhBsjyt700eclqqDZ987l2gdvZM2XN3Dtgzcy+9655aL2f/x5+p8cVOOZt8hdyvHcJ15g7PAY6fNpjJzp1rlSw8iZ0/ZZSQL1Yd99LJAME26OEKz3QZpb0HZtx+s+u+3aDkwfrmc9ESbSGqX3hyc59p0TGBlbr2VMTny/h577egk3hZl5x2w7Z0LFNtAjARa+bzGBuqDvGpRSrb/xo+Ps//jz5IZyWHm1Dgb2DPLs7yvEddM6f33eeHkrmf6MD9+yQgaPHxlX+iPv1R9mwWL82Dhjh8bAj8LQlGT6Mjz3iRcY2nfJ9f7wSyM88+FnX7dPASKtUa76+kZuf/kebn/pHq7+xrXlBJ9t13Z6gGsSRc1Uopbyk8JYgeKUgQj628haUMfMm+x651OMHR4r65aJ4xPsetdTrkgdy7CYOjXloZo69eBpjn7zOEbGwMyZmNnSujuh+ryGzh87Ok76XLqsN12XKBmT9Pm0ujTwywsd1MrrYPVfrOW2Z+/imge3cOu+32Tdl65G09xuqcmTk/TvHixT6fxXloXvW+wP9tNg2cdXMNk7yYG/PUwhV6F2TQ8W2P+HKl9C9fqEim9g/PC463/OdVKYKNC8toViDtxnKihmoW19u9ItRa9uEeEg8e44Z35+lr6dFykUdAoFjUJB59LL4xz75gn7POa0nymfU6VUEfT+IiimDea/awF6WHOZLlpYo/3aDuIz4liGrNnu4nhx2jXWelUbdTPrIOjIE6ELQskQ3TfPsNe5cOW/UV8Xap+pddEkFH+/b9QSgK5AMy9++hXFf29HqOYLOge+cIjCeIG6BUkss3oP1TANjfjM6Z3iowdHlT6VTkCbHQFtSFJnUhhldVHZn42iiuYqTBWryq2cU3NDuTIoqBqBb0kQb3Di/Jvk10rVu27dOj7/+c/zzDPP8Od//uecOPH6nHlvyP+/JTuYJedBBynp3zlA24Y2x6fd7zcsa6DgiwJSn8lezGEVvNxgJZoMI2+w8H2LWPHJlUTaIopPeFGSq76+npZ1rYTqw751lhLQBHpdoKrMSt3CLRFPWGr5+xZEylzt1TfNJYeCv6FSUjgt61rKN7quw7eu0bC0gaZVTegNkTI3uWEI8hnJ7HvnYhZMRg9OeJFLpuDCNhVCveozlyOiYQxDwzA0LKGz7JOrCDeFefm/v+Jol0NRSnjl86+BppdvMp2oKMuCUHOYsSMTyhFb8WQgLej90Uli3THljHYpW7WBBuK1EFqq/FBjmJED47bD2D3e+QmD1jWt/hsTqqxo1zT8+Ykgmf6sz/dVWVM9KcwiZUejE2luWYJgMuj6jnOuSKluwn3nioRgXZDmtc1YaFiWcqyZpsqtYKHRsFghyaQl7P7UQGpIux+0RDW/pduJVeGp825ielRn5MURpF66/KmMCeEAw8+NEG52rhN32zqu63D86X5Pj+nUL6wv7wJO57DQoXNzF/WL6mvy0Latb2Pi6CTeetuGXEpxuZdu8Z0vKaF/56C3w+1yMn0ZhC48B9Py84uSqVOVCwF3+yE9qOZKZUyw57kyIhtWNFR9p+Is0MIa40cm7TUi3N+14OLeYU4/dM637GLKRAqVNM60kz87wxUlKMcNAqsK6W6YkDqXIdhgH9iry5Yq0WekLep16Nmv5nXNNR16CIUuVpyoVevbBAKClstL74uy7jEMVf/WK1vpvmUmiWVNLr1mCp2r/n49oeZQzcsCLaIm2Yo/XoVWF6k8V+os+f0VRNujmEXp0IkVhI1lKaTrsW8d9zgbrbxF/44BTMO012bV4dGOkKhfWO9AJlbGu5TPIBANcP2DW+i6oRstrBDWM++YzTX3X2/ztccdz670W6lfIi6O64pZlViQUMg/n2R9EuVQCNaFXOGsznYEk0FO/+yMa46VXkbGYvzEBCfu6/HmQ8maHP3GcRpXNtbYKyQirNO0qslFuVX+bFCnfrHi/n3h0y/x0Jqt7Pu9/Wy7bScPb3iMzGAGKSVDzw37jvfArkF1CJKlcp2inLh6WGfVn69xocG0kM7qv1yD0ASdm7tY/ZdrKpEPAlrWt7H5pzfYZfsn1B7YpfTKyj+6zHZuqTWPLlj04WXEOpUjZfTgGL+8aRvbf/NJnviNHTxx244yMnH+OxYQX1jv3seA6360GSklJ77f69/n3zpObEbMddHp1JkgaFzRhIh4+1wLB2hY1sC5X/ZhFIVrjRlFQXogqxyqtc5/QpBYmHDR/JRFV9FY06G2jYxJ6/o2f399UFN7xTSSWJCAcgJCx+W7Bu3XdKjLhhoSTARJzEp4EV/2umi5ooWhfcNV+kHZTP27L6KHdSyzKgoG7MgVQcPyBg9tDCi9VL+0nkC89mVj95u6iXZFHfuYKOvQ+Kx4lY3slrrZdVx4ok85tpwqQCqKlL4d/Rz/7gmvXitYDD17iUyNZLd+IoRwRKz+6nJ263ke3vAYO968i0c3Pc5T/+0ZChMFhBDEZsR82x2bGaP16taaz0zMSXDsWycctqA7AvboN49TmPTL9aLmTDFV5Ph3/PXasW+f4NJLwxRq5N859NXDaEGN1X+xFqkHyvuY1ANc9rm1aEGNtg3tmNJt51oWSCFIzEtgGRbb73mSR697nGc/+hyPXvc42+95EsuwSPdluPTCsG/E1PHv9VC/uJ5AtDSfKjo3EA2QXFQ78rYko4d8zgYSxo5MkunPkB0t+KAiBecf7XvdZ59/rM93fRcmi6QvpDn+bZ/cWlmTY99RZ/2lf7CcQFMUw1BUZ6bUWfDeJdTNSdC4rBERMjlE+AAAIABJREFUcIOUpAQRVCjzE//U64tyH3l5hNT5NINP+UcfXHzmkuLPLzuP3faaWbQYtZPoekTC+FF1UWZabhvUNEEaEi2scWFbv++ZaPApf+7rWlKK1nLKhccuYJYurRx6rTBhkDqbmtahl5ibqJlwvmVdC/07B5TucE5FiU0/o+bD+ccvsHXjL9l+7y4e3fwEe97zdJkK89i3jvuO9/Hv9hCIB2rmgZGGpH5JPULXPPa9FtZpWNJA8+pmX+eyikBPIKXkwJcP8fD6x9jz28/w8IbHeOXzr5XLzAxkFPL/tp0888Fneejyrbz4mZf9++q/iGgBjRsevon4rAqlWaQ9wqZ/3kIoGaLn/l5PFKtVtBg/PK5ywGmaZ31K20ZrubLF97xmmipnyeBTg+Woyco6EWgBQd+Ofs4/2udre5g5i8neSQ79wxFFq1Wum4oYPvq9Y+gNTtugElVY2h9a1rTUOJ9LGpY0EO2Icd0PN9N6VSsiIAgmgsx/5wKu+NJV9iOFf7ulID4n7m8zCWhe04zQBNfcdx0zb5+FHg2ghXS6tnRz/YNb0CM67de0O+j27DabIDUVwZ6swbYQbgqTnJf0HxMBzWtaGHxqkMJkEWlQ9iso28Hi7NZzHPtOj++zpSm5sM1f15ek+fLSpb6PXyKgOSJFnQ+xzx5ZE9M3+EZ9duL0lAJE+Z2/paidv+INmVZ+fesOCIfD3H777Xz3u9/9312fN+Q/WCZ6K6gnNweuMlg6N3eCcN8AlpTKgvcurHEgV1JCPFTQvzYysISCPzGJEIK5vzWf63+yhWvu38Q192+ibb3ieQw3hMvlOcsGRddRNzfhdjI43q+bVYfl5ySxD3ITh2oYeI72VXOmSlvpFDMGLVe1Ko4wBxVJ6feGxQ0887H9pM9ncd02G/D4rTvKCa8qyCX1kgiyg1mklDz9gWfJj1Zula2C5JW/PEDqbIrccL6mjTfZO6k2Vel0uGllVGWmP1Oz3VZBEmwKIW2nUem7pmkr3qBOcn6t8DJBcm7SDqnzjrcIaFiGVXE2V/W3CIsyBYLfeIZaIgo9KLwbr3KUlhJGliIuHHNNCCZ6Jj1zpfR8dZERqjmX9LogwYaQzdfqvlE2CxCf5+/sVw+B0RfHavSZkvqF0/TpwnpS59JlBH+pXZbNO5jpz9C0urncDqfDg4Ag0hIhPtv/pr1zcyd1s+vovGGG4vcuHaqFIFAXZu7b5rLy06vsPnXPcxAs+ciS2u1GcPHZIR9nYWX8SvQpfn1uWbgSLzvflxJEQLOpH/zLHn15mOky2yTnJV3PK+s9CXXzkmWUvN+z86P5Mnd/tUgJqdPpskOuut2xmXFSF1KYRTVPi0X1MgwNLI3hl0aItEY8dZcAUhCbGeOyz1xmP6/yAkHzmhaCdUGPw6vivJY0rmp01NX5fZVQb8F7FyhDy4WMUMi22ffO5ug3jzP62rirXVZBsuPNu9E0DT0R9MwJKSE+Rx3Qnvnwc+SGS5ae4tY+8IXDai/QS85qp96y51tIY+ywP/e/VbRIn8nYc0Vz6T1pX3rEumJ039zt5tDUVDTX/LfPByDaFmX1X66j+855zHjLAlZ99jJCSYXMnX3PHKQU5fEqFlWCpUAiRKw9xopPrfDl51z5qZWKzzHg3UORiqIhPqekP6qQKhLi8+oolpEsXpk4Ol7TCZu9mKVulqIx8a4xhTZtXteMVahKLGeqXC1Nq5s4/r0ezjgSX0sJ+ZE82+/ehVWwMGyqA7c+ti/ri7KmYa5HdArjCvmVn5IUCxrFgkZ23OTpD+4vI/fm3DOXW/fczrU/2sJNj9/KNd+5Fi2kIYuyJgVDCSX8zO/tJz2YLz+7kBUc+upRxo+OUxgvsOc9T5M+n8HMmVh5i8lTU+x6117MnMmJ+3oYPzLlmktmUePJtz+FNGSZxqEaVZUfziO0Eke9V2cS1Oja0kWsLQa6Xu5zAjp1c+pou7qN0dfGyt8vz38UVUhmIFOTy90yIdoaVc6tqvcwofWqNoJJ/31Ooi7kF//uYnUp7xg2Paoz77fmEUqGaLuukmfCWY+Zd8wk2hpl5m/ORo8E7HWsLsv0WJAF715AvIa9JiXE5ydoWNSAuuj0rv94V1xFovnYTPnRfJkvXTr3SDtiysiZtKxr8VCJSdux1bymmfnvml/pq9L7ADo0Lm+kYWUp2sv9arysmfpF9dTN899jV392Nen+jC+3t5E3yfRnGD9WO89TdqBCUZAbyTPy6mjZ2fbriLQkY0cnGD82gROMMvzyCC995hWKk0XMjKJbu7R/mH0fU6jnUrur95rGy5qpX1Bv0yTVaPc5FSHrsVtQ0bmWYfk6I6UUpC6ka3L950fzrj6r1j2FsQLFVJF9H33O4SBSzqF9H3kOI63sd2nPs5I+tyyNYEOEcGOYvR/Yx/hh97iMH55g7wf2kR3M+KNcJaTOpem4roNoV9T1GRFUSbo7r/8VOLglSDTvmUlCuj+NHtK981wKUudenxc4dSbla/9rIY1Mf7bm3CqMFZBSsv8PXyDTX4JdCqQpOfrNEwy/PELzmmaMvHStX9PUKOYlzeuamTqbcjuWS08JaWQGMq7zjqvs8YLa42rsoVpIL1+eWBYV9L9dllm0yrZd9R6reKYtXyS4+gA1841Vi5SS8WMTjB2dcOU0UO0uRdBp5SgVEdbJDGQxHbzfLnvNUBeZoaawV59LaLlKRR74RQeZWZN0X5qxQ2O88McvUxgvVNb3i8M8/SEVOZC95J/cuThZpDhVu89FUAEdDFfiePUqZi2a17Ww4N0LyjRdJdEjOjNvV3tFz/299D5wqhyhZuUtTv/LWQ7/z6MAbL9rl2dOnP7ZWXru7/2VxuM/q8Rn1nHTY7dw16F7uevQvdyy8zdoWKLs+qkzKl9AtU4UAaHobl1AHYd9IiHaFEW6aEor66TlqjamzqUxMj5zLS+Z6JlUZfv4XERAkO7PkOvz1y1WWpLq9ea/Kf0ugXn/bT617NhZb54FQHJBkqv/YSPX/GAz1z24heWfWFnWwTXbDehBXYGg8J4FW65Sl9KhZIg1n1/HHS/cxZ0v382VX72aaJsNMLTPqdXrwCqoc0fT5f7RbsklDQTrgix8z0L0aMBVLz0SYOmHl6o+T5sewJuZt5jomSRXY/2CAoY1rWn2tRXD7RE0X2pFJXok4JsrpSQioCEprf0qkQoIXBM4JiE/USti4g2ZTv5NDvtfV77whS+wZcsWFi9eXBOVb5omn/vc57jxxhu56aab+NnPfvYrvfeG/Psk3BhRPGGG+4BoGEoxDL84AkEvakIKweCuizZy2X9l1i+qn3bRt69vw8ga7P3wc2y9YQe73/ssv1j/OAe+ojgTYzPiDr5dW5naf4cawnRc044I+6DcgxqNKxoRmj+nuZTQeFkj0kfZqMOMYOp0yttmW5nnhvKcf+QClsP5WHm+clT2b/fnzzcyJrmxPHrU5ryuetUvr2fkpRGV/K0K3WAZFid/cppQvTd5akkSC5KODN3VjYNEDectAAKG9w87nEfOfoFsf472je0exxSAHtFoXNFA8+pGXx0uNIElShcc3j41MuprksoYlZ23KGRBqD5YRv86X1JCpC2qENl+/SKhaXVT2flYXTaaIH024zKWK05OyI8UOPCFQzW77ZW/ODCtc3jW3TNr+uuDiYBC//msEy2o0XVjFy1rmn3RgVJKGlc0MvDURUVtYlNlGKadYCYrmTw5Sbov64M8hpEDygF6xRevYPEHFhNpjRCoC9D9pm62/GwL4cYwl/YNI33QCVokwKV9w3Y9/NvWfr1KhuuLsEUw955ZFQ4853hLCNWHwJS+Y2JZKpRZj+q+ZUsJnW+a5mBsQcPSBqSgHDZaOkiZUtB9UxeaL5ezkkBUp/oiwfV+IoiZsXzbnT6fJduXUWNgVfjxLRvhl7mYJX0+7Xl2aW1MnJiia0sXV/ztFQTrFSpF6IKZt8/k2h9cq5CmlrDpbhxzwRCARrZf5TRQzhNn2QIzY9G/cxCpVdVLaoigxsW9Qxz/nv/+nR/OM3Z4nMKY4UUHWjBxbIrxoxPlpG9OMQsmPQ+ctGlj/OeKLCgnaa3xRq9hPJafAWv/ai1LPryESFuEQDxA1w1dbPnZFnVBAjz14f38/PJH6fnhGY5/5yT/svRRXvorxUE99Nyw2hsd/WJaGsWMRW44x6w7ZnHFF68guSCJHtNpWNHAhm9soG19m+IkR3jmuQhptG9ss5OE1mo3xGf4cxoDtK5vrW0Yowzr6vEANSaBaJC+bQNY2PO/5Jw2NSxNY+DJQY59+7jtBHG2W5AfKTDeM2HrEu8+JoGGxfX+QyKgfWMb5x45j1mwPPPQyJr071T75/H7TvLQVY+z+3f28djNO9n5zqfJjxfQQloZKV8tyYVJJnommeiZxCi4617Mmpy4r5dzj17wogelcuD27Rzg6Df953lhrMD48QnCHWEMw334MwxBfH6czk3enAMSFUHTuLwRLaQx85655LOVS/F8VjDnt+YjNEFhsqhsHkT5ZVoqIsfMmQpAgdeuQRNMnpxUid+rxty0FJK6eXWTooaqutQTQY2mVU3Uzapjjk1lUtqLA40RFv03lcB0w9c3EOqoc+mWyKwka/96HQBLf28Zoi5C0dQxTB3DCrDgfUuIdcRUQrpSVzvmogRkXnLmCT+EsJpA/U/2E58V851rifkJcqO5GrpBUpgo0LetH0t42y2FRv+OAcaOTpYvXcr9ZqlXpj/Dxb3+SNuB3QoVfOO/3kjHpo7yiSrcHGbDtzbQfFkzjbX2d13ZqSUHi6fupkSPBbAMi+f+5BUevm4bu9/3LL+4bhsvfObV16UoKsnwK6M8fO02dv7WXna8bS8PX7eNkdcUjc/x7/V4HH5W0WLk1VHSF9IM7Lno2adMS9C/W0Wx3PDQDXRs7igjFMPNYTZ8YwPNlzfTckVLzTq1Xt2q8i3UaEJyQZJEDZ7bxLwEnde0I6U6t7jng3r/wuN9vo5MK29y/vE+zm294KvXcmNFUufTDO3zj94Z2neJ5IKkP4+8Dq3rWhC6YNOPNjHnLXMI1YcI1geZ++a5XP+j6z3oaz/xp2dQ/69fWI9Z9JYtAoLWdbX7uyStV7TURD0nFyZIzPO/gKmbW0emL8PIq6MOBK+SUmRB345+Xx5pLajRt32A1nW1Edf1C5M1L3/q5tZRvyDp0XsA6IL2jW20rW+zc/FU7WNSRcAphJNfpJc6u0wnv0rUyujBMbZev50db9vLzt/ayy+ufYLhl0cBaF3XihSaa54ahrooqF+UBDRfe00iyF7Mkr2Ud+lzUPb7ua0XaFzR6KtbArEATauaOHFfr2cdSENdLEyenKrNCy8gMb+uZp+3rW9j4MlBNJ+5qgVVXqBoe5TNP91M56ZOAvEA0Y4oSz+6lDWfWwPA8e/6RNDkTHruP8nowdGaNChHvnncv85vCK1XttScaw1L6hXSHB/bQQrGeycVkttnnfRt68eahjbOzJm0Xtnie061Ciqv13TSdl1rzbMgCJ7/6Ev+53MLXrVt9DMPn+ehqx9n13v28fjtu3nirt1kBuwItWnaXZgskLqQVRe3jrNgsSg4t/XC9B0OnPin2hdIx757gr4dA77n70vPjyBNybI/WMbKP15JrDtGIBagbX0b1//wehXplTftyGzhelmWQtk3TJNcvXtLJ+m+nO95LD9m+OZ4AWUzaUHNf49D9ZtVLIEnvRu4hJpRBUoEoWTtaMs3pLb8hzjsb7jhBn70ox/R3d1d8zNbt27l3LlzbNu2jZ/+9Kd8/etf58KFC6/73hvy75Op01N4s29XEKHZoSxCq6DEyqgxE9J9GRpWNJYdoSUpOXybVjay8hPLfcttWFZPqD7EC3/+GgN7h7DyFsWUgZm3OH7fSU79r3NEWiOYpkKQFA2doqFjmjqWpRFuCTPr9plEWqKIEuczAi2i076xnfpFSaSdhMiZILV0uM70Zb1OQDtkXVqUUY0lpJhhOpBuhsXEiUmbl9DdL2bOKvMt1pLJ45NYNjdbdX+jBcgO5fCD0EtDkr6QVtyc+NOM1C+qL9MvlC44ymMjID9RrLnq9bBOeqAUFeAWIQRm3mTmbTOItIZdhrce0Wm9spWGpQ00rmp2G3coBR7pjJE6XUJUe9GDpc85ucbL2delQFqSSGfUhVqs0FII4jNi5bD26rkoNMWriOZfth7SKYzlKSHJnOMphHIg5cdq3winz6cJJmqF1AtCkSDxOZWEfKV6SaBjUyfx7jgzbnWjf4UuCDUEmfvm2TSubvIkEpYSLEOSXJikkHInrKr0p8ZEz6TNee5tdwnprAU1lnxoCbftuY07n7+Tq75yFbFu5QxL92eQhneeS4mLP7a6blKCMWFOd8nOrHtn+Y83guYr2ggkFCeyYQiKRfUyDAFCEAjrxGYlapYdCAZqOgOkhEhHhGLRi4K3TKFQdk3+dFwA0faYy7njGhMLMtPw1EpTkhnJ2e10ly0RFKcM8uNF/wgaqbgkAWbeNpPVn1tDfGkzXXfO4YovXoGmKR76Uh9WoyLNgkVuJF+zbDNnMXpoHMvAs8aMnGTqbKqMsPHoFmDs2Hj5udVzTZqS7MWsP1e0pdAgtQ7GEuVQLDlYPXuNhNTZTO3xtn9qAY3Fv7uY23bfxp0v3MnVf3c18ZkqtPjsLy/Qv+Oi50DQc98pps6mmDyZwo9v2TQor6OuG7tY9ZnVLPzAUi777OW02uicaFuUOffMUbkubMeQ1DQC8SDz3zGv5qW2BLSQYM3nLne1oyRt61sI23zGfmtASpCGZTtoK/uYaXNe6tEAU6emMAo+451V+3t+0vBttyUFk71T5QvT6n3MLEhCzSGsok/dLAg0hJk8NeWP0MtI0n0ZBp66yIGvqIR8Jdtg5JVRnvmo4mNNOBJmO/usYVkj2YvZ/4+9946z4yrv/99n5tbdvVvvNu1q1Xu1umTJ3ZZLbGMIAYyT2NhAgJBCAgRim2ZIQkIIAUJChwAGbGyDK7blKsuyZNnqbbVqu9qi7Xv39pk53z/OzNw2d5V883ol+f2+fl6va6/u3Jkz55znPOc5T/k8GG5AV/67CcaOTZDoT7iQeQUHqYyp7s3LHCjm81hXjPSYhdcaSw4aVM+rBp9fRZfaeothqKjY2e+ZzcTJGPu+fLjw3STs/vQ+hXmeKR0T1TdBoidhG28KD3CuTD6fsiM2C+U1UjB+bJy65fVk0gLT0nM6laWTTSvYmP7t5zn2w1N21LFONqszeS7NK3/8OgD7//EIycFMwbvFz6U48m/KwfHSB3eSPJ92mVWakkPfOM7QmyP4I6oOjFM7w/mAwFflsw2B3h6ekUNjVM+rc8c5fz5rFta5e5GXHmplLCbOTGKkKe13Cia74yR6ld6TL7ekFGghP4mBpIo29SAnIlnzaWz85kYuf+BKNn1vC9c8cQ0tNqZ41Ywqz/3bSFlUzapCD+bgkfKvC5+q1XTgn45y9vEezLRFZsLATFmc/nUPh//lwoarzHiGF+54lcRAimzcJBs3SfSleP72HWRj2bIZl5pfI3k+SWbc6XchL6ZHsm6/N31zE7ccvIW3H347N7x8Ay2Xqn4v+sAC9JBWoF9LqTI2FrxvHnqFt74mpXJmVC+s9VzfNQtrqZpRhQjmF6XP8cOsd89ksjuB5YVpnraY7I4zuHvYU64ZaUlqYOrowEBNAF8kUKrPmSowBFRk9NK/XMqCP17Cwo8sYenHl7rZWg5lY1n6Xx1ktCjrYckfL/ZsevGHFhKoCTDvD+YU1v3SlIF23h3z3K8sw2JwzzCDrw8XGNjn3T5XQYzlbTl6WGfOrbMJ1gWpXlTnOebV82tIDabKZhYkehPEy4y5lbaYPDOpIkm92n6PanvFJ5d5Zqmt+Ktl+CN+5t8+Dy2Ut4cKDV+Fn/l3zKN9axumWYh/DyqqveOG6WWNU5pfFBUBL6ULRdhnJ7M8/wc7SPQlMRIK9z91Ps0Ld+wgPZah/qJ6zGzxHivQwgGC9UH33Fn8sSxBciCFFtA9zy2J3gSN66PUzK9BBDR3jQm/RuX0ClouaWbs2ATYBkIjLxvMylqkzqeQ0hvbW1rgr/Cz4K75KvrX2Wc0ga/Cx4K75jPZk/AcOytjETsVA1RxyTV/t4Z1/7yRDd/YxLw75rlOq/Rwxm0vf4814gbjx3JFc0uuT1Hc+P91argoiukGgOQ+IugnGA0qp7mX7mBh1wT0pmzcUOfrcoFn1X7mvne2ys7LW8J6WGfm22cQbgp53+hQGpwadsVnQVDZovnZiu75HFUDbuTgGLv/eh/ZmEE2ZmAkTUaPjPPCHTuUbHUzCQr7DZAaSNk6ceG4SQQTXRfOWpqqtsLYkTHbdlCqf1sZCzNjIoRg9u/NZuknVzD3g4tYce9K18FhGjIvsLTw3TIxg1WfWeE5J1WzqqhbWufWJDTcemW2XEyZZMbSqpith86k+TRM0yq15djnrWzMQAupTFKv+0MNU8+3UUafeoumpv8Wg/2aNWtobZ06FfCJJ57gne98J5qmUV9fz1VXXcVTTz11wWtv0X+NKgrS8fNJCbT6FfWeCose1mna0Mj0q9oQLgZ2bkEjoGFFPfP+cC7LP7k0p+gJmHZVK1f96gqMpEH3E+dKlDyFU9mZJwg8DMiaji/s48oHLmPWO2cSagpROb2CRR9ZxMavrXd/k4/lnsPh1NRh384syI/ScfCa27e2qQO8W6jPgQxQXmwza5XV6S0z5yn2omBLkPSwF8yBoH/7IPXL6zy9mwp7s4mJU3EMwyuyEfpeHMACt5K7897K4QAVLSFCDd7GyMa1UdLj3oJUStUvPaRz5S8vZ/a77TFvr2DRhxew6RsbADjzm3OYRmFEtmUKJk4mCLZ4e1WdcXLgK8i7N3ddgPSKyLKN9lkUlpyHJ1sP+ahdWFPWCBtd05BXHNGj3xbUL6vzvA7Qfl0b065o9dw4/VU+Qo0hYmdSBZjloIx9519XkW4L7pyP9OkuT1kWzL1jPoHqAGcfPYcUhVkulgXoPjXfbqGu0nHxVfsJRb373bCivmyfHGpaF8VXUZpRIYCGi+pB1zCM0jGXFtSvqPM8+Dr9f/1T+3BwcfPvNwzoebaf5g2NmGil0QVoNFxUz+jhCY9aDeqQdn7/sGd/nLZP/+osuTTGwutHv9NJyyUtnutbouSXgm4obVtKQSZpeGMiojIqUsMOnE7pb8wsZbB9FcX702SzWX6+6Dds//DrjOwb4+QvznL/3F9z8tfdmJZjhCzul5IFDhSQV9u+iJ/xrsmya2z0yAThNoXlXCxbpISWS8tjOSOUE6ocP1imLCtTBeoQWDmjKmcIzN9rgJYtU7RdTlDn0Z7P7vcccylh+0d25R2qC99MmspYkhpJ89D6J9l26yvs+/IRnn7bS/zm8mcwUkqezrt9LgQDuSwYQ2PO788lWBfEzJTvt5mSNK1rpP369oIoO706yJq/XY0e1KmYVlEiM5FQv6SW2sW1Kh2/aB+zpKD1kmaMlFXCK858GykLza979hug2o2I9NYdup/oxchSIJOdbL7j3+vCdI31pWQkTY5+rxQn3spKhveOMNmboH/HsMItt3LPNg1Bz7P9aD6neLzHGjMguqoBEcgvYGhD0whBw8p6IrOq7MJnpXwe3dRAdqK0Po6UkOxPM348BpoobVsIzm1TTohytP9rR/OM0oVjChCIBlXksSyUmUioW1yL8OuesBPOGut+qtfT6KYHdc490+c55tKQjBwYZbInzomfnSrBWzdTJsd/dNJOi4+XZC6YaZNjP+wiurrBLaac/zGlRnRVA6EpnKQz39ZB33bvqOfe5wYUL3rpDhbo4XIZTwACI2XRtKHRM7JZGlJB1pUxVDie1Xhvgieue45nfu9ltn94Fw9veIqjP1DFUQ/+87EyNYUEB792lJYtza4Rq1CHFlTPjdD5k5MYycJJNZImx37UVXa8HDr7+DkML8iMtMnZp3pp2tjoyQ/SkNTMr8kzahd02kNmlJIW0FjzN2swZV7EJzpr/24Nmk9D+H0l+pozLnpYp/eF85hG6frufeE8E6cm3UCE4nfrfe48RtI7WEDiZLl6QdqpZ40enfC4lqPY6UnSY0ZJDRrTEJx+RAWSHf1+Fw8se5zXP7Of1z97gAeWPs7R7+UiMY98t5OHNzzF9g/v4pl3vsyT1z9PvFdFg867fS5Vdu0gp99V82qY/z5lkG+9YhrZZM6YYhlQNbeGCrsu1/nXhnh4w1O8cOdOXrhrJw9veIqBV9XaCTeFuepXlzP9hukEo0EicyKs/PRyln98KaDWkteY9704SPW86pLoerDPJRsaMTxgnxwykibhphCz3jVHwWvacyEq/My5bTYAzZua2PLdTUTXRgnWB4iubmDzv22i9RLlAGq5spVMMndey2agck4NFa0VHPrmMcqt74NfP0brJc2elyVQu7BmysCSC0XYd/+2zxMKRFpq/Z1+uMdTt8hOZhnvnABPaAq1F9XMqy7JSAQQfqFklhAs/uhiTFN3IZIMU2PRHy9C82lYpsQwcdexm7GVRWWiL67z3Esis6oQumDW781Cj+QgeaQl6HjbTCrbKvIwrkvJsM/0x350koc3/JbtH9rFs+9+mce3Psdkj4L5ssCF4nPP13Z2XstldgZN8XULImXgx94iOPVItyefmxmLsSMTSOHU1sqTt7Yca764vA4dmVlFw0UN3pliAY3GNVGCdUGueugKZtzUQTAapGpWFcs/sZSL7llh/7D8e0+/tr2AB90zsglVsyP4asrbDvSgzvEfnyyRP9KEye4Eo4fHqVtaW6KHWiaEW8IE6oI2vGrpGjTLs7hLeqh8plh0bSO1i2s8+TzUHEIP6Yx3TvDLpY/y8h/tYt/fHeaxK7fx7HtexrIs+l52dJ7SSR3eP0ZkZoQrf3kZVTMqlcjwCdqua+Oa31ypxs8h10kcAAAgAElEQVRSa8jKc1gYpsrWrJoTUbKtaMyFULzQ9+KgW6+gWKcaPjBG45qoZ80haUHb1dPwlQliFJpQ9c7eov80la+09N9MfX19TJs2zf13a2sr/f39F7z2n6GGhrcEfTGNDnsfghyataqF+e+YxYlHzrieRC2oUdlSweo7FzN+KsZu8w2kdM8u6m9NZ8aqFnS/RuPHV3Hxx1eVPDs+kLRhEEpp8myC6kiIckqY3++jsTECjREa71tPz7UD+MI67Zub0e0DiMiLVCi6nVBKK4o0dUh5NBdeM4NtYgdKrchdlxJWfXAJh//9hBJkFPVbF9TUV6Kis2XJuFgStNEygw1IU9KxvAl0DZmxCu/NWszcOI099x2k3O5nTJiYBZW9c/2yLEFNRZhLvrye5z78irvBCU3gC+tc+qV1PP1HrxQIbqdt9X9hjzlEP7eec9cMoIcKxzxje5MNQzh+GwACYYE+bPff49mWhJqaCtVvw3Lvc66H68IkBpW32Co6M2gahHw6bWtbOPVIb8kmW9EWoaWtFss+NBe3LaRGOByyU+RKr+tBH1vuW8evrni8lM8FbPiTFcT7EvQ93082nnWx1X1hnYvvW0N9XaVyekmt5N1Sg2miDVU8eukzpMcMkLl5PfCPR1mwdQZMmPY6KZpzCf7M1AdnbVRy6ZfX8+wHt5NJKCOTpgv89nxHG73TkB2qf898jn+nk/GTMddQ4wvrdFzZxrwt7Tyra4Akky3kNV2DSCDkzjeosXJ5SWgkunNRE6Y9p8L5XVZSWRXyVKQsA1rn1iMtEMJjfQOp40ksS/FGcdumBcZAtmAuHRJCkOhPsfqPlnD8BydK1jcCVr57Pq/++R48ZQuSzOkUq/58KXu+csBtw1kLl/7DBjof7S4z2irSxWmwmNckoAuNp7e+iMwWRkZJCa/9xRv8wZs3lXm2orrWcnugQNN0rJRFuTUmMhIjgYcRR2JagmkdDVgIhJRujVVnPoVPp6pS8YPznfPeAJrQqGmp8papmqC2qYqK98xj9xfftOfdaRmCdUEam2vK8prlyK0pSGVUUTCmznPSw2kCVQGSlGJw6kGNSDDIk7e97EaMORTvTrDzo3t428NX8sTV20iPZHLFSC3J4W91suDaGYSrQp79BqiqDTOxc5TuZwZUnQObjDGDXR/byzt/uxXpRLnLojUmNdrm12O4PtjcnFmWJFJfhTFS/kQSqQvjr/RjJL2wRwWR4FRRNAJzKJe1ZBT5gRPnU1S3VHreiYDalirODXsXIdQCOuGspuSRLDUeZieyVFWGVHdL1AuBrmnM3tzGS2lK7jUygtkbp3FuTS/DR2KU7KFCY1rH1I7OoKGh+7VS3HIJxnCG9IS37JES0n1pNF3gVX8HBEHTx2X/sIEnb3veledCg0BY57IvbyCbNMBfqjsABCMhtLjEsqO9pftUpVv4UpAd8a7NoQd0QoZe1iiXjRkEs/oU/c5S3xLBKiPPmzpqueo7m3ns7dtKnl0zJ8Ks1a2u/ukU7xYouZSdzFLfaBe8NWWJ7lDVVkVtW3ndv7alikXvmU33b7pJT2RcA5mvQmfNX66gdUYdpiHQNPV9wV5iQDRaxW9vfIHYKeWscHp/4KtHmLmhBWMsl61ZTOaYwaYvrePsr4vb9rH6L5bROrOO7KT3mGfGjQvKtcPnUkgPHdvKSIy+NJv+8iLOPtJNeryo7Y8tpWVGLQVKXB5Jidu2ZVjs/34nk70JFr1rFg12mn5yOMXOT+wt2MOlIdn5l29yx8GZBKsCTKKV7DV6UKMqGLRrVJSOWzaWJWzqBTUJnNcUAsYOT9C8rL68TK0L2397607mYFZp/Xl6sLuXACFTRw/qGCmrgBeFgOxwBn8M3vxSKYTim39ziKXvnEPsbFw5cdKWW+dr4uQkr3xoF+/d8Ttsv/cNYl0JO2Ic+3qCzn/tYst9q/nlbY9hZgv34POvjXD6x6dZdsd8Hnj/ayVRny99cBd3HLqFcH2QxsYIM3/Q4tn3smMeN2idWceav1zOG1896D5f+BS8waaPX8Shn5woq0PXtEZIHY5z7AddZDO5dzfOZ9nxod2899UbAWi8NsKia2d5vtsD733M5tHcuw3uHuHUD0+THcyUlamZwTQVy+vdvbdApzKgdXYdpiXQRen6tiyINlSVDcAAOJtWBtFiMlMmWkK6tRCK+Zy0JJAVnsZ+9YLQ0lHL2k+u4PW/3+dmNwqfIFgVYNMnL8IX8PHgh3cVOFGttMWrH3uD2/fPID3q1GLKP8OqTaMy6OfSv1vPo29/hkzSdPWqQIXOZf+wgcbGCL9413YSA2lknu5x4udnmHdtB7UtVeXnu7mKzPEE+79yuGDPME7F2f7+17ht943qPFYkYCQS0xS0z4viiwQxxzOF1yUsfu/8C8q9fPrP/Pb/62QMZz10HtD9GkFDcx3HuYhycARl2+x6Zl7Xzukni9ArBFz1zc3ULajhuayHTSNjMXtLO9WNldAYYcZ3vA3/eqUfw679lb/GhE/QNq8Bf02Q1GjhfINk0a3z6Hmln0k7mKiY18KtFYwd9K5vZaYtAmloXN7IwO4xsnnqjaZB3YJ6IoEgelDDsLNF8uV5oNJ/Qf6pbK9k/NiE57u1zK8ntTzJwK7C95NA3fx6mpqqeWjVkxgpq6DXg7tHOP71E8iU9JRrIJAZi8bGCI2XR5j+dDO9r54nWBtg2sZGF9LVzOZ+n9+6JTWaGqvZ8JnV7Pzcnpxs0QX+Kj+b717NY+99Mbe+nTsduZiVzLi8jZ7nzuMUbM/1TDB3Sxsnr2zn5COnc2dge2DrF9XS3Fwz5Zj+T9L/Znnxv8Zg/99Bw8OTZQ5C/++Sb3YYL8XVUWgHB2MsvWcZlYsjdP30FEbCoP3aNhbcNY+xeJI3v38UEw2RhwFjSRCaxoGHu2i73FsxBJg4EyurZElDMj6R8jwvSAmZrMngYIwTD5xl92f2u1EQwie44vsbiK6sw6KMsJMQF+UK+anvDj16Cj2kY8SL+EUTHLi/i8b1DYjfnMVK5hRjafc7tLBCRTFYqENenuFISoHeEVCWpSIFTkoINwU59NhpF1dTs2+WEkwEb/7wmB1Z5H2Sig+nMDJe0WTq30MDMWo2NbD525s48q2jTJ6NU7+8jsV/vBCr0Ue4I4y5V/1W11XbbtRTQGNwMEbXQ93suns/ml1QUPgEl393PY2r6mlYV8/Yg7lCae7oaRBcUomUGhYy1y/7+UJoBOaEXAMuedeFrtG4Ocqe+w5gWqX9tiw4+NOuskr16IkJTu7uJTmklAFNU4d65UARnHtlkCV/sRD5dXdbcv8rpaBxY5SDv+wiY4Cu5YyClgQpBPsfPMH0rdO48qHLOfzNowztHlJ4jR9cQOMlzYzGFIyBFx9Ly+Lwk6dJjWVKFC0zbbL7m4do3dKE7xd6ScEfKSWhBZXus7w2da09QHBWBF9zFQlH4ZEQXRHFjOoMDpZPg3To0p9s4dj3Ozn7eA+aX2POu2ay/qPLGRyMkU5YbsRUfrumBcPDMaTUMKV014Ez5ppfQ4vorhOr8G7QdXj5njfKvtNTH3plin5DUssi0bCkRLMdZw6vgcbwGe9+S6nGfd9Pj2NIJdcco79pKcPVvl+ccHm0GANUSkHlymrq5taS+TsNXbPUUpdgaTqVF9WQffh0GbmneDvYGCI9lkUTMu+aGrfKOVWcf6jHMyLMsuDAgycpZ4gAwfEnusu2HR9IEm4OlV1jyXiWeF/KA/dUHQJ2/utBKtorGT+VKL5K68YGJifTWJZQBnwK16BpQvXKWiwhEFZhv6UUhBdVcegz+zFMtQbzD9SpmMlA91hOthTMtwAh/gN8Lux+F30rUZitWxqZOO2RHqsJ0hWS0ePeUZndL/Rz7LluJnriJc66zKTJrq8fVHiRUiAo6jeC2HiK4189Q7rYaJeV9L8xxMnd/cR6FJyHwy/OmJ5/c5Td3z1SNtJ8zzcP03xxY9kRiY2lkJriDS+s25TfVFBFRQZBKSFQ7WN0CmgoKyupXlGDr6JUrulBnYrFEZo2RRk/OVHi1JeWBS1+qudEmPBI465fUUcsnvI8uEopMUyLvT8+jiUEVpGHRtcFe+/vpPORs3jtodKEYy/0lJU7UoI+PYiR9MhUExC9OMqph8o57CAVz1CzoJrRg96FSCOra9D8GsGOGhKHx115XrewHqb50dJ6nhMjbw/16zRf1kTV0ojqdzH+uQkViyM0bmpgtHOiFKfasMd8boSJztIxr1tagzY94Al5pQU1ohdH2fYXu8r2++mP7uDW525g079uYPcn9qii3prKZrr46xsYGp6kek4VI8dya1CiouSaltcg2gPghanq02i9qoXKJdVogVJcVi2gUbkkQlwzaNnaRtf9p9T+LgQy6Kfu0kYGh2IqMtGiZI0JXePEK72Mn4qVZBYYCZNd/3yQpi2N9L7ijYHfdGkTcc3gqkcu58i3jtG/fYBgQ5AFd86j/Zo2hoYmyzielCPzQnKtb693phlA7xtDLNAMrnrYu+3h4ThSCO/dxJap/TsG2faHO92+7/7KYZrW1XPNzzfT+ZNTaq0WkWVJ3vzJcZovbWK0cxwrU6pj0+KndmE1Y0dK5WrNwhp6j4/gFBgteC0gOZJicjSFmac/gz1nCGJjKcItIRJ9SUp7J2h7extnXu5n9MAIWoHjF+qW1UOLHyNlukEG7mv7BI0XR3nh3te9RgyAF+/Zg5EwSnU5UzJ2MsaJV3s58L3jJdHLZsrkwPc7qV5ZXZLh4tAb3ziC4feGcLGyFm/+6BjzbvM2hjtUt6SGkf2lxq+6xTUMDU3ScHkT8ps+ZFKFq5oGzNjazqTIUrkkggj4sFKFZyIt7KNqWTW7/vkgmcmizAdDMtoV48Qr52w8d2/q236+rLPwjW8cpnWK7D69xse+7xwnazvdHP3BtASYsPf+ToSmICCK1zdCMDQ8NSxGxaIqNL+GaRS+n69Cp3JJhMRwqoRXQOkuvUdHFeSsVz0KAYNDMabfOgOtyc+x73aSGkzRvLmJRR9aSEI36frpSc9aFpYpeeNHR0mNpO3gsbzHCqWvnXyhl8UfmEflgnoSe0bcPS0yowbfrDCn9vQzdGi0JMLfSJjs+qeDrPjYorLzHVleZr5NyfjZSTpfOqfWecm4CBBwet+AvQZK1+fxR8/S/nvTS8fLgxobI/+hM87/Xyi6qYHenedL5yxloncE1dyX3KXGfHgsztp/Wkt4ZiWdPz6BmbKo7Khg3d+sRp8RYt/9J8CnYxlGwRlY6Dp7f3yMRe+fV/LkfEqNKugB3Ye7nxkmYApO7Oojm/Ce785Hz1K7oNref3NXnLNjoD7EyAFvgz3AuUMjHH/kdMkaNC0482I/a6sBTZRcF5qgaUv0gvwjdR1Tgl4QLKO6GIun6fz1Wc/7el4e4PCzZ0jHsp577P7vHaPtihaGD5X2TUoINoUYHIxx6Nsn2P/Vo2h+BT/nr/Rx5Y83UDu/Gq8sctcWNBKj9W1tbKjVOfrt4yQHkjRtaGTRhxaQCknar2tlaP8IeJxLmtZH2fttrzpP6tmvffMQ3dvPl5zXTBOGjsYY6CsPgfo/Sf/T8kLTxJSB5f9rRqy1tZXe3l733319fbS0tFzw2lv0XyMjrqK0ivHQ80logvatbTRsaqFufQvt10938RhTwxmkCZbU3JQ8aUcJlysa41BiIGV7ewsx9sA2yqcsFwbAIefv8bNxxjpj7P7MfsyUwr/PThpkxrJsu/1VzLTpFkApEKIS8AkSPeWra6t39440w1KYxe1bp1E9O4IW8mFJDUtqaGE/M27pIDKjyo0ksyzNHRvHE2lMmFRMr8y9T947tlzarMZNOJHHml0gUgMrhzte1tngZcnLI+f+xnVRLvnBZq7ftpUNX11H9RylLPur/G6hyXysV2mbk8a7Yuy6ex9myiwY8+fu2ImRMknH8iM6cp9sGjTLKfom3D5ZlgZomKiCZVJ34AfsIqCmhmlAZE6kDLavjec2kSV22sHIxz3MSQkyK4n3OvOt5sQdU5SyXL+kjvplqhCxM59Samh+jdX3LGdg9xDSHpN0Vn2yho6ZFa4hr2p6Jev+djXXb9vK5T+9hJZLmhXLpK0SOBzn/5mUJDOe9ZxOafNa21UtVM+NFBTH0sM6069ro2ZuzhtcwudAdsJg56f3MnEqrt7BTgUc2DXM4X/LpWibaZPuZ/s5+XAPifOFa8NX6WPJRxdx3VNXs/XRK5l72xx3s3UjhoswsAFS/eXH3MpaaH6Rd+DOn081d5mJXNRz/nwCqhBX0Vg6/ZYS0qccTONSXgPcAqZeskVaEDujxisf89iyMY8TA0lbuROuvDStXGqgOWby1C0vI6XAMHUyhirAaGXhsRtfREppO++K27ajzkyluDp86HxA2Lj+3mMugeGDIwXPzScpITWSKtu2aUg7ldl7jXmlw+fT+JFxwq2VHvdqVHZU2QdLB4eyaA1akkzCwDKFm9btwMeYBmhB3caCzCvMZtpy1ydIj2bKyJbCtFYzY9GzbYCTD/fY9TpscosBFr+7MiBnJo2S9SslyjlabsABJCQHUxhp6TofcnUbYOC1YbuIuMd8C4G/ysdkt/Oe+e8GZga32KbT76yhxsxxoiT7c9jelszxKAiykwbB2jKpqZqC83L2MWd/dvZoS4KZtKhZUOMp16Jro3a0ZhkS0LK5ibqltYig5j5XBDVaL22ifmktiz4wF391AOHLCUc9pLPyk0vQgzprPrscPaS7kHwKy1ln1aeXYtkFTj3XmKVSpXNFjvP2qZQk0Z8qMajlTSeJswnPaw75qnQMjwwYaYGRkWihQr0k/29fSCcyt9pTNkkgWBtgz30HGTsey6UrWzC8b4x9Xz1KoNrPko8uhKBO1tDIGBpS8xGKhph76ywMw8qDEsl9zKwEv2DhXfMI1PgLUt/1sM7KTyzGF9KpaKsoGFfnvSqnVxKI+Fny0QUF+NpaQCNUH2Tee2e59Te8KGPXiGm7vJUNX9/A9HfMZuFHlrD+79e4v0lPesum1IRBIOJn6Z8tRoR8ruyQuo9QNMy822YTmVOlILeKxtTMSqpmVNLzTD9dD/RgZDUyWZ1MRiM5lOX5u16zPffgyORiuZUeTbuR0sUUOznJ/DtmE/BI6Q82BJj9rg4Aws1hVn12Jdc/u5Urf3EZ7de02e84tWy5EFmGN9yWJGfYnapt00NvcXR2y7LYdvvOEmPj+V0j7P/aMdLjGQX3lXe+kBKsjEl6LMOC2+cQrA0WQBHpYZ3lf74If6WPVMz0bDsdM0iPpMvqDqYhsbKWKxPz9xIpVQ2qeX8wx3Zs5Y2JfTao6qhkzb3L0EI+TKnbxeh1tJCP1fcsw1eho1X6KeZDy4SqWRGS/eUKIKuaYKlhr4wllfmYGcuQjXvLTSNuuHtWqTxXsDPx3oQnnKaVtYj3Ti23AFbfuxw9rLvBL0JT8ESr712OlJLn79pFYjhLJqPWiZHV6Hqgm55tA0RX1SuIpbC/4EwUXd1A07oGxk9O2rxYuI8ZaUlq1HtMHEr0JsqyezZuuHqwl0ytWVBNZiJrB1EpfSxr6m5QVPycMy6l6xtwI+CNlMGBbxxn56f30f9azhHWsLKOlk2NBXJPD+k0rKyjeWPUjdwt7rdE1cCQSE8+l67cgdbLWlj4oUUs/Mhi5t8534U/yoxnPfUyK2ORHs0UZCMWU/J8in3/eJTh/WMFe8nYsRiv33eQ9HgGUcaolh7OUL+ijpYtTSXz3bCinuZNjeXnOyVJjU093+mRjGcBY1A2h7fImyJzIkr3KVoHIqCpPWiKTBHLNvIv/ugi1v/TBi76wmo2/9vFNFzUAKh6KJYJpqn0ikxWnc+trCQ1cuE5UQ5TdYbO2B/FN5AcSLh46sVyLT2aUbaBIv3YkhoSDX85Hdam7HiW5LB3LRYzrYykvtogxfJcWuRBiJYnf5UP8uSG8xF+HWnJsjUXpCGJd3vXkAEwEhb1SxUUr5d9rnZJNed3DbP/aypbKztpYMQNkudTPHf7zvKZO+7zlY7belkLl//sEq7ftpU1X1xFZbsKAlx41zy7fkXheKMJ1n15tW1L8gj2BRJ9SbKTWSBnFzTt87c0ZdmCtm/R1PS/xmB/7bXX8sADD2BZFiMjIzz77LNs3br1gtfeov8aVbSGbINTIZarYQrX+X3sJ6f5xYrfcuhbXXT+5AyPXfci2963E4C2y5s9Ma4tU9K0Pjpl25UdFbYhrhRjy7Tg1INnXeFtydzHtCB+LkXXA2c8lRVpQe+L52m7rKUAX9+hYG2AtqubPd9JStBDGo1rGzyfrVfotF3Zgh7QuPL+zSz9s0XULakhuqaedV9cydovKLw2SyrjhiWLDjkSjLRJ7Kwy+uUrZ6YFfS8PlW3bV6HTflULgfpA2QNB07oGIrPKeOgERFdNnc4/sLs8Xo+ZkZx8sNvd2AvatqD3+QF6n/eGWDJTFuNdE3bBqNz7guq3NAUDrw2X8KHiRTj5UE95zRMV1ZFNmjnMQ5mH12yBv8bn4sQWvLeEUJPCzr3qwS0svGsO/ogPLajRfHEjv/P81YTqg4wejZUd83MvTg0rlUkYbr+L51taguiqem9eCyte03waV/x0M8s+tpi6pTVEV9ez9gsrWP+3qhil8IsCZd99N6CqLUz30/0lUapG0uLYT04BMLRvjAfXP8Mrf/4mr929n0cu2cb+r3t5z73674Vnq94nMZwpO2aWBRWtle7vS8inUdEcyuGl58+nhLoltSWGo3xqvrSpwNBXsP4bApB3ECk+LFm2IcfbKYZrGHZ4rRhjM9ASKBsFl+hJ0rypqcQJ4cg1X8RPrCulcEdl4ccw4eSvuu17vMe8bat3rRjHsFYxrbLEwWBZdqSLJspg+yoaP5koMYLmU6A2yPnXRzyvdf+2X0FWlHk3S8C+fzjiznfhB167ex+tlzXmxjuPH6SEcIvCWfVaYw6NHBrnwfVPs/3P3lB8fvlzvPmVowC2M9CbUhMGZ5/oK3m2ZSmj+eixWNl+AfS9OlTgkMm/nhhM03pJE3o4Z8R17hN+jeaNjeXx8y0IVAfsfubGJR9vfcZN7e51K++6aUHzhgZaNzfiC5fu33pAtW1KWYCB6ezRpikQfo2RIzHPMT//+igL3zen7PqvnhdBaIJwWxWZOO5hLBOHylnqkBRsCNK4sUkVQQakJiDgo2mjiqZsWh/l6ge2MP2GNmrmR5h1y3SueeQy6pbUgiZsh1spn0shMDIWstz6zlqIoObN5xKqF3of4pzfn37knIutX7y+j//0NBXNYZdfCmQPUNGq5HX+Hunymino3a6cTcUHHjNt0flzFclV2aHG1HE6Z9OgR4L4qnTe+NJhytHuew4Qaghy7WOXM//2OdQsqKblkia2/Ot65t02GyklfduHPOvE9GxTEeSLPzifi/95Lc2bGqldWM2i989l628uI1Dtp/3q8nWsZtw8Hcuy+M01z/PMe16l8/6z7P3KMe5f8iS9L57Hsizi55Ke9050KUd9y6XNWMKHJTRlGMgKmi9rxR/xcfbxXqSmFeiRlgR8Gmef6uPoj06VYuDajp3xU5PeDnUJCLUOvLM5sGHZNG566Rqm/8409LCOXqEz4+Y2bnzhajRt6iOYEIKG5bWe16Kry9fVcSjUFC4X2kG4KXzBtp19R+bxsfPv7t/2e+JrAxz791O27MqT1zIn05s3RgnU+mna0qwKUwu1LqWu03KJWt+x0wnPtidOJfKisUvloi/sZ7Rz0nsvMZVBsu/lQc81JoXGeGeM6rnVVHRUK/x9+1MxPULNvGrGO2NkJjyMMBK6HjpLqLk8VFioKUzbVS2euqhlWNQtqcHZy0snBDquzdXWKpDnpqB+eS1mmX1MYjuXL0ANK+q45qFLmXFzOzXzI3Tc2MY1v7qE6Kp6JromFf540WOMhMmxH51ECMGWf1nHRX+9lPoVtdQvr2Xlp5Zw6bc3KF6aYh9TtVLKU82C6rJrTA/ptGxuKnCEOuOnhTRaL25Cr3AcLIVtA9TMrya62vtcVL+sFqEJzr1wnvuXPMnerxyj8/6zPPPuHfzmmuexLAshBBd/Yy2r7l5Gw4pa6pfZ/f7uRjuiOWcgLG7bF/LRsLK+5KxomFC7qAahCSZOTvLQ5md56SN7eO2eAzx6zQu8ds9+pJQ0b4h61qDwhXVaNjWiTYGv3by5ic5fnC1xNloZi1MP91AzL+I55lpAUzwsBBd/fR2r71lGw8o61e9PLubS721EaKK83iJVXYCmtQ2e71W3uIa6RTVTtO19dn+LoOvBbtfOkG/8Ng2Fed60vsFzL6tdUI0e0IidifPw5md58cOvs+veAzy69QVe/au9SEvSvLERI5tDCnAKw5potG4un6npkJpO73UQXdngKdcsNFovb2Lk6ETJ3u30LXYqTsum8u3PvGW6LbO82548lyA16O1AOvlQj+f3+TR967SC4FBXfxeC6Mo6Gtd5j3n1nCqSZZxPUir9wzQst5ZSsU0ES3Dsp6c9z5qZmMHgGyMF71P8fF9oapkL8PbXr6NxXb2NYwzVCyLcvOMa/GEdyyotWK0ernT1pvVRz35HZlaq4sRv0X+a/ltG7b777uPpp59maGiIO+64g9raWh5//HHe//738yd/8icsW7aMm2++mX379nHNNdcA8JGPfITp01Xa01TX3qL/GlmZ4irUDkksU5CZyLDrngMl9/U+P8iJX55l9tvbOfbDLoYPjWMkLBDgr9CYf9ssKqdVqCdJydC+MYb2jlHZFqb9siaVQjhplm0bwEyqaG0JyGJdU6ooeOllF7Mk2UmDZX+6kJ5n+8hMmJgZC6GBL6yx7osr8fl9SF0DO8ooH1OtYnol4aYQiz4wl6Pf7XIFoh7UqJkToeMGFYHkC/tYdOdcFt0513NsncKUTsw5SISARH/SxWK0JAWKSWIgRVsQHJkAACAASURBVLgxxOIPzuXId7tcPFg9pBOZXUXH9W0c+n4XqUEFoVKAxyhVgZZ5t83i6Vtecp8r7d8t+dB8NzLaSBkc+JcuxjpjTLs4yrxbO9A0zY3uKdx4sCERpMLf9TqkSTXmU0XhxnuTINS4ZE0K3l8ISI9lMJMehlKpCn1pPk2l5nuQr8KXh7tZxMdSkB03wK9jZgw3MktBc4CvRhnsNU1j5SeXsvKTS0ueb6byo/sKyZgsb+SEXLaGlAIHzSjf9xBqCLLkw/M5/K+dhfM9s5KZN7er/oV0Ft4xh4V3zCl5vgN/4MyzM2+WBdmEqQxetsEwN7qS1KiKznnujp0qyj+PDn7rBM3rGmher5TqeG+SnhfOo/k1Oq5phhL9qHj9CuI9Scpi2Fugh3147ugItICO5fc+7CgHjN/tr2lHB7ltAMakibDn21UqnPmuDWCZVvl3kwoX3YuELvCF87fN0n5nhjNlAKsUhZvCYBtDiuVa7cIaBnYO4yUbgKJCe6VtW0k5Zb/0gCoiqoo9UnC/5texvHK389u3VIpj8ZgDJIbT3qndoGAAUoYyYOWteefdJs4mbQua9xpLDadJnA/ZcqmQjzNJFY3ijEnpuEksU7Lt9tdKMqeOfu8kzeu8D44OCeFkF3jPSXIgqb7K50HnNz6N9IgTieJlpIGWTY00rY3Sv3PIjcbzhzVm3thO7fxq/JU+T/x8LaiRtZ2BTt8L+mwJKlrCSJ8ORYYcKWH6dW00b2qkcV0D/TuG3EJx/pBGxw1t1C6oJjthej4b1P5sGZanXDOSBjVzq5WTxha4+eOy8PY59O8couuBUniYg9/oZM7b2xnaO8bZ3/ZjGnnReWNZXvjAbm56+jIAqudGqJpTTToJkfk1VM1QOoeVtWyDtcS07xWAEJL0hKGiXL22GqmKPuthP6adfViwhuw5M+11UNwv04KkncUmESXr24gZBJtVzQJL5lhJ2M8Jt1TYeMilKdqgMovKRScZk1ksw+Llj+4puTZyaIL9X+u093dvmZux6ziEGoLMuLGdYFOYcDToOvmlhftuxesgH8Jj2mXNTLus1Khy0V8voev+0iALPayz9CMLeOETbzDeWQQ/YcFzd+3i3Yeu9eyzQ1JKnn/fLrKxfEOqCjCYdkmjrZtISqKqTaW3ONlcJaOiC7ITWZWO73yXv8dKlA5q1w0ovu63M6J8FT4u+tQyGtc1gRBMv6oZX+g/dvxa87kVbLt1u4pWNyTCL9ADKurZISNp0P3sAOnRLC0bGqidryKOq+dFkE9SoisimBKCBFQEvWNgM8xCmSsEZSPFQUG4pMfSZWoWSDKTBmef7OP0b3ox8tf3uMFz79vFTc9dZv/aLgbtkhpYTdcQPs1TF62YFi7Knil6NwOS5+J4rTEzbZGZyHLkB4cYPzHp7mfSlIx3xXn9vkPM/t32smtw7GiMWW9vd/eD4ho04dYwFdMqkGapviaCPvSQjlPnpUSfA/zVPkTYj5w03LOTABCS6de12ZHkHm0LCNTkIlHHjsfo3zlMsD5g82LOeFMzN8KGL5fWHMtOGmi6wOvI5awfzafRdmWrilCXkrYrm12Dsj/iXThSC+bmUVqS/leHGeuMUTO3itZNUTvaXyD0HHRM/riEmytoWFZH+9Wt9D7b7zre9LBO6+ZGoqvrqZgW9ozMFj4Nza+z+t5lPPuu7ZgZE5mVCJ+CAF3zueVYlsXz799VAms53jnJni8cYu1nlqH5NKZd0aJ4tajfml/DynqNmsDMWoSaKoAx5eDNuxqMhpVce/8uEgNqv3K4+uSvemha18CsG9tov6aVnqf7Cs4OzRsaaVzbQDAaInE2XrqPSQhG/GUDS8yM5Y7L65/Zr6DOpDoDBxuCLLDPIZou3H5LS9J2RTO6nZ3lZOF7zrcJq+5ZxjPvfBkzbSq55lNQmWs/v8LOoFvG7ntybWtBla218A7v8/ZbhH2Os3Hq80Sj0NQ+tuqvl/H0776kalDYR1o9pLP28yrQ8IUP7CY+kAIrx2unf9NL09oGGlfVYRlQLFOlqQy0Do13TdL3yhCBGj/Tr27G7xhnncNZCSnIJr0qCLHC7G7LgsrWSmJncxnThUZixdhrPr+Cc9sGSnSLaZc3UdVW4T5LPQP3LKhpCglC+AQeKrarEwGkRjN0P9OPZUjar2ii0s5ymf27HXT+7DSxM3FVHN62gS3704UEagKs+vRSnn7jJcyUqkUndIEW0Fh73wp6tg0oXcqiwC6ha3aW+bhhn+9L97H4gKp35DWmQlPy2pK4sG7FeouRsfBVqOz6nufOkzifoml1PQ1Lc/jyekDn4m+sL+h3uEH125lzL9mChIs+tZTzu4bIJiy73+ALKfvbW/R/R/8tBvu7776bu+++u+T773znO+7fuq7zuc99zvP+qa69Rf81Gj7iYKV6eR8lh797suy9h77Txdzf6yC6oYnePRM4RxorrdG4Xln0zIzFtvft4vzrI0hLInwagYiP6x64GKvguFrcNiz/0wW8+EFvPMi6hRHar27h5K97SjB0raxFy6YowfoglXNqie8eUel6CPSAn+q51cT7kpgZ1ZYmpKvkWlIw1qlSJKNromS+1aWM1RLMtKR+bdRVSKYiJxLR/bfdLw2JVqG5Qq7wHlzFddmfLiJ6UQOdPztFZiLLjBvamP27HehBnckzSRv33cY9do1Ykr4Xh1h0+xxqVzQw/OYIQkqkAL0iwKzfVenXg/tGeeKW7a6z48wTfbz+t0d4x/YrqWgNM9mdyks3dl8eXRe0X9HM6V/3eGJwtmyKInwCKyM9+1a/tE5Bsng9e0pJpAyMIqAhk6YHbrgyMmgBHaskNV3xsb/GTyrmGN0L2x4+PDVGJShIDpLeh7Rgg7dx16GK5pAb7VDctqPnLP3IAqIr6zj+k1NkxrN0XDeN2e+cgR68sBc8m8oZUp3N2YFsMexiUp68KBU0jlfhZzNl0vnzMzSvb+Dgv53gza8cA03x3M6793Pjjy6mdoMT+ectO6Ira9WcZExsf48boV3RGqZ6rndxFykhWB9gorN8CveZp/qRQpDxCHTTBNQtqyU14R1FO3osQc3carVGbeODWkM2JqOm+LzrgbMlfK75BK1bHG+Fd79Hj8fLGgMBmtbUowe0ksgmPaQx+5bpjBwdJzPqnUYZXVHLwM6Rsm07f1tSFoy5Zal+1cyLlJU9vho/9QuqOff8gOf1+X84ize+dKTsmHfc0M7Aq8MkiiJhpYSGFbWc/FWPLReV4dThBcsCMW4QagyQ9YpcBII1Ac7+tq/AeOPwMVlJ8nyZ9EwpFdbznhE7RbOQjKTJ8Z+dxlfpJzOa8ex3uDlE1YxKhvZ4ZB8JaL+qhbpFtYwcGivEPBbQfmkzYsooWoHQBKZPJxXH7YMxCdJ2DE2/bhqHvtVZopjrAY3q2ZV49dv5bmjvqDIYZIoP5oLTj/cx88Z2xs+lSSVyDGvEJeM2hJiZ8mBkh887Y9QuiDB0MA/z0X7HaesbGNo7igj6MeJZd491HC7dz5xXBVLL0IFvHGfiVLy0gKkd9TxxOo5lWPz62hfd/f/ME33s+fJR3v78FcROx+31XMQvUpAayzC0zxsjHqBvxxDYTilHPrvvjkDT1ZiYllT1LfLWGKg15kVSgq/KB5Yga1AimwQSaUmiF9Vxfqc39njH1a28yt6SNezw3MmHekqDG2w6/tPTzPnddo58u8vz+vxbZyItyUt/+iZnn+4DlGFUCwiu/fkm6hZWE11Zx9CbRetAqGyNC5Gu6yz9xBLevO9ADgNXwOp7lgFw+KenPO+ThqT/5SF8FTrZuFnS72Ctn5ED46RGSk/cRtLk+E/PsPxP5nHwm8c997ppWxqxshYTJ2IlMlkIqF9SS+PqBgZfHy7cx4DWjY00LKtB6BqmtAr2Ei2oM+NGFdxx7P4z7PrMQdCUceK1ew+w8W+WM/cdFw48ql9ay3WPXc7R73cxemSc+iU1LHjfXKralSFi6MAYT9+6E8u0XIPmrJvauPjLK2i7tJnD3+os0IukVEbE1kvK437n/7acHjvjd9rYfW9pMI8EmjZEefPLx8ruNW986QiBWn8pLrlUMIATncqgXkrCHpMaT9xwNJh5UzujRyaQu0Y8266cFlZOVo93wx6bU4+UZrFYGYtTv+6hZWND2X5lJrJgR7hqRdcslNPrxIPdpLMCXZNqv0BFUMq4xeiRCZrWRxnYOah6msdrzeuijB+fxMxannLt9OO9rPnrJRz8+nGsvFoSDi+2XdqMlJJXPr6XU48qiFmhCzRdY+vPNtCwzDuTw6G6Rd4OHj2o0XHdNABO/KqbVz+1X2UQSHjtMwdZ//mlzH/3DGbc0MbYsQk7+CVHmq6yA9LjWZ561w5iZ+NYhkTzCaraKrjuASV7tJCP7GS2cI0FNGberNbYpq+s5uyTvZx84AxSwux3dNBxQxtCCGbd3M748dL1rQc0GpbX4gvpXP+EWmMjB8eoW1TDwvfNoaqjku5nVSaJFzd2PdjN2s8so+uhbnb8leq3tPu97rNLWHDrTFo2R+l52ruA+qyb29n3j97ZrH2vDDF+IkbsXLIAplYC6bjJsR+fYtaNbTRtauLkb3rR7CAQMy1p2tKEEMoA7rWPgUD4NJo3NND38mCJbhG9qA5NF8x+RwfVc6o49sOTJPuTtF7SzLzbZhGoVs6Xrkd62PGJfarfqH6vvXcJC2+byYzrpzFycKxkvoUmiK6oxVfh4/on7TE/MEbtgmoWvm8OkZkqQ3zWLR1EZpVv+y0qpY7rWxnaO1qiN1mGJLqqnuykQSopIWuXEJCQSUr0Kh+xM3EmTk/aTlZFLq/9+yn6Xx0q2+7Bb3bSsiHKznsPcuKXKtNP6ALxacHV/76BplV1riHXS27Gzsa9YXUkdD10jhUfm0/3U30eLQtmva2dUH2Qm1++ml337mNgxxC+Ch+L7prLwvcpx1Kgzk9iKFvwXAnoAUHD8jp0v4ZR5IrUAhod16qswFOPn2P7x/aqehNSsuuzsPpTi1h8x2z0kE79RVGGjycUFI4QYGgulFD1nAjXP3EFR3/QxfC+UWrmRVh451yqZ1WhV/nZ/80TxfFFmJYap75Xymfvjx6JcdHHF3J+90jpfGcsGlfXg1B6akHdL3v9Byp9jJ2I8dTv7cBMWwoiTwjaLmnksn9ZjebTOP1kLy//2ZvKaWr3e9UnFrLkrjmEaoNMTiYKUJac7O+auRHCzSGC0yIkj8WwpESTgkAkSGVHJW/R/x39r4HEeYv+Z6hcKpBDU+HQmkmTwb2jHPz2SaQhFd68qYTFCx/eQzZucOg7XQzsHsZImphpy8XYevGjezAm8qJfS0jQukVFaeVHezuRKsv+YjGhhlABXpvzO8tUWOyHvtvF4JujKipVqk0rPZrhxT9WhZ8ALEu4eGxZU8OyIwWMlMnzH3idTFKSTgvSGUEmIzj24zMM7CpfyMuhcv2yJGQGjQIYgfzf5ytmtUtqaNzUTNOWFhpWN+QZbwXgYOI72GLKC2sZFoe/f5KhA+MYhiBrahiGRjpm8MKHVeTdM7ftLNiUAbIxg+fu3IW/0u8K9MKPese2y5tpWtuQg0ESKpJl0fvnUNlW4fbLtGE3FNapnZaXNouiQfM8x5rCi9fKOEOCdQFl7ECUzDcI/NUBQnXeER3Cp5GNm/Y9hf0qhhZJjWQ48u+n2f+tEwwfzhU880f8nsEBUkKgemqDvZE0PfFWodCIX7uoNm++o/+hlDVweEZhxGVNDcNSWHMSQXo8W+goyCMzK8sW8kKq+hYjRyZ48x8VRp6ZtDASJmbK4rHbd5AenzqzIDthsu7zy3DG2UmlRAg2//NqO63Oex34L6CUS0MiXVib0jG1UpZrXCj+SAlCd1IYcymYlsMbQtCyuZGWixvdVEdQB9MFfzibyAUUjuRAquz6Ni0IVPtZ9aklaEHNXSdaQKN2QTUzb2qjdnl1wT35z2neWN7IIqWKAinpl6X6pQV072KYKEdMajjL8o8voNwam/vOGVPysTAsJrqTNnxHTgZICX27RsnETXKptApjXkoNIRSkRHgKKIFwcxgjLb3TYqWKLAq1hl24n1zbgobV9Rhxo+Tg6NBkdwJfxMk8KO13sCHIxf+4yhPGYMmH5uEL+Vj/pRXoYR1TaGRNganp+Kv8rP70koL5Kxp1ALqf66f7twN536nvj37/NGMnYgTqAqV7oAQR8pXIr2IyPRycDhlxg2M/O8PokRjFa6TvpWH6Xyt/QANBeiSDrzpIYS0F9fFXBzGSph15I9y6Aw6+fjZhkB5xeLWQVwBSo1mMhOk60fKhbYSuMjZ+e+urJc56M2nx9O/vxEhZZeWetMC0Q2sLoq2dPdiwXF41LEHWFBiGvZ5MSNnvBaVrTEo71Vj3Xv9VMyrVoc/evwtrGmhIIbj4KxcVwHk5tPDOWehhn5MU6Kk7pKfAiTcSBis/vrAAa9mhQI2PhbfP5sSveuh+ph8zZanaQHGD9GiWbe/fjZSS9fctx1fpy0WPBjX8ER9r711Wtl2HYmfjvPE3RzBsbP2MoWFkNV67+yCJgRRGynu+AdLjWaoX1Hj2u3ZZHdmEgZnO4aWbeYEBk90JgvVBTA9sX9OQBOuDLPzD2VS2hXPyXlMO1PVfWoEe0Fj3+eX4qvwIv8K+Fn61vtd8dhm+sI91n1f1FBCKH7Swj8jMSua9awaxswl2feagvYeaag9NW7z6qf3E+71hfoqpqqOSNZ9dztW/2MLqe5e7xnppSZ67cxeZiSxG3HTn7fRjvZx+vI/oijpm3NCGXuFz9zg97GPWLdOpX1xzgVYpu4YsCcFqPwR1T9nUdkUz6bEM5Yzu6fFM2ToRQlPyAS03l0YevJXQlFEdXStdYxYE6gL2XuLddkVzmEAkkLsn771FQGHslqtJYKYtV2fyWt8IOxLchi7ImuqjIpCVczbek3JlYsZQctGyBFl7va373DL0sI4hddKGwJA6elhn7WeXkU1kMVLekzJ2fJKGpbXMvLm9cL4rfMy4oY2G5bUuXzh8YsRNMhNZtt25+4KYx3pQZ90Xl6MFNSwnOyGgUdEWZsFts4j3JXn1U/vVGCVM98z32r0HiXUnmH/rDKo6Kl35I+w1tu7zy/GFdHZ/4RDjJ2IYcRMrrd5t4tQkO+89iB7UWf+lFWhBHVOqPZaAqqmx4Pdnu3wz44Y2Lv/hJq740SZm3tSuIlCBee+ZQdXMSrS8eglaUGPt55a5enZlWwWr71nG1b/YwprPLqfK1vPSY+kCuZFP2aRJYiDFjr/K9du0+73rc4eInU2w4UsrPc81s985nVB90M5aKiXLUPxglNNbepMkBlK8+qn9GBnIZATZrMDIwO4vHCZ2Nk6wRmFzO7xgWbngJyzJ2nuXKQhQe78RPoGv0sf6L+Syd6Ir67n4n9Zw1c+3sOTD812DeWIgxY5P7Mv125Zruz9/iIkzcea+ewbVs6oQAc2Vx1pQY+1nl7mQGOGmEI3rGmna0krjhiYq7WjoC7X9FnnTnHd0UD27KrfHayqCfs09S/FX+vjtba9iJKUrewxTw8rA0+/dSTZhkE17M/pkXwojXuasiILF6tk2oCB58mRLdtJg2527lDG4SFbmy89MzCibtZToT9J2aTO1Hg7DcHOIBX84C4BQNMQl/7Ked+69gVt2bHWN9QBahcM3RXYHnw/Np7HhyxepGnGOOSKgIFkX3TWH1Eia7R/bq/qUMDGTFmbaYs/fHmHsRIye587T9XCPa2eSpjpXb7trl1snpqI1zKpPL+XqX2xh3X0rqbZhi7UCmNAie4suoEx0PXaKwOy3tVMztyoHa6kpe8yqv15CIOK3ocYK4TKdM4NlSp7/o9dJjWTITqrzkZk0OffSIMfvP0tqNMPLf/am22/D7vcbf3+UseMxG3o5t89lbB1Z6Kr21ptfOcZY52SB/S1xPs2OT+7znOe36ML0lsH+/3Ga+44Oz0O/lIAQLPj9md6GSmDGjdM48WC3SlkrIiHg3AvnFUZekcIhLRg5PEEo6hT6KG1bAr0vD2JoekEhWikha8CZx8/R9UiPqwi4BR8tIOjj3Ivn6by/XNvjqtCfpmAhpN0fS6o0ssr2MH3bB8l6YYMlTI7+/LTHiBSPTzlDiqBmsSPocA+YziEVOxqze9sAv9y4jV1fPMwb/3CMR2/azo67DyClZPo1LZSERNjPXv4n8+n8eWm/sRTW8tChMTIThufbnX9jlHBruYMOaAFVjOqy765n49+tpP2aFmbe1Mbl31vPyo8tAsDIgJGPt2YbPUwpyLgRrh4Rm5qgZUPUE6beV6Ez68Y2Klsq3F4XKtCC6tlVzLyprUAhd6iiKYS/0jurIT+Vq/v58/xi4zZ23XeYPX9/jMfetp1XPqWwIsPNYe8h5/+wd97RclxVuv+dqo4355yvsqwsWbacZMmy5ZxwIg0zDDDkBzbJZvAAAwOPHMb4wcAAA4wBG+cc5CBZtoKtnMMN0o26OfTt7qo6749TVZ2qr8Qw89ZbC+21evW93V116qR99tnn298WFLRO78ANFgdIMRKSrnWcgCde9ij786rs08o0Pjvhz369NKHy3FLXqEgWX45O4zU1HH34BKYHzZHQBCde7LE3xt5jsfmmWqpWlSPyAwk0tYBwQy5FswrsOZea08CZw0LTqLkwm3NacM7HZtrOOi/0r7CTH2eXRf9rdsq1yc1ccV4pQggmBuNEJ6XrTJyalEwO2/e1kRbpIhEs/vRMHNonZ16bFsRNXF2b15SnNupCbUBjcUFuUz5aQCNyMp7hsHLyjAwdHLM3Xd5t7s/zU5KElHN+JgTUr6tm531HPNrM1qsRi44nerFEZtkioNH5fA/ZxjEIuncOIa3EfHf5Fi2BGZU0XVvj2RdSqtwgM29p8NSbEsGsdzelJI9NFksCGox3R1N1j1324L6xrHPE3TRIjQzni/23ZUjy63O58fV11K+vIlgaoHBWPpf89FyW3KX0XqgsCOGg4ju2NExLoBeFCRQF7E2oV5tL0GDP/d6IZ4Dd/3qYow+ecHlJk9e5qYEYkZ6IPbdSx4Pzf/myYs/1GaDxqhp2/Wv2XBXbvr6f3LowWRQfrbc30vPGoLt+Jr86nu+hfGkxRszCsNS66s4FBI1X15BTHVaJbJ01XKq/DRPym3JouKrGdQw5a7Nhr5F5zXlEer3BBiOHxymcmSWPC+rwtbAl33PjKKXiLY5NWJ7rmCUF5qhN1ee1AUVQtqQYPZAIGXPnYFCj5ca6BLd9Wps5odG51Tnc/Po6Gq6qJlgaoGBGHhf/ZDnL71lgo0u9bQeJlpXmREqF7td1nVvfXk/9+iq0oIYeUgjVm7epnFAHf9PmeYg72TPFyOFxiucWct3zlzL371upWV3B/A/O4Lrn11DQkr29HWl7sttzLbFMSfsz3ehh4erK5P62JOTPyKN/x7CnTu3dMqAc5RYZY82wk6O2P92tDgotUl5oGu1Pd6OHNEK1eTZHr+pHw9JcB1LxnAKue34N8z6QVO8X1lBo17vlpnqu+ONFtN7SQO2aSpb/4zmsf/hifDk+2p/q8k4MaUo6nu45bbtNJwN7Roh5gGqMSZND/9kOwPnfWsKFP1hGw5XVNFxdw0U/Xs7Kry86wxKy27EDe0fUoX9anxgmHHvsJHpu9rBJX56P5mtrlJMkXTQoW1BE6aJity+T7fPSpcUM2mWnzwPDhKMPnVAJzrP4OSzToum6WkxSx5vK46JRck6R5yGr81njNbVksx2qLijHsnWakbYOGZZaSyzL8tSZ0lLgEkvC1ITANEBKlXR9akIddI+2ZY86dGye8/5lERf+cDkNV9XQcFU1F/5gGef/b0VDcPB37Z4HJdGRGAN7s0cdOZJbl4shdUwbIGIYgnBdPnpYp/1pLwSsqlf7U934cnxc+cjFLP/ifGrXVNJ6SwNX/PEiWm5SUSbHn+jKiICx4pL2p7qRUpJTm5NWtka4Pt/zADJdNL/G+CmD2FRinEYnpJ3I+nTXeo9jKe26Zau3KWl7qotQSZB3bLmc5pvqCJUGKGjO5YLvL2XVN1UOquoLyxKJ0x0RyjbX/Hq25RcpBe3PdHuOc2lJ2p7spvG6mqTfJ/9ArVOB4gBafhDDjny0LBA5/tNGDQN0PNszTdld6AGNcEM+8bhK/myiEze1pIOQGA+ve4WXP/k2b33nAK/euYM/XryByd6pzJuelTMSX0hn/YMXsuLeBWqO3dzA5Q9cwMzbGwEYPjjuqXsme6NYyRx9aSItmP2exqzltt5Sz6H/zIxIBgUU6H9riHBVImdK8lj05frU4a9H2c4BPsBVj1/MorvmkFMTJlyhaINvfO2y0+aBARjviOC1b4mPGRiTBjnVYUx0pFDzwDAgWJ2DP8dHx7M9nlGLZtTi+GMnOfx773pbcZk1p5cj/buGybqnMmDeBzMpcB1pub4WPahzxR8uZMWXF1B3WSWtN9Wz7nermP1udYhRf3mVe+vkNi9ZWEykb4pxj6S3ZsTk4O/a6Xy+x00+nlovi2OPnqT5+lpMobnrnGXbyFJT+SmOPNiZcQgjDcnJV/qz7knOyvRylvn/rGAJgWbP5mQHZqguh3BFyKWLSf5eCqg6v4y2J7tIT0Lk/NyKK+4qxwHvZKx3XmbUys4FC0wNTCmOfalhxBO/AcngvnHKFhaCldjQgx36JyVmzHLRphn1NSSWYWG4+5xkpSSJjJqMd0fS+KIT3/dvHXb/2/7tgxz8fYfiFL1rFjNuVJzjQiNraLp0H0tkIJiET9GYbPjoW6lO97jkyIMnaLy8ivO+uZC2J7oy6F8KWnOpvqDcMyks2G0+aXqxdSixwJ+TDcEg0GzDWNMFObW55LUU4Avp5FQnJS+z+dTT2xQU+jGZhzJZfCGdQIGf5ffOZ9tX9irUiaUcx+XLS6hfX83Jzf30bxtSd08aK0KDJ4CxcgAAIABJREFU3Oow9esq6Xyuh0jfFMakiRbQ0HTBBd9dgmkjB5xNl5TqOucpjSmTDR/Z7iLxQSXZPfxQJ41XVNmISeG2o+vMlKikc9OINGXW8eDL8amyP7w9JazNNCRHHzlJwxVV1F86fei60IWaZ2TOMSOSxQKzJVDgZ8WXF7D13t1YcQtpqjYvW1JM41XV9L095Dm/1RyTrP3VeTyx/pWMr2e9pxFd13ntrp3ERk2kabeRCWOdU7z17YNUryq1b2VT20j3vAop4aL7l/Kfc54mnTTVX+hj1m2NbL57N9ksTGPCyRuQ1N9J7VLYkkf5imL6tgy5m35dA80Hq+9fztFHT9L75hCgnHWOHPpdB/Pf30zTzfUc/0One193LPoEmt+Jxsjk35WoSJOXPrw9BcVnxSVtT/fQdFWfjcYSrkMKlF7TNND86pDRZ4c/p+csMGIG539jMc/cspF4xMKISXwhQbDIz7K75/L4Ta9iSnBjdRx9breVFbeQdiJXQ9FhqrJtHvesukOCMRpLQ4uk1jtUEkwxGpOfXSvQKV1a7FKLOJFGugZSw3WMqTonO0sU9Y8xZSRFWyXaBiTRMYXcNSyFUHAOiJyxZko1xC0pMhAM6jBAlRcoDJA/o5DhjhjhmhAFrQkn5cbP7lLc5VaiP8c7J9n2jf0qsbv04sBW6Jps+hqUDhrtmFSHNE79nXvEVSSYZYFIOgAWdn85qjgWlTjBAW5/Sxg8lMTRbG/Wnf4WQo2Fxhvr2PsjRceT3F96jo4/qCnHmLpz0lNLYuMmmk/DEjZnTPK3EvQcH9Ep065TwvktBCAkRkySk+OzcyUk9ydIn4bwVEoJ0adJYugv8JPfmkvPG4Mg08YakN+Ym/TIqaNdYre5xKUgSOHvFGotO/+bi9h059vEokr/B3I0SucX0HpTPV2bd3reW7WbMkpCZSEu/vGKjGeXSc+VAYiV0kX3mzE3PY89fxW6HxQv6SX3nevZNqPHJzw/N2MWhs2FFSgMkNuYRywqyW3My+CmHtgzwrZvH2RqMEbTldUs+FAzmqYx0RvxthUNSeRUFD0ngBzK3FibFgiZSASerlONKTWgUz93vpUqmiduuQcqKQdyKL125MET9LwxiBEDxYcExCxe/OB2bntjLUIT5FSGWHznXM/2ASiZX8h5/5LJzzrZP+W59jv1/kvEillZI2ic9UUIQd3aKurWVv1FZaWLMWHatJJaGhe8ZPjQBIWtuSohcLrjGwgWBZj5riYO/rGNgX0RG90t8Afhgm8vQfNrjLRP4rXaDB9XtrnDbZ4+D6yYRahEORwzzrUFBEuC6Dk+xZ2fBlaSuo7mU851nyBjfhuW4uFVNCOZ9qCW67OBKd7IyNi4YUfXqIdJ1XtKVzz33jczbGRpSp59z5ss/8zsjHs64qDJhRDk1uaQ16JAETm1Oe4Ymez2doY6qNjpRFqSFz+wLcU5ZcUU5/yRh04oG9QDpS8t6R5Y+UI6M+9oYuYdTZm/y5L/Rlrqvi99MLVsM2apsh/sZNZtDQC0P9fDnn87hjRh/vubab5KUVq88U977QPe1D5/40t7mHVHA76AhjFlcvzJbgb3j1I8O5+Wa2rwhXX1/J7rNwi/cHWL13M76PlAQYALvp2ZFwBgxT8t4OnrX8OYMjAjFnpIUxEF/7wQI2KihzTPvgkW+ZXN46VbLIkZMxk7EFERQWnPHZuykFKy5av7mOiawoqDo/eMviiv372by/4tc/1JFsuwPMu2LKnoo57o5sSGPvcQRpoS05S8+MFt3LF9HW9+dR9jHZPu9ypCKKLK/vn0ZZ+V7KIHdWbc2sCMWxsyvnNsyHQbGQFymvxzoKhdLAAr1YbWNChdXMz+X7d7XmdOqaikS+5bzjM3b8xYDy787lI1jrLkgQkU+u2yNBZ8ZBYLPjLrDFohU7LtBU3D5KUPbSc2buLqbRP63h5m/2/asaZMb/S/hInuqayRAQg8KfiSxZyGFhKg+dpa3vrmPiZPpuptX47Oki8oW0QP6rS+o4HWd2T297K759GzeYD4hIEZMdGDisng/G8sUrzyWWwHK2bZes1Ln4MZM9Fz/J6JxC2EWkMnvOvm5G85K3++nEXY/5XLaPuEiwhxTtgdpNtYR4STr/Wjhf3u98lUJ8ce66L5mtoEPUqSSENSc0kFtZdWJNCitnFtWipppB7WbSRTqjI1LJCmYPDAeArSE5zfCCZ6IzReVWWj3hLfWxKi4xa1l5QnLU7pDwdDR8bshSPzZDM6GOfEy9m5w8Z7opimya/nPcPb3z/MZHeUsfZJXv74Dh67cSOgODa9yha6oGR+KuVFct0Qgq7X+j1PNo1JkyMPnUDXdW7ftZ7mG2rx5eoEivws+tQsrn9hDQDN19akUHk4klsdVsnIZJaydZWIzNP4lIonXkrJpnt28+Qtm9nx4yO89b1DPLT2FQ4+0OE0H15tCgJ/gZ+SuQUZX2t+QdM1Cgky644mrnz4Iub8TTMtN9Vx4feWsuYXK9F0QfPVtYigsHnS1LWWBHwatZdUECwMcM3Tl7Di3nNour6W+R9q5boXLqVyZSl5tTkuMtVB0Dnh1lIq3mIvZKExKTn4hw7Gu6KYSePfSrrX0MHpOfAD+X5KzinMrLdP0HxtDd2bBxLeqJSyTY48mJmUMV1KFxV6zjGEoPHyqkS4XJo4kQEzb23gykcuYvZ7VZtf8L0lrP3VeWg+jaarqj2peSxTUndpBcWzC7hp82WULy9GD+vkVIe45CfLWfkVtdno2TKYsRGzYpKjj55UBk1SH0iSqDEAn8/HHQeupOqCMoRPjZOWW+q5fceVAFSsKPGsl9AFtZdWpFAjJLeLoy9Kl5YSMxKfxU3QikL4Qj72/vxY1vbeff9R+rcNp+gtsNGdaDYVAHjPA+h5c9Az2ZcxaXLoDx3Mfleji1p020wqBOC8v2sGW2c680DaZVuoKBgtpGMI3UUEG6aG9PvQAjrFc4pdHZuiz22bs2F9tY0KTBj3pgXxiKRuTWVqQtUkkZC0QfCu99Dh8QRKmoST2LDAGJW0P9lDPI5bd6dPTEvQ8XwPEpFhYArbaTrRH3XXhlTktJ34U6hwzXjSvQ3TRlXa60Dy+Ej+W0rB1EiM3yx4lre+e5j+HcO0PdXDHy96mQO/68CMWXRtPJXhjLTikmOPdinnt7OukVhnDQuk0Jn9zsasUWzz/q6ZmJ08KsXJL8EyUZttt50SEStxUxnOBx7oUPU2Euu2Yarvjzx8glnvbHTpi5L727Rg4cdm0PlCH4bpMc5NwcABh7veu7/73hryPIxQPM4nGD4w5rm+Wxb0bhnkyIOKjz0dCR8bNRjvnMKf5403CVeFsgHF3DUWqbn9nzzWDFOFDCvUpvdmprA5z9VVDgLMaTdH9Fw/MVOz7y2IGwKRG0D4NEaPZ18vho9Mv5Y4eds80b8IyhcXKQqfpGdxxl7LtXXT3hsgNpGFplDCaHuE8ZMRfn/BS7z+xT3svv8YG7+wW6Ei+9SGcsePDvPw+tfofKGP/reG2fq1/fxuyQsYUyrJ3Wn7JRui2zlF8hprgmkjGgEa1lW5ND4p3wqoX1fFwQc6PNf/2GicwQNjGZ//OSKnq/dpaEhOJ2WLijw31WjQckPtX3RvTdMIlnjTDIbLg4y2ZRurgti4QX59bkY0iaP78pryiA1FObUnkrLpj0fh7fuOYFkWkX5vwE2kL0rpOYWeFGV6WKflpjrqL6tUztS0soVfJfw9+ECHZ6dEx+IM7B5xQQTJ62PMUGvBsce6bDRhUp3sOdb5fB/DR7Pz748cm8CyZMo6BamOpImT3k71ye4pGq7KTObsSO1qlVtnx48O88jVr/H2Dw6x4weHePSajbz9fRVJZWZxlqilZfqxOLhv1E5anSpGxOTQAx3Ur6v03LdofmFHBU8vdasrEkgCW4QuqLmojKEDY96RJBGTQw8oG/mZd7/J83+3je7XB+l5c5AXP7idJ9/xOoCyN71EqoiMyd4p/njxBjbdvZvd9x/j9Xv28PsLXmK8K0Lj1TXKVpWJ/nb0fu3qSurXVXlGBmt+jcYzqHd+fQ7Xb7iUxZ+eQ9P1tSz6X7O5YcMaClvzKJ6rks6nix7SmPGOeurXVmYtu+Hyao493qXGb5I9o+xWweEHT9D2ZHeGU1Ga0Pli32l1U12WsnW/RsPlVRzKgjw2Iib9bw9nL/ulviQgwFn57xR1YO1hI0uh8rR5XSPVGVfHc72YZNrQMQPan+5JsREzy4XyJcXc+Npa6q+oIrc2TPVFZVz3/GrqL6+icEYegSJ/xhwTAUHrTae3W05b7/S9f9L/E91RIh7U0GbE4vADHSryIEudpFTrrKcPzJJZ96iOVJzn/b2UIOxpf/PGdcz/cCv+Ah/+PJ3WW+u5ddcV6PrpI4tyqsJc/9KlLP2s0i0LPjGL6zesoXhOAQUtuQSKMgGaekij9cY66tZUZqWGa7yyhqNZ8iVpPk3t+9PAEU69zs7s/7qcddj/lYu0pKu0HR4qZ9MqLUjA6xM8eA5furRUOF/jlVXojoNYKP6vc798DqHiAH270pPa2kiPU/Ekx3EqdYr722x7MAAplKNUOj9MvKQF0VHDRX6lb/jxaWrzOI3m0HQt6wMIXfDmvfuIeSRI7Ns6TN+OIUqXlHiW7S8OKM5mOzmRYTsJTNsp4svxTa/Q7C81v0bzTQ3UX9dA440N1K2rdn+y8KMzyasNYwnVl4al+Lcv/tFS5fCyNzrJzwbgzw/gC2kJR2Day1/kp3fLIId+30l80lQHPTGJEbF4/Z49TA3GPA12t92AC7+3BH+ez+Xo1QIaOdVhltw1J/E7n4al61h+n0JT2resOq+Ulhvq8YV1lcBLF+ghjRVfnEe4XCGqfCGFLrjo+0tZ/Ok55NYo9L9lo2Sk7UBxHHGO4R0diWFlOewe2j/mOr2lxzw4k8SwF31nCYECvxu+68tVkQlLPzNn2oGY6CNJ16ZTbLx7D5u/vI+BvQl+/fJlpaQiutTfvqIAQggu+XEmskfogrU/S6BYimcXsOJL53DBd5bQcHm1i9aqWF5Cy021qv4ChK4W9NVfX0KOzTkeKg7QekcztVfX0XxbE6WLi0/bHs4u2uG1d9s0qU9AJSqc/5FZNN3aTMu7Wpj93mb3Fqt/vBTN5sc0TOE6Fs/753PQhJbk8E7VPZalchXs/PHRjLIne6Js/caBaZ0sSIcrPqG3DJvDWiHULbvPEk7SBD+3IDYWx4x5333owBjC5zgLM1+JBKaJEETTSnyvofHaXTuZGo5jxNSYN6IW411TbPn6fsIu8lA5EeOGqoOUAuHXGD42nuRASbwsEyZPxchtyHHr5rxLaY8LPbuTU+iaPaaUTpqKq1fMVP9rQY3B/aOedZYmjHmEbqZ0iWmRjc9dSpIcvx73lwKfneA1c34rDtBXPrHDk8Nz0+d3KYoD2xGS3t/GlGkfeKmyHIoEy5mjuT6K5hS4GwinTyx7/OVWh5PyjaTObwkYhpmU9yR1nJsGmJOGq/Pipmpvh8cyPmFSv7bK1WMpbYKgbHGJQlOZgqiR6DPTzFw/Msc5xMfjWQ3+4cNj06g9pQMmB7zRx0bUQlqS3MbclE2isxkonF2gDmiS1q70501E36XXXTlpHY5dr2cTQrj0TMnOG1Ch1GbMciPknMTuZtSi541Bjj5y0tVxUtptZmY+oxW3OPpYF69+Zhfbv3uI8aREzl71cd5jE6aNlszs0yOPdWWpU1LtbLskWac6Y1EAGz+/i6lTUdcRY0woDuc3/mkvxqTBtm8edDfzzmvyVIzNX9pnUyBm2hVoglBxwNMh59ZPyqy2hebTpjUVQVHazPvbFrX+aoC9ji342EwKmpIjKtIbBLeBoyNx9vziOK/cuYu9v2ojNjZ9DhdHQmUhtx7p9T4T6olpRWBTpKWNhz9jY2wZFsee6ObVz+xi27cPMXYiQbuy5mfLlZ4xk9ZYYM3PVsA0tp7mEwRK/K5ei8UFsXgiGjZYFOCP61711AF9W4eZPE1+HM2vccmPl6KHdZcf3JejU7awiJm3NlA0M5/5H5yBpWlE44JoXGAJjfkfmkHRjHwGDox6O64N5VAkbU8Ut/dErjcJSNHnzr7FVkJebW93C5FTMbe/nDni6oPTIDI1v44IeeQNAMqWlTBybJy3v3/Y1T3SVAjXHT8+wvDRcaJjRsqBn/scth4CiI3F2fvLNl65cxd7fnFcJdJNusZTpIqCW/CRGSl87VpAY977WyiepRJxW4bF8ad7ePWzu9n6rYOMdiTG2sqvnEO4NOg6v3w5OsFiP+f988Lp137bNj7xcn9Gm3a/MUj7Cz0Z0cjJYsUtNt+7V+XRsNd4Y9JkaiDKpi/sxhfQWPb5uUip6FjjhhrHeo7Ghd9eREFTLgs/NjOVH98vmPu3zRTPUeAsy5S0PZNU7/ZUaqNgYYB5f9/KRd9fyvwPzbBpNFXUxCU/WoYvR3dBWL4cXSWeflejKvvjM1X+DB2Xw3ru3zQrcJRt8yTbua6d8GfoCC8paMxl4SdmKVqr9LLnFWaltjGnrBRO87Py/04yqJdskRIEAhHI1C0AweIgU8NRb9tCCiZ6ptw9ePo6pwV1dPuwPK82h9X3r+CmjZdx2a/Pp3BGvv1cgtU/tsd5QEUg6bk6xXMKmfu3LWdUN8uUtD/Xy2uf283WbxxgJCla0MxiI1uujyvVjnVzq6HmpuOvSXkB4fIQTdfWUrkykddP8yu/xIXfWXzaPHS6pqfcO7nNc+sSVLv5MwrxV+ehV+RSMKswKzLeSwL5fua8r4WLvr+UBR+ZSdi2w4SwdUuu7vrvfDk6RTPymff+ZiZPxWxattSXZSpgSdb1QKg2dQ6A0uvlecp3Vs5IzlLi/JWL48hIdm5JWxtpAmovKvfcdAtd0GojeKIRqQxaCxBqg2/YFCQDu0fwQkVZcUmPze8lZeocdiZ2sY329prfofIgB36bHX2852fHaL66mh33H1fpN0WinkX1YcpsnmevsoWA5XfPof0ZL35RQcs11Rz5UxbEBrDtXw4w1jGJk+lb2MpdSogOK860/JZ8BvanIxQFjVdWUXNBmTdtTI5O6021SCnZ8IkdtD3TizFpInTY+6t2zr17Dgve38zYyUlOHYok7i0hMiE5+kQPK++eQ9nCIvp3DLk7CIlaZGbcXGcjBwUmMkGN4C4mgiOPniQeSR0P6hpJ50t9VJ5bQs/mzKS8ml9QvriYgb2jxOLKCSctsExBdAoXzXHwDyfY+IXdKtTTkBx+6CQ1F5Ry+c+Xo+mCVd9YyIx31NPxbDd6SKflhlqK7EV/OgnkqQSNiVYVSNsNITQYOpAd2RgZiHHu5+aw6Qu7Pb8/54OnNyiKZuVz82trOfbICUaOjlO+WFHO+EI61eeXeaJZfDk6M26qQ0rJK5/exbEnulUiRw32/bqdFZ+dxcIPtdL+TK9HiSph9HhnRC38IR/WlGF3tsBfHMRf4I2eSxYhBOd/bSEzbqpXPMNB1eYzV9XQ369QT49et4mxzohLQ7Tjx0e56rfnUnVuCRVLi+ndNpiCPtb8KrLAQTokleb2idowS169cxdHH1f1Rqh6L79rFos+3IplYCe6SVihlimIR5VDXkrhoTuUcbTvP9qylA2HH+pk5d1zefXOXRntIYEF/9BKx4u93rpJgj8vAH4N000Op5SPKSG/NsjgwVG8REqIDMbY98u2LL0Bu396jILWHEaPenPZNlxZySuf3pWEfFDWkxmXHH+ii1teXc2BBzqTjC3hjr26i8rY/8v2rGXv/ekxZt7SwJZvHkTY+sHRqXnlIfIb7BwTMjXU0kGAznlXA2/884GkO9qWHdB0VRXdbwxlLXsoyUD06tP0JNqZMs3uUKiNxOD+MQ/Hn6CwNY/dPzvufVcLTr7S7yJH3Rva/Y0Fs26rZ8tX93teP+OmWtqe6nad4I4YlkAgaH+hl2yHIFIKxjunVOSBV6Vkmn/J/twZ55YlOf5Udg7tjud7qbusgr7dYyRctjatk4Syufl20tXMemtCMHjYW6cqh3mc8mXFTPZ6J7atWFZCxwveeg0UZdipPaNgJfyG0u6D7tcHWPCBFvvZMtcxy8J2FHm365CNcs9me6icHwLTkhnrOwj63hryRB4ZkyaHHzxBfmMOvW+n8kWbltowF7TmYURMHrtpM8NHxzEmTLSAYOd9x7j8F8uovbBMOV6sRL2cOagL2PGD7DkJerdmn1+O1K6p5NjjzpiwN7USdB0a1lXy0offyqibNKHtmV6qVp7IGGvOvDv6+AlueOwitn3nMNK0XDoqy1JjpfGKKrZ8bX/WNh85NkHdpeWc2NDnHoIACJ+gcX1VVoIkZcqqGy77/Fwar66m7fEu0AQt19W4iVdn3FLH4IGxFFo6AH+uj5K5BYy2TfDItZswIiq8/+hjOm999zA3PnUhebXhjHKTpWl9FTt+cAhzynRHnEQdNJwJAnc66d85gkSk2ppS6aWjD3cx991N015vTJk8ccsbDB4Ys9dvwa77j3LZT5fRsKaCcHkYLS+IMWYoaj9doBX4CZUFaZlfyMbP7PJUrc1X14BMpy/C/V9KiA0bnn0tJbx+505PfZ/sJKi9uIKbXr6Uow+dINIfpeaicmpXV7hggz2/6bQpjuy6xmHvbzpZeucczIjMWnanrc+TbUVH71kSmq6r5dU7d3rWu/HKaoRPU3RbaSKA/KZcul4f9Lw3Ek5s6COnKsRkT6azM1wZZGjfGKahDlB0m9LRiWI49mg30sAzT4QZs2h/pof4mEOhRlq0jmDk8Dj5tWEevmoThp0c2RfWeet7h7nhiQspnV+AP8eXcXDtC+vMvEWhYGNTEsPSkDbiwbI04rYdZEZNnrjtTQb2jqqx5hfsuv8Yl/1kKY2XV5JbHeamV9Zw/LEuBveNUDwnn5br6/Dn+pC1En9ulrJvrWfPvx3PoEZy6rbvF2348/0YkahnnxfMyOONL+9L0Sug9Jo6BJAUzSnE8vkU/YUEfBq5TQVoPuWUattwimgkQbMXj0D7hgGWf161/ZO3v8mp3SMp9V573xKarjj9/K++oIybXl7DkYc6ifRFqb6gjLo1le44X/TxWdSvreTYY11gSZquqaFsodrfNl9bzcHfdGTeVMDMW+ro2zbEsce7kEmRcEKHutXl04KvHFn0sZmq7EdPZpTtOPg855klaVxf5Vl27SXlbt3Oyn+vyKQ1OV0KW3MRAY34pJlhMzVdXU02ewkAIZh5awM9WwYxI2ZKKZpfo2L59EhzUDkbbn51LUce6mSiO0L1+WXUX1aJ5js9rtgyLJ5+91Z6tw+pOeYT7PrZcVZ/fxGt19ZkeXb1Wag8iJ6rMzVuup9LqazqlutraVhXyaZ79mCZMsVuET6N5msUuO2yX5xL96ZTdL7US7DIz4yb693E8NNJQXMuOdVhxSUPSf4YmG2v3U++801OvpKwk1//0j72/bqdd2y4+Iz4+6eTyhUl3PzqWo4+1Ml4V4Tq88qoX6fafO9PjyGlwLRtaHD2EoJ9v25j8Udn0LXxVGYUjQWV55bQsK6So386kVIvgLKFRac9yDgr3nIWYf9XLppPuJMw4/RRKuPPQc7FDRIUEhbEIyYnXjlFxwv9GFNSJZYxNcyo5I2v7CcyEM3K4w4K4eQs6s6940nh99nC4pxTPjHNnNf8ivdeSpU8LGZqxC0NxYcvU6qbgnoCAiV+CpvyqF+XyR3uz/ex6psLpkeS+zU7XDeBbJDS+V8ddqgDjbQ2lwqx7s/1cfEPFttchpqLXGi+tobaS8o5+dqA66wHXBTNln8+wGR/lCdvfzNxT/ddsPNfj2KaJhd/fzGh4qCN5lcoz8KWfJZ8apZ9iQA0LDuBopR2tIEQRPqiKfd0XlZMhdOv+ckyz/AwB+X98qd2Eh83MexEREZUEumPsvWbh4iNxtn4hd0KHWQbccakSdemAdqftZ0IEiYHYox0xxjpihIZTEVixScMdv97G89+YDuvf3W/i2QRGdnYE+9SCoVQySK+sM7sdzVSurAw47tZt9dT1Hr6hHsAwUI/c/+mmfO+soDWm+rcRcsX1ln9o6Up/e0L6zRdWUX92gq6Nw8qZ/2kjfyy+3vrNw8x0TOViop0qDbswxjhE7z8qZ1ExyxicY2ooRGLCSL9MbZ+48D0D+y0khBULC9hxRfns/QzcyiamTgg2fWTo4wcnyA2YWJKiEct4hMmL370baSUXPSdRQQLAy76SAsI8upzWPYZJ6IiFd2a/N7z5qBy1tv1xlL13vatQ0x0T/HiR97CSkGqq2s3f2kvlphG8aAcFanlJ66Pj1vkNyY409NRFf48XwZCzdVZltKpRrKzPul9vCeG0DSXrsfRewnaETltTgTNr3H1H1d5ImWW3DUbn0/Pirg2piTGlMO3mlnv2KTlRr54ifALjCnlrJS2brCkBmgYMdv1YKPzU3WqwDJgsj+Gd38LTmwcJJCF4gQgkOefts310xj1ekhHD3v/Jrc6TPGcfHcOxQxcChmEClmfDhSi+UTWNpdS8dcu+5ziHk44SCCnOsiKu+cysG806ZrES1qSsfbsSQYBhbrLchYhAeFyuWf2t/BpDO7LgjS1YLR9ksMPdyWNl8R94hMKJZc1ikWCL6i7bZo+zrWgRn5djutsdvSWc7+cqrCL2EoXPaDh82v2IaCdCDYJ5WpGLcy4ZW821bofM521TBAdiWNETO96S6UbQmVBLHssRO2XaYIIaEl0c5nrO+BSdci0ekmpxsqI26dp/Y06SNj7qzaGDo25zikrJjEiJi99bAeWKe2xJtz12bLXZ0uKFHRrhpyBD6R0fhGZY0WghXwgRFZ7zopZmIZtj0g76bR0IqjAnFKREaqeTmJmDangFBhRy9V7GTpXKt79VV9fQLgihC83EaWWWx1i5b3z8flVv6RfB5BT5SD/JJMDcUZ6Yoy8KFdKAAAgAElEQVR0R5kciLuHibNva6ByRbGyXYSyt3y5OmvuX4bQBK99fo+KWookELiRwRibvrj3tG1a2JrH4k/aKFifhvBr6CGdZZ+bQ37D6Tf104mm2yc2yWPR6bNpdLkj+3/bwcD+UdeWtOyIyQ0f34FlWGy8ezfR0Xgi14UJseE4m764F19A47x/mp9xz1BpgPO+Op/JU1GXEsq0X05049RADCfCNnn+uzpeT6Ai0/szmXoqOmow0h1j+GSUiVMxpM0Ftfvnx5nqT4+igUhfjN0/Pz59mwa0JN2Qqc99AY3zvpxZ72BJgFVfO8e1B73GYlFrXhY7VM1/LaBx+a/PzdjbCB0u/+W5SGnnbHASr5qJ+T85EFPt6jVHLQU8UUhK4UaSJestPaSx6Z69RIdiiQiaiMnUsLLLhSZYc7+y7/WwOi3w5ehUrixh5q31DB8ZZ9dPjxGPWMQMe88VsdjzyzYG949y8A8nGNgzkhhrcYk5ZbHhkztcrnd/jo9Ztzdw3lcWMPudTS4djNAEa36yDD2su/pVD2pULCtm1q31RAazR0xFBmIUtKpoLIfCw1nfhU/gD+tZ93NCKGfgSx99WwHX7M6z4pKhw2Ps/007HS/10btlyD44c/SaYGDPKEcf6+LQHzo5tcuj3p/YecbJF/t3j3Lg4W4OPtbDkSd63KgHsPXaYJyR7ijD3TEmB2KuXlv5T+cQrshcR1fcPRdfyMe5X5pHuCKIpdtUJ7ogWBJk1b8sOKPnAiiZW8Dyz89l+d3zXGc9QE6Vd2SRFlQc/ed+aR55NeEUfR4uD3HBn1H2WfnzJJujVOjK3pwaMfHa+5/cPEiwOJASRZK4GHIqQzRfXU39mkp8YR9SCNvm9nHpT5ahT2eXJEm4PMiCf5jBeV9eQOP66jNy1gMceaTLddYDWIaaY698epdr6yXvkV0aVqkOPs2UyAH1twSMKduW9LBbwNkPKf1Uc1E5K+89h8WfnJ3hrB85PsGT79nCr5a+wCM3vk7/HgXYEEKw5r5l+PP9qt0Q+HJ8lC8pZd57G+nZOsjJV06pZ7dfUsLQ4QkO/u7EGbXN6SRcFuScD9ltfmWizU2Xmz8zOseMmDReUUXdmooENZ1QYLzV9y3FF9KJTUkkqTaylIL4aXKlnJXschZh/1cuigfW+/RR8wm6Ng4Qj5NiwBqWBAuOPNqFP6x78tRpPsGJV04hfAIrJj1R7OHSkHJcJZUpZSLBz+DB7NyhkVMxVnx2Nhs/m4mCBVjwoRYevmpTBurCAsZ7VFLSimXF9G1PRcNpfph9eyMA635+Lide7mPL1/ZhRCxm3lLHkk+qhCdz3tPIzh8d8Sz7vHvn0f5MD2//4HBqsiABxTPz0PyaonjwkPbn+wBoWl9NxavFHH+ii/iEQd3qCsoWKWPo+JPd3m3uF5x4uZ9Inzf3J0DH8/00r6/iltfX0PZkN+MnIpTOL6BurY3YyEIr4S5mIjtVEECoJMC791zBrvuO0LVxgLy6MMs/N4ecyhDRkThDhzL7VCXc7KZhbTmaT8NM23EYkyZHHumiaX0Vz7x/Oydes091BRx5tJslH2tl+admMjUY48ErNxI5FcOIKCTL3l+2c+WvllPU7Cyg6c+unBDz/q6Jt77jjU6c+241Hq5/4iKOP9nFgd924AtpLPzoTCqXnQH9yxlIw7pKbtm4huOPdxEfN6hdXUG5099Pd3vy6wpd0PlyPy031LD1W4cT6HQkhoS88iCBAj+n9oyktKhE0WUce6qHS76z6C967sN/Okk8mjrJLNT8HG2bJDZmEJkwFd2QCcIQjA3EiU8Y03Bkqk398ad7vOutCTpe6qPvrWGPa5WzcXC3GmdeETQIMhLZJpctgeNP9Sg0oEzoLinVQUrnS/04ORAy9JoGQ0fHyIbutwwVbeEYXs7npo1MzisJcs7fN7FhuzcaduFHWgmXhXjvoSt5/e49dL9+ilBZkAu/tZCS2QVuOL/nOAe2f+ewx3fq+94tQ6z518W8tC1L2R9u5bn3b/d0EMcnDAYPjKegqpITnAJsvGeP530Bho9MsOKnS+jZNpTxdNKu94Hfn8Aw1X2dVKbOWmEkJX7z6u+qFSXoAR0zLTrIl6Mz+/Z68hty2P7DozZfpUKhWxZIG/174rV+2p7IRKMLn7CTJ2dD8KjPA6UhDF1Dxi1FFRzQ8JeHkaZkLAtnMcDQsQkXfemFNA0UJsJOPaPUbAdR5tMJgkUBRpOoVtJl+Ng4Y22RrEjUnT9t87yz89nsO+rZeM/eJN2TGOfzbqjFiFpqHrjXSNvJCwjJnHc18uaX92XogJyqEHkNoez9LVVekVSUrH1YgmBqKI5vmsMhEDRdW03PztTIAkOqg6GSOQWEy4OevKcFLTlULCkiHjVJAAdVvUEhHqebB71bhxlrj3gmGYyPGwzuc2ijMp9ZSljy6dns/skxz3vXXVI+TZ2VHMtCm2MZkoG9I9nbHJCmyNrmliVpf77Xmw9WE3S80Mes6+rY+dv2jPnt06FxfSWapnHLq5fS9kwPI0fHKZ6VT8PlVegBjWBxQCFwI6m2jx7WmH2HWr9fvms3Rx7tcm2nY0/2MPeOei786nw0v8YV/7GSns0D9Lw5SKgsQMu1NQSLAjiUGxmOUAs6p8l1lCyLPjqTpvXVtD3TgxDQdFW1ouL5C6V0QSG+HB/xdORxjs7sOxpOe/2Rh7sydCIoJ2X/7hFOvppZb5lU73l/20zt6nK2f+sgUwMxmtZXMedvGtE0jbGOSMZS4fw/0jHpRuooScwxDag6r4S2J/sSkQMkDjud8Xbk8S42fHInZlzRv3Rs6GfXz9q48bFV7P33tqx13vvLdvQcHWPc9NRtNeeXsN19pmRxngLmva+Z2kvKeevbB4mcitFwRSXz3teEpmk0XVXFtm8eyKBh0QIazVdV89b3DhMb8zZAqi8opWROAe/avZ63vnWAgX2jlMwtYNldswgUBOjdPpT8GCnPJhDILI5nxyRoubaGA7/1RlzPuKGWV+/anXkoZ8HJjQNIKalcUcJtb6zl2ONdTJ2KUXV+KVUrSxBC0P58L0ZMpjyaBciopO25Xk683I/hMdakBf07h6k6Dd/zRH+UWExF3mKDxoa7o5gxa7r4OQBm3VLPiU1DtiM7sb77/BplC4tovqaao4+cTOFU13yChiuqGNw/bkdVpYoZsTj8py5yK7PTWu37j3aw8LRjEdC3Y4TqldPX+41/OcDbPzrq/n/wjyc5/GgX79myhpyKEJvu3cf+33W6eu340z3MuK6aS7+7CF9A47YtaznwHx20PdVNqDTA0jtnu4dKsTGDyVHLPvBWOjwybhEdMcj9C3NUz77DQVyn2VxhH+VLitF0wc0bVtP+XA9DB8cobMmjcX3VWfTt/6C03lDDod93poxz4RPUX1pB54ZTWcAfgt43h1jzwyW8ce9e0n+kBzVarq1GaIJL71tK/1vDnHytn2Chn+Zra1wKlv9JOfJwl6dPROiCnq2DyuGd+FTNf6mYnAYPjRMb86Djk3D44S5CJQE0n8BMy8fk0FydzgfQvXWQR27Y7DbbZE+UBy/fyLqfLGbG9bWULSrits1Kp0b6olQsL6bmwjKEEOz9RRvpuFVnNu37bTtz3336Nf6/KoUzvYGIEshtyCU+aXLs+T6MaAKBb8Ylhx7uov7SCk6+3K9ALpASzTV4YBwjYmbNrXdWsstZh/1fuXglbnJEC2iMdEykIewSf/duG6Lp8kqERqaRJ5QiD1eFmOiIZKLZdAFBaSvR9HtLlUDRr6lNm4XN+YuNx1JOuznvbODQg530bUl1MC36+AzyqsNEhrwd16YBwgerf7iEx2/YRHzCxIwqOo+SOQUs+eRM97d1qytUMqQ0WfG5ORx+6ASTXanOlsYrKyiemU9BQw6dL/XRv2MYy1ChxIF8H2t+snRa5FPySXROVYj5f59Jt6KHFAo7YwMpRCKXQBYJFKgp78/xMfOW+ozv/Xk+fGHN07DOrwsTLA4kNk5OsYA/rBEqsnkXfRqLPzGLxZ9IvX66emsBza67h8VgI3k6X+lPOOtRPzUiJm/98Ahzbqtj18+OM9E75aKurbjEipu89Mmd3PzMKrIeNGgQKgyw4u45bP16Kuq8ZF4+Cz/a6v7ffHWNCvf+H5CcihDz3+/R30FdzbE0e0QI8AU1pkaMJKdX4j06aSFEgps0Xc70pNsyLI481s2hP3XhC2rMfVc9ZbeqxdzhRM24d9RC8ws2fHon8cnEST0xiTkc542vHWDGddWezkRpV84XUmhHh0PZrZmQ6EHNRkV5b9UChf6Eqy3tJ8In7GR6Nl8+CbechiRYFFBzTCT4gZ2ypaPXKoJEB2KZes2nESyY3kDV/Ql+9KSnAiT+ggDjXVMZhwFg80H3RylqzWOyP8pIT5SxYZO4ZjB4eIKS2QVZOSqdIhw0U7o4kT/B4iCWgPQABSkUyjWahVvYjFpoQaH0NqmOFVDt6zuNbgoWB9V5YXrZmloLnI+lFCnnLRaSYH4QQ4JPZJZrWur6dT9fzuO3vakirFDt23J5JQ3rKul+c1Bxq6TxxUshiI0ZrP7+Yh7Y/JJCMCb9ZM19S9F9ujqYjsu0saTaOz5hsPGevUlRVUBUMrBvlEN/6iJYmJn4ySkgWOhHBAQympksUAKhonDWcS7BTrTprfcChX5Ctj5Pn0YSm7vTvm96vQDCxdObj7Fxw123k+sEkomBGAE3X0saihXVx7Nvr6f9uR46XxnAMCSaLgiENS772XKErk9bbyNmZnXiGHGJP8fnHvYkiylVHpmODU4IcppOHVW2wvr/XMkjV7yqqJjsB9H8git/ex7REYN4NPnaxN/tG04hNEUZkT6/HQR+dCTu2eamrVOzigWBsM6CD7dkOO19uTqX/WJZ9mttmZpmfgu/mLbNhc9Lrznfq1wvmi4ynPaapnRq8awCZJJOdiWgq7VPU2th6/WZyVQ1XbDu5yt4+l1vKtBHXCI0aL6qmpZrqunbMczhh0+6iDiA+KTJ3t+0M+/dDZTMzkcIQfWqMqpXlWXcX/gE0iPvyLT9kSaFrXks+uiMM/79mYiq93KefmdSvXVB4xWVtFx3ejvFF/LWydJS+tqNYiJ1LIqkPixszmPNfZljKzaZJSkQgnjEQPqVPZA+xywkuaVh9/9kW9MRM2ry8p27U/rTmDQZPjbOvt+0T4vo9AU0gqVB4uOZeVEknFFOIoCpEQPT58PAwLIEZsRCy1WRQyvvncfrX9qHYTeBzwcr/3Eu+fU5lC4opPv1TMocza8RyFNrQWw0juVTyeOlTyc6ZhIoUAhZPah5Hujl1oTIrQgiNYFlyJQ9k6YrFKxVIT31vfBrSFMqwEzMzOhvPcl2DxYFmPuepsz2GIp5RuBIqSgKs0WxSindNh/virDrF+307xqhbH4BC9/fRH5dWOUF+fSulDXUjEhG2yfZ88t2cm00t5fkVIWYGjFsJZo61gxDcdiv/NI8ercNMXZiEmlINJ8gpzLEBV8/R+UcsLzngS+sK1sxi/jCeobd7oolT7tfi08aKc5699KY5KVP7WTVl+ax7zcdKePBmDQ58mg389/bSMXiIjRNY97fNDHvb5oy7rPxS/uIjcbdfpOGJDZu8Ornd3PDw6umfbbTSfPV1XS+2MexJ7qQplrbhIB1v1juUt5ofs3eU/1FRZ2VM5Rz755L3/YhRjsmsWIWekAjVBLgwm8uYHB/doCk0CGnPMiF/3shGz+7S+1HbXDEsrtmU2xHXZtTFn17Rul8Y4hwaZDic4r+2xz2UkraX+hj3392IuOSWTfX0nqtoqTxZYmeRSp9nuysT7wr/5MW0DDj3pbLZM8Uesg7AkfYOfROJ8996C3PbeqGT+9mhm3LjHZG6No+onIVBXXKFhURLPBjmTKrHWvZ1GfGlMmBP5zg2FM9hEsCnPO+RqrPPT0F0ekkvz4HPPwOCCidW8Cme/cSm1BRk8km3aEHT7LyC7PtaE+RElUM9gH8Wcqr/5Kcddj/lYtl08NID7SoBZzY6M0xCwrxMOvWeg480JmJ0pHQsKaC0fZJtn3rQAp1hRBQvriYkcMRsvHvSqBodr5KiJj0uaM7QhXKmXDdny7g5Gv97Pt1O/6wzuJPznTRA9MlcBrvnKJyWTG3bV5Lxwu9Cml+TgHV55eecUKPd265jEN/7GT3T4/hC+mc90/zqFymFGV0xODUsQhxqSFN5XE0JyxG2iMUtuRRvbKErs0DKcpQD2nMuSPTiZ4us26pY/9vOzLaXFqShrUVFM3KZfjQROaFGtR6bEaTpfaCUuXkyUBFKMSWHtLY8bM2F6kCIJEYcUn92syDjWTx5/qoOb+Uk5tOeda7ZlWp58LoC+nMub2eQ9Ocop949RTHnupJo0hREh2OYU5K/Hk6sTEjjV8bys9RVDeLPjKD5qurefsHh4mNxJl1Rz2Nl/2FMJP/Bpl1cy17/70N00zvb2i4rII3//ehLKhnUyXeye7XPq1IS/Lke7fRvSURbtjxyikGto6y9HMz0pwviYIkMDUcZ/BQJo+1NKH9xT5arsnStlIZZ6031LD9X48lRQ6osRaPSpour6Tjhd4kvuWE6CGN8gWFtu5wCALU3xLQLZj/3kZe/8qBFN0ikZgI5txRT9P6Srb98Kj7nVN2bFLSeHklk/1Rtnwtk5c8tzJEQaPiNM6Gevai4nDLEYJDD3VhojzPzhbXOdjc++sOwmVBHlj9qrvJig4bPPfBt+n/6AjLPzXT3pBn8shblmDl3bPZ98sOT2Rh01WVHH+2B8NU/ZhcttA0Ol7ux7KTlHtFTEWHVd4Ai8yIKomg5R11dLyQiUiVEgJFftqe63WjGhwz2AJ0v24jOrPpZcFkXwQQGDKRQtXeT7jXvfLFvRjxxDVSwoGHezj3ninanutNQR05YpmSzpf7Oedvm3jn25dx+PcnaH+ul7zaEEvvnE3ITg5XPCefvt0JahtpbwaqVpXSs3Uo7XDMRpNOSQ7+oZMln2ih6/XBTAcusOQTM7DiFkce6UqpvXLuajSuqcjKeVwyrwDL5lnPcEzZfbL4Y610bRwgc1sgWPKJGRx5vCuF3smplwCqVpSi+YVnuwUKfRz8fbY8L4LOl/ppuS47L6rQBLFxk/6Dk1i2g9s0IR5XHPPFs/JUiK3HWEMIRtojWe9tmVDQkkfvjlHFce98bj9b0aw8dv2sLcuzQ9uzvZgGROMiMdYkyCgMHhxn+Gj2jW/nhn7KFxfS/Vqmww4EtZeU0/lyXwYazASEVE5mSyZQS8n1dnph5T3zmH17Axs/t4upoRizbqlj4T+cmaM4OUIm+TOhgTTIGlmQ35TryZ3t3kNAyzVVbP2XTBo2My5pvrqap9+9NaUtnBpZlmRw/xjlHpR0yVKxrJg7tl1G+zM9TA3FqFlVSul8dU3bi71Jzl2nchIzBh0v9VEyO3seHCEELdfWcOzxrhT7QgsIZt6YeXjw/1oqlhbzzu2X0fZ0Zr1PJ3Pf00j/zpEMuypcGqB4Tj6mhccayRnkDEFxDWQFSegE8wNEBrxANYKcmqDrWPYa5/27RjyuUw6jo493c+4XZvPs+7Z7/ubcu2fz6t17MKSyCkQSSEigkJS+PB/GuJH2/NKNzDnwhxO8+oU9mFELaUHPtiF2/3s7tzxzAYF8Pye3DGPpmuI8Byxd4+TWEea9D+a/t4n+HZltnlMRpHR+AQP7R/nT9W8ox3lM0v3mIHt/08GNj5xP6bx8wmVBxk+kRkb5cnTmvaeRqpUlbLx3v6vLQK3fEkHz1VU8/+G3MazE+i5Res8f0OnbOUL5siI6X3NyUCWtY4uLTrsvEvo0zitdMPfdDfRuG8qod7DQT9mCAgYPjvHQtZtT6r3vtx3c+KfzsQzL8zDAnLI4+lg3q7+9gGNP9HiAPwSLPz6DzV894Ok4Fz6Nvp0jhIr8jPTGsEyVX0sIwdipOBPdUUrn56OFdUw3isVG6ArBzHfUUrG40NMOBVjy8RlETsXo2TKYUW9/vu+0Ou3409nzuHRtHqRjQ79nvjMjatL+Yh8Vi4s8rkzIyddOZbarhJ6tQ4qz+y9wrAkhuOR7iznnAy10bTpFqDhA4/qqaakPz8r/rAQK/Nz47MWcfO0UgwdGKWzJo/5SFdkeKgtkteda7cPfmTfXUXtRGe3P9mIZFo2XV7k5XIyIyUPXvM5I24QC/Ak4/kwv539xNgv+tukvfvZXv7CXgw+edOfRyc2DHH6kiyv/fRlz3tnAiVcy+dT1oEbl8mK81yH12eChUbXnJHOtiUVMmq5QHPbpovkEM244/fo/2ZNpL4FNNzYS4+TGAV78xE53LeneqtaSW5+9kKLZ+fBEak4hZ0XOa8zBmDL507WbGT424eZ5O/5sHys/P4tFH2g+7bNNJ01XVLHx7j1YZnqb6sy8qZY/Xb8p6dPUvf/+BzqZdWudihBIijQTPkH9moozpkg6K6lyttX+ykUPagrtTmKz5jiUQqUB1yHhJb6QTvnCQpZ9ehZ6UMOXo+PP1fHl6Fz+8+X4wjoLP9BM3SUV+MI6vrAPf66P3Joc1t63hFDl9Au35nPx9KSjcAJJKNbai8pZ97PlrP7hkhQ+8ekQ3QEb1ajbYaoLPthCzaqyPyv7NqhQy5ufv4TrH7/QddYDbP3uYaYGY5gxhXSxLMVr/dKndyEtyeofLCa/Pke1V1i9qs4tYXESmjublJ1TyPK7PNr835bhz/Vxw+OrPLlsL7t/qft3/95Rnv3oDn6/fhOv/uM+xrvUBkAP6qz/1QoC+T78eeq+elBj0YdbqF5ZwkRP1Oa5TkUPSiGYyhLRkCyrf7CI/Ia0eq8oZsnHZ6AHda745XJEUMcQgjgCSxPMf38T1eeVEsj3eeYtEJo6DPB7cOeDcmzrYQ1fQQJV7b6AnJpE0riCxlwu+e5i1v18xf8XznpQHJFLPzUDE0HMgpiluCbX3r+YQL4ffzbUtCUJFPiyGt3BomzI3oR0bOhPcdaDQvBs+z9HGGmbSGTZSpmf6uXP0bNyf/vCOkIIl9s5vU8QgvHuKTcXRELUWIsMxlj9wyXkVqciq4QG63+1As3nHPQpvkGHgxAEpimY6I1m1S0jHRGOP9+f9p1dtlTOgvHeKBaCuCWI2S/TEkRGDDS/noQGT9WploBAvj9rOGBhUw7+vATvuGm/EnrPxwsf3+G5eX37vmPqAEVPPGuibIG/0MfUkKE28B5tbqExNRjHwY+Z9gs0pKlob6RIICaS62VK5aS1UJzFTrvEbW5xC8ivCIGeWTZA5flF9vxWXMcx+2VJ4c5vpz1NCYYkhVYoXJmgvJIIu78T7TZwcJTBfePub1yR8NTfbWdg/5jK2WLf25C4iWSH2xR9maZpzL6jgcv/fQWr/nlByto4cGgCr7HUvWWYyVNRx5Oc8f2p/WMMHpxU5dpzO5bEszl0dJJwdRiHC1Im8w4Hdcy4xTV/PA/h01K+10M6V/3nuQTy/YiAprj57VfcUnXLbwhTd1E5LddVYSSNY0MKFvxDI0WtefgLA+rw3uYkN50ysCNN6nM8x1LhvMJp9Yse0pnomvI8vJISJnqn2Pl/jjHRO5Uw+KXiFH35cyoBmIl6nqiVeBlSYGmQ68Hb64jmF0nzT40VK6lv9JA+LXI6VBLglc/uQUpVXtx+l1Lw4id3EijMbjPpIR1fjj9jDjkACRHQiCY5hhLvNro9kAAwpM+h5KYsas3jmgdX8Y4XV5+xsx4gtzbsOb/xawTyfPjLglhW5vwOVYYJl6h6J88jZ44GCnxM9ESxNJExzi1gsi+ahO5PrbcZlW5ujaEj47zwqV08cMVGNnx2t1qDkiSQ52PmO+pY8IGWFKd1dCiOlz5H4kYNTQ3FePPbh/j9lZt44n3bObk5cahywVfmUzwzP2G35OiUzitg5T/OPeO2/Z8Uf653vU8nrddV03RVlWpfG/kWKPBxxa9WIMQ0eX+S7vH2/znGvy18gZ+0PsOfbnmDUZvuMa86O+o5rzqILy87kt0X8rnsjBnjXKj6ZqPUC+T5aFxXRfUFmSjDmgtLaFhbyZRNgeDYBpazzgFYkhseW0WG8SIENzy2CiNi8to9ezEiCSeyEbEY75piz6866N0xbNP5JaGeIxbHn+mld8cwzddUMfPmWmW/hzX8eTqhEj/r7TZ/7Z59xMeNlEjR+LgqUwjB+l+tIFQSUPZ5WEMPacy4sYaW66qVvhS4OSQcnW0Ck30xF8Hv2BaO3pOmyp3Vs2PE/T75PXEYnV1yKoMq0ixtDUUX5FaHab6qilm31KGHnHr7CBb7Wf9Lp957Pev96j178OXo2fs736cQ8JqHXWNnzwzke+81pSnx5+i89sV9KtLaUNHcpgHxSYtXvrAHK2YRm7TIWL8FjPdGKZ1XyDnvb8q49+w76qlaUULT+kpab6jB1NSextAEeq7aZzkApZG2CV767G4euGIjL3xql5v4PFicfQ3V/Br+XMXpn97mQheuzTSdZHOcCZ82fbTmnyGl8wpY8IEWZr6j7qyz/v8DEZqg7pJyFn6olcZ1iaSumqZx+S+WZ/i2c2tDXPTNRF6BnIoQc9/TyPz/y95bh1lSXev/n6o6ftqn3Wd63F1gBhmGYZDBNUgCBIjccIEoSUggyQ2BGAT5koQE1+A2MG497to97dPu3n206vfHPqf6SJ3uISS/m9zM+zznaalTsndtWXvtd73r1tFhCdePv1E75KwHYa8N+tn28xI8vcaRe5Fo3N3Jx7ft5Y0Li9n+SKm+odtxopfjb9TqudL8Gnj6/dRuaaNhWwd556Yx+eb8wJiqYI5TsCSaWPHivBE3neypVp0gEWnHahLYki0sfXImmknCG+KXWPDApFPLXzfM7SUJNn73SNhc4nepDLS42f//KvWcI1F2C2CJs1D6t7ohZz3odb7j4VLcPadW57FgTTKz7JnZut/O5HZ6K00AACAASURBVDChWBUWPjCJpLFxIWvQyLW/yF8199vjSZuZhMkhbCazUyFxtJOzfnM6R8Xfi9Oj5384rAlmCs/NoHJdk2AWIAYqk01m6lcKmHB1LuXvNRqeO/1OId8x8xtFjLsyh7pNrSg2hYJl6bqxIJtlVjw/j/ajPbQc6CIu20bOWSIL/MnNrWJnU4rksYwECc1opR+BwuXpVH4czVCwJJhIHntqiUL/XlR+0mTI6Bhs99BbP0hCnoPrtpxD/dY2emsHSZ2WOCLbIhQzvlbEuCtyqN0o6jz/vHTdGLLEWfhq1YUcfKaCyo+bSBrj5MxfTcMScFLUbGjlk9v36ju6bcd6OP5mHdd9eiZJo51kzk/hntrL2fd6JZ5+H7lLUvWJuXpNiyGLXTbL1G9tJ+GG4ZOoOdJtXLf5HOq3ttNbO0Dq1ARdqx2gan0bPiRdxkUyy1SsaWXOveOYcG0uh/8azTQHyD8vHVenh20PHQ/Ti5QUSJuRiGKW6Wtyh3C1h9i3dVvbo673rwSfy8fOxysRMpri6b1e2PxQKTcvy2TqrYUU/+RYRLkl0qYlkpDvpGBZOjXrWsKYE4pNZsotBSPeu3pti2FUg9+riXqThp4pFFJA3ahgWTo1a6PvPfmmfJE8URpKNBnKitaA6tUtxqxnn0bdlnam3JzPjXvOo2pVE1WrmkgsdDDjG2Mw2Uz0NbmIpSOPJhhyxpCoWttC3HC6pK/V0ry3C68afOIAYxpgwM9gixtnlpX+RndYuQCy5ieTOT8lJuFj/DW5yAp8eN0uw3vP+e+xvLRgo/GDadCwrY3RF2ZR9Wkjqnfo3opVYspNBZS8UYdYrGtR/aB2fSuFy2NHyUiy0O2PyNktHI2SSNZrqBUJyBpkzE0Wxq6mEcyc4g18b8KVeYyaEM/2X5cNVQZCHsE9oFF4QQaYgsmhhq4dZB5nzExCscuGesyOTCv7n6qKWa72oz0kFTnDtNaD9wb0xNWx4Or2hLFIhiAx2OahdkusKDUJb5+fsvcDERUho5M/8HvpG7W0l/QGEj5FvDOfRmdZHw07O3B5wiMLPAMqjbu7GHNBBppJxoeqX1tDQ5MkJl6Xh+pTqdzYHri/gF+D0g9bWfSAiDCIlLVRAUmTcPf66K4a0GtMChxDg5Z9XVz2+nw2f99AExmY/tXRlL4bO2lW98lBeqrbDecav0ul43gvfi20Zw2xZDW/xNz7xrH3DxWGDN2ilVkBMkCMbijLTLg2jyN/rY46plhlMuclC6Z7xDEVGOzwMuHqHDZ995Dh/D/9tkLKP2kK1Gk0u7+3djAQ0WC8yusuGyCh0EFP9VC9B2sgdXqC4TmfB9NuK6TtiEhCqrdISWwkJhQ6aT/WF9ZPglqwTbs7uOyt+ay5+1BYVEuwj064OpeTm1rxeIbOBdHOVR/Ubm4LvCiDcssiAVrT3k7evXaXsFv8Gm1Heyh9p4Gr3l1I2rThbSdpmOR1kklmsMPDa8u2CpKFWwW6qd3cxpKHJjL15gKsSWau/GwxTTs76CrvJ3lCHBlzkz83weNfDe4uLzVbO/AGnLb4ReRP/Y4OksY5iTlRBfDJHfuoCMntUb+1gxcXbeKW7Wcz+56xMRnCc+4dx6rb9kb1wWB787lELpZgNE+obSBpkDIpHpNR/qzAHAqw8s1FNO/vZFdA5nDBA5NIDyTF9A0MjYeRaCvtY9otBdxes4JdPy+haU8XmXOTmP/ARBRFoXF3J6rPYFxyC+lA1a8aSkr6Bv2c3NhKxswklvxqGtPvHEPjjnZsKZYw1mHjbuMcMk27hQZ7ysR4btx7HrUbWnC1e8hckKI7jqo3NIt8QRFQfVC9vpmpXymgMZLtLQm5i1GT4/H2Bms8vFK9/X5UVUWWY/ej0RdnsPH+o2H9X0Vozo+5JANJklj8y6lMu2M0jdsD5T43TZfDadgVo9x7ukga68TsjPW+c6jd3IYmyaghs5XYfIHaTW1M/UoBDTuiy21PtZA6NUFI4hksKZv3ddF6pMcw8ldTBQN+3r3jOONnU5h6+2gOPF0OKkz/2pgwnfjqze1oiiy08FXw+CRqiztInZpI6+Fu3r5iBz6XH80Pbcd6KfugkSvenE9BIKmj6ouIJAPGXZnNmIuy2Hj/UX3+GKpzKFo5MuFowvW5HHvxZJj9Iltkxl+R/W8/tp3G50dfqwd/UP5NA8wSLreIlnaMIG1T+XGz4binmGWa9naRf87wOXSOv1HHxvuPiEg4DdqP9XDs1TpuWLeYus3tUfkxgnZu9bpmcs4cxcKfTGbyVwpp2NqGJdFM/nnpej4E2ygzg23eKFtQsUnEZzuItSayBEiA5Z80h0VMyRaZso+amHJLQcyE1UFkzE6ieW90vrW4HBt9DW7D/BaqV6Pi4yam3JRnaKdqCCJT5SfNhucrZpmmPZ0ULB1e9WAkFJyfwU37zuPkuhb8HpX889J1iSN7mg13t4GSA5A4xonJrrDy7YW07u+i/VgvCYWOmCoKp3FqOM2wPw0uf24h1lFCA9itil36tFlJTP/qaOypVmbfHc36Tpkcx9x7hda7p9/Hkddq2fV0FXueqaLso6YoNsSoKQlMujGfvHPT9R3PhNGOIbZYyGcIxvpdGkSzXwxw3lOzic+zh/1PNktc+tZC/e+GXR28f9NuXjxzE2vuOURXlfEA9HkRS+tZ9Wk6+12SJXLPSmPSjfmfy1kfhCPDxoTr8hh7WbYhc2HG14q44sMzOffxmbqzXtM0NnwvfEdXMFl8bPufUv07x96rZ/czVex+uorDr5zUd2ttKWad7RYKSR6KWhgJotypotwhzvr+ZhcH/lgVNgH53SrdNQOUvtNAyvh4Fj0wUdxfEKJQbDIXPj8Ps0Nh8k35FK3MRLEK1pLZqZBQ4GT5M7NRrHIgdFQwb0PZt8OF8v8rYOdvy/H2RU/KXeX9VK9vYdINeeQvSxcTYYAl50izcv4fRUTFOb+dji3Nik8TDH2fJlgvswLRHKqqsvFHR3m66DOeyF/Fm5du11lygnEdDc2v4e33E5dtNzwumSQs8WbO+c104vIcesSEX5LImJPE7G+NxZ5iQbEper8P6oOCYIi2l/QaM3BV6A44rBr3drL1Vyc4+m4ju/9Uw4G/1gCg2GOPD5omQshjsXvRho8+sKdYcA9EJncV7cnn0TDZZC5/5wxdVzF4G3uqhYtemo+7y4vXo0UzzWWJrqp+cpekMf66XJ2J6g2wrRf8cAJxWcb1HXx2e4qVsx+Zhi3djifAOvaoEskTE5hzzzgcaUGjO7ofmONMJBQ4DaNYFJuMI91KMLtQkMWuM/Q0CVuSKWThGF4vKhLdNf34PaAF2PPuAINe06D0nQZK32uIODfwnBrUFbfjCyQ/VzXBKFND2N5ej58rPzwjyqKRTBLXrl6CM9N4saEhNhuF1nvo+xz6XQqwrZsPdvPyuZt5Im8Vz0xcw+7HRdLxkbT5Y78zDdkqh8yV0fdWISShZPg787tVTHaFLQ8eR9NEZIIv8FPTJNbddxh3jw+vO9I5JcbPzsp+9j1dibsr2sPTWzvIifca8Bhs1oknF7kYFHNQpzKUpS7YfbJJZvmf50StNrIWpjDrm0V4XZrOwA79+DWh3evp96FpgoXtDbKxNTEnmByh72uorWmB9uQbVNEMIgdVCVImJxKfbwc5OqpBskg4M62c+bNJpEwKl0mRFIlLXpuPbBH5FLQAmzH4CbLkZZPM+X+aFXXv1GkJzL57LM4MqyhnSGSAP5Arw5luxRwzGZeEI8vGZW8v1KOqgi3HmmRm5WsLYpx36ihamcWkL+UJplqcgjnOhDPbxoXPzUWSid2/NYmBsKglQo5Da0lfyFwS3b/dXV6Sx8QZvm/FLGNNMLPx/qMBFqzYJPD7wNPnZ9MDx0YsV3yu3TDiUrHKxGXZOPCnKgbbXHhdqv4+vQN+tjxYotsjkiSRtXAUk27KJ3Neyv8Jh9bBZ6sZbA+JBEXC51LZ+lAJfl0Kyxj9La4wZ30Qml9j7X2H8ParQgM3cp4zSXh6/SQUOARhJ/SYBrJFwZZsRXEoaIG24A781FRQnCa8A35cvT7D6J6OSmHD+z0qjXu66Onw0dPpo2FXF/6AwyU2+1giLjBXKIrCogencMVHZ7LowSkoiuhzikWKsUEr8na0B5KvR9WLBu0hOtGJY5xM/FI+hSsyw5jOsaLvglGJADUbW9nzTDW7nq7i0Isn6Q/IVDVsj3YMBVFf3EHB+elMu7VwyEaOM+HMsHLRS/NGbM/DOesBqle3GvZ/DYnKj1uGyj06pNwh+QJijXsmm4Lq1hjs8Ru+787KfqyJZpEYMiLiUbZIWBOE827a7aHlVnCkW7n4pflIkoQpRnSuySpjTTQLWVMD2ELsxIQCB2c9Mp2zfj09jHl7+IUa+pqjx5btvyrF0+tl808Euz+4wav5NHwDfjb+4Ci+QT9aQGoostymOBM9tQMBKaLwOpfNMt3VsRPKB7HwBxPJmp+sR3qY7ArpMxI58+dT9O9UrW3h7at28OLiTWz88VH6m6Pl907j3x9+t5/NPz6Gzx2MypHwe0Xk2b6nKgGRz+zQ8zW8tnwrryzdwt6nK8XmKsI3YLQHqqnaMHmaAvf2qGx+4Jhw+GvB/2m4Oj3sfbICd5/XkPgB4WvUhHwHE7+Uz5iLs8KSFyeOi4+OagRsGXZ9vA2NDPYF7DHFrtB2rIfyjyIiplwqzQe6qdkgJD5dnR6Kf1nCi0s28eal2yn7oFEnlV7yynxso8KjLk0OhcveWYTJocScS7wDPrFRZ3BMQpBpbCmW2HWecGr+mOGg+jVK329k9/+rYvcz1Rx9vU63h9JnGPusFKuiR1tKkkT67GQm3ZRPzuLU0876L4jTDPvTYNOvj9PTFKQ+CQZkTXEnJze3Ubg0nQU/mMj0O8dQ/NOjuHt8zL1nLBmzRGZsn9vPmxdvo6tqQB94NpQepX57B+c/Nn3Y+6YUxSMWbJE6tIIZq0lDC+4wW1LjlBj2JovMTTuXUrellerVLSSPi2PSTXm64Vn+cSOf/ddBfSDuqu6n7KNGrl91JikxMmSfKnxeDSniuYOP3FPdT1xG7HDhfyZcHV4GWqI11TRVOMUANv3oGMfeqNMdRXufGuDEu418ae1iJl2Xy+Fnq/FFMIwkRaJg6fA76COhcU8XslnCH/F4vgE/1WtamHh1DodersMnSTrDSTVLHH6llpzAzu3Sx2Yy997xtBzowplpI3O+YMG5Oj16QsuoXA2n0Jb+N1G1uiXmsRPvNpAyLp6qjW14NJD8YsHs7/BQs7GVKTfkceDZarrq3AQZvKoGdXu6qVzTzLiLs3j9gm20hoQ8N+7q5PlFm7h937ki0WBk/wtAUiTGX5VDW0S4tAbE5zpwpFupWtNCV71IoooGqgz1+3rorOgja34y1kRzFEPAZFeY+uUCVv/XgZjl7jo5QMOeTv52yXb9f+4uL8U/K6W9pI/5/10k7D6DPqhqkFTk1P+OLJslxcz8743nvSt2Gt577r3jOP52QyyCHt5BlZTxcdxedgEn3qqn7XAPOUtGMXq5YDxVbW9GsSl4vBFsMB9UrWlh6s35tB7vQ7Iq4BY8b8ku03hA1LNiV/D2+Ay0u0V4+IHnauiqDV9UNezvoeKTJibfmMeWHx81ZP/O/lYR+eekse8P5fgiFqiySWL0igy2PFSCUcElGQY7IzV/w3Hi3YaYG7C1W9voORmbyV76ToPunI88V9MkKj5o5MwfT+LOmhXse6ycpr1dFJyXzvTbRwMw/zvj2P9kpeFcMvG6HFydPloOG2mPS4yanEDzwW5eX1GsLybcXV62PXyC1mO9LH9suj62R+ktSzDvu2PZ94cKQhn0wWtPuSmf/lY3LYei761pkDo5geZ9XVHPrWkgKdDf4sbvjt7Y1gBXp5eWA12GGreaH8o/ajJkigZR9kFjWFLHSHSU9TP+qmyRcyFk0aHYZKbekg/AmAszuaPiAqEJ369RcGk6oyYLQ18yBTZ9tGhmk2xR8PlUQh9PQzjzVWCw3W3Yd4N/Nx/sBtmANaVJVH7azAVPzWDLQ6WE5sdQ0fC4oXBFOrIsc926s2ja00n5+w3E59mZdlshskmwJIMLvrA6HSoA+/5Ug0cNjzxoPNxLd80A8749jorPWsPOD24AzP3OWDQJSl6vN3zfuWeMAuCrZSs48XY9zfu7yF6UQtHFWTHf0+eBJEks/tkUZt41hqY9ndjTrGQvTBHRNX6DQuvPp1H2gXEkJkg07u4c1qaSLDIzbi6kbN3QXBd8345EM4mFDloO9xjWeSxGcijGXZbNzodLo9q7pEiMuTiLty/fji9C0U8D/D6VtpJeMmcNrwX974qqtS2GDgPZJNF+vIeEAjvd1YNRbTFprIOKj411uwGa93XTsL0Dn0FkkKRC/fZ2Jl6bS9WGdghEmgT89VjjTaSMiyN1RhK1xR3Bs9DQ8CGRNSOJtqM9aEiE8sE1AFWi+rMWFnx7HO/fuJvGPZ26fV/8PyVUftbMFW/OZ/pXC9mtR3PpJRMSmcuHZyb73KJjG+X90iToG8ah2W9ge0cif2ka5R80RkUe5J0r7Os9T1Ww87flOls8SGi5ccMSnchghJ7aQSRJYuGPJjL1tkKadndgS7aQfcYonUSVNiOB1oPR8jejJsXO8RBEucHmTRAVnzYx46uFw54/+aY8Dj9XE5ZAVbHJTLw+l7bjvchmGY/LH/W+a9a1cdkb81j/gyNhUU8q4HVrFF2WKcp9/0Sm3VpI467ochcsS+fEOw1RdZ57TirJY+NIHO2ko7QvbC41ORSm3zF8mQAqVzWF5IEZurbq12g53EPjHuNNltajPbQdF3lWfFr4XIImUb26BXuK1VAqyO9WqStuJ/fMUcM+m8musPKNhbQf76GjtI+kImdYtNL+P1ex7ZcndBu9u0asBW/csGRY2bnT+PdDR3k/RhO86tWoXt/K4p9O4qPb91G7uU0fU3c8eoLyT5q45v1FTLutkJq1reHrOUlIK6fPHJ6Q2FneZ+jTUb0aNetbmXRdbsxzJfPIvOPGvV16VGMwWgug5+Qgrk6vsCt12Upx3KcJScz67R2GG7DegCRP1vxkXj1/KwMtbvweDein9UgPzYe7WfyjiVgSzNx6+HyqPm2ibms76TMSGHdVDrIs017Sqyd2jZpLNClm2TRNlHv8VVmUvdcQfgxAksiY/cVtllV37ad6fas+1+z4TRnlHzVx7UeLGH9NDifeaQhrMhqCFJs5N/kL3/s0onGaYf8fDtWnsv2xE4G/pLCfa+87rH/PnmJh2ROzuPiFebqzHqDsgya6Tw6GGf2+AT+l7zXQWTk8W91klwML8kh9XsAsQl+DtkjkzmhkmP5wyF2SxuKfT2HKLQW6s15TNTbcfyxs11ToNPspDjDNvwhks7HWswo4M2OzZP9R6Cjv45M79/HsrPW8fvE2KleL0ORYOu8g2CK99YMcfvkknn6/voDyuVV6mwY5/lY9SUVxnPu76Zgciq5zbx9lYeVr88N2tP8e2JPNhg4BSRH6mOWfNNFdNRBwUAnmjm9QpeLjJtpLhcOrs6KPrb8sZeODJWx6qISqNcIBYLIrembyyLZkT/vfNzw1VePQizW8ePZm/jJnPRt+dFRoXyOY2bHgzLCx83dlePp8aH507W6fS2PzT4/jdfvY9Vh54NtDfUYD1n/3CM2HusOc9fpxn8aG+4+SNMZpqDsu2xWcmVZaj/fozqbQT3eTC5/Hz4b7j4SxJjRV9LEtD5UgyRIXvzIP1SrrrCiPJjH9zkIyZiURl20zvLYKxOfaWPPfhwzrpOTNemRLQD858nzE+e5+v+4MDLu2JthP2QtGMfW2/HAGrgZLHp6CfZTFMAwxeC3ZIuq5flsnh1+rp+SjZg69XEfLEVHP9hRLYJEVzpiWZHCm26hc3UJHWV/4mDqoUr2uhdajPSSNdRqOLZJJwpygsPM3kY4IgfXfP4JskrnohblRLPoxF2cy5aZ84nPtnP3rqaiKkL7xApJV5sLn52J2mEgsMB67ZJOss9iDLOngJ/h81gRzWCRV6AdJwp5qjTo3yFx2pltj+QoBiAtEUm1+4DjbfldBxfp2Nj5Yws7fi7pw9/jwS0PvKLQ9xOU6SZ2aYBhZIFtkkgqdrPnvg4ZjU9n7jXgGfIZtKehwVBSFs38zlcjNjKSxDhY/NBnZIhuXLbBCjy9wiHYZ0hZ1beCM2PWiIaLfjCQSNE0sVoxj2IKFH3p3Rudbk8ws/tlk4nLt+v1AyFXMuWds4Hsape81cezdRg6+Xc+B50/qDL2huSg62sNkV3D3+Y3biwaKUxlubwhJISCnE31tT6+Po6/X6ZsDIWehaVD5iZgzuk8OcOCFGko+buboWw2Uf9IcuHb0xpFeL0BXVT/12zv1qAN/MAJBhXXfPcxAm1eP2gh7ZrNEf7OHpsM9Ubk9ALw+GAhoutbv7ODw63WUftzM4VfqaNofm1kbCW+/j22PlvLcgg08t3Ajux4vx+cOH8/icuyMvSxb3wgHsSkXjBqKhDXJTHxubLvGEmciId+BZBrSuA/2b9kiEZ9jo/Fwt3CEEv4Z6PTgHfDFbIunkgDVkWblgj/PxhxnCtgtJiwJJi56fg62JDOefuOL+N0iYur/KhwxbB+/VxU5OqyK4RwqWRXicxz6nBk53pudJmwp5kD0UXgfVCwKthQLrcd6A2NueM6RwW4fnj4fDbqMQPi6pHFPJ4pFDsyPBv2730ddcQdNe7uidOSb9nZRv62DefeOI3Ne0lDZABSJlW+OHKViT7GAxdiWTCqKIz7LHtNuCUZb9dYPsubeQzw7ez2vLNtCydv1usOqvbwvLOeIJxBh117ej6fPx45fl4VJu6heDXe3j/1/qhrWVgxlecZl2Rh7aTa5S1LDNJ4ve2MB9rTwa9hHWbjsnZHrJVZbEtcQx3obBllz32H+Mns9r5y3heNvDZV7wffGk3d2GopNxhJvQrHJ5J45ijN+PBFbshnVa/y+HelWOsr6DWWvJItM+/E+/W9npnG528r6otn7GrRXiA2Qi16YS+Joh77uUawyM782hsLzM0asF7dBdCwIBrFilg3tiiAUu4LPPTSPheZacQ+o2JLNhjr0JpuMfVTsthCJUZMSGHd5dpiz3jvgD3PWQ6Ct9XjZ+3TlKV/7NP49YEsyG0qQAjhSLTTt76J2c3sU07z9eC/V61rIXpDCrG+OFmN6oJlak8xc8spQ9E7zwW7eu2k3z85az1tX7aAukCdmuHvbU616ZJQRTiVCXvVqgbVFeBQqGpgTTAE/U7RNpiHG+1jReY40K0deqmWwzRNw1gfqZcDPgT9V62t4gNErMlnyiylMuGaINGpNMoMi4dPCx3ufBvEFduKybEg2OWpckkwSSaOdtB7rjcrdgQbuQb+u/99yuJv3bw7U+ZU7qC0OlwAu/6SJ11YU8+ys9Xz6zQN0BfICtR7poXpda9hc43epdJT1UbWmhbZjvaiS0b1V3U49jX8s/u9aoqdxSmgv6Y0ZatTfPDIb5OSmVkONa1mWRmQ+eQdUJDk8WU7wd0wKwdx6QVad/tH4wqE1A+0eY9kaTcjkfFFMuj5Pdw6GfhxpFhILhtd5/6LoKO/jtRXFlH3URF+ji6a9XXxy1wEOvViDya6QNsNY67ZoZSZNe7sMGRu+QU13fo+7PJtbDy1j+R9ncfFL8/jygfPImPnFd3OzF6aICSzi1SoWmWlfzqd2SzteI4kGWbDzOyv6ePWCYso+bBTl3ifKffD5Gkw2hXGXZyNZ5bD3odhlZn9tzBd+9i+Ktd85zOYHS+go7aO33sXhF0/y6vnFuHu8LPr+BOOTJJh3dxG1W9sNGdOaX6NpV5ehQ0NCRFuUfxiLFQkNOzsYd3kWqhrdjv1elcJl6dQVd+BXhxIMBn+iQdvRXnobjNlm9TtEH/v4jv34BkPamwY7H6+kp36AhYFyR94bCebdM5buYbTF64rFYj/0mfRnAz2pV/B/weMq4On14/eo1Gzp0BfmALJVpiIQ7eDzqlEOpODf7aW9lH3cyPs376Z+ewd9jS6q1rTw5srtNO3vEswHwzBGmHBNDnXF7SEyKOHXb9jZwcRrcg3HlrhcO7IiGzKqAdzdwnNbsDSdu6pWcPajU5n/vfHcvPscVvxZyCf5vSq7nqhEkwJGoirqZvcTFQDM+tqYqJB92SyROS8JZ5pNH6tDEZQ6io/h7AewJpqZd09R1LnBcs65Z/hk3D6Xyoe37+HgX0/qfUH1amx/pIzih0tpPtCNJkt4Q+aY4O+Vq5sZc1GGYR9SPSoFy9PorIi9+Vy5ugWNwAZHxLWDbaLlaC+qeSiZrA/o6/Qx2OEhjPITWXgTTLw6RyQKDjnkB+wZNuIyY0dqSTK0nxDt3MjZ6e7zkTw2zvCYRoBVqUWfG/x7sNPDnqcqaS3r1yVlPCrU7+3m6Cu1AGz+yXE2/PAobcd66a4d4Oirdbxy3lYGOzwkjTNmbWog9JQN9FCDxztKBmI+m0ZgESfFeHYZqte3xrx2+aomeusHeXXZVkrfaaCvwUXLoR5W33OIXX8oxzVCMq/yYZjHjXs7qd/REXNx2rCzk84TQic+dNwKbgjVrGuhal0L716/i9ot7fQ1uqhe38pbV+7Qx9ThoPo1/nbFDvY+VUV3zSDd1QPs/H05716/e8SoRUmSyDvbOIqu8PwMxlyYgWIxtsvm3l3E2Esy8fvD27EG+HwaRRdlcPz9OsO26PdqtB3rHXbD7lRQsDSd2w6fx4pnZ3PhX2dz66Fl5C5OFWWLsRKSZAx1ef+vYOado6PGc0mBURPiSRztoL20z3AObTvWy+jl6WCKHrpUYNqX8xl7SaZgo0fA7/Yz9pJMTm5qMxxzFYtMy5GuMKZ1KHwuVVzXYENR9G+x9vC6oi/udflp2N1Jf7OLlhP9+Aj0LxVUgJjDpAAAIABJREFURaZmQ6x8I0NIHhuHNcEcNf9qwMRrspn/nXF6PYTZLcCC746jv8XNK+dv5djf6uhrcNF6pJe13znCtkcEcarlSK/hHNp6rJe2Yz0BGbJw+D0qJze2sfTXU2M+97mPxD4WhCXBzK0Hl3HpWwuYe99YLn1jPrceXoZtmETaQSz47riYxxZ+fxz9rW5eWbaVY2/W0tvgovVoL+u+d4TihwVBSrEqXPTcHK7fcBbLnprJ9euWcPFL8zDZFZJGO0mZGB+1qW6yK8y8s5CGXZ2oBrI1fpdKw86Rx8W2o72G7byjtA9N1YjPsXPDprO4/J2FnP/0TG7Zs1R/zyMh1lpVksHr9qOpmvE8pgrHX8yxSYKxF2fqMoVhkCXGX/bFoq7aS3sNHZWqV+PkxpH7yWn8eyE+xy5kLw0w4aockbvDYG3h7fdTv6ODwQ4P+587iVcFr198Bvv9HHz+JICIiL58B9XrWulrdFFX3MF7X9pF5epm4rLtZMxKimpvJofCrLtG6zLCkdA0sf4YCX7VeF3i12Cw1R2T/KFpMPqCDJ3sFwpJlph4dQ41G1oNI1EVi0yznsTbGHGZNjwe4whZR5aV0cszUCxy1FwimWUmXJXDyQ2t+LzR61jFptB8oJvGfV28eekOqtYG6nybkIAuXyVs1L3PVPLpNw/SfKCbvkYXpe818ur5xXTXDNCws8PQF+Tt91Nb3EHVmhb8vuh7a0Dz5yCQnMap47TD/j8c9i8ozRKXYzceMGXB/hsOljiTnqEcwgfU+BwbcRk2ZFu0fp8kn1qI5nCwDpOt3hFgJvi9KjsfL+dPs9fz9KQ1rLr74LDhrqE4++HJZM4Ld2JbE01cu+qMv/+hTxE7Hj2Bb8AfthHjG/Sz9Rel+Nx+Oir7oxh8qgbNh7rR0AwZmSCYS0GYHQr556SRvSBlxCzspwpJlrjibwtICmGymOMUlv52GqmTEojPthlO3JIs4UizsP03ZXj7/fj8QxOIZ0BETPg9Kuf8agp5S0YJBk+CYMlMuTGfaV8p+Ic8/9+LnrpBSt5uiGJNubo8HH2tluz5ycz6xugwphsSnP/EDCwJ5pihqapPIy4/dv/WEMkEY8E+yioMjoAsTlh7kaCjrA9nyPgROrWrPg1nhgXU8I24oBPT71Zp2t9JZ3m0I1RTYf33j5I1N5nZ34rYTJHg/MenY0u0DMt8TJvijCprKJIKnWHHtJDfg9EcPXWDYUkvfS6Vum0dNB/sxuyIZh4Gz08sdLDpx8fxDqhDzEM1oIn8sxL6m9x43WpUnaIIQycu24ZioIuumCScGTaaDnQbMvh6mlwxHWaAbnSqfo19f65m22MV7Hymis2/OEFPndA7rVjVTE/tYBijxedSqd/ZSdP+LoouymTSDbn4AE/AMe3IsbPij7OQh9NyN0n4+mIMLAhHSvknzVEM+yBjs2Zt67BGdcJoGxUfG0tH7XmiAtkk6U7S0PcN4r0cfrE2pp76ifcah41MSpkYLvUR2db6W9wcebkWnzuwSECE2rp7fRx68SRN+7qixuPgmNy4u5umA92GZe9vdaP6tJisZ0e6leQi51DbDr0+InJHUiTDe/sDO2PmBHN0O0U8W3JRHLser9DrKWi4axps+XkJ/a1uDr14Mnxc82m4ur0cfK4GWZHCzg3d7It6SRGQLSDZxLMHWUnewFhjSzULyTmzJOaA0OMIZ6Qkx2bJyyaJ3U9U4B3whzkUfQN+dv2+HEka5sEYPiJKUmTiMqwoBmOXYpFxZlgxx5n0evFG1GtSkZNNDxyLciL7BlU2//T4sM8FUL2uhc6K/rDoHb9LpeVQN/U7RpaWaS3pNbQdWo52I8syV76zAEkJb2eFy9OYfmshLYd6DNmgilmm9UgvfTEIIpoKKLHrfPi3MQR3j5fNvyjlw68f4MOvH2Trwyd0myY5hlyPbJZxDPM+h55RY/9fqnl2/kaemrCGD7+6T2eq/Ssj/6xUFt0/HlOA1Wyyy6ROSeCSF+ciSRLW+CE7ObSerUlmXF3eGM5C8A76aT7Ug2SOZgdilmk51BMzt4fqVYkbIQrVkWbVcymFXV+ClPFxONKtKFY5amxRrCIXy95nqnD3evH5h457BlV2P1WBK0DkqdncxqsXbePJ8at55cJiajYLJ6Wr20t/pycs+i44tjTu66b75ACaKTwiyquCZhKSIvv+GLi3N9xO3ft0pX7vmOVOtwaY5tGIy7KTOjmRWV+PJqDMuKOAjBmnTqrJPWMU878zntwlqad8TkKeg3MemRoZtMRZ/zOZ5DFxHPhTFe5eX3i5+/3se6YKV+cQIzOxwEHhsnQSR4fbcJe8MJe0qYmY7KKtmh0Ki34wnvyz03CmWUXUReT7tslhNmoshGpsh7ZzS7xJzBWaxuGXa/nwzv189I2DrP72YToq+qIvZIBRE4zXqrJFJi7dhiVZ3DtyjjU5FZzptpD8OuFIGR+HJd7M5a/Pw5FuxewU2vy2FDMrX5qrJ4f8e+FIi81sjsv535F0PY1/Hrz9Pnpb3IZrvcb9XWJMNVhfmGwycZk2Dj1fg7vHh+ofMt98LpXDgRwbWx48LqI1QjqYb1Bl449FDpqLnp1N+syh/m2yycy7ZyxjLsggIceObMQ0t0gkjz01+eLItUWwnznSLDGNCEmWMDsUrnhzAc7MYB8zYUs2c/Fzs3Fm2IjPtRtuqml+bUQfWNvxbsN7a0DZB82YHQornp2NqoREW0lw1sOTicuyEZdrH1IOIGQdG7j3loeM63zTj4/hHfCx49GysAgaza/hHRBR+Y4MK5Ip2j6XLRLx2TahwhBip3qDdevRDDc4TuOL47TD/j8ckjrkxAiFBsM6f4KYdmNemNMdhEPdGm8ibwRjz+xQSJ1mzPYed2kWOYtScIyyRoVJy1aZaQGN3L8XpoCkhxGzIeho//hrB9jx+3J6610Mdng5/nY9Ly8r1hOwDgdZlrnmgzO4Zcc5nPU/k7ni3QXcWbKc+Jx/LrseoGF3l2HUhObTaD/ei6fXH8XQ1YDmAz3ilxivPfI9/zOQNNrJTVvP5pqPFrHy5bnccWQZE67IAWDyDbnRmwMSmB0mCs5No664nUiSjQZ4Bv301A1idphY+dI8bt5yNpe8MJdb9y7lrJ9P/l9PhNJyqNvQkeEbVKnd2oF30M/xD5rwh0Sj+E0Sh1+rA2Dut4qikmYpFpnCpWlDElAR1w7+PfmG3JgMhTN+MJ7a4nY8Li2Kmez1aDTu7WTut6IZ14pFpuCcVH0yj2yKQYdlxarY2vxN+7rwufwcf68JnzSUiNCvwKHX6tA0jZkx9EMdaRYSC+Nil1uGSdfl6A73yC9Mv7WAhp2dhix3NI2mfV3MDOixRvoX7akWEnIc9Da5DBkdTfu7aDncjWJVoqMWfHBySzuTrjFu54pVoXBZGvU7O/QQ+zDWhSzR3+QhdYrxAnHsRSJ8+7N7DlH8yAl6aoV+Y+n7Dby8vJiBdg8NuzqM2f1+Ue6Oij4OvVYnQkgDRm9Po5uDz59EDWj7xkJHeeyICE+vn5Nb2qLqLFhvlWtaUAIGe9hzBf42W2I71DVVaFEPd7x2S5t+r8hxsXpdK7NiROHYUsykTzSewwCQRGipUf/2u1Rqt7SJhIGSMSOzu6af+u0dhka9rMh0VQ8w/SsFUZtXJrvMnG+MYewlIgm3kR980ffG41dFf4zs3yqASWXydTn4GDLGg4a5bJNJKnTg92qG7dzT56ftaI/hgl/1alSubkZSpKjIAQ3xPJJ1+DG5fnsnKePjCW2pwXPTZyaROikBnyf82TREGTLnJ5M8PtwZFDwOkDolgbrtHYb6/rJJprvKhWyXDNuidZSZ+BiJuAFsyWbGrsyM0g0Xi1s/Y1ZkMOXGPMN6kawSGTMS6aoy7ketx6KlzSLRuLfLsH/73SpN+4ZnRal+je6qAUPboe2YcF4deaMBv0kZak9AzfZO+ppdNO7tNGSi+X1ibImU5QlFe+D6seaxkaD6VF5fuZ0Dz9cw0OphoMXN/r9U8+blO9BUjQlXZRueZxtlJiF/ZJtt/Y+OsfnnpXTXDODq8lL2cRMvLy+mt/FfP0HjzDtGc/uRZax8aS7Xr17M9Z8t1kkAM+8ojJrfTXaZWXcW0l7Si8lqMO6qUFvcTvP+LnxuNXqe86g07e9i9tej2f2yWSJ9eiKJARkwoz6mapA8xkn6tEQkkxQ2rplsMrO/NpqiizPwuNSoPuRxqRRdlEHlmmZ8EWa8hsg91V7SS+XaFt67eQ+Ne7twd/to2tfNezfvoXJNCx2lvSLxeeS5qkgG27S3C68nuv96PaL/1WxoNcyXoGrhSWmNkJBvx5JknExwwtWiDS/+yUTuqryAefcVMfeeIu6qvICzfjbF8Jx/NKbdks/Xq1ew7LFpnPf7aXy9egUzbisEoHpDKz5P+AsNlrtthHKDkMW77tMzuX71Yi55cS7fa7iMmXeKHDUx37dbZezFI8vWzLzTuJ3PuL0AgC0/L2XDA8fpqhL9u/zTZl65YBvdw+TdCSL4XiJhdppIGR/HmOXpUfOzBuSfm0ZCnp2suUlRNrrJrjAnsDGTOSeZ2/Yv5Yq3FnD5mwu4/dAyPdfJF0FC7nD3Hv2Fr38a/1rorBpAMUezuTVVREQXXZBhGN0jKRITr8qhdmu7YT4UxSLTeriH1iPG9klv3SA+lx/7KAvXfHgGN6xdwiUvzuX2Q+cx91sisnbMigxMNiWqjyhmmYlX5YxcOMmYYa9q4O72C5JBxHEN0ALFTZ+RyK17l3Ll2wu5/I353H7oPPID0YYzA8msw+tEjNVpU4dZGwB7n6kytGGkwAOoqsr7X94bNlf5/bD6viO4erzi3hF+OkmB+Dw7adMSDOVuAfqa3LSX9MbYaIC6HR0ULkvD69IM5jGNcZdloaqaoZ2qIuyt0/jH47TD/j8c1gQzUoBAFLmgTxgz8kIlId/BJc/Pxp5qwexQMNlkUibEc9W7C0ZkXqs+lZYTvVHMRr8GtTs7kWSJq95ewKjJCZhsMman0Eu/6M+zSR4TveD+PPB5VDpqBqNYsipQ8lEzHeV9VK5pxjM4tODw+8DV7dEdpaeCxAIHM24rJHfhFzegThVx2cbsB9Wvid3gGK/FmWElLsduqEUvKZA2ZfjJ5x8FSZJInZRA9vwUlJAFYXy2nUtfmoMjLaStjYvj6ncXoJjlqMVAEH6vhiWEKRafaydnYcrn0nj8ZyIuy2YYeiaZJBILHZS+38hguwfVN9Q//W6Nxr1dgvW8IoNF3xuHySEYNopVJv/sVJY/MSOsjJH9WzIFN5YWhi9WJCFhUHRhJu5eX9T5IIw4n0tlzPIMptyUh08SjGuPBvGj7Sx/cgb2FHNMh4qKYAjFgjPTRukHjfS3uAQLjoBj0QON+7po2tfNGd+fwJgLwxdj9lEWrv/sTMx2RXf6RZY7Ps9Gw65OQ417FShb1UxCvt1ww1JShN7yohj3vmH1mShWoVdtBL8q3rdRaKlkgqTRDpzpVi57dZ5g2zoUTHaZ5CInV7+7EJNVISEnFjNRw5Fm5Zr3F0VpzWfMTmTFH2eKaI73GsLHNb9gnx58voaEfIdh5IJslojLtrHjt+XC6Rby+L5BP7ueqET1a5jtiu7UDWVdxGXZcKRHb5CCqHfZKhtq0AahWBVMcaboyAJEu0jIHX6uUmJcWwNhHZuiHbDBLygWmQX3jsWZb4u697UfLhQ5C2JuckrEZdnwe9Uwh7dPA2RIKnRgspv0KJTQ4ypCoiAhhja436vizLByxg8nMP7yLBTrkPbv9K8UMPOOQmRZ5ur3F+iL7mARJ16bzcSrcji5uS0suiT094pVbQx0DfX/0CatauBXhzTmIx24KiKCwHDjWIOe+sFhc9x0lvXr3zU6P2NWEs0xFoDVm9up2tQasw9u/105kiTet1cbGreC0T+aCgl5MercI+o8uJCJbA+uHp9hdAwEHIp2hfpdnWAJZ4uhgWaSadrXJfQ/jSSzkPD0+8LmslCcynwWn2OPckyBYKLGj8CalIQceYyDgUiS1+t0xpaGqEvvoJ99f6wO3NtAb9kqE5dtE9rgMRC68I2axwLPpPpUtv2ujKemruX3BZ/y5rW7aCsRjsCK1S1014ZHTPndKh0V/dRsbqN2e2eUHquqQV+rZ0TW80Crm8Ov1IYz1VQxLu59pmrYc/8V0HK0h3dv2csb1+7itSt3svOJCn1+mn/fOCZdmzM0tlhlJt+Qx9xvjdXHtShIkJjvIC7LZhiZZLIrxGXZyFmYwjkPT9EjKRWrTPb8ZC55fo7on0GiTkQfC6a5Ov/pmbhVTe+/Hg0yFiSTPT+Fxt1dxlFqVpnGPV30NRtr7GqqGFc3/uR41OaSz6Wy8afHUaxKmF5xKDyDKoNdsdvLYJcXT4z8N35PIFpqmD7m7vbR3+6JjnKR0PWgBzs9rP/hUXb+sYZdf6ph3Q+OCum1fwBUv8bOJyt4evo6fl/wKW9ctZOWo+HjsMkiM+m6PCZfn4cpZKN6uHIrMaLEjO792pU7efO6Xbxw+Vb93o17ugyjbxWrTP3ukeUZ5n2riKk35oW184lX57DwO+NwdXvZ92x1eN4iTYxru5+qHPHatcUdUTrTqgaDPV76W9zUG0TYqRo0HhTPfdGfZhGXM5QnRlJg5tdH6wllXd1eVn/vCK9fvYs3rt7Jp/ceCtOQbivt5W/X7eL3BZ/y1JS1bPtd2Sk71C7+yxxyFqagWGXMcQpmp8LZP59E3uJTj7w4jX8PONNjR1Qk5Aq74ap3FooIeLuMySHG8ctfn499lIXEQochs1r1acRn22JGHpocCopFRlM19vyxkteu2MGb1+3i7Zv20HRQSMqYbIF7j4m492vzcJxKJImBtBOIuSQuxwqK8Vpx1Pgh8pMkS6TPSCRzdlIYeTFtagJn/HACfkXS5yFrmpWVL83VtftjIWNmYhRLPSgPDXDwhZN4DHJgqD6Nrb8sJW1KAsv/MANrkhmzU0GxyWTMSOSKN+YjSVJUPhK9Oqwycbl2/DGkGRNy7bQc6tGj2EKhWGWRiFeSomz/4Of/D3LnfyJi64Kcxn8ETHaFubcWse+FqjAD1WRXWHTf+Kjva5oWNQgVnJ3GVw+eR8eJPswO5ZQ12gfaPXj7/bpMQCiCSdQS8h3cuG4x3TUDeAf8pIyP+7skWFRV1dnGENCw1qJ3XQE8PT5aDvfgM2DYed0atVvamHvXqTMMjOrsn4n5/13EJ3ftDwubV2wy41dm4Ui1MuVLeRx9rTbsuMmusODesWTNSSIhz05XZX8Yw1CxKEz/SnhUwz+7XEbXz1ucqrc1xSaHSZvE2n6UTRKeXh/Of4HkskbImJlIQp6djvJ+tNA6N8vMuLWA3U9XGrOeVY2Wwz1kzkpi9tfGMP3LBXRU9OFMt4XJ5KRNT6D1ULRza/L1uQBkzkrmm1UX0LCrk76WQcYsS8dkE1ODYsSgC0C2yLQc7WH/S7VhzrGOGhe7nqpknkFodhCSIjHhyizWfvuwIStjyQMTKP2wCY+BfrDXpdJ0qIusOUmsfG4Ork4PNZvbSBkXR9rkIcfOrNsLOfhcTXQ7v28cVeuGGNWRaDnSw9JfTmHzQyVha2dNEyHc+eeIhVLw3ie3tJE8duje7l4vkkzM3CBpUxNIHuOkvaQX1Sf0SyUJFLPCzNsLAchZmMLt+5fSfqIXxSyTNMap94V5dxfRuLcrbAGpWGXGnJ+uO+2+svNcOiv7aDnYTfaCFJ3123q0x9CR6fNq1Gxp47K/zGHHo2XAkEa/rIDFaWL0snQ2PVRiqJEvK9Bb70KOVyCiraqALcOqbyQGyxsK2ygLyUVOmg4YO2FTp8ZTu71dd9BrDPk1ZJOE36PhyLQw0BTtmMiYnYjfG2CKBO6tP0PAOE4pdNKyP/zewfKPmhrP5odL6KwRbFldcl6D588r5r+OnS/yqkSUS9OEkyF1UjySTUYNTXCO0PiccEU2rl4/nXXhuSSC5SxYmkbu/BTqd3aEj+dWmYJz0/Qx7fzHZrDkp5Porh0gabQTa/wQC3P3M9X4ZAlfsEASlK5q4YxGF4Mdnpj+oZ66ATy9xjJGikWm/Xi/Yf8Jto6Oiv6wOg+Fu99PX2vsHDn9bR7BbooY9oJOu8RCh6H+NYjIhdJ3GqKeKfgIA61uJItMZMk0xMagYpOY919F1BWLBGuqJpQ/FKtM/pJULAkm1FjBJB5NaGfLgqkUVm5NbMI27us2ZJrjUmk+1E3Dnq5ouheizruqBph912j2PFkZ1v9NdoV53xo+zwPAhMuzKP5FCb7BkH9KYLIqFK0I34CMnH81Fb3cke1c82u0lfRisspR47nq0ajf1cGCe4vY+ouScDmfQL2OvTATCyY++MbeqGe2pZjJnJVM3pIUardE61GPCTz3Z/cdpuSDRv36NZvbeOXibdy66SxaDvcYzqE+t5+Wwz1Cn9fglVisCp3l/WTNiS0n0lbaZ1huv0ejYYQ8Tv/b6Kzu59WV2/W68bncbPttGd21gyx/dCqyIrH0kamccf8Euk/2k1Tg1OVDEgscZM1JomF3F2qIo8dkk5nz9dEkj4tj84MlhHViSbTjcRdnAjDl+lwmXJFFZ0U/9mQLcVnBOULT+3os/HXRpqgxoGpDO3v+XIm312/Yx3wuVdj2BjZHEO1lfTFzlnRW9uN1+UXiaaN50CRhdsZeVlviTDHtAiTwDqqkTUug5WBPVB9LnRJPR1kfik3B44kYvVSo392J6lN5deV2uqoHdAm4Y2/XU7+rg9u2nBXmSPl77Pe19x/h6Jv1eh87ubWdV1du58vrF5NcODyJKtaGvKRE54kwerZ1PzzKkTfq9XGvfH0LNTvb+fK6xTQf6jZ0NvoGVVoOdzM2ZGwzurYkS5z9i8ks/O44emoHic+1YwtEMnSUdQt5pcioKJ9Gw66R+3f97k78BnOVxabQfqKPzvIBw3m056QLTdUo/k05XU0uPY8JPtj9TBWTr84hscDBa5dup7OyX99EOv5OA3U7O7l9y1kiX8LF2/H0CbaPz+Vh5x8q6Koa4KInZoz47LYkM1f+bQF9TS4G2z0kj3UaR9Wcxr89nOlWCs5JpWZjW1hbN9ll3bZInRTPLdvOpqtqAM2nkTxuaF0y647RlL7bEJaTTDZLpE6MY9TEeObdPZbNDx4Xcr0Bm9Bkl5n11UIkWWLDg8c5+MJJPU9d3Y5OXr98Bzd9egapE+LFvYvPprOyH9WrCmnDUxy/Yiam18CaYGH0eelUr2/FH5AqFc+mMO/ukW2qvmYXWx4twx8yHwx0etn08xIu/dPs8NtFjD2OUbYo31fQ9lc1qN3STiwEbYtxK7MYsyKDzvI+LPHhBJ/5dxex8YHjYbKUJrvCjNsLiEu3MXpZOlVrWyLet8L8/y6i+VCPIWHG51Jp3N8FRGvvB5/fiJB2Gl8cp7dBToOLfj+TlMliJ1ELrGwnXJPNuJUiaY2n38eqbx/mN4Wf8mj2Kl67aift5eH6fbIikTop/nMlVDU7Ffz+IV3f4EeDKGmTxAIHqZPiP7ezfvsT5fw6bxWPZn3KrzI/4c0v7UL1qcTHYC2C2H0Ui1Dj47GYIpGo3tTGn5ds5pGsVTw+aQ3bn6gwZFL/ozFmeQZnPTQJS4LQeVSswll/XiAh1VkPTWLi1YI1ZQ6wshd9fxwTLs9GkiSuemsBBWemolhkoU+XbeOyl+bozvGu6gHeuG4Xj+Z8ym/yP+Xjuw+OmIjvVOEd8PPZ94/wm8LPeDR7Fa9esYO20vBwWUmWGDUxPtxZT/hueNj3FaFx/68KSZK48m8LyFmQLOrcLhOXZePSF+aQPMZJSpHTkPUsKRIJ+aId12xt5/kVxfx1WTF/XrKZbY+V623tug8WkjIhnM1euDSV8x4V7cE74Gf1D47w2nW7ePeOA7xx3R5aA8zE9CnxhnIeZqdC8mgnxb8uwxeR3M036GfPM1VosSiugBxg93/pszOxJg4tcCUZzrh/PIXnphsyC0CMUbpTpridV67cybt3HeCVK3ZS/Psyvdxn/nACU27IQ7EF2rlTYcG3xzL52lwyYkhxAcRn29j1ZEW0pjmC/XDopaEIG1uyhfGXZodtFJgdJkMWKwjmriRJrHx+NuY0Cy4N3IDPJLH4wYmkBLSUu2sH+dvNe/jr0mKePWcrH37zoNAMRugOn/vwFKxJZsFOscoUXZjB8j/MCNSPxr7na3j5sp28+7WDvHLFTko/bgzUu2Qo9QHCWWAfZWHJzybhlcRzuQGvLLH8yeli4yBGzgO/V8OWaqLPwGEOUL+7C9kknKSRLHk/YLYraMMY36pPOL5VwItwrHoJuIJkkbzpy9vOweSQw96XPdUsWPABPXMv6HXuDtxbk6C7blD8HvJcBK7fUdbPrieGmHShtecbVGk+1jXEzIlkg8riXXr6o/uCpEDVpjY9T4sRNBXyzhzFeb+eii34vi0yY5anc+FTQwvuD795gMcnr+W587fx2IS1rP3JUUDkxzjxcRNulzo0x2rgGfCx78/VmB2mmE4xa5KZpBiRbH6PStLo2HOoBsRnWQ3ftw/htOs+ORjT4G8+3C1ykRBdp36grSy2/IukSGTPTxaJWxlqL8FnMTtNhpuEQfgGNXIWplB0WRYuDTyINqPZFc5/fOqwuTM0IDHPgSZHl1uVIGN6onGy+wDcvT4RPWjQFfwelfhsOwvuHcv0r+SLqEOHgsmhMOcbo5lxW0HM6wZhTTBz9bsLSRnnRLHKKFaZ1MnxXPP+Qj2yrn53J8+dv5VHslbx+3Gr2fyrUlSfiqxIWBJNhu3ckWklMd9u6DSTFKEza40P3Ht83NC9J8Vz7fuLxEbqXWOZ8dWCsLI7M6zcuHYxAFe8Np+MmYlh185ekMzFf5lFX7OL4+81hjv+NPC5VfY8U0Vivt2Y7W1TSMx3iHYeq85HiDxIzLPji1mUo+wUAAAgAElEQVTuLxYJ+s/Gricro6SIfIMqR16v01m6q759iMcnrRFjy6Q1fPa9w/p3L/nrHArODtiKdhEBe8GTM8iYmYTFaeKa9xYyauLQ+x41MZ5r3lsY5tQ2WRXSJifoznoQNlGs3AHOdCsnVjXFnMc2/ayUxBiRYiabTGKeHWeaJea4lzE1cdgkxAk5dsNknEiQPi1R2GtGkSSBSDnkGBsRmmCb9nd5o8cOYKDHS3yO3XjskiClyEnl2lZ6G1xhSa1Vr0Zfs5vy1UKCsHF/Fy9cWMwjWav4XdFqNvy8JCazNhQD7R6OvF4f5Vz3uf3senJkpnnGtATDPiabZN3JdPTtep6es55HMlfx1Mz1HH5D2FqDHSKy2Rex9vK5/ex8okK8bwNHsskh+jdA44EuXrxwW6Dcn7H+oeNR5bYmmkmbmqA760GwTWPVeXLRyP07uchpzDz2qCTkxk70aUsxi3wvL5/EM6iGrZG9g352/qGC6g2tdJ8cDIv4UL0aAy1uyj9tZs8fq4R9HtLgfIMqJe830td06nJdcZk20qYknHbW/x/HiqdnMmZ5OopVsNhtSWbO+/W0MIklSZLEunR8XJjzOXVSPBf/eTaOdCsmu4xikck7cxSXvTIPgGk355E8OV63v10a2LPtzP/2WNw9Xg48V6M764PwufzseKwCEGPAh984yF/O2cpflxbz9s176akf5FQQazwXG8gSyx+fjrPAoT+bRxYyWXlnjqyMsO/ZaryROvEulfJPW3TJrJKPGnlm/gYeyVzFE9PXsf/FGjRNwxw/jJQnw0ehJ4coYChmmdRJCVHRuFO+lMf8u4uE9r5DMPCnfCmXM74vyLgXPDGDohUisa3JoWBNMnPur6aQtziVxHzj/JQmu0zyGKdxRHIA/6i8hqcRjtMM+9Ngw6OlNB7rw6sF2IMqHHyjnvGXZVNw5ijevGE3jfuHGAw1xe28dNE27tx29qmFI8WAt38opD4UKhiH2n5O7Hu+hk2/ODH0Dw0q17XxyuU7uPmjM8iYkUDzwfBdREmC2XeNBkmLyZKNlQQoFHW7O3nry3t043aww8u235Xj6fVx9g8nDD2SquEd8GN2Kv9Qtvr0WwqYckMefQ0ubCnmMMalYpZZ9utpnPXTSQy2e3BmWsMMMWe6la+uX0rN8Ta8A37dyQgi/PKFC4txdXlF2Ldf49i7DbQe7+XLq8/8wmV46+Y91O3u1A3kk9s7eOmS7dxRfDZxIYatL8ByCtXUW3jfWN67ZU84o9omM+mqnLDy/yvCmWbl6rcXMtjuwdPvC6vzydfmsv235RDCGJNM4Ei1kr8klcb9Xfztpt16uV1dXrY9Vo6ry8vSBydhspm4ZdNZ9Le46CzvJ21qAtaEofp4+yt7qdvRobPOancG6nzrWfq9Qxc2kgLxGTbyz0rls+8eMVx9yopEZ+WgWJxGsFFD+/yoifF8vXQ5HeV9DLS5yZ6frEfCmBzDSaTINB7o4m837sY7EOhjnV62P17JYKeXZT+bjGySOfeXUzjzRxMYbAtv5+MvzcJ8zyFD1uU5P5vM2h8e1Rm3kajd0cHs/4+98w6Po7za/m9mtqv3YqtLluXeu7GxDYbQa2ihhBQChAChJOENyUsCpNBJQgkJvYQWagDj3ivuTVaxbEtWr7urbTPz/TG7q92dWckkIcn3xvd1ictoNPPM88xTz7nPfYJMeCOIksCUG0rY8od6HQt21h0VAHx65x6cHQOGu4BfZfkvDlJ2eg7WZBMvnbkOd6dfY/HJKgc+OE7r3l6uXzEXQRQYfdlwqi7Op6/Rgy3NHPU9t/7xMKsfqNY2kWgOtg9v2olkkQZiLRkwSoeGrKqqOFs9fHz77ujNp1/lzSu28sP6xUy/rVzrKzFjrOKsXGPN/3BhmmRF6MAJEUx1wOtVwol8Q9eCtyGgRXqMODePQ8vbox6rAIkFduzpFrb9+TBeRcAferYKslOmbmk7omislx5AO/SHNO7lmLJBG0/xnLcA+99pCvfp2H4uqNBR3Ydi4KhVZTiyvpPccSm6ayGEjIxVFw+n8nzte1tTzdgikuS9953tHHh/gKGvyipbn2nAZDVRNDOdgEHYayCgOQsKTkmn+v2WqHcP/fWI8/IonZ/NkTXtBPoHIi5MdpHyxTnYU+Ov/YIIjmxblB5/5Pe2pVvoqneHfxdbdn8wQXG8MXjwvRaKT83k8Ip23bVRl+Yz7spCPrl9j+57y8DoK4bHjRxQAcEscPDjZna+3hh1zd3l59XzNnHNktm6fhq6V0XT1/YFiPobNfgHqeWJuFq8cfu5yWFi2i1lHF7ZpouoKD0tOxw5dcrPqph55whcrR4Sc2xxHYRGyBqdzNVr5tHX1I8gCiTmDhhK2w708folm8Pzlrc3wOan63G2ePnao+OYfms562MSlWnRmBWkFieQPy2Nxk1dUQYuySIy5QYtIjFrVDJXrz6F7sMuBFEIG9NCOPWXo5l7bxXNW7tIGmaPIoCIJpHLP52Nu8NH+/5eskcnY0vTjLod1cYsd8Wv0vRFN3N/PILV9x2IOlgLIlgcJsrOyCa12EH9slZdmxcvyIpqHyOkFDkomJHO0fWdUeukZBHC9f5PRfP2HlSDoSBZRLrqXKx64AA7XxlwUKsybH/xKEgCix8cgy3FzHkvT8HdpuV5SiuPjoDNrEriGytPofOQUzMqx0kQ6HfLSFYx6t7pt5Wz5v6DOnbg9FvL2P92o9FjAC2io3h+Jv7gt4wcY/5+haIFmbjavaz82YGo+9RgvfOnphFQgmy2yAlE0OTjkofbsaWZcTZ7o+3PKlSck0vJqVms+Nl+ZK8vfH4QRM1RWHFWLut+W00sVLR12O+S6TmiGaFijx69Rzwk5duwpZtxHvcO9OPgBFNxbh5t+/t0Rm3Qntu+v4/MkUm8duGmsGHM5wyw7bnD9DV5OPepCQPvo6r4XdHnkq46VxymudaPhsKUG0up/qhZN8YKZqeTUuhg31+b+OSHu8P7ud4mD5/dre0v08sSwuM7ct+iBqB5Rw8L7qvC75F1a0nAI1O6OJuuepdW72CiRG+fzBd/bqC30cP5z04c9L0Tc20UL8gKM3BDMNlEpp1AVNPU75VS/cHxKOaxZBUZNj2N1GIHxQsy2f3KMZ0vo2BuBl11bk0uJ+aarGj79NRSh87ICdp4at7Zw/Ht3VHOm/C7W0U6qp1Dzm0n8d8FS4KJs/44CU+PH2+3n6Rhti8lb1KyKJtv71hA79F+LEmmKJm7VQ9UczRGnqqtxsVHN+9i5vfLNLtKTFSUqkDzzh4UWeWVczfQFRE5VLu8lRfP7OGGjfMNnfGRUJSBCNswgpG2sldl1QMH6YzIR6HIsPGZw1Sck0fOEDr0Rzd0ht8pcm5SAirtB5207u/jo5t3huc9V4uXZfceQAmoyEaRlhGYdnMJGx+tDb0ukVWYcvPQc48gCEy7tZxJN5TgbPaQkGWNcpabHRJfe2ai4fcuWZCFPdVMoF8eOP8EI+SqLhrG/veOG5SorXVyhDM9vJY4pH97vsD/33GSYf9fDtmnsOK3B8LGndAwC3gUVv+qmuZdPbTsikkeF2Qu7Xjl6D9UtmQW47JcjORovixWP3DQ8PeNW7pxd/m49L0ZCAkSfgj/JJc7mPuTStLLEg01MEWzQP4g4dEhrP1NtY6J4nfLbHlW88aqisrahw7xSPnnPFLxOb+bsJx9f22K87S/D5JZJKXIEddYbUk0kVJkzEwBzSCcUuiIMsLvefMYfo8S5ciQfSodtS6OnUB46GBo299H47bow36or21/sQGA9monL521nodKlvBQ0We8c+22MBOs6JRMFj82LpjNXosOGHNFAQt/9a9JuPXPgD3DomtzR4aFy96fQdboJESzgGgWKJiVwWUfzECUBNY+dEjPeupX+OL5BnyugdN4QraN4bMyooy77dVOjm3qjA4RV7V54YvnG7CnW/j6ezPIGpM8UPbsDG5YvRBREsioiMPA9auklTmQHPpEQSqQWhp9cE8vT2T4jIwo2aqcsSmG7H6TXSK9PJF1D9eED+Uh+N0y219owOscqLclwbifX71iLgk5A0ZH0Syw4FejKJydQWZlfGZD7rihcznM+GE5uZM0Q6wKIED52bmMvCCfzlonR9Z36iUUvDLbnjvM3neb8LnkqJB7xa/Se7SfhrUDIZKiKTi+I76nqqjBdtGzJlc9cBDRLIY1E0PG85B2NwisvO+goQNG9qlsfqqe4dPTOfP340nI0caYZBUZdekwTn90LMmDJNsEcMXo6EYW4+rwkT02Ocw2j3TqSA6RzBGJHPq81ZCh133MQ3+Pj7W/OaRfx4L1dnd54641zg4/2aOSw9cjy1aB7DjMwBDKz8jBkmwy7ufFCYhmIUrqKhIBr0L26GTDfAkmmxhl4Ap970hjvaIoHPjAeOO85ek63J1eYwkGFXqa+jHZzQQM3lsbPQL5U9OYfFMZAXFgjUwsdHDaQ2OQrCK2NOO1JbXYgRiTODayBUSbiGgRwv6jyDZXVC3iAjBk8agqlJ2WzQWvTWH4rPSoa+Vn5nDGY+M5srEj7veuX93B0Y1d8a+vamfpvfsMr3UcctHb6I5658gfQYIDHzVHvXdkOeufqCVrVBKCVYhmqasg2AQyKhLJm5TK2c9OJDHfFh5jIy/M58zfRUsYmB0SqcUJX8pYH4mkfLvOYLPhiVpkA8b13neacHf4mPK9Eqb/oAxLUHPcmmxi9t0VjL2qAIDznp9Mxdc0xpZkEUgpsnP+S5PJHKlFv3U3uHn1wo08PXM1T89YxV++vlmXmNVkERk+KyNutKYjw0LhnMywsR60cWbM7oesqiTMCSYu+2gmeZNSw+tY/tQ0Lv9oJiarRM74FM55bhJJEW1eeX4eZ/1hgu6ZRjjnz5OoODs3XO/kQjvnvTg5KvLqPxGZIxMN2YeyTyGl0M6u14zzNe14Udv7+/tlPrljN7+btJI/zl/Lc6es5siGAdmiY5u7eHTEEp6ZvZpnZq3m0crPadw2sE9sWNfBM7NW8XDZEh4u+YxP79oTjtgbf10BSYX2gYgOIKnYzoTrihg+Mz3u3ICg9eN489qGx2tpPeDUrkeMP0UFn6LgbNESxgdUos4GobwizhYPPe1ene64H6hZ0orZLnHFxzPJmzzQ13InpXL5RzO1eU0Uwrk+dPNegjQou9/V5qO33avpHQffy6dCQIBDn7WSVppgmIPK7NAiIjf9vk4fEelROPhxM31BxvW25xt4vGopj474nMdHLmXrc4dRVVWLoDFgmgsig+6XQsgalcx5L04O5weSLCIVZ+dyznOabMSqBw6GjfUh+N0KKx88QEqRA79H1u9bBMgcmcTh1R1aXpDYdrWI1K9oZ9NT9dq5K6LP+PsVqj9pprdpaJbuWX+YQGUwT4xkEUnKt3HOc5PIGR/f2R5CZlUS5784JbreX8vh3OcnA1C3pkPXH2SgYUMnlgQprs50wK/g7TV2PIMmzZg1Mslw7xLwKnGjJU/iJGwpZlKKHH+XFrkgCqQUOXQ5abY8bRyFc+D94yTmWYyjfATIGJHI4VXtusghVdYcjvvfPwG7iSQYzueqCn5vgJ2vHdOfoT0y6x45NOSjAx7NiRiImJtkVTPYS1aBVQ8cNDify6z9zSEK56QbPlNVQbQIbHv+SNx1bNtzDUPXOwiTTdsrxpNrM/reoknksg9nMnxmengdyx6bzGXvz8SWaiZvUqqxxr1FDOeY3P2XYzw5djmPVHzOoyM+Z8MTtaiDUfNPYlCcZNj/l8Pd6TPUYgRNg7bjkBPB4DwY8Chxk76dKAbbKMXVeYwDd4cPySJEGae9cVh0AO37+1j5wEG8MbIb7YfcrH34EHN+WEHWqGRad/dEhRuabBLjryka8n3aq52GvxcEzcO68/WjbHn6cNjA5Dzu5eNbd2FJMlG+KDv8971N/Xh7A2SMSIgyZv4zEPDK9Hf7Sci0nnAIU8vevijGUxiqJh1RMN14AYqFp9dP9xE3mSOSwompOmqchu8hexVadvfS3+XjpbPWa5vU4AGuZkkrr5y3kW+v1pjHI8/Pp/LcPPo7fViSTF9JCGdHjROTXSRl2Jff8IbbPMPypTZDWaOTuXr5XDzdfkSTgCVxYOoOydfEQpQE+po8ZFTEP0x11DgNmQ2hNg+XvWxOVNnJWXba2vooPyOH+uV6lmtKkQN7qoUZt5Sx4dFaHSNz7o+i82P0NXvwdPuj+nnZ4myW3bNPx5pSAgqFs9P58OYdhsZlRVbpa+zHWqkZieK1eWqRgxt2LaSrwY27zUv+5NSwo2T+z6s4+EGz1s8iWBOiWRhUmz+Ejb+r4+gXPYT3lyrs+/A45WfkIJqEcJtHEa99Ki17evG5ZUPWlBJQ6TjkpPgULeGXqqi42nxYk01hA6fPLWt6pQboPuzWkp8aXJMBBYWWvfHn9KYdGotuxFl5lJ2ezbHN3aSVOUjOHTDUp1c46Dzk1t1bdkY23Q3634fgdwUYdeEw1v7qEB6fL6z5ajILJOTYKJqXyZJ79hp+b8ks0HnIhSfO4bW7wU334fhrTcArM++nI9n3TpPOCCSaBKbfUo6z2cOul4/porFEE5TMyyZ/ehr1S9p0r1e8MEs7cEvaASOW4SNaBIbPStMSZquR0Q5aroaCWWlx3xvA0xMwbBPQnCzdRzw65n+o7IBHRgoa1Y36hMkhcXxHNxt+VxulAdrV4Obze/Zx9pPjceRY6e/06/SWEwvsyN74G3MVgaQCG901/Sjo2UPZY5M5trEL1RP9jJDhrmCm5tz7+l9n4Gz1cHRTJ0Wz03Gkawboxk3xncfdDW7MjgHHUGzZrg4vrmZvuLwQQnU8vr2XEefkUv1hs67pJ1xTSO2ylrhle3v8lC7Kxu/V639qzGAtBLvs9BxKT8umv8OHJdFkaIT7KtC6t9dw72WyiHQ3uHFkpDLjtnKm3lyKt9uPLc0cNadaEk2c9fRE/P3aHGZPN4fnVL9b5qWvrcfdoTGPVaB+dTsvnrme722Z/w+9d0qBneL5mdSvbI86HJutElNv1Fju6WWJXPG3WXh7/SCgIzKULsrmW9vm03HQiSPbSkLGiUePWhJMnPXUBPyP6Ov9n4xpN5dR/XFL9Pps0yJoHFmWcF+IHQchjdoPvreDuuVtYYd/+yEXf7lsC9ctmUVijpVXzt0Q1Z88XX5ePmsDt1afRu+xft66Ymt4DxyQVXYHpXgu/NMkPr5lNy37nQNMcxVa9jn56Ps7mXBVYZgxGdvMllRzOBmp0bzWurePrgZ32MgehQB01buNnQHB/3QddqMEwn8+0C6q5oAAzYF0+UfBvgZRTnUhJgF46N+iScDnkpHlYJ6ImOuKAl31LlRFIHbSVxRo3NrFol8aM839HpmShVmse7zGOBG4rNJV56JueRsrfj5A4Orv8rPylwcRzQKTrinCnmHB2RTtYFMVKD8rR/9QAxTPy+Jbm+fT3+nXZAojnI3dwciCmCUS53EfCVkWbJlWfI3RZcuK5qRtO9CH34CtKnsUWvf10bil0zBKTpWhq84dJhvIfgV3pw9HmiWKLGJ2SJz5xHgW/XoMflcAe4bFcHx3NbhRFZX0kmgiS9G8TK7fNI+OQy4cmZaouaWv0RMViRaCq9WH1xmIK2MomkTMSQOSdrHrmDnZRFpxAupLR/W5dRRVF910EifxVSJeom5VBUEUGXVhPvv/2hSdS9EmMfO2co5u7AyrLkSex/wuOe75NxL+gH6/FXKMddW6jW1gqha9MxQUVY2rQx/wqnHPPZ7eAOlliRrTX9GvY0XzMjkejFwyXscGzmqqquJu92G2S1G2gX8USfl2Ln1nBr2N/ch+JSpPyaRvFbPz5SP4A9G51PKnppFRkciBD49rDvjgfszbG2DdIzUAzDyB3AAnocdJg/1/ORzplrjG2ozyBDIrkww3OiabOKgO9IlgMG3QuJpjMWja0c0HN++k67C2yS6amc55v59AYo4Va7I5rPsci9QiO42buw2vbXiiljk/rOCSv0xl6d17OfDBcVRZJXdCKqc/NCZKmiUeMiuTcDYbJNVTwZZmDjPtIxHoV1jz62rKF2XTUePkhXM20B+UzRBNAosfHM3kawqHLHsoKLLKsvv2s+2FI6Bqi+KCe0Yw6QQcETljkjlgl3TvDpAxYmg9x4BP4YWz1tO8M7jYCDD6gjwueHoiGRWJhslKTFaR3HEp7HrjmOaFj/gTJaAZZ4+s76RojmbsEEThH5Jqioc97zby4Q8GkqRaU0xc+dZ08icMzbJRZJXlvzzAtj8fQVVVTFaR+T+pZMp1Q7d5JCK1NUPIqkqit9GjM9wpskpS/uAhrxnliSgG8lOSVdQxyY3KPvC3FmQ1OlRLBToPu/D2+Zl+SxmiSWDTE3V4e/0k5FiZf+/IcBKwznoXL5y1AXe7xr4WTQKL7qti2reKOfRpK5gF1AjDnwqoZoGGtR1xE9sofrAmm1BklRUPHGTrcw3hNp/3oxFMDcrZ9Hf5+OCWXdQtbwNBIDnfxtmPj6NoZjrJ+XYW/WY0n9y1N2xUN5kELn1j6pCOFkVW2fhknV6PsV9h9a+ruejFyQS8AWLPYIIIOeOSSStKwOyQdPcLJoGMoKbhvg+a+OzH+8IMqzEX53PGg6OxOCQsSSY8Xfp5L63YgWSgSRhRAjljkmjbZ7wBzg9GDCy5dy+bn2kI97f0Ugff/HQWtlQL166ayysL19O6f+AZBXPSufDFKax/7JBhwtnQAdKSaGLGHeV8+uMBdrOswvxfjEKUBLJHJdNV79b3c79KekUCtlRTeL6MrXfBrHR42LjW6WWJJObaWPzIWD774e6wQUM0CZz/yhRMFpHFD42jZkU7XUcHDAaiCt9ZPRdVVTm8vgO/Gr2hCgA1n7cx+ZvFqBL4Y2zrZhGGT0tn3cM1BDSbfvgPFDTG5Ybf1THv7kriwZZiitaaiYBkEUgpNI56UIPzfiDOIQo0A+u6R2t1yRsDHoV97x1n/r2VtOx3apJFEY+RgcNrOpj5g/K4zwaVhCwb7Yf6iTRFhwwX9nQrtnQLvU1eJHXAGBHyeViSTCgBhZcv3MTRjQPG+fLTs7j0pcmkFjni9jXJIpJZmUx9a0fU9wrl0skdl0LvUQ9+f/QhTwi+R3pFAqMvnsAH397OoY9bwlb/MZcNY9GDYzj4cTO7XzOW7LCmmKlZ0oJkE3WsK8kmUb+inRFf0xJyajre/9pE6TljkumoduqMegGfQlpxtGaqY5Ak7mZ7tDEO4MCHx/G55ahnqzJ4e/3UfNZK7nVDr6OD4bSHxvLSWevpDDrnJJPArLtHaIfiCEQaTyNR/VkLn9y5B3dw7qw6J5ev/XYMlkGSiMbCqN7/yciqSuLi16fy+V176KxxIllExl1VwLx7RyKKYlg/PXYciEBvYz81S1vxx8whfq/Mxt/XY7aLxsZhBdb8upr+Lr9eP9+jULOklb7jHva81aQzYsrA7jebmPrtYhT0sjUyWu6N7LEpNKzVJygGyB6TTNMXxnt/VC1nlxBysMZAkLTroXaJhIgWKRYJo742fFo6HTWuKCuMCqiitpYmDbfRc9QTNS/KQPJwKxaHFFe7X/Yr1C5r05jmMQnOBbNI7dLWuGxtJaBidkisiYhSC8Hvlln72xoqFufQ2+pBCa1VwWcrAhz8qIXKs/IMnx0LQRBwZBjkJxDQyb8IaAm/Xa1eXO36/DiCCAc/biEpP/5c5OvzxzUWKgEVk11EVVU2/K6OtY/WhvN1zLixlLl3lEcZ5uON7/o17bx59bawLKDZLnLhnyZRESRf1a5o4+Pbd2t1UGHEGdmc/ehYrElmUgrs2r4mBom5VtJKgvr3Md9cEGHYlFSyRiYh2kSdtIZoFcgZlcKahw4hE70+q4Dfp3JkfQeFs4bW6D6Jk/iqYU2WOC2Yp2nHi0cIeGRSSxJY9OBocsen0N/lQzAJBLzRHdlqF8mqGtoOJUpCVFLYMAQtz5XRnKpC3Pky6u8GccxLFpG0Ygdt+/UETluKCVebl4CizaeRTmIFaNzew/QbSqj+2JgAkh20vx1e18FHt+6i77gXUClbmM05j4/DbnBe/7Loaezn/Rt3cmxrF4Kg2QvO+/14ckYnk1Jg57J3p7Pkzj207ulFNItUXZjPwvtHAbD618YqExueqGXGzaUn5XH+DpyUxPkvh2QRWXD3SN0mxGQXOeXHleSMSSZ3giZNEZlkzGSVmHDVP2Y8VnxqWEcsEqqKoRxNLJwtXl65cBPt1S5kn4ri1wwnL52/EVVRGX1xvuF9jmwL/d2B+HI8wUnGmmTmrD9M4LaGM7it4Qyu+mQW2aNPzEkx964KXeIps0Ni6g3Fmg5jcIFQI34Auhv6URSFZ09dG2V8UgIqn9y5hyNfQnamv9PH9teP0rIv2ku8/L4DfPHCUQL9CgGPgqfbz+f37ufAR81DPnPMpcMwOaLDdiWLQOaIRIZNHWCDyj6FjjoXnpgEey+ds2HAWI9W8b3vHmfpz/aTNTKJ4VPTMEV+e0HrCxOvLqSj2qlbAEDrL131riHf/R9BW3Uf792wMyok2NsT4IWvrY9KOOdzBqhd2UZXjFd95QMH2fbnBvz9stbmPQGW/fwA+943lrP4MphzR4UuwZrJLjH5+uIhjQ2ZIxIpmJkePd4EzUkyKcKZoCgKh9d3hFnWIXTWuMJsgtCPgpbnoe+4V9PQu6mMmw8s4tb6xdywfQFVFw4L3//H+WvDxnrQ+vmSn+yjfk077dVOAl41Kim1gnaQ7qxzxzWci2YBb2+AVb+pZutz0W2+/L4D7HlHM6a9ftkWape3IftVZJ9C12E3b1y+hc56F/1dPpbed5DIvLmyAh/csivKUSD7tX7eH+EY9LsDhgx50JKbppcm4DfwI8qyFs1QdUEelkRT1BgTzQKpRQ6K5mTQsL6DD7+/C1ebj4BXITqlpT8AACAASURBVOBV2PNOEx/dthtBFDR5FoM51ZFnGXQDqqow89aysARB5O9VYMr1RWx+7jCbn26IOlV31rl5dsFaACRJ4o69X+P2psV8b9ep3N60mMvemaG1izeaIRP5bxWNnfbpj/bpHHJvfmMrPneAWbeXY7bp16nxVxdiT7Ew964RujnXZBeZd89IiudkIpiiZUhCkgbTbizB0+Pns5/txytrEgM+FbwKfHTrbmS/wpY/H44y1oPWF1+7WMsd4elTUBhI1OsNXm+vc5Fa7EBymHXrjV+G0kVZNO/pDSfT9QV/QglSW3cNzJXhvtY1MF5EUaTqAmNDybSbSsNhyaH6KqrmBAGwZVhQVTUqyW7ob7WQXJGOQ844zgCRjkOu8Nj0RfzIaH1Z9ioIkmD4bMkqkVaWgBK8J9RmoXpnjkzC36/orofmAG9fgNcv3xJlrAeoWdLGh7fswppi1u0tQv+2p5uZfUcpqkHZKjDvnpGIFsGQkaUAoiAgiiLn/2kyP2w6g+8fXMQPm87gzMc0yZrKs3LjJqY9/dej6ax1G65jslehsy5+FMq/AqWLsg2NrI4sqy7E/cuis85lmOci4FHorDvx9dvnDNBR69TNse9/bwc9EexfOaCy/MGDtO4bOhK0aXs3735nO33NXmSvguxV2P9hM3+9YccJv9f/ryiYmc61K+Zw9Yq5fGfrqSy8fzQmq4SqqjpjPQyMg+4j/YZGEEWBxi+640aZArQfdNJ+UO8YAi2ao+uwU2cQDz8fTc5ENAtRe4NQb5AsInPvqjBM9CmYBObeVTHoOth92B03Z4kqa9eN3k2BaGnBOJh+UykmmxR2TiqAZBMZeW4eiTmabKHRnDp8RgZ+t2yYCBC0M1lojxy7Zwp4FNqrnZo8m8HeQDAJ+N2yTp4qBFerl+4jbmRViHo3P9p6ErsvHAyKrNJZ5wpLWYZ/r8Tpa6oWFWUyOBOqCrQf7MOaZArXJbJeqgqWZDNSnEhb0SwQ6FfY9kIDax6qwecMEPAo+FwyG35fx8an6oesj6fbx6sXb46a2/z9Cn+5civOFg+t+3p569pt9DZ6tLnFp1D9aQtvXfsFAPPuqTTct5zy40ocGRbGXDxMf90mMeOWcormpBPwK1F9SQYCPpXieZnhxLKx+3MgvtPqJE7iq4BobOsBUHwaCWD+z6v4Qe3p3Fq/mG+tn0fxPC2auGBmOj6DiE2fR6F0fuaQRStx5nNU6G/3IxjMi6jEnWsjYY6z1xNNArJPYd49I4NOwYE5yWQXmXvXCFp2DUSCBSJ+VLS8h9O+V2JoCxNEOPV/KumodfKXK7bS3dCP7FOQfSq1y1p544otQ773UFACCi+evYGjm7tQ/CqyT6V1Xx8vnbcxfN7NnZDK1Z/P4dbDi7m1fjFnPjYubHPoPWa8lvjdMr445+OTGBwnDfYnwcKfjGLe/4wgIdsS1iO86IXJFM7U5E0WPzQGKdkU1v5SLSIL7q8yZkl8CTgyLOHEkpGTGUDexKF14re/ekSXUEcNgLPZQ8P6Thp39Gi6kxHPDqgaC8aeNoghM2ZUiJJgqKU9GIZNSePil6doerUiODItzL2rgrl3j8Cebka0ClETdABt0s6qSmLX642GWpEAS39mrK0bi2cXruG3I5fy4Q9288z8dTxY/Bk9x7VJfdsLR/Qsmn6F1Q8NrddmSzZzzaezKF2QhWgWMNklxlwyjMvenhZmomx5voGHqpbyx4VreXjMMt69YQf+fk2qoylOcqotf9b02C56aQrjv1GAOUFClASK52Zw9d9mkZBtJW9CStzkMl+1Vuyynx8w/L0SUNn4B02b750btvOr0iW8eukWnpy6kscmLsfd4dMMfn9q0Out98sn1OZDIW9CKpe+NpXs0claX8uwMOeOcub/T3xmbiQufH4yE68pxJKotXnR7Ay+8fEsEnM0dv62l45w/7DPeOn8TTx3+joeKPqUQytbAcgdb6zvrciQEpGxXhAETLboxMp7/9pkGKkBsPRn+7XvnaD/3oIokDM6KcpBFAlREkjMs7HZIIrF36+w5uEaWvb00nbQqZs/ZJ/2rXa92ahjFquyirvTT92KNgC+eOUID1Ut5dmFa3lk7DLe+tYX+FwBLImmKJ3xSGSOSGTfB8fjSn6te6wWS4KJaz6dRdlp2doYs4mMvjCfK9+bgSAIrH2sVteXAh7NwNTX4qHzsCYzEmWcBupWdiIaaA5C0GkoCNSuaAcTA7rBQWO9YBWoW9XBmt8a99feYx46agcMNJIkkZhjR5IGvl9qsSNsVImc62XAkmRm2X37jd9N0dolZ3QyX39zKjnjtH5uTzcz8wdlLLqvCoBJ1xZx2v2jScqzIYiQVurg3KcmUn5aNm0H+lAENVrDMvjTsK6T3e8Yf29Pj5+apW2s+W2NoYO3t9FDV4MzfFiOdMCGWPJtB/vwe/T9XJBg3/vNum8ZCW9wY7vjjWM8PCrU15bz5nXbwtJH5z01kTFfHxZ28IgmgWk3FTPvR5VIQaNWZH1DhwPJLNJ+yDWgkRnxvQNAy55e8iakxNW4zhgZP6ReJahrHCHxEw5llqBoVgaKHN1eoTZT0RjdXrds2KYq4PMEqF/VgRH2vNOkHXJCzqCIslU0R8Sy/62OW/and+/F5zH62hoi+4koithSLTq5upu2LyAhe2B/JIgw/95KRp2XT87YZCwG85rJKpI9Oiluuf8K7Hv/uOY0iZg7ZBV6Wzz0tRgfwE4UOWMGqfcQid1AM/QtuXcfD41ayh8XreO3VZ+z/P6DqKpKZ72Lo5u7dExa2aeekNFt/ZN1uvEvexXqVrbTG8eI+X8Fe/7axMOjl/GnM9bz2MQVvH7lFjw9fm2tjqenLmlGh3iGEEVWyZ8Ufw+fPzlVux5HXztzxOD9Ib0swVhySITCmelYHCa+uXR2FPM6eZiNby6bg8VhiooWiUXR3AzSSoyvp5U4SC+PH0kqxTHeRD8jgRm3lYEkhOcee46VU3+urWO1Bom0AWpXtpNenmjITBQkKJiRHpW7JxbevgBFszK06IGY8xYCZFQYPxsAUZO7isvuD5yYhum+D4/zyOilPLNgLY+OX86rl20OO6CNHCyhstPLEw2dIYIJ8ielkjM2BdEafZYE7XvkjUuhcFY6gsGRTxC1vCHrHq01jCxY/0TtkHVa9ZtDhk5tVFh+/0E2PlWvz1fkUzm2pYvOehcjz8njrCfGkVpkRxAhebiNM347hnGXDQdg/k9HkJBnGyB2SQJTbyohc0QiNUvbEazRxkBVBawiBz9tIa0kfl8tOQFD50mcxD8LWcE8NrFzT2K2NYrgIIiCTgKwdlmbocNOsooc/CS+BGH4mfGC3gQtYlKI2aeGojOHTxta4rdwVoahYV+QBLJGJlG6MJOkQkfU2UNKNjPu8mGkVySE99uxP6JJk726+NUpWqR56N1EWPzoWBKybGz+42EC/uh5S/aptOztjYpy/ntQs6wNT49fJxck+xV2vxWd28ZklXRKHaFo8FjYUs2G+8CTGBonJXFOAkEQmPKtEqZ8q0R3TVVU3rhyK67OAUpowKvw8Z17KZyeTuoJ6uB5nQE6al0k5VpJChoCRZPIvB9Vsur+anz9A7qLZrvIvJ8MbWzsqHUZbuJUVWOytlUPGFKi/wD6mgeSEMZqRRol0vh7UDw3k+tXzNX9XjAJZFQl44rR2VWAgjkZtAzCCIvntYzEW9d/QfPu6Mna75b5w8zV3LJlPkpQ4yNyGhaA3qYTO5imFjq45NWphteql7SwNEIDE+DA35pBgLm3xdctC21ozXaJ0+4fzWn36xPFjr5oGGsfriHgk1GD5xJTULolJNfxVaHzcHzmY/shJ6t+W83ed6PZ8r2NHp49bS3fWTpHl+grhFh9u7o17bjafVQuzsbiOPHpuXBWBt9cPueE/z4SZrvEol+MYtEvRumutezr5eM79kT9LtCv8OTCFfz48OnMuaOCumXtUd/bbJeYdmNJXOdK+NmD5MDoPe5h1Pn5rPnNIWSvEj4oSlaR7FFJDJuWhv394zp9bhVQgxsHwyRGaHr53Uf7DaXAlIBKZ40LX6/f8H6/W6az3k3tijY+u2c/voh6V3/Wyvvf38klf57MvHtG8Pk9+6KYtCa7yKk/HUndqra49e45psk5JA+zc+ELk2k70IdoFsksHzBQtMXZiCmypnEfaocofV1ADajIARUhqIkaq3lqsou07utFNmD/Kx6VrsPuQfOCtB1wklEWP1+CI80CgmYAjJ17kuOEhYfQUaMxcIdPS+fK92fSXuMkMctKcl605NP4KwsYf2WB7v7uo/349RH1qMCRTZ2oqmroJPW7ZboOa6x2o1VBBY59Eb8fq2jfVDKJBIh1CEBHrRNTQnwjjyXZRP3aDj65e2/UGDu0tI13v7eDy16eAsDZT4xn+i1lNG3voXBGGmkF2ros+/X6mqH38vbLBAIKAgZrJJr0Q9m5+ex9u0mniZyQZ8UkDozv2O8JWh82J2ryTJHXRRmK52Ww4y+NUdFlsW8YCGmWxjxbBTprnLqxH75T1vYoset76P8VFfoa3PFsLHTU9CEHjNdIFa0vFcwwfOkw7OkWvr97keG1EWfmsOp+KwFff9hhKFkEUosdlMz79xpROutdoOr7g8kq0dfkCe/d/h5UnJFDQraVwLHoeqcUOk6IJbf20Rq2vXg0yrC+6Y+HcWSYyRmdjGQRDZ1uHbVDs/dD9Y6FySLS1+TRzTP/V3B0Sxcf3rorymlYt6qDN7/5Bd94e9qAhn3EPQKaEzXMco+VjkIzlM69s5zNT9cjR1wXAJNFYPYPK9j4VN2AE4+BcmRVxTYYoQZIyLJiTTPjavFG3SsohFmZWaOSuWn7QsP7J15fxOd37dXNa2a7SOaIJE69dyQf3LhDt37Pv7cSyaJFmBo53ROzh+4njV90s/qhGvwRxu/uJg/vfHs717w3A1ebgZQm4G73YU83M/6K4ex+o3FgPRC0PdeMm0vZ/XZj3HnPmmpmwuUF7H6zUXP2Bi+Y7SKjLx5GQpYVWVHj6uf7nIHw946FFGFgU1WVtmotMiurMjG8b2na0c17N++MatP6NR385ZptXPvBzLjJCFUF7GlmJlxVwM7XjkbnqLBJzPh+GY4MLWll7PeUfVoemNwJKex6/VhUvU12jQiRmGPF1WawOUBjuaqKGnZkdB/rx93pI2tEYjjab7D5Rct3oBr2Fcki0tvoIb0kgapz8yk+JYuuBjepBXYcEdFM796wk86j/eHIOAIq656sp3huphb1EIxCjYTSr9BzxM3i34zmpTM36MpOK3GQM+arPTOdxElE4tR7R/LOtdv0c+pPK4fM99J9tN8wKirgUbS1ewiEpLZ0Z0XAZJGY+p0Stv2pISpqz2SXmH37gKyjqqq017hQ/IomRRWcEyZfX8y25xvw9QXC49xkFxlxRg4pBXbe/d52Wg5ER5v1NXt58fxNnP3w2LDMYyRUQLJLyD6Fd2/YgTeSiCDDpz/Zx4jTcuiocYVtIZGQTCI9x/rJrvr7CSA9R/sN5/pAvzLoWS2EU39ayVtXbdV/7/8Z+nufhDFOMuxPYlAc2dSFs82r87IpfoWtLx4Z8n5VVVn1aA2/GbWUFy7cxKNTVvLa1VvxubRZZvxVhSSPSMArBMMsBag4L49hU4Zm2BdMSwsnj4stM3dsclzJG0WGhGyrjmGnorEP/57M6F8GAY9M005jpvm+D45TcVq24TWAvAlDM9EOfGwsbeN3yzjbPJgdoiG7P2fsP87uW/OYnqkS8Cjs/6iZhEyLsYWFoBbzELAkmrju89mMOi8fS6KEPd3MpOuL+Pob077yBaBgavz+WDY/iw1xWHy9xzy42r1DJlE+sqWLXxR+yosXbebt7+7g/uIlfPa/JxZN8VVi6X3GkQWqAmseryV7VDJXvj+dgpnpmO0SKQV2Ft43krl3VQz57PLF8ROV5Y5NxuyQuPaz2Yy6IA9LkglbmplJ1xRy2Vva9971ZuOATA4DLFmPS8bZ6omr4Zc9KpmcMck6/VzQQiALZqSF5VuMEPAprH28Fm+/HBWK7PMqHFzSirvDx4SrCjn7ifGklydgtkvkjk/mklemUDQng7RSY9aTCuGIgsPrO3h43HKeO2sDzyxaxxMzVtEaTK6kKPoESqAZp5ILbFpCUfQ/ZodIzphkVFE/7wkWgZJ5mXEdS6Alrhss70jhjMHZKDljkhFNQhTbO4DGGClfmD1owuqSuZrW6oZn67W15IJNPD5tJS9eson+HuM8JZEIOUKM0NvijRvpAVokTHzDMiTnDx5plj0q2dCxLJoFCqenUzSIjmzJKZmse0I/p8pehdqV7ThbvHidAR6buoLfzVrNuzft5LHJK3lq4VrkgEJPY/x6uzr9BPzGfQnA16+w569NWlQd0WOsu9GDtz8AonFfM9kEWvf34XEHoqQdQhI0u945ztHNXQORCBE/KlCzvN3wWuhwM1huDhUteiCWnR9a3wEYZI0XbRKSQQRcKBIho3LoXC2DQbKIXP3JLMZcMgxrshaNM/6qAq76YMa/XdezYGqaYRSO7FfIGIRZfCKQzCKLHhylscUIjiezyGm/GnVC9d7wdL0xC/Z39WRXJRmOMckiDDkvwVdb7/9kbPhDnS5Zp+xTOLali55jHtJK7YbjIL0igaxgBE3sNUXQ5muTzcS5f5yIXxIGpL5MAuf+aSImi8iWPzUMRPcwMLf4/SrHNnfFlSMQzQJdh924uny6Me4Hdr3bNGS961d3hBPORt0vK3Q1uKk8K5fz/ziRrKokTHaRrKpEzv/jREaelacZoeOwwcsWZg1Z9nrDNldp/KKbrsNuXd6NEARRI1ed/uBo5t5dQVKeFbNDomReJlf/bRapRQ7yJ6YiOkTdvCc5RPInppJSYOeav82k9NQszA6JxFwrs++oYPFvxgAay94oqim9LIHMEUmG41Q0CRQH80c17ezh0ckreHbxep49Yz2PTFzBsaD0yoan6nUONcWv0rSjh846FxkVxs7+9FIHgiAw6/ZybJHnNgkmfbeEtGKHxrK1ibq9IFaRA39rJWW4nWs+mUXZwoF6z7mjgjMeGhust/EYTytxIIgC7k4ffz5/I0/OXMXz52/kN1VL2fKiFhVcNDv+/FIwPZ3C6elIFn27BbwKWZVa3q6Pf7SX345dxgsXbuKh8ct579Zd4fW7YX2nLnLI3y+z/nd15I5LMZTMsCRI5I1PYdjkNC59bQqOTG2PIohQcmom31pzStx3PomT+CpQemoWF784mZyxyZjsIhkVCZzzu/GMvXT4kPfmjU8xXJ8tCRLDJhtHWkcia1QSfgb2lwraWpWQY8Fk04zI839aSfJwG2a7RNGcDK76cAaZQZZ4y75eHp++imdOW8dzX9vAw+OW07BRy5GSmGPl2s9mU356NuYEiYRsKzNvKeOc32sSiXvfM7bHNH7Rgyk4VxtBsIhUL2nF6wzo9sEBn8KutxspnJFuOP4DPoWcfzBaM3dciuE6p7X50Pa54rmZXPLyFHLHa987vTyBs58Yz/gr9ISqkzgxnGTYn0QYnYfddB/rJ6cqiYSg3E08TUPZH539OuCVOba9B7NdIn9cctiAuue946x5rBafR4HgZq1mRTvv37abS56dyEd37dG8j8FZS1VhzwfNFM3OYOLXB5/Ix148jPWP19Ln94Y9gSabSPGcTHJGJyOajQ/lklnA3eYDSTPexzJRiFgYVFXl+J5efC6ZYRNSdBrKQ8Hd6aN5Xx8p+TYygoY6b19M9sEIOFu8FJ+SCcGkV7HvNu27A1EQAa9M4/YeTDaR/PEp4TYfzDjcut9J2ogk+gzY/ZESI6qq0rS7B58zWO8TTKTWF4elL0oCnp4AKSUOuuvcunpVnBnfSRGJxBwb5z414YT+9p+JhT+vYvdbTbqQYHuambGXDOO9W3bGvbftYJ+m36fov6cqCiiKwvPnbdQ9e/3vD1M4LZ2qM3P/iTUxhqqqNO/pw+sMRH3vnsb4URchveW8Calc9OJkmvf2kpRrJXMQlnUkCqelkVpkp7shxqgowJm/1g6QiTlWzvm98ff2u+VoI1zUu/WTMTIRZ1tnNAMPLRw/ZbgNwSqh+gJR1xW/SsGMNLobPYZMNUHQ5pi2IMM3FrKs4mr34siwUHVeHgl5No5u66J8XiY5Qdkme7olrK8d2x+SC+z0tXh45YqtUWyPzno3z5+/kR/uXBAVIRN1vwCBfpX0kYm0xCQ5UoGyRdmkDLMz5qJ89r3XHDZ+CZKWr2PytUV8/vMDcRl6klVg/OXDWf2rQ1GMLgGwp5miJNK6j/bT2eAme0RiOEl3Up4NwR7MvhqBgKKF85vsmhEntmwVGHleDtVLW1l2f3WU0a5hQydvf3c733hjWvh3RzZ3cXRbF6WnZJIXzDnS1+aJy8j2u2UEs2hYbxW0UHth4Hex153Hjdl5ISTlWpEcIgGfoutrw2emY02U2PxH43pXnZ/L5mCbxEIyizhbvfz1tl10xYyh5t29/OW6Lxg+iCyFIqtYQtq/6L+3JVEKR2oFIv5GAARFxd3uJ2tsMk07oyMMVKBwXha9x/vxGTgEVLQDkNcdMNTI1jTq/XGdJArgavNryfRAzwYVNIkGwSzoWFkCYHJIJFlEnC3GTNbkYTaNpOCOYWsHy0Y9MaO6qqq07O+jv9vPsPEpUflEHBkWznpsHGc9Nu6EnvWvwqxbytj73nF8zgG2mNkhMe07xViT/rEkZu4uH3+5fju+iHb1umRe+8Y2bt+xAAaxdaqKGk6wrXtup4+ETCuTvlHAjlePhtnigghmh4lp3y0e8t1mfr+MPe82RdfbLjH120Vx5c3+L6D7SD+oEY7b4I9kFulr9pAzPpXWuui5RQVyxqfgSLdgTjXjbY2e/2QVhs9Ip7/Hz19vjsn5ElB598Zd3L4jA3endl/s+q0CLfudOLKt9DV6dOPbkWelr9mDHFAHxmQEWuMkTY+q91Ft7xLbo6xWE33HPaQVOag4PYeK0/WkAnuahYA/mokeqmG/8wScx8E2j4VkFult9oST3IeeGypDUbQ5RRAFpt9YyvQbS3XPKJ2fSWZ5Im0HneGIMckqkl6aSNkCbYBlVibx9TeMI2RP+0UVbxmwYE+7rwp7qplp3ykO5wWC0BiTmHlzKV5ngBcu3BQVhed3y7x48WZu334q3Uf0CeMhyDRv9nDafXHKDkZ+/uW6L+hs9Ax8bxnW/aGe4jkZ9DZ7wlFVkf1B6VfobdL6b+aIRC59LU6976vizWv0ZZ/+C02m6PVrt9G4rVtbT4LLxmf3HiCzLJGZN5ay9pFaXU4NySpyyg/L6O8JsP3VoygBf8TcIjLhygISsqysfqyG7a8fDefOAE2mKjHLQtWZuVrkkIEzsvtoPyVzM8iqTKRlb9/A97aIpBTYqThdO1OVLcrmB/uMo71O4iT+lSiZn0XJ/MGdmm2HnDhbveSNTcYWTNpdMD2N3LHJHN/ZE3b6SRaBpHwblWfGJ36FIFjFcD6kSKhmMWw3mXJ9MUXzMnG2eMkdk4w9uO77PTLPX7CJ/q6Bud3nlnn5si3cumU+iVlW0ksTuPilKYZlx5JdI+Fs9g2EbsZAUbR1ymsgmen3qbQddLLwnkq2/qmB/oAvnHfFbJcYdUEeyfl23X1fBsOnppI/MYXGbd1RbZ6YY2Xk2Sdmkyg+JZPrPv/7Iv9PQo+TBvuToL/Xz/MXb+LI5i4ki4jsVZh6TSFn/qKK/IkpOu8+aJuC4iDrce9Hx/nrLbs1I5SiYk8z841Xp5JTlcTqxw/hjWVFeRX2fnScM1qr2PP+cZ0Ugd8ts/bJ2iEN9pYEE7PvLOdvd+zVygZUs8Apd2thTEWz0tn/gd67aXZI5IxOwp5mwdUePYWrQOF0zXDddsjJy1dswdXuQxAFVEXlvIfHMu5C42S2Uc9RVZb88iAbnz2MZBWRfQrDJ6ZyxUuTcWRYsCabCMSGYQowbEoqRzZ1gVVEcSvhEBgFjYl64NNWSuZksu9vzbz7/V1aWYqKPdXMVa9MIXe05s00SmoHUDw3nfdu3W14bc/7zSz4USVtNU6emLmKnmZPuN7nPjSG8RcNM7wvEgXT09j3vl6jWzQJJGRa6G70aFEMDKxTCtCw+T87AZIjzcJ318zl7W9+QftBJwha/7r0RW2RTsm3033UmM1aNj+LhGwrfc3RBiIVjdm37eVjcbPUL3ug+is32HfUuXj58i30tXi1JJGKytm/Hs3ES4dTMidDq68BKs/IQVVVlv/6EGt/X4dkFVH8Cnljkrny5SlRYb3xcMO6ebz77S+o+bwNRVZJK3ZwwTMTSR9EezOElOE2ug4bt/mwySk0bOnW9TUZ2PtRM6POyyMga8m6YsfYzreaKDslk91vHSPgHpDWUNEOYQVT06KS0UZCkTVDp6vDx5NzV0fNL5kVCdy0Yi7541M0nfiYs71ggZFn5rLjzUZkv8EmrV+mekkriITfO/LdVBVMVoGOOOGKR7ZpY+zsR8eRPTqZrc814O0LUL4oi/k/HoEj3YIcGAgrj3w2gOyHmlUdGJk5ld4AzlYv1iQTfzhvDfuWNGMKHjTHXzKMc387huY9vWGpkah6i7Dz7UacbV5Nu5Hob6IAax6r4/iuXj3T3KdSv66TvhYvkkXgybmrcUYYkDLKHNy86hRMFmOHozb/qMh+NW7ZAa9KWmkC7YdcujYHKF+cpekCG3iOLIkSzXt6NfkZBgzMIbb4rrca6e/2xS179cO1FM9KD4fWR727opJWbKd5l7EkT/XnrZx2TyUrH6w2vJ4/IZlhE1Jp3tlr+L0rTsuhaVdv2FgfggBIsnYwaIuTWLJxRw+SWYzrPJYDKkk5Nvra/UZnFVKKE+lq9CLHSU6VPSop3EYmBvprABAlyB2TjKKqxJrPBLRoDtmncHyncbtVLMqhea8TdHdrZViGpKt1QAAAIABJREFUkPoCzZjy8hVb6ApKbykBlcX/O5Lp1xYNee+/E6mFDq5fMpsV9x+kYV0HjgwLM24uZfxlQ7PghsKevx4POxsjocgq+z9uZvjN8ZlymtZ0Ah2H9OHvISbZ9BtL2P3hcXweTb5KEWDyd4pOSMYntcA+UO/1nVp+jJtKGX/5P17v/2QUz8mgaW8vcsw4lXwy2SMTObTMWL6temkb7bVOPHGcKDvfasTV7ov7vfd+0IxkEwn4ZEMnavbIRLoaPVFzImhzZtdRDya7ZDi3qGCYCDcWJXMyad3fp8954FfIHjU4M3H7G8eQCc6DkeUCO98+znnB5NPxUDw3g+O7e3TrRcCnkFOVRFZVIk37nLo5N29k4pCRpIIocPX7M1jzSA2732oENGLT3NvLDSUAY1F2ahaXvz6VlQ9W037ISUZZAvN/XBlm0C/4n0rSSx1s/H09/V1+imanc+pPKkkZZmf760cNjVOqrLLnveMUz8mkeXefTmpQ9irkjErGnmrm8jemsfKBg+Gy5/1oBCVzM+lqcNO0q0e3Bvr7Zdb/oY7ZN5Zitkn4YpJaWxIkhk8ZmoFbOj9LK/vBg7RXx5R9xE3Tjh6d89ffL7PuD3WUzJnKTVvm8dY122j6Qouczh2XzKUvTcFkM5FkM/GtpbNZ8UA19avasaWamP7dEiZdUwjAxmcPG+S3Utj0pwZO+UG54V5QEKFkTgaCKPCNd2ew9tEadr15DFWBMRflM/eH5V95pPhJnMQ/E652Ly9ftZXW/ZoMqOxTmHdbOfNvK0cQBK54cxrrHq9h1xuNKAGVUefnccqdFSeUX/DoVmP7QvdRD3JAwdPt15d9axnzb6/g4GethmNQlVV2vtXIbAPHaSQsiaZwvqlICJJAUr4lirgVfjbaGA/EkXUF8HtlHBkWvrVsNisfrKZmaRvWJBNTv13M1Ov/8X2mIAhc/vpU1j1Ry87XjiEHVEadl8spd47AFCeJ90l8tThpsD8JXrp+Mw0btbC7kCdt6ytHyRqRyKQrhoclFKK0Af0KeeNT6Khz8c5NO6O0nL2uAM9ftIk7dy6gvdbYeCQHNI3veFtId8fQTJWOOhcf/Wgf/oiNlK9P5sWvb+WuXQvIHZvM/g+ade+eONyOZJE4/ZdVfHTb7mhGll1iwT2VKLLK8xdtoq/FG2WteO+2XeSMSiInmEDF6wxweFMnJqtI8Yx0pOAmacebjWx6roGAVwmzI45u6+KdG3dw1atTWfyLUXx4W4R2qKA5EhbeU0lbjQtRFMIhXGEomrRDZ72Lt7+3I2qT53PJWpvvWsjoC/LZ+doxXb2tyRKiKEYk4FMjWFUC7g4fiqzywkWb6W32RNX7/dt3kzMyidwgYzVeveffPYJDn7fic8thPUyLTWLRvSMJ+NRwUsNYM4yrY3CW6pdBb7OHxp09JOfZyB+brDvkNO/rpetIP7mjk8JazyeCjLJErvvbLOo36ut99iNjeeWSzahoepIh9tWYC/KxJplZfP8o3r95Z/T3tkssvLeS3e82EeJMR7J8BYSoRH8+V0Ar2xIsOyaCZKh6G0FRVJ6/eBO9jR4iJUQ/vHMPOVVJLLynki9ePqI72Cbn2hhzQT6732ti3dP1Uf28cUcPb353O9e+NX3I8k0WMez0iAefS+trkjm63uc8Oo6XLtik+/uqczVWkhJk4Pkj+rmIgLvLh7PViyiJ+FH0Y6zRw8iv5bDmkQQ66lxhh6LJLlI6N5O8cSmoBoYI0ArxOmWev2izzhnYfsjF69dt4xuvTmXy1UXseP1YmJUlmgUSMixMuqqAT366z1A70N+v0NPoIZTfTUFFCI5wrd8JuLsCcRPD9Xdrc6ogCkz+ZhGqScDZ7mXS1wvCbAxrqjmKbQkDm0ezQ6I5Tn6NgKyN4aW/qmb/khYCHiW8lux6p5GMEgc5I5MMjQZqcF5zB5PPhQyxkeg+5tHmYgNIZgF3h5c3vr0dZ6uPSE53R62bV6/eSsHk1LiRA4hCWD4pEDMGRVHAkigx9pJhrHigOjy2Q/db00wkZtgwp5jwdgZ0z04cZqOv1YvfZ8wGbdnfF07qKqOGGZ+h8d/T5OFrvxzF3veP43UGBlg0Don5d1egyGrUt4qEqmiJvnLHJ9McY5wWRDj7obEIosraJ+sMGfajLshl2W+qDRnysgCeHn/chLmuNi9yQEWyCIYOf3OiRGqhnca9ejasCuSOT6L1YB++I3qHnCgJBHwDjjRfxBsKCJrmcboZvwJ6fr+AZBeZfUsZG5+p1zm2bakmJl9TwIZn6w3rJVlEfBFOhNZDTjpqXWRXJpIRdDKqqspLl22mvc4dZcD67GcHyB2ZRNEJSLT8O5FemsBFf5r0T39uX4uHQL8S3neA1ucCXgVnq/HYjsQZ94/iL9dsi8p3ZLVLnP6LUaiqystXbKW33T+wjsmw5sl6SmZnUjxz6Db/qur9n4zcCck6Yz2AOdWCJdGEJ07OEk+PH1ebL6gbrt+3tB10kjsm2VBqLOCVcbV5Scyx4e11Ga41qjBA5pBj9qmqqhlLI53xoXsBw/rEYsYNJWx//SieHj8BObhPtUvMvrkszOqMh1Ayv5CDMBKRhh13t4/NLx0BBaZdW4gjVSMw5E1IQZW19Tuy7vagPFbGyCQa9+kj5NIrTyxy0ZJgYuFPR7LwpyNP6O9jUTQrg2s+nGl4TRAEJl5ZyMQrC3XX+lq9+A1kBv0eGWerlxnfKWb7K1qbh/YoZofE9O8Wh9ffopnphmU727xIZn2OCoDe416KZqWTOy6Fpu0DbFCTTSRrZBJlEfkx3J0+jmztwpFmoWBKatQeuWhmOtd8oC/b1eaLW3YoAj0xy8Z1f5utux5CaqGDC542jhQN7cti4XPKmBwS1nQz/qboXA0okDtB06A3OyTm3lFOwZwMVEWleGb6l44EP4n/LnQedtNyoI+MUgfZI/69ie5DeO26Lzi+q1ebG4L7stWP15IzMomqM3Mw2yXm/6iS+T8aOr9hLOIRR1Q0xYM3rt+uL/uJOrJHJuFs9RpruXuVuAoUkTjj/io++IGeJDn7llL8LiV4pghZAAbWOW+EFKfR/j5kzE/Ot3Puk4M7iQeDqqo07uyhr8XL8AkpUQQHk01i3l0jmHfXiLj39/f4adjciS3JTOG0tLC2/0n883HSYP9fDq8zwO4Pm/QaeW6Z9U/Xk1ZoR5WEcPg5BJmoAux8uwnJLOLzyDpDhNcVoGZlu2GikBCsKSZsqWZdaLogQtGMoVkRW185avh82atQs6KNne8e1zJyB38fOgC0HnLR3+1n7IXDSMi0suaRGrqPuBk2KZV5d1aQVZlE7er2qARFIQR8CltebODsB8fwxVvHeP+O3RqTQdUSoF796lQKJqWy7im93qrsU6lZ1UF/t5/8yal4Ve2oI6CxY63JEhkVidhSzQQM6mV2SJQvyGLra0cNPa/+fplDy9s49v/YO+/4OKrr7X9nZot677IsybIsW3Lv2NjGBQzY9F5CCyVAMIQ0SAikEkhoAQLBwA8w3eBCsanG4N7lKjfZ6r3XrTP3/WN2V1rtrKQESPJ54ycfRUa7M3funVvPec5z9rXhQh/c3rtogN2ugazLV7TWOfyqJiPImBZD6dZm7B2uIPUu57y/jKZwRRWr7z3g05RTzBLXvzmFjEmxxGWHkX1WEvtXV/us1hHJFvLOSSYszkx4giUgua0k8Z0YMYQQfHTfIXa9VaEbbFVBwrBwbnx3KhGJVuztLl69agc1BzuQTRKqU2P0ealc+sy4QbGP9q6sYtVPPPUWAsWsv++hk2PJnh3PsLOTKPq0J2N9RKKFszzhvPnnpRIWZ2HD48W0lHaRNl7va0mjIqna24YgMDmkhMDq0fbft6qKlff0anOTxHVvTGHolFiEEHz8q0PsfKOn3vFZYdy4fBqRHjmSYCjf0YKt1UXffF9uh8aOV8q48Imx3LVrLu//cA/VhW1IMuQuSOSWFbNo67Cx+bmSgFBg1SUo3arnvohI7L/8gbD/g2pWLNnvq7dskrju9clkTo0ja2Y8P1gxlY/uPUBbpQ1zqH74m/vLPIQQhCVZaOnT11QE2ROiGTIxxjCprDlUZvi8BBSzzI1rTmPLsyc4uKoGxSwx8dqhPcwFSTLeSAlAhqaTxo5KL2Px7IfzSR0XzfalJTja3eSdnczpd+cQEm32Jds0gtutISTdSKmgj1vwGg4EYQlmotNDaSkLLH+IJy/Ikc/reP26Xb5N7FePFZN/TjLXvjaZnFkJFL5VgbuXbIUAZItE5rQ4HF3GjGcAW4eLfe9VBYRvu2waW18s5c6vTject0yhMrnzE+lucQUky/ai4LwUIpIstJQFMs0BotOtNBzvNEieKihe38DEK9P9oim89dKAsGgz2bPi2fxyCWqf6smyPjet/XWRHwvee62jW6OptIsuj7G+bzRH/fEuZEUKGF9eaAJGzk+kYm9bwLMrCPIXpRA9JJRb153ON48dp3RTExHJIcy8axgjz03xk5sIgKdzzvrFcN6+ZrffOpg+NZa47HA2PXcSTdEftje7X7ZKHP20Iai2uBB69ECww4SmQdq4aOODkgR5ZyVzaE0NxscRQV1RJyPPTmbbi6UBa5FikUkeGelzjva9VpIkDnjY3H0/lxBsfamM0+/M4Z4983jv5j1UbG8BCYbNiefSpRORZZkRC5LYXlYW0Ndkk0TiiAicXW5ev24X5btakE0yqktjxNxErnxxIg1HO3VJrT7vxmVX2fZS6X+9wf77QtZpcWx67iQOh3+7KMrg1v+MqXHEjoqgcm+br9ukjY8mfUI0dYc7aCm3Bba5TWXr0pJBGez/F7F3ubHeu73dRXNJNymjo6g9EOikTRsXjWKR0DQRYLSWEKhCkDlNz2vTd39gsioMnRaHs0uPpO09SAUgmSRSR0f79kSiz71ldGOsV07LO+d6Hb3SIGyVEclWCi5PZ/PSEt8+1RKhMPqygaNnJ12XwZYgOYsiU/T9zvonj/NFr8imzx8+yoL7RjDv3lwK363CYeBKpM1F/bFOjn4RJKohSLTDfwsyp8Vhsga+b0uYQub0WMITrdy2/nQ2PFFM8boGwuLMnHbHMAouTB3w3smjItHcgbO9YpEZPjcBSZK4dvkUtr9Qyt63KxFCMO6KIUz/UbZvDVv/5HHWP1GMYpERmiA83sJN703zOVqDIWlkhOGeQ7HI5MwdOGfBQEgbH02lAQM4aVQkreU2Optdfs4pbz8vfLeScZemU7yhkTdv3O27TmiCK1+YwEgDOadT+N+G26nx7m2FHF1Xr+f5cWlkTI7lB8smY434z5kD26psVBUaRNB0q2x+/iSjBiF70y/6SJD2hrNLpXJPa5CyS1j8cL6PVNMblnCF7NOD55/yYvxVGZjDFD779WG6mhxYI83MvS+XKTdlUb6zBTXIPlbtVqk1ILTon0LDyYGT7Q6E9jo7/3fpdlorbEiKbhOZdmMm5/5u1KAIf5tfKOGzPx3RSXRCYI00c+PyqSTn/Xc4gf5/wymD/f84nF2q8SyG7vnvbnGB5JEN8Pxd17CVdEaFTcWIbOqwqX7sYCN0N7lY9EgBK+/Yh8uuggDZBOZQEwseGNiL2tXg8LBo/Rk+mibobnb5mAt9TUyyontVQ2PMDJudwLDZCfRFt0evrO+9USU6653UH+/kg58e8CSP0qdbRye8csV27j+wIChrQlb0w9ALi7fouv690Fbj4K0f7ua616cw5fqh7H6jwrf5NVllotNCGHtpOit+vNdQfsFl05lq3rL7HqTMioSzQyUyI5SWPk4SDT3hVHeL08fa7Q2h6gyahuJOVt+7P4BZ+coVO7j/wAL2rqyi6NO6HkON0BMUvvujQn64YjqL/1LAe7cU6u3med+mEIUz/0U2UG/sfruC3e9W+rG964508M5thdy8cjor7z1A1b42P+fUoTW1pORHMvvHOf3eu/FkF6vu2d/nnam8csUOfnVwAfs/qOb4hka/a7pbXLxz2x5uWaWzdjJnxDHHMoLmsm7SRkeR5InSCIk1G+qwCyA0wUrTyS5W3r0/IFHZK1fqbX7wwxp2ve1f7/pjnbxz6x5uWW3MlPLC1uIyXJiFhk9aJColhJvWzPD73BJigg58rOi+UEwStjbXoAz2bqdG8YZGHB1uhs2I83n4m0q6eP+ufQHMplev2sn9++djCTeRPSuBJTvnBtxTkiScQcIJbd0qEUlWpt2axY6Xy/zGWERyCBM9SXGsESbm3pfHXANGhylMhqYec6O3R8kWia7G4NFB3nEhSRLjrxzCeAOpidAYiyEbXJLBEmbyRakEGEokcNs0Fv+lgHdu2O0bY97IoYW/HYXbrfH6dbsCJH2KPqlj+2tlTLl2KMmjoqgtavexj81hCiMWJJEyuv+E1+3V9qAhnF1Nus70zDuy2fpCqX+bJ1qZeG0Glfva2PBUsafePZEDoLPfMqfHcWh1Dfb2nigCc6jMwt+NQtMkg02vDk3oGv2SDGof/X8JiZihYVhjzKhqoJSkyy2ISLL6IoD6sv9lk+Rj/muejbcfG1TT37likQ0dRNZIE2GJVkMtdxWIG65HAMUMDWPWT3PJnJNAZJKVbE+iWi+j09tOEpKPtymZ9PwYb1y3J6C/lGxrYfPSEppLu9A8k0/vp9McgvYaO+Yg8i8mq4yt1d3HmOYvq2ONVnC5NY+hodf7FNBQ2unToDYKB1ZdGokjI9C/3juSBKxxJl9SWSNoQtBWZTP8XAA2z5wVFm/hitcmcfybRmRZYvicBCyeQ+vMH+ewf0U1tlaXX1878zd5mEMVVt27n7IdLZ75Vi/p+PoG1v3lGMNnJxg7gAV0NAzMJP93wN7u4vg3jUgS5J6R+G85rCfkReA0cEY6XRpxOT2Rbi0V3ZTtaCEiwcqw0+N9bfnJb4uoOdTht7eoLGzli0eOMXJBkmFSOtD3LadgjK4g/VE2yXQ3O1n0cD7LLt+J26HqOXhk3eB+zp/ycTnUgDUI9DFm73STNTOOjMkxVOxs8e0XzWEKQ6fFkjk9lrYamz4/4h8pFhJlxhKuBN0T6TJlGiarjLPXM3gj6HrnirB3uCj+Wt+X5c7t6edHv6xn+7Jyv77U1eTk9R/s4u4Ns/s1VsQPC0cy6zlIej+3hMT0H2VRd6zDz1jvxZePHKNgcUrQ/Dcut0Z3k55E3AjOTlXXsJckNFVwYmMjXU1OsqbFETPk2+kVfxfQ32scZVubfWQlc6hM+sQYn2ErMiWERZ4Et/8MLOEm5t2fx1d/7slho1hkQqNNzLg9G9D75cwlOcxcEriXP76+ga//dsJvj+yy2Xjtqp38ZOucft+3JdzE/F+NYN2fj/n2LYpZIqRX2d8G5/wxn1cv3q5r8KvCM8ZkFj1SQHdLD7s/ICq50Ymt1cXr1+0KcJK8fcsefrpjLlGevXRbtY2Sbc2ExVjImR3viww+hf8trH/iOEfX1ftFwJbtbOHjXx/ikr/96yztbwt9n2W8o2s2IB/9s5DMEsIpfPO0z6oj6VHGslnCSOuzu8lJ6phocucncfyrBt84M4fKJI+KJHdBT+696oNt7HyzgogEC7NuH4YlrGcdKrggjYILAp3BnfWOoPtYIfARcowiYEUvFlB7nZ2Tm5sIjTYzfHZCQPR9MLx54259Peo1fexYVs6Q8dGMu7h/CeSyHc18/vBRv77k6FJ55fId/KJw3imm/feAUwb7/3FEJFmITLDSUukfei7JkDMngazpcbgdgZsFkxnyzkxi36qqoPcWQGxmKM0lgWHtkgxpE6IxmWQi37ey8ekTNJd0M3RaLLOW5BCbObBUSe6CJPaurMLdxz6mujSyZsSRc0YC+96rROuz/7VGmolK71/XNHNaLK5g9T4rid1vVaAaLDBCheNfNTD8jAT2Lg8s2xJhQrFKQeUdvCyas/8wiozJMWx7qQxnp5uC81OYdksWljAFtyu4DIKmCoafkUjhuxWBZYebCI0zU7WvzbDsAx/WMPO2YbrzpA8kGUYuTGL32xWGCZBUl8bRdfVsebE0YPOouQWl21vobHSQd1YyN6yczsanT9B0souMyTHMWpIzKM3ygbBlqXHZZTtaaKno5vCntYGRJDaVrS+XDmiw3/12Ba4g9T7yZT1bXghkmmtuQfnOVjrqHciKxEuXbPNtPoQqyJmdwDX/N6nfcmVF0p0QBoYOza1x9Mt6Ni81LrtidysddfZ+NXwzJsfgNghjls0SIxcOnAg4d34iu5ZVBLATFKtMXNbAY7hqXxv/d/l2Xdtc6Fri8+7NZe5PhlP4XqWxJqoQHP68nnEXBWfD2TvdAZI0XlQW6mymMx/IY8j4aLa9WIqtzU3+4hSm35o1KONV3lnJbH+5LMBIaQ5RGDolBtksGYZRhicMrOufOy+Rna+W+Qyp3ntLkq5byuPG1wmhG+bTxkcTnh5Cq4flr0mQOCaKhOHh7H693FB/XwDfPH2CaddncsOqaex8pYx971WhWGQmXzeU8Z58IkkjI6g52G7o1Mudm6AbFPp81nu2mnffCFLHRLPtxRJsrW5GnZvEabcNIyTSzDdPFvt03r2t6jWHfvX4cc5/dDSZcxIo+rAGyUNnlyMUcuYkYAoNvkEVQMakWIQMfadsRRGMPj+VdY8FSr94r/3qsWOMODOJlvLSgPlDViSGTIhBNoMzwE8jiIw1exK/Bt5dNkmMOjeZLx45GrTs9+7cx082z2H1zw6wZ3kVsklCkiA0xswtq04jLjOM+Nxw6o53egzjwsPuF4yYHs+et43HEMCm506SOzfQWe2F6tIYeXYyW/5REpiTxCyRXBDV4xzoVUOvWM26vxb3YsEKP3bg3veryZkZnJ0UnR7K7ncrcXkYtTI9kkIdTU5aK21Bk3UhS7qxPwjMnkS7e1dWseKe/T7jhdAEV700kZELkohIspA9L5ED71f5+poUqke4aZpgz/KqAAeMy66xY1k5c+7OMdQ8NYXIjFz4n2c97ltVzYp79iEreqyIpsFVSycw6ntmZB74oEY3PvVZR00hCkVr6sgcEc+H9x/UI8XM+nxhjTRzy6rpxGeHsfudyoBr3XaNnW+UM++nuWhG0TshMiPP/s+3+X8r8hYmU3+0M6BdNVWQnB+F0ATROWE0HO5AkvS1JGZEOMmjIin6JDA/lBf2drfOen57CrteL6fwrUokCSZcPYRJ1w5FkiT2BBnfti6VhuOdujSOkTVDhtTRUah9Imj06wUjz9FZzwc+ruG9O/f6HD6aKrj8ufGMXpTKlpcC94pCg5YKG/VHO32Sl0aoP9qJMMtoLhW51wTkQnD8myYq9hjvrwGPxJjxfCw0fd8UfF7THf0NxZ28ePE2PUGy0Pd6064fyqI/5A+KFfl9QZIkrn59ErvfrKDwzQqEgAlXDWHSD4Z+J88140fZJI6IYMtzJ+moczD+/HTG3zCE8ISBSSFbXzZ+3+21dmoPdZA6ABnhtNuyScyNYPPzJ+modZA7P5GZdwz71hGkAEMmxnDrZzPY+NQJag60k5wfyawlObqklF01lF9UrDJ5C5M4+FGN4T2FBvtXVTPztmw+++NRNi8tQTbr67Q5VOHmFdP77eOn8P8ntr9aFkCAUh0a+1ZWc9ETYwcVaf59wBRqnO9IePYn3xaZ0+M4tqHRk0OqZ61JzgkntSDK0LismCVGnKmfgS97cQKF71Sye1k5qktj3OXpTLkh09deSy/cSsmWZt+1X/7lOFf+YzzjLurf6J2YF9zuoVhlxl6axqGP/NdZ72xQsEiPTPryr8f45ukTvj2TYpH54XvTSBsT3W/ZbdU2ag60B5A/Xd0qm5eWDmiw3/ZKWaCtSOhO8oqdLWROOxXV+F3jlMH+fxySJHHti1N4/qKNOB2anrjQJBESYWbB/SMIizOjGszhqltPEBkssaRiljBZZC59bjxLz93qm2W8Hs7Zd+dg8hyUM6bEcvXr/etYGyEuKxS3QaiiiiAi0cr8X+Ry9LM6HJ0qqlPzsYPOf2z0gN6/sDgLmoENSHULYjNDKdnaHGAQB92YaG93M+8XuRz5tG/ZMhc8NgZHR3BZCa9HVZIkchck4dYEjk6VEXMTCInUdR7D4s3gZyrxtKtJwhQqM/fnwzn8aR2ODrd/2Y+PMTQieuHocGMON2ZFCg0cdpXm0m7DhdVl0+hqdOIIkoRMVjzRHAkwZFIMV73Wv6H6X4EjiN6qrEh0NzuDylL0TlTV2WBn3ZMnsLW6mHZdBtnTdaNSc1m34fUuu0ZXgz2o1qtsknB2ulnz28M0HO/0k3Aq3tDI108Xk1YQFZSBGxpjprm0K3hERYNDlzAygKRIOLpUItH7VfGGRppKu0kbE8XQSbp+Z2isGRQJXQG9lx66W2f1DoQzfjKcQx/WYu9woToEkqQbYM7/a8GALB7VrfHKlTvoavF//vVPFZN1Why2Fpeh5JVQdYZof3B1Gb8P8Ge555+XSv55A4dk90X0UN0J4tWR9x7CLTEmFJPMwodG8skDhwOuu/iZsQPeW1LA3YtZAZ7IIRWsEYqHuRHojDBZZVx2lbW/O0xTWbePTY4KFXtbWff4cfqb9jobdSeiOURhxu3DmHF7YDKlUYtTqDnYHsBUCYkzo5gVj3RaX7Y3uDwGTEmSGD4vEZdbw97uZviseJ9+rfedGs2O3S1OCpdXUfRZHS61p16uJidv3LibH77ff74Ea6QJOURGdPaRb9J0p3JnP8znjnoHCx7Xc010NTtxuTRd8zhEZ8GZLDKJoyKpMkj+mjkjDmukCckiITzj29sumgqxmWGGOs9e2NtdFL5XReGKat2o5nlMZ7fKGzfsYsn62USkWakxkAOKTA+hs5/cIM4uN6GxFj92PnjWElnCGmUiNNbsiejo08+j9K2j93171yLv5yr4pO4Ege9UdWlEpVt7yuu91gBRaSGUbGsCAqMaFJNEd6vT2KhlBLZEAAAgAElEQVSFPtf1lxQrNNpMS0U3K+7Zr7ODet39rR/u4ZeF8zj+dQMHPq7B1WsMuVqdvH79Lu76apbhXA1g73ATEmlmwa/ydEam592aQvQIuSnXDfV9t3hTI58/cgxZkVj8u1EMGR8T9Jm/K7RW2nj/bm/UUk8d3r55D78snE94/MAOxYHgsqkc/qKe7hYnOafHk5ijO0/s7S7DCBzNpWFvd7HrvQp2+yLF9M+cXSrLfrCTuzfM9uUSMSrPGmHizN+M5Is/HvVr86iUEKbeMNTwulOA027JovDtCjobnPr8Iunz/zm/H4UlTGHlvfupP9bpW49Q9ajFtb8/Qmo/TjHhWWcUs8y0m7KYdlNWwHe8UaxGUUu21kBZxt4whcq4g4jVd7e6aa+zs/yOvQHGqeW37yVzZ6wvyqYvZEUacG/h6HAjK5KPkOl1R8vo0TtujxFD4L9+S0BngxNrpLFGvskqo7kEqiZ88mS951RNA03TeO2anQG5tXa8UUHW9DhGL/7n9zLfJRSzzNQbMpn6PSXXzp2XSO483SGTmBhJQ4OxZERfBIt4lhQp6P65L4bPS2T4vG8vgWOExBERTLgug7QjnSTlhvsSaZtDFM79Uz5r7j/ki1JRLHq+oxm3ZbP77Uo0lxbQ19xOfU49uq6BLS+X+u0dHJ0qr161g1/smfcfdfCcwr8ffZ1WXqguDU0V34nBvvFkF8UbGwmNMZN/lq4974UQOoGupqiDhGHh5MyKR5Yl3HYNyQKaM/DsYAn/9vkYojL081rf2oenWlHM+j7+w58ewG332MCsMqExZmb9WD8DyYrEpGsymHRNRsC9Nzx7ws9Yr1cU3r19LwWLUjH1kxRXc+vrnZHkVniChfxzUogfFkbTyW6/5TAkxsSsu3M4sbGRDX8/icuh4fIdYVReuWon9++b3+/7tHe4kU0SwuF7ZN86ZW8beE4MtkZLkhTUHnIK3w6nDPanQOroaEzRZuxNToQqcAFpoyKITLZSvKERk9XAmChB4fJK8s9JYf+qakPD2rBZCYTHW0ibGkPljlaPiJiEOdrEpGsDJ75/FoXvVRkTUUwSR9fVM3pxKndtmM2WpSWUbG4mLiuMmXdkD+h5BDixsRHFEsgGQ4I9y6sYuTCJwvcqA+rtdmrkzI4nOi2UuzbMZuuLpZzc1ORXtqZpQSfp2KF6aOvJLU28cs1OndWk6gbzOXcO46z78sg/O4X9q6s9OtM9TFRFhpxZCZ6yZ7F1aa+yb88mbWw0QghiMsJo6qN/JikwYkESW18s8R2g+rIit7xQ4pNxMYIQMOrsZLa/VhbgGAiJMhOT8f2G7Y48O5ntrxqVbSJ1TDRxmWE0FhvU27MJ3/JyKR/cf8j3WeH7VQydHMOda2cGDdcD/SA18qwktr5cFrCAWUIVIpKtHFtXH9hX7Bo7l5Vz99ezMfIGyCaJ0eelcuSLuoDPesoWjFqYzPZXygLub40wEZcVRkednefP30qnR0JKkiXSx0Xzw3emUrazBRQCEt8IIdizvJLhc4IzcAEik0P0vvZiKSc2NBE7NJSZt2eTPgjjU+m2ZhzdasAYdthUdiwrZ8Kl6ex+p9LPoYLn2XLn9H9wikwOCZrwMir127Oi9iyvwmnADmyrsdNWbWPGrdnEDQ3l098eob3OQUJ2GOf9dTQZkwbOzbH+qWJDqQGAr544TsHiFLYsLQl435YIEzEZYRz+tM6wr+16o4JpN/Z3kB54s37ok1pUvBu7nrnH0a3SUqknEPTmDelhe/fcuWxXC/93xQ6EEL557bSbMln021GMuSCNqn3GSW2nXJPBZ71C0r0Qmp7409HpxhRinBguIslK+c4W3C4toK8JAbveqSAyKYTaPon+vIjNCicszkLKxGgOf1GPkPSDvghRSB8fjerWqCkyNhyc2NxM+a4W3KrwaeDr7jFdumX3OxVEZ4TSWGwc9jtkYkxQdmBDcReNxZ2c3NxkuA4WfVrL3V/P5vM/HjW89/B5CeQtSGLT30965i3/8T98TgLvLdmHUxiw3BsddNTqkndefV3Rqz8gwawfD2PnmxWGkjep+REIIfmu9SsbUFWNUecmU3+sM9BBLEkkjYzsFbfhf28EQQ0RAkDRWeaGkQcSFK2tZVevhNC+azXdcdtc2m3IgtWjYPQ/zvxRNqmjo9j2YimdDQ5GnZvM1BsyfdE7z56ziYrdPUzcZ87azIh5CfzwnYETdX8b7F9dHYS1LHHw4xqmXf/tDG2V+9p46dJtaKpnfAuYfGUGFz5aQO4ZiWx6rsQvaS/o69zwMxL55KEjAZ8JoSecbjrZTcbkGMp39tF6liD7NN2pftotWaTkR7J1qd7mI89OZuqNQ31Eh1MIRGiMmTvWz2L7/5Vx7It6IpOtzLgtm8zpcQghKHy/KsDJ4nZoFL5byVmF8/jgl4cM7zts5sDsutGLU6g70hE4ZwtIGxtN6pgoqva3+41xAaSPi+bgR7VBEwnuea8qaISuAA58VEPB4hRqDweWLTRB2tj+zwepY6JwOfz3Ld51btS5STQc6wowDHm/G5UWQtroKOqOBpYtmyTSxkWDrDuSvfOid86VZKg/0hlgrAfdELftlbL/uMH+vxUFi1KoOtAWkGRcUwXp475/R2l/sHe4WHrxdhqKO31G07ihYdy2ejphsRbSJ8agmSRQ9DXIrQrSp8YQEm1m+JwEPv1TYKSJySQxYm4S658qNjTSdre6qNrX9m9xEp/Cfw+GzUrg2Jf1AcfNtLHR/RqWBwMhBB/9pojty8qRJAlZgZWyxM3Lp5ExMQZHp5uXLttO7eEOhCaQFImYtFBu+2A6iSMiMIeZsDldfmKYskVi9Pkp3+q5QJf8NELptmZUt8b4S9OJzw5nyz9O0lppJ3deItN/mBmUkNobm18sNfy70GDnG+WcZuCs9iJheDghkSaf89oLxSwx1hNBvmTLbD777REK361Cc2vkL0ph8SMFmEwy214tw2Ewvh0dbsp2tpDdT26gxOERuh2q9zOjR3KPGkRUYsGiFEq2NhvksNMYOmXgc+4p/PM4JWR2Ciy9ZiudjU5dD94TYllR2Mo3fz+pH6AMzrVC02UnIpKtqGqP0rtXUV4TEBplYtMLJ6na14Zb6AYLtxDYOty8dVvht37u5rJuw2dz2TTfBBiRZOWsB0Zy2yczuOz58YMy1gOeehuwezU9UW9Ecoin3p6/e340oRunAcITLQybm8CIRUkMPzORxFydkSTLMuf+flRgoRJc8Y8JuOwqr/1gF44uN7ZONw6bisuhsuH5Ek5ubSLvzCQyp8QhWSQcCBwIlBCJWXcMIyZdN4pHJFo589d5PfX2HEIkSeLip8ZiCVN8mq+6N9nCWb/Ko6vF2WM0Qdc99k7o3a0uwhMsns/937dk0nXd5v5kOOHxFkwh+tQiKXoI5iV/G/u9a5rNvWc4EQnBy77kSYN6R5s569d52NtdfsZ6L8p3tbLx+RNBw25lk4QlzERootWjt6zD24aWSAXhMVwYwWXXsESYELI/I0ugG+PDEy2ExVsCPhOAZNITep1xz3DCE6yY/eotc8lTer2X372flopuHJ0qLruGs1ulorCVLx8/rrMRPQlUvY4ZbzmD9ZKHJ1hZcL/e1y5/YcKgjPUAtnYXziDs4qbSLoafkUD2jHgsvXS0zWEK02/MHJTczvmPGGilSnD58xMG9Xz9od2Tn0NDHyPe5Hhut/AZnYbPS2LeA3nM+mkO83+TR/oE/3bpbnWy/Y1yvn7+BNWHegzV/bGiu5pczLkrh8hkK+bQPv38ybEgPEw8BCoCt+e3hsDl0AyTJ3nhHTf9wbs5691fAGRZwtHu8s0NbgROz2/v6qC6NV69dif2DrfeF226nuz218o5tr6B0+/IJsIgSXJKQSS5c5Nwdqn62tKrTgL9gOvsVrkgiDbuFc+Pp7vNicshfNdr9KxZ1QfbSSkI4oiUID4zjJ1vlnPsm0a/NdLW5mLZDbsRqjB0voLOKnZ0unHaNFRPmzg87QLQVG5jVD8yKcPnJNJWbZwLxu3UsHe6cQcZprZON9FpoYy5KNCIYwqRueCRMTSc7EQVPe/S+6MK6Gpx0lZtR3ja24nA5Wk7t0v4MRN7Xwv6pj8+KxxJ0SPeXJ4fr5nrtFuGgdRjjOr7IykS4YkhvnwN0DPvKaHetL+Bc2bvttGCfN5R78DZpeoyXH0gVIGjS8UZJEJHViSfxrTRvXsn6R12ejxXvzaJW9fOYNaPc3zG+sIVVVTsbgvoi8e+aqR4k38elO8aji63ofNZ6zVvCSEo293C+r+fYNfyShz9RCv53UMTvHrtTmxtvca3XWPP8kqKPqlj6JRYRp6V5DefW8IUxl2STmpBVFDtblnR550LHh2DJaJn/ZbNEtZIE4sfLvB9N3tmT5vPXpJzylg/CIRGmznjJ8O5de0Mrnplkl8CYNWpGc65bqdGSLQZJVTuNcP3RMj0liFqqbSx8cUSNr1UQmtVjzzm9JuyiBkSisnqWXckfd9y/l8KMIco1B7v9NwTv9+1RzqwtXnHoP+zeZ/Z1a2iuTR9rvL8aAhfP59+YxaxGX3KDpE5/y+jMYfo/dPW6WTZLbt5dOZ6lt2yG1unvi4rFgl3kEjV1ioHjn4ippw2lWnXZxKbEeaTMEDS5+PzH/WU7flz3zkVoZ9LgiUCDzZ+/ttQua+Vr587wY63KwbNbv+2mHrdUOKGhiFbJb2vSAJTiMx5fy7wm4++DVqrbWx6qYSNL5bQXDF43e01vz1C7eF2nF0qbruGs0ulvriTD+4/hBCC167bha3DjVMVuITApQqKPq9n74oqIhIsGAWaqKp+dgjWJyRZCnCOnsL//1j0h3ysUSbfvKeYJSzhChf+dcy3vveRL+vZ+UYFbruGy6bi6FSxt7t55dqdaKrg04ePUH2wHWe35xzapdJY0sXKnx9AMclc9OQY/Uyj6EZkU6geITfrjv7lagcDIxlf0PcsXuJGxqQYrnhxIrd9MoN5P88dlLFev3c/EbIDMNUVk8zFT471O3tJJohMtjLrTg+7X5Y55/f5/OromTxwYiEXPz3Op4/fXBEoNw066c07t2qa4MhX9ax/tpgDa2p8co2yImE2kH8VQHjSwHUff2k6ibkRvjxXkqSfQ8/+zUhCo0/tu74PnGLY/4/D1ubixNYmnxSLF267xo43KljyxenGGtcmiTGLUyl8vwqXJgIYl2YFjnzVwI43KgKSZQpVULW/nc5GBxGD0B8MBk30hPH0RRD76KAxbGa8YdSAJUxhzHmp7F1R5Uu22/tAYQ1ROLKunvyFySy9YrvO6nBomK0yqx84xJ0fziBpeAQzbs4mOS+SNQ8W0V5jJ2V0FBc+OpqEnAgOf1GH260FeD7tdjc736xg2GnxdNlc2F2ar/I2h4bDObgNWPb0OO5aP4utL5fScLyTzGlxTLs+k/B4C8kjg2s5hidYGX1uKjvfqkB1+79vE3ryuohEK/dsnMPO18s5sbGRuKxwTrs5i6Tc4OHT3xUiEq3cvaFX2ZlhetkjdGNc5rQ4lnw9my0vldBwvJOhU+OYfoNe73VPHg96380vl3HJY2MoXF4VyA5UJHLPSOCly3f4mMS9+0NrjQNHl0rMkFCdmdkHOXPiObm5Cdmi4HK4/bWgNZ0tNuXKDPa8U4nL5s8QlhVZb/MEK/dsnM2O18s5sUGv9/QfZpGcF4mzW6V4Q2OAfJPbrrHr7QrmLjHWW7aEKYy94PtlawU7eILeBrIs8YNlkzn4UQ37VlSjWGWmXJPB8DP6Z/17MeXaocQPC2ftb4porbKRlBfJBX8dTfKI70K7MwiDV4BslmmtsvHMos3YO1y47Pr4j88K544PTiMk0szxDY28cv1OQGckfPboUSZeMoRLHxtDdGoo9ce7DO+fMFyXIVvyzWx2vVHB8a8biM3Q+7lXkzQuO4za4h62uPA8bvZpsUy5ZihfPmrc10cvGpjJMub8VDY8ezJgA2wJV0gZHeMxoPRqD89vRdLzWBhFPDi7VXa8XkHevCSm3DSULx87juQxpgqTxGm3ZwFQsCiZ2qc7AjQtQ80SibkRJOdFEj8snI9/dYiWChvJeRGc/8hoUvKj+PqZ4iDPJuhocpC/MIVtr5QHsEVMVpkR8xJ54+Y9gUw1oTuNG052+gxWvfX7vfqbkix5DF3+ZasINE0l/+wUNi8tDYgMkk0SefMS+erJ4/SWjel9k/6kX7x99KoXJpI7u5z1TxXj6HAzYn4ii/9UQFiMha+eOtHjAPRrF92QoAn/NvN9LnpkZ/quwQK9zuW7WtBkUHs1m+qp9/6PqolODg1attD0CD5VBM6p9g6V9ioHljAFR7fbEz7t/VwQmWjl2NcNgc/s+d3d6mLkmUl88+yJgDbXNEHegkRcNjeNJ7sCWLCKWSZtTDRDp8RStqPF796SBCPmDZz34/NHjxr2BwnB2t8dZskXswa8x7+KkWcls/G5kgAZJlmGvAVJqG6N127aTfHGRlSnhmKVWf3rg/zo/ekMGYCJWlnYaujocHarbH+9nIJzU7j8HxM4/Ekde5ZXIssSk64aQp5HJ3bKFRlUF7UZMI9lUgoi6W52YY4x4axzoEkAAmuCmYhB5AU5hX8ekiQxdGosxdub/TfUEgybFkvNwXY0gS9yqIcNLti7qpppP8hk08slfPy7w577wce/P8z5v8tnxo1ZmEMVYnPDaSzrQpM8jhlZT+qqqqpPAqT33CAAp01j3IWprPzZ/gAmu4Zg1Ox48uYnsfbPR/zmLhUQmkbe/CRf2fWlXYheZSfk6JrCpbuaeXbRFt+1DcVd7P+whjs/PI32antQAsbeldW6zIDBfC0QlGxtRgmR6eh04vBIqyHAZVd9snHDZyVQ/HWjn0NQAnJmJ5A2NtrQ6W4OlX2MzP9WaJrgrdv3cOizejS3hmKW+eCBg9zyznSyvmdGpilUIS4vgpqSTlRZ31u6ZJ3h+l1g6+tlfPDrQ0iSvgdc84fDnPvASGbfGigr2Bd7V1YF7Is0l+DARzXMvTuHToOk2a5ulW2vluPocGMyy7j6WO1lReLAh7WMvSiVyr1tAfO90AQZE0+x6//XkDAsnJ9smsO2V8qo2NNKSn4kM27O/k6SVu94vcLQCeS2a5TtbKHwverAXCluweHP6lHdGqMXpZLwSThbXy6jtbKb3HmJTLlm6KByig2EEfMSObQmMCorfVz0AHvogZF/TjK73qw0/GzKIJQk6ks7sdlVH3tauKGx1t4vucqHfgxdkiRha3fx3AVbaC7rxuXQMIfIhEaZuWvtTFSnMCaHCSh8r5rZt/fvKDGHKPzo49PYu6KaQx/XEBprYfoNmafY9d8j/m0G+5KSEu677z5aW1uJiYnh0UcfJSsry+87v/jFLzh6tCd8++jRo/z9739n/vz5PPPMM7z11lskJemb+4kTJ/LQQw/9ux7//1uoLo1gMnaqS8MUIqP2YtD49Hc1MEcqtFTa9I1ln3s4nRr2NmPNUtA378FYiYNFeKJ+UPMe+L13k80SltDBTcL2Tjd7P6imubybIeOiKTgrGcUkEx5n4ZyHRrL294dxOjSdOR+iMHRqDPnnpnD060bDTbsQAtWp8c3zJ6nc2+pzVjjcqq47fOse7v1qNqDL1yxZPzvgHo4ONw67ahjv31JtY/ub5ZT1DQ0Hvnm+hNNvySY2fWD2cXx2OIv/WBDw97AYc1C5nsS8CKzRJtxCoEn+hhbV410FnbE1+8c5QRO5Orr0Nm8q62bIWE+bDzKrOUDlgTYOfVaHySoz/vw04nuFPw9UdniihcT8SORwhcSREYR4tJhdNuN+Cjpja/icBEbMT+TYugYPy0k3lp1xTw7RaaE+yai+rSbJ+vWtjfaAMQRQc7zDb4z0vd5t1yWWRp6ZxNEv+5R9d44voiIkyszsO3OYfad/vY0SVnmhuQUhUWYW/zGfNQ8U4XZqCE031g+ZEM2Y78hg7+hys+/DGhpLu0gfE83ohfr7VkxyUBkTr5ayrEiMvTCNsRf+a4fRYTPi+fG6794AZo0y0WmQ1NZklRGq4N2f76etzo7QPMZZt0rtsXY++fNRzntoFK/dtMtvc6u6BIUrqyhYmExyfgTHNwQybSUZYjP0A6Yl3ET8iAja25xEp4QQmdLj+GxtsOuyLb2uFUBtSRdRKSFMumoIu9/232BaI00s/mO+77+rD7Vz8NNaFLPMuPNTScjSy511+zD2r66hrcaOq1tFMUvIJpnLnh2vy2d5J+K+hSuSPkaCrDVuh0pNUTtf/a0Y1WulBVAFK352kJFzk7FEmXzOB792CZV9a1jW1Dh+/GXg+3Y5VJ9Uix+E3vaZ02IpWJRC0ZpafYx5cjHMvDWL+OxwOgwOzaAzuZ1dKm70zVRfrXcVcHW7DJ8bAe11TqxRJp3p02f0qwLM4Qq27h42ad97u509n3nZ6rKvqJ4CJ18zlMnXBGp592ZbB8w93jbr++xCf8+qW9PXfWGwBpskupsdOhPVoN7le9o47bqY3n/yQVIkQqJMHpZ8L0kIb91kvd3j8sKpKWwLaJfUCVGoTn/Jir4KNtYokydpZY9DQkF3FFjCTcy4OZt9K6tpKbfh7FaRzRKKSeayZ8chKxIXPT6Gfyza4tFb1w9C5jCF83qNoWBw2VTD/iBETz4VTRMc39jIia1NRCWFMOHCNMIHyfjqDxkTYhh3cRr7V1Xr849n3Z5+QyZJuRFse6OM4xsafQYe1a3/fvXGXfx69/x+NY9VlyDYZtKbnEyWJQoWpVBg4Bycd+cINr9aQnNZt97mJgnFLHHZM+NQTDIr7ztAW52jZ2/ihuZKGx8+WMSVz4z/Ns1yCkFg8uoH93mtpkgTzm4Vh0PvQ35mGqFLwzWVdvHx7w8HGGk+fKiIkfOTOLG1ieMbGnF636cKdKu8esMu7t89t/ftAuYmS4QJJVxB7SuhBAyfm0h3u0sn1PR5bk2ArcPFnhVVHPumEVfvsm162Q/sXcALl24zbI+lV2zn/N/lGztQ0Vnu3j2lEYQmWP2rg7TVOqDPHvr9n+1n0hVDOP+R0fx94Sbs3W5cLoHZLGENNXG+J1/KJX8by/I79qK69IgBS5hC/LBwpl2X6Sun7ngn+9fUgBCMXZT6HZEUvh32rqqm6PP6nrnF5Z1bdvLgvjORFQm3Q2X/mlpqj3aQlBvBuMWpvogH0KMPC1dX0dHgYPK5GSSOCRuUDvu+1dUc6SVLqakCzfO+H9x/5rfS7m6tsvHBrw8F9PO1fzrCqAVJJA7rn6wU7BysqXokSzDDndup6WukwdFF0wRul8qkK7PY9XYFNUWdOBwqigxms8zFT4zxa9dT+N9BZHIIZ96X953fNyjTXNLPwGoQWVkh8BnSI1NDSBodiTXRTMKIHvb2YCCEoGR7M0e/aSQs2syEi9OIStK16xf9Lp+SLc16rjWn8ETGK1z8+MA5xQbCoj8UcOCDGhx98mNNvnoIEYkh/V6rqiof/+5I4BqqCp67cCs/XT8HgMbSLvZ9qLPjR5+dQlqBTqwMC5JzyBQiIysSnzx8hPriTp9D0NGp4rSpvHvPfi76U0FQ1YNgdruAcqwKk6/OYPLV317i+hQGxr/NYP/QQw9x9dVXc8EFF/DBBx/w4IMPsmzZMr/v/OUvf/H9+8iRI1x//fXMmtVz+L7wwgv55S9/+e965P8JRCRYiRsaRn1xoH5v/sIkjn/TiByq4HC5/fR3hRAUrqxGEwYHcg8EMO6CVDa/VBrAIIjNCCUqpf/JbCCMuyCNfSur/YytXnZf7iBYuHXHO3nmvM24HbpMiDVcITYjjCUfzyAk0kx4shWnAFXWFxSnEISlhCDJMOa8FHa9XRGw2XI7NEbMTeSZRZsDIwuErrfcXmcnKjl43fs6P3yQ9Hbf+GJJ0Gu/fvYEF/35Xw9vG3Z6PIqBwd4SpjDxknT2rKj0C8H0MYBkOPxlPRMv6T+zeP2JTp5ZvNknzWINV4hJD2XJxzMHFUa16oGDbHujArdDRVYkPn/sGJc8OoapVw68YDSc7OTpRX3KTgtlyZqZTL9hKOufKja8bvxFaUiSxFUvTuTYunr2r67BHKow6cohDJ2se5PHXpjKxudLAjbtEYlWzKF68lfo0bD2GqFqj3SSMzPeUKbAEqYw7mK97CuX9io7RGHSVT1l9wdrhIm00VFU7mvzO/XKJomCc3WjybTrMhk6MZadb5Zja3WRf24K+eckD5g0djBoKOnS29ym+to8OjWEJWtmkj09ztC+Yw5TmHBp//3oP40Jl6bz9d9OBL7vBAtRqVaKNzX6HaQE4HbBnvcrKViYbEiMcHar7Hyngjk/Gsb2ZRUBjG7FLOvsX7vK85duo6aoHUeXijlU4eM/HOGOFdNJHBaGvd0dMCVLQMMJnbV/6d/GkTc/ia+eOI69w03BOcmc9UAelhB9O/DRHw6z6eVS3E49/P6zx49x4e/ymXFDFiFRZpZ8NYu9K6so/qaRmCGhTLtOlyjybdiNCpcha1qcoW64JUxh/CXp7F1djdsg2kNSJIo+q2PPiipDJ6mtzUVTaTcJ2cHZciLYoV7S51tJkrj82XEcvySdfauqUMwyEy8fQpZHHsIrBWHEcrdE6DIGbhE4viUZitY39C3VV3ZXq4t9H9b4JHJ6s0lNITJFn9bhcmi9DNY99wbdMKZLQvTc09vEUjCR516YclUG6x43nvfm3p3DBw8WGb9P9M36kAnRVOzp0WL3vp4RcxM5/HUQeRcJutqcFJyTzPq/FQdqUQvBqDOTsbW7KS9q991Uj0oAIQkScyOoOtDey0HR0y4ntrbwyy1j2fZqhZ8jwftsWVNi2f9RDc4+zkwNkITg4Ce1zLwxizs/P539q6s59lUD0WmhTL1uKAnD9D6WnBfJT7eewY43yqkt6mDI+GgmX51BWOzARvXEkRG01hk7gIZMjMbt1Fh65ZQi2YQAACAASURBVHbK97bi7FIxh8is+eNhbn13GtlTBtYGHwgXPzGGsReksneFzgaecFk6w2boOvDb36wwTILc3eKi9kgHqaOCR+BlTDCWGxzsfG4NN3Hn5zPZt6qGY+vriUoJYdr1mSQMC0cIwaFP6wIiQTWXYN9H1acM9t8DhNCdRkY49nUD8+4KwsCT9Ply/5pa4zwRwMG1tRz4pNaQkWnvdFN3uAvZJKG6tYCoJcUkU7W/LSjRaO8H1f2yMr9+7iT2NlfQsqsPtAUlcLhsGq1BJMq8RKa0cdEUf2Pcbmljoyhc6Z97y/tvTdPZ1iPmJEKYjNumO0bdEogwGUu4XqfRi1JJXhfJjmXltNfZyZufxNgLUn1M0a+eLeazvx7zGae/fKqYM+/NZcHduUHb5N+BHW+VG7a5y6ZSua+VmCGh/O2czXS3OHF06XvFNX88wt2fzCQmNZST25pYevUOPc+aXWPji6UMnRjDrW9NHZDwsz1Y2XaNir2tZA4it1AwHFhba/h3oQoOfFzLvCXD+70+b34iRZ/VIXo9nuTJR5Y2WmcA9zUGmkNkJlyaxqgzk/n04cAcNSaLTP7CFBSzjDXBiosOnUwhSyBD6Hfg/D2FU+iNCZekU7K9xSD3jyBzaiyjzkriwEc1ftHekgRZU2MxWWTKdrfwj8u3o6kaLpuGJVxhyJhofrR82oAseE0TLLt5N0fWN+C0qZgsMmsfOcINL09m1PwkTKEKhMuoHbp8mpBAWGWskd/eBBoSYeJXBxfw+cNHObS2lpAoM/N/ljuofCKF71cH/azmsJ4Xa8urpax+qMiT80uw7uliZt2SzeIHRjHxsnRKtgXqyMuyRNa0OF6/bU+A7U2oULypkZghIYRGmwPmRVOIzPiL/7ujtf5X8W/RsG9qaqKoqIjFixcDsHjxYoqKimhubg56zfvvv895552HxXJqYfm+IUxehp4+sH3/MssIr4is5GHVST0GZU3ViEo1NjybrDKWcIV59+YSNzTMl+nbFCJjjTBx5XM9B6yuZidfPX+Cd3++n53vVfjYWAMhd04CoxelYglTdKOLSb//4j+MGpTUzls/LqS7tWfj7uhSaTzZxWePHcPe6eatu/b5WMegex33fVTD0a8bkC2Sz4jT+38qejKVoMxmqYf13NXsZP0/9HrvWN5Tb3OIElRPOiolpH/WdJADUl/4lf1uT9mhUWYuemyMXwIaxSwxfE4Co85OprXG+LDicgrs7QPrUb591166W/q0eWkXn/71mO87R76p56nzNvHI3K/54pnjaB7LZ8mOZp9BQWg6o89l13j/Fwf61f324q279tJlUPYnjx4lJi2UadcHGv0jkiws/M1IQF8ER56ZzOV/H89Fj43xM5jPXTKc+Ozwnn7u6f9X/WMCmtajVeodQ5quIQXoRvWLnxiLOUT26fNawhRyZscz2mNU9yv78TEBxnq3U2PPqiqW/2I/Xz5TTHsvRvBlT48jJMrk0zy3hCtEpYRw9q97WBapo6M4/8+jueL5CYw5L9XPWC+E4MS2JlY+cJAP/1BE9WHjxKBGeGfJXrpbnH5t3lTWzdo/H8UaYeKSJ/vUO1xh+OnxjPkvT542+0fDSMzp877DFK58fgISkp8MSG84bGrQcHrQx2/mlFgmXpaOOUxBkjwa9SEyC+8fQUxaKBteKqHqQJvPCaTrRbp57ZY9fnk1AtDrg9SxUeSek0TOWYkMm5uAyaLXo2JfK5teLtXHmKobxNx2jdUPFvl0+82hClOuGcpVSydyzoOjfPkE+quXQO/Tlz09Ftki4ZY0XGhghsypsYy9IBXNq3EWcLG+UQ1uf5Z8815TRTcv37STh2et5427Culs0seBYgrOoPP2PUmSGDEvkcueGc/FT4z1GesBwuLMnnr0XiMFcog+mCUPrb3v+DaHKjoDMJi/QO5ZD4TnOs27xgqBpuka/UISqJLAIQlckkBIwreWqN579/mt9iqzqaybT/56lPfuP8ChL+v0tgbO+mUeYbGBjtK4zDDGXZAelNXt1UAVJsljDBf+v80Sboc7aF8UKjSVd+PWAtdQtyZob3RQtq+lpz69fmw2tedNGLS5EIKo5FDyz03yvCt/5v/1r0+m+miH4b2F0NlMoK/Dk67M4KqlEzn3t6N8xnovIhKtzPtJLle/OJHZd+YMylgPkD0t3rg/SDBkfAxbXy+jdHczji43KgKHXcXe5ea1m3f73ttAaCrv5tPHjvLefQc4+Lm/oVuSJHLPSOSyZ8ZxyZNjfcZ6IKiBVe9r/Zdpsipc+dx4zKEyiqVnPs+YEM2ky4f4vle6u4VVDx5i9W8PUbHfP1JQUiRMUQqmGJP+49kHCUHQugfTpz2Fb49gc7oQ/c/3EDy6z/sug/U1yTOvyeG9hXZ6fisRsn7vYIml1f7WCnyGj2BlGzGW/b4jS578GCLg2ZB0o7zo9bno9c20cdFB9e91p77Gyl8dpKPR4TO4qy5BR6ODlfcf9H3XFOoZI7FmTBEKsme/1lCi76Vdds2X+Nll1/jiiePUnzBOqv7vQvCziYTQYNWvD9FWa/PtaxxdKu31dlb88qCeH+Pm3Ti71J6o5U43pTtb2P52he9OFftaWf3bQ6x68BBle1p8fxf9HCm9fcXR5WbzslLe/fl+Nr5SMmh9/aD9XOs/wtWL8x8uICLe6tPSt4QphMaYufivY5AViav+MQFzqOJbcy3hCikFUUz3ODPPuCsHc6js24N4I6bSRkexZ2UVJ7Y0+Riz3v7w2i17DKUwT+EU/lWMuziNrKmxvjORYpYwh8hc/uw4zCEKi3+fT0RiTz83hymExJi55Ikxeq6GW3bj6HT7nKXOLpWKfa1sfrVswLL3f1SjG+s9ORfdDt3ov+y2PbgdKh//vojWWjsOl8AtgdMt6Gh28u69+76TulvCTCz+YwG/3DOfu7+ePejk38GiDgA9Uq3WzuoHi3DbNTSXQKi6k3HjS6VU7m9j7AWpZE+PC2jzy57W8/UJ0ZO3y5vPTOA9Z0lc9cIELGH+c0vi8Ahm3Zb9LVvkFL4P/FsY9jU1NSQnJ6Monk6lKCQlJVFTU0NcXCBjyOl08tFHH/Hqq6/6/X3NmjVs2rSJxMRE7rrrLiZM+PbJA//X0dXspPZEJy4ECvo50psIbe/H1Zz7qzw0g6w2ljCFSZcOQTZJFK4I1PZGgpHzkgiNMnPP+lkc+LiWku3NxGeGMenyIUQk6gb1yoNtPHPhFlSXhsuusWtFJZ8+dox7P51F+AAHYEmSuOLv4zi5JYNDa2oxhylMvCyd5LyBwz+7W516osc++ym3U2PPymqGTYv3GXJ6w9mtsvu9KqwRCi5V+M76oDP0rCEyR75qYOKl6Xz990Ct5/isMKJTQ6k61MbTF27RE2TZNXa9r9f7p5/OInd2gmGYpyVMYeKlQ8ic3MXqXwUmSAWYM4DuGEDVoXaevnCzf9mP62WHx1k4tr2JLqcbxVMzp0vj+J4mz4E5uOFroK2prd1F5f62gIOe6hQUrqrioj8W8O7P9rHl9XLfZx8XHWHD0hIeKlxA4epqQ/afbJI4vK6eKb2MAn1h73BRXtga8JCqS7BnRRUXPzyajGlxbHmrAsl7oDJLJE+IHFSyXGuEiSVfns7BNbWc3NpEXEYYk64YQqQniaYlXPHJHfRGykg9XHbiJekMnRDD7ncrsbW5yF+YzPA5CYMq297p5qlFm2iq6MbZpWKyynz+5DFuf3c62VPiSBkZyS93zGX3e1U0FHcydGIM4y5I80kY9QchBO/8dD97VlXhtKnIMmx4qYQr/zyeyVf3z5p0dLkp29MacHhWXYK9H1Rz6aNjmHBxOhnjY9i9vBJbq4tRZyWTe8bg6v2fhDXCxF1fnM7BtbWc3NxEzJBQJl8xhMjkkKCJdEHvfsOmx/kklHpDUmDSZUOQJImL/jKaCZekc+DjGkwWmQmexIwAu5ZXBkTvAHQ0OGivteM1H/RlJnr/u/CDKt5cshfNLVDdgu3vVJBzWhy3vj5NZ3sb5SxRJA59XsdpP8gM+Cygjn1sKb3H+4ndzXS7epj4qlvj5IEWVLfGuPPT2PRSSQC7UWiQvzAZe6ebzx49GlD3iAQLiTnhFK2r54VrtvvGeN2xTna9X8nP180mOS8SIRnoCgtBqIHBui8mXpLO2j8dBYFPMV0AYVEmUkZFkpofRdWBNr95WyAYPjuBs38xgm3Lyg3vmzs7gbHnpbLhhZOG9S5YmMyhT+s4uL6+1309eUMkQd78JF9b+kHC9xL2ranm9TsK0VSB6hLseLeC7Mmx3PbWNBSTzENHz2Lt7w+z6+0KJFli1m1ZnLFEZ2NOuSqDT/50JKDNw+MtJAwLo3RPq+648NVY//8jX9Uz9vxUw+VCeJaRjS+X4pIEksC31qh6A/PNP05yLAhDX2hw5MsGcmclcHxjo5/hTzFJjPE4Oa9/dQr7Pqhi7e+O4Oh0M2JuIpc+NQ5LqEJTqXGOCMAw2vC7xJhFKax/pjigTU1WmYKzU3j5+p04en3mdTh0tTqpPdJBWn5wljvAgU9ree1Hu/Xx7RLsXF7B0Akx3P7O9AGZqJOvHELdsY6AvhgSoffzgZC/MJl7N85h97uVdDU6GTEvkZELknySE6t/e4jNr5bhtOuyU5teLWX+ncM55+d5OO0qfztvMzVHO3zr2JdPF3Pzq1PInZXgJ73Uu21O4fuBJEmMOjOJos/92b+yCQrODp4oW+f46OPw88eOQR8DtSTD6HNTCIkyUXWwPWBPZw5RSC2IxNauUzG9cwt4kry3ufV8CgZziyTDxEvTicsM48iX9YFfAObclk3d8Q5KdrQEfKapMGRstJ5Y1hnI7jdZZOYtGc4XTxxDE95Phc+AnzkxFiQJTRJIoudqgR4ZJIQuP+eyGxNMkoZHsuK+gwE5h4QKRV/UIYTgyNcNvHzjLn0+d2rsWF5Ben4UP15xGoc+DdRpBl125cDaWubf1T/b+/vElCszqNzXFnBWVCwSQ8ZHc+izOsN6H/6ynqqDbYE5ZNDJCjvermDGdZms/csRvnruJG6HTorYvKyMWTdlccGD+Uy+cggVe1sDyzZLZEyIpqXKxuNnb9QTxHerWEIVPvnrMe5de7pPDjAYCs5OYe3DRwL+rpglH+GmP8SkhfLzbWdQuKKK6oP/j73zjo+jON/4d3evqrdTtyVbliw3We6yLfcKGAOmdxwMmBJaCCWEUAJJKCEECEmoCdWEEoppxr33LluyrWJLVu/tdGV3f3/s6aTT3UkC2UB++PFHH8GddmdnduadmXee93kbiRsazKiLEtwJs1OnRXHPFs2mNpa1kTpVI0+1k2rm/DqNofNi2PvxSVQFMs6Lo78rYmDH+751xRVZ5fjuegZO6HvE1hmcAWgJVH+xbDxHVleR+20lAZF6xl7ajwiXZG1IjIlfb57O3k9KKdnbQHRaEGMuScQcqqfiSBOtdd4HZA6rokUd39R9Logd/ynxm0S5cHsd+78o98pXpCoq+ZtrcdoVD4LiD4mxlyXywd0HfH4XnRbIoRUVPiWxnDaZvZ+VkpgxhMXvjuPo2ioOr6gkIELPmIsTiXRFG6fPimbHf0+6r2vfO/TLCEFvkhiQFcGvt01n1/sl1JdYScmOYthZ302i+Ax+OPwkk86uXLmS+Ph4hgwZ4v7ssssuY+nSpej1ejZt2sQtt9zCl19+SXh470PZIiNPf+LL/zWYJRsOp9JJQ6vDqNlaZPoNjOCGN7J4ZfE2VFlFdiroTRJZlyUx6ULtFO7ItdVs/HchjjYZSSciSAKLXx5H/0Edi4G4pWGw1Lv8Z+5YT1tTxyrN3iJT57Cy9sVCrnt+LACFu2tZ89oxrI0Oxi/qz5iFCYiSZlAUReWE2IjNroBexGQwYLH0vLFs0dvxVrbVoNOJhIWbEf0weMyBekxBeo0J1OUOgigQGmZmxqODOLauhvK8JtqandoppkHktvezsViCefauDbQ1dqp3q0xDWRtrXihg8YvjuOnNLP55zVaNQWlX0Jslxl/cnymXDkRVVXYuK6Fkf4PHc029fiBDxve8QHz27o1eZdeXtrH6+XwW3jeMrW+f0CQeOtWsqdLO2ucLiEsJ5oBQ7tVsepOIJSEYiyWYthYnG98u5NDaCqIHBjHrxkFYkoKwmvwzViSdiGiTPJz17WistLH2rwUEBBpQ1Y7NEYCIgCgIhIaaun3vVpPDL8umrclJoNHEf+7Z7x4LADhVjm2q4/imBsYv6p1GW9yNoXCj9+d3fDyFp+ev9Wg3ySByz5czsFg0u2SxBDNkQs/vrys+eHE/1UUtbgeQpqsM79y2l+fyF2pORAskPRjZw528kbuhkj2fdBzIKbIWWbPsgb1kXdyf8Hj/+RJsgd7SLO2QJNH9vr5vvX8KiF0SCks8P7O3aXJNvhhlpkA9ERFBHnlBOiBgNmn2S1VVSnVNWv4MBA+7ptf7PmgRgMioIL966k5UQgLNvHfXfuydophsrU7yt9SQv7aWwCCD26553FuAkFBzt2PMYZNBAlVWNOkS1zOJAhgCDBgFPWv/Ueh1XUutgxVPHmPxi+OYe/tgvn3+iFuOR9SJXP7MKFKGW+g3KIK8lVWc2FePzWVTRUnglx9MITo6hAdu+trrwVUF3vjFLq5+ZjQyIHX5A9XFZu9pztAb9RpTRfDUPJdViIoKpqKoWWPBuw9LNEdTcU4jA4ZamHR1MpvfKvK8p0nkV1/MwGCQmHdnOiuey3Nr1oo6kcueymRQRjSqP51JICIy2G9fMwRIhAaZeff2fR7OYXuLTNHOOo6urGXK1QNQVZXMBYm0NjuR9CIj5ia622PhPcM5/E0l+TtqsNlkdJKA0aTj9g+1NhcEUAQVR6d2FREQJZHwKHOno41OEEDQCSguhp/aZa4BQNbm0s7M/fZ7CwiERQSw9F8TeTRrBW3NTmzNToxBOkIsRq57cTwhLu3Q2UvSmb0k3attgiNMgO9IoZCI7vt5X2GxBHPOfUP54qnDyHYth5CoE7nkTxmkjYrGWu97nrS3KYSHB/Y4Bt/55R4Ph7utRebEnnpyv6lm+uLuD/TPvWsYeSuqKNhRq40xs2uMfTiFmJjuDwo612/wGG+H7vF9dZqz3uWgVVVtQ77qxXzm3JDGyneOUnqo0W2bHK6Dw7du2cNLpee7BlyHXWnvMZJRPK3v6+eMJS9n8djEFVjrHbQ1OzEF6QiIMHD93ydQW9KKzix6kygEiEwMYGhWHOc/NJxPH89xs3klvcj5Dw9nyLhYUjOjOfRVJbkbKjV9bUnAaNBpfS1W62uqD9siIBAZGYSsdk3drBVuNBrIviiFLXNOcPBbT7mS4XNjmXThQP56yQYUVK/1idXqJDwsgMTMMIq213rNoYkjw4iJC0Ewiig22S1F1u7emHBFMs0VbZpUl+D5dApgMutJSA8lr8pbJk1nFLHEBiEKArJXvbQDlIjwQN66eYVHm9tbZE7mNHLgs0qCgk0+Aw8EUSA4uPs18unGvJvTOfRVBYfXVOK0KYiSgGQQ+eV/somNC0XwM88JIkRGBvqNqDCadDjrVFb/rcAjOtthldn4ehFzbxzMvKXp5H5TRe7aSmwtTi2qUxK4zVX2u7esp6XGhuK63G6VcdgUPn3oEPd/PbPbelkswVz0eAYfPXQAxaGgqpokzYL7hzJ8ci+lJSyQeI9/X4bFEkzqSP8JzS2zgsmc5U1YMpp8kxEEAcIjAn4WdvPnUMefEmIuD2HK5X7WGRZIuNO7nztr/R+96w2S+x3mbqxk/ZsFyA6FSZclkzE3DkEQMJl993PR1c/9EsAEsEQHo/sRHdQLHxzGp08cdK+BRQQkAR5cO4e9y0t9PrsgCAQFG93tEnNpCNmXere5pPNDyhMFj/13ynDLKaqNJ1rq7ax7I5+j26rpNyyUmTekEhbb9wTHpxM/ZXvxgzjs4+LiqKioQJZlJElClmUqKyuJi/MdNvLRRx9x4YUXenxmsXR0qMmTJxMXF8fRo0cZP358r5+jpqa51yHFPxc0V9v8+a1RVJWqqiYGzojgvk3T2ftpKW3NTobOiaH/qDCqqzUm2tmPpJNxQSw5KyowBOgYuTCOiH4BVFU1dV92jY3SPO9Ns2xX2fKf45zz0GDWvVrAZ48f1lgTCmz/pJiU8RHc9E4WCPDa4h3kre9Ixrnu3wWc9es0Zt/as15jv8xQju+q82Ck6IyaNmDMyCAPp1Y7BBGGLYjBGKhj3esFXpsV2amQMC6YxlYrt3w+idxVlRzfVUd4gpnMC+IxBesoOlJDyaEGr3s77Qpb/nOcBQ+nkzw1nPs2u9q8ycnQ2dH069Tmd347hd0fnWTrW8cxBEjMvH0QA7Mie2zz1no7JTneCWtlh8LW/5xA1fkfHxveKuQXr41lzave9QboNyGEoiM1PDNvPU1VNuytMpJB4Ku/5nLTOxNInRRF0phwCrfXerX56EUJfPbMQa97tmP924Vc/9pYvn4xz2MMy6i0WR0kTgjptu51J1vdm66urCmnrLL10yKfERW2Fidr/nWMAVPCvL77LojJDOLhA7P58ok8qvKbSR4Xztx70iBA7fGd9YSNbxf6ZFzXV7SRu7OiR4ZQd1j3dj42H8wFURLY8J9CJvpIZNkZA7IiyN9S68mCNYiMWhTf53r/lDEoO5JjG2s8HKmSQWDUoni2Lz+OaBCx2xT3Rl9FC+Vf8+98Bs2K4M1bdnPg644EqBvfLmTmLSmcfW86Yy5NoCLfmwUbGm+ixaFJwDhpV/lod3hq2Lb8uDuRZGfYWmVWv3aUcx8cytfP5XlFVclOlaRJoT2+s+jBQZQc6rDp7YyOgdmRLH/Od1QQwJb3Nbs34+4U0udbOPBVOZJeYOTCeKKSA93l3vDhBI6sraJwWy2hcSYyz48nIMzA8aM1WJucPu9dVdhC7s5KTXIAPNscaK5z9FivDW8VejiOcN2rtcnOrhXFWJs9y26vd01xC1VVTSx6Zjgjzo/h0wdzsDY6yFgYz4LfpdPQ0ArA9DsHMnhuVEe9z40naoBW77wNfjTwVdj0QSHJ48Ip2OotLzh0djTbvzzhM+zW1iKz6rWjDJ4XyTt37GXv5x1JSDe9W8TU6wew8LdDaWt2Ul3RitPVj5yqCrLMyaJ6QlOMJI8L48iWGo97y6gMnmVh2i8H8NULeajgit4T3EleR0yPRh8owS7fVQsfYCZdiGL38jKve+tEgfhxQSiiwv1bZ7B/eRmVx5qJGxLC8LNjseGgqqp7OYPJS5I4vMY3A3fyDUmn3TZl35LMoJmRHPiyDEEUGLkwDsvAIKqqmnD60/MQtDWsucp/ZNSxLTU+pUpsLTJrXj/GsAX+nT7t+MV74zi6viPhbaYr4W1f22T9e/k47N62R1VUNiwrYM9/y3yuuaxNdvatK2VQdhRHOmmDt1czfYbl//Vc8qPCAPdums6B5WVUHG0mJi2YjAWxOHROAvvpQS/gsKquPBLa+AYYeUEcVVVNZC3pz4Cp4Rz4QhvHGQviiU7V+rm91UlVeYvbtsiqil2VKSmsI3KImcBIPQ01nrkeZFRCowzsWVmC3aHgxLNsVdHm0NGXxhOQaAAD7mg2ySAS1M9IVVUTe78qRaZDDQs68oJ8/Y88CnbV+cyPUbC7jj2rSlwSA52fS8PGdwpJy45CoSMBeOd7t7Y5GHNZAoW7ar0YoeZQPYH99KROi+LQCm/blDo1kr2rT/rM82Jv1cb3dS+P8f0eRUiZHv6jjhO7VaaitBknCjIqsqr9lBTWY6kKJOOcWPZ8WurBhBV1AsPnx2KK02EK1mHrMs8aAiTGXJLA+mUFPvf2TrvMhvfymXtXGle9Nor8zTUc3VBNUKSRzPPjCbZ09Aeli+lRFZUDK8uprGzsMbHt2KsTSZoUxr7Py1AVlRHnxBE7OPhHt0ujLornyKYqH1ENIqEDjT/6851uWCw//js4g54hhUOwxUjN8VaPz/VmiTGXJlBV1cTnfzjMupcLtDWCCls/OMHIBXFc9fwoMhfFkbPKR04UQSA8zUTm+XFse6/YQ89dlATSpkZRV+8/2vKHQJvq8NhbyKiokkBlRSP9J4X6JONIeoG0OVE99u29X/vWyD++t57S4vrTmni6rtTKM3PW0dYi47DK7DSKfPb0Ye78bDIJw3znO/qx8WPbC1EUuiWW/yDHSpGRkQwZMoTly5cDsHz5coYMGeJTDqe8vJxdu3a59e7bUVFR4f7vw4cPc/LkSQYMOKOz1FeIetGvvm9nbduwBDPTb0lh/r2D6T/K23mZODKMeb8ezIxbU4jo559161G2riOQXsZTY0unF2mptfPpY4fcmuWgsUnyt9Vy4OsyDq+udDvrQWNTOqwyXz6ZR2Olb631zrjyxUyCoowYgyQta3igRPzQEObelYajTUZWfKjUC9DaaCd5bDjZS5JBD05RxSmpCAa48m+jMIdo7SZKAkPnxnDWA+lkXZPkDnHsTk+5c2hWWLyZ6Te72nx0uMeiUXYqyIKKGCIhBEvYe6lHKHaTSFQyiN0acMkgkjQ6nGlLB6AziegMInqziN4kcsWLmZhD9ax47gj1ZVb3O5HtKvZWmbdv24OqqlzxQibBFs82j00PZu49qW6Jlvb+IKO68wTo9CKtjQ4EH4+nCnQrQwIas6u9hTxVRQGhQ5PZC4LGhD0VCLaYuPS5kdz2+WQW/G4ohoBTc17arhfcFaqi9jnUT2cUEX3cQhAE/23WCZf/NZOQ6I73bQyUiB0cxPz7Bvd47f8yLv3LSIK71DsmNZizHxjsEW7YvrFvX5LpTSLHttS4nfWgMVHtVpmVLx6j5kQr2YuTGTA+AkOAhOS6d0CYnuteG4NeL7r7tdrl3qCFxjv8aD431diJHxbC7LtS0RlFdEZtbOuMIpc8m9GrvCAVBb7lRAp31aLrxraI+o4+HDc0hLm/SmPW7aleh02ivIp96QAAIABJREFUKJA+M5qzHkhn0nXJBIRpsmndzSUIYArosC0O10/79+2amt2htcG3hIHDpqAz9U6+KTXbwj3rpvPQnjmc9+gwt0QgaJFiZceaKdxfT8H+eioKmrX8MfjX7gbQm0WsLQ7veQqV1hYHqqL6PMwDaKmxU7izrsNZD6Bqzp91rxRQWdDM2n/ma1rzrj6jKpqG5tu/1CR2rK2+D0msLQ4kvYiga5e60Vj07U8ydF40cekhKELH+2p/ZwgqUUmBRKf7ZrpIAe0i/9BUY+PEoQby99VRnNtAS33PuUwAhs6OYegcb+f1uMsTScz4YTYTsenBzLk7jdl3pmIZ2LFID431kxfIIPZoz3V60a+2eG83Z4IgkDbNwln3pzP5F8l+8xh8V+gMkm+2mKjVrbnOT34cm4IgClibO/p555WZtcV3HzyD3sHW4mTtawX87fKtvH3XXooPeJJJ9CZNivGsB9IZfWGCOwGg7FTczmMFOqKLRGht0Q7MVFWlPL+Zgv31FByop7yTXdv45nEqjmpRZDLgVLQoknfu2IvTrmDzcbgDYLdrB4vtNqlz2QCttTZO5jSwbdkJ7Hbt3jJgtytsefcEJ3Ma3HapfY7sbCENZqnD9rquda8dVRVB9J83oaXORrDF6CZ/dL63KAmERBsZvSiBIbOj0ZslJL22BjYG6fjFv8Yidunnnf9Zmx3ojKJfXXS9SSKiXwDnPTrUY+7WGUXOfWgIkX0gbpwKbHn3OBVHm13vW0V2zU3v3rUPh03m/N8PI7J/QMeaKUgiPNHMoj8ORxQFFr8xFn2AiKJTcYgKql4jRoy9JBGd3s86VRKRXDZTEAQGTY7irPvTmXLDAIItHesZX2QdwC3l1RtYUoKYfWcqc+5OI7YXsqw/BEYujGP4/JiOvhYgYQyUtL72Hep2Bj8fnDzcyLv37OXFy7ew+uV82ppP3fzaWNXG50/l8uJlW/jokYPUFGsOekEQuO6NsZhD9RgCtX2NIUAiZWIEE69JoqqwmTX/zNf2+S7zZ2+V2be8jMIdtQw/K4aRC+O0/Dmufm4IkFj8xhgkvcg5vx1CdEoQxsBOtiXBzKV/GXnK6vZ94HQqfPFHbzktxany5s27CbYYuejpEWAAp6TiFFXQwew7B/UojQjd+JoE/EY0nSp8+mgOzXV2N7nTaVOwNTt59669p7Xc/8/4wSRxHnnkEe6//35eeuklQkJCePLJJwG44YYbuP322xkxYgQA//3vf5kxYwZhYZ5O4WeffZacnBxEUUSv1/PUU095sO7P4PshIFRP6sQojmyq9jjJ05tEJl3Vs15xX8uOSQvixKFGd5yzqmoJ5EYujOPIxmqfm097q8zuT0oxBul86pZJOoHcdVWMv7h7GZPI5EAe2jmTg19XUFtiJXFEKKlTIhEEgZxVFcii2onB43J+ySp7Pi1l5NnxFO6rQ9Fp7FNUEI0CRQfqyTin+4QjpmA9AydEkL+lxoPVoTeJZF3RPWMZNP3Bl67YSsHOOnf9D66oYMaNA1n4wJBurzUF6RiYFUn+5mqPsnUmkYlX9GPGjQM8EsB2xrTrkwE4+/50xl6cyOFvK9GZRDLOiXMvfvd9UeaVlRygudZObbGVyP4B/HbHTA5+U0FtsZXE4SEMmqJplk9bksznT+Z2OBiFDv3rydf2Z/+XZe5EXJ2hArlrq8i63H/bhUSbCAjXu3XyOgeVJI8NI3VSpM+IW4NJ6tU7+TEx6ZokPn881yPqQRAhNi2IsPi+hZ+NvTCR9a8WejGuFUVl+Fz/OrbtCE808+D2meR8U07NCSsJw0JInfrT16jvK8ITXPVeUUHN8VbihwaTNs2CKAqkZEVoNqMLBBHGX5KoOet9HEAJosDhNZVkX5vMTe9PoGhHHYU76giJMZJxtpZ82+5yoHbWrO/8/6o/b57rrwDm3JnKqPPjyfmmAkkvknFOLCExvp2IndFSZ/frHG4otzH52iQ++d0hH6WqTLyyb3ONKUiHOVxPU53LYds+lwAJqYFMvCaJD36X0zGfdLItWVf2Qu7K37pX6D6hXQ/EPEBzAr26ZCeH11a67fmh1ZVkXdafS/8wAr1ZpK3J6fN9BoYZKMlpaJ8+O30PRzZUM2Wxb1KDioqiquSs8N3XVBUOr65kz2elPp1TjjaZkoP1lBzwjhQDOLK+isKddRjMkofkXTv2fFbGRX8azmdPuTYrQke5TiDj7FheuGizz3ujQlluI7Ks8twFm3DaFWSHytEtNax7vZBffzWVmJSe5Q+XvD2e/M01rH+lAEESmHlbCv0zey+xeLqQfW0yZYcPeK5tBO0APya1+3r1HxWGIUDyyUSd1Iv8E6cToxbG8/UzeT7n8JEL4lj9Ur7vCwWQ7TJFe+p89vNjXSI8zqD3aGt28uS8ddSXtmG3alGqOz85yRXPjGT8hf5zAgEU729A8OH0UxTY80kpM25I4c3b9rD3qzJ3Xz68torR58Zz9V9HseujEmy2DtIEqrbGdthkju+t9Wk3AKyNThRF8RsZjCCQs7LS5zpUtiscWlXJ+IsSWf9akfelEow6P443b/Y9h6K45Mf8lC0IApnnxvHJI97RZCoqmefGI4oC174yhhN76snfUkNghIGMBXGYgrTteP72Wi+5HtX1edyQYAIjDNhbrR73NgRITL5GG9+TFyczdG4MB78qR1VhxFmxhCf++DIEuz8p9YoKBG2OPLG3npQJkdy3YTqHV1VScaSJ6EFBDJkd7dZqryhsxqYqWqJyFVQdnMxvwtbqZOS5cXz2e++1hShqdqcnjL4ggR0feDJwJb1A5sL4Htn1P2WIosBVfx9Nyf4Gjm6sJjDcQMaCWDd57AzOoDP2LC/l37/cg2zXklYf21rD2lcLuX/FVDc55vuisrCZp+dvwN4m47QpHNlUzaa3jnPHR5NJygwjYVgIv9sziwNfltNYaWPA+HCSx2pExcOrqxB8+YKsMge+rmDg+Egu/2smU28YwJH11ZhD9YxcEIc5VOvn5hA9v1o9lby1VZQdaiRqQCDTrhz0o7PrD6+q9EuwKNql5VgpOlCPqhPcsnKiQaRgX712eNyDbRo+P9YjKXc7kseGn3bd/kOrKn3ujU4ebMTe6jxlhMWfE36wFktJSeGDDz7w+vyVV17x+P+bb77Z5/XtDv4zOPW49a1J/Gb81zTU2lBkBUnUkgDNurXnBKZ9gaqqNDU4tDDadrvj+t1YbcPpkH0mZwTNORQSa0IQ8U6yJAgYe8GaBNAZJTLP817QyQ4Fp0N7rq63b66zc+Dbcop213k4qBxWhVV/z2fKNcmEx5tprGpj9csFHNlcTVRSALOXDqJ/hnYQddWLo/jrwk201NpRnCqCKJA0Oow5t/ecFOrgygoKd9V5bOjtVplV/3CVndD94vyqFzJ5/rzNNNfYOsoeFcbs21PRmyQW/X4oHz/kufgdMD6caTdq/cFpV8jdWMXOr0sxmCUCY4yMnB+LIAh+jbAqq26mus4okeljEe10qAh6AbWzM1PQHJnBsWYKd3onCQPtNLonhj3ArR9O5M/zNqA4O9hYphAdN709AZ1R4oa3xvP3S7dqrDFVc5BOvi6J1MlRPd77x0T2dckc3VBN7rpqQEWUBIyBOha/OrbP944fGsI5D6Sz/A+5iJKgaVYrcPuybHckSU+oKmxm38pyyo81U1NpJTotiPBOBwmH1lSy9vUCWhscjFoQT/aVSRgDf/qTeXONjdWvFZC7roqIRDOzlw4ieVSHw09nEBm5wPvwztYq45BlZBS3bREASRCor7RhDNRpuuRdnPqiiJsNLggCA8ZHMGC8Z5SaqBM17W/FWyPfHC5hCtZjMEs+x0tkUgcDLyo50G+ip+ZaO2tezedwe71vGkTy6HD03UVcCFq0DXpQuzrsBIGQOG0zIDsUtn1QzNYPipH0ItlXJTH63N5tmgOiDDR1Zli7LgntZ0a2q4h6wdNZKLi0+eN6PowIizPT4NImVujQqDfoJbejxWe1e8FiO7qpxsNZD9qh9JZ3jzNtcTKWlACK9zZ6vU9RD6YgTWPcoSh0fqMSrqghUWO2d50NVTR9aEOgDkkneDlRRUmz5f7GoSKrGIP0fjcbslPVmKpKe6SU57OZgnUcbk8q27mJXP9dsKuu27INARKvL92FrVMib6dNQbYrfPxwDje/PcH3g3VByqRIUiZ999wepxNjL04kd10V+10yIqJORG8UWfKvcT2OA1ESuPGt8bx0yVYUWUGRtXXWuEsSGd5NotAfApFJAVz4h+F8+MBBjd0paOuCy5/LJCTa5D+fvQqSUULSiTjtipeftDeRXmfgG+teL6DupNW9jm2PUn3/vv2MWhCH3ihRWdjMyr/nU3ywgf4jQpl9yyAsSYHu8e0LpiAdRbvr2PtlmcdcY2+V2f1ZKdOuH0BLo0u2qsva325X0Ru6X78bA3TojaLPA+KIfgEYAyREvXduD9HF3Lzg8WEcXlNJVUEnCQYBrv3HaERRRGcSsLcpbrkeAc1u6U0iBrPkt+zwfmYaKm2oEt5tIwo0Vtnc6/P+o8J8RivrDCJ2p7eKvRbtKHLDm+P524WbcTq08Y2qMuq8eEad37GmDk8wM2XJTysC3RTo+50qiureN4iSwLC5MQzrQgZx2GSW3bvfc7/VplB30sq61wuZf0calz07kmV373MzRxVZ5aI/jehVxPcFjw6l5EADlfnNqLK2ho7oF8CFTwz/vtX9SSExI/QHixw7g/9NyA6Fd+/Z50H8clgVGsrbWPWPfM69v3syYE/46HeaHGT7mlF2qMgOmWX37uO+FdMAMAbqGHux90GxIUDyuZaWXGz5diQMDyVhuO9+LooCQ2ZGM2SmFln5Q+rW15a0svKf+RTtriNucDBzbh5EbGowgeH+99CiTqAiv5lNbx3v4meSyV1fxZFN1QzO7p603FBt89o3ADTVd0jNFe2uY+U/j1FbYmXINAszrh9IUGTP0dSgRedteKuIvV+WERCmZ8b1AxkyTWtfvVGkzYe6THuOrjP47vjpe0XO4LTjRE4DTU12ZFlLmIMIxXmNNFTYiOzfO3mb74Pmajt1ZVaf3+1fUc6Q6b6NkQqoImRd1o/Nbxb5XDgPmdm3zWm3mQ5EgQMrKjycBe6vdAJ5G6oYPMXCH2avpa3ZidOuULSnjn1flfOLv49h5Pw4wuLMPLR1FnnrqqgpbqXfiFD6jwrrlWPqwIpyn2VLkkDuhiomXtY9Izwszsxvt8x0l504PJSk0R1lT7sxhdnXD+a93+7B2uhg0tVJpGRpTg3ZqfDcRZsoPtDg3ogd21bDpMv6c+kfMshenMxnjx7y2KSJkkC/zFBtU94Njm2r9cnIVBXY+0Upkk7wYti50QsSTOLwUJ4uPJvVLx2jLLeJtCkWJlyeiOiKpT28oRKHqOCUOzRPD66v5Jy29NOq9dZXSDqRJf8eT8nBBop21REWa2LIzOhTlul9xtIURp+fwKFVlegMAsPmxpI0KKJXWm95G6t46eptOF2MjRP769ny3nHu+2oaMSlBfPFsHitePOp2Vp7Y38Dmd7XvDeafbps3VLbxh1lraW104LQpFO2u48CKCq5+LpOx53XPTCzYXotDdjmeOjGLFUVl539PcvlTGax+6ZiXw15VYcT87pPz6gwiAyeEk7ulxh0Z1B72P3JBAgPHR2iRSV0c9gazRPa1yT3Wu7GqjSdmraW13qHZNVe9r/xzJuMXJRIWb6K+1FvaInlMOAU7atGZJdocHcmI28V79n5RzqQrk3nxii0UdDqMLNhZS87qSq55blS3z2W3ylQW+mbLHNtaS8HOOtdG3rtNd39WxpRrundujLskkfx9dV6RYIHRBsLizZpCi4oXK9LbveiNnDWVPiPFVBVy11UxbUkK/7l3v8ffCEBsWjDRg4KJGxZC4b56j2ycsgADsyK0w2wR5E65tN39ThQYe0ECK/5yxMthr6ow8uxYnDbZzfTpjMBIA5H9AtybL696qypJY8JpbXN2OOs7PdvweTFsePu43zbZ+v4Jxl+SSJGPQ9qACAMRiQFe0h3tz5230Y/m//8IRFHgmpdGU5bbRP62GkIsRobOjuk1I6p/ZhiP7ZvDoZUVtNTZSc2OInpgzxEHPwQmXpnE8Lmx5KysQBQFhs2J6ZDcEb3n93aJFaddYcyiBHZ9fBJnJxKHzigy/tLeJYQ/A2/s/aLMb1RUSU4jogh/uXATDpuC4tTm720fFvOrT7JJHB6q6Q6faPUwq4YAiezrksldX+UzZ4HTrpC7rspTQL4TBAEcDoXo1CAqj3pLrMWmBRE/NISQWJOmedyl7CnXJZM0JpzPHvdmXAuCxrgWRZHfbplFzspydn10kpAYE/PvTsUUovXFIbOi2fVlmYe9dwqQMTOa+KEhhMaaqT7e4l324gHkrq/yONgF121UlcPrKknK7D4f0riLE9m2rNgjsklnEBnrinhIGBbCY/vmkLOykuYaGylZkcSm/TQkWLpD9uIB5G+r9YocCo40kji8e3mHkzm+E4Q7bAp7vyhj/h1pjL0wkfTpFnK+rURVVYbPiemVjB9oUc/3rJhC/tZayvOaiBkUxKDJkf/T7PozOIPvgvKjTW4Wd2c47Qr7virvs8Pen2JC8cEGHDYZvdH/fi/jrFg+fOCA1+eiJDB2Uff7rR8bZUeaeOqc9TisMrJT5fjeenZ+cpLb3p1IalYkepPvw9+xizTihi/YW2UOflvRo8P+6JZqN5Gn81xUcawFe6uTfd+U89bde3G2yagqFB9oYOPbx3lw1XRCLN37a+ytTp48az3VJ1rcz5+3sZqz7khj/h1pZF2ZxNp/5nvUTdILjJgXe9rZ/f9fcabVfuZQVZV/3LQVu1V2G1PFoWJtdPDpnw6f1rIlo+BXn7etxUFQpBEpQNIc9J1/BIgeGETCsFDOf2QYOqOIMUiHMUhLTLT0nQm9dvYV7Krlb9du5eGpq3jzV3u0RTgQFGHweQ9BgOiBgQSG6X3qHoqCgDlEz/JncjVnnr2DuWS3yrzz633uOouSduKbfW0ySV006rtDQKjvsgVRcLOea0+28s79+3h42ipeuGoLR7dWe/xt57KTx3iXHRZr5qI/juDqv412O+sB9n9TTklOgxdratM7x6kqaiH7mmTSZ1i003BBY5gGRxtZ/HLPbG9TsM7nhC6IEBRu0PSsRbz6g2QW3ZI8tSdbefcBrd7PX7mFI1s8660ziMy9M41r/zGGiVf2dzvrG6va+PqFo9isMg5BxSGo2GwylYXNbP+4pMdnBy3Jyru/6Sg7b3N1zxedQiQODyX72mSGz4s9Zc76doTGmph4ZX/GXdyPgNDeMetVVeXde/dht8puppvsUGlrcvLxYzk0Vdv4+q9HPDZwjjaZ6uOtbPvgxCl9/lONb54/Qku9vUPbW9XG93v37feZ5LMzrE12zZHqg1lcWdRE9MAgLn4yA71JxBik6dsaAyWW/Gsc5l6EMtdWtmmRQYLmHFVcjpGa0lZESWDpe1kERhhcNlNCZxSZ/ctBvYok+eaFo7TU2Tvsmqveyx7Yj+xQuP2TyV52MzBCz83vTcAcotdYhy4JcrXdYSNAYLiBw2srvSOHWmV2flJCaa7vDXs7JL2A5IfNbgzUIQiqX93h1gaN6dlQYeWRaau4Me4Tbor7hD8tWOe2c1XFLQjtJyB0/G5ucKAoWmQQeNolAFNYz+/LHKLzuYCVdJo9H3dRIiPOikWWVOyigkNSMUcZWPLGOACKDzd6PFP777xtNZhD9ehNEoqg4hAU7IKCLGgK4NEDg4hMCuTiP41A0anYJe1H1cPiV8YQEGag8kQzquiZ90NFpanBjiKrCEY/9Q7VU5rbiNLez7s824p/5HdrRwJC9VSeaPVddqMdWVb92rgfKtS2+GA9/7xhOw9PXcVrt+6i7OipTVYVlx5M9rXJZJwd59U/inMaePnGTmUf8SzbYJbIPDeeydck/2Sc9e0IthjJurw/4y/t56GPH5Uc6DW3AwgGkYBQPYseH05iRqhbh9lglkgeE87CB/vmSPj/DqddYfXrBTw+dw1PzFvL2n8VuLXn/ckcKLKKOVjHst8coK3FicOp6Y47nAptLU7ef/AAgiCw9J0JmEP1Wm4h13pv/KX9GDE/FlOQzieLUWcQMQXr/Gqq64wigaEGbv94EsYu0UvGYB2//HiSVvbbE1z5cbT5UWcUmXxNEiPOiiU0xsQVf81E1YNdUtx27YrnM93EkaZqG7lbqik4VE/BwTqObu9I3F1T7iISdbFbtRVWBEHgpncmEBDmWe+xFyWScVYs5mAdgtRhb+2CgkNQECXc83dTtY2Pfn+QR6av4tmLNnJgZbm77PMfHkZ4UgAOQcHmujY8ycyixzrY3jqjxMhz4ph8TfIP7qw/uLqCZy/exCPTVvHhYwdprLL1fBEwfG4MUxYP0PZrLt3+EIuRm96Z4N5/lOY28tqtO3l46ipevmkHJYe1Q1lziB7ZR/JFgIBOc2xQpJEJl/Uj6/L+vXbWt0MQBAZNjCT7umRSs6N+UGd9aV6net+4g5JDvqXmvg+aa+389w+HeGT6Kp5ZtJF9K8p6vugMfnYwBel9JjgF3NIyfYG/XFGSTnTLXvlDQJiB614d67Ln2jpV0alc+McRXnmufmr46JGDtDU73TKoiqzl9Xvv3n0A3PL+RK98EtEpgVz6TAbmEJ3PXBOSXuiVRJEhQOdef3fec7VHOL53/34tR6TrtTvtCi11dr554WiP997ynxPUFLd6OOTtrTJfPJtHc62d+b9KIzEzDKdr3+KUVMKTArjszz9u3oD/ZZxh2P/M0Vhlo7HamxGpKpC7vvK0ll130je7HkCRYXB2FIqqeshGtLMDx7vCpqYsHsDo8xLIW1+F3iSRPt3Sazb0nq9Kee2WXe6s4xUFzez87CS/+WoaadlRmiZ0FyaqziQx+epk9EaRda8XerFgBUlg6Ixolj243+s70DRD60qsfYpcmHh5f99lizBsZjTVx1v4/Zy12Fu1SaIsr4m8TdVc/edMJizqGxstZ3WlT3a/IAkc3VyNkB3Fwc1V2AUFVVVRZZDr28jbXM2EC7svO3ViJAazt/6uzqi1uSlYx5pXCnBYFQ8JUVEvMmxWDNUnWnh8zlpsLR31PrK5mqueziTrou7LLthR69HXcN2/zSqz58tSJl/Rvf5vTXErv5+zBluzZ9lXPj2SiRf9tDXwTxfamp1Un2j1+lxV4cjmagp21aIziF6OVLtVZv+Kih5Zzz8mDq6q9KnFLDsUKgtaiOtmE92dY6+1Uev7WZf1J2N+LLnrqtDpRdKnW3rliLS1OKk+7t3moEXCAPQbEcrj++eSt74Ka4ODQZOjCO2FRj1ocly+6q04FSrym4lPD+GNpktY/vwhTuxrYPDUKDIXaKH6yWPCCQgzYGu1ejITTRorcu+XZdj8MM2PbKomPt0/C0/SiYw5L55dn5Z6MHD1JpEp1yYhOzskgrrqEstOGbtV5t5R37jl1VSgYGcdd6V/wd+OL2T/1+Xe0muA06FQfbyVsRcksvO/Jch21W2b9GaRadf13IfHX5jI13/xnTck46xYGira2LeuAkUExak1SHOrg4PrKhm3MMGjvp3RWucgeVQYgh5ka0eDK656T7g4EUVWWf/ecVS9gNIui2EU2fDecYbPieXgqkqcanu7dbSNTtDCdQdnR3FoVZX7+/b5ecRZsax5xY8mOVBxtIlr/jLKfW1XnH3PYP56yWafZeNUqTjaRFp2FIdWea9RRvQit0Zfkbepiheu2orDJqMqUJHfzN6vSrnnv1NIGtk9g7bPZW+u5oUrt3iUveerUu75OJvkn4AG//fFOXekc2xHDfYW2d2XRAliBgW5Dx3uWp5N8b4GKo41E5ceTKKf8Pcz0KCqKs9fuYWCnbXutWzZkSb2fVPO7e9OZPr1AyjY4cl6FkRNvihmUBCFu2u9JCEVIH+n5tze+00ZLTaHOypRkAR2fF3K2femM+a8BD55wjfpZ/S58UQkBFCw3bvsqKRAtxP66fyz2f5BMeUHm4nPCGJspzVkTGowj+6ew9FN1TRX20nJinTLzaiqyoZ2u2YFUFEMIhveO8HohQk019p5bNZqWuo0Uk1pXhMFu+pYeG86c29O5fieep/P3f75vm/LaG7rqLcoiexaUco596cz8pxY3n5gn9e1bXaFzAWxrrLXuA++S2miYHcd596TzrxbUtn+SQnFRzsOqGWg+FgTWz8qZtqPvCb69h/H+PSpw+53VlnYwtYPi3l49UyCe3CQC4LAeb8bytQlAzTt/kgDadlRbmddwe5anr1wk9uulR9rYv+Kcu5YNonUCZFYkgMpy2v0mIcNARIzlviW7vtfQeHuOv580UYcbZ3q/W05d7w3kdSsvslxttTb+f2s1TTVtpNLmijaW8dZv0zjnLsGn5oKnMH/C0T2DyA+PYTiAw0ejvtTNcamXJvMypeOeTh4dQaRsRck9CoB8sb3ilz23LVONWnr1KxL+/+kEygf3VrjU7Kh/FgzdqtMSlYkz5w4h/WvFFJV2MLo8+Ld5KmM+XG8dad3klbFqTL2goQey556XTIrXjjq1eajF8ZTfbwVxQe5THaoHFxZwcWPjej23vu/qfApraoziBTuqiU8wUzBwTotIbyqRRtXlrZSuLeeYdOje3z2M/DGGYb9zxzGQJ1PRwRAQGjfkoz0hO4WeJJOoL68TZOOEFRUQUVx/UYHJ/M6FrSBEQZGn5/AiPmxvXbWq6rKu/fv98g6rjhVbM1O/vvEISSdyC//M5Fgi9HN3NebRC56bBj9hocSmxrM5c+MRG+WMAXrMAXpCIwwcNt7WehNEoF+Tj9VWcUU0rdzstjUYK7wVfayiehNEp89k0tbi8MjsaXdKrPswZ7Zvz0hOMqApPfN7g+MMPD5M7lYmx3IsoriOtG1tym9KrtXf/FCAAAgAElEQVS9zUOijZg6tfmih4eSlBlGTEoQV/w5U2PYhWjfB0bouW1ZFgazxPI/52FtcuBwqu6QZJtVZtlvey5bllUtZ4EPWNu1VrvB53/Opa3Ju83f/+2BPrf5/yr0RslvcllziJ6gcINP2yOIEBL93dhRPzQCw32Pb9mpejC+fCE83v9hXXBkx30DwgyMPi/BlVC2dzZDZxB9Rt8AHjkHJL3I0FkxjFmU2GtnPWiRR77Qud6iKDLxyiQufSrD7azXPhe4bVkWYbEmjEGSe3yfe386gyZEEhRp8MM0Fz2YuP5wyR8zGDA23G0X9UaR4bNjmH9HGm2tThxuAZ6OfzIqTfV23rhjl8++6LApLP9LHjY/OTKcNgVDgMglfxxByvgI9C7bpDO5yr4zrcfnjkgM4LqXRmMIcNnzYB3mUD03vzUBc7Cer184grXR27Z8+GiOW6/XFwQBWuoc2Np8S7eV5DVycHWFFpLcmSVjlclZU0nR3jqCI40as1ZQsbt+nIKK7FAIDNNTXtTsnpfdv1Epz28iop9/5pNkkEgeFc5cHzlbLnx0GBEJAdhbZVS08uyuqCfFFSlhMEuUFzWhdGHfK6iUFZxaprsvvPuAtnZo7zOKrGJrlXn/of2Atr7Y8mExj81Zw33jVvDOA/uor/AmRnwfvPfAPq+y7a0y7z/kHTJ+OpC/s5a/XL6Ze8d8wwvXbKFon2/n5nfF2IWJzLhxIDqTiDFEi/6JSg5k6b/Hu/9GEAT6Z4Yx7qLEM876XiBvUzWFu2s9IyKtMke31XBsWw0j5sYy++YUdEaN9W4MlIhKCuTmNzXWs+pnh6gC1iYHnz59GFubglPQJGMcDpXmWhurX80n2GJk8d9Ho+rB4WKKo4df/HMMQZFGhs+J8V32W575J8Zf3I/rXxrv4axvh6QTSZ8WzdgLEz1yNx3ZXE3+Ds96O9pk8rfXcGRLDatezqe5U6RYe7t8+mQubc0O/xKLArQ1O/jkT571tjsUmmvtrHo5nx2flvp9Hzv+e5JVr+Z7RKmBxkz87Cmt7Pd/63sc/+d3P8z49oe2FiefPHnY44DFaVdorbfz7T+P9fo+4fFmxl6YyJDp0R7M2mUPetrU9qjk936jHX4sfXM8UUmBGAM71g6zbkphxNzuZQLbUV9u5a379nLfuBX8fu4atv23BNVfEpYfEO8/pMndda33uw/s7/O917xRSHOt3YMUY2+V+fKvebQ22Lu58gx+jrjxjXFYBnaMMZ1RZOriAYw61zsX13fFWXelMWxWDHqTZu/1ZomB48K5+A/dO4YBju+r5+Dqyi72XKHkUAMHV1X0+dlOJ8zBvvdukl5w73d0OpGZN6dw6VMZHpHOVUXNKGLXGFMtWqyzD8wf5t2eyvA5seiNHW2ePCacS/+UQUCY3mNP0Rm90bAPjjJqUcddoCoqgREGPnjkILaWDruGKxr7nfu8DyDOoHc4w7D/mcMUqGPsuYns/LzEYwFpMEvMWnp6k86GWEyExZmoL/PeyI46N578XbXojKK35rFDJWdNJdlXJH/vspuqbbTUey9YVBWOuJioicNC+cPeueRvr8XW4iRlQoSHJMWEi/ox8qw48rfWoDdJpEyIcC9AZy9N4b37PXWHJYPIkGkWv87874LxF/Ujo71so0RKVkfZeZuqfGbndtgUak9asSR9/xCySVcksfrlAmRHl8gDvRZZ8O5v9vsu265QU2IluofwtYQhITyxx9Xmza427+RoHH9hIhnzY33WO2dtBXIXp5uKttGoKW4lekA30gDtsg2+JHl6cXqfu7FKSwDWBbJdY+DGpPy0ZAl+COgMImPPT2Dnpyc9NgwGs8TMGwYyYGwEgeF67K1ODykkvVHqFTP5x8TspSm8eecez/GtF0gZF0FoD7kaJl/Zn2X37/cZfnp2H1lPkl5kwoX92P5RMY4ubX4qWDKzlg6i5PbdnvXWCQwcE05YbPfJrkE7bPz9rjkU7KjF2uAgZXyEO7Qz6+J+fOWDaS5KMHJez5tyU5COOz+eTFleE1VFLcSnBxPlsnVlR5pQATuqe6i3t05LvZ0jm/zLV+36/KQWTorqxc4XRQFbi4wlSccdH/kuuzfIPDueoQejObq1FkkvMGhCpHsxf2hdlc+oBkGA6uJWYtOCKD/irfU8eIqF4/vq0BlFLxa+7NTm0KZqm8+oBnub5tRLHhfOoS6yYirgQCXYYqSyqKVDuoQO81m0t567P57M8qdyfdZ32mJtfJ/3m6HMunkQG/9dhKgTmHrdAHcSX6ei0DnWSkVjm6qotDQ6qCzwU/YpciD7g+xUKPcTJVO0Vyv7o8dzWP1GoXucrH+riF3LS3ls3Sy/h169Lbv0SPdln07krK3kb4u3uTfOtaVWDm+o5i4XC7YvEASBhfcPYcb1AynaU0dwlJGkXub1OQPfOLatxuf4dtpkjm2vJTUrinN+nc7UxQMo2l1HUJRRi8oRBC1C0g/XQFFVSnIaUFTvJZPDrrJ3RRkL7knnyxePokqguDgPigRf/u0ow+fEIAiCZ9mRBpK/gzRkt/XeXqtFznaBvU3m2PYa9n9briVB7wJVUSnOaXTLVna196oCJYcaUVTvVH4Oh8q+b8u7JSLtX1mBtcnhMypKpxcoPtjgk7UImoNKURS3jOMPjZOHG5F0Al3pK067yqG1lSx6cFif7n9iv28ZmJKcRlRVJbJfAA9vnknRnnqaq22MndsPm9fT+EZTtY1HZ62htUE7+K4phn/fvYeTuY0semBon567rzjuZ746eVjrh/5IL71BzpoKj3VgO3R6kRMHGkjvQQP7DH5eCIsz89D6GZzYW09jlY3+mWE97md6C0kvcsNr46gqaqEsrwlLciBxg3sn53Vse41P+WRbi0zelmoyenlo92Ng+vUD+eovRzzsut4kMuHifj1GBhzdWoMqgNO1bwHXfGtXydtYTea87g9SJL3IklfGUn28hdLcJqKSAtyRyqYgHQPHRpC/rcbDcW8IkJjdC9/f9F8MYM/yUo96CaLmyB8wOpyCXbU+r6stsdLW4sQUeMb9/F1xhmF/BtzyahaDsiLQm0RNT9cokn1VEtlXdS8Dcipw31dTMQZ6suKjUwJZ/LfRhHRa+HbWNBV1AuHxPTuHuoMpyD8LNrjThlqUBFInRjJ8doxP/WhToI5hs2JImxzlwRaZcHE/pv9iAHqj1qZ6k8TAMeFc9+KYPj23z7KzPcv2t2FQnCqBvdBU7g6WpEB+8fcxbiaoMVAiPN7EnR9ORm+UCLH0rWzZqbDi5WO8csdOXrlrF+89vN+Dmdhca+OD3x/klTt38fIdO/ny+SPuzY/dj0a106H2ODmERpsw+IjOEES6leJwX+8nQYvsVP2ysX8OuOyPGaRnWzxsy4SLEpl5YwqiKHDHB5OwJAdidLGLDQESl/0pg/4Zp1dWoq8YfW48c25O6RjfZomkkWEs+WfPuRpEUeT29yd6RapMvKwfWZf0XT7pkseHkz7V4n42nVFk3KJEZi/1ZjN/V4xeEM/cWwa536feLNE/I4wbXhnX63uIouaQHjE31kOHMSzOzI2vjcMcqsfkykkSEm3k9vcnfSdd8rjBwWTMi/VwmGuaze0MezrJPKjYHUq3DP6wGBPRA4Ncc1DHPwBV58lG8VV2b2EI0DFsZjTpUywekQb+IiCcDoXgSAO/+nSKV0SKZUAgt76dRYjF6PNgSBAhPM7s89Baq5gmabX230U+v3bYFOor2jwi2jqXEhBmQJIkrntxFHYUbJ1+IpPNXPi7DudOULiB+XemMfe2VLezHgAfSYJBe3cBIXr0ZgkZFScqDtdvhb7PcT1BlAS/OXICQvU01dhY9WqBx6GW7FRpbXSw+vWCPpdt7Kbs0413XSxYN1ysqfdPIfs32GJkxNzYU+a8/Tkj2GL0ua7RGyWPdWJwlNbmAzq1uSAIPhl0oNkPvVHC6cPpDVqfOLy+ipLDntE7jjaFEwfryd3YcQjoLntMhNf7PryxiifOXccV0e/zh4XryN3Uu4TSIRYjOoPotg9OVzSVzigSYjFia3W6I6w6f++wy1oEZ6jOy96rgDFUh8Es4bArKC570/6jokXZhHUTsRYWYyI8zvfexelQNX39brr8qXDWVx5v4R9Lt3PHsC94YPK3rH2rsFdM8xCL0WdSSoCw2L479fzpZJuCdR59csDocEbMje0xKWJnrHwlH2uT0ytK7dt/HKO57vQzzatPtPDPm3dobT5pBWv+XeBuc7/1DtL1yVkP2hzvy4TKTtVjf30GZ9AOQRBIGqWNsVPlrO8MS3IgGfNie+2sB20e8xXZrzeK3drbnwLm3ppKWnakltMELdIsfmhwj5IzACHRJneups4+ML1RJCxOq3ftyVZe+eVO7hj2BfdnrWDlq/lehxtRSVqbd/Vl3PDyWPqPDENvllx+KpG5twxi1Dnx9ITkUeFc8sQId2SwIUAiekAQt7+v5ZjxR0yV9AJ64xnX8/fBmSOOMyAgxMAd/5lM1fEWaotbSRgS0quQmFOBfSvLaVM0QyaibcYrSlspPthI2qQoAsL02uK60zpRpxf7rOVoMEuMOy+BnZ+d9NhQGAIk5t2W2qd7gzbpXfDbYcy5JZXSw42ExZu6Z3ifQsy/LY1/3bHbY2OtM4pkzI49JTJHI+fH8XTOWRTtqUNvkuifEepeUM+/LZU37vBk4OoMIiNmx/QqsuDVX+5iz9dl7mff/EExB1ZV8MSG2egMEo/NW0tdudXNOF3+fB5Ht9dw97LJfuUhREnA2uwkpBvZtJRxEYTGGKk+0erZ14wS03vB9p53Wyqv37bLs80NIsNmRveJUfm/DmOgjlvfyaLmRCs1LjZw541W9IAgHtk8i5OHGrE2OkjKDO91wugfE4IgsODXQ5hxQwoncxoJjTV9pyiKwdkWnj++gD3Ly2isbGPcBYmnzOYaAnTc8lYWNcWtVB9vIW5w8Hfa3PaEc+5JZ8YNKZQcbCAkxkjsoFOX9G7YzBiePjifoj11SDqR/plhfd60AlSdaPHzjYAqw5V/GsmfL9zk8y+ufnYUJw81UrSnzmt8p02MOu0bhnm3plK427NsSS+QOiHSHdXw5P75FOysoWBnHelTLSQO1eRCEoeFYukfQNnRJo8IIJ1BYtYNKZouKJ4+ovb/15tEd0JeX9j+SQlTr0lm3b8KPedQs8TsmzSGzlsP7vdyuZcWtZC3pZrBE7vX59XssI93L4CtVSYmLZDCvZ6sTAVIzDi9UimCIDDtugGseb0QRycWb3u9i3Ma0BlFL2aj06ZweEMVC+9J71PZ0xcPZM3rBR79oXObny4oskpFvnckB0DxKUySeAanDuPOS+Cjx3K8PhclgbELu9+Uq6qKrHjmjAaX40AGu01GEPEjaydQsLvWd/SOVaZgdy1DpnTP7t2/qpyXlmx39/OmGhvPXbmFW1+fwIiZ3eepGHVOPP++d4+H7VEBm01m9IJ4vnj+CF2frP0g194qM2tJCiteOuY1xmZdn4LNKvsKxEQFnA6Zc+9NZ8sHJzzY+dr3Kufel059aRuH1nrKO0g6gcShIcQMDCJtUiRHNtV43X/QhIhu69wb1JVZeWzuGqxNDlQFmmrsLPvdAcqONnH5YxndXmtJCqT/iDCK9tR5MjLNEnNu7vueacSsGLZ+UOz1+bAZfdc7PryxyndUg0Gk5FAD6ZNPH9O8vqKNR+euobWxo83ff+QgZUeauOKJkcy+MYUvn+vCwDWLTF/c9yjT2TemsH9Fuce9RZ1AzKCgXhGRzuAMfgrInBfHe/fvw9bFaouS0GNuvB8bx3bUcGBjFe0+dFWFosON7F1RxvjzEru9duTcWHR6ga5pvUVJIOuifjTV2Hh07hpa6u0osmZbPnwih+KcBhb/ZXSPzxYUaeTeL6ZSfqyJxgobicNDvxPxY/IVSYw7P4Hj++oxh+hJGBri9gXNvWUQHz9+yCuyIPuKpB6TDJ+Bb5xptTNww5IUyOBsy3d2HNWWWXlp6XZuGvQZtw5bzvu/P+AzHLUrFFnlw8dz3AO6fTllt8p89MccjYH73iQPhrKkF7jsDxmnRGLkyiczGTE71q2hqTdJzLlpEJMuPTVJQvN31/Lc4i08ffUmnrxsI2vf7R2Tpa8YuzCBc+4ejKGTlvPQqdFc93zPBrw3qK+w8sqdO3n6qk08dflG3v/9Qfc7HHNuAlmX9sMhqtgEBbugEJUSwHV/HdXjfSuLmtn9pWeIleJUsTY5Wf/ucbZ9UkJTjc1DHsLRpnBkew3H99cTM9A3q1WUBA9tcF8QBIG7P8gmcUiopoEdpCMgTM+Sl8YQP7jnhe3oc+I591cdba4ziqRPsXD9KYyo+F9GZP8A0iZH+XQcC4JA4rBQUidG/U846zsjMMxA2uSo72WPRFFkzMIEZixJOeUHpNs/L+HpKzbyzDWb+fNVmzm08dQmEA8I1ZM2OeqUOuvbIelFUsZHkjw6/JQ46wEsSUF+nCwqol5g8GSLz4iy838zlIg4MyNmxTB98QDNQeX6LrK/mRt6EVHRVwyfGcOi3w7VmCxBmj1PmxjFjS97RjUMHBvJ7KWD3M560MbWHcsm0T8jTNMODdJhDtZxzbOZJI0MIy41BJ1BdLN32uumM0tE9Qv0mw8BIHlkGIseHMaA0eEgdCScHTrdwpylg8hZV+HX4f/yrTt6rrgI3sIT2kMagySOH/Ct4Xl4Y+9YuE01Nl67axdL0z7jlvTPees3e7E2dTzviZx6nrxkAzcM/JS7xnzFilePuefv8x8YyrjzEzrWDkZtIzL3llTCYs2+JYxEiOpDsvl2nHf/EMae5132/7F33vFRVG0bvmZma3olnSSEFHrovXcpdhQrqIAVESyvfiqoqNh7fS2vXSwgICAWOghSpPcSQkgC6T1bZub7Y5Mly24KJCGUvfjxEzeZPWdmds+Z85z7uZ/h99U/aFYTggjGaurvXM6b0hcyHr46HvqhN/7hRvQeEjoPiYBII9N/6lNjlinYxg4PX9v9PnN88AzU4RdqRKN1vYSMbO2Lf6jRZTaIzijVyT7t+5k7nexhzOUyc2fVns1xZGsuGr1z2xq9xJEtedVmDqgV/Rs9PYke10ed9v7Vi3S/LorRM5KQLYq9XoZc5a+KSkmRlcyDxYh60cl3WNSLZBwoIr57IL1ual7Rnu2PzlPi7s9ttRqmfdebsATH54nQeC+mze0FgKKoLP3gANM6LWFSiwW8Mn4taXXwMwb4/aNDTgIoc5nMyi+OUpx7ZljImXs+64ZfZWFfQJBg2L1xJPaqX3FUgCM78lzWJDm6s/5WX0HNPV3ec6tFqTbjoaH4/eNDmKp41IPtmq/6OoXCLBMj7k+g143N7Z81jV6k29VRXPlYq3q33aJzADe/0sFe60xrEIlJ9mPqNz3r/d5u3JwvdEaJGfP7EBztYcuA8pTwDdEz9due1Wb1Xyj88Owu53mszDaPqaqKoii8O3kjEyPnc3vYPO5JXMiG+baNS61B4uF5fQmO8bSft08zPQ980xPfZgZWfHGU8mKrgxjHXCbz97zj5KaXAbB7zSlmDl/OpBYL+E/f39n06wmnPoa29Cahd9A5ZWnqPDTE9wwiso2vQ4bcwDtaMGBCrL1mgUYv0mlUONfNbHvWbbix4VbYu6kXZUUWZo1YTlGOyTZolMAfnx4mZWc+j/3Qt8ZjC7NN1Qb2K31ov521g8JSMxYUm15Fhu+f30nHkWH19oLXGSXu/qQbhVnl5KWXExLnWesipq6k7MhjznVr7AN1dmop3zy5g6JsM2Om1s+nui6MfCCBQXe0IPNQMb4h+jotkOpCeYmVmcNXUJhtslst/PnZYY78m8vj8/qRuquAVXOPoain7ScyjpXwx6dHGDutZmVh6s4CJK2zMtFcJnPg72y8g/QuFVuotut9xdREPpqyyWlHt+PI8DplFgRGefDUXwM5lVJCeZGFiFY+Z7UTPPz+BAZMbPhr7sbN2bD6+xS+emK7/XuQsiOfN279m4e+6knrPvVXq12MxHWxqRPP9KEH8I8wYi6X2b7qJFZRRVVsYWJJI7JxSRojH4gn42ARv39xGJOi2P3SM9NLWfzeAcb9X+M/gA66M44+N8WQcaAIn2D9WVnC+YUaeWLpALKPlVBSYCEiycduudPtmkjmvbgHSxX1oQDoPSU6DA+l0+gwNv/iXERREKFN/xDW/ZzK/m25mNWK66LCvytPsnvVKf6Z76yWrKSgDgVYXWVMqaiIkkDhyXKXVj8A5rLai3xbTDLPjlpJTnqpPbi+8psUDvyTwzO/D+LU0WJmX7kKU0mFV3tZGT++sJvstFJumtUejVZkwpuduPapNuQcLyU4xtP+PBKe4E1kKx+O7cx3CNxr9RJDG0AFX1PbjYkgCAyd3JLf3jvopDwe0cibBW7OndhO/szZMoz0fUUIgs22q65WQ8PvjWfxGepfnYftfjeL8cToq8VyyjnQ2+3qSFr1CeKHZ3bBGapISSvSZXTt6v7MarI5MqqpH1GVlO35DtkvlVjKZVK257n0QwYqsnesiJLALS8nc/Xjrck6VkJwtKddOHTiQOFpS7UqxsIKYC63krI9D6tFcdpqlM0KKdvz0XtpWPbZYfvhKmAuNPPy9Wt5cfVQNDqRZ1YP4dTRYg5vyqVFlwBCWpwO4H/1xHbW/nDMfk92rTrFc6NXMvuvwQQ3r9mKbf+GbJebiRq9yIl9RST2qjn49csb+8jOKsNcsR5TZVj88SF6jIumWT1qYwFkHirG1ch96mgJqqrWyx5r2JQ4tlXJ3AWb+Cu6vZ/DtW0MDm7Irlbdf2J/Ia36BHPTix248rFWZKWUENTcs0E3QHte15wuYyJI31+Ep5+WoFo+I27cXIhEtvJl9oahZB4sRpYVwhN9GkzQ05ik7XW9mVpwyoS5VOalG9ZweEue/fXSQisf3LsJnYdEp+HhRLTyYfbfQ2znbVUITzp93gf+znZZo0KrE0ndlU/G4SLevO1ve5wt41AxH0/dTHmJlb43NK7ltSAIXDezLVc8lMipI8UERnrUWN/FTe24FfZu6sXaH1MpK3Lc4bOYFA5tzuVYLcoIT19ttQ9hARFG0vYXsu/vbFu6vYCt8J8KphIrq75NabBz8Ak2EN3Br8GC9QDzXtnrtBlhLpNZ9PY+LKbasw9qIyu1hNduWcfEqHnc1eIXPp2xxUEdCDY7kugOfg0aOF7/cyplRRaHYInFpJCyI58j2/KY9+oel+f96zv7a826CIz0QHWxkNJoBUJbehHSwgutwXnIEiWBoChPOgwL5fpZbW3e+h4SGr0tWD/h9drV/VVpFmNL/T2XtK3GuOb1RVVVln95hAc7Lub2iJ95tM8ytv2Z0dTdctMIqKrKD7N3YSqzOijVTOVW5s7eBdhUit/M3M7k+AVMiJzHC9euqrNCr7HJTS/lzYnrmdh8HnfGzufjqZuq91k/C4KiPJD0trnmTB/6Nv2bsenXExTlmZBVFaVirrHKChmHiti3PpsFb+6zjV8VP0OwjWu/f3KIsuK6Fb6rL7qKOgnnWr8lKNqT6PZ+Dv74Xv46Hv65D81iPdEaRLR6kYjWPjz2S1+0eglBIzipHlVUVA2UFJj5YXaFeqjqdSmXmTt7J3Fdqi9Cqq9DwanINj5OPtJgU3UGV5NNBdRayAtgy9J0CrIds7WsZoVTKSXsWXOKRW/vd7D5Adv9Xv6/I5QUnP48egfqiUn2dwqYT/26J4m9gtDoRHQeEt6BOiZ90IXmbRuuNkd1bTcmox9KpN+tMWgNInpPyWaHMSWOIZMa147HTf0QBIGIVj6EJ/mcVeBz5AMJDJwQi9ZgU/dpDRKD72jBsLtbUphdTmGByVkVLansWnMSg5eWR+b3ISzeyz62hCV489j8vrV+/wVBwLuarLO6LPqDomxKzDPReUgERXnUnL1TpW+e/jrbd6xKlq89S6bqZaz4t6gVCIryQGuQkFGwVvyVUdAZRYKiPPjyP9vsx1SOmQDpB4s4sf+0tVSzWC96jmvuEFAuyjGx5vsU5zoS5TKL33Mu2H4moXFerpXmZoXAyJrnleJcE6u/TXEe78tkFr+3v9a2a6O6++oVoKt3LYuYZH/ufKcTXgE6dBVrg1Z9grn/ix71et+6ENKimmtucbzmnn62z1pjZCtp9RLR7f3cwXo3FzWCIBCW4E1kK9+LIlgP1deg0hkligvMDsH6qnz1f9vt/7afd2vH8w6J83KZBStbVYKiPG3P5y7iMT88v+u8uD2Ard5UTLK/O1jfALgV9m7sqKqKxaSg1Yt1fkA6vDXXKd0HQBAgdU8B0e2qX6BqDRL9b4lh1dcpToqtK2ckcXxPgcvFt7lc4fBW1xWoLxRSd+W7qpcHKuRlltdLjVJaaGHWyOUU55tRFZCtMut+SuX43gJmLh7YqIXajvyb51Llrqo2H9vUnQWuzxubf2ZIDT7+Mck2tcuJ/YUOgRRJKzJoQgt0Rg2/vrkfSxUdjiiBd6DO7oc68PZY+o6P5uSRInxDjHhdxgVfK1n28SF+fmk3porvWObhYt6dvJEHP+tJuwE1e8FeDiiyiiKrDoHMi5XyEitF1aS2p+2zBQPenbyR3WtO2gOS+9Zn89yYFby4ahgBDZQefi5zianUyqwrVlCYXY4ig2xR2fBLGik785n915B6PaBHJPkQ096flO35Dmo3nYfEkLviWPHVUbuaWqkYX0REZKvK8T0FpGzPd+nVLGlEso6V0LzNhV0kuSZiOvjx/Poh5KaVIUgCAVU2BI5uz0MWVMcxXQCjXiL9YCEFp2xKeaXqmIxIxuFiBtwWy9f/2Ybi4rpd+3gbh/+3WhQEAYdN0lFTE9i7JsspY6rDkFD8Qzxo3T+YPauc7W96XFOzLyhA6q4CTCVWp9ctZpnjews5si3PpYJfoxM5dbSE2OSa5xWvAB3T5/amKNtEaX7Pv+sAACAASURBVJGF4OaeddpIuNARJYEbn23HVY+1Ij+zHP8wA/qzKAjt5uJCFAWun9mWsQ8nkZdZjn+owR7QTj9YjMYgUma2Oo4PCvbn86jWvjy3Zgg5aaUIAgRE1N0SatSDCcx7YY+Tun/0gwm1Htt5VDhzZ+3EXCpTGZcQBNAZJDqPimDhW84BZhUVUSNQXmVccDWPGb209iC7fRMRwTYu+mppPzSUcpMVVYBKnb2IQLlJpsOwUD5/7N9q+717TRYRib7Vtp1xuBiNzjkLVbGqHPnXcU0kW22/U3VMHXFvAluXOCrNNXqRhB5BtQZzq21bVjnyr2PQSbYqqCrVWia5YvS0BH58drfTWnDUA7Xf77q03Xl0BB1HhpOVWoKHj7baDaGGZsS98Wz+1dHqU6MTadk1kGYx56eumRs3bpqGsdMT+eqx7U7j2rApLTm85fSY7TCXULcs1KGT4lg3NxWz1XFsiWrtS2QrH9KryUYrzjNjKpUx1EE44+bC4eKPULipN4qiMu/1PdyVuICJcfOZ2nUJ/yxJq9OxkYk+LlXPCNQYnK1k3My29L8lBp1RQmsQ8fTTctPsdnQcEU5IrKdrxbVOJPICL5hT3YOYoqj41tNzbc0Px2yFr6o8N1vNCif2F3JoS+NuZEQkeLu834IoEBLrVW16qaKotVacFwSBGXN706Z/MyStgEYn0izWk4e+60VQc098gvU8Nq8vEYneSFoRSSuQ2DOI/yzoZw/m/ftnBjP6/sajg/9gatclzJ2zq1rrhMsBRVb55Y299mB9JeYymR/n7GqiXl0YlJdY+XDaJia0mM/tsfP4v+F/cmS7a7XDxYLWIFW3X4aqwsmjxQ7B+kosJoU/Pj1U7/ZVVeXHN3YxufVCJsbN576Oi1nz07E6HbthQVpF9s7p16wWhezjpQ3iwT/t6560HxyCpBXR6ESCmnvw4Jc9CWvpTVicF5JOwIKCjM3EwYKCIEKzWE/CWnq7rH8qWxQCwuvvS97UCIJAYJSHQ7AeICze+3TVySpqUKtFISTGC4OX5HDNKq9bYMX7zFo+CK3ecb7od0s0gya2AOBUagnPX7+KCbHzmRA7n1dvX0d+xSZAyy6BTHqvM77N9Gj1Ihq9SNexkdz1jq1uwINf9yQo2nbtKxc7ka19uOOt2mu1hMZ5oXehwNXqJUJiPAmP98bVPpNNiVr3++0dpCck1uuSCNZXxeCpqbiG7gXf5YC+8n5XWeAHN/fAWhm8rTI+iJJA5Bl1fwIjPc4qWA8w9K44Rk1NwOCpsdUG8tIwemoig++sPZtD76Hh8YX9iEn2R9IKSFqBmI7+PLGoPzqjRGyyH4jCGbkBgGQ7L4C/vjrMPe1+ZWLcfO5p9yt/fmmzsdF5SKioFep5FSsqFhQUFLR6iT1rsxC1YEVFwWaVY0VF0Nr8hH2bVf/837JzgFPbd7dbxB9f2NoOivJwsC+rRBAhIsF2zXPSS3np5jXcHjOf22PmM2f8GnJOlALQvI0v937SjYBwIxq9bR7sNCKMez/pVus1DYrycGntUrXt3IwyXrp5LbfH2MbzF29cQ3Zaaa3vDTBoQgvGTk+0e60bPDVccX88w+5uWafjczPKePmWmtsWJds65XwF68Fm5XH/590JiDh9zZOHh3L/Z93PWx/cuHHTNPQeF821T7TG6KO1ZSZ6SAydHMfYGUnEtverZi5R8fSv3fEhNM6bB7/qSXC0BxqdiKQVaTcohGkVNSoCI1wLsAwemouuXpwbt8LeDfDFzK0sene/PaiXc6KM9+/fhPFzLe3616zA7Tc+hl/fdUwfl7QCzaK9iO8aUGvbkkZk/HPtue7/2lBSYMEnSG9f3MZ28Cc8wZvjewqxmG19ExDQ6kQG3hp7rqd7Xrj64Va8fut6p13VAbfE1HuRm7orz2VWA0D6gULia7AiqC99b4hm4Zv7bSqbisigpBUIijSS1DMIYXqSU9aFzijRb3x0nXZzvQP1TPu6F2XFFixlCt5Bjumw0e39eG7VEIpyTEhaEQ+f05Pavo3ZvDVpgz0FrLzEytKPD1JeYuX255Ib6ApcXJQVWTC78v0HTlbjEXu58Ort6zi4Kce+CD26I5/Z167i5ZXDCDqLoNyFhKVcRqiwDnNCgPSDhWi0olPA3mpWSGmA4m6LPzjAvNf2UlZqUynmnSzn00e3ojdq6DYqosZjj+8pcJm9I1sV0g8U0bZf3bJBrBaFkgIz3v56h0Cph6+O+z/vQXmJFVOpFZ8gvX1sSewdRLnZue3SMiutezfDO1DP7jWnHMc1g0T3KyMbNIunpMCMKAk2FecFwNipSexaeeZ5i3QbG4lPkAHfcCOFhc6WQAHRtoVCZJIvHx27kpMpxSilAs0SDUiSbaFQXmrl6VHLKco12VX42/7KZNaYFby2bjiSRqTzFRF0HBFOUbYJg5fGYe7868sjZGWVYqrikZ2aUsiGhWn0uqrmwvHdr4zkh+dt6cKVG9+iJODlp6PDkFACwo3sWH7SSd3fdVQEPpdBaq+qqhTlmm3BUsP5Xdg1Zdtu6k5ghAftBoawc6XjBrBGLzLynrqrou33+4wggiAIjHkoicF3tSD/uBm/KB0e3nUfa0PjvHlq6QCK82wWVlXH6SvuS2DT4nSHZyOtUaTD4FACwj1Y+d1Rvp65w74mKswx8c2sHUgakfA474ois47IQFmJhZQduZS78BU2mRRSduQxflZ73p64wennfs30tOgYwMrvU/hq5g772FOUY+abZ3ag0YgMvDmW5CGhbP8r0+Gaa/USV9yXgMUkM3P0CvJPldk3vnetOcXTo5fz5oaRaPUS7QeH8sqW4RRmmzB4aOpkTwbgH2qkw9Awtv+Z4dT2qPsTsJoVnh69nPyTp9vevfYUM0cv540NI2v9LguCwBUPJDLs7niKc814+evqnPVoNSvMHLOcvEzHtivPu6nHkbYDQnhl89lfczduLjfM5TLlxVa8A+tvhXWhMHRSSwZNbEFRjhlPPy3aioLowdFe6LwkSosdsz1lVPrd5BjjKiu2WRF7nlGPr1WfYOZsGEZRthmdh+QQZ7n2sTZ8PHWzy6yli8VSyM1p3Ar7yxyLSWbe23tcK3Bf3l3r8T5Bep5c0J8WHf0RJZuSpeOwMP7zU9+zGmy1Bgm/EINDgEUQBO7+oCsGfw0WVCyooIdbXuyAX8iF4xHuila9g5nybhcCI4yIkoDeU8OwSXGMn9m+3u/dvI1ftbuj4fGNm3ngFaDnyYX9iesUYLvfGoHkIaE8/nM/BEEgqVcw97zflcDI0+c99M44bnrm7M7b6KXFJ1hf7WfIO1DvEKwHmPeaa//85V8fcUhzvpwwemur/aw0drGtC5m0/YUc2prrpFazmGWWfVZ/pXlToffQOH0vKglr4UVYS2+sFtcF0KLr6a+tKCq/vHU6WF+JqUzmx5dqz+aIauXjUvUsaUTC473r1P6Pr+xmUquFPNBlCZPbLHR5Lw2eGnyDDQ5jyy9v7qv2fRe9v4+4jgE88El3msXYrE10RomBt8Yy4ZWzq49RHScOFPLEiD+Z0nYRk1ov5NlrV9pVkU1JbLI/Uz/r4XDeA26JZeIrnVAUhePV1D7Yvc7RqiYkxov2/UPtwXqADQuOU1ZsdbDMkWWV/Kxyti3PtL8migK+zRytV1RVZf7rFZlDVdS95jKZn17eU+t56T00PL14IAndgxAlAVEj0LZ/M55c1B9JIxLT3p8HP+9BSGzFeRsk+t8Uy52vd67bhbuI2fpnBg90WcJ9nRZzV9ICPpy2uVqBQEPz719ntr3pvLXt5uy55/1u9Lk+Gq1BRJQEwuO9mfFVLyIS6/Ycum15JlO7LeW+Tou5M2kB70/9h/KK+UNRFObctIY7ExYyY/Bv3JmwkDk3r0Fx5bFVA17+OqdN1cgkX6Z/3YuweG9EjYDWKNLn+mimvNsVgJ9ecV4Tmcpkfn51D1lpJdVmsRXkmTi6u/qN76O78uk8Ipybn22HpD09/4THe/PC6qEVbe92+syby2R+etU2rk15tyt9x52+5qFxXkz/uhdRrXzZsiyd0jOy1BRZpazIyqYlJ+yvCYKAb7DhrAPHU97pQt8bzmj7q4q2f0+ntNBF28WObdeGRiviF2I4K4vCrb+nU1Lg3HZ5sZV/Fte97cbkXK+5GzeXA+Zymf8+vIW7khZwX+fF3NdpCZuWXhjf3YZA0tjGtcpgPUBxvhmzi6wlgGN7bfNITnopz127ikmtFzKl7SKeGPYnx6vUOgHb2OITrHcSRXYdHcFtLybjE6xH1Ah4+Gi5akYSo+47O5sxNxcG7pnjMqc4z+zSdgbgZErdFLiRSb7MXDIQc5mMqBHOyrewJlRV5Y07N1CQc9qT2WxS+PQ//9KqVzCBdbQisFoUsk+U4hOox8P7/CkXu1wRQeeR4ZjLZLR6qcHS4vuMi2bBG7bitZXqQI3OFtRq2aX2rIb6EpHow9O/Dqj2fncaEU7H4WENft61kXHYtV+bJInknSwjrEXtQb9LDVESGDstiXmv7HHaZb/usTY1HHlpk3m0GMlVsR6LyvG9BS6OuDgQRYGrZrTmxxd2OanBr3+iLaEtvGnduxl71p1yVEXqRIbVwWqgJsxlMqVFrjfGMuswl/S4Koqf5uzGYlLsNlaSViAgwkjrvs1qPf6XN/ey+IMD9kCLxaTw7eydePhq6XtttP33inJNlBZbCI70tKtMaiq6e2y37fPQflAor/wdiqnU2qDjWmmhhZljV1BSaLFnLe3fmMPMsSt4c8PIBptPz5V2A0J45e/hTuddXGCutl5J1RokYLvm1mIQPVT7NT+2J9++wVrVv9NUJpN+sIjOw6rvk2xR7crZM8k+Y6PD1f0GaBbtyRPz+pFxtAiNViQ40tHDuW3/EF5e73zelzKHt+Xy1uQNDmPH+gWplBVbeOiTno3a9v7N2bw56Yy2fzlOaaGF6Z/1atS23dSMqdRK3qly/EMM6I2nl406o8SElzty6wsdsJqVarNHczJKEQSBgNAq9TF25vHGXX873O8NC9MoybfwyJe9eWvyBravOOnwPtuXn+Sduzfy4Mf1/yy26hXMnDVDMZVabXYCVbze8zLLXB6Tl1nG0R3V2+bJsuoyS6ySyrlp2KR4hk2KpzCnvCKT5PR1q7btk2WoqorOIHH7Sx255Xnna555pBhTqfMcXF5iJfNo/TMqdQaJ2+d05JbZzm1nHC7CXOa67Ywjrp/NG4qMI8XVtp3ZyG27ceOm/nz40Ca2/JZur5GRl1nGu/f9w//N7UtC16Am7l3jkJteilYnurQaSz9YhGxVmHXlSnIzyuxroqO78pl15Ure3jjSSW3vir43RNNnXHNMpTI6o+RW1l/EuBX2lznegXqkagICUUm+Z/VeOqPUoMGFQ1tzOZlSjGx1XPxbLQp/fnWkTu+x7MtD3Nl2AQ8PWcZd7Rfw7oMbnVTYjYkgCOg9NA262Pf01TFzyUDa9GuGKAlo9SI9r47isR/6ndcUsprud2Ocd21Et/Vz6TOtKCqBYRenxUlDMPLueG58qp2tdoIAIbGe3PtBN9oPCm3qrjUZUUk+LpXmWr1Iy06Nv+nVmAy7M46bZrXDL8RWM6JZjCdT3utC8pAwAB74pAcDbo5F7yEhiJDQPZCnFg6otxe71iBWqzx0aQh+BnoPDTOXDKL9oBBEyVbDotuYSJ78ZUCtD5mKovLrhwdcZorNe20vYLM1eG78KiZ3WsT0gcuY0mkR/y7PACC2vX+1753Y1dFirKHHtXXzU20P7FUuniKrlBRa2PZXZvUHnmfOPG8Pbw1CNdN9pW99Ua6J2TfZrvmE5HlM6bSILX+mA1BeItv9O2VU5Ip/q6gug05VkbRCtTVRwioyh4pyTTx/82omd1rEjIr7veWPdPvvHd2Vx7R+S5kxaBkP9l3KI0N/J93Fpu/5nseakgVv73N6PrKUK/z7Z4a9tkBj8f3LO7Cc2bZJYdvyTHKrCWK6aVwUReWb53dwR8Uz9J1tF/DdnJ2oZ3iuSRrRZbA+dV8B0wf+xgO9lnB/z8XMGLSM4wdsG6CL3t+PxeR8v3euPknOiVI2LUl3ej+AjQ2smNZ7aByC9QDB1RRgbRbtSZeRES4McWybjh4+Wow1iIKMXo7XyCfQ4BCsB2hWXdvNPR2e711d86hWvg4bKpUYPDVnvZ6rieraPvNcKttu3qpxi7JHtfKpoe2GO283btw0PIXZJjYvTcd8hlWnuUzml7edC4RfKgQ398RqdV0XJKa9H9uWZ1Kcb3asw6faLMDWzUutczuCIGDw1LiD9Rc5boX9ZY5GK3LLk8l8MXOrQ7BDZ5AY93jbJuyZrSCd4GKAsZqVaqtfV2Xz7+l89cx2h/NavygNQRC4783aiyxdyITEePHod31RVfWS8XmrL9c93JpdZ/hM640So+9LvKwLrAiCwJCJcQyZGOf+vFQQEuNF8sBQtq/ItD8kCqJt3Bs6oX5K87MhK62E0iILkfE+TkGDc0UQBAbdFseg21zfb51B4tbZydw6O7lBPw+WcsXun181oCEg1CVeD0BQpAfTv+x91v0yl8vVKhsrg30v3LKalN359g1gc5nMq5PWM2fJEMY/1Y5V3x91SKkH27UaOSW+zv04F04eLXbaaADbPJd1vKRR264PoigyYHwsK7456vSzK6cmAfDibWs4sjMPq0XFYlYoL7Xy+pS/eeHXwWj0InLl56TyVqs2/87axmtBEBj/ZDs+fXSrUybJjU+2A2DO7Ws5vCMP2aJgxaZuff3uv3lh0WCCIjyYdd1KSqv47x/bk89TVy3nw82jHdKWa6Ioz0T2iVKaNffE06fhahk0FZlHi11mTWh0IjnppfjVUji+PqQdLHRZe0OjE8nNKHNQZ7s5Pyx8fx9LPzvosImz+L8H8PLXMWZKYo3HlpVYePrq5ZQUnP6Ope4v4OmrV/DBptFkHC62Z4hWRaMTOXW8GEVVEVwoMJRqMoLPBYtJ5sShIrz9dQ4Zuzc91Y73H9jklJU4/sl2tOoRjCAJqPLp/lXOdyMmt0SRYevvGag4DGsARNewMVzJ+Kfa8f79rtuujeTBoQSEGTl1rMQuSJC0An4hBjoNC6v1+PrQcXAYgeFGMlOK7RlWkub8tJ08KIzACCOZR6u0rRXwbaan0/DwRm3bjRs39SM3swyNTrSr66vSEJlBFypGLy3D72jJ758fdhzv9RLXPNSKXWtOIbsQlpnLZDKOXLrXxY1r3Ap7N1z3UBtuez6Z4CgPtHqRFsn+PPZtHxIasXhpXYhp64fsYvdRZ5RI7F57itTPbzn7UFrKZdZVpHhfCriDr6eJaedPv/HR9lFNBQJjPBg5pWWT9utCwv15Oc0DH/bgiikJeAfo0BklOg4J47mlg/ENbrygVCU5GaX8Z9SfTO27lP8bu5w72i9gw5K0Bm+ntvvdkJ8HvYeET5AeKwpW1Cp/lbNWuZ1tv/RGyZZB4oKoJB+O7cnn+P5Cp2wti0lmyScH8fLV8eKfQwmOOh20iUz04bX1wxHFxn1MapEcgMHThXe/ViCmnnUFGptJr3Zm5OR4ux+zVi9y3SOtuWZ6a44fKODobluwviqmMpnF/z1gKyRf6T9fScX/m8prrznS97po7nm7K2FxXmj1IlFJPkz7pAcdB4dx/EABKXvynRY7VrPCr/89wNpfUp1+pqq2jZ9Ny1wre6siWxU+mLGJyZ0W8fS1K7irw0I+n/lvgwYTm4L4LoEuswmsFqXRLeXa9Ax2aVNmNSv2rAk355cFH+x36eW+4L3qa35UsmFRmtN3v1IduHFxGgldAx183CuxmhWiEht/3Fvxw1HuaL+Ap65ezv29l/D0tSsorLDf7DYqkvvf705EvDdavUhEvDf3v9+dbqMiOZlaDBoqcoEq/4AVlWP7CojvFIDWKFaerj1YrzOKtOxYe/ZetysieeCD7kQk2NoOr2i7++jIWo+VNCKzFg2kz/XNMXprMHpp6HtdNM8sGthggoDqECWBmQsH0u/6GHvbfa5tzjOLBja6rZsoCcxcMJB+46q0fU1znv11UJNbyrlx46ZmQmO9nGwUAUQJ4jtf3BnPtTH+yXbc+ERbAsKMaA0iid2DeGpefyITfYlp5+/yeczgqanTXOLm0sKtsHeDIAgMHB/LwPGx1f6Oqqoc21tAeamVuHb+dVagVVKcb+bY/nyCwjwIaV63xVdEvE+FCvakXeEjaQQ8vLUMuCGm1uNzM1ynUYuSQFGeGaPX+fOzd9P4bFyaxl9zj2JWFXsQ6MTRIt6ftomHP+ndtJ1zc8Gh0YmM+09bxv3n/GYSqarKc+NXk364CEVW7aqStx/YSFisF9GNnD7eWAiCQFQbX7KzHMddFYhrwNoapUUWUvbk49/MQFist73tm59uz8cztjgprm9+qj3Z6aW2APEZqAqk7LZ5Ekcl+fL6+hEc3pGHpBGIbet/XlJIu10RwU+v7iYrtcQe4NLqRZq38iWpR8N4d6qqStrBQorzzbRo61+t13R1VF5zv2AD4WcEbm99pgO3PtPB6ZjstBIsJtcB7P2bs+k8pHrlo6GOtWa6j450GcjKzShDoxEx43jPFVnl5LFi/IINLrMaLGaZnPTai/1+99JO1vySisWk2L+/f359hIBQI1fek1Snvl+IXPlAEn//cpzyEqtd7a43Sgy/s2W1xawbihsfbc9f3x2hvLhK2x4SwybG1cmr1U3DoqrV14koynX9elVyMkoxufAVN5VZyckoZcw9iaz9KZUy2WJX2uuNEoNva4GnnxYFFREcVPYqKopQ/02xvRuz+O/jjtk5+zdl89Ida3l+wWAAuowIp8sI5zEqL7McWVZRBFvQviqpe/PpMCCUsBbepB8sshe11+pEQmO9SR5YNxvCzsPD6XyOynAvPx2TX+vC5Ne6nNPx9cHLT8ek1zoz6bXzX5zby0/HpFc7M+nVS78wuBs3lxIGTw2j701wqEGFADqjhquntWrazjUygiAw4q54RtzlnMmb2C2QmLZ+HNmRZ685ptEK+DXT021URIP1IeNoEXmnyolu5XtJZIpeqrgD9m5q5cShQp67bTV5p8oQRQFBELj/ta70Gt281mNVVeXrOTtY+PF+tDoJq1mmVbdgHvukT50KwE79qAe/fnCAP7+0pQx1GhrGDY+3rdPiMaFzIBuXpjml3Wq0oju9+hJk/rv7nGwxLCaFLX9mUJxvxsvPPRG5aXoOb88jO63E0ZcQm7Jw6WeHuPuV87/QbghkWWH3xiyXP9v42wkmPtex3m38+NZufnxrDxqtiNWi0KKdP0983hefAD29r26O0VvLT6/s5tSxEqKSfLnh8bYkdQ9i28pMl/YLtn7b7sP21Zm8cvd6ZKuCqoKHt5Yn/teXlu0bV8mi0Yk8++sgfnx5NxsWpSFJAv3GRXP1tFYNkgFxKq2E2bet5uSxYiSNiCwr3PVcJ4aOr5v107x39/L967vs1zymjR//97+++AbWnImSU4PveH6WiaSuwfz2+SGnNGitXiS+Y/2y+2La+LncoNHqRdr2bkZsG38MnhrKSxwDihpt7SpYVVX57YwUZrApjxd9dOCiDtg3a+7Jc0sG8f0Lu9i7IQvvAD1j7klg4M3VizkaitAYb2YvGcz3L+xkz9/nt203zgiCQGSCD2kHnAtyRyX51Hp8y46BGDycv2N6o4aWyYEERXowe+kgvnt+F3vXZ+Hlr+WKKQkMua2Fre0kH9L2FdqTcGxqdZWoBvAkX/TRfqd6CbJV5ejOfDKOFtk3gl2hNYhOczcV/ZNl1ab2/mUAP722x+YzrELva5pz7YzWl00tDDdu3Lg5G657uDXBUR4sfHc/hTkmErsFMf6JdoTGXr7ZdYIg8MT3/Zj35l5Wz01Btqp0HxPJuEfbnLVo1hWFuSZenLiGwzvz7M/3101tzbhpbRqg924aGnfA3k2NyLLCU9evIO9UmYO/6JtTN9I80Y/I+Jof3Ff+nMKvnxxwUKLt2ZjFWw9u4PHP+tbavkYrctXUJK6aWv0iuLzUyt5/stAZJZK6BCFJthTIGx9ty7aVmZjKrA4KnluebN9gaZKmUit7XLR9saMoKnv+yaKsxEqrrkF4XATZCNUVxRM1AkW5JnfA3s15J+1gIRnHiolJ8iU40lZMLv9UucuFuyKrZKVduJ7ltWExKbbiqS4oyjXV+/03LE3jp3f2YC6X7RlXB7fl8MqUdTz34yAAOg0Jo9MQZ7/cSms1V77CiqKSe7KMFyaucVBdl5dYeXrcCj7feuVZK9LPFi8/HRNf6MjEF+q/qVEVVVV55qaVZBwprrBrsZ3fJ09uJTrRj4RONQfG//n9BHPf2OVwzQ9vz+XlSet4ft7gGo8tyK7+niuySlyyPxazzViiqhe01aoQ3aZ+QTnfIAPDbm/Jn18dtt/Tyuy8ERPi8fTVEhbrRdrBQvtzic4g0bJjAEndas5qkK0q5S6Uw2DLJKxEVVUO/JtLcb6JxM5BeF0kKvGIeB9mfN6rSdoOb+nN9M+apm03zkx8tiMvTVzrlLU04Znax6n2/UKISvQhZXe+/TumNUhEt/KlXd9mAIS18Gb6pz2rbXvOBFdtJ9e5/xazzJ6NWSAItO4WhFZnC3Jkp5e5rpegFck/VW4P2GekFJF2qIjIlt6Exdheq1Q6VjeXgM2b+NaZHbh1pnPmUUOgqiqHduRRkF1OQsdAfAJc28FdbljMMnv+yQZVpXW34AYJarlx4+Y0VovC3k1ZyFbbd0xnaJjvmCAIDLgxlgE3ujfoq6IzStz4eFtubISakq/evZ4D23KQLar9+f7nd/bQPNGXHiNrt2Bzc35xB+zd1MiudacoK7E4PdxaLQrLvj7Enc90qvH4X97f5+wjb1bYujyDkkJzvdNvVs5L4b1HNyFJAqpqU+88/VU/WrYPICLehzlLhjD31V3s35xDULgH105rXpBKVwAAIABJREFUTafBDVMAadX8Y7z3yD+IFW3rDBJPf9Wf+A4Xt7fYsX353HnLQooLzQiCgNWiMOm5jgy/+cL2gm/bqxmr56U4FY7UaEWaNfdsmk65uSwpLbbw/IQ17N+ag0YrYjHL9BoVxbQ3u9sDlWeiM0p0HNi4xdkaE71RIijcg1MuCqXGd6r/mLjgQ+cMGtmism9TNrmZNRelFLWCPahSdSpTUUEUWPlTikv/cVVR2bjsBP2ujq53/5uCwzvzyEkvczo3c7nMr58dYHon18GyShZ+7OxhLVtVDv6bS9aJEoIjqh9Xe1wRyXdzdrn8WUKXQNYuTAUtKGbVXkxJQUXSi2z87QQDro2p9fxq4vaZHYhp7cevH++nON9Mp8FhXD+9DT6BtuDWs78MYsF7+1j98zFESWDQjbGMnpxQa1aDRisS0dKbEy4K38d1sBWVzEgpYub4leRnmxBF2xx686PtuPrui1d97+byo32/EJ6e258fXt1N2sFCohJ8uOGRtsTXstEHIIoCM38cwMIP97PqhxQABtwQy5gptX/HANr1rWj7td2kHyoioqU34x5uS0LnumXf/Lsqk5emrEOtWLwIgsBjH/WmY/9QkvuHcnxfgdM8XJlBZC6XefnudWxbfdKuPEzuF8KjH/ZGaxCrnUuE82ChdiqthJnjV5KTact4tphlxj3YmhumnV9rvwuN7WtPMueutfb7DQKPftSLTgMu3mcqN24uJHZvPMXzE9ciWxUEwWYpOeO9nnQb1nD2LG7OD7kny2wbLy5qTC34cJ87YH8B4g7Yu6mRwmqUkYqsknfStaK5KkXVeGAKkkBpoaVeAfu0g4W8+/Am+84gQFmxladvXMkX/16JVi8REe/D9I8aXrGVdqiQd2b849T2zBtX8sW2Ky9aZYdsVXjqhpXkZzne20+e/peW7QOJa+ffRD2rnetntGbTshOUl1rtxSV1RomJzyY3esEtN26q8sHjm9m3ORuLWbGPERuWpPFzvA/jHmzDyDviWfbFIXsAWqsT8QsyMPimi1ddIggCwTG2gH2larryv2Fxpy0GZKvC9rUnKSmy0LZHMP7BdbMnyzxW7PJ1q1WhKN9UY8BekVVErS3AX1XNDWDwksjPKneyZgFbAKe6OfBioCjX5DKbQ1Uh72T1ljWVFGS5nuMlra0OTE0B+4iWPiR1C2TfPzkOr4siTHmpM799ddgeMKvqBS1b1Qa55oIgMGBcDAPGxbj8ucFDww2PtOWGR84+0HXX85148fa1WMplVNUWnNTqRSY+0xFVVZl10ypOHi9xsGH69pWdtGzvT7teIed4Rm7cnH8SuwTx1Pf9z+lYvVHD9Q+14fqHzi3FPrFLEE9915/gYG+yspw3yKqjIKecF+5Y47TZ+MKda/h041hGTY5n+dyjFOeZsVYUn9YbJa57qDVGLy2fzNzKtlWZmE2n5+9tqzL58sXt9B4VhagTkM2K01yic1E8vKF57rbVZKQUO9jy/PTOXuLaBdBl8Ln53l/sFOWZmD1htdOG/ot3ruW/G8fgF1SzfZsbN25qprTIwjO3rHayOHv57vV8uHYUQeEeTdSzi59KR4Pck2UkdQ6iWeTZCQzzssrYtSELT28tHfqE1CneUZxvRtKILtc9+dm1x/bqSurBAo7uziM81puW7QMaxObzcsUdxXJTI626BdsfaKti8NDQuQ5K9Q79QlwGDDy8tATWc4D/47vDLvsmWxW2rsys13vX3vYRu82CQ9uywpYVGY3admOy6+9TLguFWUwKv319qAl6VHdCmnvx6p/DGDQ+loiW3nToH8ITX/ZlwPUXbxDUzcWHxSyzbtFxJ/WeqVxmyf8OAnDrk+257/VuJHYJJDLehzF3J/LysqEXdSFsq0Vh58YsLCgo2IKwCmBGYf1vaQAc3ZPHrR3n88LkNbw1YwMTuy3g+zddq7DPRFUdFY321xVqTctN6BiIrKqYUZBRUFCxoiJLKt1HRtKhXwgGT2f9giAItO3ZrE79uxCJTw506eWuM0h0GVp7cKfz4DA0OtePiVG12OEBPDtvIGPvScTopUGjE4nvFMBbq0fSLMqL9r1dX3NREmjb48K+5u36hDB7/iC6jYggPM6bnmMjmbNkCC2TAziyM4+8rHKnmgmmMplfPzvYNB124+YyYt2i4y7nChRYuygV30ADr/4xjBETWxLR0pvWPYJ56IOeXH2/rcDhH98ewXxGIMNsUvjj2yPEtvVHkCrnN7XiDwg6ge4jGldpevxgAZnHip089E1lMos+PdCobV/IrFt83OXDgaqqrPkl9fx3yI2bS4wNFc/wZ6IqKivnpZzfzlxCnEorYVLvRcy6dSVvP7KRKX0X8e6j/1TJFKqZ79/cxcRuC3hrxgZemLyGWzvO58juvFqPC2/hjeQiNidpBToPqn9WksUkM+u2lTw4/DfeefQf/nPtnzx0xTKKC2ovWO/GNW6FvZsaCQr3YNTEeJZ+eVoNqjNKhLfwps/Y2ovO3vRIOzb9kU55qRWr2ZZGpTNI3PNSF8R6po8W5pldF39SoaSwcQeFojyTXcXt0LaiUlJoadS2G5Pq+q4oKoU5DaM0VRSV7WszyTxeQlxbfxI61K/AYFWCIz2Z8tLFWbTzYiZlXz77tmYTEGKkc/+wyzqjwWpRXI5LAGUV6hRBEOg1NopeY6POZ9caFbnivG1O6Y7nX1ZiRZYVnr5pBQVnjCM/vLOb1t2CaV+L8ljnYQvKV3oHV7ag0QkOmU6u8PTVIRgErMUKVbcjJUUgNNaLjgPCiE8O4MDWHLsqU+8h0WNkJDGt/Wo58wsXLz8dN85oyw9v7j49fxskAsOMDLu59qKzV93bilXzjlGcb8ZSZf6+67lOdcoiE0WRGx9pS1xnf1BEWrTzJSzalm3Rvm8IiZ0C2bc52+GadxsWQYsqmVypBwvYsykLvyADXQaGn1X9GXO5zKblJyguMNO+V4i97YagRXt/Hvm0t9PrxQVmxGq6eDFna9QVc7nMphXpFOebaNczhPCYhrvmbtzUheICM1YXG5UWi0xxxdrAL9jAhFnJTJjl7IlvKpPtgfjKGUeoeN3goeG2Jzvw5ezt9nFLqxfxDTIw+s5E+3sU5prYtPwEAF0HRTSIz3xJgQVJ43rdVF028+VASb7FpXjLYlIafS3oxs3lQHGBGdnVd8ysONTucXN2zL5zNafSShzWjCvmHaV1t2AGXWcTG5YUmvnnrxNYLSpdBobZs5J3rD/JD+/sdqgRWVZsZebNK/jflqtqrKmo0YpMer4z7z+6yZ4pqtWJePrquPaB1vbfq67t2vj+zV1sX3vSYW12dG8+7z76D//5qE/dL5AbO+6AvZtauf2pZFp1C2bpF4coLbbQd2xzht0cV6cFe3CkJ2+vGMmij/ezc/0pQmO8uOruJFo2gM97t2ERrFt0nPJSR0W4bFVo16txFXrdhkawdqGLtmWV9r0vbHVgTbTuXl1GhdQgnma5J8t45Jo/yMs67avcqkswz3wxAN1FaiN0OSPLCnPuWcumv9JBsKljPby0vDJvaIMGxy4mjJ5aIlt6k7q/0OF1QYTkvqFN1KvGR++hISrBh2N7CxxeF0To0CeEfZuzKSt1zt4xlcks+fJgrQH7XqOiWPDf/SgW1cFDWO+hJbJlzWrvfZuzMZucAziyqvL794foOjiCmd8O4K+5R1j5UwqSRmTYzXH0ubL2TekLnWvvb02Ltv4s/uwgBTnl9BgZycjb4zF61p7N4Rdk4K2/RvLrZwfYujyDoHAjV05JolW34Dq1fXBHDk/cuBxZVlAVmzXRqNvimTSzE6Io8NTX/Vnxw1GW/3gUSSMy9KYW9L3KVi9AUVRen/Y3axanIlSMLQajhpd/Glrr/XZqW1ZRFLji1pZMntW5UdNyEzoFYrU4b9jpjBK9Rl06G3SuOLQrlydu+AurtWLzToHhN8Vxz3Nd3KnQbs4byf1C+fHtPU6WOFqdRMf+tasHEzoGsHPLqSqvVDyrdrIVpB41MYHmib4s+u9+8k6W02VoOKMmJuDlZ7P4XD7vKG89stEuSlKUf3jw5e4MurZ+2Z4t2vqjuKjrrjNI9Lri8vUcTu4XwvdviMhWx/utM0ok9790n7ncuDlfJPcN5Utxh9PrBg+pQRTZlyOn0ko4frDQSeBVXiqz6LP9DLoulg2/H2fOPesQJAFU25p7yqzOjLotgSVfHnSa4wDKSq3s25xNm+41x6IGXBtDaLQXCz7aR1ZaKcn9QxkzKQHfQJuF2Ibf05hz71pE0VanUZYVJj3dmTETEmo9t9++OewkpLKaFf7+LQ2LWbYXgHdTd9wBeze1IggC3UdE0n3EuT0QBoQYuf0pZxVLfek2LNymityWY1cP6o0SYyYl1Oit2xB0HRZOfMcADvxbpW0PidF31L1ti1lmw58nyEwtJqF9AO17hjgsaovyTaxdepyyYgtdB4YT1dK3Uc6lKn5BBm58qA0/vr3XvhmhN0o0T/Kjz5j6Bxtee+hvTh4vRq4yQe3ZlMXcd3Zx68Md6v3+bs4vS746xKbl6ZiqTMzlpVaen7yGd5dd0YQ9a1ruf6UbT924AqtZQbaqaHUieqPEhKcu7c/4fS93ZeaNKzGbZNt560V0BomJTyeTnlJUbdCutKj2rKRr7m3F6gWpFOaYMJfLiJKATidy/ytda83oyM8pw2JR4MzmVdizORuwKU6G39KS4becW3Ft2aqwcfkJThwpokVrfzr2Ca13FllD0XFAGB3PsfieT6Cemx5px02PtDur42RZ4enbVjqlwC795iDJfULpNiQCjVakw4BQSsxWJFGgXZ8Q+zX766ejrF2a6vDQX15i5dk7V/HRytE1BoBlWWGmi7Z/+/YwyX1C6T608YJbRk8td85K5rNntmGuUC7pjRIhzT0ZOr5Fo7Xb1CiKyqzbV1J0htruj7lH6Ng3lJ7DL+3NCjfnn7ISC2uXHqcw10SHXiG0bGsTAsUnB9BjRCQbK2oagS2w1H1EJPF1EAt5NdM5zxWAV9DpmlvteoW4rEeRnVHKWw9vdNogfuvRjbTrGUJwPaxAdQaJKc935sPHN2M2yTY7OKNEUKiRKybEn/P7VkWWFbasyuDYgQKax/vSZUBYjUrNC4G49gH0HhPF+l+PU16xHjN4SHQZEk5iHQoku3HjpmaaJ/oy6PoYVv6c4vAd69A39KK2jWxKykutLi2jAUqLrRTlmZhzzzqH9TXAx89spUOv0GrXTYIguBRHuSKpSxBJXZwV70X5Jubcs9ap7U+e20pyn5Ba41HVZT0rilqxJq5T99xUwR2wd3PRIkkiz3w3gNW/HGP1L8cweGgYfktLOp4HRYUkiTzz7QDWLDjGqvln33bm8WKmXbWM0iILFrOCRicSm+THy3OHYDBq2LwqnVl3rkIQBGSrwmdztjH6tnimPN246kCA66e2ocfQaL57awclBWb6jG3OgGui670jWlZiYcf6kw7BerAN7Mu+O+wO2F+ELPnqgNMOv6rA8YOFZKWX1mtxejGT1CWIt/8cwaJPDpB6oJCkzoGMuiMB/+BLu/hZUucgvtp6LV+88i/H9uaT2DmI0XfE49/MiF+wwWVKrcFDQ9+x0bW+t0+Annf+GsGyrw+zdWUmzSI9GHNXIrF1sKzZsqqauiICFDSATUnOyVKmXbmMglwTFrOCVicSHuPNaz8PxdP78nwy3bc122U9lPJSmaXfHKLbkAh++ngvn8/ZBoItPvbhs1t4cE43hl0fx+IvDzgVEVRVOHWihBNHioiMq15lv39rDuUu27ay9JtDjRqwBxh5WzyxbfxZ/L+D5GeV03NEJIPHxaL3uHQfuQ9uz3G5gCwvtbL060PugL2bBmX/tmweu/EvFEXFalEQJYFew6P4zzu9EUWBh97pwYbf0lg+9ygAg29sQffhdfOY37LS9XxR7TxShbWLU1FdGKqrqsraxalcPSmpTn2ojsHjYmme6Mvizw6Qk1lG16HhDB3fok4ZU7VRmGfioauXkZVeap/HAkOMvLlgOL4BF/azy4NvdKfH8Ej+nHsEVbVdpx4jI92ZPW7cNBD3zOlCl8Hh/PH9EWSLwsDrYuk12v0dO1ci4rzRGySnQr5avUjfMc35+/c0BBeiH9mqsOKXo/Qd05xdG085PSfLFoXWXeuWBVsdG5bV0Pa8FG57tOZ4TedBYaxbnIpyRtw+trUfhkv4ObgxcV81N01OWamF1YtSyUwrJrF9IF0HhddZ0aHRigy6PpZBTVBYVKMVGXhdLAOvO/u2X5q6jrxT5XZbGKtF4dCuXL55cyc3T2vHs5NWOwVCF399iO6DI+nYp/E3JDr1CyOqlVeDvqcrz/9KqhbozDlZysqFxygrttBlYDhJyUEN2o/6cGRPHn//kYZOL9FvTDQhjZzJcaHjqsI82GxQLC4sSC4nwmK8mTy7c5O0bSqzsmZJKidSiohr7U/PoZHnra5ARAsfJj3byel1Dy8tdz/fmQ/+b4vd59/gIRHb2o8BV9cesAfw9NFxzb2tuObeVmfVJ6tFBQHUikK4YAsQC/Z/1Y83HtlIVnqpfTPSalE4dqCAT1/4l6kvdq/3+yuKyr9rM9m9+RQBwUYGjI3By7fhNgKOHchn3bLjSBqRvlc0J7wB7KwsJqXahZyp3ErqoQI+f2mbsxL1sX/o0j+8WoWOKAq1ji0Ws1xD2+dnXErqHERS5wtn7mpszCbZ5QIPcLlx4+byIO1wIWuW2myt+oxsTmSL2u2sakNRVGbesYqSMzaI/v79OMvnH2XItS0QRYFeV0TR64qz3yiSra6fa1xtOJ+J2SS7rGGjWNUGeyaK7xDAtLd6NMh7VeX9mZtJTym222JaLQoZqcW888Q/PPlhvwZvryERBIEeIyMbxLrTjRs3zgiCQLdhEXQb1rjFtS8XJElk+ls9ef6uNVjMtowprV4kONyTq6cksWJ+isvis7KsYiqTGXBNDMu+PczRPXmUl9qyjrU6kSnPdcbDq34buBazgqpU03YdnqHveLIjO9adpKTIgtWsIGkEdHqJB1+t/3rocsUdsHfTpBw/VMCDVy/DYpIpK7Fi9NQQFu3Nm/OH13vAuVApKTSz798ce7C+EotJ4Y8fj9C6c7DLYEN5qZU/fjpyXgL2jYGXr47mCb5OFcwlrUDvkbZF1frfj/P8PWtQVbBaZL57bxcDxsbw8Gs9m3wX/6PntrDwf/vtaq7PX9nGgy92Y/i4c7PQuBTod2U0P32wxylw7+OvJyymYTd83NSNzOPFPDBmKeWlVvuYGhTqwdsLR+DtV//Cd/Vh2PiWxLUL5LdvDlKYY6LnyCj6jG5+VoVEz4Wbp7flt+8PORXDFYAOdfRjrw6rRWHzqnSnzCGrRWHFLyn1DtibTTKP3/wX+7fnUF5qxWCU+Hj2Vl6eO6RBNjO/eG07P7y/G6tFQRAFvnh1O3c/3ZmxtyfWfnANtOoc5DTHgc0eZuBVMaxaeMxlYEwQYd1vxxl4dQwnju50CtzrjRqik2rOqmjVOdjlYsPgITHw6pizOxE3dSKxYxAuhMXoPSQGXnP+BRVump7v39vFl6/vQLbaNu++fH0HEx7pwLi729TrfQ/tyqW02FU2h8zS7w4x5Nr6WU916hfGlpUZDuOXKAp0qoP/ffehkXz7+k4nP3VJK9J96IUd6FqzONWphpVsVVn3Wxqqqjb5M7gbN27cXEp4B+qxSgqqCLKigAoeQVq0eoluQyL47zNbnI4xGCV6j4xCq5OY8/MQ1v6ayobf0vAO0DHi5nji2vrXu19dBoXz0UzntvUGyR6vqQmjlwatj4S1yISMAoKIagBPv8sz47ghuLCN6dxc8rz4wFqK8kyUVaQElZVYOX6ogK/fdC5ucqngKohR9We2n7v+HVcFYS8mZrzREw9vLTqDzV7H4KEhsJkHtz3WgbJSCy/cZ/NMM5tkFMVWkHLVomP8szy9Sfu9Z3MWC7/Yj6lcRpZVLGYFc7nMW//5h4Lc8ibtW1Ny3T2tCYv2tqe4aXUiBg8Nj77X2724ayJenb6eghzHMTUjtYhPX/y3iXtmI66tP/e92I3HP+7LgKtjGj1YD+AXZASpUmFv+1v576E31C+4o6oqLkQwQM1jfV1Z9NUB9m3Ltnsxl5fJlBZbeHbyapfqm7PhyJ48fnh/t31cs1ps49qHz2whO6O0Xu+tN2qY/noP9AYJjcY2Fhg8NCR1CmLgNbG2YrAu+q+qtus25o5EIuO8kXQCFmQUUUVrEHn03d611gbQGSSmv9ETvUFC0la07akhITmIQe7gcaOg00vMeKsnuqrX3ENDfLsABp9DFqKbi5u0w4V8+doOzOW2eiaVY8v/Xt5OekpRvd7blYK9Lj+rK/e90BVvPx16o+05VW+U8PbTce/zXe2/k5VRyjfv7OTdp//h7z/SkGXbs3l0gi9j70xEb5QQRNsGpN4oMXZiAtGJtdu3NSWuNjlret2NGzdu3Jwbqqry3JRVlJVaMckyVkHFZJE5tDuXBf/bT7MIT256qD06Q8VcItgEEAOuirVnb2q0IgOujuE/H/Xhvhe7NUiwHqBZhCc3T2+H/oy2B14dQ6sutQuFPn3xX06eKMFkqTgvq0xRvplXp69vkP5djrgV9m6ajMI8E0f25jsFOyxmhb/mHWXyk01jJ9HYePvpadHKj4M7cx3OXaMTGXBlDB37hDqpNcG2+B18kasDW7Tx57P1Y/l97mHSjxSR1CmI/lfFYDBq2PBHmstATHmplT9/PkL3wU2nTlqxMMXJugFAlAQ2/nWCYdfHNUGvmh4PLy3v/DaStYtT2fn3SZpFejLshjgCQy9P7/qmxlwus3PjKadAsdWisnLRMaa91PBp9BcDu/45hagRUKt8hSuv0IqFKQy57ty/v//f3n0HRlWl/x//TMlMCglJIAkhQAiEXgzSpEgkSNNAWFFh+ep+d7GsyoK7yK51bYBs/NpYXQXR365tcW0gXUSKgiAoLChdamiBBEIJpMzM/f0RGAypwCRzA++X/8CUe86MD/fcee45zwlw2NS+a7Q2rCr+vdvsFvW8qdElH/echf/ZUaI8mlQ0fmbsOKFGl7EZ+ddz96iwsOSxLZai1U6XO8v++tR4NW0bqS//s0MFpz1q1yNanfsUlbzrObCRPpmyWfnuC9o3pG59G8hqscgTILksHnkkWSyGCi0eWSt51drz5kZq0iZCX360Q8ez89WlT5y3bVSN7gMaasrim7XwPzt0PCtfnVLqq2vfOL7zq9CKLzJKvWHpMQytWJCh2+5rfcnHbtYuUgEOm/em9DnOIJv63nb5GzvHNKylt1cM1lef7NLOTcfUpHWE+tyaoJCwotmBa5Yd0JN3LZHn7OSN+R/+rGZtI/V/H/ZVgMOmkY91UPcBDbV05m5JUnJaY7WqAeWxuvaJ07cL9xW76WG1SZ1T6jMBAwB8aP/Ok8rJKjnhL/+MWws/2qHbft9aw0a3UccbYrX4s11yFXh0/aBGats1ulrOx7f/oY2uvSFWiz8tartnaiO1u65ybS+dvafEBFOPx9CP3x1WQZ7bO2kTlUfCHn5T3r/5K/3i8C9/76E/DflChQVu5Z12F5WtiA3Wb8a2V3CtAP355W56/o8rvRtqnVsC1cWPSWtfqR0ZqNvuL2VJdLnx4Ju2sw+f1tx/b9een4+rbeco9R+aWKnSSxarSl30YNGVH6sVcThtSrklgZmrZlFGOF7NYepyeZRfRv3g7Mwzl338sS9cpzGDFijvjFt5p4vKENWOdOqeJ0rW8r9oZfx/MwzD+1ROdp7mTN+mnVuOqVVSlAbenqhaYRUvPS2KCYtKO7lV9ryWczRPc/5ddtv1G4fqfx9OUlRUqI4cOT+zNrFtpH51d0vNeGuLCgvdssgiW4BVIx9OUnRciD6aulG7t+So4Gy5LbfbkPuMW+Mf+EYf/XBrhbPsvW3/JalSnwO+ERvPdw6VPQ7p8scim92qJ6Zcryd/u0QeT1HZsMAQu1p3rFvpyROFBW4tm7dHqxbvU53oYKWOaK6Gv6ivHxLm0OCRJW9Yul0eTXjga+Wdcclz9ryZm1uoLeuzNP/DnzX4Ny1kGIbyClw6mVcgScovdNWIkjKjJnTWlv9m69SJAuWdLacXVCtAY57r4u+uAcCVxVJWLYXiY2Riu0gltousli5dKLFtpBLbXnzbJh/qaiQS9vCb0HCnEttGauv6LBm/uBHncNp04xW+hDq+WW29t2qIln6+Rwf3nFTza+qoe/+G3vIQyYMaq9W1UVo8Y5dOnypU1z4N1LpTXdNf8F+OpB71Si2REBhsV18fzGDf9lO2xgxdIFehWwX5Hn2zYK/e+/uPmjY/VXWiy58RnpKWoLnvby8x09XtMfw68x/4JUegTdd0i9F/v80sNkvO7rCqd1pj/3XMz8otQ3aZZWWkoiTlu6t+pWWzdivj5xNq2jZCPQc2ksN5+bNIBg5P1LTn1pY490REBalB0zDt3paj+9Pmest0LV+wV++/ukFvzhtU4abYyYMa66M3NpWY5W4YUvf+FW/ed2HbRefUDZo2P1UxcRXvYXHXox10w+DG+mbeHtntViUPilfDsysGvvxkZ6mbW53JLdTurTlq0so3S38B+N71Axvpnf9bX+Jxi9U3K4869Kynd1cO0eIZu5WTlaeknvXUoWe9St3Iyz/j0h+Gztee7ceVd9olu92iz/65WU++nqzr+5fft20/HlVenqvYfiiGDJ3Oc+mLj3do8G9a6LWn12j2v7d5N1v+csZOpf66mcY8a+4N9+rWC9a/vhmsr+fu1e4tOWrcIly9UhvJGUSqAAB8KS4hVHVigkuUiHMG2TTg1zV7b7zeaY01b/rPchWcT+5ZbRZd0z2G2fWXyPb0008/7e9OVJczZwrKrDV7NQsJcer06QK/tH1Ntxgt+XyPLBbJ4/EoMNiu+Oa1Ne6l7goIuLLZJeq/AAAeTUlEQVT/UTucNjVvX0fX9opVfPNwWW3Ff2iEhDnUtku0OvSMVXRciE+T9Qf2ntQ7k9fro7c2KXN/rhKahxe7KPdHTNgDrGraOlIrFuyV3V5048LhsKnfrU30q7taVurznzpRoM/+tVnv/H29Nv5wRHGNQlU7MlCSNG7Elzp8INdbbsjl8ig/z6Wco/kV/kirGxus/DMubV2fLYvFIrvDKpvdqnEvdlPLDuZf6uxr/jxnoHztu9XTslm7z9YCLzqn1m8cqkdf61mpBLLHY+jr+Xv0Zvpafb1gj2qFBqh+o9BKn3/MGBsH9pzUos92lfpcnXrBGnRH88tuIyDAqsS2kerYK1YJLSNks/umDEhi20j9tOawjh3Jk8djyBlklzPIpufe66M6McF69Hdf6cCek3K7zp3XDBXku3R4f656Dyr/xnd43UBZLNLGH47IYrXIbi+a5T56Yme1v67izc0fG7lYB3afb9t9tu3MfblKGVy87bLiIjI6SEk96ql9txjvuVqS5n/4c6mrH+x2iwb/b4tir0XNZ8bzBi5daLhTgcE2bVh1WFarRTabRXa7Vfc8ca0631D/oo5VVmwEhQSodccoXXt9rOrHFx+jDMPQt4v2adrza7V07m45A+1qkBAmi8Wime9u0Vef7/LeBPV4is5d3y3ep2H3tim3hFPWoVzNeHdrqc85nFYldY/Vi4+sLHaD1VXo0Y7Nx9Sjb0NFRgVV+HmzMk/rgzd+1PQpP2n39hzFJ4ZXaiWoLxRdh0eoY69YNW0TUS17zFwKzheoCDGCspghNiwWi9p1jdbSWXtktVm81/dtOkfp/qc61ehSgm06R+vbhfuUf8bl/R1aO8Kp8f9K8ZaWMxt/x4TFYlFwcNnfDbfN4VdxCWH693e3aPmCvTqUcUotrqmjDj1jKzVLBpdmw5pMjR2xUK5Ct1yFhtZ9e1D/mbZR/2/BYEXXL39GZlXr2idO/159i5bN3qMzuS51vqG+mrSu3EzKY9l5Gtn/c53IyVf+GbdsdovmfLhNk97uo1ZJdbVn+/ES73G7DK34IqNSxx/5cAfdOLSJVi3aJ4fTputvaqQ6MdRqh7nExIXovZW/0rdf7NP+3SfUtHWkOt0QW6mLP8Mw9Nd7l+i7Zfu9m5yu+DJDQ+5soT88WXOXxbuN0jfrNmTIU8ZzZmEPsOpvH/TRT6sP66c1RxQZFaReqY0UFBKgwgK3Nq/LKjERweOWVi3eX6njjxjTTsmD4rVy4b6iuvsDGymqEuOAq9CjTWuPlGzbI61asq+yH69Mg+5srj3bVivvF4kvi6VoFmjDpmHlvBOAGQy9p7V6DGik5fP3ymKxqOfAhoppUPHKG1+Y9NByLZm9W2fOjmPffrVPfQYl6NGXemrRzF2l7gtiGNLWDdlq2ym6zOO6ytvw1mNo5VcZcrlKjimuQo9WfrVPTVuXX15g9/Yc/X7QHBUWFK0E/WH5AX36z8164/Ob1aQFq4oA4EqR2DZS07+/Rd/M3avsw2fUtnOU2napnhr1ValWmENTF96s75ce1I5NRxXXOEzd+zdQgOPKnohblUjYw+8cgTalDLmyS+CYhWEYmjR2uTcZJ0n5eW4VFno0Nf0H/XVyLz/2rkjtyMAyNzssLHBr/qc79MWMHXIG2jTkjpa6vm9DWSwWvfv39TqWlefd6MTtMuR2ufXcn77RB1/fUmZN1YtZntUosfZlbfIIVIcAh03Jg+Iv+n0/LD9YLFkvFW36/Nk7WzTkzpZqkFAzE6XBIQ7Zg6wqvCBJY0iKaVQ9CaTLUTQTJ0btusYUf9xq8c7MuVCAs/Kzc+ISwnTr7y9uE0iLVWW27fDBRXn/25tqzbIDWvXlPhkq2sTX4bDpmbd71/gfM8DVol7DWrr13kvfYPZSbFmfpa9mFU/K55126atZO3XL71oqKLj0n74ej1Hmc+fY7WWfeyxWKTDILpvdKrer+Fhjs1srVVrmpcdW6vSpQu+N0MICj1yFHr38+Cq9+snACt8PAKg5gkIC1O/2yy/7azY2m1Vd+8RRNthHSNgDV5ETx/J1MONUicc9bkMrv7r8WZFVye32aMyvF2jzhmzlna0NunbVIQ0e3lxjn71O33yxt8Su5JJ08kSBcrLy1LlXfa1Ztl8u1/kEkzPQptQRzartMwBmtnLxvmLJ+nMsklYv219jE/ZtO0UpuJZdR8+4vPftDBXtj5F2Z0t/du2y2O1W9RrYSF/PL37uczhtumlY1dbAtNmsSr4pXsvm7ylWp9LhtGrg7Zffts1m1VNTkrVj41H9uOawIqOCdN2NDXyyLwCAK9fqZftVWFDyWrCgwKPVSw8o7TcttHHtkWJjncUiRUYFVbg3xrnzrCFDll/MAjFkyO0xdENqY0157oeSb7RIvVMbV9j39d9llli1ZBjS+u8O1YiNawEAgG/V3AJJAMp0+GCuXnxypUb0/UzjRn6pDd9nSip/NnlwSPXUyLxUy7/M0JYfzyfrpaJZUzM/2Kp9u08opIwanx63oeBaAXr05Z5q0CRMQSF2BYXY5Qy0qUP3erpzdPvq+giAqYWEBpRas9Zqsygk1Jx1ByvDZrMq/b2+Cgt3KqhWgAJD7HI4bbrt7tbq3Ovi6ilfqm++3KsHhs3T//SboWkvrdXJ4/k+Oe5Dk7opoUW497wWGGRTm45RuvvP1/rk+OUZ+9x1atIiXEHBZ8+pQTa1vjZa9zzsu7abtonUkN+2VK+b40nWA1eRnduO6akxSzWg4/t66sFl2rU9p1LvCwkNUEAp41hAgFXBoQFKvileNw9vJofTpqAQu4JrBSiibqD+9k6fChPi9gCrCnQ+aX/uP48kj8VQ3ZhgPf5KTzkDbQquFaDgWgFyBtr02Cs9VbdexSUUy7pGdwTaSdYDAHAVYoY9cIU5uO+k7ug/U2dyXXK5PPp58zGt/ma//vri9eo7uKm6pTTQqsX7VPiLGZnOIJtu+a25Z5quXLLPW4/0l6xWi9auPKRbR7bS5KdWF5s1ZbNb1LZjtCLqFm309c7iIdqw+rAO7j2pZm0iK6wnClxNBtyaqA/+8aNchSWfq2hjZrNr0a6OZqy7XWuWHdCpEwXq0L2eomKrZ8+Ot15ep3ff2OA9N+3ZkaO5n/ys978YolqXeSMkNNyptxYM0sYfjihj5wk1bR2h5m3r+KLblWp72vzzbTdpFaEW7aqnbQBXrh9/OKxRw+erIN8tj8fQ9s3ZWjJvt17/z0C1vbbsGvOSlDIoQa9P/L7kExYpJbWxLBaLHhzfVbff21obvjus2pFOdepVX/ZKbBReUOiWxSoVegxZig5ZlL63SJaz+8T0HpSgzslxWr20aB+RLjfEqVYlN9pLHd5Mn7+/TQX550vqOJw23eSDVUsAAKDmqbYZ9rt27dKwYcPUv39/DRs2TLt37y7xmldffVXdunVTWlqa0tLS9Mwzz3ifc7vdeuaZZ3TjjTeqb9+++vjjj6ur60CNMu3Fdco9VVhs46u8M249//hKud0ePfpSTyW2iVRgsF0htQLkcNrUa0C8br+njR97XbGIOoFlzv4NC3fo5uHN1f+WpnI4i2Y2BQXbFZ8YrqdfT/a+1mKx6JquMRpwWyLJeuAC9RuF6vFXrldgUNGsw5BaAaoV5tDz7/RVcBkrWGqSAIdN3fs2VL+hTastWZ9zLE//em19sRuJBfkeZR8+rc+nb/VJGxaLRW07RWvg7YnVlqwvrW2S9QB84YW/rlTeGZd3jwyP21DeGZdefHJlhe+NqBukCVN7Kyik6Bo3JDRAwSEBmvBminfyhiTFNgxV/1ub6rqUBpVK1ktS7YjAopU+FsmwSJ5zWXtJDX9RMq5WmEMpgxOUMjih0sl6Sbrv0U5K6lZPzkCbQkKLZudfc12MHniic6WPAQAArhzVNsP+qaee0ogRI5SWlqbPP/9cTz75pN59990SrxsyZIgefvjhEo/Pnj1be/fu1cKFC5WTk6MhQ4aoW7duatCgQXV0H6gxVi8/II+75EaA+XluHdp3SnHxYZo2d5C2/5StAxmn1KxNpOo3CvVDTy/Ozbc307/f/KnE7F+73aruKQ1ltVr05/Tu+s2Y9tqyIVvRscFqeU1dlhEDFyFlUIK69Wmgdd8ekj3Aqg7d6inAB5uIXq02/zdLAQ5rsRmTUtH5eMVXGfqfe9v5qWcAYD6GYWjLj1mlPrd5Q3aljtGtT0PNWf9rrV15SJJ0bbd6ldr0tSKNE8PVqElt7dx6TO5fXGcHBtk17O7Ln/TiDLLrpQ/6ac/POdq9/bjiE2urcbPwyz4uAAComaplhn12drY2bdqk1NRUSVJqaqo2bdqko0ePVvoY8+bN02233Sar1arIyEjdeOONWrBgQVV1GaixIusGlvq42+1RaG2n9+/N2tZR8sD4GpGsl6QGjcP09N+TFRxybsaUXXVjgvTqhwOK1TaOiaul5IHxapUURbIeuARBwQHqfmNDdUmOK5Gs370jRw/d+6V6J72n2/p+ovmf/+ynXtYMEXUDS72BarFK0dU0yx8AagqLpew9U2qFVn6llzPIrm4pDdQtpYFPkvXnvPivvopPrF20SvXsLPi7H+qgrr3ifNZGfGK4kgfGk6wHAOAqVy0z7A8ePKiYmBjZbEU//G02m6Kjo3Xw4EFFRhYvSzF37lwtX75cUVFRGj16tDp06OA9Rv365zeHi42N1aFDh6qj+0CNcuf97TX+oW+Kbc4a4LCqR0pDhYU7y3mn+fW+qbF69Gmon9YelsNpU+ukKFmtJOWB6rB313GNuHmGzpwulMcjHc06o6fHfa2DGSc18g8d/N09U2rRto7qxdXS3p3Hi83IdDptGjbS3GXIAMAfbv9ta30w7Uflnzm/MikwyKbbftfaj70qEl0/RB8s+pV+3nxMx4/lqWW7uhdV9gYAAKCyTLXp7PDhw3XfffcpICBAK1as0AMPPKB58+YpIiLCJ8evU6eWT45zJYqKqhmzrFGxX49sr+zDeXo9fY0CAqwqKHDrul4N9Pf3blJoWOUT9maOibgGzDryNzPHB6rGhEeWn60rfP6xvDMuTXv1vxr9cDcFBxfNfiQ2ivtgwVDdM3SWdmw9VlQr2SKNn9xbvfok+Ltr1Yq4QHmID5zz6KReOnm8QLM+3CqH06aCArfShrfUIxN7VbrefFWLjg6r+EWoMpwvUBFiBGUhNnAhM8dEtSTsY2NjlZmZKbfbLZvNJrfbrcOHDys2NrbY66Kiorx/7tGjh2JjY7V9+3Z16dJFsbGxOnDggNq3by+p5Iz7ysjOPuXdwAjnRUWF6siRk/7uBnxo+N2tNWh4onZvP666McGKqR+ivPwC5R0pqNT7iQmUh/i4Oq1avq/YLPFzLBbpv98fULNWkcRGKexO6Z9zBitj1wmdPJ6vxFaRcjhtV9X3RFygPMQHLvTnid1099gk5Z5wq1Ztu8IjA3XsWK6/uwUT4HyBihAjKAuxgQv5OyasVku5E8urZZpCnTp11KpVK82ZM0eSNGfOHLVq1apEOZzMzEzvnzdv3qz9+/crIaFoBtqAAQP08ccfy+Px6OjRo1q0aJH69+9fHd0HaqSQWg616RClmPrUSQZw+RqUsd9FYaFHdWOCq7k3NU/DhDC1TooqtucGAKB0EXWC1KFLrMIjS9+bCQAA4EpWbSVxnn76aT3yyCN6/fXXFRYWpvT0dEnSPffcozFjxqhdu3Z66aWXtHHjRlmtVgUEBOj555/3zrpPS0vT+vXr1a9fP0nSqFGj1LBhw+rqPgAAV7W7R3fQujWHlPeLusIOp029+8UrgoQKAOAqYRiG3G7DNCV6AADAlcdiGMZVUyOGkjil8/cyEJgPMYHyEB9Xr/kzf1b6U9/qdG6hDI/UP62pnniupwKDiu7/ExsoDXGB8hAfKIvZYiM/363nJ32r/0zfpLw8l1q0rKNnJiSrU+fYit8MnzBbTMB8iBGUhdjAhfwdExWVxDHVprMAAMC8Bg5JVL9BTZR1+IxCazu8G80CAHCl+/PYRfrqy13KyytaabZlc7Z+e8cszZxzmxKbRVbwbgAAgMpjHR8AAKg0m82qmNgQkvUAgKtG5qFcfbnwfLL+nIICt96css5PvQIAAFcqEvYAAAAAAJQhY+9xOR0lNw13uw1t3ZLthx4BAIArGQl7AAAAAADK0LhJuPIL3CUet9ksatc+2g89AgAAVzIS9gAAAAAAlKFu3WAN+VVz7ybr5zgD7brn9x381CsAAHClImEPAAAAAEA5Jky6QQ+M6qg6dYLkcNjU9br6+ujTWxTfuLa/uwYAAK4w9opfAgAAAADA1ctms2rUmE4aNaaTv7sCAACucMywBwAAAAAAAADABEjYAwAAAAAAAABgAiTsAQAAAAAAAAAwARL2AAAAAAAAAACYAAl7AAAAAAAAAABMgIQ9AAAAAAAAAAAmQMIeAAAAAAAAAAATIGEPAAAAAAAAAIAJkLAHAAAAAAAAAMAESNgDAAAAAAAAAGACJOwBAAAAAAAAADABEvYAAAAAAAAAAJgACXsAAAAAAAAAAEzA7u8OVCer1eLvLpgW3w0uREygPMQHykJsoDTEBcpDfKAsxAYuREygIsQIykJs4EL+jImK2rYYhmFUU18AAAAAAAAAAEAZKIkDAAAAAAAAAIAJkLAHAAAAAAAAAMAESNgDAAAAAAAAAGACJOwBAAAAAAAAADABEvYAAAAAAAAAAJgACXsAAAAAAAAAAEyAhD0AAAAAAAAAACZAwh4AAAAAAAAAABMgYQ8AAAAAAAAAgAnY/d0BVN6xY8f0l7/8RXv37pXD4VB8fLyeffZZRUZGateuXXrkkUeUk5Oj8PBwpaenq3HjxpKk9PR0ffHFF9q/f79mz56t5s2be4+ZkpIih8Mhp9MpSRo3bpyuv/76Utu/1DZQdcwcExdzHFQNM8fH0qVLNXnyZLlcLtWuXVuTJk1Sw4YNq/T7wHlVERv5+fl67rnntHLlSjmdTiUlJWn8+PGlts94Yk5mjgvGFP8zc3wwpviXr2Nj3759GjVqlPf4J0+e1KlTp7R69epS22dMMR8zxwTjif+ZOT4YT/yrKq41lixZosmTJ8swDHk8Ho0ePVr9+vUrtX3GE/Mxc0xU+XhioMY4duyYsWrVKu/f//a3vxmPPvqoYRiGceeddxozZ840DMMwZs6cadx5553e161Zs8Y4cOCA0bt3b2Pr1q3FjlnaY2W51DZQdcwcE8SC/5k1PnJycowuXboYO3fu9D43cuTIS/yUuBRVERvjx483Jk6caHg8HsMwDOPIkSNlts94Yk5mjgviwf/MGh+MKf5XFbHxSxMmTDCeeeaZMp9nTDEfM8cEseB/Zo0PxhP/83VseDweo1OnTt7HNm/ebCQlJRlut7vU9hlPzMfMMVHVsUBJnBokPDxcXbt29f49KSlJBw4cUHZ2tjZt2qTU1FRJUmpqqjZt2qSjR49Kkjp16qTY2NjLars62sDFM3NMwP/MGh979uxR3bp1lZCQIElKTk7W8uXLiZ1q5OvYyM3N1cyZM/Xggw/KYrFIkurWrVtq24wn5mXmuID/mTU+GFP8ryqvNwoKCjR79mwNHTq01OcZU8zJzDEB/zNrfDCe+F9VxIbVatXJkyclFa2+iI6OltVaMhXKeGJOZo6JqkZJnBrK4/Fo+vTpSklJ0cGDBxUTEyObzSZJstlsio6O1sGDBxUZGVnhscaNGyfDMNSxY0eNHTtWYWFhJV5zuW2g6pkxJipzHFQPM8VHQkKCsrKytGHDBrVv316zZ8/2vofzSfXzRWxkZGQoPDxcr732mr777juFhITowQcfVKdOnUq8lvGkZjBjXDCmmIeZ4oMxxVx8eb0hSYsXL1ZMTIzatGlT6vOMKeZnxphgPDEPM8UH44m5+CI2LBaLXnnlFT3wwAMKDg5Wbm6upk6dWuprGU/Mz4wxUZXjCTPsa6jx48crODhYd9xxx2Ud54MPPtCsWbP06aefyjAMPfvssz7qIaqb2WKC2DIXM8VHaGioXn75ZU2aNEm33HKLsrOzFRYWJrude8j+4IvYcLlcysjIUOvWrfXZZ59p3LhxGj16tE6dOuXDnqI6mS0uGFPMxUzxwZhiLr663jjn008/LXOmLGoGs8UE44m5mCk+GE/MxVfXGlOnTtXrr7+uJUuW6I033tCf/vQn5ebm+rCnqC5mi4mqHk8489RA6enp2rNnj6ZMmSKr1arY2FhlZmbK7XbLZrPJ7Xbr8OHDlVquc+41DodDI0aM0P333y+paKB79913JUl33XWXevToccltoOqZMSbKOg6qnxnjo3v37urevbskKSsrS2+//TYbOvmBr2Kjfv36stvt3uWC11xzjSIiIrRr1y5t27aN8aSGMWNcMKaYhxnjgzHFHHx5vSFJmZmZWrNmjZ5//nnvY/xGqVnMGBOMJ+ZhxvhgPDEHX8XG5s2bdfjwYXXs2FGS1LFjRwUFBWnHjh3avn0740kNYsaYqOrxhIR9DfPyyy/rp59+0ptvvimHwyFJqlOnjlq1aqU5c+YoLS1Nc+bMUatWrSpctnP69Gm53W6FhobKMAzNmzdPrVq1kiQNHTq0xJ3pS2kDVc+MMVHecVC9zBgfknTkyBFFRUXJ4/HopZde0vDhwxUcHFwF3wDK4svYiIyMVNeuXbVixQr17NlTu3btUnZ2tuLj49WuXTvGkxrEjHHBmGIeZowPiTHFDHwZG+fMmDFDycnJioiI8D7Gb5Saw4wxwXhiHmaMD4nxxAx8GRv16tXToUOHtHPnTjVp0kQ7duxQVlaWGjVqpPbt2zOe1BBmjInqGE8shmEYPj0iqsz27duVmpqqxo0bKzAwUJLUoEED/eMf/9COHTv0yCOP6MSJEwoLC1N6erqaNGkiSZowYYIWLlyorKwsRUREKDw8XHPnzlVGRoZGjx4tt9stj8ejpk2b6oknnlB0dHSp7V9KG6haZo2Jiz0OqoZZ40OSHn/8ca1du1aFhYXq0aOHHnvsMTmdzur5YuDz2JCK6lE/9thjysnJkd1u1x//+EclJyeX2j7jiTmZNS4YU8zBrPEhMab4W1XEhiT1799fjz/+uHr16lVu+4wp5mPWmGA8MQezxofEeOJvVREbs2bN0rRp07wb3I8ZM0Y33nhjqe0znpiPWWOiOsYTEvYAAAAAAAAAAJgAm84CAAAAAAAAAGACJOwBAAAAAAAAADABEvYAAAAAAAAAAJgACXsAAAAAAAAAAEyAhD0AAAAAAAAAACZAwh4AAAAAAAAAABOw+7sDAAAAAKpfSkqKsrKyZLPZZLPZlJiYqLS0NA0bNkxWa/nzevbt26c+ffpo48aNstv5SQEAAAD4ClfXAAAAwFVqypQp6t69u06ePKnVq1dr4sSJ2rBhgyZNmuTvrgEAAABXJUriAAAAAFe50NBQ9enTR6+88opmzJihbdu2aenSpRoyZIiuvfZaJScn69VXX/W+/o477pAkde7cWR06dNC6deskSZ988okGDhyozp0766677tL+/fv98nkAAACAmoqEPQAAAABJUvv27VWvXj19//33CgoKUnp6ur7//ntNnTpV06dP16JFiyRJ77//viRpzZo1WrdunTp06KBFixZp6tSpeu2117Ry5Up17NhRDz30kD8/DgAAAFDjkLAHAAAA4BUdHa3jx4+ra9euatGihaxWq1q2bKmbb75Zq1evLvN9H374oe699141bdpUdrtd9913nzZv3swsewAAAOAiUMMeAAAAgFdmZqZq166t9evX64UXXtD27dtVWFiogoICDRgwoMz3HThwQM8995zS09O9jxmGoczMTMXFxVVH1wEAAIAaj4Q9AAAAAEnShg0blJmZqY4dO2rUqFG644479NZbb8npdGrixIk6duyYJMlisZR4b2xsrO677z4NHjy4ursNAAAAXDEoiQMAAABc5U6dOqUlS5Zo7NixGjx4sFq0aKHc3FzVrl1bTqdTGzZs0Jw5c7yvj4yMlNVqVUZGhvex4cOH680339T27dslSSdPntT8+fOr/bMAAAAANZnFMAzD350AAAAAUL1SUlKUlZUlm80mq9WqxMREDR48WMOHD5fNZtOCBQuUnp6unJwcdenSRXFxcTpx4oReeOEFSdLkyZM1ffp0uVwuvfXWW0pKStLMmTP19ttva//+/QoNDVX37t01adIkP39SAAAAoOYgYQ8AAAAAAAAAgAlQEgcAAAAAAAAAABMgYQ8AAAAAAAAAgAmQsAcAAAAAAAAAwARI2AMAAAAAAAAAYAIk7AEAAAAAAAAAMAES9gAAAAAAAAAAmAAJewAAAAAAAAAATICEPQAAAAAAAAAAJkDCHgAAAAAAAAAAE/j/qFzdKpOwm9wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "conv = avocadoData[\"type\"] == \"conventional\"\n", + "fig = plt.figure(figsize = (26,7))\n", + "plt.scatter(x=avocadoData[conv].Date, y=avocadoData[conv].AveragePrice, c=avocadoData[conv].AveragePrice, cmap=\"plasma\")\n", + "plt.xlabel(\"Date\")\n", + "plt.ylabel(\"Average Price (USD)\")\n", + "plt.title(\"Average Price of Conventional Avocados Over Time\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "c362b5b4-5cbf-44cf-b656-4fb4489bf630", + "metadata": {}, + "source": [ + "* In the below visualization we are intersted to see if there is any trends over time for the prices of organic avocados." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a7ab8224-24f2-4649-add1-6c10b99eb1b0", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeUAAAG/CAYAAADW/LxxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd5xU1f3/8de5d/r2hYUFRbFiFAvNhtjRKIoaNNEYE2OiMdYYjRpbgtEYjd/gL8bEr9H4TTEaTRBEiKgYvxjE9gXEAlFABWFZ2vadeu/5/THLwGyhyBbK+/l4zAP2tvO5c8/Oznzm3M8x1lqLiIiIiIiIiIiIiIh0OaenAxARERERERERERER2VUoKS8iIiIiIiIiIiIi0k2UlBcRERERERERERER6SZKyouIiIiIiIiIiIiIdBMl5UVEREREREREREREuomS8iIiIiIiIiIiIiIi3URJeRERERHZpdxxxx089NBD3drmX//6V44++miGDBlCTU1Nt7b9RQ0ZMoRly5b1dBidbuLEiVxwwQU9HUa3eu6557jkkkt6OgwRERERaWGstbangxARERGR7nPRRRexcOFCZs2aRSgU6ulwttlFF13EvHnzCAQChEIhRowYwR133EGfPn16OjQA0uk0w4YN4+mnn+aAAw5od5tUKsWDDz7IlClTWLduHZWVlXz1q1/lO9/5DsaYbo542y1btozRo0dz/vnn89Of/rSnw8kzceJEnnnmGZ588slOPe6iRYu4//77efvtt/F9n8GDB3PdddcxdOjQTm2nPWPGjGHFihUAJBIJAoEAgUAAgO9973tcfvnlXR6DiIiIiGw5jZQXERER2YV8/vnnvPPOOxhjmDFjRpe0kclkuuS4m3LHHXcwd+5cpk+fTn19Pffcc0+723me182Rwdq1a0kmk+y7774dbnPNNdcwe/ZsHnnkEebMmcN9993H008/zd13393u9tZafN/vqpC32eTJkykpKWHatGmkUqmeDqfLLV26lAsuuIBBgwYxY8YMXnvtNUaPHs13vvMd5s6d2+ntte7HU6dOZe7cucydO5fhw4fnfh/mzp2rhLyIiIjIdkhJeREREZFdyKRJkzj00EM555xzmDRpUm75vHnzGDlyZF6y76WXXuLMM88EwPd9HnnkEU4++WSOOOIIrr32Wmpra4Fson/QoEE888wzHH/88XzrW98CsonmkSNHMmzYMC688EI+/vjj3LFramq4/PLLGTp0KOPGjWPChAl5JUUWL17Mt7/9bQ4//HBOPfVUpk2btkXnV1payqmnnppr6+abb+YnP/kJl156KYcddhhvvvkmN998MxMmTMjt8/LLL3PWWWcxdOhQTj75ZGbOnAlAQ0MDt9xyC8cccwyjRo1iwoQJHSb1U6kUd999N8cccwzHHHMMd999N6lUik8++YQvf/nLAIwYMYJvfvObbfadPXs2s2bN4sEHH2T//fcnEAhw2GGH8ctf/pInnniCzz77DMjeETBhwgTOP/98Dj30UJYtW8ayZcu48MILGTJkCBdffDHjx4/nhhtuyB17U9fg5ptvZvz48Vx22WUMGTKE8847j6VLl+bWDxo0KNd2IpHgF7/4BSeccALDhg3jggsuIJFIdHgdJk2axLXXXksgEOCVV17JLb/jjju4995787b9/ve/z+OPPw5kr/tFF13E8OHDGTNmTN4XR5uKYUv72rnnnpt3jgBz5sxh3LhxDBs2jHHjxjFnzpzcuokTJ3LSSScxZMgQTjzxRJ577rl2z/fBBx/ksMMO47rrrqO0tJTCwkK++c1vMnbsWO6//34AvvOd7/CXv/wlb7+xY8fy4osv5s69oz7fXj/eGq1L9gwaNIgnnniCU045hSFDhvDAAw+wdOlSvva1rzF06FCuvfbavC9T/vWvf3HWWWcxfPhwzj//fBYuXLhV7YuIiIhIPiXlRURERHYhkydP5swzz+TMM8/k3//+N2vWrAHgsMMOIxqN8sYbb+S2nTJlSi4p/6c//YmXX36Zv/zlL7z22muUlJRw55135h377bffZtq0aTz22GMAHHvssUyfPp3Zs2dz4IEH5iWL77zzTqLRKLNmzeLee+/N+4KgubmZSy65hDPOOIPXX3+dX/3qV4wfPz4v0dqRdevWMX36dL70pS/llj3//PNcfvnlzJkzh2HDhuVtP3/+fG666SZuvPFG3nnnHZ544gl22203AG666SYCgQAvvvgikyZNYtasWTzzzDPttvu73/2Od999l8mTJ/Pcc8/x3nvv8dvf/pa99tqL559/Pvf8/OlPf2qz76xZszj00EPp169f3vJDDz2UyspKZs+enVs2efJkfvaznzFnzhz69+/PDTfcwCGHHMKbb77JVVddxeTJk/OOsalrANkR1ldddRVvv/02e+yxR96XFRu79957+eCDD3jqqad46623+NGPfoTjtP9R4p133mHlypWMGTOG0047Le/annnmmUybNo31FTTr6uqYNWsWp59+Oul0mssvv5yRI0fy+uuvc9ttt3HDDTewZMmSzcawub4WDof597//zc9//nP+8Y9/5NbV1tbyve99j4suuog333yTb3/723zve9+jpqaG5uZm7rrrLn7/+98zd+5cnnrqqbx+tbHXX3899+XLxk477TTmzJlDPB7nzDPPzPUFyJa7WbFiBccff/wW9flN9eMv4rXXXmPixIk8/fTTPProo9x+++3cf//9/O///i8ff/wxU6dOBeCDDz7glltu4c477+TNN9/ka1/7GldcccUucQeEiIiISFdRUl5ERERkF/HOO++wYsUKTjvtNAYPHsyAAQPykoRjxozJ/dzY2MjMmTMZM2YMAH/729+47rrrqKysJBQKcdVVVzF9+vS8UjVXX301sViMSCQCwLnnnkthYSGhUIirr76ahQsX0tDQgOd5vPjii1x99dVEo1H23Xdfzj777NxxXn31VXbbbTfGjRtHIBDgoIMO4tRTT2X69Okdnttdd93F8OHDOeuss6ioqODHP/5xbt1JJ53EsGHDcByHcDict9/f//53xo0bx8iRI3Ech759+7LPPvuwZs0aZs6cyS233EIsFqNXr15cfPHFuURla1OmTOHKK6+kV69elJeXc+WVV3Y4qrq1mpoaKioq2l1XUVGRNzHsOeecw3777UcgEGD16tW89957XHPNNYRCIYYPH86JJ56Yt39H12C90aNHc8ghhxAIBBg7diwLFixoE4Pv+/zjH//g1ltvpW/fvriuy9ChQzucj+DZZ5/l2GOPpaSkhDPOOIPXXnuNtWvXAjB8+HCMMbzzzjsATJ8+ncMOO4y+ffvy7rvv0tzczGWXXUYoFOKoo47ihBNOYOrUqZuNYXN97ZprriEWi7H//vtzzjnn5GJ99dVX2XPPPTn77LMJBAKcccYZ7L333vzrX/8CwHEcPv74YxKJBH369GG//fbbqmtYUVGB7/vU19dz8skns3DhQpYvXw5k+8zo0aMJhUJb1Oc31Y+/iEsvvZTCwkL2228/9t9/f0aOHMmAAQMoKiri2GOP5cMPPwTg6aef5mtf+xqHHnoorutyzjnnEAwGmTdv3jbHICIiIrKrCvR0ACIiIiLSPSZNmsTIkSMpLy8H4IwzzuDZZ5/l4osvBrKjmM8//3zGjx/PSy+9xIEHHpgbNb5ixQquvPLKvNHRjuPkkq0AlZWVuf97nseECRN44YUXWLduXW6/mpoaEokEmUwmb2T4xv9fvnw58+fPZ/jw4XnHGzt2bIfndtttt3Heeee1u671CPSNVVVVcdxxx7VZvmLFCjKZDMccc0xume/7HR5r1apV9O/fP/dz//79WbVqVYftbqysrCxXJqa11atXU1ZWlvt54/ZXrVpFSUkJ0Wg0b31VVRWw6WtQVFQEQO/evXP7RiIRmpub28RQU1NDMplkwIABmz2XRCLBCy+8wF133QXAkCFD6NevH1OmTOHiiy/GGMPpp5/O888/z4gRI5gyZUruuq5atYrKysq8Pta/f3+qq6s3GcPW9rWNr1Pr67Zxm7FYjAkTJvCHP/yBW2+9laFDh3LTTTexzz77tImhrKyM1atXt1m+evVqHMehuLiYaDTKcccdx9SpU7nsssuYOnUqP/vZz4At6/Ob6sdfxMbXPhwOt/l5/V00K1asYNKkSXmld9Lp9Bb3bxERERFpS0l5ERERkV1AIpHgn//8J77vM3LkSCBbB72+vp6FCxdywAEHsO+++9K/f39mzpzJ888/zxlnnJHbv7Kykp///Oftls34/PPPATDG5JZNmTKFGTNm8Pjjj7P77rvT0NDAiBEjsNZSXl5OIBBg5cqV7LXXXgC5RDJkk48jRozI1RnvSv369WtTYxzI3RHwxhtvEAhs/i1znz59WLFiRW4kdVVVFX369NmiGI4++mj++Mc/UlVVlZd4nT9/PlVVVRx55JG5ZRs/xxUVFdTV1RGPx3OJ+Y2fx01dg61RVlZGOBxm2bJlHHDAAZvc9qWXXqKxsZHx48fnEvP19fVMnjw59+XPGWecwSWXXMJll13G/Pnzeeihh4Dsc7hy5Up8388l1quqqhg4cOAmY9iSvlZVVZVLpm/8HK2/bhurqqpi1KhRAIwaNYpRo0aRSCR44IEHuP322/nrX//a5ryPOuooXnjhBcaNG5e3/J///GeuNNT6c//Nb37DiBEjSCQSHHHEEUD39vmt1a9fPy6//HK+//3v93QoIiIiIjsNla8RERER2QW8/PLLuK7L1KlTmTRpEpMmTWLatGkMHz48r+b3GWecwZ/+9CfefvvtvBrZF1xwAQ888ECu9Ma6det4+eWXO2yvqamJUChEWVkZ8XicX/3qV7l1rusyevRofvOb3xCPx1m8eHFeLfTjjz+eTz/9lEmTJpFOp0mn08yfP5/Fixd35lMCZMueTJw4kdmzZ+P7PtXV1SxevJg+ffowcuRIfvGLX9DY2Ijv+yxdupS33nqr3eOMGTOG3/3ud6xbt45169bx0EMP5erxb87RRx/NUUcdxdVXX83HH3+M53nMmzePG264gQsuuICBAwe2u99uu+3G4MGDefDBB0mlUsydOzdXdgU2fQ22huM4jBs3jnvuuYfq6mo8z2Pu3Lnt1hSfNGkS48aNY8qUKbl+9uSTT7JgwQL+85//AHDggQdSXl7ObbfdxjHHHENxcTEAhxxyCNFolEcffZR0Os2bb77JK6+8wumnn77JGLamry1atIhnn302t/64447j008/ZcqUKWQyGaZNm8aiRYs4/vjjWbNmDTNmzKC5uZlQKEQsFsN13Xafo6uuuoq5c+cyYcIEamtraWxs5M9//jOTJ0/Oq29/3HHHsWLFCn7961/nzgu6t89vrfPOO4+nnnqKd999F2stzc3NvPrqqzQ2NvZ0aCIiIiI7LCXlRURERHYBzz77LF/5ylfo378/FRUVuceFF16YS0hCNin/1ltvceSRR+bK3AB885vf5MQTT+SSSy5hyJAhfPWrX2X+/Pkdtnf22WfTv39/Ro0axZgxYzjssMPy1t9xxx00NDQwcuRIbrzxRsaMGZOrD15YWMhjjz3GtGnTGDVqFMcccwz3339/l0wsecghh3DPPffk7gL4xje+kRs5fd9995FOpzn99NMZMWIE11xzTbslSgCuuOIKBg8ezNixYxk7diwHHXQQV1xxxRbH8eCDD3LEEUfw3e9+lyFDhvCjH/2Ic889l9tvv32T+91///3MmzePI444ggceeIDTTz899zxu7hpsjZtuuon999+fc889l8MPP5z7778f3/fztqmurmb27Nl861vfyutjgwcPZtSoUXlf/owZM4bXX389726MUCjE7373O2bOnMmRRx7J+PHjue+++3Ij3DuKYUv6WnNzMyNHjuTmm2/mK1/5Sm5dWVkZDz/8MI8//jhHHHEEjz76KA8//DDl5eX4vs/jjz/OqFGjOPzww3n77bf5yU9+0u7zM3DgQP7617+ycOFCTjzxREaNGsWLL77Io48+mnd3SSgUYvTo0W3OvTv7/NY6+OCD+dnPfsadd97JiBEjOOWUU5g4cWJPhyUiIiKyQzN2a+9fFRERERHpZL/85S9Zs2YN9957b0+HskP7wQ9+wN57780111zT06GIiIiIiEgHNFJeRERERLrd4sWLWbhwIdZa5s+fz9///ndGjx7d02HtcObPn8/SpUvxfZ+ZM2cyY8YMTj755J4OS0RERERENkETvYqIiIhIt2tqauL6669n1apV9OrVi0suuYSTTjqpp8Pa4axZs4arr76a2tpaKisr+elPf8qBBx7Y02GJiIiIiMgmqHyNiIiIiIiIiIiIiEg3UfkaEREREREREREREZFuoqS8iIiIiIiIiIiIiEg3UVJeRERERERERERERKSb7HQTvdbUNOH7KpPfWq9ehaxd29jTYch2RH1CNkX9QzqiviHtUb+QTVH/kI6ob0hr6hOyOeoj0hH1DWmtp/uE4xjKygo6XL/TJeV93yop3wE9L9Ka+oRsivqHdER9Q9qjfiGbov4hHVHfkNbUJ2Rz1EekI+ob0tr23CdUvkZEREREREREREREpJsoKS8iIiIiIiIiIiIi0k2UlBcRERERERERERER6SZKyouIiIiIiIiIiIiIdBMl5UVEREREREREREREuomS8iIiIiIiIiIiIiIi3URJeRERERERERERERGRbqKkvIiIiIiIiIiIiIhIN1FSXkRERERERERERESkmygpLyIiIiIiIiIiIiLSTZSUFxERERERERERERHpJoGeDkBERERERGRnZZwPMYH/A1uOnz4BiPV0SCIiIiLSw5SUFxERERER6XQebvRmnOBMwAOCuNF7yDT+Hut/qaeDExEREZEepPI1IiIiIiIincwJTsUJvoYxCYxJY0wzxjQQKPgBYHs6PBERERHpQUrKi4iIiIiIdDIn9A+MibddYeowzkfdH5CIiIiIbDeUlBcREREREel0XgfLDeB3ZyAiIiIisp1RUl5ERERERKST+ekzsTbSdoWNYP39uz8gEREREdluKCkvIiIiIiLSyfzUV7DewVgbA8DaMNZGyTTfB7g9G5yIiIiI9KhATwcgIiIiIiKy8wmSaXoEE5iN476Ntb3w06eD7dXTgYmIiIhID1NSXkREREREpEs42MxIvMzIng5ERERERLYjKl8jIiIiIiIiIiIiItJNNFJeRERERERERL6gBK55AZfXsPQiY8dhGdTTQYmIiGzXlJQXERERERERkS8gQcT5NobPMSaBtQ4B809S9sd49vSeDk5ERGS7pfI1IiIiIiIiIrLVAmZiLiEPYIyPMQlC5hdAomeDExER2Y4pKS8iIiIiIiIiW801M3IJ+XwODgu6PR4REZEdhZLyIiIiIiIiIrLVrC3qYI2PpaBbYxEREdmRKCkvIiIiIiIiIlstY8/D2kjeMmsNlt5Y9uuhqERERLZ/SsqLiIiIiIj0BJsg4E8h5D1AwH8erGpwy47FZyRpexHWhrC2AGtjWPqS9B8ATE+HJyIist0K9HQAIiIiIiIiuxpjVxL1voWhGUMca6OE+C1x949YU9HT4YlssYy9jIw9F5f5WErwORSN/xMREdk0/aUUERERERHpZmH/FxhqMMQBMMQxrCXk/7KHIxP5IsrxOB6fISjNICIisnn6aykiIiIiItKdrMW1szH4eYsNHgH7Wg8FJSIiIiLdRUl5ERERERGRbtdRvW19RBMRERHZ2ekdn4iIiIiISHcyhow5Adtqii9LgIwZ3UNBiYiIiEh3UVJeRERERESkmyWdm7DshiWGJYglhs8eJJ0f9nRoIiIiItLFApvfRERERERERDqVKaXZfRrXvoHDp/jsjWeOAKNxUyIiIiI7OyXlRUREREREeoJx8cxIPEb2dCQiIiIi0o2UlBcRERERERHZjhm/hkj8V4TSMwBIB08gHr0B65T1cGQiIiLyRSgpLyIiIiIiIrK9shkKG7+N46/AkAEgmH4J13uPhqJ/gAn2cIAincT6BFPTCCUnYfBIhcaSCp+hPi4iOyUl5UVEREREZOdlLYH0WwTS/4d1ykmFT9XoYtmhBDL/xvHX5BLyAIYMjr+OYHom6dBJPRidSOeJNf6YYPrfGOIAuJn/EEy9RFPRQ2BMD0cnItK5lJQXEREREZGdk01TWH81gcx7QBwIE21+kIbi3+AFh/R0dCJbxPUWQUuSMl8zjr8YUFJednxu5kOC6dcwJHLLDAkCmXcJZN4iEzyiB6MTEel8Tk8HICIiIiIi0hVCiUkEMvMxxDGAIYkhTmHDjWD9ng5PZIv4zkAg2ma5JYbv7Nnt8Yh0hUD6/wCvnTVxAum3uzscEZEup6S8iIiIiIjslMKpKXmjLtczNo7rfdQDEYlsvXTwOKwpweLmlllcMEWkgyf0YGQincd3Smm/mEMY3ynv7nBERLpctyXlr7jiCsaOHcvZZ5/N17/+dRYsWNBmG8/zGD9+PCeffDKjR4/mmWee6a7wRERERERkp9NRDWKLxifJDsMEaSj6H9KBY7C4WFzSgZE0FP0RTKinoxPpFOnQidh2X5cN6dCXuz2eNlF4q4nV30Xx6tMoWvNVQs2TwdqeDktEdmDdVlP+3nvvpaioCICXX36ZW265hWeffTZvmylTprB06VJefPFFamtrOfvssznqqKPYfffduytMERERERHZSSTD5+BmPm4zWt53ivHc/Xooqi3nZD4h3DwRx19LOnwMqchoMMGeDkt6gHUqaC6csKHsktGXSrKzieEzAMcuzFvqU4E1JT0UU5bxayhecz7G1mHwgWrc+ntwMotIFF/fo7GJyI6r2/6Sr0/IAzQ2NmLamTl72rRpnHfeeTiOQ3l5OSeffDIvvPBCd4UoIiIiIiI7kVT4TNLBo7BEsASwRPFNIU1F/wXtfB7ZngTjL1Gy5htEmv9GODGdgrqfU7z222DbluORXYhxlJCXnVIgPYdA+jPIkH142X8dby3B5L97NLZw019xWhLypuUOLEOKSPNTGH9dj8YmIjuubhspD3Drrbcya9YsrLU8+uijbdZXVVXRv3//3M/9+vVj5cqV3RmiiIiIiIjsLIxLU9H9uJkPCGT+D+v0IhU6EUyspyPbNJuisP5neSP8DXHczCeEmyeRLDi/B4MTEel8bvoDIL2h6FhLZRhjm3HT75GOHJddbDM46U+wTiHWreiW2EKJFyEvIb8+Sh839R6ZlthERLZGtybl7777bgAmTZrEfffdx+9///tOb6NXr8JOP+bOoqKiaPMbyS5FfUI2Rf1DOqK+Ie1Rv5BN6fn+cVTLY8dgm97BNyaXlFrPkKDAm0FxxaU9E1gX6Pm+Idsb9Yldkx8aiN8cBj+Tv8JEKSjdk6LyIvyaF/Dfu51SmwabgYLDcAb+GhPs2olgvTVJOpqjpKQggVOuPru90OuHtLY994luTcqvd/bZZ3PHHXdQU1NDWVlZbnm/fv1YsWIFhxxyCNB25PyWWLu2Ed/XZButVVQUsXp1Q0+HIdsR9QnZFPUP6Yj6hrRH/UI2Rf1j67lpS7H12k0BpTJhGneS51N9Q1pTn9iF2SMo8QM4GQPrczoO+AGHmvTxuMvfonj1jZiNSnjZxjmk/nMJ9X3/3KWhFZo9CbG6nTUOtfH+eOqz2wW9fkhrPd0nHMdscvB4txSja2pqoqqqKvfzK6+8QklJCaWlpXnbffnLX+aZZ57B933WrVvHyy+/zKmnntodIYqIiIiIiGwXvMAgfFOGbZWWt0RJxs7roahERLpSEPxS8LPlYQwGfANeAZgwkcYnwSbz9jBkcDNLcNOLt7156xNqmk5R9RUUr/we4cYp2dH4QLLwW1hC+ZsD1inHCx607W2LyC6pW0bKx+Nxrr32WuLxOI7jUFJSwsMPP4wxhksvvZRrrrmGgw8+mLPOOot3332XU045BYArr7ySAQMGdEeIIiIiIiIi2wdjaCj/NcXrvoe1cYwFyJCInUs6fGxuMyf9GaHmfwGGVOxE/KA+O4nIjimYeAPHW5P3VaQBjN9EKP4vnMwKTOuaXoAlgPHWQHCfzbZhvAZCzS/ieOtIh4eQiQzLTfpdsPYnhJpfxbFxAAKpDwk1vUhDn1+TDh9NvOAiok1/BlysMUCYhrLfaOJlEfnCuiUp37t3b55++ul2121cV951XcaPH98dIYmIiIiIiGyetbipj3C8WjKRg7BOq9uQbYZAYj4Yh0x4MJjO+YjlB/aitmIagdTbOH4tmdAQfLcytz5S+0didY+A9QCI1T5Cc+kVJEou7JT2RUS6hLW4qUU43joy4S9h3WIA3PQisKk2mzu2GTf1EenIEQRSH2JoNVrepvCCgzbbbCD5PkUrrwQ8jE0SNRHS4cE09P01bnoJ4eZ/5ZXGMTZOIDmPQOJtMtHDSRRdQTJ2LsHUHKxTTDo0Akxw254LEdml9UhNeRERERERke2dk66iaOU1uJlqLC6GNM1lV5Ao/ToAweY3KVz1Y7B+dgcToKHvvWSiwzonABMgE247Qa2T/oxY3SOYjUs52Ayx2t+Sih2PH9ytc9qX7mczYNPgRHs6EpFOZzJrKF55LW566YbX1NJLSJR9By+4B9aEMDZ/oldronjBPUlHjyPS8GeMn8zNuWqtIVEwFuuWttPaxgexFK66Ccc2bbQsTiD5HuGGZzGkc19w5sVr4wQTb5GJHp7dxe1DKvrlbXoORETW0302IiIiIiIirVlL0cof4KaXYmwcxzZibJJYze8IxN/GeDUUVd+A4zfg2Kbsw6+jeOV1GK++S0MLNf+r3QQS1raUs5Edjp+kYNU9lC85nvIlx1Py2TgCze/0dFQinaqo+gbc1GKMTeDYJoxNEav9I8GmmaQjx2CdUixubnuLgzVRUtHRuMnFOCkffHIP40G46W2wbcvabMxNL8Hx274uOzZBpPE5rFOCbfcupxDWLdu2kxYR6YCS8iIiIiIisuPyE0TW/YHSz8ZR+tm5RGr+2G4JhK3lphfjZlZg8PNX2ASRur8RbnwR2q1vbAk1zdjm9jfNfMF1sr0qrL6dcMNUjE1i8Amkl1JcdR1uclFPhybSKZz0cgKpRRjyv1A0Nk607pKgIJQAACAASURBVEkwAer7Pk46MhKLi8UhHT6c+r5/BCdKpP5psCmM52AyLQ/f4GTW4KY+2kzrpuO/C36SZOwE2k2PGYdkwalf6HxFRDZH5WtERERERGTHZH2Kl3+fQOrjXCmX2LrfE2p6nfrdHs5N4PdFGK+upbxCq+WA463LjoZvJ8ljbBrTzojMzpSKnUis9pFsqZNWwaViJ3Rp29L5nMwqQs2zMK37k00RqfkTTZV3AhCIzyNc/wJgSRafSiYyZJv6uEh3Mn5DdlLWVjXhAYxXC4B1e9NYMaHltc3m1Wx3vJoOJnp1MH7dJtv2ndLs3UWtfl2sBWtD4BTQ0Pc3FK26HmwCMGBcGnvfg3V7b/W5iohsCSXlRURERERkhxRsnk0gtTivtrqxSQLJBQQSc7aptnsmfGCbEZ0AljCpguPJRA4lWvdnsPH8DUyQdEv9YQAntZxgfC6+W0664PBOmQjWDw6gufQKYrW/balnb8AYmsquwQ/23+bjS/dy0lVYQhjyk/IGn0BqCQCx1ROI1E2Elr4ebphGovhsmvtc3+3xinwRXmjvdpdbQqQKjstf2M7rZCp2HIHkB9ma8utz8waMyeCFD8xt5yY+JJBcghfag0zkYDAGJ1ON9aMYJ//12lgwXvb3LhM+mJrd/0kgtQCsRyZ8UKdN3C0i0h69woiIiIiIyA4pkHi/bVIcwKYIJN7ftglXnShN5T+gYN0DYJMYLNaE8d0+JIrHgYmRih5JMP4GTksM1kRJxUbhhb8E1lJQfR/h+inZGsnGgIlQN+Bh/PDALx5Xi0TJhaRixxFqfhUwpGIntE3I2wxOegXWKcYGNjMRovQYL7Rnm4Q8gMUlExmMm1xMpO4frSb2TRCpf5ZkyVi88H4tyzyc9HJdb9k+mRBNvW+kcM09+a+pThmJkgs2u3ui6Cyiax/DZFJkC4Vlh73He30N6xSCn6D482sJJBZgMRjAC+1B/YDf4gcHZEuReWwYLW9bfscKBm8Uo0smPJgOWa/lNbUQG1CteRHZNkrKi4iIiIjIDskPVICJtJQb2MCaUHbdNkqWjMML70uk7ikcby2p2LEkis8BpwCAxr73EGp6mXDDFMCQLBpLquAkAEINLxOun4qxqWwOyIIlTvHy66nd6++dUnbED+5OouQb7a4L1b1IQfUvMTYNZEjHDqex/3isW7TN7Urnsm4piaKxRBqex7T0ZYvBmjDxsosINczoYGLfDKGmfxMP70eofgYF1fdmRxHjkY4Np7H/nVi3uHtPRmQTUkWnUx/ck3DdU7heNano0SSLx23R61IwPg/jpVt+yibdLRCue4F4ryuJrXmIQOKDDa+5gJtcQqz6Ppr6/4xEyXktX26t/x0DTJh42cVbFHuwYSaFK3+O8eOARzo6hMb+P9MXYCLyhSkpLyIiIiIiO6RU4SnE1j6YLT3cssxiwARJFZzYKW1kIofSGDm0/ZXGJVV4KqnCthMBRmr/nkv+5DbH4mRW46aW4IX36ZT42hOIv0fhyrvz2g82vUXh8ptp2OOhLmtXvrjmih/hB3cjUvskjt9AOnoYzb2uxQ/uBk4YjNvOHAIu1oRx4x9SWHVnq+v9DkWf30j9ng9385mIbIL1CTTNJ1T3Lo5XD+kQ6ehIvC1IykdqJ7bzmgrGayKQ+JBw3VSMn2LjubmNkybcMIMmOz77+xSoJFL7FxyvnnRkMM29f4Af2nOzbbuJjyhacXv+71jzHIo+/yH1A/+wBedtiax7hujalrajg2mqvAYvsv/m9xWRnVY700uLiIiIiIhs/6xbSP1u/40X3BNrwlgTxgvtTf3uvwcn0qOxGT/R7nKLA37biQ47U2TtX3K1x3PxkCYYfw8ntaJL25YvyDgkyr5B7V5TWbfPTBr6/zr3xU2y8KSOdiJVdDLRdU+0e70DiQ9xUp93ceAiWy5W/WsKVj2Mm6nG2DjBprcp+eRSnOTSze/cXqkyyN51ZBMYLwkeGN/kHniA7wE+GEMmdAgZdxgZcyCZ4OH4gX5bFHdk3VNtJvY2ZAgkF+Mml2x2/1j1g8RWPbThvJvfpuSTy3CTn21R+yKyc9JIeRERERER2WF54f2p2/PvOOkqwOAHKzv1+MarJ1T3Ck6mnnThUDLRg7ao9Eyy+BTcNUvy64ADmECXj45001WY3EyIG1gTwPHW4qPJYHckNtCbxr4/pbD6p9n5CQCDR2OfO/ADfXDSKzq+3pnV+KHduztkkTaM10C05h+YjZLb2dJeSWJr/kjjbrcD4KRWEqp/FWM9ksXH4ocHAJAqOoVA/H2c1qPlrZ+d0NUGMbm7SbLFbYw1YANgAoRrXqBwxT1gUxgsgfgCIjXPUrvPn7CBkk3G7qY+y9akb82mcTKr8MJ7g58gtupxAvEFZCJ701xxGQRiGK+RaM0z7Zx3iuiax2nc7adb9TyKyM5DSXkREREREdnh+cEtG/G4NQJN8yj59Dqstdna7KuCpIqOomGPu7LlRDYhUTqOcP30bDLHxrFkE0ON/X4Cpms/hqVjw3CTSzCk85Ybm8EL7dWlbUvXSBWdTE3sSILNrwOQjh2Vq8Odjg0nkPi4neudxgvv2+2xirTHTS3DmmBechrA4BOIfwhAeO2zFFZNaJlDwRKr/m+a+3yXeJ9vkiwZQ7h+Kk7yI/DjLRNoB2isvB2cMMZL5I6Y96/vgddMQdUv874kdWwSm1lHdM2TNFdevsnYTaYxW4S+1fexxnr4Ti+c5DLKPr4gV2Iq2PgW0TVPU7vPY2BMB+ftEYgv2NKnT0R2QipfIyIiIiIiOz6baVtze5uO51H82c0YP45jExg8jE0QbJhNuPalze/vRKjb8zEaK28hUXw68fILqR34JOnCUZ0XYwfivS7EurHcqGoAayI09/oW1i3s8vala1i3kFTRKaSKTsmbGDNRfgHWLch+8bN+WxMhXv6N/Ak0rc2WTrJtR9V3Cj8Ntp3RxCKAF6xsmXg6n8XghQfipFdRuOL+lolaPQw+xqaIVf83buITMEGS0VMh6WO9AHgG3+9LJnLQRkdr/y4mN/EJrL+bxG74r7FpQg0zWwXU9m+Jm1qzYd8NgYOFYOMbFH/6Q7CZbI37XBQ+xZ9eh7+Z8xaRXZdGyouIiIiIyA7LSa2kcNkvCDa8Q7bG9hE07XETfrBim44biC9oU0MYwLEJwjVTSJZ9efMHMUFSxaeSKm47EWxXsoHe1A38M9E1fyDY9CZ+oIxE+TdIFXdUm1x2ZDZQnr3eax8n2DgbGyglXv51UkWjc9uE10ymYOUjmEwd1i2mqd+lJHuf0yntB5reo3DZfbiJJWBCJMrH0LTb1dkJakVa2EA5yaITCDe8ml/Wy4Rp7v0twuumZkfIt86rW4/w2n+QKhlNYdVDGJvBeC27UkXxkuuoHfQkEATaJr/BYANlGD8DnslPrDsW3y3NbpVeS+GyXxCqfwOwpAuH0TjgZvxwP6xTkB0tv35Yq93w8IMVuKllbcI2gOPVYp0IyeKTCNe/0s55X7wVz6CI7GyUlBcRERERkR2Tn6Tko0txMjW5er+hhjcIfHQZNQc+s21lYjY5mrhzRhoHmhYQrfoDgcQnZKL70tzv23ixQZ1ybD/Yl6Z+P+6UY8n2zw/2oanypnbXhddOpXD5/8O01OI2Xi2Fyx8EHJK9z9qmdt3Ep5QsvnbDxMY2SWTdVJzMWhr2umebji07n8b+t2Gri4nUPgc2jR/ajcbKH+FFDyD4+S873C/U8BZuuiZ7p8dGN2MY4+OmqnETH2NxsyViNp7zw1rAwQ/1w6cAx9blJc+tb0gVjQKbofTj7+GkqjFkM/7Bxv+j9OPvsu5Lf6e54iIKV/wXJmWy7RuwjgXHJVV8CvDTzZz3rViniEjtZLAZ/GA/Gvv9CC/6pa19CkVkJ6KkvIiIiIiI7JDCtf/C+M15E/AZfIzXQKju36RKj//Cx87EvgQm2Ga5b6Iky878wsddL9gwh+JF1+cmHXRSVYQa3qJu3wfIFB6yzccXWS+28tFcQn49YxPEVj66zUn56Kons2Vr8o6dJFQ/GydVjR/qu03Hl52ME6Kp3w00VV6XvRPJieZWGb/tnUk5XgqTXoXx138h2pJatxbreziZOozv02aYvTVgLSazFsdrbre4TbDxA/zQ7phMbS4hn23Bx/oJwrUzSJWcCssewvpJDC2j7T1DsmQ0OA5ecHfc9Of5CX/AuqXgRABo6nc9TZU/aHPeIrLrUk15ERERERHZIbnJZTh+vM1y4ydxk0u37eAmQP0e92BNBN+EsRh8J0K6aATJ0lO27dhAwbJfYWwS0zLq3mAxfoKCZRO2+dgiG3PSq9tfnlm7zfXl3fiivETmRkfHTS7fpmPLTsy4bRLTXmSfvLIw6x/Ggh/eHUsMu1HF9pYDYfwMXmh30gWHYq0Bjw0P3+BF9sNJr8GaUNswADexBDe5bMPdHhtx/DhucimR1RPBmmxCfqN9wzWvYjK11A+cALjZkC25V/X6Pe/f7HmLyK5LSXkREelyJlOHk1zZdROLbadti4hI18pE98FvJ8FhnRCZyD4bLfBwkiswmYatO37hUNYdMJnmflfT3OdS6gc+QMMe92YTK9vC2mz97XYE4h9v27FFWvFD/TtY3i+/1McXYE2k/bdYfoJMB+2KtCc7T0dLeZj1SXk/OyFqouxM3OSKDqZxzU7k2lR5BXgu1nPBc7Cei/VdGvtdhR/arYPJVh0ysQPwneJ2Jym2FqwTI9jwVn49+PXrTZBA83/wQ31Ih4ZAJgi+C5kgGfcAvMjAbXhGRGRnp6S8iIh0GZOuoWjhtZTNO5vS9y6k9N2vEKx7u/va/s8Psm2/371ti4hI90gVj8IGyrEbVeW0JogfrCRdfCQAobWvUDbvLErf/yZl88ZS+PEtGK9pi9uwgRISvc4l3vcSMgWHbXMSEwBjsG5RB+0Vb/vxRTbS1P9KrMmfdNWaME39rtj2g3uJbKJ048S8BQjgpldt+/Fll5EuOhwvuDfWOC1lZwwWB9+tJFV2AsaPdzidh5OuIbzuJSDQkrhfP6bdJbJ2OjZQRKLX2diWUjIbdgwR7/tNjNcMmHb6MZhMAj/Ur2WUfj5jM/jBCmLLHyHY9AHG9zEeGN8nkPiEgqX/tW1Piojs1JSUFxGRrmEtxf+5jmDDuxibxtgkbno1RYt+jJPYxpICW9L2Rz8kWD8v27a/UdvxLm5bRES6jxOkdv/fkyw/Bd+J4TsxEmWnUbff78C4BBrfp/DTu3EytRg/gbFpQnWzKVx0R09HTrzPV9smSp0I8T5f76GIZGeVKj2OhoF3kgkPxJoQmfCeNOz5U1JlJ237wQPFGybe3KjkiCXYbrkQkQ4Zh7r9HyZRfja+U4jvxEiWfZnaA/4ATggvPKDtPhbAwYvsSWTt1Daj4Y3NEK6ZAdanabdraKr8Ll6gN9aESBUMoXbf3+FFBmKdMJZw2/I5fgDrxkgVH93mrttsmRoHL7o3kbVTwU9hPZN74KcJ1/yr3RH4IiKgiV5FRMRmCK2ZQXjNS1gnTLLPGdjeo7f5sG7zf3CTn2PI5K/w00Sq/0Hzntdtcxsdt/0RbmJZB23/neaBP+yytkVEpHvZQCmNe9wGe9zWZl2k6gloNXmgsWmCDXNxktX44Z6bhDJeeTFOpp7ImslYE8DYDPHe5xDvq6S8dL5UyShSJaM6/biJ3mcRaJyPs1E9bkv2jg8vNqjT29uueHEiq6YSrJmFHywjWTmOTNFBPR3VDs0GimgacCNNA25ssy7R90KCTR+2Sbz7bimZggM7nijWZgAfTIB0wTDcyKc4qVWkC47AD+0OQKr0WAqX/b+WEfob7WtckuUnEV3+R6zvgNMqwe5b3PinmEwC/Fb17n3Aei3/0XhYEWlLSXkRke2EE19GqGY21gmSKj8OGyrv+katT9HCGwk2vJeb3ChU9xY29S70vXybDu2kVmFx29zoafC6fOKvnmxbRES2H26yKjeR6sasE8RJr+n6pLy1BBoXEKh/FxssJdnrOHBj2XXGpWnAdTT3vwwnVY0f6ot1C7o2HpFOlio9jmSvOUTWTMmWHcEBE6R+319ueaknr5nw2v/FpGuxgaPB7tE5ZaK6ktdMyfuX4SarMX4CiyFcM5OmPa8m2fes7DbWI1j7Fm7zJ3jRAaTLjgKjFAxeM6F1M3FSNWSKDyFTeOAWXe9UyUgSFV8huvpZfAzggBOkfr9fgXFIFR9BqG4Whg2Jc4shU3AwmAChNS9TuOQX4Kcx+AQa3ydSPZG6g/+ADZbRsNcdFH1yZ0s/BmM9Gvf4IX54N9zk8uznCj9/klnrBnFSq/BNBIfWZdFMtrSarrmIdECvDiIi3cVa3OZPMF4zmcL9wNlwy3p02eNElz8BWKxxKPjstzTu82NSvU/s0pCCtW8SbHg/l5AHsv//7O84JWfiR3b7wsf2YoPanVDJN2HSRUO/8HG3qO2CTbRd3LVti4jI9iNddFh2FGOrO6eMn8aLDuzaxq1H4Uc/IVT7VnakpgkS+/TX1B84Aa/wgA2buQV40b27NhaRrmIMTXv8kHjfrxJsmIsNlJIqPhKc4Bbt7jYuoPjDH2KsDzaNXf4/FBaPoHHQ+G2fULkLRaqfw02szE3+abDgJyn47Dcke5+C8dMUv38FTmo1xk9ly6MES6g7+GFssKyHo+85btNHFH/wA7BedmS7EyRdMpSGQXdtSF5bH7dpEVgPr3D/Df3AGJoGXEv0gItp+uw1bKC4pa9lyyQ1DbiWYON8rJ/AsUmsCWGdEI17/gj8NAWf3I/xN0zW6vhJbGotkaq/ER/wXVJlx7OuaBih+tlgfVIlR2IDpQCki4cSaFqQjdmSHRBvsn9LMrH9NjFK3wM/vcW/DyKya1FSXkSkGzjx5RQtuBk3uapl8iJL0743kKo4GbfxP0RX/BVjs2/mTMuAvsJFP6emZDg22HUTvgVrZ2cnTWrDEKz7P5LbkJT3w31J9v4y4bUv5pL+lgA2UESy4sz8ja1P9p1t54yK8kN9SPY+jfDa6e20PbZT2hARke1fot+FhNdOB68pN3rSOhGaK7/e5aPSw6unE6p9K/t3yAJkMAaK/nMrtUOfAaNyBrLz8MO7kwzvvnU7WZ+i/9yGs/HEy16GUN1bhFdPJ9nn9M4NshOFambmEvIbs8Yl0LiQ8Op/4iZXYGz2C0HjN2OTSQqW/BeNg+7q7nC3D9ZStPBWHK9xwzLfI1g3h3D1NJKVYwk0LKBwwa3ZiVeNAROk4YDxZEqG5HYxsd1J9j6jzeH9cD9qBj9FeM1Ugs0fkonuS6L3WGywDLfpozY14SFbziy0bibxAd/NhhgoIll+SpvtEn3GEVn+NKS93N1X1hiSladgg2X4oQrc5IqW8yRXxca6hRopLyId0quDiEhXsz7FH/wQJ1mNweZKqhQuuo+62F6E17zcpt4tAMYlWDubVMWpXRdaoCRXxza/bQcbKNrm4zfteQOZ2CAi1c9gvGZSZccQ739x7thOYgUFH/8Xwbq52dtOe42iaZ8fYIMlndD29WRi+3fYtoiI7Pz8UAV1Bz1OdPmjBOv/DxssJV55IanyTpjgcjPC1c9jvESrcgdg0g24zUvwCvbt8hhEtmdu8xJMprHNcuMnCFc/v10n5f1Ayca51xxjPWygiPDaV9u8vzZ4hGpmZZPD23t5ni7gxj/FydS1WW78BOFVz5PsfTJFH1yf/yUNUPzhzdQMewob2vwdBjZQTKLyAhKtl7uFGLwO9tn85w43/jnGW/85bn3G3RCo/RCspbn/JRQuvheT2dCGDbjEd//GLnmtRWTLKCkvItLFAg3vYzL1bWva+mkiVc9i3VC7+1nI3sq7JW3Uf0h06V9w48tIFx1IfI9v4McGbHa/ZMVpRKuebJkAaSPGIVV2NABOYhXRZU8QrJ2LF64gPuDrZMqGddD2l4jvcdGGto1Dss9ZJPuc1aZtk2miZN73Nzw31ie09jXc5k+oG/KHbR9BuIm2RURk1+GHK2nau+0ksJ1z8BSRFZMJV78AGBKVp5PsNxacAHhx8Ex24sD1jMV4mZbJ/0R2DW7TEqKf/ZlA0yIyBXsT3+MivMJ9N/N7sGXvgbdVcO1sop//DSe1jlTZ4cT3+PoWzeuUqBxHqO4dyJvg1uCHKvBi+9Bh/Nayfih1cN0bRJf9DSe1llTZCOIDvo4N9+qU89ourb8zth0Gn9C6mS3btN0vvGYGif7nfuGm/Uh/MtG9CDR9nJect06ERL/zNrt/pGpi20nDsbjJ6mypHcLgOeRdd8/BEv3CMYvIzk9JeRGRLuaka9tdbvAxqbUkB1xIZNXzeW/qITvSJlV2VPYHP01ozWsEa+fjRfqQrPxy7gNDcO1sihaMBz+ZnfIovoLwmteoG/IbvIJN16j1I/1p3OdWChf/HGvc7AcFJ4R75IOQCeMkVlIy51JMJp6dJDW+jGD9BzTtew3JytM3ajuFwba0/W/qDnsQr3CfTbYdWvUSxk/mfVlhbAYnUU2gbh6ZUtV+FxGRrmcyTYSqXyLQ9AmZwn1J9j0Z3C1IpFif4vduJNCwMFenOPbJI4TWzaZh8H3gu1hrWo2sBDwfP9gNk7mLbAcC9R9QPP/6jd4rLie07k3qB99LpmQwuBFoVUrRdyIkK07r8tginz9N7NPHc6UOI4kqwqtnUDvssdz7bLfhI8KrXsnWGO9zPJniAwHIlAynefdvE1v2GNYJgvWxwXLqD7gfjCFVdgyhtf+bnwDGIV16BBiHyOfPEPv0D63afiWv7Z2NF9sL3y3AbXW9rRMhUXEaTrqu3TmhsClMumab228c9HOKFlyPm6zCGhfjp4j3+yqpslGb3ddJrWl/0nDj4mRqiX72aNs7I2yG2NL/IdnvbI2WF5F2KSkvItLF0kWDMX6mzXLrREiXHUWmaDCJPmOJrJqcnQjIOGAcmgb+ABsshUwzJfOuwo2vxPhxrAkRXfoXGg7+JZniAylY9EDepEUGH+sniC35bxoOvje70M8QqJ2LyTSTKT0UGyrNbZ/qdQLryo4mWD8f6wTJFA2moqwMVjcQ/ezPmExzrg4vgPGTxBb/lmTFaAoW/b922o4T++S/aTj4vk0+L4HmJXkTzG44hocbX6qkvIiIdDknXkXJ3O9jvCTGT2CdCLFPH6du6MP4kT6b3DdYOxe34aM2EwcG694nUP8+bnJNfkJ+o/+7zcvIhCs6/XxEtjexRQ+2eq/YMiHq4l9TN+wxGva/k+IFN2ZHSNskxo2SKTyQZJ8xXRuYF29Jim8Um81AppHI508T3/tyop/+D9FlT+VGSEeqniPe/2zi+1wOQKL/10n2OZNA44f4gWK8ggNyydemgdcQaPwQk67D8eP4ThTrFtC09/UtbT+2ybZ3SsahcdB4ij68AfAxfhLrRMkUHkCy71jc5iXZSV1bJbetE82rKW/jawiumo0NFJMpO3SLJwT2QxXUHfw4oeppuPEqkn1OxC/csjJiqfKjs1/AtppHwNg0mcIDcJPV7Z9yph5sGkwIrE+g7j2cVA2Z4gM3+zdGRHZ+SsqLiHQxGyonvtvXiK54ZsOko04YL1xJsk+2XnzzXleR7HPq/2fvvMPjqs78/zm3zoy6ZVmSi9xtbINtbEyxTe8tIUASsptedhNSyG6W9F9IQkhCYFMgJATSSDaBFEIKNaGDTXehuMlFtiw32Vadcuv5/XHHI41mVEBumPN5Hh6juXPKPffcOzPf857vi7X3aaRm4VafThgbDUC8+S70dAsi3JcI1kUEULrmW3TMuw3N3VvQpkBidL4GgN7VSNnKz0eCP9GX/tTED+I0XNFTQLPxKhcU1GN2LMsT5HP1yxAtuQHN3V2kbXJtD4RfMg2pxQsSzUp0gsTEQcsrFAqFQjFcShp/gPC6cp91IsxA6JLYcDPds64dsKzR+WrxZOmhh9HxyoBWDRSLBlW8LoTbBoi8QIMhE7pobhuhVQVacRtBxf7BSK4v+rqe3AhS4pfPoW3eH7F3P4zw2ihpWEiXnHHAI4uN5KYorxJ9RVYfq+1FnFQz8eY7c9+/AQgd4tv+ilt7dm5HqDTKouj3PkhrBO1z/w9r71NRDon4eNzqU0GzMTpXD9D2C6Q5QkV5wC87hvZ5f8Ta8wiauxe/fA5exXwQGkHpdNyqhVhtz/T6zRTDL5sVvQeIbfo14Za7KNmXPFWP0Tn3RsKSCYO2raW3U7bicwivAxDEttyNM+YiUlM+Neh8y9S+jdiOv6E5uxHSzfUtNe4DSKOMIDYGI91UUE6aVSBMtPQOylb8N8LrQEgJhDj1F5KaOnjbCoXiyEWJ8gqFQnEQSI//KH7ZTGLb/4Lwu3FHnkam7m2g27n3BCVTSZdMLShrtz6a/4Mgi+a2RT9IhUaR3ZRRstQwoGzlF9C8/KRKiU13EFQcHW0bHoDQGome2VGkch9p12SjWQr9QIeSqNUZdQaJ5l+B6+TEEClMwsQ4/PLZg5ZXKBQKhWJYSInZ9lLB4rMgxNrz3KDFQ7MKqdl50a4AaCbSGoFfMhmzY0URWV4jjDcMq+tvZbTkFkpf+zZ6sgmAoGQC3bO+QlgyeC4dpCTW9Fvim//APl/vdMO7yEx8vxLGDhBSL0UUSe4p9ZLcmEuzgkz9ZQCU1pRBa9cB71dojShqlSKB0K7B2vNM1v+9b0EPa/cS0oPYNAKgWbgjzwTyE0uHVlX/bVtH/g4aaVbg1F1a9Fj39K9htT5MbOe9IAOcUefjjDoPhMDY+wLxLX+MFtXICuNBmrKVX6TjpDsHvYdLX/l/aJldec98e9sD+OVH49aePnCnjQQdc27H3n5PFERlVJIZfTleVRTUlJr4H5St+Ube54HUbFITPgpCUPrKV9AyO/I+D+xt9+JXzMStPfCJxxUKxeHJMLPoKRQKhWKoeCMW0jXrRjrn3EpmzBWgJ4ZUTgqzvyNgxHFqz0f2JfjNfQAAIABJREFUifKSWoz0uCswOlYWJCUCIHSxW+4dtO30uPcgtVhBf9wRxyPtajL9tT32CgZFT9Ax56e41YuRmkWox3Fqz6Pz6B+oH8YKhUKhODj0l1R8CHYI7qgzCt4niTyGnZpTSY//QGRZkHdcwy+fRRivf6M9fmsTpCl/6Sr07vUI6SGkh969nvJln4Gg0BKvL3bz3cQ3/wERZqK8NmGG+JY/YjfffRA6/9YkPfZypGbnvRZqNpkxxUXZg0UYq8Mvm4EUfeIUNZv02HeDZhZ/Pggt8pAfZtte2cwibUff39/SCA131Dl0HnMTnbNvwam7KEqcDcRa/l5gfSmQaH4XetdaAIy2lZS9cBWVj19C+XNXYu5+HgAt1RLtPO67CBtmsLfeM6SuSaOUzLj30TnnZ3TNuj4nyEP2d970a/DjDUhhENj1dE+5Gqf2ArR0C3r3ZkRIlPw7+58IPWKbf/9GR0qhUBwBKFFeoVAoDnOc+osJ+/yYkQiCRAOhXUNy8pU4I09FCotQTyA1m/TYy3HqLkIERbbVE32BFX73oG171QtJTvgoUotFdQsLr+o4uqd/GYBUsbbHXI5Tf/GQzi20R9E945vsXfhP2k56gOSUzyGNkiGVVSgUCoViWAiBU3NqgTAmhYkzavDIRWmU0jn7fwnsWqQWiz4rY/V0zvkh6HH8yrkkp36WUE9kPyMtvMq5dM361pC7qHeuI/HaDZQu/xJ289+HJDwfyVi7nkRkE4buQyARgYu168lBy8c331ko6oUZ4pvv3O99VURkxv0bmbqLsgEY0X3g1p4bLVodYrpmfhOvYnbue2yoJ0hO+Qx+5VyckadQdCuq0HBHDRJVPQS6Z34Tr2JOftuTP4VfOXfYdR+pCD9Z9HWJhghSGHuXUbb8y5gdr6H53Rhd6yh9+RuYO5+MfhP1swgrgtR+6Z9XvZCO+b9h76KHaV9wJ+6oswDQ0juzORMEkaVZNvgoFGjp7fulbYVC8eZE2dcoFArFYU5mzNsx25dhtr0IRBF46HG6Zn49eoNmkTzqy6QmfxLNaSWIjQYjisL3K+ZEiaP6ILUY7qjThtS+M/YynPqL0NPNhNYIpDWi5+AAbSsUCoVCcbiTmvIZjO6NaM4OhAwBjSAxltTkTwypfFB2FO3H34mWbgYgjI/L2+3l1J2PM+pM9NQWpFlB+DqSu1rbHqJkzU2QFaHNtpext/6NzgU/BiM+pDr0zvUYbS8jrQrcUQtB71VOBph7XkJLNhOWNOBVz88Xrfw0VusShNeJXzWHoGwIdh0HGC2zC/raBQGEDprTOmh54RXaqAz0umI/IDRSUz5FesIH0TI7CO1apFl2qHsFgDTL6Zp1Hda2h9AzO3BrTiaonBkds6vpnnY1petuAHQkEkFIcspnCGN1+6HtMrpm34hwdqN57QSJhoL8BsLZg7VrKSBxa05CxvKfH3rXRoy2FUijDHfU4iE/F96suDWnYXSuKVxYkwF++UzKX7iqwE5MhA6Jxp/RsfA3WR//fKRm4Y46df90UIYYe5ejdzcRJsbgjVwAQkcK0UuQz/UMkBAUWfhRKBRvGZQor1AoFIc7Qqfr6G+hdzVidK0mtEbijTg+t5VzH9KsIOjj5S7NUlKTP05iw88g9BCE2YRJ04YsygOg2wSlU/o9XKztg4Vw9qCldxGWjD1sfuQpFAqF4s2BNMvpOO4XGO0r0NNbCBIT8Ctmvz4bNSEIEwN4xGvWgJ+hRQkylKy9OU9gEqGDnt6B3XIvzvh3DlxehpS88m2s1mdBhkjNILHmZrrm30BQPhXhdlD+wmcRzh5E6IFmEsRG0bXg+0izHL1jLWXLvgAyRIR+Njp4Ecmjv9C/5c9BICifDnoM+u4E1GMEZdMGL59owEhtLvq64sAijdLXfx8cYPTO9ZS9dDXIABH6xLb8A7fmBJLHfBmEjlt7Fm0jFkT+8kjcEScirar92gcReOB72cTQPVgt0aKcRCCQJNb9jNTUj+E0XAJSUvLaDVg7n4zKaTqJNT+ma953cosKQ0FLbUe47QRlE6P76jDHqT8Pe8cDGKktEKSRaKCZJKd9FvQYerLw3obsYh6S5IwvUPratRD6CAKkFiOIjSIzdvhWSsJLUvbif6Ont0PoITUTaVXRueCHRLJbsc8UoRJNKxRvcZQor1AoFG8SgrKpBGWFiWAHwxl7CX7FTOyWe9H8TtyaU3BrTikQ9d90BC4lr1yP1fosUrMQoUdm3EWkp//HIRUMFAqFQvEmQwj8qmPxq4491D3JYXQ2RpYMfV4XoYO166lBRXlr+yNYrc/lRH0RREklS1d8jY6Tf09izS1o6R09u+kCHz3VQmLtT0nOupqyFdeg9baKkGC2LsXa8Thu/Rn76zRfN96I4wgS49C7mxAym+hRWASJBrwR8wctn5p2JWUvf60wGePUKw9YnxWHCVLmL7ZJSenKa9B62zlKsFqfx9v+MO7oc6OXzAqcuvP2e3eE207p8q9jdK5HoiOEJDX1Izjj347I7KZkzU1Zq6YeEo23441cgN61HmvXUz3zOPAQQNnKa2g/5a5Bc2IItyPbdmMUPS4DUtM+gjP+kv17kn3H/PUe74tu0TnvJqrTz+JseoTQqsIZfRFBNuluaFejZ3YWNmOUgtDxRi6kY8HPsFv+jp7ehVd9PE7d2aDbBWVeL/HG29GTW3LPVBH4yLRLyeofkpz52ei3SZ+FFwn4ZdOH3bZCoXjz8iZXZBQKhUIxFIKyaaSO+u9D3Y39SmLNT7OCgxdF+QGx5vsI43X7/0eFQqFQKBQHEWmUZO10ih0bfFeY3fJAgcUDgOZ3o3dtiAS9PvZ2QvpYO58kM+6Soh7LWpDBbnngkIryCI3Oed8n1nQX9o5/AuDUn0Nm/BVDWpD3RxxH19zvEt94B3pyM0FJA+lJH8SvnH2ge644RJjbHiW+7pdomV1IeyTpqR/AHXsuencTmtdZ8P4o8ef9OVH+QFG67OsY7auJMkVFJNbeRlA6Dj25pXghGWLtfApj7wpEsfwSgYvesXbQaPnSFd/A6FiDkAGCaHErse4XBCXj8EcOvrg1GOb2x4mv/QVaZifSrs6OeXZhIwyIrf8t9pa/IfwUQflkUjM+SVA1a2iVaybahAvoLjm54FB64vsoWfvjvGef1GwyE94dif++S+LlH2C0vwaAsWMZMpC4DUPLhTUQ1o7HCp+pBJi7n0Oa5bg1J0d2YL3fo1mkp3xw2G0rFIo3L0qUVygUCsWbj9DH3vYvROjmvSxCh1jTn5Uor1AoFIocwmnH3vQnzNYXkXYVmYmX49ccd6i7NSBB6cTIAqEwuBevYgjiVZF8MpCV/2RA0QSWkI3kDLOWGUOv96Cix8lM/hCZyR96Q8X9ytl0zfvf/dwpxaFCuB3Ym+7G3PUc0qrAmXgp3qgTgUgcLnn1Bz07RpzdJFb9GJAE5VMobilC9h45cGip7Rjtayi4D0OPWONv8UafXHgMogdA6CMG6F9/i3m5ttM7MDrWFdSx7zt09zBFeXP7k5S88r+9xnwPiVW3gAxxx11AYtVNWC0P5wJqjI71lD3/BToX3kxYNnHQ+oXbSbD895RteiK63hPegVd7EgDu6HMRQYr4xjui3wjCID3+3WTGvxuAsqWfQE8191z10CWx6mZCqwq/bjGEAdbWh7C3PhD1d8xZOOMuBH1wixlBP+MuJUhIzvoCcu3N2DseBgmhVUnqqM8QVAzdbkihUBx5KFFeoVAoFG8+QqffH0ya13WQO6NQKBSKwxXhtFP+9McRXlcUodjdhNG2ivT0D+FMeMeh7l6/aJ2NSD9E6JGmsw8ZgtXyCM6kfxuwvFt/NkbXxoKkh2gWQfkUvOoFmLufzxOSJBpuzYmRN7umQ5+PWanFcEafM9xTUyj2G8LronzJlQinAyH3ibxrSU9+D87kK4iv+xUicCJ9WwoQEiEd4o130HHa/yF1G9EnP4HUbNz6sw9ov7XkViRh0SUBvbuJVM3nofEXRQoaeLWLCOOjooSnfaPlhYZfcdSAbQu3I5vw1C04pjl7X8dZFCfe+KuiyVbjjXfg1S7G2vpQduFg39nL7GLEb0jNu2bgvnvdlC25Eum2Y4S9rvekd+FM+XcQAmfMhUgS6O1rCCom4445E4RAS7bkC/K9SKz5KZ11iylZfi3mnmXRnAH07mbMHU/TfcINg+7EcWsWYu18Im+xQ6LhjZgbPU/RSc38HKnpn0YEaaRZ/vqsexQKxRGJMt1VKBQKxZsPPUEYG1XwskTgVR19CDqkUCgUisMRu+luhN8FoR8FLEogcIiv+xX4RewfDgAisxdz+xL0va8VeAr3h7n3VUBAkP0vjP4VUkNLtw5a3hlzHn7FUUg9FumRmoXUYnTP/ioIndSMTyOtSmQ2uWOoxwntEaSmfxI0ne5jvorUbKSwovJ6DL9yxgEXKxWK14O9+e8It0eQBxBBhvj634GXREvvjO4dKYDsv6FAZPYAIprnegyZTbYp9Rh+xXScsRcMuQ/CacfcsRR9zytF72+tuxlz+xK0rp4kpFK3+4vRB2EQxutJTXp/dN+iI9GQmk16/GUEpRNx687EqzyGcN/9LUykZkcJagfJGRWUTiga1S2FiTdywZDPuz+0dKGnO0Qe+lrXxuxDuPfZR4lszb2vDFq3teVeNLcDwj7Xe8Nd0cJrZg8Vj3+ExKpbiTU/SGL1z6l47ENoqe3o7auL9wvQnDb09rV5gjxEiwlG53qM3S8N2rfUtI8T2tWEehyI5pI0y0nN/GzPm8IQs/lf2Ov/jNa5YdA6FQrFkY+KlFcoFArFmw8hSM78DGXLvw6hi0Ai0UG3SE//2KHunUKhUCgOE8xdL4AXUGhTIdC7mwgqB44qHRZSElvza+xN9yA1EyEloVVB8qTvECbqBizqjTiGeLafUV09/4TxwkXpAjSTrvnfw9z9Ikbrs4SxUbhjzkXaVQCEsVG0L74Da+cT6N2bCUon4Naemkt46FfPo33xb7C3P4JwO/Cq5+KPmKcSqR8M/AzCT0XXSkXS5hButBNSWj05FczWF3I2KL2RmpFNoGohcOi5/wXRXWRFUeUj5tC++DdY2x5Bc9vwR8zBqz5uyPPcXvc7Yuv/kLu/pVlK94nfJiwdC4FLyYvXYux5OYqUDkP8qqNILvg6Yel4pNALLGQk4FXPAcCZ+G68mhOxdj6OkBK39mSCsiihKZpO97HXYexdjrlnGdIqx6k7Axkbmd/B0Ee4ndGYaWb0mm6TmvYfJNb+DLICtBQGmKVkJlw2pPMeiDBeh57aWvC6tKsQsh/bLMSQFiyj610Y4S81A72jEWvLQ4hMGyK7zUcEDgQeiVduInX0p4rWKYHQHoHR9iqERXbhBhmMva/g1wy8YCHtKjoW/gpr15PoXRsJSsbh1p0GWZFea1tN2dKrczt97Y1/JiifQvfiH4GmnqsKxVsVJcorFAqF4k2JP3I+nSf8kNimu9CTzfgVR5GZ+G7CRP2h7ppCoVAoDhOk2Pdzp7e4KcF1kVblAW3b3PkMdtPf8hKSa+kMJc9/na7Tbh2wbFgxlTBWi5bZWbCckJ5ZXFzqi7HzBeIv/xjhRsks9bbNpOZcBUYUHY8eGzCZpbRHkJnwziG1pdgP+GkSK2/C3L4UAGlVkJrzKfza4w9xxw4tWnI7iZduQO9YD0BQMZHUvKsJS8cS2iOz+Q/yxV4RBoR2FSLwKLYgR+izL2GDtKpwJlz+uvtl7HqJ2IY/5d3fBBlKnv8aXaf/gtjaOzD2vByJyFm92WhbRXzVbaRnfwa3/kysbQ/nR60Lk8yU9+f+DEvHkyn9QPEOCIFfPQ+/el7hMSmx199NrPGu6FyFRmbypTjTsxYvo8/CaFmK0boSkKDHSM38WG7Rbjikp3+YkpXX51nYSM0mPfWDBCVj+i0nrcHbDmM1xa+3jK63tevZnCCfO0aIsXslYbyOoKQBPbmlYEakZlyJ5meihYugT94MzULaIwbtGwC6hVt/FhT5KVL2zBdBBnlt653ria2+ncys/xxa/QqF4ohDLckpFAqF4k1LUD6Z5Jyv0LnwVlKzPqsEeYVCoVDkE/a1SgAQUcLT8MAmLbU2/T3PCmFfy1p6B1p386DlOxffjl8xI7KnILKYSR7zBfzquYOW1dsbKXnpu2iZPTnR0Ny+lJKXvvMGz0ZxoCl58buY25fmrpeW2U3Ji99Bb19/qLsGfobYql9T/tD7KX/ofcRe/QX46cHLDZfApfSpz6G3r0VIHyF99Pb1lD71OfAzZCZeClp+Ek4pdILSBsLSBvpNaAz5yRreAHbTP4rf304beueGKGq7T1S3CD2srY9EbaeTyEDL2WrJEKSvI7zh22pZmx8gtu53CD+FCF1EkCG24W7s9XcDkFh2A8ae1/Y9CRFBhsTLt6C3rYkq8DPEVv2G8oc+kL3ePwcvNaS2vdrFJI+5miBej0QQxEaRmvVp3LHnIUIfpCgYeikhFOagdTsTLim83mgEiTFRktj+djgIAULQtegn+FVzej1TY6Rm/Rd+7ULcuoVIoRfOGKHjjj59SOfeH/ruldmdvX2qBqwtDw2rboVC8eZGRcorFAqF4vDFS2FteRijdQVhohZ34oWEZWMPda8UCoVC8aahH/sPPYbwkwe25f7qFzpiKAKXEaP7pB+9obbt9X+GoFAQNFpXItKtyHjNG6r3LY+UGDtfxGx+FABv3Bn4tccN22ZGpHZh7F5RaMUSuNjr/0zquC8OXkngYDY/jrHjeWSsCnfiBYQVk4bcB62jCWvTfWiZvXi1x+E1nBHZGcmQ0iVfRO9syvXP3vQPjNYVdJ/2QxA6BC5m82NvuO3+MLcvRQROXmS0yCYGtbY9hdtwNqlZnyKx6idIoohpv3wyyVzCUIGUMu/y5AThYToDCb+76OtSaOCnCgT7HKGHyOzGbF2GCIGgtyQTYK//I6kFX43m2q5lmFseARnijTsdv+74Ic212Lq7ChcMAgd7/Z9wx52BuevF4nOt8U+kFnyV0qVfRu/YlFtUsDfdi7lrGV2n3ZxNWjowXv0pePWnFLwu/BShiKPJVL4wHyW+yP6/xGhdHp13GOSdd1B5FKmZn6Rk9S3IwAckQWkD3cd9CwB39BmYWx6CIMjmEQAMgV97UiTYCytK2loMPUb3Cd+jZNk30dz2qCtGgu5jv4q0KgY954EQbkf/x+SBXRxWKBSHN0qUVygUCsVhiXC7KHn8KjSnAxE4SKFjbf4nqeO/FP0APsLR2tZj7F1NGKvGr1sA+uARRAqFQqHIx6tfjN7dXOhDLARB+fBFQwCRacPY/hwg8OtPQMYiWxyvbjF615aiHsjBfhAsB0LrbimweIDIe1lLtxIc7qK8n8Hc8TzC6cSvOYawfPyh7hEA8RU3Y259EhFE0czmjhfwxp5M+tircu/ROpowdr+KtMvx6o7vsQsaAC3dGvmS9xFKBRIt2TJ4x/wMpU9+Di25I/udScNqfpT03E/jjRs8ytfc+iTx5T+KBGMZYrSuwN74d7pP/T7G3tXoXc15fROhh57cjrHzJfyRsyl98n/Qktt7tf0Y6TmfjIR9ABmit76M3tVMWDoWf9Sc/KjmwMHc/jzCaSfUTgBGZcdlZ873PI8gg5aKEoq6Y8/BL52M1fIEYawad/y5uTH3qmZj7l1ZEJntVR417PwIbt1i9Pb1eTYtAEKGBJXT8EfOxmhdnncfSiComoGW2dPv9da7twEQe/lWrC2P9My1nS/ijT6J9Lz/HlSYF05b8de9rmjcNDMvWWqu7eQ2jN0vo3duzntuidBDS+3C3Pk8Xv1JAGidzRitK5FWGV79CUOa50HZhCgRrafRexeD1Cy8+kXZ8/4Z1paHIcgg9p13/Qmk5/8PhC7m+vsIXROCACl1hL8bY+cyvPFn41QvwNzwIJEhRDZ/gAduda/fDYGLsf15NKcNv3oWYWXPszgon0znqb9G694ChISl4/dLHg1/1IlFX5eAX3UA85ooFIrDHiXKKxQKheKwxFr3J7R0G0JGPxqEDCAIiC/7IV3n/ebITTYXBiSe+w7GruUgJVKLEtgmT7le7RJQKBSK14kz8W1YWx9By7RGgiEaaCap2Vf1JD4cBuamh4ivvDX7mSRg5c9IH/tJvPFn4ky8GKvlEbTULkQYiZWIwraF04lI7UKW1OYlsRwOfvXR0YJAnyhMEfqEpeP2SxtIida1BRCEZeP2W1JSrW09JU9/BSHDKPGiAG/MyaTnX3VIP/u19vWYW5/Ii0AWQQZz65M4Ey8krJhM/KUfYrY8Faltmk5MaCQXX0dYNWXAusOyhsjaow9SGPjVR/d6QaJ1NQOSsKwhN+ZW0wNo3dtzQqqQIQQu8ZU/wRu9CHSroO4cgUd8xY/7nJeDltyJtfG+yKM7KFxYIkhjtDeidW/LCfI9bTtR22MWQeBR+uQX0VI7ouupGYTxkSRP/R7SKkNr30jJU1+OvueFAf6rvyY++iTSx/03QcXUqO9BH0sXPY5fORWkJL7sJsytT/SM+arfk1z8LYKqqaRnfxr9qasQoYOQfpRjQrNIz/7sgNdjKLjjz8Nu/idaaltuMQJhkjr6k6DHSM/6BKVPfzayLQk9pGZGz55jPkUYH9XP9dbxqmdFuxa2/Avh9xLG/QzmtqW4Ey8iGDF9wL4FZeMxOjcWvB4m6gnKxhe17pJCxx8xK7JLKpI8VwRp9LZ1eHUnElt+C9aWaLcImk58+S0kF1+b3y+3Gy25A5moQdrZSHPNID37sySW3wCBF3n26BZhvAZn4iVonZuxNv8TEfQ57+3P4u5dg96xEb27JbtQk/WWDxziL/8Mb8zJJFbcnPWcz5VGIom98nO8CeehdTRR8tSXorEPAxACr24B6eOvjnZ85AZDG7a9UR6GhTPpcuyNf872KrskIXSSc/5n/7WjUCjedChRXqFQKBSHJeb2Z3KCfG+En0Hr3nbECtTWpgcwdi3v+XEbgvQzJJ79Nt1n/+QQ906hUCjeZBgJuk65Gav5EcxdLxDER+KOv4iwfMKwqxbJHcRX/qwg2jW+/Bb8UXOQ8ZFkxl5MfNXPI8EnBL9sPH71nOiNYUBsxS1YWx7LRa66488mM/c/8wWiN4Az5TKs5kfAD3OJJKVu40y8eL8I//retSSe+w7CjSw8pFVG6sQvE1RNHV7FMqTkmWvRvHzrH7PlafzaeXjjTh1e/cPA3LWseB6CwMPcuYywqwWz5ekeQTGMxLeSZ66l6/xfDbigIK0ynIkXYzfdm/v8l2jRNZt8KQB6WyOJZ7+NcLuyZUpJnfAlghHTMVuWFN2RIRHo7Y0E1bP6bVvvKBRvAUToYm57GnfKJZGNTdDHQ16PESZGYTb9s6hVixQaelsjVtPDaF1bexaIQg+tezuxFbeSXvA/JJ79FsLrznOTMbc9g9/8BN64UwnKGtA7N+XuM6mZhCV1+LXHYbQswdz6VN6YAySWfpOuC+4gLB1L1xk/x2q6D6OjEb98Mu6EC5Gx6n7HY8joMboW/xCr5THMnc8Q2lW44y8kqIgWYMLSsXSdfnu/bTvjL8De9LdcJL3MLio4Uy7HbFmStWDp06bvYOx8cVBRPjPro5Q8/4286yJ1m/Ssj4KZIDP5UmIb7+k11wToNs7Ud6K3rUNqFqLP9Za6TVhSh7HtGazmx3vm274xf+Zaui64AxDEVt6O1fRg7rnmjTuV9LGfAs3Ar56NH5+I3r4B0CEUZMZeBGYJxuZ/Zc31i5+3vndVcVsgoaG3rUW4HUV820W0qOM5JJ69DuF25c+1HS/gb34Eb8I5aO0bSTx7HZrTDgikmSB1whcJqmcOON5DITPzI/gjZhJbcwea24FfPZvUrE9A7MAmHFcoFIc3SpRXKBQKxWGJNBL9HAiQRvzgduYgYm16sHjisOQORHIHsqTuEPVMoVAo3qToMdwJF+JOuHC/Vmu2LCGnSPU9tu0ZgvLxxF/7NSIIerrS3kTi2etInvo97NW/w2p+IhIbs4KjteURwng17lHvHlbfZLyG7lN+RGzNHRi7VyKtcpzJl+E2nDOsegFwuyl5+quIXok+RTpDyVNfofP8X4OZQG9rJLbitkjgMxK4ky/EmfGeQf2otfaNCK/Qi18EDuamBw+pKC+NRLRYIoP8A5qBNOOYRT6/AYSXRGvfOGi0fGbmhwlLx2Cv/wvC68QfOYfMjA9G/v9eKoom7zvmT3+VzvN/jTRLitYpZNj/96l952UmCs8pd6wUr/4k5Cu3Ze1EsgIyAqlbuKNPxmhZ0n/bZgKz5amCqHAhfcxtS3A6LkNzOguF1MDB2vQAXsPpdC/8LrF1d2JtfRSQuGNOJzP9PSB0rKYHc/Yu+eUz6G3rCUZMQ9pVONPfSz8O78NDt3AbzsVtOLfo4YHa1vduQIYCRFaBliADgda9A6kZUSR3QYVRRPtg+DVz6T7xWmKr78haBo0mc9T78WuiJNHOUe9DltRhr78b4XbgVx9DZsYHCRO1hPYI4sbPkIHTs6CHQGrR9U48f30/Y+6g712HvvvVKNq913PN3PokoV2Bc/SHSDz7bfT2TdGOCgAZEl/1W8KKCdFOhqDIwlf2vKVZSrHU3cgQBpnnWmo7WmZvP3PtQbyxp1Dy5BcRXir3HuFnKHn6/9F13i97ov2HgV93Et11Jw27HoVCceSgRHmFQqFQHJa4k9+GvvIn+VE+aAQVk5Hx/RDhdLjSzw9jhECEQRGHYIVCoVAcCkQY9GNxEELoYTfeA74TCW/70AL0tvWI5A7sDfcWLsIGDvb6vw5blAcIS0eTOu5Lw66nL2bL05EI1hcZYrY8TVA9i5InvpwT7oTXjd34V7TUbtILBrYNETLo1wanmN3HwcQbs5jYa78qPCAE3piTMbc8WbygEENL5igE7vjzcMefV3DI3Pok+OnCMn4Gs/lx3EkXYex5tc93JkEYGzHorpAWP2QEAAAgAElEQVSwdCxhYlQUzd7b51u3cSddBLpN98k3knjpRvSODSAib/DU/KvBiEVt736ln7Yn9hJZe19XGUWCh/1f79yuBCNGZuaHyMz8UMFbBpwTQ0ygqe9aibX2r2jpvfj1x+FOezvSLh9S2TeKSO1Cb2uMEr3Ss4NC4GE3/gW/boDcSWH2GrndWI3/wNz2HNIux5n2doK6+bm3SauKwB4HKYfAGktojejVAYHbcE7xRTrdpPvkG6Lr3b6+53rP+xyYieK7RchG28sAe/3fCp970sXeeB/uxAvR964ttNUKHOx1f8EbPZBgLXAnXhjtWOk71+xygsopBFXT0NvW9Z1phCX1uTqK1hz60W4TLxMVyM5JKSX4LubmR3CnXTpA37L1dG/DXn03elsjQcV43KMuJ6zoyYdhrvsb9po/I7wUQeVEMsd9hrCiYdB6FQrFkYsS5RUKhUJxWOKNOwN971qsLf+KkkJJSRgfSer4/S8wHE54405DW/OHgm3o0ionLB19iHqlUCgUir549cdjr70rEhfz0PDrT8BsegRywlT23xCkAC3TBn6qaL3FIsX7Q2tvwti6FBD44xbtV4FHpNswtzyBcDrwR80hqJ0NQov6XtRj3EXLtGOsu7vguAgczK1PkjnmA8hYFfgO5tYleI07MM06vLGLwLAJKqcghV4gnUndxmsYPGHpgUTalaQWfJHEC9eD0CLtToakFnweaVfiNpyB3rGxYKFFCp2gcni2Pkbrq/31CqP1VdInfAFnyjuwG+/O5iuQSLOU1ElfH9zrXwiSJ15DyZIvo2WtcQh9nEkX49edEP1ZOprU3M9ibn4MZIg3/vScjaBfe1w/bV8Tta2ZEPRdxIleD6smRQlPKbRK6X29tY4tGM1LAIk/diFh5QSAaMzbGouMuUZQNW3g8wbM9fcRe/nXufJa11bMpkdInnPT/hHmAxdz61K09ibC8nF44xaDYUf3kGZAEcshLb0HvW1Dv1UaHRtw3W5K/3UVItOes/XRd6/GmXkF7lGXobVtoOTxL4HvIgjROrZgtjxD6pRvEIwc3IolLKmn+5T/zVolSaTVMxZew+kYe9cU2dUJwYjpUZm8556M/vYctMze/s87syeyzCm2G4XITikYNZfMtHcSX/fHKKoeiTQSpE76RjSPT/oWZQ9/DNyOXDlpJOg++XqwK5FGvCDKX+o2bsPp6LtfAykRve4XIQRSgt76CgwiymvtGyl57It9xvxZUidfQ1BzNLHnvo+55fHcqOh711Hyz0+TPOdHhBUTBqx7SAQextYl6O1NhGVj8RoWDyn5rkKhOLQoUV6hUCgUhydCkJl7Jc60d6K3NyJjIwiqpu+3RHKHK86Ut2NsW4re1YIIMkjNAk0jdfznj/hzVygUijcTYcUEnCmXRJGhgQsI0A2cae8kLB2D1BMURmYKROATlNQTVkxE79hUUG9QObDNyT6s1+7CXnN3LnLVXvsXnBnvwp35zuGdGKDvXEni6euiiPjQw1p/P371dNInfw1/5Cxs3S6SfNPCHzmTWMuSnO1Fb6RmonVvJwxDSh7+H4SfIvQzxIwY9iv/R/LMG5CJatLHf57Es1HbIvSQeoygagruhLOHfV7Dxa9bQOcFv8NofTn6e+QxOeHLm3AW1tYnsyJxJkrsKTTSx39+UNuewZC6RVHfDkkuiasz473ZSOTVSKs88sEeYmJcWVJH99k/R9+7GuF0EIyYES2eZLFW/xl71R9yc81afz/OUZfhzrpi8LaLJA3teT36flPyzLUQBlEEtREjqJiEO+G8bNt3Y6+6q9c8vwdn+qW4R78Hr+EMzOYnMPauzR/zBVdH4u9A+E6eIA9EArfbhbXuHpxjPjCksesPkd5LycNXR375fgZpxLBf+S3JM28gKB9fVHiWmoFXOw/hFzfbERKkZmNtuB+R6cjLZyECB/u1O3Enn0dsxe0Iv+f+FETJd2PLbiV5zk1DPodi+Se8cadHY75ndXbMDRA6qQVXg2YiifVZZMlGnWMQVE4sustGagbeqHnZ3AdFvusKgyCb8NidfgXl8y+nfd3zSKssKrNvrlkJui74HcaOF9BbXyYYcRT+mEW5ajLT30385VtBRl+pJdEuXHf8OcSX31J0DIQA4RVfQO1NbMXPwc/0WN/0HvPTvxsJ8j1ORdk3SWLP/4jU2T8YtP6BEJn2aK65nb3m2m+iZ2pp7bDqVigUBxYlyisUCoXisEYmavATNYe6GwcPI0bytO9jbH8OY/crhPEavIYzkCoRlEKhUBx2OLPejzd6IWbLU4DAG3sKYeUkgMgKoQhSM9GTO0jP+TglS74GgYtAItFAN8nM+c9B29U6m7HX3N2T4BIgcLFX/RFv3GJkWX3/hXsTBggvGXmS7xOOw4D4MzfkR8L6GYzdazCbHsObeBb+iKMw9q7uSRSp2/jVMwmqZxFWTEJ2NPV4RmcRoUdYWk/sxZ9EEb5Z4V74GQhcYstvI73oS/i18+g65zbMLY+gZdrxRx2LXzd/yALzAUe38esWFL6umSRPvg5jx0sYu5YTxiqjz+/4yPz3FRvzQfBr52FtfjgSNPepfhIQGn5tL8uSWBX+6IVv7LyEVjQhrOjajv1anx18gYu95u5od0b5uAHbDuM16KmdBa/LWDUIQVgymkCvRvNbkcIEV+JVzQbdRHRvx151FyJwc05RQrrYa/+C37CYsHwcqcXXYuxchrFrGdKqwG04E5kYWdBeX/SOpqIJlUXoYWxfNmxRPrbiF4jM3tx9kJvnL/2U9ClfIzPrA8Reu6PnHtIMpFmKO/VS9D1rsDY9UHC9pdDw647D3PBg0cS+aAZ623r0PeuK9knr2BwtBgwnkbSmk1r0DYydyzF2vVQ45sV20UC0qCIMMkd/kNirv8o/b6MksofxHQjD3g4y0XWXAaHds0hErBK/+phoQarIc8GvW1B4j8oQe9Xd4GsgJDJa4QAJVtMjSL14VLmUA+S56oW+Z21Rcxytsxlj+/PZFYA+75DZeThM7JW/QqT3RPZf9My1+Iu3kDrtm8OuX6FQHDiUKK9QKBQKxeGGpuOPWYg/5g3+sFYoFArFQSOsmoJTJIlnmBiJ3rm5sIAQhHYFsrSe7tNuxF77J/SOTQQVk3COehdh+fjCMn0wWp4rngiSEHPbc7jTLxm4AikxV9+DverPkee3buLMehfeUW+LPO+L+EaLwMFsehRv0tmkFn0da9ODmJv/BQi88WfjTjwXhMCZdinm1qfyfZ91G2/MQqRdibH9pYJIeiFDjO0v9rw/Xo07/V2DjsNhh9Dw6xfg1xcR7aXEXPM37Nf+BIEX7aqYeTnejHcMuhPOH30iYWwkWqYVkVWnpRBIuxpvzIFNHGlue46iCY3DAKPlOdysKN8fzqz3EV92c77nvG6TmfVeAOJPXYdI7e6VnyHAWvcPgupp6N3bIQyQQc/4RO/yMbY+iztzXDTmdccN7MNehNCu6NcfPYxXFX399WBse75wYUqGGDuXgwxxp7yNsGwMVuM9aOm9eLXzcaddioxV4tcvIIzXoqV39FxvBNKqwhu7CGPbC0hEXg6A6E0B0q5EWgmE01nYKd2mt4f9G0Zo+HXzo8WyPkirFOF0FJbRbRAa7uSLCEtHZ897T6/zrsJsvBcpTYR0I9EcQAokOsa253CrJqHvfAXn/lsp7doFgD/2RDLHXwlmfMAua53NCD8FiEgc37fIE7iYTY/hTrsINj+MlDJ/QUBAUHPMoEMirRJEpr3IeVuRp73sbemTKxUtRA0Ts+XZnCC/DyHDyHYn9AffNaJQKA4Z6u5UKBQKhUKhUCgUw8NLY712N2bTU1Hiy4mn4c58Bxj2oe7ZIcOddglGa5/km0InqJyELI0i2YWTgs4uZJcDWlf091AQWo//Qv6BIUWUm+vux371jz19Cz3sV+6MfN2rJ1Ok4oh9kd2agTv5ItzJFxW8JSwfR/KU64gtvxW9fQMYMZxJF+BkRViE1k9S8yPbos1sfBD7lbvyx/zVP4Ju402/cODCmkHyjP8ltuLWrEge5TTIzP141sf9ACI0iluKDG2ueQ2nApLYq79BpFuR8WoyM9+LN+EsRGcLWveOQvE6cLAa7yOoOxb8fXOxV8h4kP13GMjSOoKqSeh7G/METanbuNPeEf3hO1ir7sHc9BhI8CacjDvrskEF4Pz+Fns9OubXzs/b6ZBD00mefkOv6y3x644jfewnQLdwp16Msf2FPglPNcLS0YQV43GnXBwlFM1bCLFwJ5+/X6wQRXI31st3YmxfgbRK8I66GG/yWVEC2SkXY6/504Bt+7Xz8GvnFak4mmvS13tEbCFB10DoaB3NxJ+4DgInN7rG1ueIO52kz/jGIJ3W+knMDVLT8cYuIrb8dkSQzHubJIY34cxBx8Sd+jbsVX/IP2/Nwp10LjI2IruIUtAppFUxaN2D0u992DPXFArF4clBEeXb2tr4/Oc/z5YtW7Asi/Hjx/PNb36TESNG5L3v5ptv5ve//z2jRo0CYN68eVxzzTUHo4sKhUKhUCgUCoXijRAGJB7+ClpHS87j2Fp9D/qOl0mffd0h7tyhI6idQ2b2B4m9/Ots8kKfoGIi6YVfBkDftoz4U9/LWdBomXb0R79B+tSvENQNHJnpjV2E/eqd/RwbPHLaWvWnwkSNgYP12p9Ivv12pJHI86QGkHoMd9I5g9YNUcLH5Jk/iESwPiKgN/YkzOYl+UKoZuCNO7J3h1mv9TPmq/6cE+VFx1bMxocQqT0EY+bjTzg55xkvY1WkT/wS6ZyPy8ER27yxJ2G//NsiR7QoQe9Q6mg4Da/htIL5ILxkv4KicLujvDoFZvpR8lDJ8Hz6AdKLvkL8iWvQ9m6JRGAdnFn/TlA7B6Qk8cg1aHs35HalWKv/hrFtGanzbogWqAIPY/PT6FtfRMYr8aeeQ1gZ7XTxxi2OEiX3isaXQscfc0JuDPKu9+h50fXOLmTKWCXpE79Y9HoHI2eQOfY/iK24HdBA+oTlDaQWfQUAd8blaKnWKDGvbkLg4Y05CeeY9w17zESmncSDn0O4yWgxJdOG9tIvER3NuPM/jDvjMrR0K2bTo6+7bX/0Ccjnf54V5PeFq0f/+WNOxFzz94IcBSL00HevQXRtQ5aN7rfusGxsZAWZ3Jkfq67beBPPydpHfovEkm9nE9wKpBEjfdLnkfbgwrk7/R2IVCvWpod7znvsiTizP4DWsTXaKRAU5gqQxlAWeAZpe9wpWE0PF861+vnDzmehUCgOLAdFlBdC8NGPfpQTToiyt19//fXceOONfPvb3y547yWXXMIXvvCFg9EthUKhUCgUCoVCMUz0bcvQunb0STroobc3oe96FUYd2WLrQHhTLsQfMQNz89OEJaPwJ58ZCTaA/dIv8z3hiawU7GW/JHXBwIn/ZGktmbkfIrbil1mxToCUZI79GHKwPCxSIjJF7CWIBDeERmrRlyh58ppsotcAhIY35nj8cYuHfO5RhYXCsXPsx9DbNqCl90aJXDWDMD6SzNyPvb6632QUtbaA6FpIib7lGWLP3AShn7XzWY655l7S534nl0w2KnBwI19loobMvI8RW3ZbVkCX0Vyb+6GhJ5GUEm3XKrSOrcjyMQS1syIbp8qJxd+umfhjT0Rr21g0wlgi0Ns2008K2SGj7VyN2LsDGWoIGSKFjdH4GN6kc9H3rEfbsyF/V0cYoLVvQd++nKD2GOL//ApaVwvCd5BomBsewTnhSvyJp5CZ+2H0vevQUq1ZCxGTMFZJZt7HAdCbnye25AcQetH13rYcc80/SJ/73fxI/H6utzfxbLyGU9HbNxHaZcjSXoK00Mkc9ymcY96P1r2NsKQ2L3HvcDDX3ofw0nm7G6KdDQ/hzYrsdzLzP4lz9Pted9ta145C3/Ws3YzWsS0a634SxWrJVoIBRHmEILXoSyQe+ypIP+txr+PXHos3MYqED6um0H3WDzEbHwIZ4E85B5kY0X+defXrOPM+gTvr3wvOO6wYF1nI9BHl983zoSI6t6HveBVplxKMmZ9bwHFmvx9jzxq05I7cXJN2OZn5Vw65boVCcWg4KKJ8ZWVlTpAHmDt3LnfeWTyyQ6FQKBQKhUKhULx50Pc0FkRVAxB46HvWA29RUV6G2M/8BKNpSfS30LFW3EXm7G8QVjagdW0rWkzraB5S9d6UC/BHH4+x7XlA4I85HhmvHrygEMjSekT39oJDYVbUCqun0XXRLyOvYrcLv+ZowqpJQ+rXYEi7nOS5N2PsXEFZ2EqXVoNfO/eIj+gMy0ajd7UUeb0eQp/Yc7fkLdII30Hr2o657iG8mW/fP51wk2jdrYSlNWCVDLmYN+kc/Pr5GC3PAxJ/9PFDSqa6r834v76O1rktm7hUIyytJX3ON8EuJXPcx4m98JOcOI1hE8ZG4E69EPulXxSvU9KvFUl/fSg479An9uyP88c8cNC6d2KuexAt01bcZkmGGM3PoXXvROvcmisvCKMEuM/fij/uBLBKSZ57E/rWZ9Fb1xJWT8Ufd1I0z0Of2DP5PvsicNC6dmCuewBv1qVDOy+hEWoxEMVtwqRdTmCXD62uIaLveq1ozgmpm2jtWwjqKofUttizCdG9nbB+LlhRIlW95QWK2xJJ9K3PE4ycgb5nfd4CMESLwGHFwLkNAMLKiXRf/EuMlmejJNI1MwlHTO05t6alxJbenFt8sl79K85xH8Gfdvagded6Wuy8NYPMgk8Se+6HuUU3qVvIWBXu9Lf1KiwRXTtAhsjy0XnZbq0Xf4m57l/ZE9ZB00ifdQ3hyClglZA85wfoO19G79hMWFYf+f0f4c9UheJI4KB7yodhyJ133skZZ5xR9Ph9993H008/TU1NDZ/+9Kc59thjD3IPFQqFQqFQKBQKxVCRJTVI3S6w5kA3CQeL2j6CMTY9jdG0ND8a3ofY498ldclPkFZZ1iYhH/k6RDSZGIk35YLX3bfMvA8RX3JjXt+kbuEc+8GeN5lxvAmnv+66h4QWWSsYNWX4rYVjcCTizPsQ8ae/V3TMtbaNRbVIEbgYW5YOX5QPA8wX78Bs/FcUsRv6+JPPwD3+w0MW7mS8Gm/K+a+7aeulO9Dat+QJuVpnC/YLv8BZfBX++FNJlY/DbLwfLb2H2LRFdNUsBiNGUDs76+cu8yzlEQK/bvYQOh1G573un73O+3Tc4z+C1tZEsUEXgYuxeQlhxZh+qxWZTozNSwt2ukQHNbQ96wlHzejT9j/RJq/Ktr05WqDoWzT0MDYvGZIor298Cvu526N6ZEBYPYXMqf8D8f3gUT4AsrQeuXtdYR6A0CccykJN107i930B4XbnXvInnox78lVoydZ+i4lkK+6x78Xa8BB4QW78pG7jTTgFGR9iRLth448/tbD+dAexpTcXXFP7xV8S1B+DLKsbWv394I9bSKpsNOa6+9DSu/Hr5uFNOiu3K0K0bSH2+A2I1J5o4dQqwzn1vwhrpqO3vIS59p+9EhNHixKxR79F6vJfRPew0Ajq5hLUzR1WPxUKxcHloIvy1157LYlEgve+970Fx6644go+/vGPY5omS5Ys4corr+T++++nqmroW62qq0v3Z3ePKGpqyg51FxSHGWpOKAZCzQ9Ff6i5oSiGmhdvXWTFeTgrfwuBS4/IJRBmjMpjI1uAAzk/ZLId9/HbCBqXgBDo007GOu0/EPFDOyedRx8l7OshDgink2qxh2DBuwme+y34vd5j2Fgn/BuJA30/1ZxBMKIC/5lfIttbEJVjMRd+mPi4IskXDzBvmWdHzWkEVWX4z/wK2b4VUTkG86QPE2+YT7h7ExkZIgORb9+hh5glZZQOc4zcZ+/EX/8IBF70H2BufJx4dQ3WwuH7jA9EevOSXmJihAh9zM1LKbvkKwghoGYOTJuTO75vKU9WnY2z/FeQ6cjTz4VZSuX88xHWwH7c7nN34Tc+3Oe8nyA+YiTGjNNwigjjAGZJGdqE2fhNTxU9Hht/DOH21wiLaMgCSdWoavymB4u3XVWNMfNMHPppOzH49Q52rMV59ta8Z4e+ex1lT15P7L03D1h2uIQnXYHbvDT/uaUZaLXTGTl5+qDlU3/4IPQS5AHMTU+RaDiKMGb3MypgWhZlDeMJ3/NT/KW/INyyDOwSzDmXEpt7CeVDSDo8EP7LT+AVsQoSMqSi9QXMSf82rPoBqDkGphbmC5GeQ/qP10CmZ4FS+A7xh79F/GO/wVl3L2Hok59bQSIySUb4LehjZg2/b0cQb5nPFMWQOZznxEEV5a+//no2b97MrbfeiqYVPjRranoiaRYtWkR9fT2NjY0cf/zxQ25jz55uwnB4mdiPRGpqymh9i0ShKIaGmhOKgVDzQ9Efam4oiqHmhUI781vElv4QrXMrAGHleNIL/4uuNoeaGuvAzY/AI/7XzyKSe3KJQ/3Vj+I1v0b67d8/pNv345l00VSUUgra9rQTNpyPtbMZa8O/spHAGu6ks+gafSYcjPspPg3O+G7+a73a1ba/grnqPkSmg2DsPLwZF7wuy5Oh8JZ7dsSnwRnfyX+ttQtkNQlpIKRHnvAW6KRGHUfnUMbITWKuvh996zJkrAJv5oWE9ZEAmHjxboTfZyeL7+C9dA8dUy8Z3jkNQkngF3jCA0gZsru1q8Azve+cEGd9m/iS76N1bAEgLB9LZtF/0dXhAwOPS/yFu9GKnvdf6Zj6DuKJGrTOFkQvxV/qNsmJ5xCMOIoSRN4xiNYGOkYuQLNGE9uyIm+HkASkVcYeavtve9lf6Zh+GfGSUWgdW/PbNmySk84Z9HrbS/6A7rv54xoGBLub2N24Clk5uJXLG6cGffHVxJ77SRTtLkP8+mPJnPSZQZ9bWus6Yk530fngPHsX/owLsQpzQyMluPE6ulq7gDJqzv9/+c+N3cnc/4qunZiv/g1tzwbCyga8o9+OrBw76FmZ7d1YYViYvyAMSHV24x7A55S+6Wls3yvadvsLD2DuaaFQPYsSHnc2rcO3Gg5Y395svOU+UxSDcqjnhKaJAYPHD5oo/4Mf/IBXX32V2267Dcuyir5n586d1NZGyWJWr15NS0sLEycWT/6iUCgUhx1eBr3pGbTOHYTVkwgajlNefgqFQqF4SxBWNpC64PuIdHu09T52YC0U9qE3v4DIdOYEeQARBpDai96ygmDc/IPSj2L4E0+JbDv6WlzoBmHVRLTd6zEanyIM9iWZFBhrH8efeDphdda/PdOJsfFpRKaLoP5owrqZByXRp7H6fqyXfg+BgwC0vZsxGh8l/bYb97swrwAyneD3jYSNRF5tT9Pg5d0k8b9fjUi3R8lzAX37K7jz/x1/xgXgJvspl8ouCB24ORWMPhZ964v54rPQCOpmD6ldWT6a1Pk3RolyJch45ZDbFv2dt5cCJH7DKViv/D5Pdv//7L13mFzFmfb9qzqne2akGeUwyjnniCSEEIicMSaZZMBrv2v7xV6v7W99Ga9f4wWb5LROu8YJm5wRSAiEslBAOYcZSaM0QaPJobvPqarvj+rpnp7uCUKB1Pd1caE5p+tUOHUq3M9T92OMQHUfg1O6H0MQTJPgnCKIPJmP6j0Bg9vkvsDrNxuEQIQTvcHjedeD0YQu/AFZi38c9xrXPt7QS1H9ZrZer9qTYIwttxYgovI+0kXUV5xlUh5Ur0nUz/g3nMPrMVmd8Ydd1KZxQVSmjqMBILx6TFbn5iTl0ZlReRpjUEd2ENi1FpORgz/4/JhkjygrIGvhg6A8hFHIskO4BWsIXfogusfIFsvm951CcPM/km84Afx+02N5y+I9OMe3RfOeBafQH5uDqC9POk0CVkpJ1J20Ejf1qb8V0yBXpHycw+uRZQXojn1QA2eAm5p3SyONND45OCek/P79+/njH//IwIEDue222wDo27cvv/vd7/iXf/kXHnjgAcaNG8cvfvELdu7ciZSSQCDAY489luA9n0YaaaTxSYWoKiLzrR/aRaAfwriZmPZdCV39X5CR3rymkUYaaaTx+cCpEGZnArL8SDNBZiM26OC5IOWVhyzZCwh0jxHg2C2WN/xS3EOrEOUFCC+CkTY4X3j2t0E6BNf9uZH3skAYA36I4Lq/ELrqv5CFO8hY/KjVTlYe7s630LmjCc/7/tk1+nv1BDc+kxgAU3sQqiSweyHehC+ekWxEVTF+1R4EnTEdep6RZ8YQrkGeyIPMHGvgOAeGjNOBrC4EJ5gs8wLIkwdaTR/YvRARqogFwBQAKkJw47P4Qy9Cdx6IU5b8HN25/1lvm/D0+8kq3Q9+PcIPY5wMjJtB+LyvntJzTGYLY0vD+87IRncbEquT7jIoGmw6EbpTf1AegR1vYHwZbTBjpYMMBHa/DYFMUBqMpLGevUAhyw8jq4vBV6CkJcVpSLsQb9wX0F0H45TuT5F3PxASk5NL3Q1/wCnZhaivQPUYmRw81w/h7nnfeqOPmBcLiKp6jUMW74sHu42WGz+C7tJGp0ZjbLDVUJVts8w2yjtoTXDJEziF262EjRMgsPUVwvO+h+7dss6/6jU2dVEAE2gP4VqMliCaitgIhBeyeS99klDhdlwvZPPe+Czhed9H9xlP8MO/gh+KvS5hNPhhgmufInTdEy03R04ukbE3EdzxakxuCCeIN+wSdNchsbyd49vi9d74rK13nwktPrs16B4jYwGAE8rkZqJ7jsYPZBHY8kLyqQ3poLqPgFAVmW/9EFFfGd+Hbvgn4WsexmSn+bQ00vgk45yQ8sOGDWPv3r0p7/3pT3+K/fvRRx89F8VJI4000jjjCK74LYRrYosl4YegupjApufxZt7/MZcujTTSSCONND6b0B17Y9zMZGLeCaI79D7r+ctjW8lY8sv4BSEJz/sOutdYS+jkTiFQXGA9bhWYzO7oDn2tx2UzZKss3Q9akbH0l4mSI34YWbQLJ38latjcs1enskOWIFKJ14XycI5uOn1S3o8QXPZrnKcs34QAACAASURBVGNbCTsBMpWH6jOByEXfBicQ/53ybZyCQFZq4rihbdyMhMvultcIbH3FBtc0GtO+K+HLf4jJbkR4Gg2ReghmwWlqUZ8yGvIOZEFU0tVk94QooZ7wUyEtcd4KnKObECo5PVIiyw4RmXoPme/9BLRGiCiXKyWRKXefbm1ahWnfnbobfot7YAWy/BC68wD8QXNiBPPpwt32JoHNL0bft8G062Tfd04PItPvJfPdh0BFEBgMApxgNNiqlcNBN3n/plE/d4LghxK8t42bie7Yh8CeRdE2bxIHQLrIsoNEpt1L5rs/aZJ3gMj0RvsCIVHdR4IfiQX8jNVrx9sE1j8d+zvw4T/xJt+CP/EmdGanaOzbJicrjGONCa1A1JaRsehhRM0JEA5oD2/89fiTbm41rXNwFU7h9vjYFO13GUt/Sf3tf7LvoRnIUCUgwWhiisPGfgbazYp624uoISRucDAITCAL5+AHMVJcNM57mc3bKdmXUhpHlh+2hHcLZQPwxt+M6jsF9+BK0Bp/4Cx0d6uT7xyyeSfVe9kvqb/tqZgx9qNAdx2Kyh1r2zVqDDVOEN2pP6r3RFSPkbj73oP6itipMOME8UZfC5kdCKz8HaKmNHZP+CFrlFv9P4Qvf/AjlyuNNNI4+zjngV7TSCONND5z8OqRpflJ3gtC+7gH16RJ+TTSSCONNNI4S1ADzsNs+Af4EUQ0RKARDiYj5+x7yddXkrH4iSR5moz3HqP+1t8jS/YR2P6mldNpQE0JwcWPEb7hMUsmp/LyD2QhS/NTyxn4Ydy8ZWeVlDcZOaBV8nXOzEmIwMbncI5ttYSmsjrKzrGtBDY+jzf9LvDDBNb8FSd/NWiNyemOd/796N5WH11UlxBY8QfrKQzoniPw5vwfTE4P5NEtBLa9Fns2AFWFZLz3c0I3PgHG4OxcSGDzK7bt3Uy8STehxlx59r3pU+U98QuosVdh2nVG9Ztu5Zga9ycngDe2dc13k9WJqK92IrTGZOTg7luG0QGECdvVqgGjAziHN6N7n56Xb5sQyMIfcfkZf6w8vp3AphftCYHY+y4iY9EjhG76Jbr7COqveoTgtleQ5Qetxvi4m9BdByOqiiDc0NaNWs6AQaL6TcEE2yd4Xhus7rsacB5uwbrUbW4UJiMH07l/s3kD4EcIrP07Tt6KmPHIm3U/uu8EqD5BYP3TSc8ObHoRv/803EPrUpLPSBd5Ig/ds2WpluDixxGVx60necOzt8/HdB1k5TdbgLt/eXJ8AgCjkSX70bmjmk1rMnIwSIyfWHptNCanB3h2PDRGxAwODYcB8OzY13ze+zDBLEQohXHKCVrjQxuguwwm0mVw0nU3r7l6G+SJfVZa7KNCCMJzv4+77z3c/YvBKPzBc/FHXWkNpMH2hKd/lYxVvwXPyh35nYfijbFjg3toXYKEG9hTArJwR5uMEWmkkcbHh3PsFpBGGmmk8VlEC5u4tm7wInW4658j47kHyHjxOzjb3k65GU8jjTTSSCONNBrBCRK6+hFU34kYIa1Wdd/JhK5++KwTEe6BD0gtgAzOwbUEdi5IInGE0cjKQkTlcbwRl2GcRM1f4wTxRl5hvbdN6me3uO44BcjifQQXPELmM18nuOBniBIr82E69UV37INp6kHuZOCNvvq083X3Lkny6hbKw937PgDBpb/ByV+NaNCFrioi+N7jiLLD4EfImP8jZPEehFH2fvFuMub/J/gR3F0LU7S5QVSXIMqP4uxZTGDjC4hILUIrRKSWwMYXcPYsPu16tQZn75LkvDe9iLP7PQDCs79h+4SbgQFU5wGELn2wTUEqvdFXg5N4YsAIie7YC9OpL+7exQjlg3ZAOaAdhPJx9y2J/tjg5K0m49UfkPHsNwgs/yOipvRMN8EZR2DLazHJngYIbLBPEfWEN50HEL7wO9Tf8N+E534vToqbqPd60vckrHqKsYcXjBYYYz9HowXGs2ltmzf5foVEZ/fENJxu8DxMXQRTqzC1EfDiZQ0s/z1O3grbz7VCVpcQXPwkovQggU0vNlvn4KYXWjnd0fL4IKqKkBVHEwh5iBr8dixoMa39YQt5t7LvMdk9MMqJlrHRf8ZBdxwI0rGniiDW5gAGB5xA8pjUpFz+yKtSj6nD55220c20SJ2dgTFZOvgjryB07ROErvsl/tjrY/1LVB4nuPQ3UF+P8R2M7yCLDxJ8/8lo9i3l/8mW7kojjc870iazNNJII43TRSAT3XNEdIMYX+AaGcAfMrv19Moj4/Uf2Q1jlIgPbHgRp3A3kcu/e7ZK/cmAMcgjW5AH1oJ0USMuxPQc/nGXKo000kjj0wljkMe2I/M+sLIIwy/A9Grea/GzAtO+G+F5P7CyIJBMGikPmb8GeWQrtO+CGnUxpmOv0884UmslVppC+TbAZHOBHqWDCNfiTboNWVeGU7DOyrYoD3/gTLwJNwMipSe9cTPwh1982kWXx7YTXPREVFoDZF05GcV7iFz+fXTvMYTn/QcZ7/8cWXksqnWsiUy9A507pm0ZROpw1z6LPLoVMnPwp92K7jfBsmypvE3BSlLUlCKPbUuWYlEe7vb51ovYC1v9/SiEMRgvhFPwISJUnfrZQiIiNbibX0km7f0w7uZXUKMubVvdPiLczS+nznvLq6jRl1mv+Gn34E292/blU4gboHPHEJl6J8EN/4xqgSh0xz6E5/2H/UGzbR4BY3A3voy7/e1Y+cT+lTgFGwjd9Bi07/KR6nsuICqOpL5hNLLiKKrLgObTRmqbPa1iAHl4g5UB0RITM74JUB7OwbWoYRcSmXYPwQ+fjrd5h96xNpeFuwm+8/PoKR5w6sqRJfuIXPIddNcBOEc2pu7n295I7ZHdUIJwDf6oy5Ele5N/J11092HNpo3VO4U8lX12M99PI/jDL0KW7PlIeVN+pNlTODJvNZEbfkbgw3/Y4LWN29xxUQNnYtp1wTm2JcWJEIXuPgzdfRiipgT3wEo7pmoP1W8K3pQ7W61Xa1DDL8Ip3pWi3g66x5nZu4iiPTj7VoDW6KGz0H3GgRC4OxbGT4I0/FZ7yOJ9iMpC/EGzrCd/I4cuIySqz8SzG38kjTTSOG2kSfk00kjjswWjEcd3I6pKMN0GYrq3MdhRA+oq7abdCaD7T7Rao21A5IJvkPH2g1YjVHk2fcdeeJNubTWtc3AdovZkwkJKqAjy+HbEyUOYrgNPrQ6fNPgR5OEtEKlD9xkLOVFNV2Nwl/w3TsEmG/gLgZO3Cn/C9agpX/h4y5xGGmm0DcpDHt5C5JiCDkMgJx1Q7LRhDKJoL6KiENOlL6bH0DZ7+Lkrn8LJWx0j4Jz8D1CjL8WfccfZLPEnB6m8KL0QwTd+jKgqtnONcHB2vYs37wH0gKi8TeM279wH03NYm9pc9x4H299MJjylg+o9DpRvPVKbEm/GoLsMACdAeM63EHVliOpiTIdcTFbn2M/C875Hxrv/Zbkp5Vliqu8U1ODzT7FhkhH44OnEQK5g5TTWPE34pkcx7boQuvYxROUxRLga3Xlgm7SqAQhVkfHMN2PSNKamlMDCn+OPvwY14w50z+HI4r0JxJoBdI8RVuNaBpIJKGOQFccwHXJTE8x+GFFdghowHVl+OHWbdx2MqK9MWeTmrp9JiLqK5vM2Jt7nhGiz1EZj+COvwB8yF1l+yMqEdOwTu6d7jkAW7U7R5sPAq8fdNj+hzYTRGC+Eu+1t/Jl3nXJZThnKt+vvUBXKmQq0LeioEW5C0yXcC7aP/sMgivcjyo9hOvXC5I4AIew3mCKhcQK2H1UVW6MF0NjbWPhhRFUxAP6Iy/AHz0nZ5oE1TyP8RGkr4UcIrPk7kbn/mrqfY5AVx/Em3oBzdFPKOvuDz0cNmoE6sgGnYL09WSsckA7hed+LxSnAGERJHqLsaGK9m4lRYGQAf8D0lPcaQw2cgTq80RoTjYqeSBLRvFvut7JoX8rrAiBUhWnfhciM+wmseSpuNHDAn3wrplMfRN5qMBJDope/8YFwLWR1IHL+vxKZfDuyqtB65rfv2qQCPvLodqivwOSOwHRqEnskXGv3LUZbQ2JWB5tswHT8wxtwD61NrPfFrde7LXDXP4ezY1F8/j6wFjV4Bv6FX0OkONkAgHQR1SV4U+/EKdkHNSdsn3IDmGA23vmnFkw5jTTSOPdIk/JppJHGZwd1lQTe/Ind9EQXLrrncPwrv5cYOKwZyO3v4K57zm7qo1GwvMu+jenXutamye5O6Iu/wzmyAVFdjO4yCN17bDJBUFuOiNRjOubGFs2yMIW3CdjARyX5qLaS8uFaRG05Jqc7BDJa//05gCjeT2DBo/Z92HO/qAlXo6bdgjy+M0bIg92I4Edwt7yOGjEHGgdkSyONND5xECcOEnj7EdCKEIag1qgxl6Jm3HH2tZk/qwjXEJj/MKKyyI6bQmK69se7+getEqKiJB8nb1UiCeSHcXYuQo2ci+nUp/nEnxbUVSDCdZiOPdtMgjg730NUFsUIaGEU+IrA0j8QvvuP4IUJvPUwoqIw3uZd+tk2b8Uwr3sMR/WdbINsRucy42bgDzgP020wfodc3LzlmNoyhO9hhEC4ASKz7gM3LrFg2nXBtEv2RtY9hlN/yx9xCtYhQtXoXmPQ3Ya0tbWahzGIiqMpb4nyxOumY59mBHqaR2DZ/8QIeYjTme62t1CTbyIy4z4yF/wYE5XtMNJKU0Rm3odp1yl1wFPpoHoMQ3cdmNq72c1Ad+mPzh2Fu38p1JYhVCQeXHPGl8ENYjr0tFriTZ/fIfcUa3nqMB1zEZWFKfLueebGzEAmukeynnhk5n1kvvWfGBWJtrkL0iUy835k+VFLMCZ54iqcwl2cbTFFUX6UwJv/ZclIY6hd9TecYbNRc77Sarvo9j2RdWUxYj4md6JBd+oDkXoCb/8MUXYk/n137IV37Q8hoz2RmfcRXP2naH81GCeIadcZf8yVyJL98UCvjWDcTNsPYxWQmPoQxkkcL0R5ai9+UVlo+1tzgX17DEUPnoXe+DyyujhRzz6rM2rEJYBAuZ0gIhDCsWXQGRgnOk94IVvvk4ejKSWmY0+8ax+09Z51P8FV/5tY76yO+GOuarG9G+obufD/IkqvxincgcnIRg2c0abAvaZdMzEpooGHAYybjfYCRMX9QYN2LTEuC3eDEhgjQdr7AgGBDGRZgfUsB8jqhE4R/0JUHCfw5k8hErLEOqCHzsKf+1UQEnlgPe6S39uyGKy2++x70SPngpB4c76JP+ZqnOPbm6+3F0JUl2Lad4GMtgUzFpWFONsXJhoT/bAl5kddjO4xHFmyP8GByxbeQ3fuBxntCV3/OPL4VmRZAaZjb1S/yWkt+TTS+BQg/ZWmkUYanxm4y/6IqDqREOhGFu3D2fQ6atrNLaYVJw/jrns+ybMq8O6viNz1+7Z5zDuuXZylQm05gUW/RpQeskR9IAP/oq+hB0zE5PTAOIFkry4p7YKuNSgfd8VfkPs/sCSF0ahJ16Km3PjxEmPKJ7DwcUSkLuGys20huvcYZMHG1N5uQuIc2YoaNe8cFTSNNNI4ZWhNYOFjiHBt7JIAnF3vY/qMQfef9PGV7VMMd+VfEScPJwYOL8nHWfccava9LaZ1Dm8CP0WAO2OQh7egPs2kfH01gff+G1G0z86hjos/5z700Gbm3EZwDqxJCsQKgFGIkwU4295BlBYktvmJAzhrn7GkYEsQgshFD+AcWoezfzkIgRo2F9XgbRpsR2TMDbirnkboKMfTeTCqX8uBFBMQbIcadlHbf98WCAEZ2anldTLb5qHcEuTxnc2qGMsDa9AjLyJ045O4OxeQUX2EcE4//DFXYaLGeH/4RQnBJC2xHkSNu9YaMLK7QVVRjKAy0sXkdEf3nQRSErr+Udy97+Mc2WQJ1tFXoLsPBcA77y6CS36d0CeME8SbfvZPk3jT72wm79OX1mgNpnN/Qjc+gbtrIbL0ILrrQPwxV2Kyu0P1iZRxjAzY4JtntWAGd8FjUFeV0GecvSvtXDJ0VsvplY9RAoSJWX+MFhjpIqpPIve/gThxINHL+GQB7qq/4c/7BmroHMKd+uDsXIisK0P1nYw/ch4EstB9xlmDScWxxL7Wvgu6/2RbzlX/xNm+MP7sjPZEbvwJdO6FycxJfToi2N5KOo26DHfP4kb9HHCD+OOvByB8069sUOT9y2xVB8+2/VRK5KGNOHuWIlTDnkchqCWw8HEid/43ztrnECcOJertlx+L13vIBYQ69rH9ofYkqu8k/BHz2kSsN8B0G4zfLTkgastpoieYG0fIbeDeuwyC+krcJb9P2hO5q/5CpPcoTE4P9PG9Vt5GxR+F9FrfMzX0tdrKhL4m965C9hmN7jcxmnckQdrHXfVXIr1HQYee9jFdB+F3TXES2xicdS/gbFsUkzNSIy9Ezb679RMER7amvuGHcQo24Y+9AnfPYkxExeYq4wRRg2fG5aWkRPedZMfBNNJI41ODNCmfxqceonAfzgfPIkoLIKsjasq16NEXp730Pm/wQshjO5Ijz6sIzp5lrZLycv+q1IFVhUAe3oweOgtRlIez+hlLrGd1QE26Fj22DYGDjCHw5iPWU69hU+CHcd/9Nd4XH8YfPgd3y2sJHkpGCEywHbrv+Far7nzwDHL/GruAjT7D2TzfbhpGzW01/dmCKNyTUjcSP4yzeyl07G6P2zZ5ZwiBcT8Znv5pfH4gSg7grH4WUZIPmdmoiVejx1/WSjC1zy9ESV5Ko5rww8hdS9Kk/EeB0cgDaxPJYayMhLNnWaukvAlkRrW/m8xl0rGexWcb9dU4HzyLPPChlUgYOgM18zbIsBISorQAZ/U/EUV5kNEeNeEK9MSr2vSNBRY+gThxENEwp/hh3KX/g9ehB6ZHy6SQae6EgTHgZCDz16Ru870rWiflwWr3D5qJGjQz+VbhXtzV/4gRTALgxCECi36Fd90PW3/2aUKUHo62+X7b5uMvR0+8GqTEH39tVF+9EUHsZuCNv/b0M5Yu0IwmdtRz1GR3wzvvbjp1z6HmRKKOtT/zy5gOubg7FyDCtejcUXjT74iR9uFrH8Ld8Hw00C74Q87Hn3JrXLYjkIk/9mr8sclBaXX/KUQu+Q6BDc8jqoowHXLxpt6G7jvx9OvdCmze/05gw3M275xcvGnnJm+Itvn0ZCkak9MdnTsSWbg70RPXCeJNOAP9oQWI8qOI6rKGv+I3lI+z+c3WSfnMbJvOiMS4yNKFQAbO3hXJAU0xyPw1cPHXAQNHdsPBPehwLUQcRK9xmG4DQEjCl3yXwILHESePA2A65+Jd+l2QLnLvSuvd3OjZJlxL8JUfEvnKX/AnXEfgwxcSTsMaNwN/nO2X/vQ7Mdk9cHe8hQjXoHuOwJt+pzUEAEiJN+0OvGnJBiO56/3Up2y9esSJAzj7VyUHwNW+jeF08dftWrvbYLw530jdruFanDXPI/PWWumnwdNQs26PSbl8ZLTvgu41EVm4BdH4fQkXf8adyIMbUsclNRonfw2q7wTk7lXJt40bOw0mCrbgrHkeUVmMyemKOu8WzJDpdh9WeSL6+EZyREbjrH85ZtQ2qkkBhMLJW4OafEOLVZPbF+FsfzeB1Hf2rrCG1Rm32jl+6yKcrQsgVIPpOQR1/h1WatXNSD0XSsfOYe06E77+Ydz1z+Ac34EJZqFGX4E/9poWy5RGGml88pEm5dP4REAc2oLc8T4iUoceeh569NyEY73Npis5gDv/5/ENRU0pzupnIFSDnnL92S10Gp8s6BQ6ew1o6oGeCn4kHiCuMYyVVBEnDuG++UijvnYSZ81zUF+Jnn5Ti48WJfmImpPJWoDKR+54D3XBPYSv+iHBpb9F1NqNie7SH2/et1o/nq98nN3LkrwAhR+xm5kzQcrXVyO3vYs8sgPToTt64hWtkiBAsud/w3UAP4wadgHOtgWgmpDyxsR1ftNI40xBK+Te1ci9q6ze8+i5mCHTrVGt7Bju6w/HN7i15TjrXkLUlttNaBrJUB6pd860GKAujRagDYmsUiM01no+thu5bRGirgo9aLI1DgezUENm4m54KTmtMajBUc/tUC1y+3vIw9sw7Tvb8Ty3lcB8jdBc3iifwCv/D2pKY8S53LMSUbgf/9ZHUCeP4772kA3QCVBXgfPha4jqk6g599iHVxTjbFmAKC3A9BiMmngldOiOKD9uTw80NfL6Hs7WBfiXfrPFMqvRlyJPHEgkxhCY9l2tlnCquR9SG+pPEc6WtxtpUlsI7UPRfuudnNM9sd7dB6EmXQkdzoB3cmVxtM1D8Tbf8BqiuhR14b34E66BSC3uznew37LBH3slalwb5CtagT/yItxtbyXplyMc9IBprT9ASNTYq1BjmylLsB3+rPvwZ933kcqn+04kfI6I8OS8JxDu27os4rlG5JJvE1z2B+SRLVFDXpDI+ffZmBZgCcX9a5G7l4MBPeoC9LBZcUPIR0XVCSun1HQ+MQJReaLV5Gr0pUkykAYwmR1sTKbmvuPod++s/Adyz4p4+mO7cV97CO+WhyGnB+5bT0BlcTxd5QkC8x/Hu/1RS+Q29viO/tN4YUTBFtSYKxChatztC6J5GvzRl+JPiu5RhUB3GYTfcTiithzdZSSmXTymREtofp4Vllxuqd7NifA3QGvcVx9ClBfG9i5y72rk8d14X3oCHBci9cgd7yMPbsK064AefzmmT9uCikcu+RaBd55AHIvqy7su6vy70LkjcU4cTL2n09rGqCrYiu0tTeZKbRBlR6G6FPedXyOiBLsoL0Is/gPKj2CEJOmFRSFqyuweL9LQbo3c+H0DXlTCKFKP3LkUeWADJqsDevxlmL6jbTW2vJ30XoQfwdnxLuq8W3BWP4vctSS2lxTH9yBe+y+8m3+KGjgN94O/JddbOOihNoaI6ZCLd8m/04ZdbRpppPEpQpqUT+Njh7PmReS2d+O60icOIfesxL/px3bSbyntupeTNzt+BGfTm9b7qg064mmcBXhhRP4GRNUJTPcBmAETTn/R3hoy2mE694WTBYmbQOmgB7Z+TFwPmoazd3my52c0yI+z/K8p+loYZ8vb6EnXWA13P4LI/xBReQLTvT9mwESQElFbntL7QRiNqLYbDtNjKOFbfomoPWl1PpvTXGwKP5zsad7w/Pqqtj2jJdRWEHjhQYjUIpSPKc5HHtyIP++rmKHnRcvQtN4TQDroXiNTesobNwM9dCamU2/88+/BXf23qPHBkgLepd9pc4DdNNJoE4zGnf84oigvPtcU7kcXbEXN+yrOxtchybAVRm5/FzX1+lM6zv15gek5LCWBbNwMVGuejW2F8hD5GxEVRZiufTADJyWuC+qrkfvXQbgW03c0JrftAVE/kbBDYPzfDTDE6iW3voOz9iU77mLXTM6u5Xi3PATZ3fAu/BqB5f8bN+gajTfvAcjsAKEaAi/8EOoqraY0IA9tQc25Bz16TqvFk1sX4ax9sUney/Bu+Sny8Faor0wgzoX2LUl/ZDvhY1Zap3G1hB9G7l6Gmn4TorIY9/Wf2XduNKYkuhb8wo8gXG3nFA2YhkCYBjCxObQl6MEzUEV7cfYsic81gUy8K77bcpufAYia0tSmK+kiaiugvhr39Uds2xiNKTmI3LsK/8YHMd0HnFbezua3Yu8qVh4/gtyzHDX9i5CVgz/9dvzJX0DUVVgysA0OMQk4vB1n6yJAoCZeAf3GAKCm345zbDucLGicO97l3z3768HPOiqKkQc2AKAHT4FOZ0gLP9iOyGX/DuEaG7chu1vCu3IW/Q5ZsDU+hxbnI/I/RF357baNu8pHHNyEKDuO6dwLM3iKHc+FTMmTWn34FhxuotD9J6NGX4qzc5E9fSkEuEG8K78ffUj0I0/1fYeqkLuXJQa4BYzv4Wyajx401TrVJIxrClNfiTi0CRGqbrbqouIYZsBE/Km34E+8AVFXbvXUG51akrtW4Kz4W8xD2yk+gLNzKd5tD0dPADQPNXQWFO8HzwcTfU9S2/L3HIruNwF5aGMCeW0QmF6jWv0GxZHtlsw2moaGE0ZjqsuRBz5ED5hI4IUfQc1J+14BWbANNfMW9IQrWnw2gMzfAIWHrMQ/1jNdrnsDNWgauv9EnDXPpCgU6AGTcT94JpmQB3Aca3hc8XSMkG8Y4IXv4ax+BnX+l5qrMSDQgXY4sb8b38Nq9UdCBF78T6guRWjfzqFHtqPOuxk98Qpobt/lhaG+Crnz/WSHJeXhbHwDdcm/4l3ybQKLfx3dMxrQGm/OV2yssDTSSOMzizQpn0bb4UfskWM3A9Nz0Jk50l9bjtz6TuJiyI9AeSEyby16xOwWk1vd1RQw9tlnxNMojVNDRTHuKw9ZAtsLQyAT06Eb6qYfnXWi1b/o/xB44yGMVja4l5sBmdn4593aalrTezR60DTkwQ+jxLwAN4CaejO074wsLUjd14S0i1Lp4r78kE3bUO+cbqibHkT3GJxaq9MNovuObfQsETua3WYE20FWR6gtS7hsAN1z6Kk9KwWcjW/aDVp0QxILxrr8b3iDp0JNGe5LP0moN9ld8L/4I8hojz/nftwVfwatEEbZ4Fi9hqMHWx1gNfJi1MDpyGPbwXGtXE9auiaNMwxxZAeiOC/Bg0n4YWTeOvTEKxElBxGpPJSla42L3U6PHPtMwg3iz/0q7tI/Wm1uHf2+ewxGD2t57m4TGsaWSL31UAtkQruO+F/8T8jKQRzZifP2r6xhQHmw8S3MgAmoK77+6ZUckg4muweipiROUjUELew8ACL1OGtfSpAbEcrD1JQhdy5FT7oKPfR8wv0nIY9uAyHtmBqVb3E2vQ015TFCQwCoCM7Kv6OHz2iZkI3U46x9MXXeO5YgvFqEF0pO53uIk4dRx/OST4sBOC6isghn+dOJ36dRGE/hrPwH/lXfxkQiceIJokSbQPcZ06iMIcSelYDAjJ4Tr48Q+Od/GTX+akTRXsjqH93WIAAAIABJREFUYAOxNwQVzMlFVBelaPN+zbdHG6H7jEWUHUsRnE9huvTFfePnCK9xvTXGC+GsfNoaJMD28dLDiFANpsegtgcOLDnQTJsHEBWFmKyodrybEZfLOAU4859EFMR1kN2CrZhBk1BX/xtISeSmn0PRXty81Zj2XawH/qmS/p9UKB9RnA+A6TmkVSeiMwW55R3kmpeiBlGDXPcq+ryb0JNP/3RDDBnZmIxEQlgU5yMLtiR+/34YeWQnunAfpvcIezFSjyg+gMnMhm7942R9XRXuyz+B+ur4eL76efybf2xlZlIssI0B47RhPSgE/ow78MdegSzaAxnZ6D5jY4ZJ07mvDbja9PvOybWe+E6KALdG2++nY88khxwA4YWQpYcxmR2g+kQyMW+wY0wDogGGE+BHcFb8PTEOiFZQU47cvAA985bYNVGcD8Yk9DU95HycZf8EHc0QAUri958OTgB/1t0Ei/dhvBDCj2DcoL0+5/7ERj55FFFfaSVUMqNSY4e3Rk8SJJLTwijEoc3I6pPREw6Nxhffw1n9AnrUhfH9Xk2ZNcJ06gkdosSy8nBWPp08l4SqcDYvRA+dboO4Jo1dDkRC6L7j7LtJIrd9TLcBiKoGQ22TMNP1Nei+Y0jV2YwB07k3Ilxrg3GnWA8KL4TcuQSqikGbuFnAi+CseQE9ao4NCpzqhIJ07EnoVMGUjUacOAiA7j+J8F1/tPO30TZobVT+LY000vjsIk3Kp9EmiP3rcJY8FfVmMBDMwr/23+2C6zQgj++1i6amE5QfRhzcDK2Q8qZTr9QBdDCWqEzjnMNZ/L8QqokvaLwQlBch172GvqA5D4UU8CM0BHNrK0zXAURu/6UNfFR+DJ07wpJDgTYu6i/6V8SIC5H5a8ENokfMwXS1ZJzp1AtqTiYv5bSC9p1x5j8JoerEelcUIde9gp5zF2rkXKtr2RDMSbr22OPIC9tcv2bLPfse3Pd/F/OIMyIaEG3G6ctuyIItyZIBYDcRlSU4S/9i662j9Y6EMJUlyLWvoC+8Gz38ArweQ5B7llu9zIFT0f0nJJJmmdnoIclavGmcJrSy/31WSJDTgDyywxqNmsIYxLHdmM59MJVFKb5vH5Pd9VwU8VMJPWQGkW4DcfYuJ8vUU9dzrA1+d6qesF7Ynmxr7JW55C/Wo7thY+6FMNUecvVz6Ivuw3nnt3Y8bdgZ+2Eo2IrIW48Z1nrwz08q/LlfIbDgCVDR8dwAThB/zr2IkgMpJc2EiiAPbkJPihJzwXYxw2djyH2rU3sY+hHEySOW8GkGouRgM3l7yIMb0WMvxgQyk4l5N4DplIvToz/qxOFkskPZb6yBlEh4NliZFyeAUSTLWwCmutLWbeNbyDUvxm+seBo15y7M+Evjv83pntLj0L/gHgILHgej420uJP7sexJ/+BHGVDXxKpy9KzDhuljMG+NmoKZcD4FM+05T1jvP/lFdivvmE1B90n4fykfP+CJ60pWt5m269MWcbKbNO5ym5+Xh7YiCrclv5OBmOLob+kZlLHJH4OeOOL28PmEQR3fjLPxN/CSgdFBX/t+YhEUMKca100JlCXLNS03ISGXXmYOnQKdTN6y0FeLoLlApyEY/gji2C9N7BHLzQuTal+26XWvI6Yp/3XchpxvOyn9YgrahzbwQxo/gLP87au49GCwJ20BumyjHrHuNTMxP+famm+IkdHbXmMxHQhHn3Edg/s+Sx9QL77ffQYp6GSHs99Oxl/3em4xrJpCJ6ZSLCeYgOJGgBmMMGCERkboWD9yI0sNRQj6Z0Zd7VqFn3oI4vhdnwa/jZRQSdcU3Mf3HItc8b52Q7I1YarlnNXruvZDTjchtv0DuW4k8cRDTtT9qxBwb4BmgtgLnzccRlcXRvbiPnnodetr1iEgKAyvW015EQohdK1KQ9lgDQtF+TJ/ROIv/F3FgY9To4WP6jUVd8Q1E2bHU7aF8xKHNiKwc0I7tQzI6/2uJQSOP7kJNvBJn52II1cQIcONmoMZd3ihIdTPHF4LZGBEEHUnsa4DqNxHTsad1DGr6vt0MTKdeyM0LrMxcUygfUbgf43mxNYk96RFNrzQmq1MzwZQFpnOjIOyBTPSg6anL3wA/Yt9ZKonTqOwqbuDT66CQRhqfM6RJ+TRaR3khzvt/SgwE5YVwX/85/r2/OS3vENPM0TwjJLRvXb5DTbsR8XZ+kyBVQfSYeW0jYtM4s4jURz2zmgRM0z5y3wdtI+XLjuMs/jOi+ID1HB84ATXvPmjw6GoJRiO3L0VsWgheGHlwL8ZphxnRRsJXCEyfMajGnndRqGlfwC3al+AxY9xgVLNd2GO8Keu91pLyF9yD6TkEZ/siCNfZgEmTrj0jpwf04Kl4Wf+Bu+E1qCpGdx+EmvoFTJe+p/3sFCqfFn7EejgW7keoJvX2feT+tegL77bP6NT7jBgI0mgjIiHksqetrIfW0LUP6uJ7MbnNE26fdZisnNjGMAHSsUahqdcjj25P/r6HzWr1CPnnHh1zUdNvJStFsMbWIA7vwFn6d6gqtSdlxlyInn0bCGlPNzQNzqcVMv9DzKg5NhZF49sGhBdG7l6J+hST8qbvWLzrf4Sz8TVk2VF0twF2PO82wAa0T6G1awDTrg2OCM0QLQCmvpV3l5ndQt6d0EOm46x5DuNHYu/NCAkZ7TEDJpExcDCR3WubBDSX6EFTrFybm5EycDCBLMSe5KB+DZAHNqJPXoVc82LSXOWs+Af+wIlxD81mIA5tR2sHaUxM6UILB3F4J6bPaKtjvPyfyD0fWCK2Uy7q4i9j+rSBbG7XCe/8e3GX/xm8WkCgeo5Cjb/SsjbSSR0QXTpgDO78J6GiKOFbkOtewXTrj+mXvFZpDD3pGht0t/G45gRsm7dvm251c7CSNc3c27IQ1bdt2tKfOtRX47z1iyTdaOetX+Lf8wt7iufoHpylf4MKS3bqUbPRc7502gZyeWBjSskwGyB6A3pyclDbM4bMbGtgaPqNOgHIzEYc3YVc94o1GES/cVNRhDv/SfzbH0Ec2JTk4CGMhkNbIOsB9JDzbF9tRFoaGYzHbKouw3n/z4gju+y9PiNRl9zX6rcNYHqNwB93tY3voD2McNGjL7PfthDowVORBzYkGjucAHryddYhJ6N98rgWyEAPmY44sBFTehAhTPzVGAEy0OraofkxV9ixOlyHM/+JhJM0AM6CX+Hf/SRy/7rmqGfE7pWYcfOsgXbs5aQ4L4Pz9q/sKZ7GY8vG+XZsyR0Ge1amfLbuNQJZlE+zxHdtBXLDG1aqqFF/4MgO5OrnrUEx1ZgHNohsRnsrRaN9S87HChywa7nMbCI3P0L2noVEdq/HZGajJlyJHhKd96XbjJ6+gMpiDNH7DYS/AWMk4uhuezohM6fJ+xb2fQ89D7nqufizYoi++JoyW/b6SmjaH5wAtO+IHjoDmbcuMQ6YG0BPuS51ezStQWEezpK/QtlxkBI9Yib6wrtinIfYuQLng5eswSKYaY0sk69om7xUGmmk8bEhTcqn0SrkzmVJRIbVf/MRR3ZgBn70QEmmzygIZNijdY1vOC569EVtSD8a/9Jv4K76J9SUgpuJmnAFeuqNH7lMaXyMCNXgvvRTCNfZ/mCAQ1txX3kE/45HWl1UyPVvIje+HTfS1FbgvP8XVCATM3jSaRXN9BqOf/kDuCuftsHZ3AzUuMvQ07+Y8mhrDLHTkwI94gL0iAtOqxzNl28E3rX/8dESR+oRGxYg962z3964uZiLb4g+mKR4UA0eTEAjj5EmC1T/9APkfa5ReQK57nXE0T2Y7E6Yqde0uQ87b/0KcXx/XC6h9AjOa4/i3/Fwmzawn0Xo4efjfPh68g0h0IMmQyAT/8p/w1nxd+s15gbRY+ehzrvl3BSw6gRy3RuII7sx7Tva9z1kctvSGoPY+wFi0yJ79HrQRPS066B9lKT1wohNCy2hKB306DmYiZfGDepVpdG8d0Xzvhoz5BwEWi45iPPWr+PjtR+x641wHfqSr6Qmn8ASw0KA1zDuNhmcvBbG43MFL4zY9A5yz2orITN6DmbSZfE2P56H896foLLEbsjHz8PMjsusmZ5D8K/6btJjTdf+mJyuSSQtbhA9/rJWi6XbdURW1KcYzwW0ciLEdO3XfN4TLrMazjf9BHfZU3DUEme6/3jU3PvBcTG+wShBouuoAGXz16PnIncuSSDGjBtEjZtHs+QPNq2z5oW4NEVCoUGueQl9+dehMA/nvacsUeoE0OMuwsy5HYyx8jvaYHDiXo7GILcuQs+8GWfBbxGHtsX7ZNlxnNcew//ST6FL7xbbjdLDOIufAj9iySBAHNmL896fUFd+o/k51hgoOwZVJ5IlaPwIcuu7qFZIedO1H/4138dZ/ldE+XHb10bNPUPBq1taj312CSCZ/yGk9H82yLz16N4jcN58Mj6uKY3cvQpRX4W6+oFzWdQzCj10Os7qVDrfAj1sBs77TyXHXTIaU3XC9uNWoOZ9DbI6IncvtTIo3fsSnnU3pms/UD7uSw9BbaOTU8d24774U/wvP9GqsUPsWonc/C74Jv4NbluK7NATPX4e6uKvQWaHWN6mcy/UnC/bvAHvhgdx3ngcUVZkH9i5hz0tHh135eFtiYYvITEde7TuGJPTtZmQo9ZpTeR/aGVSNPEuJwBtA+62XOnoU0sO2bXkicOYLr3R590AvYZCZQni5JFkw7cfQW5dhLrqWzirnklhhAmiR85G5K2HuupEw7iI5tuxJ3L18+BFEhVojIfctRw95y4rCVicn6h37wZRE6/A9B5pT1akqJMeFnWyateRrMv/hZrJtyW3XTRGQcp5LnrRGIHxGhH+DQ7l0sG76cc4S/9s46RguQp/7v1RGbhUbyt+TY27FGfjm4nzmHStpI+Qdj7MzLYyOH4E0ykXNeceKx3UGiqKcV57LG4QVBq5dy2iphx1w/cQe9fgLHs6nne4Drn2Fdtuk1vX+U8jjTQ+PqRJ+c8TaisQO1ZAeRH0GY4ZObNt3uT1Vak1KTHWEns6kA7e9T8g8NYTmFA1dlbUqLn3Y7q2zcvXDJqCN2iKtcRLN20N/jgRzML0GAzFeQle48Zx0SOSj5Q2hdy9Cnw/UcFQK0x1mSUn+7XgeaV85KaFCacmwC4wnbWv4p8mKQ9gBkzEGzAxua8FM22AwcJ9ifWWbnwB+UmF8nFe/ClUlMQWcnL1S9SW7IfLvhEjIZryY8YJRskv+80mQtj2SeOjoeoEzrM/ssSe0YjqUszC36PPv8WSqS2h7DiiKD9Zv1j5yC3vWW+91uB7iP3r4fAuu2kceyF0+JRIuJQdt/NcqMYaMQZPstIB2V3wr/gW7ru/a2C8IJCBf9W/xfS2Tb9x+Hc8Ef2+nXN37LfqJM6z/2n1sBve9zt/QM+8CdOGjZRc+Txi+9L4Rm37Upy8Dag7H4ZgFs5LD9t2afi+176KObwDfcN3oabM9rWEvP+InvEFzJTW5TFOB86HbyVq6QLC95D718e85dEq2SFNOJjMnCbWwYbbUQ/Fc4HyIsSO5VBfjRk0AYZMjno9a+QrP0OUHo23+brXMIe3o2/8vjVGvPRTW1+wp7o2LsCUHrHvBKwE3I6VUHoYeg7CjJ5tdcSFwL/me7hv/MzGMok+Rc24Ja7p3AL0yDmID16MExBRGJkJra25hMC/9nu485+A6lL7XWmFmnkrpndUYiK7K/6kGxBZPUFIzKhZMY/s8MpXQWkwDo1JTXFgC9RVombdCjVlyIItsVMtevBU9NQbrEzCsr8mFckAetgMRP6G5otdmAfFh+w8R7TN/TBy8zu2zW/8bjNelViiraoUcXBr8j3lIz94GX1Ny0Srs+HtZIlG5cGBzVBTHpOfSJpjtUaEalJLBgGmjYHcTe+R+Lc/esbHNTXxCtyCFO0CqDZI63xqEappRsbFg3AtcuNCjO/FjC0AwnjWqFNdBjldPnLWevAUS3Ym3dBWvuZsIqM9/jXfw5n/CxvfARDBAOrqb1vJkPrqZgIaOzYWwpCpkLc+wVveCGmDdwvrSawuuAs1+w7Qik65XQhFT16JA5shXG/rGZMGMZhICJH3IWZky/sLZ91rKfcGcv3r6PHzwHET8sZpNIcYg3zvKagqp2G+MdUVyHf/hL7lQUyfUaiZt1rDYHT8Nznd8K/5bnyPEK5D7FoFxQeh+wDMmNnWi76ZE8DGABk5iPoaiMmhxLVWjOdDXTV6+Ezk9sWpSf2Rs+H4PpzXHo8He64+iXNsL/qab0Fmu5TysQCivtrK1F73fdyFv4rP09LBv/yb0K4jevRcnMJDJFhDjbFxUXKHRt9X7In2dxrrsGM0qvcY3OL8hHHPKKxkaEPeC34VN3Y0yrtVaI0xoFW8ZYSMrvs69gScaNka7hvQwgYeBmjXCXX1v6O0snVqpAhg2nVEhGuT2xsgpwu6cx/k+tcS7HZGa3TfcfYPx0Wdf4c1jDbta61Abl6Uei45vtcS9qtfTNLZF8qz8rGTLrf9saoUsX259ervPwYzbFqiFFRhPmL3B1a6ccQM6DsyzaukkcY5QJo1+ZzAP5qH/NuPrdab8jD5GxHr56O/9P9alQUxgyZhDmxIOj6H1pg+I1MnOhV06YN31y/ssWwvZEndj3LE8xQmtjTagLoqe3TbCcDAcW2WA1KXfg335YcwsUCvGZiOPdDTb2g98cljNkBrdO0UXy9pqCyGlkj5SH3zG+tY0B/s4rJgOyISsiR/9kc4wp2ir6lLvmrr7YXj9e7QHT3jplN/fnMoK0QUHcC072Tb4lR0Sn0PCnYgIvUJ9RZ5G+wirUmwZS9vC0wqQA+aFPUibNy2wn6j7TpGRRNT5KcaHU1tJu8Y6qsRBTsw0rV9LZh55ur9SUZ9TbTeTkK95bo3Y4R8A4QfQX7wEmrshS2OjyJ6XD7pulaIk0dbL1OkHvn8T6H6JMILY6SD2PQO+vpvQ7/Rraf/GCH2fIBY/Der7Wk0Zv+H0HOQJd0cFzNgPN7tjyJ2LAXpYiZcnDqA1kedS5QPh3YgwnWYfiMgp22GDLlhfowUj9XFjyDXvIoaf3HL82FdFWLbYkQjkkhohQnVIrYtsURrRZH1/mv4gRdBHN8PRfnI3atT97W10bzPogycKDuWWt/cce14r3RsL58A30dUn7Rla7Iusaf4kkmGZlFRjDieh2nXAfqPTvx2tIYdKxBFB+37HDUrfm/feuS7TyX2te790Tf9f4iCHYhGRhCwbUpRPhTux3n/b0lefAKgYDvUVUGoFvnCT0F5CN/D5EXXa7f/GDp0g6ID6MoqUAKBtsH79myAsfNalRMU1eU2gJ4yjdpWYFC2LZuOvU2R0w3/9p8hyo5aw1f3QQlpxLJ/InauigVLF7tXYyZeipl9M6rkaCOjdaPKOy6iqhSTOwR15QOo6pOIyiIrG5EdJzDVBXfirPxnYnnad0bPuQPn0PbmfbMDmTiL/9w0V/vvIztt4NtmvOwBxLF9zTaHOLyj2Xux35QdTx1E2nER1ScxXfsjTh6hcUc3CEz3QTaoawqZB+ME4gRSW3Gm18j9xmAGTbIa8o1gBk+FM7E3aAtCdYiC7TbfgePaHAD3dGD6joYN85M9iN0gps8o5P4NjYJA2o/MRL8zUVWCOQ1SXlSVRk9zJK51jXAQlaWYTrkf+dkxaAUFOxH11Zg+w6Fjo9N1+ZvRnrHjB2A8IG8z9B2NGTQZc6IgOfimVpgeg1BdelsStq4qtkYmMxsVlTmMV1KCk7jGExVFmHBiexsDRMKIiuIWddsBqClPeVnUVdn9RYOhKkXeHNuLKD7YJMCtZ/crBTswA8ejx1+GHnkB4sQhyMy2HvINA3zlCeTzD9l51o/Ex/PbfmTJXSdZtssaDj1URnuEoYmIZNQwEMjCnHcD8sBGTG15wp5JXXAnuEHkimcTyw0xKS51x0/j7dhA+gtLQOtB1onJ9BqO9+Xf2rgXRtv9ecMcU10WDYiaWHJjgHAdRriIJDd6AKtdLzcvwvgifsuAMQa5cQF67p2Y3GF4X/7v1Hm3AtNzCBzZ3yjf6Cmtbr3ss7xIyjal8mT8Urje7luMxgwYGwuAa0ZfiPnghWRnRelieg1HvvY4+KCjgcgbxnW56nlU49OPqfpaKxBlR1M7SUrXrv2b6ed4IUvmH9uHnG9jYQitMHkbEBsWoG99EIKZiDWvIja+Y39rDGLvWsyIGZh5X04T82mkcZaRJuU/J6h5+TcJwbeEF7byM2tew1x8dwspwQyegtm6CE4UxCZ342agx82DnG5npoBCYLoPPDPPSuO0IbYsRqx40Xq4RF249HUPWNKiAcqHqpPWqJPZaCPUsQf+Pb9A5G+wXpfdB2D6j2uTd5bpORi964P4JrRhsacNdOvXcuKM9laTNlXApgYPwMJ85Gu/sItwA0L7mPOuw5x3batlaxUduuPf/STiwEZE1QlMt2i9zwSBrDXinT8h8jaClHYxmdUeffMPEj2Yw/VQW2mvNfZ8KDqAfPXJxHpPvwYz43rEsT3JBrcoRGE+eup1yLz1Nkid8qJBZAOouffa9x7MSnlixjQc6U/I29iF4LRrMDOvt3lsW4ZY9mxiX7v2mzBgLBiNeOcpxL4PQUiEEJCVjb75P6DjGRp7PiaI7csRS5+x9QbAoK/5BgwcZ99JytNJwspdtODRarr2Tf0NOG6bNOXFpkVQeSK2sRbRwIbynf9Bf+WX5857vCVE6qGm0nocBqKEtRdGLP5b4gbUC2OKDiD2rsOMPh+xYyViyT+i3qIg1r2FvubrMGjC6ZeppAD5yhPWMNjQzydfjpn9xVaTiqPNvG8hoLwQug9oPu2JAku2NZWYUx7iyE47JoQtQZoA37cnKo7uTh3IWUp7qq5H83mfLnTPwciK4uS6Kx8697Ye1rVlyQm79MJ06ZOarJRN+rkxNkCmkIkeqsYgFv/deoQ1jKnBTPTN/x90zoXKUuTTP4x56YmdK2DJP9H3PgrBDOR7f07uayUFiN2rEZUlqcdU37Ne2+WFqfe3Bji4FblrFYTrYwYL4UcwykMsfwZz5b9G8/ZsMEEERCJ2fbZrFWbc3GZaO1rOY3vjQQEbkylOwGrU5g5uMb1NKmKyDgkoOYTYubJRu0SDzW15FzN6Nk6foaiSZLkElI9pHKAyp6uVyWkCM+Ey/IETketeRdRXoYdOt7EFpMQMnozZ+k4iud4QYG/odMSHbzVP2h/egcnqhKivSPDaFALI6W4NRM2hqUxb1UlbgA7xvqZ7DkaeTEGmKN8GihTBOGkr4t7VmiAEMlCzv4Sz6tl4IHcnANld7Bq8MY7nARJ6p3iHWkFlqSWWss5cjAx19b/B0d04WxYCwnrInytCfm/UMCasIU0Yjb78KzB82lnN1vQcghk4AQ5tjZ1OMm4GZsAETO5QjJuRmvDzPEyHHqeXeWG+NRYm9XNlAwMPGHt6zy8rRL70qCWJjUFojRl7AeaiO+1pq83vJc4XfgS2LcGMuQA9bh5y13JMTZldKwK4QdTsL1kCPpCB/6WfIw5tQZQfx3TqZY06bSBaTWb7pGCmsXuBNsRl6tTTzqVN0+Z0a3VNI4ryk050AeCFEIV5mIHj7d/BLCvJ2jT9smfsySfTaDz3PeT7f0df8027v2l6SkZIdO4QRHlR8+UqL8QIBzVoBmLrewhhwAiM2y5WDnHicOrE5YUgHNTU65ErXiZeAAkygJ5wefy3UlrP96b5H92d2tjoBm2+zcjIGa2g9EgjA3h8LhJaxaTPYnm372L3D6kCmjYDTRCZypAhgnDyWLN69uJA1MCYvwW54A92HWSijg6X3IMZfT56zEXIXcswVScQyo/1cz3zZghmIUoOYbQg3lej/68osWubtsbhqy6z9c7pGiPETc8hmKL8BCcMwM4lXfuQ2kOq4Tca+c7/JK9bKooRm9/FjJiB2LAw0ajmhWHPGsyYC6zk0acd9TUQqrV75NOIh5hGGmcDLfbIsrIy3njjDZYtW8aePXuoqakhOzubkSNHMmfOHG688Ua6dPnoFv80zhHqqtBlyZsKoRXkbWyVlEc6qBt+gNizCrlvjQ12MnYeZsD4s1TgND5WlB5BrHwpMTgPIN/8Dfprv7aL6y1LECtfJno+EIZNwVx2b5wgc4OYEbNa915pAtOtv/WOTCKQNKZzK7qtUqJm3oSz6vnkwL+zbraeGa//EhGuS0y3/i1M3xHQZ/gpljYF3CBm+MxTrndrENuXI/IbAibZa8aPIN/+Hfr2/7Temkue4f9n77zj4yqv9P9978xIclWxLUvuttx7b7hSbJopxjahhRACgRRSNm2TzW6yuwkkWRKSkGRJwtIJGAOmY8C49957b3KR5SZLmpl7z++Pc0fT7kiDJRfy8/P5GOOZufct971vec45z2HDwiojgAy5EQZfr4Tqmx7tXvY+0qor0rgZ4gskezdZPvVSrJ9N+I5faojsvg3q/d93PLhGNHv4JHwJ3jjiz8C5Ykrqspe/r56n9Rpj5rycPNbeeRLngd9htizBbFka73UfDGK980ecu39eqz69qCgtxsx+ybvdD/4OadQEc/JI8nVOWJNgVYfsZirbsmt11IhqjKv7fHWNVTNbliSPBdCkY6XFNesnn084NmbWP2DdPPewJMjg62HoBDi4zTtCIBxEtiyGFh0xs15I7vN3/4zzwG+rvKDOrV6OjvNE49TqT5DWXWskSqRRE4wHYYATrjFUWxrkeJPTxkDjfCSQgUnUKgElAjLqpS7bDkc16c8TnEE3Ye1YjoQqo/ySPwOn15WQ1QB7xBR8M59JmlvsK27XMPFOQ7C2L4uOc4xqZvd1tdUP78G8+78api1AbnNkwsOQV4jZvBizeVH8nBqqxHr7jzj3/gJr2mPRkP9I2cFyrDd+gzP6Dk8ix4SDsGUx0rqbt06wOFWJvRM1xKtgGTi4NSmCwIjA7vVI8U71KLQTLg7d9wZmAAAgAElEQVQF1autBlJeGjWBkv3JdbPD0CCn2mtrgtm52lMKAUcwu9eQNWoiwXXzk593j9HpJ1POzscZ91ByEUMnYq39uEoKBlxy2/LjDLgR39pPkbKT3n2e2xJ71F2Y95+q8gAGwGeQUXerVzpedCBQ3400PbJXx9rpEh1rOc2QGx+Gpi1xBlyPtXVxXO4k8WfgdB+l887h3YgYjBVNDCiOwRTv0CS6Pa/EbtIKa81HyNkTSLv+OD3HRpPEb12Gee+v0XnA8iM3PgSdXK/MzUsxM1/QZ+zY0LY7cv2DdedV3qrbhU/qeqYUa8bf3bUqZj7/8G84LTpBw9qN5WphDPb4r2G2L8XaOBcAp9sopNNg4nNdxEMsX63la2iYq5FTocp4/s2fGRdVck4QwZr+BJw9GT/WNy5AWnXFHNvnTWY6NmbzYmTkFMK3/yfWhtmYXSugfg5On3FIYcze2udHigZ+9j3y6RN4voQCnDlR4+X2iC/g++BPyWtJTB6PlGiYo04uiYZWfwaSRqSt2bs+ibw2CHJgM2TWw+k5BmvDnJh1TO/tDLwRa/Gb3jcVVM991xrM+jmYqtxOAnYZ1ptP4HzlNzqvnj2ZfL07d5h1C9xujXasOGgEQNcapDcbN0MObU8m5h1b+yXVpClAVmNv5xFcQwlAySHMu3+B0sN6n0Z5yA0PQfOaHQXMoe3eXxzbl1J2VwQ1MpWfxnr/L0lyR8x8ThN7ZzclPPnnWBvnYHYuh3qNcXpfE1UOsAJAoiOEoAaPNAwLxw9h3olpd8M85MavQvN2OH3HYa2fjdh21R5B/Bk4HQeqMTuzEVScTtLSF8sPp4545j8zdgi2Lk29HoRDmJ2rkc8zKR+swHz4NOxco8/A8iFjvgA9R1zsml3GZVQhJSn/+OOP8/bbbzN69GgmTZpEUVERDRo0oKysjB07drBs2TJuvfVWJkyYwPe+l5yM6jIuIVRnDYx404ZDsOgdWDdX/799Lxg9Jert4/MjPcZg9xjjfZ+DO2DOVDiyDxo0hqE3Qo8rLoc7fQ5hNi70Plgbg9m5BvFnYOZMjd/cbluJwSA3PFi7srctR4yV5FEm/gzM7rVIlyHVXi+9r8LOqIdv6XTVam3SCueK23UjtWeD94EiHMSsm6NhupcozJpPk/UwxUGO7tfQ+2UfwsZ4gonF7yANc6BRLmKH3ERRsTs1t92jboelb0WvQwk9K6OehoMD1GuEM/hWGJycQFl6jsUO1MO35E04cxzJa6l93qqbapJ7SQq5fU7jpvGEe7R1mJ2rMcved79P2Nwe2V/7w+1FhL5jHu02BrNjlSbaLN4R/475AuqRVb8GUh6wx30Va/m7WOtmQqgSad0De8QX0tPiTCWV4jjnJitWhzDz34D18+PH+dL3VXqkaSF4eG0JQCATs3mxtiHppgazY6V6AtWErStg/ps69vIKYNQkaNtdvRe9PKNDlZi1szX0uRpIm57I3vXxo1xAMurXTJQ2bY1XokhEcNr2Vk/6VAjbmlD24NaEseZH2vSsNUlbI3ILCE/6Cb55r6iXZ1ZDnP7X4fTRvAnSZTi2LwPfotdVwzy3AHv4FKStzkvO1fdDbgHWmk8gWIG06oY98g4lpyrKMFN/jQmWR9t17ADmlceQB/8Hs2Zm8pyKIKeOQcl+OFWSxCcYQI7u0/cgRRJaCWRC2MNIEiEowjbSsAkmVlIt9vv89tX3mT8DKj0S3DogFW5by8/A3Gk6Xo2BrkNg5EQlgAbegG//pvikhD6/GqZrO5/6M9RrOUFaA8sCXwa+JoWEJ/8U3/x/qBEtqyFOv/FRI0ptkJFF+K5H8b3zO5VrAiSvJfZN/wJ+P3aX4fhWfhB3ifa5D1p0RBZtAvwYonUX/MjxIzBwPASy4kh1/R7sKyZrVMPUX0cT1ANSchDzqo41cpoTnvxv+Oa/Age3QmYDbXc/1xvV8oEtrndlDGJ1jAs7Yxd67FFOH1cChxjHaSeMeftJ5OEnNFfMjP+Lf7/3bMS8/Sdk8vfT69tLEGbrstTfbVuG9Ksh90qtK2AhnYZidxqa/F0qA6/PHx/BeA6QToNg7ssIMYYtAJ9Pv6sNSg4kE/KoN6215lOkugiLiGE3ox5Ov+sgVU6Bnetg3uvqNZzdFEbeBkVpRKqVFiPGg5M3aOJmgJJDeg7dtwUy60H/q/XdtSykfV/s67+Bb+Fr+vvGzbCHTUormboUDYQ5L8cbE0GJvc7Vn0mAqvwYSTA+wGien8ZNVS+84gxS2Al75BcgpzmS3wGzZVHc+h5ZK6R5e8zaWUlRWQaQyjI4vBuneRHWrpVJ85bTtJ32w2mPdS4chDWzlJSvLId5b8DmJVpw5wG676nXEKfftfi2L49fSywf0rQ15LVQgt02iBM1YBvLAUsgOw9p1RX2b4r3+vZn4Ay8Xo3Mrz4Wl6dASg9jpv4aeeA38dHZXrD8gIdxzFh67sAgIkkUhTRqgtm+0vuejqOG78E3wsEdOAs/VLk5Y+BMCG7tCH4/4khCpAxueVRjjXcRDmFeeVSlLSOfnTgMkXY3zCV8+3/oGrpvk0b39b4aZ+ANWsWht2DmvIwVycUj4Fg+zQ8UyEy5byGQoXOTV9SIZV30vX9tYd7/K+zeoGMtMt5mvog0bgJtLrBB+TIuIwVSsrX5+fl8/PHHZGQkv4jdu3dnwoQJVFZW8tprr53XCl5GHSCzPv623Qjt2hBHdoo/oAn8AN76E+zeWBWWKJuXw55N8JVHa178infD1P+JbvpPHEU+eUmt+IP/iZM9/bMiWOG9cIuGopsVHyeTGXYI2bYcKu+unfdVqFLdNLzgYeH3gnQdTrjr8OQvEvU/XRjUQ/KSRoq6Y4xKeaydk/xMwkFY8i4y+nYI2hAXTilgG/UYaZCNfesP8H3wFyg/pc85rwWN7v4hx530wkWlWTvCBT2h5KCGOOYWuvUOknyMcvs8WOGONY/nLY6OhTMnPa534/vPnPjckvIaGu7VboFQEGnbC2f0XVjzXtHfOTbSvg/ONQ+kd3+fH2fILThD0sjjkFiF3lfCnJfiSRxjVNKj8QWQDKoog1WzYPdGNQoPvEY9o8TRCB2vcb70feT+x/RgESPTBqg3W68xmL0bU3j5OSk9G+OwYSF89LxqyQIU70He+D1M/BYkCoRH6gaaJ6Wme+/aqJ7PVswvBeRshcpRVeexfnQ/jm1hJUTAO44Ps2sdNGjs7WDo8+u4at0NZ+y9WHNeAlGpImnXG2dc7QysaaNZW+yJP0z5tXQcSLjjQO8vLR/OoJtwBt2U/N3mJUnP2yCagHH7qtTP3Fiu3E81KGivyb0TSVp/po61QzuViDAJxmUCIDYyfCLM+FvSHCCN83XuFAsRO8nbDSwoiyT39DjYnz6pB86Xfwknj0X3c+vmwoFt8MV/h5ZdcK76Etbsl9Rg6thIm544479afZvTgHQeglnk5dkpSCf3GTZtjX3LD2pdlidyC7C/+CvPr8z+nfqO+WJ028W1H5wqwayYkSQJYOwwLPsAGTge+87/xHrpP3DK3XFjBPqPhW4jYO1cjVaLvRYQOwzbVkL3YW67vUlw6TIU2bQYQjHjIcOC2H3M6tmw+D1dM1t1gnFfVA/e+W9UlRdXNsD8NzRRZNJ+LYwc3A6njl2YOf18IBxM6bWd1nx+HuH0vhLr4I5o4m3c51GvETRrk95NDu6AFTN1n1PUB/qMUqI5kIk96cf43v8TEjHsNW6Cfd3Xo5ET54pwMDVhGKqEFtV4ysbKT6XCjjXwzv9G1/BjB5B3/heuvx86p5jjI4jsKT3LLoBTx+Gl/1aPWLe+svBt9TYe/yUApF0fwu3OQaquqs+fRE4edb2Xm2Bf/7W0zjvSdThsmBs3v4jlRzq7kRUYnH7X4vRLTuouXQbjzHoFy2fHHcuckA/pOhxr72bvQo3R53lgl+feguK9+kxTSfdEzmKv/Eo9t926y4aFavS4778gvy3O+K9iffqsvnNiIy264Fz3Nf1tg2Zw8jixs5M4lvaZ5ce57utYHz2luVRc72Vn9N0qf7V5iRLUsU0Clb7ZvAT6jk3Z3wDS/QpYNyu5zzsNhNxCJKdA5X9iu8XyIwNvVKO21/48slc8vBum/baqToggezbAM/8GDzyG59oc7QCSsqzHYvtKdShI/DxYARsXQv9rdJ2b8B3v2zcugLAPO9bAaywku1Df0cbNkOMH4yLxxJ+J9L4Sad9XpZYSYSxN+Pp5RdlJl5BPSIAbDsKS95DLpPxlXCJIScrfc889NV6cmZnJ3XffXacVuozzg4aTv0XpUz9Byk4ScauT1t3VenrsQAwhH1HtE6TirB42BidvFOKwYHrypj8cRBa/CwOu+f9btyscgq0rVcuzoC20616jfmHaEIG9m+HQLmiUC53710lSPuk0ALN5UbLnp2MjbXtgFkz3vtDy6WamFqS8dBygGr9eSYVrq5XZsqund7IEMqHz4Nrd+zxDOg+GlcmkAVkNoV52Sn1Eyk5puHOcJFDMZs1yx0thR+z7/kcT4vr80DAPX5NGcPR0zZXbvxVeeyKa8PDgLlgzB+75CbTs4i2tEciELkOQBjmYDfOSn7cI0r4XzJ0WJUETERnr4RBsW62eV/ltoH2PSz4RrBT110iBVO0GpOcY7G4jlDip1zB9eYfa1q3nSDiwBbYtc/vRqIfthG+e/8LPnobnfg7lZdH8BVtXwnX3QVFvb11XUG8ly8K55btYr//GHXMqrSV9r4G2PVXnd/VMT+NeVURIKojArFdixqLSXiYcRma+DPf81PMQJ/7M+MPM8cOwfY32a5f+UaPS6RIlYmOlMzCQEaiZlC87oXIVYR+xtLwB5MRRpPdozKqPPdptkPYqQSfdR2B3GapjLathnWpO1wgROLAd9m/TdnYeAJk1JBtNA+b0cd2HCFRFCBnRKLAzx5Eug1VGKjEqzO+Pku7BZM9oGmSDiYy1XyNuDgEcB+kzFtr1QbIaY5a+l2Dc1jEj7fvo4Xj/Fti4QD82lr5jt/yL/sZ2MFaybVzCDpQcwssPD1zZjO2r1Jhp29HREA7r/LhnI7TriXS9ArvzUDh51Pt522Edp8eLoWlLKOqVXth94ybI1ffBJ89Efy8OzvgH04rwqVXZEZw4CttWAUbfsUjOlcO7EbESnPhd+vrQTkiUWIug3JU62L0JJ2iBWFFd9x1b4IoKlUfychoIhzSqpgZIt1GYtUtAYtatoEG6uaH17/xNiahIjXeshad+CA88Wv39T5XEeZrGwfIr4fs5JeWlfR/MkrchnDDv+vxIh4ssrVk0AOmxCdbP1bnezcPj3Pyd9KKH186HmS+7pKQgxbvUKHPvT3V/3bQV9hcfdfMXSN09w2ZtPM8n4s9Aug5B2vTELH8fse0q72djOeql7+UIk4iECFtwz4pzXquRlJcugzHL3kuOvLR8SLfhsGJGMokbDiIbF8GIW2svxdakJfY9MX0eo/NdhUO7YM9mqNcAugyscmiTEVMwR/chR/dGt9+5harTXxOO7EesDJxwiDizuy8Ah/dq9HBCElotFCgoUicHr71FsAKatNT9fsISKP6A3nfPRo20SUwiX3ZS15kug5COA7E79NdcR5n14+Z5EZ+3xzjufJ5ZD2fCt12d7zM6jiN8wZlSz4htEw5qgln336F9O2D1Co1O6Togmoz1ikmYI3uQI3uifZ7THBl7DxiDc9O3VaKushxwNDFzt+EaHXDiMGb+tORn4Q8gRX3h4xcjvRjbo2qwKd6NtOio0UhiqhzjxQimaaua+ZB9Wzyd4gzAno1I/xoigOZOS44IFUejHboPx7npEazXHlWnKNx9S+fB+g4ZC+f6h1VLPzIPOLZKHOfUMhdGBJUVGsFXdhJadlQD8/lWVDh7Cnw+bwWA0yXJn50LHAd2rVe1iNzm0Knv/9/c12WcE9IaMXPmzGH58uWcPHmS7OxsBg4cyOjRo8933S6jDmE1zsW591HYvwVz6hjSvF00cea+ze4kHr/EGHGQrStqJuWP7PXe9Iujm/7PeUJGCYegeI+GdjVvo8km00HpEXjpV0q8hYMa/pVXAHd8DzJqSTqEQ/Dqb3UBiNx75qtw1w+hSTUeJemgTQ+Vydi9VpPAuAcKGXqzErwtOyFblibrCCYm0junsrsrabFrjXfZtUFWfWTsXTD7JZdAFiWHCztGvfguUcig61Xa58wJTLhS9QEtH851D+jGv14jJedirwEll47ux9PbHEFic00YA9nnsPGa8Xx84iAnjARtmPM63PI1PXjMejFK2gcyoaAI6TxIPTCK+sOOla7Xjvu8h9yoh572varIiLi2+TN0k3iyBF56VD1bw5X6HuQ0gzu/X2UcEnHlboLlUNAWUweGq1qjZWek4wDYviK+3YNuiD9g+/zqoX4hYSzk2geRwRM0iVnDXGjd/cIYOpZ+AGfPYNyDt3Gjc+TjF6Dj43qwPlOafF0zdy3Lb4fzwBOwZz2m8qzquUcSRrboqMatbcvi+3zgtTUfOMJBKD+Lpz/q8cMQyESuuhc+eTZ+nOe3Rbq6pPyi9/SP457S5r4BV98JvUdAq65I6ZHkRJAiusGvDs1axxw2YjzSfAGkTXco6KAH7K1LXSOQ0cPlgPHx7b4YY80OwxtPwv7tuqb5A/Dpq3D7v6gRuxaQwiIEf/wBVYxqthcWIfltNAHwyaO61kQ89a59UA081z+ENf2JqiiDyGrn3PB1/Z9mbdyxtg5TUaah+JF3NxxCxBAnFwaqeR8KgTHI1fchA6/HHNiKNMiGNj2i5HNOQZUES1zhBW2gqC/MS45QFUDy28CRvXrwTZzzgyHdL7RzjduWz/t5nzkBLz6mREk4qMbPBtlw94/SMtZIt+FKmO5ep+1s1yt9Q/2Zk/Dio0okhSo18qVBNtz1o6h2e3VY+hHMm05Vh819E66cDP3GeuxxY1B2EvIK4bhHboVmrSFYCbPiCUUTDiGnjytZWthBSe5EwtBY0KLm5NrMmZZExIgIzH0dJjwEm5d4e4x+9Dy07qZ7eC+06wFnTqpsU6Jx3AkrKfd5RbPWmj9h3ZyoQcSfgfQaHT3bXCwYg4y9B6fnWJVNa5QLvUanR9KEgvDpP5LH2pkTsPJTGHYjAOI4+r6IQMNczGcxXKWCz48z/gEl5RxbCdhAJuQWIL3HqrRIQVfYs5XIOyaOT8nf/DQiAEo98uSAOi3VJOvRpKVKEq2e6a53Ar4MpOcoLfvjF7wTlvsDKmtTV/lRGicnoEYcePuvyI51WjefHz6dipn0CLTurBIjU36s5HnJASS3EAqLktorxw4pgdi8DSbTjXo4GqvjH/N7OwxH9yJDJ2A2LkCO7dezgbHA58MZ92Vte7PWVTkrIouZMejc7w/gXPsA1rt/in/e2flI36s0YtFDdkeTmu+FLq5ckmV5ryWnjnn3YfmZ+ISn9TwMwwUd9PuEZyqBTKRFkfb5u09Tus3NY2L54NNXtc/bdNHcd5P/NabPCzSKN9LnuQU49z8Oezdgyk4iLTpF25BbgPQfB7HODIFM3csVdNDIAe+Wwe4NGuEY9lUt21V/l1ekuiqKFO+xCIhJT4/eE2VuFF1O89TtBujQD+fB3+v67di6fteVQ9DhvfDK4/pMI/u9lkVw2zfPL4Gd09zT0CHGglZ1kJS84qxyPadKonumWVN1z/R5jea+jIuCat+CYDDIgw8+yOrVq+nZsyf5+fns2LGDF154gT59+vC3v/3NU97mMi5RGAvcBGRxqEjhIYTx1slNRE6+TviJENI7SF3CkC0r4b1n3H8I1GuATPomJr9VzRe/9zSUn44uBqFKjUpY+C6MmVS7ii2dAYf3RD1HQ5X65+2/wn3/Ubt7G4Pc8DCyZ73qdvozkB4joHk7AGT4LaotHwpWkUjiz0BGT679wmoMcv1D8WV3v0LJ5QSIHQbLl76RBJBeo5HCIsyGeUhFGdKxP7Tve8l7VpNZH+ee/1QSae8mTebZa1QV4ShX3gkf/D0p4aGMmgz7t6bIt2RSex6ni8py9cBMvLMIsmeT1qXnSKSgA2bDXO3zov7QIdrncu0DyN4NmK1LlSTtfoVufAG54lbYuVYJ9cjEFQggIyfphu6DZ6DsdNRLOVQJJcUw7y24+g6k9AhM/YMSTUZlb+SaOzC9r6hdu2sLY5DxX0G6DXfb7VdPlcI0CJwLhbxCJK+WBr7Piu1rqwj5ONg2lB5BshrD6dJkbdX6MQY7fwCK+iWvc8Yg476MdBuG2bJEvcu717bPTdX8Lt2GIfltMevnIuWnkaJ+UNRPD1lH9yshn/i+ffwydOiFDLkBs2UpEiyvMnZKIAMZfkvN0U8NsqHvlcia2dH33/Kpsa7vWG33NfchXYdG291tWPVSBBcKa+bBvm3Rg29kvzH9L/DVR2vnQdW4mZu0M+EeNjpvBjJx7vh3zLZlODvXKtnSewxkNwNAWnfHLuyJdWADWDrFOO0HQmGH6B19fujgMdZ2b0TCAsbCuBI24liIz6feh/kuaZjTHPGQfZCr7oK3nnTXWJdLCWRoYrImhVDQXr1nIwUb9z/X3KtyKV7h8UJ65PhHL8LpUiX9ACorNELk06lww5drvh4gq0HUGPVZ4JZdNZ8HKyFcomXfeH/11x4vhvnTk73hZr0GRb2R+tmYslISx4NgoGVnnOxmWG/9UXWDI6+1ZeGMmow5vNtbniocQratUnkRx07WfXZsaBTvlCLBCvD7MZY/+sNDO5PvDcj+7bDFWztdv98GE7+hMnXhUHzZgQzoPw45ewqzYT5SWR6/Xxt8vcqhfI4ho+/Q6MrNiwCjXq4tO13YOrikYSIpLss+gTlvVMmEsXI+TH4E06gG55Ij+7zHmu2OtWE3Ivu2wZt/ia4nPj9y68OYNnWQF6moL849/6Xr2JlSjazpNEjnupMlsH9XpEbRa4r3KuGeW4Nxu2G2vt+JqN84rs3ihDW6h/jzo4y6XdfVjQsBgW7DNBoToEkLpHh3smE7HI5zDBORKkL4s5wdqsWmZci21VGjgPtc5M0/Y77x22i0REEHxN3bxrXrzEl47Q+6d7UsnUtG3owZMl6dTPwqyxc5Shqj5DQ5zcEfwO44DHNwKsb41fm5fjMoKMIAzqgp8Orj8QmsLQOjp+gTbN87+rxPH48+b39Ay/YFPInxGp0FqkONen7oe1zYATm4vSpCUXwBNZ627w2bVyCbV0SjnyPyOm/8CfPI73TfVU2fA/qbdr09q+O07wcr5mJF5syQHykapH2WUQ+prEh+TQV1JpgbiSZPiLM7cTzOGCHi6HoTe25u0x1Wz0LESdjnGnVSqgmN8jzPZGTWj57Pq2k3kfbVdfS4CEz/c3xEWqhSHTJWz4EBV9VtebGI7KUXvBndIxuj0ZBDb6j9/ee8rjJZkfckWKFt++B5mPLtqp+JaPSuOUeeRDkPC1NXaguXccmh2pHx7LPPcuLECT744AMKC6OH80OHDvH1r3+dZ599lgcfvEC6o5dx/lDQnugpJAoB9QCqCcNvQt78Y1JWe/qMrhM5lYsFKT0C7zwdH5YcqoR/PI584zfVT6yVZ9W7PtE6a4dhw+Lak/LrF3kTqseL4fQJaFTLBH3GQLte3rIOuc2Ru/8Ds/At5MBWaJSnns11FTJcXdmAbF8HH7+i3jWBTGTglTDyJky6xHrTVsjoO+qmrhcS/gxNRumVkLLzQE3Cteht3ZA1b4dccQs0baXERqr32zW0nHudIomBPPQXYw/8TVum7nNjVF7ES54oJx9n9J36vCPezUX9oO9YTCiohF7iIcwJw6YlyFW3wyu/Va3R2LZ/9DKS3wpTS0/cWsMYaNsDadvj4tbjUkK9BuBxZsdxlGQ6elDD5i33mYuSnezZkt79jdFonDbdP1u9fAH3sFzDOG/SAhn9heTfbF6eMrEv21dD39HIPT/TOXXfJmiYgwy6HjrVnIQO0LwR+W1g+UdQWQYd+iJDb4x6n51ru8831s33lv0oP63ejU1bnPu9t63SuSlxfvD5Vdu431jkwA5k3oca7eAPaF64Mbfq2j5rGuzfgROOIdt2boBF78MVE6ovu14D8GWAHUIk5nrLnzoJZAykbQ+k51hYMRuxbSXd+o/HuISjM+n78MIv4WgxIFr3a+/GNCmETR5GrQiCNWhti4NsX6vRHLFau2Jjtq5In5Q/F4ioATZpPrdVwooaSPmtq7zfT3G/G3s78u5TyXJEjXKheRtYvxjH8WNJUKMOBMQJwJ5t0G2Ap065dpG+wyI+ELvqUxEDJqDv98CrkWUzYdbrUfIovzXc9S+YrPq6T/ZygMnITBkhKKD7n8oKxPapMdOKeC8blbMKVmAa5iBf/Dlm0dvI7g2aY2LgtVEv188zjIFWXTRJ8QWGnCqFD1+AnRv13+27w3X3YBrnIrs3aZRGOBTdpx89CK/9Eb7879XfOKu+9zgGqN8IqSiDqb9PHi+v/QH52q8w9WqeX2pETj4ywuOMsnUlnoyq46gkxZAacogNuxn59OXks+JwnU+l4iy89LgaJoAjPj+MvQ0zSAk7OX0CFszQeRig5BRc1wyT3QQGjYctS+PeU/EFoG23KlJeVs9XwvTsaajXEBk5AfqNrjU5L8s+8vbSrziLHNyJaVWDAfz1J9WLOBZzpyPNWmKK+iIZmUh5sKrrxQBZfkyXgci+rWr8CTvRJ1N6DKb+Hrn/Z25Ugx9iElhj/LBri0ZdQernXdRHI4zDMQ5YxuherHMa84fx6fydOOkaU7MkmTHIxO/Ayo9h3Txdm7oPjybuXfax956qsgI5sAPT+twNVFJZAf/4LYSCMSebSpj2pL5j9XOSjEtVRwxfRqSRiQ1CEI0kBpg9HVZplI/kNYdxd2LadVUDcsNclUSLOGgYILMBdEsjqfDwm5GPnkt+x4bccP5lYqrD8cP63iUiHIR1C84vKQ8wcDySkw9L31MnrQns9CgAACAASURBVNbdkOE31Y301+blyTKtIpqX0Xaf99y3YMVsfd65+TDuDkz79Pbjcmg3fPiSzhGWD+k5FK6+HZPx+eXXLsMb1ZLyM2bM4Cc/+UkcIQ9QWFjIj370Ix577LHLpPw/A9p2U8+m2GzfoIfXATXolwG07Q7X34/MekU95n0B6HeV6vh9nrFmvrdWtx2GXRugYzUJg9LxBKgVqivAXcj3bkMWvA+lR6FFe8zIGzBN6kieILc5csO5vfsiAusXI8tmqQd0l/6YoeOqDhMSrECWfAIbl+kY7D8a03cExrJcD6GnokROsAKWfqLE8zW317pZyWWPwvQdmT7hfzHRuqvKdSSiVUdokK3SN7Gf+/wweDwAEqxEln4MG9x29xuFjLu+5jJ9fugyENmyPD6hkj8D+l+ZVrWdM6fgrb/Dvu1KonXuDRO+jOX3Iwd2woyXowdbEdi+Hj5+Fa68LfVNBTiwE86e8TCMhWDlLLj+S2nV758REgoiSz+B9Uv0GfYdgek/qm5C4GuDgdcgH+xTg4sLsSz1PmqY405tRkPm41A3E66cOq5z5u7N0DAHM2w8pmMvJeR7DEc2LMTEECZi+ZQMSO/u3p9Fxmd2U+S6GojHVDAGug/XQ+t5gBzchcx/D44VQ0FrzIgbMfnnU/oiVrPlXFHN9QJyeB9MfTLGSz8IK2dD+Rnkhi/p+p9o+A4HYcWnNZPyXYe4MiqJMKqZXxNWzoZV8+K9ABd/jOQVYnoMhrf/DqURLVSj3qAzXkZaFuk7nMoYkc465lD1nlVBBAnZ1aWvi15ecRam/z1qKCvqATd9GSsdyb6UjyydsSCISHJCY9zPug5Gju6HJe9H79cwD+79ue5JVs+FsI1D7NwShpWzkK4DdEQmKmyIku/G/VvCFrH5C0zAjRrbsgo+eTW+Ykf2wdP/CV9/DHqPxFk1W2XfxOi1GT5MnzHQsS9VhE5i23oMhU3LQIxGYsQ+ch9KFvQdpY4T476URh9eeEjxXmTeuxw7fginSQvMiBswBWkmQ71IkHAInn/MlY9xO33XBnj+UeShX8DyT5KNOOLA8cNIySE1nqVCk0LIzUeOHYzz+hZ/Bgy4GjavwPN9ENGx0H9MrduXGtXPqaBe37LwQ9ixHuo3xAy5BtPVNS73HqmGyoVvaZRlRhYMmwB9xur3T/+nOlFEYIfhk1eRxnnQsZf2+ekT0T7fvQmefwx5+JeYJi1g4rdV6q70sJK+3YfCleoMIusWwSevRJ/L2dPw6TR9ofuNrl23nDruGvFMVT8YS1RH/MRR3YOn6rYTRzXSIBF2GOa/g7TtCnaAOCk0AWy/zgjLPfLkiKNOS0cP6F43UYLGDsPquchVU6o3SPj8cOe/woxnNUJXUA/2a+9Tg2ENEPwg8euGRPZwpBQTiy9/0HXIIA9jz8kU0jgiSgDXgpRn0zKkyoAdqaVAKIxZPUcNOo7BcSISdYLxCQQy3XXCePPfgq7NH76oZ8zI/qKkGF57ErnnBzr33fVjmPEcsmejtqdlR01WnM4a2n0ohCuR+W+qCkIgE4ZcDwPHnXt/1AmqmzvOO2Gi6NgP6djvPNy4hrZ9/IqetSLv6fHDMO1PyN3fxxS2q/7OJ46poTJihLXDsH6xRi3d4Z3s9zI+v6iWlN+zZw+9enl7q/bu3Zs9e/acl0pdxgWG5YPbvw+vP6GeChGv2mvuhmZpHrw7D4ROA3Ti8Gdc+nIg6aDslDcpL6JkX3XIqq/eV4d2Ezdh+/zQrQ7CwnoMhcUfJodq5+RDo1yczSvh7Weii8DJY8i2NXDvD88zmVIzZMY/YN2i6OZ46SfIpuXwlZ+qR+Bzv1JDQmTDMvM1ZO8WzC0PwPx3kzeg4aBuMEffjKmFVr/YYeS5X2sYblXZ05A9WzG3PqC/CYc0bHLvNsjOw/S+AlPbqITzDWPB7d+D136HlJ/R99tx4Ko7oKCdJu16/tdQcjg6nj6dxsniHel5Rl5zN5SdQg5sU09QOwRdB6W1CXSCQfjzj2PILxs2rYB9O+CRX7nP24MYW7sAGXMrpmWRJomM3dRZPug6EMrLvD1DRPQwfQEgJYeRtQuh4qySux17XvTQQ3Fs5IXfwLFD0b799A1k1ybM5K9d1LrReYAmNls2I6onmlcANz+s3sBtusDeLfGEo+XTpGq1hJw6jvz9v9TQ5zhQehQp3oOMnYg1cKy+L2dOIPu2aJl2WMutyTsQoMsAWPZR8lgWXNItjfqVl+lYOnZIcyP0GlKr+S5dyM6NyLQ/R+t+8hiyYz3c9V1Mi2RZsc+EnsP1QJo4p2fVhya18JIHHUtLPkxOBClApz7wyWsec0tID8tjbk0t7VUZ1YWV0qPImgWaB6FjT+jYWw24DbM1n8Y7T0XnJssHt36jKrJCbBu2rFKv2ka5mN7DMdmu/uj8d5NJvXBQvSdbdlAyKqnuYVj6MQy8Eha/n9xujCYfqw7Gcsd24r7H6NxeAxwnDH/8UbwX79Y18OS/4nz78RrKNtChF+xcl/x+d6r5IC0d+8bIBsTAtpGOfVRbfdl8JBSIerSfKodV8zBDr0kt1Rgsh4oyxJeJCVfELTWaRNhBOvZBZk13CZqI5gBISNR54x+/8yahTh1X41C7XsiS2VQlehWDBFH9/zMnQHwYwnFHfxGgrBwCZd5jNRzWNfAShuzdirzyRwgHsQFKjiK7NsLtj2DaXFgZms+EbWs0GjZ2nIoo0bx1lZ4dvGBZenbwkCWPw8RHYNoTyKljrrdxWL3J2/fUSJ2wRzRMOBRNSny+0Kmft7HRsqBzP+TsGeTp/9Zx57iSc+88gxw9iDXS1cLvPkxfv0O7VTu9x3CMMfoexBLysZg5Vfu6oiyhzx1drzevhJ5DoHUX+PJ/q5OO3x/vjT3v7eQ5NRSEee+kTcrLwV3I+qUgguk+ENNayXYJZIEdeddMVdUwAg30fCCV5cj6JUrA57fE9BqmUTLHDycbUCMoOQTb13knoXbPIqnHmk/HQ7Dc+/twsMrKKCeP6zp25gSmXTfo0g/jc/uuUR5M+m50jvEHqu+kWNhqZJS4sCuDOKJtTkcjPRWyGqh0pRdqkoiqAbJxKdHZOkHubOMKGHwVsm0TVM3qRhPpWoJp0UHzMsXIz0CMMSJYCRuWIonvcCiEWfg+THxIo6Nu+/a59TlA79HQaxSEKpSUvxTkTvIKNHIzlPCO+zOg10WWE60tOg+ADYvi+SJjQZsuSCiofEeiYSwcggXvwaSvV3/v5Z96G9X2b0dKiuvO0fIyLglUu8sWEbKyvA99qT6/jM8pmrWEr/5KN0qhSmjR4bNLz7gaXf80KOqpnkaJhzXHgXS0G2/4sib/CIfcpGWZqtF3xU21r9vg8bBzPRw7GL235YObHlCvr49eiSc6RCBUicx+EzPlG7Uv/xwhp47DmgXxi4wdhjOnkHWLdZN6oiT+kBkKwtY1yNGDKs/jBctSojWvFuNv80o4cSy57G1rkCMHIDsPefYxOFWqfe7zIwtnwB3fwrS6hLTAvZBXAA8+BsW79RBT2D76rm5ZpUYQO77dlRtXYQbtrzl/QkYWTPmueiedPKZkWrqb4rlveRMKZ07gbFyOSfm8fRo+ev19yAua6FXCIUxGQEOZR03UDZJXeKs/Q0m58wxn/RJ4/wWdLxxbD2Sti2DKNy6uR/rWNWqAie33cBB2b0KK915cL0VjYOQtMPBqzZnRICfeMHztvfDiL/XQHapUb60GOTC6mqiJBEjFWdi1ScdQh+6YgObFkYUf6n1jpQNCQZj1JtJ3hCYInvRtNdqdOApNC9NP4pTfWufspTPcjbvROWvslLSkxqSkWI2V4bA+q43LkAXvwX3/WrNGcS0hM/4RP1ZEIBREPpmG+eL3a3fzvqNh22o4tCveoH/Lw7UPtW7WUg0mSz6IPlPLgjGT9bkdPYinh5Pfr96Y+S01QXQiXK9HNXz/X/T93rBUE7He+R0lNNr3hK//Dg7ucBN+dqgiiSQUVMNYyeHoWrJoBkx+GNp28Q7zBl17So+owSrJwOOoZ2TTFjD0Blj8Xny7R9/mnaQw7haO95wJngn/krBwhje5XXEWVs2Fa2uIMBh3l5vo9Wx0X1O/EVyZRhTcqVIEH0h8PcX4MKdPquG/IpY4c3OqzHkLBozWaJxiD0ejlkX6neMkc2f+DCXdT52o8pqPwiidc/okcuakp1eoAObgLmT57GRvQRFk5uuYq24DfyZSGY5WXQAsfd69h6lmbjC+303Ar2OpDiCODbu3IOVlmNYdMY3rZs6Rj15NMMi5c8vHUzH3/6ROyjgvOH7YWwoqWAnHj+iYOHIg2WlGHHXWqQmN8+C+n2s0RflplRjNcvNBtOmic1QiwRwIQNs6SFpYHXKa4RQWYfZtjk6dBqR5O6y8AmTOW/ruxpJToSAs+hAZdCVUliPPPOrmwArC5lXIgg/gSz+Cg7tSl3vmlPZryGOvGKzU5+HCObhbzxINs2HIVVh+N++dl5Y9qEOJOBhj6fy3ZwtSdlrHeXZ0fXdmT4elbpJZAVmzAOk3EuuaKZo34ngJ8QSuelFLXnM4eRx55pfRdvszNPLs3h/pHOIFQQ2hpYe998iRdnfopXItifKU4aBKNLYsgr1bdSlwo3AArMI2Gn28ayPO1D/H7FOXYhbPgHu+X7U3Aj47MYxGdyRrrxvE58eq7R641wjV8k6cN31+XWtrA9eYmTSfG4HKs8jpU67zInHfY6PSNxHDTOL2wjFqqIojySMTuiBHD8SvE+fQ5xHIkQN6v7zmUNi27vInnCuMgZsfgld/q/NgyE2IWtAO+o25uHWrLcZMgv3boOyEvpeBTD2bXHuvzjs+v/f+6Vg0Ka+EgiqF5tjQvptyIaBrvJdzqM+vc+JlUv6fCtWS8qFQiNdff11JPg+Evaz1l/H5ReTgeI4Q29ZDY/2GmMwLS86fl7I791PPsyP74zKw0/sKTE6zmq/PK4CvPqZaiyePQfO26glWF1EEgUzN7L1royYJa5SrGqGZWeo9kMpDav+O2pddGxzc7b1AhXVBkgaNUnisGZUjyW+tzzkRIrX3jtiztdqyZeMyJe0jdbfDqhf31tPwtV/UyaZHRJQQ8vkwDRrX+n5xMAbJbla1GaoKyty7JbWX4P4dkE5SY9DET581+VNEG9QLW1br8z5RQhJ55tjQuAlih3Gy8qCsGAiod2GDZlj+AMZfHxl+PSz+IHqA9Qcgp6l66J5HSLASPngxwcBTqREAm1ZAjzpOovRZ6rZvu/fzFtHnfYFIeTl1QpMWNfQY5/UaQjsPrf3sJvDgo6ptW3pEx2ZR77QTTDtrFyMfvBTjQSdYEx/EFPVQyRqvza8xeviNvAe5+TUntPPCiJs1gmT7avUQ69JfjbRpQN5/ASrKqXoPQkEIh5GZ0zSC6DxBwiE1QBB/wDQGOFQHkZI+P9z+Xdi7WQ81DbK1jyIHktriigkaNbNtVXKfF7b19lK0bf3N+Ls1J0U4rL+xfDp/XHW79su7z0I4FO2XYCWmeI+GFve5Itq+1snEqKyYHR+pEtEZf+tpzCO/UUPN6RPJ7cltpsYgL5LG8kEkFHr4DdrWiK5+5/5pjVljWUijXG8CK50xv25x6u9WL6yZlG+UCw/8QutdUqwGhk5903q/Zf8OCDsq6RCjOICFJpPbtNL7QsdGDh/AjJ2EvPJb9YJ1L8UYzJjbMBlZyJjbYM4b8WtJw2zoNwZ5/wXPCHwRYO0CTZx39rRnYkBp2QE+eMm7bof36aE7HKIqeW+kHMsHLdpBq044uYVwaF/MlwZp2gqrsJaRLIAcK8Z56XdKNiC61x40FuvKibXa84iIt9ELqjTFL1k0awkZGW6fxCCQqd+17QJr56sXc+RdDWTAmEnp6wAb403gt+igBr9d66skNkxGBrTrrgRsHUEqzuqa0zi3Sr5RjhUju3cgjqlyvhUH2LtbHVd2bfImn3x+OLxfJRLLY7zdQ0GdQz98CTOuGsNbdp72ayCQ3OcZmZDfEsdxNNL14G6tF8Dst3EmP4TVuY/O6THkfRUa5ykhf/wwzou/cyOh3HHebyTWuCl63dJPkh0ZVs1Feg9z5wSPd8EfwJQeRZbPVK/1yCQRDqqMz4cvYW59kKpM4lDF0Qpg2naDpi3dfCceYy2/lY4xqXJ6j85DjgU+P86Im+GF37ofSlU0jzNiApbj4Lz5tyRHJCnejyyfjW9YNNpVzpzUudHDiUDEgZOlkJkVn9Mg6K5rrpxLVd1CNuLYVc4pUlGuxpyYsVYj+o2GNXORk8erxpwJBGDULVFCMw14lp1RP8V8bjD+LI1U8/qBz6+RELkFcOyAfha7FjXMVl3zUIgkAw6kNtB8Bkg4pEaWfTvAMjrPNm2Bdee3MFkXObF3YXt46Ffq7Fh2Alp1gjZdL67WfV2gXgP48s9gx1pd03Lzdc8VyND5JNW5wp3fZedGnNefourldxzMdXdi9R6me7p927y95ZvVMpr0Mi45VLvT7dOnD9One+liKnr3rqPEjpfxuYezYh7y6Zs6+TgO9ByMdd0XMLWw9KZd9sp5yMzYsgdhXXdHrcs2lg+583t6qNq4VCfYfqNrDgGPRUbm+SMAjQUdeuqfWGRmkVKtr66J3s+KhtnemxnLUsKtfkNv0j4iCTBygpJnsd5VgQwYMi7eq+NckJ1bfdmLZngfOMpOKVmfmx7BlgpyYDfO9Gfg9HHdwBW0xrr1fkxOTbHOady77JTee+923QzUb4g14YuY9l3VK8uj3SrDcJ6lebIaeIb1C+jmv/dQJe4Tn/fAqzAZmdjTnlFyK3bTs2crsuADzOiboO9onE2rMUf3qeMSAaxRt9V+rNSEfdu8jW+hSmTDMtWFvlhonKOHvERiz/LpOD/PkEN7cab/n2oiCpDfEmvi/Zh0359Ahsp3fdZyS48qIR8OAdG2O68/hfXIY0oIeh3a7bB669YFmrb4zMlLxQ67xtRET1oHtq2rm3qlgs+vyfKC8WNFRKBhHRHnxmhem7bd6uZ+iWhSqH8SMfw6jRKKNVD5MzS/Qr0G0LII+dJPYelHetAqbAeDx2FymiJ7tugy5iSEtgeDsH4JJkLKp8KGpSkkR0LqGTVmomvUi5n3/AEYOwnTKBfpOgC2rIy/hz8Ag2NyAKVqd00YOxE+eCHeE9cfgLFpRKNUeMgsRFCewvs/Ef7AOUn8mYY5SCBD6x37qvgCuo55JRSOoKIMZ8tqED/GCUVkghErgKxfhq9lEWbgVUizVqoXfvaUekP3G4PJqo9THCGRPRTtD+7GZDWAs6fjNOlFUNLfDiOZ9VT6JBH16mMaZiM9BsPG5cnjYfA4Nd4cjUSUxZRffFAdNLyMnmlCRHBefTJZ7m3FHGhVBF0+w144AcYYJKu+95ipK6Pc+ULHXjqmThyL7j0i62en3np2uO/fVc97x1o1Ng68CtOm9pELxhicETcj+/dBeak6WwQaY0bcjFUXjiGV5ThvPwfbN7jRz5mY6+7A6tYf2bDEjb5JyF/gOBoJmJ3n7fFuh7Vvdm5INoKK6J4+rwDymiPHD8fxmABm3J1q6GiUp8b42D5v0FgjH+e9W0XIx9wcmfYUzo+exIy9Dd5KIKD9GTB2oo7zqX+G0yeJmzzWLIA2HVVWx+vcYoeRrWuU8D+4h6Q1GrTdOzZ4RsKwZwuSmQWBLKg8q3NDrNJLiw6YDj00wqn0cDSKyfJBg0bQuS/yj98TyUZadakYnfcO7oIZU2MKjRkfH01DJua6xv6E78TRpJTDxiElh3He+LvmkwHIbYZ165cxzdVJQbatw3n3RZ2/RKB9V6ybv6RraL2GmmfOSLT54kbUGwsJVuC8/bzuYyxLjRjX3o7Vo+YksiYzC2fkRHjvRcTRNVzy2mClKYUiwQqcd16ArWuTypb6jaiKpoq/CqnXAGN83ueWUCU0bKRjLZL7LNJufwaMmYgpO6W5iLyIWq9IkM8IZ87bmp8rdpwf2Yfz4cv4bjnHnEV1iaz6mufknw0+vxLxnfvHfWwys5ABYzVPUOKeasSNSMVZnGn/mxT5JB+8jLQqgoHutXY0iTz+ABT1wuTUQZLay7ikUC0p/8ILL1yoelzG5xiydS3yybT4SWXDMhxj8N149/kte9s65OPEspfjYPBNuKfW9zf+gCZOOq/Jk+oWxh/AyW0Gxw4mJ72vg0NBrdCyAzTKhtJj8Ztzy48ZMBoyMpFFH0LsfsU9GNChux527vgOzHxNM5HXbwTDroP+6WlCVgfT+wqVsPAqu6gHzEoxXYpUhRk6m1bhzH5XvfnzW+K76hZMG/VeEtvGWfgRsnwehCoxRd2xrr4Vk52HnDmF89IT8d4wB3fjPP841jf+q1ZyJyKC89IfdFMd2QieKsWZ+hesB36C6T1cQ4jjSHmDychEinp63rOuINlN3ASvsfV1/85rjpXfCrnzu/q8i/eo0WboeBhwpXqrbluXvLkNh5BV85FRE3Be/gMcLUYclyAPB3HefBrrKz/GNPmMXv2fBb6A5/kMUFL5IsL0HIrMezfxUx3DHb1zyNQVpLwsxhvNRfFenOcex/rmL6I6puej7PVL46VpqmCQLasxw8cjB3fGryU+P7TrpqHwFwvGqAFWvEJY0+svKS/D+fQtZOMqjU7oNRhrzA1VmvRy5CD2J2+qd1X9hpjhV2P1H6mesPltYP/OxEqpl9NFhjgOzpKZqsddWYFp30Xn1LyaDTymSSFy9/fgk6lK5mTVh8FXw5BrYn5TANd9Mflif6DKCzB+8tI61YhUDgMi4AvoO+oPwJzparzKzYexEzEdXUeYG78EeflKnAQr9FlcMwXTWOUWpPwszqdvq/6tMZheg7DGTKiKIpSjh3A+eRPZux3qNdDnPWAUxhhMjyGIzx9TdjMYcxumUxpOOM1awN6t3t8VtK75esDZth5n1tu6R2jSHOvKm7E6pCHL0X0gzHo9+XOfD7r0g8UfqcEjEcaoQ8D6pWA7rgSO+51tw9rFMP4L+tO2XbwlYarT7DUWNGhYJb0niQYDXwAGXwWLPkog3TOiY/Hau3FOn8bsWg8IZDXC3HgvJqcpzpJPUq41snklZuCY1HWrCYf3e+s2h4I4K+fiqwUpD+j7tvDDZKP74Ktrd9/zDGP5kC/+SBOFbl6uH3YZAFdOqtqrmaz6GrEy/IY6LVtCQZznH4ezEWOGwIkTyPO/xXzrl7XOM+JM+xvsjfHMDIeQt57TZKvHUsgJAhwrxlxxHbJtXfzztHzQvDWmSXMlI73ksdw+cxo0VUmGmJdETACTkaVRPPf8QN/xTcv1N137a5/7/DjLZ3vXSxzYsBzTazDO0Otx5s+AUBj8PqyBV2N1H4wcO+RG4Ca8SKEgzvLZapAAxI4k9gRN5GxhBQIw+Gol5xPbnd8K07QA8fm8HXqMBSVHkMpK4hK5ol7ZrF2ENfgqZMojyKt/hBJ3/spuhpn8DYzPj/gDmmTaSUgyLY6eX1NFo5w4hpw+EQkJSqwYlJep1/Vz/wNny6J9c+wQzvO/xXrkF3CiRAn72D3Tzk04U/+C797vQYsiZNsqTEzbBDDNVU7FfvP/YKcbXWFrf8u7LyKN8zCtq4/6kMP7kXeejy+7eD/Oq3/B96XvAeDs2oIzc7rKxOU0xRo7Aauz7nGdVGU3ygWMp9EdSzC4MkcJrHyVkTUUxnTshdz6VR2rpUfU8WnUzZjug5ASNwmxFynverJLsAJn9nvI2iUandC9P9aVN8VHIaTC6gXJBn/bhs0rEee+GiMRJFiJM/tdZJ3ul033flhjb8LUb1hz2ZfhjbETNfpx8UcaMVPYDq6agmnWAmftIjydKB0HWb8Ua9SNyL0/hpmvwp4tGiHTbzSMqNt15TIuDaQX8x2DBQsWsG3bNvr06UO/fucji/FlfN7gzHvfIylZCNYvQcZNOq/J6FKXvRQZN/mCy+hcCpBwCEqOVYVARr8A2bP9YlULUC8f7vwu8sZTulk0FgQy9IAZ0Uab8k3k7afVg0oE8ppjJn41ethpVaRajCkgJUewl8zSQ0LrIqzBozENavZ0NY1y4PZvqhxNVdn5mIkP6SGs3yiY9Ub8hscYTdrUKAd71QLkw9ei43HfDuwX/4Dv7kcwbYpw3nwG2bqu6nrZuBJ71xZ8X/t3ZO3iZMJQRL1Ydm6Cjj2VaFk+D9m1GXKb4hsyFpOfhtftob1KcCRuAu0wzrLZ+MZPcdv992i7c/PJfeC7lFI3JKmzZzvOsrlQXqabvD5D9MBQWpI8TkE/OKwHENOyA3zxh0n3FMf29l4C7ePD+/WAl0Tau+2+Ng2d4nNFm47ehGkgA9N3xPkrNw2YBo3hC99Cpv/NDSUXyGmq4/w8RzbJuiXJh3IRJRa3r6uV52WNZYcqUyTuVn1L0747cvVkmPk6IFrP9t0wN19c7yJj+ZDOfTQXQGz9fX7oVXPEgNhh7Kd/DSeOV10vy+Zg792O7/4fwPGj2P/3m6hBsLIC+egNnJOlWGNvgiMHvW+8vxoN4AsE592XkQ3Lq+Zc2bIGe/dWfA//FNOoZkOKKWgLd6fWxZcTJbqWFB+Alm3xDRmDaZSDZGRFTuGJdwRT87ba9B+NHNmfvHdplAuusdB0HQBdB3hfb/lgxAT9k1hn2yb891/B8WNEZlZZMhtn11b8X/1XOHFcx0Ps8/74TZzSEnzXTNTf18/Bpj5IOZiG+Bpkx7XU2b8LZ+kcOHMK07U3Vr/hGn006iZ48X+8Gz3qZr13ZQXOyoXItvXQOEf7tFDDuJ2Nq3CmPxtdYw/uwXnlLzDlQayOHnJWsX2SVV/3Fm/+1ZV0EJWmmPigSoYMvxZ597lkcqxxHjQt8J4bIHXC31i07uQdZQPQtiumZTukeE/y826YDc1aYJoWIuVlsHp+lLDpPwozVOUjnBnTkF07kJC7poQq4I3n8D30E72n40H4OU5qWbp0EQ6mlhaI7dyAFwAAIABJREFUNayeI8zw65CzZ2D1PIzPp5IhfUdihl9b63ufb5h6DeCGe/XPBYSzcQWUJ3o3C1RU4Gxcga/vuSdNlJPH1UnCQ17SWfQRpmk1+sVN8jEt2yPjv4DMeMW9h2DyW2Emu8kMewxWiavY+/t80G2gkuL7d4BtJewHHZyFH+Gb/FXIqo906INz6iw4gtWhT5SoDKYej3K8GGfbBpx5H0WT5IZtnMWfQkEb1Y43FiIgjku8G8FYgglWIl36Ih+8RnIiZ5DO/bDy8pFr70Q+fDmm3S2j+btadUJ2rk92kmrRPhoxiJW8nT1RgoiD/er/wtESsN21paQUXvkLvof+DboOQLZujtwxWjfbUom26lAv4hHusY/OaoBsWe3Of8nykbJhObJvR/L86NhwaK/mwTmw23N/L4f245wqhZ2bkHBY+xy0z4NBnIUz8N3+tWqr7iz9NDnhsWND8V6VWTpZiv3KX6K/Kd6P/drf4JZ7MW06eksthbRsCWSo/I9WKlJrcCwEg3GNsEnPK5BZta6ajr28nVzy8jWipCTBwBXI0H2BCPbzv4fi/dH92qoF2Ds34/vaTzE1SbmlkpV2HNcRLjUpX1X24f1RSb1Vi/Sc+nAaZV+GJ4yxYNDV+icRwUqSk9Wg75g7p5kmzWHKI+e5lpdxKaDaN+y73/0uw4YNY/LkyQD89a9/5Q9/+ANdunThiSee4Gc/+xm33HLLBanoZVzCSJVAx1hqYT+fyV+99MVBw9HKy1wpl+ohZ88gG1cjwUqsjt0x+emHfIsIsmc7cmA3pnEupmsf1bVL9/palJ0Sbhi0ek5ENmoaN20Sw5AvAkzjXMyXfoScKtWNdJPmVZscANO2M3zjMT3k+t3EnTGI9vkeTOMcTNfeVXIkzp7t2C/9STcUjoPs3YmzbC7+B3+YlgyMadMZueO7yJpFEMjA6j8iqnndpR/OzDcieZIitcH0HY2Ig3wy3dNAZM+cju/me+IIebchEKzEWTEfTpV4H/4dW/up7DThpx6F8rP6u93bCa9dhm/y/VWeHylxqtT7YO04muAVMG06uX1+RPXsc5rib9YIjqYnOeBUViBz3keOFmPaFGGGX4XlbuDshR/jzI4az2TfTpwV8/F/+V9Uiy9WTxOIbBpNo+rD7k1GFuS30A1k3BcWdOwJJ497S8iIo94r5xHG8qlx6ZXf45709O+BYzHtz5NMx2epX6si+Pqjcc/7QkASkzhHYOs4P5/KklbHXupNl/iOgmrKA1a/UUivYfpe1G/4mfM6SPlZZNNqpOIsVoeumIL4fAxSegxni4ZqW936pkUcA5hr78I5ehBKjyO2qGNuQWus0TXvv2TTak2UF0s62mE4Vozs3qoGwcQ+CQWRxZ8iQ65MTeylSkZ6gSCnTqg3V+zB2k1C6yyZhe/q2u1N5eBews89oYdcx4Z9Owgvn4f/K9/XxKGBTO++SSchas/BKtmwaTlEkv76A5hJD9c6N4m9aVUMIR+jlXL4ILJzC7JxZXKYfCiILJuNjLwW2bYe+43not8d2I39t1/DFx7C6tILe8V8nBnT1NsUQfbvxFk+D/9XfoDVphNO7+GwdmFsHkgYdBVWfkuc8rO6jp0+qfOAMYQ3rsKacAe+XoNxPpyaPD+EQzgfTMX65s+1KRXl+o6Vl2G164xpEdXdNoVtkTu+g6xepP/udwUmx03W2H2Q9vmGpe6PXYcAN/G23bpTspe/MZDOfN2kQMmahI8Fo84GsWVHIl/8fszkr+vzNgYz7gvI6Jt13cpuEo1qKDuNrFqYMK5EidLFM7F6D0EWJHibg0bExES6OQf2ILu3YRo0xHTrm57DSqr8Iv4MTHdvg9FngbEszLjbkdE3keer5Lj9/9g78/A6ijPd/6q6z5G8SLYsy6u87ztewGCM8YoNmN2QhAAJZIEkJHeyTGbJnefO5M7MvTM3ZJaQhJCEhAAm7MYsBq94t/G+7/siS5Zl2ZZlndNdVfePap21jyRjDCTx9zwzMafVXd3V1VVfvd/3vW8eIu9T5j3+hMxojdmzDVN5AtG2A6L3wKZVih3YFZLdHBB2798FTQDlte9jlryHKTuM6NgFccNUZCRqfUXHCV+jT1cixt2KWTU3O7DuOIiB12DidahlC8B3wFOAhLIK5M7NOCPGICbNwJQfCTLug/mpTTvLJ195AhwH43mkTh5CYGmCAPXmc7baK1iv1MHdiO0bcO55xFLA1NWGJp3SsTt63mvZz+V56Hmv43zrH9GeD34KEGuCbPWeAxHlZYG4dno1KY4LFccxLQtRS+enP/eJSuSOjTgjx6KrqhA6Kxkefboames7NIATwezfCVUn079/peBcNWb3ZnTZsaAnM8aDp2yVS34LTN357IBAJA/ZuRs6Ly87wCYEjLjBjocwkNeL2wDO6UowATVN6jtzHCt+XVsDRqYcDP4gXmerdZUBJZK/1wP4lTkCnKlWVREOZjoOnD2Neu+llHsP9sC+j3rvZdz7v0kiGz5toQJx+mSKjlYm73vQ0wNHYY4fyFj/g2+wtGFdPiEEzPgG5vkngoCqttftNxyGXIs5uBtOHMGolGdTGlF9Cr1jI87gUQ33S6+BNoEjM2LQqXujoLo5uNvSgaaONa2g5ixmx0ZE0LYpO4I+sAuR39yuJc0+43RjgZl43PoONWcRXXsiSnt86gK4otcgzIKQCr9I1GphXLG/KGvwC12/fj0/+tGPANBa88wzz/DEE08wdepUFi9ezBNPPHEFlL9ilpJk1yay4uGOY/mLL6eV9rSCkJkLkHRsuVBgproKc+Y0oqQDonmyBEzv2YZ6+TfBf2j0wrcQo8biTL2n0cnaeB7q+Scxx4/YRcx1Yc4ruI98D9G2cWqM0LZHXo8zbcalLRTNW2IieZiYIulUBP/7CYk4ApgzpzHVVYiS9qGlb6IwtzCrECJUVdz4Hur5X9gMDKWCPn8Z9+HvQdv2qNkvpANMyoc6hZr/Ju6MRxq9Z7XoHfTyeXY8SYFeMhd510M4g0agl8/DeBKjHYQwdrQbAQvewuk3NHemTsVxTPmx8M2O78HR/YjBozDb1mSLOQmB6NQdtfQ9OF+TBNaMBl+jZr+A+P6/pgU1sqxj13CgyI3YAEiiKZHI0rwY00cPoH77ROIbNHu2weI58J1/REQi6EXvZAlJUVmO2bIWMWgUZt+2BCdmwqSTBijkMjn9IfRzP02I7uJGIS8fOdFmfBLPBmAtjdPlp94QnXvAd/4d9m21gbJu/S4a/DZ1FzAVxxEtWyHafLzA+Ud935disrQnesPybDBTSkSn7pe38S69bSb+rk1B+wIiEcTVE9P47IUb+UgCSvrgHtTMX9rvQCm08zZi8Cic279oS7WXzUN/8A71xNJ67hvI6V/AuWp04xdXCl2r7aZf+ZZe5LyPbAJViik7nD2vgP1eyo9hjh4MrzhxHMTZakyrNoHYcoa1bxodyeUyc/K4pYEJEcAyWXQ7F2/qnRfT+00pUAr13qs4d30pPLPacdPm1FwmhETc9mXMddOsCGmLAug5+KLpm8zJE5gLtYiOpYnAtFm5gDRA3rYIGNSqRYhzVTnADBdOVaDeejG0LfXmHxB/9b/R77+WDup7Hpw+hV6/HOfaiZi2XdF6LSLggdO4yDadAahZ9L4Fa+rfWX0Q5Z2XEP2HZXOX11sQPNaH91ufSxvQPko6yAHDcO76EkJK1KpF6PlvJs9bPh8z7V6cUWMtNc+tD2GuvclmAzcvgF6DEkCFvPl+9O//zVYaej5EXAtcTW1CRVUsBiGgGwjEhQuNtp2wuIe5UIdoHk8mlJwsyzHOFeboAcTUe632ypaU4FokCsOuR7TrjNEa9eoz6N1b7ZiVLmLOKzgPfQfZOZlJa86dxVSdRBSXJBIRhBtBTH8QM/v3dvwbba9d3AEx/IbG+6X+2vEY5sRRRPOWob6xyGuGW9IO0cQkgD91M+dr8J95IhmcciPQshD3K99Pq+o0leWY2hpEh9KkQGxOX0+EJyFkmD5Vjvr5vySzcPdsg2Vz4Rt/jyjpFE4v4zjQrQ+iXWcYPi6gyEgZa0OuRXTsilox31Zk+SlClr6Hfu8V5JBRNuDy5b+zlKdH9iFKeyL6DbP6AiUdMZ5vKWJS+0oIRNfemLLDaYA8YMHh3VvtfmDotbBmYXLqSwFbZWlP1KkciRjVp9DxOoiHzJnGYA7sg2hzUCFzpu9jyo5gTp+ya2Tqc3tx9PuvIYdcDVUnkxSKwiQnijOnra8hUuhM6vUsANFnmM2YThUUr7+74Jti95bQOIQxGnP8CKawxFLRQJrYqmlehJAO8o5H0K//2s4v9VScRSXIqyfYjHfHzV7ronnIzj3QgD58AHTGzcU9aNcZ2ne2lbqZd1hUgmldDL7O7nMMpi657mrlY7ZuAK0QQ0YhXTtniu79MMcPhVR1+LbdynqB+uQeWAigpgZdUIT2vJSAQErzbhTRrKUVDM8yAc1aIoZei9m0Ak4et76kkNZfuuWLaXpVurzMBkK7dEemBo+LO9gkqP3bbFVXaS9EW5uQp/duw/jZY80oDbs2QyOgvJxyL/rIXuu7+J5d110XeUs6lbCpOmnB6fadkwHaIEM+dKyVHcYMGol683n01rX2e3AcxHuv4tz/DWT3T5/OsCEzJ47h//4/7Vj2fXvv3XrjfOGxy0qb2ZiJohLE6CmYD+cHfpWxFRf9htk9yxX7i7IGQfmzZ89SXGyzS7dv304sFmPyZFt+MW7cOL7//e9f/ju8Yp95k+NvR+/fEYiaBLN5JIqYdPclcWE3re3b0Pu3B+JeqW3fZcth4zH8l5/BHNgdiFl6yGtuxLnpTvA81Cu/zRbYWLcc028ookfDm2u9cgHm2KEk4BhXEI/jv/oMkcf+rsFzTTwe3vb6FZh+QxApHKpGawvONhGoF0Ji8gqgJkQ4rGWbJl3jUszE4/ivPGMzPJyI7fOrb8CZevclR6X1ykWYowcy+jyG/8pvcR/+q3DwyBjMvh2NX/vYIfSKeWkOsBCg3/gDsmd/m+mubaDDpO6+4zGbEeK44RuaVkWIorbhfNaOAyUdEQOGY5a9a++/3sl0IxbI7dAFs+vX4SBQPGazIovb5Xwu0aoNDBkN29Ykx5t0IL85YvjFUakYrbM4CdXzv8gG9XwPNfOXOBNuDQ9GeHGb9XHfVzHL5gQ0M0H/OC5075egNGjIRIeuyMf+CbNxKeZkGaJzD8Sw6xH5zdB1F6wjW59tRcpt1qYHUC72G2uqiUjU8p5+BPOXvIde/L7tP6UQnbvifv7raUFFCH8nn1nrdxUsfde+79RxXtoTLjMoL4RA3v4w7N+O3rYGpIMcdh3iY3B8jVKoPz6dDuJqhdm6DtN3CBSXWEA+4zvQb7+I7D0gWY2Tw9TsmRbMrAdTfQ9OlaPmzcK97QsNnivatEsKYKaa40JRMaK4neU5zTTfh8LWyKmfQ7+WKZAXQU5OF/40xjTIp/5xf2OidducPL0N0iw0wYxWNtgeduzgHgucjRwHG5ZZcVdAOBLy8hFXT8i4Vu7nFm07WOqUBu8l+/s2Z07jzfwVpvKEDWAagzPtHpxR18Opk7kvVn4U0aUHpqIMMGnrHL6PblEQWkkCwIVazLHDCeAv/VzPZqD1GWxBcV+ngBoKPecVZO+B1G1aF/7ODJjysjQh1IzDGK3xX3zKAuD1pjR62wZkv6HQsUvQdsb6/d4ryD6DEK1sEoAo7hAa8Kd1W3TpIMyuzUAUYiB6D0YWNu4ziaK2aBnFeD5C2m/AaImIuFCUDKaK4g6YonZZ48EohT/reQs6BqLrcvBInNvvh9bFSSqB1D5PGedy2hdgwAj0ltX2v4deC12t/2o2rUbv2Jz0H1Qc44E/8yki3/8XMAY163l0fdt+0PYd9yMcBzlgJKakM3rDUqg5g+g9BDFwZJOpDPzVi9Hz3rTjRitESUfc+x9rtBLuz9nUe69Y6r76dxKPWVqpd1/BvfcRzLmz+DN/ZQOP0gGtkVPuwB19I3QohU05Lty+c+NtP/dkEpCv/960Rj33cyLf+2fEtVMwq+cn5wEhIJKHvC7QNxgwCrVxLYL6cR7FCYSZ9Y6N2b4egJSY44ehtAfqrRfRW9basbZyCWLgcNw7H4BIHoYIWRkaBkRhCXrfzvC5w4tj9u1AjpmG3rQK4rXJ78Rx4ZqJNinIccPFnh0XvX1jjt4ScOQAXDsBIpHs4HYkD9GmBL0uhMc76Dtz/JClqaqv6k7dOzRvichrhnLyECop9JoocC5qB0XFGOlgvAwfO+oii9pivHjuebPuAqb8uAWfZZA0U8+VfqrSrk2deqALO0LlMVukGgcx4DpENB/TtY9N6jl+MPl8bsTeV+/BcO5c8LoyAinGhWYtkFNmoGc+mSVQLafeh96/M+u8RJ/X1ACgNqxCvfmCDcICYtbzyKl3446ZiBg1HrN6AUb5KQQzAjFkNKJFYZAFn3lf9vLm9ClQYVW0BlN9Bjm2H2bd0tBkBdFrIMKNIB/6AWbneqsl0LzAavAEyRza9/F/+a9QmRIIKmyN+60fIQPeeOE4EKLTohPV/9l1VyaDGUD7vq26TPUPCoow3Yda4WXpgmega39kG7tHNOdr8F98GlN2JLG3kBNvxb1+MhS1xQgn24+LOJaiaecm9OY1yX2u1hjAf/EpIj/8908V3G7IjDH4Lz2dLiquFebQXvTapTijx39q9wYWQzO9Blp+ed9HDr7GVuh8gln8xtiJ509mL/lnag16VUVFRRw9epTS0lJWr17N8OHDcYKPrra2NvHvK/aXbaKkI/KRv0EvfguO7YeCIuQNtyD6XF7RQADRNmj7g/C2/dkvYvbvss5c4FToNUsRxe0QLQvCPRkvjt64CtkYKL9xVYgjZqyw5LkzDVITmAO7Gmh7NbJnf/SpCvzZL2EO7rEL76DhuLfe22ipmKm7YB3+sGN7tzd47sdh6u0/WkDe9xPlg3rtcmhTgnvNpamu640rw53fqgpM7flwHw+aRGOkt6zFxP00wN06uwKze6sVAqQq5ESNaNYSMXoiZtWCdFAjEkWOn47o0MVSrZw4kg7cSxc5apx18h7+G/TyObBtnS1tHz4Wcc3Ehm/a95r0bPLW+zEdu2HWLLIZ/X2G2u8kv2ml4nrfTvx3XsVUlkNePs51E3DGT8NcqE13dFLtxFHbZ6G878JuSNwI4o6voF5+CnH2FCAwRR1xpoeIK+YwUdAKccP0rN/NmiWWq1KYJI1iwBlqNq/BmXIn5nQl3uyX7BwhJHLgMNzp92UB35+06R2b0Evm2vdbr0Fw5CD+K78j8qXHLffj6iWoxUEFRes2uDfdgTP4owUAPikTjoP88g/Qy9+3QSLpWIqJ0ZM+EQdUCAG9BuH0apif+mLNHNkfnn3sxdEbViI6loYH7ITA7NyMGJU7OGaUwuzbnn19pTBb10JjoPzgUbDwzWQWTtAu+c0RfQYjWhSiDuxKn7fcCKL/VRZ87jME+YXH0YvftsGU9qXIG6cnKhuM5+HPnYVev5JjnmeDR7d9LpEZZqqr8N56CbN3p81a7D/UfmMtG9f5aPC5ittBl55weF86WOO6yGsnXdK1Lb2IE166H2SsivF34JeVYfbvsd0abYE7/cFEpqs5cxp/9h/R9c/dbwjubZ9r8nP7a5ahFr0LNecs9/rk23CvugZjDPHnfg4V5diGffv/333F0t8VtIJYjjm5sAh5/VT8XVvQ8ZTx5AicPkMarF4DEM2a2fGYkmFowHIvN2uB3rY+h5gy6J2bcFvkEIvTyq5F0oropU4FxgBuxCZAXKh/rpQ/UAq1fD5y0HB7bzpj/TYWLHSuTQ+WZJpa8LbNGk65f7NjM6r4fdwJtzR4Lt37YeKWr9ekgD0mrqGbzSDUh/fjv/0y5sQxm2l69VjcSdMRrota8BZm+8Z0n2nbemjVBnfirdCtD2rPrrSMVJnn4Fxnk6SEENC9P073bEFctWJhIpkgacauG+XHUFvXB2BqStvb10Or1riTrGaBaNsBZ8q9DfdBiOn9uywgnzK3mBNH8Wf+isijubUc/tzN7NiYnWShFWbnRgsgzXzKZkFrDQT7lnlvoks6YDwVVGmaxJpp6lFZL4cuQqpVVwVDXGATTCyHhzx7Gq014sbp0LY9ZuU8m2zSoz9y3HSrpVF3AfXcLyAeS6mLrkO98Evkd3+MaN4iXHNYa0R+M9TiOeit69LGmtm+EVXQCmdo7gxgs30D8qrRiQBFmjku5Dezge3bvow/6wUrgitAdO2HO876hkYpyACvjcGuywE9TnjjBtFvqPWzPS+5Doug0m7gCMy6FVm1SWATlER+M8SNt6TrTYFNHhs7zWq2+MZm0sv6NHYwSmC2b8T54jcyqp7rr62ge19MYVGWGHMiKNG2vV2vLihbyZP6R64LQuDNfBpTVpZyfQOL3kF27IzsPRB5/7cxq+bbzHBtEEOuQYyZaoV3t28I7zMpMUcPIrv2QT74XYsNVByzwt3jpiO69YENK0P7rN702Wr8N57Pei713uvIXgMgfgEVBxGwBdnjEn3wINIYO1ZUyLyHQMRqc2hjC/A8RN+hNpBScyZ9/9Ksha18wPqyYtDVMOjqrKv4LzyVDsgDnK3Gf+Y/iX6z4YQ9IZxcut22ogJQmz7En/1Scjy160jkK3+FbNYctWw+ettG8FOq5PftQs2dhXvLvfgv/caupVolMZFF76LbtoeufTAxn6yx5mno3hc167nwPo3F0Yf34TSCmXxqVnXSUjhmWuCff9qgPIDo0hvnU8iMN7Xn8d9+Cb19MxiN6NWPyG2fs4mEV+wTtwZB+XvvvZdHH32UsWPHMmvWLP7hH/4hcWzt2rX07Nkwd9YV+/MxE4vhr/gAvWUdRKK4o29AXnV1IqomSjrizPj6p3Jvom142yYetxudEDEXtWIB7pTbc1+0CbQAOf9GkAOIbOL1tcZcqMV7+gkr9FlPh7BtA97JE0Qe+2HDAFZDbTd2X5doxoujt64PF9BZuRAuEZTPff8C4biI/sMwOzentx+JIK+5MTjdoDevx1+1GOrqkIOG4V4/AdGseSLjpP56QYMWqNcKZ/QE1LsvpTvWUiK69ES0KECOvxUthAXmlQ95zRCT7kT2t+KVzhcft8KEuwK+v+L2OLc9kOS6lw7abYmmJeDiRFriJFK8U7KaMruiCWCmEBIx8gYY2fSS83rTRw/ivfB0MhgSq0MtnYepq8UZd1PD7XbtaTczWRlGLvLqGzB1F/Ce/XkgOBosRycqMM8+SeSbf2sd/+rT+EvmoffvhlZFuOMm4/Tq14QbD0pjjcBk7lWNxsTqiP/qiaTYqVHo7ZvwKsoSbX9appYvyM5YDTI7zLmzqC1rUQveSf5NdZXdwLgRnP6XPxh6KSbymuFMvBMm/hlR3zU2n9fzhmaaMZgwMD/r73L93vh8LvLycR7+AWr2H+D4IUBAt944dzxkK9lKeyBnfBX97h8tnYKUiGHXIqfOSF6jW1+ch74Xen3/5WfQ+3Ylg0fHDuM9899Ev/W30KKQ+NNPWADQWFRA79xM/MQxot/5n5f8jcn7vo564SnUwQMWPGnejMjdDyQoMozn4a9eit7wIUiJM+o6nFFjGs3oEkIgho3GbFqdDsy7EcRIG0BRrz6LOXQw+W7On8d/+XfIb/4tFBQSf/onFlA3lotA79pCvPwY0W//T1vFd+6Mndf27ISCVrg3TMLpO9D26YfLUO+/kfy+z1aj3vojOA6ypAOcrIBMSMP38Re/hzNtBvr5J8OeCnnbFzBItHZIG1RaYpw8pJSoth0CzucM69wd2pdijAOkb9yNFogBV1nqitAxaUBrWo6/iVP7dqNjymYxCpCOQbRtj2zbHlXaC3N4T9qtGQKqglMV1PM8pwLvQhqorsJ4Xso8n7J+e9oCcmAzkJfMR+/ZDgWFuGMn4fQbZP2CtUvD+exXL4ZGQHmza4sFuTKDOJEIZvc2dGl3u87Vv894DL16CX7NWSL3PIReE9K251kx3Ym3omV+VtanVhIj3UZ1OMzZajJBFuqpOaqr0GuWYuJeep8aD/3hUpiULSR8MaZWLgxZxzSm4jjmVIUNrDVi3ry3UauW2P5p34noPQ8g238M2kufpuWatw2YygpbyZK5pnhx1MqFyO59MDiAyvBXnSbNp6mAfPJc0NpeVQiBGHyN1b3IPHfbhvB7Nwa9dT3ymvGoA7vT37kQ0KoI2nVC/+6/svUsfA+9ZqlNKPA9jAadQvUipbHVMf2GYt5+MRv4Vj6i/zCbxPTKs8m2DZiD+1GvPYf8/FfQ2iAydC7tkiRwSzplMSgmTEqE4yK/9D30C09iAiotCtvgfOEbAV2JyJqObVa2QSORV41BVVaili+0mjCOwLnqeuToCTZ5RQiMEqh6IefguYXRmF1bMa6LifvJOUAYRMTB7NoKbr79dmX6pGmMsEkPI8ZiVi/KqnQTw661QrJHDxG6liyaQ7S3zQoXY2+GsTdn900u30WIxDHRuTvO/d/O7tZOXckZQspvjr/g7dQLJh8M8OfNQuTlYeI+WidhLCENorrK0oVKF+PrjLUCq2NR0Jo0Lp9Ua94S4Tg4j/wA9eZzcHiP/b1Td5w7HrRaVgQZ58sWoHduheYtcMdMQA4cavfmB3YlRYNT7638GFr5Cb2t0K7rUIrZvCbsCKJ9KfrgHvzXnks/VFGG99//TN7f/Ct69Qeh2mZ63Qr0dRMxxw5mBa+FiaNWLETG6iwdVUhVpd65BVMVluwX9GNlOXxWQflG/PO/VDNaE//NTzGVJxMBf7NnF7Ff/YS87/4TIi/vU77DvzxrEJR/7LHHaN++PVu3buVHP/oR06cnsxGrqqp45JHGOZqv2J++Gd8j/vRPMadOJjYd3luvIA/uJXr3Fz/lu2vAcnF8A1w4byliwihBIlHk0Ozod6bJoVejl8/QHPXPAAAgAElEQVTPBqBbt0U0wqUvevYLXwyCttWGIAs/1WlQCnPqJObwAUS33AEx0aw5omOpLTVP3d06LmJwUpzLKy/HW7AIYnXI/oORvfpeerZqPJ7eZqpdSGbv6VMnUes/vOi25dBr0MvmZm9gWxVBqyKc6fejzp3FlB2ymRK+jxg4AnmtzTj3330dtXZlUihqaSV68zqij/+N5SMP3bxis0r7D0WcOIpZu9RuwLWG4nY4AVe9EBJn/HTMuJvtJiI/P13ANr85zoyvWs5a30/LUjdKEf/1f2JOlieezX/nNfT+XUTv+3KifDPLh3Sitl9bXFrWaUPmz52N8b30nlE++sNluJOm20ycMM7qth0QQuI++B38539mA0xC2HLJKXcjO3fHX70knXoKLPhcXWUrRNqUEHvy36wQlTFQWYF3aD9m+gzcUdc1eN/i6htg0dsJ59gYYTd4wuAMuwa1aU3utg/sQTQB+DcXalEb1mBOliO6dMMZMjyNU/Kjmjmfg1vXcTC1NajF74eIc3qo+W995kH5P0cTXXPMx5Eo8qrRiOJ2+CsXhlZWNSbULBwH0b2PFeFKHavSsUBoU+6vbXvcR/4aE68DIbPGqOwzGPGd/221DyLRJlNTmKrKNEA+Yb6Pv/IDZMdSOzekbt61hpqz6D3bcfo1rhvRkKmlC1FHjiVK6E2dR/zNV8n7dm/Iyyf+uycxx48m59T33kTv3k7kga83ut44U2egqqswh/YmKaT6DsYZfwvm9Cn03u3ZIKzv4a9YiCztZteAtLlFQ8059J7tyM7diP3s32x/K2XntaOHMFOm444ZbzPkw77vBW8jJt5Sj/hk3bM5fgSn1wDM4FG2iiLFxNXjcNqX4r3y++yqDWNpYMy0u3Ae/i7qyR/bYGW9tSzEeejblgNZZfIAA0KgDx/EHT0OvfT9gCs43WT/YcgWLrqu/t7t2qp9EHmWykRXnERogUlRUzdGYMrLkaNbBZp4qYBikGEazQe3fgOZem/23yKaj6k5S+zJ/wsXLli/r7IC7+hh9KRbcMeMD1/DwL6jxux8TXhVhVJwvga1dF7oWNFbN6BvuqOBtuusNs+ebdmLv9ao5QuQdzRcKUNenl17Q0w3b4Gpq0sBaCx/htEC6hrwn5tq50KyE8GuY+drGgXlY7//ha2wqbfjR4g/+X+JfufvkSWfrB7Kx2mi7xCbPJI6LwqB6DvIfne5xFZrziL7D0Uvejv4xhKZGTZg178JwoDCCXEkha0UbAzUP38uJ4UMtTXIa25A3zAV88G7yWMFrXDv/6adb2N14WBlPIZuUYDyDFYYNJmMopVACok5vB8jo6AyKD+dKObQfvTBvSH84h5691bMmdMgIhjjY1TqswfA9aDh8Prvw595wFW2euGtV9FVNVAPnFfXome/SvSRx21AMAPwB9DGxb1wHnP0EP7yJfVFD1YSavVKZP+rEN16obUIOOdTn1vi9h+OqTlnK25S5z0DJq7RNWeDMSQy8HERZMifx5lwK/7JE+hd2wMxaoPs0hNn6t3oQ/tyryUnk4FZf9M6/OWLwIA7+vqE7y0GDEfv35V9tu8jSnvY68RjqE3rMMePItp3xLnqakR+PibHnsUYoLAIc2hf8llSnwtjqZCKilMqtoKKEYXlY689b/UJwuY17L6NFgXZ2dNSIq4db89o1Qb3of+B8eI2gziarEg2F2qJ/fzf7fnBPt47dgRn7EQik2/FaBPetjQBn7mLOXsGf/2HcLYa2asvsr/VlBEDR2DmzkJk7KMN4Ay7Bm/WC6H9xvlz6AN7cs71KN/+jcLSF6WtoQJ9thp5viYclwjOpVnz8Ixz+Nj0A/WJY6iN60ArnMFXIbv2uPSLtm0PzVtaEfVUcyO2Aucv1Mz+3ZjKygCQr59bDJy/gNr0Ie41F5/Ed8UuzRrded11113cddddob9fsT8tM8Zgjh5Cnz6N7FyKLC5p/CRAb9lgOdhSNxVeHL15PXrcFGTbxrNdLtXMhVr0vj0267lXX4TbBNCgRYH9vwweNoRA9OiLyMtH3vkQ+o0/2IlI+RaQGDgC0Xtgo5eXY29C79kGpyrspioSBcfBnfFwo+eKvHwYeh16zeJk9oM0iPyW0GsAZuvG7IwSsNlNleXQACgP4Nz1JfzfPmEdey9uHbRWRTgTbGDN37CG8jdfshlkWqPWrUL27k/kCw9fWvZi8xa2fL46Y/ETAhEIwfgb1uDPesku/lpdVNtyzGT07i02Kl/f59LBnfGIdfrzm+E+/F0rgFddiWjXOcEla86cRq1Znj6OlW8zj9evTueqTTXHgfM1CCFwp81ADR6F3r4Z2bY9cvg1WeCOkI51XnKYcCOWlzHF9PZNQdArXRBVb9+CLi9D9h6I3rAyI4gkAn7Hy1tmZo4dCheS0gpz+hTO576Oeu5n6Qelg/OFx+xdlnTA+fY/oj9cjqmtwRkxGtnGzj2moiycw1hrTGU5/oY12U6m7+G/+5p17huYB2Tzlvh9h6G3bU1eVgmIuDjjb8W890aDbdMIKK8rThB/+j/tePI82LgGf/4c8r75/Uum5pC9B6DXVmUHDaUM6CnCAROTg7bqil1eE24EZ8YjqJd+nZjXiEQRvQYgBg632VnXTsCsWmSBOiEsJdmUOxPzU0Pm3P5F/N/8Pxv09GJ2Pm9RgHPTxflhqRvLrGMBpc3FmDl1MhxA0gpTdgztuDlFZk1lBTSh4CVn27XnUcsWZMznCmrP469ehuzYGXPiePacun8P5ughRJfuDV5fRKK4DzyO2rEFffgAsmcfnD4D7OOdOpng304zrTEnjqGjIdVBYIUBK8vx9++FuguJDG7A6tHMexs5YnQWHUHCqk8HAdowIEWAb6/n3vMwauoMzMI3bTB+4h04zWwQ2JQfD88QdFw7fzRvifJcjIogtMI4LsJzcS/U2fftutnglzGYE8cQ7Tpav2jZ3GCcY7UbJk5HFBVT9eufJu815b7N3l2oc2csAFWfxS+Cx0TAmWpE23YBYJfxzBho1RaTC9hGYC7U4i9bFNrnasE7uNdcDx27QFm2joAo7Z58TK3RB/ZCbS2yWw9EoaUoFN1758wwFN17Y7asC88qdV04XYXo1CVUw0B07oapqrTvxvPTMFgRjLXGTA4djV46N+CMTc20dXE6dsV38kCnfr8BwOVcenBZ9B2MOVkW+p2IDg3zn+szp9MB+XozhvgbM8n/+ncv+f4+LZNjb8LfYYnhE8PcgLz+JkT7TuHAmOtaurHidsjxt6A/eDfpH0gHOW5qqIhuk80YTAolTpiJHn1giQs6Y5xHo4jufTC+j9q1B6Ojdp2SDlTXIivKcYraQnEHTFk92BuAlUpAuxJL95Hj+9bVZ5CVFeCrdD0nAG3n1CTdT4Y5kbSEsqx5UyuEkMib70XPeSX9WH5znNu/iDl8wALYXqqQq4c5fgS9fzcm2gyjHTs3pyV1GyhqS/z5X6fs54I37vnEZ/2RvG/9EONnzudB9UJNDbJdh2Tme8pxIYL1vM9gO3dkrcEa0bEL1NSgDh0FIvae3QjqyAmcc2ez9iFp7Qd6cLHfPmkp2gLz3/gj/url5H/rB+iz55IUkalN++DG6jCeR+yXT1h/NR6HSBR/wRyij30P6s5jnDzwQ+Ztz/pPOe/NcdGRZhBA1zbUEPzL09C6OC3wk9qnRgukG0GPnYae83L6YSeKM+zaxE/Gi1vcQWtkrz4JQVR/1RJbVZi6jvoeasl83DHjg0qWjOBPfdt5+aj9e/D+8HQQnfFRG9YgStoR/dp3oOacPd+kz5lGuJhz5+C03VsbQ/p6IEAf2mc1Yw7stsEvIxDC2GLqth1sMCJUXBdw8xHd+4AUZJUwRKPInn2hRUtLR5bpPzgOsmsvLtW8xfNRi95LfKvqwxU4I0cTuW1GI2c2bEIInHsfQf3hySRtTzQP0b4z8uobL/m+/1RN76unxMsYD0ajd22FK6D8J24NIpt//dd/nbVAu65Lp06duPnmm+nV69I/wiv2yZg6d47Yz/6fdfCDbFVn4FAi9z3QKBCq9u0MMqAzTArM4QNwmUF578MV+G+/YTf/AEIQ/dLXcbo1HEEVQuDe9nn8l39jJ3lj7DUiUdzJlrrGGTQCWdoDvXUdJlaH7DsI0bl7k7K2RTQP92s/xOzZhj56ANGqCDl4VJN4uk3dBfw1q8FP+QQVcLoGZ9d2RKcusG2DFTGq5wes30+1a1zETrRtj/tXP8ZsW48+XYns2BXRb4gtm6+rw3/zpXTQPx5H792J3rkVZ2C2+ExTLdHnf/x1ss+lA5EI7pQ7km37IW3v2IIzqOFMHxGN4n71r5N9XliEHBLS563bWAXzFAFFffRwOJDi2fZl3wGw6cPsLEIhESUdMVrjvfESatM6O44MiA8WkPfVbyU2500xc6HW9n1BYWKc6f17EiBOgrIy+Cz14f04429G79iUzKwEiERwbr3vsovrGN8nI2kjIUillcLt1R9+8H/Q82djTpUjS7sjJtyGjFqnWh8/Sux3TwX9bvCXfIA7+RYi4yYiOpSGgxlSItp1Qs99J/ym4nH0qZM4DZSxm3gMvXsP2VmdDuzchuzUBZ2z7cbL473XX7RZlyn3hO/jvT+b6D2XVkHkjJtqOYXr6pIAWCSKc8u9dqznN4Pa81nniSYGWq/YZbCCNviiBULXIpDoGLjtuiXWV3fyHZjBoyx/s+MgB41oEn0DgCgqxv0fP0ZvWYM+cRRZ2sOe35Tg9GU0UdI+PHPScRCduyI7dEaHVdI4LrIJ31hDpo8fCZ/PfQ+9d0cABIRs+LVCH9qPbASUN7E6Yr/7FabsmN2orliK7N6L6ANfacJzd0KH0ZkEc4u//kOb0ZfJ3YqwQq1OCPANFsSVTpDxmHXHaSCL07IAbn8g+xodSzEVZSHZjR6iTQmxmc9gztcCBoO0gQbvHPG3XiV6+4zw+5KO9VkAZ/wtyIFXWfFEIew4DcBC71huENns3gEyYhEdZMqaY0BGAnDayV6fERCLIdt3DB9r0ajt83nvWG7crD6XmPIy3Fvvw3/2Z/b5tLYLcCSCc7PlUtcny4n99hfJgKhSuGMnELnpVkT3PohuvW1VRf16EokievVHlHa3oHtYMET5iOK2OLd+Dv/3/53Rtmvn+4JWll4mQ5jQCIMb9HlDJq+bgLdiCdSlrnMCd8JNVrwyLPkDcv9+EeZcO94mE9SmVBJEosgpdyCiDZfG6x1bch8sazwY8Vk2f+FctO8g0LYqxAj7rS2ci/OlR5FT7kjn4nddaN4SJ8jidcbehOw3FLXRCvs6V41GlDRR3Lp1MZwO4VBvVdTovkeU9kD06o/ZtzMpcB2NIrr1QXTrhVqzEnP0cDB2JCib7OS9/Bzy7/8FXV0fbMzIIj5TEz6v1P+NNtYnc9xs8NmNINp1QtSet21nOqt+HNG2fU7+8vpP0hk9HtFzAHrhbEzNWWTfwYgxk5COi39oX5IDP3U/Fo+hD+6DWDw4JhLNCwG4rp23yo4njwfPJISBypPoE8eTzn6G6X27kAWtcoiWGnRdjMgNk6zQbM3ZZN9EosgJVjMq/vqLVjg1VSRe+XizXiL6+S8HAswhlU09+qD27U4D5BN2/Aj+pnWozetAC4wQCGGz+e0zGvTRQ6h1q9Pb9uLge3hvBm0bk+gTIYJ/C4ns1BVRXIIuD/vOjQ327d6V0PwKejQ4CvpkRXjgOTAVq8Nb8D54jq3UEDZb3PgK1qwkOm4SavcO4jN/nxw0WhOZcT/ukOHoTWvDr68V+vABUkJt2X8Sj+O99If0fUc8hik/gb9qqaXsNFabRIj6CumgTw/ugzYl6KNHs8YDjkb27IvpM4D4L/8jSUcCIAXRqXfZZLkcvoWJx21lY+cemIO702JLolUxomd/nC49rT7cmaq0fagcd3OjWndpbcViNtmqoDDhH5vTVaiFc7KSP9W6VTjDr7bVh9hxz9kzkJfXZE00AFnaA/FXP7ZYz7lqZNdeNmnmIpIQP2rbn1UzOdf44Fu4Yp+4Nbij69atW9Zvnudx4MAB7rvvPp544gnGjx9/ue7tin2MduqZ32IqytMyL9WOLYjli4ncMKHBc0WrovDNkBBQUBh+0sdk+kQZ/jtvpAkeAsSf/RX5f/fjRqkiZN9BuF/5HmrZfDhVgejWC2fMpLTsRNGqCOf6yR/p/oSUiH5DkP0ujjJC7dkZZLVlZm1o/FVLid7/MP6Cdy0gGpgRAtmxXVrmVoP3lpePGDEms6LScnNLh0QtZb3F46jN6y8JlAeQvQfifuX7qOXzobIc0aUHzvWTEa3boHZssU5gptW33QgoDw33uVEKb85s1JoV9gfHxZ18M5Ex4xAFBeGOlJSIVkWITt2yxKCMwb6nDp3w165Gbd6QLlJ1qpLYi8+S/+h3Gr1vc76G+MvPWwBeCERBIZF77sfp2RsKW2NEsImp//t6cL5lIaKwNZFv/j1q5UIrStq6Dc71k5FdPobSvkZvXNoMoFQBXCwNjAz6U7YsRN6ZDQAZrS0gf74m7Xd/wRxkt+44Q0dZkTsvnu4Eti5GdOsVTglQb2FZ7immD+zLPdY2rSNy34Ow8J10mijHQRSXILo3LLhj4vGAHiqzUY3evgXuafD0Rk0UtCLyzR/Z971vp33fYyYhA5oUZ8ItqDmvpW+mpIM75Y5La/iKfSQzWhP7/VNw/jzJBCaDv3gBsltPnF62Skh06IzTSIZorut7C99HrVxif1i7HvdMDe4NEz4RgdxcJlq3QfYbYrNqUsESx8W9brwtGZ432x6rH6uOg2jdpkn0UA223bIwPDNSCDufF7YKBx0dF9EEv8V763XMsSNpG1h9YB/e/HeJ3nyHpZHYuSXkuSdglE4EM9PXEh/RqSvIetc79d0ZiHnQrAXGU4nst8RRA3gK2b4TIDFGp1w7yBLsnO2zZ5lxshLt7b0ZyG+G2b+P7Ex8g96xDfHAV5EDhqF3bM7gKHZxxyRFyUW7TjjtOmU1LfPz0TXhG0FRXBJOjYOw2X0tCkLFkg0gIhFk/6HQPGOsSQcKWtlkiwXvBd9lSJ+3LEAWFRN59IeoZfMx5ccQHbvgjJ2MKG5nxXWffdpuyFPMX74Y2a0HTr+BuPc/it70IXr9ShuMGHkdcqitpHPGTrFaO6nJLZEocugoRIsCRIsC2/by+bbiIKVtrXVK0mTqSwPTeLEz5tB+8LIhSbVhA+74m22AN4zy4CJAllwmmrcg8o2/Q61ejNm91dIgjZmIbAL3cIMBy/zGxe0/y6b37AjeX2rwCfTenRhjcEffiG7X0Yr01py1tFmjb0wI0OvKCuIvPY8pLwPA37WH6H0PIts1ninvTL4N9dof0qvwpMSZ3Lh+gBACOel2vKNlmNqgArlFIdFJdyCEQG1aG+6XGW0B8wu1hH7fsTqbxStkaEWJ6NAZ0blr7jm1c1dELGb90szjwrX71Eg+Jl6XPac6kQQwJ0vaIz/3tez2C1phZHpAwBgg4iIKWyGKitFHDqe9ywR437Iw+HcmqB6AyS0L0vzf1PNFzGaXZ1cQ2OuJSBSR3ww5+U78WTMRxrcB25IuOCOvB0DvChGJN8aC7fnNkCPHoNevytLhcibeij/3bXKZ+nC5TRoJnsNqjaQ0UXMOvWtbw20Pvxa98cMg+aw+YzuCc+NNmLxmqEXvkC1oDM7V49AbN4T7PgZMzZns31P/5FQlnLdj0WiZEv816NXLMFdfR/yFZ7J8B+/Vmcgu3TF1ddlLZMpz47o5EhmlDdKEUev6HnrjWtxxkwPgPKMqxI0gClvhXHUt+shrZK5jxriI0u74c9+x/oVOeZ/CQW1YT2TabbmDX45r6TgPHkH4EqR9b0YL9MnTuGeqkUVt7Dr14VIrVh0ECmWfxpkFwO6bvFkvo7bYgD15eURuuwd36HDUrm2EdqjnobZtRpZ2Q+3dhffaHy29pzHIPv2J3vvFJgcERPMWOB9R1y607Rn3J+bkP0UT3XvB6qWhuIjs0eeTv6Er1rBH9/jjj+c8tmLFCn7yk59cAeX/BMzU1VG3Y3s2FYLnoVYvaxSUd0aNQa1YnL4hEgLymiEvcWPdmPnrVocDc8agd+/EGdQ4gCw7dkHe2zilzCdppqI85zF9usqWGWZupAyYmoCn9lKAGCeztC7FPqbMS9mxFDnjyyEHGsjqzllK2XTz3n/bAvL1zpTn4b//NqJlS8v3XVBonaLURchxcEbfgL9hLUa7CPy0JD3j5KF37bCAWOaGw2jMscOYc2cbBHqMMcSe+SWm/ETiOzSnq4g/+zR53/khslvPYOOdCRgo6Gk3sKKgEPem3OKY/vatePPfw1RXITt0IjJtOk7X7vZKSuEtX4xauQwTj+P0HUBk2q3IVpYH0JyvIT5vDmrrZkvBNPIazH1322N5zQNQPWPMGWGBMSA+9138pR/YTUt+PpFptxMZfR364L6AkzHjZuMeavUK5K13ous0op4yM7iurrlggZUWBTa7I6NbEAIZUMT4O4LnPh0899TpON26g9vQWHMR0TyiX/8B/pzX0Lu32RLwISNxp97ZONDZ0HHn4xGIFS0LLMgeArSbM+fQ2kGkbHiMdtDnzmUF4f6SzGiNv3wJ/sqlmFgdTp/+RKbeiixqY49fqMWbOwd/y0ZwJO6Iq4lMvOmSdQD00UPhHMxeHH/1sgQo/1HNXzQ3mH+Sm0R/wRxo1ozI1Q1rK3wcpnbtID5vDqaqEtmuA5Gpt+L0sJWS7j0P4S+ag16zDLwYomsv3FvuSQS+o48G39jOrfa7HTwCd9pdly7y2qETom2JBaZSwXnXxR0zHlFUjD8vBFRwHOQA6zfoinLi772NPrgf0aIF7riJuKNGgzGoTSGC5b6HWrsKbr4D956HUIveRa1ZBvEYomtP3FtmIFq3wV+yEGOiCBNPX0tEHnrH1iD4GgJOCWEDw8JFq3phvyDrThhkJIJs3xHRvjOm/GgAxgfnOi6R8VNtU3UX8ObNwd9sN7/u8FFEJt2EiOahtm0BFWy668ErbTM8vT07ktfLvLegLffuB1EfzEF9uNQ+d5ce9rmLiht9ZwXTbuHMqy9lH8jLR3braYOoIcA7rovwLeBkQZqUYwYrnui6RL/+Pfw5r6N3bgYEcuAw3JvvsdmHCYHL7D7Hs+9ZlHTAvSskuFx2zIItmebF8Vcuw+k30IoDjrgOZ0T29yjbtsO56yG8N16yVQhS4vTuhzP9vuSdlHTADQls662bIATUA2HH6G0NR4C9RfPCMyNPVWIqynGuu9HSQKUCUJEozpjxDV43cZ26Orz57+FvWg8C3KtGEpk0NUH1IJq3wJ1wS6NiuZnm9OmPl0Ovxh0/7aKu9ZkzIcnmiMAmiASDW/boGxq8MPE4saf+ywLcwTdpjh8l9vR/kf/D/9VoBYI5dw6tJSKpiozRDvJMDsqs1HO9OPFf/wxqk/pQnKkm/tsnyf/h/0pWM2ediNURIEe2OkDrNoiu3W31dap/7rpEJt6M3rYFTQSh4wnudhMEpvS2Lah9u9GeRDo6Mefa7GeDKTuGM24KatEcTOq3IB2c65PBxFwm+g6EeCb9jbFB0r6DIJKH2rQx5ETX0s8kREWzHFl0RSBgTbZbac7VJPSkQk0bdNlxvFdn2j0jtv/N0aPEn/sNeV/7tgWCM+hvhDB2/RUC99Z7UYWtUCsXQ90FROeuuLfMsILijpt1bv35MhKBNm3RNefSn6reP2/bPhTsSzXnlhnoM+dQO7Zbup3mzYjcdR+ypAP+mpVok2fnrhTaLaS0VVUNXFsYEbpWJE5JaF1kz6nm7FnUts3hPr42qE3rEG1KMJl6GfXPXdLBCo5nbNONwWrfCJmzCskohRw4BPPWywFffnKsiYjAGTqS+KyXQ+8bN4I5etj6J5mYiVKoLRtwJk7N2S9CG9T2LdYHCTL105574zrkhCmYCxdQx0+gKs4g8mJQfhLRSyf8OXVwP95776AryhBFxURvugWnn6X9i7/6AnrntuR65Ht4r820e2fHDe9zKcGNWLrQ536btgfXe3YS+/2vyP/G5aUy0xXlxJ/7Tdp703t2Env26cvedlNMHdyP9/476PIyRFEbolNuxuk/qNHznP6D8Zs1z666jkQb1Wy7YpfHPjICd91113HkSDYH4hX7DJrn5QSRTFg0N8NkUTGRL34V75Wg5EobRHFbIvd/9ZI31o1a3YXwxdeAycGr/KdguWkmBLKwFf7aVaFZgKb2PHr/HpzeHz0YInv2JdQ1jkRxR16b/fvHaLJX7radkZcmuGJ8H7V6WbbD48XxF87FHTqC6MOPE5/5G0zFiWCxd4ncfb91nOsugDYJxzZ5YezGMBdnrRCYeHamS9oljh2xvJaZgTGl8FctQ504nrJhSb+SXv4BzsSpDT67t34N3qxXEs+uD+wj9ptfkPeVb+B060H8lZnW4QqOq03rUXt20ux7fwuRCBee/CmmujrxrXmLF1B+/DDyS48i8pthzmdSpQT3mJdH3esvodesSh6qq8Ob9TJgkIWFlh8y7blsG7rmHP76NbbPdUafx2LoPTuRw65GLX4/jbLSAKJ5S0TrNva533g54YQmn/sxZPfe4ZnykSjOKDvORasiIp//aoN9G2YiEkH27o/euzMLEHSGX3PR17sYM1rjr1gCvs4Yqwp/0VzcEZe3/c+yxV9/yVaz1I/zzRvsOP/u30J+M+p+/p+Y6mTprb9sMfrAfvIe/falZZzHYrkDNbmEt5poRmvLh501r3moD+ZddlDe37KR+Cszk3PLoQPEfvcr8r70NZxefRCuS2TKbTDlNkpKCjh5Mh3cEQWtiNz3yGW5t+hD3yD+4m8tp650QErc2+9Ddu5qjz/8TeJ//F0CRBIFhdZviUbRVZXU/eI/bEabMTZg89brmKpTRCZPCxeBh0Q/CMfBnXwbbkiGqamzNGNZa4kwDY+VSNSKHnHc9AAAACAASURBVLZqA6dS9SECWoQSS/kT/dJjxGdmPPdt9yJLbbVX3S//y2YD1o/zFUvQ+/eQ983vBhtikT3nAiJrnk89KJLPPWm6Ffm+SCucMo2ze/djNq5J/pjfjOg3fmCzcAcNsyB0at87Ds6wEbbk3c0H70K6S2hABCidaFlI5N4vN3j/WRaJ5l7b65uIxcKDBZAQ5da+b8HpdWss2DVqNJHJU5FSok9XEX/lxUC3xtJxqN17EO+/Q/SW2xtuO4SmLGEJSg2D2r4Vf/1ai8+MuBpnwCCEEDYJIfTCBn3qJO6EaXD+nNXVCagNnJHX4o6b0uB9gZ2b6n7135iTFSljbRlq7x7yH//eJe8Pot/4AfGnnkjTUBEjr8UdPfaSrvtpmxwyHL15XfqYchzk4OGNnqu2bU5SQ6aa76O2bmp0/fc/mI/xNDols1kIjb9kAZFxDQPUattmG8AKa3vLRtyrx+AdPpidvJKfj+hUCmTnFNVj1VJKol/8GvE/PmOBeekgpMC5+S5kj974hw+CZ32eJF+4rUvTsTr0mWpAoJVDmq+pNSYWw71hMqbqFP7aDy0wiSEy5CrciTc3+MwAeu8ujOuC56fQ1whwXfTeXej9e1OA99QO01Z/xA2jiRI2iFFbY0FnYbLmNQx2jOSgmEn4BiEgrD56GF15EtG9F3pnujaDMcJWFwgblHRvnIZ7Y3agS46diLexPtiQ7FNjBJEx4+FMNf7Bg8n7BYQ0ICOI0q62+jfsfQcBAX/eHNTuPQlea3MhRvzVl5Cduths9ATFm0i2oQy69nyCUz08Wd7Ya4a8EgzohuZUre18k0Pw1I6licSPHMT4OnF9KQ2ieXNEl26Jvghrm2g00PfI7hchHTtWCorhfFnKiQKTV2Ar2WpqCDVfWV2VXBXEWltf1MkDvy57rCEbeG6FidVhas5R9+QTlrbTGExtLd5cCwbn3fN51P69xH7/dGKsmwtHib3wO6IzvoDTs7cF5LPoYz38xfOJ3vtF/Ldfy25bOjhDh+Mv/yB0nJsTx63uWgNUppdq/orFCb2e9LbL0CfKkB0urW1jDGrPLktprHzc4SNxBg1t0vqpDuwj9rtfpfT5MWIznyVy9+eIXDWywXOFGyH61e/gzfytFcNGWH/sc19OJNxdsU/WPjIoX1FRQUHBpYnZXbFPyFq2xG3TBr+iIv13KXEGDG7SJZze/ZF/889WkT0SRba5vOKSiXYHDUVt2ZBdCqbVJQHTH5cZY9CHDqKOHEa2bm03QinZ5kYp1M7t6KoqnM6lyB49bTlz3/54YZRA0sEZPRa9e0d4hYA2mOrT2W23ao0zcFCTOIZFJELkga/iP//rwLHRYAzOmBuRPRqm7bhUE65L9MGvEf/D0/aH+ravG4fT8xLLpWJ1tn9SHKKE03O22rbfuoi8b/41+vQpiMUQJe0TnOzOgMGoDWswsXQef2E0snc/ZMUJC4YqnXZt0aw5ok3DWYKm+jShvJFaYSorMPWlr2kepsAYg79zO5EGQHmjNd67s9GxDKc/5uG99zbi3vuTG7nkSRCL4X240lYPpADyAChN3e495B89jFEhThpAJIo6U41euzr0sDdnNnmPfjtw8tKfC4C8ZhYwyOQIDdo31afRpyqxfKsm7Xx9IY6Ox/DenhXKKR1/6w2affv7dqw9+5T9XQdjbfT1Ta7wMcagjx5GHTyIKGyFO3AQImIrOiJ3f4H4r//Lii9pDVIgOnTGnXRxGYEXbQEvZ/g4P5vztEzTp0+jdm63gN6gIYiWLT/+e/2Ipo4cRh08gCgsxB04ONHnDZk+U20zR9PGuYF4HG/VcmRJO8y5M+lzru+jy46hD+5PZH5/FJNde4SDuJEoztARH/m6gAVRcwTPs7K1PmYzxuC982ZoQCA+ZzbNHv/+ZW2/MRMFheR9/buY6tOYulpESYc0jQ3ZpQd5P/gnzMlym4VaXJIIvngfBNnBqfOe5+EvX0zkxkmILt0whw9mNCiQTfA73P6DUMsXh+hVCGTfATheHL+yInvuchxEh05QlSGUHpg+brmJRcvcz612brPzeeY4r6hA79uD6NYTs2936PWdwVehli5CnyjLAgxkt+7J/47F8LdtwdTW4vTqjdMxnapGV1ejdmwDIXAGDUamVJHlzXgQb+R1qLWrEW3bEb3+RkSgPxK5bQbxE8fteqm1fWdtS3Cn3RlUIBkslUPKO4tEkUMbBzPlgMH4x49mB8+NRnTsHPxTo3bvQp+sQLbvgNO7j6XLK2qDUSqbYgIQeXlorbnwk/+TJnDvL5yL2ryB5j/4e1vJFYuln698/GUfEJkwucHye2foCLzZr4bSW8ievW0V3ssv2AqIYJ5Qu3fiDh1O3ozPBxWIOQKD+c0QUhK5/XO4U27DVFdZaqkm0gHoXTswVVXpY035mFOV6D27EhmSH9VkSXvy/+Hf0UcPoqtPI3sPQGZQ1+izZ1DbtwHgDBxsEwE+4xa59S7iZUcxVaeS47xNMZHpdzd6rqmuSmhNpfmp8TjmdPi8kXZ+TU3KlGfBaWOw1GsBVYiJx+33ff48Ts9eOJ2C76P6dINtO5Om4ezdhdpog0MWfJVEH/ia/Y669cIc2pcFVopOAUDcvAV5j3wbc7Yac/487Qb0orLaBmSSHM7ZvqTIy8fUXsD6zGlXtvNYXh6m8iTeps1AsO9yHLxtO3BvKEcE85euqSE+/33M2bO4Q4YRGT4i8dzGU6RWrBhjwPNRVadsADQsecx1bZ/lCOihFGLgUGCmzepP9Kl9D6JHL5y+/fHnvZsNlkaiuP0G4r3zRnjb0rE+9Onq0KbNmcZ9B7N/b/CvzD43+Ht2WaAyMR8HY0lL6wudrwmEeUlk29dzpAulMLW1+Ms+yPbXPA9v8UJkl2452saKpcY922LGoxtDwPFfXx2lU9qWdrw2wpct+wyAd2dnHxDSVkV17ISONMfEkxUjSkFk5PUIKZF9+lsAOo26RyC6dEfUnkeLCNJ4afduDBD30Af2hVfSnwsy+KN5oRUnRito3cYmC+3cmtUxorQrsmNniLjgZayhbgRnyFXIPv3hvZDqwmgUZ8AgvBVLE0kMCfM81MZ16MnTiL87O9RX9N6djXjwK+EaQICpOoVo0RK698bs3ZG8NQGiuB2ibTtMZWVGfwbm2HHOZQTlzamT4W1LaefjSwTl42/Pwl+zKrl+792Ns2EdeQ8+0miykDcnd5+7w0Y0er5s15Ho//hRImlQtG1/0Tz7at9edNlxZHFbnH79L7vO3Z+zNYjghWXCe57HsWPH+OUvf8nNNzceYb5in74JISh++BHK/+OnduVQynKt5jcjMvki3qExGE8hUAnn7XKb7DsA2aM3+sD/Z++9w+Q4rnPvX1X39MzOBixyziCRQYIJAAESADNFipkUKcoSZVPJyrI+S762ZF3b3/10na4yFZiTKDGCGYnIiSRA5JxzDovdnelUdf+ontyzCwqkLH/ieZ59dnd6uqururrqhPe8Z6tZsCJ0gj3l6vdVXPPDEB0EZB/5DeHuXZGSZyMch5ovfQXZpSvqxHEyD/wUnYmKc0oL2asXNZ/7oknpve7jhv8tt6AmEsi+Awwlj+cSrl0Z44zRyIhbMfvIg4S7d5pr2zYiUWi7PbEGnUO3f/s/HF64BO16xuncjmP5gxI5cAjJ7/4zauNaU1x3yLAPpu2aNNpxUF5RWm60uds9S3mcZUyqvRwyFF3fEZU5Qk4r0FpgDx2FbOyINeFyvPnzKXAomvOccZeVvAuqqQl98gSyazdEjTEkRO8++ZQ9pcjrsDKZQA4aQrhta/X3KQ65UCxutoD8KPVdE+zbi31gX/WCiDu3R6iNGKVeKcItm7D6DyQ8daLyOyJCdlRLI3VdY7DHFTwE8FxkfxMIqZjnQiD79EPPn4Mud8KAMTgOHURnWuPToQ8a55XsPyiaa+vQ2Uw0z88soKjDkOzjDxNu22aMDNvGnWaT/sJXkN27I+obcL7x96htmw2tR4/eiH4DPtB1Ubsu6tAhRH09smNUB8NJotO1qFMFxEyeEv8MlUNv3hy8GW+Yf4TAffklknd+gsT5Z+lALhJ15IgZ8569zrggqQ5Dsk88Qrh1a2HMX3qemi98BatH24XsdNV5HqB2bjf0MnHO7VCh9u87K6e8SCaxxl9OsGC2+Z/oFXcc5Hlto1XaFTuB6NCYD8aWtNujzBl69Cg60/q+xrxNCQJ0Uzw/qz508Oyv/wGJaOyIoGP8wUhvQeqStULt2hG/tkoLfewIzi134f4qKr4ZBMa5mUiQuOHW9u+nb38DKFi/ujDnEg7WxROQ3bojOlxOuPJd4zz3PeO8siyc2++J6ppUWVPL5nZ45Cj61Amsho6ItHGkqr174pHfgY/avxfnzntx/+2fKhxF9uQrkY6TD8Lmgn354F9U7yTctZPMQ78yDpkoGGmPvYDkHXcjhMBbvBDvtZcLkcJXXsK59Q6ciy5BK0XmqceMEzVUYNn48+ZS8/m/xurVG5GuxfnqdwjXr0Ht3ok1YBBy+Kj8mpq4+U6ThZVDCjsOonM3QznUjuTuv7Jf5kPd0kzrAz9FNzVFz9tGNHYk/cWvGKeblUBHAeSS812PcPnbJQ75fJtHj+Cveo9w7ar4fUppwn17sYdU51gXCTviHlcVbYte/UzQeO2assKBHsGqFdgTJiFHjEYtW1R5YSlLgimiJv2+ivWBKeIeO9d8D7V/71k75XMi+wxAxtRS8pYtwXv5xdK5dtOtOOPOPHtINzejjh9Ddur8RwtMi5o0zlf+1szzXTtMXYIRo89Id5B9+qGwjBMuEq1B2BayT792z9d2IlqTcm1FzlQ7YXjh9+0l85sHzLsdhiawNmIkqbs/hezdD4VEF62bxW0LIUjcejdy/GWEK1cgGhuxLxqXp4dLXH8L7i//g4ga3OyREpyyNVU0NJqfRAKIsiQy1TPOdDaLbmmJ9ZsBqO3bCDauL6WYi2xh96XnqPnS1/DfW4H7zJOFw+vW4L7xCum//XtIpUsc8oVxA5mqQQ8cTLh/bwzdWYDs3gvRtXue/79EOnbGSqVg6EjU+vVFYyoMaPWWuwz1Xr+B6O2b861qQHTviejTDzFwMOyLaTsMkD16oY8ciR+zkydMoLENB5r/7ttlfS70PVz5Xh4cUpi3kW0EBDu3Q7ceqH2FfudocKzOjSYgFaevKWXeiarZ5KBcQ+OaK4Cavyth7kGdOoXu0g116AjkKH1yiPYOdVhDh5NrNYe4z9dw6dwFtAFe5et6RWuusCIQ1NvL0C2V89GfPxdn6tUkbrgFd9d28KJaeLYNlo1zy13QoRGCEJULKIlC0EI6ScJN69FKVY66UgTr1xiGAF3AcOX3IWnB8WNR29sKbVs22BbOLXeZLLcrrsN/9QVAFOaSkFjjL0PW1iIGDjE1Lyiaa527IfsNxJ/+erwtZ9nogwfi5zigm04hGjvGA1eERA4YiDp8iHDbdghFoSaEAo4eQ+3Yhhw42BTRjdHvZZl9/0GLHDDE6IsVSP0AGWUA/aGijhwmWLa49NqeR7h1M2rbVqwhbYMV1cEqenhLs9EJ2qEzA/P+ii5t1HCpItrNkvnVL1BHjpj1x7YR6Vpq/vqryP9i/9x/V2nTarv66qtN1LzIQLAsi549e/Kxj32ML3/5yx/6DX4kH4wkh5xD8uvfJVi2EH30CHLAYKMsnWEF6WDDBrK/fcooakojGjtQc99fIru9/xf5/YiQEucv7ketX2MQ804S66LxWP0Hfqjtnol4C+YS7tpZcKqHIdr3yD79BOmvfYvsM0+hTxU5NMIQtXsX7uyZpK67AWvYaLwFC8GPjLlAYl080XCTnncBwZyZ6LAI8ZZIIAefi+zZC3fObMJdO0rb9jyyTz1O+utnhl6UqRTWeRd9MINRRaoFb0QyiXW2zqrya0qJTjdAcwytUUOnds9XB/YXoUoK9xxs2IDOZHCnvRCjmIM3awbO1KvQvk/2t08RbtiQd0QnJk7CueFGZMfOiAFDCDZsoViJDANB6qLx+Avno71TsamYIuJ9z0nFmDpJQ08aKfKFLwKBMkp9nPPJspBdu5ugUhXRzc0krryWcMNas8Hn9oKEg33V9UbRKrm3ItS2ZSE7daoYL9MpgezaHWvU+QRvTTcIr9w8txPIAQONkdepS4T+KruGCqGunljICJQYjcJJYo254H0HEv0liwi3bS15x3BdMk8+Su3ffMdcW0qsc4ad8TXfj3hz5+DNmG5SnIMAq/8AUp/+DCKdRtd2gFMxKbhnMM/DgwfwZr5ZoWC6zz6Dfc65BrFyFqJOniD7yMNGUYsQF8nb7iBxQfsOf3/pYsKtW0rHHMg++Qjpv/lum89PdOwcr/RLiejaDdG5i6Gq8EszYbAtRMf2x60t0WGI9/ayyKDI5XUIVMZHbdmEHHFmGWlxIoTAvuFW/N8/YXhjc+9YIkHielNvQJ08SfbRhw0/bW7Mb72NxIVnub7bNiRTsRQ8Z1Is9Y8pce93uH072SceN2ndgEinSX3ms1h9+iA6d41HpIWBcQjV15P65t8RvL0YdXAfsnd/7EsmnNH7IYQgcee9WJsviFCjEuuCS5C5gr/JFMmvfJtw5XLCTesRHTpij5uI7NYd1VYQNsq2CvbuJfuLnxXNh99hXXwxNXfdbQLc0TwvkUQC0bETsqEDyb/7J4LXXiTcuhlq60hc8zHsYaPQSpk5VDKu0e89u41T/eHfQKbIERtC8M672ENHIHv1wnvtlYq1xXvxOexzzqV542rCNWsLa33ogQeZRx6k9n98H5TCffb3BKtWmrm3YDH2hReRvM3wwttjL0b27E2wbBG6+TTWsJFY5114RgEotXF9XM1BsCzUgf148+eijx0vrCFhiD56BPe1aThXXhM7JjkO4eC95VXbDVa8jfZ9qlEtqAP7oMgpXz6P1d49kEii3UyRAyc6tnkjoRBVss1Cwi2bcKZcTXb5spIimRqwx0963074chEdO4HjVAY7E85Zr6ntiTpx3Djky+fayy9inzs0X0ekmugwxH3+OYL3VuT1NXvsBSRvv+NDR/rpMMR94TmCFSsK8/z8sSTvuLP9tjt3jQJnpZNJBwrOxLHiBxXnggA/QClF9rGH8w7w3F4Trl9PsHIFcsCgKLhV1nZYaNtbthTv5Wmm4KhW+O+sIHXfZ5ENDXiLF6B82zhUc+cKgbtwAekBg0qvWY707dgpHuBhWeZZO0njiCy/N62hZy/UG6/kP4uSE8zfu3cSBgHu756qHKtTp/CmPY/sUh3IobIuzsTJhO8ugUxYoiNbl0xA1NWh6xvRhw5UcK+L+g4opQg3bsr1sugLEMyegbz6OsLt20t0C60F7N2HPnaUxKVTCN9ZAhlV8CInHKyLxyPq6hD19ehTMWj5dLpirpWvPW1m4mVaIVSxaxoa1J496LpGoNJpqGsbkY2N8Q5eMPSuqVQ8IhyizCqJChXlRXCFpUyAsWNXOHQ06lfR2tvQ2TgM+w0i3L6zBO8jpCZ1292EWzajtDC1Vyh8RWtFuGkj4Yp3c3dSenOhIti+lcTwkaS++T8I3l6C2rsL2aMX9riJiIYOBPv2RmeWgruEAH3sGLpXS+yltcZkgySSKCWivaAAHkNp6NCI7NSZ1Lf+3ugte3cju/fMt621xlu4AB3NJRWNiwogWLMKe+Rogq3bICwOdgg4cBh95DCiW3fYuYOKjVSFiI6dTEHkE8cqxzyZQqTT2FOuJpg7q6CbCAGOgz3lalNXIOp4yavveQQb1+NMvoJg6UJQrQV7NuFgjb3oQwdo2hMmESxd8KG0HW7dTKwRG/W7Pae8aGgwoIFySSQq6vR90GBab/obJiiQCwiGIdr3cZ/7HTV/+fkPrJ0/J2lTk91YxkP2kfz3FtmxE851bfNXxok6dozsE4+VpMjoI0fI/PIB0n//Dx+6AiukxBp1Htao8z7Udt6vBO+8XZk2pDXq0EHCI4dRu3ZWnqQ1wZLF6GuuJ/OrByLakNwiGeD97hnsHj2R3buT/PK38GdPJ1y7EpFIYF08AXvS1KjtZfFtHz6Eamr6L03h1VrjL1qEN2sWurkZ0aULqZtuwh5xZhXa/+B2XdekuMVIuDk+Xb9YghXL45VEIQg2rkdt3lR5DNBBQLB7N/7SJYRro7TB6Dr+gvmITp2wLxlHsGlb7oKFk72QYNtW5LCRhMsWlygyOgoAyJFm3gdbt+K+9JLZBNNpnMmTcaZORWcypQoQRc2EIbJXH2T3Hsb4L+MwtSdMQhOhRmNE9uuP7NIN+8Y78F95HrysQTYMHY196WST5tZvAGrHriKeT5CWwp44EdGjF/H8iRo5+FyEbZP80jfx35pBuOY9E5C6aAJ2VHw6ccXVuLt3lM71hEm1FKmaUudq/tqQw8Rq38d99VX8d94B30cOGEDqttuweraPKA/eWRpbkEkfP446fjwKOHw4Eqxbaxzyvl/gR9+5g+xTT5L67F+iq6Ajwq1b2r/2yhXx81xKgvXrSFz8h9d20FqT+fWv0UePUKxZu8/9HtmtG1aftlElsesaoE+eNCmunasbx7J7D2Tvvqg9u8rmuU3i0ssRdfV4019DBaKw5kqwnNRZIzrVrh1Rm4KSomi+j//OMuyzcMoD2CPHEFw4CX/RIoMwTtg4k6/CGjjYjPmDvzaIuCKHrvv8c2bM+7aPnqwmQgjsy68gmDOz1MmbcLCvuKb6iX8k0UGA+/rr+MuWgech+/Uz73fv3ujmZjIP/abEYag9j8yvf0ntP3yPxJSrcLduKp1vto0cNhIRUTOKhg7vL5uwSIQQWENHYA2N3/dEwsG+eAJ2WU0AKSVy6HDUpg0V58gokyXzs5+UcJxqDcHb7+D3H4B9/lh48xXjqC1eIJ1knq5Qpmtx7owpaBo5y8odBrljas9uaM0FvUsXXXfGmyYIVIWLP1i3hlNvL82/J0Unw6nTqEMHCZYvJ1j5nvlOtEYF776DaGwkeZXhOJc9euHcfGdsG21KTU2+3RKjXylIJg3aPK7my6qVpO68BzFgEMHmbVGRXnMpmZQkLp+CN+PNqs2KmrQJkriliPI8crObyQDy3n0X78030SdPIhobca6/HufCCw1wRhsnbEWyWjqNSKXygdsSsSxEKkV45CiBJyCQ+f4jQG/bzdmVt8bo5K9PK6WBEgKchMn4/BAlWLOaigHJHVu7BueyyW2e782aaeZaEBTm2sr3EB06kLz2wy0k682aSfBeWdurVpq2r2t7vQnXrQVpVyKjLYtw7RqsyVPbbtypnIsAJBKGI7m1JXLKGdEA2sNfthS7tdXUsCinYxHS0Cf1G4D7YiFQooFw9x4yDz9I7Te+Rfjee9EzK1071OrVRk9UCnf6dPzFi8F18Qb0w77xJqz+/RG9+6FzBZmLdeQgRPTuB3UN0BzHFS6QjgOJBMotBDPMVqmRNTZqw7rqc2nlSpI3ftw4ucp1E9tGptOmVsntn8J77mnDES8Eou8g7GtM3Y1wxw50IAzveC6wpgTs2mPGrYLiMWp71Upk1+5mzy/XLUKFv/xdktdeT/Ir/w/BzNcJt2xE1KSxJk3Bjuom2VdcY2gey/bvxOSrzBiGId6MGXiLFkE2i+zdm9Stt2INGIDo3AW9N752oGjsiDp+DFR8sNHw7cfro2rPbqitM1mfrUGp/o7Jps496wqbSIAKQpRlR8+jdC/RoYR0LeGWLWbZzGU2AwiN2rsHrRRaW5iKwYXnrmUC7fqGLjOI8YwriQ4CQ1lZpYpYuG0bieEjCbZuw13yDvr4ccSO/eiGzjjjxqH37a0OJnI9VKeu8f0GdF09nDDc3zn7MC9CFGrnpGtJTKmsCaKPHkGdOgVKRBnIUe9VQPD2UgPCpRCMKFxb4a9aSWLiZMIV74Bf5JS3TJaM7NYd+8prcJ9/Fu0VgaISAueyqUaXnHI1olNngnmz0c2nkQMGk7jmBmSnLoSpGrO2ELOP1dQgautIfeXb+LPeMECGVA3WpZdjX3Jp7HP4IEWka03bs98g3PjBti1SqfjaZ5aFSLcPmrWvvBb/xWcr9fPLpkYF7hXe7Nkmyz+TQfbsSfKWW7AH/+GZwTnx31teuQ8pRbhlMzoIPphs3T8z+WjEPhLAGFzBylV4ixahXQ/7vDEkL5uESCbxl1UpOuq5hFu2YA/7cJCif/LSBqJNZ7NVlTzcLGrHDnRra+V3whB/yWKSt9xqUrk/fht8PIZnUqmCYhcVCRK59PxqBeo+QFEnT+K+NYdw23Zkx444V0zBHmSQLt6cOXgzZxYKjxw9SuaJJ6j57Gexzz3XzLXVq/EWLkJns9hjorlWxhX6vtuuRsMC+bTztkS3NW5tUQro6F14953K7yiF9+YbGE0y5h0C3NdeI/1X95N5d5mJNBdfIuGQGDWGcPduMg89VDAKWltN0KO1lcSkidX7FF3L+ezncR/+NWrfbgBETS3O3Z9CdupMYtylBEsWVhj1IpnEHjGacM8ess+/ECGszJYRrlkPda+Suukm5LAxhNtLFXelbKwhw1G7d6OVjdBBCQGNVpJg3Trs4SPATqBrOxI6jQjLRtY25pUUa9AQ7I/dQvD6NLTvmWKAg4fi3HpXfjxjOSWjQGHm0UcN/Uy+EOwOWn/2M2r/9m+RHdpGOFTl0hd86O+YN3dupQEYhoTbt6Ha4o1vj+oo9524uRwZxWcjau9eg8oqv34Q4C9aiPWJu9s8X1dtX1TnZS0S59N/hfvIb1B7dpqzUmmcuz5p+ORdF6Ud0EXjqkDJVBWr8syl+n0TGdRnJ97ixfhLlhau5Qd4M2cju/VAdmxEnzhR+eyCAG/hAmruufes2k5MvsLwXy+YG1EKJUhcdS2JM6AM+bAl8+SThBs3Ft7vXbto/fnPqf32twnWV3G0hIpgzVoSF16Ic8+n8aY9B83GkWKddwHOzbf/kXsRI0NHcuqw1gAAIABJREFUozZtRBTdvxYC69yR+GtXFznkSx0S2enTqR83ntQXv473+6dMIFab4Kpz173tGkk5FJVSZo0u6BYKISXBtjiO4aj1o8fQYYhWGh0WBb6ERljajPvxkzHnGi9VeOwY/sIFle95GOLPnZN3yrc+8RTB6tXmJhsaSH/2M9j9TOBJBwHe0mX477wLQpAYdzHOJZcgLIvEpZfh7tlViuoWAtG5C7Jrtzb29wiNaKdBlXqPVGCB7ZC4+lqC9WtiUZ3Oldfhd+xEMGdWZRPSwh46HO+dd3BfeKGgM508ifvccyAlifPPNyjHct7qhIM9YRJWrz54cTzAgD36PDKPPx4VTCwy/LVG7duHOnoU2aUL4YGDuLNnow4cQPbqRfLKK7F6dI8fjyIRjmPm2rNPofbuNV3q09fMtTOoAwLgr15L9uVpNJ1uNtkpt9xEYtQZBDGrrbk52pX22l20MJ6Ld9HCD8Qpr5pb8ObNI9iwAVFXhzN5Monhw9ppe1G7TvkC/2GZFO3fwY6dtD72OJw+bWrGnD+G9L1mH7AvHk+wZFGpM8WyDQWUUkUOt6LZrDDgD99DB2HFdqlDhXY93Fkzo7W4dF1S+w6gDh+KAlpx77/5K/vsswSrVuXHxtuxC+9XvyL99a/jz5tjEL6yqMJQZAP5s2Yi0mlUsU0EZt1KJU2Nog5d0KfLa2UIdH2nyiKOJZ1T2KPPw3t1WuUxIbDOG4s6epTWx5+IkPrRGrtlBzzzDDV/8ReGPk1JlCodF7Q2GSxV2zb0VtUkfywI8Q6cQJ0KoDWDc6yJRNRR++LxqKNHCRfNQ6vQgNwuvBj7sikAZF94wWRs5Aq579tHazTmzk23k/35jyqftwbnYzfhvTqtAqWbDzYOGoKePTOetktrwhPHURkPoSmzDQThhg1YI4ajRWQ7lASHhQkaCxuNX3b9COEtRJQZJCjPPtChJjx+HLV7d7yeOm8edOhgas+WOL61MeMOxmTXFTWgAX/NGrK//W0hONXUZIJVEd1bbpwqwERKozdtRgUCaZXOcxUKxI5dWF06ldr+RPO8xmnbhiWyaQJdOS4KdNY11HluqW6h0YhAoz0P2bUbzt2fIfvMb1GtWRBg9+lH8tN/ZU5Jpk1QpDjQoSQ6aTKyTN2IDoSpTmjXQtR2ytOr2CNHG12sXKTEHmsyPkWHRpzb76nav/DIEdxZb6H27kF27457+41QW8jmDrZsxZ07F33yFPa55+BMnXLGAEbRoRHntupt/6FijRgFL1Xp9/ntZ7omxl4E2Qz+zDfMOywl9sTJJKYafcl9+WUDWsm93wcOkHnwQdJf+QpW77Ok/VFVdCagKpfYR9KmVGXzv/3223njjTfwqhQY8zyP119/nTvv/AMQKx/Jn5xkX3yJzO+fJdyxE7V/P97MWbT8+Kdo3zcULHFKrtbo5tN//Jv9ExH7/LEmnbJMRMdOBf7n8jVLA9JCVRs3pUwkmyhQsmMnmVdeI/vmDMLDBW5Aa+hwdGgVNlct0KHZ/MrpTv4Q0VoT7NwV27Y6fpzmf/9P/CVLUQcPEmzYQOuvH8RbscKgLmbPjjU43DcMh7X7yqtknvk94fYdqP0H8GbNpvlHP0FXWWtKhuf4CdP20mWlbS9fYZA+MX5583/7hUsSY86PfZ4ohTVsODip6nZ7h0Z0lQ1KZzKovbvjzCij9pw6hezSFeeOewwax3HMT02a1P1fRDgOblGQIy+REVfIrSxvuPCnN3sO/r6jhJ5F6FkELSGZ56eZegJduuLccbdpO5k0PzVpun/rm6btGTPi2168GJXJ4M+cGdO2JvvyywZRIqVRzEIR/UijHJ86hQ5DWn7xAO6b01H79hPu3k32xRfJ/PYZM/QnT+K+Np0gi7lvV+Jt2Ia/4j1TREtYaGVogAJfEobC6AKJJOrwYZP2G8NB6C2K4dgtE2v4yNhnRsJpE7FdLOr4CbIzZ5N5+VWCLVsrUrKrSQntVbl4HqJrt9jHbQ1uv1iyPXqMedYVjWozz89CdPNpYgsaax2fQl1+b2MvjL03UZtGdG0/Nd+buwB/z+HCPG8NybwwDZ3Nlhj7Jbd2+jThlvYzDNqSqnRqjoN9wdnRdGmtcadPj19TX38d3dwcj7TRuqSYW7BnD5lXXyfzxnTCajyUMSKkxLnqOmq+//9S853vU/O9fyExsW0U6h9D1PHjJQ75vIQh3vz5hhs85nkTBmbMAHv4KGq+84/UfPcH1Hz/f5G84548//F/pQQzZqB9iQpE/kf7Ev/NNwnztZ5i3B0tBikqu3Yj9eVvUvP3/0zN9/6F1Be+2i6dB5hnLXr2jdEtLMTAIW0Er4RxUA0fUeSQLzrf08hhI5DJ6vymora2qoNKR8je0//rhwQrVxYcsk1NtP74p4R796G1pvXBh8i+/Crhnr2Eu/eQffFlMo88htYaa8Qo7EsvM2g8y/yIxo6kPnO/yWo4d2hl/6TEGj4yKly7IT7oPm8eskcvaOiS1z/yekinHoguXUhcfT1ywMCKayc/99cAeG++WaWY8hsIIUh99vOGKs6J9mfbJjHlCuyhwxH19STvva+wd0c/yb/4S0RtHeGBOJ5fQ3egDh8m2LGTlh//hGDlKtTBQwTvraTlxz8m2LW76rMq6UaXrqS+9A1qvvfP1Hzvn0l96evIM9wf3SVLyTz2GPrESVO/4sQJMo88hrs0vnh8sdgjR8XPR2mZY5hgqb9+A5lpr5CdPSevWwOl/OLFUu3z9yGqpYWW//hPvHnzUQcOEm7ZSuaxx3HnzG2n7Uy7OoI9YmT8HmuZfod79tD6s59HaF5AKfwVKzn9w38FQA4fQxgowrCgM6lAIUeMgfqG6o7zRBJ1tHoh2fDoMcJ9+/NzXykRxf+joNuBtvcc1dxs3u2492DOnGgvE6W6pDLZH+p0E/aoMWhllaw9WknTt7790PsPVkwXIUAfPoo1ekxMn43IYSOgJg3dekfUMdEPQGM3RF097uzZ4OXWrqj9IMRfvQZ18iTIRPyYWhb26POqrqty6HBkY7VaKSAbGlHHjtH8w39F7dpl9sJMxtjvv/y1Gde9e3EXLCVwRV6HdpesMPZXSwvB8uWVYx4Exo473Wx07LJ1TQsJWY/EZVNKxyQ3daWFPWCgcfbG2WMak9Vg2WW2gdkvVFMT9vCRxrmuRdH1BdgJ7FGjDY1cdCwMBSoqlKsRhp5GlTmec2Ouhdknq2T4q6ZTBnGuc5lFxXuZRLW0Qk1tlSCuwBowEPfll2PtDvf111E1adPP8nHTgJbolmbi5rkQArJZrGrz3Avzemh48hTNP/8lp773A5p/9FPCiJJO1NXF00/pKAvDSeWpFws9itDzCQedzZJ5YRrKDU37ShDsPYQ7bwEA7uuvxwTVFd6MGUaPXbKUlgcfIti4yQSCFyyi+d/+A9XUhEilSN33OUilCvuY4+B84t7q70BxM/v20fKfPyJYscLsY6vXsO9f/p1gs9HtvaVLaX3oYcKNm1AHD+ItWkzLv/9n6Z7wXyAimSL1mc9BqqbQ74RjwERRNrbWmmDzFjIvv0p25mzUidL6UvZF47Guvw3GjMO6+mYSl19hUPKZDP7SmIzvIDA+hbMUe9ToSttDCGS/AX8SevR/R6kKm/nf//t/85Of/IQf/OAHjBw5koEDB1JbW0tLSws7d+5k3bp1jB8/nh/+8Id/zPv9SD4EUcdP4C97u3QTCQLUiRP4763EGjaMYO2aSt5IpbAGlvIA/jmJM/Uqwo3rUceOm2JXiQRYFql7PmUUhnQ9tJymqDA9YAqKWv0HxAc6HAd7+HBDSfD75/DfW2nQF1LizplL6pabSE4Yj2oxRmohnTH67YaVIfj3KVprMs8+j78iKjSba/vmm0heOp7sjJnGqChWSnwf98VpJiUq6lfxYSFM4Ud16hTeosUVc02fOoW3fDnJCW0X6MrOmBHf9kvTsIYMRgcCYen8EOS+plpj0nXLRA4YiH3hJQTLI1oiIcGSOB+/BVlXjxJ2HtVRcm1tIarQ5uRvs6GxMA/KjovIwEqMvRBr8Dl4i5cgnASJiRPzToyqxVwsi7CpCXJAuKK5pjG/VVMT3sJFpQim3Ji/8w7JSRNJnH8h9ohRhNu3IWwbOXAwqR6NnD5yuu22Dx2KL54J6KNHkf37GyeYJp8uKYRGOAmzrqxbb5AnxUqD5xOsWUt48GA+m6Ikvdf3yU57GXvE8EhpzW1jAh1G9AtukFdEKyQM86i+tkQ1Z/LjWFrYLypw2A5tl7dqDZmnn8kj97zFS7HPPYf0fX+Rr26vXZdg63ZjnA0ZlEeyaseJ59MMAkRjI6rFi723MK6eQplYffuTGHcpfq64kDDGoXPdDcizDOhZ/fpVpjOCoRwa3j59lTPpMsJ1a1CHDhXWVCFJffLT7XIhquYWk2FQMs9D9OlmvGXLTKAjttBraHi0hw411znVRLBrN7KhHqt/vzPiYBSJBKl7PkX2qcfNwwgCcByswedgjzk//z3teoaz05LYQwafWXpnEOTTkstFHz9u6GninJmJRD6LLfPyq3iLluSftzd3PsnrriE19cyd68KyTB2HPxFRR47EcwyHIeG+fSSvutIgUsufuZRYgwp6ixAC/kgFHs9EdBjmHWq6iC9XCNAnTmB160F83pcwwdziT2qqpz+rptMEO3ch6+uwBvTPz3OdLUe6Rp9nPBLnX4D/+uux15MDBhJu2kJsQUStCbdtp3bCOJremFF5sm2bItVxix6AhvDAAfSxY7Fttzz2OOk77yDYtqNUrwoC/E2bcXbtwurTB3/LbkKVRPgu2rLhRAbn6HFkx04kb72DzM9+hMpm0V6AcAw1RfKmW1CHq8w1pQj37SPcug11uhUCC0RuoxBwoolw5y7sgQOo+eLXUIcO4K9cgezYCeuicUgp0VpXDcLqyPiWnbtQ87f/gNq9E93SgtVvQElRUnvYCOTffh9/8SLjP504CZkrMi8tdOygAgmb7Isvle6/WoPnk33xJeq+8TXzkVKEO3ehWlqxB/RH1le+L23Vp1KnTxPs2IWsqzVzLdr/3Gkvx37fnTaN5PhxbbYtu3YjMeVK/HlvFZ6LbZOYcqXJjAoCWn79EOHuPWYNsG3cGbOo/av7sM89B9m7j+HrLxPZ++wK9wF4CxaaTNjiuej7uNNn4EwYb7h+y2s+gAn4t7PfyK7doLYBfbL0XRCpOmS37jT9079UmAACs16Ghw6RffEltC/zR3So0SFkX5xG+q474msEAHg+KnK6l4vWoA4cBCGL1qyC4xG0qYnVuzdq376K80X3HnDsWPw7pjVq/34Sl04g3BzDvY5Bm6rm1orPQRgqHs9DK92mWZS48Sb8cjR8KkXqjk8Q7tpFuP8QyrVKgNPy6AnCLVvxN22upBNBIJQm3LuvKnc6gUGuOzfehPdKWdvJFKk770YfPoQ/b06lE1gI7PPOo/XZ52MdxOGWLajjx8m+9HLR84yyEnyf7IsvUnPXnYZmxiu9Pyk16sABVK9ehrJFqZJ+gyA8eNAUDUaiy1CxWlmmzSjTqtweQwlk9+5FHxSNm2VhDx2G7NQZ55rrTf2jXKaybZOYeDlWr97oDo2oQ4UgUc5pL6Qy73+ehK1UNMLUwoubyJaFPWw4YWuuhk75PqgRqRQ61RPdfDq/1Bffg92zF26Z0zQvmQyitdWMWRENWn7PFMapX0DjF9rX2lA0quYMsfNcSfA8/J07af3Fr/PdC5pbaf7hv5P65N3Ijh1i91ghjB9I7dsfe9sCDIBuyVIDaCgrSuq9NQdn0kT08SpBu9ZWdDZLdtrLUcZ17p4VuiVDduYs0rffhjVoCOl/+GfUjm1opbAGDo7qB7Qv2ZdfLV23tEH3Z194kdpvf8scL97nwhCdzeK+NYeaW285ozY+LLEGDabmu9/HX7QIHYY4EyYgIwpFrRStjzxGsGWb6Z9l4c56i5p778EZMwp1upnmH/0U3dJinr+TwH1zBrVf/7J5TnHUdtq832cryY/dSLh9K7q5xdhrjgN2gtSdnzjra/+5SlWLcMiQIfzkJz/hyJEjLFq0iM2bN3PixAkaGhq4+eab+dd//Vc6d+78x7zXj+RDknDnzvyLm1vIhSAqNLGRmk/egz93jjFMcjQgEQJQ/hnPAZFMUvPVbxFuWEe4ayeiYycS51+ASJtUrdSdnzBc/GFQcJTbSVIfvwnZ2Eji0on4S5cUNhLbRnTsiD32AsJt2/HfWxWlQ2Ice0qRffFlEqNHEWzbVpYKGUlo0EYiei46CNCtGURdbd4QKhZ1qgmVzSC7dkVGx8Nt2wsO+eK2X3qZxJhRhFu2xio0OggMr7tlRdyNJUexu3Yl3LUrfpPwPMINm6Adp3yu7eLMZSmjtk+a1HgdSmMYCx2hdCrHSWdddOAjamvzRpAQAtFnAMGSd5HCNucqB9m9lznHV9G1jWMZyCN16NOnIgiRd+IiELW15u8iYyn//bQxMt13V5D5/Qv5yHN21nxq778Pe9AAZI8ehHGKnlJYDQ0oJZEYxVnkrq1NwCDctTt+zH2fYONGkhH9jXCSyL79EdIqqRMhe/aMbzsMkY2N1f0oSiPr67HOvxB36XLyUSkE0k6RuPhisq+8VtWpH27fTrB5c3yaulKo5uYIcVJ8B+Z/rUB27Ij2y9Nbo7s4A0Uv3LY9/7wRqjCXbIE6crTN9H7teWR++7uyYINHsHkLweq1JM4fg7tiJZlnnsunsyIkdfd/BnvwIFTWjQ0AaWmjDh9GN502SnjZPNd72g82ACQ/fjP22AsI1q42nOvnjzXG/lmKqK0jMeUK/PlzS9e1hgYSF1/S/vkJh5q//hrhxg2EO7YZTu8LLjyj4prhnj3xRr3vE2zYiHPBWPw4h4NlIbt1Q2tN9qVXcBcvA9sCrZEdOlD3pftNUbJ2xB4+kvS3/w5/5XJoacUaNgxr0JD8+uKtXE3rb38fLViAENT+5adJnNMOt6Ntm+K+LZV8uaJzZ0Q6TeLKq/DnvIV2C2Mu6+tJjJ9AuHevccjn5mJEc+C+MR3n/DGFrK4/YcnvY7WF4nSya9d4Z4dlYfXujXXOuci+fU2aul/QW6xzh2L17ftHvPv3Jyb4UUd4qjwQo7E6N2INHmwCxjF7cA4h3JZorcm++gbuvIVRYFEjGxqo+9LnEI0djJ4XI2r/AWTHjshzh1bWVxGC1J130fLoY7HOEI3AX76CHt/8Ik2z5qI9r7APAompVyIcJwIZ6NwlC+ueFniLS2uulMiJE3irVsfw1WO4l9esJdyzzzjIfB+NjChdFK1PPEX9D76HSNeiOvUi3LELsMAF0bc3oiZt5lpc1gUCq3dvgu3bo3WlTN8IAsLt27EHDgBAdu9J8tobyoZOIDp0iHXMi6J3UwhRNSPHX7eBlsefzt0SmVkLqP3MvSSGD8UaMgR/5crC9ks0hlIiuveIdZIC+cB1ePQYzb/4jXEyA4QhySsnU3Nd+zUltNZkX5+BO3d+Ya7V1lH7pfsRnTpWGVPyem949BjND/wG3VLU9tTJ1HzMtJ28+lrsUaMJVq8CwB5zHlZPo695b79DuGs3OqdD+4a7uvXxp6j/n98jeeutZH75y0LtBWFQuMlbbi3tg+ehXdcUzTxDsEsQl8EDBsiwfz/KCwoaS0nA36e9Ynz+ho2ER08BFkJGFH5KwvHT+OvWo0+dqlp8012wELU/B7Io1ZnUwUPQuXO8viUlsk8f1LFjoKO1pzj4FCGYSSSB5rJrR1/v1o3k7XeQeeAXhi88GnORsEndcYexWarUupG9emFfMg5v+puGaqxYatIkLruMzM9+Hu9oTSQIqzgb8/cmJfbI0bhvLYDWkwg0SlnYF05EJJMGVe4GgCx5j1TWM+++68Y45c38166L6NgxNqAoGhqMU37SZKzB5+JOfw19+jT2sBEkpl6JtG2CmlqUkggd0QYJohITAtJ1Zn+rIv7qNUWZVaWiDhxEdOyI8vyS4C+YZVT26GEc54kEuKqk3zgOVo8eeIuXoAMBwkIU68gpx6y1uYLjgigDJAoKSAuZSuHc+HG8V14urAOWhahJk5gyxTQzeSr2sOF4774DoSJx0UVYvQzlhtqfA92UjbmSBG1lZWggkSBx5VV4b7xeEmsQ0iJx+WT8p39b9fTwVDOyJmWyADBbMTnEu7RRR49Vt4k0WANza3jRBpiT+npE1+7575bbiqJnb8JNm+LnuW0R7t5Dy8OPlV4zOj/z299Rc+etleflrh+G6LhAYe64HxBs2Bi/ZkuJ2rMH0bkz+lAlvY9IpwmPHYuySSoDHcGq1XC7oekVto3s0x+t1Bk75AHjW4gRdfQo4f7C+19ip4ch4abSenM6k0Urhaw9uyLo70eCrdtpfuix6KEb2z99z504Y8/DX7W64JAH83KGIZmnnyEx7B/JvvoauulUgdrS89F+QOZ3z1F7/2fjwZ9CIM+grlp7ImrrSP/NdwnWrELt24fs2hX7/LGI5JlREX8kldIuTKtr167ccst/bRTpI/lwRdTXG+WhqLiHBoQFsrERYdvUfPmr+IsXmcJITpLEpZdin3d+9Yv+mYiwLOxRY7BHVRa1skeMoOavv4I35y3U0SNYAwbiTJmaT0lybvw4Vv/++QI71nnn4UychEgk8FeuindWWpJg4ya0yDlNizc4jfaUceAoRfaVN3AXLgVtkMmpG68jealBHwWHjrDte/+COh0puFJSc/vNJCeOw1+1Or5tKQk2bDIpcCdjqCiUQtbVQYdO0FqOUhbInr0R1ZCWUiI6tu/4EvX1hMdOlfRbhRjESU1NoUidriyKBiatuPXpZwk2mpQ22bGR9CfvxB40gPDwEeMUDxQqf32P5l89RId/+h5kXXJKeUVK5vadeYdCqTPBOBSsPn2NrV5k7+R0VGvQoELbxcWUgeZfP0yH//kPJK+5htbNm0s3WClJTJiAbGhAYxGGppBUzkmrlEAkk4j6unglTsq8szHct5+WJ3+fd8hYA/vT8et/BVim7S1bKoqtJi691ETzhUHSlPMjivo6U2RmXU7pKXpm2YBw/0FEhw7xjlQpEfX1yPp6wmMx6AulCtpwHGokUKim0xX3ls9ucNvg8czdQkO9USQ1mKJQkYQqH2SpJsG2HQVne7F4Ht7yFcg+vck8/WxFv83z/h7CcghDaZ4nheeJAtHQwTg4lKqY57mA4JmI1acvVp8P3jmZvPZarD698RcuQLe2Yo0ajTPpsjOuGSGkxB4x0qTpvw+RdXXxDgUhEI2N2Oefj3jzTXRxUULLQjY2Yp1zDv57q3CXvlNSfE8dPUbLw09Q/62vntk9NDaSnHJlxefq+Alan/5dEUrISMuDj9LhB/+jTUSzEALnuutMSnTZO5j62McAcCZehrd2iwnAaRCJFKmP34pIpfBWr62K1PPXbSA56cMvlPWHilaK7PTZuHMWmGdr26SuvZLklEnITp2whw83DrCyYq3O5ZcjpKTm/s/jL1tKsPxds15eMg77oov/6zp0ptK5G5wqNzIFolsvZGMj9ujRBGvXls73RILk1ZXF3crFX70Wd94iw6MccSmrI8c5/etHafjON6oiZXNzNP25z+POmGH4330P2bcvqbvuNnpNW9zMQUB28zYCXyCjvTKXQeW9t9bcu50wwfIIXQlm/ySZgq7xQVAdBbh0U6leUCzq5CmCrTvi6av8ALV/P+6Stwl37i7ZY4NtO8i+Np3UzTegpW30jOJ9Do3o0w8RBlULQeaKBrclzvXX4z7/fMX7nYze77ZENZ2m5dEnK9eWhx+n4R//DjlwMHrFqghAULhzkXbM/m3FFO4EsCy01rT8+mGj7xVtNO6cBdj9+pEY0XY9qWDdBtz5C0vXVO8ELQ8+Sv13vtXmufm2T5S1PW8+dv++JEYaqjWrZ6+8I75Y/HdXGId8UZBEaxPgC/fuw+7fn/TXv4H31mzC/fuxevXCueIKZHdTeFe7Lq2/ewF/9VpAIOpqSd91a7t9BpAdOqDiAuRhaOZDTQ26tbVyntek23X8ewsXR38Jg0guEjc6Vi14pbK5jNEYnQmzh9qjxxg7r1ixkJLk1Kl4W7YSbt9Ontebgh5rXzAW97XpMdc21w83b8GZMB5r3CTc+YuNE0lKnPHjkP0HmEKQY8dWUtjYtnkuUpL8/JfI/OKX0BpR86Rqqfn8F5BSRrSdMQ7qMDS6KEDZuORpaISg5cFHUaeaoUjX8xctxR84wFBTxjjdQRi++jB3rNQeM89IkbjuOrynny7zCAoS116b/9fq2ZP0ffdX3v76DWisAtImsim0NnWZRE1Nnt6rXGSXzuZ4eSADwHGMLRdUmW/SwRo2DNHQYAIKub1GSkQ6jT16NP66DfkAcamObOa58kOEzs2UwnzRgUIrhTPhUmTXrvhz56KbmrCGDiUxeTIyshPDY8dpfeZFwt3mXfI276b2U5/A6tEtChLG33u4fUeevr3ieUePwF2+Bh1Kk7kb2UyhLwi27wQ/MHO87PJaC6TSaC8wgRKh8zad1lHWSW0tStrIMIiZawKrWzdE9+6xzuvULbeY7M5EMtqDdf5crARWx44EBw7EZ9G6HtTXlSLRC0dBaUM7RPz6oCPqHX/psigwWLhvBMjBgwm3bI1v2/Ogto7Uxz5G5sknK/Yx59pr26AFE/nAqTp+gpYnf0e4ywSSZI/u5nn3PIP6Jul0fMZZBArSQRCBuIr2A6GwGsxcUydO0vLEM2Vt34XVs0e7bZ+N6GyW5t88UqFztf72Wax+ffHfXVHFHyMIduzAX7Ousm6V1oQ7DQAyMX58Cac8ALZ9RrrimYiwbRJjL4SxZ0fT+ZEY+ajQ60eCHDQQ7VWmkekQrJHGMSIcB2fKVJwpU2Ov4b63msyz00waS8ImefmlpG9u36D47y7h/oO0vvIm4c49yMYGUtdegXP+6Pxxq29faj79mdhzhRDYY86l0G/PAAAgAElEQVTDHnNe5UHLKoXQFM4yx6opiAh0qHBfeZPsvMV5I1l7Aa3Pv4KorcUePYLmf/txqaNGKTLPvmg2P8ukO+uQQsRdaAQaLEnyiimVKGDbNlQJto06HJ9i7m/YQs0dtxnu2HIlUkqcCCUfHD5Cy0NPog4eNt0dMpi6+z+FTKXQTopY5TcU+cKd5UgjrUEkk2itaf7Fg4T7DuYLlISHj3H6gYdo+O43jUET57xyPaN8Slm9gFjScEZWOOu10QqtAf2hQ2fU0RMF41hoZFKSnDIF753lVa6t8ddvQNTWEngCwiLFV4BozpLMaU3ICp+klhZW//4m8Hb8eOl8siyciRNRzS2c/umvoqCDkXDbDvb8039S+3d/g9WnDzX33487bZpJeUuncSZPxpkyxThQL7kEf8ky8pNFgxKSmquvJty+M75WQBDgLlpKzY3X4c2aXXnctrGHDwchyDzxVOlzkRL7nHOiNPbqBqywLLTlIFS2pNtaizNyEDtTptC650lUNswb9iIhcIYMiU3fL21bRgUPKTgFBAipwbYMGruiWKMGN8BbszaqkVP5PE3ISZO45GL8t9+pVH6nTG63X38MsUeOOiPU7gcpsk9vZMdG1JGjpc5K2yY5aSLCcUh/7WtkX3rJ8ENH6d+pm29GSIk7f1EsRVt44CDq+Alkpz8cUe4ufy++KJIAf816nEvaVmidCRPAsvCmT0c3NSE6dSJ5ww3Y0f7c/JtHDTIt9wpmsrQ89lvqv/1Vg7yO20ukQFjt19r4sCU8fITMK9MJtu1A1NWRumoyzsVjEULgzp6HO2d+IWMsCMi+MQNRkyI5/mJS996L++abhjfTdZEDBpC69dZ84FvYNs7ESTgTJ/3R+6UzWTLTZ+MtXwVC4FxyATXXXIFw2i6AqbUm3B2PXg637QAg9clPlva7f3/T71yGXGzbUxGOQ3Zmju6jLKB/6DDq6DGciZfizluI8nJQQJCOJHn5ZflvJ6+5huQ1lUhpa9gwwoOHUDGFXq0RIzg+7U20HxKq0n2Mg4dRR44i+/Un3L6t1JEK2IOHIGOyzfLfkTayR09Yt4HKPUFj9eppnLvxA44W0uzBcTzAy94hcfEFptBe2SuklMRfvZbaez9B9tXXKq8tJYkxoys/LxPnoosIDx7BnbMA7YeIhE1y8mQS57cPfPHeWQ5+zF7ih3grVuIvX1nI6CvudiZAHT5s4ttxzkpl0LTqVFPl2uF5uAsWt+ugdhcurlxTtUadOIE6dBg5cCBqx46K8+SgQW207eMuXJx3ylcTg8aO0RW9MJ9tEza14B9qIjzairKasJpakZH/p+XRpwm2bC3o0CdP0fLIU9R9/YvYfdoukOdMvpxg0+bS/VlKZM8eWF274kyahDdnrgkQ5ySRwImyFtuUNmjzhGXlwJYlkhtCWZMmlLJq8BogaHZR2iCzzcmmoLFyPZIXXoD7yqsI3yvVqawEyYsuwn09hpqKaFuyE7gLl+AuWlZwIimFt+xdZKdOpKZeRvL22wmbWvHXbQKlserT1HziNqxu3dC+T+svHkQ3u6CjNbTVp/WBh2j4/ndxLr+MYMOGyjHv3h2re3eQlilkWT4uQhIePmL48mPmubdgEbQBdgj2HYjooeLsMbOA+ms2EQYRaCbXdgjeqg0kx41Da427bDnuW/PRzS3Y5wyi5sZrsbp2MZcJFRpZaQ5qcK6+CvfZmEKRiQSJUaMIDx7CmzmrdG2zLJyJlxJsjs96BvDXrEN88i7SX/kK7ksvEaxZA1pjjxhB8tZbEYmEGfN16yrHvGtX48wsA9hDzjltaLvQmvBYE97h0+jmVuzGU9itLtTVo4OA5h8/gD7dnL9HtXcfzT95gIbvf7dofGNEStAWSimkVfiOipyy6vgJQ7eky8ZUhWRnvkVi7BjCHTtj9xo5eLBBdufs7SIAFhBlZdgoFZY8b6VMRgFak/7mN8n85jeobdvyzyp5000kxoxBex7quecjiqlC48IWJC4Yi792PeWe8XxgOtYhn/tfI3v0yAenyp+JqG/AHjkiv36U2kyQGD2aIEdPF9d2EJAYOdLoJq++ij5+HNHQgHPttTiXXEJ45EgVnwbGaR6GnP7xAyYLOPe89+2n+Se/pOH730HUtG2zOZMvw32jtPaSSCRIjB+H1dgIyVrwyrJNtYU1bDg6DGn60S/QJ5vyYxPu2c/pH5u5JtM1qBOnyLw2HX/9JqN/Xn4pycsmxDIQvB/x16yPP6AU3vL34uvcgQkwSmm446tdXAiSN92EqK/HmzcPMhlTyP2WW/JFXrXvk501D3fpuxCGOGPHkLr+KmS6OlCoWIKdu8m8Op1w30Fkl07UXH8ViRFDz+jcj6RSPnLK/xlJeOw47oIlhIePYg8eSHLCxWax2b03QsuUKWpSEmzcQmJw27zx3sq1tD7ydOEDP8CdPZ/w+AnqP3vvh9CTPw0JDxyi6T9+nt8EwpYWWp74HepUE6nJZ6BctyGJiy7AW/p2JfJKKRLDh5F55Y34E20LlWklO29hlJ5dJH5A5pU3SLnZqsjJ1mmvkb75BrJzFhdC5GDQGdmQxIjhiFSKcP9BsrPmmArwaJx+/ai55xNFSkGMeJ7ZwLr1Qh8/UbI5a+kgGhpQLa2c/l//p2A0aAg3b+XU//xXOv5/3yfcsoNYhUNp1ImTyEGDUdu3le77QmBfOoFw774Sh3xeXB93zgLCNnjGg127Eb16oXbvqTBeEQJn2DAy6TS0Zip9X336IoRA9uhLeLip6GSBEilEhwaTnh1nKHk+2nXJTH8L8mic3PngL12Bvv6aqsqO6b6g9otfoPWRRw0Ps5QgJak778Dq2YPsnPnoIDTKSFEQJjzdTLBpC4nhQ5Gdu6I6dCU81opI1yN69s4rIyqUqKDSUNTCMnzwVfI4dWvGpDUmapBe6TwXHbuaNMZu3Ql9E3TJH7M09O6HTKeNsRTDty379MYaNNDwhSsZzVMMIkZA4rzKzJaKa3TrhvJLaSJ0IBB9+rd7rjVoINpTpU6BKBspMeY8sgsXU6HdRn+Hu3bHw9wAEjbadUnd9HF0ayvBmrX5TAPn0glnZtT//1SEEKQ//zlaH3nMcNJLCUKQuv02rD6GJ1g2NpK+777Y83U1JI+U+SCiOnGK7MIlhAcOYffvS3LiOGRd21kTgEEJxQXdQlW93TJxLrkE55JKCqDw4GHCPfsqUcphgDt3Icmpk3Dfmlu5vmiNPerMAifq5CmyC5cS7j+I3a+P6Xc7gakzkfDYcZr+/Wfgeub9aG6h9fcvoo4dJ3XdlbhvzSs45HPi+WRnvEVy/MUI2yZ1442kbrzxrO/lgxRj5D2AOnw0/9zdtxYQbNlO/Te+iBAC7Xm4b68gWL8J2bGR5KTxJiiuddXgb86J11a/Tdu/NGt9UNT25m3Uf/NLqKPH86DLvAgT7AuPHkP07Y/yFxYc4xqULxC928+qSU4YhztrQe6i+fN1KHEuvpDm2fOLssWKoHhKo44eI9x7yDhyyvyowa792EOGROhFXeEwQFqQTFVFN+KkcCaMJ7N/f8V8ErW1yB7dq6P8fc+8v0qhtVUZeD/djEinSX/hc2QeewKdMXzEIp0mfd+nzygA7K/bSHbOIvBN7RTth2RnzsceMJDEsLaLd4e79pCnzsjv39FesmM34eFjVZ43BIePmrFXlA56Dj2adUFGjqfcc4u2tFw/2xLdWuU7QqKzWdKfv5+W//wR+kiBMkl060r6C58zSPO4bLO2rlssVpXimkpDOo2/YTPNDz6R17GD7Ttp/uUj1P3Vp7B6djeUAeVzIghw35qP/el72mzaHjSI1K03k532ivkgDA244T4D0ElefRXq6DG85avyc9oZNYrk1Ve1263kFVMJ1q6reszfsBmtKvVwrUF07WLoCPfuq9BjZffu6FNNhFu2QSDQxe4BrXBnzyf96buhoQvhwdJMWNnYCZJJREMH1OHDleqLBmtAf1p+9hu065fORdfHnTWX1NTLyL4xC3/jtmiuCcLmLM1PPkeHv+tLkAN4lL382g/wVq4mOe4iUrfdSvaliJtdKWSvnqSjMbcvuIDg3eWUFNIVAmvMGHDd+GLpmLkm7OqBVO151fW1CJQTvLcKtESFpW2E6zcCkH1tBtm5C/Nrk79yLf6GLXT47jfQMhEfiNSghSQ1fhzh7t0Ey94uHHQc0l/9MmDsDxXokoCiDrVZ53PFgOMkshFlbS0198bb8Xb/fqRuv83UpQAz5j17kP7sfaYdomK8eRCZjsAp5r/sG7PIvlUIuvur1uJv3EzDd75OuGefQX+XLbg6CPDeWwV1dRFVU1mwUQuswYPRM+eDtircGgDh8RNVawyoo8eQdfWmuKpUpdNNSWRDBwO4URFEJjouZKTPN7egQwWhKaJcdHZU90sjbZvaL30pdky1baM9A7Iq+dwV4DgmyyDG1NNYZh7n7ql4zZcRCLBXT0RjJ/SJExU2cvLaqwm2bENbKQhKdVJtOQSbt0YUrkCxuadBYRkdDuO8T4yuDETLLl0QnTpV0jhZFskpk/HXbTT7TdzzXr6S5KTx0d+rTMCotpbkpPHYfY1z2bnsMvSJk3hLluZtotqLxyJuvAHV3ILOxOvZwZYdyC5d0KdOVwYrMi7uO8tJXjiWpn/7icnOUEZPzbzy5v9l77zj7Kzq/P8+T7lt+mQmM5NMek8IIY0QOiR0FJQiVVgFVsWy7lp+6u7qqqs/tym7oigoqChNCaFESggBUkgP6b1Nz/S5c9vTzu+Pc+fOrTODsOX1W7+vV15J7lPOc85znnO+9fPBbW6l6NYbAMVpldiwGefEKfS6GgLnL1UY/sOITMRB5pukLjIWw7dksQrw5sBuauiTJ2EunK/6nL5XaRrGzOkpzir/smX4l+VW8Eop6X/oUZwTp1IVFol172DvP0jpV/8KYQ7tInaOnST84CMZPrD+XzxO6LYb8C/8M5LGnyL/JU757u5uvvKVr3Dq1Cl8Ph8TJkzg29/+NpXJbKYBcV2X7373u7z99tsIIbjvvvu46aab/ise8f97iR44Qt/3H0zhUTkHj5B4421Kv/w5vK5utUtmi+eprMOkuJ3d2PsPqejj3FmpSFrkiT/kbdPZsRvvdgvtPeCC/WeIdF3s/YfwOrvRx4/FmDgy8r7hJLpyVa7T3HaIPf8y/vOWjIzEr4AY48bhX3YpidWvJ40g5RwMffx2RCCAOWe2WoizNA4RCilcx2yHfFK89i7cpsIEH7KrB7etXRm5GY4BAZqO296JVl5G/J3tSExwFQmtdbwZ38kGzBnT0EZV5uLSagJj9gzc9k6c/YfBGYAeGbi9R+KdLbgtbfmd05Eoia07CzqeAZyTDRTdfgv9//ET5eR2HdB09LFjCF5xGYlNW/NnqwL2oaOIitICZX0giotx23tSON8Zxx3wYnGK7ruHyL8/mPn8Ph9F9/4FbmcX9p79uQ3HEyTWbVLKFvkynCSiqBivpQBpKeD2hdGqk4ZSyihHBQtmqYi1VllB0f2fIbFhM14kgm/xAoxahSHutrUnsf4yO+3FEnhd3TjtnYT/8V8VDAwoYpmfPkrw6svwX34J9sYteV9L7LlVlH3rq5CwMp0CSaPemD2T+PZd0BvBlVpGXEEcb8A52UD05dXgkDRcBVJKpCdIvLKG4LKLKPrUPUR+9OM8Y/5JZF8/niXTnA0i5bywW07jS+oMXncv1r6DCF1X61oSSzD24iu5RrmUxF9bS2DZRUNmvKrsnuzsKQGawD3dgRYMpkEkZYooLsacO0dhPmc554TpQ6uuRmgaoTtuxwv3I7u70aqrciBQZCKBtXs/MhbHnDEFfXR1wef9rxavpxdr70GEriXHfASO7RGIVl5O8Re/gNfRgYzH0WprR7wOm3PnkOjsyglYquBQNU5DE+F//7k67ro4Bw6TeGMdJV+6H71qaG4VY9YMEus25irWAoyZ099TH7PF6+5WQfWcAK5U3AejRxO45iriL65Si5tQx4Ifu2lEjnWnsZnwAz9T66nj4hw8TGLtOkr+5rPo1SPjlPF6+7D2HEBoyfedDGTEX31DGeTpC4ilMnf8FywtaEgVIsb8nyL2nv1Kr8oiHXWbW3COHMOoH0vfv/4Yr6c3SeQuSLyzldCdH8N/1hno4+txTjRkbjaaGJ5/AOXg9bq6Mtcux8FtacU5fCxZaZe7yUkJIhAg9vTK3H3S84ivXIVv5hfU6Zal1pZIFHP6FPSBvaTldNIgztIddAOvrQPPzc7oTv5bSjwGHL161j4voL8fc+FZxJ57gXTc+YHjxvSpuI0tkG9/lip70X/zR3EOHMTes1f9qOugaRR94i40XUefOAH3+Imc8TSmTEFUVCJdN08OPkifImM3Jkyg+O++kSRGF2i1NSPWM6PPPIfM3oMth+gzKyn7uy+ptiwLa/cBZCSCOW1yqqRfhEJ5Op0cmeIi0LWC71sLBqG8Etk+ABE3mN2rVVeh149Vz5UeSEkmaxhnDGaqe31h9X0LMM+YlVpXzHlzFSGk5WTs/wLQ68ciDIPir3yJxJbtGKdO4IyfiH/xApUBWD82v75nmphp1aiF2paFyDX9PmRPL9FnX8ijv9tEV7yoHC2FSEfTbKKhxLdkCeaCBXitbYiiUKp6B8Br78DadVA5vl0Haegkdh3Cv6xjWKgGY+J4jMWLcLZszfx94XzFPzRjGt7+A5nO5+TM9S9aQPzZl/LmcLgtp/G6e8AwBpNrkkqpQOJ1dOAcPILX3ZNzrdcXxtl/CHyBgWHKemgf9IXxwn1556rXH8GNRBWme/qaKSXEE8ReXYNeiIPAstRaC/jOXow2ZizW9p1oZeX4ly5K4VKHrv8w/Y3NeB0dCvNSN9DKywjd+BGE358/ecQ0MOfNRauuUnja+U5ZtACvswcZS+SNAYlQ0ZB2ixvuJ/7G25nwU1KCZRFfvRbpuYOwK+nVR6CSjIDQzTdhLzkH6+2NaJUVBJZflOp3fOUfkTZItLTkckF85SpKvvJ5CoW39EnDJ58A+BYvwpx/lsKoD4XQRg3Oc5XI1JwcCjEIIVRZofb519/M02+b+Gtr0UdXgZXIsR2EZStIy6pq6OnLnU4eqsJA5h92kaw8yCdSqmMyFlOVFXkqVbEs9GlTcXbsSbatBlW6amHzLV5A7JU3kgHWrGuz+LryifX2xtxEBFB78KrX8ISGdDVkymIc+NtDq6hEGz8O9/gAj0DyuAeiqgLNNCm69xNEHnxIQca4rnLgzpqJb8nZqlrUdsjmGMBzcTs6kbqBlDqenbm2CCGH5SYSQlD0ybtU27Yz2PbMGfjOOTsJaZVnzbZt3I4OpO0QfuAhZecmA2HW1p0Eb7iWwLlLEJqG/7oPo02bjnP4GPr4ekZfdi4dnRG83nx6SbJrHZ1KL8rnG5AoqNtoXAUM0s+xbKwtOwhetVxl+f/zj1WAznFw9h8i8dZGSj5/XypoUEiMGdNB5qmy8/kwZ8/CmDoZ39mLsDZtSW7aKtmo6BN3I3SdwNVX4p44idt2WtnBuo4oLlIkzsOIe+IUzsnGzG/QdfF6+7B37cE3jGM9vw/MJvbcKnwL5n0gfrb/bfJf4pQXQnDPPfewZInCs/7BD37Av/zLv/C9730v47wXXniBU6dO8eqrr9LT08P111/P0qVLqU9muf1Z/jSRUtL20G8yHQK2jXRdYqteI3DpBUlg7iwxTfRJEwGI/fF1Yq+uVTuaJuDp5yj+5O34Zs+AITJmrBOnCEyf+oH2572I291D+IcP4UXjg5vA+LGUfOYvEObQZeQDIj0Pt6UNYZpKUUiKc+RY/gtsG7e7B6O6Kv/xEUrg8mX4Fs3H3n8QYRqYZ8wZJJG9fBn27r0qcmsrxzi6TujWmwsmbajOSMzZM0m8uT6vgamPH4tz7GSBTD2B29CEtXk7sq9/8BzPA8sj8vgzlH37a4RuuZH+h36hsq9dF0xF6hO85kqc4w1ppKNpT2DbOEeOq4zPAmLt3J1pMAw8VdLAMObMRCsupuTrX8U5cBCvqxt97Bj0SROH3xykRK+pwT1wGJl2z4GB0etqVQYEyWCCGDwGAvvocfxnzKLke9/Gev0N3LbTGFMnY567FE3TSOzblj/YICXWjl3o4+vBU7ZvtsGUXs6XT7zuHgIfupr+n/2awdpEAbogcLnKvLKPHCf80GNIzwNPEluzjuCFSwlef3XhrDMJUggij/0u5ZBXvVUSX/Ua5oIzFd5mvstjCWQsgeekO8YHxT7RgNd6OhkIGchkHxzWxLZ3VQAn47j6W7oeTnsHZn29GvM1a3Fb2zCmTMI871w15lt3pGXoDIj6t7NzD1y1nNjrbxN78dXkzwKeXknRXR/DP28O9sEj+cfFcXDbOzDGKqIcL9yP192LVj1KEUChHJmYRu535Emco8fxnT0fZ9+BXEVQ1zBnTEcbXY29c5fifMj4vm/KKJfUSooVjmT22B47Qfgnj6mR9JRV4z/vbEIfvXZwDD0Pt+U0QtfQaqr/yxSo2Nr1xFa+nMyCFPD08xTdeRP++cPDPIxUtKrCa2+hfvsvuRB7x7uKi8BWjlJ0Q425rhN9akUyEykpjqP20OdWUXzPnUM+jzFlMuasGdj7Dw7uwz4fvnMWv+9giT6mLn/lk2GgT56o+nbh+ZhnzlVQWJqGccZshcE/Aok++Wxmv20H6bjEVrxE8X0fH/b6+Fsbia5YNfi+n1lJ0W034F90lsJvzbcu6hpeV3feQCWQwc0BKmFARmPodaPfVzD8gxLnVONgMDJNhOPgnmrEOXoCr6tncC9zJcKziT3xB3xzZxG45irC//FI5noOBK6+IuN+blc3MpLZb+dkQyprLUNs1bZWVo4bzq0uAtCqKvHycXgAbmtb6v7hB3+pHOyuIhf3n72Aols+ovqdL+Pc81Tbhq8An4dA0w3VfkcX2W9dqxmNVlyMuWQx9qYtmccNg9DNHyX6zEqk1AZcPxn3xkMFMu+8DfvoMayNWxDVVQQvuTAVXA1ccwWRB3+uAuEkR10I/NdcidfRCZqJdJOVCml7tIwNfhtCCPT3SKAmpcTtzA+t455WDmDnVBPhHz+i9tqkru5bOI+i225AG2L90EaPVgkWhY5XVuJ19JBvj3TbOpM+HY3MDy6ZkZ903MQ3bCH6zPODt3j6eUIfu57AOQvxnbuE2CtrVeZommfNv+wShGHgRWOEf/Qz3K5uhOchN+0msWYdJV/4S7RQkOCNH0ny/CSJQU0TbVQl/nPPUW2/s5XoUysHM+qffp7Qx64jcM4ijEkTsRrzEHw6LlrNaLy2AoTGbe1oNaMLk0gn19SRiDBN9HG59mv0mZWZAcckv0P09ysp+dx9w9636NabcS68AGvtm4DEd/HFKX2k+Nab6fv293Ke31y6RFUXelLBrWQl8YLKpJeWnemMTOqB5sTxOA1NyHju2iLjFs7JBozJE7EaGlVAYMB/DOB6qhrF8IGbZ20yDAUnUqBCyN69H98dNyVJR7Ou9/swxo1FSknkiWexBpJ3NJ3YS69R8tlPYoyvRwSDFP/NF3CPHMVtbUOrGY0xbWpKnwrdfAPRJ55Rz+B5aq5VlOO/4LzUXkRa0s5AIbFWU4N55hyst9aR4ScFZW+OG5s/wJM8Lju7kkH1rOOeh330OMbE8WnZ5gMy4OCWqt9PrsDasiPV7/jaDZTc/wmMCeNS67YiYU1eLcDr6EL4fBgL52Nv3ZH6faD6N3TLe0uIVE7/zHXbO90NadVLA5nlsrcf93R7wX47x05gTBynlrr0fidNCc3vx+voBi99kg2cK3Bb2gqaTFKCZhiqImsASTTd5tIM9PrkO7OyFA2/T9lqoSKcHenVKiJ1I+EP5PZpQFwPaTupDGT7RANeeyfmrOloxcq2L2h3oOw4L0ViO2AHDHbePnoCYQbIt54rEmbQa2sp+ftvEF+7Dre1Hf+ShZjTVbBfFBUnYYWytC4Bmj+g7Jocm0qNndPQiF4ztC470Lazdz9eOIwxaUKqitUYNza5V2WtAX4fxoTxJLZsx21tU5U2yUaFbRP7w4uprOy+f39EOadd5Zw+/sfXKfr8fcoeyBeIEWL44FPSZiukY7tNLSQ2bkHGYoO2sOMiXJfok89S+uWh+aj06ir85y9VkKZptoE5czrG1MkIIQh+9HrMpUuwt+1EFBfhX7pEBRIB4fdT9Fefwz16DLe5Ba1qFMbMGSOC1XFONebXvxMWzvFTwzrlCyV4ynC/WqcD/mGf4c+SKSOyXqSUPPPMM7z44ot0d3fzwgsvsGXLFtrb27l6BERE5eXlKYc8wFlnncUTT+SyW69atYqbbroJTdOorKxk+fLlvPzyy9xzTy75yZ9l5CLD/Tj5lH7Pw96zn6Jbb0g6DNIwEDUNEQriX7IQ50QDsdfezCUl/MXvqPje14duvPu/N6Mt8uun8XrDGQuPc7KB2KtrCV0zPNGFtf8w/b96WpWNexJtVAWl992hnPMFou0AYijCs/cgWmUl/vOW5v5eUkzpV79IYtMWnENH0apG4T9/Kfroatzevjx3GngwgTF5YiqjLJsA05w/X2HpkesMkY6DKCrC2rU3r/IsozHlCK8fizZxqppPmJAA39JFiLIytMoCDmZdR6+pxjmZh6iJpB7guegzZ2C9uzdXaTAFetLJJHQdc87s3CbGFo5Ya9VVSQgFUopfqmGhqSBESgQ5dn8SgkLz+QhcdQXZ4vVHcn5L9S2RQFp20tbOxoeTSH3oZVoLhdT3mZE1oZ478c42gldfRt9PH8sxZmJvbMCcNQO3Nb9xCuAePYHX2FwIgQanLT2DP9vKE8TXv0Nuxrg67ry7D/QCjmAJ7qkGyCKQTRfv9GkYW6fG/MpcfGMZye94AiARx2luzZsNH3nsScx//PrQpIW2hbQd+n/3LNaOPWCoypLARecSuu4KtMry/MqOpqFXV+E760wSL4kF4csAACAASURBVL+uMrwGztN19EkT0JOVPCVf/iKJzVtwDh5Gq6xQ33fN8IRH0nVVgCaLtyGxYSvmrOn4Zs9QQZpfPqlgWaREKyul5L47MEZAqPR+xG1pI/b8Kzl7SeQ3T2NOn/yBZcwXEvvoCcK/fCJVJquVlVJy7+0YY2rRQiFKvvxXJDZtxTl4KAkpci56bQ3StvMHDKXEPnAo9/csEUIQ+vht2Hv2YW/boTBdz16EMWNoaIqRiFZWim/xAqytOwb3byEQfh/+CwZJXLXyspQza6QiHadwvw8eHvZ693Q70edW5b7v3/0Bc8ZUtKpR+Z1jjguhYArKJAcyLPnNeL19hB/+LU5TSzIDTRD62IcJLP7vLZ3VKyuSZehZa4hmoFVWEHvlDTwrMzAtJQjXVdBwb72Dqo7zBs8ROvF1mym+5SN4fWHCDz+O09iisu8EhG7+MIGz56OPqsxP1mqqtgtCzOk6XlcPIhTMG6gVJSVIz6PvoV8ho5kVDIl3tuObNX3otkdVEJgygeiuPBVjmoZeU03w+muJ/OqJHK6M4PXXAFB0y40kpk0h/upqiMYxZk4neP2H0IpCGNOnYr+7OwPCRkHbqEx6gPBjT2FtfTd169jq9ZR96TMYNVXE33oHz0nC4ySvlQgSb79D8PJL1AXJ1zGowohUxdkHI7meUul5hH/+65yqEWv7bsxZ0/NztgzcIRYfch9M7DuQ1pmstqVU376h53VI2Lv34Vs4j+jTK3P0wehTK/DNmIp99HjSIZ95f+vtTQSXX0z098+rwIPrpvQet62D6B9epPjOmzBnTCc2qgavtVldb4P/3PMQfj9uV49qO+vZok+vTK4tVXkdqUIzEKGgIv8M5xJgipJitKIQ/guWklj/zmDWqhAIn0ngkgsLjudIxTlyvODv2ZxIhcQYW4dx+y05v2slxZR+62+JPrsS99ARZcddeRn++encVXl0WFDfvm7mZvlK0Kuq8VIJWLn6nOe4yFhCTYWsTFuhecpBU2jtsR28AlVRANK2MaZPVfZNS9vgO9d1tFGVGLNnYu/coxzTKb1NzanwQ7+i/LtfS+EvG9OnYUzP3Xd98+eh14wmsX4jXk8vxuyZ+BcvRPh8WDt2Id20GBWk8NLtbe8SvOxirM3blB2QMqYMfOecjVZSTOCq5cRfeDm3zUsvRKsoL6hr6tVVaPVj8ia1gEQbOwb73b1Ym7fn7/c/fh2KivB6Mue5lKCF/CAEztEGpCsQ2gDxNmCYOIeOoZ8zPHljfPMOok8/n9yXXYz6OkruvQOttAQZi+fo70KgKmeKQgX7rVVX4Xb15HUAIyVOZzfE4oPHsuayF4mmRxgyxgwEoqZa/e7JjPVceqCXlWFMnYw+pha3sXlwrhk6Wnk55hmzSfzkF/kHw/ThnDiFVlaC15XrcxEBPxg6TkcXvf/0IKTts+aCuZR+4lZFWJq2ZqV1W1U/2Nl8MAPHBc7e/TjHT+Z9NK/1tNLnevro+6cHU3t8YtNOzPlnUPrJ2/AiETUH3Mz7C03ixuNpz5v7/VvHT+JfND//uKTfyzQxz8qFD9UnT0QfOwa3oTHz+y4rw5w7m/6fPYYXtzPaHkjoco6dxNpzALe5ZXBOOQ52eyeRJ56l5L6P419+MYnX12as5/h8BC67BKe5Fd7amNc3Ycycrir/j+TJpnddtMoKrP2H0sieB59NNjQjbXvYBNDAh6/BmDkda9NWcB3MhQswz5id2gcS23cTeWKFCqh6LvHNeyi573b08rJkVwTG1CkYU4evpEwXrbIiLUkyTUwTbQRVsFpZCV57Hg5B04BhuJP+LPllRE75Bx54gA0bNnDXXXfxzW9+E4Da2lq+//3vj8gpny6e5/HEE09w6aWX5hxraWlhzJgxqf/X1dXR2tqac96f5b2JMM1kqVOeY8kSt+AtN+I89BjeqVMqAllcQuiu2xCBAIlNeQiwAITA3je0Q0Kvq0FKSfytTURfXovs70evGU3RDVfjm/Wfm0HvxeI4x0/lOsdsh8Q724Z1yrtd3YQffjyjlMxra6f3Rw9T8Z2vIEqLkfmCDkIohV9K4m8n+x3uR6+ppuijV+Ob/f4dMQAiGCRw8YVwcaaRoAUCuenWA9eEQtiHjibZ3dOcdkllzNl/UGUIZOkyA7qNZ1mIgD//bPI8hM9H5OkXsA8dTWXoAsTXbUKvrca/dBF69SiVvZEe1NB1/OefQ2LvAWQ4ktcJLMrLsXftz+PkleAoB41WVlpwvLxYjIEcuIyrk4qfKCpCCl1ldqdlH2hBQ0WlNQ3penjeoMEhktirel2tet/rtxD74xt4fWH06iqKbrgK35wZ6GPrCr4TY8wY7IZmVOZDtsIB9tHjIASeK7PKClXb6DrOoaO593ZcEpu2o0+dnOaQT+u55xH942oYgkBHBIOpzMG8YuVXEAd+Gwr7VbouwvQhZZIEKW3MVb+G3p6Eb+govD6m8JhrY+pIrNuMdPJAEjgO1s49aOVl+UvVhUArL6f/Dy8pB4+UqfUxvmYdWkUZwYuWotfWKNKn9Hlu6PgvOk+V7X/xfuIvr8beuUs5aZcsIrD84sGqgICfwIXnw4XvjaTSOXJCVURki2WR2LgVo34MfT/5VYbjzGvvpO9HD1Px3f8zLI7g+5HEtnfzZ8MJDXvXfvxLFw17j9jGbcReel1971WjKPrIlfjPHJr0D1SJfd+Dj2au5+n99pkIv5/AhefBhVnY/EkehnzPLkYIzyY0Dd+ZZ+A784MnwA3edD1aXQ3WWxuQsTjGrOkEr7lixLjv9vFTRJ55EaehBREMELzkXIJXXDRMv4dXuhPbdhXMULLe3UvwsksIHzySQ+Rszp6BljQ4ciBJBgxoKen7yWMKMsXzUs7myO9WYIyuwpjw31dhacycrjglsvYpaTkY06YiX16TPJZ1POGA34e9a1+u3uK6ar255SP0PvgYbmMrajAcJND/2xXoo6vwLZhH7Pk/ItN9tUIgfD7MubNJvL0Rry3PQ2saWjCIf9lFxF95PbOE3mcSuPwS3JONyP4BJ2/as7su0dVvUfa5TxJbuapA23MomVJPdN/hXOLu5PvWyssouufjxFe9itfeiVY7muA1l2Ok8Rr5F87HvzDX+PcvOov48y8j45m8LiIYwjdvDrHX385wyAMQi9P7zw9S+c9/j71jT1IPynQoWlt2Unz7jRiTJuIcO57pSDJN/JcqAlyvr5/+Z17A2nUABPjPmkPRjdcMyzkhcxxHqScHwG1szs87YVkkNmzBd8aM/Jm4pqnI8UyzoDN0cH3Ibj8Z4Pf7C0L+iWCAxOYdeWF9cFziW3YoSJM8UAxeJIbT2Iy1Yw+e7Wa277lYO3bBnTfR97Pf4Da1DWbE4hF9dhXGmBpVEZLv0aTE3rEHa/c+5UhN8z9LCdKTuI0tBC67WAXls+f5ZRcDEPjw1WijqxX5ZjSGMW0ygWuvTK1LXjhC/+9fxNqpiPp882ZTfNM1qTF1TjXR/8yLOCcak3v5EkJXX6qCh6aRv5rFND6QijWtKETxnQVw74cgevWa2wq+b2vnHsQQ5H9uYzP2sVN59XPpCeztu5KZ7onci01DVRYX0Nf0qlGq0uXuO+n76WO4LSqQq1eOougv7kRoGrHVb+V18sr+CG5DE8aE4Tkx9DF1hG76aM7vTuvpZHSYzKIRqQLPWlkpJV/6PPGXXsE5qAIhvovOw3+eCoIHll1MfM9hnEODwRh9Uj2ha69UtzFNPMvNcL4LzcOYMRXpDMDXZDlKBQhPEnu9QL8jUdyTjRAIAf3kvBN/ALf1tKoMRKR4lwCwHeLrN+Mfxilvn2ig/7crMtYe+1gjvQ8+RsXXhs4QprQEc/YM7H0HM9cu0yS4/GLib22g0LrodfWoZKl8zmtQczifQ3/ALolEkUKoCqqsM1SymqD4M/cQf3UN1pbtICXm/DMJXnlZikw576qdtI/9l19K7NkXctYW/6UXIoSg9wc/TgYVBsXevpvo2DrcpM2U3reBT8JNWCk7NN8yodVUI44ezySQHhBd6XI9P/gxRLMDvHuIjn0DrTiUgsYR6baoJxC6UWBMlYj+EfB8DCFCCIo//UniryXH3HUxF8wjcMVyhGGkQQXl15msrTvz8Cp52HsPIl2XwOWXolWUk3j9TeWHmjyR4DVXqsBXZQXR4mLcnvTvRKIFffiXLESG+9Uzpb9PXUcfW6d8XHkCz2rdoyBXRXbfzRnTMWfkQlk6jc30/+b3GYkKbmMzfT9+lPJvfGHY/UJ6HrHX3ia2Zr3ax+rrKLrpGszJEzBnz0AEA7lcHbqObwQBlsAVy4g+vSJ3D73o/PdNgPu/VUZkfa9YsYIVK1ZQWVnJt771LQDq6+tpaGgY+sI88p3vfIdQKMQdd9zxnq8diYwa9f7Jx/7/kxKsM2YQ3X0ww7gWPpPKqy+hsrqEk996FOdUa5LxG+iKEP7Z40x54O9wTZ24J5FSpBQDISQakpKQiTWhHvtkHpJMTWPMwll0PPca0ZWvKNIWVLZk+OePM/7rnyY0+z/PMe/2a/QUWK806VFdXTLk9e1r3sx1KCSx/kItTZjXX0n7b36fsxEEZ06lZlItHStXE30uvd+nCT/8W8Z97VMUzZmGlJLw5l10vfw2XjRO6dKzqLziArTg+y/5sefPIbJjb85CO+q6yzCLfEQ0Lfk+M6/z6wLhN7DIpxsLSot8yGsupf03f0j1CwBNIzh9MtX1VRzeuhNpORlKpEjYWGvWMe66Sxn1939F609/TWTPAQQCY1Q5tZ+6k+DMCXhTJhBuOZ2z7wugYsYk2jZuJ6+iJaHMkASGeKf9JQGifj8yHs+x5fyhAKMuWcLxV7JI6gAv4VF70SKadrxLZPv+jGNSgtR16s6aTtdLbxD9/Usp55Db1k744d8x7qt/SdXSeRz9VRFef1ZmlqFTe+OVNPzTz8kmqVP2iUAPh7F0H9LJzBIYaL9yTCXhAvNcSA/z2IAhkHuS29RG3WfvpPXffp73+jG3XsvRNzeknie9XYDioE4kj2IMSn+rWjqfpnWb8xwXmKMq8I2pJrxlX+q3wfsLyhbPpetkIzKRyNt29cyJ+IZ433LUXI79qhi3L4vMyjCou/Eq2h5/Lr9mLcE83UbpDVfR9vDvchyS/knjGD25joPrN+d+JJ5H/KXVjL/xcir/7vO0/vQ3RHbtU7AG5WXUfuoOQrMnAeAUmTRHEtj9HkKThOI2VaNLVWntCCR+oomOla+TaGwlOG0CVdctw1dTRaTZR0SIbIQPAHwCjL37ENLL9We4LoFTJyg9Z3hlDBh2/cwn7X6DeB5SI4GkOGhQPsw9u19dR/SZF1Nrj3e6g/5Hn6L8rz9B8YI5Q17bsT4/VqeMxfGfOE7ZeUMboO7ShYTf2Z5hQArTpGL5+VT9CWPxgcsNV6o/71Hip5o58R+PpsZURqLEXnsLv2NR+4kbcc9bRP+GbRkYzcJnUr7s/LxzIP239oBBPF9wWEJx0CQ0ZhS9nsggoUMKAqMqqamrIDK6SpFRZu9TUyZSGgvT3dGV62ByHOTGzVQvGj5Q858l3du2I8xsqDXlnA40niJqGOS6MtX/R1WX0Veo9t51KI3309HcRubiJcFx8d54m9Ff+UtKv/lFGr7/EHanShrw11RS//XP4K+rIPihS2n96W8y928h8NVWUztnEnL2RNpiEfrWrFfODV2j/LKLqL5+OX1vbaa3kGHe1cPo+irKvv0lWh98jESDgg4JTBxH7WfvxldTAVQw5gufpO2XT6aqx4rPPouae25DGyh1rl4A5y8Y2UBnSAll3/oiDf/3IayO9H5/Gn9dJYdffzv/ZfEEoY42ugoEn6XrUl1dwqj/82laf/Y4kW27QYBeWkLNPbdSdNYMpONw9Fv/it3Vk9IZE9v34DU0M+WHXx8SR1hKSX7wGkAIyov99Gta3vXcFJK65edy/MVXckF7BNQtX0q3FaN75au5Fxs6dRcv5ugjjxd8ttp504hXlhNvblcQGuqJ0YMao69dRu8bGwsG7I3Tp5G2Td5wgOtQXhqg1xkIXGXexbM9ypwYXc2teZJqbLx171A0bSKxfN+JhFDQwNPAIY30MClC0ygv8RO48Uq6DOh6/jXVhqZR+eHLqLz+ykFHx4eXqT/ZTTguR7/9Q+yOrtT7tnbuIdzYxJQf/i12RxfHHngkBfUiozHia9bji0UZc/8deBctpe+NDRnOM2EalF50Tmr97HhuNZ0vrMGLWwQmj2PMZ27DX6fgIaTr0rN2Mz1r3gGg/JIllF+yJDXP3HCEzlVv0r9tL0ZZCZXXXkzxvJlqbJefT8+rb+O5ggGSWU2XlF16HuWlfvq1/LqDIUA3NOwCjlKfoWNn8yIkj4EkEI3gu2Qp3a+uw7O9wbZNQfmF5zD6jMn0Bfx4kUTKNhFCOaerl51HeWWIo9/9Ee7pQXgtt6Ob/gcfY8oDf0tPd3eetgEpCcUjlI1gj47sPkTni29gd/VSPH82o669GKO0mIRpkPAAtDS7RiKEh2kYVFeXYHkWzX0J7IiHcGxKPagerZKEWn+9AufQCdLnuXu8CfvZl6j+6OV0RKycYIb0NLx391G8+Ez6vQEOrsG2pRQEAwaJPBnZqX7H+ultayd3vRbI7j7Ki32ENQ0vIzFGomkSQ8hhdbyGX6qAQDoEJUjc5jZKY2G6yHQuJx8LgJqaMvjre2h75An6N20HVDBp9F98jJKz59DZ3ERHdhA1KcUTxxINh7GyqoAG4puVU+sZok6WihIf/aZPVSlnLSGm3z/Y77+4Sf3JkpjPxMmyHWSyLKe8qpTAwlm0nW5T33hyXyk66wzG3PYh4sdO0VmgKiTxxjp8tVU4Mjc+JSXosThUVOB2ZGYnp2yiCxYTCfroefkNhRmfFGEYFJ+7kJJIL50ph3ymAzm++m1Gf/z6ZPgm184MBkwSPnMQPiZLSmZM/GD04LtvVH+yJO7z5Vl7lO1fUVVGJJ9NA4CkalQRmmkSmVRPZ80YbL2bUP04Ro2rxihXFYDhUDFuTzTj3sIMUF1bjjZhNKVf/jStP38ct6cPKSVF82ZT+6mPoxeH6MyeDAPPBlRVFY/YpssnLb/fmhtw9zxkdw+l/T0EJo/Hauug47nVxI6cwl9fS9X1ywhMUMgArb96ltjq9an35pxqou8/HmXid/+awMSxVHznS7Q8+BjxIycA8I2poe4zd+OfMIKq6Wsuolvz6Pz9iwquWAjKr7iIqo99+H+0U/5PsV3/q2REM8V1XYqSZeUDC28kEiGUxLceqfzgBz/g5MmTPPTQQ2h5XlhdXR3Nzc2ceaYqbcnOnB+JdHb24xWI9P9vlrpP38WJ7zygSkU1AY6LMXcOzsKFtGw/SPTIyRzCFS9h0fT8GxgzpuO9vmlwx1OHcRMusfpxBD93H/Y3vpuT+VF0/yc43dpD17OvZhqAgLRsmn6zkvK/Hh4/8f2IXjM6F/dK1zHmnUF7+xDM80B/U3t+mBZP0t3Qjn/JfHz7jmJt25kk0wJtVAW+229W/f7DK3n73fzrlZR/6S/pf/aPxN7cnIqAxk8107lmExVf/fSIshCl62LtOYR9rAG9shz/4rkp8l3jpo+itXXiNHcklSKJb+4snMWLcSxbLaDZ4vMh584hceBoWpx84FtSSnLY0/GdMQtzwRFVKmroCtanshzf7TfT3tSZUrgHrhtQIK2u3tSY+z5xJ2Ysrkq7SorpF4L+9jAsmA8bt+M5Hp6nnkFoHsLQSUyekh+DMCndERtjiHcqR9clI9oirV+Azw9z53B6x0F1/2yCW92gbcchrLg72C8plGcJgUCn7VQ7XU++lPNs0nZo+uXvqfjG5yn6zCcI//gR3KiaExqS4LVX0F9ehTTNgjAtbqg4lUWTeY56J939NtqoSpy2DpCDhhZCYk6dQsxycxz+g9dLehra8RCILO1U6ibt+05mIChkPJcr6E2OdyHFu6c7kvdiKcFOOIiygRK59HPU+4n7i5ElZch4Lsmt52l026AN8w27RWXI3sxzPNujzwhhRfNkbCUlGkmgzZqNec5CEuu3pb4HvaqMwN2303aqHenJvO/MjcYG5/ndt2PGE0jLQpQUExGCSHsYz3Ho/Mr3YMBoB3pe20Df9v2M+s7fqN88D2vvYewjJ9ErSvEvPjNFQmsdOErvQ4+r+SYliVMt9L61lfIv/yV6VQ1evkw4nw/mzSV8/FReCAvpuPQ0tpMYZkxBKTXDrZ/5xJk2Dcy1Oc5x6UkSEyYNeU8pJV1PvlhgTX2OinHjh2y7d8eB5H1U5g9CrYsg6dq+H2v60ISr+oeuRmtoUcHrgTV12hS8Cy8Y8Vg4DS3Ed+5TpFSL5mLUDGLfS8/D2ncE+/AJ9PLk+y5+bzrWnyJ9T7yUYcAByIRF9+sbEMsuRL/2arTGNtzGplTWvDFtCvKiC3P6nT0vnKlTwXg9hwxKIklMnET3Ey8hnawKIA961m5Gu+JSzGuvwv7lbzKd8gKMq6+k82RbgWigJNrakXoOp7GFxI59oGn4F56BUfufT3gcaWov+I31NrbjZMPaDIjPR+ep00hNU7ikWWuq0Aza9xxJZrPmrpn9h09y+nQfvQ//Absvlsq8THT10/DLFZTddxty0lR85y0h8dZGtX9L0IpDBD5xB+3tYeyjJ+lZsxVsLanoQccf1+PMmo0saDIIpN+nxtxXROiL9xOIqLVfKwrRC9Aeprq6hOi4CfhvvgFr90G0ynK0pQvoDFsQLgzDki5eb5j4lnfx+qP4Zk7BnDE5RQLe+8iz2N3RVGZ1oiNMwyMrKP3L23CjheExOg+rrGuVJZk55kBqLpm3f4yyG69HxhOI0hKiQhBtD5PYthu7rz8zicN1sbv7aFq7Df+Zs/Ach9jq9STePYBeXkLRh5ZhjFGGrzFzmiKUyxJzzkzCZZXkDRf4TMT8eXQ7GqG7biXyqycHsdWlpOju2+hOgLP4bOTzr4N009U5fEuX0NUVZYA4Nz3jbiB7v6OjH7uoHOml8wwI3BiEgyVYgQJQC4AVLMIRnfnj3q5Hn2eqajgv+zsRYJh0nGwrmGUYa+vEuOJS1d/sT0kT2JMmoznAicbcQKymES4pp7+jH84/n7JzzkFGooiiEJ5h0NGRC2mTLYmde7F7+rLet4fdE6ZpzWasA0dyiHulZdO7fjv6FZciLl+OfrJJ8TfpGrge+qQJiCsuo709TM/Pf4e9c1/q2tiBYxz9wj9S8fdfQB89ir6fPo516Fiqb7ETTXSs207ZZz6OjMXp+u5/IPsiKV22f+9hij68nNCy83Fmzsb94yBUg5QC1xW4M2fTV1ye136WALNnIurrIANLO21Yz1mMONqAl6ykSd9jhYD46Brcrj5ca2BGKP3VtSBeNorTx9tw+h0UPsyAnSmRrk7njkNEjCB2V6+yXVKlDx5OXz9NqzcjTT9SRvLOxX7PwBpmj46++Q6RFYOVE4nGVrrXvEPFNz6LVVSMlAOBtfTvRMcqKqblwCm6v/lvqSoDadm0P/kSPbsPU37/x+le9WbeNnvXbMSbOa1gBnLsRDPMG+DayQ1eRSyJNM2C32A/BgU8lap9fxGuR1rATd3E8zTE7JnD6jWRwyezHPLqHtKTtO89qqqPk5AoGeLz0dmdzKy+4AJEZwy3uwdz3myi4yYQbw/jzpiRxx5DwaydORf3aBNSDlSLDYrnavRhIirK8Lp7s2uqEcEg4eIK8PuRcSsVANKEBJ+BtuDMYfudiCTwPIGmZbWNSdep03gHThF+dRODuO/Qu2E3ztjX0EsKV055sQRyzBg4cjJV1QMgkuu6GF2N09iSr5gETwo6D57Ef9GF6IdPYh04mrL7jPpa9GuvpmP7ruTZuXPNiyfo2ZufJ08I6DvcgG/xAhLrNuU7A/eseX+STTBSScQK6Ad+H10NpzHOmIW1bVdmEFcIjEkT6eyJE9uwnv6nX8z4vrvWvEPl1z+L09KG1ZpbFe2GIzS+vJ7guYugZgzFf/tlZLgf4fMhAn66Yi7Ehu5ze0P7iPmb8kmk6XS+DEmk69J5sg0tbNHzzz9T+qbnkTjZTN/mXZR9+g6M8WPpfnVdfr/E716k9N7bAJPgZ+7FH40q7o+SYvoARvouFy2idP58ZH9EcR6aBh2dheF6/7vlT7VdPyjRNDFk8viInPIXXXQR3//+9/n61xV+uJSSBx54gEsuuWTED/LDH/6QPXv28POf/xxfgXLvK6+8kmeeeYbLL7+cnp4eVq9ezW9/+9sRt/FnKSx6aTElX/4cbkMTXmc3+rgx6FXKIea0tiujJvsi28E51YwoL8ujNAjwBDKWQC8qouKfv01ixy6sLTvQx9Thv2oZuq7j9fYhC5D3pGNZS8/DPnoKmbAwp4xPESa+Xyn6+M2Ef/Qz9QyWDX4fWmkJwRHgyZszp5LYsScXH1V6mJMnIDSNottvxLf0bKzd+9DravAvPgshBF5ffyqzMKOUWoDbdhq3p4/YGxszlXrHxW1rJ77lXYLnDQ3jIOMJev7tFzinO1UwxGcSWfkq5V/8JMa4OrxwBPt0BCkNRczn82E3dCATFlooSNGtHyH65ArlpHbdJNP3dMw5M4nv3JcyUDMUUE1H9oZVv2+9gcAVlyrytvIy9AnjEELgum5Skch1GEgn01EoggFVXp0m2uQJuHoQGY+nyo49R5ElaSXFmGfMzC1BB/D70UcNsr87TW24nd0YY2vRR5Wr9gJ+zKVnk3hzvVL8JaBJ9GAQY84MEk89nx9aw5O4radxmtsgPdiQMnAFdktb/nJkBue5c7obJyrB1dQ9TR/2sVYCF3vKqd7Rnb8ksbICCjiAQZDYewin30K6g0aDTE46Jxyl6LzFxNasz7lSSlS7jS3JksWs92PoOK2nkTJZrikHnJiDWUxyVPlAktngb8lx8Tyw9hxKHc9u2+vsTWaS5VZsCF1Pkpy6yfazhFSqrwAAIABJREFUTjBMvO4+tLoksWrzadyOLowxNehVah44LW04Da2Annxukg4IQd/TL6CVlOCRq+9ICVpxCdgO9ol2POEHy0YaOrI7gdsTRpTm31TzKcsi4FdYkmkSXbU25ZBPF6+zm8TOffhmT6Pnh7/EbTmtnNCmSWTlasq+cDfmxHrCTz6vnmmgPdcDz6L/2T9S/tm7KbrjRiK/fka9hIHve/pkfPPPQJgG8Y1bc+erEJhTJubt1wclxsRx+M9ZRGLjVuWoFQIMg+A1l6FVlA19sWXnYFkPiNs+6DSSnod9rAEZi2NOHo9WlCy5Nww8N82wlcn5IOSIIGi8/ih2azhjTbUau5CxBKJkeFWqf8UrxN7YpLJehCD6ylsUXX8ZoUvPRdo2PT96FKcpuY6YBpGVr1H2+bswJw8GG5yWdtz2Toy60ejVlcO2mS7SsrGOnERoAnPqhBQxqNvYAlLmzF1N1/E6ujDGj6X0rz6F09SCd7oDfUwNes3IcLSNcWMJnL+E+PpNav8deN9XXYo+qgKnoSUj2D8gwlBtR194HdcxAE9hfUsBaERfep3Se2/NH1w2DczZKsASee41oms2Zo75h5cTWn5e7nUfoJhTJxF/c2PuN6ZrGFMn4vX0KmzkbHE9tNFVSNtLraUZa6rlgqEC9jlrphAITcc+eAz7eEOmM9KysfYdxj7RiDmxntD11xC45AKc4yfRSkrQJ09IOVbCv30u7drkPmfZ9D/5PGWfvSu/o0QIfIszK2zy8UNI26H3R49in2pOzfPoqrWU3X8nvmkTU+c5rR24pzvQa6sxRg9im1r7j9D70O+U88txiK3dhDl1AmWfvh37yEnsg8czn812sPYcxDnRiD62VsE55BHfzBlEk8Hs7DHPzFaUOE1teJEY5iQDkQyaOYX2f9vCbTmNN30yXV//lxQuvAtYO/dTdNNVhC49l6JbPkLfv/5EwdTYTgp6pujm6xC6TtHdH6P/kd+C9FRlpt+HMb4e/9lqzH1zZ2P8w1eJv7UJhCBw4TmpBI3E2ndwpQGOTPuGILZ+B0UfvhJPmGjSzuq3wBMmbk8fzsH8jprw4ysovvpiEus35+r4uo5/3mzlOE4LdqTG0ufH7ewaAmPcRh9Ti3S9wWsG1mpTV/wFtaMJXHoB8TXr0nCfDQLLLkCvHY1WVYm1fRdOQ5N6N4YOmkbx3bdkVC4Iw0AUgD2UUuKcaMQLRzEn16egiNyW0/nfd8JSuuKp5rwQMcI0cE93YE6bRMn99+C2tOG2nkavHY2e5HPx+vozHPJpD6PG/PrLMxzyAFg29uGT2EdOYB08iuzJ4m6yHCLPvUbgvMXK8ZxH6YmseJnyL96Da0kGfI3p78wNRwnNmo4+bRLu4eMZl+uTxuM7cza+46eIvbwu7b7JPVYHc9J4+h7+J3JtA4iseEXx2eSzMyVYB49h1tch4zYZ+OoSvJiF09KGMX8u1mtv5sw1Dw1j4iCUmXO6E7e1Hb2mKhUUl5aV4ZBXJ7p4kSjR19cjDJPsPWrg/5rQCT++Ii/sj733EE5XT364IEgqmwWycRCga7jNbYP/z2hbZaRTWQkdXbnrFgrOBL8v/1w1dDQE0sl3b/AihZNWUo9vu/ntEqm6LMsqknBnMmNtEUXqe4ut3UT/Uy+mLos2tBJdvZ5R//gl9KpK9OlTFbzNALSOJjHGjsWoH6MIiaWWaxv4fHidPQSvu4bIo7/LmQ+Bq5YjNI3AZZfQ/9Sq1GUKXt7Ef87wEIoEAkip47oyy7aQaFWV9P3fnyZPzAqirHiFUd/7av5ApQS9tprAkgXE1m7KmOfSBYQkcME59D/1fDKJIbPfAqFgXmJxrKYuPNdQXB26ht0axuuPDoETLtS+XiAZUEqU3vaRq0ns2K14StIiQcHLLlYk0v+JYs6egXO8ISfBA9fDmFCPMW4MzuHjeNGY8tn4TDSfj6LbPop0HCK/X5XzfctojOirbyEMHel5uaEKKbF2H1BOeUBG49gnmxHBAObkcYPZ4MFADhwRoCAB34dDHlBzjTzzxXHRqirpf2ZVZqKSlEpfe+J5Su+9VcEtZe+zUuJkJau+n/cndL3gHvpneW8yIqf81772Nb7yla+wcOFCHMdh/vz5nHfeefzgBz8YUSOHDx/moYceYuLEidxyiyKmqa+v58EHH+Tee+/l85//PHPnzuW6667j3Xff5fLLFWnf/fffz7hxw+PA/VlGJkIIjPH1MD4Ta9WoqUptbDJNGcM0MOrrSLyzI3VuxnEpSew9TOgiReLrn38m/vmZBB6iKFQw20VPKkR2Qwu9//GbJGGVQLouJbdcQ3AYOIGRiDGmlrJvfYXE5u14HZ0YE8fjm3fGiHCTffPPQF/9lqouGFjUfCb+BXPRa6pUydOTLxHfsD25qEuM1Zso/9ydiKIg0vGQbmbfJRJN07EOHMmPtetJ4hu2ZTjlvWhMLXr+QcdR9NV1OK3tg9k4CRsE9P3iaSq/9QXCj/0hE8/bsnE7uom8uIaSm6/Bv3g+oxfMouWVdchYHN/cWRjTVMaZMbYOS/eBY2cqHIaZwa6uV1agVw46wgFkRxd506oRkOWUl5aFtN1Bpxlgvb0VGU1kZF4IAc6JZpyWdoLXXoa1Y4/CAk/6CwQQ+tDlypEbi9Pz48cVNrKmIR2XwMI5lNz1EbAdYm9uBSft3XvgdUax9x5G+P0FsrpcREkJ6AMKi8j4WyZctJLivNkqoJyEMmERfuz3mUaobZN4dx/+3QchVJQc58F7DJRda6Mqc46li15WguzLxvlVCqJzpAGvvzBGofTAGFtLwmfmzSjTa6qRQktlo2U4KPAwHA/Q8DyZcmio85Tz04vGk8cHs5IHs2IFxthaYpoOdpZiberotaPBNJLvJKvjjoNWXooXi9P74G+VoqSr9+2fP4vSuz9KfMtgVkg2Hqdz6Dihay7B3ndYDXJ6CqHQMGdOIbpmA05T6+A7c1yk49L3yFOUf/Pz6oo8xmv2S5KWjbSdzHm+Ow/ZYVLiW3fhtHVktm3bSBv6HnmKim/cj9venYazOzDmYB05CYD/rLkY4+pJbNyC1x/Ff9YcjBlTFXbhGTPR60bjpt/fZ+KbMwOjvi7tfhIZiSH8vg8UZ16fOhX37e0IzKTRbqKPH8E+71OOqnzEhalATGs7PQ/8Wq19Qu0lxdctJ7T8XPQxtfDuQXK+cAl6/fAVeeHfrhw0RgAsG6+nl/5nX6H0rlwc2nSxG5qVQ37AoJDKao2seA3//Dkktu1WDurU+1Y44X2PPE3lP/4NMmHR+9PfYR9rUHuN4+I/Yzql99w0JDTGgCR27qfv0T8Mzk1NUPapW/FNn4RWV4Pd0pWTUefZDlpaoNMYWwdj6ygk0rJxwhGyiQpDH70G38IzsXbsBk3Dt+gsjDG1AOhja9T+ml2l47iI8lLc1oEqGS3jFPtYA1pRiODlFxJb/fbg2mXoaMVFBM5fgtPYohzy2WP+/Gr8C+agV5Ynf/7g57k5cypG/RicU02D7ftMzOlTMCbUY+07mlo/ckgo/T5FqhoOM/BSBtYvraoCY/xYpNCSxGJpYyYk/llTlcMunxPG9bAPH8dMOqi0slJ8Z83NvIfnFST+dk42oYWC+C9YQnzthkEgBQki4CN48bl5r0uXrtc3Yp9sGnxfyfne98hTjPr+l8Fx6H3oSazDJ5Qx6br4Zk2l7N6bQRP0PfJU5j6VsLAPnyCxeRfWiYakQz7r+3YliZ17Kb7jBnq/9+85c808czZGZalaL9IW9dSeIdR+5bZ30f2jx/D6oyqJxXEpuuYiiq66SFVf5HN+mSZ6bTV9j6/MIWoFiPz+jwQuPBt9VAXl3/wS8Xe24ZxowJgykcDi+Smdzzd7BuV/9zfEN27B6wtjzpmJb86MlFMgsfcwfQ8/PXjflzdQdt/H8M2eirX3YBJiQsvQ34WmYTe2gOvhoSX374GguwA8Evmcw0lxTjRiTJuMXleDk0YGLwFjTB3GlImY9WNINLclnZID+oEAV2JUj0JLZrNmi1ZRjhYM4Fu8gNhbWzOOCU0jcImaa6FrL8c37wwSm7eDAP/iBRjj1FouDIOSz92Dve8g9sEjaCUl+M+eP8hVMYy4Hd10P/ArvL7+wfd95QUUXXuJ0oNNIzeoYBroNdUY9T2KJDLLUSttJ8MxptfVpJzxAzLkmDc0YR0+ngpCZNhjVvJb2PRu3kAnjod9shGnQGDKOdWM1dCseJPS5sOAvmZt2wMfvYrg8kvpPfI4WpI4wsOk6HIF8aOVlue2C0jNUNW/BRJXsB3ceDy/jisAy1aJDXkJTwUiEMBraMHzdBW4EZJBfgjl3Ja2Q+/DT2HtP5rC1fdNm0jZp27FaWpT9gKZy4NwXKy9h9DKCsMd2C2ncU82Fzye2LY7P/54si2jrrYgzr85dZIipS9gU3mWk8z2zr0vuonX0UXRTR8i8vgfcq4OXXelSjQqUKJr7T9SsE8pMYyC70wgcJvbwcsk3pZSQEcPbsKi/+mXcu8ZT9D3m2cpufFqEvtO5Nhr1sk2nKZW5YQ90Zg7blKijx5F+N9+ieeqhByZNh+iL71J8KJziL6cC2cmXYhv3EFo2eBe5sUTIGVGoqBMZW1n2Ra6jtfRnXetB9Q6rAnQTKRr59hj5rRpiJJiQCdHIUNDlJRgzpqmAqE5hOYaxoR6wk+9hNvZMzhjXA8vHKHv0Wco/fTtpOzW9HkuJFpFOcbYMRlB1PTz9DG1aD4fvksuJvb8awjhKqz5omJ8S96/ryZd8o154LzFJN7aqDgQBpIxfCbBS89PBUvL/u5vsHbswjnVhF5TzZirLqAr4uA0tuYGb5Jjk9h7GN+MSXmfQ0pSVaTR1RvoX7la6dtSIkJByr/wcYzaaopvuY7+R5/KuT547fLM+9kOMmEhioLDYsGnxiKWyP9OdB23vRv76Mm817kdXYiiUP6kWCFUEPTP8j9ORmSBFBcX85Of/ITOzk6ampqoq6ujunrkJcDTpk3j4MGDeY89/PDDqX/rus4//MM/jPi+f5YPRozxY9HrRmMdb80gsdF9OoHzFhPftgfpQXqJuUQiNJmXYTxdhGEQWn4B0dfeyjSmTJPQtcsVNuIDv0ojD1MSfmoVxoSxmPW177t/WihI8OL3nhknDIOyv/4UsTc3Ym17F2GaBC48B9+ieQDE1m8nvmF7ylkH4DQ00/uLZyi792NpDOaZi68XtfG68hDEgsowSI6F3dBC36+ew2lWjgnfzMmU3v0R9NJiVb6dyCTZlBJkRzd2cxtOY0vuvR2XxNbdlNx8jbpfbTWhq5fnnBY4ZwGxl9ciXXdwI9N19NFVGFMmDDlmQxILJg1ILxKl79crSexWDlF99ChKP34dvsnjiL6xkbwarIToa29jTp2I4+hongeayvpyPY3Y9v/H3ntH21Fcad+/6u4T77n5XmWhHEEJCQQSIAkwYDBgj8E2Dtjjcc6e+RwmrtfM2OM09tivPbaxjTFgMCYHkwVCBAWUc85X0s3ppD7dXfX+UX1yH4n5bH/vfGux17rLFn26uqq6umrvZ+/97N3Ell/M8N2P4R7p0BEC/q3ZTbswx47EaG8ucQyURtsokk+vxmprrqmQeINJVCob0DFfMnbh91Xp70KQ23soOCrM9ci8tBY5nNR0PcIfLFp5VQqcA0c0MFDBxV0wyGJ5sDdAM5YKr3+IUh7Mwr1KIGyHyAXzST/xQhWFRai1idC0SSV7Qmn7CpSBiMd8ndgsN5iE3h+Mxgby6a2lyqtSOuLNmnQOONV9VzmpwaecV7Ue9JwaqGSa5GMv4BzUxamV3317007SY0aUZU5UiojHCE+dTFLhZxgU50eYCuuccSQD6IhAF3hTXX2gdHZBVVSl77yRmaxe51v12We2Net1PvUcREM9qqMzcDWZTQ3Y67bUfLY3MFyir5e/EyHMwrOHH3oee4umbMnuOk7DrTcQnqozfBq/8HGyr6zTYIZlEV16IZGLijzO2c27Gf79U5r3WQhiS+ZTf/Pb/2TQ0usdYOiOB8Ep4X90HAZ/cg+t3/lKkVc6QIQQxK+9nNRjz1afJTdchZKSgR/fVQXyJB9fiTVxLHK4dkqlN3RmygLlujj7j1QBenhSF/o7Cyhvb9pZo1g65LbtJbu2xvtOpfFOd5N+/jW9zl2vEPVi79hH6qlVJK6v5jwu62L/IIO/fqCq/cGf/o7Wb/8/hCacg71xT/WN4XiBLulMIrM2Q/c8jr15N92A0dJIw4duJDx9YuE31oTxgYX24tesILdjb3VBtAvm67MkFOAsBERcG2vxa6/EGjeGzIuvolJpQnNnayMtHiOz8vXgOQdy2/YQW34R9vZ9DN37JHIoqdf54nnUv+/tiNDZ6ePOJMIwaPjcR8m+ug573SZNnbNkEdGLFyGEILd1N8ozEKL4HShpgBR4J7uIv+MKUg89VZ4NEwoRv8HPKPGd5mWiBKGpU1DpdDBgaJkYZ0idB4IN1+JFlFJkNu9HuSbC8B3jUuBlFe6xk4RnTjlj+4Or3giu62Dn8Do6Sb+ygdz+I9op5fc/t/sAqSdWEpk3s5DOXyY5h+zazRp4I0h1UHhdfVijR9L49c+TvOdBvJOdiEiY6OVLiV9zOQDhCxeQW7cZKjK3IpctRinFwE/u1nqbUoV3lnp6NaEJYwnPOxfjkWeRjlMEYg0DI1FH+LwZDN1RDYr5ncPetJPIojkM/uJ+cjsP6v/++i6yWw/S+On3YRiGduo/8gLZjTu1o377URo+GCYyawpyKMngL35fNa8DP7+Ptm/9nT6Dj50qoajw9XfX1UEzvo5S6bhGFZ2dQSKiEdRwityJPoRnQEkAR+54DyqVJva2y7A3bffXsd9+KERk/rkYjfXEr7+SpJ/1VZBQiPj1VyKlJPPalvzTit1yFOmX15O4bgVudx9Dv38a57AGmu2DnTR85F1YfhaRMAzC580ifN5/r76EUoqBn96D7Okvf9/PvYo1YSzWpHP0+qwMdHBcrEkTsMaOxt6wvTzLNmQRmTcbs+nMEYVG+xnmPBLRASCGiXKK+qACRMTAqK9DZWqBuKCGU4hotDxgJ992NKLtsID1oJTWPWQyTf/P7oWcRBbgA8XAL35P+zf/llwNahthmrhHO8447qrAi1KRCm84nR9p5aiQQymc7fv0tYBaWfbarbhdveS27ys7w3O7DzL04NMkrroE6bq+zVbSviExG+ohHqtllmDE43hKVen+BfGkdjAG0JFhCIyGBIQjqEym/DpgTZmEiIS0Phgg4akTcQ4fxztyojooxjB1dvH0yeT2HyO3boNvoEBowTyiy5cg+wZQueAqASogk7NSjObmKt2pCOKO0EEUyXyh2tKOh3B27K3Wp3xxdu7Hnrjdt9eqnUuZNZuJX76U7NpN5Y6ekEV49nTM1mYfm/DXcWkwUSqNc+ykBn6rHuxgr9tC/IoleH0DDP7mEa13AdY5Y2j8yLuwRrUVCo9WzZvn6eypSkL40p/09qMMCxwPDP8b9h0Gub2HMNtadFZPgD5ob91N/KplZNds1tcN/c4VJuFZ0zDbWsht2hGY0+EcOo4cGNIZDLJIEQUgDAlZB284GezgAbyhFLn9R0j/cRV4+pkAajjDwI/vovXfvvymgeZa4vUP6jn3g4us8aP1nI9ux4hFafz658mufIXctl2IeJzo5UuJzCvWkhLhEJHFC4n4TgIzHoPUsH4ntRyChsCaOhFefcMPKCkZtwBrygRyB46SfHxlmV6i7Fxh3JGF8xDRKKk/PI4cGEIk4tS98+1ELpivf+u4DP/haTJrtmhnQ6KO+vddS3TB2c8ls6UJl3L7X3/fFkZ9HUY8hgzQqTC1vhe9eBHZNRvLMwwsi/jbV5z12W/J//fypizsV199lbFjxzJp0iRaW7WX/9ChQ5w6dYqlS/+yacBvyZ9Pstv2kXpyFV7vIKFJY0m88wpC40ailMLLqKooBM/VkaeioQGluqgCzqTAGKu9bU5HF8lHV+IcOoHR0kDiumVE5+vCQrG3ryC9aQ/usVP6GQbEFs8jPGMK9s79gZXjcV0yr2wgdMs7/iJz8WZFRMLEr1pG/KplVdfSTwdUvVfg7D2MNzBEzYhxT2KOHaUPU69E+RW6wI45qh05lKT/+7/xoyS05HYfov/7d9D6vz6HTOcV73JQTjnyjJGTb6b4hhGP0fC5jzD0i3uRA9rpYo4eScNnPlw4dN1T3Qw/uhLn4HGMpgYS111GdMEsnTIdiyJTWX3wKz0uYSpCk8ajlKLvh7/FPXa6oCi5Hd30/eBO2m/7PDJVm/fVGxjGfupllCN1OnZhUApn31G83n7srXuqU+sdh8yqdYRnTSkAxKWilE5HFiiUNBBGacq0Vpa8U11+Jke1KIre9CLtT8nFcAT3VHeg0q4UuJ29OorId3qVKUUKlBAYDfXIgcHqtgWYTY35wPhqCYewxowADN+4LO+A0d6qIyizEnKl60ZByvU9PRAI+KNwfXC6ai0qUJ4ifO507XTwRHF/EQphgDminez6bcHKrQJ72x6dvSAFnszfr78REdaZKfamimLGAJ4k/fzrtH7/ayR/92hV+wqIXraY9Ksbyyh/Ctc9QXbL7tppxUppHlihaYgq34kIa2B54Mf34Bw9WViPXmcPAz++i5Z//gzxqy5jcNeBamcDELtmmV7HQeK4fpZSjb3Fb2Pgf/8Ox3dOFZ79o7tp+ZfPYLW3oFwPty9FbsBFGBKrP03E5xnKHTjG4B0PlQElmde3oGyHxr/W4HNy6z56735Kg13jR1H/zssJTdSFhZSUpFdvJL1yLSprE5kzjcQNKzCbGsiu26opCSrKNgilyG3dQ3TxvOBx+xJddhGYBumnXkQNJTFam4m/82oic2fhHDqGTKbzQZnF5m2HzKr1yKEhirUySuYdDYSeUc5kbLwJQ0QYRrChJgQY4oz7sgKy67dVnzWOS+blN84KymfXbws0EBU6gj5bY60pO4fX039GYA5g4Kc6gh9XO0K9rj76//c9tP7jp7BGtZ3xXmvsKBo/+xGSf3gCr+M0Iholuvwi4tdejhBCBwW8ur7cQA2HiK24uPjPubMJz51d3XitOfezYZzDJxi4/Q/l63zdVmQmS9Mn3nPGfr8ZESGL2IqlxFYE6MiG3jOVMssBA39viV1yIRgG6SdfQA0OYzQ3Eb/xbUTPn4Nz7GTVPp6X7OZdNHzwBpKPP1/dHyGIzD9zMeTC2Ri0aZom7vHTyN5BDXx5JY4LKUk+vZqWs4DywjD8hIXiXiUMhZASJSiCDaXiuGRe2Uhk/mx9Rgc1bJaDDAFPBvR6a/ra5wJ/0XDrTQwJoYF5/7COLF1E/XuuxzlxGq9/qHot5RzSL62jafZUGr/yKVL3P66dTEB47iwS771B62M1Pm8FCNNg8Bf3Y+84WLYW7K17GfrNIzT9zbsZuP0P5PYcKuwBsqefgf+6j5avfxxn32GdjVe67wkQ/vkYmjOD7NaAqFczgpmnBgp630DkvBnaMVZJGQDEr76M7Pqt/ndvlk+N65Fdv4345ReTuPVmhu5+DDmcBUMQnTWFug++C4Do4vNxT/WSeu51TYURMqlbsYTohQv0GRyU+QBkVq6h7m2X0P+dX+kgFv/hzsHj9H/3V7R988uIcIjcgWMM/PphZO+A/q4unk/9B99RqGmWO3CM5GMv4p7sxhrdRuLGywlPm4B3qhu3px+8clovYTukV60lMmcmyoggXLv4yhQoI6yBs+WLafzCR0n94XFNARoJE73kQuI3FGkzU6veIPnIC5r+LBom8a4rqFuxmMisabr+S4C+GX/bZYTnzETd9UTxRfsPV7YiPGcmmVc24KWqQXeEwGxvxZp4Drlde6tetzVhHLJvqKDDVh5r0pE6+7BQD6Mk0CPnkVm7tWZWNErpa3V1mnu4Qu8R8Rh5AtWgwBYhDLxT3TXPb/d095k/f8sk89La6u9XKexXNtJwy/UoM4JS2TLdSimT0JyZ2i6pgcqbI9pwOzpRvf2VTQMQnj4ZpCT9x5XlTk8Bscsvwevqw03mtLpZrKWM5xlk1m6l+W//mtSDT1XV0iEcIrp4AUYigb1pR3m/0Xu5NWYk6Vc3klm/E5yizeRt2Y/1whqscSMD33feCXM2EVZI23lGScCQAoWB8iSxFReTfvblCqebRezSCxE+F75SGkvIz4lh6Ew7tyOA3i3f/5PdmG0tNH3pY2Qf/iPZ/UchEia6ZBF1N1591n7rWio1HNCGgXJd+r77a+TgcMHJ6h7poO+7v6LtW1/WQYoyf46V2O8mKE9ijGr3bcqyacFoqMcIhQqIr5LltrowDG13BOmUQiAMgXJcPM+krIK2AC9dzJ6pRSnk9g6WPLNkvUgDmbJxT3Tp7AKjFADW171T3ZpWpxIAVgqZTOMeOUFo0v97ZgvlefR+51eFPQjAOdRB73d+Rfu/fxkjFsWIx4hffxXx66/67zUupdaZSkD3/NiQEJ03m2TELzKdd14LhRE1iC+9gOEHnwkOJkhl9Lgnn0P43BmEv/GVwMcP3v0Y9qZdBd1GDgwxeMdDGF+6lfCUM9fCii2/SH/fpQEahsBsasSaMJbYFUtIPbGy6huLXny+pr67+TpEIk72pddRmSzmmJHU3fwOrHPGvqmp8waGST7xEva2fYhohPgVi4lftuh/dCHX/z/LmwLlb7vtNu65556y/1ZXV8dtt93Gs88++xfp2Fvy55W+F9YxcPvDxSIXW/di7z5E69c/hso5yN4BpEeZUp8Hxt2+4YCNXvNWq/5hnI4uer91O8p2AYU3mKT/9gdoeO811C27gN7v3oF7tJOCxiEh88oWzBHtWG1NwWaWVIXoeSUl9pa9ZDbs1CD5JQsITylu/jJrk3l9C/aeI1gjW4gvW6Sjnn3x+gZJrXoD93Qv4WnnEF+6ACP+p3PWy8GhwP+ulEJmsjVahWKnAAAgAElEQVRTFhGCyKypSGWW868r8KRBbMki0q9vrk47khI5MIyz/ygy6wS0rkFLEY1gtDbjdfVWKQWhWVML/z5937N0PfYyuB7hmRNp+sTNmLEIKucw8PMH8foy4IOW3vF+hn77OM2ffz/uqW56/u0XhbUkB5MM3P4g9TdfRXzZIryUq3nTS8alXIHbl8Q9dqoMkC+I7ZJ8+hWdAp4MVgaN5ka8PUeqAUklUB44vYM1uRtlMl3FX1+YNZ3LjdHUAJz0lZbih6AUmO2tEAoh/aKpZYCCAUZDAmvKJHL7jyCd/NgVhqWIX7KoLJJa+hkUOiteIV0vkI+y2Heb2BVLSD7yrP+74poxR7ZjjWrDGNmOd7q76n1H5swkPH0ShEOobA7pGsV+WwZ1Vywl9fIGVKbS+BW4XYPkdh+ixirWfRvOF3INWosGRl28hMKpZD14ApFI4Bw8VjOt1zl0gtDcGeSO95SMWSClwojEEPXxmvOmMlm8k11IEUJIp2y5KQFezyD2tnz2Vvm4QYMZ0SULGX70OWSmGK1jmJJQazPWqHZCM6bg7D1Y/k4sk8iFc3E6OnFOnK5yECnHI/3iOsz2ZpSw8Ak9i9fNMO7hDh0JF2CcgtJRsLUicZTm13eOn6p+tueRXrmW+puuoufff4nX1Veg0Bp+YhW5vYdp/vKtpJ56uVoBdVyyG3ZS/55rsPccpvM3j6Bs/ZvczgP07j9Ky99+mPCU8Qzd+0cya7YWi9C9tgV7617avvE5vGSqJMKvGJKisi5eQPRepQghiF26mNili6mkSZEZG+nICieSQknwBoc1uLzvSOByNmtybfrPNU1NBbHrQPkeY5lELihStjnHT5NevRE5nCK6YCbRheciLJPIojmkn381MNU6Mm8WSkrch56tAr+Mxnqd8RFEdQZV2S2Bv0lngh3fnkRl7Jo8/cIwkFkbEz1/6Zc34pzoJDxpLPFLz8dIxHFP9+go1cr2XY/0C6/T8MEbztq/0NSJNP/D56veJ0DiXVehhpPYW3YhQhbKcYkunk/8bZeetd3IwvNIP7s64ExQhOfPYvjeJwPXub11L95QErNG3Yg/h0SXLiR5srPq+UZ9HaZfiDa2ZBGxJYuq5kVlssHvE5BDwxiJOho+8yEG/+teZEa3byYiNHzuQ1W1LSpFGAbmxPG4h4/nA5/1MwFr+mTcU7romFKiELgl/O3fO6lpb5RS5HYeJL12G8IQxC6eR3jmJIQQJC6cS3LXMUrPMCVBCAtz9Iia41I5B2viWA0QV0ZwhkNElywkd/AYVDg6/R5ivMnivg0fejd86N1IKQvALeg5z9NbVIr06bSMxnoil1yEa8R8QH8+ws9MCJ87HXvDjkCwJLzgXAZ+8WBlIhwo7VDzbryc3N7DAd+YS/q51zDam1B2BVCqFMp28VJp3BNBDkeByrm6RlBTI2pgsEonEz41YfNXPkH/928vW6vhRXOJr1jCwC/ur6nn5g4eJ7LgXAbvfNynexAgIbv7KObjq6j/qyuxdx0k+dxacPQZqxxJ8tm1hKZN1oEMNdpWWZvspl16/ys9B5VC2Q7ZzbsxR7XR951fl8yXR+aVjTgdnbT9/cexdx2k/yf3FoCS3FCSvv+8m+bP3oIRDaHcyoAEfZbIwaTm/vek71QrMZo8WaCuCE0aT9PXPhu4ryWffoXkwy8Uu52xGb73KVTGJnHtZTR/5ZP0f+8XZcB86PzziF+5VIPfVY55/f/t3QeJLllI8v4nq+fNsrDGj8Y5qjOiy25X4BzrIjRzKtITGGa5VaakBr9zB4/7wy35/v3gBefQcaJLF1bXswC/BsIY5HA6UHWRySyioV4/26h+tojFMNpq11Ax21ow6us0lWjA9ciFcxm669HgtZTPJk3nAmwLsLcdwKiLFMDrsssKvM4+HTHe00+laHqPOPFrluF19pBet5P83hc7fyZ1N75NO9uk0JkHHhT3RoVzsgcRCSMbW1CnOjUIjA9cx+sR8Sj2nsPoLPbyDUTmwO3uI/VkgD6Xc0g9vZr697ydfK2GqmCgGjT45aI3/6LN5M9fJAxZm/jVlyH7B8mu3Vw4vyPzZ1N349tQhlFyjhT3LekJorOmYZyhZo7h1wkzx4yk6W3L6YpsxmxIELloUSGb0xjZiuzsre5xQ4LQ2FEI08RTTiGjXRiA0LqBvW2fpt6UFXuL45J9Y3sFNW3RrpEYkLHx+jPV3xjgDdsYI1oxGhJ43f1ltqCImESWLiQybxbJB56uHrRpEFk4h9RTq0scY/m+gbP/GK5frDTYdqAk06z6S1CSQgF5Ja0SXEavRTyFDHL2ofVy6WeLy2Sa9CubyB3uIDR2BPFlizCbatM/5SW7bR+yf7jqI1PpLJm1W6lbsfisbdQSlbERVhjl2FXrHASELIzWkXjDJdk8SkC8SRcArzFuSsZdS2Qyjb1xZ/X5nXNIPbWa8Oc/CEBy5VrSK3V9lviS+dRdvwzDMAidM5bELTeSul87YpUnMUe00vjpD2p7aMUSvJ4Bsq9tKFBbhufMJPHut+suGgbWpInITQeQJDFGjK2irsntO0r6tc0o1yN24XlE5kzT+n8qTe+//lzrOJ4Ehhl+4DncY6dpvPXsuv1b8t+XNwXK9/b2MmJEeWGvESNG0N0dzD35lvzPEiUlp3/7RODBPPzIC8QumouXdUo2Q19rchS5k114p3tqpiVlN+/B3nOkAMgXNvCcy/ADzxG58DzcA8cC700+upIR3/27Kq5xACIhIgs0WNH/k99j7y7Sf2TWbqP++mUkrr0UOZyi+19v19EyOQfbMkmvXE/zFz9AZMZEcgeP0/eDu3RBU9cjt+MAqWdeo+1fPonp8wTKbA576z6knSNy7hSs1jfHOak8raVVTY0CFYkQZFHkaUO8geESehtKfijIdfYiT/cEpq8ppbTyVwOkAYFzqhunL4VRoUQqBbnTuiBi1zd+hne8GImQ236Ari9+mxE/+jr2pl3IoWGfksfvV87B3nMI5/hphh/2qU5KG3f89z1vBniVA9fAtuwZJLttX7Vm60t2026MREwrBxVOWCmBUPiM4DXRMCqgIKpOK9YcxUGiozUERnNziTJT3ojR1kzo3Olk1uwojAkUyhMYIQuzrZnQnNlkdp8orAmlBJ6rIzndw8fx3FLwWuj1gwBPYThO4LwoBbJ/iMgF8xh6aJVOU/M/MRAkrrhUr4nBTKDR4PYOIUIhjLHjsfccKfZdaqoTc8o5pO8r5XUsNI5SkFm/AxJxSFbzeIMgctEC0o+uDJxXEOT2HKKU+7AwdgW5IyexWhprRnYo18U7lSzcU3q/TNngusHBS0obil7PAMIKITNSRygJECgddXW6x1emgvc1mcoQmjMDed9zlC5G6ZmYM6YBUH/ruxj47u2a4sXzwLQwR7VRd8OVwSAKgJSax1NKHYVXudBNgdfTXyiKXIW7WxGwHYzG+iqaFqUgdM4YvO7+YADJk3ine8hs2o3X2ed/VP77dj3sPUdwDndosD5AhGXi9Q8xfP8zBUC+IDmH4Qefo+mTN2vKgVLaECmRGZv0y2/4WQQBDhx1FuqroP5ULBqjtSkg3TlvJEaILZ6PvX5btbPTMIgsCIi0rpDEB9/JwPf8s8b1wDIx21uoe6eOfky/upnBe5/SY5eK7Pb9hFaup/UrH8EaPYK6d1xB6smV+c6DUiQ+cCNGQ4LIwjkkH3pOXyuxhaIrlmCEQ1jjR+lMs/IJIDxj8ln7HZ49jfSqdbruSNn9EJ41BTmcJN3dW71eTRNrdDvOiU56v32HPg9cF3v7fpLPvk7bP35cc5daAYWkpMQNMIjPJEE6hrAsGj76HuTgMF5vP+aI1gJ/6NnEGtVO3Y1X6mhUV/ntCepvuQGzsb7Qv3y0Xn7bNywT2T/0pkB5lXPIbtuPTGWIzJyENfLNFd+NLjmf3I59mrfXk2CZmlbqk+8vzINSitzeI7ine7HGjiA8VRdTN9uadZ2Tyr4oIBRGKUXm1a14OQrRdG5aklm7g3BJwcNa4vWnUVL4vkZd/BQBXn8KIxatyETxi4orgfILBw/+9nGyb+wo7BGZDbuIX3o+jbe8Hbujp3BfUYSm4vOBd+fQiYKelH92ePpEPT+f+gCD//u3ei1KqYGK+bP9GgGNZFev17peqRgm0YXnFf7pnOwmt/+YTu2eOw1hFaMVpZSkX1hP7kgH4Snjia9YpA3jCWNQQQ7/UIjI+XrvGLzrCbLrtxedlZt3E1u6gMb3X4uK1wX6UKWwkOlsBQBWcgZ7mvIrUKTCPdWNZVZHPubbkAMpvM6egJvRRUf7hmj60kfo/9eflDtxTYumL30EAGvcaNq+948kn1mN191PfPlFhCfrKDsRjwXruYBRF9cR8HYFcJ5zSL2whrprljJ0zxOBmRFDv3uS+vdeU9NhL0JhTQMRQEmg7Bxebz+p518PHLd76ARudz9Dv3+6+tk5h6H7n6blb2+tfZaEI4RnTSH11MvIrCxEVgpDYUQtwrOnljUZtK8lH38psG/JJ1aRuPYyrLEjaf/PfyG39yBeTz+RebMK+15uz6GaOrSz+xAiUUe+6GSpSEehMllNv+eDqMVXJxDJtKbOQCA9v5Bkia6JaWDUxarA2vy/jboYkYXnkdu+l+zmXShH6XtCgsZPvV/rJNLwfaRSRwRLBRgalGxuBGXguZQ9WwiB0dhEdNF5ZF54LaCosEH0gjmkN2jqHCkpZB8LoVCGqR15vn4cBFa6J7t0IFilY0pA7tBxYovnojAQVYM3oC6GGkqBMlFl1w2IhJADOngrtfmgXiueHnt62yHinb0BNDFFGwHHJbf3CN6JHg28CxAIPFchuoawt+/HO92jQX2lQW7hGyBGxNLBdkPDBIlKZQjPma6fU7VeBNaks58VkfmzcI50FIqugra/hFKEJo5DGAb177+RuhuuxOvqxWxtLvDzq6xNdcFS366yQkTPP5f0Uy+jpCp7n8IQRC+ci3Icer7zG7zTPXoOhSD96mYab72e+MXzaPz8h+n/Xz8q12sMg6YvfARl53CSDsgisJ63x+zj3URMKzAympyD192nnQ5U0iQJhKswWpv87B0TkCXfkAF4CCmJLl/C0H3PFN+FB0JaRM4/DyMRJ/GBG0j+7vE8YABCUHfDlVij2rH3Hgl+GVLhHDtVRGEqwW0FVnM9wTaPQETCfmBayforuW40NxCePhHn0HGU7RT2GCEAzyM0eTxuTz89//ZLvS87Lva2/aSeX0vr1/6a0HhNRaxcD3vHAbyBYcLTziE0VmOLzt7Dwfa90oE/fwoob45q0/XJbId83RQhFCJk6TV86ESBJrjs0ck09tY9+jcHjtYcN2h9zTl4AudEJ9aIFh2IYAi8gSFNdxRgD3pdWgft/tavcA8Va30kn3iZ9GtbaP/2FzEMg9ji+UTPPw/3xClEPIpVUttPGAaJ91xHaPYMcnsOY00cQ2zhuQVn6fCTq0k++mLh9/a67XRu2En7t76A1drE0MMvkH5hXSHAx96yh8jc6TR94ibSqzYgM9lyvCnnkFmzlcQ7lmG2vDms7C158/KmQPnx48ezZs0aLr64mDK8bt06xo07+6b9lvzfFzmURFYa5L44hzuIL7/Ad7JXK6AqmS0YOdW6pcAdTiOPdVKumfv3Zh1yW/bV7pgnNSBx4VzNzU7x/DLicSILZmNv34+9Y3/5Zu24DD/6ErEl80k+9QpycLgAYuF4IDwG73iE9m9/iYHfPFoGIKmcg3I9hh95kaaP3Ii99wh9P7pPq6eePgAT115Cw43Li/dIhXu6BxGysEr4HvOGfB5ULHqjQfX0l4HLZdcdD3vv4aKyWzKfSinsN3YSv/R8zR8aoBhY40dj1NdpHtwAsZobURkHD8OPYvONZqWQh0+SO3yiDJAviFQM3P4AVmMCLxMQie8pnCMd2LsOFtMNS0Q5Lk7/YCBQKoRu3+utjiYp3G87SMtCKQPlVXC7ob3dGCa+1l59f98Q0tM/yT8zf690JLkdB2u+E7I2zsnuwr8r36fb0eVHbEPlOpe2pm0YfnhlAdgpbWPg148QXzrfv1BtOAtHYY0fiXvwGNWcvoLI7Ckkn3kd6fhOkpKfDD20ksi8GZrOKO/kKdGv1YlO3J5+7D1Hq56tHEnyweeRvcP+PBfHlee2d46dpPHj72PgB3dUzUt4zjTMkEVQSnG+neAoPX89pHOIsTH/2ZS/bwUiGiW3PpijFNfDG0ohIlEdtVbRNzFqJKFxI5E5149G8fckAFMQmjIet2dAK89VXhxdaG7gVw8HPjq9cj31N10FwsBVEZSro2KQAkQUhKENY08GOohkKkto0jiya7YgSwwyIbQBap0zmtDk8di9AwGaNZitTTj92ulWOe7cyV4axo8sKIBlOEvUIjR1PNkNO3U6pypfx0Iq7B37sSaN046Bkj1XCFCeh9GQQA4G7zvOsVM4R08hQiaqksvbNy6J1Y7UdTu6YFHNy2cV2d2v05IDlF+VyRGaMYnwedM1EJrfV0MhYkvPL6NZUY6L29mro5Ybi8Cs2VhPyze+RG7HPrzuPqyxIwnNmFyIKB+896mKIpQO7olOMuu2Eb/kfOJXXeKDFnu0I2DerIKBmn5xHV5OgacL7OE7Cocfe5n4sguo/8ANDPzgN/q9eh5YFiJkkbjpmrPOS2j6RMKzpuLsOlCMrA+HiF40H2t0O/Erl5Jdv02fJ46rwRLTov4Dmnpj8K7Hy2jUcFxd8PgPz2rA0QlwPlkmoZJstj9VjMb6MxbbqyXZQ124GSjsfQ7Yx7qIXQzWpHHkTvQU98r8TY6LOaIIrrvd/ThHThGaMk4XBPUld+Qkvf9xtwaJfN0hvmwhjbdcc1ZuVQ0wv5/cwWPYW3ZhtjYTW7IAEdaFPWUyQ89378Tt7tcokyEIjR1B69/dinOiS59jFecMgNvZj3O4g+wbFbpDziH98gbily0kNEYbdIV1nogXItmUlLjdAzoCuELkyW7MMSOops7SB47Z2kzu0AntyK189uqNxJctZPiNGvu5J3E7uqh759vo/f5dvj6qATsMqLvBr31jWjiOhZD6G5GeQcjSkenWpPGY48bgHj1REtsMoSnnEBo3CiUVA3c+pqkclEKYJiJk0frVDxMaOwK3u5+uf/qvgkMxu24HQw8+z4hvfh6rpYH6913HcL7OiFIQDmG2NhG7ZBG5Ix1k1m0vG7eyHdKvbCK+bCHugeMoaaAo12tELKRBtbK5LM4poLOqHLfaCQMQDpc5l8reigD3dI8GS052VQVyKNfDGtWKURen9T//mfQzr+Ad68CcMJb41Zdi+E4W5/hper53l97TPUl63W7iS+bTeOt1ROZMx359E0rK8nGZBpE50xl+9EXwvLJkFcMAYZk4HV26YHnQcujqIzx5nB5j5TknIHz+uYTGj0ZEwlXAvIiECY0fTfKPqwPbBl2Po3zeS559qgevqz+4LgOgsjlCE8aiEg3I1EChg8ozEIkGQhPeBC1AjYwQXK8sSyM8YwrMqHi+lFXvunhN4ew/qmkxqdCpIhZuRxdGezPOyX7KdCIgNLIRIxKibA2WPEdEwzqbpYa2Z4xsAyGQVgw3Z/rouIE0QoU6O0XM2iwJ7PYzEHoGUGaeK7/4bKV04FRo/Giii+eRfWN7MaMsFCIyfxbWxHE49z6tn1vZr2gIp6OzDKws0+/Br3lUqgMXn21IRWTudN/hVz6nwjCIzJ2BWxfXTvPK1+pJzNHt9P/iIb8mlS9SoTI5Bu54lPjFc6kpCh3BqsqdO7q/ivTqjVhTxpE90FGwkQvUZraDObodc1QbXke1Hm60NmHWxYisWIz90jrK3qth0PDhdxW7KyW53Yd1cdxzpxTWZ/SS8xl64mWkm/fUal07cc3FhSLVAJgWhCJgFSEn5/jpwCAqENhb9pC4dhmuK7ReXXJNGKCEQfq1Lbgnu4t7rlLaoXfPk8TOn4XV2kzrD/+JzPOv4h4+gTluFPFrLsMIh7EPHquBeSjszXuIzZ5SM8BLRCLItF3IWigTy9B7WuG7Mcp9DoDyJMOPv1x1q/IU6ZfWU3/9cpQVwXFMDKE/EqkMlKUzvc/E9S8dB+kZGEYRsynYwJ7QWZemqWuulX7bAsKzpxI5bxrplWuKeEr+uimIzJ9FZO4Mhh59qfp9v+0ijGiEgV8/gkpliraD4+ri7Xc/Qds/fBz3dA8937lT4zB+hnF0/kyaP/6uMwbcBdaSqTUHGRuvZwCzpQHa6/3+m8Svu5zB3z1D8YUIhGkRu+Jisuu2B4Lmys6RO3CcuneuYPD3z6Lc8uyI2KLZOlDBztH7A5+uVGpnpNXSROvXP6LpQoOKrRqC0KRx2LsPlQHyhXH0DZJ+aT2JKy7STwxZgfRA0nbo/cHduPnvyTQYfnQVbV/7a0Q8QvKxF6vuwZMM/PIhmv7mXaSeX1t2zinbwd62j9y+o9pmCzgDhWXiHD/9Fij/F5A3Bcp/7nOf4/Of/zw33XQT48eP5/jx4zz88MN861vf+kv37y35M4gRj9W8ZjY3kN1eu8q609GtD1LXrQbOALO5EdkzSE1FrfXMRY2U45Jetwfl6oNEgY7S6s/iHD5J8pnXAjdr5UkyG3eR3byn6gBRCtyBYdwTnXg9AVFGUmJv3YdyXHp/dF9VAZDkU68SmT2ZyLRzsHcfpv+XD2uvvlRYI1to+ex7sUa0aAWuEGKHD6RoxU4DCKJwsKv8nCnAsvB6BwMjhIUQuD0DxBbP1ZE4nlc0pkKWNjDPGU3ifdcyePsfoOKdhM+dWqIMiULEWf7fSMXwH6urzuclt+cI1qULCCJBVY7ESMT9+a4EmDXwr9dCsCghCE8eT/a14KJFRkNCR42popJcuFeB1z9cswCOAj9VvMacI3QhKyX8KHH/XaENBWGZeANJpKcBaeEjnkpqDlyvb9BXbAPWuUJHBjpewPvUkW61o0YFynZo+vhN9Hz9B9UAtxDE3rGcrr/9ftEiLXmwHErryCdDoJzKd6awGhKkXlxfeFbl9fSabX4adsWVvCI3nME50YWnLITyCoChlAZOdxIjFgEhqhRYpRSiqR4vU4OHXwFSYo0bSW7PYZ06WmKEKaULKyl3feD9AORcVFMz3olOvXcI/HRYQWhUO0ZTA1JWRuIAHpijRhC9cA6px1/UAE1JdCpCEL3gXAZ+9kDwc5Uit/sQqRc36CjGAtghkUdOMvzYKoyoRWVkVgE46xkkunA2ww89j0zlM4z0D8Mj2whNHk+iLkZu695ywCEcou7qSzSw6kokQq/Tkn2HwRRmSxPW5PHYu46Wjd3LSeLLLsT++R+qjM98/+RgksR1y8is31HF+5644gKMRFynIQdEKJqNCczWxupIVQDDwBzRgnuqJ3DfU5y92OrZxGhs0DVQKscFiHAIIQSNn3wf9uZdZNduRVgm0SXnEz5vWuG3qZfeYOiBFzQm4HpEZk2i+RPvLtCdCdMkMq+6OJNz8DjCrM5OUDmHzPqdxC/RRXTN1iZiyy+quj+7YVchMrPs3Tgu7sluQhPG0vLPnyX90jrck52EJo4ltnxxIdvrTCKEoPET79XjXrcVYZpElywgfN50PW91MVr++bNkXt1Ibud+zJZG4isuwho3She4PXyyulGlsHcexGxuILp4rgZK8saxEIhwmPifENn055Ds7sNk126r+u/p59ZSd8kCzJHtAQAzKCuCiEaQOZfub/wc73Rx77YmjKbtHz6GMKD3h7+rov5Jr9pAdPZkovNnVDZbJanVmxi6X9M/Ktcjs2kfzZ+8CaMuRv/dT2onVYk4R04y+MDzhKeO1U5xEXCOpbNkt+1DBXCAo7TTLTSmndQrmxj6/XOA0ut8xgSaP3kTIh7VkaVeZZSwAkPrLZhGQKaeQNk6iyKIfxwpsbcfQPq8qEE+C5m2Sa/dhj4MSr0OBulXNhOaMIbeH9+nKZeKd5FZs5XIuZMJnTMa+2g3wi1y4ippkN1/Utej2XOYzLodBUBUuR7KztH3o3sZ8Z0vamdApTMx59L7H3cx8pufI7bkfKwxI8msWoccShKeO6PgSLG3Hwgu5O6P22xvxj1+moJOlp9V18NsLo1OLJ9TQM+5MFHSqzpLZCZHaPxIcnuPBu7pZnszdVdfQnbdNpTMFW8Mh4hdtqhQyNmwLBLvWFF1v5KKnv/8HaoifT/92mYisycRXTgLMaoN1dlT3PdNA2NUO+Fzp2K+toXckdOVUwI5B7O5oeZaUAqMRB2xFReRWf2G5q331R8RDlN//QqMpnqMtmadCZAHVCwTs62Z8LlTMeriyFwwxaQ1biQiEUMNV2cAikQMo7mG3SLAHNlK7lAHXudA8T/64nUOkDvUUcgkqCklgROV/904C1dveMYUsmu3FagvCreaitCMydq2AERlJK+dQzTVYzS3wMlqu0g0N2ONHlESwV4uoUnj8XqHKYJxpaLw+pNkN+4m/crmImWY9FCuR+8P72Hkf/xdyeArBo1CNCZ0dH3Vb5SmrQLqP/ROIvNmkVmj6z7ELppPeN5Mrb8VitCXty+zrtYNlAl45YC80vamyNtzAc8W4TDhmZMxxozEO9lZts5FeyvRuTOQE8eReXUTKivLv7GL52E2JMjtORLYtnP4JOYtb6+d8RkJ4VRmyJXMm3Oii8j8mQEAM0hlYdQnqL/pagb+676quiz1N2nu9cb3Xkdm8jmknngRlUpjTZ1Aw/uvL+gWmTd20f/Lh4p7viFovPV66i5dgL3rMMquoCME0q9spf5GXetm6IHnSb30hl/s1iW+dD6NH7gW90QwZ7xSQM4ls2FnBSDvX5eKzLrtmi4tKJpdGOQOdxCZOQnDsqh7+/KqnzjHavHVCx1AcrK7pv5un+guOM8r51w5CqOpHlFfhwri5A9Z2hYMcso5LtkNu4gvv4CBXz0CjldCSOQx+PtniMyapEH1Wr2Xvh2eD5Wk6ukAACAASURBVO7I28FS2+siGiF2+WKSz64t+8ZF2NB1n9pbMEa24RzLU4ZqsZrriS6Yhb3rMDKdn/Pi2FOvbNV0ZDsOVAHoSkHu0ElkzqHvJ/drytOSn9hb9pJ+bQuhGRNh1RtQaYwC4dlnrlWjn6MYemglqRfWFdZabsVCIjddhbBMUi9t9LcaUXKPILtpL0Y8ph3LlW0CREKknlvnU8SV/yKzdieNH34ngw+txDlwvHjBk7ine+j/zWO0feH91F19CannXitbryIUou66ZQw/+lLNMWVe31YA5WvJ8KMv4Rw9Vfi+lQNedz8Dv32C+GULgs8ZdECurmMTgK/ZDvbWvZgjW2Dv4SoKSCXlW4D8X0jeFFP/lVdeyR133EE6nebll18mnU7zq1/9iiuvvPIv3b+35M8gIhyi+YoLC4pNQcIhEu9YVuBurxQFKM8jNGVCoYiUKv2TELt0ESJSO/oxPGYkxKOBoF943gzsnQdRSulijq6J55pIaSAdl/Srm3FO9tSMCrF3HfK51aEIEvubpqu51Wty8SpFdufBwGJKuB6p59fi9g7S+6N7NYek7WiA5ESX9vR6OtJUA/MaCCz8Gx1VQjyK8kEW5ReEUQhC0yfhdgVHCCmlN0QRCZN4/w140sJ1DFzHQFpR6j+U5/EyNAdh2TsREInpZ9cQEQph1p2BT9808M5UbDVjo7eNIMUazHi00KfKcWFZqIZ6zdzhCTzP8P8EUoKoT2A0VFMTFBxAo9qQGTe4bUWBnsHzDFzXxHXy60n3LbLUr4SuRNm7A79gsa/YKmUgPRPpmYX3qdd/8EJUAeOtmrca31hxsqrfp5SgInFNQ5TnZC0Tv285F3Nke9m49J9BaOoE7Vir9XTbQcWilH8/RePEGNVK6tnXNdWK9OdFmoDA7ehGDiYxRo9CSkHpviA9g/CsaUhZg4YFf71K/HCO8r4jNOetNqYq70MXv03E8U5oR4mU/vuSem1mt2hPfyk1Qalk3thF3bILwAr5326JgZaoIzpnejBakJ+ZSBh754Hq/cX1yLy+BRGPIWU+lbrknXr6Xpm2cYazhe82z62Z6xoET2KNaid65VJcz8J19FqmpZ3Y1ZeWGZ86HdxA5YvtCvA8D3vXUX/eiu9UeZBes01Hu1JxzV/n1jmjSb+xy6e6L1kPSpB6fTvCMIhfsRgRKT9LRDhE3XWXERo3ShcWrjQcLJO6Ky4iNGmcbq7C4Qboa0DuUAfd37yDjk98k1Nf/gHDz6x5U5EyXiYbuPegwEv62RSGQXTheTR99gM0fvJ9ROZMLzhksjsOMviH51F2TkcjuZ52yt7+UKGp1JptnP7aj+n4+L/R+U8/I7ttv243Eq65CRhnyA7IS1lUWWnXpSxcM9uaqb/5Gpq/+GESN175pgD5Qvv5cX8mP+4ZZZF37qke0uv3kN55gtTGg2S2H9Jzbhi1Nzc/+qfhg9eTuPFyjNYmn8JgNq3/+Mn/Vv/+EpI8g/N5+I+vkN24u1yfyf/lXLzOXnq+d2cZIA/gHj1F/3/dj3OoA5UK2NM9yfDTr521b/aewwzd9wwqW7LW9h6l72cP6ALWG3ZV90tC5tXNhWjMoHMMhF5vAYa7MAyMSBh7zxGG7n1GBxpUPBsIBHgKzu5ICGEFx/IYDXXa8W0YSCnK/jAMRDRMaER17QblIx9mexPZDbur91RPklm7HefIyfKMjfz9tkP65Y1+BpCmOig/vwXZTbtJPv1aIBji9Q2RO14jgAPK1kBo4lgaPvJXNH3hVuLLFxfAGREJ+8VmK8Q0EZEwdVdfAuEK/dsyCU+fqI3bWmeNoWkF8AvkFnQNfz2Y9XXEr7mkMM7S81spQd01l2C2NtHy958gMncGIh7V+8i7ryqAcgDpN3Zx+u9/ove1f/gpmY26+LNz/DRqMABc8te5MAxav/oxYssXa/2tPkF8xUW0fPVjuj5BS3NFv/w/T2C2NhUDJ0ok72QCqL/5GhI3XYPR1oKIx4jMm0XLP34as6URYRi0fOWjxJZdgKivw6ivI7bsQpq/8lFNm/HOK1CKEj1Tr0viUSLTJkIk2C4hEsVqayY8dYIOAimVUIjE1UsZfurMe8vZJDw32Gmn6UT0vj/0xCuc+uL36fjEN+n+zm/JHdPOjch5U3x6GSg/3w0ic6aV1FUpH5cSApXJkdt/nCDJHTiB0dJIaOYkpDLK5k2ZJokbluN29RYjsUvbR+B19TH06EuBdZ3kUMoHl2vpVEJnwhbGVH7N69cOeyEEkXkzafrULTR9+v1EFswuFBzUFGUB7Quh9w3DKLPTCnaZYeIWQNqAZw9lEIZB06dvgdYRuI6F61jQ3EbTZz+AME3M5gYaPnoTxOP++hVYUyeSuPnawgzV0t+Fvy8EHbNGfaLmfguAZZJevTn4muvhHOkgMnsqobnnFvRI1zExp00h6tNuKSlxuwZxhlxywxJ3wNYBUIA3nKb/5w+U78lSMXjn47jd/aRf3hhY10bZOZzDHaSeW0N61QadXZe1tX68ZhvDj71UKDIdNG5hhfws22DdwznehailVylVU5/KS+hMNHOmib37MJ6n99jS89dzdQCGqqJozXdcf2OhaRPwZPne43kC65wxGNFIzVpASimym/YEZ9pJSXr9DsyxI2rsmULr3pEQSgk8z8R1S2xgQyBMA/toJ8or1x+kK/B6BjXG0Zvf74t7izdsIzM5HSQZFFGeypA7eKJkb6i0JXVgm9MzUD6nSkd6p1dtIDpvBkZ9vHpKoxHiF2vb3TnZTc9/3EPHJ77Jyc9/j6GHXyxEuKdeXE965fqytda/ejNDD63E7erTtL+VyymndQcvVyySWzqnAMqReg3XkPTqjWReeiPwWm7rfpTrEb92Gda5Mwr2nAzHqf/ADVgj285Y50fE9Dp2TvWUjXvwwZWFcadf31IdEOBJ7O37MWrU0dONC0QoOLMY9Hqqu+Ki6jPQp7XM0xG9JX9eedPlc+fOncttt93G7bffzm233cbcuWdIuXpL/sfJmL95J+E50/CUhetZeCJE3bWXET1/NuHzpgbb3Qqs0W1YrU1l4HIpwGxEwjpKt6IBpfwyIaZJ7PIlBeW78Ieg7qpLUK6HtN1ycCoP7KWyOj1VgZRFEDffhpGo81O5aoCVPkdgcBSwwAkqOOqLc6JLRxgHRD/JwSTZXQcBUT6m/CauBORcvFSOIEeGc7IX40x8teEwbt+QptXJ5b2zAjmUofuffo6UkqFHXtTRstJAevpPSUF24y4NtCLwPFWhFCiwLOrfG0x5oID4JQtwT9XmAnaPdVYblwURmCNayPNkV81NKIw82VUEEMtAQQOvfxhr3OiqtZLvW3jSuMA5L6wdV/oAfHXbUglM33mklMB1DVzXdwgodFrfmSgHhECaZo21BNbItrJ/l11Xmpc1ODpZQCRM+rUteBLfAZN3KBh4OQd7x4Ezov7K83CO54H3cmUou+1AoKJT+K1hEJk2IfgaEFt0Ht5QcOFdlMLtG9LrxY/OkJ7hR6cLcnuPEh4/uuS7KH9fIhJBCaP4zZd+q6auH1B37aU66qH0ugBr/BhEonYGED5NlcoFUx3JdFYXvw3FkNIscQiaEK/XIFIs2GhXgNnaWPi2S8EnpdBK2PJFKKU5VAttexo8jy46l+SLG0qKNZUAKUmb9OY9ZN7YxfCjq8uiWdzjmtvbiEYwmoMBz9CUc0g99WpZhE+x8zD02CpfKa6IshP+N2Sa2gkTIGo4Te5EJ4kbL6fl6iUQsnQEejRM3fXLiS1ZAEDLFz9IeNZkDQyGLIzmBpo/e4umSlm2UKcyU/6+RShE7PzZOCc66fnuXeQO6uKhcjDJ8KOrGPzD84F9KhWvo7swrsq15vUHR0yWSvLp16ojr3xg3htMklq9iYHf/hGvW2dHuCe76fvpA2S37Sc0eZyfiVN0OEqpo/fiy8/OyRO//MLqfVUIff6WUKadSbI7DtLzw/vo/Nc7GPrja2UFqJTrkXx5E13fupPu79xFes32gqPD6eii5zt3kTvgz/lQiqHHXmbw/ufK9uJSUYoirZ1hUHflEtq/9WVm3/1Nmj7+Hl1U9/+yVFEolV5zXL0HAFVgpifx7BzuoY7Ae+1t+3FOF2lvKsX1QVzlSVKrN9P173rOU69vK8x58unXkbbjO+78vcPxyB04jtvbXzLfFX1zJWZ7U811bjTUE7vgvMCzTAHRhbNJPvNaNSjg6md7vbUz3RCC0IQxuu5L0DpfcQHRBTNRhaaL/ZY5SXT+DEbcfGXgfm60t+oztEahduV5/vsMPqNVzkU6bg1OWl2gr+bYlMINKNL435HYhecG6w9KEV00m/DkcTT+zV/poIOQpQtEz5tB06feowEYEaxDY5hY40fpzMsS/VupfDbKBTh7j5bRQmgREAqR23MUAGtUG02fuYURP/x72r75JeLLLywAP+n1O+j75SO4p/tQrsQ51Uvf7Q+R3rALr7O3pu6Rd2IYsSgN73k7I77/Vdq//1Xqb74Gwwca0gGZKgBIVahxE6TPFUZhGNStWEz7N7/EiB/+PU2fvgVrZNGxIwWkNh0i12tj99qkNh0sBNeK5kY/gMCfj7wNE9GBH15Xf+CzPT9gpunT7yEyd7oGJUIWRkOCpo/fRGji2OoaGqXvzd93ZDrL0GOr6fzXX9Pzo/vJ7j5S+E3TZ95HqELvCk07h6bP3gLAwF1/JPnHV5HDun5Jbu9Rev79TtzOPp2VES6lmck3YGFv2w+mGaxTWWENWAVRKUDh2xMN+f2l+CeliRGPY41qDd73FBijWmvWowGw9x7RgGL1rZgjW3EPn6LWpipr6aAB/a8SIfT7EuU2bP47ApC9A9R0GHgSJSW9P7i3zDZyT/fT+/17UK6H2zNA388fwh3Ian3PMcjuPsbAnY/7Y6yxbyk05aoVLvy79E/EYoRnTqo55PCU8bjdNeZcKZzTvQw+9CKZtTvKLtlb9tN3l64lNXjvMww+thpvMKWpVfcdp/vbd+Kc6mH4kReL4Gmpjqs0dWbt70CgXJfkc2v8c67ESWs7pFauJzJ7csF5XDnu2KXn45wh69rtG6Ru+QWBtqioixGaOEb/rquf/rueovMbv6Lv14/jnNKUVdao9pp6jYjH8FwP0LZMabAgGHiuF1xfBPQac12y2w5CgJ1r7+8Ay0Sp6voFShXvr6YxRa9vxyU6b2Z5EFT+/ShBaNJYwrOnBtrY5oSxyMEUuZ1HCu+o6CSVDP7hObJb9pZzXub7JhWZtdsKuk31DxTuyS6EqBGwJwxNc1hw7pTrNTJtIyyLlq9/TBd0t0yd9TS6nZav/DVGXQyvf4jub96BvfOQzpxKZRh+di19t2ua0eTTr1fpNcoH/GXOrWnfK8dFSIUyis6xMixHiEBqm+Izcmek3pGOw9CDK7G3HCj8TqZs+n/zJM6JLhLvuKzmvfXXXYbXP0znbb8ku+MQyvGQyQzDT6+h7+d+sFBQTUZ/IGZrY03Ht6iLFbl+K28FMAytN3z8ZkQsis+vijVuJC1f+lDNPr8lf5rUdMH+7Gc/49Of/jQAP/rRj2o28MUvfvHP36u35M8uQ5v3kdly2AfUddTr0FPriF04h9j8mfTzhE9j4RctEpojMnHVUtJv7NRADkUwRwhdpFCl0njJLCKAZ1R6ArdvgNSza1HSRJUpXIKhh1+k4a9WkK/4XbmZq5BF/LLzGXpoVeEeoEBJkbjmYh05VkOcY6f0oe8GRFdL6acNB4uRiGHvPRp8USmcAye0IZRTFQeo30fXRXkCD7/YCwI9gwayb5jE2y4i+exaDENVNk384nkM3vdsoH6q7ByZV7cUDAo9Hz7lilC6+Fdnrw9OlxokCjBxsw6yP6mB84qiRUqAqEtgNtRRS9UymxsInzeF3KbdVB2+lqWpkoThN10xL65HGZVO2ZwplCsRoVAhNb/0uvQVa3N0G7lj3X7bovC/wgCjtd6nf6lei0qBHE4jCfkKVR7U0CiryjkYLY3QEZTWKDDbmsgX6qk+4ARErJJ/V7eQuPJC0s+8Gng41l26EKe7H9zq70BlJV4NDm/80XuOU/INlfdbDqaITJ9Idk2QcawwmhswfNqfatEzGVjIMd+CIXQhzwLQKxA+D6IYTlN3xWINEqt8b4sSv2QB0YWzyKze5CtT+eu6L9E50zAa63AOHCezZmvhktncSMtn3+srgDXEMDCa6oNTEhUIyyKzbmdgxIrXM0hu37GCIVX5zqTSlEPmiBack3kl1V/DyiA8YyK5vccIeh+gsPedQKUzJf+t/Hp23U5yhzoCY6ucw6dw+4do/epH6f6Xn+p6Bn5BRLMhSsuXPkD/Lx4i6GYhgGyO7OY9Nf1PmVe2VBdxLZ2bzj7C40Yy5qM3Yl2tC20bjeXRXEYiTssXP4hMZVB2DqO5oQAAWe0tNH74BgbveqJQiAghaP7MezHiUfrvfLJqramcQ+qlDTTcuOyMUedGY4I88FK594gzRYzkxzYwFLinGpaJN5hk6OGXqkB75bgMPvgiI+dOI7LgXJIvFCNmlBL8H/bOO9qO6r73nz3tlNurrq4qqNIkQHQQGFNMx4AbuD4nEJvYJjG2Y8fOS5zYyUvcCyZuwTiJwdhgmsF0AZJoQlaXAPV6q247fWb2fn/sOXPmnDNH8PLWWytvLfZaZ90yZ2bPbr/++/6UlQwzAI7UUmcswd2xj9yqdQhT45AaLWk6bn7/m94LMPn7VUw9+Hy4n719g+SeX0fv392IcGxGvnMXxe37w/cv7TpIfuN2um66hqmHV9af75JLdsWrNF9cgaCpo2uRv/2JDLmXtuAqH3nUDJwFs94UV/2tNllyya/ZhjswijOzl9TJi6oyYPzJLLmXNuNn8qSOPQpnoe676bxljDeICm2+4HTGf/04sWfUVxhHcvgppRW1mLv1C+nC0iPfvYvS6/vCNSntOkhh/Xa6Pnkt3sh4xDFWph0CpOZTlf/XvBtKF8dGUFucTymBaG3G7Gyj/U+uYfznv6ssmmHQ8cn36eyiIxg75FQWa/Z03D0Hq3pXQGKenldn2QmUHn2hajqk4eDMm62hEOuwuAVYFu7uQ0y74GSGXz2V7NOvaF4tBGZrms5bPogwBM4xR2ns4irLrCB5wgKco2fGTrhwbFJnLsE5qp/MIytRRa9KThVCkFy6iKnHXoB8faQ9gNXahGhKIbP5unFH60o0amZ7K+1/ei0TP/+dhv8IJqb9pvdgtmgjcPKkYyCRpLDudczONpqWL9VRk0oFDq76woHK8xFC0HnLBxn95p1hpoDyfNIXnEZiyUIyDz0XH+3m+/gT8UUeo23iV49rw2DQJyhUyWfirsfo/NN3N7wvmi3lHhzR0fVCkFq2GHu6NpzLfOOsS29gBGvuLEo7DlIrzznz3xyX3fM8Bm7+RjUdGjzMwM3foO8nX2L8Px6JjCl8a+TIOKX9g1QM9fXyO2hnQ8cnP6AhFQtFDUsRRGU3nX8qpU07Yt+r6fxTkbkCg//zJxqSzfVxgeKWXbS+9520XHgahmHQ9YWPI3N5vIPDWP09IcyoP5klt3pD3Zoq12XqD6uxutvioZJcDzk+RXLZMZTe2IdSIuBjQfFNqbDn9pM4fr6GmZLVZyxx7NHIqRz51RvqdA/l+Uzc9zSJxXNi+Ks+rmbrkaFKUdD6/ksY/eYvtQylyu+maHn/JfiHJwK6RuhUMAxtvDRELfOJabYdDwMT6Hoaqz7GQOVLrFnTG9Nzx6KwYTve4OHqOVMKf3SC/Nqter7reKhH/pUt+O+5gHiIR0AInLnTEY6jDYcRwBIch9QZSxBB5HPsnE/rxkjuwY+BYQKdSTN+x0Ox1/LPrkVe+04yK9bWGEsVqugzef8KKJVq+FRl/rzDE6TPOCECzRN5N8/DOXom/lQuls/JvDZkpi44k8yjL1B1/k2T9GXLyf7tv5ZZbf3zp3Ikjp9P+qIzyD76AlKheUna0bxECEr7Bhn+x1/owBwpcfcOkH9lC923flA7eYNn18n3eRcjEaWHRH5XCE9DGjXaa0ZHK6oY50DWe9sbm9SBKTF2CVnySS5ZqCEUa++2bZInL2bsFw+hI+HLZyi4LnSWaXxQncAfnqC49xBKqTrZTCmBu38Yv4wKUNtcD39sSgcqjWdi18RobWns8FNKB4fFZhiIEMXB6umk+8s3aUhWX4a1bgAyT7xcH2TlehTWv6Hrg9VArIVdex5Wd7sOmqkdm22ROv0EEksXwj2PU114WGgIqpMXowpFcs/ER8unz13G1H1Px+oOQuj6QNmnX6mj2cr1mHroOTo/+R7M2dN1TYpI16K1GWfRUYz/6g9Q8CoXdCfkX30Nb2iM5EmLNCxfjaPIPmqGzrA36msIACjD1FCAwfW6eSt5yGKJ8XuewssrCPD0/X1jZJ5+ldarlsfOx9vt/641tGoMDAxU/d7o83b779+UUuz74b1hcY1yNKfKF5m49xlk0UX5Bhpzryyomkhp4WUL+FN5DQ8hTZTS0Z5SmtpQb5kQQGVoGAWho7eDaFk/W4wQ6mrvqHtwGHffUNX/Kt8D79AoRndH/HVh6IrWMUxVjxnMvh6MpkohybJ3GSFwFszR+GxGDHcBkmcsCTIA4p+NbWG0NAU0tHpcACJM3S8bxw1CI7lCC/fCDOdKhjAUJlZfj47ib9CKr+9Den7VPJfnXUnwbJNoOnt0TnEl7oEhcJw6TzvSwN11kNQZJ8R3bAgSJ8ynsHFXKDSX50Mp8Is+0jEjC1J5B6VAOE6AzRxvADaaUkG0ae28CPC1kdULCtDqfSjCiAAlBdKxiMMI1i8ZpEvXCQU640Mkk1jTuoJoDiI/9cea3gOeDPZ5eb7LBkCBu3ewzohbjl4EgdXRin3cggCqRwSZHwJlOjRfe35giIk/B1HoqPpxgQyKDMaPG5InzKei8EY/gvT5pyIncw33uZKK5FKdUl2GHQp5v2PjzOpDpFJVkRllGmHN7MVqb8YMouXLc6GUQGHQdM07cRbMJnX68YGCr881tkXrNe/E7GgBT1I8cBgfB98FX1qUxov4kzlE0sFobxQxPhN332D1/o6sjTswirvnUKwAqjwPd/8Q0lXh/otGCiENjPbWSDHkyhlTgJ8tUtjwRoMVEbj7BgIlKn6v+hNTyMlM7FUFuDs1xre000jD0XvSTKASLShPYh0dbwQu0y2VL8XvJbRBgKTTKBgOZ8HsykiCQocN4SyaUhpmoEaCT5+5lGnf+hxtH7+G9hvfw7Rvf55EgBnp7huI3ejCNBrCS5Sbs2B2BOZBhPwIAakzG9C06P0L5yBVDE31dMSJbABB5Q2OIrN5Ms/WO4hlySP7fHwNjarxCUHbh66g52ufou0jV9LxmRvo+cfPYL2FiHOZzTP5wHNVDiblenhjk2Sf/SPFLTsp7ThQV4Sy8OprlPYOaDzKuDm3TGQmH0Sz1StS5bTbwqYdHPr8bYz/5mkG7nqK4W/dxegPf1sVTaZcj8KW3RS27Y2vOdCgeaMTHPrCbYzd+QhTD67k8L89zKEv3R5m7xQ27eTQ537I+D1PM/XA8wx/+y5Gf6D7Tp+5FGtmb90zncVzSSyeG8Kd1TXbQk3maYTdKhKO/sRcUwpIOhS37taGmto5X/c6pd2HNP+t48+6+LbRfmSsTvfAcISuVWgqgBtE+ZYOHMZ1DbwieCVwSwL3UBBR6djx9N71sHo78XPFKn6jAnbhZYvIfJHME7V1PnTKfubpNbj7B+MNhr7UMGq+pLRvFCUSKFdH4HpTLn4AkZJ+xymhjFruW0lF6h2nICyTjj+9BhwrhIoRCRt7bj/ps5Ziz+rDnNkfyKnl82tizZuD1ddF8sRF8XRPCOyZfbR9+PLYcbd97Krwq0opirsOkt+4A1kD85dadiw9//KXpC86h/S7ltPzL58luVTDlCjPZ/ibv2L0+78h88QaJu5bwaFbf0Dx9b0IIbBmTCPujNlzdMSn1ddNzz//Bc3XXUzqHWfQ/TefoPW6i7STZP6s+L0qDH2tvASZPPmNOyjtPhQaopVSgdO/fi/6hzOYfV0NeYHZpWnT5MOrOPQ3P2H83mcZ/+0KDn3lx0w+orOt7JnTYu7WLXniogB+UlCBRNQ/ZaGyh5RSlHYdCua8YniZ+OmD8WKPgomfPXTErI/Sa3tCGLgqXgEReDjdtzc0RunASAReBVInLorls9bRM0iduIjMk6+EBvnwWSWXyd88jYzUYzHSKZz5s6vqfnmDowg7hqdKjUHuzJulYcVqm2nizJ+Fny3W6AaBHO3q+hFtH7wMozkNZaeKY2M0p2j70OUUdx+syjAOI7ZByzTZAqEMF4XPwkDlC1hHNXampE49jonfPhPqkVDRJSd+8zSJ4+YhfSJrUV4XA5l+c6e6LHl151cpbcz0h8ew50wn7oxZM6Zh9bbH7iWlACdBceOO+Eh8pSis365pelCbqWrebEtHF5eLsNbIobpPQftN12oYG8sGDEQiiT1jGk3nnxLqyHFz7h4cxujqaHhGrf6ehvxWSUVx30DEUFptPC9s3R3QpYqTpMJzNE3yc6Ugi756znXmlxdmANTxOcsGKck+szbU40J9ThjknngJEb5Ttd6ilNBQTFLzEomFLAXQMlkvhDqauOtxnUkf1jdQqKLL2L8/GjjXjLr1UsrQUdqNoo/RzhVZdOP3mmXhD4830sZQCqzW5viiomjkAaung5bLl+ssgLLB3bFJLT8JZ25/wP8rkJUhr1P6jDaCxpVTOfzBSoHnqlEJvR9Ec5q4KH2FlnuSpx8fjiM6bgU482chaiGSy80wkJPZEKqp7vnRQqO+pHRgFPfgaJURvrTrQKzxGCHwDg7jBNkRVbYedB0nI+nQ8WfXaT0zCOgQCQerr5umi07H6mqj5arzEI6ldVAhEI5N+qylOEfPpOU9F+si1DXjdk5chNmiaWmF5lbsYEoIKJR0oE3doJWWAmYUNgAAIABJREFUv/cPUdwzgu9FbAOewJsoUti0g9zLm8srEB00APnNO2l970U6MCqg58KxEOkk7R+7qmGNL4XASCb1msVBHSYSJBbPIbtyPd7oZOAgDs5uyWXyoeerHIHe6CT59dtxBxpnSr3d3lprGCn/1a9+FdBVt6+66iqWLVuG4xwZp+vt9t+zycks7kQ2xNYuN+VDYfNOnD9uC/5T5/cl+8TL+JONIrcI0rQq/6+GRVCY6QTCELFMyurtxJ/KoqgrbwkIHbWxamPk2cGVwBBf2LAd0dSMmsoQ9aiHBHNaB83XXcjYzx4OjLHB/bag5Zp3YjSlNAa1qimgJXTkk8anJvbZoqUJWQyEQGquGyZE0i2rg760t7y4fZ8W/mMidQsbt2O0NuENjcVWf7f6e4LCLXqeovOtlIH/en0l7/C7Cuy+rkBINKrmFMvEnj0No60liFipXjUlBUZrE6rgBlFuBAy8zAAFhRc2I5VAKBXOW/mnX/C0ktigkFRyyQL8TFnpqmFihkCOZ/CHJyESHVCeE1CU1jUuWAzaEFvL2oJZwRscQxbc4IzUF0z1BsYgncCfLNZdNwypIWBMC6/oh17ysiDr9Hciiy6FrXsBM5QRhQDlK0qbdlHaN0RcU0pHWMlAMYrbi6rkomrmJHq/SKdQwoTaQnECrI42sgPrK9+NXgeKb+yn5Zp3MLVqa/jPstDTdvXZGLaFl6uNCgkMRGM5/EyO4q4hwAgj6Mv7LvPQStrf+07aPnolqTOXMrXiVYRj03rhadiztDIw9fhLlPaUDT0GuBLcEiM/uo/p/3wz7R+5QmMhl4U6IRCORfsNl1J8Y19AVypKZlgY0fMh0SDaxZcYLekQxz/qgCrPT3HTduRYfRSiQGOzOgtm1stR5TkOjOOxXwBEMhkahOIgaIxZvRz++cPIqXxloVwPb2Scid88TcsFp5D53TOx62kdNRNvIgMDI7F7yZrdR+mN/aAKdXQNQyCnspgxdR/+T5uRTpI4fgEiWK9ys/t78AfrBTvl+Roy6AjNbG0iedaJZJ7dUEW7jKRD8ztOffN3amkhvvCng0gldJRQTDSO1d1OaedBhFFf6JWSS+GPr9Fy0Wlv2j+A1dWO1dXe8LqSElUoIZKJMNOgtOtgfDZLyaOw/vUg+qm+doqSkuK2PVgzenXxsZqXV66H2dVGy7vPZ+rep6jdq603XIryfEZuu6/e+LxpJ/mXt5I+4zjy67cz8qPfhfq1sEy6b3kvyYWzeLM2dsfvNXRB2ahRKOG7HuO/fpLO/3EFI7fdW9/35p3kXt5C0xnH0/vVT5JdsYbsijVgGjRfdCbpstO5QWQlrofR1UbrNecz+dv6iLXW6y/BmduPEgZIWUdTk8fOo7h1V7zDz/cpbtuNf3iqgUsO5PhU3FvpZhjIQimka2G/wU/haeP35IMrtRO5/BxfMvbrp0mdvAhvdKry/ZrzXzo0EiruOqKu/D2Bt3cwhJWqH5gi+/w62q5eriEHa/abcCysvi6GH3uZ0vYDlTXzdCHIkR/eS/93bmHsF48ipRHwz7JsIRj7t9+T+vZntJEo3Yo/PgkYUIT0CTpzwj04Qml3PTZ08fX9eMNj5N84EDtu6WuZLbtqExIToWSlb2GSXbmR1JIFeMPjDH3jLh3paOhit+3XnkvrZWcCkN+4k5Hb7qNsxZx45GV6PnMdyWPmknluHcVte1BlY0/JB+Ez8oPf0v+9v6Ttg5dy+Lu/QpbckC0Yjk3b9Rpq0BseZ+ibd+Ed1n1PPPoy7deeR+vlZyLaW7XiXUt8fBk6rSceXMnEg6t0homUmF1t9H7ueszOlsZ7DTRUl2mhPK+Ol/gFF3dglPF7n602WHqK8d+sIH3KYto/dhXDf3t7VVKmEOAcPw+zvQXvwEhsvxpPWhdFH/rmXfiHJ0EIlC9pe/dy2q44i0IkUr2WPxc2bcdsbwmhaGqbM28WLdddyPh/Ph6RpUEYivb36wKV3ugEQ9+o6fvqc2i78mwAer/8J2RXrSP7xEuAoumC02lariHc8uterzLIh800cPcMkFiondtKKlShWEXPrZ6OeOgtQ2DN7MXoaAnXu2pNfInoaCW3elN4ZqNN+VDafZDk4rn0/uOnyb2wAXfXgdCpZaQS5MI6G/UysFHysPq6EUkngA2ttLKBq+P04xn+ym31833MUVhdbZR2lYuWVhuA3X1DuIeDMx2jh6pc4+y9sI9ZfXi7D4KqhgZRCsxpnbS+72JGv3Fn+XgG8o2g9X0XU9i8q24Phft8Mo8sFCux3DV6qCwUsWf2Utx+oGovAVDyAkhPgaih1/p3/f3kcfPo/fqfk1u1Hn9sksSxR5M8aTHC1PRe912znkrzQ1lwQz20qllWQwOtHgANa66BAE8imlIVJ4CK3IeOjC5u3B6c7YqcDQJh29r55zaAHHN9SnsHAwdQzbhKPvn12zFn9yE3ba/SbUJDa08XuZe2kF+/vWJA9xXK9xn+4b3M/OFnKQZZclHSZBjg7R/E7OnQf8jq9RACnPmzwTEbOvXs/h6c2X26sGfMXrOOhFcvwM/mwbBQfhxN1efeXnQU8hFNVxDoehHHzq88JFa5AGwbs6stVoYW6SSKBg6acK/nQt0/jt6rfDGEiNX6XCUwTdhW6BiDyvkAdGBLa1M87I8Ae4YOnii+vo/h7/1G62fBMLs/+W5SJy5AOHb8GSy5Wk5970UMfe0X1bYeQ9DxvosBSCyaS+/XP62hYg9PkDjmKH3GAiN9y2XnkDx+PrlV65GeR/qME0KndnHDG7qOh1RV4y5s2qODGWbPxN+2h1q6Jjo6tWG8AfyNPb2H/NrXA8eYifTL7w34UsNMxtaT0807MIx5/jJ6v/7n5F/ehLvroIYJPWsJRlNKB2AegX/bc6aTOH4ehU07Qnm1LKslly5i5Lt3xdqohGlS2nmA5PHzGP3ZQ+Re2aqDszwfZ+Esej7zHowj1DZ8uzVub4opbxgGN99889sG+f+Pm0g4yKqq9uUPKIzAWBhnNgd3aPyIeFqyUDqCTC8QpkXTu86s85AKx6L1mvMD41OMIUShC6tMZHS0smfoaH7fQPpaQPBGJlCUI8wriqX2UFrIbIHcmtd00UIlwo9yBYWteyhs2Y2ybGqjAKRvkH9lK6V9wyFmqn4uoTc098IWMC0d7SyFxsAPClwqX2EkHaTSED7l9w7fXWijVByxUwCGQVkmr2X4ANIuR97HmZfB6jxyGqk9uw9r5jSkbyE9E+mZ+K4JwqTpHcvIrdmG7wl818R3reBjIoWpnTBAOcpFqUrUC4DZmg6K9hpIT98rPQvf0xEI1oyeqsiKcK2VFtzNtpbY7AVhWyGkQK2hUv8tEEYFn7BqTst2y6GYQi/BdW9kAndgjMq8Vn/cgyMkly6OuQbKSWJ3tSJ6uiGYEyktlDJBmdgL5lDYvANV9FG+0ECoUqB8gfIVkw+tRGbyde9dbt5kNpjr6vkq71c7mQr/rh2XVEIbA8zafa73am7NNszW5rpr5Web7c1kHn2JckRPdNyTj7yCN5mJj4wE/KFxJp9co++VBsq3go8BSjD19KsAjN/7HINf+09yK7eRfXojh/7652Rf2gJAdtWG+LoOY1P4w+Mkly6k+/MfJbFkAea0TpKnHUf339yEPasPe/Z0FLqAtPSscD8qJbCP6g/3Q90ZU+AenkLYQTZQzflVCozO1obRMPgSs6W58rzoswGSCURQwDYalVLGmRQdrah4uxcApS17KL6+r37BfUnula34k9kwgyi6L7Rh3SQxf06Y5RFda6UEzkKtPMfuNcMKM4/+b5p7aJSBv7+T/Td9i303fZOhf7kbL3BwtFyxvMpID+iIlbOXBlk2jZtSivymPXV7VbkKt4HxJ9ryf3w9/rmujz84RutV59ZH+jg2rdeej2hKxhu+IT6q8f+wKaWYeHA1+z/xHfbf/F0O/Pl3mXpaR+Ybzen4KD6hIX2M1jTYMdEwpoHRnKLlinPqI5wci/SZSzCb07Rcdg5tH79a42Gbhq4R8Kn303T2iYHiW38SVNElu2oD3tgUIz+8Vxc0zeuipjKTZ/hbd1dh3seOWUoKW3bVO3B9SX7NNg3HE0M0VdElu7IC19X0jlPo/btP0Ps3N1UM8uhU8TpHhAIldFRX86Vn0/Yn79b1X8rjvvl9NC0/Cau7HeeE+QF+c0RJtG09n5YVH73oS4Rja+NrgyYzeURPB3EY4+bMPuyZvZTxkWv5kT27j8zKDYHxt+a6J8m9tBlZqsC7RM8/GPiZHFKV5RhNM5VvaYVUKY07HDcupWsApZYdowvNR5m0YWA0pUguWcDhJxsUBiwUKe4eCDPGqmULgX94EqUUg9+4C29oClUi+Cgm7n2OwpbdGj4lzsikFPm1r+PtHQ5qElXLc0oZTD32gpZtJNV9S0X+j69X+j40plPJcyUoeoz/9lkKm3fhT2YZ+f5vdTp4ea/nCgx/5x6dRfP4y3pNZDX/96fyuPsGcRbOIXnOqfh+At+18f0EqXecjj1vpu77m3fjHYz0XfIZv1f3XVj7Gr4y6+Q1X1kU/vgG+fXbmXxotcYTzxdRRRdvYJTh7/xaG27jorLRdNdoDuAII7xCT6nA6mxl6um1NfCTwUcqJp9Zhz2jl5YPXoWvEsF72RjT++n8cw3L1YiHqmC/D33rbrxDo7pOUqEErsfE/c+R37gTkdI1PKp0A0/LSSKZoO0D74p9ttHRgjN3Ou7QRCCjRXQDZeIO6/ojsX0/8Dz5jVoG9obHyTy7icKuMQq7xsk8vxlvWGdzNYQ8Kjv8lWLysVc4cLOm5/s/+R0m//CyPuPtLaROWly3LsKyaLn0bHIvbg7kkFq9RZB7YRP+eCYWOkwp8MYyKKXIPL+B8XueZ+r5bYzds5LMs+tRSmHPnEbFIF+9pgqL5IkLtQwQldGFQKQTAWxRN60fvVobHYN3M/r76Pz09ZWFjdVbBMW1r8XPGSKAdjxya77kzICPRd7btkmeMB+rs43c+h14yg6w5EFJgadscn/cDrKcBVuvS4LQWXgKfNeI6EzaCZ9YOAdn/uwgiKtmzgwbs7NVGxRr6LVSQhsEg+kwO9toufJc2j9yBalTjg2ja50Fs6oMkeW1REBiwWyszjZd3yM8+4G+hgjqf9RnfJf1a6uncS0tu79bw7RIQ9Os8jmRAiUNnSkZQAaWaXaoP/kSoznVWGZzbIzWdCQjpnpuZK5IYvHcGJ0k0BUXz2XqsZcCg3zkXiVQhRLF7fsxUgmkJ0Aa4Ud6AmWamO3NpM44Dl+a4XpKz0QZFq3XvIOOj10d0KCaOQM6/+xa7KNnoVT1e+usTAOzuz2olRUz50pnx9TW0tLXBWZHCzJfZPibdyNzJaQL0gVV1MEP3thUkE0Rv2ZGcxprRl8dXVUKzN5uzNaW8O/appTASCaQXsXmoc+ALhorLCsoAF6O0K/wZ4DMirU6ACwiW5Sfi6VrcqTPWlJvC7JtWq5cjswXGfrW3VoXjsiLI7fdh3d4UkN1SvTeLp9Bz9A63kSWwoadKMOq3g+Gqc930MyOFlquWK7P2KnHVcEgemNTjN39DBOP/ZGpJzcydtczeEHk99TjLweyRfW4VdGl8PpeHTgWQ9f80QmEbZE+e2msDazlquV4o0HxWz/ChwK7kjc2hZGur20Gei/as3XwmpFwaFp+Mu0fuYLmi04P9TSjKUVYD7KWfwcO+9brL4W2Li13uDYq2UrrR67S9Ccu0Ag0LGk6yeQjL5Bfsw1cjbyhXI/ia3sZ+/c/xNz1dnsr7S1pi6eeeirr1r15Cvbb7b9pCzi4Kh/28icUEhoRaf3TiCl4WL5udrYHhLj2mkaQN9IJWq8+j5arzkU0aQZtdrfT8WfXkjzu6DCCJu75Ugnt0ZY1QqLShm6dml5miGYIsaO/o7FoC2veqL438AKP3/NMGMHveyZeycYr2fieTn3GEEGqlH6271uBoTVIr83lkUUfpIn0LXzPRno2SmrlAMepCDK1QoNp6wiBBuNGCbz9w2FmQ62QmF+1OazKXd8EVl9XFQGOrpcM1sYrKB0hFkmH9F2dmudPZIM5r3n3okL6smFaP4A1s1cbFGsLzSgDWZQUt+3FL4i6Cuy+ZzD15FqcRXOQntJFTt1A0fQEft7VxSOPIJtbvR2xsDxKgTWrD29oPJyH2uYX3Br8w+i8CdyRCUp7y1BL1fOtPIk3OoG3fyTGYwDZ1VvIr9tRUQaiaai+oLh3qCpdu9Kv/ukOjRNCRlWlsAZpvrZJJf0zulcEwtYGElXywmfo5+hzokoubdedH4yr7GipCNetVy4n82w87Vf5It6BxkWBAdxdB6muIxA5B/kSha17mHpgVd19oz+8H6/goVyNuyh9oYVFzwgEGD+ca2feTLpuuYFp//hpOm+6Dnt6d/D/GUjsujOofIv0GUsobj9Yd8ZAz1th3XYSSxfWK1pKoAyLxOzpVWtUtWa2jdXfHTjpBF7Jwitpx5SUYHZ34syYppW6GsXadw2c2TrNOt5RAsKM6bjcfB8MUVnfmv0CBmZrOjC0RPeDAbaDYRm0XHIm2A6eawV00UJh4cyfVYXx+F9pMl9k4O9+QfH1AyhfojxJfuMuBv7+lygpcY7qp+uW67GCNRRJh6aLTqP9Q5e96bNLOw5quJWapkoeU0/G40FWtYYY6AoENF14GqlzTsaXjl5PEjRftpzUsmMCel6v/BIov/+3beqRF5l8YJWGUPAlMpNn/D+fJLN6E/acPl0fpeb9hW3TfOGpNJ15Qnz9BcMgtWwxzpzptH30Sp0JEMxD4th5tH/k8vCrTWefSN93Pkf/T/6Gvm/+pTYageaTjWiygOwLm8LiplVNKXKvNjLC1Dwk9t/iiJj1bwXPvuyArzpfwZkt39901lL6vnNrZdzLjgnv7775vTSdtyxIM9dQI91/9VGs3s4j1f3SinlrSzztEAKzswVvcDLCL8rvJigdGMOe2YsxrbssylTogmXReuVy3P3Dsf0ClPYOYbQ1U+Ef5Y8AIbA62xvKLVIZmL0d1Doyy81obUY4Nt1f+GhVoV+zt4vuL3wUYZl4DbCPVdFFBfV1yobWkN6X+eC+IbyBcS1bRula0WPigVV6/8ctuxARI6KmedXynC4IeISthrtvCH9wHMJYveDj+kw8uIrci1uILc6nIPfyVrzDU3peaxzb+DoiO/Pkq0w9+WrFqeBLJv+whsyz6zXW78BYfN8PrNTRh27tswW4oKRi6vFXAojKiOzv6SKQ7qFRmi88NYQDqiyaQfPFp2P394BhBrQtsl8QJE9cRHHzrvhJA4qbdlLaO8T4fzwRMZ5B6eBhRm9/sDy78ecAgXtgJL6woOsz8eBKOj52uZa1g+eEuoxv0PGxyzE725FY1WcIMKZriJXMU2sD2hSRDaQi89Ra3APDeAcb9P3AKlTJY+Crd1Lcti/EOCxu28fAV+9ElTxdi8OyquRYqQzMaZ3Y07vJPLOO8bufwc8UUJ5EZguM/3oFmcDR2vbxqxDdvSH/9VSClvdfjD2jJ8iqFPX8G4G7bzge4iFo/tgkmRXrmPj1Cg2/5EtUrsDEb54l89TaCKR5jJxrGAjLpOfLHye5ZIF2NgeQlr1f/hOEbVHaP8zYnU/gFURo5CkdGGfktt/pxzRyUAtdD6PxIWw4pLDZfV10f/7D2LP7QGijV9N5J9P5Z9cCkHlmLXgycv41TEn2ufXYR88gNAjXyMhmewupZYuRfo3BD4HyLJKnHEPulQa8TGna0XzJWQizmtdgGDS989Q35VXp045D2TbSN0JZUvoGWDbps5Zgz+3XwS418DYyj3bgNpAjIaiV1cCA7CyYox2J4bUI3VKgSj7NF8Xvc6OrFXvWNJTlxJ9v047UNqnfa95EDsNJBMU3K2MCgRIGZjqFOzhGXUCfACR4g4cR7eU6YNE1MxAtusaRLFCn50rfRHkKwzYh1VIlg6NAWSmMphS5V1/D9ww8N7omGpLU3T2AsOP1UISJ1dWms8niaOrShYFcVM9LlFRkX9jUUP8uv2t+4y7tfKjRBYs7D2E0N4XrUf1uQgcY+JKyc9L3LXy/HFwmguDMI+xVw9D7wbGrxoVt07T8RIQhaP/w5TRdeBoioe0XVn83Xbd8AGfOdB0xHsNDlVRkV29CllyUX4FYDvUxT8PNTD31aj1uu+eTXb2pcWHe8vd8yeA//JLC5t2aB0tJafsBBv/+l8h8Ee9IRYcPHT6C7qDlqvYPXUbTRafrgAXAmt5N1y3X48ztx+zvjdGRASWwutoxuuszZ8vTZPZ11V2LNrO9JYS3i66JSDi0XHImSkoGv/4fegxB80enGP5fv0LmCvhBFk5t3+VP5sk19Tj/nk/2xS1HDOZ9uzVub8ko39/fz4033sgXv/hFvvvd7/K9730v/Lzd/vs3VdRwI8qPMm0CAV0GClSsNgOmHRS5jL9uT+8iecqxdQokSiDa2jDbmhFCkDpjCclzz8A6aQnpi84hcczR+glChCl/dcYnYWCk0wFNEFX9KgRmcxOYZmj88j0dySq15Rk/V4y5N/i74JI49ihk3g/ePfhIbfxLLl2IPa0r+F9gFPQrCkTqlGOQmaIWfiIY5KFAlC3QMJrdcnRKUsC4PVczd90HkUKkZaG7gjcPAmEYNF9ypg5AjoxbKbCmd4Fl6TSoWqFAgvLB3TOIu3uo8j5lZabkM/nwCxR3DESuUfW7VkKIUUADiJCiR9R7XrVmBY/c2jcAge9ZFUeIa6GkQX7rHiYfeUkz3qhRQBko3yT79FqAqvUuGzpBw1S0XHcBvmsFgpJWaHzXpu3DV+hU+ViBBD2mIO0tbr2VK5GT8QYFgNLgeGPjVMkLIoFrjaTBfilKbTivE5or56BaYSjvh8Bb7/nBOTDwXDP4BAYH09Se9hgrkVZSDRLzZ9JydU0FeEMw5ws36EiXRimuShsUMIzYMyham6iwmBj6IQXDP7q/4ZyOfu8efTaDyPqK4mwgXTCajhw57e4f1nA3NX0rIP/qG2FqbcWhISpz6nrITFzaYLAfXQ9n0dw6wxgC0suXYjY3BRGmEUeK1NkjRjKFStiAGUbvlzNKwMRsSmHO6K57Nz2XBskzTog1jJXX02hKRSI+Iw4cBFgW6dOPA8sKM1p8zwgNx6mTFmLN6tOZM+Gca+OYs/CoI853tJX2DTP6708y/KMHyb60LcQ1zKzcgMyVI8rL51vhj06RX68jEO15s0hffA72yUtJLD+d9PJlVZiM/kSW8ftXM/TDB5h49GX8ANtZ5goNhWM5lY39f7Q1LT+xLkofwGhvwZrWSW7tG0w+uV5j8yqBLErGf7dap63ni9oRSz1taeQ/eatNR8m/gCy61fUuii6T9z2PEILuW2/A7GkPDCU6K6nt+otJzJuJ2dZM56ffqxUC09BR380pej73IYyEgzcywegdj+NOSfyShVc0ya3bx+Sjtdjh9S0xb2YsXqZIaEVMZgoo16+jqcqXdZjcdc8wDJJL5tVnTlkmqdOOxZk/swEepk3TuSe+6bsLywJlBFk0QaSctMAXiOZy0cUc4w8Ee+33L4V7DUDYFu0fupT+279E/0++Qu/f3ohTxlT2/HqjugIlTFTJo+WS0+uNNIBoa8Hs6wQflLSCd9PvqKQFBQ8hBD233oA1YxrCtjX0hePQdsO7SCyYhdHZSjwzUpg97bRcckZ8363NOLN60V6/GLpnWJgtTaEhtNZhYDQ3o6Rk5EcPUhzKh8aK4kCGkR8/jFIKbyI+I0wpEIEsVW1o1X9Lhc52qYvK1t8r7R0idcoxDY1+qZMXHUFx1jVIUictjDVOp045BvdgtO/q5u4f1rQnBnJE+b4uFBqrnwbjE4LxXz9Tj2Ps+Yzf9dSb9D0SyXKpl9eEbeGPlx0C5f8HxgxfZze0XXs+yRMXVmiHYZA8eTGtV5+LNzKBX5AhzEN0vQtb92ook0brmXSY/P0LyJIfGoakFCE8hT+WIblscSwPTZ1yLG4Ei7tu3AdG8CfyVO+Dyvj8iTyTv38B5YnIGTKQrkVpy268w5MoV1ILCSIQKFdqbNwGhNs9OELu1dd0un/0O0pjVufWvIY9vRspbaLBKco3cBZoHjr+mxURuLFgH7ge4/esAGD4n3+Nu2e4ct2VHP754xR3D2J1tzc43WD1xBtZw2ZZTN6/si5bRZVcJu5fqeGRGhjeyv8121vo+swH6P/JX9P/ky/T/RfXYwbZuVOPvFgPveP6FDbtxhuZIHXqMbGPT528kJaLTq+/ACh0gdq30px5M+n9u5vo/8lXmH77l2i/4ZIQn78Wcid8fsnFntGrM8FqmyFoffe5FLfuCZ5Ts9dsi+KWPQ3rzWAYyGyB1iuXk1x2LL6y8JWNr2wSSxfS9t4L3nRMIulg9ExDyYpBUkkT0daJ0Zxi6ulo0ExUb4Litr0oNL6172ndwPe0rqDQxT1lScXoioLMqs2U9gwQd8YUUNo7qOtwqZh9Pv8ohBAB3GjN+VYgpwoU9w8RFwQFgOeTWrYwqBEU5VUGwrRJn3qMLqba6PapPO6eeEhQOTyJOz5F7pVt9Wfc85m491ny67ajSj7Kj0TS+xZIyL24BX9sShv0o+OWpqapuYIOTos4vMu/mz0dyGxew6DW0lRfUNiwC5kt6IAVFZGZJCjX11l0TjzNBbC62nSEvW+G/Ncr2Vq28RSkHMqY59XBXSCaUpR2Na5lV9ozSPqcpQ2vN597Ii2Xnkly6UJ83ww/zvxZtH/gIgCEadD2nguY/qO/ov+nX2Ha127Wtf3QsD5xWXR4vsbDH4s7Y3qfy0Kp4flGypC3ukPjHL57BcO3PcjUsxuC4soahllO5av5jdJ1KrIvbMZoTjecc7OzlfTpx4ZY9WEzBMnjjkJYJsI0cI6dj+qejmzuwpgzBysI7JKHy3CF9XzMG8tqfTFOn7AdyOsxy1yBiUej7BNAAAAgAElEQVRfYeiHDzD+u1VhjR6Arpuv07VdyvzdNGi+5AxSyxZT2LhL2zVq+KxyfTKrNuEPTdYFUIKWydx9Qxopo8GcNyz6+3Y7YntLRvlisciFF16IEILBwcG3C73+f9ZESwrlRg99xMCFhT+WqRS1DLy9MiguKXPFIHIqxtggtWLrDU2ipIlXinxcCzlVQvmS4vaDHPj8T5j8/UvkX9zG2F3PcODzP8WfyOr0N1FrrNSGL6O1SSsdiECoryYMxd0D+IWAcfqGNnr5Or1QCYvS/saQBQoo7jyoU4Zi5mXqhS20vnt5AE0TMN8gQl9Kg+azT0D5ZTy8yHwGRnw/U2hIxFWuSGLRLPycCuA0DFBaWFK+TXLJApInHB1dQaIEu+XS00kvW6yVjci4fdckefKx2jijrAo8jV82OJhgJci++kYwA/VKXPblbahMgXhpR+AdHA0xBHXEWvkjQBqUDtVjE0cn3RsaC+YlZi9mXdwYTNjy74XX9gWOBbNmTbRjxpvKM/7rZ+v3EjB25x8wezpqDJWR71gmypVB2lj1eisptGHaji+Qh+c3pqTh943G41YCq7uDRhAyqZMXBwxf4fs6hdb3RBAQJTBb0roOgF9+bzN8d2fhLEp7h2INRCjC4n9t7z6P/tv/ivaPXk7HTe+m/6d/TWdg2GpkWFSAtC38oqpaE50tYuKN5TEapXETRGZM1Uc2l5t78DDeRL7y/ei9ysAb1tEL0pOMP/Iyw7c/zNTzm8Jv5TfsjH1vAeRefR2ruzNC16oj05050xsWrRGWiT8+RSrGGamkIHXKsRT3DFY9s7zOICgcGqXwSkwGT/DJPL+RaV/6aBDxXv1urR+4COF6yAi8VZWyk3M1ZrTlhHBaGoILkCCLHtaMHqRIBJAUep9L30S0dWC2NjF+73Pg+lQVO/Zh4oEXjgi7UW5Tz23k0P+8k6nHXyW7agsjP/49A/94F8rzya/fWbG8RFdEKopb9yBzRQ59+Q5G73ic7OqtTP7+ZQ584afkN+4CdKTv/lt/zPj9q8i9sJXxe57jwOd+gjc6SWLeDF3APOBN5RRc4dikli0Oe/Mnc0w9v4nM6i2avwWt+fyTcRbO1gWTDB1NItJJuj/1HgAO/+xRVIgTXHFkjv78URLzZiCLMsjsCT6uiZQ2qZMWvOmcHakp10Pmi7G8xh3VUAuFbQcoDeXxSgZeUeB7DlPPbg7mQ5FZtQ2vYOIVBF7BwM1ANtiDEw+u1o57vxKBLIsuE/etbCx0l2fBMun69HsRCVvPm2mE8506ZTHJ4+dqQ7QMHGtlHupB8ri5bzr2zo9dhtnRqh0KhkAkHazeDjrefwHCNOj6zHt0v06070VV6914XqNKQ4XHioSNPDxFaf+I3mu/W6332m+f58CtP8Ydri44LISoc0wkj5+no+Fq+IwwTZLHHUXzuSeROH6ehqgQ2lkmUkl6bnkfhiinhxPIPRWjRPnYWF1t9P3Dn9H7t39K919ez/Tvf5bm85fpcUXgaarGqwR4iublJ5I4Yb5OpxZ6zkQqSc9fvD/osAEDd32Ns2uamt5HYL1QBqpQIr9+J+6h0SBiLZjTkkdp1wDFbfuQeR15FRYNL8uaUuDtHQIjCj8RWRcrEbLS2uwiAOX52H2dtF/3Dj2nthn8tOi44WKsrjbshbOIF04ELacdQ8eHL9FQE9G91tNO+w0XIVKJ+DkJHJ3J446KLWJXXm+NrxonxwqMRCK2/gBo+btcUDmub+FYqPwRoJDyLsJJEqv0uwqrux1veILs+v14rq3pg2eTXbcPb2QyhIj0PatC2wL4AHf/CE3Lj2CkOe9ESvuGA6W+0n8IlTQyTudHLsXq6dSRkwHNtXo66fjIJY0xaZV2NhQ27WzYd2Hzbh3prlTkDAUymGXiDU80sufpmUocoW/LxBsci4crK5TwhsaYfPSV+gJ7CjJPr0NmC8ipsoxdvc9ltoA7Mk7xtX2x3Y/+7BHSpx2r65fUyHPCMEiffix2Ga8+xpDTdMbxYSHM2iYnsqRPaUw3nfnVhW2FYQQFMyvNPRjvSBGWiTc8TseH3oU1rVPTbCEQCRuzp52Oj16G8DwNB6qo0i1QAtFfKdjtZwtkVm0ms3JzpAZVTX+mUR+BbjWQ3y0LwzTo/ov363Me0GThWCSXLqDpnCW4g2PxkZ+uhzc0RvLEeB6vXA/n6Ol4o5Nk1+0DbJSr9e78xgO4Q0cuXg86ECoayVpu/liG/PqdYY2QWJ1p6x6Mnq6IfG6G8rloa8PdrY3uWkcMgpw8Tc/lVB4znWpAMQVGOqUhlwo19EdB5tkNQS26srG6wivKzoUyxGPdnClQGFgdrXR86F0oy0IKB4mNsixarz0Pu79bk/IGrEq4fmM+BjqjpMH14o6DeEPjNbJeQLuKro7QdxKoBjTV7G6ntHM4MKqj5W9fj8sdmNQ6l6Qy564ZznlxxyGSx81FegEslwwCBX0DJUySxx+Ndzgbb48J4NCqggxDh4Z+TqK/GxKOlu1D3UCBEDSdvUTXyaMsd4iqgqmy4NL23vO1faGmtV1/IUbSobj9IJnVb1Std279fnLrdlR9P05mMptT4bhq+xbJRBDEEW+XKO0ewpkX77izejsQjkV+wy4O/tXPmHzkZbKrt3D4zic49OU7kPki7tBYvBG55OIeGiW9fGmsfu5jkFw8m/b3vhO7r7NKdjDbW+j4HzrbdPyBFxj82q9wdxzCH50i++xG9t38fbzRyTCDP67JiSzJJfNQcUWJXZ/E/Jl4o5Ps/eyPOfyrZ8iu3srYfSvZ+5e3B5n9UNo9RGHPhA7WKwp8P8HUyteRuSLe4OHYcauSizdwWDsiVc359bV8aqSTJI+ZS1ywgz29G6MRD327HbE1LPQabf/0T//0//o93m7/D5s3Xvaa1TJthZzM4+4b0Uw7crX8uzDQ2ItSGwV1lUIop9sUXj9AbvPuIO2x+nD6eRfv8CTD//pwFeNWRRff8xn77fO0XbJMdxJWvww6F4L0KYvIvfJaaHyEinApDBUYSq0YYyf4RXDmTqu3PUcGmFu9peG8lDbvRZy7VButqq4FYzfNiOJb+xO8iWzYd1QQLBf39AuuFqRFEB0Wub+0d5iuT1zFgRu/oSOOI68nkjZNpx7Dgb/+t0iBncrP8QdeoPmiZZFiqqJKcBGGiT8y3mBaBKrgYvV34u4aqLuugOTxR+ENjyMnMvoJInIRQSLAOItrSoF0K1W8o/2Gk5VwgPiok7Awb2S84U9pIixTK/01z1ZKUdw5SNMZx1btlWghGkwHVaiNvCqvN3jjOWSgOOt1i9wrLIxUKpxnFXm2CP6hlZcG4xYCa/4s3IHDwXpHJ1Vg93djzZ9Bcf3eyGTqdfUNoaOjVG10Y/BsZVb2QTRovGzQiOwNXRDz5PqJN23w3bpxK0lQ9LMcOVmZNyEUSEHzmceRfWZd/V5SkDi6H38yi9/A+J1cNJPsS6/VjCt8AtKXlA6McOBLd4TFBzPPb2L0l08w6zufDI32dXcqoOiSWDxHF+iMHobyPl48B38iSz5GYNLZRe2M/vsd4Jp6rOXpVoLhHz1M27uWhee73IQIHFkTBfyGhAm8wXGMdAL7pOPIv7wNgSYCRlMT6ZMWop2Yho58EZE1Cd7dmdWD9CTSq0RuKABTkFwwk8zja1HZIrX73Ds0Rn7rXrJr3wijIyrvrg367sAYidkVBbm2yUKJw3c8VpXSqIoupV0DZFdvCQoaxY9b+YrxR16iFDr+0N+XPkM/eIDZ/3oLIz97VGNNlvdg0UN4Pof/82l6P/Nums9fxsTv15RHjMJANDk0LV8CwOTT6xj9xRNB9LUuvtb76atJL1ugU/NvvZ7itr3k172O1dNB0/IlGAkHWXJjCp4HvGLviI7oKtOmKCOVBDiX//UmbAsdvRxNH9Z9C8tGFkqM/tsfUKUKbVUlj9KeITIrN2HP6Cb30rZgTYKzWvKYfPQVms9bQn7rXqRbnw2jBHgDh3Hm9h3x/ZKL59D/7VvIrdlKWii82dNx5k4P3t2OROlGmhQ6Uv1NmtnewvR/vpnMyvUUX9tP8oSjaDrjuNAYlFxU6VtmCySPnRv2/WYtMW+GxgytjRKSCmtaB4Pf+C0q4rRRJQ/l+hz+96eY9tnrjvzsRbNIHneULiBYLqCVsEmfdizO7Gka7ijVjFc0EGhnhWElwHa0QakljT9eMTiV97vTW13sWDSlERhVc+keCmplUJEdyvShtG8EYRp03/I+Clt3k121Cbuvk5aLTsVIOrqQsIrVszT0R0cryisXt618SSnwckWdNVJrpEEbzYs7DiJSCbzxyj4uz7xhKF0cuzZaPByURJjlrKOaZyuBGUSLt1xyBvbS+UzctQIM6PrwRVhBgeieG6/i4Bd+FFlvTYvS550UYh9P/183U1j/Bu6hUez+bpJL5yMMA7u/J5ZiK7Rh25k/g+SSeRQ27Kha79SyRThzp2N0tOKO1a+nMBRmX0fDOUdBYm6fjuD3ZV3RwuSJCyCpC5bXGagEiFQCGWM8Bk1XvOExDt/9LDJb3ue6mLpyC4zc8Rg9N12GKkVwm6N9OA72nL6Ge82Z3RcYt+uNhbLoY/a0Y7Y20fdPnyT3ylaMQyPI/h7Sp+gCl87saQHjURWHlNLqQmrpfGTBjZ03pQDfx57fT37XULje4b4pudj9XUdSDbBndOugo0CMrhQ81tjfzpxpulZXvnpujZSDPbuXid+tqsrMpDw/lklpX2N4KRDk11WcDbX3ewdHSBzdT+q0Y8m/+loYWSocm9SJC3CO7sdZMJv8hj3BPcHYpUBYYKYcrL6OWCOv2duO2Zwiecoi8gEcSyhbCEHnn1xed09tc+b1U9p5sG4vKtfD7u/GbEnT9/VPUNiwHffgiM60XroAYRrkt+zRcKDS1+wueG+UIv/ia3DjFWRe3Mrw7Q/rTQAgJd03XkrL8uMrffkSd2AMoymJ1V6Jftf8MUZ+L/ooqUgc3U//tz9D9vn1eKOTpE5eSGLhLIQQOHOm6TMoawxYtokzexru8CTRApnhs30BwuDwL5/URsXyBddHuj6j//YY079ywxHntLjjYD1EBATY6Qc0XWxAN832FryByRpZVMuh3miWxKJZoRE06sgVAswmG2tmT+xzFRp6JLNiffx1X1LceTDyn/qTZrWmQ9pR7jOki3Zg0Eulka6FKguEJYFI6zW1Zvbg7Rmo6PgRsp48aT4TD66OL0ouRFjzJU4vQSqc2b0BhG3tS5s4c6aRffm1hrTD3T+CLHrozPbK/3XXClkqxcy5LmZrSKnfza2fM+Vqmq1cFciD1fYYhXaGxNslgoALKWm64FQm7n8xQlsMhCloftcZTN7/vE6MlhW7h0KAUCRSSQzDoP8bnyKzeiOZFX/EbG2i4/0XaB0UGPr+/dRm8QoBI7c/TNOpi8L/+ZM5/Kkc9rSOENfdnyzoOfFFXd9+toiyzIb03jm6j/yWvZX9E9lL0tPjHr79oTq9xBseZ/LRV0geM6ueTwDCNEjMnY5fdAMbmdK2p7L+HESfG0mHaX9/I4VNO3H3DWH1dpA6aaG2SXiS8d88W/9sT79T8phZqDX1+0kBZlcbxV3DWo8QRrX+7YJ0PUbufBw1GXFO+gp8j6HbHmLGP32c4R89FMlAMFAlD29kgolHXiZ1whzt4K3Z6CJpkzhqOoWte/WYa/eiArOnnbb3nEd+/XaUUlErDm3veydvt/9aO2Kk/MjICLfeeitXXnklX/ziFxkbO0Il77fbf9smJxul7mshW4ZKiqj56MNnNJUx5QU6srIcySWwutugFHe/bt7YVLxxzJfk1ryOPaNHp6iX09ADAVA0pWg5/2SUVVO4p2x0kNoYqVOa4o08FN1AiatRupUKGGKtFlOZFwVMPBKfvq8kZF/aVjfWqu/kizp62xP4gUdaf3QmwtTja8LisNXvBtlVm8mv2Y5XIizCWv54Uy7eeIZSg9Q8JHgHRmPT+gHMrhbsmT00Kq6LZdH+7nPrGGtZ0Wq9/Aw6PnRRZexB9CMIEsfNBaXCSLDaZ/u+oDHJ0dbF9OmNInUEqdMXEw8JpJ9f2t8I37xiXNdZBSIcn5IgPTAcm1ATiGtJB1WSAYMP0gmlZvjSlVjpBL4SeK4I11VJ8D2BMqwwvTfu3YRtk5jehVLl4riVom0IC6uzhdKu0fD7VfvOA3zZwAAtyG/chT27txKtVo5WDdbf6u2Iua/mKalUAH0VEQh8AViIIFVa1kSMl/9OLJhJXGFfgKZ3LKX31vc17Lf9pivqN1LkGUIpDv3Dr+oEb5UtMvAv95BYMKOqv+jvRle7jgoJM3Oi8yLwJ3NY/d06GKfmfpFM6ghit1z4J8gOKBclHJ0Kouzr96kQAuX6mJ2Nsdmt2T1MPbOe/CuvaxgL30B5An8ix+C374t8s5KZQKQOgNnZGhYoq/r4YM/oIbNyU0yvuk099UdUzo04rwJ6GxjD3qw4Z+G1/fUQEGgBOPvC1sbR0UKQWDyLzFPr6zDYldKZR6U9gxR3DlRFmioF0lPk1u1AScnUc5vLD6Q8/37WpbBtP+6hw4ze8YSGUyl6qKKLLHoMfu/+MOJu6pkNHPrG7xh/fCPDv1zB0A8f1lHqpWqogciLA0qPuwHMU+aZeMX1LTfPD6Iu6/tWrk9x+8FYi155znNrt8dG4ioU+fU7wgLZtbRFFjzM9kaZLtXNaErSfN5JTLvuvCqjeH7tjvgzbBpVxqdGTZY89v/1Lxj+8RNMrtjK0A8e4eDf/ScywjjLfbdeduZbNsgDtF59VkzxLZuWi09BJByKbxyov0kpCht2vemzhRC0XH42ykwiMZAYqESa5ndpiIbs6s1kVm1BuUoXcysqvIkcg9/8LUopzN4u4uQes18bSfzJHAe/djd7P3M7B758J3s+8QMyL2lDmt3TXqFnAR8q48TbgVF/+Kd/4NA/3MPk01sY/dVK9t7yY7yRSRACqeqXTCmQGOTX76jiA+VrAN7QFFZXa3zEuK35GEYNJmx5r0mBLJQQ6fiocLM1rQ2lddirAR8LcFeH7niCg5/9OdlXdpB9aQd7P/WvjP5qhf5OTzv93/qUNrSnE5g9HXT+6RV0f7xSr0KYBqmTF9F6+VlaqQ6cP/7opMZWr5OJBLLo6/W+9GyUFVlvJ6XrcwCloSh+coSmSs0vaue0/HwFmG1NJE9djOdVoOukNPCUSduVZ4XG6Wo5M+DLuRLWtM7YOVWA0d5MYWt8VHZh02680clYeg6gCi65F7dp3ieNcK+V/868uDW2Vg4ApqHHLRWHf7WCoR/9gcGH1jJ026McvmsFSirM1ibSZy/B860wQt/3THxh0XbV2breFPF70ejuwO7vjQQLRebddDCaU7HQO5q/O3gjk0gsPNcMZfBycU9ZlCSXzoNUsm7OSSVInTgfq7c9AjUmgmKJAum6mJ3NDecU08CZ1R3Ky9H7pSSsy9V109V03XQVyaULSC6ZT9eNV9H1yWsQQpBbvTU4/zoquRyZrHyDwo5DdFx/QUwxdYv26y9AKUVxx3Cl1obUhnElbIpvHIp/50izZvTE0wfD1AXHCc7YSQv1GTt5URgxW4HOMDVGuq+jNMGCooc3nmH4toc1rEjR1R/XZ+Qnj+p9CmRe3MaeT/yAA1++k72fvp1DX78bP8jG1AXRK7K/TvUUGE0phCHwswUGv/8gw//xHOOPbWDgX+4js1LLE/asaVpuqBmXcn3s2b3k1ryBiugGKC23YdmUdhzUmX4xfLC4bV98zZVIM5JOrK6q0PzKmt5JxewbbUIb3X1ZlzUghAAJ7kQmyE6oOSMKlDDxA6d0nC4oCy5yKh6ODAXeZI70OSfEXITEkqM11KowY9fEmduHP5Fl+LYHNcyTF0CQeD4jP38Md2icprOWVIJHynqJBIWBM7sPe/a0+PPd3Y41rb0hHzNamzX8TFDPKnpdeb7eC4VS7LgF4Geitcnq7SlWf3fDOTfbmpl4Ym3snIEOuiM0zFbbY1ACoyUd6bf2zQDbYvzBl+v79mH8nmex504ntp6cEthzdMBdds0bjPziGfKvjzD18i6Gbn8khEvxDmfq5XOpAzRloaRrSn3zXvZ86kcc+Mov2X3TD5h8ZoN+w1QijMKu7tvASNjITCUornbNijsHKG7dF2TtUXUGvYFxnS0eJwO7PtkXtyI6WpCuxPOq6bn0JKSSTP6+bAsSVbqe8hX5rXv0FcMgtWQ+rZefRfrUY0JnQ379jopNoGZeim8cQDSn48elwOhoI7fmtQARQYT7vYyQMPnUOvJrKoVso83dN0xp72A8rI/rk3tp6/9m7z2jJbnKe+/frqrOJ8fJeSTNSBrlUUABBUASAtlmsIRJJhlfMBjjgLGvwdhk33uJJphkwCiAIgiQkEA5jcJoZqSRNPHMmTk5n84V9n4/7Kruqu7qEfa6vsvvsp61ap0+XV071Q5P/D+kjltJYuWAjiwMyDQw2rJkt27CnSkQ5KRoHPPyrkPkH3hO5yL0qMEje67B4j0v5yD9j9IxlfKf+MQnmJ6e5tprr2VsbIxPf/rT/6/a9TL9XyTtYdRCuYWPQ96KEgnINGM315nfIJQp/hBw50otFWtGSgtv/R98Ax1XnacThWXSZM/ezNJPvgsjl6Z6aCL2WYD8o8+39qwCqhPzNMJSBApDMEif3gpWQJFcPUj10ESrplPeeShWEaKfRkMGNSY7pX4QO/Nhb/Dowe2WbeZuehBoFGABTOZufzSeBwvIEJgDzbiTCkidsJqyP6ZxffNKDsWn99WMBWHGRUooPbUPrAQeZnRMEch0tpZQJJq9PVDIC5LHLW/RaIXIpMht3dTcbqVQQpA5cU3LMQehE1geg6xV/TU4Is/H8pZ+IhtzsEeHrbYgI5tGFnSeAK3YD4QdP1HcbL72v4YNCso2UIkk6VPXt+x3YlU/6VPW6xDGhrniOZDatBq1GGd80v8vPvRs6+ngSryK3bQGAqHPq2qFdmVogqE/+QYHrv08B679PEc+8j3sWR0Wa3ZmdT9lAFvg99sySHS3tWZAMai8cETnUGioW0pBeecQIp3Ca0zGpkCls5gIPCma5qn+jcArVVvi/NsHRsmeW8f5a2TAe958KWYujRRmhFmSEpRlYaSTlJ7Yrw04NIxboVoLOWwUvGtGCyPewKMFVEH3tRfHznOA3j98DQs/e1znMWgQyu0j07jT2isrWFfBVWOWXjiCclVT26SC/H27EKlE7HxR+AJgjCIjeL+tQt8DMlKJlnuTyCRpu2gLJC08T+C6hs8EC0R7huxpG0OY3Q11K/BKlZDCvlnYqbx41F+jDeR6LNzxOIv37vQ9yhqedSTFx1+gtHuIme/fgypXtbev41F65iATX/2Zr2hsvfe4k/EOC0oRwXf8D1GABRlXcyqhISxawF+glH4ncdjrhqHnQmz0gh4fGeP1/O8hkU7Etl0Yhr73EjT2yetxjkRh6Kr7Rpn8os5FIW2XkX+8gQNv0vvWofd8heLTB+KKaqLEYA+DH3sb6ZPX6XDjvk66rr2Yrmsu1udMC8WZ8AUY5Ulmb36Eofd+lYNv+z+MfvYn2H7ia69QYfRTN+DMlfGqBl7VwJkqMvqJ65C2w/ztj4WSX9aFcmdiHntkhuqBeAVYoEAd+/xPKD83jLI9ZMXBy1eY/OrPqB4ap/uaV+ryZF1oD/iOrm0XMX/nUxR8QTgguVji6F9/T+9BDed3jWfy9N5Xz58TPUuUUjoaTYim9Y0hyJx5HF6pRZ4OwJsv0nnl2bGGko6rztFrUoj45w2Dyt4R8ndFFRpKwfxPH6fieydbPR0MfPgaVn79L1j+v95P2zHgVyI1pBI1pXz4LFFK8x2yVGX80zfgzpWRtoG0DdyZEmP/eL3Gu41EJvllCv28fWAUs78ndsytpdoIU3zyUGis6kbW0u4hMDU/Er2v4RGEZdL52rObc2VYJunjV2D2tnIWAJQe+5YwEKaJMzbrewiLugI44HFHZxFmiz1TKkTSYv72R1m8Z4cP0WWjHJfFe3Yw/9PHAKiOLkT7jABp4c4VsIcmmsYsGDf78CTF7S2Sb0qFPTxJ59Xna6/U0LPCsui8+nyMVAJVsydE65eOh7dYwp4shuQLfdmTJbz5IiqRaFJ8gTa+JQa6myLRwG+DhPTxq0L8db1sKQW5V2iPcGEIsmdtYuDD1zDw59eS3boJ4efe8Frxigq82TyZ0zbS96fbSKweRKS1Z3/fB36P3JnH4xyZwlsoUYOF9GFPlO2Rv6e1sjCg4uN763lDGhRQ9lBrWQ7AGuyOyAthvkakLIoP7UG5MjKuSgmUK8k/sJvKgTGmvv5zncek6oDrUX7+COP/dBMAnVedgzITfgJ7S+ddMhJ0XLkVgIkv3Ep51yFwtNJflqpMf+tOKi8cpfTkXpSRaO4XFqUn9mFkfP6gwRCCUoh0EpEw6zx3mF8zjdZshU/SqXv4h+cKgHKVDzsXfUZD/6Bzlx2D3HwQHQxN87zsYKaSOlKWhn3PMDGz6SYHinDbhIS+976O5Elr9ff+/cSG5Qz+5bVY3e2kT1pLTbkcOJeYJl1vuJDCY8+DE+Pp7nrk799FcftebXyUonYFxq/qgVHKh6ZwXYHjmLXLdQXO+CKq7BDFqvfHWgowTIrbX4ifx56g8PCzWEu14Sw444JzTqEjmzXvEM9TUXWI5tqqX27ebp00GCg/fwRiIgyD9mdOXBNTb51Kuw/pOdOwtygF+ft3oypOSJ4Lly+QVZfq4Ukmv/JTbYypah65sneEsc/9xP8hsWUDYBiMf/mnFJ8+oPmWsr/Gvvsrys8ONcAJRkl6OjLadZv3FdcF++gUQdLuYP3VjJEKfXb7kWbNe0uS+Zsf9B2Zou9ESoO5Wx7SMG4tjsHKbq2Un7v1UQ689f9oGfrN/4vJf71HdzuXCj3bKNcIrEwqfo0JA7Mjq0181mUAACAASURBVGF1lfBzQgR6C39uvkReplqoV9ytZELno/rTN2Au8R3QAKOnk74PvxGRtDSUo9SOpcEaCozFZjatzwQJSpp1nYgSlHcceDnR63+QjqmUf/LJJ/nKV77Cm9/8Zr7whS+wfftLJ/56mf4LkhV4tkcXp1IKJSF3WiuFoSC1egD7yHSTEAZ6Qyw/HW+l0+VreID05lUoYdQENc8TkDBpu0RjVgvLJLFuBcbKFYily7DWr9JeDQDVAJu0uWxnpJVntCbTMvx2BhuKheNopTFoBZJqUbbIZWJDBgNy5gqQtJo2am3hFCT7Ov26G71dfGYyonxqLFzi+N5TUdIbcfXFkdiEhAFZXTns0YWmBB1KQvm5I8jZfJPSvfZePamFHWXguvUx055XBtVD48zf/ijSITSmFp5j6Lnge4sqZdQSvcia8lrjkLXEu00mKD6xTyeejLRLHwrl3UMtvfgAEgPNWHe13yB8jLMWQr1lYbZnYg9epcDqbmt5KCsF1cOTBEJCVEkrQBgY6VTLuWZ2tpN/4Nmm8oNQteLuQ03PRcoolmvtaGwXpuErtbRHdzhJrBACd2oBd6HIyEd/gDe9WHvWPjzFM2/7IlJK2l91evN8E4LkygHMziA8OF4IVI7rY6NH6waBqjrkH9jt7w1m5NLezwfRyY7xmWvN/Nb2IlfW5ohmsoy6sKPAMAyWfvKdoRB6fXX+3gVkT11PdusJeLbA80Lz2DNxK4rMaRt0omglIutAt1/VlOKNTHXAhGa2rG35vsyeDpyxeWSDoQQEnjCp7h3VRp4mod6PwlgsESSVjjKQAiUMnKNTMYp1QAkqhyZou+SUeMW5gvbXn0PLNQItw6QDSh23XCuwGp9OJWi/5FStBE5kCRsslTIg1w5mY96FaN0I0VopJwwdKdNikTqjM1QPjtPccV1W9cA48z99rHnPdz0qu4c09nyL/V50tdUiTjwvLKjpOWL6eRWUJ1m871lG/uEGRj71EwqPvth0JseRMA2yW4/3z/EQJSzaLtzi57qIE8w1Y587b3NNYdP4g+yZMcktg3qTVnzirRiau+MJDr33azx+1acY/dwtuPPaeJM7dzMYem4G4yKlDifOnnkcAPb4HEf/4QYOvP2LHHrfN1j4tVYYSymp7huNra/kewcN//l3qDw3XHutMl9m/PM3UzmoldrKkyze74/5J39M/pEXIp6JyZUDDPzVtaz81l+w/Avvp/1VZ2q8U0OQO/sEGpN3iYRF7kLt/Tf5jV8wd+ujPrSZS2nHIY787Q9wZ/LkH3wWVQ5HV/hKuWKV4va9GhKw4RwUfrJvd2q+tSLU1ZBd1YMT/lyPGpdmb30Es6sNlfPnXPi87OpCZFLM3/pIbNGyWKGyNxhvEfHKDupIb1rl7+UmrmvhunrPVMrQXnqGwC03K86ckqzlyIgnXX7H68+rnTdBnoL2K7fS/pozUY4bu7cAYBhMfPWnzaX6Qzz5xVsBsKcWGPnkjXqu/Y+vM3/3b+fRlVwziNGRQ4X4Itc1IZmg/dLTKDz6fDw2q+dR3L43fr/1SboSL1/x+VSrdklp4C5WKO061DKJ3dxPHgKEX3x4PunvlCFIbVhO73uvwmjP6PGzTDKnrKP/g7/XjLsdJh/zu9XeghAklsU79CggsaxH55OI25eUglSChV880bTnqqrLwi+ewJmYwz443gwv5bgs3LHd5zXjeQs82XrvMjS8V8eVZ9N+5VatnEgldZTMFVvpuPJs3MW4XDb6zHVnC8xed394oCK/m7nhfgqPvBBTsf5N/sFnm/ju+qWwJ+ZAhcutK00rB48FfaOppXOK0JGyAJkt61j6yXex8lt/wdJPvZvMqRt0/xyvpTLFeykFEPhjHvNODKP2np3Jeaa+ew9H/uePmPzO3Tjj2qCdOX2DjjBR0X5LKchu3UTlwKg+b0OvJOCRK/vHWPj59lDy3KDREvvwJPbYLEZfN54b5Zk8TyD6unGnF7XBs2GuScdj9iadGFevg4Z+KYW0HdovPT3ibBDwoUYuQ3LNIKnjVjVFL0ppkFi37NhrEDSkWIyTlI5i8HBnS369YR5Zn7m2D1MUKCODtgXyX50tiOMP0HxHAJcYuoRhkjvnhFokaaNuQPMeUHz6AIXdI9i2hWNb2LZFce8U+Yc0dGx1qtmz2rMVXsWmeqB1zsLqwfFaNKqUdblB+fm07NEZH3ar0TFOR/TIql1LItt4zikpfaN4/N5SPThB20VbfLmWWtlKCaSRILV+GS2dxwT67I4dc4HMV/BK8V74SgG26zu+xetjjqWQV0pQfuZQw3iEzmlPUTl4jESvh8ZZ+OWTzcpzT+KMzlI9PFmT15svDQFb3nkokrtIKYG0PWZ+/CBIWYOoqXmqB3mhVCDvmLhunffQ78Cs6YtazfNEXzukUzEyk0H2jI3YB8ZrbQ87WCml4QDjjE8BSc9j7vbHmL3xQT+Xjh6T/J1PM/GNX5BYEo56DJPQkVWnb/Bl2egaQ0J263GYPfGOb0oJ0iet9t9tjAyMj4ywrBetQwnp35IW7a8+A6UU4/90C5XheW2sdCyqE0XGPnsz0nZou3CLP/fD9RpIZdB22anHdAaSMYnvX6aXpmMq5avVKh0d2pOip6eHcrl1Ur6X6b8uyUKltmE3KoGUguzpG4lXfEPH5Wf5yT/qB72+fKiGcrUJ4iFM5kAnuQtP0SEuNdgbnYwu62OMzVz/AGP/+zZKTx+k8vxRpn9wLyMfv04zhzGKkIASy3pDmPLNbc+cuh5lmLHMkDnYhX1wEs9tZioCj1RJPdFhYFnVn8HIpCCX04k3Pa00DJQwUgmMjlxNAa+p/lcaRiicuZH8QyiRaMGsCazedtouOy1+vLvbENl0iIEMHzIG7lyB1LrlhBWIYeU3yYQ2SEQ24oAxEZjd7ThTCzQyzkrpQ90txHsuB+ROLbYWSFxJ6VltdY6EkEkTJFReHIngvjUyJO5ckUZFR5jsoYmWsrEzNkf7paf54xJOYKvHvPOKrbV6m0ngVKo+TEv0fQeePHKxVEsU29xvj/wDz7bElM3/6pljroP2q85BtOeaxkUpSGxcEVKcNxStdATAzI/ui+2YLNss/nonmVM34Pqe1/V1oMheuAVv8dhnQvqElbGwHiKVIHfuJg27E+MhoWwHb66ASGjGS/nwLJpp0mva7O3Q0a4x6zvwVC88sR/bNnAc/5IJFh/Zj7QdzYCKKJMWXPbwlPZAbGBIpDTwHEliWQ/xUEoCTEt7w8W8D4WGkLEn55E15a1Zu6QD7lyhCbq0VjagLBMNtRRTdyqFPTEf+X34s1eosnD3rth5KKVg8Y4nNYZ5C0os7wNA2g75h/Ywe/MjFJ7YV0tqJwyDwb96o4YHyCS1N3TCpOPKrWROWkPxsRdjk4e6UwtU9hypRU/F9V1Yrb3wcT2sznhlhFIgMik//0H8/mD2tOFOxCdcUlLhzOXxynWPtfDe485XSJ+wEtcNBDcIM7C5czahpGL0szcz9d17KD93hPKuISa+/ksmv3Fniw5FqfcdryG5ckArKtNJnYTuuOV0vfECDU+XiHrahPfUxEAXPe+6HJGw9LPpJCKVoP9PfxezLUP29A3xlRqGhjp7CRr9/C3M/PA+vPkislSl9PQBht73Tdz5AlZ/J8ZAX2SNSmmQWL8Ssy2DPTbL8Ie+Q+W5I6iKgzeTZ+pf7mLiW3dpAbQVKUVl/xhei7wRU9/+FUopxv7pVqa+44/57sNMfuNOJr72i5fsE0DvH76KxIo+lGkhDQtlWCQ3LKX79y/Cnc2Tf+j55sS/ZZe5nz5G+blhaEKtFaDQ2KeO13K/l46n982m5S3InLJWQ9c1CeACUFT3jVHYvhd3sRrZV1zXxJktUt51yE8aHK9McSfmWkLIGF05H/6mUcDUn62lvcz8+CEfAzzMWwhwJfO3Pe5DMcR2GyOXRhiC7jddwoqvf4iln3onK77+p3RvuxAhBKn1S2OXr0gmaHvFZrz51hEp3lwRe2Ke4Q9+i/LuYT3XZgtMf/tuxn+L+SCEIHveSTUDRE04JUnqhJV4cwVUNQb32Xb1PVrzyEZHTmPmxvAOXr5ci76II1ksYx+eit3VBGD7UZG5szex4p8/yNLPvIsVX/0AA3+2DSObQghB+sTVsWVnTl6jo3x8fOcmnsuVtJ3XOulo23knIt34PZNEAm+uEB/ZBMhCGW+u2NJg6Ewv0n7pqS3Hpf3SU8mduznWeUUIQWrtEj3Xfv+Vobn2IbqveSXCEFQPjsUDgghQVYfK0ESIL6jdRSmho3tdj/izRlA9NE5yw3LtAFA7/7VjQnLdcj9ZKk1lA1QPtVaa1fr+6jNix02kkqRbJEMMyOxpb05Qi3/sJl46cV/uvM3ge4VHowf1+q0OTTL8l//Kwj07qe4bZfHXuxj+yPepHBjX0SSikafyzwwEKibvSUDSdjXkkEdNZgsuTBNvrsDsdfc186KeZO76B7BHZnSej8Y9Uekxz5y2ASFixtQyyZ6+kdQJK5EiGdkbPM8ke+5JCCGwx+Ij6ZyJxdjvI3Wk0yhETfGuIVG1V7ZIJSGVQKk4HtmPHs6mInysvm9AwsLqaKPVPBXpFGZ7lv4PXK2N08GBZRr0vucKrL7OmswTlQ30d0IYTH77Lh/mkXo9rmTqO/dgT8xjH5nxlephec9g+jt3a+NyTMuU0pBeOgF2C36u4xjOQmg5WXmyaZ7q+WLp+8eou3p4qpaXKFy2kjoBL1YLhz2jjloQewYL6g6JcfUnEkhbxsvuaAimuLMmKNstxBsbg+/s4dZGv+rInJbX4g4yQ0fRRvfE+l+lBJXD4yiP2PvV4Smtr3Gi8pxSAolJ5vQNvq5HNOhF9DgklvYiOnLx89yyAIEsNeab01Q5PI3R2UZgJAjXrZShk7eaMdHcgYy9pJfZmx+JvVe4/1nsibmWYousOtiHpzR/2SiPCRP70CTWsoAHb94Xrf4ujM62WBkYy8Jqy5K5cEvNqbK2N7km6S3rqDx/RPMXYUOsJ5GFCoVHX9RyqGjUFQkwTLyZQm38wxTIuY049C/Tb0fHVMq7rsvNN9/MTTfdxE033YRt27XPwfUy/dcnVVuodVwr/VkvUmdyPmIZhPrGUHz2iJ+cLxAww4pYCDxZ6/9HlduyaDP13V9HvlcKkIrpH92PO1tg7vbHo4o5V1I9OMHiw89j+RixcRue9nTVldehGuoKJmc6D+lspM01AXJJP+5CCagzAkGYjlIGzlwJYWr4kWCjr23yaMwt6YehNXp9KmEia0n14g4pE2El4oXTYENLx98HMAe76XrtVn3w196xvrqvvRijLRPy+AgfMmhs1/7O0JjWDyAA0dOOtaQ39CyRcpLL+3BLjfjKfhmu8r0P4rUNSqGjJmgOC1QIzJ52H4et2coO6BBQolbs+pwVWueh4uexkgIsM/aY0MySQccVZ2H2ddA4zzOnrSe1dkn090Trz5ywKnKgR8YnkSC1bgnEMP0imSB94ho/bDCmcWhonPTJ6+PrNnSf3IVqJG+B9pYxqQ7Pktm00j9Yo88LQ5B7xYnH9EipPH+EmesfRNlE14FnMP39e1Eps0UEgP5rZFL0vvNyLRz7bjkilSB1/ApyZ5/gRxDEvBOpMLraMDoDTOvoXAMDqz1TDxNuGHPp6jDu2Z88AraHXosGeAp7ZIbF+571PRhjFEhSwwI4s40MrF+PMnX0QZz3MYBhaHgbYTaNOUrDU8nFQBnR4MmjQDnSV4y3ULUcA4NUOR7OSHziXNCGs+rBceoQU9GojtKOA2S3toD1siySy3txphZ4+s1fZPJbv2L2xw8z8dWfM/wX38PzFSypNUtY8dX307XtQtpffRbLPvMuurddAKAhweKwHT1JdXgKo6s9fl8EEst7Wo95MkHquBWt5/l5m8mdc3y8ksc0yJ66Hq8cvwaVK7XXeMNYBcZp5Uns0SCHQONcFCw8sIfy7iEqL45E+q6qDoVHXqB6DEGo1sRcmqX/+HaW/M2b6P3DV7Pk429lyd+8CSOZILVmsBbCHtlbEhYZ35Om/YKTWPHPf0Lfe66g749fy8qvfYCsD6nlVTzfuNVwhrpQO9zRCd9Luw7j+rBWoJVjpadi4GI8ycS37qb87DB2zHwsPz9C9fAkE//8i1ghL3+PD6/Syos/naC8e6jleDljc5SfG6a850jTmBcf30t1qEVOlhDJioM9W0EqE2krLSRNlbRS7sB4A1518FlReOqgn9Mlfq4KM7ovNNW7WKLv3Zfr5KMB1mfCxGjP0Pu2y2KhiGr1GwbFpw74701EL09RfOYQ1tKeyFwO5rNSkD11HQMfvDq26MEP/S7OxEItoqXx/FUVl/KuQy35mtLOQxrvnhhe0TNILK1jn3uLJZzJPF6+rrQVCYuO156NVHoLDCC5SFi0XXBS6KxoJrO3Q8+1hjMYoHD/c7gtlMMByYrN/B1PNvfL9Vi4eyepjcti4ZhEwiK1cVn0DCA6dqpQ8Y1q8bxD5uTVLeHGRFs2FGHUfD88V2TFwZlYxJ0tEI7Q6Xv35dqI6s81Ecy1d76G5Mp+kAEUWp2vV6ZF5uQ1JFcN0P6aM/T57jdfJCw6rjiL5Io+sievRcV5dkpIrRpoDRmYsEiu6o+Hp7RMMietJnfW8STXNiehTq5bQu7M42i/5FSSqwbq0RWmgUha9L/vdTW8X9ARs4klPRGDsNnTDg1tDs8ZIyZvQkAimcA4Ri6OjotPQVZC+WhU3WHJq8pQjo+mkiFGMRxXfmrtkrpBwhC63++P9juO3MkFSCQjfQ34FhljdGqk9gtPQlkp35EiOCdNOq46G2GZTH3vHs3rBlGOrkRVHKa+ezfO2GzLSBj74PgxETtBkNq0kkApHfHErTgkVw3gtDC6a2W+rOVdanredkku66XjyrP8ea5lDZFK0H7xKaTWDLJ49zOx8Bvzv3gKWbZb1u3N5iORW9XhKUq7D0eiEmSx4sNVBHmDfA9vTysagySbcTxyYlkvRmdH/P1cG4mlPS3GVdXyHk3d+AhuReH5xgC3CtM3Pqx/lbT8M8Qk8PCV0tDJkVMJvJliqM563bKkI4DqldfPKSHAnc6TO2NDvMHPNMhtPZ628zbFthxDkF5/7Nwy9uEpPX4Nsr1SBs5Untzpuu5GA09Qd3X/WCwfbiQt7KPTeH4ujcZ933MUmc2rarJG42UOdmH1dzX1ObjMrrZQmWHlsb83F6oozNi6lRKYuUyLEdHvx1sst9zzVMXR/KRolr+V7ZJaOwiN51fovZppq+G7+u+UI/3cKM2GDhSoqouwEi0CEHTi3iDHSGPdor0NZ2qhKeoxIHtowo9sjqkbSG1YjvCx+rUTpqg5YyoFRlsm1iAP6KiMYoW4Rab3P0V1eIpAZxWWLZSrqByc0LB9MbykSFq4kwuIziA/WYM+JpVGuR6zNzzUXLftMn/b49jDU/FG2KpD9eA4lX2jsVECwjSxj06T9I28YdkBdHRwy6jGl+mY1NolDjjllFO47bbbav+ffPLJ3H777bX/hRBs27btP691L9P/FbLaNCxHYOkPM/AKQf7+5/wDVSFEAAmhf1vacRDpSj/Jt6pZKTVTr0M5MSyk59Y2zPpGbmB1t9W8aRsFh+KTByicujZ2wwKYv+MJkiv6qEpdsGHoHwaY8MIwUJ7AI26zVdhHplpg6gkq+8ZCAn/dm6P2dNVFNVnC62W7+TLKt1iHDwqlQHjKx42LIwGuR+7MDcwPT/rvpf4saEWmt1hPsNN4v7p3nMXMbqRnIF2BEIrAgjx3+3ayp6zFUwIjNOBBOV7FJX3ccq0892Qt/NN/nbSdvpHyCyOx/VZKUBmabAkpBAKZ15ET4Xeq55XQDXBkraymfrflyJ60itJzR2hKRGtAZtMq5ozHwPOQUjQd0GZ3O/V3qUJlC0gmSG9c7uOfqmjdArKnrMMwDFZ88Y9Z/Pl2Cg/sRiRMOq86h7bzNgNgLevHGYkq0PTzgmRPKyFMJ4KzejvInnU8xUf21J9FC3cdF5/Mwm924h6djn3f6eNXkH/6INKrwzMHwjGGQfXF0QZcaFH7jTdfwurtoP2y08nft8sPw0Unc+lqo/OSU6jsHW0JBZVas4SZ6x+IlFsjx8OdL/rr0PeUFvV2B0x9asMyVKYNuZDXPJYDXWedgDANvLKtma5Qf4VAe17MF/EWys31+mS38JINGLny80fik29KxeK9u2pMYOM8UkphjwcQEvF1K8PASCc1rEkDWQNdWH0dWqmJga+9I7CBm+kklYMTLcsu7TmC2ZnDKc/HMqGJ5b21usN7qhBgDXRi9nW27BeGqCmmAriM6G+g55qLKO84GOmbSJj0/MHFGEmLsW/cpeG7gqiVioMzOc/M9Q8w8J5XY4/PM/rpm3DmCghDMPuzp+l7+8V0veoUHWGQMJuiI4QQJJZ01wT/pnVgmjjjc0gP/yyKzjVV8bC6cnRccRaLd++IzHPRnqXz1adjpJMkV/ZjH52ueYaIhEnmpDWkNyzDLVQwiAoitfD4hpDjyLgpLXy3IufoDKXdh+ONEUpRfm6Y1Kq6R7qsOgjLrCXAC49RasMyUhui3o5mZ47Oy8/Q/Q7qsAyMtgwdrzq9/rtcmtw5zYJsaecQXi2fRag+JbCPTpNY1sPYF35GeddhRMJCOS5t5xzP4PsuDyXWbabKriHy7Zl4xZonKWzfR/VQa+V48cn9dG87n7kbH2i61/vWS46ZpNrq7Wg95lJHZKXWDNS+ixvzyX/5lfa+DuZ51cWZWmT6h/eROXEVvlo0um8hUMUq2VPXakzrRt7GEGROXkPhiX3I+ULsfp/ZtArRnsVTCWTFxyL3JCqXwmjLaOHXiDfOZU5c7RvH4vcWWaySPWU91UPTkd8oBVgmZkeW7JZ1rPjCHzPzw3twjk6TWDNA31svw+rtoDoyg3RkU/lKKY0JXlsYjfXryDNpe0hp+DyLqgvhCS1gGukk41+6g9Izh7QR3vHIbd3IkvdfAUIwd8fTGrs0NOay4FJ8fB9tr9zCwk8ejB3TtktPZfYH9zUpKgIqbt9L5yVbYscMNOSAMI3mPCC2S/Gp/XS/fivJVQMa+s/fw4yURWr9UtKbVkImgyrVo8rCipLUCStQdlxolNDYu4sVrQiRqqlfIpsms2UNhYeea+63gMyWNQDM3r6d2R8/ApZAeZLkkm6W/80bsHraSQx2s+IL76XwwG7sw5Mk1wzSfuFJ2igEtL3qNObveLqmPBQCDMOk64ozAeh9y6Xkth5P4eE9moc870TNYwKdV55F/r5d+iwJeIRUgq6rz0FkkngVr8bThPdzWfYwsik6rz5H51cJ1rFpYGRTdF15FgDdb7qEsc/fhHB1rgJlJeh+0yV6/JMWSz/2ZkpP7qO4Yz9mdxsdl5x6TJjDgIxUoJhuVIIrzKxOFNuKzLYMfW95JWP/cH3zvf4Okiv7NR8dc/ZWhyaxlscn5gWFdawcAD6JhMXSj7+F0pN7Ke08iNmZo/2Vp5AYfOl+WwOdtUiXOg+teffwGQVoqBsURsiwUnh8X8ijvb4HzP/8abqvPofy3tHYflf2j2P2d7SEHEqu6EeqOk/ftA5SSby5UpMcB9q4LNKW3k/ilGdWFIakoXW1OdBzzUVkT9+g57lStJ27SUc0AcWnDsTCnQrTiECCNPJr2s6i5eiRz9yMMz6n9xnHo2fbefT87tkoGcCwNJWOsh0/mXLMfm+ZOBMLOEdnY+97M3ntwW+aMZBFWm7Jb9+LMxRAc1Irx51YYP5XO4gmBQ0Pm4G1pFFJGi3fyMRHZCmlxyR13HLSm1dTeX641j5hmSRWDZA9dR3ubLEma4bngxAmRra1Fz0IpAja1fy+pe2S2ricxOqllPeNR84aq7eT7GnrKO08RGXfaJN8oVyPxGAXIplAlgP5OsQnmAZGVy5mX9F1m50dGLkMAd69EHU4WFAYbVkSQuCMBJCk4fNWkDl5NYXtL+KOz9bWSfDXaMuQPm45+XueiZPudRmZZK3cpjWWsDC72/E8oKH9hhIYuSD3YAveI/aMq7e9uH1f88HsNy3/4B4dNR1615HHDQP78FRs3e5sAaM90xKzXstT6RbtFphd7SSW2JQmFpt+o5Ty+chgvwzf98/LdCoyh/RzQfEmiSXd2lGjIXeESCVIruhFGFB+4WisLJtY2o19aDK27XKxTGVosiX0Xf7h51nyJ1fW9ptIr1MJ3wGruc+gDbRWXwe9b7uUo393XTRZtRD0v/2yl4Tlepni6ZhK+R/+8If/r9rxMv0nktXThhIicniBb+Vrz2B2ZkNKGjN6P2mh2jLIxWJUCeIrTRPLejXmVshTL0zunI+N3qj0VgqBorz7cITJCtftTi2S3rCUgCGRDXuSkUmFhJVo2SBILutt6V1h5lItQ2epucjEbbT+LyoOqmw3tTv435nJNz0TptTaJRoGR1Dnt5Ted7NrlmCPzuGWbYQQEWOEUgqzO8fi/c/5STrNkLe8ojo6qxMiegJPNipaFKZpkVo7SGLdUpyD4xErqUgm6briDBbu3hn7TgBKflKTVuQtlnTCHUX04BYSM2litKV14k87elAoIUj0d2pLfAzDopQgtXEpZl+nj/EW/o1CmJAa7CJ94koqzx0hrCwB6LrqLJIr+7QXgfIIK+2VNMicvAbQOORdrzuHrted09SG3Nbjmbt1Wh+/wToAzO4OHS5pGMThjpjtaZRUFJ8b8Y0J9brdkoc9Ps/gB17HyEe+V/s+TL1vv4zFh76KUqZvkKL+O0dh9bSHft3AFPgvsfcPLyO1bgkLdz6FLFfJnXUcXa8/ByObovetF1Pavrep3cIy6bzyTGZ+dH/TvYDsfWN0bTuf+ZsfRrlenaGwTPre8SqUVBz9hx/jzRZCbVNMf/c3pNcOYnW14WGBG+20SBuYbZlakqtYqh47iZVmKOJJLpaP4fklcGfyWAOdwvX60gAAIABJREFUOEdjjBWGIDnQQdfVZzN3y6MRxZ9IWvRec4HGmZb4czm8DhTuXMnHH261t9hRJif43hdWVKlK5+u3MnP9w344qF+0BT2/fwGOnxugeQ0LRDaNaMugxudihdvEcStI9Hey/LPvYP7WRyg/dxizu53u159D9vT1KMelvKcZexVXUnjkBfrf/SqO/sOPcSfz6B1J09T3fkN6zYCOlHG8JkEKxyN9/DI/OikwNAb3BXgKqyMLhoFnq9qeGHiYJDq1QNDz5otJrhlk4ZdPIosVsmdsoPvqczF9gWHZx/+AhV88SeGh58A0aL/kFDpfpaHAhGnhVcJJuGojT8KHxmkc09q49ccrSxTUPE9jjRGmgdmm21Z8ZojJb/8aZ3JBGwRftYX+t1z4kt6NAD1/8EpSawaZ/8UTyELQ73NqZb80NQqoClV1MdoyTH3/Pkq7DusEeH77C4/vJbG0C+W4LWYxKE/W5mIcuRPzWlHSAsPY6u+g/fzNmB0ZZm94AFmsYHRm6XvrZbSde4JudVsama80nVV9b79Eh5hbZjQ0F3/M27VSrbjrMJPfugdnYkHvd5dtof+tF4IpKO081DzPPUnh8b2kN61AKaEjsGojBsLQ2Olt521i5voHkPlSXQklwOppJ3fGBpTrMflljYEe3u/N/i6Sy3s59OHv4s6XIeRwICfzjHz6FlZ84hodyl1xonMRyJ68Bnc2Hx+9AKRPWM7cT58g9n27CvvINMmVfRSePEjh2QlkqYq9OE56xxBdl23x4eWixt+A7MlF0scvaxmpY/V2YDkepUNTSK9BqE+A2ZZm+kcPUHpmSCv8/LlWfGI/Mz95hOxpa/EKVWg8A5Vk7o4nyJ25IcYhQDdTuLIGTxE2+Ov7KtZbLNK+trSvHIvpV2cWYQj6/uhKRj9zC15RG4uNgS763nO5z5vqKLYob6NAgBFgt8cYkIxMUu8dwkSpBux1BYn+LpKrBpCe4fMVdUWqkoLkqkGKzxxi5saHteLft7NWD88w8tlbWP35twPaYNd5xVmx/SvuOIzyomMmHagOT5M9WcNEpI9bQfq4Fc1j05Wj952vYeqbd6JcbVxIbVxJ52u3+r/Q3nVhnijsLdnzhleQXNHLwh3b8RbLZE9ZS9fvnIvZmcPLlxn93K2oqqQmyrqS0c/dytqv/RFmW4by3jEmr38UZ2wOYZm4eZf+t78S4xg5mQCSy3qIQpHVyezurDn0xJ2hmCaZTasY/MgbmfzqT31YFkHmtHUs/Uvfia3GKzbwa6aBXCxr3HtPNZw1IpYviCNhGuTOPkHnxfh3kNXdRvaMDZSe1krmGj+XtOi6+mxAyzYTX/tVTRbInLiSJe97DYn+Dhbv3R1vCHU8HZFpGNrFtLHfhkGiu107l8ScsSKXJruil+LDzxNe4IGiOLNpJbM3Bh6hzYqxxfue8xMmxpzfrqeNnsQBLoiIoTa9cTnpjcubftUKx19JhdmWRrq+oSPsbOSvVyklo/90G/aRaW0Q8W/P3vIYqdX9VPYdI5J1aBKrp41m1xDNK77U+S+yKZQykG70FBeGxOpuY+6m+PwjAHM/e0LP1RZK2Px9rQ32AMl1gyBoeicA1tIehBAs+attLPzqafL37gSpaLvgJDqvPBNhGBT8pMICBUYgywlE0tBOd/h6hkbdgBC+Y0e8ElYIA1m2KQ/PRM93BfZUEW+xTNeVZ5K//9mo/JwwSW9eRWJJt++IEBPBJKH81MEWPJOgsnfE522EX6cZuS9Mk953vIrRf7yx4QxVmJ1JsievIbF6kOrIQtNcSyzpJrt5FaKmdI/2zervILmin9LRmUjrgj5YvZ0s3LMTGrzZlVJIB0ovHG2xhvx33DL6FxACpyWkLzgzi1iDXRoaqKFcgOTKPu3MGCPTCdPA6sohsinkQqmJZ0pvXI5ItT4PjHRCoy7E8EwgtIOSrqmxZpRSJLpyGrZIC4ShtguSS7rJnrIGqyuHM+XWFe9CRze1v2ITXr7C4j07ozyKD+eXbJHTJSC5WIzwQ2FSVYfMljWYHVncSnTshWnQfv5mCk/sazEoAm+hpJ2VDNPf030yDUo7hmg/59939rxMml46Fu5l+v89GekkqSV9TYk/pRS0nbeZ5GrtMRZnpLSWdNN77YUEIXO1JBTaPMnAuy5rmfxPAe5iIJSKpis4CFqR8BOxSuWHDLmGvjz9XSCANVrkhO+CYPj4u1ISfVbqQz+1cSkaiiNatvKtvhqLO/7gTq0dbKnwVwq8QumY4ZZCCFAaL9tzLX15JigTEhadl58OykRJo3ZfSQOUSd+7LtPCadyYBnpK1XwPRE3QXf7R36f34i0+VqBBav1Sln/iD7B62o+ZBd1dLLU8V0Ezp5r5bITlMJCOIrNphVbMN8wnYSXofNWpFLbvj4WoEEmL0jNDtJ27qQGyRF9aMZ5l6d9eQ3Ltkvo8B7Kv2ETv71+gIwASASSR6Ydc6v4XHm9x+ISo+PTBGtZ+DX9OCbz5MrJi68RmDc8otPdi5YWjvmdztG7lShZ+9Qzp1QP0vec1viu836+ExbJPvAUzaaLKTsw81xU4U/Po9aTncnApJSL44NIzcB0T17bwnHpZyf5OBj78O5EEQiKd4qRv/A+MxuSSje87m6b7d86h7aIt+nBGQCJB17YLyJ25kcreEY0N2zgujsfc7U+QPmkVyqkL40Eopiwr0qesQVitEsX5kRGteLykRXJFX8v71mB3aygUQCDo2XZebMhj+oQVWF1tdL3+bHLnn4inLFzHRIokXb97HrmzNvoYpaKhX1pRYk/Mk9m0glZ7S+709YhkM0Y4AKaGKyruHvEVJaG17QpKL4yRXNHnv/+G/d4TJAa7dRRQTeFN5LP031Wiv5P+P7qCVV/6Y5b//ZvJnh5NBq4UDXumbkZl3xjutFbIR/clj9nbHqe4fR9KWM11WwlKTx9C2i5BOH/90lidwjRIrhpE+Xum6wT7ohaGQO+r7eefyIpPvZ1VX3wvfW+9tEFgFniuwLFNXNtEumGlamBACY+rfibsodj0ThB0veHcSLRHqFDaX7GJjgs2x3uOCEHurI1U9o8z+rnbcPwIDVV1mf/lM0x88+7mZ2JICEHbKzbrfn/pvfS97dKWuSQaSXswNQsUKK1UyN/3bJMxQdkuC3c9g3kMz02RtJq8K8OUXDNA29nHx+6ZGILM8VrJl1g+gLlqBaq9h8TqlVhL6p6k1vJBpDRwHX9vcw08LKy+TnJnbmxSyAOoqkvujA1UDk4w+tnbcMb8MbddFu7ZxfjX76qPTZh38JNMI7SHUl1gD81zaWB0t2GkEiz72JswertrmO7mYB/LPv4mLfCct4meN1/sw4voZ5OrB1n1T+9ASokzPNtUNkB5z1Hsw1M1JWlkjUtBfvt+2i86KR5LO5Wg/dwTcOeLtHrf7kye+V/uYOrfHsDLV3SemIUyk9/5DQv3PYc3V6zVFT1rQDmS9LolMWXr8lPrltB97gm+QT3aL5FIYg12sfib3U3JGpXtsnD3TpzJ+XrQUYS3ENiTi9p4JaLwd1qRYeloLgKlWMP6VgKrW0e6lfeNcfSTt3Dgj7/N0c/cRuWAjpBJruzTXsSNZ3DSovPyM5BVhyMfuxF7vJ4zxx5d4MjHbkQ5Hl7RbuaJ/PaU942S2rA0dh2kNi4nuaJXQ/sYZmRfFKkkXVecztzNj/l9DvMWuq65Wx5l9uZHfU/8cL2K6tC0D7vVmqpHp7GPzhK7n9/82DGfBagenmLsy7/EWXR1IjnbpLhrhPGv/DL0KwPtcODzYw1iadvZJ7D8H9+m97V3vrrmhJB/9EWUlDp0PpiLUhsD84+8SHV4mpFP3ayNRP76Xrz3Wca//NvllKjnm4l8qeH3GuAMw/t+at0gALlT17H22x9i3fUfYd11f1VXyPvlxK7BQBnXkNgzTjb7z6LB97+W9ou31KBaEst7WfqRbaRW9qMcj+GPXkdp5xABjlT52WGGP3qdD9l5bBLH6Hdx51DNpyXKuwgWH3ietldsgmQC6Zm1pITS0/JSxwWbW9Sv69J5HZr3zOA3Vn9HS7EmMOBKx2Xmtic49MF/5eAHvsfMTY/5EKbQecXpzYo9Q5ebXNWvz4rGvceXH6pjszWFfJhU1WHu50/GJ2kPWm4YNbiTyLNK4+wnVx87J0xysBuRTNK4Lylpkj2jRa6Z34rES2qXkoNdGn6qgU/FMOj7g4v8joB0BK6fKFY6oqZklFUHJQ2k1Hyg9HzZrqqNnRrXPQ57HRLdreGljPYMhcdeRFXC+WL8uWNLFu99lsSSbvre9eoadrwCzP5uBv70dfqRFrB7iLBOJIY8FYnga6TU2kENieI1y8DK0/OvuONw7Fyr7JvE6mnHWreERggaYRj0vf1SDMus6UDCl+dpfYo9qqGOw2c/fk4BZ2zOL69hHvvCgdUV8KPNJ53Zlia1Jn6uKtB8ZNO7DMrXfUxvWhk7rInVA7hzRdz5ioZfcsza5TmCxQfjknKHWqrAmYxzLvF5sl2Hj6HrEVg9bTpyrCFhskhY9Gw7D2EYLPu7ayPwfWZvB8v+57Xa8VThwypH57EnX1p9a/m5EeL2B5FO6rJdA9kwtp6nowJb5fgKoGnm79yhox/DvKAjdb6ll3B0eJni6WWl/H8Dko5LdXxRM76eUbtQBqVnj6Iqbk2Ia9zwjHSSzku3kD5tbUOpgp63XozZlqkp88JUe95qxHyuP48SZFokmQJILutFFisoz4geMkqgPANVqh5T8V09OoM7X4kKgUoLzsUdh+m+6qwahlf4vvQMul5zOt1Xb21ZdvfvnlNjJuL6jTJa3leAs1Dy/2/GdXUm8pT3BBAy4XHT/xceehGvHBeyqP+XFY/GyITgvvQZDSObYsNHt7HuBx9m3Q/+jBWfehupNVqYoCWmpU4MmtywLL7fhiC9ZoBGS3pQt1ICYRgs/7trsAY6EemETgaZStD/7leTWjOgIwzivIQrDl6hQmnXcEyrBO5cCVm2KTy+n/LheTzX9C+L/GNDVIamdGSEz4wESYmU1Ionb7F1kriAAliAOg6oj/NomniLZeyxxWYGU0J5/wReoRKvlFMKz58LnZeeyvrr/pI13/4Aa773Idb/8M/JHN/sldNIlUNTWj6KMFP+//5YTn77N4x9824qB6ewxxeYvWMHBz/8A7xSFeV4TF//KG5tzEzcChz+9n0AWEtbw0S0n3cChe37mfv18zgVgWNbOEWYuvFxKgcnqRyaBKWax1xB5cA4M7cFOL3NypKFu57ReNcNxkSUdjITyQRmdzMGuVKQOm4Zmc0ra8rtCFkm3a89g+Sq1sxvZvNKUuuWNOcvQPj4g1B44gDz9+xBOj6TVJW63wcmcOZLsX0CgVt06H7tWfFGAUPQdv4m3+szuo4UApFOYvR2UN55OLbd8794WnuUY/jCq898ulpRY3a0hbx4GuYxBrKofa6k47Jw3x5Gv3IXU9c/Uos6EAmLxIq+kJdOfc9Mb15NdWgqJkmdpsr+Cbx8WXulNdatwCuUcRcr8Yy3FFTH5qkOh5VI9TpKz4+2epX18fMkw//zRmZv2Y4zNo99dJbp6x5m5HO+x3KllVAvqB6aROTiQlwF1tJuvIkFCGF5RtpvJXViss6OGoMcnAOJZf2IVILJ79/XHN7rSRbv26PH7D+RjpWs2RmbbWl0l2WbRAtlhlLaM7rj4pMhzrDnK6a9QjV2fStp4C2WKO4Y4sgnbqK0Ywh3apHCEwcY/tsbKO8dxR6fp7xnxFeO+2e8EigHZm5+nNKzw7H5R6QyKO05wuwtj8cqgAuP7sXLVzA62kIRWYGyzMDo7cSqGeybe2916CRy41+5C2e6VFO+2BMFxr92d01o7br8DPreexXprSfRdtV5DP7572Kkk3iOE6mzTr6CqVDxvb4b16/Am81jdeVY+le/h5FL+Yl9ExgdGZb97RsxsqmWsAGgFRLT12uvauXzEEqBsj2m/u0BbdRTDTyTPy6YBh2vbPG+LYP2V2xicXf8+S3Lrk7U3gL2T5Zt6njaMTPOU7SdfZzmRWXdyUJJAUKQ27oxpNCPGdNileKuYY587CcU/blWfOogw393I6XnRxBCkNm0tmkuKWWQXNlH/rG9GmotsE76im93rkT+if0g6wqhcN0K8MoulcMz/m+ivENlaBohBEv/+g0Y3R24roXrWnjKonvbuWRPWn3M/cFbLFE9Mluf+yFeE8lLKuXto7Mt9/PqcOsEtAFN/+RR35M9KEPoxPaP7dPQly1VofXvi7uHGfrrG9j/vu8y8d37aonCvXxZY7M38u9ViZcvM3v7E00OJsr2KD518CUjWb1CpTUmroKOCzaHDGqhNpsmHedruEPleiw+/CKjX72LyX97SEPiBdQi6gJPaoziJv7df2fWsT38f1vyihVmf/Y0o1++k5mfPlXLBwP6jO9/x2Ws/dc/Y+33/4xV//tdZHyjd/6J/c0JlRV4CyXyj+7V+72PM15bgwpE0iS1fklrT39P6sgmH9tbJ8A1/MTKAlW2MbIprMG+Jhxw0dPl59FqHLNQ8R6+USt6P0haaLbnYmVJpXTiTaUURz95KzM3Poo9MoszOsfMzds58vc3oaQie+Iqeq+9QDtxmHovtPo7WfbRbTUnsVbGCFWIj4wEcOeKdL0uPoIFoOuqM1m4Z3c8z+QJ8g+/iNnC8U10ZHRC5VhZEsovjNL9xlcAmt8OeMkgmW7P67eSOWlVE/8dUM+2V9TGMEwB7yMQZE5ZjyetkLxmIkmQXDOgx/zTtzJ9wyPYR4Mxf5wjH/uxhl61gjwckV6BpzA7skg/oWXNYO8YPh9sITqyrd93LkP5hdHQXh4qG0Vpz1HssTnGvnwXbhndbsekcniekb+/GSBWQayA1JpBbbSLFwUhlaD9vE3xSn3LoOPik5n63r0xLRfIQoXirsOo2ISmAjxQnsfyj7yBxIoBPT7KQokEXb93Lm1nbcQc6AJlRt6H55ooaWL2dfpwo3VZprYvKaHx6Gt5GaIKZCmBpBXa13xGD38NplLkzjkeTzbnEJCeQftFJ+l8NjFyi0InqC0fmGw6Q5UE+8gc9uS8dmSIGMYBDCojsxrWKi73idL7uPZgb35pQc6KY+qCLIulf341qfVLEUlL6zwSJl1Xn615FmD8m/dQOZqvrbHqVJmxL9+J8iRzv3ga5SqkF9LfuYLqvnHskZmWzoAil9JQpnEOHApENkNp12H93kJ6QelpZ8HFB5/Xkc0xC0WWbTKbVuAtlkMOYHW9g7RlE2/9Mv129LJS/r8BefOlUIh4lEGwR2e112bMwhOpJLkztIfkir/extK/uwZz+QCJDStY+bX30XOVxpQMsoU3MgUoMPwkFGGhILzI7ZE5bfmNZG/XzzqLFaqHwx5jRD7bM8XYzTAgt6wPp8ZEjkrpJBoaiy+GsUagshm6Xn0aqXWD9Y3Gb3vH5aeR7O+sMz+NzJAClQ4lYW0cF2FQfn7ET5xVP+CCQ8aZzmOPzNWebUzCWz04EY/T61N17BiCVoMiUBhGxJsafFxJmjdxpSCzfikil41lAj1l+SFaLQQtv+7ksh5Wf/k9LP/4m1j2V7/H2m+/n46LTgTwk5A1P6oUSMfTjHsceRJ7aoHJ79zr40YGQho6kdQPHyR9/DK8sucbpPQBrZMSmWRPWx9fboiyp62L5CEI+mmkLA1R43jak16K+qUMnMlF0icsj/fkEYLc6esiX5ltGcxMMnYM4ii5eVnIazrcNoFXVTgzeebu3FXD8wcBUuHNlJi7axeLj+3DPjqLtGVNaPeqHnOP7qUyNMXKT7yJOCyjnrdchFKKiW/+usETD1TVZeI792Jmkr4FvWHMPQNlmVSeHwm1mcjnwvYDKEcrnzRD7XvEutqbrrRvDHsqMG5FGanSi5MYSYv2y05tUoQauQyZU9bSecVp0Xuhudx+wWZmbngEWfU9CTzfW9YxmPnx43i2w9iXftmEn6psj9Ev3Yk7lY98H/nsKFJrB+n+nXO0Akug14YpGHjva7A6czgzpdreVo/K0HBH3rEUCq7Emc4jRZBwWSssax4vZYfsqWsb2lRvY+elJ+OVbYb+4jrG/+U3LN67h5lbn+TgB79PcfcwSimcmXLDc/qzPRms3biJqhOmZbesCSVEjNadOWmVTpAZJDHz6n9B6GlbcUMJKoP8IgJ3uhBTZ5QKTx7AHpuLKGqU7VJ67ihlP9y51d7lTC6y7KPbICJgC7AMln10G874gq8QJHKhNNZl4cmD2nDohphf16AyNENl3ziVfWOxcGFKKirD0/qzUpReGGX+3j1UDjZjscuyzeT1jzL2jV9T3tsc8u4VKiw+9CKLj+zTSs6AWiSKBA0Rl1zVVxNwwud3ZtMKbTQ0moUZYQjaLz6Z1Mo+et7gR5yYQu+flkH/Oy/VYfdHZ0EZDeNmIJIJnKk8E9/5TRQHWOm9ZfJ792sv5iZFjC84P3uE4o4hUCK6H0utjCztGsY+OqMVSg3Ju0TCxJ1a1Ar1uHk+PKeNVLHecAJZdig+M0T16EzTXCu/OEb5xVFk1WHoI9cz/vW7yT/0InO3P8mhD/6AwtNDGDJ+DgaUGOiM4ef8VZfWCvfsyatZ+y/vZ9lH38Cyv30ja7/5vpqBt+PCE2OnuUhZJFf2IksanzswIgdKJW+urPvcZHT36zcskst66Pn983XSUEPoJJMJk763XUKir4PSUPz5LZKmjrCJUToqhU7k1hInWCAyKZLLekisWorne0wqpZV6iY2rSEQSuDeTLDtMfuc3SD+KKJjvquoy+d178QoV5u/ehXT9fUkGaxjmfr6D4jND8UocCaWdh8Ew4pPUKYE12IFcKOs2N/AO3qxWgM7duYvqWLG2RqQDUzc8iVuqkljRF69gAp0s1awrMmrvyueJRbqZzwiTEZO8tjbmvwWslnYuiR+X6vB0S14v+H7yRw9z5OM3U947hju+wNwdO9j3jn/R+T8yej40JWpXGq+6BgfSwEOLhOkreFpTas1AvEyUMMmduZ7EYBd9b7nI39fM2r7W9+aLdG4U2+Xw3/6YsX++m8Xf7GH29qc49KEfkt+uYaXSG5c1F+5/780WELVkq/X+oUBWjwHn91uSPbHAwfd9j6nrHmbxvueZvu4RDrzve9hj0WSkwhBNMD+lZ4ZinWZQitIzQ+TO3ogSKT/vg78GXYvOy89CGEZLL+Dkqn7tUe4r4bRTk+lH5GhesbznKJWD003POkcXKO08jAoGqblpeLP5mtE7EukKSFvqRJCmFS/XVD3Ke0ao7B+P4MYr26U6PE1p5xDScZl/cD+eTOBVwXUMqhNlyvuiuWiaSZAc7KpBP9aNZj6vmkqSOW45xtLeJhlZdHeQO3WdPssb9w6fLyrtPszyj25rPqsMwfKPvhFnahFhxrfNHp6m/ayNeGbKN474Y+mZSKEjm/ve/Rq/3dG2yUwWM5Mk5Ue76ftaua8UJFf06WjZ256kMZJe2R4zNz9O+cVRyi+O4VXcWqJVr+pRPTpLccdQS/hJkTBxphbxyoEsaoQugecovMlFMK1mvYP/vo8FbSnLDuNfvzs01er7amX/ONUjMzizlRD/XpdL7PkK6VX9kWTvEbnjopOwetrof6dO6C4xkMoAy6TnDeeRWtmH6/P/QduDsQGo7B1tPdXQbagemqYykkdKC+UKJBaLjxzyeUJ9ToQNSbXPHiinpsSIjAn43uTKQEkzckYqqXl6b7qg/4/Z19yZkubhDdOPvvUvVzu9OZN5P4o20IkYvnFOP6+kwpvOx56hsuL4PE18u3EUmZNWgZ/YV88H/Vmkk2RPWRt5R41kdGRrsLKN71N6Ai9fxuzIsvJTb2HlZ97G0r/4HdZ84330+gavyv5xis8c9nlFf6xdSfXIDPnt+7GHp0N48vW5JiwDe2yegfddETvX+t9xmT5LUskmvQTKAFfqnBKerL2TYExV1cU5OsvML3bG6oGkZ1DccxTPDrepfkkPeAmIuJcpnl5Wyv+3oPpuEqc4t3ra6LrqTESqHsYmkgmSK3tpP/d4AI589mcM/90tVA7NUdozwcF3f4uZn+0A9CHWpJRWoIwEVi5dW+yBh4OUGvKAVALle03q8DMT6fnQBK4JkhCWVyMJijuGImGekbolyHwx5IEevaQUlJ4dbrnTFh7QIU2587fgyhSesjTDZWTInaXHhHQK1/VDdnxmynX05td24mp9QMWMC9mMLwxFDSThv6n1Az6DZjSMn1Zeme2tsQKzJ64MKb6i1CpELEwdl26pH5jU244QtJ17PKVnR+qKJRkoLE2UrTQmc4sEH0HiMPAFfcvS4W8h4a68b6p2wITrVgryTx6seVXGkZevtvQaq+wbQ/jhjE1jrkAk6uMlpaT43Ajlg1EFQu8bNEaz8iFVFBr3beCPXo3Zng01LFqHSFgI02yCFJFBX6x63Uop7IlFnNmoN1LquGW1sQiPiRBgqrBhqeGvgsLTQw2Mb/BZMX/nTvIPvRDClAwp9G1J8SmdKGztj/6Mjsu2YA12kT5hBau+9G56XrcVWbJ97OPmust7x0iuGYwfcyC5tIcgtDGOlCuR6LkfeEgEjLWUOtmcDuWsMxzBOpFlB69sM3vHLg1T4s9X1zGpztrkH9mnIxtk8zyXUuAVquSfPOTfa6i76lEdmkaWGz1a9V/76EzLNaCVy/pe7zXns+rzf0jvmy6k7y2vZPWX/0h7msL/x957R0lylXf/n1tVHWd6ct7ZnLRaSWilVUQJJAySsIVEBpkoMNgYbOzXxgbDz8KB90cQYMBgjMgSSRJCKKEsrcKupA1aaXOYnZxTT8equvf3x63uru6qXvG+xz7Hv3P0nNM7M1tdVTc+94nfh+y+ES/C3dtfXttB4OaLdQVvEbUwmxLg+uez0jaZLdL14ddrA2ntvckoLa/fwtydz2OPzyNzuliqsl1UwWGxhNvZAAAgAElEQVT0q/fpcfUyO2qpcHwSYQULhnoji4hFSZ6xShfB9Qt5aEigWH8H8VP7PUXD9OZS/1SmQbS31VM+agRAKQKlHPJDM2ReGET6nJe5/aO6FkjNGagcl/yhMW9MwplLw9a1JNb3sebmj9F85VkkTltB67Xns+b7nyDa3YLV3ew53Yyqj0IL9rkDI6h8KYLJp4BK/W7lyLp8zR6fx13Kc/yvb2HwH+9g/D8eYeDvf8GJz95WVh4Xth3k4Lu+xcwvtjN//14G/vZnDHzq5+VnzD/8Eoc/+F3GvvkgY994gEPv/w/Szx0HILlZR0EGzikhiC5rp/36S3U0mxep4zomrrRoe+dFmMkY7ddfUuXYFZaJ1dtGyxW6cGbbdRew4kvvp/0dl9Dx7ktZ+bUP0XzFmQDE1/Vo/OQqaDw9J1ZHSsP5hFDh+GRdjG9t9FNlZSMw5qXnr+r00oJLTis9Z07OxTjJ+YoCs7UxNINAKXCzRXIHRr35rrnuuOQPjjF7925tlCwp/66G1xi96Z6XwbsWFMcXvNoL1XOGwqd8oqM125uw2psRRkXUb/2jrRoCxBfRLqIWnR+8AsM6Ce4rnMQQKzC8rCSztRnbtpBKf2zbwmjRwRkNG8ONkbLgEOluRobIkqBlTKu3tc4eUYiIpTOzymd2Zb5z+8e088c0qWe0i2/s8yLKg3Ji/vgUhYEp7WgoPdc705Tt6oLCTv1gBOVKDcUY1nahC38TqS026ckOUQsnW2DmtmeDY5azGfvm73QGT4jMhAKjIYnZ3ux7duUdShnE+upnwYGGS6gHxZA8e03o//tJnaRYOlLjVvtlodKWttpTyFyR2dt2VLUcNGzF2Dd/h5splgNbqudM78HY2h5cZQRkaFlwifqKqcqCTWF0rgxFAjptv/O9l1XBQOlCh420XKmLZ7dctZWVX/kA7e+8hPZ3XsrKr3yQlqt1oNL8Ay/q/V3iAa5EFR0d/Wi7dH3wci2jl8bWNBDxCJ0fuFxDY7mqyogiXYEyDBIbequG0J5OY0+dPOq/lia++zBuplDmParoIDMFxv/joZe9V7myboSxciULD+8LrQM0c8dzWo4wI+G6omkRX9lRzmquOFr0zEd62pl/qIRRXmsEUsw98AKiIeHdo7xn62LSKEHTRadidbVUy1SOlqnM9iaiva2oovQMed7H0+mMWITcodGyQd5vBFV5m+zBURYefonCwJQHDWh4BkyX8W/cj7QdzNZwKDmjMa4dAkJHi5fkVB2hbOBkixRGZikMLQZ05OJUjvzRiXLR4Wpngx63xvM3EF3WzpoffIKWa3Rke8tVW1nz/Y8TX9OtHbyldVAjkxGLsLRrAJmrgb5CoGzFwmP7OfEPPy9nJPvb5i4UyU/M0/Gey7Te7MHLuK7Wozvf91q9P+pApS49c4T8oTGvblqNXpK1yR0c9eBtQwyhtltTzDmoG1ldTTqjptbuYJuIaKTs8AuSwmiInbRA/ZJnSC3px5U9bOBMpfUeEiH7ABBxLXcYzSkcN4pUUaSK4NgRjFbNxyN9bWW5pcTHNXQZJM9YWVf30KqMYOQr9+g5LxWwLzoUhmaY/e1OnSEQQkKgs57LZ0eNHak8vn69uvpv6RmWy8E2smT8NsoyuNbvDc+I7PWrKMntH/Ggq0RgnyiJduZHSmgP1U43hMBZqJdNpvX/2PIOzJ4OpBtBSQ0bLN0IKpogefrKilxay7cUyCWvyHjZEVDhHyAQ8coZEu1vJ3nayqpaD+nnj4UWccWVpJ88SGx9byiMqrJdYis6mL1zV2VMfPaYmTt3EelqDrdLCEFsXQ+xlZ3IEPucNE3ia7txJxfKThb/OkYJFh58yeegDe4xWUdPfIVOTr+3K+Po0aPcd999TE9P87nPfY6jR49i2zannPIKmP//dDKbkmWcMP9BI4T0oo+g450Xk9jUz8L9u5G5Ao0XnkLTZachLJOFbQdZ2h4sHDZ582M0X7aJSHuKwkIWr3qKpyAIhCmItDciUg2wECwIkzx9NfHVXZ7RLXiQRJbpqC07lw4tBBvtbSG3fxikLohU9jN4grrVmiLILLwGAs5sOGSJUjq9M398iskfPuFjmBrrd+if7mTDD/+EhrPXs/jYAaSqeXYihuF5XQUCYfiYuQSVsbFa6mHaCYzGJC2Xn8HiE0cC4yKlSer8DQhDMP71ewN3J05fQaQpSce7L2b6R49VCT0iYtL1vtfUeW+FWl5zGrO3bUcuZir83DCIre/VRhTHpVzEpkZCdxdzukK6qpYNlALpRRXnjk1x4jO/qhgQhKDrjy+k47qtXrS58AJSlSd06QF0Z7MYjXGvaGj1sxEQ62/1sGODB5zZnCT70jBGNFIdJYruQ3r7EZov3cTs/XsZ/84j5cNGxCxWfPYaGjb3Y7U2Elm/kvxTlXkxGxqIb1qOzGsFMbTfBZfsS8NgRnBy1fMphCS9/SjNl51K9sAYIzfdhzOXBaWIrWin/2+uItrdTPcNVzD4qZ/qiJrSvYZB65vPJ9Jawsyu3UNaYckdrAftoVMOC6PzVAtUFSqO6YwN0zTp+tDrg48oecXC3i2Vh8UX7lSzZ7LE13ST2zsY+p3kq1aSH5lH5WrTMRVgEFvZXn5WABpAQfbFIS+S3ajOFnclc/fuRhVdnf4sVM1ag7l7diPzTnj0MpAfn6vfbxQNW1aTfnx/SL9VVR2N6LJ2ostCivUIv8BdudfNSyKtjRitTbgzi4G1Fl/XR2bPUEi7dNuKk4uYUZM1N/85o1+4nfzBEUrZGt2f1HiYi08e9ClDlWeTyVMYnQ3EPZZJKuJruqkU3y61Wt+R2LQMe3ye3GAa5VSLHuk9o7iZPPE1vaSfGQi2PJHASJQcmRBcD/rv/NAMA3/3S+RSofy1jredR9c7z0dETe0MqMFiFEpiJGOIxiRyPhMsBCcoRw0byTid77s80D5nKq15jysDhf/cnI3VnkJErapIOwBhWVjtjYhEDJWtLtdWuj++toexbz+s4SL8ToYDo0zd+hSd77qQ0a8Ez4LcwTGmb9tB06s3Mv6dhzUkCZXzYORLd7P+uzcQXdODeqa60LOSIBoSmA0xFh7c563HyruVYbL42EESa3povXorsdXdzN+zEyNfJHbmapqvOAPDF4Ub7W0l+kdBOLj2685jYdshpFs5SIQpaL38NMymhFa8Q4zbZipBfGWnjsYOidyMb+glsWkZmeeOlp2XpTEVhnZsz/12t5ZTauZbOWB2pALP9FNmz4ny/NTOtz2T0fMdMQNGB2EZWG2NTP5kW2i7ZbZAYXCaxBkryb1wgtp13njxJqy2BhSGd06qsmECBFEPaix/bIrhL92rC+0qiPa10P+/riLW34bZmKD52guZuvkRwAEF8ZV9NJ67vpxUHm6O8LBdDSN8zDf2Yk8tMvbNB1BF6VtpktGv3EfyPz7gQX0Fx025CiMVx2iIIzP5cr9KsqTZkiC7+0T5+9VjLnDmctppH5KNphyXpeePI22F8M6JqncjKJyY1kb7gHFdgWVhtYU7YRA6cyFxaj9LT4XUpRE6SCLzwiBkCiFtB6unBWnLcNmh6LL42P7qB/raln3uOKktq1DCQjoSw/AMH9LAiOi1FuyTR6ah12pb/bVuNSdpfs1mFh7bV1VXQsQjtF9bH96xfH9bimI6vBhkdFk7He9/DSNfure6YLkJve9/DQtP7A9diwLI7BygYdMywuPKBEYsSmxFF/6iwCVSZgSzKYGSismfPMnsb/foAupS0fbGV9F1/asRhiBx+mpcnvTSZ0DlJMlL1pZ1JoBIdwutIfAii9sOVGf4lF8O+WMTJDb2sfJL72Xut89TOD5BbFUXrX+4tWxMbLxoE/MPH9CFTz0yIoLWa/S78oMzDH/xHp2hJSDS3Uz/X11JfFVHyHhUU2bPYHD/KkV27xC1BSBrKbF5BenH9+nzwc9TBSROW87io/X7nTsyTvbgOMo2MEzlFXPXRh73yBT29BLKMFFOddtKQVaFOlk2ICgOzdLz0dcz9sU7fSqJVgpFPErDGSuwetoojKQDxkSzqxVnOo0yDHBleb1Vzm9H739D18UqkeuCERVE2lIsPF6n3wjyh8eJruomO3sssL+tZR2YLQ24duX7/jETkah2RoQ5t6Ri9r49dH/0dYx84S5Pj67cbDUYNHqws0bUquC0+8ieTuNKUDU6uBASeybD7G93BdvlPX/27l24U6X6JEH9eurmx4l0NgULQQqDuYf203xZuO1I60xe3aNQSCKBtCXFqaVyII7/3cKQFKcWy9+tvRcU9lTad1/1d5y5LInN/Sw++EI1v0br88kzVlIYmq12gPso2t+unW0e/r3yP18Y2gGoBMo1dWF4VTEkZ549hvPGsxj50j2Bs2z82w+TPHUZoqHk4Kkec6UMoqu6kY5uc0CuUVA4OonM5AmQVMz/bi/R3pbgNSp70EglcBdyNWMOQrgkX7WSpR1HQ+EQRcTEECWjb60dSmEIAyMZRdcyD5mzmIWZTGCrbOC6lCbR5W06ONQtBVdUxkUohRGPBGQ9PxUnFsgfLWXhVL7kzGTJvjiEmUrizKUrCHpQdiDEN/Qi7jdRjluu81YaMwSYYRCqPjqZHcpZzNH9wddqu5xbiUgUUYuGrWuIdDWT3qHtEaVs6hIVjk2CYdB69VkaAsfHn0TUpP0t52O2NiKLQd6iirrmk7AspGsjQnTs2Ip20k8SuLe0x15BlP+/o98rUv7ee+/l+uuvZ2JigjvvvBOAbDbLF77whf/Wxr1C/zWko/CCRaZ0ak9l6zScuZq+v72W/v/nHbT8wZnliK2Z23ZQiiD1f5SCmTuepf0t56GsCI5tYRcj2HYEKSwaL9yAUkoXuQrZuPljU7h5p/rQKrVZCVTBpfnqLdpI7hrlgmmOh1PY8d6LMZIJL7Ky4ql0XQOpINbdUn5X7bsRBtFVnT6Ftpoi3S3M3rsn1JOvCg7p546TP1LyHFc/WxUc7Bkvlao2fV4ZKFedJGJdEV3WysJTh0PHBXTEeNMlp9L1kdchSjAnhqDxkk0s+4c3A9B65Ra6PvI6Ij0tuuDeuh6WfebNJE55eYxyIxFl2affjNneUhYWoiu7WfY3b0IIUVM40d91oQvoiGBqnlICIx5DSsnxv/lZtUCjFJM/epKlPYNEOlMoJXAcE9vWEQIal9IgsbEXhVmOVPFHnEsPlqD58mCROxGzaL/uXG89h0w2Ok07PzDF+L8/XKWwyLzDic/cjiw6TP7sGdJPHSk9FRC4c1mOffIWhKlTbsP6jWEgIiZuoHCQtx6kwpnLcOJzt1McX0QWHGTRJXdkiuN/90uUK4mt6qL/8+8gsakfEYlgdTTT+cHLaX/rBYh4fYxgBUR6W+r0W+lIvKVCyDVNxUntAMkdmeT4Z25j/9v/nUMf/gGz97+oFbhohHqSjpGIUhidqxtZ5cwu0XLlFi9lsLK/SymZbW/cgqoxDlePfS4kWsMbd0NQHA2PsgVwZjKIWKkooI7I1mmWXnRDPTzZUt8cN5RvlN6fumgjhBSpBUHX+1/eMabqKCMgkNkC9myOWuxGKQ3yg7OIuOUZwmvbpRDeM1XRwWhvxzEacM1GRFsbwnOauVm7Ktqk9B43J7E8g0TYmBONEFvVSWSFLrBbnhslEJZF+7XnMvfAi57S7T+LQNmKxaeOkA5x/oKGZimWIQfCxwXg+F/9rGKQB1Aw/fPtLD59BCdjhxaZVNLAzTtE2lJVfKUSNWaUecri00c58rGfsO/t3+LoJ3/G0gtDugUxq1L0y7cmlRKYqQTNl27SPKKm2UbEpGHrGtrfcn55HP33G00JYsvbSW8/EoAsU7bLwkP7mH9kXz22xuzdu1l4otq4429AevsR0s8c87BXvfO7GMF1TZyMQ2FklsVnjgQjeWyX+YcrxsLkqcvp++trOP1rH6D1jVurDPInI9uD9KmKdHUFhbE0Qgharz4LZVrVZ79l0famc4it6CC2uiuwHETEpP3N59F86akQi1aNK0I7G1LnriN3aDzAukpK1eKjB+rXyolHMeNRL7qoGjqjVJCrYcvqQMSoUlp2SG5ZhZsOUYzR77bnsiz/7FtpOGd91aXUpafS94mrifW3o9Dvsm1vvhyN49ywZQ1upsDAZ35FcXROO2Jsl8LgDAN//0tkwSG7b4SJ7z2Om1e4RY2Hmz00yfAX7y0XFQztN4JYfxvxtd0Bni8iJh1vOZ/FJw+H4yMLSD99hJlth8oKvX/clCvIPD9A69VbvKjySqSciEVou2YrRiIa4Hn6ObqgucwVQ3mychWyqHFfa2sMlIrWuZmCt0dC5DlbEu1rJbamK4CXL6IWrX94Nk0Xn4KIR2rOMQORiJK6YANuuuhrb/WnODBDBWKsRnYQho+fhRinXEXDllW4RaH5mBPBdSL694Kg4cxVdc9npCrL+OnnjnPkE7ew723f4shf3EJ650D5a503XE7itJUoobNMRCpJz1+8UUfhvRwZJdgc33x4hipZcCiMLYJRys7wPoZFYWQRd6lYl6/hyrq1LkDrPIvPHAm/pqBwYpqZXz/P7N17dKR43kYVHWbv3sPMr58H4Ngnf4q7ZOvoXsdCSpP5e/cy9+BLoc+t6nYd+UHLTHrM80PzLL4wQfrgPIsvTJIfrMgrhfElqjMMBUqaOAt5ZN7mxN//iuLwrA5iKboUh2YZ+MyvggEnISTCaj4AwjROapAHaLpwQxkiq0r2SsRovnhT3QxdpUprzYNlcixPtq9kr4qoWYnxqNFVEQZWeyP15FizpQGrvQmXCH7IMolA9GnInNy+0YAeqxTkD45rWc0Nnr86uMwkcWo/boGqOdF1hCB+yrKXne/MnmGPX1vlj+sa5A6Ma0zqOkWFlaudJfUot38Mq6MZV5SKmpY+BmZfd/l7S7tOcPQvb9X7++M/Jb3jGADOfFbLvSG2AWexiLOQDezf0ri4J+FLpb4vPLIvqEO7kvSTh4i0p0Lld9DG39yR+tHouWOTOPMl43DIPqkbDKTb5y7mfffUXMs6pM5brzOQquRYIBal+dJTabni9MBK1EekIHXeujJ6QNV1BdJVGBET5UpdO8HW9hLH2wciZmkZOKTpSkoWnzhIJjSISfdl+tanKK3NwFmCgbOUr8tT3aUCjeeuLbe1lhrOXo0yIyFjDkqZWG0p4qetCB2X6OpuIl1NGoonsNYERkMCJ1Ok3v5253PYc/Vrp+SPTHm2gerna/uLqWsfhvRLKVDCYPoX2wO8ocQfpn65w4P09XR8XxQ/QKQtheuoEN0frxBuvUNMU3xdT2jbEDogx2ptYMUX3k3D2WsQsQhmc5LWN51D78ev0vfVOQf1mpW0v+siOq6/BKtDBwYlNvez/MZ3EFveQfrxgz6eW33v7G93Y7anAlNS6lt0Qw/19xhYv6cO8ApV0+9llP/617/OzTffzI033ohp6jSKU045hQMH6lctfoX+55A9pz1x1QzH+7u2uFwIuTnbdzD7GbFAZotY7c04xVJUpyes2AZWbzvKdutuW1l0KRyvgzEqoDAyR/qpY9pgViOgSmmy8Lt9NGxZjVIWrhvBcfRHKRMRT2K1+yPla54fMXXacJiiBBgNcfJHJ8uMWmOcVQ66/JGJcIxw0NF7SpvU/Wn5ZVxPy/SwOkOEHQRmMkHu8ERoyxX63QAtV5zB+h//ORt+9Vds+MUn6fv4VRi+NHWjIYktY9gyjiOjGA3VxvTZZ49z4l/v4fhn7mDm3r3l/ri5Iidu/A258VzZSJM5MsfgF+4GoO1NW0NTmuNru4j2tNBwxgok2qhe+igrQvPrTmP+wX118fAnfriN1mu2Voo7+T6ua9D25nO1gi2r51tKC4WFLDp0vfdSUhefgoiYupBsLEL7m8+j6bJTSW7uD13vCkhdsIHx7z0eOBiF0MLl1G3PMnPnTvxOgNKh7UylsafT5Ujr2vlWwtBGKs+wEXi/q5i7fy9urpS6X+q3wp7JlhXkSE8r0c1rMFctJ3rKKmLr+xBClPEow6reKykwPQgp1xVVxi3X1Q6Dk2H1ms1J8idmOP73vyK7dwSZt7EnFhn/3uNM/XwHRtSi4axVwdtNQcuVryoPcGkPld6rFCgXZu99wcMArlYIXNdi5rd7wvFLPSrOplF1HEAiGi9HfWinXilVUo+t2ZSg/c3n1X12+1vOxWiIlTEGHQ/nUGe/gNHS6LW1dsz1uBmGQXzTSg1p5ZjYth5zR0RIrO/15l0y9/B+jn/215z4/F0sPnOs/Ly6BdEMjQuP0pExGt5Ff0Cgiq5OZw5RpEAghYEsOhz7658z/+hBZKaIm84zd+9eBv7hdr3mFksFjaFagAbpShrOWefti8pHGIKWN7wKIQTLP/sWEpuWa9immC5y2vfXf0hsRQe5IxMEBW/97Nzh8fpYnsLwaoDUFwIXnjqE8nAnq845BZM/eUpHw4aMCUD+6CQN565HyohXTFHzFte1EMkGot3NzD+8n+Gb7tcwF3mH/NFJBj9/F0u7B0ls6EXEo1qZdbTS7TgmRCO0vO50zFSCvs9ch4zEy0q5SjbQf+NbMSIW7ddsJfWa06rG22xpYPWX36M7UGc9SNtBZcKNkeBFnBWcSr591UWJLDi6cKiqVWb0Wpd5u+67f99CTsqVzD96kIHP3cnAjXex+PTR8jqfuuVpn1LhvV8plnYOYs9msHrbcR3/GjRwbVEuPt3/mes0xIYXGiZiEbr/7PXEV3dhNsZZcePbPMd0BBGxiPZ3sOKf3o5RLjoWTvmRGRyvQGUtf3EyNiKV9MbJ1EY716rsQQyWdg1UQTWU3iWtKJldJ3zFHH3j5NmErWatQC7722v02e59ev9cK2GF4VmcvKqaM+3MMFl46jCL2w6hap0oSqf1p7cfZfqO53FzTtU55hZcsi8OU5xarIIErDJQeeug/9PXkjx9uT5jYxHMVJyeT1xJfE23hgAJScVWrkQWbA8LX1TxrXKR2myB9recT/MVpyOi3vkdtWi9aotn+N6ko/SpPmNB0Py608nsrm+8Wto1qHmf1PNVkR28AtgdQeWzTKV+f+oaDQ3o9dtIxen52OtJrOvRRrlkY82cGIgGL2Oi6lyvZK0qZSCzBc3fpPDxDu1kQRjEN9cPpDBTCZZ2nkBEg7WRRMxiadeJcs2HqvkoyQvxCAtPH2HoC/dQGNBwSoXj0wz9y91lw934dx8jvWcMp6gNqcU5m+Ev/Y7i5CIvS0YwUAFARKOogs3sHTuDxVhtl5lf7ySxqa9sFKttu9Gki2/WK5aupNK8K4SE0MX5Zn79fCC6WRUcZn79PJmXhpGZoIFboXnWy1HrG84IdexbTQliqzpZ3H6MwX+9m/yxaWTeIX98msEv3M3C00coTiySOzgW4LvKdpm54zldE8Rxg8YSW7LwZEi2Rg01X7oJZZg+WdBECpPUxRtf9l4jHmHlP7+DyLI2zVOjESJ9baz4/NsxElFaX3+GdlDXkNkYJ7amqwzpUPuRUtcBqBcZjWGgIlHqGYiJWlo+dynzY9e1kI6FPTDjwRO5AT1SKQ3TKBIlXh0ivxsG07c9p1vie33p9+lfPUtLvX43xIiv6faMtCFnrKNQeTsQSOR/ScmgGEZGMsr0z3dAeRlXZLX8kUmtQz83wOC/3E3+mIbXKZyYYehL97Gw7RD2Qi30pG9cbQ0vVffdqURdaCuAhrPX1oWnUa6CqFWlU/sdpVjWSeUL5chQY2LZNgFEQ7NGFFZnCqutoa4oaTbGMKIWK/75HUT7O7QcG40Q6WlhxY1vw2yMkx+ex3XBcQxPtvfqHwiLwtAMygk6gJUCJQWR7maIRmvWoo74bjx3nS52HiZzufKk8higHbii4pipWseA1d4YGoioFIh4RAePeFApVfK9adJ25Zl1orp1++cf2c/S7uEATKuSkD00qQO4atAaSvcbyTjpZ4/V3d9Le4dPAoUmkJk8yglm+YgShIKo1AwIzAkGbq7IyWxcRiJGWEAAsaiWa1wdFKV1PS37l3RN17M55I5OMnzTAxz7+9uZ/MWz5eLaTRes90HvVI956+s0nGm0t5Vln3oT63/6cdZ+76N0vO3CCpSgCp/P0k8hBK1XbmHNtz/M+ls+wfJ/fLsOrABmH9gbMp6aFrcfQebdQKBS6bn28DxWXytSKp9ub+hzORHzMptfof9T+r2M8rOzs2WYGn/xp5fzqr9C/zNIwzTgYyrV+Islyp+YYfB/38fAP97FwtOViMUKvEK10A+QPGMFo9991MMw9n1HKaZu3YGRjOlDqJZMg9R5a71ieCFtVloIzQ+FwUTo37MHxkjvCoNqEMisTU02j+/ZCqIRnIVcWdCrPThlwfWMctUFE0vRcVZrg2amIVEnVksDsVWdZcNBFUMT0HTRRo3DHalW2ksHmLTdMrZqsPGUU/1d12X4G49w8MM/5uinf12lJE39ehcD//hbCkNzuJki2f3jHP7zW8i8pKFMJn+2g71/8yvSTx8l88Iw4zdv49inbkPaLvOPHMCZy/lSJgXKkWT3j5E7PEHjuet05Xafs0IqQdMfaCNsdH0f0vFjpIKbh8TGfoojs+Ux8Ru2QadxpXcPASL0k9k1iIj6ISwq861cMFuSiIhJ53suIXnx6Zj9vTS/8VxarzkHITR0h+OEC4G5o1MUhmbrFGOD/KEJZN4JCFKltZPzot0C840WbnN1nE8gKIzOs7h70Ddevo/SET7OXJZDf/pjJm/dQWbvCHMPHuTIX/9CG3KLrjawE4yOkFKQPzbtwyCsvEMpk2K6SMsVp9VpG7T/4VlM/Wx7IJVSFRymb38eWbDp/dgfEO1r05i7poGwTJKb++l46/lE2hrx10YoGVSkNDFTCfIDM1Xj6W9f7tAEWIYPb7Z6vUS6mkHoYn4lQ2cpQhGpiHQ1l9eoHyNYSgOzrZHGLasQTY2B9RBd20u0s4nURaf4jEal1N+pRL0AACAASURBVEsTFY2R3NhHyWgdFFgExYkF0ruGfQ5FTzguwvSdO1FSceLGuxj55iMs7RpicccAg1++j7FvP6pHoI7RULmSSHcz8TUhBdMMQePWVdhjC0G+Uvo4isUnD+Ms5ss45kppB2l+cJbsvlFUUaeVV5/vevzyx6bo+7PXEV/ZiRImrtIKfeyUZXS+40JAQx6s+PzbWPPvN7DqS9ez9rsfpnGrxh82UwmC+1eT1dpI06s3eNjNNV1LREisK0V+1Q6MAtOgMDhbPuf86wglsOcyyKIsz1ftWlKOJD8YXlTczdo4mQITP3rK4wE+3lFwmPjhkwjTIHXRpnKRyfJ8W3GSpy5DSsngP9+Dm61gpDrzRQb/pQI70/ex17P+px9j2aevZfU33s+6730Eq60RETFJrO9BURPlJwSNZ68msjIcskApwDRp3Lq6rtLfeNYqH0+t2YOOB82xIeTdCBrPWhX6zOo2KAb/9R5GvvUwS7sGWXpugOGbfsfINx4GIHds2ieTVPgWEoqjc0z++CmfbOGRq5j44VMALDx+iKXjCxSLJsWCSbFgMPmz58oGufjablZ/4wOs+up7Wf1v72f1V99LrL/d177wdic29AGG56CpGK9c1wJlYI/OEb6OtUHQnkprCJeqyGkNzWDPLNF02aZQJU+ZEeIvU/cld3wKZMiYAdmD4xSn0qFQCqroYs8sURgptd0/5wLXUTgzSxUlvuYsKZ0fZirB8s+9hTXf+ZDe39/7CE0XbACou9aEoddq80nWTNMF6xGmQfcHXsO6mz/Kyv/9btZ9/6N0Xn8xQggMy6Dvk1eV92/JyRpb3UnHOy/ATufr8j1nPocS1TJJ5XeB4Su8VzVmqsJtzFSCvk++kdZ3XELqii30/e21pLx+L+44hh1SbLo4ucjS7kGSpy3HX3C7Mp6C1AXrcIuy5qzQZ41blEQ7m308zd82bWCyZ5a8Qus11wsOzsxS2SgQMCiYFu5clvHvPh5qGB/77mM481nmH9ofKLYsiw4zd+4Mm8YqarpoI0SivsAWLUNjGsRWd9bNGHHTOZLrepAiaCBSClquOlMHA9Shxq2rabpoYzjfE5BY232Sd+cpDM6G6g4CysaUk1HjeetovvxULzjEwkhoyJz+v78GIQRj333MN2eeLFl0Gf/Px3HmlsJrNyiwJxb1fIfVqyjYXg2uk1Ns4zLcYo1R3BbEvaKcL3v/ig7WfP39rP7a+1j9tfey+uvvK/OsxnPX0vzazSjDRAoLZUYwGuP0f/pNXgBJmGFNgFQ4s0uhZz/osVG5ImGZbFKCk7W9QpPBe4Vl4MxkUKH1MnQWnzuf887BkOfbkvzhiXBlEh213XjOGlped3o5GMhIRDFTXr+NWl7r6zeC2KrO0PkWUYumizfSevWZIffq+1uvPpPsoXEIAD3pMzQ/MM3ED7ZVF7BWOgN44gdPIk5i6EQIov1tdY3Xsf42HUlbZ6dE2xto2LISVwkcRwe2OI7AlZDY1OdBW5pekJVZ/ihlYM9mafkDXZMmTF5rvXyzrp1Up+1WcwMrPvvmSiZ56Uokwoob30p8ZQdGMiTD2BC0vP4Mr3/tLPv0dTT/0fk0XbWVvk+/uWzMLIzMoaRf1hO6/TYahgnh6SUl3cQsR8PLTBE3Uxtg4p3fR6ZpPHt1uDNDQcPWVcRWd4brBkD7287FsYNrGMB1wGiKl+uyVQcqAYm4PuP+1xu1Ad00dJa3ZdL9kcuJ9rRQL7AMdD0bN11ASjMgMykHilOLZQd1VUFjpW0eQoTv/dL4pM5bW/dqy+WnnTRi3PUgd3U9Q6Pc71LWXnJTyfEdnJPYyk59lsQiwfNb6XvLuqFP9pfSy16xbea3Hebo3/ySuYcPkNk7wsQt2zn0sZ/iLOYwG+PET12JVL4zUoHZ00akJxxOqKp/oo7dwafD2XMZhv/tYY5/9jdM37UH6Rn+3JNkycu8i4jpoEc9l5WfUppYLUmkMsv9rOwDC+Wa1AasvUK/H/1eRvnNmzeXYWtKdPfdd3PGGWf8tzTqFfqvpUhfM9Veesq/K28JjP/4GQ597Fbmtx1h8bkTnPiXezn08VuRUnqHV1hEioHKO+QO1laYLxlyFcWZNC1XnlnDLLRxqfXqMzEbgqmQ5b2cjJ2kcCCYqXhZsA4oHEBmb7XXtvJsgbNYJLGuG7dAWWF2Xc1wXBkhcfoyon2lYlBBJS62ooOOt5yrMfNLERKWTrXu+8TrEUKw7C+vRMQiZdgCEbGw2lJ0XX8RifXduDZlI2JJeZciQuL0fozGeHDMPAHUbExQnF1i37XfZu7+lyiMLZB9YZiDH/wRM3e/gJSS8e8/GTpmQ1+6H2cuy9Qvn6uKJFIFh+LwLAvbDrP41NEQ+AwBLiztGWLq5ztwC7rgim67ieuYTHz/KVzHZepnz1bu8f0c/toDpM5f5/XDbyjVhv34KT1k947W3Fv5ffHZ43WzE0TUxJnJkHlplP3v+k/m7ttHdt84k7c+y763f4fizBLZfaPgRYv7x1xJg8Wnj2I0xOoaaSKdKS2oBPql+9B4Rj9mU7Lm0NYHd2JjbxC6ojTuCjAMnOlMzbMrvxdnlhj/ydO48wVflISComTopt8hWuIoZfrWsVERhpRWEmqdCaV2IwWRvtZy9ESV4I4uRJU7ohWS2j0mDKGxGQsOhQUH2zGxCwJbWhRmbJQjia1oD+U9SgnM3lZkwa2bXe8WXRrOWu2tj1LhT/27Egbx1R2IRJTa6ESlDKL9reSOT9XAlVTenR9ZYGnXCYqzhcB6yByc1kJ3FcyKf75NjJiFkYyHzndsZQfpnYP4sSIrhjPF3EMHtIHyheEqY4rKu8zc/xKF4TncfAkbuCTA6nEXkQjOzBK9f3YFRjJaVmJFTBd47XrvJaTOW0MJR7+6gJ5BYkMPuSOToRA1suCSH9DR5OFzIjBbG8iPLrB4dFEX0HUM3KLJ0r5pHB+WpJSSpZfGWHx+qErwa3r1+nB2bghSW1fRds1ZRLqbK2nwloGIWSz7izeA7SKpjCflNavPsfj6bt98VfMeLAsjFffGpJr3SGloB1GddGlhmRRH5rDnsyHzLcgPzeAuFZi558XAeMmCw9xD+5m5YyduSLGp4sg8Cz7IHiMepfGs1WVs8BJ1vOtCLxq75BjWUcYdbzuvnNEVel4UXBIbe2m6aENVJJ+IWbRdczbR3pa62QkiZmFPLYa/W+l3l0gpRX5ghrldQ1XnSmbvCJkXhlH5yjtk3mHhsUPkB6aRtos/w86fJSSLEmc2aOjU4zaHmy0ydvM2DXFVijwuSvLD88zcX5kLZbukdw6T3jVSVfgXn8HPP2ZKgWH5o5trIs4UJ1UQE2u6SG7s1YYpT1FTXsFJiSC5oQdVVGXltcR7XFePa90smXKzwyOvpTRQCJIbezwMVbQCXuYdJokNPT6DQI3zyvUcnaYZ2u/ayF+rOUm0r7XqbEus7cZoTAbOErOjmVh/Gxs/fU2o4a39bedVFbh1MkXs2RxuDW6v2dyItBJIEdUKoRHD6OpAIGg4VWOMByPSDRrPXIEZC89OBIERtcrBI36eC5SdOJl9Yxx4/w+Y+PF2pu/cw/F/uJPB/30fSirSO46HzptyFUvPDdD38ddpeA7ld1BD+1vPxUzEvGLvwXNKWFFyRyaqjJFQkWPzJ+Yx4tE6Sf9gNMQw4pEqnldeL7bE6m7CmQnfY/ZkmsLIXHm+qniMK8mW5f761HLFaSgjgutGyjzLdS3arjsHI3KyosLCK+RsBc5+qSxdCqEofWdrtQNJFhxa/+B0YsvbKoX2TA1D1vfx1yMiJrEVIbVc0Ebn5Gn9obZGpbRM9HIkhKDnhtey+mvvofuG19L3l1ex7j8/RGyFdqDak354Gq+/SmBPLRHtb/MySmrIMmg4Y7mWU0PeqQAzWWlbcTbD1G9eYGH78arvjX3n8dA2j333iZftl58iXU1EupqrnfdSUZgu4KoIrq0NsXbOwM2EZy1USGB1N4fDhQIiEcVsTKAzk2pkQWViNcRJnt5fyUqRvr1iu8RXdYQ6rkrXo8takbYKyIKua9KweRlmcx3ITsBqSiKEoPsDl7H6395L9w2voe8vr2Tdf37Y52Ctv84RQuuMMasceS5iFtG+FtquehWprauJVwUk6I5F+9touXQT4dA3HhlC12UKkVuKk2kaz1xRt1/R5W2ktq4BgnsMoZ2ozRdtLF8H/3VBYkMPTa/djHJNtKnJM9xJi6bLTg0Effg/wjBInbUKo7M5MN+iMUnL5ZtpevWGun1ObNAFqlVjE46wcFyBg4VKNCIsE2EaLPvklXrMvWwbEbWILW+j/WpdhH72/pc48KEfMfGz55j85S4O/dlPmfyVhrZy0kVq+XXJEWK0JFCREj83qn5KYVKYWAwv7AlkXhgid3y6kuXpCq8oqj6XMvsnUA2N5bH2j7mSoEHPDS9TxCyPmeuagIk9NO/9bXn8uHK9MKYdevZcAbtolp9hOxGKs9rOYnY2lt/rJ6UELX+w+aQyU7QrhfTqeNXK30QjJDb1huqhALHVHfR88NKAkwWg+fWnY7XU35+6UzoASY9J5RyS0kCZXpaZCFnnCEQySuqi9V40fKnNek4atq71ZK3a+gQVfRTDYPirus5OmVyFM5Nl4tZnyA/NsrhzuAyRJqWJ60TIDy169cFOTvFVnZ58WZMN3pxExCzmtx3mwHu+z+z9+0jvHGT0O09w4N3fw8kWifW3lfVD/1oDHeQY6SkFlhq+edXPj61opzhSglyr7rebtetmqr1CJ6ffyyj/6U9/mq9+9atcf/31ZLNZPvjBD/K1r32Nv/u7v/vvbt8r9F9A9tgCgcOj9LfSXrTJXzxXcyxC/vgMM7/ZQ3xFu5ceW00iahHpaa5KOaw1jDuTaca+/3Q5naf0cRyT4a8/TOKUXqQqCUDao+46Bo5tkDp7tQcJEOyTUrronjK8SG2vGreuPK0NUtrgX1GCSlGUUmoPpxGPeAWmDJTSwp3GDQN3ycGtB5cgdIEsozFGcusGnAJITJ1Wv6yrLHgn1nWz9lvvp+0t55K66BS6PnAJa//tPVgtSazmJLrgScXAAgbKhWhHE7GVHT5BpFSpXLcxvqaDY397GyVPZKmFSsHotx+nOLYAUvmE/orx2J5eIrN/NBRXUuYdFp85ij2XCTXKKQX2zBJzT3i4sUqUP0oK7MUCuZdG6qbXOTMZEqs7kSqIYQiCpgs2eAp+uIApTJNoX2voNRRYLUkGbvxtQJlSRZcTn78bx4N50JXVTaTrVVmXApl3SG7uL/fT32eAhi2rPNzIcOeUmy7QfcMlnuHC65PQKeRd73k1yQ09Oq269tkCGs9cgQzFTgfQRezmHj0I5WiYyv6VWYfCoQkqc2xU1rFHznyesGcLAUhYeOQQrlMqwKPJdQ2kY7G44ziR3hbvwK7ZY7bEam1g6CsPYM/mkXmFcg1kTpIbmGX8x0+TOzFbNkDUvrtwfAblCUth5M5nifS1ebUV/OsYiCcwoxGcRbssPPmvZ4cWPdzI6mulcXAXC0z/Zk/JKxLY/3OPHmRpVx2BSCmKYwv0fOS1lAqygk4PxRD0/tkV5I97EcD+ehIl/pctMv/IAS+yo6ZtLixsP0p8eSuuo7FXXcf0MFhNpAuRtgbiqzpZ+8330f7Wc0m9egNd11/E2m++l0h7I4m13ZidzWV8YY3dGsF1Bb1/8lpvjYZgO7o6zbwkGIeRM5th4HN3+TDKvXVYlAx87jcALO0d4aVrv8Pgv97P6LefYN+7bmbwpocAXauj9owoKRRWRxNmIsrqL7+Lng+9htRFG2n7o7NY8/U/puFVKxBRCxGP4jhGRYD0oIWszhT5I2HwNLqNqijLwmug30pH20aXtVaORb8BzHGJdDV5qffVxlAA5Qqyh8YRRpCnqoLD4tNHWXgqHCsfYOHhg9X3OC61USbTt+/2Kd/ee4XB9G9eIL6601MySkY/n7OhIa7rgHS1Yy8pLzpKYGcUVqfmpbHldaLhpCLSkTrJu3Xqa3FykUN/eiuHP/kr9nzyl7z0rpuZuVfjLi/tGgwVzpUrWdozjAyk3Vf4mERiNoQbwKz2RrL7R1F2LU8UIBVzv9sHwORtO3nx2u8w8o1HGf7aw7z4pn9n9n59jUhYDQDPeWZUIsNreYdSBrFlrVQKTXv3ej97//RyIt3NXt9q+mWD1dVEeucJLY/4ziLp6vcVTsyE9rlEsf7WwNleapt26qyCZMxzmptlp7nZ2kjy1L6TRvpm9gzR+Y7zKO2LyjoXdL/3oqrvukU38Kz0zhMUJjI+xVXLLfnBRTIHx4m2JFn3gw/T8oYzsLqaiG/oYcU/XkfXOy8AdMTciS/cz8EbfsLA5+/hwAd+zNCXH0S5EuVKTvzLPTpbxfEK5Nku6ecGWHjiMI0Xb6jMn29vKwUNF64/CSY1RPta6fnQZbjSquK5rrLo/tBl+t3/dHcZexypdG2h7ceZf/yQLpZex1KaH53HakrS+uYLcGS0DJ8jOjpofcOrUEp5BcmrSQidiVM4MYNShub/UpQjHB3HQBZdD84sXG5xlgoUJjPe/9WMixQURxfq8nqltOFVFl193vvOfykFseV1ZDEfLT51FDdX2uSVdTp1225cp5IaH/jpQu7olOcQqEQQggAF6WcHWNozVOZ1laAV3bal3UMYMYtV//p2ev/0CpouPYW2P9zCmpveXXao9dxwabD+UNSi54OX+GAggmNqJF/eKF+iaE8LTReuJ3nWqqpoaM9uWf1ugYavbIjRft3WajgUQ2AmorT90Vkaa5+Q+VbgeE6sgX+5lwN//APGvvMEJ268h73XfpvsIe1EqVegUuXtcgSlfqYKdw6chOafOKwdVEUPXsfRkBsn/vlulCsxm8LHzmiI4UymA3U8Sv1yMzZ2ukC1nFs5y92MTfsbt2g9zKnwPMe1aL5iM2YqTqStIfTdZnMCIxbxiq3WyIIIinN5Gs5eVWmPv21AcsvK8v9Fu5ppee1mGreuqXY+ngRVwLAMUltXs+am62l945k0Xrie3o9czqr/9x1lrPrVX3wn3X/yWqL97USWtdH1votZ/bXrAWg4rU6GgyFIrPFHVdecYxhEOlIkauCxSt/v+7Mr9P53dQBWmZ978lekq4n2a85C1WQZKXRNJaspwdCXHwh998i3HiPW3xYOPwUkNvRgTy9hT+epPeecrEt+aBarsznUiKuEidkYZ/Q/n6A4uojMC6RjIQuC4nSW4W88AugswTVf/WPar91K0yWn0PvRy1n1xXdiJKLYM0sMf+tRsJXO1HMVFBXjP9JG1LrFOYHMzkFUuVZfjb3FVTheRlfgXgVupsDs/S9pfuf4MggcXYNg4ZED5F8aKdsESvxSG2NN5h7ah46Q1u+uhbjLHp8KjGfpGo7Cns0w+u3HULZE2iAdgbIlkz97jvyJGZKnLK9aI6XflYLk+p6awLVqedGey3pBChUZusTP7akMIhGjrN/VPNtsSWHEo7S/+yJcLFylMy5obqbj2nMC3/f/DRBf3+XZWGrbJjBbU0R7miFiVZ9xrjbYx/vbmLzlWeysqpYNHIu5R496PNc3x1XrQZAfnvNqowXHZfa+fSw+fdTLBq2ZE0cy98jLQ4QbHc0aOsaxkN5acRwTkWpAKcXgF39XQaQonROLBYZvekDXbVPBtSZdQdtVZyDzDrJGh1VSgGlijy/WgRsrd/4V+r+gOkBm1bR27VruvfdeHnnkES677DJ6e3u57LLLaGgIP+Reof9hZNR68aj6e+r2XRV7n58UTN2+kw1ffyfTtz9fHWlgGkR7mkhu6tUKrKvKRgsAJZSnxwtkThu3pVtt2M8dnCC2st2DOlEoVb0co72t5cg2pSpyTckI5zoS6QiCKVW6LSJqed2qGFB8XWPq17vDxwuYvfdFGk7trXpv+V6pMGIm848cYvquveBUmGz24CQnvvwAaz73RpRUzD14gKk7XsLNFEjvncRINdDy6nUs7RlGREykDzevZKRd2HbEi/gwgrh5hiegjqeDs+kNxdL+Ud/BXHtdlLMTAmQIrOYkxbHF0H7rs8JA5SoQDL5RAYkueEJdNs3S3hEduZWrNdQI0s8O0Hj2Kubu2xvyBEHTheuYf+xQoG1acBe4uWJdhSN/bIr4+y/0rVH/AyDS21xW4Et42eVnC3CzRay2Bg07VNsy08BMRml+9QaspgRTP99OcXyBxLpuOt9xPnEP2zC6uov84UlKp5WSYEQt2q85i+zBCXIhkbQAsVUdLO0eCR0TgPzQyQpgaiEwjJQCoSA/NOspIeC61dcLg7PliPDa+ZaugTANMntD0melYvZ3++t6y5UCe2oJozFaxgGv3t9gdaSYu28foqZfQgjcdIGlfaMoSSiOoMrayLoRp3qeK9A5Qcq+OIrZGAcWAteUKzEbYqR3juAqCyFtb80YSBEh8+IYsZVtddeaiFoUp5fqvrs4tkjilGUsbB8OtFskk9pwrhRzjxxi8ra9uEuat4jGJK2XbUBKSWE8G3i3kiZLL47iLOSpx/CddAERsYJwRd5QRjoacJcKobwlPzSHlJJjn/5NIBJo/sEDNJ7eR/7oFK5jIITCMPRDS5EdC08eoeONZ5B5aYyJn++iMDKPEYsgHYOe95yPMA2ivR04i5MBv198TQ9WWzJ0TBUKszGGky6E8kWl9HrqfOs5pJ8fRNq+hxvQesFafZaUHJE19+IoDXVWCDE+AwgDM1XfkFMyVKR3DzH67497/bZou/p0et+jo9HTuwaDzk5HsrDtCC2XbSz3u6J4eM9ubSR3bIqJHz6DdvpWHAfDX3uYpnNX0vnWc1jaPVgFUSGiFk0XrvPWeb13H2bZn7+G4/9wF4VR7Qh2vaSI0e9uI76qHUwRfh64UhdaDpzdvldMZeh461Ymb3mmum0xi653noc9Ha4Yg8BN58kNzDB+cw3+s4Lhrz9C4zkrifa1kj86iRDKx+8FGAaxnuY67RK6T0pRzOm1K0TFGuEaUZyFPIs7jtU10i48fthTjoI81c1JzMb6hbsBMi+O1rkisGdzFEbnKU4EHbH5wTT2bAYRjaDs8LRlqyNF82Ubmd92nNyRCuRaw+Ye2q7S8HTF2SUOffRW5FLlrO186xZ633chU3fsKht8a5rG9G07WXXReqxkjN4/eW3o+8d/8DSL24/rApZe1Oz8tqNEuptIbV0eHkmbd5h9YJ9ef65P3KVi6J29fbdWKGv2v1IgDAM3nSe9exQMs5p3CYOlPaMY0UioM0M5kuk7dulCsqXn1Zxj9lyW9M5BJn/2fBUUU3FikYHP38PaL7+5rsykgNjKDi/jC6RrVV+NRLBScZRhohxZxVNFxMRKJZA5BykNhPAbXPVY6EKOXldrxkUpiHamUEYEqOZtSgqSp7483MnErTtCgzTcxbxX4FY7Gar4qlAYhnYQu7aDcivXpKuvm81xzMYYwjI1tImq8D1hmd7ZDSJi0nzxKTRffEqgDQ2nLye+qZ/MroGyzJc8pZ+GM5aTH5rVuNZFB/9GVkoQ6Wx62X4DTN/9ImPf3VZes7FV7az94nVYyWj48UvlVe3XbSVzYILs7hOgFCIeo+ejlxNpa8BKxcGKoIq+TFeFzsRNxZm6fReLTx6rfmzR5ejf3sHpd3zkpG02DANpu4x9/ylm79uHKjrEVrTR/6eX0nBa38v3+Y5doTASbjpP7sgk8XU9LD0/EFhrsTVdmI0xpFM6Y6vHXFgmZjIco1ihsdXzQ3NaH6yStwTpF8YB6Hzn+Yz++8PVNa0sg863ncPiM0frGJEE6ecGSW7s8fZQybLlMyw6L299iq5spzAwXasx6aA2wF7IcfivbsNd0Dxm7tEB2vZP0f/RS8rfb3vDGbS9IYhO0LBlJfOPHax+tgJhWUS6msCF4GLTC146EjcPrjQwSvxBgSuiOIsF0jsHPWexqJIdlKuYufdFYstacXK6hhIl3uMazD12jL6/kKhcHVx4RyJiHuyFUoH1YLamWNx+LHSPKFey8ORR0s8O4DpGjUymGX7mwBgLjx72QbBWHp7eMYhypZYne5rpuv7VgXfMPnjAw+mvaYAL03e9oHmDsoM6sgKrtWQXC9fX7InFUJ4LIB1wFnIhsgGgDOz5vJcFYgZtA0KFwtb5yYhH69gG9H8sbj8e6ihRjsvCtiN6PdQ5S2buf8lXM6Km3wrchVwgA7+UVSHzDlZTQkOq5aXvOwojIoi2NpA9MM7Yt7eBFJRMl3Iqy+FP3cGpN7+H5JkryHowsH7DfKSvFbK2FgwCZ5E+e5Kb+3BzQaYsC5A8bRmjN/+SUJuHgpl76+Oyo/zyWsi4OJLCyHy4nUkJCiNB/bOW0s8NBteLgvzAPOmdQz7+VN329I4TLP/LKwI6A4CUFqmta8i8MBoqp0pbO1LrkfL9+wr9n9HvFSkPkEgkuOqqq7jhhhu4+uqrXzHI//+IjER4ZfgS5Q5NUIpW9KewKKUjSq2WJKv/9S3E13dphm0apM5ZxarPX6cNYJblwcT4Pp5HrRq2o9pLqBRM3/lC2XNaopJCMHX7btyM41Wwrvy/jqQROFNL9QUOBMXJJfBS4f1U+rs4GY6/qNBG2OyxepGXsHR4iomf7ggWLVWw9OwJnHSeiVufZfyWZ7UxSEJxconBLz5I+vlBLRDlq72nWkABN+9odlZuto8phvQn0PiQqCv/kxpOW+YVmq25Zpm0veE0YqvC03oB4mU8u3CBw0pWcBmrmqXQqZkqePD529706nUBB4p3icatK0k/N0xYAR03L8sHWGl9lD5lAag2asHXdqW0MqKj52vSvB2Nj9Z+zZYgRqkhSJ7aV0mfMyykiOOqGNKIgek78IyIl5pmealqOhJPCEH3ey4MHxOg6+3n1I0oAbCaY3XPP6Ugvq6r/HstiaQWvutRcXKJxWdOEDpmtkvu+HT578D1vIvtOTFC8ZZcBgAAIABJREFUI0NcBdFIOXXOsU0vGlzzH6OjCacO5p1SkBueC71Wfp8P5iRAwsBsioe3S4HV0Ujq3NWBYVXo9HWrKc78o4eQReVFsesIClmQHk+r5wgFJXSarFTBtEGlILG6g8XtJ0Kb7aYL2LMZpm7fzfgPnsZNF0CBPZ1h+KaHWHj6GHMP7A8qIx6N/2QH2WNT4XtMCbJHp0hu6gvsL913QbS/Pm9AwfwDB8ILPQKTtz5H5tCEzhhwDRxbj5t0DZQUZI9MkT08ycCNd1MY1pGnMm8zfeceRr71GMqV5I6HRxEvvTBKy+Wb9Ji6wssy8IoKS0Hr6zbrZ4ZsIyF0TYj8yAJugaq9r1zIHPTWeHnMgueYP/W1tuNKQfe7zi/zpVLbSryp613nef2+x9dvh5nf7mX4m4/VH+/yy5VWcGWQ75mpBGM/2l739vGf7CCxvpvln7qKSE8TmNqZ3fq6U+n72OW+d4S82pXkjk5rLO3aooRFh+nfvOBludQj46SF4qzmBO3XbKHlis24yssUERHarjmblstOIdrXom3bIf2OdKYY/9EzdZ89+dMdtFy6EUUw1dpoiBHtbq57TAnDIH9sGmd6SUdjeuvYcSykLZm+c0/ddQolHP2wjDDv75er1aRU6P4FUFIx/sNnAvu39Jn48Q59xtbeBxpC6ox+hr74ILkj0/jXeealCYa/pdfiwQ/8uMogDzD1y13MPrBP17tRpePIk2u8F7wcLI9Sitn7XgrATKiiw8xvX9D7oo7RQeZt7NkMoKNcK0VkvbT96SWvTke17ABoA4uUzN77YiBiXdmSmd/upTBWP6K8OJEm0lpJ66/imQoibY1M/XpPoB6FcjTkk85srCMzSR0wEC63QKQ9pXGbCwR4qptXNJ61wosQFjXjYoAQRDtTVbyramwMk/zgrC8rqpoWnzkePiA+sqczofKYUpDZP64xqWuzPpTA7EgRX9GGskN4rjKIr+8hdd6acCz9okvq/DUv27bBmx7S8qTryWOuxdLzwwze9BDx5W26ULxRXfhTxCK0/5GGtygu5Nj/kVvZc9W32HPVt9j/J7dQ9AIrFp8dYPRbj1U5kQoDMxz6yC1eI+vMt/d/w195iPTOUZyi5i/2vMOJLz5IfnCWpovWezzCX+xYwyQ0X7xeB1mFkCq6LGw/jtXVFPpuq0PDYgx95SFm731JG/gUFE7Mcuyzd5F/mQwe0Hsh9N0KCuOLLO4Y8uRr31qTgqVdI+V1KKXw8dRKwcTYqs66Zp74qk4td9WuB6Uoji2SPzGj4cScGj3SAWWYOvOlXqekLiApLL1vqvaQYZR1XHs+y8h/bGP/DT/l8F/dxvy2SkHz4kS2DKlT6bf3/0px4AM/8jJaKzRz114m76gfOFaihacHkE6woLJ0hRd4UiNnliEqhC4qfGwaVYrMdnSBXGVLpu/YzcL2gbrvTT8/yOQvdgKiSq9RytC1i7bVzw5UwNK+MWQI/rmUBvPbjtWX3RWgFIWxhSDvQIAUFEcW6tcvoGIDqNu3Z8Plb4Cl3SNY7algs7xHRpe3Ba7VNiGwB7x+o4yT6mNuzsZqTlIJZqi2DTS8anmoHFriLdG2k8C8lDyTdXVJ5Z0FwbNEeYZ3ZB3bQ7m9vkEo83OQriK1dVVZ/vbbRKQtaLrw/2PvvcPtuMp7/8+asuvp/Rwd9S5ZsmQjGbkDBoxbYnAwYAjV1ATIhfvLQ0suN5Byc4HLJQ0ModxQDaEbG4Mx7lWyJVm9H52j0/uuM7PW/WPNzC4zWzi5T578/vB6nnm0j2bvmVXf/n7fVQx/+WEd/Fk3b+7YIoVjE6z85M0kVnT5Mp2+Ej2trP6720DRsF6FkbDOy8tmHzyOLLgx+9EP7jo6jhJRXTP42zpvkEU8Xw+f4d9y54uMfOURDt7+TY588PvM3H803MOqLGOeoefVnc37fanfbzqQduGpM7EFqrEM5h89iVeKW09RWU87ih0fIjjE1UV5of3O9ryM8m94wxu47bbbItdb3/pWPvKRj3Dffff9R/fzhfb/0AwrgAuJUcUsUwuf1elEvmCMEuAfrOTyTnpuu4zml2yh9dptdL9+l/ZsArJUTRTqCGpotI4nGsWTUQzj4HN5YsHHnfQFoSClyC+IZaTjoW1AE55KIad6RUyAaZLdMlD5rp/WH2Cw2l3NlMcWkV6c0CDI7zvXOFJP6WIv43fuDgu2BkRRljxGvvIwRnMq4jXWPFE7MirjqmNkSumUftGA8QLpld01f1ffV4AwDdKbBmtT/wDshMYxvGZTrOFbKoOWS1ZwPiZiphOYXS2V91UJCE2XrqFp6yBRFz+IlEXbS9Yz+eO9Nfip1QLmzD0HdTqtqksxk/7+lhIljEiEspICq7O5yoAcbeWROcrn5gkEzPpnuxM5DbXk1gkFEpr81NbZR05w7GM/Yf6pM5RG5pm5/yhH3n8nhZOTFE5NUTg+GT2CnmLy5/vIbOiHbCoy7uTqXqymFKmVXfHrLSCzeSBcy8h9Jei+Yat2bNWtiZLQ+pINCLtxwpSRtuOLDvnzW/wdnvzkQHvYr4jSb1k4E3n/PNfhwkuDwr5zjY0VgCFEzd/185LsbSbWKK50dHLXTZVaF+H595/Vc8vFLB4YDd8f9lmBO1fCmSsgqwqlVgs9zlwBbzYf+269TxWtV6zRER91NFdJnRHizDSKAtYC2tj/eRzpyBBrUkpdkGz4nx6gcB5nojeTpxTiAEZb8dgEueNTMUqDQHkC1y9m2GhNypOLsTK9ANyFIs5UjmoeUX05EwuMfv2xkGaG4ypLpu89pDHdGxRz8nJlnHPzIW+onVOD0kQOqyMbq3AoBYmeFs7d8VBdj/VVOjvnC7fxDj0MA7lQQhJTlFCCKknSq7sx2pojCkdiaTd2e5bx7z4dW0x59jdH8AqOppv1jjnToOWy1WQ29OOVZO240XSv+eJlsVj2QQuE9uaLVrD2n97Mhn95Fxu/827633k1hm3qdxpG/HqbOsKYGNieUCFwFdLVRgBd7M13PmEiiy5NFw42CFAUNO9cweKes0z+4rAPMyeQDox//1nyh8fIbOgL8c9rx23Q/srNsVlNQXOm8xqftf58o6HrXH9cjcbtLhT9PlHz7sBBZnc2x8omCr3X4uBKQPNmd/78hSQT/W1hX6RHKLdICRhG6AiN9A0NVejl3Oi4lZ43d67A3INHY987ffdzzD58LIQcq6lZoWDkjodJr+jSMky1XOPv9fRa3znsesw+eJwz//t+Rr/5ZCU4Qp3H6F5wsNoysQbi4JylVjUukJte30f7NRv8Ym3V+OoGRiZBanlXw3d7hbLWlBrQDuVJul99EcGZrqaZIOh+zcV1RWCr96rCmy9W1qB+TRTIxXIFF72maUiTiR8/Qxw9BcHEj5+l7ZpNseMSCYv06h6ad+oaJPU4/C0vXoW3UGxYD8eZzsf+f838QJ08FgTsoI2wDQxnykXDrXhx92H214fJ7R/Bk1FjpCcNcvuHf2ffZutgw+r/f/mf3UhySZsu1JpJIBImPbfuoHn7MjzP4+BtX6N8phIYUB6a5eBtX8PzPEa++GAsXXOncuT9IKhG612eWtQG3Rp4O81Hxr71BFZziuWfuBGjKYmRTmCkbYxskuUfvwGrJa3hjBo0Z3xBZ4LFvNsra/iK+UdPRB1jjsf49393Yd/AaBa9QajYqXr53Zf93PkiCqu2DpDPv6UjEcLwDW51PNbz6eZs/H4MaOq5f34E6QROcdOHYBSMfv1x0hsHGp5vszVNy4tXxQbGCMugZddq3PkiR973PSZ/tp/yyBz5g2Oc+eyvGfumrq8lCw5KmrXOKamzWxb3DSMLbqwvduw8juWgOX7WZQCBFuotUmekiGyK2oAC9N8JG5kvNzzf7mwBb7YxL3LnSw0zk4N+VfPVoIX7baaApgdmzX5ACVTJpWXnytjnCsuk9dLVPu2I3NXvOE8QU6UTjZsRS2/9NyRMTN/2UC87iEQCuVjG7o3PpjGbU6TX9aGx9aPjNtJ2Q31MKRCW5ctPkV7p73j+zZi+KQVuKV6X099TNO9c0aDIrKJ11yqs9iYfdq9OZ1KQ3ToY6kTRZ4MbZk3HrI0H+UOjoKjJfA4+LzwzXFfDpFaumbn/MPkj4xTO5CoBOa5BcbJMbs8wiSVtWK3p6KwlLdpetoHcgdHY8w+Qf24k0q/qfhjZlJYF4+ZcClqviWZp6XlR2P0tJAZa41+MlhW9XIkjf/w9Jn+8l/LwHIUj45z937/h3FceCSap4e+TS9ur1qNOf7E1XVRxe8KVONN5SkMzxK2XUorCqSlS6/qJBDoogdnZUlMj6IX2/NvzMsrv3LmT4eFhduzYwU033cSOHTsYGRnhggsuoLOzk49+9KPccccd/9F9faH9O5vVnsFuy/qHR4UEWClB846VpNb1+Ae31gCsFBgtaZRSnP6beznxybuYuusAEz/ax+H336mhW8CPVo/+HnTBv0ZRXSAa4vwJoZmv3ZCoCJq2RfHNqp+d2TyAyKZD7DUvjEYVZC9cRuvOVXguYSS+znzTSkPrDReAUmgsT4Hn6st1/AwAywCzMTH0CmVkKShEFRAt/f3i0AzFEzEGWn/cxaFZFp44TTwxhNnfHiG7QwssteNCpyx3VoxP9UwCqTME5h45hedoxuW6hv5c9Jj59WGcqTzC8PHVZEVoEMLEnS34Hud4gUiZIHOuLyD6uHeeFhjdyQJGyiaxtj8qWLuQ3bKE/OFxBEYUw0wJFp85W8XAag0xCEhv6EXV4PgS/usuOpjpShR/EKVcEabMOiNOLQMrnZ1l/FtPaQNT9by4BqPffArpuJz9u98ii15lTFJHvA5/8WHKw7OImP2iXI/iySlmHz6Ou+BqbHdf2PFcQe7oFIWTU5RnSrHrKV2BW3Bije6gx1keWwSq8WADZcikPJbDbElHBIrgSg62h/tcVc1Z8HyrO1vz3uo5Bei8Nt7Bo5Qg+6JlKC/4fj3tERr6xoyvLI+CxPKOMDAjKoAKXSw59t1+er+fyum5FWdcgK2vXEXp9DTaQVC9F7URwJ0v+H2Pnm/pStquWhdLl5SC9AUDjHw5gNWI0szRbz+JkbTi0S8cD9Fk45W9Orqon+1M5EgtbxypIzI2Xs6LRm35+9WZWMRbKOlaFq7hYxTqz0oJHQkn4tdEZJOk1/U0VG6xTbzFOMHcP6PTeXKHRqueWbWnXYk7lSPRE41QAsis79VCe8xeAljcM0SytzV2LygFif7Wqgil6O9z+85j5JEKu7cZXGLPmMgmmH/iNDLnRJ5dOjdP/sgYpTPT8fzANnHGF2i5el00SsiVtF65nvLofEzGmP48+/hpWnbFK7cAbVeuDT8v7j/H8FcfZ/zH+yqwcY6nIQWIoS1Fj8zanvji2wKaX7SMpgsHwTRDpRPl008laNoygNGWbUB7DCh7DP/jA2HEZtAJVXIZvuNhbRCQlfMngzMoBM5kXiskMWNWQHptD8XT0xA53zpToDw6HzqAIrSl5JHoa/GN03XvRiDSNu1XrY3faxJaLl3tp+5XaKasWtNE3/nhMQrHJ5EeYXYiSoRyiyy5pHyZqd5ArBSk1/ToQAhlaIO+K/yaPIBhUDzbABsdwFMs7B6qpcNUlHIvV8adLsTriELTJq/ocORDP+TMZ+9j+hcHGPvu0xx657eZf/oMwhC6vkFMS63qIndotAEvgcLJKTpfdYHO3Ky7hxB0vHwjHS/fRHZTPyIRFHizECmLZR95FYZlkFwW/+706m5djDXmvQAinaD5Rctp2r7M318izBBpvmQVTVuWaGdAxKknUI7SGSpB1HP1XvQjoNOru+JpQ8Kk5ZIV5J8brUxy9YQDuf3ncKbzOvvTCxxj+rN0FLLosOS9V2N3N4X1cETSxu5pZuDdV5Fa1aUNPfXvtk1aLqnQFS9fZuahE8w+fKLGKGy2xkE56HloumgpbgPDvjudO28hWWc6z8LTQyCpMWxJzwAJC7vrod9iWqPMDf//E93NrPm721j1V7ew7E9fxYavvY3uW14EwLl/fCj+91Ix8g8P4kzlEMScbyB3aMyXPaLrLZIJbeiPYPUKQLGwV0MhNG0dZOM33s7yT9zA8k/cyMb/83aaLtT6UGZDX8Mht1y2Gnc6H/tub6ZAaXQuPqJUKoqnps87nUBYoD1yThShIbMyniqHgwKzKxvjpNHfMdIJmrYuQVi274j097AHIpUgu3WQ5ouXxdr7VNklvbobd7rgP6+2+Ka3UMKdqODZ1/dbJCwSvS2kN1aCX4K1TK3qIbW0nYmf7NUF7auCBlTRZfzOPbgLxao1Maou7UhsFJUtBMgGxWlrvlcjK1bmVDoedl+Ln5Hty9RVfEqWZUNZUdgmzTuXY2YTDbLdBEbK9u0D0btKQXb70jD+KsJDJTTvXK77KcHza2UEda1Sq7tI9DTT95ZL9X40BBgCkTDpvuUiUss7w5pxcX2zsvFQR9XfOV9rv2Zj43tXraNl5wqEbUdkByUVmXU9rPhvN0azAIVg+Z/fQHp5p1/0G2TAu33dof2ajXS8bAPxNhNB64tXIHMl6iE9QfOdwuFxEH5hea+C/68hiAwtMzXgYyiBO5VHYfh2Bf+MSUCYlCfzOLlSWBsLP7M/cDKVhgK6FaeP6YCg+KbHMvObI7F7CdDZv3V1rKo/l4bnGP7HB31ZsXLGZMnl7BfuRwjBsj+9VjtX/chwI2WTXttD5/VbMc+zX4ykXVN/qJqeAySXBEGtUV0RBGqmgDKC36vwAkF6Qz+J/rbIeoR6SV8rU784gDtXwCtLPD8Qws27TP50P85MXgfOxc2bKXxZMip3AAjTwmxN02jSzYyNO1tocFtQHp+ncHQyovNIaeKM52vqk7zQnn97Xkb5hx9+mK985St88IMf5NZbb+WDH/wgX/7yl3nsscf48Ic/zJe+9CW+853v/Ef39YX272xCCFbcfrk2vnqGH7Vm4noGfW/cSeFofGSlEAK56LCwe4iZh07gFjwfHkAhy5KzX3q4ypAZz+S8ucapWEqBiik4Gt5DUBqZB2qNgQGRKA7N1hjtwt/5n03LRNi2XySqUmncdQ1EOknx3BxxBQ9BMHfvUZTwhRgMpNKXQhvlRMomva4n3jRtGdgd2VBwk6r6EkgXylWFYuoJcXkyV4meij6dwvFJrLasLorrVapue54BySTCqEDhVIwZ+lII8ofH/LHpS/n/egWXhd1DLD477CtiPuMN5kUIcgdHyWzsrXpo1cMtAzOV1JAaoOdWVQTQ/MFRyuML5PYM+5EiviHBE3hFyei/PIlIBoWe6tcEjGyCZR+6pmarBT3ovPlCLVA0mDMvVyazqR+FwAsKbir92ZPQ8uJVpFZ3xf0YgOzmfhb36SK2ITxTIDh5kuKJKZzpQjjlwSUVLOwfIbm8IzbKV9gm6XU9Gv/QUwTKeThvnmLhqdO4k4tVDgrCPoAgv1fjzYd9UlR912D24SCNVNStKeQPjOIVHP95VftEAkpQHl0gvalfOwlq5kygBKQH2pGK8P/C+542TBh+lI6O3tFXAFdiNWUQhmgQgQBYJtnNA7H7GMPAziT9ZxMa37UTCJQH80+dCeclLDLt49e6Y4vM3n9UC8TUXVIw9+Rpjd8Y2YtoY1ygwEXWW0f5CduooUVQ+ezNlyie1Hi6UeFVMP/wSV0cr06oVUrPiTM8X2WkqXU+KQXNvnEorrVfvd7/nhE5g8qfywCiSadqB8Yh36i3rof+2y+v9C3cK7Dsv1xD4fB4w3HLkufT6wbrLQy8khcqjZVx6Xd7ZQlWXVGxqnlpFEUPOlVTF0Q0auGppABhaJx9o/Ku+jEYrZmGtkqloDy6EBYlrD9jMlcm99y5+PoKUpI7MEpqTXdDLM9EXwvD//BQZb3CfS4Y+txvqs53dNyFw+N0v/oizOZoCq3d20zblWuRUvLcO7/D0f/6YyZ/up/hLz3CMzd9iYV9I3pMwvAdV5V3e65A2La+L+v3sL6MVAIjk6jKCKtcSmoc4IXHz4QOsWrDtfIgf3JKY9VXPTN4R+HohM48Mgyf/gTKvZZPFp85qx0LcXtRaWNHem23X9C1OkJYoFyP5JI2rPam2H2eGGjTWVVWzLuljoosTeV8WldLe5Q08BZLlMYXamimDD5LajJZZMmlNDpfY5xJr++mniaFipZt+3Mp6uQOn2c4EjdXwvUEnjS1XCMNPGnilTwSfc3hPowYny2D7NYldTSx8m6EQLpezXzX7GVHcvb7eyieng7PgnIksuRy+n/oYq4krNi9JJI2pTMzPr2vo1tSG5iyFwzQdPFynTbtr1kQVZlZ1wumgdXfgVMSeEIXNlOJNGarn9Jvxb9bWSbpNd06I6Se4CtoedEKANpefgEuCTxl4ikTlwRtL9NR6s74YmikractpeFqaJwYY2U6Qf9bd9WkmYuEidWeofOGLeeFpzRSCeb3DOE6hl8QVfh03UAJk+LpaeyOLOu++CYG3nMVHTdsZeB9V7Pun96I3Z7BTCfoulnDtQSGCKm03NJ5/QUAzDx0nL2v/zqn/uevOfm3v2bf677GzCMnABobzkxtBLYbOFnt3hayW5bE3gOwe5rjC6UH9OV5GDOrgw1q1qQqeEIIgd3bgj3QjpGp0NCF3Q2KwKMdwNIQ/hmrPd9KQmZdLwPvukK/W78l5C0Dt18e6wTxexMavUDv7ewFS8hesKQGKmDpB18ay0taLltFoiNLIozird1rdk8zqSXtkYytoKXX1Gai5E9Mka+qOwHQsmN5SCuDK5DX0qu7Ggd1CvAmc4hEPOSBLDik1/WQWtmNJ60QOsOTFvZAG9nN/ZC048+vpCF0RfByu7cFWVa1tMVfM5FKUDw7y8KeEVynQs9dR7Dw3DiFE5Ms7hnSdTDqaWbCpHhiioF3Xo6RslGGL18YApGyGHzvlSQbGMYb0dH6Vh5diJcVFZSGZpElT/OmqvPrScJI84F3Xl5LW2wTqzVF983bG9YRUEBmQy+uD2NWX6hZKY2driPCqTXOSwADK5sks31pqIMq9FlxPcGS978EALu3DdczkejLcQzsPl1gumXnivgJMQXptb2+s7N2XkBHqxvn3Q/QfvU67J6m6KObk3S9Zhsd127G7mryZWXfGZ+06X3jJZjZJInuZhLrl+ChszskBubSHlKD7Ri2SeeNW6N6KAbdr71IZ9FSu/7B57ZrNvk1peIXJbO5H7u32ac9hv9sA08KjGyC5u1LdX8D/uX/TkmwOrLkDo7q/REYWaW2K7glRW7/CHI+yIyolc9BZ/BW9M+qtVaAEiTWdhPnbFBKgWlquOGq8VavmzNbAKux7pBa0Un+6HjsPWdiEVlyyazrZcM/v5n+t19Oz+t3sPxj17HqL2/GsE2aL1oWDxErBC27VmI2p0LnUQ09V2A1pUL6UitL6u66iyWE5cNLykDP0rwgf2Cc4pCWa+L0b013hnCLXkQFllJSODqOLFeCR6rnTnmw8NRQQ5uIzDt4s4XQ0Vg/926uTAA5GHe/dGoaL+/4+nutzqOkisBxvdCeX3teRvkTJ06wdOnSmv9bsmQJJ0+eBGDr1q1MT/9uL/oL7T+vHfm7hwjwU6UPyaGU4OyXHwM3KNxZ24KDOPmz/UinVgBWSuCVFbOPn0LYjbaR0HbZOiUkeLbyhYbqd1V/9vIO7kROe2ylgetVLs+DucdOkqxK/al5h2EgEialiXyVkScgHjD36ElGvlQNV1DbCofH/IJ/MQI/guLYAunVvRXGVtUHoy2ji7j6inDtvPnjHp5HKnDc2nEppQXQADYobl5EJsnsA8dj+gbOXAlnMu+/p5ZYBoKP1ZrGK3qR3ysE2Kb24sfMiXQ8zKYk/W+5FEJhBP2vbdHz2ot9xhnflKeYvOu58Dc1FdiBmd8cpclXxOLG3XzJCjLreul63U4kRji/yQ0D9L/pxQ0Fev0QSPa3IEWV4SxcE4PM+j4G3nF5LM83Ujbt127C7sjiyYoBOozucCWiKeEzt+heUy6kBtu1gbnu+cIy6LruAkoTi9EX+600GuB0VvpbzQB1BkBlrauhYACSA20Nn221pUh0BcJndE0SfS1kNy2pivKrXEZrE3Z7ukrQqt5LQMJm6q79Vf0WNfMz/9hJMA0a4TsaqQSZTQOVd1ftY9GcxmpJ+c/yjQ0ymBd//J6Gd3F9h5XnGVpQlQKFIn8qwEitPwe6CGwcnEFwfheePhMTneQLJMDI1x4PhbcgsiJQhhb3nwNTVCKE/Mv1U0GFbZDobcH1aiEigowYqzNT9d7q5q93fyutl8akW6ctem7Z7htxVOx6W11NmJlkqCwElxc4L4ouXddfQPtl63E9C8e1cKVF27VbaNm5Aru/1R83kXEb6SSZtd1EiKbfmrYPgooWodLzLlCOS/HMbETJUkrjfKZXxxu2ATIb+3Q0aMI//6qyn4ykjd2RwUgnYs+3UpBd0xPJAgneLTGwO7SDKdIMQWKgFbsrG08bhXbg9t56ccRwIJIWndddoB2oeaeyXrJy/p2JRVKD5znfLSkMy2D5n90AqVS4HqI5w/L/diMAZ//+IW3wrG5ScexjPwNPolzlRyBX3i2EwCu65A6OQsKuWYtAGZt9+ATzj52KtS4IUzD/xGm8fJkwcrDKGakUeIUSImGFDsHKBUZzErMlhVNwIzRXKnBzDs74om+MqDZQ69+Xzs3T89oXIUUt/3WVSdvLNmA1p+h98yV4aFxjxzVxPRNPWPS9dRdWWwa3pGLfjW0x9YsDegyylvYoBRM/2YcMC+DV0g6pBO6iVobOfvkxnvmDr3LgXd/j2T/4Kue++RRKKYonphtGLypXUhyaCY199XStcGaa8nQF1q/+3Yt7R2h/xUZcT9TJW4LOm7eRC6OyY97toaNZRZR/CyC7ZYBz9xyMLUanHI/88UkKxyZjz3fuwFiVUTTKS4Rh6OCTT1zHkj96CdlVjVJGAAAgAElEQVQtS8huHWTwAy9l2Z++EoDZB08wedcBbcx1JcrxcKbyHP/Ez5FSkjsyqY1VqmLA8iQsPjeG1Z7xo+VqZWCFILO+l/LkIif/5lfIskQ6GgdXliUnPv1LnNk8suz6cmyUtsiFUk3kXfW8SX9t2l+6nsSKbiTCvwx637QLM5uk/aq14RrWr0n71WuRhdraRcF3vaKH0ZpCScW5bz7N6c8/zPhdRzj9uYc49+3dBBF9k786iuMH9AS81ClIFvefozyV4+Rf/wpZdHVB2YKLV3Q5+Zf34szka+Tzmp6ZBlZHBquvNcINFGD3tpJe0UliSfzvl7z3Spq2NCg8KvQ+/F2t44YteDH7vMN3Nni5Msc/eTd7X/d1nrv9u+x9/TeY8QuoWufBZrbaM6hSMKroGcufmCB3eBIPk7DujdJGucUjkySWtDd4sqri/Y1boruZDV9+I03bBxEpG6s9Q//tl7Hio68CoO+tuyK1kURS0zWzJYXyHWPhW5Vek6QPizn3+Gl233gHB99zJwff9wN233AHM49oW0DvrS9CWRauZ1YuadJ6xRotPzfSBSVYbVF4iXBMvS24cwUWj9XLbFA4PYczlWP6noM1zt3g2dJT5A6PYTQoFCuSlg+rp58b0halYbjc6QKT9/j1MqgYK7XBWTH+030kepprglNC3cDxsDoypFZ10XrNJh0UJvW8tFyxgfS63lidJ2h2V7zTqrrJohOhmcFY3NlCVUJH/V4ELF2HILmmr4a2dL/hEqyWlK75QJSeo8DuaUEWHF+O9c+PNHB9R3Tu4JhftDyYqwp/Fwkd/b7w7Lm6fulr8ucHcOeLnPj0L7VToaTwSgpVlpz+3G8ojy/QHcqyVSO2DdquWEOiq4mBd16O5+uJgSzqYdD3jsb1u6rb+jveRMcNF2iYqEyC9ms2sPEbb8EwDMxMgrWffy29t+0ks6GXlktWsOLPrqPnNdsBGPnGE+QPjiEdgesYeI6gdGaaM3//IABjP6zoRSE/8WD0W08z9avD8RCuEqbueg6zJRO/JgLwCGEUI/Qek6RfT6LeNgACkU0jUjbSqf+t5nMiYfoZlPG8pjQyjwKflpp+4KcOglQKvLFcpN/Bb5WnSK/R9eqqbSKO/9vUig5dtLiB7tB62eqGmU/VRmczm6TzVRfQ+4ZLaNq2NAwIy25dEgsjY7YkabtiLYmB1hgdGKQySK3sIrG6OyIzua5AdDRht2eRjofnmX5QqKmDIKRBoqsprLtSU8vK5wvuXJH8UBCkUSt7SEchMokah2zN3Arhw0vF60QKMDK2plMRGVnrRcq2QodeeI583TC1Jj4rOmhGQ7vgC+187XnN2o4dO/jIRz7C6dOnKZVKnD59mo9//ONcfPHFABw+fJju7sZ4ji+0/9xWHl/AmS/GmnDmnzxD84tXAvFCQWpVJ4Wzc0SItP/d4tAMZnd84SAJpP105HoGo78vNC5dXcoT+ClTnva4qUg0OygMvKJL35su8THYqu6bJm1Xrgmx2SNGHiGQJc/HF42OWTM40UDx1c2wLKZ/e6wGOiZQ4orjeR15Gf4+yuCUgS/Y1d4PvNvZCwcjho7gc9d1m/Hy9VAI/nMU+ICdsXMuEhZe2WtEp1GuwovB6gvXxZFk1vaw+tO/R3p9L8I2sbuaGHj7pfS+YQemn77qSc1cHR8eR0oQaRsjrqgIPoOwTa34Vr0zHDeAp5h78gyj333GT7s38TyDxUMTnP5fv0XEeHXD5wALe8/p6MaAsfiXAmYePE6iI8uaz96i4X/8llzRwbo7bsMwDJ2OqWr3osI3TjeltLE4Zq/pPigK4wW8qhoFUkK5qA1I0o+yqVYSA6VdSYXRlPIzXIzKvPr3k8s6It7u6vlru2Zdw/udN22h/227UEr4QlBggNIRHr23XsTco6f8/lZFfUpw5oqUJnJE0/LRc2MYOvWvQRO2SSIsYlfbL3xjx9R9R31Imbp5my6GUTqNnp25aBAZ4zCQSmB1NVGeaoyJmzs+FUbt1J9v1xMYRvVza8cNAseP+tDRP0GUoh9x7inSm/r9vkWV9vbrNmH3tgEmUgUCnKkzdjCxO5rOQ5v0/w9+6BrSmwZ0ASK0o3Dlx2/A7sjS4tP7uNZ57Sb/DEb7pnxlavgbTzLxyKmaaJjJe44w9cvD2N1N4Xfrx222pFjyriti5kxrFL237TxvQWOlgmJs0ehm6UpSqzrBisEBB9ouX03HS9dH8VOF3istL16Jk3ciRlaFVrQLp6eopH9X70WtTKVW+gakOogqYZt037SV9Kb+aBFJpSOhM1sHSC3vZPXf3ExmU7+OVOvI0PfGnfS//TKM8zg6AdouX9PQIdn3h5fgLpQ48tGfUV5wtKLkmpSmSxz58I+Rjsf0r+OxlVXZY/6Z4cYZAlJpR4KvEdYbSgMIplge60jfIRdPlwCEMkiu7InsRaUMMhv6yR+bDJWXeoWmODqPMoIMDxEaUsL+CY1hHAQoVNPz0rjO/iuN5lCint4blMZzdZA9tf1zF8sIQ8TQHn2+hW00pJnBBJz79m4mfrIfVfK0wbPoMvrdZ5j46XMY6URjZcg0cc4ToeSE2WTx7/byZazOFiRmzXx6mFgdzciS69PBKJ9CQOuLV4a6cb3c0rJjOWYjx7lSGAnTd2xFz7ewDJq3NjDCAknfMeUVHBYOTbJwfJ6F43MsHJ4Ko/JHv7s7Fsu/dG6eQuiUqtAtGWSrSSgc8yGDqs8/ml/PPHSSqV8dQTnBolTRTEcxff9RjOZ0dB+j59HqbUIpPY9lx6Ts6IjQoEg1wLFP3qMNuT6UmJuXnPrcb8kfnSC7fVlD3t900VKcmbj6Jvrv0qkZxr7/DOP/uhdZ0vtMllzGv/8s4z/cq6HzwgjGKh7qSEa/u4fJuw9WzWn1uCWTvzxIz6u3RaOUhYaPSva3snhgXNeZCOip0hA7iwc0dM26v3sd2W2DYfeNbIJlH3klzVsHabtqLaSsUB4KLpIWbVfqaNPi0CxH//xu9tz8Vfa+6VuM/WhfGP1ndTTrIp/Va2KYWJ06wvbYf7+bmUdPa0dL0cWZKXDir35N7vA4A++9Ij7CEBh435XnP2MLJaZ/fVhnb0kjvJQHM/cdQZVd7TOuW1SlhN/f390SvS2s+tTvseUH72TTv7yV7t/fFt5ru2w1y/6/l5Nc2o6wDZJL2lj2oWtov3ItxdMzOmI8Zp/PPnwSd67AsT//RU0mgnI8TnzyHsrTedz5Ep5XT1MNihOapqrAaFu93r5RKNHbQmZ9b0QGEAmT7tdsY/bBE8QSPgUzDxzXBmgpcD2zRo6VnsbS77n1okgAmbAMel6zLYR4imvufImF3Wfr5N/KtbjvHM07lvv6XJ2eJ0wNb/Pj/Uz+4pCuiaEATzF931FGv7cHVfbCQpERfS17viKR/lr3tyKlCMesLwNPQXJp4LBvwGuAE395L4sHxiq0pSAZ+vuHWXxuFDNhRumeL4ObCRthBHQyquMmB9oaznn3q7cx//RQw9oq0786zOzDJ0CpyHwrTzH922MaXuqzt9BxyQqEbWK2puj+g4tZ+l+uAaA0nkOJIKPCL0oqTEqjgXFYMf6zA+x787fZc/NXOfqxuyhUQTQZlsHge67igu++gwvuvJ2lf/KyGpxsZ7bA/IFJFk4sMH9kltyx6TDLZeqeQzF1GSSzDxxn3s+qiB/3ER96q5YPBn8vHhzFSFWcZjX7BW04Lw3Px663N19i8t5DoeO5+vIkFPzI50Y2EWeu1FB/B0gOtJJc1U1UhhaYHU1Y2WRkH4UygmHQc+tFeBGbiHb49N66A3ehHMPnNKRj7vB4mIVS32+lwLAESikm7jrIvrfo9T7ysbvIn9ROPuVKynNuGP0e6pl5pfliOW6f+v0rOSwemgyj4INLKkF5rIDVnPSDmqrHpb9j9beRWdfTcL0za7pxJnLUZxgE9QcnfrwPtxgNTNHR+CqUi+LmRRgCz8eTj8rI4BYckkvaCWTuQCYKdM/MlvPUsoMofNML7Xm15zVrf/3Xf42Ukuuvv55t27Zx/fXXI6Xkr/7qrwCwbZvPfOYz/6EdfaH9+5szX2ioxCmlMDPJiCE0EMbsTp0mGiUKQeScojA0H+vZ9VyQokJk6hVnDOFj2sXcQ0DaRlnxBa5Ae+rbLl9N35svwUhZfpEUk9ZdK1n6/qvjsW6rxtl505aG983OJoRVHQ1e26yODOXpgnYOyEpUiFImSFEFTxNvODdsu8F9UMKg/407/UJztfMibIu2y1bHMs6wGQaSqKFCz7kusIcvBOpiLQFMBTrqm3i4IGwrFDSym/pZ+9lb2PKjd7Px62+m68atCCEw0zbWQHuNgKohYwxadq2i66at8VtRQce1mwjxcev7bduosmT4q49HU5NdyfT9x/Dy5YhBILwkyJJTVZS4SoGUIiyOl17dTe+bLyN14Soyl6yj7y2XY7fryISFZ0Zip9uZKeDmyo22CgD5IxMUh2aRVXvFkybKkYz94FnK8yWtmNUJM540KI4v0nHtZv8+VDNe0Zol0ZHR2H8xgrNUUDw+hetGhX5PChb3j5MabEdlgoj3iuErvbIXkbQpzxaqzn+VYu6ClyvRcOCeovvGzQ3npOumLfT/4SWR9Qpa/xt3UJ7IIZV2FpQdi7Jj4UkdYebOF0ku74gVClouXYmcjcMI180tSERcgcrgF4mKcabm3b7CqbGPGy94Zkt/oycjbNOvfRC9B+DOlMKIvPqmyh7lANKj/p4iNAqf/vwDLByYwimbOI5FcarMsb+4F2e2QN+tF6MMw1dgtWFNSgGmScdL1+HVFO6u9E1JMBImY99/1ofTqNoLZY/hrz1B8fRMwyheZ6ZIamk7S/74qhrFW1gmKz55PVYmgUhFHaWBwS9I2w2yH1w36Lv+TvHUNE5RRfa56wpmHj6F1Zpm1aduxO5pwkhaiKRFcrCdNf/j9zHCNYlTXv0oIAVKGbWGFN+4JoRg1V/cSGpZh5aYDYFIWiz9wNWkV3Ux9r1nagT+YIyeFIzf+SygM1qyO1eTWL+U9LZVZC9chjAERsJqGCGZWtUJwNr/dUsNTrlC87f2q9Yy+ctDyHx9ZDa4syVmHj0ZWzwzaOW5wnnnPLuhF+VJ37ji1yfxjS5tl69GCRFvR1GAZWK2pGMVNQkYrclQaapvi4c0Pa03BgRjdAseqaXtMeup76eWtTP6nT1R5dhTzO8+S3lykfF/3Rt1pDiS0e/soXgmKIAVfX55Ml9VdLT6vv6cXtur63jENSEwW9OM/+DZSKaOLLmMfncP6fW9sT9VSkMCiQYRoQBGU8qPXox9Oak1XYz8y9N+1FnVvErF2X9+nNYr1tY6N6r4lMgkmHtqCGnaEf4trQTzu88y+JrtNVAJQbPaM6SWd9B6xepIRomwDdpfso702p74aFpT0PemnShPcuiDP2LyroO4c0Xc2SITP32OQx/6CUoqSqPz8cOWCmdkIf4e/vBLju9Eqpz9QMbxcmVyh8eBYM6qfgjkD45rGLe4ByMwMgmfV1fLTL4CrKA0Mkfu4Jhf2Lsq+6rkMfqDZxn77p6GtGX0u8+E0BFxzV0sMnpno732DMWzczH45roVh+eYffRkJMgh6N/sw6eQCJyirD3bHpTmHJRSeEUPpQxc18+6ci39d1GfSyNh0XrVRlRHB26yieTm5WQ2a+eMsAzcYv35F7hF7cQpjS9w8P0/ZO6x03i5MuWxBYa/8gRD/6QL5I1975kI7VOeYux7z1AanddRvDXnQPPfkX95muLx6dBAXuN8MgyKx6cbnjGlBNnN/cgGRjnpeBpmLaHx/SNG2vPILP+W1rprFev/6Q1s+dF7WP+l23SkKeff57JQZvjrTzbUJUe++jijP3g2CiMnFblD45RG5ny+EV1vKXX2lT3YGdE9PFdgdzXriPC4gCHX09nFScs/Q1AjmygDu6uJntdsp/OGLYiEiZGxEQmTjms30fv6FxHCRsQa9VRVpnj1s/Vnr+wx99RZH1Kicha0PqUoDs8y+r09sWds7M5ntT5mB+tdp/eI373eqbW9VQWPq2iuZ5BZ2xMZU/XYymMLLOwZjvA5WXa1w8D0oc08EydYM193kYLz6udGa5rum7fR/vKNWi71ceFbr1hD3207dJH4Bk25Eq9QxotknIB0FF5OB+SklnWw/QuvY8uP3s3mb72dvtt2hoEXmr9H+ff4v+5FKcXwPz/B2S8+SuncPF6uzNxTQxz8wI8oDs+df8KB8lSO5977A2YePIW7WKY0tsjZrzzBqc8/4Pcx3vagpPID9hqP24iBGgyahkAyfdSDWnuJhgRsHAQV9DtwPFfLsTpTEWYePdnwt3NPD2H7dZki/VaQ2dhL6ZwuOlzbBOXZEsll7RBjk1BKYDSnWNw/qmXnCA8VLBwcQ0kVnqtqR4RUArlY9h0wfjCgox20IV81DEa+8RRD//gIpRG93vNPDXHoAz+ieHaWuSfO4BYcPM8IdT3XM5GeZOq+oz6McoytRqF1HkfFjkspyB2f9I360XmZ+tUR2i5fHQuvJWyDzldt0nS/gapZHltAuipCM3VUuyC7vhcZw0c8CdmLl5E7OlGl21ePS1A4PoXVko4dN4au+RTrYMFnmw1h2F5o52vPi8O3tbXxuc99jr179/Lggw+yd+9ePvvZz9LRoaOgV61axZYtjQ2cL7T/3Ga2pmPPlT7sAnemoI2ecYbMsgcYDYmC8HE2paqDl5EmYLC4bwRlaGIZRAGHkVWpJD2/vzWiUCifoHS+YiNmcwBREW1a6YaeV29j87ffxprPvJpN3/hDVnz0lRgp2y9wEz9uFMw/eTb+3QrKsyVdgT2GAyklwsJfsc8HHx7mPM1sFPEiMGyTzJpuBt62C2GbCEtHqBpJi5V//irMtO1jK8f0DW1Y14Vdok4WJ++S6Mpqh0m14dz3lBoJi9ZLV+r5C4i70hF+SkLzRYPnHZbyJMWxXMiQKpdg8eiUjmYRtftBSt95g0HbrhWN3719MISvCPZIwKTxlM+IjOg+RguPdmeTr4RFFWeRsFFSceRjd3Pqcw8w9+QQMw+e5Ngnf8nZOx4HoDQeDzEjTG0gjtul2lBqaKW9QXrdwrMjqBBuOto3WfLIn5iuYfTBnLrzZd/bbfgG/8oZlMpEKYO5J4dQSvjOo6r70mD2sdNM//a4xvYNlH3/yp+dI3doHHexOoK4qm9S6doJDcatDIGRSjD4/qsInACep9NJ0xt66X3Ndtp2raT1spWR3/fe9iKdEuwFglhl7PpvHTVdGKmkRFZfi8dmWDw41tBA7M4WMDuaGgokmXV9KFHvFKsoPRiBg6R+9AoMQc8NWxo8G9pfus4vKloZT7iPEbqmRD4Gf9xvpfFF7L7WUImsFoay25ZSGltg5sGTeEW3ct8DWXQZ/+lzJAfbsAc6fUUuUMBNMtuWYzWncBoU31MKFo9O+BGhUQFT11RQDY2wgQG061Wb2fKTd7Hyv1/Pqr++ia0/eTetO5YD6IjSmHG5roaI0ViOfhSvD1vkSROJoQVML4iUM8KIMaUM5p7VDrXsxj42fvVNrPvCa1n/D7ey4Yuv14Z0aIg7q4DUau2EiRqgCMc7/cBJFk/nKDsGTsnAKZsMf3tviAsO9TAsmv4WR+Zw54vsf+f3Gfn6U8zvHmbyl0c4+IEfM/2Ads4MvLsSmVlN1wbfdxUA83tHcRwLJ0gbFklm94whSy5Tvz4arlH1eoFi+r5jZDf1xtNUAa0XL/XT02PmXGqHZLmos5aC+1Lp2i2Lx6YpHJ+KFdylgvzRCVp2rvAVfsOHidGpzwqL9GC7NrbENHe2QHKgGhuZms/CNOh82TpdkL2uCcug/YrVlMbiDbHCNvwzGJ+J484VfLkk9teYadtPKY6nPSjoum5jbFaImUmQWdGhHcw+HQ6y8aTU455/4kys3KKA0nheK1INzqDd2UTPzRfG9txI2WRXdlVhddf2W+Yd0oPVadxVYwKSq3oojy+iyrJun+tMlvLEIp2XrUYJI4y0Dxw4HdfqIq2D77mC1GCbzvwwDYRtklrRycDbdyEMwapP3YjZlEQkLYSt73e+ajOtu1Yy++hp7cR1KkZgWZaURuaZ330WUQfLUd2s1iTZzfEFMpu3D5JZ1+MX9q2n19B62Uqs1sZyqtWeaTCnYKRtvJmib3yLcYQKvReDOgGV+dYyUfHsnA9vp7O6qrPoQFAanaf5wsZQLq2XrcKbjzcSufNFrPM4cIyU7cugcXWZDBCC059/AKUqGZPB+S6emtH1IiJyhT8+f6wnPvNbTv7t/ZTOLeAtlJh96BR73/AtypM5zn17T2wdEeVKzn1nD2N3PotXXSQabQiduOsg7nwR9zzjLpyaBhnw+4q8BbpQa3liEekqH+6sckkHyhOLJAbbG9LURF+LXpOYYTdvHSCzptuPQK6tC0HSpv3K1Q3W49/WlCeZffwM5763l5nHTocRvulVXbE1fkTCov3KNZTONXBsoWEWSyPzsTqTYZuUJ3PEOzL9vTqbZ/KuQzpau1qXLCtGvvW0j1cfc4CFoGXnMqRbfT5qn22kEwhDsOT2y9j8rbey5m9fzeZvvoXB916JMA3M5mTIX0M9NYhuTWsIoPhng9WaoXBmNqzxFDpwlEC6CmcihzNTIK55iyVSy9sRlhld74RF+1VrGsx2pY39/CC1Z0/3TSnBzEMnCOTM6hbImu5MAWEbIZ8JeA1Kr2f+aDVcUO24F49OhbXH4uTY0tAsxbNzTPzqJI5n4ZQMyp7F5INnyJ+Ypu2yVQ3H1HRBP2Y25Z/dmPU8TwZu0Cr17mqbly/jLRQZ++G+WkeJ8p2R39nzO589+p1nkDmXoGCnUjqLfPLuI5SncrRctDTK3wVk1/fQdunKeHsMkN3cS9PmgYYR5em1vXiNjKHJBM5UAbM1ijmvFIiESe/vNbbT2b3NFE7ONLxfGs8h0nZUDlWAbeHOFPEaZC8rV1Iam0caZuSMSQnKslncO9KQP88/PUTzxUvxZJ2s6OpagR3XbvALoUblVCXBmSsw+v1no+td9hj55m7K4wt4xSD4tMomUlSUzs3hNsggAHAWSuGe1636DMLME6eJXXC0bm81p1j+kZdrmccywDIQtsGSd15GarDdr3sU/+6mHctRaJ5adgwcR//runoevLKLxIzq/soEw6I8kYt/MFCazOsgqZh7Sirs7uawX3H70Xs+dV1eaJH2b3K75/N5CoUCw8PDDA0NMTTUuNjNC+3/Py3ZkcWIKaAFulhLZn13aDQLi4ZKgUgmaNo6gNGUaCQLYYSFnOIi1qB5cx8kbFzP8hX5ILLcIr26GzObRCqdchdgrzo+5lZ6ZRd2VxPgRz/W4QXanZVCLM5skfm9YxTOVLzcicHWGs9q9bglBiUflieAjAmKoihlosqS5NIO3yPtP7BK+W26cEkIjxOZF8BuTsUa5UChEHRcvZpGhLrJT9Puec02NtzxBrpvuYjeN+xg0zffTMvFywBtvKo1EgUCpTZeheOqKvYSpOrnTk5DHe548G/h7DwtFy3F6mwKle8gGrT10pVV+OPxrTxX8KOfol7jwolp8senUIZVsx9cz8JzTBaeO0fzxUtpvngpRkpHjiB0xGnfGy4m0d2kHQ5VaVaVtCuNAYppxI5bWBaL58HDzR2aYO6JMyw8O+L335/PosfYD/dTOjdPdkN8hCJAemUnRlMy/oxVpeSGTKt6Lwuw2ht4pIHUQCvzz474Y61K41Q6jVynl9dH8fh/GwaF09Ox94UAL+eweHAMN+9Sf4adgkf++JSGeop16gnm9pzFc+LPmDOvBSC7tw3PTCOxdRE8kSS5opfAqbTy469i3d+/lo5XbqTrhgvY9PU36UwRQIbRy7X9l1LDV3kFN0xT9gIsQ8+keHq2IcyDnn+FM1eM9FsrF1AcmquKnK4zhiidJmr6kEW1Z1CQWtWlDRbEz0t6VTfNWwf839TvY0HrjmWhICaljiyshvjKruvGcwiNzq5bgR3yylA4MeWnQ9fuF6+kcYDndw9TGo1GtMzvGaF4dhbpqYZCYNnHP4xtCsxkokZorx43VfifquQyt2+S+ecm8byK8FaeLoaZR0EUj+tpB68zk0fV1ISAQPA1kokqOCOd6aHnVYs4blXBcVl0GL/3OJP3n6x5d6K3ucHYBHYm5fNHM6Q/0qctUgrcXJmhLz2mhX6laaYsexSH55n45eEQekNnl1WcPKAN36N37sWZyetiuABSp82e+tyDSFcy/PXdOI42tnl+RLrjGAx/YzderszQF2vfrcoepeF5Ju457EeVxdMWb77E8j95iYZJ8ipj8zyTjldtJtGWQanonOuxmCweGquKpK29P/vIKRAVOIFq/i6lCYbBzCNn/Gdpeh1AHUlXoVxFojceUze9qrNxEUkEVnOazIZeUiu7wqihIHOo6cIlpJa209TACKscSXp5B4m+ltj76ZWdmhc0gFpqu2I1ph+tXk/rFWC1pum+cQsiaVX65t/ru20HRsLSEFWqwucCGKjkklZyJ3SR6PpC7VJqjGMv5/i0p6IhBcYDd7ZAz+9v1YagwAklQCQtVvzpy2LHU91K5+Z9uMDonMuiR3ZDj4/zW8tLDNsku76HU9/aTTmnwr3mSRPXtTj7jd3IsodyFcVFNIRLSVB2TYoLKjS+ZlZ3sfmbb6Hr5u00X7aO1X/z+yx935UIIcgfn8TNORG5w8075I9P0bZLG0Pq6T2mQXpFJz23bI/yA6D3D7ZrqJEykTPiero4daohDjgkl7bTtKU/tqaE8iSppa2xfEp/QehaOOXA+FNxDgeG8eYL+325vbZvUgpati1h2Qeu1OMOHulfbS9di51NklpaSXEP9ipAenk7mTVdDdPQ2y9fRaIrgK6sNZwpwO5qojg8R1AsXKrACewbK56q6I81Bh6/k+58kam7D1P/dOlKTn7mtyw+N87CL0IAACAASURBVBpLr5XSdQAWD4yBK2sCDQCEbVI4MxPBVQ97n7BQnkKqaPSjlAZu0SW7vkfDcymj5jJSNpl1Pbg5x6d3tWuCaVE+t8DS912BmU2GsGMiYWJmkyx93xUYtsmyP7laZ5T4hdGNlE1qSSvd1zfOPKxv5dkiYz87yOyTZ2v+35krsu8d3+fYp+5j6CtPcPzTv2Hv2+7EmS34736J/24960bKIrWkla4bNtOyvbGDp3nbAM1b+2MdodLxSK+IL2gatNLpmdA5UBsFDHNPDPnOthhnpBIoR/n8P5oxArCw71z4OXdsivF7jrJweDL8v8zKTpTQeqnrw2IGmNhtu1aR7Gv1+1W/VwXJ/lbchfqsTF9WdBVWe6Yh7IewTYyExfIP+XPuQ64ZSZvkQCvdN10QfldJRe7oJLkjk7XFgEvV8FGVdwNM/PwA0qytTxb86wmT9IoOvIJHNSynhtIyyG7uJX9yKnbOQVA8PYPRnPIN+bVyrFLQfOEAZ/7hYbx8WUcSI8BVyILL6c8/iJGw6Lh2YwzNFSz74NV+4Ep8O1/QStDSfhZhPV1L9rVQGl0M92nNuKRi8VB8wdDqNvHrIyhF6MASQmd6KKmDrAbfdZl2Hgfn2zYxMwmWfeAqjIRFdutgVEZWsPSPrsSZK/k8vcKDguA0N1emZdsSsOxa3q/0Xsus7gzht+rX22jKYqYTtL8k3tGz5i+uC+XPWPndlbRsGwQ75t1KkFnddV7dwG5P45VF5Ix5Umetugvlhvqat1DCLUlft6iVFZUS4MhQro7oiko7pyPQleiJzR0ex2pNx2SE6d+b2aSWR2N0RaWIgSqu/BZEQ8N39Vy5eUmpZOrM5rJBqWxRXtRrYXVom0u9rUcpSPW1IIKsqqBeWpDZhIEzkYMwG6xK90dn/qtybRZbdb+kJ3FzTmj3qh43wqA8uuBnKgROaRHizysldFDrC+3f3J7XrB07dowPf/jDHDp0yIctUSExOnjw4H9oB19o/+9NmAZ2ZwvF4emwCFdgDEwu6yC1pI2mCweZeXS4hlKYtkXnNetxZgoUjkz4TEjfUwqEKWi+oB+jKYGM9ZBqgUWnoEUV2PJsibmnzxJEy9QGEism7j5M287l5A5OhJHflb5Jmi/oQ0rJwQ/+jMX9FUZqNifZ8uWbw+J4OjWyopgGhDu5vIOFfedCKJ7qd2OaOgq4jknoRwgM2yK1vJ380cnYeUmv1Djf1NzT7xeWScu2QayuJpyJxdrfGrDsj64AYOaxMxz/y/vxXI1NMvqTo6z71CvIrGynPFtEOfHReMrxNG6tI/0+VL6T7G/BayjsCLyCS+7IBMVzBZRnIISeACkNph4cYtkfl84TPQVyoVz1vto5VVJgd2aQxfioMTNpaxiIj72SuSdOM/PAMYykTdcr1pPdqA0omuHU7yelFaKkjWGb2qhYP+6+ZnJHNQZxvYFZKXDmi0zcc1gL/lVRcELoCIiZR09jdzXV/H/wW5IJzKTFsj+6klOf+Y3GBPW7KGyLpe+5DGEIlBB4Tl1qviFpvmgQuz3D8FefjJkVQftVaxj/xRE/Db3yDaX0EIWhjcQRWB8g2dtUMfRBTf+VAqHAK7jE+mclGg8y/vgC4Mzo6CfP3ysV+uKf6bLHsU/eWxOhoBzJ5L1Hadu1nLaduoB4ZlUXS99/tZ6z6gVqsJdAUDwzE55bpYwqeU75a1oKx1yzXoByFarg6X4DwtA3lA8RpHF4gxZ9tzOeg6Y07nQ0TdXsbmZh74j/LIUv7YV0ZvKeIyx936WM/uuByMQqJWi9ZAXS+S3SDYROfx96gPCY3z9K8VwefINzNYmae+YcS9/5Yry8rNn/+tkKkbC1gluMSa9VivndwygpEIaKzJuU+AWeK83zKkk/SkFyebuOGKvZC/68ZHR08Yn/+QATdx0Jn3H2jqcYfPvFLLltOyosQA31NNmdLwVTWdN00VGPwtCcr4DVjVuA4acxn/jMg0z8/HDYp7N3PMXg2y5myRu3+4W9o/tFWCZuyQvnO4725A6MYVhGGMWk+wWq5DL70CnWfvIVjP5gf1U0n25WVtB53Uaeu/37sfiqytUFMPMnZkFFC3DP7h5m8eC4dhBT+25Zcpl58CSppe2Uz8Wn36ZWdTL7xFkfO7326bOPD+PkGvMKwOclAV+tvBsE7kKJ1KoueOgM9fxdKUV6VSfjPzqAlKJmr/oyP+M/e47B23dx4tP3hllG+p5g8B0vxu7MasN4TAZS87YBikNzLByZQTm1e3bm6THKU3ns3pYYHq3X20hZLHvPZRz/9L01hUmNpMXgOy/Fak6CMFDKi9CWZH8rxZF536FWm31hmB7OXJHp357AyYFya/s28r399Ny8hXLei/AqpaA879KzY5CZ+46G91XVu0XaJrW0TRfgRYRLru8bpJa1Y6ZtNnzhFmbuP8bck2ewu7N0X7eZ1GAbypOxPFI/Q5DoborFw1X+3LTuWEZqSSuFMzMhPxIJk/TqLpq2DrDvbx+oggSpNFnyyJ2YZOSbz1AaDjIYDPAUxdNznPr7R1nzkZeQOzLBcx/4GcrnaRP3nKDzmjWs+ejVfsaYiDwbBcqT9L/+IsZ+dhikxBA+ZfZMeq5bj5lNcOrzD+N5JkJUzqFSBic++xCrPnQl0ouRtSRM/fIYHS9ZTaxsIMBdKNH32m1M3n1IF8oLvmcIuq/fhNWUwmpLx0Z22p0ZHQlvGsiyqqUtQuHlXdqvWsvQV5+JGDSkFLRevpq5p0eQIgGeoxk+OnhjbreGBBh85y4Of/yXNZBqwhIsuX0XVkuK3tdsZfxH+yryhQCzKUnfLRdy+GN3R+cbQAlKoznMVAJZikLcKQVNa3v8Nag9/wiFYSomf3O8hhaHt9EGhVZfdohrZtrGbk+zcHCq5t2eBFXySPY045VkMB01xYllSeI6Ab2vH5tClRXN2wexupspn6iNHE92N9Fy0SBGKkHcXvRKYHdnSfW1sPkrr2fyFwfIHZsgu6abzms3YfvwTO2Xrya9vIOJuw7gTOVo3bmc9ivXYDSqyVDXjn7qPqbvO1ExyKVMNn/hJrJrOjnzD49SPLcAvqNLFhxKox6nv/AIaz7xMtovX0V6eXvl3TuW0X7VWoyESc8tF3LuW7sjGUwiadF360V48xoyKoDB1Deh8xUbsFpq6y7V81mvoKNR63U9hMIsucz7uO5IIzyjSumaD3NPnyXRkaEwtFAnN4BhSrJru/EKZXb/wbd9vRBGv7cfkTTZ9p3XYbekUGYiUoRaeYLkQDvJniwTvzgcoQGGKWm5aJCZh07RSEiefXJIZ07H0AdZliipyG7ow+rpoDQ0hRDglgQ9V28Ia3QtHhznyJ/9CteHizRTFmv//GW0XBjAJMa/W6RsVFkXEY7K56AsEZFJgs4tHpzCnfKLUMqo3uJMF6rgLerouTRwF8os7B2NNbTmjkwgXY/Zx0fwPBPDkJV+mSZzT57FzCZiVQ8FkQKvcW3JO3Zx+L/ehayCPBKmYPD2XTrAqyzx3PpxKVINikvXjC/nNkQPyB2dpPOla/X5vvsgucNjZFZ20XXdJuz2DJ7nMff0KFA7bqUEx/7yN2QGW7U+o9D7XPn7HIUzVaDnj69g4mcHcBdkCL9lJC06r92A3Z4hd3waqnR30M/3xnNIx2Pln76c5ouWMfyVR5H5Mpk13az86MtJdDVhtqZxx/UZ0DaT/8vee0ZLcpX33r9dVR1Od58cZ87krEnSaEbSKF1JoABGssjYsjEmOQG2wddcX16wsTE21wbbGDBgXzA2SVcIWSRLhFEWCiONNDmHk3M+fTpU1d7vh11VXdVdPdJd117LH/SsVeuE6q4dau9nP/H/+GtFIRqSdP3idiZ+cBTHDbWdtmi/dYvOZFUVTbJadyhNFzznQ61eUhpepGFtxYlSLVNJKVh6XusmQXFsvw0BEw+eRBEvt6AEyfZsXRz/dG+zF6QUJ8cqiiMLGA0pnLkiQhCxiQBkL+kGDlNvDzZd2sv0Aydr5sQne6bAub9+FFWu1MwCxeDXnqflqlU0717J+A9PBGvCf46RVGQ3deEsVnSmYMgSDcvnRfHH2TzckkN2xzLmXxhGugJheDzV09+aNnVRnlzy7GcgPTlbCIFywGxJa0ezUiHdCE/GkFgN9WEUX6H69LIi5f/0T/+Uq666imeffZZcLsf+/ft529vexqc+9an/7P69Qv8B5MwXKYwuImW0eJd0TeaeHUK5ksWTM1RSxfRl5xXliTxdd2wDTzgIjCyGINnbQm57D8KqTQv2Pd6FCzN1i7kULsxSHJwn9tQGymOLpFe3eQenIHz4O7ZJemMnfX//VMQgD9qrevS3v6dTEj3joGZoJkFEgNBQDGEmXOm7QNqul57rfz90SS0UrHj33iDaxp8XkTDpeN02ZMEJDo9wdIFS4NpKR7TZFSx335jkqiTOfJniyIIWwhbKqIKLKkmKwwsc/f0fIB2JKlYMn/4VPMdVdL9pZw0cg0iarHzvXjIbO+oaWXObOpnad8YrPOpHgmrjvzAFs89cPDtGJK3QOorcQYH2htdp2/WKqQhD0LJ3DWs/fDOrf++GwCCvb8Yo3d7fwhTa0FL9PtHR6uk1rYS9vpEnpBIUh+aRrojMq94nguLgHJP7zuE6lUgvbXQxKE+XKY0v0nbjBjZ8/DVkty4j0Zal+crVbPm7N5Dd2EnD2nakCtcR8J4vTZr3rA7gO8J98x1AuW09VamxoTlQAnuuSM9bLq0tqJQ0WfGeveR2LkdJDQHiOiauY+J4Ve2NxjRLF0lZXDgyHjH6RPoGCPw1pveX5jE6shl0cd24+ZZFh8kfa8NscWSB43/4IM/c8s88e+vXOP2Jh0NRMvXft5lJ1l9rSqdM67RcgkiZIGIuYXlr1eu3ayFdS797JTACzOf4tuePj1HsWwz2dXgPzj42QHFk3mvbwHUSuE4Cx7aQUlAaXWTuqf7YSFsjbTH78z6kU1mHQoT2tzS1YVqF+xOaI0cXoIq/LyiOLCIsEZ+SaMsg+i9unStpYnjz6dgGjm2ipIVjmzi25qkLB0fwI9SjEYYmxdE8s88NRQzyPg1+5XnKE4tBEb6avnm+jfi7aAF0rhBSHkPj9nj27HNDjP+wIhz7gurAV56nOLaI1dLgRZpExy0xsBrq1QDx1mIuhZRKR425BtL15hCwmtIUhuaRdi3Mg5MHZz4+Qgi0Yd3MJC76vo1sArdg17btabRWe9Z7D2ElzTOydjcxeu/hUDRNhcrjecpjeWrHXOmKDy9V3baUGvs1HupIf1l6UTpUnWOA5xgymH1hFMeuYNj7fGz+8Dip5U0Iy4zl981XrGbiwZNIu3rOBKqsmHrkLBMPnNLz5J/B3n61F12K/bM0X7WajX/+C+R2LifRlqFp90o2/dUdNO5YxsKxMZwS3nkROr8dg/EfnfCcw1ZN29K1MFIWI9857OEjR8ddnlwif3YKd6Fca4wU+n7nqzfj14SpjnBa+e699L77Km8PW9jlBHY5gevo4s3LfnU3AIsnJxm65zjj+wYYuf8s4w+c1gZjI5rdE1kvQlCuyi4KT3p5poQwDTZ95k6633wpye5Gkj2N9PzSLjZ96nYNlbhYJ2tDgT1dYPbJ/sriCs3L1L6zABz93R/UwBJO/ewMY98/Rv5sfP0Bf7yTPz2DcvSZ63r8HgSTPz6HlBLbU0Bdx/J4tubX5ZGFuhlCQgjsmQKJpjRSWJH1IF2BEhZWY5pC3xxOUeCULRxbX3bZZOagll2X3bWrJrLMSFks/9XLMXMp3JKqkUuU1IXaJh88WSO7a74HUz85xcS/n9DFSr1xu64FGLj5Mkvnppk7OA6RDCQBwmDhkNe3t+8hu31FkPllZBpY9cGbSLRnsS9SLL08mQ+i+GJmDiNh6kJy1ftfCVIr2uAlakK5ngG1RmYCnJLEbM4SB60jy4JkVw4j5cv34T2ko5TzR8fqtCxQrobAKA4Xap5dHC7g5st1MIQBQwRZW9NPDTD03VNM7Bti6N5TzDzVH/loemUrK3/zWtZ95Fbab978sg3yo/cdYWrfuci8yKLL4ffdr9t9/HxgkA/Ilcw8eSE4IyJt37IlaNswDHb866+Q27kswAjPbu9h+7/ehWEZFAbncUomKrQPXNdk7tCEnl+pMeId28R1LO+nXsvp5c2Boat6PZgtWa3PeIEpWpfTa1ahawi03bq5RicCkJg07ljGoXd+NzDI+6RKLoffdR+F89MhyNHo9yce0Jlu2llQzc9Nmnb1ouogNSglkAUboyEZWWv++SsSFgg49cc/ZenCLG7ZwCkZuGUY+pcXmHtuEHepzLE/+HdtICu4yIKDPVPkxB89iD1XDMFIVbcNbTf6UdFx8rlg/P7jsXwNIVg6PYU0KpG3Ub3F0EFGBT/DtuYBlCfydaNlRcKkODBHeVIXofb1TKUMlKMY+c7h4H3E7W+3VGfCQ7RwZDwo9h5chsHsi6MkWhsQ6dosfyUNcjvqFxQPjy923ryxAcw+O8TwvSeZ2DfE8HdPMf1EP0opJj0DbfW4QVA4PVURTOPWuWlgNTdwyRfeRMetW0i0Z0mvaWXFb1/Lyt++1pscbTCOnmOVAp4AHbds5tK7f51d3/8NNv/NG4IM+O5f3B5anwZ+pqlSgtbr12on7S/v0fqAJzOpVJplv7ZHf07qLIvgDAx0B4Py4DzRIKvK5RZcZNn1si5CZ6gvWxZd3FJ1NHzlHLTz9WVo0IgORqh2ok8KyG1fTmFgto4cKygNL3hr0aixiSiFZ9CvT5k1bcFnq+U1kgmmHjuHKlfLglpOHf/RCZquXB3Y7iLjxiK9qoXKwKt0A0TgiIhdq0rQ9doterxKhHRgEyVN2m/dQmlkUUMN2VZEj3VdWDg4ii4sUbXHlABlYteBh3uFLk4vK1L+xIkTfPWrXyWR0My/sbGRD3/4w9x+++3ceeed/9l9fIX+H6myIYXHTEL3pGL+xRFdXKj6e65k/AcnWP2+vVzyN3dy/tOPULgwgxDQtHsFa/7gRp22lYg3ygvT1AZk6qj1SqHqclJdPXro6y/EfFsrHKN3H2TiwVOBgBPcFQp7uoATYH0RUXC1scJA5h2k1BmDEQFWgvAwPpVXACXSbe+BTZevYO1/v4mBL/1cY4qbBp23b2XFe66iNL5YMUp5B6IQEmFIhCFYODSiK51Ls6oehmL8h8dRrm/QIDR+hTtvM/NMP0pSg/0oPEW9PL5I7zuuoDRRYPKnZ5EumEnBil+9nJar16BcidWcxpmNMk2RMOh+804mHjxJXfKMZqWxRQa/cZCFg6Mku3P03rWT5l3LMNK6CE28mCYqbvBYS63+n1uwGb3vGBP7zmEkTHpev4XO2zZ6EeEWKhZnWGAkE+TPeTilqjLnoJh+coDlv7wT1zUwzKhC4roGwga3HF6plTkHgetKT5kydMRymBQ4s0VSXTmadq+kaXdtBNfi0TGEZdQ6qAzBzJN9XpSB5RVV1lERhiERVoK5/YN1jc+gcOaLLH/7HsoTeaZ+dgqkQiRMlt11Oa3Xr2PuhaHQvhdBn6VrkuxuRi7V96YrV0dcx+1TpfCwdOuR0MV54qKy0Yqtky9z5Le/r/FdleZH049dYOn8DDu/8gbMXLIOTqEgs1rDS+EJbzptQGEYOpOrec9KRu/TeJuODL9PSHc3U56JMyjoOUXFZ6EE5KfCx+1BCcXRfCjiq/IZ5RoaYkEqLdAGTiDNt4TUDjulaut4+PvbXijXPDfc97n9Q3XuowXMsiSOKSvlDcvPcqjRe5SHlW0RfYAADFQyQWl0MSTIV3275HLh75+s6ZNP5z7zOFLXoK7i17otH56meq1qZ6iB1RKH++p9Rhhc+OwT9dv+9GNkNnYxf2hSfz8Yu8KQBomO+EKrfnvZLZ1IW4QMTJqkY9Jy3VoGvvJc3W8P/cvzuJ6BuuacUoSK+8W9b32/Em0aats1cIuS0vACQVR1RMEVFM7P1K0hgFIau31Fswf1FqXctm59zlVh6YKnnJWl59yN4S0AjtTnaw3pdZxe10b/Pz2PdASSROTbI3cfouWqlYFyGCYpDaaf7KM8Xai7zvMnJihPLOl+Vr1v0PipDatbEekkNGRxEzaqIav/Bh1MoAQKEzfC3hTFEY03HSf3KPS8l8fjnB0CJBTrYN2HugeZLGphKfQP/b5Tva0YCW18DbwyVIxjhmWwdH6a43/4YGDcdpdsRu45gj1dYN2Hr9fvRCowQk4cKcC0KA3OI10jiKqqzLnAntbyhJlO0PuOK+l9x5U13bdyqRDMVNW9tnr7V4BUTD/RhyzJ2HNq4KvPk9vcHvNd//swfPeh2HZl0WHuxWHtrK1Of1c6QixQpGUlQs4/a5SCpitXIP9eABo2xvs0lATNV6zkzJ8/7GXiRDf40qlpikPzdN25HVl2Gf22LghppC2W/epuOl57CTNP9UX7FKLiaJ6Zp6PwJGGaeaofM1W/fhFSMv69Y/EFje8/yop37ubcpx5j7oUxZFmri86Mw5k/f5QdX25BpBJAPHazkU5ctKhhaXSB4mj8PiiN5Mls6yYsMgZ9U5BsyyDQBhz/HfgkpZY/J358Ol73kIrZ/YN0vnazlrVDGYYiadL52s2Ii0X5CZjcdzZWrpFFh8l9Z+oa0I2UBVIx8ZMznP+bn3s1u7Sz7fzfPgVC0PWaTfXbfhk0+LUDVIIFfFKIsmLm6f46Fhr/nH1psprSbP7reL1/9N7D3phMwlltpcF5Cn0zyIiBV/dRG/9UANVTS9pR4pZcL8Ai/DmFMCROwaXYNxvzfZ2ZvHRhxuO5teTMFLRhrQa+Qv9dnlhi9ukBjKQZyToFvV5mnhoA00S5svb8BqzOHJ2/cAlj9x+pWWsdt22mNLpI/vRUjWNclhxGvnOY1uvX6iAvwv1TyKLLxAMnabtpIxP/HkUs8N9/2w3rOPfJh2PHDZA/NVn3nlLoGkPj8fvbTKdItNbqkX43U8ub6HzdJYzeexi3qDwZRGGmBB23bNI1BuqsOXtqSQ/VtMBxonILRjwUSRWN3ncEVa7laxM/PEnPm7bjLsXrJTNPDdDzph3IksPp//U4s0/2oxQ071nOxo/cgJVL6szkQtWzvT4muhqZevQ85/768WC92DMF+r7wjIYllLK6yfDgdJZ9XLaa0gXqAe3MyWSQiSxGMoWRDRVAF0bk7PfPMRVKCZzdP8Twtw9RnlqieXcvvXftJNmRiUAChu1GCki05Zg7PMr5v3sa7dTx3sF4iRd+9Ttc+b23h3SH6vejKM8Ug+dFSTP5xdPTKGlWsqf8CQEKwwuhczXK10AEMnKsDI2u82HPO1rOC3VNugYzTw2Q7M5UBfToZytp6CDKuvjogsUTkyS7GymPLdT0TTQkcPM20hUYZrWdSSAcwdKZesEEiqWzU5Qnl2L5uVtW5E9qfUVKQfW8GobCzPqO5yreIiGRTTF89+FYe41SgtHvHvF0xSrbga8fB4areD1U1Sl2/ApdnF5WpHwqlcJx9AS3trYyPDyMlJLZ2dn/1M69Qv8xlGhO07i+vWbviIRB+6s2YMcdqgCu8qp1e1ieX3wzu+59B7v+7Z1s/MRrg1TL5itXeh4004sC0lEQZnMDuc2dxEUnay+hjtiJw17XeKiCwsB88PnqAltzL4x4Sn+UWfs4z0vnpjWjDXkoAw+sDR23bETKSp/9/kvXwmhK4pYkrq2f5XjYzTrS1gwMhS3XrmH5e66h+aYtdN+1h563XYYwDdLLmlCGhXQrHk6lDKRrkVrRUn/OpaI8ucT0U/3UWhT079OPXoj/rkelqQLTP+9nYp+OuEUJ3DIM/MshlvpmEaZB7tKVQQR04L1Np0mvbKH9xnWxGIjKVTRfuZLiyAIH330/4/9+ikL/HHP7hzjxRz9h4idnEIYRa3NXCrAMD7tNK1HSKyykPBwykUwgbZcjH/gRA//yIoVzM+RPTnL+s09z5i+9qvZlWas8KP0817a1kVNG51wpk/JM0cMv1vd9b7h0TQQCd7EcMv7WzrkzVYrUZQhjuyHAaNDzVRyZ58THfsaLv34fZz/9ROAttmeL+NGNPjacNnrr912ezCNtqGA7ao+8W1ZVmHW1ZDY3MPvMIOM/7cMumdhli3LBYODrR1g6N+NFwlcf2vp3e6aIvVQpCOoXewoiUkLRQ9E9pI3J2lhZe+iDAkOQaGkI0hxr1oNpMPnTMx4WduieIymNLjD/wggdr9kc67Yzc0lSyxq9dWRUjClKC4QKDbVQiZSrjFtHCDdqL3+dea0UkItXGrI7umL/75PtRQBFL92+W4bmPb1Ix6A6+sEpSFquXnXRZxeGag2kFRKe4Tz+HkKwdG42gktYiew0yJ+YuqhUIBrjim/pv2XeoXFHfN0FpcBqaahbCAqgPOUZUav6pYV8gSw75Lb3BIaa4L6Atps20Hzpsjo6niDRmqE8XaibclwammfyofOx33VLUmcfEJdVBZiGNnzHKfUGLBwdr2/4RiugpQm/mGN43DqqsDhaLexHuqf3dwirOXyVRvMe7FZ19oLeF8muHMqIr42ilIaC2/I3d2A2RiHLEh1ZNv3l6zz+EL+PlAvFoToGZgXFkcW6eNU6Cksh7XDEaeWnvWjjzBa0ozPCzzUvsCeXsCcvUsRqLO/hhMY7OhCCuRdGOPqBHzH9eB/F/jmmHj7P4d/6AYsnJry6LXEksHIp8men6pmHyZ+c9NZK7MgxRLVSXJkTFCwcHsWZLSFdM8h8ch0dbXfhc0/R/+X93h4Krwdt2B78lxcZ+OoBD0LO75GuTTL+kzN6nfoY4KE51RGMslKvxjFD8p7+jJV76XTlZGtG8x6vsGAQWe7duxjNvTAU+38hNIxS1y9urfvdnjdvr1u4F6B4doZqp5b3dFCCZFsDyqsBEqx376wxs2lG7z1W+Xz4u8Dovx2jcCFOV9LOgsLAHEIIzSaIggAAIABJREFU2l+1icxlqzE6WsnsWkPbDRsQQjB/cCTyvDDJghstXldFbsml/dZNsRGrRsqkYV1bbEAO6Hoz5Yk800/21xgjZdll5J4jOosvRr5WoLNoG+LrUQGYTekAhqhmXCWHxs1dGBn9fdcRWv529RnW+/bLadjYiTZIGCH5XL+fzIZO3MVy7B5UCvKnp1jx7itp2r3Cw3PXhramy3tZ8e4rWf62ndTjudktXRqWow4tHBql87Y6c540yW7qoO+LzwQGeb8dWXbp/9L+us99uWTP20R5pi9fwPyLI7TsXRXgxVc6Jmi5clVskdc4Wjw1Sd+X9nPhi8+yeKJi2C3VMXwrKT2dp84eQ+DMFutGVisJo/9+QmcKVslVSpqM/+SUV1sphqS6qHMIwMjU511GQwJ7rqAziar7VXaxZwu6mHON3AJKClIdOXp/fQ+57d0aR9vWmaqZjR2s+s29OLMFjBgcftDZQ1MPnfX+quUtkw+fZ+7weCXbK9S2dA3yxyewWtKBzuHzXCnBzCZJ9sTXCPOfYzU2BOdIWP9WSmA2pul5447YGgJGQ4Lc1m6ar1qNU6rIuUoJnLKg+eq1WHWKpSulHRat16z2dKao3GIkTNquWxv73TDVkzVl2cGeKcT2G/ScSyk58Ev3MP3QeWTJRZVdZn8+wIG33o10ZABlWj3nAOmOLANfeT5Sm0wpcIsOA187QOcvbKk77tTKJqyWTCUSPSyfS4NESwZnocSh936Pke8cpdA3y8LhMc78xWMM/PMB/aDY7CSBME2EKRi5/zgnP/oz5g6MUOibY/R7xzn4rn+jPLmEW3BQwqqRHZRrIG3Jub9+IvJMvx13rszci8NV/Y3in4t0pbZBRAdWgBA4M9V1GSq/y5IMBU5Qc788VXEc1exBQBUdXWPOrWSqObau91GayKPtULVtR5ESYl8bVi7Fti+9OSgkH7RtGGz70ps8fcXwZCbDs4/p7AHlQqorvm4SCBLtWRaOTRDHz5GwdGaqyiBf+SmlwGpu8LK1q8btWoiEpZ2BMeMSQtdV0/aWWtuBAi8Lrj6Zmfowx69QfXpZRvndu3fzwAMPAHDbbbfx3ve+l7e//e3s3bv3P7Vzr9B/HG14716tqHl/+wbZ7tdvpXFHdyzEjJG2tADnkbNQYvb5EeZeHEWG8LnKM/7hVzEogsDJS1113ogvNCNMC6ulocYY4R8ERlNKBz2rKOa7zyCNhgRGshpWoMK0kp1ZQBfAcp1QWr8n2DVf1guhw94//AGyu3oRae00kK6pFTYP8ke5gkRHFidf5tB7vse5zzzJxI9OM/DPL/LCXfeyeGISpRQikQgJEwTPtlqyNG7vDhn+qud8pfc+4gVkP0Kn3iHRsLKJc3/zcy1M+PMpQRYcLnzhGUrji0w9fAHX9or7ufrAsGdtxh88TW57Dx23bcJImdqOZxmIpMma372WRHOawa+9oAvthIytsuRy/nNPY2YSWK3Z2PfdtHsF5Yk8EtMTOrw5lQbK1QXZph/rozg0H/FMy6Kjo6f7ZoP6BOFnK89ot3RuumoNhNaFFAEmWvVnwsa/ukZapaPhKmuxclgLyyS9vInpJ/t44ZfvZebxfgoXZhn/4Smee8O3WeqfJbetyyuoFG5XgDBovmqFd4DFGM5dHUGYWtFEvIFY0HzZMs79rX7fgWFB6nnr+/J+DyYh/ruy5OLmHW1w8I3byk/hE5SGF8FKRMYdCChKkGhqCBn9lDcubexqvGw5+bNTQeGn6ivfN8/S+Zn4SHpXUeifxZ4rE3bqBQJuCZQlqpS0yvuWytQCR9yoBRQHF7zK8rXzopTG8m29aZ1eW1IFAqaUCgyDjId/GPddICjwFCdgIgR9/3gg/r4SDH3rUORZ1ZRd364zBGpbB0PQ+ZqNAdRAVEBVNO3p1Q435Rky/YKlXmq2mfEF+rh5Ebgz9Qu9KgXNl69AGLXvGwHdb9xO0+XLg89WC8+dt24Eyytu6cPIeJcQgvSKVnrfvjuU9m54gnWCZW+7lMy6duKs7kpBw/oOzEx9A1GiM+dFfMXMm2fMcGXUWFpRfqEwOBdf+FPC0qkpXcyxDmU3dyFLnrPXqfBj19Fp5q7txsMNeTzLTFdnqlX2gjIEHa9ar43XvoLl71/DoO26NUHEdM0elWA1pki2Zrj8vnew8n3X0nLtWtb89xu57Nu/gpm2yK6P3wd6LSW9aPT4Z5dGFjwIiZhvC4GZrBQMjZ6hAhRedoKsGpfASJmeY+ti3iX9nHrY6cKA83/n81Tvhpf1c+Hzz9K4rX6h17ZXr8dMx49LofGuRcrPNomfN99oX73WlIKFI2ORz4f5X2lskflD9Qtgzr84wvyhMUCF5tSbVxcK/XOh71Y7FCG3tQtZZRTz5b3Wm9bFzkeYynnHK0hm4DuSpGughIk9tRTim1EyGhJB8dy4cSHQaylm/yqElkFjoI58SvY2QSxP1c9Ir2qJVU4BEl058p7sEcfXls5MXyQKWBvH5w6N8vxb7mb64QsU++eZ3nee5998NwvHxjHrRm3r56V7m+u+74aVLXS+ZjO5rV2IpIbjUZaJSFls+NjNGJZJw9r4IrWZ9W0Uh+cxEjH7SCryZ6bo+oXNQQZX+BLo1PjOmzdGaosE82KZZDe2182TVYAwDZb/0q4K/IJfLDWdpvXG9RgJDRek5RZ9+XKLSJpexln8862WBoykxaY/u431H7uVjl/YyvqP3sKmT7wGI2lhNiTpvOOS2i+agk1/+VqMhkRdnmw0JGm7ab2Onia8DqH7zTsRpoE9U22g1r/bs0VebsT6S1P1WhVgmax+/7UkWjNBIImRtki0NrDmd68JPi0dyfC9Rzn/hWdZPBWVowb++QBHP/Ajhu85zMg9Rzj6ez+i7x91JphZZ16kLUktq7/HQNCwri3eQJQwadm7EnssLtJW/25PFLU8F/N9v+2LyS25zR3xvEdAxy0baLp0WazDQpgGTZcuI9GR07pkldyiEDSsbGJ2/xAzz4wHcpaSBnMvTjH1ZD+ZdW2xBn/wgjfKPn5+NW/RNZvKYzo7MZDn3Io8t3B4DFIpbQD0oCb87G1pWXS8en3s+QyAAcnuxtC568+XF5DTmqH9Vetp2rMiCOISloGRMtn4xzdjWAZ9X9pfVUNE6yZ9//AsqeWNXuaRD3OiZWzQRaJT3Y2seNcV+r0YBgi9r3vevJPMuosXDQbIbY0PEGlY20p2fVu0WG6Imvb0MvHAaW+PRsldchj65kE6bt5IrKwoTHLbuykOh2tNVObOni1C2UUJM3bc2a3LdZ0ew6iVz5XAXXIY+/5J7LlixGYjiw7Ddx/x/h/v6FSuws2X6fuHZ6NOVlfXaxr8+os0XbYM6QjPXmJ6jn8DqUyaL++l2O+Pq3YPTvz0TEQOi8pugra9q+reS69p5WK8ocIX4j8jEgaZS7orsi0VuSbZ0Uh6ZUsMRIzeIyIZLkxf9VxfZctqqNTgffnvTEF2Yzuy7CKyOVwsrZdIC5IZ7UgQWvb2C55rCJxKEE16Zf3zO72sKQTVVDvnrhsftOJfzlwJQu+kEpADxfEC6RVNsfOpFLqmYrk2M9FvY+7ACGFbTOT7obl7hf7v6GUZ5T/72c/yxje+EYAPfehD/MZv/AZvectb+PSnP/2f2rlX6D+OTnz+GVzHwLUFjqMxgaVjMHzPUVJdObrvvCQSpSBSJuneJtpv1IrW6PdPsv+N/4czf/k4pz7+CPvfcDcLHpb7wuF4/EVlu3pTm2aABaYkgcDSsKqF7IY2zxhh4DoiwCuWroanaFjjH77ViqCg9cqVHqZ7zO43DaxsKqSw+4xQ44QJTxGKj9IXLL44Qf7YZGy7oFg8McHQNw/qgm5eaqEqu7hLNqf//BHsmQLOYgwkkBLMHx4j2ZGl7Ya10XuAmUnQ8er1HixIrNhPZn1brLLuX4snpmIFCqVg7sAwcwdGvOhl4TFsT2GUiokfn0EIwZoPXMslf3sHy39lF73v2M3Or7yZztdsBtDMOAb7WZVdyuN51n34v+n0Or9/hsBoSLL6t/aS7Mp6BcWqDwptjJh7Ybgynyo8PsXC4TGUEoGDRbpe9IcXcWzk/KJD1aT/13bt6sichX83GlPktnfXEdwFrVeuoDi4EPxd+Slwywol4PSfPVL7VVdx8qP7vIJNtWtJKe1RdvJ1ovgMgT21xIb/76aqsemOdr1hK6os47Fdld6bRqIeFItCpCzMbHzfQJDqbaJxuxcNJ0PvSwowDdLLm1j9vqv108KGMyFY9Vt79R5QPq6gF3HjYQzKvE12Q3t8dJQpyKxtZf7FsZBwSuA8UBLyxysRWtXKCq4KRaJVjVqhHWKGQbhoUOU5OqpkxXuu0HUfXCvIqpCuReed20k1ZyLt+r/71LAi3tABuip9/ux0nXcimH70AoYXmVy9vwGatnZFsIvD/XZdnSEgPWdX+HJdg+bLV9CwphWo7P9KhKgis74dLB0p40e5SKWCtoyWBi5GieY0vb+2C5EwA2UPwyDZ00T37VtY9+EbYvumEibL3rKD7HatSElvrQU/gcyaFvq+/Jz3XBEIttKBga+9SHFooQZjPDCc521SXupv3P3M2jbPAVPLl5RCFxUVFfxbfy26jsBIJ0n15GKjPhUgGhKYLZnI+wreGYSykkRkXP76WHhxLBpVFB6XC8muXOT7YSVaOYrm3b00buvRPFnpTomkRev1a8luaNcFJL3o5aBf3hxP/vQsTr7M4ff9iAtfPMDUM2Oc/czTHPsfP0WWXZovW1ZH+la037DWM0oZlf3v719lQNKi8dKeyHiCfSwE6VXNESUrMm9KR6R33bHFw/j015KJsiy6bt9C02XRZ4d/b97TG4tHD3o4ylUU+uMzUhZPanxkHWlf3S8oDC7QsneVLu5ddV8YguYrV9C8a3lgQNazVTkrM6tbK7JSWOn3MjFy2+KNDaAzG2SgrFfzc5C2q508sXKPHrfRmIzhLWB1ZpGOG8owiiqDc88OR5631DfL0kB0Dp0A0zl6hiobkp0ZVr7nSk+BJfJz9fuvpu26+ud3ckUL84fHkF40tb+epSuQymTh8BjNV6zQLC+Gp+Y2d9Y5+3UfC31z1OPX5dElchs7vL7W8o7s5g6SXVni5TloWNXCqY/tq72t4ORH99F23Zo631SkepvI7VpGtXLs75HGXcsQpiC9tktHrBoJpGMiGjIkO3TwRDjCLzwvImGRXtkcrKfIGWsKsps7aNzZQ9MVqzzeos8SkbBovmo1uW1d9Lx5G8pKBme2jtY1Wfa2S7EyyUiEcbiNRHsG6UgG/vVgMM8+OQsO4w+ewi36eNa1l1tyA8d13B61pwu4RYejH3yQEx97iKF7T3Dijx/myAcf9J4LPW/aCdkMEh0Z6CpBx507sLIJWq5cEb+/TUHLlSsYf/A05QVHZ8P547YNBr9+yDPAXsQAFSJnyfayqOouzton1JX3IL28kWR7hkv/9a2s/sC1dN6xlVXvv4ZL//VtXmah1hGevuVfufC5Zxm55yiH3vt9Dv7m95FSUhiYY+jbh7VRzzNKyZLL6HePsnR+BmdJZz3WzItlUhyeJ9kZnw2TaG3Aakiw8jeujMiDRtLEak7R86btsTpHpREoDC0G7YXbVhIK/bNVMmJ0PRspi9W/cxUiZUbWeKI9w7K37sTIJWP5vXQlZmOKpfMzwZ6PGBwl5M/NcPJPHtLz4Bv5PD505pOPaod5YLgL8T1AZFI0714ew1d0sEjTrmWklvmRtmFZTjfUeNkySkOLlfuhn85UicXjU4EOpevpeLB3jkBJy8vwidtjsDS0oGuIfOJWNn7yVrpev43ed+zm0m/8Es17VgCQPxEPj1Pon6U4MI8yrcD4q43PXrCFBy2TXtWGKy0UJkpYuI5Juk5ATDWtfv9e7Xjys0IMgZGyWPt71+qzn1qZSqEdwJP7ztV97tQj5zFzKb3O/bPQd8hgeBnVcYZS/bM4soAyzNhxLxwep2FNqw6Iq5LPjQaLzPo2ZvcPokpuzXo2Egb5k5Oke+MNrYkWXduoHhTL1KMXcJZsj9dofcF1PZgapShP+tHotVkZoOWeeAMxKHQgY60BXP9s2rU8Urw3+myl36GoYwBWkGzPsuYD1yBVNKBHSoM1v38dxeH6kIAaHkZFnheRs5Wg/aZ1OjDLDcmaHgpC8+5ezn/uaUpjSyg/290Fe77E6T9/BEW0HkxlDrW+MbN/uGYu/d+nnhn0IJji+bnyglLi7isFswdHo+s7uATKgebdKyLthX9vvHRZRF6KPhwSXdlIrclIGxgY6ZcuxvwK1dJLGuVd1+Xtb3875bI2GhmGwZ133sldd91FJnPxdNNX6L8G2bMFFs7N4Ert8ZRSF/NzyoqpR84D0PO2nVg9zUiEjoRKJFj5W3sxkib5s9Nc+PwzgdHZXbJxF8paMS85JNriDTVKKqzWNE7JUwJDBmClBMWJJUqji0gFUoX6hoFUBoWBeaxcqg4j1odUqis+/U4YOlLebE6HmJYnLKGjtqce7/M/TbXAYc8UKQzMUa+AztwLI0w9dD42w6A0ng/SOKPM2DvMbIV0JFNPDEaKoigpKM3Y5M/OaENJHYNhcTwfuRdliIKGNS0hBS86LuXA0sBcPKMFCn2VNOvspk5W/Poelv/yZV6Ui0d1IgRl2cVqStG8azkt165DeoV1FSbdb7mUhpXNupiqBFcKbZzzLhAsHBoLDCXh+64UyJIWfv0IR+1csSKR0mZcRFdoGtI9TV7bPgxRJcUu1dlIzxu2RuazMqfQdvM68qemqHf4TT3eV5Pi7VOxf475F0diIYFQMP3YBVJduZpCreBFMbVlyG3uZPs/vYHs5k5EyiTRnmXNh65l7QeuwUhbsRAxoCOesps6ggJ+lT4rFILGHT0Y6YvADhiCVb95BSKhhSklK4r3sjfvwGxIMP7Tc0iViApDIsH04/0Q2ntKGaH3BcI06Lh5vY7ODq0pkTBoWNlM484e3KKXiq2EB0uk+YcsuaQ9+JrqtSQ9GSZ+3N69bd3IJTtkhA0JK0pQGl/kzCefIK5Q3Mh3jmNlEhEorcjPhEXLlb3ErRVQtOzuxUjFGwSVAqslzboPXhvts0eZTR0k2jWERKRItPJw9SXMPjfoGc4qc+9fQ98+TP70NOHMBr8NpQRL/bMaZsY1cKWJ42p8asczpGZ7WyoGxKp++9T2qg24RgrHtXAcXdCw/ZZNmA0J7Tyy4pxAFk6+TKIxgxNuW5pe2xZGwmTh+DRS6Qg0/5JKMfnwBRJtDShh1O5vZZBa1kRuY3uVYErw7rObOkhGMK2jAnRmdQu4CiGMYB1r3H8Dt+BQHl9CxgnWSkOlpLtySIxQxoVet0qY+vw0vP+rKN9TStC4swf/zIyuNd3H8QdOo3w+Gfq+UgJ7pogwBJv/12tY/Tt7yW3tpnHnMtZ+8DrP0Qf+3gzvb/23gdWY4vxnn2bx5CSy6Og9U3KZOzDCwD+/QKIjW4HxqlpLRlOa4lg+0kYFngsK52dp3N5Tk0kjpYGRbSDZGnayxig1UjH56EDVfZAlxeLxSbpfv7UGos3vZ9ftW2IjhDV/EKRXtdSFUrAaU4w/eAofeq96Pc0+NUD7DWux2jOBUqOUlklSvc207Oll5Tt3B7i4/jpBCDpeswmrJa2dWr7MFLwTgZH1jAHEzbnGe5YxMolPriOxgsjr2jltWNkMhhVAmPmX6xogTIa+fjD+wQgWT+qI2qkn+3nylq9z4O33c+BX/o2f3/oNZp7TBvtKhHDVvAMLh8ZYPDeLK63I/neVxeKZWXKbO0l0xcMGrPvv12mc8YTPOywcVz9HWAaJtgaady0P5KIwvxaZlIanqdq/4Xm1Z+JxlQHshRJdr7+kaj4rhrnuO7fo2kpVjhDf8FccXwyKf9Y8e7pAZn0bwqh1Niol6HzNJpzZct1zzJktMf1EP6P3n9D1amx9lSeXOP5HP0NKyeLxqVjesnB0gmRbhparV+JKI3IpDJa/dQdCCDb/+S2s+b1ryW3rIbe9h7W/dx2b/uxmhBAsBNAaUXlt4qELKKVY876rgghlv22RNFn9O3tZODERwn0OzatSDH/zMPnTU3XCVjRWttWUjuH3AAa5LZ2c/4dnmDkwqmEqvUKCswdGOf8Pz6KU4tiHf0J5poxT1pCArm0yet9JZn4+QOs1qxGNac1zQ/xcNKZpvXa1rmXjUjNud8lh8cRE3bXkk7Nkc+JPHuGZO77N8798H/vfdA9TTw685PdAG7hj9RYgt60LpRSD3z7K6c88y8gPz3Hmb/cz8K0jKKXxro/94U9rDOD5E1P0/9MBZp7sjzWOS0cy/WQ/qZ7GmGwVAcIg2ZZh9fv21kSki6TJqt/R9Sd6Xr+VTZ+8lZarV5HZ1M66d+5hxz+9kURzmmR3vK4H2onjLpZj+bHCwJ4pYGZSqJj9b6QSCEPQcfNGGjYvw5EWjrSQRored11BojnN1EPnvUCI6B6TrsHkT8/q+mAxbYPB4rGJ2IhTIUA5ioWTkyhFjdzjOoKZx/tou2FNcNZHL4O269ey5vevIY6S3Vkat/jOxmqeq/uaWlaBeFSyYhsAA5GyQjjgtSQ9eJjZZ4c4+YknGbr/LOf/9yFOf/rpoG6I1RivWxhpi0RHg1eI3e9f5TKSCez5Eic/tg9ZcHFLOjtWliRn/uJxSvWgikKUXd/Ojn98A52v2URmYzsdN69n2xfvpHFHD0sXZnCWZKB/Sw9C1XEEEw+evegZqlzF9ON9lWjngPcaiITFwtFxL4u8ds5RCiubDBUrj47bLTg07+kl1Z2LwuuYOgih/YY1OrCNWllROpJEe4ZVv3GFZ9QPzXfKYuW79yDz8VBloCHDxu47pp00siJf+zxu7Ee61pxScXIqqKLjOULjxu1hp8cGcAjmDoySWt6IlP4+0JfjalneassG2QS1BmSBM19m8tE+lGdDcl3LsyWZTPz03EWh65TtBjWdqttWSkPANV/ai1JR6CwFKCtBqqeRqUcuQAA3XJmDxRPTqFJ1NHvlvhCCmWcHg/M6wluk0Jnkjuf9jKHi4HzMfFfm1crpAtO1OpP+hF/APu6yZ4oYuWhwWPj3zMpmZKES4BHRS6SIoGm8Qi+fXtIob5omg4ODXLQ4xSv0X5qEaeDWOfycJRelFEc++GPy5+eDtPnyrMOxjzxEaSzP+L+fjj+kpGJ2/xDNe3rjgnxIdGaxpwsot3bDSykojS4x+WR/wIyqlZn8+VmNFRaXNiig0DdH76/srBXyTIO261YjDIEzb9cWY0SwcGTiJYvF1I9oEdjz5QASwHGN4NIFJ5WXVl+bHu/3Ze75Ydy8NjiGK7BLRzF8z1FPufTmMqQsuhLMlAW+cagqegLwIqP9+Yz2G6hbGEwpXfTtpUhJpTMaQuN2vMIs0pGc//LzTD7WryMeHBOnJBj85hEmH77A4N1HQtAblfctlaA4voQ9WwyM9BFDixK4BduLTtKCgH9Jb9xmKgHCE65CfVNKZyAsXpj2HAXCU/wt7QhSJqXpAlOP9kUOmOCQQTD79FC9cxEUyDq4rMHMW7qYlStF0C/f8GEkLTpfu7F2PQr9rluu0t7s7Pp2tn/xTq584J1c/p276L5dp1fLohPpb9AtpR0lua2dJHsaIwYi0Ib13l/agZGsbyA2UxbZjR2s+dC1qHQDtmPhqAQt169j5XuvQJZdZp4c0IWJlb+OTVRZMvq9EzSsbfHaVTXPbljbitmQYPNf3YbZ0YTtmNiuRWplO5s/dRtCCOy5slZ43dC8SYErNY6gDEUGBxFESiAxyG3pAFExfIUVsY5XrdOR8vgGg8oeBIEwTBYOxWcAoWD6qf6I8bMSvWTg2Do6UhvOqsctaLpiBZkNHbHzDdBx41o6blrH2g9e60UbCBCC5itXsv0LvxjKADAic+4f5xM/PhsYpMP7RCltIJ4/Ou7Nqann3DEDwXtq33mkrULCtW8I8faZ0GWBpBLYjuF938Nj9NbvgXd+D2fBrsyLhL7/fZDppweZ+MnZumnD00/0M/3kYLRdnz+4irmDI17USfR9+21kN7YHilJkf0uD1mtWeueI4c2bbyD25lEq3OpCjKDXB9oJpBWhWt6CqzxnY5VSjjbUlKcKZDa0eVG7RtA3pfS5nLush6bdvbVzDkgEbVet0IZYVTFsB7wfDX/h88Bqnuo/x0iYdP/iJWz7/C+y9e9up/NWXTjbGz5KCRzHxHYsbMfShjcFqd4mJh+qdT6rssvYD08x8eMzdcc99oNTOltOVe1fj+/JksP0Y16dj8g6Fsiiw1LfHBVFJ/pOABZPTuLM1xozZcll9P7jmp/LijzhGzakFEw/3seqd+1GWGbgVNB9F2R3dpPuztHz+kuQhhl934bJsrdux/Rgd1xpVObMi5wSpoGRNNnxpTtpu3EdImlhpBK037KB7Z+7Q8NXLJQDecHvmysFhckSQgiyl3R5xq3QhaDpsuUIy8BVRuAECs+5kU7UzQBQCgzTxJ4t1Z/TvhnsGV3Q3HH1uBxXZyMWR/IYqWqopOgjSpNLHP+fD0WyRmTR4egf/ARnoVT/u0ob58YfOIMurBriqa5i9HsnALC6m5EYkTlxjQRWJknr1StwSt6SCfgWOEVF696VTD3WrzGdw+vcNXBLkvyFmUDOrDb4+xF69c5YAcw+NRhby0MkLWZ+Poggeg4FZ5FL4Iyv5i2+4rx0dgYpovi8/p6aPzhOsX8OpQwctzIux9VnWaFvjtH7jtdCxCkdPFLomwvmK8xb/LkDmN7vR9uFjEdlmPcy1YRp0PXazWz73B1s+/s76HztpkCWGbnveG2wgoLy+BKFC7N0vGo9PW/ZiWsk9fswUvS87VI6bloXysCtXavl6aJuQ1XfA5SX6faOXVTze6UMjAaLlj3LGfv+ae9FRA3+Y98/xdL5WQrD4Qhjj3eUXQa+cQhnsUymDL1gAAAgAElEQVR5ytZZvv5ZI03KU7a+Nx3nfBLBvNcLbMHQUG0n//gRpp7oR9lSQ5RMFTj58UdYPKnn3F2yOfcPz/H06+/h6Tvv4dzn9wdZKOW52v2tlJ6XwvlZhr97nMFvHkYWHGTJRRYchr59hKH/c5TZpwZjYTUBxr5/EpEwUELU8HOEwLAMlr91O0ZQK8xbS6ZBZl0rDauaab9hLRs+coOO5jUFqeWNrP8f19N584agneZdy9n8yVvZ8aU3sOX915Bo1tjjm/70VTFzqud148du9LaviLbtf17B8rt2apgsb4/YjoUUmp8DnPjTR5k/Mo6fTeYWHM5+5mkWjk2w5EWMx8mKhb45L+Amvu3U8nqY0R4ldC2haplHYWAvlhn61pG64x655yjNO3rY8Cev8jJeNTVu72Ln19588XYBK3B8167VREuazPp6sCKChtUt5M/OcPyjD2uYurKLsiUzTw9y7CP7ADC9TJgwKeXVk7ADBlvzbCRMP9YX27aSisl9519ybKChvdb9wfXs+PIbWP9HN5JZox3x9tRS5fwI9q9et6WpAm3XrqzL71uu7A1lo0Tft4K6WPX+2ArDcRAw+m97roQwBBs/cTOqIR3I5yqRYsPHX42RtGi9epXnTAjLB/r8z65vo/XqVWz42E0aMtEUJHtyrP3gNXS9brOG9BXx40q0Z1BGRacJ22J0BLoMnAG1+rlBZmtHfR0ZMEwjHqoUjf/funcFMlJU1H+2SdOObsKR8tX6HIZg9LsnNERPWOdxFZMPnfcCPOLJzKUoji0iA30gOq7ybFEHvtS8LYGyFQvHxqlXJBpAum7gtI3YLaTmm3JR24HieAs2WJm4iHPdm5fiLW7ejrW3+O81f3bGkzWisqbjGuTPz5LszNWd84a1rUH2ZrXs4DszXqH/e3pZ8DXve9/7+PjHP87Q0BCu6yKlDK5X6L8+SVX/8HOKLgtHximN5WuqvytHMvL9E9rrHQdXohRO3mb6qSHPSCsqBZdcWBrOszQwi1QiojBoI5BO67SntABZi9enC+ylunNB+mfE8I0+cNMrmnV17IiyomjY2FG33wDOfInOWzbE3gNBqjuHma0fQZxZ1Ux2S2dgvIgYQhKJOozUnzfB4qmpID3dL66pDfqwcHyCVE8joCMnwhcYNG7rIRwxXmGG+nLyNvEeaZ0OWg/WQ3eu/i2f7AUbRfUBJnAcgbNYZvR7J3GLLn5hICm1gNv/tRdDBVnihC3B3OG4KCL92aknBhApq8YA5Rtik20NJFe0ECnGhsCVBi3XrqY8Wa/6OziLNovHJ6meU6W04rd4fELjlMYIMwjIrmu/aARx02XLcIoqYoTx90XbDWtIdWbZ8pe3kGhtwGiwdBG2lc1s++wv1C0C5ZMbEnSqnV8oEEKw7W9fi9Xe6O2/BNJIsP4PryOztpX0ipbYOQFBZmsnSxdmOfOZZ3HyOl1cuTD52ACD3zqio+/q7DF3yab5smXaiEJ1VLdB1+s2IUsuxz/yCKVxXUgTBfkL85z4+GMopXBtLRipKmFCKUGhz09JFjWXdCB/ZhopTFxXVIwVjokjDWaeHSa3qdYw7lPznuUX3QtLQwv4xsTw/lTo1MXJhy94GOTV44bh7xxj8cx01KjmtSUVjD/cB0D7zRtY/utXkN29hvbXbWPVb13lrYU6Cr33zkRC9yNq5PXm0UuLlsqsmlOdqaRMKM+W9BwGmSSVCIvS2BKO6xc8rNQQ0ZFdislH+pCF6igg3ea5zz+DPVOMzepwiw7OYhk3tpaGZzAcmI0oC1EBE09xpvb7Amb2D+s6C6p6jwiUZaLKbt1oVRQsnp3GdYnlLa70l4qGyvDXgvSiI6UD57/wXIgfRq9zn3katyhDwnOo48KgMLao26jpu15PHa9eHz9uNFY+eIrso30c/cgjHPvjR5l+egjfYWQ0pr3o12pFTGDmkvWzcEoOec9YETduJ2+T29Ll7YuwsUHgSpOmq1bULXiuXIU7Xz86GTR/EXWMW85imYVjEyjlRT05Jo4vdyhDRwEva8RVWiEPIquVSXaDLuJs2wq3HOUvTllDBnXett7Lyqnm5wbtN64FdNS61dGMTGeRmSyJrmaMnJYL+r7yAtImEtUtXYOZp4coTeRZPD0by9fmjk9quURGeY/0ZANMg8btXbFrAQRNl/Vonu0p8eHC3krB3KGxIGMjYoz0HF/tr1of81zP0JJN0fePz4fWZiibR0LfV1+oa+gAMFsbguK71ZdbUhQG58kfn8R1jAg/d8swePdRZp7xCsGGZR/v95n9Q57Dv2qd48HgeRHZWs70M4Q8qEMg2ZkNRVN6hUVd7Rw2m9K4SzbSkciwPKe8dZy3wTI96BYjeL4/N4nGNGZzuoa3SGlgtmV0ZmpJ77FwBoDCoDC8QLKnMcYpp99hclkjpcn4ItPSy3z1+Ug0uETztLkXR3EWwoVDK+/swhef835XTD0xwNGPPsKxjz3K1JODAW+p23bJwV2ymX5qkMG7jyM9vF9Zlgx+6xjTTw9iNtSXoYUhaNhQH8Yis6GNtmtWI0UFjsR3XrVcr/enimBdB09GSUVxYL6OoQUKA/P0/eOBQLXw1zno9XHhy8+TaKpT5E5AsiNDxy3rYo+59levpTi2yOyLozWOUFl2tcwlFQff/yDD9x7HnipgTxcYvu8Eh973AMqVXnG+eNli6cIsg984XGMck0WHwW8ersuPAZTt0nrdapwSNfzcKQvarl9D47Yu1n7oWsxsAiOTQCRNGrd1seUvbgme037DWi77xlvY+7N3seubb6WjDk+pptyGdrpfX1sks+O1G2ne2UMixgDsTSuJzizSBceu4iu2wLEVpfE8s8+PeFARtXPesKJ+TZjU8ka6b98cf1MQ6Jn1+J4sqZAjMUrl2TLOYjl2XErpLB3QgRxX/PDX2Pvwu9n78LvZ9rk7sLxMr3p6iQJUwdGZtiG+5QdwmA0JVr3z8rrjXvnOXQzdc7QmYE/ZksXjkxQG5sifm4mVW4ojeZx8qW42GkKf73EBHMqRWsf9f6DyfFxRUU3SVnTcsiHgqRHbghJ03b6F7tfFF3I2kyaNWzt1tnoMJToacBdr+WmlcZ2t8sK7fog9UybQrRcdDr3vQZyiw+QT/aEvhM6Lsgpk4NwlXbTcsIHspatouX4DjZfpWk7pFU2QSdVkEEol6LxtIyS0c6n2CBVgWojYrGr94eadlXpRYfL/dmwZ4Ufh++XZEsWxuELQep+Wpn1HY1Q3D4KokiZuwY6VW6SjtO5ep28ioTNCVM0e1PvAXrTJn5mJfWNKKfJnZ2LuVMjKJGMDbhQCkbKw6iBNAIiUSc8btxKfhSNYduclWm2uN+cL1XCBobEBhVFd5FZWZReCQXEyjz1ve3JiRYaWXiCkD5Fcr+16tQ1eoYvTyzLKf/SjH+X+++/n5ptvZvv27Wzbto2tW7eybdu2/+z+vUL/AVQazde/KRXF0XxsdISyJYX+Odr/2+qgKFDkvitp2bOcfN88KoAqMbz0GBPlCEhbVAwpUM0wjTrGax3UaND12o2ewl+JDvTTi9quWcm5f3gepySwbQPbNrFtA6ds0PfVg0jPs1vTb4XGbl3XWue+Ire1m+7Xba6NAvSUzWVv2cbkU8P4la8r+K8Ce8Gpu7N8Yag8XfQiWT2DJYaXCmZQnimSv1AnLUkJZg+MkO5tjBXUENC6d4UHcVH1VaDlqhW0Xb86VlBSCkTdomIVcvL1Co8InIKNtGVo3vwIYkFxLE+ipSG+3whU4AmPNygIwAwwrasPTwOrNU15Oj4KsDCcv4ggpw3NZvYihSBbGuh83WYdkejqNEffmGE1psisq0AhVCtDNKYoTS7piKKYfZA/pwWp5l3L2Pb52+l6wzaW3bWLbX//OhpW1VcGfEp1ZlGmGUQt+z8d1yTh4cae+dtnKYxWorfcMpz8q2dwlsqUpooxxkqtqBf7F+j/54PRgoeALLr0/8sh1EXWuUhalCcLKEwvoiyU/m6Y5PsWmHj4ghaIQvxHll0Wjk2ycGwyZGCpXWtWZyaGt+ifSmm+55RVJPpCIUAa5M/P0POmrTGGUP25zlvWk2ivLyy1X7+a+HWqaf7gGHgRJhGYJmFQHFn00lej93yB0pkvYc+XeP7Xvs/5Lx5g5ukhRu4/xQvv+RFTTw6SaE5RDYXgzzmGCBXvqZ4zHXmd7MjVvZ/b3BVk+UQESM8oV5zOR/4f/r6Shleno/J5H5scJSgO5ymML8Y7OxRB9lE9SnVk6rYNgtLoYvz+VbDUN0fL3hVILM/wZHqXrrPScmWvF6Eb37Y9r6OHY8ftRQPGkwABhdHFUN+jV3Fwnvzp6fjVJJWH62oE56B/+fBgznzJi9yqbTvZmUUpxfE/fpQTf/YEU4/1M/lQH8c++ghn/24/AIm2+PWglEFDbxO5zTHGL0PQvGc5uc31HFs6dTa3vTv4OzInQOOWLq/YcsywHUnD2jbicESVAiyDxq2dsQ4DI23ScdNazFzSi0jy5RKvtoIUWC1pBr5+GFmt9EsY+beTOPkyw/ecqOkzwIX//QLOgh1kXYXPOdDwf1JK9r/1Pga/dRR7qkB5fIm+rx7iwK/9ACCAeqmZF1cbzrSxNMoflDJwZkqUJ5di5TEAWZYse/0lAd515Gw3hJZpFJ48JQJ5zYd8SjXXj5xUCGafG6qkq1ddpbmyB41XG2mnlKA4uIBTjDcYOq5g/sVRLsrPx/I4xTCsn9eOgvzZGWaeG4mdExTMPj8KCSsmvV4gbY213bCmTRu7le+k1M7G7JYu0ssbvawbM5DXtDxqYrXnaL5iuS5gX7XWpCtouaoXp+ho54kKy7Em0rAoTywhjbjaSNoQoh2V1QZkb07HlgL85bg95i65lOfjMxSUqzAbU7jCiozb75srLOYPj0FIHvCj9YUgCLA4+cknOf7xx5l6pJ/Jh/s4/iePcepTPwc0Tw8MWm7USWNkE5z73P6aSHpZcjn3+edo2dNb95wzmtOURuqn3hdH8gx84zDS8ZwNniPFdU0mfnJeF0SMi7JH72UzV7+4rpGyWDgxCTHrHCVYPDFJ952bY6PhjZRF45ZO1r5/L5l1bYi0hlcSaZPM2lbW/e7VlMfz8cV1FRSG5pnZP0xhcD5itFe2pDC0wPTTQxjpRKBPVC59duU2ddSFYnLmSrTduDqYYykrMi7owJLChTkvsyO61oRleA5a6LptA2s+eB3pDV00X7eOTR9/FYlQpKqSiulnhhn8P8e0c7hO5lwcrfv9a7jkS3eQXN1KclULW77wOjb+j+t1u3duQZi1vImkRdPWTi589SBxvGXwW0cpTeTrlUahMDBH+41r6qkldNy8jlW/uYd0jKy+4X/+NwzLwPDWUzXfEymLYp+P2177cFlyNQxjHcqsf+mCp+HaCuG2ldI6sA/pWeFrAleZtF6ziuyGdlKrW6NGXMDqytF02TINnxETlCMsg9JYHuWKAIIwkLc8XpPqbY7NVhdJk/Yb1+qI9Dp7qG3viuDvudNTDN5znLEHz9VkeiupmNmv19rUzweDtVYp+lnTOgivhkjCqoHtEpbF0vlZWq9dRedrNiCSJiJl6kLk2SSb//IWhGmw9kPX1Bi+lYI1H7iatmtWBu+jeo81butk+N4TQV21yFgcSd8/vcD8wfFKX8P9lrB4aorC4DzP/cr3GPjmEWaeGWboO8d5/le/x8LJKdyCg1uQtfqYMlgaWAjVTauaFQGl8aUg+KSmbwiW+uZig0dAnxsLJyaDjPrqzzhFl6Wz03XbLg4ueM3WrjWlAGEEtpiqb6MQFIYWAsdppG2gNF1EleLXgxDaNuB6GZ8xAweFhs6MuW+kTFI9FYiocL9AB3hkt3bFn88KUj1NdN6+Kdg74Z9Gew4jZdF8RW/NuEA7YHSmS32yp+sXz5Z5ib1YRilPbglkRS3n5M/PBm+jhrfARZ3qr1B9ellG+X379rFv3z5+9rOfBZf/9yv0X5+ya5rr2o+s5hSpnlxdDDUzk6T16pU07eiuKIJCK74rf+0yku0ZVCBTVxscQYhqTObQ54TB/8/ee4dZcpV3/p9TVTd139t9O8eZnpwkzWikUQ4ISYgkFECYjGWz/NbY2AvG67Re85gfTnixd41Z+7cY22BjGxlsBEgiSUJhFFAajUaTu6enc87dN1TVOfvHqapbdW/dQbvr57d/mPM89fTtW7fq5Ded932/jdviiYZSum1+vrbqd2vlBhZf8hWxitcmCNwNibQlrjKixMIXhhrTrJ1ZDPLZSqkqSgeC9fMrNOxq97yTKgzMcU0kJsnWBuzlslZYfEbkg4tJWHplOmLoDNetlFZofAUxqtiDaxN4MNVcQHmhgG3XvlMpNECPUjjlqCLlI4U7tqL7rbtCdYbfI+h77yWx81Fb4hfU4vMTuA4EADWKyl/LpPnS7thnldIMrOXK3ngGBbTdtAVZjE8pZCRNNoaWQjlIo2X97CKZ/qY67VYYjQnabt6KMEVkzKQETG2063/fJSgzieuBvfinxwMfuRJ3vYwkHjBNlWH55emQ51V4LSvmfqg9H0a+9Ao/eu/9jH7lBMN/8wpP3/U1Zn94PtLS0vwGkw+cZflYNKLAaMx442yE/kKyr5mN8RXmn6hNWSQLDkOfe8FTnE3P0CeCwyHlRV2sHJ+NF7wFbAwtBXsxMmaAW5SsnVkI5TcM0QGpWH1lRqdSqSOArp2e9xTb+PQBFQCceEOO2ZwEN27M9cHZyslKtEp4vqSEwsQau3/vluD78N/8tZtI91TymwZ732+bISL5TwMPJD9dUcrEakpRMbRE+5De1MTIl45SmlrHLUs9pq42Vpz81BPao7wO8KdjCxaerWOcQmh6GqTtqRamBO6G66X8iI5lMG6L9VNQKCW81BnhQ8oQXXRg7exS7B6RElZemdGAqbHvFx5Abf2S7svVBbEyG5JelECFR4T5hQq8g+PaJki11wOR1m0z6gGOozAyCZL5cL56Ip9T/U2xXjxBiaRnq13vjdtb43QVbTg/2M3ykWmNX1KsgIO5BZfJ+09rA3AAmFjVq6RBaWqN7b9yncZ9sLThloSJ1Zhg60evIn/Qj9qq7jV0vmkHG8P1ADJh49wyTkEf9rlu5VIKRNKiNLGG2aoPFavXeWpTHjOTYNvHrtb4DGi6LVIWmYE8nW/agUhVg4pVxs9sTGmDY1wUgNBGXqSieqyVAmUrll6a1J62VXxOSZj+3hBT95+hNFPrJbwxvMzc4yN1lVsAkTBJh8H7Qm1o2JanYXtLLJYNBjRf2k12XwcNu9orCpN35Q720LAlj0pUgIXDdSgMmq/si22T/7u10xqguppXSGWCFGT6mwNaEn5OKcgM5PENvo7PQz2ZCgwNIhtDx/2/Zi6BklpR9iMrhXdoU5heBxG/h5Q3jaXpjbo7uDC6gmNT1Xb9bseGjXPVgIeV3xUm14K5r+639GifkUlFngnk2DKkuhux5+INpaWpdWYfPkecAVkIcItuAGIXZwwpjK1iL5Ur40CU5i4+N45y/EGL9kvZCrNJ5+HW4LnCA2rWANfSVayemGPuh+dxC06ItjjMPjzM6ql57JWyTnXiAUn6n10JSy9OUxhbqWk7QGFkmbXBhboydHm+BEKnqQuH3vup6zAM5p4Y0XzTrUQlaT6kWD9zYe/G7K7WugfEbTdsDt2rpefCMum+cy8NW/KQMIOoAyNlsv1Xr9PgpbkU+//yTvb+/m1s+YUr2ft7b2D/F+/SDh5b8rH6mLAMmg90s3ZqHllyauZbFhzWTi94XrrVsoVuX8POVo9X1RaRNEk0pmjY2+EdYOgx0wcagq2/fDWrp+YDcMHIZWt5TTqSZ+/5Z0789hMsPT/NzHfO8fTt/8TkA2cBfbj9/Ae/xfH/9EOG/vuLHP+tx3jufd/EXq7voR8uJ3/3MC//7EOsnVll7ewaRz/8XY7/9uMAdN+xm8zWVoTfP6E9aLf/ynU6vYwbv86ROv96HCaUQgN/+vJB9VqUShvtDMPg4JffwZ7ffwNtN2+l+559HPrme+m4TXvJ7/zV64P3hf9u+/g15K+oT3PT/TmMVCJ2H0gFxgWiuf2S2ZyPpFr0Pyc7swhD58WvoWvK2yeDi2yMbWDbftpI7QBXWnBYOTZL04EundKoSgaWttR8SlRSBFbkLS2HJbNJ+u89GPAnf1yEadB9124atuTpun23jo729AqRsmi7cYDsRR0opTj1+0/x8N33Mfinz3PqD57i6Tu/xoqnGzlrZV6499u8+ut6rZ347cf50Xvup7xQIH9Fb+xYKQXp3qzmcxF9zeORtmTt1DxCCLZ97Fou+Yu30X33RWz60OVc/vV3k9vbAcD5v34Fu2wE+8hxDGzb4PzfvIKRsuh4667aPeYa7PiNG1l+sZ78jpZZamSaUDEEg3/6PM5aGVnS+1SWJW7B4cwfPUNxbKUqvW3lXavH5yKHZ9XjYjWlPLyKuB9Ay2U9gR7pOKYXFebZTJRJplcbp317ipQV5xilzAvXnUuS3dfp0Xnlfa/wsdHab9oSyyP17wQYmvfYdnROHNvElRJVJ7OALw9IzyethocqUIZg68evCf2+cr/vg5eGDlGqi8YYkQU3EkkePI9ACsHxX3/Uu++nLNJ7qTRdZH14ie2fuA6zKVU5wBICkUmw65M3kT/YU2dcFCKTqOOUptumgKQnf8fpgvmD3Yh0Kl6fw8Ss4zjyk3Lh8pqM8n19ffT19dHT00MikQj+7+u7kABfKX/4h3/IzTffzO7duzl9+nTsbz73uc9xzTXXcOedd3LnnXfyO7/zO6+9Fz8pFyxG0qLvLbsi3wVCwS9dRWlmHWEYEWLrby5n3UEYgr1/cCs7fv0G2m7aQsebdrDvs2+k/wMHADwFKW5zC0RsiKi+hxC0hE75wnUDNO3rZOwfX43tk5Iw++h5VIk67wdnsaiB+GTIaOgbHG2Fs1JCSu1h7/ipLTxm4hYcFp4eD9oaCZWyDBZfmPKYtl9/aAwUAQGVcUQcgUhbgbEt8Cj1vUoRNGxrRUlwHSNyKQXN+7sojq3jOJX0MFLi/W+w9MwEpfmS16/KZdsmc4cnSDSlA2T1sCe74+j2/O8WpQRNe9o9Q2h1EdiLZdpfvy0Yj8pz+m/T/m46bt0ef19B69X9pPvjc6gppUj35+qmUhGWQes1FQ+FyoO6bW3XD9B5y1aMpkxkzBzXpHFvF9ldbcx8b5iwZ5S/hkf/8WTgZe+Hx1cEYANhmfVTYyBwNmxWT80z/MWXUWUdfiyLLrIkOfHJJ3BWtVL98sd+wNO3f51Tn36alz78HZ5841cpTq/hrJcpzxej/ULPx9LLs0w/MFinbpg/PIqRNvGVuGg+TJ2bNd0XP+bSkWR6c5AwtGd+eK05BomOBtK92VhPKGEJGjY3Y6atup6yVnPKUxo8xdqtGASUEjVYEuExBVh8ZqJuv4tjq8w+fN4TIA0vNQmewcBk6ltnWHlljrJteAZ1fb9cNlg9u4oquZWICUfvJddTXl0XWq/qw5Xg2AZKVi7XEbReu5meu/d4NKHSe1/A7L57D5PfPKP3oqpc0tWpozYGF9EpY2rpGghSQQRBtCilR6ahv0krmaExla5vOGuu7w2jqALfrC3rQ0vBnqqmi0oqnDXHG88KGKv+bFBetZGOL3BH68UwkCtO7FoJ5nRiHcx6fMxm8Znx+HRmpsHic5MIzzPKBwtWquJBZiQSxIHn+SW3u40ar26P1ucP9iDq5OL2hW/f07267VJB49Z8HU94T1HKpwOhPvJeqUj15Jj+7pCOfgjzGakV59nHRjDq7CNVliTaM2QGmmm8tJ9yycRVCeyiQfO120h1Z3W+X7MWhBIgM9Civati+y0oTq3TsLlZK/yuGVyab4HVmqY0W6zxzHaloDCi8z03H+rDaM97qWcS2CWTzrft1d6sp+I9rwCWjkzjbjixbXNLLmZrfNSUbwReOTlP/GIUOCsO098bqrtWpx44i5Gsvx7SfTm2/PyhWk9bU7D1I4dINKVCUWWV55SEVE8TxfFVVk4t43qhxkoKXMdk8YU5nU4k1qNMl/UTC3WNdmY2Qf6ynkBRjfIKBaagvFIfUE3fq9AEGXkeD3sorm2a3k/eH687CCFwl219CKNq95BSYGaTyHreboCzWqZwfqUWf0gI1k4t4KxdIMquLJn5wbn49aBg9pFhz1kgxrCeMChOb1yQrtWL2PL7ku5r0rJGDT0XZDblwAe/rqFrhrf348ccBOWFUoDLUEPPlWDxRxP6sK+KtrhFl8UfTWiv7WqZCR1Vld3VCqZnmArzd1eAZbDw7GRwcFMjvzuQP9SjV54SBCB2SkdU5i/vwVmzg7Ua1Ku0PFFeLSGqeIU/psLUANe9P7UvShuFXkf977uE1AVAR5NdWcy0RWJzG+V1D6ujbFK2rcjBshCC5oM9dN+9j+bLeoO1Z+VS9L5zXzQ9hgFGxqLvXRdphwDLrJlvkibpnixuSVKJJqn0SwlBaWINp1i7D5TSThSO47B8dKF2vpTg1KefwmpM1JUdjLTF0OeepzhRC8J5+veeQjqSwT99nsLIiqa9tsTdcChOrHHmsz+qO55+WTkeL8vO/mCYpZemMFMW+//7W9n+y9fQesMAXXfsYf9fvI3O28LpceLWORTG1wLDd3hMUFCc2mD20WFcW0SAQV0vym4mlN+85ZpN7Prt17P1o1eTaEoH388dHsfBqoCCSoGjtD6W7mwkt78zts87/qNOBSQDfS0kM7kG1mvwRt3+8auDnPe+I5iRtNjxy1ezNrhYF5Bx+nvnWHxuUoNUSyPAm1PSwC06LD47Qe89+1CGEZGBXdek49atJFsydWwD+iBb2i5jXz2JY3spxKR2KrNLIgBwb7ttO9JK46qEvkjS8dbdCCGYe2yEyQcGdeo/VyFLEmfN5ugnHka5kqHPv6C9twuhtTa1xnTzF0IAACAASURBVJk/epZkWwaseLml9foB0t1ZRLLWPGakLdJeHu+phwZ58cPfY/SfznL2z45w5Oe/S2lWH8QvPjcZ8Ec/R7hSBmunFnFtl4XnZqjeYyJhsfDsBJmB+tHRmU3NNB/sjr9pCrK72lh8fgLpVMl6LqyeWsDKp73D75h39+XoeMNWPT3V4yLw9lEInL5q3Jx126Ov/gGsXqMaS0kE2IK+7OBH7wghQED7rVtj3y28unf8x+twvPdqfUzT1lRfE7ld9VOZgY7KQvm0rDInAMo1yO1tr9uv1KYcRjKhI9+qeajnBHfuCy8HB89+2k/HMRj9+xOIdH1ZD6BhII8fFanQMr9vP2jY1MTaqcVa2d3bLyNfOkqqs5GW67fhSFOna1UG2QP9NGxp8SLCqm0eXrShDanO2owK3o+wmlNYzWliZUWhU81JNxR16Y2vTk0tYg85f1J+fHlNRvmVlRU+8YlPsH//fm677TZAe8//yZ/8yWuq5JZbbuErX/nKjzXi33XXXdx///3cf//9fPKTn3xN7/5JeW3FPyUsl03KZS0kOtLELUmshqQO7Q0pvgBKGCS8fFfCNGi/aQu7f+f17Pz1G2gKwtLrKw0YkOlrir8HmBkrCK2tqVvpPMPr55frKlJ1w5W9UpxZx8+97gN6+kqglU3SuKPV826CqMIgyPQ1UV6oNXSCPnnGrPZCCb8H0q2amIU9E3ylAQRuyaECUhV6lzcG+av7AgCO8OU4Bu1v9nPhe+H4biinLDoHWkXLq2qnoxj76nE0mIdWFEplnZ9VKSMQegvjqxz5+CM8et1X+OHr/oETn35a5+gH7QERI9QjwMzVyaUJoKC0WAiYWvV8l1fKzB8eq00ZJEEkEsw/NUbT/u4aBVYBiZYGzISJiklBoZTOE5jd1UpqS7PnneAzVpDCZPMH9lNeKlFa9JVnfz4Eq2dXkLbL1LfOxoKWFUZWKE6senVXjBV+KKh0FA076qVK0qHzE9847XlHRedLlhVzj48w+GcvsFjlAe2slHnhZx9COUqb1KuWohCArTCbEhcwCELuIj8HcdRAjIDcRe00HejGlXgpogzP20Bg5LRBMN3XDCrsbSNAGeQu6iK7o5WGrS0BmF3QNsuk5x17KPvRJjHKkL1iY2bTNUq9Qgs9yeZ6qZD0O+zVEEisU7mkBGm7GEnDU5IMXNfCdS18L2+rMcHwXx3VwoU0I/c3xtYojK+hpA80F10vyhGktzSBjPNIMTBbMrTdMBDKSe2tUe9zy2W9Xv7+6mf1uBSmdI5xxxGUbYuybXmGTC3c9r5zX2Ucq0p6UxOdb94RCvUMrTVX0HvX7hBdqi4Cd7Uc2bfh8fYV83rPooQH/qPpoE+3/AMEZ6kEhjYk2rYZ8CrHMXAdSAY0NVq5Ukp7b2eTAQidv799gKVkawNWLhnr/ShMgdWQINOXo6IwmF7aIwGGQaq70bsX3+/MQDNSGDW0xXWh5dpNntdI/OG01ZjEXrIJ08Iw7dsYXKZxZ1ss3Wu6vEfjcAgjGp2gQDqC2UdHWBtcDHnxhg9JtEe4W9ZRYtX7WyFwV22GPv8i80+Og6s0oLOrmPrOEKN/f5zlY7M6oiYsW9jaWDH76EiQ1idO2cEQHtBcdTSd3kOptgYNauoaAZ8q2xZSarBGpRRHfvH7rA0t4zoK11E4JZdTf/gsK6/OaSDDqv3vz4+7blOar/XO9Md8/cxyzFxV5qy8WO+QFZAaIFvVqdtsSGAv6X3ke9AFYy5h7eQCSy/PRfZAuWzi2CbLr86zcnxe8+/YMT/PzMPDSFfheONWtnXKJiVg7rGRUORSbb+S7Wk2f+jSmn0iLIOtH7k8SBcUB2CNYbJ6bI5663zpuUnMdH0jUtbzMvQPOyvjpu+vD8eH1uv6YfG5qUh+fH8upSuYPzyuwSVjnkMIkr2NF+QlDQM6AqCalyilc4RvnF+py2M3zi97tCtmVAyB1ZgI0g3VtC1hIgyjhkcGvwH633uxNspW7SHpCvrfcwmZTdpob9tmsB58h4z8JV21Lw0VM2HiH4RFQcMFQhjYG44XKVu1f10tvxtBtEpNzzESJm4kn3ZFBpYlpSN8/b5Uye8IaL68N5JSJzDcS22w951cqmVopQRINL1wRHSPOQLXOxju/+kDGC2NFV6iDPred4BURyNNF8BtaL6kg7F/Osns94aD70DgFl1e/HcPXXC8/bLl/7mMbR+7isyWZhItaTpu3srBL7yNVGcjzZd14xZUzZi7BUX+UA9uSeLYVTzQFTglrff4aXeiepem9+P/eKLOAZFg+aVpyit23bVmr5SZ/s5Q/HqRMP3dIWYfHq5JlaocydwPR1BKacP9Xxzh8Vu/yiPX/B3fv/trLB/T4LYjfxvvoAUw8nfHAFg7t8zI1weZeGSSsQdGmHxoODA619neWlZcKnjjUq2XaG/WwphOP+fLLT6oNwiK47WHENVl5uHzKBtc13f80uld5x/X/b7kT99E19t2ajlZQLKzgYv/6200X9zppTqMr1tjMcDqyXme//B3eOTav+OxW77Kmc+9GPQ7f1kPve/ZXzFCmybdd++l9dpNOn1FnYFx1sqIhIFbomYPSUcDmhcm1pDlKP9WCpaP61RGZr30tEmDjdGVABBZy9h6f8uSy+T9Z3ALNi9/9AcBDpFyFc5qmaMff5jyUpHhL77sRT9E5RpnpczK8Tlmvj9cG1HmaPyLjSEPs6VK15SuYOmFaVqv69e4cOGDcQFG0qDj1q2svDrH6c88q/E+NmxkyWX11CJHP/6w5o0yXh9TQOH8MuX52ig6WXKZ/OYZNv/0fmIN48CWf38Zm953cS0PNwVNl3TSsLkZGQQeV8l7LqTaMrRetwkXMyLvYZls+sAltF23GctLERveB0YmQddbduBsOPFpYDwni0qbq/QWSR3wa69/EvKX91a903tUQcs1/bgbDsJMRPUxDBRaFryQXrL2yiy1qet0O1VRsvNXro6tWynY8R+uwsqnA90+rBsoJWjY2szGoIetFNhj9J6wl0oIqzJe1UVK2PzBS0IR4VGnuG0/f4UXkRkzpkrrsWP3nWDyW4O4ZYFTMnDLBvNPjnH2T59n49wKFQ97X+f37FJlSfst26jVqfSear9u8wVT0BgNCcyGJJXUmhXcQ2EaPwbw+CelXnlNo/bJT36SbDbLI488QiKhJ+ngwYM89NBrEzAOHTpET0/P/34rf1L+j4pbsBn91mCNcUs6MPj5l8hf0eN5hEQBNIyESc/bdup3FB2Gv/wqz37gQZ7/8PeY+u65YCNv/sAlNUY3hBYGtBdfnBKnwDLZGFwKTtm1Emp5RhjBxvgGRqoCQuOHHgUAWa0XMACjFZ6Wq3triIORMum9Z48GRAxCsH1EbI94mgbLR2fq1j1/AQ9DEKHDiEporX+JlOV5q3kDVV2UYPRvj4fuicjns//l2QsYv8BqSga/rW4XaA/JeGAwA7fs4qyVee5nHmL+qQmko3CLLpMPDvHiL3wfpRSlJSdIMxBWhhxb58OuVxSw+PREDHK8Pv1eG1z2QOj0CXi5bFEuW1pYA5SjWHh6IjhxDyvexZmCB1BJoMDWGPaFoDBZRkodGWHbmrE7JYG9ZjP6j8djw4adlTLzT10g96XAUzS08uEfftm2l+7BMDBM0zPSVAwxQS5Bw2D9bFw4tZ6X1ZMLjP9zvJegvVBk3QsBr1cM0wN8ihMKbEXf3btRpkn0MERAyqT9hs1MfnuoKsRVz1lxukRxdoONc/HGkqXnpwG4+LO30npVn86dmjBI9zdx8WdvJdObY+P8ShCdEQhDnnC8fmbREzCj61j4xm/Tf6aWtiglSHdngz5F1rnUhtbMprxntI0qkVJC4+52nOVyrOckCjZGfaNd3B4TnP/Lo3Xuw+Q/n2Hm4WFcx/I8g/21qNfl/FPjISGs+t1QmiuiYgyZICCdjOTprN4Hqd4mxr92um67R75yvEIDI2Oqr+JCqcb4W9ljwjNWxBcjbWljZcyYKHQe39JSCTdmrbmOwEiapHe0xRoUWq8fILevHbuoBePK/jaRrknTpd103ratLjBo242b6Hzj9th+W00pMr057zAoZn+bJmunF3CKwuNjlsfHtGfZxP1nI5gT1SW7uy2IBonQRc/LuTi9zuopvRcidTuw/NIsypW4ZanxSMqVupXSwNsaZ6O66HEoTm3gFl0cJ0qTpfRSVNiS8a/rA8PIHilLRr58TCvKJRVSeHwjmoGzVqZxW4uOBqtaK9KF7I4WZh8eodqIo5Sm9Ssn52jY1RZRUnzFp+lAF+tnFz3sFYjsb0dx5k+fJ7u3NUhPFzYYSGnQfFmXPsysPiD2eIWzWArWWfV6CA1f3ZLZ2lxDe3TdgsYdrYG3Y3VOalcK3LLL6H0nPQN4WF5TnP/yqyhX6vR0kTE3vDG3cUsubuDYHTJWlLRDQfsNm+P7JQQth3rpf89FtN64OfQ9dNy2ne637fIiLkSNAUtJMCwDZdYfGJE02f6BuPR4CpEwab2y11srVQZez7s50VkxFtS0XXmHemgvbOl56flrpzxXpOuNO4IQ9LDiLTIJGgfy9d8NYIX4ddgQ6mojrnSqHgwV6UDb9ZtjD9VEwqRxS56ut+1CCRHZ3whBz127SLSkcWL2kOsKECYLz04QvyAFC89O0HP3nhCeTWUtikyShi15GrbGe2Y27mwht7/D82iM9lsqgZlLsvB0/Wi0+acncLxoFNcVFRBZbyA2xlfr8jklBc1XaJ0xliY3p5l/YlRHyFTzUNdi7vFRTT9reKRnlBB+qsdqXqN1D4Dn3vcAG6MbAS9xygZnP/cS889M0Pa62j3kt631+k2c/6ujNfcFOoJg/gIRfMFvhaD7LTu5/Mt3c9X972b3b78u8NBdODweq3sYSZP5J8coTRdQaEcD27ZwHH2QqRAUpv08/CHnEc9og4LyXOEC1msvrVcd4rcxtOyBHdeOuVQ69Ue9SFb/+5O//wyj/3BCR6YoWDg6y0sf/QHrw8sXzD2vHMXG2CovfeT7rByb04cu6zZj/3SK47+j8Q1EjfHJkx0FZLpz6Ei3aiBJQSKfpnFbPHAn6Ei2H1di042BpvFKp7/Z+R+v47qHP8j1j93LlV/7KfKXeSlWBLX6NWjrjaEdqF78yPdZeaXS7/GvneL4Jw8DMP3weYb/5jjlDaFlk4Jg5KtnmPjmWVIdDd44VLVLgdXop/zzS3gPgetKxr56otbTXul0YGuDi3TfsbNmrYqkQdcbtwWGa6kqINPBoaormX3kfE2OeABZdJl6aIiNkTi9Q7dv8bnJwEHLpz2RA1tHguE5Tfm8wjOkKldhJEwO/PlbaLq4Q+stlkF2dxsHPv9mrIYEY/edrHXQkorC+Brrg0sx7aq0TrmKeAAD3S4zZUG+sVZmSidJNOn0Vhd95hbSvVlEQutUbTds5qI/uFm/w/blhqqavfcYmXRN9JPjGBiphG5WIuVFsYWcCg2tV+j1UrtPEEJHsdeJdAN0ul/q6BYSFp4a17J/lW1AOgazj44ydt/JIJ1n+LCvOL2h0w0pfYAfPmT1D/T9FMsyZj3o9TKN7WVJCDs62LbJ8stz3oFCbbtBR9nUKwoojK7V6Lh+n5XUGCX7/+xNGozWl0tMwe5P3Ui6J1snxYz+LtnZyPAXjmo7TViGdmHiX84EYKvahqVtKrbtR1BCx00DkPIPGEK6v2nQ+869kZQ9kX4rEKZB8+W1Dnuu1GkWjZ8Y5f+3ymtK+vP000/zxBNPkEgkAiNFa2sr8/PzP+bJ/7XywAMP8OSTT9LR0cEv/uIvcvDgwf/ld7S11Q8r/LdaVoYXtdBTwwh0eGpXTzM3/vWdPHHvNymt6WNWQyj2/+b1bL12ALfs8v2f+WdWh5Zwi3qTr51ZpHhikSt+93W0/7vLKQ8uMfrN04ESl9ua5/rPvVmHlWEgVFQokVJolPPtrQx6+a8rRjO9mTNtGaxsM5MTY0F7NZPVnwdu3sH0N+un5thy3RZ2vnEXj997P4undFoFIRR9t23j0o9cwckvHqkyTuMRIUHh3DL2quMZI6vr1t6LyfYGCuOrsfy1/0Avp3e1s3JqnohYIwRb374PK5di9gfnY1qtvTZLS3Ho8AJQbJxeou8N2xi5/3RN3WZjgt69XRyrazUQDNy6jeEvvRr77uymPCuPjFJetiNzohzF2tklxMi6DreWZpWAq8enuVF7L8eNiQDkkg5h14a3sIVDhx9uv2MPo187673bF+jBKcLO23cx8sWjWhBwo3WbKZN8Ng3KQEqFEJX7SmmvjtKROZzVSq5+EMHvzn3uRQqTq7GjphSsPDlO3y1bOfulozX3E9kkA1du4sSmFpYHK8ZavV5M+q/dBJMbXp8rYyo979Xi6Br53a2sHIunp207Wpko672l0IwcofeoEJAuSD2CVeOulBbmN47P47pgmlEGKyXIVYfevV3aeOmIyJyk0w10b2qh4AGqRedU/2POFusqS/ZykY6OHHTkcN5xCcun13DWHdqvGmDrTVsxTZNsV44V5nBsP6e3wtA2c9q2tzDxjfh+A6TWXaQUGFW8X3khhgnHH5PoOldKG0rs2Q0vmqHSH/0TgRxfr6+cAg3CD/uvLcIUyJn4HMEAsuSw/sp8UK/y+i2EDr0vn64H/KVLJpdEuarmwAAEzqpDgzIQqSSyaBPuhFKCBAZFL3+rbyQMryWW4j3hQa+X5q6sbrMEqvYYQOeudgaVqNn/SkGmK0t2SzNTj56v7Z6CgTfv4JU/fj6mx3p81PlVypMFbNtE5w7z16tB4dwqanAllAc0/CzMPDjE/g8d5JWuJjZGFiOkJ7+vi54tbZx4fgapdbVIKcyVaclmyG1vY/HkUvCgv7+7X7eJ0rHFKoNdpSwemaHj4k49ZtVyqmGQTScxUib2hsCtSvcmUPQe7OFUSXrRUKG6lYm9VKJrZweuTcjA5BntlCDZkEI1OJTqrKdMc5rVs+H1VvmdlIqWtsaYQ1yFVAJ7tUz3zvaQp2x0zNO5NHvecwmjXz2NtMO/URgm7Pmpixn885dreLBUIJTCWrQpjsaD1BfOrbL69GTkuXD7Vl6dI9e9te79BJY2wkiqUhrp33bt7eCMYaKq8rkpBUY6SfvOdmbUUOw6F5bAnSl5YxhdD4ahcCc3wDCBaiwN/bu+gz28GoAte/xL6HXhrDn07OzgRcc3rOnn/PupXJqmtizVa9BXyvNdOVaPzMauc8eFJtPi/LcGmfzOGFAxpox94xx912/h4vcf4Oxnf+QpZtFx6711K6vnV5mfnax5t5SQ39nORb98NTPPjjH34pwn5ykSaXjdl+6ktaOpvjcbsPOuvcx9ZxhhRKvWBqQEydYMGyPxB9QNPVkKg8veHgnzK4GzoWgyvHz1Ve/2DRnumWViw9GAwsga2e5c7JhKCcmUxfqrC0i39n551SEnTLbfsZexrw+hlHe4r8BxTXbcsReAUxieYT1KmI1kgsKr9dM0FY/Pe4eslbXk8xq34JITJlvvuYhjn3mq5tlt77yY1vYwtkG0CNNCFRziTEAKUOsOZsqiJMNRX1q+V0LRua2VExfgc6llJxjT6vlWNhSOLxAoHJVWgVIUjy/UMXzp/jfnLwQaDtZ8OTYNC8Dgf3uB3psHcF2BaUbnw3UF8w+cw14t1wUOlaOrdLwtPiXgaylzJRXrPCLLLomSwilU0nJFZAuhkKNrIUOr8OQnz8oCbL99F+MRgGv/PWCkDfIDLcwyEtMqQfPmPIWRVexz1VFGug3bbtvBxpEZxh8+F8XyMKD7xs00GRYz3z+PrMKFUbbL9H2n2fehgzz5ZC02EsCenz3A1D+fqXlWllzmnhij0RVBn2v0Fhe2XLWJ55WBgaySkQWbbt/F1nv2MPyFI7UyoYA977mE5o4Lz6dImEhb1sjnRsKks6t+NDlA5o49nPuLl2qqNpMmu+7ay5mvvFpjGJcll7nD4zTagqE/e6l2XMouQ//9Jd783XfrXO2iVuZLtTVgn18lfo8o7OE13Pk6nvYSGqTBoV+/gafH1pg5PBq8pu1AN1d96mbMtMVLwgi8isEz9kuDzW/awfrJxfh3A4Vj8zq6qA79yDZlaD/Uy8RjIdsB2pjbfkk7W64d4NVskmIVnpWZNtl2z95Ab2n69K2c++dTSEey5a5dtF6so7nkUim2bYZl0OAKT7ZQNfONgIFD/RzPpWLqtth+z17ck0uUp0uE+S8AK5L1p6fY/lN76Xhjjh237aS8WMRMW9qr/8cUhaJRGkw9dK5Kf9YHBZP/cJKt9+zBXirptJveT4SARMml8KNp9n7oMp77tR/UPG8kLXbcsoOj/IB6uks2n67LY1FQPKkN674e6NUOwMaxOdxixUs/IivaiowrPJDZcHSyQkoTKSU7376H0599PnRgqGuQriDZICidWgzV7fNK3Yb1V2ZRRVmzP0Ab1s0lW6fNdGr3NwIyCc/oLf1a/fv6xx0dOc584xnskolb1m03lMHkPw2y9x0X65SJsSMKSSycdRs3Mi4KVwkMFJ0XdfKqE94nvt4isNLQM9DKjV+8kyc//G3sgkQBliW44o9uZtOBXs5JEdtvDIMGZbB0ZD5iIwOFdA1WBldpb8vWdYL6v106fgy9/r9ZXpNRPpfLsbi4SGdnxQtuYmKCjo6Of7WGvPvd7+bnfu7nSCQSHD58mJ//+Z/nwQcfpKXlwuBu1WV+fg1Z5zT+32pZHl5EIeINjsDs7CqTz09SWFVaeZbaq3HksXFyN29m+rvDrJxb9sLodHELDue+fprOe3ZipEwGv3EOVTYC5XD+xAqnHjxL1y2bdbij1Hmrw8xfJBO47X5Yb63ibHVnWXpZg7ZEcyRro8/YM+OYrQ04XihYRLAQsCZcNk7Osji07nn9KYyUyeRzc0yeX2TGzwtbY7RTrE1seOAfMUI/INOWDtfyBjFctzRMJk7OsOu3ruPIR76DU3B1uoyUSbq7ka7372P6e8PEMy+F2ZZBrDt1jZ1mPsXEU5PeuETrLq24rKcqz/knn77x2UgaTB6tDzxSWC4x9ODZiEHevydtOPfwUMhAW9v+udlVXASm16DIfDelkZGwu6pxNQ1mzi1WTmvDdSvB1NACTZd1sTG9XpO3XiQMlkolHEdgGsrrc3hcHEYePx8Ywivjoz8vnV7AsETdA4W1xSJFW8XOd2lNMj25TGHZru0TsDpXJLG4Efmu8llRWrfJv34zk4+erxF2hCVIHegg1ZNl7fx65TmlGa9pSKyLWkm0N1KeXY+uBwHNl3bheKFx/oFSpe16jJ799JM6JVNV+4ozG7z6teOeR0vtoCgF89P1w/aFZTI7u8qLv/woC09WUu8M/v1Jhr52mpseeSdGZ4NOrRC8Q+AqkEoh2zNe7rwQ0/f6bQjJzPACOj+gnpRwvxQwX8erSwhwy5LV0bWqdeY9qxQLI8tgCpSjYteD057SIYdVvEYpHbLb9Lp+1IODscaKRD7FxmKxZo3rda9YWyyAJVB2bd1KgdHlGxRqi1Kg+ht1xEnVWjdSFrkrukktFlk4Nl8R1DwDrhCKphv64KEhz5BTqd9fVyUUUhgYStbsMZFJsWHp+TIMWdOusoJSubKHqu8ve/nH49eaYOLIFKXlsjdW/qGIbuPK8DLDPxwO3hUuQsDq8DKnvnmKleFVlGNE+jX93DRDT55n9rkpnS/VparfguEfjbGxUGd/TxeQp+ci31U+K9yCJLWnBWEZNaH7whCYO/Iku3PYQ8tUW+0VAiefDPZAeJ8IoXBdGH1uHKWqrf267qXBJfretp2VOpE4rbcOMPH4eDCX4XtKwdAPhiKKSriPUsLE8RmMtBmRDfyysVJmemghpEhVnpcuTJ6dp8LiqvYC4HZlKC3GAwCuja0yP1jPGKkNLctjK8TvE8HC6QVIJ2C9XLOOpRKsFsqe97MROiDWxi1VlmQu6wwZtCpFAYnOLI5QIboV6rcEW4AMvOBr2zZyeJRKjk6vP4Fcoxh/dRoSBrIYVfCEgI3lIsszdTy3BCyMrzD19DjSNXHd6P4GOPfUCC//3lOVB0Lluf/8OKlL25HCQEgZvS9AtjRQPruETgdW++7Cmo2z7jB/YjVywGQXYfjwOLI/7jChUoG5vVnLZDE0t+cde0hkkwx9/oVYftR99y7GvnbaS71hRObbTJuMHZ3UwIneeoyuB5g/V0+GFri2hJyXFqRG9xCobILpR0e81BO1NPX8c+Oc+W8ves+G5txVPPepw3S9YXPk+3BxHYkjKu+qHpeygJnHRyJryb/nOorhZ8d4+b88h3L0Qadh+M4CBkf+4Fl2fPRSIuvPf4sQlFfLZPd1sz66WjttSpDe0RLI7zX7W0HBQnsHxoBzi5TJ/PRq7JgqJbDXbew6MigIysI/eolfTyurxRiaV3n/8KPnYp8D2JhYY/zJMXREp6hZ5xNPjiGSJnLDiX2/bE8zO1s/FdOPK9auPEbK9DAxdAVCKMyMRWJnXo+pHZXnlMd0VUcGmbBCtEPgur5uIFB9jdrY6VbJ7wJ67txN9spuxJdfqeVjlkH2mh54fpK4MRdJk8kTM2z6hcuYfWlKA1EWHMyMhdFgMfBLlzN2dEp7hFcb5V3F3CszJHfkAwNy5L6CqWNzzL48XSM/g9YNxo5MktvbwcqxuchaFkKQ3dnC5PAC0ha4yqjh/aOPjtBwsBMpTEQ16JZhMnV2gXLLhQFXnYKrOUiV7uCUJDPTK176KsXyK/OUF4o0X9zmgcsDGYOBnz3A8Bdfxi3pcTdTBn3v2ku5JcnskekQWHO44zB6ZEIDUceU8lKJ0ZcnEckEqmR74xHSa9YdbBHzXu/ltlDIhBF7KOeWXUqNBpOD88wcXcSRFrLkYKQsZo8vM3FmjmRrGrsYr18vjK5q423Mu5UCRyia9ney9KO4KCFB4zU9nHtoKPbd6wtl5ubX6Hv/xZz9JiMVqgAAIABJREFUkx8FdxSghEH2dZuYnV1l+G+PM/Q/XtEHHgrO/N0JNv3ULnb+4kFyh7pYeHm6xltell3cngzZfe2sHputme90X46F1YKu+4+frapbkL1pMyc/4+Mr1GoPp//+GE2v749+ve7AekhOitFL/PfNnFuI3WNIxfyrs6R25rE33IhuohSU11wmj0yx7cOX4LgW0nYj+6T1pk0srGzg0/aaPYrAbfJweuJ4LBC4ECkCeda3WzgCpFU5vAn3yS0rylnL0wmiPNQbECZfna2SYyvvscuwulCo+d6fmY2lEtLyIle996tAexIYA1lcR8cuV8+3lIL0wa7QgX1F1lQKsAyGDo9w/oEhb8482dqWzL4ww8n7T+noQ6dK3vLqojXpGeRr+yUlrNk+iGy0X0IoSCSYnV1l5JlxSgUDaSs99picf3yM9KFuHMvwnOGi60lKPeaFifUqPuq1vyiZGlnEavzxh0X/f5eOjtz/Ef/9Py2GIS7oPP6a4gve+c538ku/9Es888wzSCl56aWX+LVf+zXe/e53/6s1tKOjI0iNc91119HT08OZM2f+1d7/b7lYF8rzjc4dd/x3n9UMxiOYsugy/fAI889MMv/MBLJQ7dUFwhQsvzzL0V99AlX2PXwqIdnHP/UM9nIpdFomgnug8wsXJtbr5J7SXmH2StkLA6++YP38Sm0qE/8yTEpzRY7958PYK7YmOIAsSdZH1hj8i6OsnV2KPWkXHohFIl8f1DC7rQVZVh4wpOGlvdB52qUtSLZlSLZlMDvylG0ThyTlokF6ewdWY4L8gU4wol4bAZL4DZvIH+qmxnLlle63bKc0sxEgmFcDPS48M42L0OCbHtK54+rQLGkYQV7n6qKU9sApToYNyOELCpPrgXAZV8xkAiHMWHA+ZUPbdfVwJRTpnixT3xkOQtgjl6uYf2qCLR86oHOwhtaMkTbZ+YkrMbxwRNvRffYBJW0P8E6HaVf3SffLSJqkN+W8cQiPiZ6F5kvaWXppJgCljICOKVg/s4i9FJ+6Z/nYHIZVz7NaYKYTtN+4iezu1gi4kJEy6XzDVhq3NNN0aXfw+8pfAZkUZtpi929cjUiZXngeSARG2mLnx6+g8/WbI89U9qDOsz/93eFof1Xl88S/nNXG6Trz3bg174WBR58DfRBSmFiLGOSDesqSY//pSRaP+kpSdE6UEiwfm6/xovXvS2VgpcKKULhf6EmrgzMTKESxedv1VZotaKMd0X75V7KjIbLGI+8tSIQwavaJUrpdqR4/d3l83UoBVSmHKnULCnUMlX5JtqTZ9L59AcieUgISJsn2DN1v20Hr1b3Epb9RyqDp4g58Two/z2cl97sHmCj1nnI8YFvH0f+7tmTxmSktgHugSErhASQZ2LNFCuOrHhiwB1qmCOjUhueZWG+ttd7Qh3Sq5hk/xFWQP9hVqS9yCTL9TUx+97ynvIbCbtGggbOPjyEd5aU7qTyrf6dz1ZZmavOAAqycWIC66SsECLDymYCuSSkCniYdRSKf8vKb1zEgnVnw+lUV1it1Chs3pBj6OZX9w0flKDZ/8GLMGOE42ZGh643b6jkAAwJ7o1wl0FeKUoKGzU1Rx2P/SUuQ29PK8JeOV8ahiuaO3Hfa26Px7599bJREPuXVFaVNmd4sbVf11lkrCizjAiBWkOnPkupsDIX8EtB00Lwi0ZLy6L3prQcT1xWkexqxF0tIw/R4jc/7dYq7ZFMaWU2nQ5dIWSTbM9Tj7/lLO4Nc/NXKlpG0NJhjsfbdSoGZTtC4Le9hGESLmbFo3NqMLPkTFt0HIFg9u1Q31YIsuKyeWkCkkwHtA70uXVew+KMp0l2NQXsrBwv6yvRlefZXH8Vdr5Ulz/zXF5HleOBdvJEy0hZKJLSMJUXAf11pkmxrpP+9ezEyUfwUn2Z137FDA4sGuVtD42a7ZPpyet97ayz8FwySHfFrSSl06p1rej3DWpSHCUPQenUvzoa/R6toj9JA72tn4g7NNG1p3t8ROy5K6RQTmW35yN7w7ykFjdvylJejnurBmlGC8mopsh70QZJee27RJX9pR12amu5uJNFWm/7C/5xoTeOsVB9k+kUw/+yU9s5TtXzOLkhKk+FUKz7N85R+V9G4vT4gYuP2PEbCN9LU1h3volQpzQfqp2FLdTZgpsJRS1GeZKYs2q7Rcm4NfpKA/CWv3ZmtvFRkbWgZKSt7snl/B5nN+UC29+X7dH8TzQc7yQz46VSi862UQfO+NmQgPkRpiywrjLTFpg9WUkz58q9ImgzcewlN+ztoubInktPaSJrkL+sif7CL3J62+OlW0LC5iVRHA1fedxc7P3EV/e/ex46PX8lV//R20t1ZvQdjQEeFqQ3ns4+NermLKxW4UuMNzD0xTnZ3a+wYyqJLw6Ymtv3CZbjKwnFDlzLZ9tHLmX18zJujKO+XUrB2ZomlIzOazvmyv9Qe3a4Niy9Nh8ZLUV4s4hajNC7dmwvwDKS3pqUSJNsbEIagMLnO4bd/mxc/+ijHPvk0T975Tc782ZFAP3RdQWnd8GQnU3929RzUS2Uqiy7pnsa6XrZKQaYvi5LKyxXvyw4CKQxyu9toubLHw0+rKoag/bo+7HUHYmiPsEwK4+uc/pMXKM0VNBirMnCLEnu5zInf/xFrQ8t1ec3MIyO0XtVTg7WhFJqmXtvHnt+8ujb0CMgf6ibTl2P1VDxNLYyt4pZdhv7qOI6jAZNdD0DULgsmvj1EYWKNwT8/WrGJKB19MPKPp1g9vUjf3btItqSj+lraZPO9F5NoSrHrV65CpC1NZj0BS6RM9vzGtSip4usuCSa+OUihToQOCEpzF5b9AaQX/VtNU/V6y9RETfilcUdeg8jHYISAwGxIcOZzL3u2lCgfm/7+KM5aGastHdQZrlukDMqLpUAnqL6kK2i5skfj5lXRNakEbdf3szG+HnlneF2snfOxB+PsGoKFI9XAuvq3SgmU43+OH3MlwVl1caXw6IbOae+4FlLC0stzaLuDB3YctjsoQXmliCsrsmIllZuJMk0mHzoXMsiH5AepGL3vlIerBnG2IiubopqOh/+unV6I8M+w7uCsuxRnNjj7uSM163z8G4MsvzrH+qivk0XlGikF6+eWCB9CVK85Jyb11E/Kjy+vySj/4Q9/mDe96U186lOfwnEcfvM3f5NbbrmFn/7pn/5Xa8j0dIWxnThxgvHxcbZu3fqv9v5/yyXd0VBDxED/b6QTzD01EcsclS0Zu+80qc7GeMaMBt9bORHvsaZsqY3udUJYkq1pkq3p+NzsplZ+rVySeMOVVpyT7Q06/5lPYD2DnfKW9urZ6pyzmoJMfHtIgx7FtVvp+jtu6qee4tx582bcdRchKgjrATAgsDa4zLHfeYbV04vaYOMocGH6kVHO/8MpsjtbaDrQhbAqecSUEBgNCTbds4fdv3Il1YxCKe3t2nPHdnxPdt3fCgCWUpDIJTxPtKoxQ2AkEzTtbfUOBKr6LDRIlbMWrxwrBYWJdQ/0MGbMBOS2NyNMQRj8Q4+LQbIl7QG9VYWQKp37L9WV9bw64ud7fWyVdHcjV/zt2+h9+y4at+dpu6Gf/f/1Vrpu20oilwyYh5QmrrSCORGmoDAenwoBBG5JYTVlAmW8+jKySZJt6dgxl44k1dFQN7JBGILsrnoRP4qGzU0YlsGln7+NbT93kOzuVpr2d7Dr165mz29dC8Dii75QUfW0oyhOrJO/tBOZSGsAHGnhOiZWZzONW/O0XdMbP+ZA39t34azbgTAeVn6VgsLMOtXOQcF8o/PlqdDhROUQRgNPnv3zl+v0G+YOT7ARhMfWXksvzSLM+mliUu2ZunQNQ5C/ojvS1vBnqzmNkaofKGZmEjhrbuBwEhigFCgEG0MrSE+48g8JtUCpFblkaxoss2Y9SQGNW/IXFCClBLescLyQa79u19XjnG5KRdpU3TeA/vdcRHpLK460cKQFiRTbP3YlVkOC2ScmYofUSJnMHZ5Aibh89SClqYV25dMTE6ksFN4es0zSvWGjnKYBfkoKM21RnCkGzzpuAtdNgPf8RmzkQqVfS8/Phr6Ntk05ipbLupCYNfeVEnTfvv0Cyo5iY2zNM+LEvFsJcjvydZVbpKLliu46NxXJtjSzj41qzA23AojkuCauMJl9Ylzn0I17WoEsqdC4VLUNyG5rDvZv+L6UinRvFsMyuOYbb6f99Zsx0iZmxqL79u1c/bW7vErqG6jcC+CZgjaOt1zZXSNJCtNg07v2sFrH2Aiw9MJ0va2NUoKmXW0ke3LeAVHFWOJKQXqgmdKSHzURfs5TIJRBqjsX2T+EPic7sxRnit4BiVmhm642utjzJVJ9vtEvOq6ZLS0kWlIo1x9n/azy+JyRSbD88hz1ytxTE+z8+CGqO6+AzOYcmd5sTEog/b90dQRTjYHVu4qzRTpu2ozZUEvbEs0pzQtEnMeZLkbWqr/O0TKb9pKt8HeFAcIg1Zkh3ZutO+ap7iyTj8Wnn0DB1COjNc8GzytYfmUO6XmMSeUfFOq+jP/LWeyFEnapYjTWRjSTckHgrNgMfOCiAHSt0mFBx60DpNoykDCDnOSOYwX5ykXapOVgV8XAUlVy+9rofP1mEh0NqJCCigGJrkbar+snPteuLoL6gIiJXEKvhTp1W81pChNrnrFQhAyGmlcUJjciHnjVZenF2djv/ZLd2YoS/lqK0tTO27ZSnFj30gZEL1dCcWIDIy4Xtlca+nMeH6jloUqZ5Pa0Bf87rhminQKrKYW7IWPXmgLcDanbXkXbfNmgcWtz3bWmgNzOFtI9tXIuwK5PXEHbdf2x90A7nmz795dqBxiPzjuuiSMN2l63mVR7/cNCv5QXijxx5zd57A3/wtPvepCHr7mPwS+8AoC9VGL5tB8FVLlWzq7p3Md11powDUqzvlGvlrb4MuLUw+PBwVdgwHEslo/OI4Tg4j+8iR0fO0RuXxu5vW1s/w+Xc8lnb0YIQW5vW/z+NU3vIFIfWnS/ZTvbf+kQ3bfvwPSMysnWNF23ba0BsRQJk4EPXlTxHMeIgAoCJNsz2uM7pm7pKBLtaaYeGfPkueg6nnp4lIZNubo8ViRMEi1pDMvnP5reS2kgkgapVt2u+WcnefLOb/H4W+/n0Zu/ztHfPIyzrvn6to9cqg8VPblIoZ1mtv/cAQBe+vhjFMbWcAsO7oajMVv+4RSzj42zMbrK2c8frWobDP/1cZZPzuMW3DpjLvR8m0b8OheCZGuGjjdsQQorMDS60gRDj3n7tX1kerNR/i4g1Zam4/UDpHuySKKGVqkEyjBItqaZfXw8mqoIQCoWnpumvFisy2vsVZu2q3tJ9mYDXVW3Gay2DJ23bCHdleWq++6k7YoeRNLAyiUZ+NlLuPRzbwAgkYvX742Uycb5FdwNh2peIkuSqQfPMf2DkZpoENA2jYlvadvB5V96K5vffxGNO1rIH+pm3/97I1t+Zj8Aud2tXPGl2+l6yw4at7fQcesWLv/Lt5C/rIv1c8u463Zt3WXJ5IPnyNXVFaFxW/2DSL8kmtN6DqjQM6l07vJkSxozk6xdD0BuTwf2ml1XJnMKLlPfP1+33vFvnMXIZDzcEH/ONP0mkSaRTQa2krCB2JUmCJOGzU012GVavjJI9+S0Ud9LxRbWU6VCO1FdoKS7G2N1Cz/iv76jIl4ee0ElPWRIJ1Im0pGIhEVFJqrYHZQ0UEVJpS9hWVEgbcHSkZnYtoFgdXCZ/P7O4EAvvMcQgtzu1kh7ws8Gh2716JplMHd4Igpm7BVZcpl5ZBRnzYk6WCmCA8uix0tq58SzmSRfk3n5J6WqvKZRE0Jw77338uCDD3LkyBEeeugh7r333tgw87jy6U9/mhtvvJGpqSl+5md+hre+9a2ANva/8ooWNP74j/+Y22+/nTvuuIPf+q3f4jOf+cy/anqcf8tFuQpFFQKzt7mMZIL1oRXiAA9dCRvja3Tc0I9yVASsyXUFTtElf6irHmYJAFajRectm3GVETzruAZSmAy8fx8tBzu14b1aV7IM+t++01Mg6xQXBj6wzwODNTxwEg3K0n5Dnw7TijV+CdyiS+8d2/X4xEgGjdvyDLx3X+yBQSKfpu3q3nr2egDKKyXmnpxASY+QeZeyFcNfPgHAgT9+PT137tTeXYZBy6EeDv3Vm0m2pjXYSyIZtM9nrma+EYFmuBosLgSg5ckQRiYRk1vZ63dJkT/QqT2/wgokWvjc/N59XrfimQSGwY5fvAyFPgn2L1cK2m7oJ9XeQNcbt9QQZCNtMvCBvdrDPVkFLIJmrsmWdADIEls85jL1yCjn7jvHwsl1Jh6ZZvCv9XhWTmZjjBm2zyTi+qUw0xal6YJmvnjgNv4hjzTYOLfKwPtr14MwBW3X9GLlkgFoYOTNCh2p4XnS1gJNCfC8/s20xab37OPQ37yVy/6/N9H95gowZV3QFAXCEhx+xwM4npHKv9YHV3jxP/yQxSOzkPAPQ8JjbrDw/CyJlnA6FBH5nN3dClLU0I6Ahtiu93NRdQgjMDMW9mo5vt1QB+ciVExCilhVEYJMbw6rKVXbJinI7WkjsykXHC6E17mUglRnjvyB+vyl44Z+/DBKfy3IkOBRWvJzafqKt+UdhOkwwKZ9bSS7siA0XfIPCo1Egv57diOMeiDRmt8q/90hry7fu91MJysCd9Xlz91LH3uMFQ9HA28NHv2Nw2yMrgbgYtVFll2PJsQLeYDen6EcxX5RSuAUXNJ9We9/qu5DsiuLve5E6GH4KkwXwKMFvvd92LtElqo9PqNtWw4wGWrvzz0xgYo/MwvaZ2QSdd9t5ZJUe4T5zykFXbcN4Bs1qu9vetcez3OuGjARlA1IhXRq6bnvjVxeLBLdl+G2GYGhMvpufa+8qsdMAVZHEzLdiMw0YrXngvEQMZEw/v/ZgebI/9X9BtiYL0WiZaSEcklHpcV56PslkU8hPCD3uLobBppYecVPQRW6lGD2iUnK80VcV8sswVpxQ0DwWf9AP9peTBMrbWGv2Pge4lFDjcHS8TmWj87Hjvnc4UlkWQX/V99XUis8WuGsBpEXCMsg1daAFGbV/hWkN+c1TRS+cTMKgCtEGFislnYWZzTGh12oeHv7Slx5Q6GkCsD9aougZV9HZA7Cc6KA7La8jo6octIwUiab370Xq6H+mJsp84I5Rq2MpWWbOLpmmvpQrY7MVZorMPW9854BwgwMZz4I3cwjozgFx4u0IbpWl/Qeye/vRIVovU/vWy7roXFrM407WyL9UkrP846PXIqRMLn0z24l1dtC2bEouxbJ/hYu+/wbNO++QL+VEvTfswsSZkRGxjLpf9ceDTSYTNTUrZQg0ZJm8cU5wgaB8AHR/HPTF+Sxqc76DjtKaeeSML5PpQjmn5ryDgI1bwvzOTA0OG9Lpu7+TnU0BDzWdk3KjvZCVB7GVNvVvSgR41yiDHpu34F0Fa6jx8rf/45r4DoGUim2fugSsMwIL5FS0LirhYbNTQijev95c+rx5lRfcy2fNbSB1o+KqNaJpBJgGqycWkTaVbRFCeafr39YFy5PvftBihMhJxKpGPofx5j87jDj3xqq60Q18a2huikDjKSJMIXnNBP3A8HG8IqXkkAbn325RpYkI189pZtiS9bGC6xNOaxO2ayNFQLv24lvD3sAy9FxcwqStbP1ATD9svvXr2Lz+/ZqfmtA64FOLvv8rTRuaWabZ8COK9s/coCJb51Dytq6pSuYeXiUsa+frY3qkjB+/xCJFu1wE7fOE/kM7df14RT8w/GKQd8tQtv1faydXeLIrzxBcXJdA9rakpnHxnj5V58AoOuWATa9/yJcM6H5lJGg75699Ny+g/XzK6yfq8XCkGXJ0BePMfiFY7F9VsC5v3wVszFZI58DYFme3mDWyMG6H3qd2ysOqNo95hZchGmw/7/chJlLB88aDUku+aObMFMm7dfrA8fo/tcGw+z2fCBbxPExXzatx2uEaXDoC2+i89YtiKQJlknH6zZzxV+9OYhUyfTluPkf7uZ1j72P67/3LrZ++NLgPZveswcjHZWzjZRJ/zt2/U/23jzKjqu69/+cqrpjz/Okbo2t0ZIly5Zly7JsecRgY2McB4fAC/CARyCBkOGF8B4hhARDmBJIIIQQQgYggTjGA+DZ8jzIg2TNQ0vqVs9z952q6pzfH6eqbt176wonK1m/328tb61afbtLt+qM++zxuzFiPixdJQlTsHCOYq0LA7pmgpNxWBjMsTBqMz9UIDOSLYHayk8XmB/MMT/qMH8mR35SRzho2SD63YZlsOID1df5qg9fUPWeT313rNUOoJBNxEhY9NzcT254kfxsoWK9SNdg+L6TmjdUOWMNQ9dmK59P3wgrYiaLp+ZRSjtRC46F7fFze6ZAzbJ6oBjUFtYVrfo4x/96H9XsDse++WpkBL9S6PWnVOAQD1Nw1jRX0SMBTEF2WENnlvNzpSA/ma+SjaLbmmhPl9VMCt8Py9YR9xWR2R7B/xDQeEEnfqHusFziugZ1a5vPYYYSHkpGMUMnsEMpfa/qWSD0Ok33+VndWs+V0guyElCzoj6kc5ZfnFu3f4Oq0usyyt900038zd/8DSMjI/+pl3zyk5/k8ccf58CBAzz55JPce++9AHzrW99i40adKnfnnXdyzz33cPfdd/OjH/2IXbt2/afe9QZVkpt3EEYootu7QCBdRWqJX+G5bFN5zHL00UEd+RpmhghcRzD76mTV6AhhGdSuaGRuYLGi2rd0IDueQ5gG6RVNlUpYLEa8JeXBDUR4MAFnwSa9vMErchc+YKBuQ5sWSKrJn3GTRFMyYGjl708tqSfVXcumz+8i1pDATFsYSZN0Xx1b//paDEtXPa92CMTq4vqw8sYxUFTRWH6gjbBrfmcbux75ZXY/9Sts+YurqfGMIEN3H0cpVTJfSurCftMvjpYKQP6YKm3IcTKV6eHBWsi5CEOw9a+uIb2kARcLFwsSMc779A5qVzScE+4o2VVDbjJfVrRUM20f83zNb19EwwUduBi4mEhMut+6iu63rqJpawdOwTeiWN6llcn2q/pC/SkfVwEGnP7Xoxz6s5dKlJKJJ4Z54vb7PTiSKhOuYMnb11TplaDrLctJdtagBVizbJ8YpHvrSK9oxHXK1pqEunWtZCcy+IbKcuFYSXRURqLMMO5933c2SEdy+Ksv88ib/p3HbvoJA98/HLSwdecSTxjyIqZdfchadTGMmljVSIHJp4Z1FK6powCLyquJkgb2XAGz1lfiwmPnCRwNSUTCd+gZJRcY1K1sounCjsoXG4Kem1fRce2y6OlQOr39XFEhzdu66LtjXWV0I1CzrJ5kewpZAKUq58ued1g8qjG6o+4XZvLEWtKUG5cBFAKzIYFImFX6LUh3naOguNKG9ZrVLUiJB/HiCbFCkOhIk+qNLjQjBNQsC8MsldwFNN6+nxmkIWSMINoQy2Dh2AzzR6aRBek5WrUg5hYkp79/WDsrq7TbTFpVhXKAwnS2qFSVtVs5IDOut84reaqVjiGdYj/Kzxq/QF05X/Mjy2pWF41iQb8CR5gHvVHF8D53aNr7bhXeIkRQxLySBLnhxZKsiZL9rSBzah6XYrZS2Bi6cGKezKkoQ6r+vHh6PlBqS/vtC+Ge9hpFSjH13Egk31RKF6GUjuTZ9zzI6R8eJT+eJTea4eTfH+TFjzyGUgqrKVkxVz7VrWsq6Wf5/cWBOeb2zehoylCknXIEh7/6Eives7HijPSf1f+bW3CysjI7CT23swfGQ0J/6XwoW9G0pR1FMVq6qPAZmHVxOq7uA8uDb/PS/l1poISgbZfvdCtvmX5Xdqx6oWdlS9yMHQkRo/+DYNn/WF8GvVV09q769c0c+8arer+UnO8GE08Mk5/MBvAsJTKT0nVBCtN5ohsnkDmH0QdOIx2JKnu2zLmMPzbEyvdvjDQSJ9pT1K5qxFcLyudbeJkkm79yJemlDbiYuJgoy6T/Y1tp2NhK+1V9iJhVyTMNg/Yre+l784roMTP1nLRe2QeiNNUaIei4fpnO2IwabgWx+oTO+CrIEv6glDYiOos2x/96H9IuG3PXYOKpYXJjGWYOTFfIwQrB9Kva2Ve3rg2JEfBc1wsuSfXUoVzJy7/7JAteto+SgoWBBV76vSdRUhFrSFYxxAjiLUnqzmvDKVDybseG+vWt1K9txvKiDMOXkYrRc/Oqc+K2xmrjNJxXKZ/77+69Y3XF3g9fmVNzlYZMjxYH5hCIIKCneM5pviwM4RkMI3hHwqIwlw/2e+mYe7xreNEzAomSc0wpQW4sq+ErIwwCCm1cTi2pQ4qiMxsEEpO69RqaRoHHtzz+4EETKgTZkUVmXp5AumXyoAOnvncItyAjdSIpDWTB5ehfRGUICpzZAtOvnDs7YXbfBPZ0ZYqSAo5+7RXGHqmSbQKMPjJI++6+yHsKqFvbrB3IESVIOq7qxc04IUNqeMzBmbdRUvH8Bx5m4HuHyI1myI9lOfVPh3nufz6EcqVnXBale0yZIAkMz/mpHMe+tZ8XP/Y4R7+xj/xEUXY1LIMV79/M5Q/8ErufeifX/PhW6je0Ajrje/2nLinlXQas/f1tpHvqitHH5e9GsHhi1oNYjSBX4SxU5+dWTYzJZ7XtIyz3CM+mNvn0WQb+8RBuXp9lwbjlJTOvTJAZnGfyuRFOfOcwMq/1WVlQDPzzUcb2DJEZnK+CAQ6ZwQVsb59ETWh+JkfPW1d6sF2l/MFKxahf3+wZio2ycTFQUpEfyzD51DDSUSUylVuQDPzdAaSUPPXOn5OdcAJ9LTcjefrXHsTJOUw9N1oBSYICaUPmzDwNm9uRZRHGUglq17XozGNvPMt5RKxew6DEG5Ns+KPLuOLxO7jyiTvY+Lld53Aql9LSd66n+y0rMOIGZk0MI27QflUfKz+0mfTSehIt2mHo61OuBJEw6Lmln9SSaPlcAamuWvICjxDiAAAgAElEQVRTOZ7+lZ9x9v4BClN5MqfnOfyVlzn4hb0ATL04xgsfeoTpF8awp/PM7ptk72/tYfTRQdJ9dZHBRkbSpPvmlbrPn9lRkZ2w+uNbqV2u7QOy4DL0k5Ps/fge9v/x84F8C9B3xzo6r1umDa6mAEMHjq368Gayw4tekFWlLSh7dhEjYUZKFkqhz+jLe6rKNd1vXVlSRDrMz6VCO1aCUQw/WxFvSTGzf7KqrLh4YhbphjNGvRZ4AUzCMIJzqvyskRIcz2noB7748+2XxskOL1bK354sWZgreFCI0Q6DdHcdyi3un/AFOnCtig8GgMat1aHSavubOP2DI8hQ4IkOPjFBCcYfG6rq2AJtI1NmETKrmJEGwjJp3dmDzOuM8LBdQUlo393L0jvWRuqLVk1MZw9W1VO1LPoG/cfpdRnlP/KRj7Bv3z7e9KY38c53vpPvf//7zMz8Yq/3G/T/DYo1xCMVAoWGQ8EqN8YTfJYODP/8VMnfip8Fow+dxqyLxn1Vpok9X2BufzS8zbFv7mfx1BzjT41o7GJpBFdh1ubMj4+R7KurIpAIGi/s4Pg39+M6lHzXdQxO/M0BzNqYZ2itpPYrl+iDrCwtyDcCZAa0ANlySTcX/u31dN+2jqX/YyNbv30dNUvr9TOu6ovst5GOBamaUWMaPljmT8zy7Psf4clf+TlD958K/p45NR/C+gx1Wyp9sJYYtsLPF5FGzOB/eDt+9NEhFoZzupCmA65rcPL7R5G2JOWl7UYpaekldRz5ysuR7148MU9hNs/80RkmX5zSjgMHpDAYun+Q/HiW/HjWg0OJME6dnA/eG914weEvvxR5a/H4LFbKrOr5TbSncOYKKBERiQcQN+m+cUXk2AlL0Hb5Eo5/c18AIVKy1v7uINkBDcPi11QoXlogbdrchpuXnhdeBD+VMGnb1YN0JI/ecDcn//4Q+bEs2aFFDn3hJZ5574MAzJ+YC7CLffxH1xXkZhwWT1RG2YSpaXObjhIMxtUbAyFo39VD4Rx41vPHZ+m8fjkQYaRJWqR762jZ0VMxptJVNF/aTX1/Y+Q6Aqjd0MLSO9ZGRwqYBl3XLWPJ2/tpubgLI2kiYgZmyiTWlGDTnTt1nyIwSEGnM/p41FFkpiwWjs5Etk1KWDg0Q8/NqyLx8syaGHXrmyoExGCMgOzIIiMPnsF1dWSBQkfwOouK0z88QvdbVngRM2XPNwzar1wSpHRXkiDRkCC1pCEwCvhZUK40adzaSfbsIo6nIPrfUUqncc8fmwnSnSvfLbDnClWMlZpv5WfPjWnZcH6rF0lf2jcjGdNGUlGNb4FhmUjTNwiKIPPEj04z4laQrhr0CwJF2J7NR9oqlYLCfIFkexH/uHxOUx1pbcis8n2FKkJi+MKrBxnjSsHcwSmUK7y0+iJ/UMpg6sUx8lPVxy0/mg3VyKjk57UrG6qvNSUozBYi+y2EhtYae3SI3HCmxJEp85K5Q9PMvDyOkbIodyYoJSBu4Sz6UVWV9xWCkUfORLZbKcXEMyP03LwSo7bSMBdvT9O8tdObY6NkzHzHWTUMf5+sej89vXItiUSMVG8txGNB9pNCz5fZmPKUYlG1gHW8PlmyPkrHHBrOa0VJFfCLIGU3adJ+Va+H9RnVNoFhGsy9NkkUKVexeHK2okiz/31pK71Hq5ByFZnBeaS3x8Ntc7MO2eFFum5YTvvuXp05ZoCI6dT/zV+6QmdtuHjnkx85pn+Xno418fQI86czej84IIXJqR8ex805pJfU0f+bWzDiBkbS1FfcYO3/vohEW5qLPns5iY5Ko8p5f3QphmHQsqMH2zawg1oVAts2aN25hMaNLbqIZdlaEqag+9ZVNF/ciRI+f/AdmLr/Lds7mfMyacrHBVexcGLWg5CqHPPCjE1hJs/gXSdwnSLPlUrgZBUn/v4g408NM390tiTTT7kwd2CaqedH6b55pRcYU9b2pEX96iYO/unzkVG8r/3J8whDsPnPLseqjengkLiBkTDpuLKXjqv76Ll5ZdX1sORtq0gsL2a7hC8X7URVQZR9aA8qDUt0LoO/kTRJdmr4SG3M9iLmvRoiyc4aWi/rxlVm5FpqWNccMuCUjrkCciOLKEHlOaa0gXfh+Gzw9/B3QUf4D3zvUGUBTAVDd52gMJvHLahi9lvICeoWJLmRjBdNW7ZWFGROz5Mbr1YYEHKjWQ0jU4XmD2t9SEnF5HOjnPrBUSaeHQ2ibOeqYGEL0Mb6c1l4pGLhzLzXn7L5LmjesebjF1KzrAEzZSEsAzNlkV5az5rfuYi61U24tgxBEnnnHILWy7qZfG6E+SPTJeOqHMXCsVkmnh6pgJ4Jk1UXZ2Fgjj1vu5cTf3uA8cfPcvK7B9lz633MB3N5buq6YQVXPvnLbPzTyzjvTy7jyj3voOfmfgCMCMgun+rWFh364bor/lDW9TdGOiqNhObnw/cNRA67AM7eN8DiSd9o6P/Vj0pV5EYyHP7yy5VFQfMuh7/00rn3WNzAaqgux1o1cdp3az5AzNTQg5aJkbY4/88uR5hGwDPDpJTm+/mJHK5nUAzm25eBT85y6p+P4GYqZWxVUBz/1n4WB2a9fa0jd33dRqINnTr7sXLUcuM56vqbQnWPQjzREPS8tYrz9j9AwhCs+Z1tXHbP29jyF7vZcfctbPjUpTqgTggdOCY9J6C3/+0sNF/UScfuPjC1EzxwNrogLIOuG5Zz+gdHcLNOCc+WOZehfz9OfiLL4a+8VHW+hRCc/4XLiTXEi/w8adJ6SRc9Xvb+9L4ppLD0+ecIpGEx9co0SincvMsz732QA3e+wNijQwz++wmeee+DDP77CUBDzJ598CyOsnDyWiYdfXqMhRNzmOlzZOhaBnMHp0Nyd+k1f2SWueNhOGBCn4WGIjWji7EihHb4JS1PhiaQobVcIzHMaHOkr4O5ObdK8LUgN5bBrwdR2m4dPGbGinXgwvMtlYAAUSGqXyCUINl5jvpEvbUlEG5hWVo7NVXEmIR0o5gV8KISPVQBlsXiYJifF89AV8L03tGK54X3erwhERHF7/En0JBZHvSdPy5azzFYODlH00UdmLVlmdlA540rMSwvet935LlePTufr54jA+ANqk6va9SuueYavvrVr7Jnzx5uvfVWHnjgAa644go++MEP/ne37w36L6DCdAFCqZpQFDCdnMPMK9EKIghyo1nvUI422uXGsjpVU4nAaOj6UV4KxqphiAK4irHHh0KKTKlzYPDHx3GzbrG9lDKewkSW2f1ToAgMJn4hKOVI8mNZzvv0dp3C5hlrRcwg3pyg/8ObSwSoEs+uKhp+jv3Nazz+tvs48d3DHP3rgzx63U8Y9wtXWmbArMJtw7JKDo9SZlm8sf+zL/DErT9l6vkx5g5M8+onnuHh6+4GoGFTa+SQyYKkfk1RmYlixLEIOCDQzNSqjVOYyXP4q6/g5tzgAHazLjOvTDD68BmMlBVpBAK/UEx1HIixPUO8+n+e0QKLhyWobElhKsfhr77C1ItjVSOvhh84VRKN6v8M+qeIdFQE735iGLMhUbHOFZBe3sDc4WlEMlaW1q+jpWZfnqT1ki6NwRYaLwW07eol1VXDzL5J76SsdGLFSyIfIpxcXvSf/psR/PTXxInvHvSM46U08/IE06+MM/H8qM428faV/qkVSHEu7Daj/N3F9a7HRmDVVmJx+v8n3pzUdQ8Qlevc1ALekb94tcRh4H/e/+nndHGeWCXvUUogs4rmbZ207uguLRyWMFn6K2tJ9Wg87M1fvoKt37ia/t/Ywvr/ewk7f3IzNcsasGpixKooLHX9jRqeJrqGNB1X93rzaxCGpdFRIDq9dOV7zyPRUVM0ngsQcYPzPnMpuaFMyTry+wVaKJl5eaKMr3k/FYw8MEjztg7d72Rpv/vesYb0kjqaL47GKBcxnbVRih9efIfC0PvXVZH3M0OLNJzXgpmqVASNuEX9miaU6TsPi/3y90q6ipPTp1htnCW3aiXZT52VSiv+HdctxUxVrxEQb0xgxAykGzLIS+9SujRfKSZsqN9KRxD7/NgXDIP6eF7kR+S7haDl0u4gyj6q325B4qeMBtjmXvFsX1D2qSTK19s354JKarqoPTRfFY1j/vB0mdBf/OlKqjqf/P8z+9qE5sdl5BZcZg9M03x+R0iZKo6tQGPOhhUC/3z0f597bSraWCF0NPvMyxPYixLbLjozbFuQHS+wcLISFzk8BsKsrkACTL8YXWcDBPZMnsEfHceeDRta9fNzw1nG9gxhnoPvte3oCSKdKvY32qnX98trArgc6RVrI2bRfeNyBu86Edk2pWDo3gGcfLQDCAVugEEa3bZSnNDSZ5MwsGriIaU35EhydIAGQkcM207RGOs4GmJFmAYEtRU8vHgP5kDELdysw4HPvYDMuYG1VGZdFk/NB0aB3rev5tIf30jfHevo+9UNXHrXTXR7EfKGZbDzJzdz3md30HZlL723r+byB95G5zVLATjw+Re9s83L/FEGKMH+P3oOM2mx9vcuRCRMfAFLxE1qljfQe8sq72/lvKF4+VlL5eOi13K1/adp9sBkND8HRh8eZPCu4/jOzHKZZfDuEyy9fQ2p3rpitKAQiLjJhk9erI1j49FG3NywdkzVr29h5723sO5/b2PVR7aw7TvXseEPL0EIQc+NK0j2VPLl9NI6Oq9dyuQTI56xvdguV4JyDe1IUFHjpWWDurXNVbXEtl1LdDHDkjEpfjZTllefBJQyvfPAgy4kygkZJkGypxY3F3WOCUTSqnr2A1j1CaZfGo/EhTbipo6cLpvHcL9rl9fj5NxiVKVbzHar39QSynyqpMyZBQ1nWOV+89YO7PkCT/7yz3jxo3s4+MWX2fuxJ3ji9p9hzxVouqB6YV+zNkbbzp6q7269rJuZlyYCWSws1xgJi4Xjs8Tq42z/pxtY/4eXsOT2Naz7PxdzyfffTLwxAULDvfjypS9rKq8O4NjjZysdHYByFaOPDtJ+RRWsfRPq1zVz8Asv4izYgQ4hCzqL5cDnXqjap3IyDIP23UvpuGppCaxjx7V9EXKm7kLjprYgkCWsK/qGQSNmsv4PLtJyqA8Z6Tmd+n5pNfmIzAX/HYWZQuDYLl+nbk6R6qll4US00yFzZoHaFQ3V99hlPdjTheBd4fcCFDwHrRQmrhNybrsWfgSWE6FDAzg5Sbw1iVvQwm34XFdSkF+wg6yMCr4GjD9xFhH0248yNkL9rgkCrcopN6L52oZPbUckTB3pjEDELZI9dfTdsTZ6QCLILbjMHZomeza6ZlisIUHDhlbiTcngb07WYfCuk1TMmYJ9n36G2pUNJHobCOOfS2liNqRpPL+V6b3jQVZWeEyMuMn8sRnmj0XPd3Z4EVlwqV3ZyGX33MKqD2+h57Y1XPC13Wy6UztRFk7OceZHx3HzyhtPAzevGHt0kJlXJhj6yQkWTswFthGkQuZcDnz+RZysw6EvvYQ9V9DtQ+gsiEWH1z77fPUMAAXx1qSWP6RRck5qvqd1oPlDPpxgJY08dOZcRyiJtjSyoEIytPAKoxpaJ6mJdqoppfdi0elVSfPH50KoB34RdaOo//fWlWRMafJkCCtGelkD0QxbZ7I5mWKQQ/gnliA7uBjo8X6QhxAiiOI3zKKdyDdau97UKWDymZEg26BcD53dP4l0iNT9lQJlGdVrowlBbjKL37FyO1R2KMP4E8OhAJBS28Dog2cY/ulp7AU3gGbT2ZqC0/9yXEfhq6LtrRTnXxBvrn4+v0HV6T/kyqitreUtb3kL73jHOzj//PN5/PHH/7va9Qb9F1KsLqajAL3ffUal0MKIxo2KJqs+RqIjTTUMtIaNLaQ6a5CuQHoMNvgpFTXLqj8bYPa1KkViFeQmc7gZNzB+Sa/dfrHF/FSeZFdaQ4pIEVyuI3AdRbwpQdOWdi755xvou301LZd2sfL9G7n0h28m2Z6mcWOrV0Sm1CCPgJZtncy+NsWxvz6ALChkXuJmXZysy96PP4GzaDP5zGjAjAL8caXhY/Jj2SBVSpZcmilnx7Oc+dfjFf3Oj2U58Pm9LA5nSw57f0ykoxBJjc0qXUqerRVMgT1vB8V3wt9FgWNLJp4dQdrSM34VL2krTv/LMWYPz3rfKR0XBUw8VR3CSimo6asjMxitsIw+MhhA90SRhp8pznMgRKLnW7ninByrdnk9hZlCBcyElDD72rTOAPBSOf2oLjAQMUG6r475ozMaH9MT1JXU4zvy2DD2fIFUd5X0eUeSXlILcaNizJWC9PJ6pvaORUcRKZ21MPyzU1X7deZHx5E5X7ksMzxIEAoat0Yb/Zb+yjqmXxqvwFYM3v3IIO3XLg2iEcJtB+i8dinjT43g4yGH17m0JdOvjHsKVjHaLDB+jWRIddboCMGSdSTAFNQuq9dRgF+4jPM+vZ22K5bQed1SNn/pclZ/ZHNJUxvWt9B3+xo6ruoLcP2FEKz+zc2VuJFJk/6PbCbVVUPX9ctKnRYCrIY4vW9fTev2ruCPyrtAr7Gmre3EGhJ037Ia27FwVQzXiVGzuo3G89tIdaY1r3GLa8wXtpQU5M+1zjO2jpb5/E7O+/SltF3RS8e1S9n8xV2s/s0tAKz6X5sq0qmNhMmK950HSkc4RNH0y+OeQTCKBLmxHB27e3Waatn+TnTW0LCpVfOCCJ4LkBvPBffC5Bt6pCM5/W8nsW2dReI4+mdu2mH6hXGatrZTRfql/aper2ASlK9zJSHelKAoOJb2CwTNF7Tj49G7rhH6CcnuGkTcKjEu+/2Wrl4Tel1H9xsJxYKoZXtQCWq8YquuI8p4sk71XPWhjZHF0o2kyZK393vRbBHGDgW1q5pARa81lNBOd6L3r1RgJmPRI+4qrLoYy9+zXmO0hoyaRtJi2bvWkWzTEeXl+1fvYV3cM4p8G+fQfQMe/nrRmQEGsgAjD572svSi+92wpbXqWpNwjuLZkGhJcebfjlc1bp3+4VFcu6islDxbQX46W3XMlTRQruT0j0963yquBTcnmXxmlMzpheoK5NGZwKgcdV6oc/kiBDRtaS+J8gw/p2ZZE5nhTMkaD6/1xaFFhu4ZYOyRIWRe4RbAzSnsOZsXP/YE0nGRdpRTQBdDm3ltkqhwNZlzGXlAZ01MvzrJU7/6MMe/e5Tj3z7M0+96hNlDpdG/ndcs5fw7d7Lm4xcSb9DGEulI3AXf8l26x+wZXS+m58aVbPv2NfTctILWHT2s/e2tbPvOtZhJi4mnR0owfYtNF0w8Pazr6EQ823UFtSsaIovjgnZknKs2iptzWRyY13MnS2UqpWDhxBxWTYye21br2gtCO4JTy5po3taJUtWNDeG/mymLzuuX0Xf7Gg9mqEgbPn0JIhUP5HqRirP+D7fr9gURm0XcZ1+QcuYL5zSkxOrjELMq1ykaZq1Yx6OSpl6ZZPzxIaRbOi7S1TL23OHpqoZr0A6JalmfTsah603LqHYedN2wTOs1EbdlwfUK/xHxfT1nVn3cq/lQ5thxBekl9aR7a0JG/SIpz2lm1FbWIPE/2/M2Bz+/l/ljszprzZa4WYeFE7Mc+PxeCvN2pOwP2pC67N3rPb5ZRpZgxa+tpybod6lcI21JsjONciWvfW4vL/3es5z64Ule/sTz7P/si0hHMntwuqxeRnGfDP1kQGOmV+GpuZEMy969DrO2dB+JuEHvbauJNyaYemGskt0rtAOl2iZ4nVTX3xzKYPONYAIsL3gjcPKWyRaGgTAEndcsZdt3rqHnrSto3dHN6t/YzPZ/uB6rJkbDxpagn+E+g3aYORHR5AAipmFB4s3JyPux+jhWXRyRjEXusfSyBtJ9dcG+DjsaFFDbV8/ow0MM33dKG2Edras6CzYv/OYelFQIywqMgcVxAUyTyRfGAmNa+J9SUJgqFlKP4msIgbtYpd+WQfZshnhLtGHOqo0hTEHH7j62/911dN+8itYdPaz+6BYu+cc3efVgfjEN3XeKH2z6R55+7yM8dsv9PPWuh0rgkKrR+ONDVe/NvDrJ/LEZFo76DoXiWsmNZJl8bpR0X53WgcKynqPPyFRnDYnW6Pm2amKImIYNfeE39vDa51/h1A9P8uwH9jDwg2MATDw9XCn0oPn42J6zjDx4RjvFy8iwDGZemWDi2ZFIEXv24DSLZ+YCmcYn/3NmKEuqr9b7rg937J0VSmebE9S7qiQjFjbslpECs87CyasKnqoUzByaxfYC7qLa5toE9Ymi7rdcqPW18D7xXouwDGYPRNuZQOAs2LRd2RPNzxU0XtiOkbRwPESBsH5h57xxQVSN4neytufU9YN59E/H0fuumEVbyq+VUjiLdgiSs0ymU4L5Y7OImljEmAqUIRh9eNDTccpsPd4zCzPVM7oKcwVGHjjjwXqWBhoJUzD98rhXmLe8bR6/OEcA5RtUnV6XUV4pxdNPP80nPvEJduzYwde+9jV27tzJQw899N/dvjfov4BkQXppWAYF26Rgm9i2qaPWFp0gnThK+U111xJv0Uyn/J72rqZp3NJORWVqJYi31FC7vLHqs42EQc2K+sj7APHmBOmlXqGJMqYAUL+2ycPqLH23UhoWxErHkFJy8M/3cfTvj3P20XEOfv0gp/5VK9MNG1tILa3XZ05ICBYJi6V3rOHUD496AmqZEldQjD1+1lPiKtumpPJwucKFZkNtc+Hwl16uKtwO/vtJTv/gKLYtsB2DfMEkXzCxbc3ID9y5FyMdr1S8lfZapjvSKKFTCcNpUa6rI+UXBuY006SsbVKwcGohwKIuEQI9w4Q9ZwcRV1Hrwcm41WxuSFtSt7ox+iZow7ZZLOylQmML+rHdb14W+V0zbVG3qhE/mjVY515xLzNlUb+uiVRPLa40dIq87UUICoO+2/oZuncAaeuIWN+ApJRAGILxJ4ZZ8Z4NFQVshSXovLYPYRq4hdLxBj3muSkHM21FRqv6HYudI4VVwzRECTxFw86Ff3UVtWuaS4T2tqv7WP0bm6saGxBaKVh622rwDNtB2wUkumpo3d6JVVNlnbva8XUuXapuTSM1y+p1tHlI4DBiJn2364hqYRp0XNXH5i/sZOMfX0rLtugo8SjqvH4ZXW9ZBV4BIhG3WP7+TUFk8ob/ezH9v34+qe4aYo0Jum5YziX/8CbijQlad3R7fS52wHdeNW1tZ/Sxsxz9xmu6cJeriyROvzrFy5941kvN0+ukBKffKzRdv7qx6ula16/3gDAEHbt72fyFnWz67A5aQtHxNUvr6fnltRRcK9j/se4Glv6qLvwXZeAFMBOWZ7yOIoWIGSwMzJEZt0vWqpSC2aPzOIu2FykWzXOTXTWe07W41n3no5KCqZfGKcw5QVRFEF1RUJz43iHW/fZW71lli0YIVr7vPJy5qLoQ+vfMmehIKJ9adnZF8jUwqFvfwsA/HA5FxoaNrYIT3zkUvKtinStCxqHotk2/NO7VTSl7txIsns3i5iSua5aNORp/vSB1ZKXyIDsC3uQZiILIZSPEl4qGtdoVDRW47KCNy7G6uI6mizDyKOXVZVlSR+87N1CwLfIFfZlt9Sz7tfUYhkG8PR0pO9T2N1JT5XwHIGYxd2SmbC6K4zd3bNbDVS/vt/5bfjwPiIq+SQUoQfPF7RXGK78t8Y6acxpSCzMF3Jxb4gAOX3OH/XZHjLmCmf1TIWNnkdysy5kfnyC1pAgBF24X6L0db07p890On+8aBqC2r57miyPqdACd1/Zhzxe86KTSNjuOQBYk88dmg4zF0oJsgoVjszoKL0KpL0zmWBiYx4gZgRLpX1LqehNWTQwn41Tc99tQmM3z3Acf0xmWWRc355I9u8iz//PRUCH2aFIibAwMU/F3J+uw709e5sS/nGbokTH2f2Efo4/pzMWYZ/AoJ2EJT6GvcoYaBs68zcr3VZ7vRtxg5QfO0wWPq/Dz2mV12tgpy9e55onJnhomnx/j8Jf34ebBKRi4tsHc4Vle/NiTxf5HrOPXQ/ZcgRc+tIfCnItjmzi2SWHO5fkP7sFZtElUMQgC1C6t94qWVr5bWIK5Q9NIF2xHlMqhtmDkwSHsBSeQz0q/L3AWbex5m/IikgDOosSqiVcvMm0JrLSf8VVJhmXQdd1S7TQoo1hDnK5r+ljmn5VhEtC4pc2DaKzmjRDMHZ7BzfnZLKVtP3PXSXpv6482uivova2fZHsaJ5TKLyX6d1NDAp29/3SlnCxh+KenmXllIrLOhlQ6cMXNuSgRqzhLFBZuXrLsV9dWBICImEHT5lbSPbUc+/YhBu8e8KLUHWRBMnTvKY598zUKE7miAFg2JvnxXBBFHsXXMATJtjTbv/cmOq7pI9YQJ91by5qPXcCa39IFKqvB2xhxEyEETs7hqfc+wj2b/4V7zv8X/mH19xi851SVeSqlwX87iT6vww5gbSidPThVIseE+6WNzLoTdf1NrP/ENrZ8ZRe9t60OYARXfXBT4JMPnzkKWP2R80uisEv6ZZmYaYsV71kXGTyy/N3rWDgxpwO/yvi56whGHhpk5fvPw3eYlwSPIOj/8CbOhDLKw+RmHWZfm/KCZoyycTG0AT+ri7xW1ggSKAfaPZnKH6swX2vd3km8OemdPeFaGxpC1aqJUR9RiFIBtasag6ji2lWNrP/9i9jylV303ba6JBilMFvgpU8+x30X/5j7LvoRL/720+QmtCFxZv8U+/7oBex5G3fR0Rj+r03x/K/vCb4/8vAQj9x0P/de8K889KZ7g7VUXUbWe+X4tw9G3lPA8e8cpGVbpw4SKzdGYlKzrJ4V79mg4XvtolwjDVPzJCHY+ztPMbV3ItiDbtbh8JdfYfypEW24j5DvhWVg1cZ0JnxU26TCqokFRXDLyTAFi0fnivwivNZcgZN1mdkXDZ0FMHd0LlJ/9/dC6/YuL6O08r6U2q7hFxwuLfwrWDgyh2EYlXYHPGx2Q9B7Wz+uotQm4hhIBX23r/Yc3JW2g3RvK1EAACAASURBVLo1zSQjMPyLAyOY3T9T0pfw58zAAvMn5oEyOxOAEuSmzw3pqYQgOqBH4NqCWFPCk/1Fmex/LrlFk5m0yI0WIvUxJyewaqyqeomUusZINapb2VD1npt1QnaFaHnNfQNT/j9Fr8sov3PnTj71qU/R3t7OP//zP3PXXXfxvve9j66url/85Tfo/3VyFmztKSuP+pAGTkaBC8oqClslRtyaOLkxjT1eofS7sHBslvGnRiPfmxvR0d6NF7dXYDMLAas+uJHl71yLbZcaSnwFs/P6ZZipKlF+6Cj/sSdGIosOulmXzPAiz3/4CYZ/NhhApsiC5NCf7+PEPx5FCMGFf3UlNSubNNa40AUet3xxJ6nOGuYOz1IpOWvj9+zBaZberiMcfWbqOPoZjZtasc7JsESkQu+3XTkKJ+t6QlSZQV8Z5MayGHE/bbDy2VZtXBe5kga2Y1GwdYEeV1q0XNxF7mwWPzIiTH6Ufe3y+uB9QbVv79ktl3aAFNG4cxJy4zot0U8V98dFSi3sGD62myQwxATYcoZJ3YqGimeDfnZdfyMbP7WdprKocLM2xuV3vVljY/bVR67z5m2dCCEw6lIVY+pKEzNl6QjBqMWmFNLWhjOnbK1KR2A2pALlUSkjSMnTxXANlOPh5UU8W9uXBCvfvyFyPQCsfM96zHQ1o70gXh/n5D8dY+boIgVbz3ehYHH24VHGnx6laUsbRtyoGHMRN+m9dRXxxgQXf+sa0isaNHRBzKRxczvX/+itCNNg6e39mOWR9qagfl0z6Z46f4jKhwwR04rW1q9dQev2Tj3/cYNUTw0XfOVyaqoUO/2P0MD3j3HqxwPkswYF2yK3AIe+doBxL6NDmAaJ7nrMjkaM1noSSxqwvMK2Y4+dRQkvnd5fawqIxZh8epQjf7m/EqrJVYw/OaKLMZYpSNqAKBCWSdP5rTodvIyMuMGKd60DoLBQ4PmPP8V9F/+Y+y/5N179jI5WAxj66RmOfvOQB5mgnz13eI4nf/VhjJhBx5VLKqIIjbhB760rWf3rG4kW4gS9t6zk0J/v022VZlAAU0oNE3H0mweCItXl+xcE6S5/vjV8i+MVHfIdowvH50JrIaysCOaPzGKlLWzX52Whs0aZGqOwSsEz0FEdgYGjrG1KwYm/PYwimq+NPngWaSt8fuDvT7/dsiCLEWAl39X9EOLc4cvZoUzwuZxkzuXMXSdxCmA7ZrBHbceksCgZeWQIYRWhcMK8SQqTQsauegYqoOfG5SC0glOwi8qKUoLl71rP/NFZr45H2fktYfbQDMMPDXL4a6+VFMldOD7Pnnc8pGuYjOZL0lN9x+fCqYzGrS97tj9HwjTIT0RljOgxyg3r+iKV/dbnXn7MzxYrdfD42WxHvrKv6rsnnxuraigBnUrtZ8mVPx8EsdpzKO2mjjqtZtKTBUn/hzYVz67wOaag/0MbUSKcreUreV4Bz5jJ1q/uom5NqQLcuKWVjZ/ZzuKAVhDD+9d1NR/LjefJjWdDxfeKe00qQWY44zmefYzvYnEvLTgp6ta3Rp6hjZvbET68VMl9PYduQTL80zORe1i5kpGHqkcnAhgiCo82GHUAHnvbz5h+uRid7Sw67P3dZ5h8YVw7x6PD1ei8qhcjFr2HzaSJtLUxs/umFdrhKfQ8L7m1n77b+r25iOYPrTt6tAxZxThd19/Eie8drnCEKEcxe2Ca3HCG9NLa4Hnh9VLbX10x9mn452cijdfKVQw/MIiRigeKus8z/fR5ETPouXkFwiyTz03ofdtKnb1QIAhQ0HvFq/s0X6A5qsi7Ry0XdZA71/6fyNIQyvoI79+GLXqt+bJg6ZiCU1CYSYuLvrVb143ylmKyq4aLvnUVZtIiP1PAzpY924W5kx6vVtHPRukCm0gq1pNSgszgIif+7ogH8xKaL6UzK09+9wiNm9uRUhe+9uVvKU0c26B2VUNVZ4NylYaYopLn6QARg5EHz3j7t3T/SyUY/vkZ6tc0sflzO0i0pzDiBiJm0L6rh82fvwyAgX88UhFpK3MuA98/5sEdRJO0JTWrGqvytVovwCq9pJZNf7KDKx68lR0/vpHet/cH47jkxhUVjjMRM4Jgmz2/9ACTz08E816Yt3npE88x5kOGnoMWTkVDpSgJi6cWqkSyvj6K18fZ+vUrESkrMPiJhMWWL19OsjVF3y9FyMhCB5bVr22i9+39rHzvBo0hnjAxU9pAu+xda7XeYXh7KnB86SwNWZDE6+Nc+JdXeNB/moyEyZYvXUayLe1lNlWSEHrOqq01FFDutCojI1U9IMiqSdB+5RLv7AHCcos0qF/XxORLk7gO2LagUDA0jJ0DM/tn+EWZEcpVPPXuhzl7/2lkzkUWJMMPD/HErzyEm3f1Oi7Xo13F4ql55o/NMvLIEHt//1kWTy2gXEX2bIZ9n3mRM3ed1IE/VZyR7bt6cPNOxT1/zJyMw9mfnom4KXDzkrmjM8SakrhO2RnqCmJNKbKjGaZfmiip8QM64+rE3x+mY/eSSF1RGILu65fSd9uqyLUWq4vTsKGZJbesjHTKdV7Xh9Wos01lxFoThvCgqapsFKno/1+bEFap7A4Qa07QsKGlhB+W6FQKCmPZIMu6RJb0I7dFaP2EZT1Ppl84uYDrVGb4utJk7vAMI48OR54lU/umg8yoqPk24hbKUSXwlWEZWbmQHfKzD8NDrvnA8L2nq58lQGE0qv6I97uE5u2dXuBDSB71AlXq1jZjJjX8qyvxajYU4ZUbPZhjKY1A9i/Ynj4HJNprq79biRL4r5K2o+uAqYjMCH9ORRV5yn++jGZLb9AvoNdllP/617/Oz3/+cz760Y+ycmWxqJB8Y9T/f0Gal0QfrFJC6/YO7Kzv0RXeBVKatF3e7RmXNCyNhkzBS1sxSHakqxc1MgXOXIEtf7yDmlUNCB2UjBDQcU0fy+5Yw8APjgMGjlPqVVZKMPiT07g5V8PTlDF6VxnYswVkBL6h7jTMHJhk/Mloh8Hhr+8H4Ph3jjB7IkMhb1DIG+RmJfs//ypu3g3gEnwFNhwhnuxI03JJF06haFBQysCxDTqvX+ZFJ1U53AxB95uXRjdbQWpJLUba0qlXYUlSaO9s/dqmSFxHAGEZ5KdzZIeji3fOHpnDiYiS8x6PkngpZtFGdx/jUymjJHVPeVEpibY0ic7aEkOLb8Rp29nD3KGZkEHMV/g9I8/JeXrfthIjZnppVniXQMRMOq7QWJoX/eVuNn72UlquXMry929i1903auxjV7F4JhPRb8H0/hnmj88x9eJEhcDjZl1O/tNROq/qrRR20MJh244ujnzjAK5dGhXi2IKB7x9HGEJHEZQ7iGIGnVcv0cUYA/iM0jFVtqLtkm6W3FJZ3Gjd715AojnpwWtEKN7oSPqjf/VahdIvcy6H/mIfhmXQurPXM54Wx5x4Iojarl/bxGU/vIFd997ElT+7mW3fuoqabn2g99y0gs7rl6IMA1dYKNMi1V3D5jt3aG94gBtbJoh5hV7ijQku+Moudj9wC5fffSM773rLOZX510tKKo781YHIfh/8830AHPrafvb+3jNMPDPK7GvTHPnmQR5/x0M4GYfcaAZpK4+veWtZGigX8hM5FqsoeUhFfsLfX5VrTRkGwjS46C+vJN6cxExbQUGn/g9upGlLG7Igeeiaexl5YEjDYi06nPqXEzxy008BOPBnL0caYucOzpAdzdB53TKNNRjmiTa0X7EEMxXTRQ8J3QcwBP0f2kR+vLrinRvJIMsMxP7+dTGD74YjMsJQGkXs1fC46M+FRYeDX9kH0vCMCcK7TKQNJ//hCKIMAir8jPSKeg/fN6Jtrgjqi1R8U2iFp/eW5UHbfWOk/65l7+gPjPLlCod0dbqmdsCUv0CBgMZNLVVGVBBrTDD5wjigPIHbj1TSnuqpFycQiWgnq3JAxPAO8Yh3e4J1xzXLKniqsmL03roSN+/BS5XxVJQ2Lu//3EuRY75wdJaFU3MezEtl2wqzjpexIcpkA0Dpg94tVMdHd/NSG6cr3q2fmVpS6x1KEYqeZTF/Yo5KucR7t6vhNaKcxyioWVEfZKaUzzdA51VLKpy/PnVc2UPjppbIc1QBbTu7aFjXTKy9tkSmsW2D1PJG0j215CarGSsFC6fmmdk3xczRDLZjUCgICq5gct8884dnq0IhgK4P4pTAT1DyWeYV7Vf0eEWi9d8VPi4o1K1qYGFgkaj5njuxwPyxOYqZiaXPzpzNaodAxLi4WTeAFVBSMfbUCAe+ooMj8lN6LIQhwBQV55xCIeIG069NkT0bXfx335/uJdGaJLmkvoLv1axsItYQp/uGpZEwbkbCpH51I9OvTnHqx6exPVkwXxCc/OEAswdnmDs4g52vDFyRUnD6rlNM752IbBfA1PPj5Meiea5hCfKTeS7+m6ux6kod77H6GNu+ubvqc33KT+aiszYKLvnJHE7WCWofFJ1emp8XpvKs/dgWmi5oRyQMjJSJiBs0X9jBmt/YTKIthVtRKM773TLou3UlwowoYGsa2qhfiOId+vvZ04ssnlz0nEvhrAyTxYEMCyfnvMCGSkNLdiSHUooDX97P4rgdyO+LYzYHv7wPpRSv3fkSfvZRMYrXJDuUYe5oEVO+fP8rRKTBDjxDp6uCDCApS2UHEMwdnWbwJ6ci+6wcvHdHG3GU0tkwPs/znc+uV2el+dIOXZwz7wbR935Evszr+QZou6ybXffexOV338juh25h8+d2BAVFnfnojBWNEVzMTC1tm95MieZUEO1avg9izdWLIfrUcXUv0i7VL6St6LxmKfMn5lgYiIbl2/fZvb/w2Y5X3DqK7PmChuYr7xfQsKGpqjMvTK3bOrlmz21c9qMb2PGjG7jmydto9/D92y7t0hkKcQOzRst7ibYUW/98V4AvveLX1rP7oVvY+W9vZvdDb6P/AxsRQlDf3xBk7IV5sqsMbaAFWi7q5Oryd1+u73XfsBSRML314EcfA0LQuFFHwkauNaBafS//+27WqZqV6eZdZg7MeFak0vPAtb2CxzN24NALG+ztjFvdWeDR2FMjZEezpbquq4sVDz84SHY0Ey3vWYL8RI5DX91XcRa5OZdDf7GfwmwBXVC+Uj5wbLDqqjvljaTF9L4qhdqlYu7wDIe+uq9CR1eO4vDX9ofgSiopN7xIrC7Oli/u1HpDjYVVY2EmTTZ++mJSXTW0bOtk+a+tQ1ja4SZiBvGmBBd+fRfCEPR/4DyaL2xHGabW1wyT+rVNrP/drbRf1l2MUNej5UWjCxq3tLHsjv4qLRP03baKlos6WPWBjQgLRMpApAwSrUm2fWM3whAk2lKahwRypg4GMFIWdeuavXUYEbiidDBhtSKzRsoKRfGXrjUlBXOHZnAybuRZolyYPjAVyPthniolFOZsLf+raBm5920rPQdt1ITrWla+JbVCllQ6k+1ctHjC53mVMtXiYIZ4WzrIKAgcPN4cpj1nQ7gYuh5P3Yb89LmhnJxFXzYojouG4QQ346LsSlsQgEjEdL/xzobwkHi/W6lzGe3foGr0uozy559/fsnvhw8f5s477+Tyyy//b2nUG/RfTL9A3lg4OU8RZsVPi9cbauzJUXresixIM5XS8Ao26cOv7dJOmre2a4WqjMyUSbIjRX4qz/zpPA4xCnkDx4gzfXABJ+My+vjZsoYWr+xwFrMmjlJmgOPlY3lJR1fEjvJ++pSfOAcOaMYhO5Jh4PvHvCIenoEnr8gMLjB0/2m63tyHq4oHWODVRdB2WRdHv3nAc0yF+q7g0Ff3EauPE6uPjm5u2daO8rJ6Kw4gINFTg2FZ1QVFoau1+4K9riruvd6RGHGzajHWhZPz1FWJvlJKp/7OHZurOFj9w3XiqRGSXWnd0ZL5AhA0nd9CYUFW/B0E+Rn7nAYDO+vQvLWN7jf7yrMAITASBus+vplESxIn4/D4HQ+x95MvMHT/EEe+eYifX3svswenKczmAwOtf1D5a2PhxBxTL09UFQRHHjtL89Y2uq7v0+/2toKRMFn7Mf3uuSMzoX1S7J8wBLmxLJv+6GIdhR0zcaUuRpZsS7H61zfReF6Lzkgpw2Y0EzFad2jj0Hmf3MYl/3Qdded30HhxN1c88FaW3r4a8JwhqqgoBspv3GLx1HxVR8viwDz5yRyDPzlddkcL3IN3DwR/cbIOMwdnmDk0G0Rs63e7TB+YR4oYbl5HRS6OOOTGsli1MZIdaY2zXII5adC0udSoZdXGSLSmXpcC9HrIWXQ03EpUv08tkJ/McfzvDpek9sq8S24kw5m7B2jZ1lGWgieCj00XtEam9fvkFmRJZHFJuzI6ba+uv5Er7r+JC754GRs/fTFX3PdWlr9bR8kf+eaBoIZCmDKDiww/NEhhKl+Vbc/sn+LAn72CY5fiGzq24OBX95GfzjP+3CSOXcQRdWyQIsbpu07Sdmn1DLfOq5YQS5dHR3mCoA3165q0c8YvJOdFvrhSYNZYkX0KP2PmoBasNXSLjg7zffvTr07RsbsXoGKdK9OgblkDpSmkhD4bNG6ONozrfWIQb03juBoSzBdqbUfDfBlJCwk4julFdOmr4DldzaTlrYfyPSgwUjFat3UEximpiunBAEtvX4U9ZwfGjHC7pNTrxa8ZEeZbSukoXjejgneVv1spneJ99sEhynmqUnDqX08ERtzid0Rw1sSbU+THc5EKh1IweQ5jI4CV9tNroSg7GIDSqbdGERqgck5MMIygIFYpZIN+pmMLDQ8Vmg/HMbGzkr63rSgadlQRYkY/W9B1bR/C8g32xZoumAadu3o4/7OXaHgCRWAEQ8Haj2/BsAw2fmobscY4IqbbYsQMEm0p1v3OBeTHc7iFMmOe93l4zwgTz41RmPGLzBavzJkMM69NBYXtosiwDPZ9dq9XiN07iFwDN+Ow//Mv07SppRKWQ085PW9e6uHxRj/bakpSmHe826V7yHU0Jn5+ItpokD27iBmvpmgJnV5fDYZN6YJ7bsHlqfc9zvMffZpj3z7MgS/u48Hr72PyxXGUVNoAXLbOUQInp5h6YTz4W/n5nh1aZPL5cRZOLeLYIVnRNpg9PMfMvil6376S+jWNATyCETcwkyab//QShBkec29MXH1G7v/cS4w+OQyISjlUGiyeWcDxoOkCeSy0/52sS+v2DowIaB3lKupW1ZNoTnL1o7ey+fM7WHbHarZ88TKueuRW4ucoZupT0+ZWzKRV8W4zbtC8pRWzgp/r/kkbUktqsFIW276xm0v//lo2fepiLv2H67joL6/ETFosHJ8rGfPwlRnKULeygeXvXlsSNSdiJit+bR21y+qpX1sdrrDt8k6yI+EowmIbs8MZL7OhWAzQz3BSykSYgqm9E0w+P+ad794azrpMPDfG1EuTZIejnw0w+eIYRsKqlFukLpxnJayqPNFMWiTbUyFeXny2UpBoS5EZrA61Nv7UKHi1U0rWOUDMQiiBSzGDzXc8O65Jakk9zVva9NoLG2mUjqBs3lKUuYQQJFpTHo8ukj8n/nrx312/upG2HR3BGnIlQRSrUgKzKcHckVn8bNBiwXPdxrmj0cUtw3TgS/si5BaDA198hYlnx6p+LzNSdMa5BZfxZ8YYe3q0xBklg2zV4pj6DoPcRI7seL7I5/3/pyAzVtQTpZScumuAg19/jbkTc5FtqVlaT+3S+oq/939wI7vuuYmNn7qYC768kyvuvYnaZaX/LzucZebALJmQc1HaCteBSrkG8rOl8m3UuzuuXoKTxyvG6UXZugatu5ZgxEzq1jVVjAvo4pedV/aUjFX4fm1/I02bWyN1e2EZNF/QxuyB6UjDvpkwWRiYDzIsy88adY4oXZ80rI9blKm8NroZh/ljc7Rd2omRqHyGtCX16xpZrLIH85M64MZImBW8RUqT+cNz5KcKkTxPAW5G4uSqOIAUKFdWhVrMT+VJtKUi9XMFGCm9V1u3d7L7wVvY/CeXsukzl3DlAzfTdU2f/n+uYvKVWRxpUciAYxtkpxWZIc3v7AWHmSOLSCytr2EyO5CjMFPQNQZi0UWJ0331NG1uo+XSzmDf+DJr3ZoGerxslpXvWc+OH76ZpbevZfWHtrDrnht1sWIg1lbj7bHiPKPArEsGDsNK0v+3aXMbjluElfWzuh3HoH6tL/NUkZkSZgQ/LvLkwnhWI0MEPNU/x3WB5MxINiR/lmbyZkayiER0sJAQ6MLcwgoM+qiiUV+i2x5N+oEzr81UHZfs2ayGv4GSNvltjLUmvXPA73ex/1IJms+vXjRcIYg3Jz0owuJZoz+bmLUxWrd3gjC8mglGsUZiQdK4oZl0f2kGoe90MWpjFTXR3qDXR6+70OvU1BTf/e53ueWWW7j55pvZv38/f/AHf/Df2bY36L+KgoMxgoTg1L+drPrV0UfP0nVdL2ZzCts19OUY2K5J645uavrq6P9fG7Ty7X3Ht1uu/vBGhGmw9/efw15wcLLKg8yRLJ5e4PA3DniF5KLJiBnYC75QUkztAR25mB3JBgadCkFMQd3q6qm/Zspk6uVJMErTRKUS2IsuY3tGSLamCXsnwwJFvCHO+NNjEGELdTIOuZEsG//wogqhwUxbbPi9C0h2plDSKKaZQ5CuFauJ4xaqRX3oAreFRUd7Nl0DRxo4rkHBMZBCQ+NIVw+ML2D742TEDVq3dVRiVnrvajivBelIfSCrIg64dsQYOIsO5//xNm8sSmac3revQOZkUMy1/NlTL0yEXboV/VJSR5Q0XthJwcPgk8LENePUr9cH27G/O8zMoVmcrC5c7OQl9oLLc7/1DNLVafl+tEiAq+sKpFS4mWiDoVIg87L03cJEYuIaMeq8d1fDWFOuItmeItmeJt7bRKFgIA2LfFZQu6GNWH2cZHuKvttXeQeVXkdG3CTRlmLJTcsBeOVPX+aRWx9m/LkpRh4f56e77mPgX0/od/c3hNaov8b12qldVl8VRzDdW8vUK5OBQSA8H27WZXSPTgse/OkZ7r/8Hp7/rWd59iNP8dMr7mX0Ba0knfjeUeaOzgYV6N28xkF84befBWDD72/1nETe/jQMzLTF2o9tKmmLm3M1vvV/EVk1FlaVg7+mt4bpV6cqMIL9dow9Nkz7rm5ql9eVpHqaKZOOXd3U9zdSf14LiEr8RUxBuie66C9Q3BZoA1vjpjaaL+wowbEcfexsxBc1nf3pmaoR40pBelkdmSFf6A9FUCiYemmSmVcnvX7rtHadXmzqfj8+TPsV3RWRej4Par6gDbvKPjHiunhXot3ve6kwWLe2ldZt7VUHJd6SpH51o47sC6WvSi96vGF9E4nOGhzX8Az2BAqmiMcxqhT986l9Z3dFYdDA4LC+maH7TnsO1tJLSoORR87i2r6joVgQUaEdEHa2gFOGR+9fbl7XVmi/aonmxx5Ptl0DFTNZ+kurQobpqPNEw1SEsb+Dz64i3VsTgiMpvaQSzOyfinR0ybxk9PFh6vobywT6orEzbKCJIimq3PDmtM6L8qtYS0pHuivhjXOZwdBvjzAj+LUsKlNS+k4fz4GjjKDAmpGwcCUVY+5KgdWYou3STlK99diuRcExKTgmtmtRv6GVxo0txOpidN+6GltZuMpAYmK219N5lXYMWbUW+bxBPqsxtXMZyBc0ruuZe04FzigZ9E33Yer5cSaeG4s8b6QrmXxhnOYLWiNHVJiCmr7aqgau6VeniNXHWfX+dSV8S5iCZFuKZe/oJ9lVjTcJUp1pbRSMOPsNS9ebSFQpzpfqqqFhXVMk3i1A2/YOCgvRRSoVkJ8pcPgfjzC1dyJwlEpb4mZdnv/Y0yipAidfMKaqCCnUvKVV77fyfeJCqivNxAtFA21YVpQFPeZm3GT7t3dz/me30/fL/ax6/wYu//c303pxRxDhGEUz+6Y8SBEqnu2PfdPWNqSiKI95a1EqaNraxvJ3rcGqL8W8N5Mm/b9+XonRtOOKJSx/74YgAvf1UMu2dpI9tdiuGXq3SXppPU1bWskMR2cXAGROFY1HNX311KxuKoGVszNOyTwUYQXA8Yo8rvnwJi75zlUsf9daVrx7HZd892pWf2gjABs/dWGk6tG6s5NURw3Jjmj5P9WZpn51o7fWQgYe72Et2zqYfHE8MMqWyDV5l8kXxklWKUIN0Ly5FdszrIUNSEqBnXOpXVlf9SxJdtXQvL2j5G/hzy2XdKKILt6rlA5OcAsycGz74+tKnVk0c3AK6VSeEwDDPxtk/vS897Ky+wrmB6pk94Vo7cc34ygzWKu2a+AokzW/tYnccE7XXHJ1jRzH1Z9t18BelLrwIFC+DxQCN1TsVClFYbZQkcExs98vuFg6n7OHZrDqqhtxhJd1Of7MGPfvupdnf/Npnvvo/8PeeUfZdVX3/3PufXX6vOlNo5nRaNQlS7J6sSVZlruNTQ3BhGYbAwFTQiC0QAKBH/xIwAFMCYRejI1jbMu9yZZl2ZKs3sv0Xt+8csv5/XHu6/eNSPllZa14r/WWZnTn3XLuOXvvs8v3u5uHNz1I/3MOVKFHT41pmn1EqAreydNTSVuTSDiYlmC6exppS4YPDPNvy+9n39+8wvHvHOPJ6x/juVufvuh4pou/IkDt1iYqVtZkBLOtuMXuD73AEzc9xt5P7uHJmx/nhdufx4paTJwcR+guoRgJgy+6d3qny5GvH8TOCOqrT+cfLmBOmyz66xXKViSgKAQIv87iz67EVx6gZmtK16S7KUv/9lJ8FYFkZ0P639iW48915HYHgyp+KZxVlLcSH8C8COZ0UXOxA+sjkrbVsgV4NYpbS2h+k4LeTPfx9aBO21/Mx1fqp6DevXPDV+5XPlWS0DxtLmpqr1U6r8zxA0UiZ+/oPY2SuaWqoAA3vwfQNIL17jbYV+ZXXVMeLVd3SBVQTz6LX6dqQz3VmxsybET3I50MvTTgcF5oiqw9ZrP347uxDZvD/+cAkb5IskDNjtrER2PsT2abFgAAIABJREFU//wrTJ2ZdE0OA043J7T+xQIsrx9T6uqj+Wi7LbWXO/WvJ3jyDY9z6udnOfTNIzx2zaNMOXpn4sSE8tuT9lsl9yL9EUc/5Pfh7SR0TqK4IlHgod5B1fpadxhHDcoWhSAZvM60ByAoXhpK/py9bwFBzyOdaizTuoAsJwbS90wPtVfMUirWRd/XbW1SRT1pwXIpE5CAGuVLQo4PLNO+q9ZUyeKQU7zpPi56QCfSE0n6wRkfWzDwfD8J2J9cEZhxO2mvs+/bkopDMHNcUueaOj+FtzygCmMSvoWlY1iKU8pT6CU+ZiW5CxPv27QERkz8lxXf/W+TGYPyhmGwc+dObr/9djZt2sSvf/1rtm3bRklJCd/85je56qqr/rvu83X5T4ivzO+QmWaqNCklgeqAa7uxOq7awac7w0SG4hkBaimhf88QtmEzuGcQU+rJRWnbYEqd7kd7iY/FGD85rtjfZepjxmy6H+6k+eY212sDVG+sJVhTkIOdDEpZ+UKKICNdkSaVqa0RH4w6sB9ZzwVUrKzBV+rDiOQGS6QT9O95zB0DVQt4GHi+P69TYcdsPCVeajY3UL11FrYDOyO9Oq3vXkBRSwmx4ZjjJIkklmxCmZsRi4IZiOJK5pdhxSXZeNYAZlyRaFqmCiSkE6oYpjLe013TmJYgbmpZH8H4qUmKW1OY8gnjmKhcrFhdTcWKatb+ZAtFbaUIr4JnmP/xZSz+m5VISyqcYDuTzMWyScM+dFPWDgnl+Un2f+5VrKjEiCnlHh832fU+5cCe/dUZp9o987nDXdOqfS0ja5x4nyD8HkoXlCdJfTPGVED5kgqmLkyx/7NZ154weeE2de25ty/IgbfRAzqz39SGp8DD/i+8ytiRMUWgZEikKel9speTPzkBwPy7lrLk86soX1ZBUVsJrX8xj/W/2IYn6GFgdz9nf346e0jY//l9xMfilM4PJd+3lAk8YoG31I+32Muc985zvbd5H1yEv9yPbdkOBJNIbkYkEKguIHxhilc/tTcJo2KGTeJjcR5+82OYEZPOfzuPGbEz1q9lQ3QwwnRXmKr1tVRf0Yxhe4hbOob00HzrPEocaJz4RJyXPrKbB9c8wEMbH+Sx6x5leJ97++e/R4QmmPPe+TnPrQV0Oj6wGH/I794ZISBQE0TzaKz54eW037FQOeILy1nwV5ew7O9Xq/f1l4uxhdqQJtaIiWrLD1QGc+YSqN+9TnWjMWnw0l1pz33to8nKY1+ewBdAoDqI0F1glJxrCYGrTgQFeeALBbAt6fq+/VVBep/sSUJxZTiwHp2+Z3oJzhDM0At0p7ox+/qCsaNjWGaiqjtzkUkJsUmT2iuacAtM21Kj4dpmp6Mj0easYztQGcaUwfSFaXen3JFIf0Q9qy3SNgQCwxJEB+NMdU65XluiOivyVtogiA3EEV7NmQs6MSMR5NXwlPqwbZvOnb053zcicOHfLjg6PvedJQJBZYsqMuxr4tpagY+CygLQEhvEhM1Qjrke9OAt87pDqUinPTWmiLsNJzAdd4iJbQnGpAkuAYHEWPhL/a73nbj3yGDEcdZTY66Ck4LprmmKGosxTGVrEkl99bOgqLUErSAV7Ex/bstWwenUhiLT95AIIv0RZ35kHk8k1qODUcbPRbL8FsHw4XGMSYPeJ3o48/PT2A6EkmloTPdE2P3BFwB49s+fJj5uYts6ljMXo4Mxdr3vOYU57VxXJhM4zruxJP6KgGsVn+bV8ZX76bhzUS7xn1ej8bpm/JUBVxg1AK8DcdL+voVc8pU1lK+opKithJZ3zGXDb7bjLfFReWmexJiAihVVBCoDybWR/FgCy7DxlfmZ+/6FeXTqQoJ1BVRvrMtZ/ppPY8575hOoDCI1DTPdF7QBXSNQEeDwPYdddXJ8LK4SEbpwulkS81TNLRHQKF1UnoJmyPLXSpdW4Q8FXIkkNZ+GL6T0rdA1ai5vYOFfLaft3QtSgVtB3souT7GXyhX5ko0qmdhw1SwsO5MIDlQyqfG6ZvyhABt/cyWz3zKHotYSKlZVc8n/WUfrn3cASl+e+OFxHlz3AI9c/hB/XP9vnPzxyRyf3U3iIzEmzqVzWqiXM3YqjDEedyWBTEhsNIZt2+y6/Xn+cMl9PH71o/zhkvt44c5d2LaNbdpJmJfsMbfSMJFLF4SY9+FldPzlUkrnlSf/v7i1lAWfXonUtOR8KJhTzvKvrgOg486FObZMeARz71xIoDpI3RWNOUEkPaAz97YF6n17tLRAq5o7mkfDH/JTf9UsV/uMLiidV45e4HUSxGn7Egv0Ai/RoSg2mXpNJQBV8EjGbGxckqSoIJjw5c6lxL14i7x4HQK/BEZ/Qkd5Cr3ER/MVLgjMsMXpfzlJviDM6Z+czPPdlPQ82evo/LS5qmn0PtHH6KER1/cNAnPapmJFFYJcH1pAMtE4sHuAx67ayUObH+TBNQ+w95MvJ7sHE3w+2eIp8BBaWpk3ZlfSXkJ8PM7uD76AOWkk/VQzbLLnI7uJDkWVf5/tIzu2K7V+E4SnCR6cRNBPsutdz+ZAjgy/MsyRbx266JheTI59+wgDu/qxYzbmlCIlHXp5kINfew1/uV/BxLiIW5V6tvQ+2pX3WOcD5yhbXMH6X1xB/Y5ZFLaUULutifU/2UrFSjUmK76+gbkfWIynxIfw6hR3lLPh19spmVtO/zO9qbWbTHSAJaHvqR7KFlfkXWPBuoKZYrCuBTPpUrYkhBHNTT6ZUShfVoG3xMeGX29nwfsWUdRWQvmKSpb9/Rrab1f8XB0fzLWxekBn7h0L8ZcHaLgmF85M9+m0v2ce7e9d4Oil1B44EbSf96EllC+sIJsk3nYC8iVzy5j3oTzXfr/SW1KkEkeJpLUtIVB7cQiozgfOu+t0CSP7huh9oifXxtowvGcQT5EnLweBvyKAMWXw4vtfwIpYqQ75uM3ej+8h0jfN0CtDHP3WkeQ8tqZNIr3TvHDb80gp8RZ7VVIvzc+0bAWxU36JOxwgKP8iX2cKwNS5KbyhQLKYIPnIjk0JNhSgB3QHzkukfQABA4/l46RQEzSVwBXJgpzEMX9FgHl3LkLqWkbCwbIFpZdWUjirSEExOjrHTuoeDduS6EEPWkkwI04Fal9SvbmR2W/NBxkEDdfNVnsql1iPRCj42DwugpQQ6YuQ6J5Jn2+WLcAWhC+4w4UBTPdMc+53ZzI6slRmQkHdDO0dINI7reCorLR9ha1hTf/XFuD9b5IZteL69ev57Gc/S0tLC7/+9a956KGHuPPOO/F685EOvi7/E8VT4KH52tnJNvHER+gac29fSPXmuqzMYkqK55Rw6mcnHWzITDEmTfqe7+XMz045G39VXWHZOrYJQ3sGMSYNJ4sP2YEQK25TsbLKCa5nnlvogo47FzHr5pbcNjehlHjVmprk+RLkU+nK1LIgPm7m4JTZFoydnEzDo88NMNlSoDmEX24iPIL4ZC4ZTMI4x0djHP7HQ3Tt7MGIKxKO+DQc/edj9D7ZozrSbRU4ixsacSO1ARBCsPCuZRnnTK9gaH/XfIywTTo+cRKjGLXBte08jnVccu7+sxkZ3fTP1IUwCz8+w7XfswCA6KjB1LBNZFpnekIQdlpAhZAZBC3pwRDLwaxNnDdz3ATFbaWcv/88lmFnPJciW7Hpe64Pw8G9zHluCcZ43CEmyT0uPDqhSyrxVvpzKp+FrtF2awcX7j+fAduSFFvS92wv5UsqWPmP6ylqVZVk3mIvbe+ex/y7lmDFLOUMuZD3nP3laWdsBHVXNrH2x1vZdO8O5t6xCG+xCkodu/uo+0QDjt9zlN6nex2CvbR5bENkKE50KErbrR3UXzsbE11V+nu8tN+xkOoNdZQvrcBIwi+mBQwsQdmSEGd/c8a1ndIIG/Q91ascjpy5pMjWhEfj6D8foevhLuUISuXEnbjnBN071Wbhhduep+exHqy4jW1IJk9P8vx7nk22lxqTBge/dpCHtz7Mzit3cvz7x/PCL2VL6zvmMu/Di5NBl4KGQpb93SpqNtVRtiSEbeUi8UsJNZfVA6oVve2d89j42ytZ//MraLqxNVm1ZEZtbDI3rxKN+JSF5tUoai/NxC92nOuqDQoe5oU7dtH7ZI8i2zIlU2cn2fW+5wl3TjHn3fNddYeUMOc98x0nL3fTLyUY4yZFbaWYFqpryflYNlSsrKZsUbmCq8l53xq1l9ej6cppNJzgcsxQwWUpBJpH0PbOjgxSMQDhFYSWVxGoCuYlY5WmzZmfncIwM9s/JQo73hgzOfPTU+RTqie+fzyJL51zbgmx8ZirnZISpICBF/tJbKJMxxYl7MF0bySnojv9+7Zzn262ANTmWFWcZ80HqVG+vIoL959XO1WXZzv1LyfyVherkws6c+Cl1LVjY3Ei/dM0v6mVRBI3qV81wdzbFjB+fCJns5KQqZ4IlmFlYIgn7K9paWBLBePgMs9sCcVOq3y+uTr04oDzjlNjbtmKuyLcFyXQWESm3kh9CmeXKCiVPGMevhDO+D39eHIjm6xQz7IXCM7ff9ZVj1hRm+6dXRz/3tHc4xLGj48zeX6CqbPuLegj+0YoWZAJCZAuml+n4apZ7m3/mqBuWyMl7aV0fGgxltCT9r+gtZSFn74EIQTNt7TmBPW1gE7L2+Ykf6+5vIG1P9zCpnt3MO8vlyaJpRuva0bz60moJsNpO9aDOvVXNlG1uQ7bztZrIPxeChoKab6ljVlvmoMpPMQNDUvz0HprBw07VPt8bMrK6NxIYhnHbCpWV2E4xKCGqaqqbFsjHoWqtTWE+90xTqWE6ECE8mVVZJMK27ag4tJaund2J49lv+/unV007GhCoooRUnpRPVv9FY2u102+FyEoXVjuWsBRtrSS4rYStKAndx0As97QyskfncyrW07ccxxQm/v5H13Gpt/vYPU9l1G9IQUjdvpnpzn2naMqYBe3MSYNjn77MOd+e3bG+wboeqQrb/C+e2d3FtRK6r4Qyl6+fNdL9D/bn7H2+57q45W/2kt0BpK6hF9vRkyOfOsIj1zxCI9c8QhH7k7xvIwdHePA3x0gFlUk1HFTZ/TkJHucLrt42E5LtKQCBsaU+v6yL61i9tvmKJg5oRIga76/maLZxdRsqiMeTd1P4h7jUajZVEf/rgFVDGRn6jTTgInTE5QtrsSWSmcZZsJe6JQtrkBoCs7JlqpKUAWXVCA3Om6geXWEpqd1dqhEBZqO5tOVnczSp4nnK2wqovktc1yDdrPf0kZhQ2HenXmgJgh6fjuW0DnTPdPs/dReHtr8EI/f8Djn/3A+OUfO35urF23D5vx950hh9rjoXAQ1WxoyniX957ptDUycHOfFO3YxdSGMHZdYMZvOhzp56SMvAtDi8tyaX6f5zW0UNhU5gfWsK3sF8z+8hO6dap5nr33btul+pIv5f+lCQimgsK2E4rZcuJl0GdjVhx1z9znP/vLMjN9NSPeT3Txw6QP8fsHv+f2C3/P0nz2N5TAqn/vt2Zzz2zGbC/efwzLtvITG8XD+hFpSZgjcJ3xZY8piatBkathmasAkPpV53jnvWcD2Z2/iqpdvYaMTkAdnPmmJRIbmQORoCDRVuPZ4T5IoPH3cLUswfnSMilXugdjSBeVomoaUks4/dvLETU/w0OaHePkTLxN2oF/6nu5z7QAWXkHPE6rT1FfmZ8VfX8qme3ew9odbqLk8VfVff0UTSz+3UiUHAH9lgAWfWMbsN6lCwMV/s5zWt7fjKVIJtJK5paz6zkZK5pah+TQ2/XZ7RiePL+Rn/U+24Cvz0f6eeWg+PemPJToyCmcXUTK3lLptjbS9ax7CSTwIj0bTG9tofmMbwdoCyhYpOJZ0QlM94KHtVgVXGp+K89y7nuO+xfdx36L7eOqtTxFxeEkSc9xKCz6rIhupYIYt93kskQRrCxz4u8w5owd12m7toPeJHtyivNKSdD7YyZlfnMrh8EKq5O7YoVHKL6l09ZFL5oYILQ45nDE5X6d+R1MalFmuxEZinL/3XBqUcHo8R/G66OUB17gDAY9TZJB/nXTcsTDvsfl/uVh1NkllAxJ+jYWGFVHvV80FXHSjINofITYSx5a603WkPqBz9rdnCV1amVefhy6pBM2tQEM9S7CuwHVfk4xtaKkiFtvOjZHZZv6OLsuwmeoM5x534ohTZ6eSialsX1JK/h04LK9Lusw4bB0dHUxOTnLgwAEOHjzI+PjFMeNel/+honkxTRXEiZtCbVziEhH04C8PkNDj2UE/f3Uho0mCjSyRMPraKPHROCnSIZEMLkspVUuyVIHRVNuxE0jVlWEPDxk51zaclqzCxiJWfG0N3hKvIjwJ6hQ0FLLuh5ehebUcGAbSfveV+1Ks9oZO3FAVe7YDw2JOm3krEay4TeO1s9wxVG1J9YZapEWOM6ICBYLJC5Oc+cXpHANmRS2O/vMRvMU+7CxcSOm06dtAxcoq5t6xIOO7Qhdc+o/r8RR4VLAx+dyJ76trx8byk1BaMYkZSW8jExk/2yZULK+i/fb5Scxlw1QBu0v/7zo8BR76nunjxfe/SGQgClI904nvn+Clu15ySAFxvbaUgqo1NVjkkndZtqD55hZiw1HsjHM4AeCIjTlpILy52HGJzZama8gkeWNaRlmquSQ0gS29jmHVnCo8nXhM4Cn2Eh+LKeJPx+FJEMNIW2I45FhVa2q47L4dXLPvFq58/kbmvm+B2sDFrLzBSmMihQs5eniMV7+wn90f3UPnw13JJICRh3wLID4aV8kIEjAOIuUcezTMsEHXw12cu68T2yFlM6M2h//pGCMHR5xNu9s7gTO/OMPIgZGc/1cDhzrmiuUnkLbaSJ7+yamcyg0ranH07iOMHx9n9NCYMzapd2JFJCf/5QRW3OKptz7F6Z+dJtIbIdwZ5th3jvHiB1/MOx4ZdyEELW9tZ/tT13PNvlvY8tDV1G9TAZiJkxMq+JSzRgWDLw1e9NzHv5sbtJOmpGtnl+LJODudS0xkw9CBESZOjjN+dAxpZM4J27A5/fPTjB0bc95h5ubWlBqjB0fQgnpaYIrkzwiBp1Bn+Eg64aLjYNkavc/1M3l6EjsuEVnvTALdj/VQs6kO03AgItJaIeNhSdXGWmovb6D9tgVoAR1PkQfNr1O+pJIVX1ujEqRC4Kpzdc15zwpOxEjYGdOpILGZsXoiPhZDujiJUqqbl4LUmszeBJoCT4EH96pu4Wxc3XSic1wIPAX58bKL5pQwccY9SDt6cCwvDjcoOLPCWcWux4SAopZipvJgkEobwt3ThFZUJ2FgUh+NsiWVxIdjyU6ITJ2qEmST58IkMeXSnxmYvDCFMWW6zzUpiIxGXX0DUEmfBIls7nOpinHVEeM+5gO7+mcgexOE+/LjMgMU1BaknTvTjnmKvIzsz6/XhvcPE74QVhVPWX4LNkyemRkGovmmluTlsudi8xvb8If8rL57I76QP0n0HKgOsvb7m/AUeBjeN8yBvzuIFU/d+8ihCV64TVXpz//wEqrW12GhYeLBQqNuWwPt754/430B+Ep8eCoLM/SDLTX89SXoQZ3+Z90gEQTGpEl0MErfM32c/NmZJEmnFZMc+/5JBl8eJNw5xfC+YUxDOAk9BzLIgFM/OcGpH50kd52p30/+y4ksvyXznUghGDk0lvb91Psc3j/CyL50foPM48akiafAi2loGc8tpcKl1f4E0rHR45M5CXvbVjY73BVOBsiy11j3Yz0OQaX7PJ9y5pIVszh333le/MgeDnz5NSbS5tiJe47l2tCIxbHv5E/WJ8SYNFyTT7ZhY0wZtL2zI8kJlb5+faEgJXNL6X4sAaWWOe6dD3ei+WeAFHH0/TPveIZj9xxnqmuaqa5pjn33OM/c+gzSlhz756OOjkidXxqS/mf7ifRNc/x7R7HiJO2FaSk4huPfOwao7pEFdy3lqhdv4ppXb2HjL7dR7pBqD+4ZdPzzzLmm+3UG9wwyeXbSgR/TnPXt8E7Ygsmzk4y85r6vGXltjHBvOC3AkxIpBZG+KLVb6p25nD6uSufVbanHW+p39HGmTlXdjT467lhAzWX1Geu7enMdHXcsVLwHeeAIZ72hhbm3L3A9BtB+2zyig1GeuPkJLvzhAtHBKBMnJ9j3+X0c+oaq+M7XOWFFLcoW5wbFE+Ir8TH00iDS48GyRNK+W5bA9ugM7h7k6HeOYsVkRqBGmpL+FwYJd4dpv20+tZdnPfemWubduQiA1d/eQNniEJpfT8ITLvzoUqrW1GBMxjGnc/cGVlRB5VQsr2TRpy5BD+poQcW7VTq/nLXf3QSoalo3CVQHiA3PwD+WhEiSDOwe5OVPvcKeT+6l7/l+EomOgT0DvPSBlzI4dUb2jfDIZY8kx9ZN7LjN1IWpJAyakejIdAKt7oTgmdJ47Sz3AwJm3TCbwZcHee4vnmPghQFiQzGGXh5i1/t20fdM30XPXbulAbcgrfAI6q9oVDjlUnFtqOSyUxntUdCza+7eROHsoozvBuoKWPejywA4/r3jvPrZVxk/Pk50MErnQ508ecuTTPdMY0zGXf0DacqMPdVM0nD1LLY+cg3X7LuFK564juabW5PHNI/GvA8uZseum7hm3y1s+u12KpankgjFrSVse/Rart53M1fvu5ntT12f1D3lSytY/Onl6AUpItaSuWWs+e4mhBCqovy7J4hMCaJxjci04NTPz9L3tBrzld9YS3F7KUJXXfnCo9F+23xqNtZh2zaPbH2Ewd2DSEvFUEYPjLJz+07MqEnVutoMotbE3tqYlpQvrVB+uJsPLdS1Vn5jLeVLKtQaK/KgBXTmvn8hNZvqMCaNnG4RcGzJZBxjLO42HRCawJgwGD3sHiMcPz1JdCSqigWz/XcbosNxPCU+V/9dSoFe4HPWViK4nIAOVLY+NhRlutO9g9ecsmh+W2vOeRPirw7gK/Ox/CurMiOiAhbctYTSuWWc/ulJ1+6DsaNjTJyeUEUYXidJk4xvKc7FibOT7j4Pijtl78dfzkF7SMRE9n3hVUf/uI0LjJ+czIDryvBdJBS2FOXdr4mgzlRf2PXcIIgMRZOwvrkXx4Gsdo8zScATeB1T/j8iM47aT3/6U7q7u7n//vv50Y9+xJe+9CU2bNjA9PQ0pjkzHtjr8j9H7LjNid+eQcqEo6chURHk/X+7n3nv6wA0LDvbsdeYPDOJpyD/NPGX+5FaAvcT1AJV1dIYCpIEXUuS8KRn0uy4zbF7joEtMB1tqL6tftp1+y6uefoaajbXs/2p65k4Pobm1ymeU5JUFIlQX7bSsSUIHbxlfuJ9iYCJKjGxJFSsrCRQE8wbFPAWeilbFMJXHWT6wlTKEAmo3tKAt8iL1ASWoUjtVBeCuhtNSLxFvrxB2umeacaOjqW1iSZEPf3EWdVS1HHHQpW9fqwLvcBD7dZ6NAdbUQ96MacSRHKZ35+JHExakqLmYoZfGXH9rvAIpC0ZOTKF9PmwIxYIsDSd0ROT1G6BVz73qlLqWbff/Ug3c945B3clr64RHYoibdXenrqq+mnyfBi9wA1fTSAtBfnhLfMryIXse5dQ0FyY3ABlP5dlSIZeGSLS41L5JWH/l/bTcstszvzmvDNXne/ZAhmVVK3ObF/PTuZ4i72uhldKki31p395hte+eggrboENvU/3ceaXZ9n4w/XUb2/g+Cn39r3mm2fjLfVx9tdnnEr81LU9BR4KGgt55h3PZjr+Um0EDn/jMOWL8pGtCaZ7pylfWJ6898S/QsUp8ZX7cgLLCdEDOuHOKSzDfcMR6YswcnAYaYHbXBvYPUDPoz2KGyKtw8CKWgztHWL00Cjli/JvEnOeJuudhLvCCK+GGVNrNP36ExcJugFMXXAPCmoejXBXWJG9ymwMG0GsP0q4M5ysaIGUnsKUTJ6eYOL0BFKqYERqDajvD+0Zov7KRs796kxuMNXnwV8dADPr/52fY8MG/bv6kXbu+hRA3zN9eIq8WS3qMhnw7X+2n9lvmE37u+YRWlFN7xPdFM4qovmGZjSvSmbatrvONaM2NZvrGNwznBPQEEKCJmi4spHxI+7YzbNunE33zi71LRd9HhuLoQKMImfMpYTajXUcu/tYznmlVBvyQFXA9boAwdogTTc0c/YXuVVxml+jsLEwLydFdDBK03XNHP2nI67Hq9ZW03TdLLoePI8Zk9jOuGhIPH5B/dYGjt591FWnqnGQHPraIeLx3Hl88OsHWfbZZfB/D2OaCVtE8lyBmiATpydcTqz05PixcWxLfSd7rtkShnYPonwDyASIVXbIW+bDTaR05kjeoLvajHlLfMSG3UmNK5dVgesRdZ8pYr/MdSCEJDZuEMoDlQDgK/MhdVz9FmnLNAJod/EEPNRf28K5+y4gUBsXW0p0n4eOD6igWcXKKlZ/bzNHv3UEoQsW3rWI4mYVoHj1M6+6nnfopSEiAxHi4wbdzw9iWZoadl3jwhMDzL1jmqKmGfgsgN6ne5nuysURnzg1ydDeIUZec09WSEsyeW6CfX+7z7Wqc/8X97P0U0vTcN5BwUEoosKJUxPuBLSOTJ6dRAt6lJ1yWd+eAg/mlIttB2IjBlqyQCLXlkgbjn3vGHbczpjqQqjOiNP/epr2d6o28Ykzahz8IT91m2rRfCq4HHeq2bL9OTkYY+jVIaQtsFILJXn9wZcGqLy0Km8ip7C1GHPa5Mm3PkO4M4wVsRC64MxvznHpV1fQsK0+b4dQ7E8IylWvrebkD4/nBFs1r0b12mr8lQHiho607Yznql1dndwHuPlc2JLGqxp57e8P5ByVUhJaXkH/8/2MHp7I0Me2KRk5OM7A7gGGkkTRme9MWjB+Yjzr+VJ/E3VJcubY986w8qWyxIpZTHdPo/t0DFKcVOniLfLmDewZEwZ9T7kHLIVQQcGpC2HQdGzDcpJAysZpXl2RDcesNL2UZgeDuoLdMmy6nh7EkjrSlAiPTtfTQ3R0hfFX+DE/TXEOAAAgAElEQVRikE3nIQVMdU1T1FqiyP+yDLAUAm+Jn+M/PI6RRRBqx2xO/eQUHe/uoGJ5BUMv5xJ4h5ZVUL4whObTXZM8rW+fo5JTUQkytc5tCUQg3B1maO+QY3uy1qiFIok1JV3PDGFrHuyYjebz0PPcCB2dYUpai/FXBNj4862EL0wRG43Ruq6BsbCaC56idKgzMn72FCp9PfuWNhqvaWbyxDjeMp/CJXdk7fc38dQNj2Z0swqPYO33N+GvDrDvb17JeWaACodA/sCXD3L2d+eS66z70R6arm5k5ZeW8/InXnb9bmw4xvD+YSpWVjK4eyBH75UvDuEtVMUECv5KPZPlvFtfHvzvdFn40SX0P92To/OXfGY5mk/jtX94zbU47MBXDlC7uXbGcwdrgiz59HJe+9Kryf2s0AQLPrxYdatcVsvA3pGkTknsmYjYlC8Kofk0tjxwFZNnJhh+ZZDypRWUzlX7ESNscPye45n3ZqvOmxM/PEHLm1sQ3zoCWctUD+hUr6+56Liky8VggGY6nthzZ8usm1pouGoWE8fH8Jb4KGpJzbV9X9yPGU3MM+WXmVGbfX+7n7rL6xg5MMrw8WlsQ1fdij6NM7/vYvZb5nDhDxcwJ134aOI2R+8+mma/M9eBbcHkqclkEjTbP7csie1A1K3/8eWEu6aIDccoaS9Nxniq1la7BmH1oE71+lqCdQWMHBjJmU/SlJQvDSWr+bPFCptMd4XRAgkbn+lLTp2fYvHHFjPwbF/OGpHArJuaGT00Qs/DCUjhzHtsuqGZI//o7n+DwJ60ab21nTPZ8F4CNt+7DYCGq5upWFfD8buPYMVs5t2+IMlLMHlm0jVZITyC6e4w8z+8iJH9Q4Q7w9hxC92v4y31sewLK+h/wZ0XQkrAgvCFKRJIAtk3FxuNqaFy2xugIDtTuiM3DlXcXIwe9GBNm9lbJmbf0kr34z2qoDHrvLaE+JiZrLR3u3Z80nBN0CSPj8Zn3HO9Lu5yUY3f0NDAnXfeyaOPPsqPf/xjqqqq0DSN66+/nq9+9av/Hff4uvwnZezkGNnVw8nNzqjhBM1ATYfUJ1El3LCjyfW8QhNUra5mejBRZZB+bpXRNGNmFglN6u+E30PXH7syvpOeeYsNpRx2zatRtihESXtphtHwlflTeHekMoQgCC2ocEjjsq+tWLGne6aThCvpQUkplcLpe66fqb64Aw0hkpXjnY/0EhmI4gslWtsS2IUqa2tLjdKO0ry4sKXzyhRLt/uoZjjjekCndFEFpfPLM5wDVUmTqymFV8MbzB+MEB6BMZEvoaaqn/t3DdD/wkBqk+cEeI9+5ziR/gixwairkpaoQGi+rLAEBl8ezKiaTn/fXQ91OQbb/b6jg1FnTrg7UCP7Rkh0K2R+BHZc4bvnk9HXRhEePW2dJP5VVQgzBRsAZxMkcuYSgBFR+GoH/uGgcmacd29NW4wcGqXr0W463jcPn0uAq3RhGZUrq+h43zz85b5U66+m5sYlf7sCc0phwLs+1+FRajbmd2BLO8qov6IBmxThYrIKQQiq19VQvqQ8r6UomVOKr9g9MFcytzRNt2SLABuGXh3KIAhLiLQlo4fydOj8iVLaUZrFY6A+ml9LbrRmkvI8VWO2aVM8pxhfqTsednF7CaXzSjFjdkZ7qi0FttCoWF5JfMwgdw2oTU1sPA5agmRNS2LlGpYio5wJIxhIwgJBbvWEGTHpezYRcMic56ASa9KS7P7IHp595/Oc/OlZDnzlEA9teYTJc1PoBYowLJ3IKfGvFtAZ3j+S1MXpWL0q2Alz/qIdvcCT4ctJIFgXpHZjbVZLrkhiwlu2yHL4s/U6TPdGMipcE/+CqqbTHLKsdP2UrBot8yM19xZU2xZ4gp68BJjFbcX4SnwZlerJ7wPlSyupXFWF7fNik9DbQhGLVhZQ3FaSn7DcdtpIu6ed/0/BegAMHxpTOlHTUrouDXPeU+TLIWpLF8uUTht1ZtdXwoY27GhMW/vp/oFKVhgOhJub3pMIambYPNdurkUPeMFlzNGUzZnB56f70W6n+jRT39tSVU7Xba3PqRCWUtmS2g21oCcC77n6vqStJG8+QHiE4tp4pAdl73Wn60UHTePCA8qn2fNXe3n8xifpfqKPrkd72bnjMfZ/5QCQn5BRSuh/vp89n9yLFbaRlnPfJpgTJq983j2Yny49bpiyqI1z79O9rlAJCbFNSaTXfWM9eXqSwqZCrAycX5I/awXepF7NHnOAypWV6D5PDr5pgiCtsKGQvIMOFM127zYBgR7Q6Xmqx/25JHQ/3o20JS9/6hUef8OTHPjyQV7+5Cs8eNnDjJ+cQGgiDQc83Z8D4fMw3Zke8ErpHilVt0jzG5rJjpMmNrPNNzRz+pdnmDo/ldTd0pJYUYtXPr0PaUoK8yRairKqTCP9EcZPTmQkscuXhKi9vC4DckwP6tRvb6BsQTl7P/Oq429m+qkX/tCdQb6X/b5AILxaRvdA4u9AIHWNs7875/yHyPxIybnfn3cpoEi9FCtiu3IAAHn/P11K55e58gDoQQ+l80oJ5CF6BChpLc6rWySkEftmHXO+NHpwlHhMYtoalhRYUmDaGvGY8lsqllc6OjhrnhtQ3FrMq5/fjzlpJgM90pSYUyavfHYfk6cmwaMl7V7C/pumxtDLQ4y+NkqKZFqkfrYEowdH6XnMnURempLRo6Ms+MiiXMgTAQs+sgjdr7PsC8szSaS9gsLmItrePkdxWuRwn6iPp8CLGbHd9wZSdR/v+9IBjAkjmfSz46qbY98X9mf8feGsIkJLK/CmEVxOnp50fWcSmDiTwkb2BD2UL63ICMgDFDUVcc3uG+m4cwHVm2ppv20e17x0E8WtJfiKfMx+c0vyfMln9wgu+dJKxk9OcPY35zJ8Lyti0fnHLkYOjRIbzJ88u/CHCyz55FI8hZ4kP4Lwqs6+pZ+9hKKW4izcZpL/BmoujjGueTS2PXw1K/7Pamouq2PWG2az/Ymrmf1GVR08cUIV+2Sv7/CF8IxJ8+QYBDzETQ1Lqk/c1BCJPaaeZ8+ElhHoLm4tYfYb25IBeVDwF27cSNKUDL08ROncUtWtnqXXajbUUrH84v77f4foAV3NtZbMuTZxMmHfM9/ndF8Ec9pkzyf2qjVgq2N2XDJ5boqTPzlF/y4VxHWzoUN7hhg/Oo67ToXeZ3opnlOawwFgSwhWF2TwcxQ2qjWWXnRZ0lZC0w25Y169robKSytpvnE2hc1FqdiGUGOw8KOL8RZ5ld/kIv6qAEWtxWmB7ZQvKXShbNhl9RTPKcnx5/yVAdr+fA7LPr3claenfnsDBTUz8xf4Kn0s+thStvxxB0VzSvCF/DTeMIurX72RQJkKHHc/3sODmx7m1K/Oc+b3nfzxyp2cdqCrQssrXDkQ7LhNSXsp3iIvm3+zjeVfXsXst85h8aeXs/WPOwhUBwnWpCBmEnBqDqoVNuAtSwSuM/WplCDSoMKzfWQpBYWzCrMKJFJ+iy0Vv8qCu5Zk+seA8OnMfXeHszfItSWKR4Gkfsi9tuKyyWtDpcBX4W5DX5eZ5d+F+rNy5Uq++MUvsmvXLj7zmc9w4sSJ/1/39br8F0r+IK1a/KFlIdWK4rKhqFpdTcncXFzZxMIsbCpMGhY3mToddk+zIbCiKriVT7TAxafn0r9ZRpJgzQlGSATVG2uw4orszU36numjoK4AkcaCnjR+uqB4drHCy3M2LenkH5pHMPDCgLPRcQmMewTGmMHCDy9yJd9c+OFFhJaG8uIMV61SVdkDuwd5cNMjPH7zU+y8+nEevf4JphxijsJG902cEAItoCVJqNJFPZuOMW3kUabqf3ue6HEN/AlN0P/CgOs3E18PVgfzQgppAU/eyq9EIqRwVqGr4dX9OgW1BVh5sMYloBelB/uynFxNUOhU0rtd21PooeepXtdkiebTko5SPvEUehDe3LkkJRTUFDC0d9iV9d6KWHQ90o3m0dj++FW0vKUVX8hHoDrA/A8tYPMvLwfAH/Kz5f4rmHfHfKrWVjP75hY2/2oLtZvr8BR4cnkXHAlUBahaVU2w1oW8U8DSzyyjtKPMgXkRyY90NnlFs4uYd4cLwW1QZ+575+Ep8LDwo4vd5/lHFlG+uDzvPK9YVUlhk/v71jya+z3/O6SwoZD6bQ2Z96apTVvLW/K3Mya/72zqMvQeoBd68RZ4WZTnuRd9dLGDvZ5L/CctKGotRvizq54TIlRV7ENdJKrNU8RBAnPaxBifoUtNg4rlinzLdFrLEx/bhoL6AtxaRBNiS8mZ352j9+k+rKiFFVXkv9HhGC9+aLcieIpLTFNB1CT+tSxBbMLCU+BF2mr+ZM4n9WhT58KY0RSGqpSK42N6IO4klhLEa1oW4ZKgsLYwr24BVLulLZLPnfoX4hMGEyencjY6ic/gvhHOOZiV6RsayxaYUcnk2SkWfXxJ3vc9vH8E26NjWWnBdEvhF/c+3ce5e89hTiZ0akovRbqjDO0fJlEpk3ltFdhWydhExYpIfqQETAhWBbGt9POmzu8p8GAk2+9zxyw+ZSL8HvWO0uyndFpisaD1be5k7PM/sIDQshAJiIbEeRPP7yvzs+BDi1zXv+bXaHvHHPSgnvEeEuewTUGgMpBhn9PvXSv2UTa/LKOFO/25hS6o39KAvyqQsQYsWwWYKldXOevI3TcZ2jNE2zvmuByDBR9coKAvBGpep+14zGmLroe6GNgzyIUHOnO+e+onZxg/lZ8DAABdMHZ4POfc0oaBXbkVrtkSG43n3SxFh2LJTVz2fLAlBBuD+RMhEqa7Iwivu/4wpizm3TlfdRBamR88GnPeOZeIAxORPdckMPjykEr6uYiv1EvVyqo8vqSk8tKqGfUaFnT+sYuuR7qxY3ZSr8VH47zw/hcVEXrcDYpJYeWHLgklxyl5VednT5GXusvq8dcFk5tuRQQHwaZCqtfV0PVwtytmtbQlY8fGWfTxPLbk40sAhan79Due46Ftj/Lkm57hgbUPcf7f1PwSQrDyK6tY8eVLqb28jrotdaz8h1Us/7uVAAy8mB+qrWtnF5pfZNx3QndpAY3OP3YpuIAE4anzUURvI0yezU8UN35ywinAyJ1REpg4P4kZdYcrM6MXDxbWbqylsCEz0KT5VFdTzYZarIidoVcS50YXhLun8RS6cAQ4vmD9lvrU36d/F/CU+px56h6c1oM6RbNLnDWeOc/xaPjKfAy6VKoDDO0dxl/tx5xWczFhA2UiEerVKagvSGIkpxK0Ar1Ap6CuADNi5dUt8XFDdYMmeBkStgqNM78554xrHYWtpdgIxdFkC1r/vB1vkTcHizxdjGkLTc+FSgA1NNKSDLw0mDsdJAzuHeJipMbRPN0kQN5Ok2zRfBodty9gzd0bmP+BRRmBtgUfWkRBS6kit5RgI5j/kSUU1BXQ91w/dk4nOVhxi75n+vIWYIEq7ihuK2HrA9tpu7WdqjXVtP3ZHLb84QrK5pUx3eMGuwEgiAz96WSJDVc2sfpb61n2hZUEqlPBfF+5z3V9e4o8M3PdoDpW9v71K9hxiRkDMwZ2XLLviwcId4XpeaLX1Y3VfBrDeTqyEhKoDuTljipoVPe/7HOXsPJrq6jbWk/tZXUs/7uVXPr11e6QGv+DxD02oNbp+OlxjCmXLh0bzvzmHEWzipI+VCY3moq3+CtyOfgSUtJewuKPLUYPeCCt4EcPeFj00cV/0rgt/cwlXPq11dRtq6f2slqWf3Elq76xBiFU8nvzzy9n0SeWUL2umqZrmlj/g420vlX5iIs+lseOfWwxviIfc25tz+SrEioBO++2eQBc/vttdNwxn0BVEF/IT9vb27ny0avRNKU3dzxxDQ3XNOIt9RJsKGDZ5y5h1TfWADD7TS2uz1O5tgpdV9csmlXElvu2s+OZ61j+pVV4PCohERuN8eKHX0LGwI6r5Clx2PfFA0yenaTtrW0qeZG2VdUDOg07GimoK0BKyaFvHuHFj+zl1K8usOfT+3j1c/uxDRvNpyX3Jbad2Iup34XHQ3Qs4ROlzp342Y7bDk+eW2IcpJmZ9MkYWMCO2pz6xRlMW3OKIZx7sDW6Hu+lfEmiSz7TlkgpKWwsxFfud03KSwnlS0MOx0/mlZNB+zyFgq/LzPIfguL3+/1ce+21/OAHP/ivvp/X5f+DqOB2vrIvnI11blZWSqjbWkfXw91Y5GLW4vfQ9/zMwUq9QEfkmWWeIi8r/mFF3u8u+diSiz4bQsuocJRSBTL0Ar9q48pjvKyoRWhZSOHSikyFpHl0Wt7SgqfI675CHPxhb54KYaEp49XyplZW/P1KStpL8BZ7qby0kg3/sonQkhChpSFVBZX1WvSAzpxb5zDdO83zt79IdDCKFbGwYjbjJyd4+u3PYZs2826fl2P8NL9G49WN+Mv8TqWtwDC05MeyFZxPaGWls2HIHBwpwVeRf1NuRS00n4a3LNcpSBRLBWsKkELLIIJTG35Ftlo6ryxRSJU1aFA2r5TZN81G0zMHXWgCX6mP6rXVTvDI5doyGY7BzUBpfp1ArXo20xTJTwKjOlBfiLfIA5pqA0z/IFQgdybRvBotb25BanpyvE1TQ3h19a6Cet4YrNchGoqPGYQHDCJjMD0mmeqNY0VSTquvxMfcd3ew/vsbWfa55ZTMKUleu/Utra6B83m3K2dn2x+3U72hJlm9EqwvYNPPL6O4uZiz953P7CZMjKsN3U/0UjKnhCWfXo5e6FWPoAlqLqtn7nsVKVHzjc2s/OqllMxV87xieQXrv7+ByhWVlM0vo6S9JGcdaX6Njr/ooPmGZoXJb6W9E1vgKfRQs+FPa1E9d98F/rjlUX638AF2Xvckfc+ldNKKv1/JvDvmE6wN4i3x0nhVE5f/div+8vwQTwnpeaLX6bRJ0y02xCdMpnummXVDMyu/toqSuaV4i72ELqlg3T3quYdeGXatrADoeqSHiqUVZMNXJZBYK5aWY0wYufAzzroxIyblS92r+GfdOIuGKxtciZ6lFNRvb6R2c/5xbdjewJlfn3Ulc5q6EGaqcwqZbF3PPLe0QORNpCqHsPOPnSrQbabpJUtD6oKeJ3sdyJ+sNeiQO3qLfEmYnRx75dGS/CXZ9wYC25Z4izyproPEGnUCtb4iL2bYcp5FYQ8nEgJSwtixMZqubuLSr6+mdF4pniIvoaUh1n1vvYK28iueBBXAcp5Jqk9kMMphF1idhBz48sG0Stb0a6uxnDwzlQzIZ4yo87sRNlKbuLRxk1IQGzOQ8RTfS/pzmxZYERvbVAHEzHeigjax0ThL/3oZtVvrU/YfwaybW5j7rg78oYCjzzNtKAgCNUGsuIWFyHDsbRtsNGRcwYqlNgJp59AE8dE4VhxXW2KMmwoaL89cE14dI2wwPWRknFfagqmemAOdkN/99ZX7WfKJpcy7c34yaagX6Cz6qyXMfc88PEEdI2y5zkXblhy5+5jrxllKOHL3MfDkBnGSQb9ib16/ZcbWAUfKF5cjyLSxiZ9DS0IYk2YOhqnlbPz7nxtMtixn35vwaegFOnqecQ+E/MSGY1jx3CSJGYX4eBzNrzudHNnjpmx8x/s6ct6L5tOYd+d8imYXoQX0XL8FQeM1TdRtqct41vSf669o4PSvz7oWG0SHY0ycmsw7H/RAytdz85H9VUGsiEV0WEGZJNe/rREZNLAiVhJeI1ukLfEEdeq3NrD6H9dQtrAMT5GXssXlrLl7HbUbFbzErvfvZuiVYey4rRKzkwav/M0+hh3ehPhYnM5H++h+bpjuZ4fpfLSPeALCJA+MIoARtggtr8pcI86nYmWV6gCycYIJyqdRuk0gBBQ05a/kLZpV5JDjZtk5CUhBSUuJgkpxWd/ZZKBuInTB6m+tJdhYmMxdBRsKWf2ttSrY6NFyOEhsWyVKPYUeQksrc+chUL6kksoVlVgu79s0oeXNrVjx/GNqxW26dnYnq9vTdaplScaOjs+4js0py9kzuSSIDJv6K+oVlr7IOITm1Wi4sgF/ZS5kQOIZimcXq0SLiQr4O7ZGmtD1cDdSSnZ9YDejR8exDIEZFxhROPDlQwztHVIFIC42XvNpeAs9+F0qu5PXbil25+iCZGLFtiRHvnucP6x9mN8teoD7rn2UUQfuLrQ4BDLTfzdNAVJ1i/xn5YUPvsTk2bBav6aGZQgO/d8jDL7sPLfu8tweDU+hJ+ln5/4BzH7DbEAVLC388CLW/2Ajiz6mgv2g4O/c7TcZGPX/USlfVIFb8qikIx+sZUq6H+txDR1IW9L5cDfePHoNW150zxSsDlK9rjpH7+oBnY73dADKx6m7rJ7V/7iWNd9eR8P2xotC0fxPELcOAHUAVQyQZ/0bkwbt724nlf9J92Gh/V3trsHnxP67fks9VWuqWffd9ZQvDeEp8lI6r5RV31hN49XuiAc5tygEtZfVsfqba1nz7fU07GjMSN4kYhvr7tnIiq+sIpTWdVy1upqO2+cjfLp6RI/G7De30uRce/4HF7D4k0spnFWIt9hLzYZaLvvl5cmuFk3TmH/nQnY8dQ1XP3sdiz+5NGN++Mp8XPoPq7lm1/VcufOqZDcIwCWfXU7rn7Wm9poCWm9sYeMPNl30mc/94bwKxme9F9uEo/ecwF8RYOXXVuMrCzhob4LSxRUs++xyAE7/4iwn//V0Mtlvx2wuPNjFwa8fJpjkPnJJ4BboeIOeXJ8Ixw76dXxlgaQJz7STqks3b2wPlcgMXwiDFEl9L6WGFbU58+uzLLhrIYk9TqYIWt/ejhb0JO8128f3hfxAOk9kwpdURVX5YJ9el5nl9VH7XyCegCfvutULdIb2DoPXyaymLTwbjZ4n+7CiNjgtLemVGwKFVaj5VTVbenViYpGXtpVQtboql+07oNP21hY8Hg+rvrEq577qrqij9U+oZj32vRPY8cxgiG0Kuh/rwQzPTAYjhMBTFsjdVAsNT4GX2TflIXoVULuplra3teQSMmkQWlKOP6SCfg1XNrL1/iu4dvf1bPzxZkKO8yiEYOO/bKRqdRWaV0PzaxQ0FLDue+sobCzk7O/O52KY2WBMmQy8MEjt5lqWfGoJ3hKvIjbyaTRd3cQln78ET6GHwqYiyGZBt3Vq1tfQ8Y52hUmZHeBCsOAD82fMpms+Tf2NlrthKV8SwlfqdZymVJVPIrgldEH16ir0otwNrvBqtL9zLoGqABt+tIHCZlVBrXk1QktDbPrXTQhdoBd7cpNDgBSqKjSfM6T7dTBJVhylDI3acOo+jYYr6h2i1NRxADNszxjITEigpgDbyjS6piHwVwaourQySRiVIVLNESNs8vjNT9P9WI8y7FMmZ397nmfeuSsnCOEmCz+ykOabm9H8GnpQEfjM/+B8Zl2nSKA8AQ/rv7eBGw++gZsO38yOx66iYqlypsYOu2N8I2Hs0BijR8Z45bMHiI7ZmIaOEdPoeqyfQ99MBRrrtzaw9T41zzf99DIqlleqURSCDT/YQPWa6uQ8D9YGWffP6yia7bRBer0ZwTwpBXpJ4KJVPACnfn6GVz5/gHDXNLZhM358gl137qF/l+ro0DwaxXPLCLaE8DeWUdQRytuani0KM15gmDpxQ8cwdWypIXQt+S4Lm4oobA/hqy+lqCNE0NloWXErL7lXfCJO65takp0VyXksBfh0Gq5ouGhQrvGaWTnrwAbqtzfS+W9dpM/fdOl8uIf2t89xDWhqfp2mqxox85AOS0umdaq4VGZImDo7AzmnBUbYdAgkE+dIrDGJGTUVWaudfkydV9rgK/MiXBxE6QRhhUhf21n3bgva3tGWquBPnlsFajve2z6Tb5vcfNZdVseWe7dx3UvXs/kXl1O5UhGDjbw6lnw3mYTmqjvAmDLyBmljw9EZN5rSm3/9SwkTpydTVdVpYyptmOoM46/yK1uQ9dxIjaLZBc6YZ9kKqex9oMLP2XvP0/P0EKahY5o6pqFx7v5uep7qw47baEEPtg2GKYgbmqoIkgov/uzvzmFGcIjg1DoyTY34pApcpZO1p+tz4dMw4gkczFxbAgnCQvdx07waZ+89n5bUTI2LMWHSubOb4pZi1+AzQM1a1a02//0LuOHVm7jp8M1c//KNtL9D4ZJrfh0SEEkJaKrEOjRspntzMd0TEu4ME6hSGy3TGTPDGTMpIBi6eMJwJmm6dpYTZE8lYWxbYElo2NGoulRsgWU579PUkbYKIk/3RGi8rgmy7LvQBLPf1EL5wjJ8Zf7cYoKgTutbWzj4dTdcV/XHh//pKPPfpjhnsn1JzatTs7Gajvd0MOfWOegBHT2ooxfodLy3g7Y/a2Pi9CTxKRuZHcS14Oy9F2hzdGriPSbnklej+cZZ2G72F/Vs0rSZdW2Ta0Jg9k2zsOMWBHJ9ZInAV+yj86EuVw4haUm6Huuh7c9aMysEnWEJ1gadjTXUbKjl8t9s5bqXrufyX22heo2ag5NnJxk7Op7jD1oxixM/PoVt2Dzxpme58GAX1rSFOW1x4YFOnnzzs9imjW+GBHRoaTmDe4fT3lNqnQy+PExJRzocQaZN8ZX7mX9HfuLh+Xd00LijMYc8V0qwpKBuay3NNzQhPHqGjRUeneYbZuU9b0Jsw+bpd+5i5ESEeFwnHtcZPRHh6Xc+j23aySRrdqIUWwU7BvYMYTlE5OraGpYpGHx5iKkLU0hbdxIRiXWiEqUjB0ZB4u6fOK/YmDCUrUkbNykFdhw1D/Ope6Heq56HJE/zaniCHjb/bDOlHaVoPg3Np1Eyt4TNP92Mp8CDp9DrOua2VMUQdi54MaDmargrrOBx4jLDjpkRi+M/OkXjjgayCeRBraHGqxoQHuF+bUvpzOYbZ7musebrmhBC8OoXDnD0OyeIDcew4zY9u/p56m3PMXluiqarGzNw15N2wNaYdW0joLptD3/nBI/d8gzP3vYS/bvzd4mkS7h7WnW7GZljY0Usjv/wJI3b612/J6sc4PkAACAASURBVISg6apGOt7bQeNVjZnP5dXYcu+Wi147UOXsQe10W6IKE/Il8/49MpSH8Hz00PhF9xZ23HbtHpaWxIpZtL3VRa+h4J/yc1mlZNXXVlG3pQ7Np6EHdHwhHyv+fsX/GHia/6ikd00nJBE4D1Tl2s+E+Ep9DL40nKx0zz7n0CsjjB+bcCX2RNcZP66IVisvreKyX1zOdS9dz5Z7t1G7ue6/7NmMKYMj95zksTc+y7Pv3U3f86nu+d5n+jn0rRPEw6i9YkRw8ufnOfO78+oZhKDllha2P7yDa3dfz7rvrk8Wl/1nrw2w9FOXcNPBm7np8M3cdOhmtt2z+U8677nfXnDuL/dYzxO9RPojvPDBPYQHDPVccY2hV0fZ8wnFQ3H8BydyidqjFqd/dRZjYgYS6WmblV9eQY5P5Pi58+/oYO572pFSS7NTCi4RodF6SwuhZW4FWpJgbVDZqDx7Cztm89pXDmJauXPJNOHEj04w3RPN0eegEogDzw0o3z3Hl1Q2YKbuodclv7xOj/u/QPwhPwU1BUz35W4U67fUER2MIoRwqkIzLcl0T4SWW5rpfKQLM2wlM7iapqoaajZU03R1I6d/m2jVVq0vliUIVnoJVAe49CsreebW5wh3hpOnr91UQ/utqj28cUcjwudh7xcOYEUsWt4yi0vuWpRxHyOHx+h5qh89oDPr6noKHbzISB54GqGLZJWBm98hPILxExOMvDaGZWZCSUhDcuY355h/21yW/NUiDnzlYAoeRMD676xFD+jUbq5j/5cPZZ7fhqbrL76hAAhUBtj4o43ExmJYUYtgTTAZEA93T+c4iKAc9gS2csstLTTf2Ey0P4qvzJd04GzTZrrPfVzGTyji3uoNdfQ/25fx3FqBl+brmhh6ZVi1L2fF7aRQsDytb25h+MAIXQ93KYUvFETL2n9aja/ER0l7iYN7lxLhETRcUY/m1dj4w/U8/55dWIbqZJCWzcK/XEDFMpWwCC0Jsf2h7UQHomg+LaOqufWNszn+w5NZG2BBoDZA6dxSSttLVCVS9rW31Snn15V0VOGQDh9QkATI7OOC8eMTVM7gKNqW5PC3j+dgNEpT8trXj7DqH5Y7G/nM40ITjB4cI9IXwZgyMzDY7bjqjhh+dYTKFRVIW9L73ADD+0cJ1gSYdU0DvmIFTaV5NJZ9ehmL7lpEfEQRrMxUCZou/hmCQMGaAIe/fSwnoWBFLE7++DQLbp87IxF04vwbfrCB+FgcM2IqZ8GZ5xce/H/svXeUHFeZ9/+pqk4z3dOTs0aj0WgkjXIOliVZkiXLNsbGa1jgBYPxsuQl7gJe8JJevOyCWcISTFzAxtkG5yQr2cpWzmFyztM9Havqvn/c6jRdLZuF8/vtHvyc02dCd99U9z73id+nEz1HVPbgwSHKl5flbFeYghPfO2MrDB37zik2r6ngxA/Pcvqe88nPjJ4Zo+XhdrY8uu51I3mq11cxev6SHFAaX3M4VHzTfPTtG2TnByWkizAFI2fGaHm0gy0PryOvKncRaS3Pga/ex5KvLObgnUeSSo/mUljzo1U4fU60fAfxMftoeS1f4/jdp4nHVSyEQGuMKkfvOkHdVnsFEhRiI1F89T6WfW0Jh75yWBqDFSksr/7+Spw+J6pbZh5N7lvoAk9Z7r2iaErSIZeLNHe2spEwvLsK3Ri2RYXl/FyFLvJq8pnoDMnCsYlxCYXiucVWs3Z9S7iXnpf60toj4/euF3pxFrmIDcVsBfOEkhgdjXH026cYvxikZH4RCz4lIZxGjg4ncdiTRnHru0bUxD+rkNHjY9kNA2VLy4gMReh/xcaAoChMvbaOw18+lvVMEqwkOmJXzFCuWSyo428qJHBhwvb9/Cof4b444f7J6f/ymbjLPRy/+5Rtobjj3znF1Q+vJx6STvFE+xL2RqFqXSUtj7SnZYRkrkv7k53UvaWOQEsQPZIqjKiq4Mp3UjKnOKNobfq8FU1h2s31HPvWCds1rb26hvYn0+vVZM67/YkOBo+N2O4WXYf+/QNUrCjHiBp0PNtNoGWCwqYCajdXo7lUxs+PTyoSS3JuEx0hShYUM9EeSkZAJuYFUDS3kLwyD8e/fy75/URQg8OjUtT8+saMy9Hw0WEMWcU2OTbDBEVRGT2RKDA/+ZzJ/5UvK0V1abT/oRORYEwKKEKh7jppOLvyp6vZedtudIunmnGTplsbqV5XxemfnM05rlB3mC0/vJLWl7sYOzueYKsoKlx5z+pkZFXzR5vJn+pn9NQoJQuKqbu2FkVRGDggoS+kYyZz/EOHh/FUePBOL2T87GiaRV6hZE4J7hI3dW+pY/xCIGsvq05ZA2jhF+cTaAkyenpUGuoNQcnCYuZ9Zi6qpqI5VOKYGX1reQ7qbqgjbGU0TiYjahLpDzPrgzMZem2Ii79vSUYFO30Orvzx6uRdaEQNOp7rIXApiL+pgClXV6G5NSIDUVSHQlbrAkLdIbpe6iEyFM0w2pu6INwfoWdHH7M+OJNj/3o865E7vA6K5xRZjqtsnqxPGAQuBW3fA0E8aBDuDknoS4O0dZEBGKHuiKXIqxgZd6GC4lSIjcSZcn0d53/fnjz7QoAeIxlZeTnqfKmbYHuE5EYChBAE2yJ0vdQt9Q0bEkLul3jItPaSHFPCAShCJuMXAjawnHLewyfGWHTHAk7/5+lJ8wLNqVF9VTXdL/fZrpsZl46YyjUV9O3OhoKsWF1B8ZwiW4gozaMx9S1yXQqmF7Dp0U2yIK4go6Ce1Btkdlh63w6vg+hglKo1lfTs6MM0ZJaSoggUDSpXlxMdjFqwNinelnCaBjsmcJe4KJhZyMix4fTHjbehAE+5x3rmShIzObVustD0/M/OZfz8OMPHRmS9D1NQ1FzEwi8sIDocpfWx9iyYJyNqcOae89ReXYXmUpOFLBNtqy6V4WOjOAtcPPfW7YQHIsk2+vYMsOAzzcx6v4TXMGImnS/0MH4+QMF0H3XXVMszNhhBdaq2EFOh7hDuEjcr717Ovs8eSDrQhSFYdtcS8iolzOKK76xg6V1L6d3Ri3eql6I3EIkOkF+Vn5bZmFgvgUDBWfTGHLRCCAYODtO3ZwB3kYup19fisWrgxMbsjYJ6SJd7/DK2s6r1VRz/7sms/2sujZqN1RTPKaLp1kbO/uJ8Uo50+hysveeKNwSV4vA6WHn3SuLBOPGxeMqQ+L+cErA8WYZ5EwqmynpUk+E9FA0a39UgMyfsHLxxQbg3LOGOhCwsn/ZtVKdKuD9C4azCv/R0khSf0Hn+5h1MdIdTZ2zfIPM+Povmv2/i2L+fzJYVwwYn7j5Fw99MRVEUYmMx2p7qIjIQpWxpCVVXlL+h7Idcfc/92EzmfEhmbZtxk84Xexk7O46v3kvxe2e+4XnZkWI5Sc/99pIMTk1bciNi0r29l2DHhIQMFFi8UkFBoCiWDn9hPGe/pm5StqiUyrUV9O3KvA98073Mum0mekjn6HfOIMKJTF65r6ZcW4vqUln4xQVse8eOySNn3ufmUTDNh7PAmV0E3i0dmefvuwRCtWTU9GApmOgOW/UNs+8SkNCX9pCBUndQXP/7z/H/H/SmUf6vgIQQxCay8RUVBaLjBqULSzB1MxktjaUEO/I1KtdUUL66DFOo6HpKYDFNKJlbjLvYTTycEoqtlgEwrNTC2GiMQE8UU1dkZJ1bZfRCSMKh+FS2f3APPS+nGNKZH13k4m/aeNuhraiqyqGvHefSQ+0YMQPVoXL8u6dZcdcipr21jvIVZXQ83ZkFv6G5NQpnF6J5HURG9aRSnxC8a1aVMnZuPE0ASI3fjJgSMxZofOd06rZOoX/fAJpbo+KK8mT0/LG7TxKPyO+mt3/4mydpuLke9Q0KF24bwcvpta8DYOoio/iP6pAR9ukUG4vbGvQBxi8FCPdH6H1lENNQkoKTEICu0PZEJ06vEyFUdF1kzEtRpPFbURVW/Osy5nx0NiPHR8mr8lC6pDTZ1vK7lrLjvTsx4iZmxETL03AXu5n3yTkAlMwr5i07r6Nvbz/6hE7FyvIsw7ARNRm7EER1q5QtdiXXcvbfz6J7Wy+hrgmMiInilMVMVn9nBYqisPxfl7L9PWl952u4i9zM+/RcBg4MykghG8FbnzDoejG78jtI42/fnoGkUX703DgdL/RSNMNH3TXSABofj+dMNR2/EGD8fADVpRGPmhlXn2LC8HFpZLct4GlKbNaiuUVse88rjJ0bRw8ZaHkaR751kk33XknxnJQQ5shz4Kj909h63Vvq6Nnel2VEVp0K1euruPD7Ntt1kYp3GP9l6kKkk6vIlVXMduTkqG2hV0zB2LnxpFE+MhRl+OQYeZUeiq3ovfiEnsRmTAhECpJ3BVqCRIainPrxuQzcSiNiMtEVouWxDpre3XDZ8abwUzN5hBGTBpuDXz6S8cxEXKDrOof/9SQz3lkvi+RZfacXAUwIgKMXJmQUX9xEURRMFALtISpXQ82matofa08aJBPf1dwaeRV5xAKJKOF0jUowfmmCumtrOf0je+NYqYWNXH/TVGo2VdO3px/VoVJ5RUUyskEPpxSK9L5Vt0Z0JEZelYewjdOvZGEx5SvK7I3LSCEtp/CrKUSGolLwzWFYHz46SrArggIZSqyiwNCpcab9zTTbtgWg+TRGTo7ati2QRhqHx0mMWNa8FadKuCfC+MUgL75zd9LI2rd/iHO/ucR1z2zEP6cInu9l8j0ohECoKr6pfkaOZRvlTRN8DQXM/VQzz2x6XvZN6rjNeE8jqkNLbu7JYwOY6J6wdaKAgoiTjBi1o8hg1FKist9X3SrBVnmOwOaMtQYJD0Uxdbv7X9CzeyjNOZz9fqB9gpXfWcaJH56zjDiyHdOE2R+ejbBwcBW7eQsJ59X0gRmc/+WFjHE7/U4W3bGA5296Oee84xOGrH2QGFGGfACXHm7DO8XHC7fsJD4RR58wcHg1PN85xeaH1mEmZaHseekRk9JFJXS+2JuhtMi5CEoXljJ2LmBNiIx2hCF/5lXn2RZcTdT3uRx1v9yXYZBPtC8M6NnZh9PnID6uZzzPxBo48hy89s2T6HEFUNPWXOHov59i071X4p/h59pt13DpgTbC/WGm3TQV/3R5B/imFTB4cDjboSfk2PWISaAjih7PlJnGWkJUrJKF8J7/m53Eg4k1b+fYd8+w5ZF1RIbSjRiZHZiGYGD/EIFLExh6plwzfGqcoWMjNL6zgc6nOxm7MI4RMlCdKopDYcW3l6E6VFSHyoZ71zFycpRAawB/o5+i2am7dfm3lrHvMwcQhsCMS9mieE4RDW+rtyAuNPRQtvKbkI0WfmEBTe+bwdBrw7hL3ZQvL0vKn6E+a94Ba975Gkf/zcXmR9ZRONs/yRCZWoKK1eWMnw/Yyh56WGfs3DhN753OyR+cQQ/GM3hL80dnW8EmueRUJSdUEUgH7Nj5AHpM8jnVMqyYJiiGwtj5cUZOjCU/n04Oj0awNcjRb52y4HHS1gw48m8n2fzg5WEHWh/rIHMHJ/oRtD7WmdRpIBWlmvhkZDCSVlwz/bsWnrghbNqWnzFiJv4ZflxlHkKdmYFOzhI3hU3+pMNqMml5GhOdIZZ8ZTHb3vGyzByzso0d+Q6WfnURqlNl5b8vZ88n98m9FjNx5Gv4ZxbS8I5pGe15bKBqqq6sZOzsOEbUzJi3qZsUzS5k9kdm0/FSvxXJL535ioA5H2smvzYfPZpai/R10bxOho+OMHI6YJ2x1NqOX5xg4OAwipZ7PykOWTB9/X+tZfTMGOMXxyloKKB4jjRej54bR3Nly+fCgOETI/imetP4borMqMyQDLROZBjkQRoEj33nNNNvmYoeMXjhb3YSHYmhhyQ/P/Ktk2x5ZB2FM/zZmclIh13lGpmxUrOhmutf3sr5e1sQpmDGexrwTNLdjIiJ6nFixKTe/UYM0+MtAZs1k88m1J2Ss8y4ycDhETAFZUtK0FwpyJ/dH9tP7ysDGBEDza1y5N9Pse6nK6m6opziOUUyu2MSFUwvSPIfwzA4/bNLjF8MMOvWBkrny+jbgmk+Zv3dTM794jxGzAAhZdCGd0yjeE4RpiEYPhPEEBpm1EB1gj5mEuqP4rcvyWJLTp8Tpy9X7bv/fVQyv4Sh14ay/l8wzYeWp7Hquyt45aN7MOMmQhdoHo2C6T5mvKdxkl0iRY58jbJlpTgLnAwdHc52XsVNiuf+eQ7916NLD7UR6glnnbHj3z9D49/WE2izrzESHY5Jnf7sONtufRVhCgnrlq9RPK+IDb9anUQdMHWTwcMjmLqgfElx8v+XHm4j1JN9vk/84Cwz3jkNYcLzt+wk1BtCjwgcboVj3z7F1Q+uxVt7+YLJ+dX5Vm2HTBICnAVORo6P2NpUNJfK+IUA/qYCBg6n5PuEHc1T4qZ6Q1XOfhOF3Nfes4ZgW5D9XzyEGTNZ9KUFlFmwQBcfarPu/0ye3Pl8D9GRGCe+d1ZGzguRISOf+P456q+vY+W3l7P7Q69m3CXeOi9N75vBpUfagViyzWTrCiiqCoqALPle3hr5NXlJu9tk3QAgMhAlv/LPqwv310hvGuX/CigyGCU8ErOi2TKpd/cA3jovVeuqaH22L0Pbd+bJyOkLv20lNp6tuPfvGyHYFWLgQPblA1JACfWG2f2pg0RHE0qDghEWjJwLcPyHZ2h8x7QMg3yC4kGdA/98lOk3T+XSw+1J72vCyLX/i0eoWV/JvH9opmd7L3pYJxFKpOVpLLpjPppLw+H3wGgoQ+hXFHBXeSmY7rP1SKsuNUMZcxW5qFon8bjT4Ww6nu1JzindSBIP6IR6wvisYjWmIdBDOk6f4w0XqJFeyNR4IRUhGO7LvjzSyeV3ojqkcDvZCeOb6mXw0LAsPhLLfN8IG3Rt68Plt9JfSTcagKZCuDcVUemt8+Iu8aB51Ix5Fc0qZOtzW2h7vJ1AS5DSRSXUXTclI51JdalUr7O/rNqe6WLvPx1JYts68jSu+vlKSucX4fQ5ufrRDXQ9383A/kG8U/KZdnN9UjkpnJm7b980n+36qy6VouZC+vYO5jBuyWdqmibPvW0XwydSl6+Wp3HtH9dRMNVrK9SDFDIKGnwYMRN90hnUHApFswvxlLnR8rQsw7yiSkHu7C8vMnpmzDJaymdlAK988gDXP7/pzyp8NGVzDWeaCiQMhhWprLpVGq6to3BWIf7GAkJd2Vk2pm6SV5WtFP4p5G/y289bUy14CcHhb53m7G8uoTlVTENQ2Ohjwy9W4Sp2oXlUImNmhs9AAfy1eQwdGZFK3qRiUkbYoHtbb4ZRPjIsoxFd/pTToG9PjqKKQjByeoxguw1EhZBp/4u/MBdQEaaZFJSEANWhUDy7iOETo5z7r0tJxVkgUAzBoa8dp3ZjFXM/Npv2P3Ykn0dC4pnz8dmXNZQIU56BonlFMio2jYcoGiz5yqLkp50FTqrWWnwtDYarsMnPROdEsl+R+GmCtyafRf+8gD2f3I8wUwZkVVNYdMd8VJeDE3efTvZpLRcgsa4L0553+tg0j4a/wYer2EV0IIKdYu+dlo8RJy26MUXqqE5Rc2HSiDu5b+/UAjSnijg5ln2+heRlQggZXalkzlsxFfJr8nj8qucz7hEAIy7Y/nev0vzBJlveoSjSEDFyagzDkH+rqhxUAit/4MAwqtuBiYapG6gWdIhpQvuzvSz8wjy0fKeEY0ufl4D82nyMiJ3xKDX3wpl+Rk7YQVQpFDUXMtFpD7ViRk28U72gSPz5yWfM7VRo+0MHCXzpyW337xvEkZc7W0cIhZbHOi2jfqJVSad+eoHGd0/DVeQmNhLNeibeOlnofOE/zqfmqipO/McpoiMxpmytZc6HZ6O6VDyVHgKtQSbDLQjAO9XLwMHhZJ+ZEW0Cd6mHA18+QngwklQ89AmDiWiYw3edoHptBXZrDgqqS2O8PYTIMvpZBqzWCXp22xQ8BBSHytj5AMvvWsLuD+3JUEA1j8aybyzOuZ4JkgbaHM6IoE758jI6XuhNi4aV5HQqFEwvSMs0y5Rrhg5Lw06wY4Jt799LuF/CLp36eQsLP9tM8+2NMmoakoEdiTkLwBSClz7+qoV1ntn2wX85SuPbp3LgzqNEBiPJjDF9wsCIhnntG8eZeWsDJ79nV5tB4K310rdv0DKGZrZtxk369w5SuqCYq+5dR/e2Hvpe6SevwsO0m+uT2M4JKp5bZGvcqNlQzZYnN9HyYBuRwTA1G6upvqpawvKtLqdoThEjJ0aTsqrm0ShdWELZ0lSGXX51PvnXZxsIDv7LMRkhmZh3yMCIRXjt6ydY/Z0lmIqSwV8S83OX5eEpllmSkw3zjjyNggYfbU92EQ8LjLjkPfIuUjj104s0va8xp8wjkPezHQkhi4Y78h3JfZ6Ijk7cdw6vg8JZfgm3kObwl9GHJvlT8hk4MpIVTWqYMHg424g4mSY6cxfIDHaGyavKJ9ARztrnDtWkcnX5ZdtWlOyzm5i34lDpfaWf8daI9bkU/wq0RejZ3U/RrEJGT2VjxwtD4K3zkl+Vx9bnt9D2xw7GTo1S2FxI/VunJg2TVWsruebJq2l9rI3IQITKNZVUb6hKZexehppubeT0ry4SN9Ic6qrCzHc34CxwcvrnF6wHnro3hAInf3qBOX8/I6kbTKZ40KBv36D1XuYZ08MG/XsHqVxVRtsfO7O+q2hK0vgOsn5Uuo4F4KvLz+l8Kprpp6DBi+ax2ef50qB57rcttgE3qlNh5OQY5+9rJdQXScrp+oSEGDz4lWOs+8lK5v7DbE7+IJV5qTgUHD4Hsz4gIcv69g2y8yMHkvfVqZ9fYu0Plll3AZz6+QWO3X1G1sUxBflVeWz89eqkHghSZg4PRMgr9ySfZUKmt5t4oq9E38nAGQWu/P4yatZV0PZEpzTIW+NOtPfKJw7wtr1bWXTHAna8f7fMdrVse5pbY8mXFwLQtaOP7R/Yl3JIP9KJb4qHm3ZuAWDux5up2VBF+5OdCN2k7roplC6WPK39SatvK5jCiAKY7P7EAW7euzWZFSRMQXxCx+l1/K/AhP9zadEX57P91l1Za77YWvOKVeVsfWYzLY+0Ee4LU7m6gppN1RKudUExFSvK6N83mLxLVI+Kv8lP9boqypaUcvG+S0SHY0lDsZan0XRr42Wznv9UMqJSRnek6e1dL/Xa7lfVoTB0bBRvbb6VXZVJzkInqkth9ycOZJxfPWQwfGyUC79vZdb7Gxk4NMyOD+2XgUrWZ9b8x1JqN1TS/VKvLSSo5lQZOjpC6xOdjLeGSDBdPSoI9kZ59XOvsfn3V152rv6mQgYPDdnesd6GAgpnFTJwcAgRT9WtSkTCFzT4mOjLNmyDIDpu4PK5mHJtLZ3PdGX1u/ybKXnOV+9j433rsz7T8nC7bc03My4YODgo4eesOz19bMG2CfSwlPe2PruZlodbmegMUXllBVM216I6Vfwz/ATbQhnzTdzfnkoPRtgkGg4n/5/+OVehG8WpEo+ILN1AU0UyU+dN+tPoTUz5vwIyY6Zt4RCQjMuMm/TsHSETk1YhMmoQaJvg7H9dyhKcQR7O0/ecx1Vo7+EWpkCYgtHTgay+hSm48Pt2jv67HQappI6nu2l9osuWESsOle6d/fjqfWx+fCPTbpqKr95L5RXlXPmT1dTfOJXYWEymOplW9EviZULPzn6K5xRRNLvQFuNw+junATByZpxnbtrJAwue4YH5T7P9Q/uTkYPmZYo9BTsnEKbg6HfP8OCip3lo6bM8sup5Wv6QLbDaUV6FB6FmYk4LAbgcr1ukUnWqzPxAI4ZQiBupl6kozP9UM64Sl61BABXyKtwSSkCucsbLMEgWvWt/rpvH1rzAg0ue4YGFz/DaXSczoljcxW5m3tbE0q8tZtrN9W8YXyzQGmTP5w6jhwziQR19QicyGOWlW/ckIVQ0l0zjXfq1xcz++1lZ0UK5+i6aVUjx/KLs5+1UaXxXA2VLS7OiUBORRqWLizlw5/EMgzxIoeK5v9lFdCSWxF5LJyEgHjEpaCxAn4Q3DwqGDiVLSqm/qQ7NrWZwZNWpkF+bT/nKMloea7cVhkI9ESa6Lu+keT1SnSobf7+euR+bjX9GAUXNhSy6YwGbf7YWgLkfn5VdRNajMf0d9X92dEv9jXWy7bR5Kw6F/Oo8KlaV0fZEF+d+J5WteFDHCBuMnBln1z8cRNUUPFMKLDiGNN6CQmFzEe4Sl63TTVFT6d6dL/dy/7yneHjZczy46FkeWvYsI2fkM3YX22PPmxaMS640W2eBA39jAWVLSiwomLQi0i6NGe+dTttTXehRQ2I/W3wpAfXava2PgcOjGEJidSdeulBpf6nfYt25eQ/Aul+twTPVT0zXiOkqhuZk+beXy8LWwNilIM/esosHFjzD/fOfZtttewn1y6isOR+dJWFmEuMWCprHwbS3TcXld9HxYj8GWoqvmqDjoHvnIOH+MHGDTMxLIG6AHoKpb5mC6lQz+FLcUHCXuKlcU8HCz83FLiqjoMGHv7EwrWZh5j0mkM5noWbiewthFR7SSWIrZ51vwF3mQfU4kvNN/2mYAjSV+Lhh23egNWwpyzkM44rEupWbXGIcp8O9RMditDzSjh4V6IZqYYyrGKZKZDhK4NIE8z7VLHHMLecIAlSXxqIvzMNT4cmaV5IcCgv+cQ7Y8DVFU2j+8CziEdOWb6EqRAYixGNk3QcCiIWEdIbbkBDSAHG5LJqShcW0PGLP12JjMQIXgnjrvbbPpMBK0Y5P6Jx/sJOeQwGGzke49EQvg1ZUYCxoWMpKanLC2pDR4dhl4b1qN1bRu3sgSxkSuqDz+R4KZ/pzFrAvnltsRbnbGwxDXWE8Jfa8RcRNXEUuKldXsOHeddRsqsZX72XK1ho2Pbie0oWvX9CwbEUOyC8FypaVUr6qPA2bP/VSvS7pHM5xVzt8DoQQbLttL4H2ieQdbURNjn73DL17Bgn1RjDNY/fQnAAAIABJREFUzPMneYRCuDtKi41iCoApZYqeHf0ZEG5grfkLPZQtLpV4vDYTW/IvC3FbTtrJJCHw5HqrDpUpW2pZ+tXFMjK4+vIRdOmkh3WOff8cx356ibMPdnPgm6fpt/DYFVVh3a/WMPeTzfhn+imc6WfeZ+a8IRgHIQTd2/tyznv4+CioWta6GoZCxzPd1G6utorUp62IJjNJajZW0/JoO3rYxDAlfrpuqPL3cJzR0+OyvITN+ReKQmQgKh0tNrzF0AW6ZbiZfI8JITOuZn+wCVPJ5PW6qVC1vpL8yjyrthFM5qmm7dnJJH9Tbt7in+Gj/m31adHwaW2rmoQ7u0yGQMF0X3KtJ5OnMo+zv5Y6kSyYrVovuU7nfn2R0iUl2WsK4FTJr5LRg06vkxnvms7Sry9hxrsbs2Sp/Jp85nysmSVfWSyhH9+AQR5g+NQY8ShpTkGZfdSxbQAhBF0v9mZD6xnQ/XKvrNuSw2iaX+nBXey25ZuaW8Vd4qL5o9mFmlGgekNlct65yFPmQXFrWZKNEFC8qJSajdWyZlW63KWCw+dkypYa26wBkPKau8RF14s9WYEzwpCZRUIIZt0+k1V3L6dsWSm+ei+N72xgyx824in3EB2L8fLt+4iNyYxYfUInHtDZ8aH9hAcj9L46wNHvnEGPmMSDBnrIZPzSBNvetyd5/+z8xEHum/Ukj615kftmPsnLf7cX0zQpqPfmXpNyD7HxONv/TvYdD+ryFdDZ+ZEDhAcjtDzabptlaxqCoWMjlC4qYeP965mypQZfvZeajdVc9bu1VFiOqe2370saIxOvYGeEnR8/kGyreG4xCz8/n0X/vDBpkAe49GiHbd/CEBIOFDh3bwsPL3+Oh5Y+y4NLnuHkPRd4I3Wy/jdTyYJiNj14FVOuqcVX76V6QxVX/XZtMusCIK8yjzkfnc3Sry5mytbapANDURSu+M9VLPjHuRTO9uOfUcDcjzdz1W/WomiyIPrmxzcy49bp+Kb5KF1UwvJvLmHep+f8RcYe6ovw0vv2cP/8p3lg/tM8947djLdIQ3sunUcPGbiKnMz/dHO2rpinMeejswi2SJiXyWREDC493E48qLPttr0ykyWxz4M6uz5+kFBPWMq5ds5jU+AudtHyeBdp8dokIjn69w+n1cKyp7KlJRKYbpK9xRRQubKCmbdOB0UhpqfdY0KlZEkJBdN8VkbL5MEp6CGDWCDG6v9YwdxPNuMskHXvChp9bHxwXbKu2+UoOhqzl+2RmYXOAieGSdYLTer2RszkxE8ucPSHFzn3cDeH7jpD9y6ZzVx3Xa3Uz9LmFdflPTZlS60MJjTT7ndTyh2GCYWz/BQvLLHVDVyVeW/4vnqTMunNVfsroLQYlUnvyL97Xh0gMhrLMACZpoxmOf2ri7aMNEET3WFm3T4jSxBTNKheV4GqpbAaJ/eth43LKywKORVfSHnujJggEoRQUCEUgHiiuJsijZ52TCMRkbHuF6upu966EFUoXVLCpvvXkVfuITIU5fm/3c3QsVGZ+qMLul7u44V3vyqFisuMze13ceTuM5z6+UX0CQOhCyIDUfZ+8Sid2/pyf9Gi6W+vR3GoxA2NaFy+dENFc6lUWZEZ3Tv6eWTNC/yu8Ql+P+9pjnw3BVnRuXMQw6boaO+BYcqXleIsyC7+qzlVZryrgTEbT3eChk6M0bt3kN2ffI2JnghmXKCHDE7/+hIHv57C9+15ZYDn/vYVHrniBbZ/+AAjZ3LjqqXTxYc70iInUyQMQdf211+316O196xm6g1T5H5VoHRRMRvvW0t+VR4z3t0ATilQiDSFTPM5qbmqiotWMZh0UhSIjemMXQwksTcnX+qgMHBwKCl0ZTYAHc/14PK72PTgepnSrpLE4N/wu7XyjOQ6J0LkfCvjY6bg3P1tPLF1O49e+SIHvnoi6VwCWSS3+SOzueapq9n8+EYa39mAqsnxli4qYc2PVuKb5gVFRsDN/EAji+5Y8Podvw65Cpxc/dB6KlakzfvqajbcuxZFVTj9q0tZQr/QBYOHR5joDjF6JmDbbue2fkoXFeMschI3LKHDeqGpNL2ngWBniO2378+AHIgOx3j6rTvRYyazb5+RZeRRNIXyZSV4q/OZduMU6UhJIy1PS+KXrvnRSupvrEvutZIFRWy4by3emnzMmIGZ7DZlMIhHBEIIzvzyIvGwmSyAF9M1jLjC0NFRC8bB3pKScJrt+PsDBDrCyfb1iMmefzpKsGOC2Hic527ZxeDhEYQhELqgZ/cAz79jN6YhKFlQzJU/WUXBdF/yeTe9bzpL7lyAqZu0PtGFHiWjOJ8eMTn3uxbGL00AGoapETfkSzc0QCVsYWXG4kqGwUAIhWhUTsc7zYehqJlGPaBgbrHE5LaNYEwUepXGP8NQiFk8M65rJCBEAm0TScdHusPAEBYk1Yt90oA/6fzqMejLKIaY2XeivfSfGY9FVbMi7NPJNCAeMSxjVnohSXm3KSo03TqdhndMQ8dBNK5haE5mf3gWU66ppfKKMrleZPMed4kbze1AuJ1Z76mFHhRVnv2swmEAjvRiZdnzNnUJs5Jz3ppK0Zwi7HAnhbAiJ3OzNYQQ9L02im5ALK4SjavEdBm132HVB9jxkQO0PtEls74MwfjFIC+9fy/jl4ISxk0k9lhiXtJpExmK0fz3TXY9o+U7Lls/BKBotj+ZepxOqlNhzkeasqJAM77b7GfWB2ZkFchTHApFcwqTkZV6VBAOCEIBhXBA/v1GqOGmOlvDuiNPY+q1NXS80Jcl65km6BGDYHuIxr+tB6cs2BvXFXRDQXGqzHxPAyOnxwn3RbKcFUbY4OxvLlHcXIgQ0lCZLrcIIbMyLifv5QhOTnsTtj6zCf/MlDFWdass+8YiqtZUUH99ra1BUVGUy9TZeOO06xOHaPljaq8FWibY9oF9jJ6Xd5Dm0pj1gSaueWITW57YxMz3ZcvFfzIppDCsLYeeYaYVPLaynDY9tJ7qdZWyrocmYec2PbgOzaUSD9vzlnhIgAKmomFMOv+GAKFq8nm4NFve4sh3QMLpKchoO1GfavRcgHgSDiVlIO49ZGXuZOG2W39b+8swDF547x5+O/0JftvwBPcveIaOl3oBWPjZ3EaohZ+dQ8cLEj4qfY8LoWDEYexCIHmFSsO6kjSqo0jHpzHJuZuYl+pySH0ggzdaBn/Ladr+XC+GMekuMeVdMnbeXmb5S9GJ/zxvGzA0finI2PmAbaBCYvAF03wUzPBhkpKXdENBdavM+kAjdVtr7M+YqjD1ulp5lxmTnXIKsTS0u8EjI7z0/r08svoFXrx1LwOvyUKk4y1B4mGRVVjQMBQ6XuhFdapsenA91etT+7xqbSVXP7QOza1Re3VVtkHfGlthkz/nvNMNxDUbq9lw7zqufX4Li7+8MIkX3/Zkd86aES2PdXLiR+dto/wDbROMnhlnz+cP0/5Ud0YsRde2fnZ97JAMXps0DjkuMAxof7Yb0xRZ/FqYJm1PdOfmqYIk3zRignAA6y4Rybvk0mMdMuNxUhOKpZe8Hl1W91Dg4iPtHPqmzGITuiA+rnPse2c58+tLr9v2G6FQf4QXP7mfR9e8yJPX7+DiIx3/Ywz+hTP9rP6PFVz7/Bau/PFqShbYFeS0J9WpMuM9jWz5wyaueepqZn9wZsad7i5xs/Cf5nPtc5vZ+MB66q6b8mdlSyfI1E2eu2UXva8OIHSBMAQDh4Z57pbdxIN6SlYwUvzBSBQKNQVTrqll2dcXkVcpDeiuYhcLPjuHplun577bAVToeKEHsk6wbLflD53MfE9DRkYvSPtQXoWH4nlFVm0ue/lct4zyr/3rKX4/52l+1/gEj61/id69Mht6ypZqHF4XgswC9JrbQePbp2IaoBuZgQxCYN1t1jgtXpVxlyQGCcz56GxuOngDt5y8ia1Pb35DBnlIZYVmrIl1TxVML6BsRVmGPpXQqQpnFqI6VPZ/6SgX7m/DiEiopImuMLs+fpCB14ap2ViFYaoZNjIB6KZKw9vqLAO8KvU5XepzhpD/EyaMt0yuVSXbiQzlhlB+ky5Pb8LX/BWQ5lLJxC9NkepWGT4+mhalkzhgMk1n8LXhnF46AMWh4vQ7iUfMjCLPZhxwOVCcasJhmd23U2PxF+fQ+bz95V9/wxSm3VhHi403XhiC6vWVjF0M8PSNuyQcgikjh3d87BDL75zL9Jvr0phNxqjBIZm70+dk5beWsuKuJQhTZHj3Lj7cnsVYhC6Y6A7Rf2CYihVl9O0ZlBcVsriHpsqoEf+MAs7+OtugaEQMjv3HGaZsrARkVMv5BzqIBeLUb61myqZKVE0hr9KD6nMjJlJc30TBP7sYzaXStb2fbbftS76nTxgc//45gu1BVnx9IYOH7NN/T91zkUWfaaZoXgmh3jQhUQFcDry1+ckU8GxSiI3GOfytU+gRM2NtRVRw7r42Fv/THLq29fHq548m5x7q7aVn5wDXPLyGkjmXL0ITHY3ZwsAIU1hp738eOb0OVty1hOXfXIwwMp+3b0o+a36wnL2fOyQLm5gCd5GbtT9diebWMHWRU64I9UVwFjiJB/Q0oVB+unhOIbGxuH1qrpDfBQlTs+G3V2IawsJ0S/U2/ZapnPj+mcyoUkVe2K+Hlwew70vHaHm8K4l1eu7eVtqf7eGG567C5X/9aPeqKyu47vnNmHETxaH8RQTABPmmernqN/bzjllRAulOElWV6ZLh/kjOYqqxsTiKoiBUB0yCO4lFwFXo4tA37YtECl1w+mcXmHZDLUY80+AoDEHZChlhtOTOBUSGovS9MoBqFSCbdlMds26TRnlHvoMZ723EdDiIjsSp31pFoYUJrV6m4KnD65BR35MMokIIqZxFTcpXljGwbzBjrymqQsPNdYyeDzB0fDQbtiducubXLRQ0eOVenDSvyFCMnl391F5VSeUV5Vz77NWYuikVYOt562FdCrgZjlZ5V0RGYhJn0JYU3MVuLj3WQTyYHV0d7ovQvaOP8/e1YsRBejxTc2t/pocl/zQnK5Ml2bqm4Cp2YepKJl9CSKORolhFZBXLmJJ2RoWMKjNjJqZQMPRUQWZVldAsseEo9jxRtuGtyZeG7knjEwLyyj2EhyMYpoQASyfDAMMQybElx5R4Py7h07pe7ufsvR3W2ijoEcGxH16g8opyxltDSeOTbmHtq4rkVdFRg5Y/dBCfMKxzkJp3ZChK18t9TH/7VI5cDFoZaan3PeUeChp8JBQQU5AMRFITUXWahmHKv3VDrr1qFeF1OTRUl3xfIVU8UFVFskZIxepyhk9kQwoJU+Ctz0cYSlomTMqwTkQQaA0ycGAoa5+bMZPTv7xI8dwigm0hy76XyZPLlpYy/5PNDB4ZoW93qgaC5tHY8vA6VE2hZn0F3TsyI5hVh5IsPGqqWtZejEUFriIX026q4/TPLmTLPQpMvb4Wb3U+cz7SxIkfnLW8KeBvLGDtj1YA0LWjnx0fPpjMEgz1RejdO8TV/7WSiuWXV+Y8pW7W/Wwlr/zDweTaOPI0rvzRCpw+JxMZUGSpM6xH5B1bvrKcU79qRaSteTymULa8TPLVHNFy0eEY026s4/h/XrTOT+r7JgpT31JLpCPE2ftbs7+sQt3WGtqf6Kbr5d4MGUBxKNRdUw3I6O+tT27CNE2Jj+pJqTDuEjdr71nFq584kIyMS8674I1ldI21BNn/1ROMngtQ3Oxn5VfmUVDnJdgZoveVgSx4DDNmcvrnF1n9rUUIIejdMySzIRWFxpunULni9RVvRVGovbpKRjBPnvfWGornFaF5VPRJdUsd+RqNb58KQH5VHmvvWZ2EiUmvZ5R+ftJ5i2lIo4mQFngJHZuOo24IiucW4cx3EAkZiLQzpOVpTH97PaGB9JoRk/aFS+W1u+wyYRUi/VEGjtrDXqbT42u3EepJWXTjAZ3tf3eAq3+3iqrVZbiqPIS6IpYTQKbNe2s9eGvzGTkXsL1DAfoPDlG2tJTefcNp78u7omp5CbGxOI58B/qEkVZQMTW/4vlFdG7vnzRn2UbR3EJ6XxlEoFj8OPV9p0MlmqPw5l+KRs8HLPjJzJGpwNjFIIqmYsaN7OLZDglDWbasnIFjgYz3dFPD3+TH5Xdy1S9Xs+uj+5KyqOZSWfPD5biLXRy66ySmDsLIvGv69gwS7Aox0RHixffvQ7e+G+yJ0Ld/iA0/W4GrwIHqVIlFVOKWAV1R5P2bCAzLq/DQ9IEmlEIPCMH0m+rIsyLw+/YNJaGz0ikeMQl2hUBTEbHseaua+rry7MCh4Zzv9R8cYvScfdCRMKUT5tKjnRkObwXL8P18D03vnCqzkNVMHd0UEB6IEh2NoYcn70HJryPDUaa/fSqDrw1n1THQXCqlC4ro2z/ES+/fJ+8SAaHeCP0HR7jqJ8uSwVIJpxHWuBSFDMdr34EhLj3aiWkIpt9YS9UVZSiKwvS31zNwaDi7kKRTpXRhMbs/fThbBw4bnPjheWa/f/qfpUdEhqM8df0OYqNxTF0w0R1m/5ePM3p2nKV3zP1vt/vXTF3b+4mOxjOztoSEsml9sgsjaiZ5bbojEkUhNibl+vob66i/sQ4zbmYEohU0+PCUuZnoyIRL1PI0Gm+pl0EUNrq/GTOJjsQoXVTCki/P57VvHJdFog2BtyaPdT9f/br7SDFNtt2+j86X+pNHLNAW4vl37mHrw1dQsayUjb+5gu237yUekHYGza2x5gfLyKvM48BXj2dAsIE820PHRhm7GCC/No/x9sz6SYYJLp+Ky/fGzKwDr41w4eEOjLhJww011KwtR1EUZt/WyNCR4SxHq5anUbG8jAP/cty2vbFLE0RGorQ80ZVdfyBicPw/zzHrvQ02QbPy9+6d/QQ77KAt5fujZ8dz1ghL1N2xDUR8ky5Lb67YXwF5ytzklbiTF28yEgEZzZ4yPGcfzHjYRLGJlElG27lU9n3pOKYp0zcTnkLDVGn9YzcOryahWCb1DTDl6kp8dT6K5khYAsMA3YI+wKGw+M55lC8pYeZ7G9DcKqpTQfOoaG6VVd9ejKvAyZG7z6JbBvkEGWGD1+46TWQwgmpF+yVSbxJ9Tza2K6qSlW4zdj5oj/cnJF5X88dnEDcUDCtCyLTgYirWVhAbi+U0GCYY3dnftfL0za9w5rctXHq0k12feo2XPrAP0xC0PtlNPDCJ4QnoPzjM6LkAe+84att2y+PdjF8Yz+lIMWMmgY4QXS/3E4+nvN3xuEI8Irj4cDt1m6vtvwxMv6WO4dPjWc4OgYIZh4nuEAe+fjJTEBMSc/K1b53O2W6CatZV2Cr9ZsykanWOtPz/BilK9vMGCVvwtn3XsuGXV7Dp92u5YcdmiptTjoRc6+ryOVn/81UWR00pqJpbZd09K/HW5uXEnJ98aauakhWNNOt90yldWIwjX0PRFBz5Gi6/kyu/v+x15zrRHebio50ZQrsZF0RHY1x4MDv6/3KkOl9fgfnvkt28q66sSEWsWV58wwQUxYK2yG4nwZ+Gjo0QaLXHfd9/53ErqtueRs+Mc+Q7Z4lHyeBruq5y/IfnMaIGDo/Gup+u4rrnN7H2Jyt5684tLP/awuQczj/UwVM37uLsb1tp+UMXuz97hOffuxczbuYueOpQiI7EUfMSRvtMnmzGIL/Gw6p/W4Kn0oOWJzE6tXwVf1MBC/9xLsH2CVRH9jMSccHo+XHGLwbt0511MwMnf/RCgIuPdtK1YyAJTaW6VTCzxwUKpgEVK0pzGu2mv2MqXdv7bR20piHo2zM46Zmk+lGdKtHROIV2kAUKVK0us/iS3dhgrDWUvIcmR3UKpFGrcJY/maYpUBEoyb/rt9agOu3n5SpyUrGsFNWpZsKkCUBTmfGuepw+lxVBLPdSYj8JFPIrPEz05CqIqjByZow9nz+S5dQzoiZ7v3iMgYPDEh4oTVkyhbyXYiGd7p3pa55m4Dagd88gM/52GhUrS9HyNBSHLDjoLHBw5Q+XoypKBiSFIBEJK5t0FzoxTSUtOlLBMOXL6XdQtaYcoanoFvSGKazzJBSqriin/YXeLLlCCAmNE+mPpo05e/yBjpDEP06k7FqFYYUhGLsQpOnd05LQHOnP20Q6OeMTOuPdMQxNI65DTChEdY1Ap8wwmXn7DIQ1z8Q+MU2Y+b7pjF0IMHomIOFA9LS0X1Nl7z8fI9AeAjv4OVUl2BEmHtK58HgPutCIRiCqKwxdDDN4XEJnHfjKiUzYPiHlmoPfOGm7BydT5apytj61gab3NzLz9ia2Pr2RMqvIczRZJDpzXYUJ7hInh755KhtKxRC8dtcpShcUYcYFk0nzqEzZUk2gPYT0vUx6ZgpMdITY9L1VuG2wRld+azGqqrLsawvIr8qTUYGKdJL46vJZ8s/zMz6vqmqGQT4575Vl3LhnKxt+vZoN/3UFb919TXLer0ed2/t5fMPLdG8fINQdoeulfh5dt43evYMErb02WZYUhkhGPu+78zjbbt/P+Qc6OP9AOy++bx8H3uDzmnVbo8xaIrXXhCGY9f7pqJrC2h+vRMvXEE4VAwXFrVK9vpL6G6ZkroumZBjkgTSjdvY5Gr8YpLjZP+n/kornFcq+f7QCh9eBlu9AcahoeRo16yuZ9tYpdG8fyNE29OwYyMjGm0zDx8dxeO2hkpw+B8OnxzIM8um0+9Ov0fPKIIHOWJqRSEayj3fG6H11MG2fZo8tMhwjNBgn8xzI30NDcYrn+G15puZWmbK5CtWpTWo39VnN7WDK5io0t4phZenpiYhSU1Ay9/KBKX8uKY70KzbhnJY80ulzoFswkJODHfSISXQ8xrnfttrAdpmc+tlFAMqWlLDpgXWUXVFB2eoKNt6/lgoLMmvsfEDuY4EFtyR5rupSmegMsffLx5MG+QTpEZN9XzpGcbMfPWZaOqCCKVTJ14VCzVUyO/jA/z3Ji+/bx4UHO7jwYCfbbt/PvjuPW30HMS1ohdRLQXVrBDtCyX6z5h01c2cPWOT0O3LKmq5CV1YEbzo5CpyYukhms2HJsYmsCpndqMgsv7SxCyFrmLn8CbjR7PPr9DmYel0tNRurrPtbOswc+Rprf7wC1aFy6BuWPpY2fiNicOBrJ6i6ojTjPhek7vtElN3Bu07xwq37OHd/Oxce7GDbBw+w945jAEy9tobaq236/pHsO1f9s1zBV38Knf1NK7GAnmHI1cMGZ37Telm+8yblpmDbhG2Esx4yGG8J4vDm0Evi4JuaGRw22SCrKApr/3MFTr9T6rEOBS1fo3x5KTPeNY2qK8ps94SiKVSvk4FQje+o5237trLunlVsfngd1z6zMZlZ6Cp2ZdzPiWydhIyYbpCHZCwEr3zuCABtL/QRGjelPBaBaBQu/qEbIQSj5wM5C0EH20M4izy266Llu95Q5sbhu8/w3P/Zw7nft3HxoQ62f/ggr3zuCEIIaq+uov6GKahuFUWT/EL1qFImcKlpukMm6SGDYNtEzhpk45cmaPlDV06bxsVHOq3sDHu9x+l3SpuMTfP+6T6ZSfcm/cn0plH+r4RMVUU3Uhe+bkglVnFoOPKd5BIwnT4nFctKLKNzipElYDnqNlcTHpAXYMIwnZ6uPnJynCV3zLUU9UTfCqaqsvAzs4mMxBg4HUxiWumGQiwusS+7t0mBf9E/zeWaP1zFgs/OYfEX5nHDjs1M3VoLwMChETCzBS0jbmLETDSXFOwSTDox96KZufEoE1S6uCgrxVzOU6ag7/zo4UleRsmU25/rx1HoyJm6XDSrgOhoTBqvI0aqkFzIoP/AMO3P9dC3bygDViP5RBSFwSMjMoU8BwVtqognxw4MHxtFKAns5dQrPmHQ8+og8z81G6c/m6GWzCukckXZpKjOzLajo7GcEe1DRzKLDYZ6I4xdCmYIxIpLFvOcHG1qGEJmXfx/QIpDwVXixlXszjBAu4ucyfEkfiZ+L1tagq/eh6vGh6komCgYioJ/YQnuIhfBzjCKQ834TuL36GTniw1pbo2Nv1vD+p+tYsFnmln2tYXcuHtLMvL6cjR0YtT2YjYiJr2v5ihm+j+EFIc6SSGxDMCKKmOpJ5375E9kCnkuGjwyQtni3OmkFStLk3BJk/maETUZb00Zj701+VSsKMsobBMP6uz78jGZMphWvG/o6CgtT3ZTZjlYJpPmUilu9tsazUEaBSa6Inhr8rhh22aWfXUhTbdOZ/W3l3LtExtwFTgpmuW3LdSmulXKF5dQuqAIR76WnYGgKRTPlmneOz/1Gk9cv5N9/3KCHR87xMNrXmK8bYLocIzMsj4pErrEbDZzPBPVqREZzoGPKCAyEqdkfnaBRZBOVF9dPos+b+Gjp76Goios/OxsiblgS/IL/hk+4oZCTLfuARNiuryPCmf6KV1Ukvp88qeC4tJQ3RoLPz8n2Wf6z5V3LcTld7L483PThFhpDPA3+mi8ZSopbA7Fci6lCfCqitDT+82kQGuIyKB9dOXouQDlSxP4yDYRsZoqIxdzLI0ZF6hOlfU/X8WGX69mwaebWfqVBdy4+xpK5lr1N1Q1s82Eo8Sj4avPnwQPl3pfcWloHs3a/0rGyzQVVJdKoDUkHQhm6h4yrAK43WkR7HZU1FRAbMJI7TdSRv+SBX5Ut4ROSdQ4MIVV28BUUZ0qp3/VQqB1Aj0iZLqyrmCEDXZ/5jCmITj872clhmhcyiXSiQ1H/uMcHS/2JRVAQyhJA5RhSn47cHgEPWY5IMy0lwGDR0Y582ur77ApnQW6NLrv+vRh9IhOoM3eYThy+o3BwF14pINH1rzE8XsucezHF3ho1Qu0PtMNkIwEs6OeV4cItOTo+8w4Tq+DJXfMSRrNQRrOvbX5NL2znvZne2yLkglTQg45PA5u2rOF5d9YSPW6CqbfUseNr2xh+ttkxLfq0hD5TmJxMBWVWBzw2uNY5yJVUyhdVELpwuIsAzVIXjJ6IUh4kuFm1z8cshk47PjYIQpn+JJism8cAAAgAElEQVQwMIaRkiNNFEoXFTF0YpQLD6c5voU0EJ39XSsj514fruTwd85Z0Exyn+iGQsxQOHz3OUBmXRmqA8NQMVGJRRUcxfYYu1lTsE3rt94zAE2zlUsSaT1lS0q4cfcWln5pPgs+08ym363hyh8uR1EVC0ot26kGEB6I2abeJ6jqijKW3SmdLZN56rKvzOfSIx05vxsZjHHu/rY02SDtJeDcA22ortwGBW9tHuM5YBrHLwZx5DlYeud8tDwtqTcoLpW8qjxmvbeB4ma/rUPB4dUomu1nxrumEgmJZHaQ5E0KVVdV4shLydbxCZ3R84GcTvqRcwE6tvWhR15fRkwNIgHBmIIVSqyNr86Lb6rXuvdS+zimg3dKPuMXgrZnzYwLeq3C9/u+epxH122j9aleWp/u5bENL7PnS9JIW7ao2II3SMMgNiEeNihsLGD0fI41bwuBkoA9yrxLhAk4VEbOBTj721Z5xhIG9bDBhYc7GToxStniYstxntmGETUpbPRR0OBL3gNJ450A7xTv6xYfLZrpzw5Ks/RO/3QvtZsqbb+nOBRK5xVOqp2Q+mmiUNxciOJI/39q7NXryqU+lWN4saCOoiqs+d4yNt23hgWfaWbpl+dz4yvXUL5MZumkR8Onn8/xlgmKmwuTuvzksRVM8zJ2IcCZX7dkGPX1kMHFx7sYPDoq+/5uWt9fms+Nu69JZnPJTLtsyq/O+7OjaHtfHbQt7Ku51Dd8T75JmVTc7LcNPnF4NUrmFsqMSxtS3SqBtlRATzwk+VpskqxRPKeQG3dtYelXFrDg081s+OVqrvrFKlSniurWMM1s3V86rlK81pHnoGJ5KUUz/Rn6+apvLrAyT1NBGroBi/5xNt07+3NoLZL3BNonOPnTi1Jfs3Q9PWzS9lQPA4dGKF9SbMsXjZhJ0czcfC0yFLOtiZhOgY6Q7HvSGWt7uof+A8MoisKqby3h6t9fyczbZjD/U7O5afc1VF0hHRWFM+zPmLvEhX9GQTKgKv38KyqULSgi0Joa92T+FuqLUHdNlS3vUTSF8sUlLP7CXJy+lK0r4Zhb+X8XXnbOb1JuetMo/1dAkaEYwd7JaaZSYGt/sY+yxcU5oxurriijYlXZpGizRGS4fF9RlaSRI/mycMZ89V7O3teeFUGMotDyRA9dO/oxolJ4TRgrBApGTHD2d63JcRTOKKD572bQ9J4G8tIK+uRXeWz7Ng2TvDIPrrJ0D2aacNrw+kb56TfV4fJnFhbS3Crli4spnVdEZDhuGzUsBHRvG8Bd5rHFOPRNK6B3z6CtUKKHDFqf6sY3Jd8+MlORc75c4VTfFG9yHJPHBeApcxG3MfgL5OXncKms+d4ycDmSComjxMMV31ua+mAOUt1aTgE3r0IaLSd6wzx50ys8tHYbf7h2F/cvf5HOHf0AnP7FJXQ9LdrUcqgYOrQ+1Z27478Q9e4f5sHVL/H4NTt5ZP3LPH7tzqQBdsXXUxjq6WtbtaYMT5GL3Z89zFhLmGhUIRpTiEUVeveOcOT758iv9CSN8onvy8hJBX8OwXUyKYpCxcoy5nyoiYab6jKUu8tRfmWefcFTh3LZIlP/E6hre7/t/82YSWgwiurMXNPEz/yKPPuoaos85R4Wf34Ois0xcng1mt5djxk17fmaKeGiLkd9B+xrCOghg9Ynuph6XY0VdZJGiuSX5ctKktEfk0kIeX7NuMmeO0+w6/PHOXVvJy9/4ihHvnceIQS+KfnUbanOwMNXVHB4NGa9t4H662rQ8h3EzfQCfCreqfmULy/h/IPttD3bixExk8UcQ/0RXv7QQZx+F9hghINkC/0HhlHdjmRkdSo6Gtqe7Uli8E8WvEHuR78lYE5+35HvxOl1cPbeNmJW1KFpCd7ROJx/pJOSuUU577GKZSUMn08YGy1cZlMF5P4Zuxig59VB7CRQRVUYuxikb/8IBpmCq6Eo9B2QUGGzb5vOxl+vZup1NVSuKmXJF+ey9dG1OPIcRMfithEzQsBEbySrNkE6Fc0syGlUFwIGjuVSQGX2QvWaspwFrCtXSeVZURTKl5Yy50NNTL95Kk5rbwpdWGm7k9dFYjN3bc/l1FMIdkbofKnPduyKQ0me7YTRKL0gMsjCojmtEYqCp8ydhPOZbMwQpsqlxzqtu0q1cDHl88aEtqe7aX2q2xZSzIiZDJ8co/fgsMxqEBKGwhAy4rXz5T78jV5sWKocmqbisIx5uplZ5NLQwenTaHnSvm8zbjJ6Pphc/8nkLrl8kXeAYGeIPXccw4ia6BMG+oSBETHZ9anDRIaiOC8DV1Y8yyfrzdj1bRVLnfl/Gtj0m9XUX19L5apSFv1jM9c+vg6n10FkOJpTPEgEb6iqyox3TuOqX65m5b8uIb8yBXm17ysnGDsXRI8ImaUUEQyfHOegLQzKn04XHuvkvsUv8McbdvHAypd4/v37iY7FMXWT2Li94TMyFMNT5pa1ISbJqboOhU1+Ol/uTxaiTydhyDpElyMhhMS2Tcu4FEIBU6FnlyzO+eJt+4mOSAg8My4w44ILD3Vc1vGcoNIcjk5FU/A3ehk8Nvr/2HvrKEmq8///VVWt4+6uq7Pu7uwiiycQISGB+CdChBCXb5x8YkAgwQIEJ/iy7MKysMK6u8zsuPu0lvz+uN093dPVMxv75HdO9jmnz85OT/etunXvcx99vyP0dbBytuPAcBGFLdFK+Y3FTLi9kvQpw8nstInJgXUe+dINSJ+czJwfm/POJFcnklyWSPPOLrx+caYGAzBePzTt6CRtckrM6mTFLtMXIxAC0Ht6kMxpqZgaq5JE5vR07CnmZMvBdZ41Jx2/oYTIcT1DkD4rA2uilbyl2cTnxSHbhvWTbBUwZvnLstn+1cNhQw/rpdqXW9A0DUM32P3j4/x12pu8ctU2/jr1TXb94FjITuuvH+KJKRv528qtbPrYHv5S9QY7vm0OUzBS3O2+ECnwSPLd5vfaiStIgAB28jA/gYwzPx5nliMmKWJiYRxdx/s48VBd1HunHrtAx6EekquSAjAo4X6mhCHJ2NPN5zsoXcf6zCEegXPPNtC0pc20+1jzajS+3c74T5RHJAtBQDyUXVuIM9PB9G9ORHGIMyWYFFccFqZ/c/yo1wUi+K3p4FOl0MsfqMr3u3QmfqpSkC2HiWyXKb9OjB2LCwfE3qr+aGmIDygoljiFmv+pJi7HYV7A4VSIDyOqTp+cyoTbKym/sRhbGFyXLdWKqkXbsZZ4BVebN0ZwXDy3xnfaTfeg5tVC3A4RY3+gOAIOc8Y3J0YTfzoUpn/znyclTSiKM+Wc01WDuBxz0t9LMrpkz8sgqSwhIgAtWyUc6XaK1uSSVBJvOueSLBGX48AwDPb96iR/nSr02pPTN7HjW0dCgWEQELJl1xYx4VOVZM5MD8VQmt5phwD/UrCIUvgOBo2bx+aTa93dg2QbLooB0Q3fuqcXb/cokGFGYGwTU1P1aNS/2Ur1R0qju48lyF+aTXx+HI4Yuk2xy6N20UBsH1f1aDRsEnusflMbG2/Zw9FH6tn98zNsvm1vyJ6afqf5Hpv29fHYEqxUfbQU1ZAj7FBdlpn8hSpku0jIhxPYBrtesUqM/1i52M9hty7bZIrX5ZFQEEdSaQJXblzOuFvLyJqdTsUHi7n81SVkzri47sRLEi2XgvL/BRLEkjMzClS3RtasNOJNsIBlm8z4j5dx+smG4fb1EZUCR/94TlTjjahYMQhUYbhU2nZ3RbVDa16d009eCBFkBq8n/PN9gWqxoRY3Wz67j7+M28ATNRvZ/ePjqIHsY/a8jBCZW3gloiPLiWEYoo3cRJq2dgSuQ2Pvz07wxNQ3+cu4Dbx1+14GG8VnrPEWljwwG1uWE58q49NkEiqTWXRPADJklOC07tfpv+CKIC0KQvQ0vdMuKggNI4ox20DAmeQtzQpUpA+LYQhFnTU3g3G3lpmOm1AYR3J5AkhS1PMyDLAmBQLyMWIdul9nqNXNW7ftwzukhxySoXYfG258Xxyu0jCEQYiZO3CfFptC5QeLoggyFafC5M9XYhgGb9z0Ph2HekTQwK3h7vDy9u376KsdpPtEP0GDMNT+Gniuze+OXjkZlLMvNPLsord5tOp1Xr7iPVp2Xlw1uKvVw5sf3cVQswfVraF5dbpP9PP6jTvRVZ3idfnM/9W0UBeBZJEova6A5Y/ORXWrNG7tHI52BStCVYMTj9SRPiWFhII4gYUXFnySbQrVHym5qOv7RyW9JpmEwriwahwhslUOje1q8/DOF/bzl/EbeLxmI+9//xi+GNVb/5cSK/lk6Aa2BCvVt5QGAvPD8yrbFaZ8pZqSq/KiHJ2gTL9zHI4UG5e/tpTE4oBjI0Ha5GSu3roSWZZREqzmes0gZPSfe7mJ55Zs4dGq13lp3bs0bxNrzeJQYuoHS7xFBLr7tAi9qmnQ3+JD9xtM+mxlVJeObJcpWJ6FI83O3p+d5NwLjWheHf+QhurWOPLHc5x+UsARzb97GpM+V4Uzy441wULh6lzWvrQYR4Yd36CKu18PBNeHE7QDLX50v8HJx+qiK/V1QRQ3UDsYgliIeB6BgIriDOJsByqf9eG1bk2wkDE1LZqUFKEbM6amUf9Gm0h8EKk3vQN++s4PcuHNdkHCp8v4NRFUMDQ4+VgdqeOTSK5OEI6yFqiK1gCLxKTPVNJ9pA9zxSfRsqMLi0lXFIi1JlsF2ZyuhkG0aaJt9+wzoqJT9+s0be+iYXs3zXv7ufBWx3BrqRztlIe6rCQwlGEc++H3A1VDjsgOm4g5B+xJFszIVEF0LuSvyAkFkEdWxOYuEtU2XUf7eP3GnTxavYGnZm/m2IPnRYBIlpAt0fpeJEoUvL2x28QNzcASZzGFUpJlUVETJIo1u6/MmjSyZqeZbqOidXmcGQV669yLTQESKnPpPTdoGugQ1w3WeCUMEi8y4K/6wB2jcwEEVrer0xMgFR5RtamDp88/yloTdkfK+CTThH76FPMAa7jUvtocgksIfxmGQd2GFqb8T5Xp5+xpNjKmpMUcOy0sGJs5I42Fv53ByicWMO5jZaFW5ZRqAfsRVe1mICBBRhHDMKh7pRnNF3ntmlfn/N+axrzvsaR1dzfb7zyCr98vsMJ9Os3bOnn7M3vH9IS6jvaheoI3FflMTz9dj8WpmK5zATU3dvI8VtWobJfpPtqHtzd6vakujVNPXABEh+K2rx/isYlv8PikN9h+52G8gY7Fmi9VRyX9JEUie056oPhDnJ9BCCa/JnS2chHdCVW3lI7AGA6uc4nqj5WSPSudJQ/Mxp5mC41bsCqby19ZAsCZ5xoBkRT2qUKng8SZZxopW18QSuiG63PDgKy5GSQUxubSSSyMo+TqAkayABmGgSXBQmJhHKmTk03XeeokAS/z0tr3oiAkTz/ZwKkn65EViTXPLqTixmJsKVZsKVbKP1DMmmcXIisSjW+bB1oAjt0vuleOP1KH5hHnt+bVOfHYBQ7fczY0trcnssr05F8uhJ73aKKrwV62yHWqG+AbUGnbbY6P3rGvR6wHu2I6LzmLsjj8+zMxxz38uzMcvvdstJcpCYia7qN9MZPmSOBu82LomOgt0UVncSogE+UzBeEc4/OcXPa3xeQvz8YSbyEu18GUL1WHimkKlmez5I+zSJ2YjCVOdDQs+v0MiteKrmtDNzjywDmemrWJR6s3sOGmnQF/RCRa9RA3Uficiq6r+Fwnl724mIIVYWN/eRyzfywqRmPpeznAuTbjrolMv3MC8flOLPEKuYszuez5RSQWx1O4JhfFpkSZLrJFouSKsQms02rSwjrzhn3klAkpWAOQdWZiT7VhcSqmhSuyIsdMHIdL3pIslt4/i7RJgTmvTmTh72ZQcnn+mJ8dS8bfWhZRQQ0igJw6LonkirGL7i5JtEiSxKq/LqDqQyXYU23Ykq2UXVvIZS8sQrErjLu1LNCBFPYZi0RKVSKp1Umc+MsFjv2pNkKvnXmugf2/OjXm2JbAWjRG+A5yAFJxLDn7bEM0v5BqUP9mK8mBwhZ9ZLzFAMkqoTjMiwlli4Ql3oK7y4fXS6S/Zkh014pYkZm/pjgUqj9aiiQL2/7YQ+d5es5mHq3ewGs37KDzcG9oDNWjR8eCAi5az6l+tnxuH54uH6pL2C3t+3rY+JFdGIZBzrwMlj04h/QpogM6uTKRBb+eRvl1ovuw56wr0KkTFpcwZAabPcTlOiJgL4MvTZewp9hxZNhZ+9JiitbkYk2w4MyyM/kLVcy/e1roPp1ZDqZ9bQKrnlzA7B/UkFhycUWGl8RcLoH+/DfIaJ15hlDEQz1+dCPyT30eHV030DwqYiMTFWjyD6mopnAmEgYG7i5vBN57uPgG1bDPmVScaxK+AT8vX7FNVGBpwhE5/mgdnUd6Wff0fJreMw+4DrYIghwz4hAg5LC8dfteWnZ0hSo06t9spXVXF9dvXYZskdn0sT14ur2hueo6McBbt+1l3TPzBXajShRxEEBKwCgwDCkKVUHz6eQuyMRvQt6j6xJFl+XS8HY7uiwja8OTZwCS1ULrzk6m3TGOwQtD1L0yXD2eUBjH5a8uwhpvIWdhZqDKanhcyQLjP1GG5tXFQWFSdaKrBicfuxBFGoQB7nYPTe92IDtk1BAubfBt8V3WBAsz7pqA5tU490KjaB+XoOaLVZSuL6B9Xw9DLZ7oJI1f5+RfLgQOX/OAR9Cxc3d5Of5wLc3bu0gsimPSbWVkBBypE4/WsecnJ0LX33m4jzdv2c2ax+aQM0dUhTZu7eDEX+rw9vkpvTyX6g8WYXEqnH62IXpOdEEu1rS1g8IV2ZRdW0jZtYVR1+Z1+WOyv/uHNCRJYuXj83jvf/bRsb8HSZawJVuZ/8upF10p/4+KJEmsfCzG2GUJ+F0qL1+5DXdH8LlonHz8Ar3H+lnzzNx/G4b8xUj1R4rZ86PjEUFiSZFIqU4kPtfJ9G+MR/PpnHu6PuTwTf58JeXXFyJJEuteXsSbN2wfroKUYeqXqylYlgOItuT1W1aajq3EW4leiyIwrzgUTv31Art+cDy01rqO9rPp1t2seng2OXPSUOwy/hHFfBanQvXNxZx9oTEUXA7fCrJHo3FLO8Vrcpj2jfHs+fHxUHIuf2Ya8++ehq4ZnHz8QhTfherWOHTPWapvLka2yEz+XBWTPxcdgDv3fGOMijOdhrfbAi2cw8FRCBB7KhL+If9w3mlk4A1RkW5xKqgjEjrB+3Zk2Dl2/7mI7w5MK8Vrczj253OAFCIdC72tyPgHY++xIBHaUIc/LJEi9JLfK/SLLdHCYFhCIHhfAI40G0Wrc9n1nSORuk+GpNIEEvKcUTorNG8BR+Ddrxyk9rWWEJZxw1vttO7u4vq3l2FPteFq8UbF/nQD4nLjaD/Uj2xII96XUHXoPxOWuDaZ85ovj+Po/eejrsswoHBVNvVvtuLXJBQIBeclWfzcuKWD9InJvHrddlSXuA/VpbHnpycZavEw+9sTcOY66a9zRcy7bhgklSeQOz+TY/efF87NiHMwLsdB6VX5HP79aRiZYAaK1uTSe26QYw+cJ9ydMQzAKpFUEk/p9YW07u6OuG9dgtJr8kflhNB9OkllCTRv6zQ1f1LKEyhYkkX38f7IBJQECYVOEkriMDecJDCIWt8j/6TpXTMSS7Fp6je1MeGWEnpO9EdC1EmQkO8kqTSejiP9qGrkHpGAlr3DBO5HHzzP4fvOoQ5pZM9JY+HPa4jPduDt84cl9IdtC9Vj4HepTL69gt4zA5x+/EJoAEeWnXUvLsIwDDqO9KPrw3sDxFppjUEeHy6K00JIPYSvVWIHpsL/SDXhNzIw8MeA8/p75EiwRTxMdJ9O+54eXC1e8Wj16HUsKQRg9iKvKyj9dS5KLs/jwK9OYpaJLb4sNkcPiPO5bH0+519sjCBzk+0y5dcUoHr0mN2HqktD9+u8cvV2BhtcId1z5tkGWnd3c82mJWROS2X+3VPZ/Z2jqB4NQzPIW5zJgrunIUkS6dNTadkeGajVDaHLx5LjD9Vipo8Bjv2plkV3TyW+MA7ibPg6VCRFxlmQEOB6MgIJnOjPSxg0b+8M60YZ1ueaDu2H+ljzl9k0vmVeQTnlK9Uc/O0ZUREcplR1Q8Ln1um/METL+12m67zl/S6ad3ZGczoFZP+vT1F9UxHWBAvp09PpOusCAzKmpYe630bDEfb1+TjxmEkAyadz6N6zZM9Kiz32/56m+kPFMb8bAIsEUX6P0D3x+c6IqtWI8f06/fVD+IYCkJph86IZ0LClQ2RGYojq0WIQAwIGnN/QAoqEoRomJLMScbnhncXDessArImisGDHd45Fva/6oGiNsOeSyxJY9qc5Ma8xb3EWeYuzTN97/3tHOf1MA5pbzE/L9i5evXY7V29YHBa4Dl+r4mcpAPOUXJbA0hhjl19XwOkn6yOeuWyTKL0yT9jXEoy7pYxxt0QXW1kcCqufns9bH9uFq0VAkzoz7Sx7cE5EVXosad/fa/r7ziP9JJbFk5DnpO/8YITqssQpVH+4hLyFGez5UTQvhiRzUQkBgNxFWeQuMp/zscTQDWpfa+H0U/XomkHlDYWUX52PrEikTUhm0e+ms/tbR/AO+DE0g5x56Sz8zfR/aKxLIsQab2HmdyYx8zuTot5LrU5i8T0z2HnnIfyDKoZmkD0nnYW/EUHaI/edjYodaG6d44/WMePr40aFiSpak8Ou7x6N+r2kSJSuF0kcv0vl5BOik9eRZmPCx0rIWyD4LDQTLHwADMiekRaGqhdpx+bOzhBjf8987LKr8zl871kBAznCXxuoc9F1vJ/KDxbh6fJy7N6zwo7QDCo/WMTUO6oB2Pezkxx9sDYUZ2p9v5vXrt/BVa8uQrJIUeccDHNQHH+4LorHx1AN+uuG6D7eT/rEZHLmZbD2b4ujrt/d6aXxnY4oPHzNq3P43rPE5wU7SswKCoReSyyKZ/G9s6LevyT/HrkUlP8vkZFOMwTOYEPACgjm7BGRFiTe//4xyq4t5ODdpyKq7IIM7eM/XsqZ55vQzYw1ScKRajOFzjAMUYkvKvTNnd+4bDtnn2/EN6hGBER0r07nwT46D/fiioGtLiuScEB0k/s2hAHZc3qAlp1dES2Thh7AAn2yHkucEjh4Rox9uI/OQ71Uf6SUkw/XRlUwOjPtpIxLJKksgd5TkXiislWiaE2ugESJqp6UkCwS3ScGGGwUDlbkMSMhISq6ARb9bgZzfjKF7sM9JBTHk5A/XDm08NfT2HjTDgabXAHMfYO8hZlM/nQFncf6YpLQWpwKzTFwxg0d2vf2YEuy4RsYiVsvqint6TZkq8zcn0xhxl0T8XR5BdxOoKLB1eYxPZgNVXQ1VN5UxL6fnYzybQ1g4ifLGWr18OLad/EPqGhenfb9PdS93sKyP0yncGU2++4+FW0UeHT2/vwkV7ywgAP/e1oEMkJB+15OP93AlS8uYKjJbQ4poBsx11lQzLBrh98U7zkz7ax+cj6eLi9+l0ZCgfP/LOAdNXa+M/Qcal9uxtfvj1znPp2Oo3207+sh+yKc83+XVH2wmPa9PVx4rTlU6W9PtbH0XtGtIltk5vxgMtO/Ph5PZ+RaA0itSuIDh9bSd3YAd5ePrBmpUQS/PWcGqH+zDdkmU3p5LgmBrqHR9oir3cPeX8RYaz89wVWvLmLlI3PY+KGd+N260EMYTPxUOTnzMqjd0GpKIq2rBkOtHtydXg787qyoGNEMkKF5dy8Nb7VTuDwrpgEaxPgdTQZirHPVpeJq9VCwIovu00MwHF4LkJZKZE5NwxKnoLq0qPBTfL4TWZHEfd+8I+K+J9xWRu6CTFEZaZEwRhiZkk2m+3g/pVfmc+SeM1HXZ02wkFweu/pJkiXa9nThavVi5jjv+NYRqj9czPZvHo34vR5Q3hM+WU72zDTa9nRR+2ITkkVCQpCVLntgFopdIXNaCu37eyJ0k6RAwYpsBhtdnHu5OQpP2z+gcei+Myh2QRQ3ctaDUAwSorpUG3H+inNWRomT0FzRaP6ObBu+bh/IUtQ5ayDwcpu2CWgMLfQ8CSXK23Z1cWFDSyggHxTNq3P0wfPUfL6c/gtuos9oiY5D/WTPSUeyShi+SCxQSYaaz1eSWBjHvJ/UsOPOwxHvLb1nBo5UG3UbWkVH1Mj79sFA4xD7f3EKTYu2S/b97BRrn53H3h+bw5oUrc6m4rpCTv31AnrYtUkSKDaJkivyQ+R9QTsoKGXXFaINahgYgRM3WipuKGTPj2KMvSqH5h1dJnMmxD+oUXpVPq27uzj7dAO6ISHL4Ei1svzPszE0A99gMOk9vAcNhjG8N9+2h7oNwwHJhs3tPDVnMx/ctZKBUGBs5D4wRPAZmPPDGmbcNYHO/T3EF8aRGMD+1jUD/6AmiglGzLmvNzYWfVBUj4ZuZnNJBO4ptkiyIDYcSQQJUlRF5D8iA/WxkzhDrW40TRzVI+05XQdHaizoDVFJF5/rZMEvp7LtjoPD70iw6LfTcWaODTk0+7uT6D0jyIORxf5Mn5jEjLsmiPPKZCkpTpnS9XnUb27D1eaJcNx1v4GrxU3jlnaKVmZTcnk+RZflMdTowpZsjYBu6T1jPi9dp2LDwwSl+1hfzPe6jvXRdbyPF9e8F/qd4dE5+kAtrXt6uOJv80aH5TrYi2FII9aSSIp7enykTUwmviiOoXpXxP6OL44jbXwS/RdcgQ6AyHWsGOBq8+J3i/2tG5Hva25BFB1LfP0Ciuztz+yj8Z2OUGKtfX8PtRtaWHH/DFLHJdFz3BxWrOazlRy+r9b0PXVIo+dMbA4CX//Ye9CRbmeoycxelXCkO8iYmkr7nuhq+fSaFDwdPmS7gt9njNgIEkONLqbfUUXjFvMugKqbi2na1olk4msC+Pr8aD4jKmEHoPkM4nKDUKOR1wzgzHbSfaxPcIRF2Aaio6PrSH9Ih40mul/nwqY2ek8PkFyRQPYdlicAACAASURBVPHqHBSbjLfXx+mnGqLJ1D0ah+87S1JxvOimMTG7ogqYTGT6N8bTc6KfriN94nsMwYky+/vRgU8zOfi7Mwy0+1AD5p3WpbL/16dY+eCsMX0Isy4bEAV1GBLL/zyLNz64A3VQFQULqkHZtQWUXiUSBkv+MIOtX9gf8HEMdNVg/s+mRPibo4mu6tRvaqPn1ADJ5QkUr8m5qC4cgK1fPsiFN1pDe6zjQC+1rzSz6mFx34Urc5j2gQpqD7RhS7SGoKcuyb9PCpZnc/37qxhsdGFNsOAIg9TzxICJ0dwamk8XHcQxxJ5sY+l9M9j62X1ICgIizq8z98c1JBXHi+Kxy7cx0OgK+U5NWzuY9pVKaj5dQcHybC683hxZPCNBxtQUvL1+YsFu9pwbxJ5sY9l9M3nnM3sjxp7zIzH2QIPb1B+UFAlXq5v0CUnUfL6KibeVM9TiwZlpD3WS+AdVDv/pHMYI1a26dfb98iTxuU4TS1NU13cdGxD6MubYHtJHIQ73dHlRrBK6yWMZbHYTXxDdqRocP1z2/foU515owppgYd6PJpIT4Iy4JP96uQRf818gkiRFwAEQ+BlDbOymbeFB2PA2F+g+2s/kz5UjOZRh8h5DtNek1SSTUpFI3sIM03Gt8RYRIFOiCS5BKKXc+RlRsBogHPfyawvoONhrTnooQffJAbJnpZlinMk2GdWrm983IvjVc7I/KkAHIrDWcaCXzkN9qG4tCgIGoPtkP9O+XEViSXwIV1KShaO07P6Zgmn87qlYEyyh1mFLnCKwDb9aTc/JARRb9H0bqkH7gR5y52UE2usjn4ehGwGsTCG2BAs58zOjDCRnhp31by5l1SNzmfeTGq54eTErHpwj2MIb3Eg2c9JR35BmOiehebXKeLr9mHqJwFDzsDNgTbCQWBwfESTNmJJiyu5ucSrkLcogsWQYDz/ihVhPB397Gm+vf9h41sXz2vaNw3i6fabkuAA9pwZwd3o5dE9kJl9z6/TXDnH+xSZy5qabQxoYBpnTh+fc0+2jaVsnvWGOmzXJEtKmQciN4LXbwkhzDcNgoMnDQIPbNCj77xZHup3EwriIxEjHoV7TeTN0g54TY5PU/TtFkiUW/Xoaa56ZT9WHS5n1vUlc9+6KKMx1a3z0WguX5IpEcuakR63tvb88yYtr32PfL0+x56cneHbxFk4/K+BIcualm7buSrKEM8OGP4aDHFwX7i4fXreBpoLqN9Almd46l2g5nJNmShSHJJE1PZVD95zF2+OLXOduje3fPIJsk4jLNsfMzKgZG97CFqPt2NBF8sYfCtBGtjVqqjAOF/3WpBJJhuUPiESJu9uHzx0gWvKJ++6rc2PoBl1H+9B80S3ohiGSkRM/WUZiSXxoH8pWgc+9+DfTscQpMbFCM2qSY3ZNAfSdHSS+II5obFdJdI4kWQVp2c+nctXGpcz90WSW3j+T67atJDEAkzD/Z1OwJVpCkEiKQ8aRZmfWtyfQtKPT1GEHOP9iM/Y0G7pONNm6LnDCLYmWAFxNOG+L0B858zNY+vuZ0V8swYo/zab3zABKnCWKxM4wJDoO9AaCSOHPU4hhiG615u2dof9HnAkqdB7uNyv+BUTizuJQWPS/05BshM5h2SGRNSuN8msKAOhv8OBXDfxeA7/PwOc1GAicE0PN7sCY0ffdsqMLV3sQHifyHOyrHcKRYmP8J0rEtYZdlzXRwuzvTyZjSgqp45MD5JnDJPPZ8zNJKonn2AO1qH5D8BMYwxwFB397FkmRYgbkQTiQpmMnWJjzw8lhFUiRYhgSicVxGKpBX50HXZJRfQaaLuHu1/H0+EboqOE9GJyXoTZPREA+9N0qbPvGIbpPDmB2PhuG0PVBcXf4aDvcT+exYR0vKxKJxU7TZ5JSlRD2XQZdx/pp3t4Z6HgUkjUjDSXeEkWmqDgsZE2PTawN4rxRw7t0wl4XE/gaS6wxWuA1r05ScTwplYkmRJASaRNTyKhJicnxU3alqBjtb3QL7Gafgd8Pfj8MNI6ezA9dW4KFdS8sZPWT85j7w8lc9vR81j63EGucBcUms+jX01AcSugaLHEKaeOTqPpAET0nB0w5TlSPFiJ5hOCzjY8IyBuGgbvdHILK1TL2tTsyY2M3OzMdbP7kXtP3Og/0hhJEsSQ+zzyZIRKVEu37exlq9QkOqQCEoqrBUKuPjgO9WJyy6TrWvAZJxXFhOyRSt0hA4XJR2WsY4fpU/HVqdSIdB3ojAvIguhaa3umgfX8vqx6dbepdl1yRiy159MBh4YrYVcWp1cOJad+gj/d/fIKdPzyOb3A46lJ6uXkFs2SRyJicjD9sj4Xfo9+jk1KVgO7XA/MZIODWJWSrRO7CDApX5pAxNSUCBkLXIW1iEqWX5+EI8EaN/G4DqL6piLQJSQFC70j9kFKVyFCDJ2Y3jerS6D4xYFrlH4SZHEvcXV6eXfYOW798kH13n+a9Ow7x7KItuNo89J0fCuFoR9jvmkgOZc1INQ0oWuIVsmaMrtdA6J7LnlnA4ntmUPWhEhb+ZjrrXlwYgf0eSzoP93L+1RZUd7B9QcBdNGzpoHWXORRRuKTFgA1LLotHVgSn1fXbV7LkvpnM/dFk1m9ayrwf14SC/YUrc/jAntXM/8UU5v10CjfuWk3Z1QVjjgvCV3pu2Va2fknM+btfPcQzC99mqHVs3dJ5tI+6Da1Re6xlZxctO4c70SRZIrEo/lJA/v9QgnPuGMFxkzHZPECcUBg3akA+KAXLsrlx72oW/HIq839aww27V1FxvehMP/10gygoCvObVbfG/l+dxtvnZ8oXKqPgygCm3VFNq0kSMnAnofMvf2kW1+9axcRPVzL+42Vc+94KKm8QY+cvzIiC5AVhA2eEcbZ4evwMNLhxhxVH9dUORgXkg9Kyswv/4IiWyOCVSRL+fj95o4ydHmO+g5JYHG9qvksK5M5LDxQbmNm5BrY0G5qm8UjVBvbffYa+WhedR/p55eqdvPPlA6OOe0n+cbkUlP8vEEegejkYoNbDDKXkikQyR8EpTSqNp2NvL4YebriKV9eJQXz9fmZ9c7wIMIXtbcUhM/cHE3FmOEIYhyHizsDYikMhqTieimsLIjAvJYtEQmEcFdcVkFqdGJMEL6kknml3VAmc7vA3ZJh+RzXJJQki4wnDwfnAz5Isk1QSb5qBlO0yqdWJwglVpKgAkq4bJJXEY0+2sX7jEub9ZAoVNxQw9UvVXLd1BVkBkov0ySlc+85ypnyxioobCpj13Ylc/dZSHOl2kkrjTeEQZJtMWnUipVfkEp/njMDEtjgVilZlk1p1cXh5kiSRPTud8msLSa0eNsySS+ORZDk0Z8F5kawyaeOTKFiWaaqnJUUEKnUtdjBZ943uPCfkO6m4viDC+JZtEo50G5U3FNL0TmfEGgmuG9mm0PJ+F41boluxQBhrvl6fueMMJBbF0banOyb55oVNbZSsyyWhwBmx3ixOhcJlWaSNS8IwDHb95CRPzHyLTZ/cx/OXvceLV23H0+3D36+K4IE27KiEAkGBgELvuUGemv8Or1y3k4237uUvNZs49XTDqPP1fyEpVYlReHggEnZJpf9ZIljDMNjz85O8fM37HHu0nm13Heel9TtiVmT8PdJ5uJejDwj8Q1010H0Gmkdn+51HcHd6mfKFCiRFjtQtEkz5QgWONLvpnAEkFDhRPRpvfXo/mlsQ8wWTR3Wvt1L/ZhvFq3NIKo6PWmt5CzPImJxMw1ttUS2LEGgxr3Ux+9vjRUVlcJ4Qz2vmXRdBWjakRjjlEPhZFoG6UYPb54coXp3DrQcvJ39ZJonFcRRfkcuN768ifVIKmlfjrU/tQ3VrAorBCNz3G61c2NhKckU8klUWVeFhL0kSZ4013sKVryxi3v+roeKGAiZ/toJr3l4WICuVWPDTyZEGqiRw7Of9cNKoznF8QRzN73WZGr+yVY5w8pJK4ilem0fOvIyIDpiEwjhSJqeh+gxQZPxeg8w5GTgzHTGrIkEEvtNCON0jCU0l0iaMTuTq7vBSuDKHa95ZRv6yLBIKnRRfnsMNO1eSOSWVxOK4QFu8+L4gfqxkkUgdlxizQij4/brfiCDWCicGRDFi5V9DyfTSK/K5euMyJt5ezuRbyljy2xmseXI+slWm+2Q/+39zGtULqgqqX2Cy7/jOUYZa3MixOCMMyJiWgj3FPGgRnyuCgRM+Xo41yynOCUCTZGq+VI0twULPqQE6jvYH3pPQA7ZA43udDDW7qd/cFoALCTyT8GKEM4Oxn0ng36I1eajIIV3v1yQy52ViS7CQOiEp5uczpyVz8sl62nZ3owa6SVSPjn9Q5a3b9+H3aqaflSQRJDr3QqP5FwPN27owVANz+AwpdHa/dvMunpy7hV0/OsmmT+zjwfINdB4VVc+xgob2VOGADzS6eHbZu7x09Q42fmIfj03ZxNGHagEoWJIpbDaHwjCZougyyZ49eseVJEtIMc7vkTi2/4j4Bs31nmSVGGxwMfcHkwJEkYG1IElYnApzvjcRe4qNcR8ujtgLBiI4PvG2MvrOD7L/7tNoXgPVLyp/NZ/Bnp+cCOtcGF0kSSJzairl1xVGJVeLVuew/s0lTPhkGeXXFrDwV1NZ++wCFLtCUkmcaYJXcSgklUSe36pbCxA3R97HPyqV18XGhq64oYDBxpEdlcNy9OHzpkEUcU0SFqfFtOLaMMS8t2zvDHBLDRPvguDJat7eSe/ZoYjAb+ilC1ss1n0bQEJ+HBkzUiMCz8GfF/5iCs3bO0PEvuFrSvVqtGzvJC7LyZQvVqMzbMfaMh3M/NbEqHuJ+BeIz3WSu8CkElGChb8UGOXbv3OUR6o3cfi+8xy5v5ZHqjfxXqAbKT7fGfB3hu/QMAyQBa9L19H+Eclb8W/3iQGsCRbKry8YETiXUDWYdJuAVim5qgBVlyNeJetFkHb5vTMi/K3QPeU5yZiUwuxvTwj4a8MvSZaY/e0JJBQ6TbuqJRlSxyWSVBpnar8rDvmi7NT3v3eMoUa3SGAZ4B/SGGp1s/2uIyGbzcx+T61KJHt2GplTUyJsD8Uh/MT8xZljjq37dd763AHe/OR+jv2lgc2fPsCm2/aZkkOPlLoNrTFsQYPzLzebfCJS5nxvorBVw/1zp8LcHw5X6csWmfzFWZRfW0hiUfRcWhMslKzLo/TKfGzJ5mey6onWLe//4BiDjS78gTlXhzRcbR62hXXOxZKWHV0YJkkY1aWFuJsuyf+/ZOZd4yPiMSLWArO/dfHEvtZ4CwUrcyhak4s9zBa5sLHVtEBTtsl07O/h6J9rQ/s2tH8NiUP3nIuZLIDhLrj2A708s/gd9v/+HIceqOOZJVupD3CDVH+oGHuKLSK+YHEqjPtIMc5MO7pm8M5XDvHU/C1sum0fzy7byhsf3SO46Tyx97juN4ROiXXOxVuovjnG2B8uJi5rdEJji0Nh5jfGRfiqkiLmeOoXKslbkBEoPAvftwZIEoXLs3n70wcC8LtEvM4804S78+IKDi7J3yeXgvL/BaLYFWZ9sRpdkvHrAUInXcJQZGZ/ewLl1+XHrFCY870JnP1bU4hYNVxkRaLhnQ6SyxNY//oiyq/OJ6HQSc7cdFY+OIvKGwrxD6miUlSTUHUxrqoLkjxPANd94S9qmPvDiaRNSCKxOI5Jt5dx1SuiSqjqA0UicBWmtGSrqDbLnpVK295edGRBihEyvCXqt3SEDvRgACRotAsySJn0ycmkVidGBXIVq8y4DxeTMzc90C4YmYzwewwypgqnyeJQqLyhkIW/msaUL1ZFVbA6M+3UfK6Shb+aRvVNxaFqrYzJyaSOMxnbJjPuwyUodoUrX1rA5NvLSCqJI3VcIrO+PZ4lv/vn8fLSJyWTOj4RxaZEODOKTRwy424uxpowYj3IkFyeQM6cNKyJ1qigQTCwH5cTqx1qWOb/ZDLzfjyJtInieU+8tYz1rwssfDEfw88p+Ow0j441XsEWI0ijawaOdDuTP1UetZYVp8L0O6pFhZhZsEORcGbYUWwyV764kMmfLiepNF7M+V3jWXrvDADOvdjMsYfr0Lw6vgEVzS2gjN7+/AEUh4JuQpgCgEXG0A1e++AuBhpcqC4N/4CK6tLY/q2joWDIf0pCSbGwpShZJBLzneTO/8+2qZ1/uYUjfxqec9Wt0Xm4j82f2f9Pf/e5l5tRTZwiSZGo39xGx8E+EcgbqVve7kSSJWo+a7bWZKZ/tVrgYJuI6tI4/WwDslXm8ufnU/O5CpJK40mpSmDGneNYcf+M4FWYf96tYU+2Uv92J4Y03O0iSIGkAGzG6OLMsIeCX+EBBcUuY0+1xoRqMFQj5JClVyWz6pG5XPfuCpbdMzOk91r39JjuMXHfjeTOzcDvMRipU70ug6yZqYHrUAKBp2lM+0p1BAl54YpsLvvrXPKXZIjg9GU5XPnSAjKmpFCwJCumwzjnexNEctqkbVpSpFDwt2FrB08u2MJDVW/wcPVGdv7weAgqaMf3jtHyfjeqX8LnBdUvUbexjUP3nCNtwihGf5ot0PFgXmmruvRQcNhMfH0CLqHuzXaadvfRXe+jYUcfDVuFY5pcmkDmtOjEuiRLTLy1NNTJZSaSLCE7g8R+kXpLNyClJJHCleaVm9UfLgr9nFyWwMxvTuCy++ZSfFluKJlx+plGNF/089Z8cO6V5gina+S8SIbElC9URu0xi1Nh+lerMQyD12/ejavVi6rKqKqM5oc9PztN6+5uTj/bgOozCCe5M5BQA2M70szH1lUde4o1IrAUlGCHoa7rvPaBXehqgBdCF2SZdRvaOPpwHT0nB4f/PvyzQPuBPk4/1YDfpaGJfJ1IKBjg6fXRc2r088Dvjo1nr6tGoJtEMh07Ps/J3l+domlrZFBD8+i8fM1ODN2g45D5+M07ujAMgw0f3kPfucHQOaZ5dHb/5BQt73chyRJrn5rH1P+pJLk8nuTKBKZ/tZrVj84ZE2bBMIyYHEBm3XV/r8SHddmE6z1JlrCn2MhbmMG6Z+ZREEh8Fa3MZt1z88mZnYZhGNS/2xkRrDR0kWDqOTlA3esicDbyeeq6wYWNrf/0tatujYP3nufgAxc48Vwzu391hrZ9ouuheG0u1nhLBImmpIAtyUrRaoG13byji6eXvMNDVW/wUNUbbLvrKJpXcN3IVsl0ncv20Z8XQO78jNDfh38WIHduhin5bVBSR4EjA8H7MDKJEpS4PCeaqpvyVRm6sAe9vX5TvWYA7Qd6kG0x7jugL32DQRym4ZdsU3C1e7Gn2JAsMqounrNmgKoL38SeYqXpvU4O/OE8qirjD7yG2v28cYvoHJBsUoi0NtQNookEkSRJrH1yHpNuL8MSpwgOnaoE1r+6iLRxSXQe6ePYQxei7vvEYw20Hejh5F/r0bRgh0AwESGheg06D/dijRcduMaIZKQlTkGSJE49HSRVDjsL/HDyqQb6L7jY/t3jI0M47PzhSXrPDZIzK501T8wN6E8JQ5IE3MX2ZQA0bO1El4ZtKkMHXZJp2NpJXJaDwhVZUd2JklWm5rMVZM9JD/HdhD8vzaOTO29sO7XujdYo/WJoUL+5HWemHTVUzRrug4Al0YokSaz+yxxR7FWZQHJ5PFO/WMnap+aNipMdlH3/e4a6N1qHfQevqHTf9ZOTY352oD52Um+waeyEX/bMNK54fj5Fq7JJKHRSsDyLtU/NJX/R2MmEi5HWPd08s/xdHqp8g4cq32Dr1w6HOEDMEgqGJrhsRgbwR4o9xWqehLHLo8CJXZL/pDS91zVMUhrUa7qIx1yMuNo9bLhlDw9WvMGDFW/w8vU76asT8GpxmXbz4LVuYE+1cf7VFoH7bgiiWMOQMDRo3t5FfK6TxJI400TszDvH4XepvHbTLtwdPvyDGv5BFV+/yubb9zPU4sGebGX9hkWMv6WExKI40icnM/+nk5n9HZFsOHTPOc6/3Dy8vz06Tds62fHdYyQUxJmiOQAijjUjTRRcjCwWkCB7Vlrssb97cYmOCR8rZfm908malUpCoZOK6wtZv2ExCQVx5C3KFITpEbaZhC3ZQuV1BdRvbjNNjAPs/unYuuuS/P1yKSj/XyK6LjGSgV1HOBiyLHPN5iXE5w87LZY4hWX3TSd9lGBDuCSXJrDkt9O4cfsK1j0zL3Tg+11qqFokcmwCwRnhFFXfVMzVbyzmhveWM+vO8aEWW0eajcufX0DW9FQkRTgQRatzWPf0PCRJ4vADtageHd0YbrXUVWh8txNvn4okR7dCG4bIFApDazapYe19jkw7qx6eRVy2g9rX20zhKywOJcqp/UdkzWNzKL08D9kqqkUypiSz7tl5IYgGW6KVGV8bx/XvLueaN5cw/iMlo2OX/51jV19bODx2jRg7PseJPcXGlS8uJGtmYM4tEsVrclj37HzhxIVB34x8XUzZlSRJVN5QyNUbAs/7ruHnrRtSzK8wDInJt5dFBWlkq0Tu/HQcaTamfrGSmi9UYE0UTmpcjoOFv6ihaGU22bPTBMzMiCmUrRLjP1osxkA4Vz4NfKogWgzK4fvPC0Z5Y9gR03wGzTu7BRGxAdFWg4Tuh9bd3QIPdMTNaV6d448KB8s3qLLnl6f468ItPL38XY48XBeTlOtfKfZkK1f+bYGAglJEhW3Rymw+tGnlRTkc/045/MD5KOgCXTVo29ODq2P09vd/Vo48UIvqHqFbNGjb14Or3UPNZyuY+qVKbMlWkdjJsrPgpzWUjEHsFxRrvIVpX6ri+q3LuHbzUiZ+vDQEXRHeLh+U4P91v87ZvzWh+YzhFnNDON1HH6wdc9yK6wpM9YikyBSvzmHSbaVRe0yySGROS4kIbP0jcval2JVd9ZvMsWpHSvbMNNY8Npcbt69gxf0zSRs3rL+v3bKEpJJhaCPFLrPgFzXkzcugeE1OFLkeiIBX4cps2g/28uYn9tJf5wpxixx79ALv3XkEXTM481xTFOas6tY5+nAdFdfnI1nMdde0L1WNqRYd6TGcTBnishwcfqCW3T87hbvXj6YaDLV7ee+uo5wNVMq1HRsIVbcHXz63Tn+jm5RROqvSxifiG0HaLUT8f6jVQ+astAgYOMMQxffBjrDRZDRYga5jAzEr4YOtzhM/Ucr0r1VjTxF7zJFhY84PJ1K+Pp+uo/0MtXqiAnOqR+PoQ3V0HI09dueRfibdFn2WSIpo908qio95xhmSSBZqPsG1EH4e6Abs+/Xp0Dkyct6C6tzv0gJoR5EBQ9VrRMANhkvwO+LzYmP5KnaZjJqUKPiI4M8ZNSkcfajO9LOqS6Npe2fMM9xQDbqPDzDY5I6ec7fGkT+L77U4FKZ8vpLrtizjureWMvn28ggM4cFmN1u/cYTH577NC1ds5/yG4aB1rMC99C+weyZ+0vx5p1YlhiptM6emsvqR2dy4fQUrH5wVqrDrOTnAYIMHXSNS53p0jjxUh+7XUUO5krDn6SNmomGktB/s5bWP7OHxOW+z4WN76Dg8nBzZ/LkDnHpaYF4bOvScHuS1m3fRc2YAi0PhypcWkjs/XZzfikTewkyufHGBwNs+0c+Gj+4RleOBjq2TTzfw9hcPATD+lhIkS+Q6lSww8dZo0smRUrexDcMiR65zAKtC3cZWyq/JD8HK+DTBE6oF8pPjbg7YXGbnnCS+JwiZGX5twaBP17GB0J7yBb5fDejAzmMDAbJwc73m7vSJIO+I79YNyJ6TTu/ZQfprh0zttSN/rqN4dTZetxFK1AeTNV63ICw88qfaUNItpBtUg/7aIXrODJA9N0PcnxEoUgrYveHdJLO/PYGPnlzLx2sv59rNS0NQBe9+PXaV8bZvHGUwADsUbrcYgeKC/noX4z5cHAWHoDhkxn2omIZ32mPCKh55oJbdPz0Rc+xd/0+8l78okw8dvoxb66/g1gtXsPqR2SiK2HfHH7uA5jWGr82Q0HwGJx6vB0Txlj7iHNMCyYsLG9vAqkStNcMiU/uGOeFvuMTiCDIMg8b3OgOdy9Hr5dxLLWKObDKTP1XOdW8t5boty5jyucoISA5Xu4f3vnWUJ+Zt4bl12zj7UnOoW+H4oxei5lXz6Jx8oiH0N+c3tPLCFdt5fO7bbP36EQabRZdJLPgZgLTxsd8Ll/RJyaz88yxu3L6C1Y/MJmva2JA7FyO95wZ57abd9JwaELrFq3Pm+SY2f0oUzcTSfWYdESOlZG2OaUBQkiXK1l8cyewl+b+Vw/efR1dH6B5NJPTGSsLoqs6LV++kIUBMamgGrbu6efHKHfiHVMZ/rDQaAkcWRUYZU8aOU6VPTY2y5TRJIrkykbo32sBkTeqawZlAZ6Iz3c6c707khm3LWf/aIiquLQjZK8cergvASw1LcC84sxzYYxSAlK/Pp3htTqiSPaJYwCYz7uaiMce+GClckc0Vzy/gxu0rWPTLKSFITlmRuOKFBRStzBY8WopEzpw0rnxJQGvF0pkgztBL8q+XS0Sv/wWieTX23HMm6oDUfQZ7f3WawiWZJBbG8YGdK1E9KrpPx5Y0rEQqrsnn7PNN0cExzaBw6RjZ9igM39AbphUwZpJancgVf1sgKnsUKQJz1ddnDtYlKeKVPjmFjkO9EU6kbJepuFa0W+740Unajw+FHCp/l5+3vnSYG99ahKfTawoxYxiCaAqEM3rmpWaa3+8mqTiOCTcVXnTgypZkZcnvprHo11PQVeOiMNf+VWJLtHLlw/OZ/ZOJpmOnVCZyxQvmc64Hgg0jHRbJpuAbUGNWIF6MBKEURsaCJZuCf0il+oOFdB3t49jDdaH3Uscnsex3gv1dkiSmfr6SKZ+tQPPpgkQxcHjJisTaJ+fy5kd34+70IgXIEef9eBLpE5PRfDovXLmd/jpXKPj2/o9P0LyjizV/msFQhzcKNloHJMNgqMUTM5ihujVBNGOyDwxdHG6aT+dvV+2gr3YoYuym7V1c9ucZUZ/7V0tyeQKXPzdfPG9ZecxC/AAAIABJREFUQrbKxGU6GOoYm1js3ynenhj72yLh6/OL6ol/UMqvyuPEoxei9JqhGRStzObA788NO36B9+TA2N4+P3FZDmo+U8HkT5ejeSPXWk4MqAZLnEJVAKdwNNF1w1Q/SnYFd5cvprPjHxiuou05M8iJpxrx9PgoWZVFyepsZEUiLsuOLcOBq9E1fGMSJFUlYXEqlKzLpfvkAEfuO4dsk9FVg9SqBJb/cex1mDMr1VTdi/su4Mgj0RV+ABii4qry2nw0r8bZV1tp2tZFQp6D8TcVkhiTkChS4jIcXP/uclSfjuZWIyqxm3d2g1XGGBGYl+wKbbt7OP5EfRTJpObROftCM7O+VhWzWtc/oCLLMoVrcrjwakskPaZdpvTyPI78+XzM+1biFCZ9spRdPzoRBc0Vn+MgqSyOvetOo45MCHh03v/RCRzJVny9gqh9mLRQPISd3z9O2bpsMZTJkrGn2UcJGkr0Nwxx8A/nUUeSreoSe355mor1seErQEApxOoASCqKI2taMrvPnoxqS3ak2UipTECSJCquK8CvQtfRfrKmJVO6TiS9PD1+82CtAe5Ob8DxNx9bVw2KVmUz+TPl7P/tWXRD/GVqeRwr/zRTVDYpknBKjIivRrYrtOzsNqUQMALXlTYhiead3Wh6+LyJn7OmpdJf7wlUqYp3hZUkkn7OTEcoMDlybAMBb2EmhgFxOQ4qbyjg6J/PB7ovhkW2SpSvz2fvL8+Yfh4CGP+BwcJ9PsMASRakgbEC5O7OsZOkA81unln1Hr4BNUDu7uatLxyk90sVTP98BYUrsqjf3Bawx8QEWK0SJWsvLtE5mhQuy2Lqlyo58OvTorBANUgqjWflg7PG/Kyn12/KfQTg6fCGwTBFVpwBMWHOwqVxWyevf2Q3qlc8s/4GNw3vdnLFk3NIKnBSv7k9ykHWPDr7fnOGlfdMJyHfyWVPzEUL6LbwJMjBe89HwWRoHp0Lb7Yx1OZh1jfG0V/novHt4cBm0cocpt9RHfp/X90QJ55swNXho2hZJqWXZaNYZTw9fjTvyMUqoXt0vL0+Jn6ilGNPNoZ+LwLRBinViaIzIrDvRq5zDMHNYhCs9o7cQ0NtXuzpNoZVV7C7x0AHfANCN+iqyfktQWJBHGdfasEwJNQIxShgOT09vtjPu9NLUwjuLPp5N+/sYrDVzUjXQQMkVcfb46f7xIDp/u8+NUy623fBJea8zUvh0gzK1uWgWGVha8aQoVYPtiQr3h6TbhoJ4jIdlN6Ry0CDK0Rur/t0CpdnMfPr1Zx+rin6cwFRXRptB3pjvt9+cOyOT78J9wEIG3mozUP9W+1oauRakvwGB+85R9q4xMD5PEKneo2LgjOUFBnDp0XpNdki42qOPacXw2fh7vLxzKr38Pb4xXl6AbbccZiuk/3M+cY4Qapq9t0eAeuy/56z7PvN2RB++omnGjj3WgsfeGsxZevz2POzk9H+hUTIj/1PyeEHatFGQJZqXlEl3F/vQrLIGF7ddM7HKjCzJVpZ8/gcNn9yb8gnkhSJ5fdOHxO245L8Z8Q3YL7ODdVA92vISuyQY8M7HSLmEmaPCmg/jbMvNTP+5iLmfHcCu354XBTAaAZx2Q7WPDYbSZIouzKX0880CpLqgI6wWCTyFqTjH1I5+2JLAIY5THfosOfnpyhelWVqB+s+/aKCz94Y/GKaX8fd4cXdK6Dzwle8DrTs7WHK5ypY9+RcNt26B79LBUlCliWW/mFaTFvv75WBJjcnnmxgsMlD/sJ0Kq7ICfGvOTPsrHxwFrpfx9CNCF42W4oNb5fPNDlWftU/b5Ndkmi5FJT/LxBPjz9mALy/LrL9zeKwwIjzLnt2GtUfKuLk4xfQ/YZoSZVgyW+mYksanahGHqUXY7TWVjMxI3EsWJrJ6WcaooLntkQrCXlOlv52Ki9fvR3fkIbq0bE4ZVIrEpj2pUr6612ceaEpAlpA9xm4OryceraRwhVZnHulJYoE09AM8uan4+n18/zl2xlq86K6NBSbzMF7z3Plk7PJmXnxlQiyRUb+D+3EscY2m/Oi5dmcfKoBza+Hm87EJVhILPznDpGi5ZkCLskVebgrQN68dHwDKuc2daLKCppbQ7LJtJ9y0X1mkNywQKgkS6ZJjpTyBG7Ytoyuo/34B/1kTk0NVc+de7VFELCGBb9Ut86Ft9rpOtEfE+JJ8xs4YyRijMC1ZM9MjUlwW7w6i/Ovt9Lf4Ioau2FLO13H+0kfpVrmXymxiFL/U1K4IosTj12IaoFVbHJERfQ/Ihk1KUy6vZQj95/HUI1QsGnBzybjzLCTvyiD7toGht1mAw2wIngZgiJJ0WvN4lBY8cfpbLptL4YmYBkUm0zJuhyKVmePeW3Fq7I5/siFEWtGwmpVSJ+YRHJZPL1nBiM/JBFq4z71fBNbv3YETTUwVIOzL7eQMyOFK56YRe3GNoY6BUFeUAMbQMeRfjoO95FZk8yMO6qZdGspXcf7icuyk1IZWW1tGAYte3roqx0iY2ISGRPF+lTsCivun8HmT+wVQRe/jmJTKLksh+I1OZx6rik0myPFlmTFP6Ty/JU76K93o7o0ZJvEwT/Wsu7RGRTEIBQ3E4tNxmKLTA72nh0MBb3CRdYEcWjvmUHTxJpsk/F0+UmpSqTn5AjiYwly56bh6vBSu7Edf3BOA+2oVkPi2GMX8A9pwwGo8I8rEt5elarrC9jz81Ooqkb4BNV8rgLda+AbNA8MDDZ7RgRKIkcYbHLjG9JRdRjpA+sSeHv9WJOseAKOxzAyvZCcmWlhie/ILxhqGhtTsmJ9Pmeea4rav7JVomRtDqmVCdRvbKNtXw+qR8PiUJBkiRUPzECSJHrODPL8lTtQPRqa1+Dsay3s++05rt+wgKypyeZ4nRIUrciKqDQeKfG5DvwujbOvt6PJMqpbR1Kgq9ZN5/EB8hfY0DVEWXygx9AIfrnfGBUSyDDA4rSEzVdk4M6QJIG/G/47BO+O1SbjavWSXJFA39mhwG+H/y5regrZM1LNk0sKVN1URGplItO/Us2B/z2NrgX6IxWJOd+dQEKek4yaZNr29Jhee+naXI78qY6eE/1RNmPWjLSYRO2KQ6bksrH12o67T+AfVNH9RmiZ+4c09v36DJM/XkLNp8s5t7Ej7K4lfBpMur10zO8OirffT/07nUgSFC0TGP9BmfLZCsZ/uJjOI3040m0RXTajSWZNcgCrfzjIKwMWp0zxmmx8MYJuAL7+2O8F5d1vHAnTTWK1qR6dd+88wty7xsWsWGvZGQmTppjAc/WcHjCFeVFsMgP1LlS3ncZdvcKm8ugoDpn6nT0MtXpIKoqjdmMbmz57QBRMqAZnX2kh7f5Ern5uzgiYw8g9YU2w8s5Xj0T9HiS6jg0y1Ooha3oq7ft6o9Z59sxUrBGE5JF7SLbKpI9LpvG9kTBx4u/SxiWh+3Qa3+8J+704v2VDouKafLZ/77jpdbvavWRMSjbtqkKCwuWZNG7tjOxCCfuWhi0dIaLy8LFBkAAnlcQx1OZl+JFKofsfavNiGAYXNrfz5qcPCK4bv5jzQ/fXcvULc0kuj8fVHh0oMQxhlxQuz2Tfr05HPXPFJpM5NRnFJrP83hkMNrvpPz9EUmk8CfnCbs9fnBGCThj53fY0a0yyZCDCPh5odNP8fjeOVCuFSzJCRT0Zk5LoMAnep41PZKDBjWKTo6DeDB16Tg2QOye80GHkWhu+rvCxCxZnoAQgUPxeXTyJEVtJ9eoUrcmCO6LvyQAyasbWEUceqsXXr0YE9lSXxqE/1jLl9jIyJifTvj86oZFanYjqFvovvCDAUA38gyoH7ztH6bpcDEWcO+EiWST6G90XzTH275DuUwOmhWuKTaa/zhWCh4yac1VH8+uhZxNLsmemcdO+VXQc7MXQDLKmpZhC2lyS//9IzFKIUbiNAPpqXabcCapLoyfg64z7cDHZ89I5/Uwjcdl2xn+oCIt9uKvy6JNN6Maw3aWrMPmzFfTVDYWdoZHX0Xagl3nfn2BeTBSvjF14ivB7VLcepTclWcLd5UW2KYFkQaQtGfThMqel8sG9q+g81Ivu18mclmp6lv8j0rS9i9du2YuuCpjMs6+0sP8P57julfkRtpHZvsqckUzjmx1R+1dHFLxekn+9XNJu/wXiSLfFPPzSxo19oEuSxLzvT2T9KwuZ+bVqZn1zHDduW07ZFWO3kDkz7KbM0QDpE//5QOOMr1RiT7aFnGRJFsbh4l9MRpIlrIlWpGQHPlVGUxS8fglrdhyyTab9QK8pMajq0mh6r4uSNdmkT0yKMDYtcQrjP1pEYmEc+393loEmdyhor/l0/j/2zjs8jvL82vfMbNeuVr33aluSe+8GTDPF9A6BQCCNVEh+JCFACCQE0kmAJCSBUBJCC4RiisG9d9kqVrEkq3etVttm5vtjdlda7a5kYkjCF5/rMjbbZuadd95ynvOcxzss8+6X9hG50Nr/H5h5exGyIOBVRXyqoP1BYO63S0/a7iRndSpJFfYxpIaAzqJjytXZxObFsOdXdQw2j2gF8hBQPCo+p8y7X9p/wm0uCAJJFXbSFyWF3Nu2rb1hAZjA5zv29OMdCdQoCE0zkwwislNGFyOFqLICf8eXWjEnGSm+NFRVqgI6q46iizJp3dqjFaCKgI4Ii/n/Fcy6vQhjvGG0IKqoESFLHywPyd74VzH3jimsfXMZc+4oZe63p3DZxlVBJbtoDixYxpJrAqpOClGLeoZ99DcMh9XdMMQb8Yk6fKqAIoq4vAKWbGtI2qGqqgy1jDDcEUpwzvpSEaZ4gz9IIoCoFR1c+mPtupf9uAKdWQraa4l6AYNVx8LvTcXr9PHhnYc0Wy+vRiR5h2Xad/dz9B9ttG3v9fe10AJ5qqLSvmuUrDPGG8hYkhRGyLv6PDw2dx3/uGoHH95Vyd/P38qrV+4IXn/W8mSu3H46C743jTnfLGXNC4tY+ctZCKJA3pmpQcJ6tA0AEbJXJLPviQYGGpzB51DxqPhG/M/3CaQ8T4Sk8lh/QUQh5I+kF0iYYiN5hj2i96PiU7DlmFn2o/KwNtdbdSz8/lS6Dw34bdoCtnBau3pGFFo2dJNYHouqF/Eo4FO1P25FS71PmGLj0FNNeLwErQxkf/2VHT89iqKM2ayPG3tUIHNZ9GCFvSAGfYyETxXxKEJwvHYrAj5Z1J4ts4RP1fb8sv/cvCogwUivB3OUbBR74eTF9TKWJpK5LAnRKATPW2cWKVybQeK0WES9yNnPLmD1k3MpuymfOXdO4aqdpweLz7//jf24Bnz43Bpt5XOpDHd52Pi9w4h6UWvzse0RGJPNErlnpUZUdQs6gayVyRx4soGuI4N4R7TgsiKDd0Rl3Rf2IYgCMf46CWM9SkEjvuyF1qjXLJnEEJJoPIxxBkTzeGW11he9bhVbtoVVP5+pzU2BTENRQB8jsfwn04PPuWganW8Eg4g1O4ay63IBmPmlIi5at4zyWwuo+GIhl36wkmk35AGw8uczQmz5Ak9V6ZVZGGL1LP/JdO38/IWkBUlAipFY+mA5BquOBd+ZEjJvSiYRa7qZqdfmhlxn++4+Osb509e/347XowYtDQP+66oAvTUOtj9cGx4XE2DnI0dDXhrp9TBwzBmWEl/zcit/nPEe73/jAO99/QBPTn+XujdCPd11FomYTHNY/Z+JoI/RUXBxBl7/8yH7nxGvrDLl2mwMMdHFKdHqXASgqir9DQFxTGggp7d6OGKxQ+17TGoJAJAyMw5BCh87ZI+CvdDKhv+rxD3gxefS6i/4XJof+8bvViJ7FN77yn7Nxs1POPqGZXqPDHHkuWbcQ76QZzBoAwO4Br30jA9ijkHjug6W/rAcXYyEoBMBAUEnoouRWHJ/GXFFkZ8xFbBmmjHERX/GDHE60oNB3NBnDL2I3qaLKkCQjCKCTkD2Z6uNt4ISTBKyV9GsayC0L6taFs5Ac2A+H3dsBHprHWDwW/4ghPwt+DPT3rvd3+Z+ksrnlOmtHuLwX5rQ+ftT2BwKSHaJ8pvysGZbQuqnSCaRRfdMDSHVjXEGLJlmjGP8uZ0d7hAro7G/rbPqyT83LWqb552ViqqqbLrnME8v+YD1dx7kzVv38MdZ79NTrfUDwThqPxNsU0DQi8QVxAQzPcZCkCB5Zhwuf42A8detqFogTlVVNt17hL8s/ZAPvn2It27by59mjx47Nj8m/H6hFfU12vTgr60QsM9R/B9MXRg6vzraXEFrmQBaNnaHWduBJjzrOTwYvN9jfztw3b01DoQI+3PFq9KyqYeO3X3IsoBPHS1W7FPB6yFqcPXfBY0kD59jZY9CfLEVe4E1pM0D7R6TZp6UkA9AlARS58STNj/hFCH/X47YAk0oNXYPrAKGeH0ID+Tq9zLQOBxiz5o41RaRkRQNIknlGle07cfVPH/6Jvb94RhbHqzlT7PeD9oU7njkKPKYzCgV7VnZ9kDVBNZV2hyaUGqjaG1mSDBVZ5ZImxs/4fo6AM9IaPBp1HpLxZJsCl7n2LWkIBJSgFaUBFJmx5O2IPFjI+RVReWdL+3D55SDmZM+p8xgo5P9TzRM+n3vsDpaR4fR8VY0iAweO7EC9qfw0XBKKf8/AEkvsux7ZXxw98GQVDydWWTet0on+GYoEqbGnrCHXQCiTgz6No5PYZOjpJZ/FFgzzFy2fjkH/9BA29ZeYvMsTL+lIEj4v/Ol/fTXhXpDNr3fxd7f1pOxICGyMlIvYMsxI+pEzvvrAmpeaOHoK63oLRJTr80lZ7VW+K7u9fawFHGA4U43jlYXtsyPJ/Xovw0Nb3f4b+aYmLgAlc+2MPWqnIm+OilESWDN8wuo/XsLtS8dR2eWmHptDrl+dXHda20RFUwj3W6GmkeIzfnX1dPWLBOSUQxbXAsSxKQasWaaGGx1hWq6VBAVbeJd8J0pbL33iOb7Grgeo8Die8uQvQrV/+jA67fmEdAmt+FeL537BrBlRju2gCX1X7do+bTDkmzksveWc+iPjRzf2I0ty0zF5wpInn5itS5OBPHFNuKLw4OTx96N7HEuexQG6oeJzbWw4e4jHH6uGdEfjJr7lULmfLkQVVZ57ZqduENUkip7flNPxqIEshYn0rGvn7c/vw9Hu2Z9lFBi5ZwnZmHPi8GcZOTS95ZT+adGWjZ0Y800M/1z+UGyMn1BAhe/tZQDj9fTV+MgZU4cFTfnY80w07S+C0GE8etQ77BM7cutZC5NRDKJYR6nol4kJn1yomr9nYfoPDwYopht3d7LjkdqWfydKYBmPxIgAcciscKuPQPq6PpbVgEZEqbZ+PCuyoibW4/DR1/dMAnF0cnQyVBwXjo7H6ph2O0KpsiKBhF7QQwZSxKxpBhpfLsjJDCnM0uU3ZiLwaYnbV4CF7+9lINPNNBbNUTyLDvTbynAmmn2Z2KNGQ/HwDXkI7HcjtcDIIbcF49LJbHMxqa7DwdtIMbeNt+wzOCxEUSDRtiOH3ssCXpSZsZpBKo8OscG7E+KL83SSAE04mfssVXA0e5GsuhGVeBj3vXKGjG94DtT2PitgyGemZJJZIH/Xk8EQRCY/Y0SWvcP4nVranxTvIkZXyoKfqb6pVY2fPcwskdB9ak0b+3ljF/OQGcUadsZWe3e+E4HHXv6EY06vB5vUAGpoikr69/sYM1Tc9mZWY2jZdQDXdAJxJdYyVqWxPvfOBhR5efu99JbNcT8/yvlva8dwDdG/aiTBBZ8Zwq2HEuoi8IYZCxKwDMsh9nABNZA7kEvw50eoujJGG5zkTTdTu756dT+vYWAVr/wimziS7X+X35TPglTYzn0h0ZcPW5yz0pl6rW5QXVxV+Ugb9+2l8FmjTyqfbOLsx+fRUKxFXteDPPvnsbW+46ArPWphGmxmloMjWi59J3lHHiint7DQyRNtzP91nxsWZbgsROnxXLwD424ukePHVBd1fyjlXe+tD9IKEpGkXN+P5v8M1JwDwUaPLSveZwKxgSdVqh6XJuqMsGixq5+L+u+uI+WTT0IkoDeIrHqoXIKz01j6PgI7339QNi4tu6L+7hh5yosSUZqXmnlw7sq8bm1vpa7KpnVv5qOwTYxca4oCpXPji2AqcHnhn2/bUTyk27j7zcCuKOk9IciUl/QXosvjY36fJ+Il+6Mzxdw5G/NeMeoEEVRYMrFmZji9Zqf9rghV1Wg+YNuug4MRCQ0fCMyta+0MfWKTDAIeFyhn9GbBKxpJox2PU5XZFujhFIbSRV2Ln1nOQefqKe/epi40hgqbi0gNsdC++4+0AmoXjX0ugGvRyEmzYzOIoUJKXQWCWuamcpnmonUrpJRpOvAAF6XjBBhX+J1KXQdGMDj8a/vBO3vACF65PkWyq7NRn2xNez3VbTxvGFdZ8Rjg8pIrwfviBYACX0KBLwula6DA1qWTlibK9S80kZ/vQOf6s98CpBAaPNo+44BDDY9l7y9lMNPHQsWMa24OT9oqaeqKlt/VMP+JxqCFo7TP5vH4rtKtbWmJKL4NFU5gTEVLcA76yvF7Hu0LkzRKugE5t1ZQsPbnez/4zEUj4p/BMQ77OG1a3Zyw85VtO/u10idMfdSUaHzwCDGeD3Fl2RS9XwzY73BRJ3IzC8W0r6zD9EsIjuVkOsWzSLWDDON6zo59FQTsltB9nc5r0Pm9Wt3cf2OlSz87lTe/fwerVhsoC+YRBZ+bwrdh4dAL+IJ2Dz5PyComq3Gwm+X0lvj4K3b9tJfr1kMxWabOeuxWSSXxUYViHiHZSwpRtp39wdrjAQPrkDnwUEsyYbIWRmALctMTJoJySTiG1ZDLNN0ZomYjP+sjcv0m/Opeq4ZxecLXpfOJFJwfjox6SYWfncq6z63O6TNdeYTWzucwqcPS35Qzls37kQZs1aVjAKL7p6GIAh4hn28+9UDNK7rRNAJGjd131SmXp5FwlSbZtE4bg6VPQpJ5bE0fdjFvscbQ59v4LVrdvKZPadR/1bkgurt+waJSTMhq6P2ZWMh+oMFyx+uIHtVMlXPNaF4VYovyaT4kswTEhqak404WkbCxkydScKUaGDa9bns/V0jyhhhkV4UmPO14hNs2X8N/XXDES2FZLdC7SutzPv6xMe358doazJFCLkuURKDopVT+HhxipT/H8HCr0zBp1fY/dOjODtdJE6NZeHdU0/YZsXR7mLTD6poWNeJZBQpuzqbBV8vmtQH3dE2gndE02IGPhmIYHbuj16I7aPAnGRk/rfCJ3nPkJeWTeGFyxSfyr7HG5jz5UIsKUYGm0ZCNh6iTqTMX/hTMmpE/HgVmPZelGimMsF7nxJ0HRrg9c/uYfDYCAiQOtPO2mfnYYo3cPDP4d7LqgJdBwZxdrkn9fmWPQo7f3GUg0834xuRyV2VxNLvTSXWb30j+QucBIqcjEU0dZOqnnybT7kimz2/qgt5TRDBYNWRvTKZ9n0DHB9HEqmAMdmEMU5P2Q15GGw6dv20luE2FwklNhZ8dwoZixJp+rAL95DmKx+yx/Wq7H28npU/Kmf3L8OPrY/RkbNq8vS5/59hSjAw9xslzP1GScT3a19rY9tDNQy1ukgstbHku6VkLU486eNG60+qrCKZJLY8UM2R55uRXUrQP3bnz+swJxux51rCPMBBUylUPt1EYomVly/bjneMLUl35SB/X7uNz+xchaQXMSUYmPP1EuZ8PfJ1xxVZWf6T6WGvi0YBd4SMDwVNuVF6aSa7Hq4J9bwVtM1U7ukp0ZoD0DwSG97uCNuUyy6Fw8+1BEn5aKh/ox1EAa+PkHHZYBZpWNeJLkpWlaqoUd87UehMEhe/sYRt9x+h4c0OBEmg+KIM5v/fFARBIL7ExgUvLWLrvYfp3NuPKcHAjM8XUH5jXvA34gqtLPtxRdhvd+6PbpUydHyE+jfaEUTGFIPUYDAJNLzdiRRlHlUVFb1FIrEijrZdoRkzKpCxNEnLpDGIqM5xnvMKNG/sweOIXhei76jDTxqGW0ygauRbySVZ6EwSO39czdDxEeIKrCz4zpRgWq/P5eO1G/fQ/KFG7llSjJz16xnkLE/C1e8N6+eDLSO8eOFWbtpzGu17Blh/x6EQsUDDu128/fl9rHlydtTzVmTt+VQVNagyHQudRUIySpzzl/m8dv0u+uqcIEBygZVznpqHIAq4+iO3i6qCs8tNb4PTX7x1tG1kBPqPjZB7RirJFbF0HRwM6ceiQWT+t6bQ/GGX5knvU0MIJMEoorfoQmo/jMdwl4u6tzqoebUNn2/02JXPNGPPtTDj5nwUWaV1dz/Nu/u1+2czkLM6FYPVinvQy0sXbwuxTempGuLFtVu5cddpdB4YYMsDNfi8ELjvPTUO3rptHxc8o/mr2/NjWPZgeD/X2l7l+O5+mneFH3vouJO3b90X8nnZrfD69bu4pfIMHJ1uIvY1VHqrhjWv2AhCh4BC8vUbdtGxt39UQTwis+5L+7jklUUc39IT0aZFEKDun+0kTYvlva8fCAkuHVvfyZu37OXC5+dHvNYAal5q868Rwzfoh55uZu6XC0AnonrHEYYGEb1l4jUyaMH3SOS3qBeIK4gheXYcXbvH1UYyiMz9WuS5YSxGejzIqshYplMFeptG/McIFwMEfl8yilE9tRWfQvaqZLzBJK9A26h4XZoVoexV2XDnwbDvGmJ1ZCzU5ujYXAtLflhOcrKNrq5RZb3OqCnoFa8c8owpgCnOQOH56Wy59zDjIeoFCs9Pp/rFyEXFVUWbCySjhM8lI477bZ1RwtHq8pMQQlhw29EWKC4dOZCiKEII+RKGQIAw7JsadCYpalaY3iyhyiqqKuAZHVoQ8BPd/pM12PTM/GIRM79YFPYbex9rYP/vGkLW8AeePIYxVsfc24sQTVJw7TL2LHJOS0ZnELli40revHYn/Uc16wV7gYVznp6PzqRj96/rIgqVHG0uug8NatlN3lByGUaf795jTs3mbcwzpCjg7PZQsCaNzd8/jM83KGYVAAAgAElEQVSphJyXpBcpuiCdt27bFzHT1dXnoevgIHlnpnLmE3PY/mAVAw3DxOZYmPetUvLPTqO3egiPM9Q2J3B82afidcq8uHYrrjE1jvqODvPSRdu4cfcqZJ9WC0se02YiIEloAVp/XxoPVdCyPtIXJNC6rSek7XRmiZlfKCS5ws6m71Vq1zZ2rtEJFF2gZav31TnYeG8VLVt6MNp0zLg5j9m3FUzq236ysGaauej1JWy95zBt23rR23SU35jLzC8UApqN3Jm/m8P2B7Q2t2WZmfetUgr8dWFUVWX/k8fY89sGXH0e0ufFs+z7U0j6iOK/U/jvQPaKZM7+4zy2319Ff70Da6aZ+XeWUnCedr/f/sJeGt/rQvEBbgCZ9+88hC3TrNUgMEjIY8ZkBUAUOPpGBz2VQxHnIq/TR8fuPpRoy1xVez4CQ6o4+rImGPULBQRBoOC89OC5fhTM+mIhW+87gm9EDj6iOrNI+WdyESWBvmPOsOdfEUQcne5P1H5KMolR55JodrxjUXFTHjV/b/E7E2gQdAL2PAtJFaee0U8Cn27m8BQ+EpJnxJOyJAn79HhSlydhLwhNPz/2YRev3bibFy/bzqFnmoN+cB6Hj+fP2kzNq614hnyMdHvY+0QDr92we9JjBqJ0ij9l3qUIeBR/Cs9J2hFMBveQL+ImDcA94EMQBC54YSEpM+1IRhGdRcKSYuTsJ+dgz9PaRvYqVD7fwkuXb+e1z+ym8f2uoE3KtOty0JlDHyFBEkieHosl6T+vbu6tdfDuHQd54aJtbH6wmuGuyQuxAQx3unjuzM0aIQ+gQsfeAf644ANggsJHImEWHpHw5q172f1oPc5ON54hH0dfb+e5szYxcgLFmsquj9zmidNsJx25jUkzcd4z87FmmtCZJSSjSOK0WC58aRGiTqR5Y0/E7zm7PEGCp/jiLK7atIqb687h4jeXkrlES33rPjxE2E7Ej54jDmJSTZz37HysmebgsROmxrL25UUfi03L/6+ofLaJdbfvp7d2WLNo2dPPq9fspGVL5Hv1UVB+Q4S+JkJ8sZWYVKMWnBoZR4SOyOz+ZR2+ETlicRzQxtOqvx9H8afAy/4/igweh5dj73Wd1HnrY3RRxz1BJ2BONHLe8wuwZZvRmTXiJXGKjbUvL5o0bVL1qVF/e3wxwUhwD3qRI/CR3hEF77BPs7cZf0y0a4rNPrEsmJatvfzzc3t48dJt7HuyEe+Yjbo5yciqn8/kpuqzuPHwmSz9YXmIr2JyhZ0L/r6Im+vO4dqdp1NxU36I3VB/4zDr/+8QL1y0jY0/qNKyHIhe6Am0++oe8oUR8gBel4rX6dP62njyTtAIq9gcC91HIttAtO/q1/qaJCEzak/jU/12KMMy9vyYYNppwHpDUTXyOb4oJio5DRqBDpBYbidlWbK2dliWTHzp6EbiLys20rR+VG3r7HTz8uU76Do0QPXfj0cs7ufq91L/dge7f10XXkDeo9C8oTvM0imkaUSB1Nlx43ynNegsEmXX5iB7FF69ZhcDTaPzWG+dk39cvxtVUTHGRVFHC5p/8u5H68L6quxV2f6IVih1zTMLyFySGFw7mBL0nPHoTJIr7BSck4YiM2pn5LeJkt0q+WenIMXownw6A0p/U4KefU80RBhbFHY/qhUMfu+bB9n+SC2ONjdeh0zDO508f84WHG0ual9pC/dm9SvO6t/qYPej9XidcsjY43OrtGzuwTFBEckA3r/jINsfDj/2UOsIWx+oifwlFbY9VBO1thEIeIZ8pMyKCwuwqED6gnj66hyainh8QNCtsPfxBu2aIli9KH5Sbc+j9eGFnD0qx7f3MnR8JOx7Y+GZ4PmWPTKF56drxPq4+40gULhm4k2+IGjBwfHWWYIIU67QCjme+6d5ZCxL0ohyi4QhTs9pv5hB6qzJfV33/KY+zBZElaFtRx9DLS6K12aE1UgQDSIlF2egt0qoChH7qiAJNH3Q7Q+Whnq+60wix9Z3U3ZtDlOv0a4hoLLTx+q47O1lk553YpkNc5IxpE0Vv51h2fU5GKw6LnxxEfaCGCSTiGQSiSuMYe2Li9DHaJ8JG1MBc6KBxGk2ii/KQDKIIb8tGUSKL8pguMcdvE55zLipqlp/U2VAJHT+VrXXVEVFFYQwO0VV9dvhTMKTJkyxYkkyhLH2OotE2fU5ZJ+WFEL+BtpWBjKXTy5G2POb+ojrlr2PNTDYPIJnRA6zI5KBY+u1bJXYbAtXfLiCW4+v4dbja7hy46rgfqm/YTg418hj2kxVoK9umJKLM0JsdQBEg0DRhek4jrto29GPTxbwqtofnyrg82gZhnqLjgtfWkRc0ej9tudbuOCFhRhs+qjFVAVRCJL1OaencNm7y7m57hwuX7+C/LM1Ox5djBR1XaPIKnVvtOEaCB8DPA4f1S+1IvtURnUG2tyrAIogaG0djRwXBQRB4MwnZpO1PBnJKKKPkTDYdSz/cTkZCxLQWyTWvrSI+GIrkklEN+a6jXY9Q60jPH/OFhre6cTrkHG0udn+cC3v3xEeDPskEF9k5dy/zOezR8/m+r1nMPv24pA9S85po21+xYcrg4Q8wKb7qth8fzVDLSN4h2WaPujmb+dtpa9+ONKhTuFTgOwVyVz6zjJurjuHKzesDJLczi43De/6Cfkx8LkUtj1UjW9E9mcjja5hFVVAkbWM0ajPtyCErPEjwd2vCU+UMWtk2b9G/jichsuuz2HG5/PRmSX0Mdr+veTSLBZ8uxRnt5tj73eHF2p3K2FCvI8bsdkW4gpiwtYWOrNE+Q2TuxoklNpY/dhszEkGv9BFJG1uPOc9tyBkX3QKHx9OKeX/R3D03XaeXbtZSxGXVdr39HPgT01cvW4psVlmtj5Uw+7HGoKLl7bd/Rx6tpnLXlnIkb+1aJ59Y8ZE2aXQuqOXrkODJJdHj5gllNhAImRzG1hAJuSeuL1Lb42Dhnc1JWXR+enETKLGBk1BESnFXEu/0f5tzTBz8WtLGG534XXK2PMswXQlRVZ56fIddOwfCLZL04Zupt+Yy7LvTWH6Tbm07+ilaX0XCJpHmCnewOrfzjrh6/qk0Lyph1ev24XskVFlaN/dz8Gnmrjq7SXYJ7F42XjPkYgLVM+gj8rnmyk8L40Df2gMU8SYEw3Ysia+p311Do6t7wotaqT4FcTPNDP3y4UTfr/8hhzatvdq1iKi1uZGu56zHo+uqvwoSF+QwJpn53Pkb5p1Tvk12UGyf7yPZACiXivmYopG8gCWZM23M0C8gH/PJWiqMYD0+Qlcu2MVg41OJIMYLL51CpGhKiqbf1gTkbzafH81V7yx+KR+f+rVObRu66P+zXYEf18z2PSc9bvZml97lJRjZ5ebjAUJkQv7WiRKLsygbU9fWMq/gkZOO9omJogmg7PTHTGtHwgqItPmxHPus/Op+msLkkGk7JocrCdgXaMzSyRXxNI5rlibIEHeJCp7AF2UQnGqqo2dLTv6tGKj48bskUEvnmEfhggk7FjseaKBLQ9WB/tE685+Dj7dzJX/XHxCitWJ0La7j5cu24HPb7PSvruPg083ceUbi5l2VRbbohCS+WelRFWlqCoY4/SUXpRJ69Zejr7WFuxr+hgd5zw5B9mjRA2EOns8pM2NCykwF4DOIlG8Np24ohgOPN0cHNODKagiFJ6Xzp7HGvA6IgeRDFYd7Xv6efHS7fhcMqoCrTtHr9vj8DJwLHJ/ff/OQ1rWVKRNjwItm3sZbI7sSynpRUZ6vKTMstO5NzwLIff0ZARRYM3Tc3n1su14/OcmCtoGKee0ZGpfbcPZ5Q4hcWWPQn/9MM2beii7NpvtD9VqpKP/fQEw2XUklNj8dkThGPGrJc2JBi7420KcXW7cA17s+TFBZWJX5ZBmvTFujhT0Al2HhzClGBjucIeodEHLbrCmmfA4Im9AR3o8DHe4NCJorLpZ1QLie59oQBdF3Sy7FBxtLs2Lfdx7muevynCHa8JxYLjDRdWLEY49IrP3iUYGW6L7jA42OclfkUxtpDRzAYrOS2XjvUfCCWCgq8rBcLvbT/aEZ+kNHnMy63P57Pl1Xdh8IEgCeaclU/3i8Yh9UdKLDHe4J7QbLLkkgw3fCVdlA+SsSsKaYcJeaqVn/2BIZ0qsiMWSMvladdn90+irGaLv6DCqoiIIAolTbSy+eyqgjY3nP7cAZ7cbd78Xe57lhIP1g00jka/bIDLc4WLJvVPpqRqkvzZQWFggodTK4run0nVoEEUHgjeUmFcA94iMo82lWQGNW9f43Fpfcw96adjYh08vorgVVAEUNzRv6aEsd+J1qCAInPtn7fmW3QooKoqsMuXyTAr83uZJZbFctXEFQ/7g4djAbeF5aRzf0kPV8y0IkoAgCuiMImuemosgCCy5Zyo9R4borXFA4LpLrCy5ZyqH/9aiEcpjziewb0GF7FWJbHog/H1V0frDgT8fwzksj4tmaEStOcEQugYc8/2x1/3KJdvwDsuaeEmA0ksyKDwvDUeXm+qXOyK2WfoCjZRXVZWOvQO0bOnBlGCg+Lw0jLHa+nSs2nssXH1eHO0jSAYJjzswSwROTtD60STQmcSIY4uggilez+K7p9JzeMhfa0Dr53GFMSy9bxp9tQ4kg4hvjNVJwA5isEkbVxKn2Fjz7AIqn20GVWXqlVnE5WoBgeIL0+k6MBD2/KuKSuqsiW2e+o9GJ4Ed7S5aNveCEr5+F9D2WlrwJzz3QfaBNdMUsYAlaL7xqqJijNWz5ql5jPS4cfV6ic2zhHiuJ5TauPKDFQy1OFEVsGWbg6TY3icatfF+zCF8IwpVL7ay6Fsl/7U2E+4BL/ufPBaWpeNzyez6VR2rfxaeBXoKn170Nw5HtAsE6Do8xOpfJLP5B1Vh7+lMEvlnpRJXFEPrjr6wfY3iU0mfH69JjKME1rJXJke1GzxRt4iJIAgC879ZyqwvFOE47iQmzRS0xHN2uaNmowVEL58kzv79bF65eBsehyZSVRWVgnNTmXpl9gl9P291KjfsO4OBhmEMNh2WlP/O8eT/F5wi5f8HoKoqL92yM2SjJrsVFJ/C1h/XsOQ7pex6tD5k0PA5ZXqODFH7ejttu/u19JVxA5ogCHRVTkzKq6qKaJLAET4ax+RMXigOYNP9Vez9fSOqrCJKAhvvq+KsX8+geJI0I3OiAUOsDveAtsEdOyanL0wIPZe08IGm/q0OOg8MhEwCXqfMvt83MuMzucRmmzn793PoqRqic18/1nQTmUuTPvGUwcmgqirvfuNA6P32aPd784PVnDtJ0KA9AgkSwPEtvSy/bxr1b3Tg7HLjc8pIBq1A1+pfzZw0etp9eAhRF/4Zn0uhbdfkRYtEnchZT8ymt3qIjr39xKSZyFr28bX5lh9Vs/uxBlRFRRQFdvyyjjN/Pp3StRmkz0/A0dYWFvEWRGFSFW/mwkQUAcYnhwgqlKwd7ceCIGDPP7Hn4n8dHocvqkK5pyZ6gbkThSgJrH50Jr21Djp294X0NVVVsSQbIypLU6bbMVh1LP9RORu+fQjZqynr9BaJlJl2ii5Mp7vGEfGYiqypuU8GyRX2iFYIkkkky1+0aPvPatnxizpURVNk7vhVPaf/pJxpl2dN+vunPVLByxdtw+dWkN0KOrOEwSqx5O7JfULdUchGQdJS1Lv2DyCPS+9XAb1eZLDJOWFas2vAy6b7q0KChbJbobdmiMN/a2bGZ/ImPb+J8N4dh0IUObJHRfb62HDPEdb+ZR7l12dz8M/NIZt2Q6zE8h+Use0nkQl7QYKRXi+CKHD6L2ZQflMuR19rx55vYdoVWYg6EVVVsWWZI5IiyeWx6C06Vj1czvpvHAzpa0nlsZReksnx7b0aWz1+8BEFfC6F3NOTqf5ba9DzPDDPCzotqP7cOZtDrlv1qXiGfKy/q5LsJdGVmb21w8SkGcPqyYCfAtMJZCxMoK82nBCRvQrxRTGc8bPp/P2CrcguGdmjakpCq47l95cBWgaC2+MvRiUriHqRoQ43qNB5aDCiSl/2KHRXDlJxYy47f1WPZ9xn5n+z+CPNJ84eLVPKmmFG9Ad+Og8O4nWP6iYD1yzK0O1Pw5b9ClSRMR6kRgFHmxt7noWBhnCCO6kslp5qR8T6I4pHpX13P3O/XIBoEMKC5oIokDorjup/tEW8Dq9LDanJMtTmor9hmIQiKzF+YrmnJsqxvVqR6JyVSbTtiFyYPGdlMotuLuGn+a+FfX/uVwuRDBLOLk9ImwXabbBlhMSptoiFICWDSNbSRFJm2JlyWRZVfz8eXPsEFGEJpTYyFyfSW+MII8gUr0JC8cRzrsluYMateex/vDHkdZ1FYtVPKmjb2Ud39TA+ZTT9WFGh/cAQHfsHSJ3E+90Yq+fSN5fQvquf/qMO4kuspM6OC1tPjfR4GOnzYk03hZHyiqzSsW9AsxucYQ/24aylifRUD4VnGHgVEkqs2rHfiHzs2FwLPn8CY4CEDNwBg01P6qw4rSjqmL6motVeSJsdx74nj+FocwXrZQQCOB989zClazMmTaFPnGLjhj2ncfiZZoZaRyhZm0HStNA5QBAir78EQWDFg+XMvDWftu19mBL0ZK9MDpKdBpueS/65mI7d/fTVOogvtpI6R7vunOVJEWOJAOZkA10HhyIqLFUVOg8OUXxeOvt+14iiCMG2Q9AEHCkV9tGxltB9SeA33cMyrhEFVdFIJ0EvMtjpQVUIsaUaD8+QD0VWefO2vTS824nsUZD0Ih/efZiLnptPxrx44oti6K0OX3/EFcaQNMWGHBQTjPY9US+QtXRyFb4128LA8fCMXBWtdo/BquPi1xbRsaefvhoHcUVW0uZqbZ5QYsXrlkN4NRWtnTIXafu1/X86xobvHwm+v+s3DSz5TimzP5fPtKuyqX7hON1VQ3idCoIO9AaR035WEdX2Mogo471WhF4AKdzGSPX/R9AJeKIodXVmkcGmERKn2eg6EG7XGl8UE+JZbU40Yk6Mvv4L1PUYi/bdfRFJf8ko0lvr+K8l5fvqh5EM4XOJKkP7nshzyCl8ejERNyAIAva8GGbdls++xxu1jHtVm1+Lzk8nbW4cKTPsVP21ha4Dg3idMoKkBdRXPlSG3qIjqTw2+IyNHVMtqUaMsToWfruEbQ+GrsNFvcCZj8782K5Rb5HC6pPF5cVEdIUQpNFx7ZOEPS+G63asomVjD8MdLtLmxBP/EWtzCaJAXOG/Xs/rFE4cp0j5/wE4uzw4IqSCqzI0ru8i7/RkhAiLEq9Tpv6tDpKm2UBHmGeXoqjY8yYmI53dHjwRCHlA83ufBK07+9j3h2PB4l2BxcfbX95PzvKkoPojEgRRYMUDZbz3jQN4nZqjlyiCZBZZ9v2pIZ9VFU2xMHajU/9uZ8RNvSgJNG/uoexKjcBKnGIjccon5wv2UeHq9TIUgSxUFWj6YPI2jy+MiUgIACRNs2GK03PV+8uoebmVls3d2HMtlF2bc0KFbe15FpQI0WzJIJBQeuJtmFBq+0ifPxG07+1nz+MNo33NP62v++oBclckseAbxTSu68TrHLVF0pklFt1VOqnthznREJEYUwW0ooGn8JGhj9EhGSUUb/gm9eMsspxQbA0rMCoIAsvvn8a6L+0bVWYJmqojQE5PuyKL1Jl2Dj/TjKvPQ8HZaeSflYKoExloiq4o7T/JqvbWNBNlV2dz+PmWIDkl6gVMdj0V1+XQVTnIzl/WhRVEfO+OQ+StSp60JkTStFhur1rDxl8eoadqiLQ5cUy5PCtsLFZVVQukjhlTE4qskYvzmSXseVqqZX+9dv1jnxTFq2KNEDgdi9btvRH9bFUZDj4VSsorslY88ESKOIGm3uqpjhDoUaFls2aVNOuLhdS+06X5EaMpdBfcVYrBqiO+yBokM4Okt6ARina/YnTHL46y9adHkfQiilfh4DMtXPjUHCxJRpb/sIy3btkzmmHkrwGw1D+PlV6cSXK5ncPPNmn+u2enUnB2KqJO5NgH3cHCtmMhiALNm7px9nqR8ZNu/o8p4GeM1YgEDkDLlh5m35Y/SiyNuS4V0NskEqfGUv9GZwgxH/hcUpnNX/CUsPdFo4jOLJFQauO6zSs4/HwL3ZWDpMyMY9qVWRjtemSvwus37QkNlMgKdW92UPt6O3EFMREJZNHviVnzSltE7+ddjzVScVMueqsU4oUfQICgHmwZ4eVrdjLQNKIF6mSVFfdOYfr1ucTlW4L9fOwRJJOIPc8SUkNg7Nn53CrWDBMr7i/jjZt3jxtbRJbdM1UrWhaBnBYkrVi0LceikaTj2tTnUbDlmPA6I5N6kkFgsMmJPkbirS/tp+7tzmD7lV6Yzpk/q8CeY4l8bJ2mrp57exF7f9MQptQ32HRM/2wu1hQTnz1wOlt+WM2x9V1YkgwsuquUrKVJ/voAUQRtqqYwnnFLHgeePBYcPwSdgMGmY+bNeQCs+FEZRRemU/PicRAEplyaSYZfgDH78wVUvXAcz5A3qNjTmSXmfrkgpNCrqqooPjVEqQqw7J5p5CxPYtuPa3D1echbncqi75RisOho2tgTvOaxraN4FZo2dE9KyoM2p6TPiyd9Xrhyb6jNxSvX7KSv3omoE1B8KsvuLmXWTdp1t2zt5bXP7glaiOnMEuc/OZvM+QnMui2fg39uQvbKozSrABWfyQ2O2dGOPdjkRNQLmqKX0PviGfIRm2vGF4EQ9HlVYnPNbLy/OqJCUBAFOisHyZhEpehod/HyNbvoPepA1AnseuIYS79bymz//T4R2PNigvYqYechCKTOiSN5hh1RJwSJI1e/D0EiorLTaDdQ/Upkv3qAmldaOfvRmRx4qgn3mDofAjDnhhyMdj0KjGbJjAmEKoAiK7z2md2hwUJZ4diH3Rx54Th6a3SCWR8jUf1yK3VvjdZ98fmj3K/dsItbDp6BKdmIWu0Ijg+BosGmJAMGm545Xyxkz2/rR58xScuYmnVbftTjBuAdibC4RxtbBo45sWWYEASBtDnxpM0Jvff6GJ3mLT/OBk9VISbTzGDLCBu+fySsP21+oJqC1SnE5cdQeHEGrfdWoUraJGRNN4cdJxISS6xRiymnz40nuSz6XiNpmg2dWaJz/2CYGEJVtIKwy+6Zxj+u2RGi4teZRJb/YNqk5zYZEkqstO/pD+urskc5Ycu//wRis8wR5xIEwtbbp/DpR1xBTNTaKSkztflx4bdKyT09haq/taB4VUouyiBrWSKCICAZBNa+sID6tzqof6sDc6KBsquzgzzAygfLeemSbWFFhU97qBxBEJh7exEZC+LZ8oMqhjvcZK9IYvH3pmCyGz7R69aZJRbeUcy2h2pH10X+TNh5Xw2v+fFJQNSJ//O16T4tOEXK/w9Ab5Eip5ADxlgdBpsuanq8oBPIWpKI/ED4e17P5GmBI93RfcyjpTKNRdWLxyP6lAuSQOP7XZSuzZjw+8UXpLPjsYbRorIqlF2QHlTbuIe8vH/XYapeaUX1qaTNjuPMhytImmrDkmDQCo+NIzQEUcAUHz0Y8J/GROojg23yR375PVNpfDfc11rUC8HNr94iUXZNNmXXnFgKVAApFXaSpljpPDQYQqCJepHpJ+Bx9kmi+uXWMM9Z0IIwDe92MfWyTK54ewnbH66hdXsf1nQTc28vJD+CD/Z4NG/pQWeWwiuhq1D7WvukWR+nEA5REpjzhXx2/SrUskBnllh05+QF8E4Wheemcf5f5rHjkVoGGp0kV8Sy4I4SkstGlXyJpTaW3Re+8ZrIu3ngJEl5gOU/nEZSuY39vz+GZ8hH/upk5n2tGKNdT82j4R7DoI2p9es6KT+BZ9qaYmLuVyIvKL1OmfV3H+bw344jexRSp9tZ/ZNyUmfYKb0kg60/qglJtxZ0GuGWuyoZU7yels09YZvX4gvTMcVPvHgeaonepoF6FQPHnKz75kGaN/UgiAIFZ6Ww+sflkwYiRL2IqBOR5fB2M1h1qKrKi1fs0IoA+q9L9alsuKeK1Io4Mpck4BtTEFj7AKgjCpkL4ql7q4NtP9cCJYFgScf+AV6/eS+Xv7KQ/DNSuOC5+ex4pJb+umGSym0s+GYJKdNH59+EEitL7wnva+YEfWRyWi9gtOtp2dQTOJ3QZYIKje9FD+Kqsr/woF/xPfZ7ImCI0eHq9+B3Xxh9228B4Or3UvdGO3Lg/THElM+r0lvjILFU85We86VwW7P23f0RPcS9TpnK51tY9cC0YBAkhJx2KWQsSuCVK3aGWR2A1lf6aoZZ+M1itjxYE9JuklFkyXdLtezDq3bSVzccssn84O4jJE6xUXJhOpt/WI3st9UBjdwy2fXkr05hy4+iZU4IjPR4yT0tmQuf1+53X+0wiWU2FnyjmNSZmod41qIEWrb0hp6bQWL2bflU/rU5qNgeq9pWVKh5pQ1LionemvDsBEEUMMbp2XR/NfXrOpH9mTAANa+1Yc8xs+iOErIXJ9K8uSf02HqR2bcVoDOI3LBzFW9+bg9tO/oQgKylCZzz+GxE0a9QjtWz8sflES4eRB0ovnClfKC2x+K7SkkstbH3ca0wYO6qZOZ/vTiYXSQIAlmLEyMW+ramm7jqnaVsf6SW5g3dmJMMzPliIcUXjM69+/98jC0P1eLs8RCTbGTJXSVUXKWNhz6XzNF3u2ivcuBzKwhbeyk+PETG3HhMdv8z5hr/jIkfy1rxlWt20l3lCOlrG++rJqnURtJUGy9fszNEQOJxyLx05U5u2XuaphxWVBR1TFaGAMc29zCZs7vJro9ojQWa73zVi62R9xYqVL3Uhjkh8rUrPhWTffJ2eenqnZoV1BhsuLeKpFIrOf6sr5PBwWea2PSjGpxdHixJBpZ8u4Tp1+Zo99MgRhwfbFnmCdfRpjgD3dUOxk8VqgDHto5mg8qqptPAPx4q/nGq57Ajon+yzylT+WwzBWdq5EoggDX23z63wu7f1kdUTo/0e+ncP0Drjr7RvhAYcwoKlHcAACAASURBVFXNslRVVeZ/o4j44hj2/KaekW4POSuSmP/14hNSXFtTjXRGeF3QiRPaO4JmYRHN3/no6+1RA+iqrFL7ejvpc+PZdH9NSNZGf4OTl6/exfUfTNzTY1JNFJ6bRt1bHahj2k40Ciy8o4TmCQRksltlzm0F1LzcFrKPlowi2UsTsedasOdauPilhWx/uJaew0PEF1tZ8M3iiAG4j4rZtxVQ/VL4sbMWJwYD/v+NsCQbKTwnlfq3OkL2XTqTNKmN6Sl8+mBOMFB6UTo1r4bWvJGMIou/XRr8//S58aRHCdaKOpGi89IpirBfTpsdx2X/WMS2h2vpPjhIXEEMZ/5gOjFTRwVaGQsSufT1JR/jVZ0YZt1WQGyOhd2/rmO4w03mogQW3FHyXx00O4X/DE6R8v8DMFh1lJybTvUbrWHV3WfdkheUto1PMw9s0o++2RFRNaIziTRt6KHgjOhewjrTBGmDJyBSnKgY7IkU6Hjh0h2jhDyACpXPHSc+P4YFXynipat20rF/INgubbv6ee78rdy0ZQVlV2ex7w+N+MZtSkSdQO7Kk98QfFLQWyQKz0ql/u2OkAVq8H5PAnOSEcEsooxR+SCAOcscMaPio2Ltc/N5/85DHH2jHVWBpCk2Tn+kPKhu9gz72PVYA1UvtyKZJGbekEPF1dmfuC2Q5uUauV8FinbFFcRw1m/+hZoBE/TV8QXB/hPwDPvY/UQDR15qQzKIzLg+m9O/dvIqnk8a879ahCAI7P5NPb4RGWOcniXfnULRmrR/y/GjEUCTIaEkhtbtke2akiewaDlRCIJA2dU5lF0dHugKFJyLhBPti8e2dfPm9w/Qe3SYtBl2Fn29iCS/YuWVz+yieXMvsn/cbNs/wPNrt3LjhhXEZpu5/J+LeOerB2nf048gQPbyJFb/rAJREkifE8+5v5vNB/9XiaPNhagTKLs2m2V3T53odACIK7JE9Y2MzbbgGfbxzLlbcPV6gt6K9W938tyRrdy4acWE44soCUy5JCPMT1tnFpl+Yy4d+wcYbneH1eLwuRT2/qGRhOIYIsWgZaDu7U4OPtsc0SuzbU8/Q60j2DLMZC5M4KIXFkQ8P0VR+OD7VRx4phnZo5BcZmPNozNJLLIy5eJMtv2kNvxLAhSdm8Z7dx6Ket1h5v5jIOoF+uqHI9p4KoCjy03v0eHgdQem8gBR3H3EMRrAIPS2jSXpo2HCruq/t6oOVO/ob6mAYBRoWNeJJ4piPEDkz7o1H1VR2fFzrRitwaZj0bdKmHpZFl2Vgwy1jISpvnwuhb2/a+S838329/MDtO3U+nnWkkTO+FkFkl6MGjjXGQO0KWTMT2DtXyPf7zW/n836uyqpeVlT+8flWTj94Qrii6x0VWqZDQrhjkWdlUMUnpUSDMSMhWSSsOdaOPB0c1hw2jeisPfJYyy6o4Rzfz+bD+6qpPql1tFj/6QiqG60JBq45MWFEc8bNPXztl8cpfGDbmJSjMz7QgFFZ6UiCALl1+Vw8M9NIWtNQYKZN2sqXcGvfp9yaWbE3/a5ZPY8eYzKv7aAIDD96ixmfiY3mMlmyzJzRhSv4gNPN7H+e6NK3OFON+99qxJJJzDtsiz++YV9NL43Wg+nq3KIFy7bwXXvLKHkwnQ2/bA67DcFgZMOuPdUD9FX7wzvayMye37XSO6KpIjrZFWFmn+0UfdWR5BcDt5VGXqrHfTVDxNfEN26Rw2sh8bvDVTwumS6Dke3ies6OMisW/I5vj3UB1iQBOLyLZOqYXtrHRELXMsehW0/PXrSpPzB55p59/8q8fltphxdHt67qxJRJ1B+ZXbE+gUAhWenkrUkgeqX27RnzP96IAi28M5iNtxbFS7wUKDv6DC9tQ6sWSYGml1hz2dshnHCcU0rsCtCYFwLvI4W3BZEgaHWKMFpBfr9GXqqCp7A9wAp8CNoz1jJhRmUXDix4CkSZt6cF5I1Apo9XmyWmcQpk6ifJ7jwQB+MFgBSVZU9T4Rn6KiySv8xJ91VQyRNks185q9msMEvJlB8KrFZZk57qJzk8liat/QEM0bGQpC0eTChxMraZ+fx3h0H6W90IooCpRdlsPKBsuBnU2fGccFf5k3cBv8CEoqtnP2bmbz11f2M9GsRzYy5cZz7xMdny/FJYfUvprPx+0eofL4F1adizTRx2o/LTyiz6BQ+fTjjp9MxxuqpfLYZxadlBa56sIy02ZMXLD8RJFfYOf/Pc0f/P9lGV9foHFL/Xic7fl2Po91F7rIkFnylkNh/U+22wnPTKDz337MvPYVPL06R8v8juOQP83ny3A/oPDCgKf48ClMvy2D6DblUv9qGIoIwri6RjLbJdHa4o6raXX4FYjTE5cegM4kRFcip0ycnn0ovyuTI31sjEhZ5k6TjeBw+Wrb2Rnxv+8/ryFuVTFflUAhxDdqi/8BTTSz6ZjGrfzGdd792UCOjVRWdRcfav8xFN5lH4X8YZ/y0gn9c76Fjb79WZMSjMOXiDGZ+Nm/S7x58phn3eIWQqqlMj2/rI+skfdCMdj3nPD4L2aMge5WQ4o2yR+GZNVvpqx8Obo7X332Eps09nP/YJ1tAt2RtBoeeaQlb2Cs+lfwTKGI5EbIWJ0ZM29NbJKZGIRj+XZC9Cs+ev5XeuuGg0m/996vo2DnIWb+u+I+e22QQRIH5Xyti7u2FeJ0+DFbdp6IqfMW1uRz+6/EwuxVRL1B03ie7cCs5P519v28ML4gmqxT4sz5kj0LNG+00beohNstM+ZVZ2Pz2MfXvdfKPm/cGbUMGjjmpW9fJVa8uRB8j0bSpB2XcfOFxKux4tJ4zflRGfKGVy19bpPlCiuGB2/wzUsg7PRmPw4feLJ1wQcPMBQkIOlA8o8ptEY10qLgum6qX2/AO+1CUUSJF9akMd7g59kEX+aen4HH62PhgDQ3ru7ClG1n+namk+1NrV/5gGo5WF8e39SL6vVALz01j/u2FNG3siRywVLXCu84ed4iyMfi2Csd39DHcHj2jzNXnxZZhxtXv5dDfWuiudpA2I5Zpl2QGx85nz9tK2+7RWiAd+wb547IN3LJjJfZsC2t+N5s3P78v6DMj6kUu+PMcDFYdeSuTqHsrXN8oSBoBlb0skeaNPSFrA0GE0rXpOHuin7dnWCYmzRSx8B+ALdtE2gw7m45WhfVFY5yehNKJSZz0OXHIkQroCVB8fjp99Q68EUpOCC5VO29RiOh3r8gq5mQDgiAw5wuFzL6tIFhkOKDWHOnxRL3fw11am8TlxXDZK5H7+bQrMumtGQq7boNdR+IJ2LLpY3Sc+YsZnP5wBbJbwWAdnUNtmdEVrbFZZo7v7o9YTNk97GO40x0xMxEIFp/VWyRW/3w6p/2kPOzYk2GofYQ/nbYJ94AXxafSV++k48A+Ft9RzPwvFJB/Rgp7/tQUGqBRIfe0yQlYVVH52+U76Ng/EFxvbnigmrp3O7nsr/MnnRc23l+tFS1ljNe3W2HDfdVkLU6k4d2usGwT2S2z67cNnPlIBef/cTb//NzeUXJTFDjvydmTKoQnw0ivFzVChg7AUOsIrj5PxPW17JFx9XkZ7oz8jIp6kZFeD/EFMbiHvFS+cJzOQ4OkVMRSdmkmRpuevqOOMFU1aJc41OYia1FC5JoRqvZ8552WzPyvFLL9Z5otlyprxNuFT48SJ4FjD9aNEFtkDh6756gjLMgZOHZ31cnXjNn4g+ogIR+Az62y4b5q8lYma8Wjxz0jqgAtO/sovzYba56Z/sbROh8KEJtrJr4wJjgGjIeoExjp9SBHsYWXZa1OiM4s4XHIIfOY3iJSdlUWmYviWX9vVRg/LSpQeG4qB55uwtXrjVi4OybZSNrcOBo3je6LVMAHZESoYfBRkbM8iYXfLGLrT2pH73e6iQv/MnfS304ui0VvkcIsQ3VmkbIrs8hZnsTmB8MDX6JOoOjcNOrWRdLoawH1kUn2qaCNz6c9VMHKB8rwuULHtcKzU9hwz5Gw76iKNkeC5g99/aYVeBw+JKMYZn/1SWGk18Pb3zqEa1gO+twf3zPAjt80sPTfkDF6MtAZJVb9qJwV90/D51LQx0ifivX7KfxrkAwic75ciCFRT/+xEfJPSyZ7+b9H4LjnyUY+vK86uL8faGqm6tU2PrN+KbaMfw8x/2mEqqjUv99F3TudmOL0VFyZRfypunefGE6R8v8jMMcZuPzVRfTWOhhsHiG5zBZMR7RlmZD966Cx6ZAAhlgd+SuSqP1ne4h3K2hkZebCyQnaNb+fzavX7QpROUhGMSSiGQ2ZC+MpuzKLyuc0BaAoiSDC6kcqJt3sTOTb7B2R6asbjpgSKbsVOis1dX3phRkUnplK664+dCaJtNlx//FCricCo03PZS8vpPeodr+Tptom9WQOoO6dzoiKFEWGps09J03KByAZxDAv9prX2xlocoZsfr1OmaNvdpyQ2uVkkDE3noobsjX/VY+CIIkIIpz2o3LNE/4koLdInPPYTN743F7N7sGroDNKFK5JJX/1yRH+J4vaNzrob3SGpN77RmSOvN7K7C/kkjzt5JXbnzREScBo+++1lBqP1Bl2Zt+az94nGpC9fn9zncCqH5YFPas/KaRMtzPzljz2PdGI7FMQBAFBElj5g2nEpBg1Rfn5W+lvdOIdlpGMItt+Ucelz84ja2E87/5fZWjhT8VvWXPPESquygoj5ANo/KATGFWO6S3RA5sDzSO07u4nJsVIzqKEE/J+dw/68PrGeTqjzWmDbSOM9HjDgo0K4HFpc0HKdBePzf0g+Bz01g7z9IbNrLpvKvNuzUcfo2Ptc/OofaOd9j0D5CxPIm+FtqFImxUX0RJIZxYpOCuFqpfboiaGeUdkdBYpImkvuxVsWWZ6jjp4Zs1WfG4Z34jCkZcktjxylOveXoJn0BtCyAegKrDujoNc9vwC8len8LnK02nb2Y+oE0ifGxcMdpz165n8Yfb7uAd9IQTbGQ9XIIoi875aRP3GnhC/b1HQPLqjFQ0F7cMTpc/H5VuZcmE6R99sp21PPx6ngmQU0OtF1vx+9qSbc/eQD49XGfVmDlw30N86gs4aeTxQVTAnGBn0W0iNJ94UNEVrTMASRQwfW1Jn2scURByFziRSOM7OLFI/r7guh7o3O2jf0493WEZnFhFEgTW/m33CdQ5As40ZT/6UXJjBoedawlSdol6geE0ab92+H1UdE5hCu69Go8TQcRcp5bF0HgwvSpgxzps50rEnw4cPV+Me9CL7Rv3jPU6ZzQ/VMvOGHNZ9qzKMiFUVeOfOSm7auHzC327c0E3nocEQgto3otC6s5/jO/rIWhB93aIqKiP93rAikyrg6HTT3+BEF8ECSpUJqsVzVybzmW0r2fenYwgCzLwxF3PcyfvV2nPNYcKRAPRWHVmLE9Gb68PW55JBImtxgr8ehiPCuaskT4ul/5iTp8/Zgs8p4x2R0Vsktjx8lOveWoLO33dlRpeEgYKvkl4kNtsSJAJDfhuCRYPnf6WI6Tfk0rGvH3OigeTy2OCzPdDk5Kmzt+Bx+JDdCpJJ1I795mL0UbJsBbS5MoCeOgcf/EAja1fdU0pCXmgwb7B1hJbtfVgSDOQsTQyu34d7PMFzDfRFwf96/zEnkknC4wm3G+w+MkTz5l4Gj4cr0gdbXTRt6qHwzBS6Dw+FF0T2qaSUxzIcocYXwHCHG0GEWZ/P54P7Rglo5f+xd97hcVRnF//NzFb1XqxqWZIl996NccOFZqoxH8WEEkpCQkghIYUQkhAChBRSCD2YZmwwzdgYbMBdrtiWJUuWZPXetdo2M98fI6202llLxjam6OTRE6PVzp25c++dO+d933MAg0Ek85I4qg+2IhoE34CkJNBWYWfE8kR2PVrgM49Es0jsuFA6GnUilUB7U//Etedva+3seaoEVYVJt6Z6AvYAk+4axqjrkqnZ34w1wkT06JABEa2CKHDRMxN4c0UOqqLi7tQSduImaT4iklFkxn2ZbH/4mEdSVDQITPlhOhHpQaQtjKH281YdE2pNQm+gEA0ipiDvda2tqiuI2yexRjAItFbZPYHUtmo75TsbsYQbSZkZOeCEgtPB/mdPYG92ea33LpvM7n8UMfHWVKz9yP59FaDX54P45qF0WwNrrtuDIqvIDoX8d6vZ9Y8irl03zSs570zDbZf59KF8r4Q7xa3ibHez86/HWagnpzcIFLfCmuv2Ur67EVeHrPm6/LuYJU+MIfuyU6+kGkT/GCTlv2XQMy1sLbN7mTn1hqPVRfqFcez9dzH1eT2ZXcYAiVH/l0ToAEwqY8aGEpAWQHuJDUEBRYCk+VEERPW/WRAEgbl/GMnIFYkUf1iLwSqReUn8gIwcw9P8n5spyEBUVjCKTgaSwSIS36ucymCVzoh+5dmA4lZoq3JgDTfqZqxFpAcRkX5qpjmyy7/Yv9vh/7MzgdJtDbrmughQuaf5rJLyAHMeGMGIqxIp2lCDwSKRcXE8IUlnJoqedkEsN+06n/x1VTjbXKTOjSF2fOg5zwwp2+6nz4GKnKavBSn/dcSs+7PIunwIRRtqEQ0CGRfHf2kaoLN+kUXWZQkUbajxaXvPv4s12ZGul1vZoWmhv3P7fm7edh6tfrTbq/a1MOJy/1Uf/rIDe0NVVTb85DCHXq9AMmrzwhph4tq10wjtZx5W7G7UNZFWgSNrqhi+VN/7QZHBEmni3bsO+mhCA2x54CgTb07B2SHz2vLd1Oe3I4iw++kSkqZHcMULE7GEGZn+4wx2/qXQU9UlWUSCh1gZdW0SRR/V6ZLuoBFrjq7515v4Bk3TtqWsk49+cQR7i8vzgcsm43bKbP7NUaKz/a+Jvcl6g1kiPCMQQRS8yAJjoMTQS+M5tKpMI7hFAXOUiYSZmizT1kcKPOfT+/93PHGcSbemsusvx3XbjsgMorHIV7u8G42F7YhGgeD0IIp2NSEYBRQEjCFGnyCoq1Omo85BUKzZU6VWta8JRdYIq+6rUdFI9rw3q8hY0nO/e5vQIoCt0YmqqD0Gt32uT+4lWWdrclKf30bMiBAsXcaY5hAjM3+WyfY/F3jd76B4C2Nu8JaMKv6kDlESSJnVs4eQjCKXvz6Fsq0NVOxsJCDazPBlQ3wSDfSuuz8kzYwgeXYU5dsbPAS1wSKStiiW2LGhRI8OoSav3aeCQXTIhA0NYN7DI3njqt3IDlkzPjQIGMwic39/anJm7TV2BEHwCjIe+7AKVy/yyPMvUSM7W8s60UPDMX2z4d6o2N2k+xyTnUq/pDzoCZX0/D4iIxB313rYO4gjmQTiunyV8t6t4t3vHdRIX0Fg+9+KuOTf48hY1L/nzMnQXGJDMAsoXVndvdcHR5ubhKnhJM2KpGxrg8cc1BQokTI3iviJYYQPC+TIq+XY6p2eNd1glTjvgSyMARIf/uww9ianh8R12WTcDoVNvzjC4sdGgwTuPt0qoFUv2NtdnsBn3zlkb+khfy1hRlLO961s3fDjQ3Q29JDBsl3BZney8WeHWfjwSP3qIrS5BvDGyhwK1/f4HxWsryFjaQxXPDcJVVXZ/GAee5854XmWmIINXLtmKhHDgjQd9z7HBW0tiUgL1DeoNUDcuFAK1lfr6rYrLpWC9TXM/GkGe/5ZrHkP9Pp84h2pGAMNhCRZaTnR6V19JEBokhXFrbJdZ0112GQOvVqOq13WNahW3CoVOU1MuCWVwy+X0VHj8JyjZBE579dZmAIN1Psx7m4s6EBV1X73o5/8IZ8df+05v13/KGLyHanM7+VnYgnVv9/9YciUCL6TM5dj66qw1TsYtSSRoJFWzzlNvD2NtAtiKXyvGlVVSV8S53mfHXdTCodXldFe4/A8xw1WiVm/yDylah49VOxuQla9nzUKgEulYlcTQ8+PZsvv88j5T4lnrBkDDKxYM5WozLNrWlrySb3uWBUNArWHW0n5ir67DuLbBVVReef2A17BY1eHTGNBO/ueKWHa3WfG9NTtkGmvcXiSKgAaj3formuKW+XEZ75SfoPQkLeuivJdjZ57prhVFLfKB/ccYtgFMWc1kPJtxWCPDoLAWDOSUUTpQ8YKEoQmByIZRa5+axqHXy4jb20VxgCJsSuTGbZkYC8b733/IM0lnSi9SJnij+vZ/e9ipukYuOkhZnQoMaNPTWfOYDEwdGE0xR/6mpbOuj+TqOxgEqZGUL6jxzBNELWN3OhTNDA9FzjwUikf/zYPxaWiyCojL49n0SOjTltaJ3lWFJV7fDMvBRESppy+MdHJEJxg0TcllAQCY89uBnE3okeGeJl1nkkExlqYcNvQs3LsL4rgIX763CAQNABzr0F8cURlhxB1BjTkv1jbmklgXxx9s1L3Jc/R6qa13I5kEnB3+pICAZFGYseEIEi+GWUACZP71408vLqCI1267XKXAoDL1sna7+zlpg9nnfS7HXX+M/2crS6cOqZ9AAgageRP6kxV4PhHtRx9q5raI61eWatlOxrZ+ucCzv9lFlPuHkbs2BD2PVVCZ6OLjAtjGbsyBVOggaTZkZzYXO9rzidA4rQImoo6NPKt12fa3wpYwgxU5DT5ZqO64fjGWjJP4p9g6TJarDncyrrbD9B8wgYqRGcHs+ypcYQPDSR3TSVH3qhElrtkfxQVd62DtSv3cuOGmVTsbvRtW9Yqqi55ajzBCRbadLJGF/55FJ89XOA3GNFWZefom1Ucfr2iF8Gl0l5tZ83Kvdy8eTaqorL5oXz2PlOivVQJMP3uYcz44TCv++1FrqmaJEbwEAuCUcDVO8tYBZNFJCjWQnR2MBW7mkHoFWxQtX1PRFoAilvhxYt2ULWv51mYcl4k17w+GVEUmXRnGjGjQtj33xJs9U7Sl8YydmWyhwDa9e8iPv51Xk/bAlz4xGjGdBmHCoJA8uwo3YC/qqhs+X0+e54+4QkkTPt+GjPvSe+XNBMEgWX/m0ju6gqOvFqOIAmMvjaJrMu1zKbo0aEoqyt9vicGGLCGm7BOMnH9ppnkPFlE3ZE2YseFMumONMJSBxYwrDvaxlvf3U9TsTbWorKCuPQ/44gcFoTgJ7PeYZOxRBj8jpWTyGx7EBRnwWCVfOTnJLPYf5VgP3HxoFgL6UtiObKuyksHXJIEJt0+lLYqO+/eddBHRmbdbfu5c+9cAqK++N4lMNYMgoCC6rM+hKUGIAgCM36eyepr9+C0yQiAJdzI9J9mIggC1nAT1388m/3PlFC8qY7AWDMTvzu0S3pGpeTTBt/qBFmleHMdAdEmBKsE7X20uoH4ieEICIi9Agbdn4kWod8+725bD8Wb6znRVZ0DvoR/e52T4q31XoR8Nwrer6V4az2uVjf7ny/1epY4O2RW/98ebtsxB8GAptvSB4JBM6HMvmIIeX3MOw1micl3pfHJ73xlVLrRXm2nfGcTDrcWzO52iVCAw29WMeOnmcy6P5O3v3uQ3o9JSYCZ92dS83mLRyrKq7/cKvueOcG0u4dhsPjKvBitEkGxFiyhRq7/eDYHnj1B0cZaAmPMTLgtlaSuIKtoEJB1ns+iUeh3banLa/Mi5LuR868SRl6eQNwpZKT7gzXCxNibUgBfTWiA8LRAJusYgZpDjFy3aRYHnj3B8Q21BESbmHDbUJJnnbrnT18ExWl7ZMUtez1rjFaJoHgLxzfVsvfpE75j7docbs85/6wm3vSuGukNl00+61WXgxjEQNFwrF13XXPbFXLXVJ42Ka+qKjv/XsT2vxSidvlMzLozg6k/TiMg2qxb2QgQHD/4jusPR9+s9KnAA23NKd/VRNq8Uw+8DuLkGKwXGgSJ08JxOxWfFx9VhmEXaNIaBovEuO+kcs2707ni9SmkL40b0EbD0eaiZGsDSh+zVHenwv4XSs/UJfjFshcnMuLqIR79V4NFZM5vshh/U6r2+QsTGfedFMxhRi2bbEEM//fBTKwRX+2Sv8JNtXx4fy6OFjcum4zsUMh9s4oPfnwS074BYtyNyUgWAbcKzq4ftwrWKBND+9HxP12MXqFj6CpoGrpD5w5mfJwNjLomUb/PAwwMnf/tfujWHGnlleW7eTR9I/+atoWDr5R9JYx5zyYkP0E9VVExWiUi/VSrDJkaQczoECIzfPUGJZPIlAEEYPc+c8JnE6gq2oa+xU8WbTciM4MQ/OxoItKDMAVJujrgRouEwSydVDbEYJHIf6fKR0bCbVc4uKrM898pc6K5bNVkrl0/g8nfG+YhaEdfk4Ro1U6um1ADTUM8Y0ksU76XhsEqecgbFS0LN3lmJMFxFr/nJplEsi6Jx2DRv/DZPx9OZ7OLVct20nBMk7CQnQo1h1r438U7kZ0Ke5/V7/PG4x00l9r8ti12ZQSu3HoeCVPDPcyZJdzIshcnED8+nNgxIZqpYJ8fRdUknPY8U6LbdlNxB00lHWx7vJB9z5zA3angssm4OmR2/PU4+18oJTIjyJMZ3xeBsRaGTAn3JuS7+tXZqZA0K4KMS+Jxo52L2vUjA1KogeAhVl65ejeV+1o8Zo4KUPJpA2/ffrDrPFWqclspz22jqrCdsgMt2Bq07ODavFZvQr6r8fd+cIj2Lr3puvw2Xvu/HB5N38g/p2xh3wsnPGvL9icK2f2fYpydMg6bjKNDZvvjx9n33MD2TKJBZNSKJJavm87Va6eRfWWC5z4ee79a9ztuh0zjcS2LNnxYEBc8Pob/2zCTBX8aNWBC3tHm4sWLtlOb147LoeByKlR93sqLS7fj6pSxt/opl1HxyHH47EMH1DJkXRqPqENQiQaBDD9VMr0h+Mll6B7nLTUO1D6HdynQ2eLi6LoqfZ9KAfLe1e/vgSJiWBAxo0IQDYLX+mCwikz67lCc7W5WXbqT1kp7l+kltJbbeenSnZ65ZQkzMv3eDK5dP4NLn5/oJUHoT45RNIjU5rbp6rqDdl1D50cjO1TPeXX/yHaVtAX9y/L5NxzXqnG718rea6aCtu59/Kuj2pzt86Oq8PGvj7LvOd91DRXaR5LxSgAAIABJREFUaxzUHW1D9fP+0v37hY+OZuoP0giIMiGZRZJmRnDNO9MJSw0kdmyI3/OPHRuqramdCgoa798t/9Ne46Aut43Da6roW6QrK3BodaVm1OqnXzoanAy/OF53TRYkgeGXagFaS6iRafeka/f7hYkeQl5rx9foXVU1Lw3t3yp7ni3hycmbeTRjI6/fsIeGQm1d2PaYjmF4F7Y9VghAY1EHb6zcy2MZG/nHpM3s/m+JrhHx2YA5xMjUH2rXvezFSWeEkAfIWBqrK0UjSAJZl8b7HWu2Ric1n/tKgZ1JKLJvhbsKIGiVVoMYxFcBkln0uw6cCY++g6vK2PZYIc4OWav26lTY9q9Ctv65gKAYMymzI5FM3uumwSox5ftpp932NxV9/b48UFWP9HDpzkZeuGgHj6Zv5L/nf8axD2q+xDP85mGQlB8EFTnNqAbBs6H3/Ehw/GPfTJRTgexQ/JL3X8aGQRRFlvx9HD+qXMK9NUv5wYnFTLqzZxE2WCTOfyCb7+Uv5AcnFrPsf5MG/AJ6tqG4FQ6truDVa3NYc8s+irb03Ivtjxf6mMS57Qq5b1XhaNOIgcaiDj74+RFWXbmLTx8toKPe23zqk7/m87cJH/NY1oe8ffdBTxTbHGpECDD6aDMHJQecdY3E4HgLV6yaRFCcGWOAhMEiEp0dzIp1074UfcazjdKdjbx5+wFeuWY3+1eVnXU5oIEgKNbCla9M9urzqOFB3PHJvC/NrOqriPpj7bxw0Q6KNtfjaHXTWGRjw89z2dr18vlVR9muRt664wAvX7ObfS+W+jVw7ItxNyZhsPa574KWlRmSaKUmr82LyOwmRspymhAEgdCMIFSh1+eAYmBAWVuuDn3SThAFXLaT698kTgnHHOqrIy6ZRCbfmUb2ZUM8peW9oaoqGUtiybxYP+NcNAkkTY3QlQwAdE0W+yIg0sTyN6YSlGDBECAhWUTC0wNZ8fZ0DBaJ1DnRzH0wC1OQhDFQQjKLpJwXxcX/GYdoEElfHOshBz3XZRYZeZUmF3Td+hmYgnttoAWYeHsq2cuGkLu20idLSPMBcFOwoQanvz6XBGS7QoyOIbsKJM3QCA9TgIFZv85i2OVDSLkgjmk/zyT5PC2Yl7UsXi8ZFTcw/OJYv7JZoijgaHez+1/FPvsEl00j5o1BBo2Ew3ssKmhGsdufKPQhK7qlP3b87TjFW+o9Joeurh8FcLYrtFbZKNna6CFAu38U4Og6TUf//R8f5pM/FtBS1om9xU3+e9U8u3ArbTV23r/7kO51gVY52FRi4/kl2yncVIej1U1TiY1Nv8nj44fyUVWVbU8cx90noOByKnz6yDG/x+0NVVE5+k4Vr12/h9Ur93LsgxoP4e9s99PnkuCRP/miOPR6BfY232PYmtzkvVNFmx8tbRVoKbMTnGD2/HdvIjY8vf89mSXUyPI3phCaZMVglTBYRcKGBnDNm/3r1QqCRq71fSMSRBi1PJHGog4q9zWj9rk0xaWw+5/FuGwyik4mnuJW/Y7xU8FlL04icVo4klnEGChhDjGw6LHRDJkUTu6blbrBDnuLi7x3T+L5QNd1L4v3XVtMAtmXxWsmxX5Ie2ebm+ItdahmAblPwE01CxRtru/3urrnrN7vspbFe6pYehP+AJlL43DZ3LqSQwra2ubwM84FScDVIetWcwGe34uSwLR7MrjjyAJ+WLqYq9dOI6argjL7siF0i/P0XntcwIjLh+hmhHa37bTJFGzQNyU9vqmOoK7MTT2i1RxswGCVMEWZvNc9wBRhxBigjXNnh5ucp0t4+erdvP39g1QeaPYcR3ar2rrWZ810y9qzcNOvj/Lxb/NoPtGJo8VNwYZanl20nZayThztbt1AhKqCo91Na2Unzy7cRv76GuwtblpKO/n4wTw2/PyI7vV+XWAKNHDNm1MJGxqAwSpisEqEJllZvmYKllCj//stavcbNL35jx/K46Urd7HpgaO0lJ88yWDAEAXd4JVolXSzXAcxiHOBsNQATYKyz+PEYJUYd2Oy/pdOAdv/clx3r5jzVDGqonLRv8eRcl6U5xlqCpKY+9sshn4Bma1vC8Zcl6TriSQaRZKmhVO6o5GXr95F2e4m7K1uanLbWHvrPj5/vfwcnO03A4PyNYOgtaJTeyHr+4Fby1g7HVgjTYQmWWk87n0c0SCQufj0tDa/yVBklZevyaFiT7NnY1W4qY7JN6cw71dZuiZToL1I2BpcVB9u49UVOchOBcWtUrariZynS7hl0yxCE628vHy310vT569WcPSdau45NJ/Dayro1DF9qtzfQtXBFuLH9l+iKjsVjm2ooam0k/gxIaTOihxwCWfSjEhu3z+PxuMdGMzigHwLvg7Y8eRxPn2kEJddBhVKdzax/8VSbnxnuo/h7ZeNxGkR3H5gHo2FHUgmkbCUAN3S4W8TPnuswEcKwWWT2fH3IqbdmXZSo9Jzjd1PFbP598c8Y61sZyP7Xixl5bvT/Wc/dGHM/yVTurWRwo01gIAoCRgDJJY9NxF3p+zJjOwLW62TlvJOjm2o9WQBCmgv7JIb9j53gvN+mnnStodfHMeuJ4t95HOMAZLHG0NxKxR8WEdDUQexI4JJmxPl0Um/6uXJvL58t5Y9JmsZgeNvSmbo3CjNn+SBbD7+zdEu3WeNvLzon+OwRphY/PgYync0emvmC3DFixM1k++xoV5SJqCRdgMt4RwyKZzv7p1L0/EORIPoE/wdd0MKo5Yn0lRkIyDS5BXEuOCRUTQca6etohNF0XR/o0cEM/vnWn9GjwjhB4WLqDrQQntVJ0PnRmGwaNu7llKbTwAXtDW6tdJO1sXx7Cg+7tPnBrNI5PAgmivsvsQZ0HBCM1Lf89wJPnogzzPWjn9ax95nS7lp/QwOvlLhtz8Or6ki65I4moo6PHrd3ZDMIpHDgnD4ITs6ah20V9sxBvrKOIBmpF22q8mvKknx5nr/1QdmkZbSTr8Z2rIKbTV2Dq2uwO3oqTAUFC3RIOepEo+JrB5ayjrZ/rdC7QWyVyMum8ye/5Yw/a6huPwEemx+TBp7Q1VV1t62n8JNdZ69Q9GWekZeFs9FfxnD8EviaChs9wkmiQaRmBGn59lyeI3/+31kbSUup+JlJtxz0tpcWvHmdJ6Z/anXWDRYJa5ZM21A7ceNC+PWnPNpLrZ5AokD3XeMuT6Fo29W9RiXdn1tzHWJtFXakUyiT5+pCjSV2Jj83VS2PuobMFEVSDsD1WYBkSaWr5lGe7Ude7OL8GGBnoB5ydYG/cxqBUo+a2D01YknPfb8h0ZQl9tGU3EHqqIiiAIRaYHMezBb25d0Ee3ds0wEzAEi2cviaSnvxGn3btwNCHaVtsr+ScfubtZbX+xNbhRRO2B3cExEM5nGKpAwJZyGYv02EqdGEJEWSNX+ZhSlF1GJFkiJGxuKaBZx2xSvsaiq2vzvD7V57YgmEVffdcskUnu0jexl8dQeadUN2MaNCfFf/qFC0BCzptOvev+ZKkBAnJmizXW01zjwkrRXNUmfwk21pM6M5JlF22gtt+PqlBFEyH27isUPj2TciiSErnHc7afRfRjJJGJvdrHv+VLv9VgFd6fMjn8cJ3ZMKEUf6QdbYkYGs/1vx3G0ea/ZskNh///KmP2TDC+d568bYkaGcMuOOTSXaLJcYUN71pasS+OpOtji85xVFZUh40OpP9bOc0u3a/3uVCjboe3Hblg3nbjRA5MvbKu2k/e+FlwdviiW0ETNYyf70jiqDjT7tC0B8eP7lwwcxCC+DAiCwLLnJ/LKsp24OxWtMkdVyVgcw+gVJ39GDQQddQ7d33d7pJiDjVzy3wkcfK2cphM2MhfHkNyPz8y3Halzohh/Uwp7ny5BlLQgoyAIXPnSJESDyIZfHMHd9/nvUPnwV0cZfVXCOffL+zpikJQfBPHjw3RNi4xWieSZp7doCYLAhX8dw6vLd6O4FGSnisEqYgkzMrsfgubbjIKNtVTsbfY2RbHJ7H6qhIk3pTBkUhjH3qv2KS0WDQLB8WZeXr7b67tuh4LsVtj8+3xm/mCYbhaTq0Nm04N5NBV16JYsK26V4k/rPaS8vdVFXX47wXEWwnqZMLaUd/LshdtxtLlxOxQkk0h0ZhA3rJ06YGMQQRSIzDi7BklfFC2VnRRsqiM6M5CUaQMrj7U1ONnycIEX2eCyydTlt3N4bSVjrzn9TcnpQhC+un1+LlC5r1l3HggSNJfZiB5+dk2HvyjsLS4+fijfixBw2RQaCts59EYl4687uV+GKAlc8tR46o62UZHTRFCcmaFzo5GMIqqqEhRr1krs+yB2dAi1ua0YTD3+BN1PFdmhULa7qd9zn3JHGnnrqmmrsuOyyYhGAdEgcNHfxyJKAm3Vdp69cAedTU7cDgWDSSR8aCAr103FHGwkfkIYd34+n6JNtdhb3KTMjiSsl3nu+JtSSF8cy/7/lSKZRCasTMYapkmVGUwit++dR8H6avLfqSY02crUu4dh6so+XPLoaF66VJN8kR0KBquIMcDAvAey+72ubgiCcFLjbYNZ0jVuDYg08Z1PZlO6vZGmog6is4MZMinMZ9MbPy4UxnkHTRMmhWMMLPUhr0WDyJBxoUSPCOboW5UawWZTEA1aX1z097Goskp7rUOXQ2os7MDR5mLTb47itveQ085OmcaSDg68WkZ5jv97XrqjkUv/OY7ctZW0VnTdb4OAaBS48G9jMVolzYDe6du6ZJWIHRmiu2+RzCLJMyJpKOrwq1GOpFU/NB7v8JHWU1wKUZknn9t1R9sQJMHHKNLpVCnb3Uji5HDy3q3WNalMPT9K0/HWSWKUjCKNxTb/DQ/gHadsV5MXIQ/as+bw2kqm3JrKpFtSyV1TSUtZp3ef/3XMaVej+ZWnATqbXXSH87qJ+W4ytrsfw1ICuKfkAvY9fYKq/S0kTg1n7A1JiOLAz0sQBMLTfCW0+sOmB47iVHpMS1VVk3Dc9EAeVz430SdwBBqRmTwjAtml+pFSUv1q2X4RBMVZfLXauzJl9caaP0me3rCEGrlx00zKdzbRUNBOZGYQiVPDPWtL4nkR5L3Xk9ktA52dCqOuTuDgq/oZcSpgCum/OiEsNUAjOfEmiMPTAqgvaEcwSzh6uczKXQev3NNy0qSesNRA3C4Fl+JNbMuA6lZQFRVnp6LpvfcZi369R3qh5lArslM/0FlzuI2pdwzl0GsVNBV1aNUGBm1uL3lc83ySTKLu9yWTQGuZHYwCDqfqGYvdJL3TJlN9qBWnTpWxs0Om5lArDYUdtJR1ep7/qqLJhW74RS4jlw3x2hd49Y1D0frcIEAffktxq5TnNJN9SVxP0KoXVMAUbOToy2XoQXGrVH/eyrCvuQaxIAiED/VdW8Zck8infyrA1al4xrEATL5zKAaLxIb7j2jBiq5+k10qsktm/U8Pc9P6Gf22u39VKevvy/VM8k0P5DH/11lMvTWVMSuS+PyVChoK2rsqW7R1afGfR2G0fnUTRwbx7UNkehB37J9H8cdaYDFxSjhRfuQwTxUxI0Oo3Nvs8/vgIRYMFpGa3FZevGyXtn93Kux5vpTUmREsf2HiN6IKvz80nbDRXusgJjsY8wCNrwVB4PxfZzHuxmROfNaAOcTAsIUxnnWl9qh+0l5nkwtXh3zaBtvfRgz22CCISAskc2ksxz6o8UTbRaOANdLI6KtOnyxMmBzOrZ+dx/4XS2ks7CBpegSjlydgDvaVGhiEhoKNNboZgIIkULK1gfN+lknRx3W4O2UPcWi0Ssy5fzjODplWndJIVdbkiIJOIiNx7IMaQuItfskMW6MTVVXZ8mgh2/5+HMmovVwkTQ1n+bMTsIQYeet7B2mvdXrKgBWXTG1uG58+VsiCX2d9ke740tFd6t+b9FIUhRev2E3Jth5DSEuogdu3zCIswTvrVVFUxF6ZmGW7GrUXsT4v9i6bTP771V6kvF7bJzv2IM4OwocG0nzCdx4pLvUrbYBbntOEZPTN6nTZFPLereqXlO9GdHawD0EsCAILHsrm3e997kX6Gawi8x7IwhRsQHb7kg2iQSBqAAEfS4iRmzbN4siaCoo/qSc0ycr4G5I9L8Lv3HOI1spOD6HpdMnUH2vjo4fyWfqnUYC2Dg6/OF73+EWf1fPGrftxOzW2Ztfzpaz430Tie5mIZyyJI2OJr5RNzMgQbts+hwMvllJ3tI348aGMuy4ZS9ipPce+6PwWRIGUWZGknKJObvqiGMKSA2jslZFutIjEjw8lYYpGvmVdlciWR455ZOzC04OInxCGZBIxBUl0tMpePIwAhMaaqNjbjCAJPhI1SqdC/rs1RKYHUrXf1zQcICojCHOQgZUfziJ3bSVFm+sISbAy/sZkItICkV0KLqeKiK/Ro9OumdiNvzGZg6vKPGNRMIA5yMCkm1NoLO4gd22Vj7kuQNr8KCbfPJTcNytxtru9nqHTfpCGKejkZEbIECsOP9IAklli+g/TONqlJd7XnHPKnam0VtqpO9auSQb2+hu3UyE00YopUNKVkgmM6t/rpmhLva40oOJWKdpSz7Q701i5cSa5b1ZS9FEdwUMsWp8PO/2AbFRGEPXHOnQJ4pgRwTQUdOC2u72yo7vvSfd/i6LIpC/ZDF1VVKoOtHjOp/dYL93ZRECEiTErEjUfpF7nLRoEJt82lH3/K8Ut9xD63Z8LqnY/4nqtL1qli//5f6oYel4kR9+sRFX6tC1Cqo6JsB4EQSBpegQJU8O91h7ZKXsR8t1QVVh9835Sp/tP2umbMa2HxY+M5I0b9noF9QwWkUV/GkXIEAsOP9I/kkkkPCVAt1LGGCgRlmxl88PHdIOJbjdUHmghMNpMR63DZywGRvefzR2WYsUU4DtHTQFa20arxA3vT+foW1UUbqohKNbC+OuTieoK5M/+aQZbHvI1i53xo3RCEiw4nPrVaAaLgfCUAExWnbYDJcJSAtjz7AndDH1RFKg62HJSM+WQIRa/ckuSSSAsJQBDgIjLpniNNUOASFiyFZdd9nt8f1VP3wQc21iL3S4jqz3BJRXIebaUWfdkULrD1ywdoGJfs6c6xR9aKztZf1+uT1Dwo9/lkT4/msi0QK5/dzpH366icGMNgVFmxt2QTPQZIjsHMYgzCckokr7ozKskzP9tNq9ctcurYsQYILHgdyMAWH3TPjqbeioNZZdMydZG9r5QyuSbU8/4+XxVYGty8trKfVTsb9b4GpfCnB9nMPvu/j2+uhGWEuCV3NSNk9mrfdO9184WvpTw0J/+9CfmzZvH8OHDOXZMXxNTlmV++9vfsmDBAhYuXMjq1au/jFMbRBcu/uc45v4yi4hhgQTHWxi/MpmbPpx1xiJdIQlW5vx8OJc9M4FJt6QOEvL9wBpu0jUtE0SwhBiIygxi5YaZZC6NIzDWTPz4UC79zzgm3pSC0SL5zagzBRsIjPb/Ym8OMZAwMcwra4nufwuQMD6MI+uq2P5kEW674smGL93ZyJt3HcTR7qYsp8lHr9PtUPj8df+l7V8VNBZ38OJVu3kwfj0PJX3A2jsP0NmsPcg3PpDnRcgD2FvcPLVwG6A9hHY+Vcwj2Zt4MG49f528maPvacSMOdSo1YD3hYDHVLixxObV9po7etoGKPq0nidnfcqDcet5OGMjWx4t8JhzDeLMY9aP0n201Q0WkRHL4rGeIhH7ZcIcbNDfEPUaa6eDrIviueWd2SROCycwxkzavCiue3s6CZPCiR4eTPzYUB9DJckkMvnW1AEd3xggMe76ZC57egLzfpPtIeRlp0LRJ/U+GcayU+Xw2pNrJ4MmOfLK9XuxNbpwtsta8LLSzguX7/LovvaHoBgzs36cwWXPTGDa94adEiHfXN7JqmtzeHDIBzyU+AGrb91HR0OPTFjJ9gb+OeczHoxbzx+HbeSjP+brBjhOFZJR5JKnxmGJN+MEnEBQagAXPTkWQRA49mEtnzxagOxSUdwqiqxSfbiV176zV8sMHB6sq28cOy4Mc4gBu07fqYAqqMz7VZbus0gQYda96QBUHmxh+39LOPh2NbtfKmP/q+XIbgVREhBNGuHfLV/RbZzYvS+Z88tMYieGah4GgCnUyNJ/jCEgysz8B7J7CN9ePwhw3k8yCU20ctOmWYy4bAiBsWZiRgWz9InRzPpRBqJB1H3+gjY+bU1Ov1nIbodCwaY6VBEvTXoFEMwCBRvqmXH3MASDgIseTXsZSJ8fRXCshdk/yfCR0TCYRebeP1y/0V6whBp05dAko+jxXDBYJMasSGLZ0xOY/+CIM0LIA4QP0+Zq372DgGYeG901lrzuB4AIEToZqF8W9ClQz4cAFOc0+YxFh6zSUNyBJdSIwSR66Z+raAEaS1efl+5u4t/zt/JgvDa/Nz6Yd0ay6EdcOgRzuNFzqt1XYok0kXWhvk9GX+x/pYzHxnzEg3HreXzcxxzo0oT97K/H/X6nZFsDljAjBh25F4NFxBLS/9o49PxoVqyeQsoszdA6ZXYkK96YytA5Udia/Es1dTS6GH5hHKYAycvcWxA1Yjzrwjg6W/x8X4X2Wgez7x3mYyZrDJCY9aP+yYqsC+N0ZeAki8jwrj6vPtzG9qdLOPh2DTmrytn7crkWDAZsHW5kg/c8kA1g71SwNbn8jsb2RifDl8Zi1Llug1Ui66I4rOH6/a7IKpZQo0/QiV7n0NHoBEn/c5dTYfiSWExBRgSx5ztanxvIvjhet8JIBRAhKv3cze+zjf2rynF2Kp61vNvc19nppnJ/s9+MdYNZ7Lf6KW99je7fKG7VE/iVTCKjrkxg2VMTWPiHkYOE/CC+dUicEs5166aRNjeKwBgzSdPCueXd2Qy/MI7GYhtt1b7Vva5OmX2r9Kt7vil447b9lO1p6uFr7AqfPl5I3hkwZLX4qYYTJKFfmdRB6ONLIeXnz5/PqlWrSEhI8Ps377zzDqWlpWzcuJHXXnuNv//975SXD5oFfFkQJYFJt6by3R1z+N7BeVzw+5EERJ4+gTOIL4Zx1yb6mG+Bdp+6S0CjMoO4/NkJ3H1oPis3zCSjq5zXGCCRcUGsz4u50Soy+ZZUJt+S4ncjOOuedCbdnILYRar13sAbAyUyLohh25NFPgZCslOlcHM9tkanX71Mf0aJXxXYW108vWQ7xZ/VoyraNR15u4rnL9uJqqrkPFeq+z1bvYu6wna2PVnEh7/Lp6PBiQo0nujkjdv3U/BxHcnTInC7FN+uUSHrojit7cXb/LZdvreZV67fo2VXogUDtv29iA9/e/Ss9sm3GcnTIrj0n+MIjjcjGQUMFpGx1yax9LHR5/rUTorEyeEaEdRnjhstEpNuSjkjbWTMi+X6t6dz9+H5LH91ipfPxPJVk8hcEotk0mQxItIDWfHqZCK+gKREb6iq6jczQx3A2nJwdYVuEEtxq+RvOP0N6sng7HDz30XbKNxcjyqryC6Vo+/X8OzFO1BklapDrbx0TQ41R9s0PeU2N9ufLOL9XgZ5lQdbePWmvfx95iesueMAdQXtA2vbJvPC5bto7FX1UVvQzguX70KRVbb8ucAnC09VoHRXE83lNioOtPgQqSpw/JN6BIPgXx5ZEAiOs3DNy5MwBvZs0C2hBm58bzqmAAPVR1r539W7qc7tue5t/yzivZ8dQRAF4saFasaNaMGEblI0aYaWobv29oOcyGnWTCaB1gYXq2/ZT9MJm9b2a5MwBPYQb+ZQAze8O90jSWSwihgjTYihBgwRJkxdBKogCIxdkeBDvIsGgSm3paIq+CVaJIuEKqueAIKj68eNllmkyCrNFZ04+0jvKEDlUe2eTr1jKLN/nI45WCPYLWFG5v06i7HX9lS55K2v4dlLd/CP2Z/y4e/ytGcvMPLyIV6EXW9kXzQwkvaLwhggoXa17UX+GbW+W/SrkUhm0YeUj84KPu314XQgCIJfshIRavPbaCyyIaveY9HlVNj5n2JG6JjEdiP74jhq89v431W7qT7UCqpmtrv76RLe/qF/Q+CBwhggccO6aQSlWD1Bt+BUKze8PW1AL8b7Xynn/ftyaavWNEtaK+2895PDHHyjAllHHsoDFYYvicXl0PTJu82SZcBlV8hcOrBsSEOQAUOkETHMiDHShLGrSqXphH8/q44GJ0arxI3vzSBxcrgmwWQQSJwSzo3vzcBgkfxWhAoihCZambAyhfE3JqF0BccUg8C4G5KYOJBnpCigGH2DbqpBQJAE6gvbeeGKXVQd7LrfHTI5z53grbsPApDz7Ancbjz3y4mWwZ/z3AmaS/3LV9kanRgsEivfn0HilF7XPTmcle9Nx2iVmHxLqo/fjSBCSIKF6Kwg3bXc8yOriH3mZ/e1GSxSV9vTSZoa4Wk7YVJX2wESM384zGd+C0B4aoCuLNs3BY52t+5z0OXQgtzjr0/GYPENso5dkdhvxYzmjeN7dBVV11x6EIP4tiJ+XBjLX5vC3Yfnc93b08mYqz2DVFnVMbKh67Mv8wy/XLTV2Cnd2eQj8+iyyWx/sui0jz/tjjQfnkqQBEZeFu/xvBnEqeFLka+ZNGlSv3/z/vvvc9VVVyGKIhERESxYsIAPPviAW2655Us4w0H0B1VVObGzidz3qzEFSoy9MoHok2jjDuL0EJkexEWPj+a9Hx3WNB5VFYNZ4pqXJw3oReuiv4zm1WtzqD7cimQQcTsVsi+JZ8qtqYiSwJXPjGfNLfu9NLNHXTGE0VdogbOL/zaG9+45rLkFqSpGi4Hlq7S2O+p9TWBBe+lWZZX4MSFU7G/xesOVTAIjl/VISjQWd7B/dQWOVjfDL4ghbfbAjWDPFg68VoGrU/HqE9mp0lRi48TOJh/pmd6oO9auS265HSobfp3L1U9PQOm6PK/HowSlOU00ldpw2b3bVlxdbe9oZOvfi3D10Tp1dcrkPF/K+T/NHLBG3CBODRkXxOCWFQq3NBCRGsCEaxLPuSlvfxBEgWtfn8LLV+/G3uJCEARkl8IWVBD2AAAgAElEQVTcXw4ncXL4WW/fHGzk8v9OwG3XDJa6M0V7o2xPE4ffqUYyiYy5LJ64Ef2bnRnMEsnTwind0eg1T0SjQNYAyMaOWofuHFbcqt817Uzh8LoqnB2yVwWR4lJpq7Zz/JN6dj1dgrNbA7jrc5dTZd9LZSy4P4uqz1t4+fo9msyDCg1FNo6ur+E7b09jyJiTG28ffqsSW4N3sFSVoelEJ8e31FFfqE/uqzLUFbb7JeY6W9zYGly6Mg6AR6t92PwYflq8iLZqO4IEQdE90k8fP5zvY2oqO1X2v1zG/F9kUl+oT8zV5LbRdMJG4cd1Omuuwo7/FLP0DyMZNtd/2201Dv55/lYcrS5kl0rdsQ7KcppZ+KvhTL0llcylcexfVe61XiuKyrCF0SSMDdOVHDAGSIy9OoGY7CA2P1rokzHudqtkLorh+WU7da+rsdhGXWE70elBzPxBOtPvSsPe6sYSatTMibuw5dECtv6jJzjeWNzB529UcucnswmOtXDF0xN487v7PS+iggBXPT9Rdy7qwdHu5uCaCmqPthM/JoTRl8Z7+cE0l3ey//VybA0uMuZGkT4vGlEUyFoax9YnjvvIZxgkkeGLY8mcFMv0u9LY8Y/jSCYRRVEJHWJl+ar+3xHOJgRBIG1eFEUf13s/nwXIXBJLR71Te/nsq2amauMoKMbMlc9OYO2tB7qCoZoZ85XPTsAabmL9L3M9WdLdcNsVDr9dxcLfZJ1UUrAbLRWd7H+9go56J+lzIsmYH4MoCaiqyrv3HaG52u4xY22qcvDeL3K5/tXJCIKAIqvkf1hL0Sf1BMWZGX91IiHx2lzY/PAxH7kjV6fCx388xl2fzGTbE/rZ8gkTwzixqxG5lx47dJHTApTuamTkJUNOek2luxp58eoc3A5NhrH2WBv5G2q5YfUUAiL1+0RFq/gEjexd8PsRHHitHASBcVcnEN5loD31tqGsv++Ij2eEOcRI/NhQynKa2fV8GbKi1UnIisruF8vIujDOYwBYvr+JTX84Rnudg6xFsZx/bwYGk0j+hhocbTJ9Vz1Hh0z+BzVd65L3p267wtH3amittvuV9nG0uU9azSZ0Ve+EpWjXffD1ClQVxl6V4KkoGzYvmpk/GMbWxws9cywoxsw1L2tjISjWTHuNr09IQJSJ+DFhGK0GnDanl7muySoyZrn2bhCWHMD166Zpsl/gtfccNjea2fcMY8ufC1A0L3VC4iyseHXKOd/fn01IFv09oeLWPHjm/CyDhuMdFG2u80hIpMyIYMEA/GgyF8Xy0UP59A0ZSgZxwJUwgxjEtxmR6YFYw40+yYQGi8iYq/0nC3/dYWt0aRWfOh647X6McU8FM+5Ooza/jWPv1yAaRRRZIWFCGEseGXXax/624ivD5FRVVTFkSM8GLj4+nurq6lM+TmTkIFHsD9HRXyxTQVVVnr9xF/vXluO0yYiSwPZ/lXD1E+OZfdvAdakGcWqYe3sWM65Pp2hrHUaLxNCZUUgDNSSJhp/sXkTl4WaaTtiIHx1KRHJPJlr0TcFMvz6dHU8dp6PeybTvDCUssUczbO53s5hxnX7bIxfFs+vFEp+XHVOARMbEGG56eQZ/mfkRLrsmEWEOMhCWaOXKP08gIMzErlUneOnWHBS3guxS2buqjJGL4rh19cxzqpXeWtypq8WrquCodiMaBJ9r7kZcSrAPad6NhiIbrjoFg1nC7tBexjzyQDI0HbOhdKg+GwbQMlbt1W4a/ZBTklHE4JCIHnp2spC+6JrxTYCjw82fZ31EXWE7jnY3RovIp08c5+4Ncxg2Y2BavecK0dHB/Lb0Ek7sbKCzxUXq9EgCws5s5dMXHRuvfn8v258txtkpI4oCO58q4ZLfjWLhvf37Tax8cTqPTd+Es8PtWVuCY8xc87dJBEWdnNgad3ESO58q8THvlV0K4y9MPKtjvb3UoTu/ZaeKvcpF2e5G3SxdWQa5UeGD+496rS+qrK0XHz90jHs2zztp2yc+adQ1LFZllcrdrRiMIk4feklDVMzJ91NjFybymrzX5/dGq8T4y5K8+lSvf8tyfI25ABQZnNWyXwmL5nI7cqOK0SL5kPKKW6Uhv6Pftj/5YyGOVrdX0MHVKfPRH45xwQ+z2fS7Y3QnInrWawW2/KGQe7fO5+bXZ/D05dtQFBW3XcEUKJE5N5a5380kb1MNokH0kScRDCJGt4H2Wv9BoNZjnYyY3ssToY89gq3Jyda/HfcKZshOlc4mJ0der2bJ/SOIvjaYyZencvyzOkRJIG1WFAbTwMqJ64raeWLaJ9ocs8mYAiU2/6mA+3IWEp4QwKH3Knnqqu3IbgXFpbJvVRlDp0dy9/o5RM8OZuF92Wz6U55mZCloz6ilD44ic5KWtXbVYxNZct9ITuxuJDjWQtLE8K8EYXfj89N5dOqH2Ftc2nUHSAREmrj+6akYAwy87Nrj8x2jRWT8Mm2cR18TzJgLEvnkyQIEUWDO9zIICNXW3IZjNh9JP+37EmorRI88+dpzeH0VT125DUVWcTsU9r9STsqkcO7eMIfjW+s5sasJd+9x7FAo2tpAa76DlCkRPLFgC+UHmnG0uzGYRT79y3Fuf2sW2QtiadUp6wdoregkYWgk2UvjyH3f+11MAO78YA5v3ntQt3pJVaFiRyvn33xyuaWnf7Pda8+lKtoc/PCBPH64eS6ijiGqIMC0lUOJjg7m7V8dYtPj+bjs2jH2/K+MhfcO55LfjWbu7Zl89FA+9uYeORgBuOAXI4iNC+G53+z0bdsm8+ED+dy35wLW/zGXdb/oqWSoyW1n1zMneLjiEjorXbqSZ84Omc5KFw35HboZmCaLhNKkYtTRhAdt3QyPDPSry97Z6iI6Oph3fnOIjX/O9xD/e18qY94PM1n2+zEAXPaH8Vxw7whKdjUQGGkmZUqEZ47d9cEcHpm00ev8BBHueP88YuNCWPDzbNb8+KDnMxnAJDL39uFYgrSgntPmJm9XDaoKWfNiMXcF7GSXQvGuFlSLpvUvGQVaGl046xWiJ3+x5+vXYg8q669fpkAJ2gTiJ4dx1/vnU3+8neqjrcRkBhPTj5l4N6Kjg7noodG896vD2vNE1eRqFvw0i5GzTx70+rbgazFGBnFO0D02bnljJk9e8AmKW8XVqb07DBkTytL7RmmSv99ARIQFdpnYej9rJKPA6AsTzsi8+e7a82go6aDqcAtRw4KIy+4/wepc46u8XnxlSPkzhYaG9q+8TMa5QHR0MHV1+k7J/aFwSx3715R7NqGKW0Vxy7z2g30kzwkj4AzoFA/CP6ImaMRIY5P/cl5/MMZKxMQGI6P43P/o6GCyrtIyLVzIuuNDr+1p30/lwJvlONrdWlmUoL2cLvnjCBoaOxAjBL6Xcz5H3qqiqaSD+LGhDF8cS4fLQUNROy/dutuLYHJ2yBzZUM1n/ytkxNJzl/kRlmHFGCD5kmcCWOINJEwMpWyXL4kkiCAE+ycVVEXFFCt5Zcp1r1AGs0hkViBBcWbdtgURrEOMRA0PorHU5lNfL7sUZIv+vTtdnM6a8U3A5scKqM5r9WR9aiSYwlNXb+PefXO/EkRSfwjKMBOEmQ6Xg44zkBnRjS86Nsr2NrPt2WLPOFdkFaVTZt39hxg6P4LQBKv2e0WlvdaBJdjglaFLMHxv1xxy366ivrCD+NEhZC2No1N10ll38mz38mNNKL1IVugqzVegpqIN85CBbYfcDpmORhdBUSbdEs3aY220VNlJmxWBJGmb/ZBUi64poWQUsA4xYm/XJ8VVoOpEC7UF+n1dvLOh3/vQ0ebwS/K0NnSSPC2cvPW+Zo6CBFLUyYPAHW4Hs+9J57O/HvfcU4NZJCjGTNYVsf2e28nkMZqabFogVOdvJJOAIUrE2UXG9RYGMxhForOD+m370PuVupreqqpy5NMqqo+29vyu1+clOY3U1bURNSGIu3bN4fDaSmyNLoadH0XKjAgaGjs4uL5CXy9cVTm4vhxEdO+JCoRkWE567kWf1iMaRehr5GxXOPhOOZNu65G4iRynBeKbWvxLYvTF89/ZRUeDwxPIcXbIuOwyL92Rw5X/Gsd/l3sTqU6bTMGndWz6Vx4TViQx+c4UUuZGcPTdKgRRYMQl8URlaPej97oRM0V7MaqvH5gM01mHBe7aqa0tdcfaic0OJvuiOBySG4fDzdz7Mtj8cIHn2g1mkYAoEyOWx1FX10bu+9WsvvOAp6Lh/T/mcs3TE8icH0P0iCAqDzf7ELWuThkxDE+fdK8tgZEmDF0VWbJL4ekV271IYEe7m+LdjXz4jzyqD7d6EfLdkF0q218uIm97NaV7Gz17ru4g1tPXbOenh+cTmmChpdyXmA9LslJd2cKxbfW40YomoUsr3yLw2bOFtDX7f6a0NttPOo5VVaV8v35QrmxfE22ddhb8ejibHsrDbVc1E12jQGCUibHXJ3BkWxUbH83zqspwdcpsfDSPYYujKNnegN3uxoVmFq3JqQi8/8dcRl8XT9m+Jr9tV5Q1se5+X2khe6ubZ27YzuhLhmhmzH3WbVOgRECCkeiRQZQdbELtkxDvtMtIESJOm+wVKOj+t9Mms/FxTZKw9/rQ/bnqgtztVWx4xPu6nTaZTY/nk7EkipjhPYRDzGTfOWZOMPCTowv46PfHqD7UQuyoEObdP5yAcBPVVS2s/0Ouz3W7nSqbnsxj6ndSyd9Uy2u37vNUCimyytX/Hk/24lhyXiyleFeD51kgu1Rkl8zTK7ZzX+6CU5Y0+LrsQaNHBlK6p9EnaUd2qxiixJ5rCIHYqdo9OZXrGnNDAkOmh5L7dhWqopJ1YRyxI0K+Fn1ztvF1GSOD+PLRe2wEDTPz/ZzzOfxmJW1VdpKnR5A+N5rmNht8g4fP4oeyee+nhz3Pf8kkYA4xMum2pDM3bwK/2Lp2LnCu1wtRFE6aPP6VIeXj4+OprKxkzBgt0t83c34Q5w6H11XrZoWIBoGCzXWMveKbW/4zCF+EJli589PZbP9nMcVbGwhPtjLjrjSSJvVIY5iDDEy4Lsnnu8XbGrsit96EgrND5tDaynNKyo+9KpFPHi3EbZc9hIRkEojOCCJ5ajiLfzeCZy/egezo2XhLRoHpdwwlOM7iN5M+KMZMdGYQqTMiKNnW2JPZKWgv9pNvSsEYILHlkQKftqPSA0meGo7RmkHxZ/VewQyjVWTKLanepOUgzhg+X1vpI8MAWklgY7GNyHOogfx1Re571brVKIII+R/WMmVlCp+vq+Sdnx/B0e4GFUYvi2fZI6M9Gt6mQAPjVviuLf1hz0tlmtlmr991697u/G8Jyf1I+yiKyod/yGf7f0sAFdEgMu/edGbdkYYgCFQeauFfS7Z7ZXZO+r8kLv/LGEZeGs9Hf8zX5nfX5UsmgbAkK2lzonQ9oLvRUtGJwSzp9ttADIdTZ0RSuKneh+QRBEiZHkHsiBAKN9d7jXXJJDDx+mSCosxIJgHZ6XuC3W2fd0868WND2fmfYlytMsMWRjH1ltQBSWpFDw+ifI9OoFMSCE+24nIpiIDQ666pqNhtMmFJVpKnhZH/SYP3dxWVabcP7bdtf0atTptMUKwJo1UnQIt3nwfHWph+R5rP3wTHmTFaRZ/qKcmkBSxknazp7rFYndtGdIb/TJ6gGLPuc0YQIDTBovONgUNRVIo+a/CprFBlbX6W7W3S3QsqLpXt/ylhQte8jMkOJuZrqCFttEqMXZ6o+9mMO9KIyQpm51MldNQ5yFwUy7RbU7GGGmmrsbP69v0+UkyvfGcfP943j1nfT+PIuiqv8WS0ioy6fAiBUWZUVeWjRwvY+mQRqqpqmfZ3D+P8H6ZTsb9Ft9LFZZM58HrFSZNiWqvslOY061bxuZ0K1YdbmX//cN750SGvvzFYReb/cjiVB1s8Gf6977piVznwRiVjLx/CkXVVvmL8AqR2+T74gyAImlF0i6+US7dJ7LTbhhI9PJid/ymmvdZBxsJopt02FGuYkZwXS3XnQbdHyNEPanDaFRSvc1dxO2UqD7ZiDjVib/atxDGHGjn8ps41dSF/Yx1X/GMcgVFm3PZOzzmIBoHASDPDF8cSNyqEQ2sqcbp7WjZYRUZeEk9wrBlLqJHOrrZ7N2MJNRA/JsRjXO5zCgLkb6j1641y9IMaL1LeHyxhJi78s6/EQPXhVh+ZJdCCHQder2TUJfG8evNen/H0+nf38aPdczn4RoXumqnIKhX7W0iecvbl884FZtyexsFXK7zvt0Uka2mcRybqdBGVEcR592ackWMNYhDfRgREmJhyc+q5Po0vFeOWJxKeEsD2fxbTUtFJ2pwoZtw+dECSeYP48vGVEcddvHgxq1evRlEUGhsb2bRpE4sWLTrXpzUIQDILusZhAnzl9ZUHcXYQHGth0W+zuf2jWSx/bqIXIX8ySDrmtYCHoD6XMAcZuHXDTDIXaSa5pkCJcdckcuPaqQiCQMK4MG5YPZX4MSGIkkBgjIn5vxzO/PuHYzCJjNcx55XMIuf/RNtIL39+IpNvSsEcYkA0CgybE8UtH8wgKMbsaXt4V9vGAIlxyxO5oavtIWNDue61KT1tR5uY+7NMFvzy5OXhg/ji8JfVparqoInNF4RkEhB1yFBBEJBMIsU7Glhz9+d01Dtx2xXcDoVDb1Xxxg96yunzNtXyj4VbeXD4Rp66dAcluxoH1nbXPes2ruvWzAVtnvaHzY8VsP2/Jbg6ZVydCo42N5seKWDvq5oh/ZMLt/pILexZVcbO50owWiWuXz2F0GRr1wVDRHog178+BVEU/K+LQFhiAJNWJmG09jXulphxZ//kc/bSuJ5MS881a6a5GQtiiM0OZuWb00iYEIZoEAiINDHnxxks/v0IRFFg6i2pPucnmQTO+1GPdF3GvGiuf20KP9tzAXN+lOEh1frDvJ9m+Kz7gqgResHx1h4DxV7/U+gxDT/2WYPPMV2ySu56TW7D3urinV8e4fejNvHHMZv44KG8noo/RTteb6holV+yU2XKd1Iw+PS5yP+zd97xUZT5H3/PzNb0QnohQIAACaGEJr0IIiAWBLti755i19Ozez/Pdnp6ltOzK2KnKIoKUqWHQKiBkN7ZtM22md8fkyxJdpNdDByo876Xd95OZp6ZZ2aemfl+v8/nM+r6FJ/HlXFOvFfNeVEv0m9GrKr1jHezRb2582RGdFow3VIDVa3QVuhMEiOv9X09dIYgqAkRb4g6gZp8a4fByroy7zIofyRSJ0ZxyUfDuO6HMUy8q7c7QbPjy5IOEmsKO78poVtqEPO/GknSMPUeM0foGX1LL2b9QzUN/+XVPH75Vx72RnVssTe4+PnFA6x/6xCSQejQyFpnFInu13HVVUz/EHSGDsYWRR0TB56XwOwXBxLe3YwoCYSnBHDOSwNJnx2PqBc7NNfWGUQyzo3HEOA5oBsCJdLPjvOyVltGXpPiYZisN4uMvDbF/f97je/GxR+qfT7pHrWiu6V9QQQXCs7mf1woIKrfJU67jJdcBnarC8kgNLftOaaOvDal2axU8di2goKoE5D0IlcvHcWA2XHoTCI6kxpwv3rZKCS9SESPQOZ/PZKkZjNWc5ie027oyVnPq+d75LUdtH1NCmNu7FgStP/MZgN1L2OLIAromp9xVQcb+PDqLTyWtpx/jPyJ9f/N92oW2h5JL3Z4f+uMAjlfl3hdpsiw46sSj+dfC47mPv+jEt49gCu/GUX3URHu8z3qhh6c89LAk71rGhoaf3K6j4zgwneHcv2KMUx9yD8PG42Tw/+kxPLxxx9n+fLlVFZWMn/+fMLCwliyZAnXXHMNt956KxkZGcyePZvt27czdepUAG666SaSko69Gk7j+DN4XiJbPyryqNSTZegzKeok7ZWGL6rzG1nz5iEq9teTMiKckZd3d3/QnCx6jon0+rveLDHkopN/v4clmrnwnaEdLu8+MoLrfhjjddn0x/tjr3eya0kZOoOqJzzquh4MbZ4xoDdJTHu0H9Me9W7uFJZo5oLf2LbG8Sfr0iSWP7q7TVWYIEBkj0DCkswncc9+vww8N4E1rxxEdrbTAZcV+p0Rwyc3bPV4zjhtMrnLymiosrP/l0o+u227+5wcXFfNW3M3MP+TEfQY2Xll5thbe5G/3lMXGmDcbZ17o8iywup/H/Q0RGx08dNz+7A3Or1WswIsf3IPWRcn894Vm6kpsqqBIwVK8xr44OotXPfNKFIndmPPd+W0r+MXRIGe4yLpMToSa7WDnC9LkJrHlqwrkvwKwu5bWQkGAaW9NrNZ4MAvlaTPjCNxaBjXfHua1/WnPNAXa42dHZ8fbXvY5cl+B4BlWWHXsjK2flaEqBPIuiCJPhO7IQgCvSZEMe3Rfnz/6G63IXHyiHDmvjmkxaNU1dZvt01BEtjwTn6Hff7903sYcUV3XjlzLdWHGtyV/mteO0jemipuWHoaiII7QdEa0Sxgq3cy+b4+NFbb2fFZsfu4h16azGk3elbGtycgwsBlC4ez8Jqt7orYoCgDF7w9FEOAGrDc8kGhR9BQ1An0meLbr+LiD4fxyfzNlOTUIuoEBFFgxtMDSBwS5nPdzhAEgf5nxrBraVkb2SDJIDDwnHi1Er+13kYzCgqBkf4lYv6IqFJ+3k2kW0w94zNDuWqJ93ts1T8PeFQYOxpd/PzCAe7ZPhljsM5Dg1wfIJF1WTI1hR1LExmDdWRdmkzR9lqP7QeEG4jpr1ZVp58dT/rZnjOT4zJCMIXoO2zbHKrnis9H8MmVW9z+D4GRBua9NQRTsO/rYfyC3tRX2Nj6cRF6o4TT5iJzXiLjbk/1uW6/M2NY/PAuDzNlh0Om/5kxZH9V7HU9WQZTqJ7xd6RSX2Fj20eF6v1tl8mcG8/421NBUPjk+m0e23YBaWeo3giB3Yyc9+qgDvcvslcQA86PRwrTqXJeM2Lcvkzjbk+l+lADWz4rVttQFDJmRjO+uRL64o+y+ODCTW2ShuHdzcz7z1AsxVaWP7bHoz1BhAFnxWEpaeLlqaux1anPpMZqB0sfzqVyfz0zHx/QaZ/G9A8mINyAvaGto7E+QCLr0mQsxU1eJcdcDjVJLRrUZIbQTphLceF3ovb3Smx6CPO/Gnmyd0NDQ0ND43fK/yQo/+CDD/Lggw96/P7GG2+4/12SJB555JH/xe5oHCOJg8MYd1tPVj5/QNXPFgUUGS58a4gmnXGKcmhDNf+Z9ytOh2rGdmBNFatfP8StP4whLP7kBRR1RomL3x3K+5eowTFZVgNUI6/qTo/R3gP2vxf0Jok5/x5MQ6WN2pImInoE+iXhoHFqMuzyZPJWVbH/5woURQ2YGcwSF7w1+GTvml801TnY+W0ZTRYHqeO6EeOnsdiJJLpPEFP/msbyR3c3y4eoVaBzXskkIMJAdb73AJOkF7GUWFn6cK7H1HmHVWbZ33K58dvRnbbdd0o0/WfGsmtxW9PC025IISq1c0NTZ5PsVbYDoK7MRsFm79rIoAbsdi0tpbakqY0MjLNJpmRnLYc21CCaRVyA2C7aKQsKjkYZY5COc17KZNoj/ThSaCUiJcDvIEd1fgMOu0zrunABEG0yRwqtna0KqH1/9ouZTH342NtWFIWPrt3K7h/K3f23e3k5WRcmMvspVT5h+PzuDL4wkcp99QR2M7aZ7h8/MITi7FqP7aZO6NZpn9sbXOR+W4alyNq2z20yZbvrOLi2mgGz4qg60OBhFGvUS8T0C0bSiZz9wkCmPpTGkUIr4d0DMIf6H1hKGhbOHVsnUrGnHkFSpchafChmPZPOgZWVbbW8BZj3xmBE0fesjeAYI1cvPY0jhVasNQ6i+ga5Nci7yqy/p1OWW4+lyIrsUhAlgciegUz7WxqiJCIZBI8+EyWBYVd097uN4hwLeeuqCepmYMAZsW2qpZ12mZUv76doh4XkIeGMuaEnOn8N7k8SvSdFqYH1dkk7USfQe3LnhSuKotBY7d3QuL7ChigKDL08iZ/+vh9a3cGCXqD3pG6sfvUgMoqnP4Ggjj0jruzO/p8r3VXOLZXeF7071KcviigKXPz+UP573q+qsW+zVEvG7DjSz1KlBhMGh3H7lolU7K1HEAS69Q702G7xzlry1lYRGKme75bqelESmPVMBlMeSFN1fYP9k+QCKNtbr1bEt7sWJYNI2d56bB2M16JOwFLcRERyADOeHkDKuEgOb6ohOSucAWfGIooCDdUOBL2A7JDbjJkCAvoQ36aA9gYnL52xhprDVhxWF4II2z4r4txnMxgyJ5GK/fVs/7YMWRJw2WUkg0D2t+WM2VdPbFowDRYHLrOA06qeV8koIBskbPVOQuPNnPVMOl/dlaM66iqAKDDr7wMISzSz+K+7cDS62iQsHVYXG945zMTbexMY2XFhjiAIXPTuUN4+bwMux9HzPWBGDBnnxlO2q46fnt2rXgst/QnojTr6TIlm1/Iyr4lOfaCEpaRJk/zT0NDQ0NDoAC1ipOEXE+7ozaDzE9n3YwV6s0TaGdF/+MqH3yuKovDpbdltgkjOJhmXw853T+xh3r86ru45FmwNTsr21hMaayQ0zv9Af4/Rkdy9YzK7vy3DVu8kdUIUESkBx2WfTgUCuxkJ7KZND/u9I+lELnpnKMU7LBRsPEJwrJE+U6KPW/DreFBXbqOmsJGoXkFtAoYH11fxn4t+BdRqTUGAYRclM/vJASfdoHbUNSkMmBXL3u/LEfUiadOi3TN4ug+LoDq/0cMQUXYphMSaqC/3bizY2pSzMy58awjF2RbWvnYQySAy9uaedOvVeUAeVEmFkFgjliJPiY64/iEMnpPA9kXeKzND400UbD3iUW0KaoVhcbaFfSurcIFb894tM+OCiv31JA5SK6ADIgzHbKxuDNI1Sy+0RZaVTgM07fHVduWhBurz7ZhiJXRGNXB1aENNm4A8qJrtv35QwMj53d2JIr1JIi4j1GOb576Yyeuz1uJocqmmeXoBY6CemU8OoFYwLJIAACAASURBVKawkS3N0kHtCYk1UbCtgz63yxRtt3DatSlkLyrCUtykGm7q1ATEuS8OdFe0+nPcVYcaaDziIK5fsPu4WxAEgeg0z2SYTidy55ZJ7FxcQs5XpYTGm5iwIPWY36nCEs2EJR7fJHtAhIGbV43l4C9VVO6vJzotmJTTItzjxuxnM/jqzmxcNvVdQ2cSieodRNbFyT63LbtkPrh2M7uWl6PICpJe4It7c7ju81HEDwihYn89z01Y6a7GzVlaxvJn9nLnmglEJJ267wiJg8NInx3Hzq9L3Ne6PkBi8NwEYvuHdLquIAh06xVI5YEGj2XRfYNxWF38/HKe27AUmo2N7ep9lDAoFNEo4rLJbTwjJINIQmYooihw3suZjLmpJ4fWVRMYZaDv6dHoTb6DywDxGaHctX0Su5eXY622k3JahIduuSAIXrXMZVnhk5u2krOsFEVWA+Jf3ruDaxaNInHg0fvdHKYnqvexGbAVbbd41T932tUx1Vbn9Gqm7HIqhMQaaayx88pZa7EUWXE6FHTv5hP6dzM3fn0aFXvrEXUCjla5kpZgc34ruTRFUSjNrUNRIK5/sPseWffffGryG90eA4qsJo+/vCuHjJlxfHXfTprqnO7Ytcuu4HI4+eq+HK78aDhf3Klq/LeM2i6bQnVBI+vePsSEW1JxyDI2xdXKARbszbPPDm2o9lrNrjOKlO+to8eozotf4tJDuGv7JDZ9VMCRw1Yyzo4jMTPMvSx+SCj71lYf3XcBEjOCScgMpcfICAq2H0GRj/a7DGCXiT1FPCYaqu1UHWogIjmAoOP8nu60uSjJrSMgTE9kipaA0NDQ0NDwHy0or+E3YUlmhl3u+8NL4+TSWOOgpsCz4lRxqXrMx4MVL+zjh+f3IelV7c7U0ZFc8sZQTH5WhhuDdGTO0QyCNU594jNCifcSMDyZOG0uPr5tOzlLS9E16+eeNr87Mx/uj+JS+O/lmzwCkps+LqDv5Cj6TYk5SXt9lJBYE1mXej5LJt6Rys4lamCrpdJPb5aYeHsqAREG9AGSWw6i/fb8JX5gKHOOMTEpCAIzHuvPpzdt8zBbnv63fqSMjMAUoqOp1nPfLnhtCMU7atEHeBqH6gwiYYlmd3DpqOb7UWwNnts8FqoLrOo220WnFKDay3PiWLGUNvH25Rsp212HZFA1qM99Op2hcxLZvaLc+wwDGfb9XOlz9ka33kGkTOpGztIy0As4FUifEUN49wAiewRiDtNhPeLZP3NfHUTFvgbvfW4UCU8yYwrWc+OKsWz7tJC9KyoISzAxfH53ov2cUWIpbeK/l2+kdHdds3k5nPPUALLm+i/DNmBmHANm+tbe/l8jiqrnSa/xnlI6g+cmEts/hF/fyae+3EbaGTFknhvvkZDwxtr3DrHr+3J3RbnTBuDincs3cu/GSbx+/nqPgKLTJvPm3PXcvW7S8Ti0E8a5Lw4k/aw4tn1aiCAIDJ6bSOpE31JEADMe68+H7Qw09SaRGY/2p3C7xe1P0DoE7bDKZH9VwryXB+GytwRw1b9TUHDZZbqlHg0MxvQLJuY3Bkb1ZomM2cd+nW77vIid35YdPa7mnOo7l2/k/i2Tu5QgDk8yYwiQPJ5zhgCJsEQzlgo1gdre4FpBlfQ69Gs1VQcb3Neby65qsX/94E5Ov6sPNqvLM6KvgLX5+XN4Sw3vXLXZLU9lDtNz2ZtD6T40nB3flHqY/gIgChRtt3BwXbXnQK+ocmzFOyzNUjlt/8De5GLHN6UMOjeBz+/ZgbPdffLlfTn0GR9FVGoQRdstHtt32mTCEnwn8Oorbfx3/iaKsi2IepFf3jnErL/1Z9Rl3TlSbOVgywylVn1TsMNC9eFGwnsGqN4KQrvmDQImP2dAnChkl8IX9+1g48eF7nemwefEM+fZtknY38rGjwv48v4cEARkp0xc/xCueCeLkOjjY/SqoaGhofHH5tQp+dPQ0Dgu6DsxLTwecirbvy5mxYv7cTTJNNU5cdpk9q2u5OObt3V52xoaGr75+uFd5CwrxWk7eg+ue+cwa/5zkIPrq5FdnpVy9kYXGz8s8Gv7eeureHbyKhbELebBtO/4/vm9bnPNE0lkj0BuXD6G/tNjCexmIKZfMOc+n8GEv6QiigJjb+jhxXRUZNKdvU/4vqXPjOOSd7JIygojMNJAzzGRXPXZSFKatezv3TWFuIyjQS9DoMSl7w8lOSucQefFq/vdatcFScAUrCft9GjCO/AoEESISO5ahXBNUaNncKmZykNdC8orisIb8zZQtMOiPg9qndjqnCy6cweHtx7BHKLzagYv6gSMwb6fRUufyCX3+3Jkl4LsVJBdClu/KGblKwcAuCdnCvGZRyuRDYESF789lB6jIhl4Tpw6q6V1n4tgCNKRNk1NTBkCJIZf3p1L3s1i5lPpfgfkFUXhzQs3UNh83LZ6J7Z6J5/dnUP+5hq/tvF7Ji49hNnPZHDxO1kMvTCpTUC+tqyJt6/cxF2JS7g7aSnvXb+F+io7ACvfPIC90YUT3P+4UAOBJbssWIq9m8VW5nU9eeQPGxcW8OiQH1gQu5jHs1aw9csiv9cVBIG+U6KZ99oQ5v57ML0nRfkddO47JZrLPxxO9xHhBEYaSBkVwRULR5A6vhumYB2Kl/EcICBMz85vS1H0LQHnlv8ABti5rNTrev8rNrx3GJuX8914xE7JTnV206ZFhTw2dAWX6T7isawVbP7cvz5PnxmH3iQhtBpeBFFNIKTPjMNg1nVophwUbST7mxKPBJDLoZD9TQmHtxzxPmYKUFthw1rr4LXzN2ApbsLe6MLe6MJS3MTrczdgrXV0KMGjuBRMIXoPk9cW9CYJU4iepkanu72Wf1rO75ZFhTjtnteD06Eu6zUu0ovnA4gGgXA/niVvX76Jw1uOqONanRN7g4uvH9rF/jWV5Cwu8TLnSg14Z39Two5vOrjeBHVmA8CWL4p4PGsFC2IX8+iQH9j0qffZTsebFS/uY9PCwjbvTNu+LObbpz31+Y+VQxtr+PzeHGwNLmz1ThxNMoXZR9yzFTU0NDQ0NHyhVcpraPzBMATq6Dslmj0/lLf56NCbRUZd5b/ua0f89PIBj+pHl11h94pyGo/YCQg7uWayGhp/ZFxOmV8/KsDZ1F5b3cXKVw9y/rMZHa/rxYywPUU5Fl674Fd3NWtjjYMfXjxAfZWdcx5P79rO+0FUahAXv+3d8NgQrsehKAitAgMORcbop9a30+Zi7Xv5bFxYiKQXGXVJMsPmJiFK/gXPAroZCEgyUdfoICjZhDniaLsGg8QtK8Z5Xc8Uouf6b05j4c3bKMtVJRqSs8KZ+69BSHqRSbf3ZuHN27A5XG4JG0kQSMoIJbyLsh3RvYPY/0uV12UxXqRVjoXinbVUH/aUG3LaXKx+4yBnPpDGD8/s8zBqBUifEdvpthVFYf27hz0qTh1WF6teO8jEm1MxGCRu/n6s1/VNwXquXzyKhTdtp3SXGgBMHBLGvH8N6rIEVWluHVWHvBx3k3rc3YeGd2n7v1ecNhcvTF9NbVkTshNADdYVbLNwz+rxNFocHtdCizmny0ug0Ru7fihj5Wt51Ffa6D81hgnX9yLwOBjYb/ykgEX35LjHveoCKx//ZTuCIDBotqcJ6vHGHKEnMMmEpdZOYJKJgOaxJbZ/MCGxJqoONqC06iJDgMSoq1IozqlFUUBuN4QJCLicJz6R2hnW+g7Ot13G5VDYtKiQT+/c4e7zmgIrC+/YjiDAkHM6n0lpCJC4fslpLLxpG8XZasA3PjOUuS8PQm+WGHVld1Y8u99j9pFkEOg/LbrDJLMsKzht3vXoW8j+ugTFy/qKrLD9q2JGX53CwXVVbf1PBFXKLCYtiOTh4ez9sbKdrTckDwtD1AteZzapRiAChTs6lmoryq6lcEctThRaz1tRALvTRfn+eqJTg9i5vJTPH9xJbUkTITFGzn4snYzpsVQeaqA4x+LWkm9BfbfIo+fICFw2L0F5h9pnHb1fCIKA7FTY+mURH9+23e0DcKSoiYULslEUhWF+zDByOWU2fHSYDR8WgAzDLkhk1CXdkfS+x/Nf3jjo6UfTJLP27XxmPNjP5/qdseq1PBxNba8Z2Qnl+xso3VNHrBdpJw0NDQ0NjdZoQXkNjT8g57+YyVvzNlC6px5REnA5ZAacGcvY63q6/6biUD3L39hHU62D/qfH0GtkhF+VXfWV3nWdRZ1A4xEHAWEGrLUONn9RRMWBBroPDmPgjLhTSotbQ+P3itOmmjd7o/GInZ4jI70GDAwBEkPPT/S5/eXP7sPZ7gPTYXWx7r3DnHF3X8wnyUtEURSW/2MvjvZVo06FpU/uZsDUzmV5ZJfCK3PWUbij1h0EKtlVS+6P5VzxRpbP9vf9Uskbl/6K06ZK65TtrWPr18Xc+s1oEgb4ljeKSQvmlh/G0lhjR5SENvrhPUaF49QpzYFMNYjiEhTSZ3ceuPaHrAuT2fD+YY+gp6QXyDyra8HG+kq714SGIoOlpImwBDPzXh3Ewpu2IzT/nQBc+t+hPq8j2al4GGe2YLV4N8ZsT3SfYM5+LoNNiwoRJBgxL9mvalFf1FXYvB+3AkdKjlZ7F+6wsO2bYgRJYMjsBOK6mAQ51cleUkrjEYf7OgZVw7uuoondKyrQmb1L3DidEJpgJiBC79X0NDRelYBY8dI+lj+3z10UUH6ggU0LC7n75wnHZMLrjaVP7fG43hxWmSVP7nYH5S2lTWxcVEh9pY2+46PoOz4KUey6R8fBjdW8ev56nE0uFAVK99SxfXEJN30+iu5Dwpn/4TDePH8DjTV2EFRz0HE39SRtcjThiWZWPLfXI5AqiND/jOMjVWYpa2LTokLqKo7tuHUd6NY7nRASZ+K/V2/22udLn9jtMygP0K1nIDcuG+0eD1pfA1Pv6cuBNVUcWn905oooCVz1yQhEUSRtUjS5P5S1SawJEqRNiibznHg+vT3bU2IG6D8throKm0cQFsBudVFfYSdjZhyKRLuqcoF+M2IQBIHDOUc8Ks4V4PAuCw1Vdq+yPAAul0JonBEFBaFd1F5BIaTZv0QRwNm2afR6iboKGwc3VvPxX7a7F1UXWHnrio2c/0wG8f1CkfSiV+md2tIm9AGSV51+BQWdWWLo3EQKt1s8DY8lgcTBobx99SYPY16nTeabv+X6DMorisJbV2xi/+pK7C3P7z117FhayvULR/r8dvEmLQeqGbIsK126jy2lTV6vFUknUF9hAy0or6GhoaHhAy0or6HxByQgTM/N342heIeFmgIrcQNCiOh+NBix+csiPrptGy6HjOyCVW8dJGNaLJe+OsTny2nqmG5sXlToUSWoM4qEJ5op3VvHC7PW4LLJ2K0ujIESS/9vD7cvHXNcKto0NP4sWEqbOLz1CCExRpIHhyEIAsZAHeFJZqq8SI+kZIWjN0tc8PIgPrpxK7JLNbY0BEj0HteN9Bm+dYFLcmvbVGS2IOlEagqtmPufnKC8vdGF1dJqWn8r/JFhyV1RTtHO2jYBA3uji13fl1OUYyEhvfPA+qJ7s9usK7vA3uDiq4d3ceOiUX4fR4CXMfDHfx3wkBxSFFj+/H7GXdPTLQ9SnFtL5cEGYtOCie7p26AWIHFgKDH9QprlA1raEEidGEV4F01CkzJDvZot6k0iaZOjAMiYEUffidHkra1ClAR6nhbhl/64pBeJ7h1E2d56j2XJQ8L82r+vH89l1ZsHcdpcCCL88p9DnHl3XybdlOrX+h2R2MFx61od9zdP5LLyjea2BfjplQNMv6svk2/uWtunMqV76rwGEx1NMqV767B7CWSCmjCsKbByxTtZvHrWujbjjyDC5e8Mw1rr4Lt/7G0TMHTaZOqr7Kx+6yCn397nN++3LCtYSrxL59QUWAHY/XM5b16xCdmpVnmveSefHlnhXPfhCL8qdTtj4YK2Y4uiqInQRfdks+D78XTrGcjdGydyeGMNDdV2ug8Ld5tUxvQNZtyNvVj1ah5Ou7oNnV5k0m2pRPk5RnTG7pUV/Ofyjc0V5DJr3s2n+5BwbvjI93HbOkiq6YwiVfkN1BRavS7v6PeO6Cghc8PXp1G2u44tnxURFm9ixOXJiKK6z2c/nU7BGUew1asSLYZACWOQjrOfSsdg0nHmA2ksfXx3m+2ZQnSc+8xAinZY0JskbI3OViMqGM06eoyMYOW/D9DYLEHj1rNXFH76dx6Tb+tNXYXd7ejdYuyNoCY5Y/sFe02qS0aBtElRBMcYPQLy6uoCESlmzCE6Dm894rHcYXORkBHK6xdt8NpXX/51J4/tmobL6TmuSQaBvpOiKd5Vi6tdFT6okkTFu2qZ91wm274oJn9zDY5GF5JeQNSJXPTaYCSdSG2p94Ke+io7iqJ0Glg/tKmG/WuOBuRBvUfU36voPaZz/4akzFDyN3v2S9yAkC4n1vpNjqIo2+KZcHDIJAw8tfyINDQ0NDROTbTSVQ2NPzDxGaEMODO2TUC+qd7Jh7duw9GkBuRBrU7atqSEXd+X+dzm1Lv6YArSI+mOvsjqzRJnP5mOpBP54JatWC0O98uzrcFFdUEjy/6v69qNGhp/BhRF4bMHc3h0+Arev2UrL5+3jqfG/axWZAHn/V8GerNIyzesIKl62rP+1h+A9DPjuHP1RCbe2otRV3bn8nezuOy/WX7JtMSmheDt29jlkLscxO0KhgAJc6j3OoLI7r6rn/evqXQHDFspL6PICgfWeZd3acFudVGR1+B12aGN1T7b9sXuH8s99I1bKNtfj63ByT/PXsNz01fzwa3b+PuElfxn/kavgeH2FO6wULi3DgcKLtQAigOFXSsrqC7smlZ3QLiBybelYgg4GqbRGUWCooyMvOyoVJohQCJtSjR9Jkb5FZBvYdYj/dtoRoOqxT/jr77lBgpzLKx68yAOqzqzQXaqweElf99D1eEuHneYgSm39/Y47uBuRk67IoWinbWsfD3vaNsute2lz3S97VOZmD7BGAI9z6/eKBLTO4jkQeHuGROtkZ0Kkd0DSBkeyV93TGHI+QnEpAWRdWEiD++aSuLAUAqzLV6DwE6bzK52BvaNFgfWWv9mU4BqbBsa592QMTzJjMsh83ZzVXfLfWpvdLF/XRUbu6iJrSgKpXvqvC5rLVUiigIpIyIYMD3WHZBvYdo9fblpyWgm3pzKxFtSuXnZGCbf8duTFC24nDLvXLsZu9XlDjjaG1zkb6rh1098+5MYOpoZYZOJ7B5IWIL3Pg87js+ZmLRgpj+Qxqj5Ke6APEBYvJl71k9i9hPpjL2uB7OfSOee9ZPcZqgTbknlthVj6TslisTMEE6/uw8P5U7FFKSj58gIuqUGujXyXah6+ZG9Auk5KoJNnxW5HWaV5n8Q1AR5wfZWgeFWy1owBuo447409K3GFskgEBhuYNy1PWm0ONo8v+Do86ypzokpQjUYkJFbeQwoKKKaLPVqvI06PunNItPvT0Nvbt22SEC4gfHX9aTiYEPz84NWzxL1fysONiDpRZJGhNHkcIFeNavVheuISAn02mbr/ffFgXVV7qRTa+yNrjbPb0VRqKu0YW9sWxk/+4l0DAHS0Rlbzf4D5z7VdUm+0+anEBRpQNfKz8sQIDF1QZ+TNrNQQ0NDQ+P3hVYpr6HxJ2PPzxVegzmyQ+GXtw6SPq1zyYSIpAAW/DyOn14+wIE1VUQkm5l4cyo9RkRgrXVQlFPrMZXT5VDY+lUxc57qWO9aQ0NDZdNnRaz/4DBOm+wOhlQcqOetqzZx+5Ix9Bkfxc3fjGbFi/sp31dP8pAwJt2aSrce6sdvo8XBZw/lsHN5KQgCOT+Vc+Hzg0gdFemz7akLerPn54o2lZt6s8TIi5NO6gemIAhMu6sP3zy6u92+icx4IM3n+iExRkS9gKON7q2CXoLgKGOH6wHoDCI6o+RVTuV4eGiExJgo3+8Z9Hc5ZAIjDCy6bwf5m4/gtMu0hBpzfyzn22f3MvO+zo99+5ISVXIH2ug7CwLsXF7G2Ct7dGnfT1/Qh/j0UH55PQ9brYu006MYe22P43KtbPm6GFlUEycCIAOSBNnflvrUbc9eVtqhNvTO5WWMu7prxz3l9t7Ep4ew6rU8GqrsDDgjhnHX9sQcoid7WR5Ob/rKCuR8V8r4a3p6LvsDkDkzliWP5+K0udwSNpJOIDjaSL8p0fQZGs2mzwraVLvqzSKDz0kgqJsRRVFY/d5hNi8txuVUKCtqJLJPEJNu6EVwlNG7RrqAO6BefqCe927eQuEOVWM8eXAYl740hG4+goIA0+/ty2f35niOLfenkb+1Blu9p/yFy6Hw8+t5jLwo+Vi6yQNvkiCA1xlLHRE/IIT4ASG+//AYKNhm8drndquLXxcWMuqSzj2KbE0uD6kVBQVRJ3CkpIkz709roykP6rPmzPv7Hr+D6ARDgMSwCzuWTUlID+WqD0Z4/N5QZad4n+cMnpL9ddRX2rHVOTs8p/WVzfI0XoLjerOEIAiMv64nsX2DWfnqAerKbfSbEs3463sRGGkgJNqEZBZxWltsbNX/1plEgqNMbFxUiJ2WsefouRMlgYJtllal+Z6Iosi4a3sS0+do22mToxl/fU8CIw3UV9vdW22/9w01DnJ/LOfHV/JwOhRa7hZ7aROvXbSBB9ZORB8gYG+UPa4HnVH0KT8THGVEZ5CwO9u2rDdL7uf37pXlfLxgO7VlakX+wBlxXPCPTExBOpIHh/GX5WNZ8eI+inbUEtc/mEm3phLXr+v3TECYgTt+HMfK1/LY9V0ZQZFGxl3fg35Tjo98lIaGhobGHx8tKK+h8SejdF9dhy/llfn+TRsOizdzzpOeFSaCKHj/EgG/zRQ1NP7srHrjoMdHu+xSq56PFFsJizeTkBHKZW96N0T990XrKci2NFd1KlQcbODfF67nnp/GE9Wjc0mDxIxQrvt4OJ8/sJOSnbWYQ/WMu64HU27r7f6b7ctL+PCBrVTmN5DQP4RZ9/UjZcjxMbcs21/PN0/lcmB9NcFRBqbe2pusc1Ut/DFX9kBnkPj2mT3UltmI7B7ArIf6+dSTBxgwNZYvHtnl8bvN6iJtUnSn64qSwMiLk1n/fn4b+Qy9WWLCDV0PsPabEs3+NZ7V+qYQHSHRJrZ8UeyRSHU0yax7L99nUF7SCQii4CmJIKiSRABlB5r7fF01Qd0MTL2lN1nnJfjlMSLLCtUljZSXNGKrdxFR0ICtwUWAfwoznW538+dFONsFBWW7wrr38pn1QOfV8pLk/bgFEUS9f8+iPb9UsOT/dlOe10Bc32Bm3dePnsMi3Mv7nx5D/9M9rz1JJyAIgkcFqCCAqDv1J6juXV3J4r/vpjyvnri+wcy8N41ew9WEnqIorHk/n5/+nUejxUHa+Chm3ZdGRGIAOqPEbcvG8Pn9OexaXgaCQMaZMZz7hDqLLrZ/MNcvGskXD+RQuN2CKVjH6KtSmHanWtX946sH+OGf+9xBe6dNZtn/7cEUpGP0ZSnEpAZSnFvbRrNeb5KYcF1PbA1Onp+5msYauzuYfWhTDc/PXM3fNk9B72OGxvALkhBEWPb0Ho4UNxGeaGbGA2kMmh3PxkUFHQbIa8u8y974i6IcDay2N/48uTatqk9QRwcu+XEPmYJ0yIDYpqobBIOApBfImqOO68ue2kNNkZXwBDNn3t+Xoef69j7xh8r8BhY/vZs9v1QSEKZnyo29GHlhsl/jWmds/boYr2dHUZeFJpppOOJovwhRhG4pAUy4oRcr/rmvzewoSS8w4fqjz5K+E6LoOyHKo4nMWXF8+dBOFOQ2eyDqRAbPjmfdh/le99ludSLqBHqNiuDAWs/ZXSnDjj6/O2o7LMFM8S7vszrCEkys+o/ne4siqzJ8xbvqmHRTKstf2NfGE0fUq0kIX2TOiufLv+70+F0UYfDZ8RTvquWNyze2SfBkLy2hocbOTZ+o8nLRvYO48OXBPtv6LQSEG5h+bxrT7/VdIKChoaGhodEeLSivofEno1snUg8h0Z1XjPrCFKSj5/AIDqyvbqORrDOKDL+gcyMnDQ0NFWudd+kFUSfQ5KViszXFubUU76zFZffUN/35jYOc/6Tv2So9R0Zy54pxXpdt+bqI92/b5v743rOqkryNa7nl01FtApa/hYpDDfzftFXYG50oMtRV2vjwju1UFTQy7TY1cDfykmRGXnLslam7V1WgM4oeuq96k8T+tVVknNH5DKGzHu5PQ42d7MUl6AwiTrvMqEuSGXdt14Py+9ZWIqN45DPrLXYsZU1edX4BbB1IEbRm8Ox4lr+4F1erELEAiE6ZjOmxVOY38My0Vdgajvb5R3dup/JwA9Pv8F2x+un9O9jw8dHq542fFbJzRTkPrJpIcLff/jxRXAoub9Xm0KbSuiMGz47n+xf3eRhgosDA6b4NdLO/LeGt6za7kzB1lVX8c85abvxwJH1Gd65fPOiseJY/76VtIHNG1817TyQ7lpfy1rVHDTj3VVbx8tz13PD+CPqM6cZnf81h7fuH3edg0xeF7FpRxgOrJhISbSI01sT8tzo2Tk7JCuf278Z6XfbDS/s9zq3d6uK75/cy+rIUrvlwBP+5bCMlubVqckNROOeJdFKGRbD+o8M4mo1SW1Bkdf0dy0oZcrZv49Bhc5O8Gk6GxZk7rDDu6kwZNXnTaQHzCcdS3sTqdw5RkFNLcmYoYy9NITjKSOLAUIxBOmztfAIMARKjLu68Sh5g1KXdKci2eARqA8MMJDRX9WfNSSRrTiJRUcFUVHgP+P4WjpRY+fvpq2iqc6jjWoWNT+/PoexAA2f/tb9f2yjOreWXdw9hKW0i/fQYhp2biN4k0VTn9Do2OR0yTXVOJt+Uyge3bvUwZA+INJCQEUr8gBBqS1XzXJ1RxNkkM3ROgjs51RnmED03fDqSt6/ahPWIAwT1tyvezMIcqu9Q51+RwRyu5/pPRvH0uB8pO9jovu6ik83csGikXjIRIQAAIABJREFUz7an3d6bXd+Xe1029S+9Wfzkbq/LREmgqc7B6bf3Uc2SFxa6n8VDzklg+j2+nzOmIB03LBrF2/M30th83KZgHfPfzCIgzMBnD+Z4zIxy2mTy1ldRld9AZHffs2U0NDQ0NDROFlpQXkPjT0bf8VFIesFDw1jUCYy+3PeHli8ufmkwL8xcjbXWicsuI+oF4vuFMO323r5X1tDQYOD0WH5+PQ+Xve09qjdJRPfqvNK96nCjWgncbtKL7FQo39+1oIeiKHz+0E6PIIvD6uKLR3ayYLH3YJu/fPvcXuxWNTjcghqU28fEa3piCPD9ymJrcJL9fSlWi4O0sVFuQ9TKQw0eAXlorvQu8K3zrTOIXPrKEOr+ZqO6sJFuPQKPm3F1RV6D18pYk1GiodpOYkYoBdstbZYJIvQd13lwGCCqVyBSgA7FcTTRowDBcSaCo4x8c0cu9mbt8xbsVhfL/7mfSdf1whjYcZ/Xljex7sPDbfpVdqm+JaveOsiMu3971aCkF0nKDPMwLRQEfJr6AUT3CmLWg/34+rFcBFENfsouhXnPZhIS7V3LujWf3LPj6KyI5oipo0lm4X3ZPLhqUqfrRvUIJCYtmMJtFncqREAgZWS4X22fTD77a46HTJPD6uLzh3O46ZNRrH43v835Vlyqb8zPbxzkLB+zFzpDlhUamuUx2lNXrspRhESbuP3bsVQeaqCxxkFcv2D0JrUCvupwo1dJEEeTiyo/7u+Wfdi7ppLSfXXE9w2h92mRCIJA98FhaiKu3fghiHDa5V2TrmnZfr4Xc85eo7qW5PSH0r11/GPmLziapdJyfy7nx9fyuGvJWGJSg7jm3eH8a846FFnB5VQQRBh4ZiyDz473ue2h5yaQu6Kc7GWlKLKCpBMQJYGr3xnW5Wp1X6x49YA7uduC3eri5zfymHpLqs9kyuavinjvL9tw2l0oLshdWcGPr6v9kjYhiu+e34fcXkrFINFvYhQJGaHsWlHGtsUlKC71uCW9yLXvj1BNRUWBec9lMuOBNKryG4nsHkBQpP8JzO5Dwnl4yxRKmqvWY/sFu81KHV501wGMgRKW4iZkh8KRajuCXkB2Kgg6gSMWB1X5VuL6BqvbaHKx4/sy6qps9BkVSVxfNYFirXeCpCZMWyNIAk0NLjJnxlGYY8FhbXufyLJCUmYYoiQw9x+ZzLi/H5WHGohMDvDwR+iM5EFhPLRlCiW5dSiKQly/oyat5XkNbc51C5JBpLrQ+j8Jypfuq2PPmkqCwg1kTI3t0FNBQ0NDQ0OjPVpQXkPjT0ZQpJGZ96Wx7Jm97qo0vUkkaWAog8/y/aHli/AEMw/9OpldK8qpOtxIYkYovUZGnPCPMA2NPwqTb05l61fF1FXacFhlRAkkg8RFz2f6lIFKGBDiNfisM4r0GuFbU74z7I0uaitsXpcV5dR6/f1YyNtYjeIlpiBIAhUHG0gYENr5+puqeenCdc3mmmofjLk0hfMfTaf74HCMgZJH1acoCSRmdL7d1gRHGwnu4oyi9vQYFkHFoQaPY3c5ZKJ6BDLvHwN56ey1OB0yLruqwas3SZz9yACf21719iEaLZ4zL6oKrOz8sYwDG6q9VnRLkkD5gXqSBnasQ1O4s9ZrsNJpk9m3tnPzXH+Y98xA/jl7jcdxn/OY7+MGGH9NTzJnxJGzvAxREkifFuvXbDCXQ+ZIiyxJy+3WHJgv9aIl3Z6Dm2so3luHs9XsBwWF/RuqKd1bR2yfYL/2/3+N7FKoPOQ9gF2yu47iXbVeZ5s47TL71lV2qW1RFOiWEuC1/ejebROR3VICIaXt3yQNDPV6f+uN6ruNLxpq7Dx3zmqqChpxOdVAanSPIG7/fDTmED1znxnIwruz1WNX1PE0qkcgoy9N8bltX1zwXCYvzFqNo0lGdiqIegG9SWTu/w3s8rZ98fG92VjrnG4ZHYfNhcsus/CBHdzyySiSB4Xx6PbT2fFtKQ3VdlJP6+aucveFKApc9uoQinZa2L+2iqBIIxlnxPiVXO0q+9dVeTXPFnUCxbvrSB3Z8bPQYXPx4YLtbZJT9kYXlYca+OXdQ0y5IZXBs+PY9nWJOxFkCJAYNCuOpEx1vLz0X0OYdGMt+9dWEhhhIOOMWI8EZ1CksdNgfE2xlfpqO7G9g7zKL4kGAUWhjTF76ohIdaZcu2N3ORVi+wTx5jWbsNYenW0nOxWaap18eNc2Fnw9lsKdFl44bw0Ou4zLKSMIMPSsRC57cTCHtx5pto+l1bgGuBTyt9Uw5cZU1n9YQPXhRuxWF4IIOqPEnKcy2gSoAyMMBEb8toS2IAjE9/e8/noNj6BwxxGPQganTSa274kdbxVF4cO7t7PhU1XmSpIERL3IbQtPo3tmF3XcNDQ0NDT+FGhBeQ2NPyGTbkpl0OmJLPlnLlaLg8FnxTF4dkKHU1+PFUkv+pSD0NDQ8E5guIF7fp7A+g8Ps/vnCiKSzIy7sodfH5cRiQEMOTuBbV8Xu5NuggTGIB1jrkjp0n7pTRJ6k+TV9DAkpuuB6m7dA6jI8254GhrbeYWxyynzymUbaKpru29rPsin//hoMmfEseyZ3WrQrfnDXWcUSUwPpeeIE1+R2hlT/9KbbYtLsDc43fIbhgCJSTeolepJA8O4d9UEVr91iOLcOroPCWPMFSk+DWpBlZPpiDUfHKZbSgBl+z0DzU4/+jwiwezVCFKUBKJ7dr0yMTEjlPt+mcgvbx2keFct3QeHMfqKHscksxYWbz7m694t9NM+/9WxxHYbdv5Qhr3Jpf596+3KsOun8lM2KC+IEBCmV+Uh2hEcZSQ80ewhiwUt57vzGTz+cPYjA3jn+i0eZqvn+JF8GnB6DBFJ6vjR4r+gM4pEpwbRZ6ynPnZ7Pnkgm7ID9e5gptMGJXtr+eyRnVzy7CBGzEsivl8wq98+RG2FjfSpMQw7P+m4VMPG9w/h/tUT+eWtQxTlWEjKDGPM/BRCY07srApFUdi3rhKX0vY6lRWFPasr3P/fGKgj67zfrvOeMCDUZ0L1eCMZvL/L2htchMd33q8FOyxef3c0yWz5upgpN6Ry0QuDyJwRz8aFaiB2+NxED2+ThAEhficwWlNfZeO1azaSt7kGXfM7+dzH0hl9oTqTNX/7EV67+lfqqtSZJUERBq57Yxgpg8OZeEMv1n98mKa6o7MEVLmhZIIijexf5z1ZmvdrDbIs869L1lPX7v7f+GUh/SdGE5EYgMGkJr5aXy/GQInIpACMgToWfDeWjZ8WkLO8jJAoI2Ov7HFMSe/fysTre7Huw8M0OR3u49abJUZdlNwlGTV/2LqkhPWfFLjHHfUNxMW/Ll7P09nT3NX8GhoaGhoaHaEF5TU0/qT0HR1FRB/vHydVBY18/GA2O38qR9ILjDgviTkPDcAUpP8f76WGxp8TU5COCdf2ZMJv0Cy/6PlBJAwIYeWbB7HVO+k3KZpZ9/c7piny3hAlgYnX9OCn1/La6JkbzBLTF/jWw/XFtNv6sH99ddugnEkkY1qsz30/8Gu114ChvdHFmg/ySZ8Swx1Lx7L0mT1s/aoYURIYcUESU//Sxz2LJ29zNZ/8dQf52UcIDNMz5bpUpt3U+4R/VEf1CGLePwbyyT3ZNFkcCKJA38lRTGvVpxGJAZz1kH9ayK0xBXf8mhcQrGPUtT3Zu6aqTZ/rjCLpp8f4lFqJ7RNMUkYo+duOtOl7nUFk4nW9jnlfvRGeYOYsPzWgjxeiJCJKQhtflBb8CcKagvXo9KKHOa+oEzAGnbqv3YIgMOWmXnz7/L42UjAGs8S02/sQ3TOIlCHh5G2qblORqjOITLq+6+d74BlxXPPOMJY8vZuKvAZi+gQx875+9D7Nt1yRpBP5y+IxfPuPPWz6vAhBgGFzEjljQV+f96+iKGz5ptijuthpV9j4RSGXPDsIgKSBYVz4/CCv26itsPHJQ9lsW1YCCAyZEc/cR9MJ9nPMDYsz+zQvPt4Igiql0l6ORAHwc8yrq7TxyUM72Lq0GPW445j7aIbfx32icDrUmm6hVWZNQUGQBBotDjqbM2YK1CG3N8ZuxhyivgPXV9nZ8FUBW34oARRkI3QfGn5cAsCvzP+VQ1tqcDkV96yUj+/fQXSPIBIHhPD8nDVYWyWfqxutPD93LU9vnkpYnJk7l49n8RO57PmlgoAwAxOv78mYy1PUPugkqViUW0t1qdVDRs3hUPju5X3cs2Qcnz2Ug72xlXeDoN7/g2eps2wNZonRl6Uw+rKULvfDsRAaa+Ku5eP45slc9qyqICBUz8TrezH68hO/H9+/ss9jrAeor7ZxeNsRUoaEe1lLQ0NDQ0PjKKfu14GGhsZJwVrn4Mkzfqa+2o6igNMOqz/MpyDnCPcuGa/J0GhonOKIksDE63odt8Boa868Kw29Tsd3L+9FASSdwPQFfRgxt2vaygCpoyK5+IVBLLp/h2o8qsDgWfFc8Eymz3VdDtmzsrmZFp3dgDADc57IYM4Tnma3hbkWnpuzxj27oK7SzpLn9lBb3sS8x06sjERRbi3/vWOr2rYAKArbV5Tx6cM5XPB419o+c0Ffdq/0Li0yfUFfIpMCuPSfg/j0vh001R/t8wuf8a/d698fwfu3bmXnj+WIokBQpIGLnst06xP/HhFFgWFzEvj108I2OsWiBGP9qLrPOieBJc94MT1UYPCMuOO3oyeAKTf3xt7o4sfX8lAUEEWYdltvxlymVule+85w3r9tGzk/lCEIqOf72UEkeJGU+C2kjY8mbXz0b1rXHKznnEfSOeeRdK/L66vtfP/6fnJ+LCM0xsTU61NJG61W0XtLwABepZ3a47TLPHXmSo6UWN0zRzZ9XcjBrdU8smoyku74zEA8IUgCeDt2P3bZ6ZB5asZKaopaHfdXRRzcUsMjv6jHXV9j54c3DrDjh1JCo02cfn0q/cb4nrnQVSSDgAyIrULMCurMC2cHBtItxKUFExZnUr0+WnWNIUBi/JU9cDpknp65iurCRvdxb/66iLzN1Ty6eoq7uv23UHGogcPZRzxmINmtLr5/dT+Z02K9XquyU2HT10WMvSSFqJRA5r/RgdmyCIrsJVmBQGV+Y4dB+8rDDRjMEncsHsN/b9hC0S4LAgKxfYO54tUhnXqP/K/olhLI/Nc7Npk+UVTme5f8UmQoy6vXgvIaGhoaGj45+U9RDQ2NU4rVH+VTX2Nv83IuOxXysy3kba6hV9bJlXrQ0NA4eYiSwCV/H8Kkm3tSX20nJMp43GSvALLOTmDIWfHUljVhDtH7/bHfa3gkipfqRkOAxPDzknyuv/T5PThsbfWo7VYXq949xKy7+hEQcuJmCS15wXvbv7x3iLPuSiMg9LcbyvbIiiA41kBtqZ2jIhUCcf2DiUwKAGDIWQkMmnnsfQ4QEKrn2neGY61zEGQy4dQ5/xCJ26FnJ7B+YSGthT1kRWDQLN9B9fB4M5e9NJj3bt3m9oBQFIVr/jPMp8HkyUYUBWbe249pt/ehvspOcDcjulZSIOYQPde8PYymeidN9U5CY4y/i/NdV2Xjkck/UV9tb65qtbB7dSXnPzyAiVf0pN+4KHJXVbRJwggSpE+O6XCbLWxbVkJ9tb1NINXlULCUNbFjRRmDpp34REzR7lo2LykCQSBrZjzxfXwnSRRF6TBA7StwDbD92xLqKm1tj9upYCm3kf19Kb1HduORST9SV21vrvi2sHtNJec92J/JV/mXMK6tsLHhywLqKm2kjYmi35gov6634XMSKdxZ29b8t7mqO7nZJ8PR5GLT4iKK9tSR0DeYrJkJ6E0SgiBww/sj+OecdTRa7AgIOB0y46/qQcbUGLYtK6G2ogmnU6allxSnQl2lnezlpQyZ8du9mWorbEh68ajJdCtqSqxYKmzYbZ7GK/YmF5Yy734vremeFUberzUeyYqkQaGIuo771dWcCIjuGcTd342jvsqGonDCpWF+DxiDdNRV2b3WBARHntrjvYaGhobGqYEWlNfQ0GhD9relbT5MW5CdCrtXV2hBeQ0NDfQmifB48wnZtigKhMUd27YNZonLXhzMf2/eguxScDkUjIESqcMjGeqHgfXhHIvXcU/Si1QVNBJwAjWRCzpq29DcdheC8rtWllNX58COTIvwiguFkoP1HM45QnK6GqD6LX3eGnOwnoioACoq6n7zNjqi9EAdpXn1JPQNISq561r1/rDw0Z3YFRkBt8criqzw2eO7uOvzMT7XHzIrgf6TYti7uhJRFOgzpttx0R//X6E3dn5/m4J0mE5hKZ72fP/aAepr7G1kJuxWF4se3clpc5O58O+Z/P3MVditLuyNLgwBEqYgHXO9zKppT/HeWmwNnj4bjiYXJXvq/A7Kl+bVU3qgjvjewUSn+K/R/83zu1n84h53cHzJP/cwe0EaZ97S1/03dVU28rbVEBxppEdmGIIgIAgCif1DKNzpadKdnOHboLJkb10bGbMW7FYnxXvqOLzD0iog37LMxWdP7GLMBd19Jv9yV1fw4mXrUGQFR5PM928cIHVYJLe9P8pnNfroi1LY9EURBTkWbA0udEYRURS48pUsJJ1ITamVx6f/TGOtA1uDC2OgxKIndvLg0gmEx5mJ7hHEoxuncGB9FfXVdnoOi3Br/BfvqaOxwdlG5sUFNDY4KN5T26WgfEK/YK8GtTqDyIAJ0aQOj8BglDz63Rgg0dsPb5Qmq8ttQO0e1wCbzYXe1PH4ZAxsu6yrUnh/JIafl8iy5/eqprscTeOKOoGUIdr3koaGhoaGb34/b9QaGhr/E2xNqomTt6oPa72nAZyGhobGqcCQmQl0HxjO+k8P01BtJ31KLGnjo/zShE9IC6HiYIPH9H2nQyYi4cQkH1q3XZ5X79m2XSYiMaBL285dXYGtQQ3gtA7jyC6FPWsr3UH5UxFbo5OXrtzA3g1V6PQCTrtM5umxXPevYW2qt483LqdM8W41UNkStGrhwKZqv7djCtQxcJpmeH4qsGNFaZvgcAuCJFC0u5aeQyJ4bMMUfv2skKLcWpIywhh2doJfs0ZiU4MxBkru+6wFvUlHbKrv4Lrd6uJf12wgd02F24sgfUI0N7w2HL2x80ROyb46Fr+4p01ltexU+Oofuxk6M4GYHkF89Wwui1/ai94gIssK4bFm7vx4NJGJAVz45EBevGAdDpsLRVbNfvVGiXl+JCNiegWpx13f9rgNZonYXkEsfWmv1z6XJIGCXRZSh3Ws7O5yyrx6za9tKt1tjS72/VrF2k8PM+6ilE73TWcQuf3zMeSsKCN3ZTkhUSZGzk1yJ5o+uG87lvIm5ObN2xpcOJpcfHD/dm5+eySgJiq9+RkYg3QeuuugjhPHkqiSXQqNtQ4CQvTuGTWmID1n3d2Xb57Z45ZSk/QCAaF6Jl/bi6BIAz2HRXDg12r3coNZpMfgcPqM9u29ULjL+7hWuLuWhLTgDr00+vrh6/BnZfI1vVj9QT71VXZkp2oTrjeJTL+tDwGhmg+XhoaGhoZvTmGhQw0NjZNB7xGRbao9aPl3Ea1KXkND45QmMjmAGQvSmPvEQPpPjPbbpHXG7X09KgUNZonT5iUTeIIlR878Sx+vbY+a2/W2Q7oZ0Rs9X/UkvXDSzRh98dFD2exZX4mjyYW1zonDJrP9h1K+es6LXvtxRJSEDqtGzSdQxkjjxBHagWmxyyG77wNTkJ5xl/fgwqczGXOx70ruFgafGdccWD36m6gTCIowkHG676TMwsdzyF1dgaNJdl/nOSvL+fzvu3yuu+XbYq+694oCW78tYfsPpSx9ZR9Om7ptW4OLsoP1vHDZOgBSR0Ry9+KxDJkRT0xqEENnxnPv0nF+vesNmh5HQIjB47gDww1kTovrsM+dDsXn2JOffcSrhI7d6mLNx/k+9w3U+3jg1FjmPTGQ6X/p02bmx/YfSt0B+RZkl/q7L2xWz1kRLTRZPWcOtEdRFJb9ey839V/MbYOWcmP/b1j6yl6U5qzs1Bt7c+3rWfQ5LZLY3kFMvKonf/1xIsHdVKmoW94fyTkP9icpI5Sk9BDOeWAAt3w4yi9Zn46Mv02BOkKjzQydFY/Q7nGhM4jMXJDmc9t/VgLDDTz040SmXNeL2D5B9B4VydX/zmLG7X19r6yhoaGhoYEWlNfQ0GjHxPk9kJqDOK2racyhejImaVV/GhoaHSPLCj+9n8d947/nL0OW8vZdWzhSZj3Zu+WT5IwwbvlgFAn9VC1mU7CO06/vxYVPnliT147annJdLy56quttj5yThCB5BmtESWDwGaeu6agsK6xZVOBRaetokvn5vYMntG1BEBh3aQp6U9tXZINZYvLVPU9o2793bI1OFv1/e/cdH1WV93H8c+dOZlJIBVLovZfQEQRWmqAs2HbFtj7WtSxWHteuiIi41tVVUXR3XV18dEUUxIZiAQsgrIC0SA0tENLrtPv8EY2ETEgkmRL4vn3lJdyZe8+Zyy9zZn733N+Z8wO3Dv6A6UM/4J3HN+Eqqz1RGWjjrulUrXyQzW7Qumc8zdvWryRShNPk9iWj6D02FZtpYLMb9B2fyh1LRtZaZsWyLL6cvwu3nzj//NWdtbZtsxngLxlrVPyOfzzvx6p11alYgPLgzmL2Z1SUmmrdM56rXxzEA8vHcNULgyrfh2oT4TS5Y8lIeo/76XWbBn3HpXLHklHYHTbGXdMJe6QNDz7cP/1YNosWXZuQ0uHYdxDYTKMySV3tsTounJudWcILN6zmxvQl3D16KSve3F15zJoS2HVJbNsdNr936pgRRp3u4Pn0lR3856EfKClw43H5KC3w8J+Hf+CTf2yvfE7vcancuuBUZnw5ht/d34u45r9cxDAjbIy+ogN3f/wb7l56GqOv7FDnO4dGX9YB+1EXae0OG6f9T3sAikvd+IyKxV8tLHxYuA0f7jqsMXAyc5V7yc0tI6+wnNy8MgrzXTXGr4iIyNFUvkZEqmjWJoZrXxrMvOu/w+vxYfks4ppHMu2VoQEtGSAijd+/7vye5W/sqry1/svXd7H2o/089Nk4miSG96JnXYc1475lo/H5rDrPsA/3tuObR3LDK0N5/upVeFw+LMsiOj6C6/8+9Fct6BpsPq+F1+U/EVReUvNM1YZy3t09KThYxpr39xPhtOEu9zH03NacMa1LwNturHxei1lnfcG+rQWVSeZFT29hw+cHuXPhyJD2reeoZM65swcLHtqIaTfwuC1a9YjjT/8Y2iDHT0yL4vp/Dq016euPu4aLFq46zLoeMKklC/+yCe9RlQUNYMAZLfh6Qabf/WymQUlB/csRJqRGcf0//L/u1E5N8NosrCNOhReLDnWofd6mdwKRMfZqJYEc0SYjL2xb6/65B0q59/RPKS1w4fNCXlYZ//jzWvZvK+S823sy4MwWrF68t0r9djPCYMCk2uvBDzijBQtmV7+LwWYaDKxDPfk3HtyA56i68V63xRuzfmDsZRUL4O7LKGDZqzvIPVBK3zFpDJ3SqtZSRnXRaWgSnr/6sI64F9bj9dFxaBI5+0vZ8PlB3L4jVzsGw2Px3t+2ct1zg+vd/oko/1AZ94z7lJJ8Nz6vRe6BMl6587/s3VLA1HtrLwMlIiISvt/IRCRk+oxN5fENE9m9Pp+ISButusf9qi+ZInLyyT1Qyhfzd1ZZTNHrqaib++kr25l8Y+O4BT7YCfmGaNtV5uW/Sw9QnO+i56nNSW77y0zUbqc25/H1E9m9Pq9ydnC4v5/bI2y07Z3AznV5VbYbBnQb1jzw7TtsXP38IPKyyji0q5jUDk2IbRbe5X5C7ftPDnBge2GVWd/uMh+7NuSx+etskqfUbQZ2oIy9qiMjLmxL5sZ8Yps5SWlf98VU6+rX/l4ZhkGHAUl+1yroMrTmmus/S24bw+/v7cUbMzb8shCQBRc82IemraLpPyGNvVsKqtSc//k5bRpw8Wp/r/v95zLweqq2a1mw7JUdnHVrd2KOsYC1zWYw7R9Deez8Ffh8Fh6XD9NuI31cKkPOaV1rfz6Ym0F5sadKiRpXqZcPns9g4jWdufDBPuxcl0f+gTLc5V4inCbxqZFcOLP2u5OatYlh6gO9ef3e9VXO+fn396ZZHRaiLivyf1GxvNiDZVmsXrKXudNW43H58Hktvl96gA/nZnDPot/gjK7f1/b596+vTLpXlqn0Wbz+wAaueKw/dkfFBcgjF5WyfHDgx4ZfwPtE8dGLP1JW5KlSi99V4uXjl7dx5vVdwr5MnIiIhJ6S8iLilz3CRof+iaHuhog0ErvW5xHhtFVJykNFYm7zikONJikfKJZlcWB7ETa7QUrbhksIbvtvDnOmLsfntbC8Fj7LYswfOnDR/X0qk2U206Bd+vG/nxfnuzi8r5TmraOJahKcuuqXPpLOw+d+icflw+u2sDttRDhtXDAjeLMPE1IiSUjxXxtbqtq+NqfazGYAt8vH9rW5jJwSgk4dxRljP+YCo6Hwh4fTmX3WF7hdPrwuH3ZHRZxf9GDfOu0/5vKO9Ds9jbUf7AfDoP/ENBLTKuqnj72iI8vf2E3egTJcpd7KhVwvebhvjesmNJTNXx+qMhP9Z3aHjb1bCuky+Nj/Dh36J/HYfyfy3Xv7KMopp+spzWjXt27vYZu/yq42Dv3SdgFdhjRj1hdjWf9pFvszCknrHEvv0SmVC67W5rRLO9B33E/n3LLoN7EFSS2qLgjucfs4sL2QmAQHiSl1WyzcXe5l3i3fVblLorzEy4HtRXz6rx1M/GPnOh2nJnu3ViTXLeOXufIGBvszCknt2MTvOTPtBp0GhtfvTE0qz3m8g8TUwC7Q/rNNNcRahMPGns0FdB8e+IvIIiLSuCkpLyIiIvWW1DIar59FB20mJAdgVmpjkvHdYZ7+47cU5pRjWdCsdTQ3zzuFll3qN3vY57V47JKvKMmvWopi2as76DUymfQx9asb7/X4+Psda/nyzV3YI2x4PD4mXNmZqXf2Cvhs+3Z9E3lw2RhP5KrBAAAgAElEQVQ+nredzE35dEhPZMzlHYKWbJFfp2nLaBzRZrUa5o5Is1rCUn7Rpmc8Dy4bw9KXt7FrQz7teicw9oqOv+qcJbWMZswVHattj4qNYMbHo/ly/k6+//gACalRjL28Q52T2/WR3K4Juzfkc3RpbY/LR1Ja3V5bZIyd4b9vcxxtx7BrfV71tt2+ygVff66B37cOi/H6k9QiijGX+19jYvmC3fzjjrUVZbg8ProMasoNc4cSm3TsWdOZGwuw/FTtcpV5+fadzHon5ZskRZCbXcaRp8XAIj7RSWySk9GXdmDZv3ZUXhQwjIq1NM64LvzLdn319m5evmMtPk/FOe88oCk3vDCUuADPVE9pF8P2tTnV/t28bqvy4piIiMixKCkvIiIi9damRzwtu8Sye2N+lRmSdofJeD8Jo5NFweFyZp//JWXFv5Qt2PdjIQ+c/RlPf3cmjnrMWM1YfdjvQprlJV6Wvbqj3kn5N+b8wPK3duMu91WWJfnopR9JTIlkwpX1SxDVRbPWMcc9Mz4/u4x/3f89q9/fh81mMHRKay66p/cxy2bI8RsypRX/9+AGXPwSj4YBEU4bAybUXmv7ZNa0VTTnB6j+dGSMnXFXdmLclZ0CcvyaTLy2M98vPVBl1rfdYaPr0GY0ax1d7+MX5pTz6ox1rHxvLwBDJrXkonv7EJvkZOK1nfnvx9Xb7jK4Gc1b129h39psXX2YedOrznbf/G02j132Ffe/cxrp41P570cHqu3XZ2wKzmgTy+d/gdDIBlgDpG3fBHI+qdq2BbTuXVHK6IL7e5PcLoYPns+gKM9Ft6HN+P3dvRvk3yuQflybwwu3Vj3nW1Zm8+ilK3hg8eiAtj3hms6sXrKvWqy1T08ktZYFjUVERAC0aqOIiIg0iOn/Hk6PU5MrSjBE2khMi+SGl4fSop4zwhuzFQt24fVWr+nsLvex5qN99Tq22+WjpgnrdVko8lgsy+Kjl3+sdpzyUi+Ln91ar2MHmrvcy90TP+Wbd/ZQXuKltMjDl2/sZMbZn+GrIekl9RMVG8FdC0fSqlscdqcNu8NGm17x3P3OKBxRgS2VIuGnY78k/vjMQOKaO3FEmdgdNvqOTeVPLw6p97G9Hh/3/nYZK97eTVmxh7JiD8sX7Oa+ycvwenx0SK/edp8xKUybV/+2a/Pe81urXSj1ui12rsvjwI4ibvz7ULoMqVoOpvPgJG7+5ym07BpHQmoUlmHhxocLHx58OKJslYvA1sePa3OwsPAe8WNhse37XKBibYCxl3Xk0W8n8PyWydz0z2G06Bxb73YDbcncrdUWTPZ6LHZvzGdfgOvht+2VwPVzBxOfHFkZa71+k8yNDbSItIiInPg0U15EREQaRJMkJ9P/PZyiXBflxR6SWkaF/aKigZazr7T6QotUlFLIzSqr17G7DGyKz0+5A2e0ybBzfn3ZhyN5XD6/s/ChYpZqOFu5ZC9Fua4q5ZQ8botDu0tY/3kWfU87vpIVcmytusUza9lY8rJKwTBISFY9/pPZwDNa0n9CC3L2lhIVZ2+wu1TWfLyfvKyyKndked0WuQfKWPPxfgZNbBmwtmtzeG8J+LnuZzoM8rJKSW3fhLsWjqI430XmpnxadY2nSeIvfRtyTivefGxj5WKrXsBjh66nNKt334ryXFQOFz+t9OqjYs0Qy7Ia7VidvaekWqkiADPCIO9gKS06BfbCQvq4NJ5cm1oRa7F2YhJ0N5aIiNSdZsqLiIhIg2qS6KBpq+hG+yW/IXUd0pzImOozhU3ToEs9F510RJn88ckBOCJNTHvFuXZGm3Tqn8QpZ7eu17EjnGaNC9J2+BWLxrrLvWz46iAbvz2E1+PnCkIA7Pohr0q5oMq+uLxkbikISh9OZgkpUUrICwA2m0Gz1tENmhTP3JRPeUn13+/yEg+Zm3/5/Q5E27XpPSIFu6P612uPy0ebHgmVf4+Jd9BtaPMqCfnyEg/vPrul+r5uHx+8/GOVv2/85hA/fH0Qj7vu76lmlK0iGf/zsPzTn+1RZqMeq3uPTCHC3zkv99G2Z4KfPRpeZawpIS8iIr+SZsqLiIiIBEj/cWm06BzHns0FlTPPHVEmPU5NpmN6Ur2PP3hSK9r2SuCL13dSmOOi37g0+o5OxWbWP8ly2ex+PHbZVxX9tsCwgcNpcvH9feu0/5pP9vPEdV9Xzhy1O2zc9tJwug9pXu++HUvLznE4o03Kj1p0NMJhkqY6vyKNWlrHWJzR9moX3pzRdtI6hvb3e+LVnfns9R0U5bkqZ/I7o0ym3NCN6LiIY+67a2M+hq36+7a73Meaj/fzu1t7smHFQf5y5Qp83opj22wGt744jD4jUmrtm787tgBc5d5GPVP+9Cs68elrOyjKLf/lnEebTLq2i9YQERGRsKeZ8iIiIiIBYjMN7l3wG86+pTstu8TRpkc8F9zdm1tePqXB2khp14Tf3d6Lyx/pT79xaQ2SkAfoNTKZERe0ARMsLLAbTLiuc50uJuQcKOWxq7+itNBDaVHFT2GOi1kXf0lpkbtB+leTob9tRWSMHeOIT7mm3SCumZP00SpdI9KYDZzQgui4CGxH3IBkMyE6LoJBE1qGrmNAXDMns5eOY+wfOpLavgldBjXlumcGc9ZN3Wvdt0miw+8dAFBxQbQwp5zZl35Jcb678j21uMDNnMuWU3C49pJiP99N5W97Y03IA8Q1dfLw0rGMv6wTqe2b0HlgU659ahDnTu8Z6q6JiIjUSjPlRUREJCxk7S5i/qMb2PD1QRKTIzn3Tz0YOrFVqLtVb44okynTujFlWrdQd+VXeXfuFpa+voNyr7ei1IHbx8LnNpPWoQkjz2l3zH2/fHtXjYuqfrtkL7/5/bH3rw9ntJ2Z741m3v+uYcPygwCkj0nlyr8MwLRrPopUt3l1Nq8/toE9GQW06RbPBdN70Tm9fuWlTnaH9hbzf4//wPdfHCCuqZOzr+3O8Mmt650AjnCaPLD4NObdtoZ1n2UB0Pe0FK58ZIDf0jHBlpAcyaUPptf4+Na1h3n90Q3s3pJP6y5xXDC9N136N8XyWVhUXAA1+OUcWVj4LIuvFmf6rVdvWbDi3d1MvKzzMfvltawajv2rX2LYiW8eySUz+nLJjLrdxSUiIhIulJQXERGRkMvKLOLm8R9SVuzG54XsvSU88aevuei23kz+Y+NKZp8ILMvirb9upLy0agmY8lIvrz/6Q61J+aJcF+7y6uUSvG4fRfmuhuyqX81bx3DH6yPwenwYhtFgdw/Iiee/nx/gocu/xPVTrGfvK+GHrw9y72uj6Dk0OcS9a5xyskq5ZfyHFBe48XktDu0t4elbv2VPRj5Tp/eu9/Gbtojmz6+e+ksZlzD6/Xa7vHz13h6++3Q/icmRjL+wAy07xgGw/qssZl78RWUps+x9JWz89hB3/XMkzkiTiGgbrmJvxZ1JP7EAnwXF+W7crurvqe5yL8X5td995Pb4AKvKbfI+LLweq1GXrxEREWnMQj+dQERERE56bz65kbJiD74jcsDlpV5e+8t6ykv939IfTtzlXr75YA+fvLGDQ3uKQ92denOX+ygu8J/oOby/pNb9+45KxRldfYFbwzTqVP+4oZh2W1gl7CT8zLt3TWVC/mflpV5eum9tiHrU+L07dzOlRZ7KpDlAeYmXBc9uprig4S7K2czQXHArynfx+du7+PztXRTl/fJ6XGVe/jxlKX/731V89tZO3n1xCzeO+5Cv388EYN49ayoT8j8rL/Xy0r1raNczATDwQZUfe6SNIRNb0meE/wVNHZFmnd5T7VE2PFi48OHGhwsfHizskTYl5EVEREJEM+VFREQk5DZ+e6hKAudnNpvB/p1FtOueEIJe1c22dTncM/UzvB4fls/C67WYfFVXLr2z8d5KH+G0kZgcRc6B0mqPtewUV+v+PYc1p9fwZDasOFi54Koz2mT4lDa06Rbf4P0VOR4+n8WejAK/j+3cmBfk3pw41q04iMddfVa3PcLG7s35dB8c2MWeA+mLd3bx15tXVl4M8Hktbnh8MCPPasuHr21j99aCyos8Xo+F1+PlqZtWMnBMCzK3+I+1XVvycUSaXD4znZfuWourzItlVSTcE1MimXBZJ2LiHAw6vSWrPtpb5T21/5g0OvevfZ2Pny8GWEfMwzcwKC9r3Au9ioiINGZKyouIiEjINW8Zzb7thdW2e1w+EppHhqBHdeP1+phxyRdVZksCLH55K32GJdPvN2kh6ln9GIbBH+7py7PTV1WZReyIMvnDXbVfbDAMg9teHs5X72Ty+X92YjNtjLmwPYNDvBCjyJFsNoOY+Ai/5T/ikpwh6NGJIaV1DDs25GIddZ3V4/aRlBYVmk41gMMHSvnrzSurzXb/6y0r6TmkOV8s3FXtrguoKAf24/e5mBEGvvLqF58jIipmq4+e2oFWXeJZ8lIGuQdKGTAujXEXdySqSQQAk6/vyrpvsij7qX1HE5Oz/tStTgn1JokR5FZbENYiLt6hhLyIiEiIKCkvIiIiIXfOn7qzeXV2lRrmEU4b/U9LI6FZ+Cblt6w+7Le8TnmJlw9e3dZok/IAI89uizPS5N+PrOdgZjGtOsVx8Z196DsytU77m6aNEee0ZcQ5bQPcU5HjN+WP3Xjr6arrJzijTM6+/uRey8Lr9bHguc28+9IWigtc9BqSzJX396dNl9rvdDnr2m6sWba/yjm1O2x0G9iMlNZNAtntgPpqcSbW0VcaqEi6r3gvk8ho/1+tLR9ERpt4vRWz1I9MgVuA54i7xLr0b0qX/tUXGS4tdnPnuZ9QeET5n7KDHu487xP+/t1ZRP+UuK9Jp/QkVn2yv9r2jn1qn2UvIiIigaGa8iIiIhJyfUekcvVDA4iJj8AZbRLhsDFobAtufuaUUHftmMrLvFUzLEcoKw7/Wvi1GTKxFU8tm8j8H8/jLx+Mr3NCXqSxOO+GHky8tDOOSJPIGDuOKJNJV3Vh8lVdQ921kHr29lXMf2I9OVmllJd6WfP5fm6Z9CFZmUW17tt1QDOmPTGE2CRH5ft5+qhU/jxveBB6HjhlJW6/C1i7y32UFXs44386E3nUWhqGAfHNnLTrkVBZos064gcqyij5S/Yfafmi3RQVVq/HX1zk5suFu2rt+5b/5vjdnrHe/3YREREJPM2UFxERkbAw5vwOjDqnHYf2FBOb6KRJgiPUXapVj0HNsPzUwndGm4w8WzPERcKdzWbwP/emM3V6L3IOlNI0NQpnDTOeTxa5h0r55D87qiSgLatiQeu3527mmgcH1nqMUye34ZQzW3Ews5iYOMcJUQ7IGVNzXDhj7Ayd0JLxF3Xk/Vd+xLTbMAxwRtm5918jMQwDu9NGeZkX44gruRYWDqdZWUKmKN/FF4t2kXe4nL7DkukxsDmGYbBuRVa1ckBQ8e/y/YosTr+40zH7fnSJtSO3q6a8iIhIaJzcnzhFREQkrNgjbKS1jw11N+rMGW3n+r8M5ulbV+L1+PB6LCKj7XTqm8goJeVFGo3IaDstOjSe955A2rutkAinWW1WuMdtsfm77DofxzRtpLU7cc5pSaH7iGVSf2EBJYUuDMPgyhn9+e2VXdj47SHimkaSPiIF015xc3pZuQcDAwur8v8AZWUeLMti4+ps7rroUywLXOUe/u8ZO+nDU7h33kjMiJpvcDcjak+ot+uewPYNudW2t+0ar4S8iIhIiCgpLyIiIlIPo85uS8feiXw8fzsFOeUMGd+SQeNbYJqqEigijU9K6xjc5dUXLLWZBm271V5T/kSV1q4JzhiT0mJP5Wx3C4vIGHuViw8prZv4rZ2flBrF4f2lGPxcuqYiLZ+UEoVlwcyrvqD0iLJnZSUe/rviAEvf2kG/kaksfWM71lHVcwwD+o2qfe2Sqx7oz/0XfYarzItlVezncJpcNbP/rz8RIiIi0iD0bVFERESknlp1iuOye9K58YkhDJ3YSgl5EWm0mreMYeBpLXBEVn0fi3DaOPfaHiHqVegNm9ia6NgIbGbFLHcLC5tpEN0kguFntK51/4tu7Y0zyvypnnxFQt4ZZXLh9F5s25BDWUn1dUjKSrx8+Po2eg9LxrKoMlPfwsKyoM+wlFrb7jU0mYffHsugsS1IbhXDgNEteGjBGPqeqnVCREREQkXfGEVERERERKTSbc8OZ8zvO+CINLHZDNp0ieOBV0+jTZeTd6Z8hNPksUXjSR+Rgs00MO0GfYen8Nii8UQ4zVr3P/3CTlxxbz/ikpzYTIO4JAeX3d2PCRceux68ZcFXH+4BJ0ck9H9Kzzvhqw8z69T/Tn2SuOefo3hp5WTu+9couqQ3rdN+IiIiEhgqXyMiIiJygrIsi++/yWLZop2YpsH4czvSLb1ZqLslImHOEWnyp4cHc+2sgXhcPpxR+toIFXcRzPz3aNyuivI+EY7ak/FHOvPSLpzxh86Ul3pxRv2ywGuHnolERturlK8BiIyyM2FqR3IOleLxWPgMi8rJ8gYYHouC3PJ6vy4REREJPn26EhERETlBPX77N3y8YDvlpR4w4L35GVxwbS/+59b0UHdNRBoB07RhRp1cN1d7PD7WLN9P3uEy+gxJIbVV9frwx0rGZ+0t4vtvs0hIiqT/qWnY7VXP39b1h9m5NZ+2nePp2qcphmFgmjbueXEkd130KT6fhavcizPSTt9hKYw9rz1b1+XgeGo9ZaVeOGJdVmeknX6n1l5TXkRERMKPkvIiIiIiJ6CNaw7x8VvbKpI4ABaUl3r597MbGH9eR1q0jT32AURETjK7fszjxt99SFmJB8uy8HosJl/chWkzBlfOaq+JZVk8M2MV77yyBZtpYBgQFR3Bk2+eTrvOCZQUu/nfiz4m44ccDAMsH3Tqmcijr40nukkEPQc1518rz+LD/9vGof0lDD+9Nb2HJmMYBt36NWXwmJas/HRfZe35yGg7A0al0WOg7n4SERFpjE6uaQ8iIiIiJ4kVH2VSXuat/oAF33y6J/gdEhEJY5Zl8ec/fELuoVJKityUFntwlXtZPD+DL97fXev+yz/czcJ/bsZV7qWsxENpsYecQ6XcdvFSLMviuQdWsfn77MrHyko9bFl3mGdmrASgqMDFrJu/5G8Pr+KtVzdx59Wf8Nl7OwEwDIO7nhvBzY8Mod+IVPqdmsJNc4Zwz9wRtV4sEBERkfCkmfIiIiIiJyBnpInNNPB6rCrbbTYDRx0WJRQROZls35RLzqFSrKpvmZSVeHjnlc2MOqPtMfd/9Zn1uF2+atsP7iti28ZcPnxre7XH3S4fHy/Yzm1/Gc7dV3/K999m4Xb5cOOjrNTDgzd9SXKLJvTs3xybzWD02e0ZfXb7er9WERERCT3NlBcRERE5AY05qz2mvfpHPcuyGDGhTQh6JCISvspKPdhs/medlxy1AKs/e3cW+N3u80HmjgLcbj93LlGRmN+3u4B1qw5WS9q7yrzMf359rW2LiIhI46OkvIiIiMgJqGW7OG58cDAOp0lUjJ3oJnacUSZ3/20E8UmRoe6eiEhY6dK7Kf4qwTijTMZMqX12ujPKxMLy+1hcgoMBw9Mwjvr2bRjQf3gqh7NKiYjwdxEV9u0uqlP/RUREpHFRUl5ERETkBHXmBV14Y/V53Dx7KLc+Moy31vyeEROOXYJBRORkFOEwueOJU3FGmdjtFdn5qGg7bTslMPmiLrXuP2pSOwyMysS89dN/NntFwv+mWUNpEufAGVlRPswZadIkzsHNs4bSvmui39I3ERE2+g9LbcBXKSIiIuFCNeVFRERETmAJSZGMP7djqLshIhL2Rk5sy8sfTmbRv7dyOKuUIaNbctqkdkQ4al+H46Jre/PBGz9SlO/GZ1Uk2J1OO1Ov6UlsvJPYeCfzl5/L4vlbydiQQ6eeSUy6oHPlnUtnX9qNN178oUpNe9NuMPWPvQLyWkVERCS0lJQXERERERERAVp3jOe6ewb96v2aJkdz22PDeWD6l+TneTAM6DcsmT/c0LfyOXGJTi68rrff/b/5ag8uy4cNAwPwYVHqhe0ZeTRLiT7elyMiIiJhKmjla3bs2MH555/P6aefzvnnn8/OnTurPefpp5/mlFNOYcqUKUyZMoUZM2YEq3siIiIiIiIix2XHj3ncNe0z8vPKgYp68N99s5/7bv681n13bc8nY1MuHsPCZfgoN3y4DYsyt5d5T6wJdNdFREQkBII2U/6+++7jwgsvZMqUKbzzzjvce++9vPLKK9Wed9ZZZ/HnP/85WN0SERERERERqZdXnluH2+Wtsq28zMvnH+3m4P5iktNiKC5y8d6CDDZvOEyXHk2ZdG5nmsQ62LUtD6/P/yKx27bmBqP7IiIiEmRBScofPnyYjRs38ve//x2ASZMmMXPmTHJyckhKSgpGF0REREREREQCImNTDl5v9cS6w2myZ1cBHq+Pi858m9JSD6UlHiKj7Dz/+He89t7ZREbV/LXcHhG0m9tFREQkiIIywu/fv5+UlBRMs2KBHNM0SU5OZv/+/dWe+9577/Hb3/6Wyy+/nLVr1wajeyIiIiIiIiLHrUefZph2o9p2V7mXth3jmX33CvJyyykt8QBQVuohP6+cWXcup1O3JEyz+r4AQ0a2DGi/RUREJDTCaqHXqVOncs011xAREcGKFSu47rrrWLJkCYmJiXU+RtOmTQLYw8atefPYUHdBwoxiQo5F8SE1UWyIP4oLORbFh9TkRImNm+46hQ8WbqO4yF25LSrazuTfdaVbjxS++nwPvqNK1Ph8Ft98uYfOXZvhjDEpLnD/tMwrWFgYGAwZ2fqEOUd1dbK9Xvn1FCNSE8WGHC2cYyIoSfm0tDSysrLwer2YponX6+XgwYOkpaVVeV7z5s0r/zx8+HDS0tLIyMhg8ODBdW7r8OGiah92pCIIDx0qDHU3JIwoJuRYFB9SE8WG+KO4kGNRfEhNTqTYiI41mbdgEo/e9w3rvsuiSayD8y/ryeXT+nLoUCF208Djrr6f3bTxzYpMSj0evPgwf7qZ3cLCjZe3/7ORM8/pGORXEzonUkxIYChGpCaKDTlaqGPCZjOOOXk8KEn5pk2b0r17dxYvXsyUKVNYvHgx3bt3r1ZPPisri5SUFAA2bdrE3r17ad++fTC6KCIiIiIiInLcuvRoygtvnun3sdMnd2TJ2z/idvsqt0VE2Bj/2w6UlLgxTYMyw8JL1cViiwv9ZPJFRESk0Qta+Zr777+f22+/nWeffZa4uDjmzJkDwFVXXcUNN9xA7969efzxx/nhhx+w2WxERETwyCOPVJk9LyIiIiIiItLY/O/9w9i6MYed2/OwLAubzaB1u3humzGMyEg7hp+S8pGRJqdP6hD8zoqIiEjABS0p37FjR958881q21988cXKP/+cqBcRERERERE5UcTGOZj//tms+fYA23/MpX3HBAYMTcP4KRt/xfX9eOrhlVX2MR02zruoRyi6KyIiIgEWVgu9ioiIiIiIiJyIDMNgwNA0Bgyturaaz2fx93+sowwv5k9LvfoA3G4++mA755zXLRTdFRERkQCyhboDIiIiIiIiIierTRuzKSxyYRngMSzchoXXsCgt8/LG6xtD3T0REREJACXlRURERERERELE67XwU1K+8jERERE58SgpLyIiIiIiIhIiPXs1w+E0q22PirJzznldQ9AjERERCTQl5UVERERERERCxDRtPPPcBKKj7Th/Ss5HR0fQb0Aq5/2+e4h7JyIiIoGghV5FREREREREQmjoKS1ZtvwSFi3MIDu7hFOGtWLYqa2w2WoqbCMiIiKNmZLyIiIiIiIiIiHWrFk0l13ZN9TdEBERkSBQ+RoRERERERERERERkSBRUl5EREREREREREREJEiUlBcRERERERERERERCRIl5UVEREREREREREREgkRJeRERERERERERERGRIFFSXkREREREREREREQkSJSUFxEREREREREREREJEiXlRURERERERERERESCREl5EREREREREREREZEgUVJeRERERERERERERCRIlJQXEREREREREREREQkSJeVFRERERERERERERILEHuoONDSbzQh1F8KWzo0cTTEhx6L4kJooNsQfxYUci+JDaqLYkKMpJqQ2ihGpiWJDjhbKmKitbcOyLCtIfREREREREREREREROampfI2IiIiIiIiIiIiISJAoKS8iIiIiIiIiIiIiEiRKyouIiIiIiIiIiIiIBImS8iIiIiIiIiIiIiIiQaKkvIiIiIiIiIiIiIhIkCgpLyIiIiIiIiIiIiISJErKi4iIiIiIiIiIiIgEiZLyIiIiIiIiIiIiIiJBoqS8iIiIiIiIiIiIiEiQ2EPdAakqNzeX2267jd27d+NwOGjbti0PPPAASUlJ7Nixg9tvv528vDwSEhKYM2cO7dq1A2DOnDl8+OGH7N27l0WLFtGlS5fKY44ePRqHw4HT6QRg+vTpjBgxwm/7x9uGBE44x8SvOY4ERjjHx2effcZTTz2Fx+MhPj6e2bNn07p164CeD/lFIGKjvLychx56iK+//hqn00l6ejozZ870277Gk/AUznGhMSX0wjk+NKaEVkPHxp49e7j++usrj19YWEhRURErV670277GlPATzjGh8ST0wjk+NJ6EViA+ayxbtoynnnoKy7Lw+XxMmzaN8ePH+21f40n4CeeYCPh4YklYyc3Ntb755pvKvz/88MPWHXfcYVmWZV1yySXWwoULLcuyrIULF1qXXHJJ5fNWrVpl7du3zzrttNOsLVu2VDmmv201Od42JHDCOSYUC6EXrvGRl5dnDR482Nq+fXvlY5dffvlxvko5HoGIjZkzZ1qzZs2yfD6fZVmWdejQoRrb13gSnsI5LhQPoReu8aExJfQCERtHevDBB60ZM2bU+LjGlPATzjGhWAi9cI0PjSeh19Cx4fP5rIEDB1Zu27Rpk5Wenm55vV6/7Ws8CT/hHBOBjgWVrwkzCQkJDBkypJRMfRIAAAjLSURBVPLv6enp7Nu3j8OHD7Nx40YmTZoEwKRJk9i4cSM5OTkADBw4kLS0tHq1HYw25NcL55iQ0AvX+Ni1axfNmjWjffv2AIwaNYrly5crdoKooWOjuLiYhQsXcuONN2IYBgDNmjXz27bGk/AVznEhoReu8aExJfQC+XnD5XKxaNEizj33XL+Pa0wJT+EcExJ64RofGk9CLxCxYbPZKCwsBCruokhOTsZmq57u1HgSnsI5JgJN5WvCmM/nY/78+YwePZr9+/eTkpKCaZoAmKZJcnIy+/fvJykpqdZjTZ8+HcuyGDBgALfccgtxcXHVnlPfNiTwwjEm6nIcCY5wio/27duTnZ3NunXr6NOnD4sWLarcR+8nwdcQsZGZmUlCQgLPPPMM3377LTExMdx4440MHDiw2nM1njQO4RgXGlPCRzjFh8aU8NKQnzcAPv30U1JSUujZs6ffxzWmhL9wjAmNJ+EjnOJD40l4aYjYMAyDJ598kuuuu47o6GiKi4uZO3eu3+dqPAl/4RgTgRxPNFM+jM2cOZPo6Gguvvjieh3ntdde49133+Wtt97CsiweeOCBBuqhBFu4xYRiK7yEU3zExsbyxBNPMHv2bM455xwOHz5MXFwcdruuBYdCQ8SGx+MhMzOTHj16sGDBAqZPn860adMoKipqwJ5KMIVbXGhMCS/hFB8aU8JLQ33e+Nlbb71V44xXaRzCLSY0noSXcIoPjSfhpaE+a8ydO5dnn32WZcuW8dxzz3HzzTdTXFzcgD2VYAm3mAj0eKJ3njA1Z84cdu3axfPPP4/NZiMtLY2srCy8Xi+maeL1ejl48GCdbq35+TkOh4MLL7yQa6+9FqgYzF555RUArrjiCoYPH37cbUjghWNM1HQcCb5wjI9hw4YxbNgwALKzs3nppZe0iFIINFRstGjRArvdXnlrX9++fUlMTGTHjh1s3bpV40kjE45xoTElfIRjfGhMCQ8N+XkDICsri1WrVvHII49UbtN3lMYlHGNC40n4CMf40HgSHhoqNjZt2sTBgwcZMGAAAAMGDCAqKopt27aRkZGh8aQRCceYCPR4oqR8GHriiSfYsGEDL7zwAg6HA4CmTZvSvXt3Fi9ezJQpU1i8eDHdu3ev9RabkpISvF4vsbGxWJbFkiVL6N69OwDnnntutSvMx9OGBF44xsSxjiPBFY7xAXDo0CGaN2+Oz+fj8ccfZ+rUqURHRwfgDEhNGjI2kpKSGDJkCCtWrODUU09lx44dHD58mLZt29K7d2+NJ41IOMaFxpTwEY7xARpTwkFDxsbP3n77bUaNGkViYmLlNn1HaTzCMSY0noSPcIwP0HgSDhoyNlJTUzlw4ADbt2+nQ4cObNu2jezsbNq0aUOfPn00njQS4RgTwRhPDMuyrAY9otRLRkYGkyZNol27dkRGRgLQqlUr/va3v7Ft2zZuv/12CgoKiIuLY86cOXTo0AGABx98kI8++ojs7GwSExNJSEjgvffeIzMzk2nTpuH1evH5fHTs2JG7776b5ORkv+0fTxsSWOEaE7/2OBIY4RofAHfddRdr1qzB7XYzfPhw7rzzTpxOZ3BOjDR4bEBFfeg777yTvLw87HY7N910E6NGjfLbvsaT8BSucaExJTyEa3yAxpRQC0RsAJx++uncddddjBw58pjta0wJP+EaExpPwkO4xgdoPAm1QMTGu+++y4svvli5qPwNN9zA2LFj/bav8ST8hGtMBGM8UVJeRERERERERERERCRItNCriIiIiIiIiIiIiEiQKCkvIiIiIiIiIiIiIhIkSsqLiIiIiIiIiIiIiASJkvIiIiIiIiIiIiIiIkGipLyIiIiIiIiIiIiISJAoKS8iIiIiIiIiIiIiEiT2UHdAREREREQCY/To0WRnZ2OaJqZp0qlTJ6ZMmcL555+PzXbs+Tl79uxhzJgx/PDDD9jt+togIiIiItJQ9OlaREREROQE9vzzzzNs2DAKCwtZuXIls2bNYt26dcyePTvUXRMREREROSmpfI2IiIiIyEkgNjaWMWPG8OSTT/L222+zdetWPvvsM8466yz69+/PqFGjePrppyuff/HFFwMwaNAg+vXrx9q1awH4z3/+w8SJExk0aBBXXHEFe/fuDcnrERERERFprJSUFxERERE5ifTp04fU1FRWr15NVFQUc+bMYfXq1cydO5f58+ezdOlSAF599VUAVq1axdq1a+nXrx9Lly5l7ty5PPPMM3z99dcMGDCAW2+9NZQvR0RERESk0VFSXkRERETkJJOcnEx+fj5Dhgyha9eu2Gw2unXrxplnnsnKlStr3O/111/n6quvpmPHjtjtdq655ho2bdqk2fIiIiIiIr+CasqLiIiIiJxksrKyiI+P5/vvv+fRRx8lIyMDt9uNy+ViwoQJNe63b98+HnroIebMmVO5zbIssrKyaNmyZTC6LiIiIiLS6CkpLyIiIiJyElm3bh1ZWVkMGDCA66+/nosvvph58+bhdDqZNWsWubm5ABiGUW3ftLQ0rrnmGiZPnhzsbouIiIiInDBUvkZERERE5CRQVFTEsmXLuOWWW5g8eTJdu3aluLiY+Ph4nE4n69atY/HixZXPT0pKwmazkZmZWblt6tSpvPDCC2RkZABQWFjI+++/H/TXIiIiIiLSmBmWZVmh7oSIiIiIiDS80aNHk52djWma2Gw2OnXqxOTJk5k6dSqmafLBBx8wZ84c8vLyGDx4MC1btqSgoIBHH30UgKeeeor58+fj8XiYN28e6enpLFy4kJdeeom9e/cSGxvLsGHDmD17dohfqYiIiIhI46GkvIiIiIiIiIiIiIhIkKh8jYiIiIiIiIiIiIhIkCgpLyIiIiIiIiIiIiISJErKi4iIiIiIiIiIiIgEiZLyIiIiIiIiIiIiIiJBoqS8iIiIiIiIiIiIiEiQKCkvIiIiIiIiIiIiIhIkSsqLiIiIiIiIiIiIiASJkvIiIiIiIiIiIiIiIkGipLyIiIiIiIiIiIiISJD8P+HASVw2NpHCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "org = avocadoData[\"type\"] == \"organic\"\n", + "fig = plt.figure(figsize = (26,7))\n", + "plt.scatter(x=avocadoData[org].Date, y=avocadoData[org].AveragePrice, c=avocadoData[org].AveragePrice, cmap=\"plasma\")\n", + "plt.xlabel(\"Date\")\n", + "plt.ylabel(\"Average Price (USD)\")\n", + "plt.title(\"Average Price of Organic Avocados Over Time\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6f4bb7de-397d-4ffc-9867-47bc858de1b7", + "metadata": {}, + "source": [ + "### Observations\n", + "* Looks like every year avocado's are most expensive between August - November\n", + "* There is a steep rise in the price in 2017\n", + "* December - February seems to be the best months to purchase avocado's" + ] + }, + { + "cell_type": "markdown", + "id": "7e133dea-b909-444b-b186-83e243b02a9f", + "metadata": {}, + "source": [ + "### Average Prices by regions" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "d690cbc5-7e21-48da-ba00-603c28073b1f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAKYCAYAAABjO37GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1SUV/7H8TcMDBgRxQQRu0ElwQaGZrASC4gIiK66iTVrWxONJaKm2WJioiGLrrFE48aSKFIUWyLBFmnW1dgj9gJ2RXQqvz/4+axEBlEBKd/XOTnHmafd545n8p3rfe7HLDs7OxshhBBCCCFEvsxfdAOEEEIIIYQoDaRwFkIIIYQQogCkcBZCCCGEEKIApHAWQgghhBCiAKRwFkIIIYQQogCkcBZCCCGEEKIApHAWQogyzM3NjfPnzxfb9R48eMCwYcN44403GDlyZLFdtzBNmDCB8PDwpz7uwoULODs7o9fri6BVhWfPnj107tz5RTdDiFJJCmchhCgkffv2xcPDA61WWyTnf1iYubm54ebmhq+vLwsXLsz3mP3791O7du0iaU9eNm/ezLVr10hJSSEiIsLkftHR0Tg7O7Nx48Zia1tpMmfOHBo3boybmxvu7u707t2b/fv3F8q53d3d+eWXXwrlXEKUN1I4CyFEIbhw4QJ79uzBzMyM3377rUivtXv3bvbv38/s2bP597//zY4dOx7b50WNel66dIl69ephYWGR734xMTFUqVKF2NjYYmpZ6ePv78/+/ftJTk7Gy8uLUaNGvegmCVHuSeEshBCFIDY2lubNmxMSEpKrGDxw4AA+Pj4YDAblvS1bthAYGAjkTG0ICwvDw8MDf39/Fi1aRJs2bQp0TTc3Nxo0aMDJkycBcHZ2ZsWKFXTq1IlOnTop7509e1a51pdffkn79u1544036NOnDw8ePFDa2bt3b9zd3enWrRspKSkmr3vq1Cn69u2Lu7s7AQEByg+FiIgI5s2bx6ZNm3BzcyMyMjLP4y9evMju3buZOnUqv//+O9euXVO2+fv7s3XrVuW1Xq/Hy8uLw4cPA/Dbb78REBCAu7s7ffv25dSpU8q+ly9f5r333sPb2xsvLy+mTp0KwLlz5+jXrx9eXl54eXkxduxY7ty5oxx35MgRQkJCcHNz44MPPkCj0eRq7+rVq+nYsSOenp4MGzaM9PT0/D4WoqKiaNWqFa1atWLJkiUAXL16lebNm3Pz5k1lvz/++ANvb290Ol2+57OwsCAwMJD09HRu3LihvL9161aCgoKUEeljx44p2w4fPkxwcDBubm6MHDmSDz74QJl+kpKSkuvvmKnPE3KmrUyZMoUhQ4bg5uZGz549OXfuXL7tFaIsk8JZCCEKwdq1awkMDCQwMDBXMejq6kqFChVITk5W9o2Li1MK57lz53Lx4kXi4+P54YcfWLduXYGul52dzd69e/nzzz9xcXFR3o+Pj2f16tV5ToGYOXMmhw8f5ueffyY1NZUPP/wQc3Nz0tPTGTp0KMOHDyc1NZWwsDBGjhyZq0h7SKfTMWzYMHx8fEhMTOTjjz9m3LhxpKWlMXLkSIYOHaqMlPbs2TPPtsfGxtKkSRM6d+6Mk5MTcXFxyraAgADWr1+vvP7999+xs7OjcePGnD59mrFjxzJp0iSSkpJo06YNw4YNQ6vVYjAYGDp0KDVq1CAhIYEdO3bQpUsXpa+GDh3Kzp072bRpE1euXGHOnDkAaLVaRowYQVBQEKmpqfj5+fHrr78q109KSmL27Nl8++23/P7779SsWZMxY8bk+9mkpKTw66+/snjxYhYuXEhiYiL29vZ4enqyadMmZb9169YREBCApaVlvufTarXExsZSpUoVbG1tgZzCeNKkSUydOpWUlBR69erFP//5T7RaLVqtlvfee4+QkBBSU1Pp2rUr8fHxeZ47v8/zoQ0bNvDee++xe/du6tSp80zzv4UoK6RwFkKI57Rnzx4uXbqEv78/TZo0oXbt2rmKv0eLwczMTHbs2EFAQAAAmzZtYujQoVSuXJnq1avTr1+/J17P29sbT09PPv74Y8aOHUvLli2VbUOGDKFKlSpYW1vnOsZoNBIVFcVHH32Eg4MDKpWKFi1aoFarWbt2LW3atKFt27aYm5vj4+NDkyZN2L59+2PX/u9//0tWVhZDhgxBrVbTsmVL2rdvz4YNGwrcX2vXrqVr164AdO3alZiYGGVbYGAgCQkJ3L9/H8j5kfFw340bN9K2bVt8fHywtLTk3Xff5cGDB+zfv5+DBw+SkZHB+PHjeemll7CyssLd3R2AunXr4uPjg1qtpmrVqgwcOJDdu3cr96PT6ejfvz+Wlpb4+fnRtGlTpT1xcXGEhobSuHFj1Go1Y8aM4cCBA1y4cMHk/Y0YMYKXXnoJZ2dnunfvrnz2ISEhyg8jg8HAhg0bCAoKMnmezZs34+7uTvPmzYmMjCQiIkKZArN69Wp69epF8+bNUalUhISEYGlpyYEDB/jvf/+LXq+nX79+WFpa0qlTp1z39KiCfJ4dO3akWbNmWFhY0K1bN44ePWqyzUKUdVI4CyHEc4qNjcXHx4eqVasCeReDW7ZsQavVsmXLFlxcXKhZsyYAGRkZODo6KvtWr179iddLTk5m9+7dbNq06bFC+9FzPermzZtoNJo8HxS8dOmSUqQ9/G/v3r1cvXr1sX0zMjKoXr065ub/+99HjRo1njh94aG9e/dy4cIF5YdD165dOXHihFKM1a1bFycnJ7Zu3cr9+/dJSEhQRuczMjKoUaOGci5zc3McHR1JT0/n8uXL1KhRI8+51devX2f06NG0bt2aFi1a8OGHHypTJjIyMnBwcMDMzCzX/Tx6vw8/K4CKFStSpUqVfO/30c+gZs2aZGRkAPDWW29x6tQpzp8/z65du7CxsaFZs2Ymz+Pn58eePXvYtWsXDRs2VKarQM5n9sMPP+T6zK5cuUJGRkae92Tq70VBPs9XXnlF+bO1tTVZWVkm2yxEWZf/0xtCCCHy9eDBAzZt2oTRaMTHxwfI+af1O3fucOzYMV577TUaNGhAjRo12LFjB+vXr1dGUAHs7e25cuUKDRo0AODKlSvP1Z5Hi6VH2dnZYWVlxfnz53nttddybXN0dCQoKIjp06c/8fzVqlXjypUrGI1Gpdi6fPky9erVK1D7YmNjyc7OJjg4+LH3X3/9dSCnmF6/fj1Go5EGDRpQt25d5donTpxQjsnOzuby5cs4ODigVqu5fPkyer3+seJ59uzZmJmZsW7dOuzs7IiPj1fmP9vb25Oenk52drbSd5cuXVJ+YFSrVo2LFy8q58rKyuLWrVs4ODiYvMfLly/j5OSknKtatWoAWFlZ4e/vz7p160hLS8t3tPlRVatWZcqUKfTo0YOuXbtSrVo1HB0dGTZsGMOHD39s/9TU1Mfu6fLly3n+aHrez1OI8kZGnIUQ4jnEx8ejUqnYsGEDsbGxxMbGsnHjRtzd3XM9JNi1a1d+/PFHdu/ejZ+fn/K+v78/CxYs4Pbt26Snp7N8+fIiaae5uTmhoaF88cUXpKenYzAY2L9/P1qtlm7durF161Z27tyJwWBAo9GQkpKSZxHfrFkzKlSowPfff49OpyMlJYWEhARlPnF+NBoNmzZtYurUqUpfxcbG8sknnxAXF6esBNKlSxd27drFTz/9lOtHhr+/P9u3bycpKQmdTseSJUtQq9W4ubnRrFkz7O3tmT17NllZWWg0Gvbu3QvAvXv3eOmll7C1tSU9PZ3vv/9eOaerqysWFhb8+OOP6PV6fv31Vw4dOqRsDwwMJDo6mqNHj6LVavnmm29o1qwZtWrVMnmf8+bN4/79+5w8eZLo6OhcfRMUFERMTAwJCQl069btiX32kJOTE61bt1ba3rNnT37++Wf++9//kp2dTVZWFtu2bSMzMxNXV1dUKhXLly9Hr9cTHx+f654e9TyfpxDlkRTOQgjxHGJiYujevTs1atTA3t5e+e/tt9/OVQx27dqV1NRUvL29lSkdkDMftnr16rz11lsMGDCAzp07o1arle3/+Mc/mD9/fqG0NSwsjEaNGtGjRw88PT2ZNWsWRqMRR0dH5s2bx4IFC2jZsiVt27Zl8eLFGI3Gx86hVqv57rvv2LFjB97e3kyZMoWvvvpKGWHNT3x8PNbW1gQHB+fqqx49emAwGNi5cyeQMwrq6urK/v37cxVwr776Kl9//TXTpk3D29ubrVu3Mn/+fNRqNSqVivnz53P27Fnat29PmzZtlAfx3nvvPY4cOYK7uztDhgxRVhx5eD9z5swhJiYGDw8PNm7cSMeOHZXtLVu2ZNSoUbz//vu0atWK8+fPP/HhOE9PTzp27MiAAQMYNGgQrVq1Ura98cYbmJub07hx43yL77y8++67rF69muvXr9O0aVOmTZvG1KlT8fDwoFOnTkRHR+e6pzVr1uDh4cG6deto165drr9Xj97/s36eQpRHZtnZ2dkvuhFCCCFyrFy5ko0bNxbZyLN48fr160dgYKDJVUeKQs+ePenduzehoaHFdk0hyiIZcRZCiBcoIyODvXv3YjQaSUtL44cffqBDhw4vulmiiBw8eJAjR47g7+9fpNdJTU3l6tWr6PV6YmJiOH78OK1bty7SawpRHsjDgUII8QLpdDo+++wzLly4QKVKlQgICODvf//7i26WKAJhYWHEx8fz0UcfYWNjU6TXOn36NB988AFZWVnUrl2biIgI5SFFIcSzk6kaQgghhBBCFIBM1RBCCCGEEKIApHAWQgghhBCiAGSOsxBCCCFKFINWx627mmK95ssv23D9emaxXrO0KE99Y25uhp1dRZPbpXAWxeL68hiMd++96GYIIYQoBeyHv4PR+KDYr2s0ymNfpkjf5JCpGsVk06ZNBAcHExQUhJ+fH2PHjn3mcx09epSNGzfmes/Z2Zl794q+MI2Pj+fgwYNFfh0hhBBCiJJGRpyLQUZGBlOmTCEmJgZHR0eys7M5duzYM5/v6NGjbNu27YVEosbHx9OkSROaNWtW7NcWQgghhHiRpHAuBteuXcPCwoIqVaoAYGZmxuuvvw7Ajh07+OabbzAYDFStWpWpU6dSt25doqOj2bZtGxEREQDK6ylTphAREUFmZiZBQUF4eHjw8ccfA7Bs2TK2bNnCrVu3GD9+PJ07dwbgv//9L7NmzVJGpEeOHEm7du3Q6/UMHTqUmzdvotFoaNasGVOmTEGtVrNv3z6mTZuG0WhEr9czfPhwKleuTEJCAomJiURGRjJw4ECCg4OLuzuFEEKUUvsunyfy8H7u63X57qdK+hWD4clTAypUsKZnz7/TooV7YTVRiHxJ4VwMXnvtNZo1a0a7du3w8vKiRYsWBAUFYTQaGT9+PMuXL6dBgwZERkYybtw4IiMjTZ7Lzs6OkSNH5iqqH7KxsSEqKoq9e/fywQcf0LlzZ+7cucNnn33GwoULqVatGhkZGfTo0YP169dTqVIlZs2ahZ2dHdnZ2YSFhREVFUWfPn1YtGgR/fv3Jzg4mOzsbO7evYutrS2+vr40adKEd955p6i7TQghRBkTd/wPTt+6/uQdM+8U+Jzr18dK4SyKjRTOxcDc3Jx58+Zx4sQJdu/eTXx8PIsXL2bMmDG89tprNGjQAIDQ0FCmTJlCZuazPbn6cOqGq6srGRkZaDQa9u/fz4ULFxg8eLCyn5mZGWfPnsXFxYUlS5awY8cOjEYjt2/fxtraGgAvLy8WLlzIpUuX8PHxoXnz5s/ZC0IIIcq7QOcmPNDrnjziXLlSgUecu3aVf/kUxUcK52LUqFEjGjVqxNtvv02XLl0wMzPDzMwsz31VKhVGo1F5rdE8eVkeKysr5VgAvV5PdnY2zs7OrFix4rH9Y2Nj2bt3LytWrMDGxob58+dz5swZAAYMGICvry+JiYlMmzYNHx8fRo8e/bS3LIQQQihaONamhWPtJ+5nP/wdrl69WwwtEuLpyKoaxSA9PZ39+/crr69cucKNGzd49dVXOXr0KKdOnQIgJiYGFxcXbGxsqFOnDsePH0er1aLVavnll1+U421sbLh7t2BfKG5ubpw9e5bk5GTlvYMHDyrTL+zs7JTzrV+/Xtnn9OnT1KlTh969e9OvXz8OHTr01NcWQgghhChLZMS5GOj1eubMmcPFixextrbGaDTywQcf0KxZM7766ivGjRuHXq+natWqfP3110BOwduyZUu6du1KrVq1cHJy4urVqwC0bNmSJUuW0K1bNzw9PZWHA/NSuXJl5s2bx9dff82MGTPQ6XTUrl2b+fPnExwczG+//UZAQAAODg688cYbysj2smXLSElJwdLSErVarVyjW7duTJw4kc2bNz/Vw4EvvxPyPF0ohBCiHDFo85/KIcSLYpadnS0rWosid/16piyengd7+0ryz5H5kP4xTfrGNOkb06RvTJO+Ma089Y25uRkvv2xjensxtkUIIYQQQohSS0achRBCCCGek0Gr48bt4o8JLw4y4vw/Mse5BNLpdMybN4+NGzdiYWGB0Wikbdu2vPrqq/z++++Prd8M8Ntvv7Fnzx7CwsJeQIuf7PqKnzDefbZl9oQQQoiSzn7YYKBsFs7if6RwLoEmTpyIRqMhKioKGxsbdDod0dHRaLVak8e89dZbvPXWW8XYSiGEEEKI8kWmapQwZ86cITg4mO3bt1O5cuVc26Kjo1m/fj22tracPHmSSpUqMWfOHOzt7R+L6F6zZg0//vgjAJaWlixYsIAqVaqYjNjWarVMmzaN1NRUqlatyuuvv861a9eIiIjAYDAwa9Ysdu7cCUDr1q0ZN26csl50QciIsxBCiNJm3+VLRP5xiPt6/RP3VVW2LVBoC5S+qHCZqvE/MuJcwhw5coS6des+VjQ/dOjQIdatW4ejoyMff/wxy5cvfyyYJCUlhQULFrBy5Urs7e25d+8eFhYWqFQqkxHbq1at4tKlS2zYsAGDwUDfvn2pXr06AKtWreLo0aNER0cDMHjwYFatWsXf//73ou0MIYQQ4gWKO36U07duFmznzKcrLCUqvHSSwrmUadGiBY6OjgA0b96cxMTEx/bZtm0bQUFB2NvbA1CxYkUADAaDyYjtlJQUgoKCsLCwwMLCgoCAAPbu3QtAUlISISEhqNVqALp37058fLwUzkIIIcq0QOfXeaDTF8mIs0SFl05SOJcwLi4unD17ltu3b+c56vwwVhtyorUNBkOBzx0XF2cyYjs7O9tk/Hde20ztK4QQQpQVLRxr0MKxRoH2tR82uNxMZyjPZB3nEqZevXr4+vry6aefkpmZMyfYYDDwn//8h6ysrAKdo3379qxdu5Zr164BcO/ePbRabb4R215eXqxbtw69Xo9Go2HTpk3KtjfffJOYmBh0Oh06nY7Y2FhatmxZiHcthBBCCFHyyYhzCfTll1/y73//m9DQUCwtLZXl6OrXr1+g4z09PRkyZAgDBw7EzMwMtVr9xIjt3r17c+zYMQICAnB0dKRx48bcv38fgF69enHu3DlCQnJis1u1asXf/va3p7qnl9/u81T7CyGEEKWJxISXD7KqhlBkZmZiY2ODVqtl+PDh+Pn50bNnz0I5t0Ru5608Pan8LKR/TJO+MU36xjTpG9Okb0wrT30jq2qIAhs4cCBarRaNRsObb76pjDALIYQQQggZcRZCCCGEeExZjtB+WjLi/D8lbsTZ19eX+fPn06hRI+W97t27ExYWhpeX13Od+1//+hcNGzakS5cuJvfp27cvgwYNon379s91rfxkZ2czZ84cfvnlF1QqFXq9np49ezJw4MAiu+ajoqOjcXNzK/Cc6cJwbcVijHfvFNv1hBBCiOdRbdhoJEJb/FWJK5wLg16vx8Ii960ZDAZGjRr1wq7/qM2bN5OUlER0dDRWVlZotVrOnTtXqNfIT0xMDHZ2dsVaOAshhBBClHalqnCOi4vjxx9/RKfLeXI1LCxMWRbN19eX0NBQkpOTqV27NkFBQcyYMQN3d3cOHTrE8OHD+eWXX2jSpAnvvPMO8fHx/Otf/8Lc3ByDwcAnn3yijGgnJiayZMkSrly5gr+/P2PGjFGu8eho+KOv/3r9GTNmEB4ezsaNG6lSpQqenp5KsZyeno6dnZ0SKKJWq2nQoIFyn3nFZT948IDQ0FDeeecdEhMT6datG/Xq1ePbb79Fo9FgMBgYNmwYAQEBQM7IeZMmTThw4AAZGRn4+/szbtw4oqKi+OOPP5g+fTrffvutMpJvKlJ7woQJqNVqzpw5w5UrV3B1dWXmzJmyjrMQQohSZ9/ldNb8caJggSaJ+wsUaFLa4rPF8ymRhfPIkSNzBX08DOlo1aoVXbt2xczMjLS0NAYMGMCOHTuU/a5evcqyZcuAnCS8EydOMHnyZD755BMAfvnlF2XfiIgIPvvsM9zd3TEYDMrSawCnTp3ihx9+QKPR0Lt3b9zc3Ao0dePR6yckJLB161bWrl2LtbU1I0eOVPbr0qULP/30E506dcLd3R1vb28CAgKwsLAwGZf94MEDbt26hZOTE++//z4At2/fZuXKlahUKq5du0b37t1p1aqVEpxy+fJlVqxYwb179+jQoQM9evQgNDSU2NjYXNNRVq5cmW+k9smTJ1m6dClmZmaEhISQmJiIj49PQT5KIYQQosRYf/wUp2/dLtjOmfcKfl6Jzy43SmThHBER8dgcZ4Dz588zduxY0tPTsbCw4Nq1a1y9elWJlg4Ozh1fWbduXdzc3PK8hre3N19++SV+fn60adMm1/WCg4OV6OkuXbqQnJxcoML50eunpKTg7+/PSy+9pGybN28eANWqVWPDhg0cOHCAvXv3Mn/+fNatW8fixYtNxmVDTmqgv7+/8vrGjRtMmjSJs2fPolKpuH37NqdPn8bV1RUAPz8/zM3NqVSpEk5OTpw7d4569eo91u4nRWp36NBB+SHj4uLCuXPnpHAWQghR6nR1duKBzlDACO0qBR5xlvjs8qNEFs6mjBkzhgkTJtChQweMRiPNmzdXAjwApUg19fpRkyZN4vjx4yQnJzNq1CgGDhyYZ6jHo3HTKpUKo9GobHv02n+9Xn4R1gAWFha4u7vj7u5OaGgoPj4+3Lp1y+T+ABUqVMh1zsmTJ+Pr68vcuXMxMzOjc+fOudpU0HjuJ0VqP0/MtxBCCFFStHB0oIWjQ4H2rTZsdLlZSUIUXKmK3L579y61atUCcuYBa7XaZz5XWloazs7O9O/fn27dunHo0CFl29q1a9Hr9WRlZbF582Zl7nOdOnWU/ZKSkpRI67x4eXmxefNm7t+/j9FoZN26dcq2P/74gwsXLiivDx8+TOXKlbG1tTUZl52Xu3fvUrNmTczMzNi1axdnz54t0L1XrFiRu3f/92UgkdpCCCGEEE9WqkacJ06cyD//+U8cHBzw9PSkSpUqz3yu2bNnK1McbG1t+fzzz5VtjRs3ZuDAgaSnp+Pn56dM0xg1ahQTJkwgMjKSFi1aUKNGDZPnf+utt9i/fz9BQUE4ODjQvHlzbt/OmVd18+ZNpkyZQmZmJmq1mgoVKvDvf/8bc3Nzk3HZeRk7dixTpkxh0aJFODs74+zsXKB779WrFzNnzmTJkiWMHz++UCK1n+SVt98t1PMJIYQQRUkitEVeJAClCD2MsDYajXz00UdUq1aN0aNHv+hmvRASuZ238rSo/LOQ/jFN+sY06RvTpG9Mk74xrTz1TakLQClLwsLCuHjxIg8ePKBx48YMHjz4RTdJCCGEEEI8IxlxFkIIIUSxMWi13LitefKOxaw8jao+rfLUNzLi/IL5+vqiVqtRq9UYjUaGDx+OtbU1e/bsISwsjAsXLrBr1y569eqlHLN06VICAwN5+eWX8z13ccSDp6SkMHPmTGWN52d1dVk4hrv5rxoihBCi7Kv+zylAySuchSgIKZyLwcN1qY8cOULv3r3Ztm0bb731FgAXL15k1apVuQrnH3/8kTfffPOJhXNheJ7obiGEEEKI8kQqpmLk4uJCxYoViY6O5uDBg0RERDB16lQuXLhAUFAQdevW5fXXXycjI0NJT5w9ezZnzpx5YfHgAAaDgU8//ZT9+/djZmZGeHg4Tk5OL6YThRBClHj7L99gzZGzPNA/vu6/KrnfY8EiElstSgspnItRcnIyGo0m1wjvp59++thUiMjIyFzpiWPGjHlh8eAAf/75J1988QVTp07lu+++Y968ecyePfu5+kIIIUTZteHEBc7cMhFZnXkxz7cltlqUBlI4F4OHo8c2NjbMmTOH9PT0pzr+RcaDA9SvXx8XFxcAXF1d2bp161O1XwghRPkS0KgW9/UmRpwrv5zniLPEVovSQArnYvDo6DHw1A/aveh4cLVarfzZ3NwcvV7/VO0XQghRvrg5VsXNsWqe26r/c0q5WaFBlD2lKnK7LLKxsSEzMzPXe3+NxH6R8eBCCCGEECKHjDi/YM7OztSvX5+uXbvy6quvEhERQb9+/Zg0aRLW1tbMnj2b8PDwFxYPLoQQQgghckgAigAkHlwIIUTxkACU0qc89Y0EoIgCKep48OvXMzEa5TfaX5WnL6NnIf1jmvSNadI3pknfCPF8ZMRZCCGEEEXCoNVw47b2RTejQORHhWnlqW9kxLkceRjvbWVlhUajwd3dnc8++wxLS0uTx3z00UeEhITg7l60a2de/s8kDHevF+k1hBBClCy13lsAlI7CWYiCkMK5jHm49J3BYODtt99my5YtdOnSxeT+jz5oKIQQQgghTJPCuYzSaDRoNBpsbW25d+8e06dPV5an69atG0OGDAGgb9++DBo0iPbt27Nq1SqWLl2KWq3GaDTy7bff4uTkRFpaGjNmzODmzZvodDr69+9PaGjoi7w9IYQQxeTAlXtEH73BA53xyTv/hUXq4/HaBSER3KKkksK5jHmYUnju3DlatWpFq1at+PrrrzEajcTFxXHv3j169eqFs7Mzbdu2zXXsV199xfr163F0dESr1WIwGNDr9YwbN46vv/4aJycnMjMzCQ0NxdXVFScnpxd0l0IIIYrLppM3OXvrGVfBuJd3vHZBSAS3KImkcC5jHk7V0Gg0vP/++yxdupSkpCQmTZqEmZkZNjY2BAQEkJSU9Fjh7O3tzcSJE3nrrbdo164dtWvX5s8//yVTFz8AACAASURBVOTUqVOMGTNG2U+n05GWliaFsxBClAP+De24r3/GEecq1Z55xFkiuEVJJIVzGWVlZUW7du3Ytm1bnpHaeUVsz507l0OHDpGcnEy/fv2YPHkyNWrUwM7OjrVr1xZX04UQQpQgrtUr4lq94jMdW+u9BeVmNQZRPkjkdhllNBrZvXs39erV480332TNmjVkZ2eTmZnJxo0badmyZa799Xo958+fp1mzZgwZMgQfHx+OHj1K/fr1sba2JjY2Vtn31KlTj8WECyGEEEKUdTLiXMY8nOOs0+lo2LAhI0aMwMLCgmnTphEYGAjkPBzYpk2bXMcZjUYmTJjA3bt3MTMzw9HRkbFjx2JhYcH8+fOZMWMGixcvxmg08vLLL/Ptt9++iNsTQgghhHhhJABFCCGEEEVCAlDKhvLUNxKAIkoEidzOW3n6MnoW0j+mSd+YJn1jmvSNEM9HRpyFEEKIckiv1XCzlIwGFwf5UWFaeeqbUjHiHB4ezq1bt5gyZQoAW7duZdiwYaxfv56GDRsCMHToUDp06EDPnj2f6twpKSnodDpatWrFzZs3GTBgAABZWVlkZGRQr149ANq1a8fo0aOfqf1t2rShSpUqrF27Vlmtok2bNvzwww+FsmRbnz59OHz4MLt27aJSpUoA7Nq1i0GDBjF48GDGjRv3TOc1GAx0796dyMhI1Gr1c7czP2f+Mxj93YwivYYQQoiCa/DeWiQOW4inUyJW1fDy8iI1NVV5nZqaSvPmzZX3DAYDe/fuxdvb+6nPnZqayq5duwCUZdXWrl3L9OnTcXJyUl4/a9H8UGZmJnFxcc91jvw4OTmxceNG5XV0dDSNGzd+rnOqVCrWrl1b5EWzEEIIIURZUCJGnFu0aMGFCxe4du0ar7zyCrt372bEiBHExMTw9ttvc+TIEWxsbKhduzbbt2/nu+++Q6vVYmlpycSJE3F1dSUtLY2JEydy//59jEYjISEhtGrVip9//hmj0UhiYiIBAQFK1HResrOzWbBgAfHx8ej1ehwdHZk+fTovv/wyEyZMoGrVqowfP56MjAx69+7Nd999h7OzMwDvv/8+c+bMwd/fH0tLy1znTU9PZ/r06Vy+fBmNRkO3bt0YPHgw27ZtY9WqVXz33Xekp6fTpk0b5s6dS8eOHZk/fz4ajYZRo0YBEBISQkxMDL169SIzM5NDhw7RuXNnHs60eZa2Ozk50bhxYw4ePIiVlRUnT57k888/58aNG2RnZ/OPf/yDoKAgTp8+zWeffcbNmzextLRk7Nix+Pj4FNHfBiGEEAVx6IqedUe1PNA924xLy2eMwwaJxBblV4konK2trWnatCmpqam0adOG+/fv06ZNG7744gsgZ9TYy8uLc+fOMW/ePBYvXoyNjQ0nT55UCtCVK1fSpk0bRowYAcDt27epXLkyvXv3Jisri7CwsCe2IyYmhitXrrB69WrMzc1ZtmwZX331FTNnzuSzzz6jZ8+euLu7s3TpUoYOHaoUzQDNmjWjUaNGrF69mrfffjvXeceNG8fo0aNp0aIFWq2Wfv360bRpU9zd3QkLC8NgMJCUlISbmxtJSUl07NiRpKQk5V4AZUrJ6dOn2b17N506dcLc3ByDwfDMbdfr9cr5tVotw4cPJywsjI4dO5Kdnc2tW7cAGDt2LH379iUkJITjx4/Tv39/Nm3ahJ2d3TN82kIIIQrDrye1nLv19Gl+iueIwwaJxBblU4konCFnukZKSgoVK1bkjTfeQKVSUbduXU6ePElqaiqdOnVi586dnDt3LldhqtfruXbtGh4eHsycOROdToeXl9czTetISEjg6NGjhISEADlTRKpUqQJAhQoVCA8Pp2fPnrRr145evXo9dvzo0aMZNGgQ3bt3V97LzMxk3759yvxtgHv37nHq1Cm8vb2pX78+hw4dIikpiffee4+vvvoKjUbDsWPHcHV1zXX+kJAQYmNjSU1NZfr06axbt67Q2p6WloZKpaJjx45ATrKgnZ0dt2/f5s8//yQ4OCf61NnZmYYNG3Lw4MHHIruFEEIUn04N1TzQP8eIc5UazzXiLJHYojwqMYWzp6cnU6dOpVKlSnh4eADg4eFBcnIye/fu5ZNPPmH79u20bt2ar7766rHjO3fujKurK7t27WLRokVERUUxa9asp2pDdnY277//vlIk/tXJkyexsbHh6tWrGAwGVCpVru0NGjTgzTff5D//+Y/yntFoxMzMjKioKCwsHu9ub29vkpKSOHjwINOnT6dy5cps2LCBxo0bPzb3OCAggICAAKpXr/7YQ4fP2/b8FlfJK547r/eEEEIUn6bVLWha/dn/N97gvR/LzUoJQhSWEvFwIOTMc7548SK//vornp6eALi7u7N8+XJsbW2pVasWPj4+7Ny5k5MnTyrHHTx4EICzZ89ib29P9+7dGTFiBIcOHQLAxsaGu3cL9sXg6+vLihUruHPnDoAy8gtw7tw5Zs6cycqVK6levToRERF5nuP9999n2bJl3L9/HwBbW1tcXV1ZvHixss/Fixe5du0aAC1btiQyMpI6depgaWmJt7c3c+fOzXPE3MbGhg8//JAPP/yw0Nvu5OSEwWBgy5YtQE4hffPmTSpXrqw8RAk5BfjJkydp2rRpAXpUCCGEEKLsKDEjzlZWVjRv3pz09HQcHBwAaNq0Kenp6fj5+QE583y//vprPvroIx48eIBOp6NFixY0a9aMTZs2ERcXh6WlJWZmZkyaNAmADh06sHbtWoKCgp74cGBoaCi3bt1SpoJkZ2fzzjvv8Oqrr/LBBx8QFhZGnTp1mDp1KqGhoXh4eNCqVatc56hZsyZdunThxx9/VN775ptvmDFjBoGBgWRnZ2NjY8OXX37JK6+8gpubG9evX6dfv35ATiEdERFhcqpJ165dC63tj15DrVbz3XffMW3aNCIiIjAzM2Pw4MEEBgYye/ZsPvvsM5YsWYJKpWL27Nkyv1kIIYQQ5Y4EoAghhBDlkASg5FaeQj6eVnnqm1IRgCLKPonczlt5+jJ6FtI/pknfmCZ9Y5r0jRDPRwpnUSzy+/VW3tnbV3rRTSjRpH9Mk74xrbz1jYweC1E8pHAuJL6+vsyfP59GjRo997lWrFjB1KlTiY2N5fXXXy+E1pnm7OzMvn37qFixYpFe5+jyf6CTyG0hhCgSzYavQ+KzhSh6JWZVDfE/UVFReHt7ExUV9aKbIoQQQggh/p+MOBehgwcP8vnnn5OVlcVLL73ERx99RLNmzbh+/Tpjx47l+vXrQM5KGg9XATl+/Dg3b95kzpw5hIaGMn78eGU9Z19fX4KCgkhMTOTq1asMGjSId955B4A9e/YoISteXl789ttvLFiwgEaNGpGWlsaMGTO4efMmOp2O/v37Exoa+lh7Te13//59wsLC+PPPP7GwsKB+/fr861//Ko4uFEKIcunwZT2bD+vQ6Av2bIg6qWDx2SqVGQZDtkRmC/GMpHAuIlqtlpEjRzJjxgzefPNNkpKSGDlyJL/++itxcXHUqFGDpUuXAjnx4A+tWbOG4OBgatasyeuvv058fDxdunRRtj948IBVq1Zx4cIFAgMDCQkJwdLSkjFjxvDNN9/g7u7Oli1bWLZsGZCTrDhu3Di+/vprnJycyMzMJDQ0FFdX11whKvntl5aWxp07d9i4ceNj7RVCCFH4th7XceFp4rQznz4+WyKzhXh6UjgXkdOnT2Npacmbb74J5IwqW1pacvr0aZo3b84PP/zAzJkz8fT0VNaC1mq1rF+/nlWrVgE5EdtRUVG5CueHf65Vqxa2trZcuXIFnU6HtbU17u45X4AdO3bE1tYWgDNnznDq1CnGjBmjnEOn05GWlparcM5vv9dee420tDSmTJmCp6cn7dq1K4IeE0II8VB7Z0s0+qcYca5csPjsR0ecJTJbiKcnhXMRyc7ONhlV7ebmRmxsLImJiaxdu5aFCxfy008/kZCQQGZmJgMGDABy4rqvXbvG5cuXcXR0BHKCYh5SqVQYDAblvKbaYWdnpyT/5dfe/PbbuHEjycnJ7Nixg/DwcOLi4nK1RQghROFp7GhBY8eC/y+62fCCxWfLcnRCPB95OLCIvPrqq2i1WpKTkwFITk5Gr9dTr149zp8/j42NDQEBAUycOJHDhw9jNBqJiori008/JSEhgYSEBLZt20b37t2JiYl54rWysrLYu3cvAPHx8Ur0dv369bG2tiY2NlbZ/9SpU2RmZuY6R377XblyBZVKRYcOHZg4cSI3btzg1q1bhdJPQgghhBClhYw4F6KBAweiUqmU13Pnzs31cOC//vUv1Go1qamp/PDDD6hUKoxGI1OmTOHq1avs3r2b2bNn5zpnYGAgEydOZPjw4Savq1armT17NpMnT8ba2hpvb29eeeUVKlWqhIWFBfPnz2fGjBksXrwYo9HIyy+/zLfffpvrHPntd/z4caVdRqORIUOGKLHoQgghhBDlhURulxGZmZnY2OSEjCQnJzNhwgQSEhIwN5d/VBBCiLKuoAEoMlXDNOkb08pT30jkdjnx66+/snTpUrKzs5UR6JJUNEvkdt7K05fRs5D+MU36xjTpGyFEUZERZyGEEEK8MCUlLlx+cJlWnvpGRpxLmOeN5k5PT8fPz4/t27crS85BzvSMjz/+mC1btphcYeNF2r9iENpMidwWQgiRm9fQ9UhcuCgtSs6/5YsCcXBwwN3dnQ0bNuR6PyYmhu7du5fIolkIIYQQoiyQEecSYObMmaSmpqLT6bCzs2PGjBnUrFnTZDR3aGgoixcvpk+fPkDOg4FbtmxRiun8IrZ/+eUXwsPDsba2xs/Pj/DwcPbt20fFihUZO3Ysp0+fRqfTUadOHWbMmEHlypVJS0tj4sSJ3L9/H6PRSEhICO++++6L6SwhhBAl0rFLBuIP69Donu44610Fiws3ReLDRXGSwrkEGDx4MGFhYQBERkYya9YsJWQkr2huX19fJk+ezJ9//kmDBg3YtGkTbm5uODo65hudXaVKFT799FNWrVpFvXr1lPM+9NFHH1G1alUAwsPDWbRoEePGjWPlypW0adOGESNG5GqHEEII8dDO43ou3XyGAvgZ4sL/SuLDRXGRwrkE2LFjBytXriQrKwu9Xq+8byqaW61WExgYSFRUFGFhYURHR9O3b18g/+hsc3NzXFxcqFevHgChoaF88cUXyn5r164lLi4OnU5HVlaWsp+HhwczZ85Ep9Ph5eWFt7d3EfeIEEKI0qa1s0VOTPjTjjgXMC7cFIkPF8VJCucX7OLFi3zxxResWbOG2rVrs2/fPsaNGwdgMpoboEePHgwaNIgePXqQlpZGhw4dgPyjs+Pj403Ogd6zZw8//fQTP//8M1WrViUuLo7Vq1cD0LlzZ1xdXdm1axeLFi0iKiqKWbNmFUV3CCGEKKVeq6HitRqqJ+/4F15DCxYXLkRJIA8HvmCZmZlYWlpib2+P0Wjk559/VraZiuYGcHZ2xsHBgfHjxxMYGIharQbyj852dXXl8OHDnD17FoDo6Ghlnzt37mBjY0OVKlXQarVERUUp286ePYu9vT3du3dnxIgRHDp0qEj7RAghhBCiJJIR5xfgr9Hcfn5+BAQEUKNGDTw8PNizZw9AntHcj4aa9OjRgylTpjB9+nTlvfyis1955RUmT57MkCFDsLOzw9fXF0tLSypUqECbNm1Yt24d/v7+ODg40KRJE6VA3rRpE3FxcVhaWmJmZsakSZOKqaeEEEIIIUoOCUApZx6N5o6KimLNmjXK9A8hhBCiuEkASslXnvpGAlBELsuWLWPz5s0YDAYqV66ca7S6KEnkdt7K05fRs5D+MU36xjTpG9Okb4R4PjLiLIQQQohCU1JGkJ+W/KgwrTz1jYw4lxG3b9+mVatW9O7dm48++giAlJQUdDqdskzdhQsXCA0NJSUl5Zmvc+HCBXbt2kWvXr0Kpd0PJf80EI1EbgshRJnXdvAGJEJblFWyqkYpERcXh6urKxs2bECrzflCSk1NZdeuXYV6nYsXL7Jq1apCPacQQgghRFkgI86lRFRUFOPHj2fBggUkJCRQv359fv75Z4xGI4mJiQQEBNClS5dcx5iK0E5JSWHGjBk0b96c/fv3Y2ZmRnh4OE5OTkydOpULFy4QFBRE3bp1iYiIMBkJLoQQouw7ccnA9kN6NPon7wuweOfTRWhLZLYoTWSOcylw7Ngx/vnPf/Lbb78RFxdHXFwcixYtYs6cOWRlZSlx3X+dqnHjxo1cEdoGg4Fx48aRkpLCoEGDiIyMxMXFhe+++44///yT2bNnk5KSwsyZM3Ot8fzoeSIjI0lMTCQ8PPyp7kGmagghROn0n980nL1atKWCi0sTPv20eB5WN6U8zeN9WuWpb2SOcxmwZs0agoKCMDMzo1OnTkyfPp309PQnHmcqQhtyglJcXFwAcHV1ZevWrSbPYyoSXAghRNnX8nULtPqCjzhXsH26CG2JzBaliRTOJZxWqyUuLg4rKyslRlun0xETE5PvcflFaANK0iCAubm5yYI4v0hwIYQQZV+jGioaPUWUdtvBEqEtyi4pnEu4+Ph4Xn311VwhJfv37ycsLIw+ffqYHHnOL0I7PzY2NmRmZiqv84sEF0IIIYQoT2RVjRIuOjqawMDAXO+5ublhNBpp3Lgxf/zxB0FBQSxcuDDXPm3atKFOnTr4+/vzj3/8Q5mW8STOzs7Ur1+frl27MnLkSJydnZVI8P79+1OrVq1CuzchhBBCiNJEHg4UQgghRKGRAJSypzz1jTwcKEoEidzOW3n6MnoW0j+mSd+YJn1jmvSNEM9HCmdRLPL79Vbe2dtXetFNKNGkf0yTvjGtKPtGp9VwqxSOqAohnp8Uzv/P19cXtVqNWq3m/v37NGjQgMGDB9OiRYt8j+vbty+DBg2iffv2TJgwgSZNmvDOO+88VxusrKwA8PLyYtKkScTHx1OtWjWaNWsGQJ8+fejbt68SeDJz5kxiY2NJTEzEzMwMg8GAp6cnMTEx1KlT56naMGfOHIYOHaqsuvG89/TQ9lUDeCDrOAshyoDO725EIqWFKJ+kcH5EREQEjRo1AuDXX39lyJAhLF68mObNm7+QNjwUHx9PkyZNlMLZ09OTlJQUpXBOTU2lVq1a/PnnnzRs2JAjR45QqVKlpyqa9Xo9FhYWzJ07l0GDBuVark4IIYQQQkjhbFKnTp04ePAgixcvpk+fPnz77bdoNBoMBgPDhg0jICAg3+OTkpJMHjN37lzWr1+PlZUVZmZm/Pjjj9ja2uZ5np07d5KQkEBiYiKRkZEMHDgQb29vpk6dCuQsF6fRaOjevTupqak0bNiQ1NRUPD09ATAYDMyaNYudO3cC0Lp1a8aNG4dKpWLChAlUrFiRM2fOcPPmTeUHQu/evTE3N2fZsmUAnDhxgn79+nHlyhVcXV2ZOXMmZmZmz9/JQgghhBCliBTO+WjevDkJCQm4uLiwcuVKVCoV165do3v37rRq1YrKlSubPNbUMQCLFy8mKSkJa2trMjMzsba2Vo4bOXKkMlVj3LhxtG7dGl9f31zTJR48eMCFCxe4du0ahw8fpkWLFri7u/P999/z9ttvk5qaSqdOnQBYtWoVR48eVSK0Bw8ezKpVq/j73/8O5KwJvXz5cl566SUAVq5cyc8//0zFihWVNp08eZKlS5diZmZGSEgIiYmJ+Pj4FFY3CyFEiXHqooHfDxrQ5pOSt2J7vycm41WoYE3Pnn+nRQv3Qm6hEOJFksI5Hw9X6rtx4waTJk3i7NmzqFQqbt++zenTp3F1dTV5rKljmjZtSv369fnwww9p3bo17dq1w8bmfw/O5TVV46+sra1p1qwZqampHD58GE9PTxo3bszRo0cxGAzs3buXjz/+GMgZ+Q4JCVGmXnTv3p34+HilcPbz81OKZlM6dOigFPMuLi6cO3dOCmchRJmUetRA+s38i+Kbdy8W6Fzr18dK4SxEGSOFcz4OHTpEw4YNmTx5Mr6+vsydOxczMzM6d+6MRqPJ91hTx6hUKlavXs2+fftITk6me/fufP/997z22mtP1baH85yPHj1Kv379UKlU1KlTh3Xr1mFra0vt2rWBnOL/r9MqHn39pKIZUIpmAJVKhcFgeKq2CiFEaeH5ugqtLv8R55dsaxRoxLlr1+BCbp0Q4kWTwtmE+Ph4fvrpJ77//numTp1KzZo1MTMzY9euXZw9e/aJx9+9ezfPYzIzM8nKysLT0xNPT08OHDjAyZMn8y2cbWxsuHs397qbD1fcqFChAg4ODgB4eHgwf/58ZX4zwJtvvklMTAz+/v4AxMbGKtM48lKxYkUyMzNzTdUQQojywqmmCqeaqnz36fzuj7IWshDllBTOjxg5cqSyHJ2TkxMLFy7E1dWVsWPHMmXKFBYtWoSzszPOzs5PPJepYzIzM3n//fd58OAB2dnZuLi45FvIAnTr1o2JEyeyefNmBg4cSHBwMG5ubly9epWgoCBlPw8PD8LDwxk6dKjyXq9evTh37hwhISEAtGrVir/97W8mrzVo0CD69euHtbW18nCgEEIIIYSQyG0hhBDiqZTmABRJDjRN+sa08tQ3ErktSgSJ3M5befoyehbSP6ZJ35gmfSOEKCoy4iyEEEKIUqewR/7lB5dp5alvSvWIs6+vL1qtlu3bt6NS5TysERUVxaRJk/jkk09QqVRoNBoGDBhQaNccPHgwn3zyCXXq1GHChAkkJiZiZ2cH5Dw4t3LlSo4ePcrp06eV5L6HbZ0/f/4Tl5J7FikpKcycOVNZi/l5PBoRnh9nZ2f27dtXaA8Jblndn/sSuS2EEKKQdBu0CYk+F8WtRBfOAPb29vz++++0bdsWyFkVonHjxgD06dOn0K+3aNGiXK+HDBmiBI88dPToUbZt25arcC6JDAaD8oNDCCGEEEI8nxJfOIeEhBAdHU3btm05f/489+/fV0Z158yZQ1ZWFmFhYRw/fpwpU6Zw//59NBoNf/vb35SR6AkTJqBWqzlz5gznz5+nY8eOtG/fnjlz5nDlyhX69+9P//79gSePHN+8eZOIiAgyMzMJCgrCw8NDCRvJy8yZM0lNTUWn02FnZ8eMGTOoWbPmY6PIf30dHh7Oxo0bcXBwoGnTprnOGRMTw8qVKzEYDNjY2DB58mReffVVoqOj2bBhA1WrVuXUqVN8/vnnWFpaMnHiRPR6PU5OTrnWn16yZAkbNmzAYDBgZWXF5MmTef311x+7h7S0NGbMmMHNmzfR6XT079+f0NDQAn6CQgghhBBlQ4kvnL28vFi5ciW3b98mJiaG4OBg/vjjj8f2q1mzJkuXLkWtVnPv3j169uxJ69atcXJyAnJio//zn/9gMBjw9fXl7t27LF++nKtXr+Ln50ePHj3ynJawcOFCIiMjgZyUveHDhzNy5Ei2bdtGRETEE9s/ePBgwsLCAIiMjGTWrFmEh4fne0xCQgIJCQnExsZibW3NiBEjlG179uxh06ZNrFixArVazfbt25k0aRI///wzAPv27WPt2rXUqVMHyEkK7Nu3LyEhIRw4cCDXKH1wcDCDBg0CIDExkc8++4zVq1fnaoter2fcuHF8/fXXODk5kZmZSWhoKK6urkrfCiGEEM/r9EUjyQcNaHUFe/RqzbYnR5+DxJ+LwlXiC2czMzP8/f3ZsGEDGzdu5KeffsqzcH7w4AGTJ0/m+PHjmJmZkZGRwbFjx5TirkOHDkrsdP369Wnbti3m5uY4ODhga2vLlStX8iwE85qq8TR27NjBypUrycrKQq/PJ4rqESkpKXTp0kUp5Hv06MG8efOAnKL62LFj9OzZE8hJBrxz545ybIsWLZSiOTMzkxMnTihrPbu6uuYaSf/jjz9YsGABt2/fxszMjDNnzjzWljNnznDq1CnGjBmjvKfT6UhLS5PCWQghRKHZe8RAxo2Cr1dwq4DR5yDx56LwlPjCGXJGTXv27Imnp6fyoN5fffPNN9jb2/Pll19iYWHBoEGDck1L+GtsdHHESF+8eJEvvviCNWvWULt2bfbt28e4ceOUaz66oMmjbc1voZPs7GxCQ0MZNWpUntv/Omr+17jth7RaLaNGjWL58uU0btyY9PR02rRpk+f17OzsWLt2rekbFUIIIZ7TGy4qdPqCjzhXtK1Z4BFniT8XhaVUFM61a9dm9OjRNG/e3OQ+d+/exdnZGQsLC06cOMGePXvo2rVrkbQnrwjsvGRmZmJpaYm9vT1Go1GZTgE593T+/Hlu376Nra0tGzZsULa1bNmS8PBw+vfvj5WVFVFRUco2X19fwsLC6NWrF9WrV8dgMHD06FGaNGmSZzsbNmxIXFwcQUFBHDx4kBMnTgA5hbNer8fR0RGAlStX5nkP9evXx9ramtjYWIKDc754Tp06hYODAzY2ppdrEUIIIZ5G/Zrm1K9pXuD9uw2S6HNR/EpF4Qw50dH5GT58OOPHj2fdunXUqVMHDw+PImtLy5YtWbJkCd26dcPT01N5OHDgwIG5VrGIi4vDz8+PgIAAatSogYeHB3v27AHAwcGBgQMH0r17d2rVqkXTpk05efIkAO3bt+fAgQMEBwdTrVo1vLy8SE9PB3JitT/44AOGDx+OwWBAp9Ph5+eXZ+EM8NVXXzFx4kSWLl1K48aNlR8fNjY2jBw5kh49euDo6JjnaDOAhYUF8+fPZ8aMGSxevBij0cjLL7/Mt99+WzidKYQQQghRSkgAihBCCCFKHQlAKT7lqW9KdQCKKDskcjtv5enL6FlI/5gmfWOa9I1p0jdCPB8ZcRZCCCFEqVVYI8/yo8K08tQ3MuIsSoQNkf3Jykx/0c0QQghRxvQcuBmJ3hbFRQrnUs7X1xe1Wo1arcZoNDJ8+HA0Gk2BAlp++uknNBqNkrAohBBCCCFMk8K5DIiIiKBRo0YcOXKE3r17m1zj+a8eTREUQgghhBD5k8K5DHFxcaFixYq5AlSuXr3KmDFjuHfvHhqNHLlwzQAAIABJREFUhrZt2zJ+/HgA5syZQ1ZWFmFhYURHR7N+/XpsbW05efIklSpVYs6cOdjb27Nv3z6mTZuG0WhEr9czfPjwIlsjWwghhDh7wcjugwZ0uifvG7f1ydHbErstCosUzmVIcnIyGo0GC4v/fay2trbMnz+fihUrotPpePfdd9mxY0ee6zYfOnSIdevW4ejoyMcff8zy5csZPXo0ixYton///gQHB5OdnV2g8BchhBDiWR04YuTajYLte7uA0dsSuy0KgxTOZcDIkSOxsrLCxsaGOXPmKGEpAAaDga+++or9+/eTnZ3NtWvXOHbsWJ6Fc4sWLZQkwebNm5OYmAiAl5cXCxcu5NKlS/j4+OSb4CiEEEI8L1cXc3T6go042xQgeltit0VhkcK5DHg4x/mh6Oho5c8//PADd+7cITIyEisrKz755BM0Gk2e57GyslL+rFKpMBgMAAwYMABfX18SExOZNm0aPj4+jB49uojuRgghRHlXt5Y5dWsVLH6750CJ3hbFRwrnMu7u3bvY29tjZWVFeno6v/3221M/FHj69Gnq169PnTp1eOmll4iNjS2i1gohhBBClFxSOJdxffv2ZdSoUQQHB1O9enVatmz51OdYtmwZKSkpWFpaolar/4+9O4/Kqtz///+8mRUcoIjINJwA0YVoqTkbdZyRSdDSyKMHP1nJkcTZVNRMHDJFzfHEUTMQBBGHY5mpFYOalvo9ThmK2JEhRSbhHn9/8ONOkhsQUUDej7Vay31z7Wtf+yJZby73vl7MnTv3ofsY5vfvhz5HCCGEqIxKWf6/ogrxOEhyoHgiJHK7fA0pjak6ZH4Mk7kxTObGMJkbw2RuDGtIc1NZcqAUzkIIIYSod1SqInJyqvD2YBU1pOLwYTWkuZHIbVEnxMYEUCCR20IIIWrI2+MOATVXOAtRFVV7ZVXUqoMHD+Ll5YWnpyeDBw9m6tSpQEmAiVKp1LcLDw8nLCysxq4bGBhIWlpajfUnhBBCCFGfyYpzHZeZmUloaChxcXHY29uj0+m4ePEiAGvXrmX8+PGYmZk9lmtv3rz5sfQrhBBCCFEfSeFcx2VnZ2NiYkLz5s0BUCgUdOjQgdDQUABGjx6NkZER27dvN9hHQUEBixcv5ty5cwCMGDGCiRMnAuDu7s6GDRv0+0Dff3z/n9euXcu+ffswNzdHoVCwbds2mjZt+jhvXQghRANwI13Lz79oqxR2cr9vjlQetX0/id0WNUEK5zrO2dkZV1dXBgwYQI8ePejatSuenp7Mnz+fnTt3EhkZiaWlZYV9rF+/Hq1WS0JCAgUFBYwaNQonJyf69+9fpTHcvXuXrVu3kpSUhIWFBfn5+VhYWNTE7QkhhGjgzv9Xyx9VjNe+X24Vo7bvJ7Hb4lFJ4VzHGRkZsX79ei5fvszJkyc5fPgwW7duJSEhocp9JCUlMXv2bBQKBVZWVgwbNoykpKQqF85WVla0bt2aadOm0bdvXwYMGICVleE3ToUQQoiq6uRihFr18CvOTaoQtX0/id0WNUEK53rC0dERR0dHxowZw9ChQzlx4kSVz9XpdCgUijKflR4bGxuj1Wr1n5cXx21sbMyuXbs4ffo0ycnJ+Pj4sGXLFpydnat5N0IIIUSJli8a0bKK8dr3e3ucRG2LJ0921ajjMjIyOHPmjP741q1b3L59mxdffBFLS0vy8/Mr7aNXr17ExMSg0+nIz8/nwIED+gTBVq1a6Z99TkpKIjs7+4Hz8/PzuX37Nt27dycoKAhHR0euXLlSQ3cohBBCCFE/yIpzHadWqwkPD+fmzZtYWFig1WqZMmUKLi4ujB8/noCAACwsLPQvB0ZGRrJ//379+e+99x7vvfceixYtwsPDAyh5ObBfv34A/POf/2TmzJlER0fTtWtXXnjhhQfGkJ+fz+TJkykqKkKn0+Hi4sLAgQMf6j58Rm6r7hQIIYQQD1Cpimp7CKIBkuRA8URI5Hb5GlIaU3XI/Bgmc2OYzI1hMjeGydwY1pDmRiK3hRBCCCGqSakq4m4NRnvXR1I4/0ke1RBPROTuAPILJHJbCCFE/fKPAIn2Fn+SwrkWHTx4kI0bN6LT6SguLqZjx46sXLmytoclhBBCCCHKIYVzLakoSrsqtFotCoXigW3mhBBCCCHE4yGFcy0xFKW9efNm/ve//zFv3jx9uxEjRvDtt9+yZcsWrl+/TmFhITdu3GDHjh1s2LCBEydOoFKpsLa2ZsmSJbRo0QKA7777jvDwcNRqNUZGRixduhQrKyt8fX1JSUkBID09XX/8xx9/MHXqVP744w8AevbsyezZswHYvHkzhw4dQqPRYGdnx6JFi7C1tX3S0yaEEELUmJvpWs6d0aJWG25z/LDhaG+J8W54pHCuJYaitP39/Rk6dChTp07F0tKSqKgohg8fTqNGjQA4deoUsbGx2NjYABAYGMiMGTMAiI6OZsWKFaxatYrU1FTmzp3Ll19+iYODA0qlEqVSSU5OjsExJSQk8MILLxAREQGURG0DxMfHk5aWxq5duzAyMmLnzp0sXbpUHisRQghRr108r+VOJXHfebkVR3tLjHfDIoVzLakoStvd3Z34+Hj8/f2Jjo7miy++0J/Xr18/fdEMcPz4cXbu3ElhYSHq+35lTkxMpF+/fjg4OABgZmaGmZlZhYVz586d+eKLLwgLC6N79+706dMHgCNHjnD+/Hm8vb0B0Gg0ErkthBCi3nPuZIRKVfGKc9MmhqO9Jca74ZHCuZaVF6X99ttvM3XqVJ555hnatm1L69at9e0tLS31f7558yaffPIJMTExtGzZktOnTxMSEgKUxGyXx8TEpMzX7o/Y7tKlC3v27CExMZH4+Hg2bdrEV199hU6nY9KkSYwcObKmb18IIYSoNS1eNKJFJXHf/wiQaG/xJ4ncriUVRWk7OjrSvHlzlixZwltvvWWwj/z8fExNTbG1tUWr1RIZGan/Wp8+fTh+/DjXrl0DQKlUkp+fz7PPPotKpeL69esA7Nu3T3/OjRs3sLKyYtiwYcyaNYv/9//+H1qtFnd3d3bu3Kl/dEOpVD7Ui4xCCCGEEE8DWXGuJRVFaQP4+fmxatUqBgwYYLAPJycnBg8ezLBhw3jhhRfo1q0bp06dAsDBwYFFixYRHByMRqPB2NiYpUuX4uTkxJw5c/j73/9OixYt6NGjh76/EydO8MUXX2BsbIxWqyU0NBQjIyO8vLzIyclh7NixQMlq9ptvvomzs3OV73e0r0RuCyGEqH+UEu0t7iPJgXXUnDlzaN26Nf/4xz9qeyg1QiK3y9eQ0piqQ+bHMJkbw2RuDJO5MUzmxrCGNDcSuV3PZGRkEBAQgK2tLZs3b9bvpiGEEEI0NE8y7rohFYcPqyHNjURu1zN2dnYcOnSotodR47bFBZAnkdtCCCEewvtjJe5a1C3ycmAtcXd3p0+fPmg0Gv1nu3fvxsnJiR07dvDVV1/p91P+q9jYWIKCgh7LuMLDw1EqlfrjmTNnsmPHjsdyLSGEEEKI+kQK51pka2vLDz/8oD/es2cPHTt2BODNN99k3LhxT3xMa9euRaWS3+6FEEIIIf5KHtWoRd7e3sTGxtK/f39u3LjBvXv3cHR0BEpWfgsLC5kxYwZKpZLFixeTkpKCnZ0dbdq00fdx+vRpFi1ahFarRa1WM2nSJIYPH052djbz588nLS0NgAkTJuDlVbJJu5OTE6dPn9bvCV16vGLFCgBGjx6NkZER27dvB+Dy5csEBARw69Yt3NzcCAsLQ6FQPLF5EkII8fT53w0tF85oUVewVpPyteG4a5DIa/HkSeFci3r06KHfHzkuLg4vLy/Onz//QLuoqCjS09PZt28farWaMWPG8OKLLwKwefNm3nnnHby8vNDpdOTllTy8v3jxYtq3b8+6devIzMzEx8cHFxcXfWFenvnz57Nz504iIyPLBK1cuXKFiIgIFAoF3t7eJCYm0rt37xqeDSGEEA3JlfNacv6ouE1+JXHXIJHX4smSwrkWKRQKhgwZwv79+zlw4ABfffVVuYVzSkoKXl5emJqaYmpqyogRIzh9+jRQUnxv2rSJ33//nd69e9O5c2cAkpKSmDlzJgDPPfcc/fv3JyUlpcLC2ZA33ngDc3NzAFxcXEhLS5PCWQghxCNp38kItariFedmFcRdg0ReiydPCuda5uPjg5+fH927d8fa2rrcNhXtGDhu3Djc3d1JTExk0aJF9O7dm+DgYIAHHqcoPTY2Ntb3eX/ktiGlRXPpufe/0CiEEEJUh31LI+xbVvyq1ftjJe5a1C3ycmAta9myJcHBwbz33nsG2/Ts2ZP4+HjUajVFRUVlYrJTU1Np1aoVo0ePJiAggHPnzunPiYqKAiArK4tjx47pUwJbtmypb5eQkFDmWpaWluTn59foPQohhBBCPA1kxbkOGDVqVIVf9/f359KlSwwbNoznn3+ebt26cfNmyXNf27dvJyUlBVNTU8zMzJg7dy4Ac+fOZd68eXh4eAAQEhJC+/btAZg9ezbz5s3D1tb2gUjv8ePHExAQgIWFhf7lwJoQ4C2R20IIIR6OxF2LukaSA8UTIZHb5WtIaUzVIfNjmMyNYTI3hsncGCZzY1hDmpvKkgPlUQ0hhBBCCCGqQFachRBCCCHqEKWqiLs5dSeMTFac/yTPOFfTwYMH2bhxIzqdjuLiYjp27MjKlStre1iPLDc3l6ioKAIDA2u03817A8gtyKjRPoUQQoin0dQ3DwF1p3AWf5LCuRoyMzMJDQ0lLi4Oe3t7dDodFy9erJG+1Wo1Jia1923Jzc1ly5YtNV44CyGEEELUd1I4V0N2djYmJiY0b94cKNkfuUOHDgBMnTqV1NRUVCoVrVq1YsmSJTRr1gyAmJgYtm0r2V3C1NSUjRs3UlRUhK+vL2PHjiUxMZERI0bg4ODAZ599RnFxMRqNhnfffZdhw4YB8Pbbb9OxY0fOnj3LzZs3CQgIwM7Ojh07dpCZmcm0adMYMmQIAL/88gsrVqygoKAAgKCgIAYMGEB6ejq+vr6MHj2aY8eOce/ePT7++GNeeeUVFi5cSF5eHp6enjRq1IjIyEiuX7/OvHnzuH37NiYmJgQHB9OvX78nOudCCCFEfZOZpuXyTxWHvJTnl4MVR42XR+LHnwwpnKvB2dkZV1dXBgwYQI8ePejatSuenp5YW1szZ84cbGxsAFi1ahWbN28mJCSElJQUNm7cyM6dO7G1taWgoAATExOKiorIycmhbdu2TJ48GYC7d++yc+dOjI2Nyc7OxsfHhz59+ugL8Fu3brFjxw6ysrIYOHAg48aNIzIykrNnz/LBBx8wZMgQcnNzmT9/Pps2beK5554jMzOTkSNH6veAzsnJwc3NjeDgYPbu3cuKFSuIjIxk3rx5+Pr6Eh8fr7/fkJAQ/P398fPz49dff2XMmDEcPHhQf59CCCGEeNBvZ7XkVhIrXp7CKkSNl0fixx8/KZyrwcjIiPXr13P58mVOnjzJ4cOH2bp1KwkJCcTHx5OQkIBKpaKwsBAHBwcAjh49iqenJ7a2tkBJ0Egpc3Nz/SoxwO3bt5k9ezbXr1/H2NiYu3fvkpqaipubGwCDBw/GyMgIOzs7mjdvzhtvvAFAx44dycjIoLi4mDNnzpCenl7mkQuFQsH169extramcePGvPbaawC4ubkRFhZW7r3m5+dz4cIFfH19AWjXrh0dOnTg559/xt3dvYZmVAghhHj6tHGtPFa8PNaVRI2XR+LHnwwpnB+Bo6Mjjo6OjBkzhqFDh7Jjxw727t1LZGQkNjY2JCQksGvXrkr7adSoUZl47AULFuDu7s7atWtRKBQMGjSoTDT2XyOwS4+NjY2BkuekdTodTk5OfPnllw9cLz09HTMzM/2xkZERarX6oe79r3HeQgghhCjruVZGPNfq4Xf+nfqmRI3XVbKPczVkZGRw5swZ/fGtW7e4ffs2CoUCKysrmjdvjlKpZPfu3fo2r732GvHx8WRnZwNQUFCAUqkst/+8vDxatGiBQqHgxx9/5Pr16w89xi5dunD9+nWSk5P1n509e5bKdh+0srKiqKhIX0hbWVnRoUMH4uLiALh69SoXL16kc+fODz0mIYQQQoj6TFacq0GtVhMeHs7NmzexsLBAq9UyZcoURo4cyZUrVxgyZAh2dnZ06tSJc+fOAdC9e3cmTpzI3//+dxQKBWZmZmzYsKHc/qdOnUpoaCibN2/GyckJJyenhx5js2bNWL9+PcuXL2fJkiWoVCpatmxp8JqlmjdvjoeHBx4eHjRr1ozIyEhWrFjBvHnziIiIwMTEhGXLlj30882BIyRyWwghhKgKiRqvuyQARTwRErldvoa0qXx1yPwYJnNjmMyNYTI3hsncGNaQ5kYit4UQQgghhKgBsuIshBBCCFEFdS0K+0mRFec/yTPO9Yi7uztmZmaYm5tTXFzMK6+8wvz58zE1NX3ovsLDw/m///u/MrtrPE5rEgK4WyiR20IIIeqvj0ZJFHZDJ49q1DNr1qwhPj6e/fv38+uvv/LNN99Uq5+1a9eiUslffiGEEEKIqpIV53qquLiY4uJimjZtSkFBAYsXL9bv4DFixAgmTpwIlBTI+/btw9zcHIVCwbZt21i1ahUAo0ePxsjIiO3bt6NUKpk/fz5paWkATJgwAS+vko3U3d3d8fT0JDExkaysLMaPH8/YsWNr4a6FEEKImvdHmpbUU1o0lawnBeyvPApboq+fblI41zNBQUGYm5uTlpZGnz596NOnD8uXL0er1ZKQkEBBQQGjRo3CyckJNzc3tm7dSlJSEhYWFuTn52NhYcH8+fPZuXMnkZGR+gTDKVOm0L59e9atW0dmZiY+Pj64uLjg6OgIQFFREVFRUaSnp+Ph4YG3t3eZ9EMhhBCivkr7RUt+duXtbt6tWhS2RF8/vaRwrmfWrFmDo6MjxcXFTJ48mYiICJKSkpg9e7Y+gGXYsGEkJSXRp08fWrduzbRp0+jbty8DBgzAyqr8B96TkpKYOXMmAM899xz9+/cnJSVFXzgPHToUgBdffJGmTZty69Yt2rZt+2RuWgghhHiMWnU2IlVV+YqzjVXlUdgSff10k8K5njI3N2fAgAEcPXoUnU73QAS2QqHA2NiYXbt2cfr0aZKTk/Hx8WHLli04OzuX22d5fdx/vVLGxsZoNJoavBshhBCi9jzTyohnqhCN/dEoicJu6OTlwHpKq9Vy8uRJHBwc6NWrFzExMeh0OvLz8zlw4AA9e/YkPz+f27dv0717d4KCgnB0dOTKlSsAWFpakp+fr++vZ8+eREVFAZCVlcWxY8fo0aNHrdybEEIIIURdJCvO9UzpM84qlYr27dvz/vvvY2JiwqJFi/Dw8ABKXg7s168ft27dYvLkyRQVFaHT6XBxcWHgwIEAjB8/noCAACwsLNi+fTtz585l3rx5+j5CQkJo3759zY3bQyK3hRBC1G8ShS0kAEU8ERK5Xb6GtKl8dcj8GCZzY5jMjWEyN4bJ3BjWkOZGIreFEEIIIYSoAbLiLIQQQghRS4pVxeTmKGt7GBWSFec/yTPOtUSlUrF+/XoOHDiAiYkJWq2W/v3706ZNG3744QfWrFnzyNdwcnLi9OnTFe63nJubS1RUFIGBgfrPYmNj6dKlC61bt37kMZRacuAd7kjkthBCCFHG8pH/Aep24Sz+JI9q1JJZs2bx66+/snv3bvbv38/evXtp3bo1SuWj/+VRq9VVbpubm8uWLVvKfBYXF8e1a9ceeRxCCCGEEE8TeVSjFly7dg0vLy+OHTtGs2bNynwtNjaWffv20bRpU65cuUKTJk0IDw/H1taWS5cuERoayr179yguLsbf359x48YBMHPmTCwtLbl27Rp37twhNja2zIrz2bNn+fjjjyksLKRx48bMmTMHV1dXJk6cyA8//ED79u1p1KgRfn5+LF68GBsbG6ysrJgxYwa9evVi8+bNHDp0CI1Gg52dHYsWLcLW1rbK9ywrzkIIIZ52d69r+f2EBm0lQSr3e7YKoSrleZLR3vKoxp/kUY1a8N///peXXnrpgaK51Llz59i7dy/29vbMnTuXHTt2EBwcTIsWLYiIiMDMzIyCggL8/Pzo27evPsHvzJkz7Nixg8aNG5fpT6lUEhQUxJIlS+jVqxdJSUkEBQXx9ddfM2/ePHx9fYmPj9e337NnD+PHj+e1114DID4+nrS0NHbt2oWRkRE7d+5k6dKlrFy58jHNkBBCCFH/ZPys5V4VorvvV9UY7/JItPeTJ4VzHdS1a1fs7e0B6Ny5M4mJiQAUFRWxYMECLl26hEKhIDMzk4sXL+oL58GDBz9QNAOkpqZiampKr169gJKwE1NTU1JTUyt8/rnUkSNHOH/+PN7e3gBoNBqD0d1CCCFEQ2XnZoRG+eRWnCXa+8mTwrkWuLi4cP36de7evVvuqrOheOtPP/0UW1tbli5diomJCePHj6e4uFjftryiGSg3khsejNg2RKfTMWnSJEaOHFml9kIIIURD1OwlI5q99HCvjy0fKTHe9Ym8HFgLHBwccHd3Z968efrYa41Gw7///W8KCwsNnpeXl8fzzz+PiYkJly9f5tSpU1W6Xps2bVAqlSQnJwOQnJyMWq3GwcEBKysrioqKyrxQaGlpSV7en3+J3d3d2blzJ3fv3gVKHv24ePHiQ9+3EEIIIUR9JivOtWTp0qWsW7cOX19fTE1N9dvRVbQF3KRJk5g+fTp79+6lVatWdOvWrUrXMjMzY82aNWVeDly9ejVmZmaYmZnh4eGBh4cHzZo1IzIyklGjRhEWFsa//vUvpk+fjpeXFzk5OYwdOxYoWYF+8803cXZ2rpG5EEIIIYSoD2RXDSGEEEKIWiIBKHWL7Koh6oQ//shHq5Xf0f6qIf0wqg6ZH8NkbgyTuTFM5sYwmRtRFbLiLIQQQoinwqOs3krhbFhDmhtZca4nDh48yMaNG9HpdBQXF9OxY8dq75OckpJCWFgYsbGxNTzK6gs59A5/SACKEEKIx+gLb4mvFo+XFM51QGZmJqGhocTFxWFvb49Op5NdK4QQQggh6hgpnOuA7OxsTExMaN68OVCyv3KHDh0AcHJy4oMPPuDHH3/kzp07fPjhhwwaNAiA48eP8+mnn6LRaLCxsWHhwoW89NJLZfrOzc3lgw8+wN3dnXHjxhEWFsaJEydQqVRYW1uzZMkSWrRoQXp6Or6+vowePZpjx45x7949Pv74Y155pSSR6NixY3z++ecolUpMTU2ZNWsWbm5uT3CWhBBCPO3uXdOSk6JBV81F44C4gGqHifzjHxNo27Zj9S4sGgwpnOsAZ2dnXF1dGTBgAD169KBr1654enpibW0NlBTSkZGR/Pbbb7z55pv6Ynb69Ons2LGDdu3aER0dTUhICNHR0fp+b968yeTJk5k4cSKDBw8GIDAwkBkzZgAQHR3NihUrWLVqFQA5OTm4ubkRHBzM3r17WbFiBZGRkaSlpbF+/Xq2bt2KlZUVV65cITAwkKNHjz7BWRJCCPG0yz2tRZVV/fMfJb56165dzJoVWv2LiwZBCuc6wMjIiPXr13P58mVOnjzJ4cOH2bp1KwkJCQD4+fkBJUEmLi4u/PzzzygUCpydnWnXrh0Avr6+hIaG6gNVsrKyCAgIICwsTF9oQ8kq9c6dOyksLCwTegIlyYOvvfYaAG5uboSFhQHw/fffk5aWxpgxY/Rt1Wo12dnZPPvss49pVoQQQjQ0TbsakaOq/oqz3SPEV/v7+1fvoqJBkcK5DnF0dMTR0ZExY8YwdOhQTpw48UCb0vhsQzHapZo1a8bzzz/P8ePH9YXzzZs3+eSTT4iJiaFly5acPn2akJAQ/TlmZmb6PxsZGZUprPv27cuyZctq4jaFEEKIcjVyMKKRQ/VDjb/wrn58dUPaOUJUn0Ru1wEZGRmcOXNGf3zr1i1u377Niy++CMDu3bsBuHbtGhcuXKBz58506dKFCxcucPXqVQDi4uJwcXHByqpkCxUzMzPWr1/P1atXWbx4MTqdjvz8fExNTbG1tUWr1RIZGVml8fXu3Zvvv/+eK1eu6D87e/Zsjdy7EEIIIUR9ISvOdYBarSY8PJybN29iYWGBVqtlypQpuLi4ACVF8OjRo7lz5w4LFy7kmWeeAWDZsmWEhISgVquxsbFh+fLlZfo1MzNj9erVTJs2jY8++oiFCxcyePBghg0bxgsvvEC3bt04depUpeNzcHBg+fLlzJkzh6KiIlQqFV27dsXV1bXmJ0MIIYQQoo6SAJQ6zsnJidOnT2NpaVnbQxFCCCHqNAlAeTwa0txIAIqoEyRyu3wN6YdRdcj8GCZzY5jMjWEyN0I8GllxFkIIIYSoAUWqYvKqueJdlzWkX7hkxfkpc/fuXfr06cPo0aOZM2cOAOHh4RQWFjJjxgxiY2M5evQoa9asqeWRlvXO1x+Qee8RNucUQggh6riDnlHkSeT3U0121ahnEhIScHNzY//+/SiV8pdTCCGEEOJJkRXnemb37t1Mnz6djRs3cuTIEX0i4P3y8vKYPHky169fp3nz5ixfvhw7OzsuXbpEaGgo9+7do7i4GH9/f8aNGwfAzJkzMTMz49q1a9y6dUsfgJKZmYmvry/ffvst5ubmALz77rsMGzYMDw+PJ3nrQgghRK3RpirRJBegUxl+wjVgd+WR340aWeDn9xZdu75SYTtRN0nhXI9cvHiRu3fv8uqrr5KVlcXu3bvLLZx/+ukn9uzZQ5s2bVi7di0ff/wxa9asoUWLFkRERGBmZkZBQQF+fn707duXtm3bAnDlyhUiIiJQKBR4e3uTmJhI79696datGwcOHMDb25ubN29y/vz5OvcoiBBCCPE4aU4XosvSVNjmZk7VIr/37dsjhXM9JYVzPRITE4OnpycKhYKBAweyePFiMjIyHmj38ssv06ZNG6Akrrt0ZbioqIgFCxZw6dIlFAoFmZmZXLx4UV+9qXweAAAgAElEQVQ4v/HGG/pVZRcXF9LS0ujduzdvv/02n3zyCd7e3nz11Vf4+vqWSRkUQgghnnbGXRujUVa84tzC0r5KK87Dh3vV9PDEEyKFcz2hVCpJSEjA3Nyc+Ph4AFQqFXFxcRWed38096effoqtrS1Lly7FxMSE8ePHU1xcrG9bWjQDGBsbo9GU/GbdtWtXNBqNfiU7Ojq6pm9PCCGEqNOMWpth1LriRaNtntWP/Bb1g7wcWE8cPnyYNm3acPz4cY4cOcKRI0f417/+RWxs7ANtT58+zbVr1wCIjY2lR48eQMmzz88//zwmJiZcvny5SqmBpd5++20+/PBD3NzcsLe3r5F7EkIIIYSoT6RwridiY2MfeBmvS5cuaLVaTp48Webzbt26ER4ezogRI0hOTtZvWzdp0iSio6Px9fXl888/p1u3blW+/rBhw8jNzeWtt9569JsRQgghhKiHJABFVMmpU6dYsGABCQkJ+kc/hBBCCPEnCUCp/yQARTyy2bNnk5iYSFhYWLWLZoncLl9D+mFUHTI/hsncGCZzY5jMjWEyN6IqZMVZCCFEg1ekUpKXU1x5w3pOikPDZG4Ma0hzIyvO9Yi7uzsbNmzA0dFR/5mPjw8zZszQv+BXE9LT0/nxxx8ZNWpUjfVZmXe+DiWz8PYTu54QQjyMg16ryePpL5yFEI9GXg5sgG7evElUVFRtD0MIIYQQol6RFed6Ijs7m/nz55OWlgbAhAkT8PIq2UDdycmJ06dPY2lpWebYyMiIGTNm8Ouvv2JiYkLr1q1ZvXo1CxcuJD09HU9PT1566SXWrFnD2bNn+fjjjyksLKRx48bMmTMHV1dX0tPT8fX1ZfTo0Rw7dox79+7x8ccf88orkngkhKj7tKl5aFIy0Km0FbYLiK08KhkkLlmIhk4K5zomKCioTBBJ6X7Mixcvpn379qxbt47MzEx8fHxwcXEp81jHX/3www/k5uZy4MABAO7evQvAvHnzCAsL0+8BrVQqCQoKYsmSJfTq1YukpCSCgoL4+uuvAcjJycHNzY3g4GD27t3LihUriIyMfBy3L4QQNUpzJgtdVlGl7aoalQwSlyxEQyaFcx2zZs2aB55xBkhKSmLmzJkAPPfcc/Tv35+UlJQKC2dnZ2d+++03QkND6d69OwMGDCi3XWpqKqampvTq1QuAnj17YmpqSmpqKpaWljRu3JjXXnsNADc3N8LCwmriVoUQ4rEz7mKLRln5inMLS9sqrzhLXLIQDZcUzvXIX7eCKz02NjamdHOU+yO0W7ZsyYEDB0hOTub48eOsWrWKhISEB/q9P5a7vP7NzP6MGDUyMkKtVj/6zQghxBNg1LoJRq2bVNpum9fqBrNrgBCi+uTlwHqiZ8+e+hf6srKyOHbsmH6njZYtW3Lu3DmAMoXxrVu3MDY25o033mDWrFncvn2bnJwcrKysyM/P17dr06YNSqWS5ORkAJKTk1Gr1Tg4ODyhuxNCCCGEqPtkxbmemDt3LvPmzdPHboeEhNC+fXugJKBk3rx52Nralnkc49KlS6xcuRIArVbLxIkTsbOz45lnnqF169YMHz6cNm3asGbNGtasWVPm5cDVq1eXWWkWQgghhGjoJABFCCFEgycBKELmxrCGNDcSgCLqBIncLl9D+mFUHTI/hsncGCZzI4R4XGTFWQghhBB10pP8lwD5hcuwhjQ3suL8kA4ePMjGjRvR6XQUFxfTsWNH/XPCD+vChQukpqYydOhQ/Wd/DSu5n0qlYv369Rw4cAATExO0Wi39+/dn6tSpmJqaVvue7peSkqLfwzkjI4OQkBC2b99eI31XZNzXK8kszHns1xFCCPH0OOC1SKLQRZ0ihfN9MjMzCQ0NJS4uDnt7e3Q6HRcvXqx2fxcuXODo0aNlCueKzJo1i+LiYnbv3o2VlRUqlYrY2FiUSmWVC2e1Wo2JSdW+rXZ2dk+kaBZCCCGEeBpI4Xyf7OxsTExMaN68OVCyj3GHDh0AOH78OJ9++ikajQYbGxsWLlzISy+9RGxsLEePHmXNmjUA+uPQ0FDWrFlDfn4+np6edOvWjblz5wKwfft2vvnmG3Jycpg+fTqDBg3i2rVrHD58mGPHjmFlVfJPBKampowaNQoo2SEjNDSUe/fuUVxcjL+/P+PGjQNg5syZWFpacu3aNe7cuUNsbKzB8d6vNE47JSUFKFkNDw4OfmBsAFOnTiU1NRWVSkWrVq1YsmQJzZo1e4zfDSGEEE8jTeptNCk3QKWptK1EoYu6Rgrn+zg7O+Pq6sqAAQPo0aMHXbt2xdPTE61Wy/Tp09mxYwft2rUjOjqakJAQoqOjDfZlbW1NUFBQmaK6lJWVFbt37+ann35iypQpDBo0iP/+97+89NJLBovRFi1aEBERgZmZGQUFBfj5+dG3b1/atm0LwJkzZ9ixYweNGzfmjz/+eOjxVjQ2gDlz5mBjYwPAqlWr2Lx5MyEhIVWaVyGEEKKU5szv6LIKqtRWotBFXSOF832MjIxYv349ly9f5uTJkxw+fJitW7fy4Ycf4uzsTLt27QDw9fUlNDS0TIjIwyh9dMPNzY3MzMwyaX+GFBUVsWDBAi5duoRCoSAzM5OLFy/qC+fBgwfTuHFjAH755Zdqj7e8sZmbmxMfH09CQgIqlYrCwkIJRxFCCFEtxl1eQKPUVGnF+QXLZyQKXdQpUjiXw9HREUdHR8aMGcPQoUNRKBTlRlJDSdy1VqvVH1elCDY3N9efCyXPJbu4uHD9+nXu3r1b7qrzp59+iq2tLUuXLsXExITx48eXuVZp0QyGI7SroryxnTt3jq+++orIyEhsbGxISEhg165d1epfCCFEw2bc2gbj1jZVarvNa1GD2c1B1A8SuX2fjIwMzpw5oz++desWt2/fpk2bNly4cIGrV68CEBcXh4uLC1ZWVrRq1YpLly6hVCpRKpUcOnRIf76VlRV5eVX7C+/g4IC7uzvz5s3TrwxrNBr+/e9/U1BQQF5eHs8//zwmJiZcvnyZU6dOGeyrS5cuBsdbHbm5uVhZWdG8eXOUSiW7d++uVj9CCCGEEPWZrDjfR61WEx4ezs2bN7GwsECr1TJlyhRcXV1ZtmwZISEhqNVqbGxsWL58OVBSpPbs2ZPhw4fz4osv0rZtW7KysgDo2bMn//rXvxgxYgTdu3fXvxxoyNKlS1m3bh2+vr6Ymprqt6MzMzNj0qRJTJ8+nb1799KqVSu6detmsB8bGxuD462Ofv36sXfvXoYMGYKdnR2dOnXi3Llz1e5PCCGEEKI+kgAUIYQQQtRJEoBSNzSkuZEAFFEnSOR2+RrSD6PqkPkxTObGMJkbw2RuhHg0suIshBBCCCEemyf5LwePSlacH1FNRnCnp6czcOBA2rdvr/9swoQJjBgxoqaGa9C3337LqVOnmDFjxmO/VnnGHVpPZuHdWrm2EEIIIWrPAe9ZT010uhTOFajpCG6AJk2aEB8fX2Gbh4nNrqrXX3+d119/vUb7FEIIIYRoSKRwrkBFEdyGIqhTUlJYsmQJnTt35syZMygUClatWqUPKjHE3d0dX19fkpOTadmyJcHBwXz44YcUFBRQXFxM//79mT59OgDh4eGkpqaSl5fHjRs3aNWqFatXr6ZRo0YolUpWrVrF999/j5GRES1btmTdunVlosF/++03Zs2axb1799BqtXh7ezNhwgSD52o0GlasWMH3338PQN++fQkJCdHv9SyEEEKIp4vmWjaalKugrDyopjIBcVWLTq9MXYhWl8K5AoYiuK2trSuMoP7111/55JNPWLhwIZ9//jnr16/XP96Rl5eHp6en/hoRERFYW1sDkJWVxfbt24GSIJUNGzZgaWmJSqViwoQJHD9+nH79+gFw/vx5YmJiaNKkCRMmTCAhIQF/f382bdrEjRs3iI2NxczMjNu3bz9wXzt37qRfv368//77ANy9W/IIhaFzo6KiuHDhArGxsQAEBgYSFRXFW2+9VbMTLoQQQog6QXP6GroaepH05t3CGukHaj9aXQrnChiK4E5ISKgwgrp169a4uLgAJdHV3333nf5rFT2q4eX1Z1yoRqNh2bJlnDlzBp1OR3Z2NhcvXtQXzn369KFp06YAuLq6kpaWBsB3333HzJkzMTMzA9AX9/fr1q0bYWFhqFQqevTowauvvlrhuUlJSXh7e+s/9/Hx4fDhw1I4CyGEEE8p464OaFQ1s+L8gpV1ja0413a0uhTOVfDXCO4dO3awd+9egxHUpQUmlBTfarW6Ste5Pzb7iy++IDc3l+joaMzNzfnoo4/KRGyXRmNDSTx26deqsknKoEGDcHNz48cff2Tz5s3s3r2bFStWGDy3vAjv6kZ6CyGEEKLuM3Z4FmOHZ2ukr23es56abRAlcrsChiK4FQrFY4+gzsvLw9bWFnNzczIyMvj222+rdJ67uzv//ve/USqVAOU+qnH9+nVsbW3x8fHh/fff16cAGjq3V69exMXFoVKpUKlU7Nmzh549e9bEbQohhBBC1Buy4lwBQxHcI0eO5MqVK481gvrtt9/mn//8J15eXjz//PNVLlQnTpzIypUr8fLywtTUlJdeeok1a9aUaXPw4EESEhIwNTVFoVAwe/bsCs8dNWoUaWlpeHt7AyWPifj7+9fo/QohhBBC1HUSgCKEEEIIIR4bCUAR4iFJ5Hb5JP62YjI/hsncGCZzY5jMjWEyN4bJ3PxJVpyFEEIIUS1FKhV5OUW1PYwaIcWhYQ1pbmTFuR7y8/NDqVSiUqm4du2aPqLbxcWFTz75pNxzkpKS0Ol09OrVq9L+o6OjSUxMZNWqVSQmJvLZZ5+V2RXkwoULBAUF8c033wCwfft2du3ahUKhQKVS8frrr+v3rK6qv/9nK5mFuQ91jhBCiLptv08weTwdhbMQVSGFcx0UHR0NQHp6Or6+vpVGdAMkJyej0WiqVDg/jDNnzrBjxw592IpGo+HKlSs1eg0hhBBCiPpACud6ZsOGDezbtw8oCT756KOPuHbtGjExMeh0Or7//ns8PDwICAhg0qRJ3Llzh+LiYjp37kxoaCimpqYPdb1bt27RtGlT/R7TxsbGODs71/h9CSGEEELUdVI41yNHjhxh//79REZGYmlpSUhICBs2bCA4OJiRI0ei0Wj0j1BotVo+/fRTmjVrhlarZdq0aezZswc/P7+Huma/fv3YunUrr732Gt26daNHjx6MGDECCwuLx3GLQgghapnmWgbqE5dBWXl4V8CeM5UmwjVqZIGf31u1GpMsRE2RwrkeSUxMxMPDAyurkofW/f39WbFiBcHBwQ+01Wq1bNq0iR9++AGtVktOTg7NmjV7oJ2hBMDSzy0tLYmOjubcuXOcOnWKqKgovvrqK3bt2vXQq9dCCCHqPvWZq+iy7lap7c27BVVqt2/fHimcxVNBCud6zlDhGx8fz9mzZ9m5cyeWlpasXbuW//3vfw+0s7a2Jicnp8xnd+7cwcbGpsw1XF1dcXV1ZezYsfTo0YOrV6/KIxtCCPEUMunSFrVKU6UV5xesmldpxXn4cK+aGp4QtUoK53qkV69erF69mjFjxtC4cWNiYmL0iYJWVlakp6fr2+bl5WFtbY2lpSV3795l//79dO3a9YE+27Rpg0qlIikpiZ49e6JWq9m1axd9+vQB4OrVq+h0Otq1a6c/1mq12NnZPYE7FkII8aQZO9hh7FC1n/HbfIIbzDZlQoAUzvWKu7s7ly9fZtSoUUDJy4HvvvsuAIMGDWLy5Ml4enri4eGBn58fR44cYfjw4djZ2dGtWzc0Gs0DfZqZmREeHk5YWBhLly5Fq9XSo0cPAgMDASgoKGDp0qXcvn0bCwsLjIyMWLlyJdbW1k/uxoUQQggh6gAJQBFCCCFEtUgASsPQkOZGAlBEnSCR2+VrSD+MqkPmxzCZG8NkbgyTuRHi0ciKsxBCCCHEI3qaVt//qiH9wlWvV5zd3d0xMzPDzMwMlUrF+PHjK92HeObMmXTq1ImxY8dW2G716tW0b9+eoUOHVtguPDycwsJCZsyYUe7Xz507x2effUZqairNmzdHp9MxfPhwJkyYUPHNPQHu7u5s2LABR0fH2h4Kf//PdjILG8ZfOiGEEA3Pfp/3JH68AajThTPAmjVrcHR05PLly/j4+NCvX78a2dHhn//85yP3cenSJQIDAwkLC6N///4AZGVlsXHjxnLbq9VqTEzq/JSXUR/HLIQQQgjxONSbisjR0ZGmTZuSkZFBTk4OoaGh3Lt3j+LiYvz9/Rk3btwD5yiVSlatWsXJkydRqVQ4OjqyYMECLC0ty6xM5+XlMXv2bK5cuYKdnR12dnY888wz+lXmjIwMAgMDuXHjBq1atWL16tU0atSIzZs34+fnpy+aAWxtbZk7d67+2MnJiWnTpnHs2DFefvllpkyZwubNmzl06BAajQY7OzsWLVqEra1tpeM1MzPj2rVr3Lp1Czc3N8LCwlAoFERFRREREYGZmRlarZbPPvuMtm3bApCQkMDp06fJzMzknXfe0a/Enz17lo8//pjCwkIaN27MnDlzcHV1JT09HV9fX8aOHUtiYiIjRoxgxIgRLF68mHPnzgEwYsQIJk6c+Li+1UIIIYQQdVK9KZx/+uknrK2tcXZ2RqlU6gvFgoIC/Pz86Nu3r75YLLVlyxaaNGlCTEwMAMuXL2fTpk0PJO2tW7eOpk2b8p///IecnBx8fHwYNGiQ/uvnz58nJiaGJk2aMGHCBBISEvD39+e///0vgwcPrnTsWq2W7du3AyXBJGlpaezatQsjIyN27tzJ0qVLWblyZaXjvXLlChERESgUCry9vUlMTKR3794sW7aMffv2YW9vj1KpLLPtXHZ2Nl9++SXZ2dl4eXnxyiuv0KZNG4KCgliyZAm9evUiKSmJoKAgvv76awBycnJo27YtkydP1o9Dq9WSkJBAQUEBo0aNwsnJqcwvDEIIIcTTQHPtf6hP/LdKATD3C9iTXGkYzF9JHHn9U+cL56CgIHQ6HTdu3GDt2rWYmZmRm5vLggULuHTpEgqFgszMTC5evPhA4XzkyBHy8/M5dOgQULICXV7aXUpKin6VuHnz5rzxxhtlvt6nTx+aNm0KlOydnJaWVu5YFy9ezMmTJ/njjz+Ijo7G3t4eAG9v7zJjOn/+vP4zjUajj9CubLxvvPEG5ubmALi4uJCWlkbv3r159dVXmTVrFq+//joDBgygZcuW+nNGjhwJwLPPPsuAAQM4ceIECoUCU1NTevXqBUDPnj0xNTUlNTUVS0tLzM3NGTJkiL6PpKQkZs+ejUKhwMrKimHDhpGUlCSFsxBCiKeO+sxldFk5lTf8i5t386t1PYkjr1/qfOFc+ozzwYMHmTZtGocOHeLTTz/F1taWpUuXYmJiwvjx4ykuLn7gXJ1Ox/z58/XpeobodDqD0dWAvlgFMDY21l+rQ4cOnDt3Tl9olxbfPXr0KLPq27hx4zLXmjRpkr6gfZjx/nUcpddYu3Yt586dIzk5mYCAABYsWFBuUVt6n4but/SzRo0alfl6ee0rmi8hhBCivjLp4ohapX7oFecXrJpVa8VZ4sjrlzpfOJcaMmQIBw8eZNOmTeTl5eHk5ISJiQmXL1/m1KlTDB8+/IFz3N3diYiIoEuXLlhYWJCfn09GRsYDK9M9evRgz549dO3albt37/Ltt98ycODASscUGBjIuHHjePnll+nXrx9Qskqs1WoNnuPu7s62bdv429/+RrNmzVAqlfz22284OztXebz3U6vV/P7777i6uupXwy9cuKAvnOPi4nj55Ze5ffs2x48fJyAggNatW6NUKklOTubVV18lOTkZtVqNg4MDmZmZD1yjV69exMTE0LVrVwoKCjhw4ADTp0+vdH6EEEKI+sbYwR5jB/uHPm+bz3sNZsu2hqzeFM4AU6dOxcfHhy1btvDRRx+xd+9eWrVqRbdu3cptP3HiRNauXcvIkSNRKBQoFAo++OCDBwrR999/n1mzZjFs2DBatGhB165d9Y9PVMTZ2ZmNGzeyevVqFixYgI2NDaamprz77rs899xz5Z7j5eVFTk6O/iU9nU7Hm2++ibOzc5XHez+tVsvMmTPJy8tDoVBgb2/P1KlT9V+3t7fnrbfeIisri//7v//DyckJKFnJv//lwNWrV2NmZlbuNd577z0WLVqEh4cHUPJyYOkvCkIIIYQQDYUEoAAqlQqtVou5uTn5+fm8+eabzJo1S/8MsBBCCCFERSQA5elQrwNQnpTc3FwCAwPRaDQUFxczfPhwKZprmERul68h/TCqDpkfw2RuDJO5MUzmxjCZG1EVsuIshBBCCFGOp3kV+WE0pF8qZMVZ1Al/P/gVmYXV26pHCCGEqA37fQMlRluU8dQUzu7u7piZmWFubk5xcTGvvPIK8+fPx9TU1OA5d+7cYdKkSdy7dw8PDw98fX3LHP/jH/+o8HobNmzA0dGxSuMyMzNDpVIxfvx4/Pz8qn2f4eHhFBYW6lMNH1VERAQeHh4888wzNdKfEEIIIcTT6qkpnOHPPZ81Gg1jxozhm2++YejQoQbbJyUl0bRpUyIjIwE4cOBAmeOaHtfly5fx8fGhX79+2NnZ1eg1qmvbtm306tXroQtntVqNiclT9b+PEEIIIUSFnsrKp7i4mOLiYpo2bcrMmTPp1KmTfvu30uN27dqxbNky8vPz8fT0ZODAgURHR+uPP/roI/73v/+xbds2VCoVADNmzCg3nOT69evMmzeP27dvY2JiQnBwcLnbtTk6OtK0aVMyMjKws7NDo9GwYsUKvv/+ewD69u1LSEgIxsbG5OXlsWTJEs6fP49CoeCVV15h3rx5AGRkZBAYGMiNGzdo1aoVq1evplGjRiiVSlatWsXJkydRqVQ4OjqyYMECLC0tiYqK0seUa7VaPvvsM77++msyMzMJCgrC3NyclStX0qpVK4N9zJw5E0tLS65du8adO3eIjY19XN9CIYQQ4rHRXPsd9clzlYacBMR/X2moicRmNyxPVeFcWgCmpaXRp08f+vTpw759+8pt++qrrxIUFMTRo0dZs2YNULLn8f3Hd+7cYfjw4SgUCn777TfGjRvH8ePHH+grJCQEf39//Pz8+PXXXxkzZgwHDx7ExsamTLuffvoJa2trfYx2VFQUFy5c0BeggYGBREVF8dZbb7FkyRIaN25MfHw8RkZG3L59W9/P+fPniYmJoUmTJkyYMIGEhAT8/f3ZsmULTZo0ISYmBoDly5ezadMmgoODWbZsGfv27cPe3h6lUolGo2HSpElER0frV8QB1q9fb7APgDNnzrBjx44yaYhCCCFEfaL++QK6rDuVtrt5t2ovxElsdsPxUIVzXl4eqampFBQUlPm8skjrJ6W0ACwuLmby5MlEREQ8Un83btxg6tSpZGRkYGJiQnZ2NllZWdja2urb5Ofnc+HCBXx9fQFo164dHTp04Oeff8bd3R0oKeh1Oh03btxg7dq1+qCRpKQkvL299cc+Pj4cPnyYt956i++++47Y2FiMjIwAyhThffr0oWnTpgD6tECAI0eOkJ+fz6FDh4CSFMPSIv3VV19l1qxZvP766wwYMICWLVuWe88V9QEwePBgKZqFEELUayZuHaoUq/2CVdMqrThLbHbDUeXCOTY2loULF9K4cWMsLCz0nysUCr799tvHMrjqMjc3Z8CAARw9ehRbW9syEdjFxcVV7ufDDz9k5syZvPHGG2i1Wjp37lzl8xUKhf7PpQX9wYMHmTZtGocOHeLZZ59Fp9OVaffX8wwxNzfX/9nY2Fg/Jp1Ox/z588v9RWbt2rWcO3eO5ORkAgICWLBggT6W+34V9QFI0SyEEKLeM3Z4AWOHFyptt803sMFswyaqxqiqDVetWsXq1atJTEzkyJEj+v/qWtEMJTHUJ0+exMHBgVatWnHu3DkAMjMzSUlJqXI/eXl5vPjiiwDExMSgVCofaGNlZUWHDh2Ii4sD4OrVq1y8eJHOnTs/0HbIkCH07t2bTZs2AdCrVy/i4uJQqVSoVCr27NmjL1hfe+01tm7dSuk22/c/qmGIu7s7ERERFBWVbJ2Tn5/P1atXUavV3LhxA1dXVyZOnEjv3r25cOECAJaWluTl5VXahxBCCCFEQ1flFWeNRkOfPn0e51geWekzziqVivbt2/P++++j1WoJCgpixIgRODg44OrqWuX+Zs2axXvvvYednR3du3enefPm5bZbsWIF8+bNIyIiAhMTE5YtW/bA882lpk6dio+PD4GBgYwaNYq0tDS8vb2Bkkcw/P399ddesmQJw4cPx9jYmO7duzN37twKxztx4kTWrl3LyJEjUSgUKBQKPvjgA1q2bMnMmTPJy8tDoVBgb2/P1KlTAQgICGD27NlYWFiwcuVKg320bdu2yvNWni+GvPlI5wshhBBPWtH/vzmAEKWqnBz4xRdfUFBQwHvvvad/7laIqpLI7fI1pDSm6pD5MUzmxjCZG8NkbgyTuTGsIc1NZcmBVS6c+/fvT3Z2Nqampg+svB49evSRBimEEEII8SQYitFuSMXhw2pIc1NjkdvLly+vkQGJhmn8wRiJ3BZCCFHr9vmOkxhtUW1Vfuaie/fuBv+rCnd3d4YPH15mhwt3d3cuX778UAO+cOECBw4cKPOZk5PTA1vk1bTY2FicnJzKXDs2NpagoKAa6T8lJYXOnTvj6emp/2/69OmP1GdNjq9UeHg4YWFhNdqnEEIIIUR9UOUVZ5VKxeeff058fDyZmZk899xzeHp68u677+r3Ia5MYWEh8fHx+pfhHpZarebChQscPXq0wijt6vZdWYR0ixYtWL16NQMHDnwscdNt27aVND4hhBBCiDrqoR7VOHv2LKGhobzwwgv8/vvvrF+/nvz8fGbPnl2lPj744APCw8MZNmxYmWK7oshqJycnpk2bxrFjx3B0dOTbb7/Vx2J369ZNv9PE9u3b+eabb8jJyWH69OkMGjQIgF3tPbkAACAASURBVF9++YUVK1boV6SDgoIYMGAA6enp+Pr6MnbsWBITExkxYgTZ2dmkpqaSl5f3QJw1QKdOnVAqlcTExDB69OgH7i8uLo6dO3ei0WiwsrJiwYIFtGnThlGjRjFnzhxcXV1ZsGABJ0+eZP/+/ajVanr37s13331X4bzFxsayb98+mjZtypUrV2jSpAnh4eHY2tqiVCpZtGgRJ06cwMbGhg4dOpCdna1PPyyVlZXFhx9+SEFBAcXFxfTv31+/oh0eHm7wvvPy8pgzZw6//vor9vb22NjY8Oyzz1bp+y2EEEI8CZpr6ahO/gLKynfBCIg/Um6oibGxQv+5xGgLQ6pcOP/nP/8hPj4ea2trANq0aYOLiwuenp5VLpw7depEp06d+Oqrr3jnnXf0n1cWWa3Vatm+fTsAHTt2LBOLXcrKyordu3fz008/MWXKFAYNGkRubi7z589n06ZNPPfcc2RmZjJy5Eh9DHdOTg5t27Zl8uTJQEkBaSjOulRwcDATJ07Ey6tsStCpU6c4ePAgX375JWZmZhw7dozZs2cTGRnJq6++SnJyMq6urvz000+Ym5uTmZnJzZs3adu2rT5U5OrVq3h6eur7/Nvf/sYHH3wAwLlz59i7dy/29vbMnTuXHTt2EBwcTFRUFL///jv79+9Ho9Hw9ttv8/zzzz8w902bNmXDhg1YWlqiUqmYMGECx48f1/+CYui+161bh6WlJQcOHOD27dv4+PgwZMiQKn2/hRBCiCdB/fN/0WVVnncAEqMtHk2VC2dDm29UcVMOvSlTphAQEMDIkSP151cWWV2VRztKH91wc3MjMzOT4uJizpw5Q3p6OoGBgfp2CoWC69evY21tjbm5+QNFoKE461JOTk5069aN7du388wzz+g/P3LkCBcvXsTPz09/X7m5uUBJ3PXGjRvx8PCgefPmdO/enaSkJNLT08sk9FX0qEbXrl2xt7cHoHPnziQmJgIlz0Z7enpiYmKCiYkJw4YN46effnrgfI1Gw7Jlyzhz5gw6nY7s7GwuXryoL5wN3XdKSop+Vd/Gxoa//e1vBr4DQgjx/7F352FR1/v//+/DriAohUsu4BIoooCpiJoL+hUVFVFyyTSXNC3FDfdyKzEVjyVEiLkct9xAQUo7mrn8UsHSFE+aS6ymKC7IIszA8PuDj3MkGRgQEeF5u66u68zM+/16v97POlxPXrzn9RDi5TBwskelUum04qwtRvufK84Soy0Ko3Pj3Lt3byZNmsTHH3/MG2+8wc2bN/nmm29KvPrYpEkTunbtyqZNmwDtjffT0dO6xDw/iaHW19cH8p9ZzsvLw87Oju3btz9zfFJSEtWqVXsm4lpbnPXTpk6dyrBhwwo05Hl5eQwePJipU6c+c/xbb73FH3/8wbFjx3B1daV9+/aEhoaSlJSk85f3/jmv3NxczXV1ienetGkTjx49Ys+ePRgbG/Ppp58WuLeiYryFEEKIikzfpgH6Ng10OnbL4NGFbq1WlbZcE6Wn864as2bNwtXVlaVLlzJo0CA+++wzXFxcmDVrVokvOmXKFHbs2EFGRgZ6eno6R1ZD/iMZT0dEF8XZ2Zn4+HjOnDmjee/ixYvP3Qw2bNgQd3d3tmzZonnPzc2N8PBwbt++DeSv8F66dAkAIyMj7O3tWb9+PR07dsTR0ZFz587x559/ar1PXbm4uBAREUFOTg7Z2dkcPHiw0OPS0tKwsrLC2NiY5ORknaPSXV1dNavgDx484MiRI881XyGEEEKIV5XOK85GRkZMnTq10BXVkqpbty6enp5s3LgRKFlktaurKxs3bmTAgAHFxlBbWFgQFBTEqlWr8PPzQ6VS0bBhQ4KDg5/7Hj766CNNsw/Qrl07pk2bxqRJk8jNzUWlUtG7d28cHBw0846JicHBwQEDAwMaNWpEgwYNCnxJ8p/PONeuXZv169cXOY9hw4Zx5coVPDw8qFevHi1btuTx48fPHDdy5EimTp3KwIEDqVu3boFHRIq7z/nz59O3b1/q169Pp06ddDrvnzb28S7VeUIIIURZkhht8TyKTA48e/Ys7dq1A+D06dNaB9G1CRMvRnp6OmZmZiiVSiZNmkTv3r01z1pXFBK5XTj502DRpD7aSW20k9poJ7XRTmqjXVWqzXNFbvfr10+zA8WTL+o9M4BCofOf/cWL8c4776BUKsnOzqZjx47Mnz//hewzLYQQQlR22iK5qzJpnP+nyMZZiLIy9of93Ml8semOQgghxPOK9B5RZZpEXUnj/NTn5TiXV5pKpSIgIAB3d3c8PDzw9PTEx8eH69evv7BrJiUl4eLionltZ2dH//79GTBgAP379y+Tlf4FCxbw66+/FvrZ3Llz2bZt23NfQwghhBCiMtD57/ldu3YtdNszIyMj6tSpQ69evRg+fHilfURg3rx5ZGVlsWfPHszNzcnLy+PQoUPcuHGDZs2aaY5Tq9UoFAqdtogrjZ07d2Jqasrx48eZNm0aZ8+efa6aL1u2rAxnJ4QQQghReenccY0cOZKIiAhGjhxJvXr1uHXrFtu3b6d3795YWFiwadMmbt26pYlxrkzi4uI4cuQIx48f14SEKBQKzR7WAQEBxMfHk5mZSWJiItu2bSM4OJjo6GhUKhW1atXCz8+P+vXra6K+hw0bxvHjx3n8+DHLli2jbdv8dKLt27ezefNmrKysaN++vdY5ubi4kJmZyaNHj7C0tOT06dN8+eWXZGdnk5uby8SJE/Hw8ADy/901b96cK1eucPv2bfr06cOMGTM0n40dO5bu3buTnJzM7NmzefDgAQ0aNNDsFQ2wa9cuNm/ejJGREWq1mi+//JKmTZu+kHoLIYQQZSU3PhFV9DnQcTeNURE/FhqQUhiJ5q56dG6c9+3bx8aNG6lTp47mvS5dujB27Fi+//57XFxcGDNmTKVsnP/44w+sra2xsLDQesyvv/5KWFiYZhu98ePHM2fOHAD27NmDv78/a9asAfKjvp2cnJg+fToRERH4+/uzc+dOrly5wjfffMP+/ft5/fXXWbx4sdbrHT58mA4dOmiuZ29vz44dO9DX1yclJYVBgwbRuXNnzZxv3LjBpk2byM7OZtiwYTg7O9O9e/cCY37++ee0a9eOyZMnk5iYyIABA3j77bcBWLlyJZGRkdSrVw+lUlmgqRZCCCEqqpzfY8hLuafz8TdTH5VofInmrlp0bpzv3r2LqalpgfeqVavGnTt3AGjcuLEmYrqyu379OjNnziQrK4u3334bCwsLunTpUmDv6RMnTrBjxw4yMzPJyckpcH716tU1TauTkxMrVqwAIDo6mm7duvH6668DMHTo0GcCTYYNG0ZGRgb37t0r8Pzx/fv3mT9/PvHx8ejr65OamkpsbCxOTk4ADBw4UBPL3bdvX86cOfNM4/x0vHbDhg0LbDPYoUMH5s2bR48ePejWrRsNGzZ8rhoKIYQQ5cHAqRUqpUrnFec3zGqUaMVZormrFp0b5+7duzNp0iQmTZpEnTp1SE5OZt26dZrm6/z58zRooFvc5avG3t6e+Ph4Hj16hLm5Oc2aNSM8PJxt27Zx6dIlLCwsCvxScfPmTZYvX87evXtp2LAh586dw9fXV/P506Enenp6msZalw1OnjzjvGHDBnx8fDh06BDGxsYsXrwYNzc3AgMDUSgUuLu7FxoX/uQ6JX0GOzAwkJiYGM6cOcOoUaNYvHgxXbt2LdEYQgghRHnTt26IvrXuiz1bZFcNUQSdd9VYunQpjo6OLFy4EC8vLxYuXEirVq1YsmQJkL9CuW7duhc20ZfJxsaGHj168MknnxSI+87MzCz0+PT0dAwNDbGyskKtVrNz506druPi4sLx48e5dy//T0p79+7VeuzYsWN57bXXNGOnpaVRv359FAoFv/zyC/Hx8QWODw8PJycnh8zMTA4dOlRgt44nOnToQGhoKACJiYma0JucnBwSExNp3bo1EyZMoFOnTly+fFmnexJCCCGEqCx0XnE2NjbG19e3wMrp06ysrMpsUhXR8uXLCQoKwtvbGwMDA8zNzalduzYTJkzg6NGjBY61s7Ojd+/eeHh48MYbb9CuXTutW749rXnz5kycOJHhw4fz+uuv061bN63HKhQK5syZw/Tp0xk2bBgzZ85kyZIlrF+/Hjs7O+zs7Aoc37JlS8aMGUNycjK9e/d+5jENyN+abvbs2Rw6dIjGjRtr4rXVajVz584lLS0NhUJBvXr1mDlzpg5V+5+NfeVPWUIIISo+ieQWRSlRAMovv/zC999/z/379wkODiYmJob09HSJ3K7gnt4542WRyO3CVaVN5UtD6qOd1EY7qY12UhvtpDbaVaXalFkAytatW1m8eDE2NjacPXsWABMTE7766qvnn6UQQgghhBAVnM4rzj179mTz5s00aNCAdu3acfbsWXJzc+nYsSNRUVEvep5CCCGEKEKWKoe0h4+LPKYqrRyWlNRGu6pUm+JWnHV+xjkjI4N69eoBaHZkyMnJwdDQ8DmnKIri5uaGkZERRkZGPH78mGbNmjF+/HjatGnzsqdWImN/iOSOli9TCiGEeH6R3kOoGq2NEC+Pzo9qtG3blpCQkALvbdmypdDdGUTZWrt2LRERERw+fBgvLy8mTJjAhQsXXuqcJABFCCGEEFWNzivO8+fP5+OPP2bPnj1kZGTg7u6OmZkZwcHBL3J+4h969erFxYsX2bBhgyaN8OzZs6hUKmxtbVm8eDGmpqbMnTsXIyMj4uLiuH37tiZo5datW7zzzjscO3ZM89eCKVOm4ObmhpeXF8ePH+ebb75BqVRiaGjIvHnzcHJyIioqCj8/P9q2bUtMTAyTJk16qV82FEKIqiI3Ph5V9K/FBniMiogsNrhDX19Bbm6eREULUUo6Nc65ubm4u7sTHR3Nn3/+yd9//029evVo3bo1eno6L1qLMuLo6MjRo0f59ttvqVGjhma/51WrVhESEsL06dMBuHbtGps3b0ahUODl5cWpU6fo1KkTzZo148SJE/To0YMHDx4QHR3NihUrSEhIICgoiA0bNmBmZsa1a9cYP348x44dA+Dq1assXryYTz/99GXduhBCVDk5v18gLyWl2ONupqaWaFyJihai5HRqnPX19bGxsSE1NRVHR0ccHR1f9LxEEZ58n/Po0aOkp6fz448/AqBUKmnevLnmuJ49e2JsbAzkpx8mJCTQqVMnvLy82LdvHz169CAyMpIePXpQvXp1Tp48SUJCAiNGjNCMkZOTQ8r//cC2trbG2dm5vG5TCCEEYODkqFNk9BtmZiVacZaoaCFKTudHNfr378/EiRMZNWoUdevWLfCZ7ONcvmJiYnjzzTdJSkpi0aJFWuv/pGmG/F9+njyX7O7uzvLly3nw4AH79u1j/vz5muPefvttVq5c+cxYN27coHr16mV8J0IIIYqjb22NvrV1scdt8R5S7M4HVWl3BCFeBJ0b5++++w6AgICAAu8rFAp++umnsp2V0OrIkSN89913fPvtt/zyyy9s3rwZZ2dnTExMSE9PJzk5maZNmxY5RrVq1ejRowdr1qwhPT2dtm3z/1TXqVMnAgMDuXbtGm+++SYAFy9epHXr1i/8voQQQgghKjqdG+d/xkqL8uPj46PZjq5p06aEhITg5OREy5YtCQwMxNvbG4VCgUKhYPLkycU2zgCDBg1ixIgRTJ06VfOejY0Nq1atYsGCBWRlZaFSqWjTpk2ZNM4b+/Z77jGEEEJol6XKedlTEKLSK1HkthClJZHbhZM/mxZN6qOd1EY7qY12UhvtpDbaVaXalFnkthBCCCGEEFWZrDgLIYQQokLRJT68rFWlVdWSqkq1KbPIbVE2Dh48yLp168jLyyM7O5uWLVuyevXqUo2VlJREr169ePPNN1Gr1ahUKtq2bcvkyZM1O58sWLAALy8vzRcAX5ZxP/wokdtCCCF0csDbS+LDRYUkjXM5unPnDkuWLGHfvn3Uq1ePvLw8rly58lxj1qhRg/DwcCB/H+dvvvmGYcOGceDAAWrUqMGyZcvKYupCCCGEEFWeNM7lKCUlBQMDA2rWrAnkb+XXokULAGbOnElsbCwqlYpGjRrh5+eHhYWFJura0dGR8+fPo1AoWLNmTaE7ZxgZGTF16lROnTpFREQEI0aMYOTIkYwdO5bu3buTnp7O8uXL+fPPP8nOzsbFxYV58+ahr6/P9evXmTdvHo8fP6Z58+YkJCRoYrXj4+NZuHAh9+/fx8DAgOnTp9OlS5dyrZ0QQohXT258HMroKFApS3TeqIh9xYa5aCNx4uJFksa5HDVv3pzWrVvTrVs3XFxcaNOmDZ6entSqVYsFCxZgaWkJwJo1a1i/fj2+vr4AXL9+neXLl7N06VK++eYbgoKCiny8o1WrVly7du2Z95cvX067du1YtmwZarUaX19fQkNDGTJkCLNnz+b999/H09OTmJgYhgwZojnP19eXIUOG8M4773D9+nVGjBjBwYMHNfMVQgghCqP6/Rx5KXdLfF5J48P/SeLExYsijXM50tPTIygoiKtXr3L27FmOHDnChg0bOHDgAOHh4Rw4cACVSkVmZiY2Njaa8xo3boy9vT0ATk5O/Pzzz6W6/tGjR7l48SKbNm0CICsrizp16pCens7Vq1fp378/kN9429nZAZCens7ly5cZPHgwAM2aNaNFixb8/vvvuLm5lbYUQgghqgBDpzYolaoSrzjrEh+ujcSJixdJGueXwNbWFltbW0aMGEHfvn3Ztm0bERER7Ny5E0tLSw4cOMDu3bs1xxsZGWn+t56eHjk5RW9yHxMTw4ABA555Py8vj6CgIBo2bFjg/bS0NE2Aiq5KcqwQQoiqSd/ahmrWNiU+b4u3V5XZxUG8WmQf53KUnJzM+fPnNa9v377N/fv3USgUmJmZUbNmTZRKJaGhoaUaX6lUEhgYyO3btwttnN3c3AgJCSE3NxeA+/fvk5iYSI0aNWjWrBmRkZEA/Pe//+Xq1asAmJmZ0aJFC/bt2wfAjRs3uHLlCo6OjqWaoxBCCCHEq0pWnMtRTk4OAQEB3Lx5ExMTE9RqNdOmTcPb25tr167Rp08f6tSpg4ODAzExMTqNmZaWhqenJ7m5uZrt6Hbu3EmNGjWeOXb+/PmsWrUKT09PFAoFhoaGzJ8/n4YNG7JixQrmz5/Ppk2baNmyJc2bN9eM4e/vz8KFC9m8eTMGBgasXLmyxM83b+jrXqLjhRBCVF0SHy4qKglAEQBkZmZSrVo1FAoF169fZ+TIkRw6dAgLC4syGV8itwtXlTaVLw2pj3ZSG+2kNtpJbbST2mhXlWojAShCJ+fOnWPlypU8+T3qs88+K7OmWQghhBCiMpAVZyGEEEIIHb2MOPCXTVac/6dcVpzd3NwwMjLC2NiY7Oxs2rZty6JFizA0NNR6ztPBHUeOHKF27dq0bt0ayN81YvPmzaWOqn5evr6+2NraMmHCBAC2bduGn58f0dHRmJnlF7tfv34sWLAAV1fXEo//9L3/U1lEaP+znuXhgx9+4k5m1fpBI4QQovKJ8O4nceBVWLntqrF27VrCw8P5/vvvuX79OocPH9b53CNHjnDx4kXN61atWr3Qprm47d5cXFyIjo7WvI6OjsbBwYFff/0VyN+tIj4+Hmdn5zKf27Jly56raYZn6ymEEEIIIYpX7s84Z2dnk52djbm5OadPn+bLL78kOzub3NxcJk6ciIeHR4HjT548ydGjRzl16hR79uxhzJgx1KtXjxUrVhAWFkZSUhKDBw9myJAhnDx5kqysLPz9/dm5cycXLlzAxMSEoKAgrKysyM3Nxd/fn5MnTwLw9ttv4+vri76+PnPnzsXU1JS4uDgePHhAWFgYFy5cwN/fn4yMDAB8fHw0qX9+fn7k5ORgYGDAH3/8wYwZM4iKiqJbt25ER0fTunVrTExMuHv3LjNmzCAjI4Ps7Gy6du3K7NmzgfwG9quvvkJPT4/c3Fw+/fRTXFxcgPxmPCQkhDt37tCnTx9NiuDTq9Fz587FyMiIuLg4bt++jZOTEytWrEChUJCcnMzs2bNJSUnR7NvcuXNnrK2tn6nnwIEDCQkJISIiAsj/xeSTTz7B1NSUgIAAYmNjSUtLIzExkUaNGvHVV19RrVq1F/8fixBCCFFOcuL/QhV9mrxiwlpGRewuNpxFYr8rr3JrnH18fDA2NiYhIYHOnTvTuXNnUlNT2bFjB/r6+qSkpDBo0CA6d+5c4Etpb7/9Nm5ubjg4OPDee+8BEBUVVWDshw8f8tZbbzFz5ky+/fZbRo8ezdatW/n8889ZvHgx27ZtY/r06ezatYvLly8TFhYGwPjx49m1axfvvvsuAOfPn2fbtm1Ur16dR48esWjRIkJCQqhduzZ37tzB29ubyMhIGjVqhIWFBf/9738xNTXF2tqaDh06sHHjRiC/6X3SAJubmxMcHIypqSkqlYpx48Zx4sQJunTpwtq1a1m0aBFt27YlNzeXx4//9yjDrVu32L59OxkZGfTs2RNvb+8CaYJPXLt2jc2bN6NQKPDy8uLUqVN06tSJzz//HBcXFz766CNu3rxJ//796dy5c6H1PH78uCaAxdTUlDlz5hAUFMSsWbMAuHTpEnv37qVGjRqMGzeOAwcOFIjkFkIIIV51qt9/Q51yp9jjbqY+1Gk8if2unMqtcV67di22trZkZ2czZcoUNm/eTNeuXZk/fz7x8fHo6+uTmppKbGwsTk5OJRq7evXqdOvWDYCWLVtSt25dWrRooXl96tQpAE6fPo2Xl5cmiW/QoEEcOXJE0zj37t2b6tWrA/lNdFJSEuPHj9dcR6FQEB8fT6tWrWjfvj1RUVGYmZnRvn17LC0tyc7OJj09nejoaD755BMAcnNzWblyJefPnycvL4+UlBSuXLlCly5d6NChA1988QW9e/emS5cu2Nraaq7Vu3dv9PT0qFGjBk2bNiUhIaHQxrlnz54YGxsDYG9vT0JCAp06dSIqKkozh/r16xf5rPXp06fp27ev5vnsIUOG4Ofnp/m8c+fOmJubA9C6dWsSEhJ0+dcihBBCvDIMnd5CpVQWu+L8hpmpTivOEvtdOZX7oxrGxsZ069aNY8eO8fPPP+Pm5kZgYCAKhQJ3d3eys7NLPOY/I6mffq2vr69JysvLy3smKvrp10+a5ifH2tnZsX379kKv2b59ew4dOkSNGjUYOXIkAM7Ozhw+fJiEhATN882bNm3i0aNH7NmzB2NjYz799FPNPc6fP58///yTM2fOMHXqVMaMGaNZyX3SDP/zHv5J1+OKUlhdirpGaf4dCSGEEBWZgXUTDKybFHvcFu9+VWaHCfGsco/cVqvVnD17FhsbG9LS0qhfvz4KhYJffvmF+Pj4Qs8xMzMjLe35/yPt2LEj+/btQ6VSoVKp2L9/v9aVWGdnZ+Lj4zlz5ozmvYsXL2r2OXZxceHcuXPExMTQqlUrANq1a0dwcDCOjo6aZjMtLQ0rKyuMjY1JTk7mp59+0oz3119/YWdnx/vvv8+AAQN0TgvURfv27TUx2bdu3SpwH/+sZ8eOHfnhhx9IT08nLy+PvXv30rFjxzKbixBCCCFEZVDuzzirVCrefPNNPv74Yy5dusSSJUtYv349dnZ22NnZFXrugAEDmDdvHocOHdJ8ObA0hg4dSkJCAl5eXkD+IwjantW1sLAgKCiIVatW4efnh0qlomHDhgQHB6NQKGjYsCE1a9akYcOGmm312rdvT1xcHP369dOMM3LkSKZOncrAgQOpW7dugUZ99erVmsdUzM3NWbZsWanuqzALFixg9uzZ/PDDDzRp0oQ2bdpoHsX4Zz0HDhzIn3/+ybBhwwBwcHBg0qRJZTYXIYQQQojKQAJQKqmsrCwMDAwwMDDQfLFx8+bNNGlS/J+hhBBCCFE4CUCp3CpEAIoof3FxccyZM4e8vDxycnKYPHnyS22a791LR62W39H+qSr9MCoNqY92UhvtpDbaSW20k9oIXciKsxBCCFEFZKlyMDE0kOZQC2mctatKtZEV51fAk0hyIyMjVCoVY8eO5Z133inXOTwJkvnnHtllZfwPJ7iTmfVCxhZCCFG8cO9eL3sKQrzypHGuIJ7sc3316lUGDRpEly5dqFOnzsuelhBCCCGE+D/SOFcwtra2mJubk5yczOuvv641IvzAgQNs2bIFlUoFwJw5czQ7dri5ueHp6cmpU6e4e/cuY8eO1aQEXrx4kWXLlpGZmUn16tVZsGABrVu3LjAHpVLJrFmzqFu3LnPnzuXu3bt8/vnn/P3332RnZ+Ph4cHEiRPLsSpCCCGKkhN/A2X0ySLDO0ZFbAMoMrxDoqKFKJo0zhXMb7/9Rq1atWjevHmREeGdO3emX79+KBQK/vrrL0aPHs2JEyc042RlZbFr1y6SkpLo378/Xl5eGBoa4uPjg5+fHx07duT06dP4+Pjwn//8R3Pew4cPmTJlCj179uT9998H8pvyjz76iHbt2qFUKhk9ejStWrWiU6dO5VscIYQQhVL+HoU6JbnIY26mPtBpLImKFkI7aZwrCB8fH/Ly8khMTCQwMBAjI6MiI8ITExOZOXMmycnJGBgYkJKSwt27d7GysgKgb9++ADRo0ABzc3Nu375NTk4OhoaGmnATV1dXDA0NiY2NxdTUFKVSybvvvsuUKVPo06cPAJmZmURHR3P//n3NXDMyMrhx44Y0zkIIUUEYObmgLCYu+g2z/HTc4lacJSpaCO2kca4gnjzjfPDgQWbNmsWPP/5YZET4jBkzmDt3Lj179kStVuPo6FggCruwKG5t0dpP3jM0NMTR0ZGjR4/Sq1cv9PX1UavVKBQK9u7dqwl6EUIIUbEYWDfFwLppkcds+b8vB1aV3RGEeBHKPXJbFK1Pnz506tSJkJCQIiPC09LSaNCgAQB79+5FqdS+yvBEkyZNUCqVmvjtM2fOkJOTg42NDZDfQPv5+WFmZsb06dNRqVSYmZnx1ltvmKTaZAAAIABJREFUERISohnn1q1b3L17t4zvXAghhBCiYpMV5wpo5syZDBo0iB9++EFrRPi8efP46KOPqFOnDu3bt6dmzZrFjmtkZMTatWsLfDnwq6++0jwKAvnN86JFi1ixYgUff/wxAQEB+Pv7s3z5cvr37w+Aqakpy5Yt0zwWIoQQQghRFUgAihBCCFEFSABK0apSyEdJVaXaSACKqBAkcrtwVemHUWlIfbST2mgntdHOxKrGy56CEK80WXEWQgghRKGyVDmkPXz8sqdRLuQXLu2qUm2qzIqzttjqn376iV9//ZU5c+ZoPfdFx02X1Ny5c3FwcOC9994jICCAwMBAdu/ejaOjIwABAQFkZmYWeU/aHDlyhNWrV2NsbMy//vUvmjRpUuhxUVFRrFixgrCwsDKpz4SDZ7ibmV38gUIIISqMfYO7UjXaJSF0U2kaZyg8trpHjx706NHjZU/tudSvXx9/f3+2bt1a6jFycnIwMDBg586d+Pj4aPZpFkIIIYQQuqlUjfMTT8dW//LLLxw7doy1a9cC+Vu3bdmyBcjft3jdunWa89asWcPx48d5/Pgxy5Yto23btprV1iFDhnDy5EmysrLw9/dn586dXLhwARMTE4KCgrCysiI3N1drRPbcuXMxMjIiLi6O27dv4+TkxIoVK1AoFCQnJzN79mwePHhAgwYNyM3NLXA/vXr14vTp05w8eZK33367wGfFXdPU1JS4uDgePHhA27Zt+e2334iNjWXHjh1s3bqVEydO8K9//Yvc3FwsLS1ZunQp1tbWWmv7zzjuwvaFFkIIUfGp4q6SffY4KLX/NXBU+AaJ6BbiKZVyH+enY6ufFhUVxbp169iwYQMRERFs2bKFGjXyvyjx8OFDnJyc2L9/Px9//DH+/v6a8x4+fMhbb73F/v378fb2ZvTo0YwYMYIDBw7QsmVLtm3bBlAgIjssLIw//viDXbt2aca5du0a69evJzIykv/+97+cOnUKgM8//5x27doRERHBvHnziI6OLjBvhULB9OnTWbNmDf98JL24a54/f56AgADCwsKYP38+Dg4OfPLJJ2zdupV79+4xe/Zs/P39OXDgAP369cPX11drXR8+fMi4ceNo06YN8+bNk6ZZCCFeYcrfT6O+ewt16n2t/9y8eZPbt//W+k9s7F9ERu5/2bciRLmpVI2zj48P7u7ujBw5kpkzZxbYnxjg2LFjeHp6avYfNjU11STsVa9ene7duwPg5OREYmKi5rzq1avTrVs3AFq2bEndunVp0aKF5nVCQgJAgYhsIyMjBg0axOnTpzXj9OzZE2NjY4yMjLC3t9ecFxUVxTvvvANAw4YNNSEnT+vWrRsmJiYcPHiwwPvFXbN3795Ur1690HpduHCB5s2b06xZMwAGDx7M5cuXSU9Pf+bYJ3Hc7777Lu+//36h4wkhhHh1GDm5omdVDz0LS63/1K9fn7p139D6T+PGTSSiW1QplepRjcJiq3X1dJOtp6dHTk6O1s+efv0kzhooMiIbCo/BLokZM2awYMECevfurXmvuGtqa5q1natNYXHcQgghXl2GNrYY2tgWecyWwV2rzG4KQuiiUq04P/F0bPXTunfvTnh4OCkpKQBkZGToFFWtq6IisovSoUMHQkNDAUhMTCywYvy0tm3bYmNjw4EDB577mgDOzs5cvnyZGzduALBv3z7s7e0xM3t2G5bC4riFEEIIIaqSSrXi/LQnsdUffvih5r327dszYcIExowZg0KhwMjIiODg4DK75tChQ7VGZBdlwYIFzJ49m0OHDtG4cWM6deqk9djp06drxn+eawJYWlqycuVKfH19ycnJwdLSklWrVmk9vrA47qdX0YUQQgghKjMJQBFCCCFEoSQARUDVqk2VCUARFZtEbheuKv0wKg2pj3ZSG+2kNtpJbYR4PrLiLIQQQgjxEmSpckl7mPmyp1GsqvQLl6w4VxBubm5Ur16diIgI9PT0NO8FBwdja1v0t5qfdvnyZWJjY+nbt6/mPTs7O86dO4epqWmZz/tpR44coXbt2rRu3brE53548LxEbgshhBBPCRvcQSLNXzGVcleNiiozM5Pw8PBSn5+Tk8Ply5c5dOhQGc5Kd0eOHOHixYsv5dpCCCGEEC+brDiXo8mTJxMQEICHh0eBvaDj4+NZuHAh9+/fx8DAgOnTp9OlSxcgfzV51qxZHD9+HFtbW3766SfS09Px9PSkXbt2fPLJJwBs3bqVw4cP8/DhQ2bPno27uzuQH3Li7+9PRkYGkB8S061bN3Jycvjwww958OAB2dnZtG7dmiVLlmBkZMS5c+f47LPPUKvV5OTkMGnSJCwsLDh69CinTp1iz549jBkzhoEDZdN7IYQQ4p9UcVfIOvtTkXHmAKPCTYqMNAeJNa9opHEuRw4ODjg4OPDdd98VSN/z9fVlyJAhvPPOO1y/fp0RI0Zw8OBBLC0tAVCr1WzduhXITyo8duwYa9euLTC2mZkZoaGh/Pbbb0ybNg13d3cePXrEokWLCAkJoXbt2ty5cwdvb28iIyOpUaMG/v7+1KpVi7y8PObMmUNoaCjDhw9n/fr1vP/++wwcOJC8vDzS0tIwNzfHzc0NBwcH3nvvvfIrmhBCCPGKyf79/0N99+9ij7uZqtt4kZH7pXGuIKRxLmfTpk1j1KhReHt7A/npfZcvX2bw4MEANGvWjBYtWvD777/j5uYGUGDfZm2ePPPs5OTEnTt3yM7O5vz58yQlJTF+/HjNcQqFgvj4eOzt7dm4cSMnTpxArVaTmpqKiYkJAC4uLoSEhPD333/TqVMnHB0dy7QGQgghRGVm7NSZLFV2sSvO9cx0W3GWWPOKQxrnctakSRO6du3Kpk2bgPzGuTC6xmY/8SSI5EkUdk5ODnl5edjZ2bF9+/Znjt+/fz+//fYb27dvx8zMjODgYOLi4gAYPXo0bm5unDp1is8++4xOnToxffr0Et2nEEIIUVUZ2jTH0KZ5scdtGdyhyuxWUVnIlwNfgilTprBjxw4yMjLQ09OjRYsW7Nu3D4AbN25w5coVrau8ZmZmpKXp9n8yZ2dn4uPjOXPmjOa9ixcvah6/qFWrlma8yMhIzTGxsbE0atSIYcOGMWrUKGJiYkp8bSGEEEKIykYa55egbt26eHp68vDhQwD8/f2JiIigf//++Pr6snLlSs3zzf/k6urK48ePGTBgAJ9//nmR17GwsCAoKIivv/6aAQMG0KdPHwIDA8nLy2PgwIFkZGTg4eHB1KlTeeuttzTnbd26FQ8PDwYOHMi2bduYNm0aAAMGDCAyMhJPT0/2799fRtUQQgghhHg1SACKEEIIIcRLIAEoFY8EoIgKQSK3C1eVfhiVhtRHO6mNdlIb7aQ22klthC6kcRbloqjf3qo6K6saL3sKFZrURzupjXblXZtXZeVQCPF8pHHWwcGDB1m3bh15eXlkZ2fTsmVLVq9eXaqxShqZrVKpCAoK4ocffsDAwAC1Wk3Xrl2ZOXMmhoaGpZpDVFQUKpWKzp07l+r8kSNHMnbsWLp3767zOZMO/sHdTFWprieEEBXd3sGOEp0sRBUgjXMx7ty5w5IlS9i3bx/16tUjLy+PK1eulHq8y5cvc+zYsQKNc1HmzZtHdnY2oaGhmJmZoVKpCAsLQ6lUlrpxjo6OJjMzU2vjnJOTg4GB/KchhBBCCPE06Y6KkZKSgoGBATVr1gTy91du0aIFACdOnOBf//oXubm5WFpasnTpUqytrQkLCyuQ7vfk9ZIlS1i7dq3OkdlxcXEcOXKE48ePY2aW/6iDoaEhQ4cO1cxv/fr1/Pjjj+Tm5lKnTh0+++wzrKysCAgIIDY2lrS0NBITE2nUqBFfffUVCQkJ7Ny5E7VazalTp/Dw8KBv374MHjyY9957j1OnTjFgwABsbGz48ssvyc7OJjc3l4kTJ+Lh4VGepRdCiJdOFfcHj88eIq/Y6GQjiU4WogqQxrkYzZs3p3Xr1nTr1g0XFxfatGmDp6cnarWa2bNns23bNpo1a8aePXvw9fVlz549WseqVasWPj4+Okdm//HHH1hbW2NhYVHoeOHh4SQkJLB792709PTYsWMHX3zxheYxkkuXLrF3715q1KjBuHHjOHDgAEOGDGHYsGFkZmYyZ84cAJKSknj48CFNmzZlypQpAKSmprJjxw709fVJSUlh0KBBdO7cWetchBCiMsr6/Wdy7yYVe5xEJwtRNUjjXAw9PT2CgoK4evUqZ8+e5ciRI2zYsIEZM2bQvHlzmjVrBsDgwYNZsmQJ6enppbpOYZHZxTl69CiXLl3SRHLn5uZqVqYBOnfujLm5OQCtW7cmISFB61jGxsb06dNH8/r+/fvMnz+f+Ph49PX1SU1NJTY2Ficnp1LdnxBCvIpMnLrzWJVd7IpzPTPdVpwlOlmIV5s0zjqytbXF1taWESNG0LdvXxQKRYFY7Kfp6+ujVqs1r3VpgguLzLa3tyc+Pp7U1NRCV3rz8vKYNGkS3t7eRY75ZNyi5lGtWrUC97N48WLc3NwIDAxEoVDg7u6u030IIURlYmhjj6GNfbHHbRnsKFuZCVEFSHJgMZKTkzl//rzm9e3bt7l//z5NmjTh8uXL3LhxA4B9+/Zhb2+PmZkZjRo14s8//0SpVKJUKvnxxx8155ckttrGxgY3NzcWLlyoWcnOzc3l3//+NxkZGbi5ubFjxw5SU/P/RqhUKnX64qIuc0hLS6N+/fooFAp++eUX4uPjdZqzEEIIIURlJSvOxcjJySEgIICbN29iYmKCWq1m2rRptG7dmpUrV+Lr60tOTg6WlpasWrUKAGdnZ1xdXenXrx8NGjSgadOm3L17F8iPzN64cSMDBgygffv2mi8HavPFF1/w9ddfM3jwYAwNDTXb0RkZGTFw4EAePnzIe++9B+SvQA8fPpzmzZsXOWbPnj0JDw/H09NT8+XAf5o5cyZLlixh/fr12NnZYWdnV5ryCSGEEEJUGhK5LYQQQjynVyUARdLxtJPaaFeVaiOR26JCkMjtwlWlH0alIfXRTmqjndRGCPGiyIqzEEIIIcrMq7L6/k/yC5d2Vak2suJcTlQqFcHBwURGRmJgYICBgQHW1tb4+Photqx7XklJSfzyyy8FAlBKE39dVMT3izL5YCx3M3PK7XpCCCFejl2D35T4cVFpSeNcRubNm0dWVhZ79uzB3NycvLw8Dh06xI0bNwo0zmq1usit7Ipy8+ZNdu3aVaBxFkIIIYQQ5UMa5zLwdDT2k8ARhUKhCRQJCAggPj6ezMxMEhMT2bZtG/fu3cPPz48HDx6gUql4//33GTx4MJC/o0VsbCwqlYpGjRrh5+eHhYUFS5cuJSkpCU9PT6ytrZ9JH3zaxo0b+f7778nNzcXY2JjFixdrosKfUKvVfPHFF6SkpPDFF1+gVCpZvnw5f/75J9nZ2bi4uDBv3jz09fUJDAwkMjISY2NjFAoFW7Zs0dyrEEKIqkMZF0PG2QPkKbMK/XxUuGGRYTASPS5eZdI4l4HiorEBfv31V8LCwrC0tCQnJ4cxY8awatUqmjZtSnp6OoMHD8bJyYmmTZuyYMECLC0tAVizZg3r16/H19eXhQsXsmLFCsLCwoqd08CBAxk7diwAp06dYtGiRezevVvzeXZ2NvPmzaN+/fqsXr0ahULBkiVLaNeuHcuWLUOtVuPr60toaCju7u5s2LCB06dPY2JiQnp6OiYmJs9ZNSGEEK+izN//Q+5d7Um0usSPS/S4eFVJ4/wCXL9+nZkzZ5KVlcXbb7+NhYUFXbp00TTDcXFx3LhxgxkzZmjOUalU/PXXXzRt2pTw8HAOHDiASqUiMzMTGxubEs/h0qVLrFu3jtTUVBQKBXFxcQU+/+CDD/Dw8GDcuHGa944ePcrFixfZtGkTAFlZWdSpUwczMzMaN27MrFmzePvtt+nWrVuBaG8hhBBVR3WnXmSosrWuONczK37FWaLHxatKGucy8CQa+9GjR5ibm9OsWTPCw8PZtm0bly5dwsLCosAX8fLy8qhVqxbh4eHPjPXrr7/y3XffsXPnTiwtLTlw4ECBlWJdKJVKpk6dyrZt22jZsiXJycl06dKlwDEuLi6cPHmS4cOHU716dc28goKCaNiw4TNj7t69m3PnznHmzBkGDRrEt99+W2zQihBCiMrHyKYVRjattH6+ZfCbVWYHBlH1SOR2GbCxsaFHjx588sknBaKsMzML346ncePGmJiYsH//fs17N27cID09nUePHmFmZkbNmjVRKpWEhoZqjjEzM9NEbxdFqVSSk5NDvXr1ANixY8czx0yePJmOHTvywQcfaMZ0c3MjJCSE3NxcAO7fv09iYiLp6encv3+f9u3b4+Pjg62tLdeuXdOhMkIIIYQQlYesOJeR5cuXExQUhLe3NwYGBpibm1O7dm0mTJjA0aNHCxxrYGBAcHAwfn5+bNiwAbVazWuvvcaXX35Jly5diIiIoE+fPtSpUwcHBwdiYmKA/G3kGjduTL9+/WjSpInmy4Fz587F2NhYM35ISAg+Pj54e3tTr169Z1abn5gwYQImJiaMHj2ab7/9lvnz57Nq1So8PT1RKBQYGhoyf/58DA0NmTJlCllZWeTl5WFvb0+vXr1eUCWFEEIIISomCUARQgghRJmRAJTKpyrVRgJQRIUgkduFq0o/jEpD6qOd1EY7qY12Uhshno+sOAshhBCigGxVLo9ewVXj5yG/VGhXlWojK84VkJubG8HBwdja2j7XODExMWzevJnVq1eX6vzx48fz6aef0qhRowLR3XPnzsXBwYH33nvvueb3tMU//s39zNwyG08IIcSLs9br2d2VhBDSOL/SWrVqVeqmGWD9+vVlOBshhBBCiMpNtqOrIC5evMjQoUPp378/Q4cO5eLFiwBERUUxaNAgzXFPv376f9+7d4/Ro0fTv39/+vfvj5+fHwC9evXiypUrmvO3bt3KvHnzgPyV76tXrxY5L6VSyYoVK/D29sbT05NZs2aRkZFRdjcuhBBCCPGKkBXnCkCpVOLj44Ofnx8dO3bk9OnT+Pj48J///EfnMQ4cOMAbb7zB5s2bAUhNzc889fT0ZN++fZpm+en/rYtvv/2WGjVqsHfvXgBWrVpFSEgI06dP13kMIYQQFUNa3O/cidqHWkvq3xOj9hkUmf73RLVqJrzzzrsSny2qDGmcK4DY2FgMDQ3p2LEjAK6urhgaGhIbG6vzGI6OjmzatIkVK1bQvn17OnfuDICXlxdDhgxh1qxZ/PXXX6SlpdG2re4/4I4ePUp6ejo//vgjkN/kS2KgEEK8mlLOHSTrbnyxx91M1X3MyMj90jiLKkMa5wogLy8PhULxzPsKhQJ9fX2e3vgkOzu70DGcnZ3Zv38/p06dIjw8nJCQEL777jveeOMNmjZtyokTJ4iOjmbgwIGFXquouS1atAhXV9eS35gQQogK5fU2fbijyip2xdnKTPcV5379BpbV9ISo8KRxrgCaNGmCUqnkzJkzdOjQgTNnzpCTk4ONjQ0PHjwgMTGR1NRUzM3N+f777wsdIzExkbp16+Lh4UHbtm35f//v/6FWq9HT08PLy4s9e/YQExPD7t27SzQ3Nzc3Nm/ejLOzMyYmJqSnp5OcnEzTpk3L4taFEEKUoxo2TtSwcSr2uLVeDavM9mNClIQ0zi/JmDFj0NfX17wODAxk2bJlZGZmUr16db766iuMjIyoU6cOY8aMYdCgQTRo0IBWrVpx7dq1Z8aLjo5m06ZN6Ovro1arWbJkCXp6+d/9dHd357PPPqNVq1a88cYbJZrnhAkTCAwMxNvbG4VCgUKhYPLkydI4CyGEEKLKkQAUIYQQQhQgASjiaVWpNhKAIioEidwuXFX6YVQaUh/tpDbaSW20k9oI8XxkxVkIIYQQrzylKpfU51gll18qtKtKtZEV50ri4MGDrFu3jry8PLKzs2nZsmWpUwMvX75MbGwsffv21bwXEBDAhx9+iJGREUCZx25//eMdUiVyWwghxAsy36vey56CqAKkcX4F3LlzhyVLlrBv3z7q1atHXl5egTTAkrp8+TLHjh0r0DgHBgYyduxYTeMshBBCCCEKksb5FZCSkoKBgQE1a9YE8vd3btGiBQAXLlzA399fE4Pt4+NDt27dyMnJ4cMPP+TBgwdkZ2fTunVrlixZQkZGBmvXriU9PR1PT0/atWtHbm7+SvCwYcPQ09Nj69atBa6vVCpZs2YNZ8+eRaVSYWtry+LFizE1NS3HKgghhBBCvFzSOL8CmjdvTuvWrenWrRsuLi60adMGT09P9PX1WbRoESEhIdSuXZs7d+7g7e1NZGQkNWrUwN/fn1q1apGXl8ecOXMIDQ1l+PDh+Pj4cOzYMdauXau5xo4dO9i5c2ehzbDEbgshhCgPKXHn+SsqlJxiAloKM2qfvk6hLf/0JDbc3b17ic8VVY80zq8APT09goKCuHr1KmfPnuXIkSNs2LCB2bNnk5SUxPjx4zXHKhQK4uPjsbe3Z+PGjZw4cQK1Wk1qaiomJialur7EbgshhCgP8ee+J+1uXKnOLUlM+D9FRu6XxlnoRBrnV4itrS22traMGDGCvn37kpeXh52dHdu3b3/m2P379/Pbb7+xfft2zMzMCA4OJi4urlTXldhtIYQQ5cG6jQe5qqxSrThbmpV+xVliw4WupHF+BSQnJ/P333/j7OwMwO3bt7l//z7NmjUjPj5eE9UNcPHiRVq1akVaWhq1atXCzMyMtLQ0IiMjcXBwANC89zRTU1PS09MLfVRDYreFEEKUh9dtnHndxrlU5873qldltkwTL480zq+AnJwcAgICuHnzJiYmJqjVaqZNm4a9vT1BQUGsWrUKPz8/VCoVDRs2JDg4mIEDB/LTTz/h4eFBnTp1eOutt8jOzgbA1dWVjRs3MmDAANq3b88nn3zC2LFjGTVqFCYmJs98OVBit4UQQgghJABFCCGEEJWABKC8OFWpNhKAIioEidwuXFX6YVQaUh/tpDbaSW20k9oI8XykcRbloqjf3qo6K6saL3sKFZrURzupjXZVpTZKlZrUhxkvexpCVBnSOItysf3QXdIy1S97GkIIUalMHFTnZU9BiCpF72VPoKyoVCq++uor3N3d8fDwoE+fPnzxxRccOXKEFStWlHrc5ORkRo4cWYYzLSgpKYldu3YVeG/8+PEkJCQAMHfuXLp06cLAgQPp1asXw4cPZ//+/c993YCAAJRK5XOPI4QQQghRVVSaFed58+aRnZ1NaGgoZmZmqFQqwsLCcHV1pWfPnqUet06dOs/sMlGWbt68ya5duxg6dKjmvfXr1xc4ZsKECbz33nsAXL58mWnTpvHgwQPGjBlT6usGBgYyduxYjIyMSj2GEEIIIURVUika57i4OI4cOcLx48cxM8t/ltbQ0JChQ4cSFhamiZeOiorCz88PR0dHzp8/j0KhYM2aNZpt1fbu3cuWLVs0569bt46srCwGDx5MVFQUAHZ2dkyfPp3Dhw/z8OFDZs+ejbu7e7GfzZw5k9jYWFQqFY0aNcLPzw8LCwuWLl1KUlISnp6eWFtbs3btWtzc3AgODsbW1vaZe23RogULFixg7ty5jB49mpSUFGbMmEFGRgbZ2dl07dqV2bNnk5WVRc+ePQkLC6N27doAfP7557z++uskJycDMGzYMPT09Ni6dStKpZJFixZpVrrHjRvHwIH5G8K7ubnh6enJqVOnuHv3LmPHjtU08kIIIcrWrbjzXIreo1MIyKn9uod+VKtmwgcfjKNp05bPO0UhqqxK0Tj/8ccfWFtbY2FhUeyx169fZ/ny5SxdupRvvvmGoKAgVq9eTVRUFOvWrWPHjh1YWVmRkZGBgYEBWVnP/uAyMzMjNDSU3377jWnTpmma46I+W7BgAZaWlgCsWbOG9evX4+vry8KFC1mxYgVhYWE636+joyP37t3j/v37mJubExwcjKmpKSqVinHjxnHixAnN4x27d+9m8uTJZGZm8v333xMZGclrr73Gjh072LlzpybwZNq0abz55pt8/fXX3Llzh0GDBmFvb69p3rOysti1axdJSUn0798fLy+vQsNShBBCPJ8/z0fyUMfY6fQSxkzv3r2befOWlHxSQgigkjTOJdG4cWPs7e0BcHJy4ueffwbg2LFjeHp6YmVlBVBkU9i3b1/N+Xfu3CE7OxtjY+MiPwsPD+fAgQOoVCoyMzOxsbEp9T08vfV2bm4uK1eu5Pz58+Tl5ZGSksKVK1fo0qULI0aM4N1332XixImEh4fTqVMnXnvttULHPH36NHPnzgWgdu3adO3alaioKE3j/OS+GjRogLm5Obdv35YAFCGEeAHsnPuhUj3WacXZogQx09WqmTBkyJDnnZ4QVVqlaJzt7e2Jj48nNTW12FXnp5/p1dPTIycnp8TXe9Ik6+vrA/nJfk/eK+yzmJgYvvvuO3bu3ImlpSUHDhxg9+7dJb7uEzExMbz22mtYWloSFBTEo0eP2LNnD8bGxnz66aeahMB69erRqlUrfvrpJ3bs2MHSpUuLHFehUGh9/eS+ntxbbm5uqecvhBBCu3o2ztTTMXZ64qA6JdqXWfZxFuL5VIpdNWxsbHBzc2PhwoWkp6cD+Sux//73v8nM1C1FqHv37oSHh5OSkgJARkZGme068ejRI8zMzKhZsyZKpZLQ0FDNZ2ZmZpo56+LKlSv4+fkxfvx4FAoFaWlpWFlZYWxsTHJyMj/99FOB49977z38/PwwMDDA2fl/P4hNTU0LXNfV1VWzu8fdu3c5fvw4Li4upb1lIYQQQohKp1KsOAN88cUXfP311wwePBhDQ0PUajVdu3alcePGOp3fvn17JkyYwJgxY1AoFBgZGREcHFwmc+vSpQsRERH06dOHOnXq4ODgQExMDJD/hcLGjRvTr18/mjRpwtq1a585PyQkhD179pCVlYWlpSUffvih5ot7I0eOZOrUqQwcOJC6devV71sDAAAgAElEQVTi6ur6zH0ZGxvz7rvvFnh/7NixjBo1ChMTE7Zu3conn3zCwoUL6d+/PwC+vr68+eabZXL/ACN6W5XZWEIIIfIpVbI/vhDlSZH39AOzotJJTExk+PDhHD58mGrVqr20eUjkduHkz6ZFk/poJ7XRTmqjndRGO6mNdlWpNnp6iiLTjqVxrsS++uorQkNDmT17Nv369XvZ0xFCCCFEBaZSqXlYSIS7NM7/I42zKBcRB++RIZHbQgghRIU1fLBVoQ2yNM5PfV6OcxGFcHNzo1+/fqjV6gLvXb169bnGDQwMZNq0aQXemz9/PqtWrSrxWMOHD+fEiRPPNR8hhBBCiFedNM4VQGZmJuHh4WU65sSJE0lISODQoUMAnDx5kosXLzJ16lSdx8jLy5Nt54QQQggh/k+l2VXjVTZ58mQCAgLw8PAosM/0nTt3+Pzzz/n777/Jzs7Gw8ODiRMncvLkSbZu3UpISAj37t2jY8eOfPnll/Tp04f169eTlpbGjBkzWLFiBR988AH29vYsWbKENWvWaMYPDQ1l8+bNQP52fkuWLMHS0pI9e/Zw+PBhatSowV9//cWKFSsKzDUiIoItW7bw9ddfU6dOnXKrkRBCCCF0lxB3jt/O7kGlfKzzOQfDCw/U0ddXFPp+tWomvPPOu7Rp0/a55voqkca5AnBwcMDBwYHvvvuO999/X/P+nDlz+Oijj2jXrh1KpZLRo0fTqlUr2rZti6+vLyqVitOnT+Ps7Mzp06fp06cPZ86c4YMPPgDgzTffZMSIEXh5eTFq1ChatWoF5O8F/eSLg1ZWVqxevZply5axevVqAH799VciIiJo0KBBgXmuW7eO6OhoNm/ejJmZ9ud/hBBCCPFyXfz9APfuxpbonEcljHAHiIzcL42zKH/Tpk1j1KhReHt7A6BWq4mOjub+/fuaYzIyMrhx4wadOnWiWbNmXLhwgVOnTvHRRx+xatUqlEolly5dok2bNppzxo0bx+rVqxk7dqzmvTNnztCtWzdNvPjQoUMLxLC2a9fumab5yy+/pEGDBgQHB2NoaPhCaiCEEEKIstHaqT8qVVaJVpxraIlwL2rFuV+/gc81z1eNNM4VRJMmTejatSubNm0C8uOuFQoFe/fuLbRRdXV15cyZM1y4cIHFixfz2muvERkZiZ2d3TPx2JAfL/5EXl5ekfHa1atXf+Z6zs7O/PLLL9y6dYtGjRo9380KIYQQ4oVqZNOGRjZtij/wKbKrRvHky4EVyJQpU9ixYwcZGRkoFAreeustQkJCNJ/funWLu3fvAtChQwfCwsKoW7cuRkZGuLq6EhgY+ExyYGFcXV35+eefuXfvHgB79uwp9ryuXbvy6aef8sEHH3Djxo3nuEshhBBCiFeTrDhXIHXr1sXT05ONGzcC4O/vz/LlyzUx2KampixbtgwrKyscHR158OCBJkrb1dWVf/3rX3To0KHY6zRv3pypU6cyevRoAKytrVm6dGmx53Xq1Illy5bx4YcfEhgYSPPmzXW+twF9XtP5WCGEEEKUP5VEuBdLAlBEuZDI7cLJn7+KJvXRTmqjndRGO6mNdlIb7apSbSQ5UAghhBBlQlskc2VQlZrDkqpKtSmucZZHNUS5OPz9fR5L5LYQQrzSBrzz+sueghAv1Svz5cAXFU0N+Vu/BQcH4+7uTp8+fejbty+7d+8u8py5c+eybdu25752SdnZ2Wm2rHti7dq12NnZ8fPPPxd7flE1Gz9+PAkJCQCMHDlSp/GEEEIIIaqKV2rF+Uk0tZeXV5mO+80333D69Gl27dpFzZo1uXXrFh988AHGxv8/e/cdFtWZ/n/8TRlQwViiIsZOFLtoFKyoyK4asACWaGwxIYmJQY38pBhrbFhilGiMriVZg7EBBjQxIUYxFizoomsvKFgQgqKIwDDD7w++nhVlYECkOPfrunKtM6fMc27Zc908nnk+5gwcOPC5/Us7hlqr1XL58mXefPNNsrOz2b17N02bNn3h865du7YYRieEEEII8WoqV43zy4imnjBhAmvWrCE4OJiqVasCYG1tzdSpU/nyyy8ZOHAgUVFRzJ8/nw4dOnD69GnGjx+fa1yZmZksW7aMY8eOoVaradq0KbNmzcLCwoKwsDB++OEH1Go1kJMG+GTpNycnJwYOHMihQ4dITExk3LhxjBw5Eq1Wy5w5czhy5AhmZmZUqlSJn376Sfm8QYMGERwczNSpU4mKiqJp06bcu3dP2Z6UlMTMmTOV2eP333+fQYP+t0B5WFgY0dHR3L17lzFjxjBy5EhlPKtXr36uCU9NTWXBggVcuHCBjIwMHBwc8PPzU9aIFkIIUX5dux7NkWNbyVSnF7jv9jDjPIMwnjDECGZhWMrNoxqQO5r6aT4+PowaNYrt27ezY8cOIiMjOXjwIB06dOA///nPc9HUkJOe17lzZ2JjY1GpVNjY2OQ6p52dHXFxcaSmpgJw8eJFXF1d2bp1K7169cq177/+9S8qV67M9u3b2blzJ7Vq1VLWX+7WrRtbt24lNDSUr776Ch8fn1zHpqens2XLFn744QeWLl3Ko0ePOH/+PIcPH2b37t38/PPPfPfdd7mO6devHxEREWg0GkJCQp6bgZ87dy5NmjQhLCyMdevWsWTJklyPZyQlJfHjjz+yefNmVq9ezfnz5/Ot+4IFC+jYsaNyfcnJyezYsSPfY4QQQpQPJ06FcTfpGvdTbhf4382bN7lz55bO/65du0p4eGhpX5IQL025mnGG4o+mjo2NzfNzniTpPfnfBg0a0K5duzz33bt3L6mpqezZswfImYF+ssZxXFwcU6ZMISEhAVNTU5KSkkhMTFTirt9++20A6taty2uvvcadO3eoV68eGo2GadOm4eDg8FyjXqlSJezs7Pj999+Jjo5m3rx5ytrPAIcPH8bX1xeAWrVq0aNHD2VmGlBqV6NGDXr27MnRo0fzXZN57969xMTEKKmG6enpWFlZ6dxfCCFE+fGWXX/U6sd6zThbWBY842xoEczCsJS7xrm4o6kbNmyIWq3mypUruWadT548Sd26dbGwsADyjqF+Ijs7m5kzZ+aZvvf555/j6+uLs7MzWq2Wtm3bkpGRoWx/Nh5bo9FQuXJldu3aRVRUFIcPH2bJkiWEhIQozTaAm5sbkyZNwt3dHVPT5/8a84vUfnbsurY9vc+qVauoV69evvsJIYQofxo1aE+jBvpFMw8YUsNgliUTIi/l6lGNJ4ozmtrc3BxPT09mzZpFSkqKcvzixYv57LPP9BqPk5MTGzduJD0957f11NRUJZb64cOH1K1bF4Dt27eTmZlZ4PmSk5NJT0/H0dERb29vKleuTFxcXK59OnXqxEcffcS777773PGdO3dmy5YtACQmJrJ//34cHByU7SEhIcrnREZGYm9vX+D1rVmzRvlSZHJy8nPjEUIIIYR41ZW7GWco/mjqTz75BGNjY4YMGaJ84W306NG5vlCXnw8//JBvvvmGwYMHKzPgEyZMwMbGBj8/Pz755BOsrKywt7dXvoCYn9u3bzN9+nSysrLQaDQ4OjpiZ2eXax8jIyPGjRuX5/FffPEFM2bMUOrh7e1NkyZNlO3W1taMGDGCxMREPvroI2xtbfMdj7+/P4sXL2bgwIEYGRmhUqnw9/cv1Az0P1yq672vEEKIskkimYWhk+RAUSIkcjtvhpTGVBRSH92kNrpJbXST2ugmtdHNkGojkdtCCCGEKFavYvS2ITWHhWVItZHIbVEm/PXz36Q/kn/iE0KIV4Hz8JoF7yTEK6hcfjmwLChK3PfTMdbTpk3j+PHjL2NoRRYcHIyXlxcAp0+fZsqUKaU8IiGEEEKIskNmnEvJvHnzSnsI+WrdujVLly4t7WEIIYQQQpQZ0ji/oFGjRtGqVStOnTrF3bt36devH97e3gBcvnwZPz8/srKysLGxybV+86hRoxg3bhy9evUqUiw3QEBAAEePHkWtVlOtWjXmz5/PG2+8QXx8PB4eHri7u3Ps2DEyMjKYOXMmHTrkRKCGhoaybt06AOrXr8+cOXN4/fXXc11XVFQUAQEBBAcH8/fffzNlyhT+/vtvIGdlEn9//5dYVSGEEKXl8o1oDpzYRob6sc59fvjFJN8gFJD4bfFqksa5GNy+fZsff/yRR48e4ezszODBg2nYsCFTp05l1KhRuLm5cerUKYYPH57n8d26dcPV1RUjIyOuXr3K2LFjiYyMVLY/ieWOj4+nf//+uLm5YWFhgaenpxLhvW3bNpYsWcKyZcsAuH//Pra2tvj4+HD06FE+//xzIiIiiI2NZcmSJQQHB1OrVi2+/vprvvzyS77++mud1xcWFkadOnXYuHEjgLLetRBCiFdPVEwYd/6+lu8+9x7od67w8FBpnMUrRRrnYtC3b1+MjY2pXLkyNjY23Lhxgxo1anDx4kUGDhwIgJ2dnRJ5/ayixHLb2NgQGRlJUFAQaWlpZGVl5TqnSqViwIABANjb21OhQgWuXr3KsWPH6NGjB7Vq1QLgnXfeUcaoS9u2bdmwYQMBAQHY29vTrVu3ohdLCCFEmebQpj+Z6vR8Z5wrVdZvxlnit8WrRhrnYpBXbDbojrl+VlFiuW/evMmCBQvYvn079erVIzo6WnlEJC9PorX1idh+Vrt27QgNDeXQoUPs3LmTNWvWsHnz5kKdQwghRPnwZv32vFk//whu5+E1DWZ5MiGeJqtqvCSWlpY0adKEsLAwAGJiYnSuwlGUWO7U1FRUKhU1a9ZEq9Xy008/5dquVquVzz5+/DgZGRk0atSIzp07s3//fiWSfOvWrXTp0iXfz4qLi8PS0hIXFxf8/Pz473//i1YrS8sJIYQQwrDIjPNLtGjRIvz8/Ni4cSMtW7akbdu2ee5XlFhuW1tb+vbti4uLC3Xq1KFjx465lrerWrUq169fZ8iQIaSnp/PVV19hZmZGkyZNmDJlihLXXa9ePebMmZPvZx09epQNGzZgYmKCVqtl9uzZGBsX7neubgNeL3gnIYQQ5YJEbwtDJcmBr6Anq2pERUWV9lAUErmdN0NKYyoKqY9uUhvdpDa6SW10k9roZki1KSg5UB7VEEIIIYQQQg8y4yyEEEII8ZQstZZ79x+V9jDKDJlx/h95xvkFOTk5sXr1ap1Lzb2sY4vD5s2bycjIYOzYsQQHB7Nv3z5WrFiRK/ykuBzf8TcZj+SZOCGEEGVf19E1S3sIooySxtmA6QpkEUIIIYQQz5PGuZisX7+eXbt2odFoMDc3Z9asWTRv3hyAkydPsmjRIh49yvlnn6lTpz4XIrJ+/Xr279/PN998Q1RUFMuXL8fY2BiNRsP06dNxcHDg+vXrzJgxg+TkZExNTZk8eTKOjo5AziobkydP5vfff+f+/ftMnTqVPn36sHLlSlJSUpSI7Hv37tG3b1/+/PNP1q1bR1pampI+qMv+/fv59ttvyczMRKVS4efnh52dXXGXUAghhCh2F+Kj2XtyG5lZugNdnvVdRMEBL3mRmPFXnzTOxWTQoEHKEm+HDh1i5syZbN26lfv37zNhwgQCAwNp3749Go2G1NRU5TitVsvcuXO5d+8ea9euxczMjBUrVjBz5kw6dOiARqPh8eOc/7N7e3szdOhQhgwZwuXLl3n33Xf55ZdfqF69OpCzdvSOHTs4ceIEkyZNok+fPri5uTF06FCmTp2Kqakp4eHhODk5UalSJb2u68aNG6xatYp169ZhaWnJpUuX8PT0ZN++fcVbQCGEEOIlOHgmjNvJ+UeIP0fPSPG8SMz4q00a52Jy5swZvvvuO1JSUjAyMiI2NhaAU6dOYWNjQ/v2OSlMJiYmVKlSRTnO39+fdu3asWTJEiXRr1OnTixcuJC+ffvi6OhI06ZNSU1N5dy5c3h4eADw5ptv0rx5c06dOoWTkxPwv2huOzs77t69S0ZGBnXq1MHGxob9+/fTu3dvQkJClNlnfRw4cIAbN27w7rvvKu9lZWWRlJREjRo1il4wIYQQogR0bdWfDHV6oWacK+gRKZ4XiRl/9UnjXAy0Wi0TJ05k06ZNtGzZkoSEBOURioIWLenYsSNHjx4lOTmZ11/PCQnx9/fnwoULHDlyhIkTJ/Lee+8pTfGzno7PfhLNbWJiAuQ0uObm5ri5uREaGkq9evV4+PAhHToU7jfh7t27s2jRokIdI4QQQpQFtnXbY1s3/wjxZ3UdLZHiIm+yjnMxycrKwtraGoCgoCDl/Xbt2nHlyhVOnjwJgEajISUlRdnu4eHBe++9x9ixY0lISADg6tWr2NraMmbMGAYMGMDp06extLSkefPmhISEAHDlyhXOnz+vM43waX369OHYsWOsX78eNze3Ql1X165dOXDgAJcuXVLei4mJKdQ5hBBCCCFeBTLj/IKysrKoWLEiXl5eDB48GGtra2W2GXKirwMDA1m4cCFpaWkYGxvj4+NDly5dlH0GDBiAubk5Y8eOZe3atSxdupTr169jYmLCa6+9xrx58wBYsmQJM2bMYOPGjZiamrJo0SLl+eb8VKxYkd69exMcHMwff/xRqOtr2LAhixcvZtq0aaSnp6NWq2nfvj1t2rQp1Hk6eEjkthBCiPIhSyLFhQ4SgPIC7t69S79+/Th48CAVKlQo7eGUaRK5nTdDWlS+KKQ+ukltdJPa6Ca10U1qo5sh1UYCUF6SH374gaCgIHx8fKRpFkIIIYQwADLjLIQQQhiQrEwt91IkTvpZhjSrWliGVBuZcS5D1Go1q1atYvfu3ZiamqLVaunRowdTpkxBpVLleYyvry+tWrVi5MiRxTaO0oj6Pr0licxUeWZMCCFK21vv1yrtIQhRbknjXIL8/PzIyMhgx44dWFpaolarCQ4OVhL5hBBCCCFE2SWNcwmJjY0lIiKC/fv3Y2mZ808AKpWKYcOGodFoCAgI4MCBA0DOusne3t7KesxPPDv7/PRrX19fzMzMiI2NJS4ujn/84x/06tWLwMBA7ty5w5gxYxgzZoxyrrCwMKKjo7l79y5jxoxRzmlra0t0dDQWFha5Xj9ZDeTy5cuYmprSqFEjli9f/tLrJoQQomDnbkbzW8x2MvQI+TDfX3C4h0RHC5E3aZxLyNmzZ2nQoEGu1MAntmzZwrlz5wgODgbA09OTLVu2MGLEiEJ9xqVLl/j+++/RaDQ4OTnx8OFDNm3aRGJiIn379mXw4MFKQ5yUlMSPP/5IUlISgwYNokOHDjRr1kznuf/66y8ePHjA7t27AXKtRS2EEKJ07T8Xzs17esZK6/moqkRHC/E8aZzLgMOHD+Pm5oaZmRkA7u7uREREFLpxdnZ2Vs7RqFEjevTogbGxMVZWVrz22mvcuXMHGxsbAAYPHgxAjRo16NmzJ0ePHs23cW7WrBlXr15l9uzZ2Nvb07NnzyJcqRBCiJehR3NXMtTp+s04v6bfjLNERwvxPGmcS0iLFi24fv06KSkpz806Z2dn54rOBp57DTlR2lrt/75gl5GRkWv7k8jtJ/s++1qj0eQ5tqc/38TERIkJf/r89erVY/fu3Rw5coTIyEiWLVtGWFhYrs8QQghROpq/0Z7mb+gXK/3W+7UMZoUEIYqbRG6XkIYNG+Lk5MSMGTNITU0FcuK3v//+exwcHAgJCUGtVqNWqwkNDaVz587PnaN+/fqcPn0ayAlfiYqKKvJ4nkR3JycnExkZib29PZDTID/5jLCwMGX/O3fuYGJigrOzM35+fiQnJ3P//v0if74QQgghRHkjM84laOHChaxcuRIPDw9UKpWyHN3kyZO5efMmbm5uAHTr1o2hQ4c+d/zQoUPx8vJiwIABNGzYsNCx10+ztrZmxIgRJCYm8tFHH2FrawuAv78/M2bMoGbNmrkex7hw4QJLly4FQKvV8uGHH2JlZaX357UeVqPIYxVCCFF8sjJlaVAhikoCUESJkMjtvBnSovJFIfXRTWqjm9RGN6mNblIb3QypNgUFoMijGkIIIYQQQuhBZpyFEEIIYfBR3IY0q1pYhlQbidx+RTg5OWFmZoaZmRmPHz/mzTffxNPTk/bt8/8WdUREBLVq1Sry89Cenp5Mnz6d+vXrExwcTLt27WjUqFGhz3NpUyLqh/JcnRBClFUtxuv/vRUhDJU8qlGOrFixgp9//pnff/8dNzc3PvzwQ/7zn//ke0xERAQxMTE6t+taou6JtWvXUr9+fSBnJY7Y2NhCj1sIIYQQ4lUgM87l1D//+U9iYmJYt24dS5YsYdmyZRw7dgy1Wk3Tpk2ZNWsW0dHR7N27l0OHDrFt2zbee+89rK2tmT9/Ph06dOD06dOMHz+e1q1bM3PmTG7cuAHA+++/z6BBOQvfOzk5sXr1ak6fPs2ZM2eYO3cuX3/9NT4+PnTp0qU0SyCEEEIPZ26fZPd/t5GelZ7vfmaHCw5GeUIiuYWhksa5HGvbti179+7lX//6F5UrV2b79u0ALF68mDVr1jB58mScnJxo1aoVI0eOBCAqKoqLFy8ya9Yspk+fDsCkSZNo0qQJK1eu5O7du7i7u9OiRQuaNm2qfJaHhwehoaGMGzeOXr16lfzFCiGEKJI/LoQTdz+24B1TC3deieQWhkga53Lsyfc69+7dS2pqKnv27AEgMzMz3/jsBg0a0K5dO+X14cOH8fX1BaBWrVr06NGDqKioXI2zEEKI8qm3rSsZWY8LnnGuUrgZZ4nkFoZIGudy7PTp0zRp0oT4+HhmzpyZZ9pgXipVqvTce/pEfgshhCh/Wlm3o5V1uwL3azHeymBWThCiqOTLgeVUREQEmzdv5r333sPJyYmNGzeSnp4zm5CamsqVK1cAsLS05OHD/G+EnTt3ZsuWLQAkJiayf/9+HBwcntvPwsKiwHMJIYQQQryqZMa5HPHy8lKWo7OxsWHNmjXY2dnRsmVLvvnmGwYPHoyRkRFGRkZMmDABGxsbBgwYgJ+fH7/++qvy5cBnffHFF8yYMYP+/fsD4O3tTZMmTZ7bb9iwYQQEBLB+/XqmTp0qXw4UQgghhEGRABQhhBBCSACKAYV8FJYh1UYCUESZ8PffqWi18jvaswzpZlQUUh/dpDa6SW10k9oI8WJkxlkIIYQQoozSZGpJLuV/CTCkX7hkxvkleDr+WqvVMn78eDIyMti3bx8rVqx4bv8//viD48eP4+PjQ1RUFAEBAQQHBxfqM4ODg3We/2mBgYGkpaXh4+NT5PM9Pd7iEr8+kawH+acUCiGEECK3hpNql/YQxFOkcS6iFStW0LRpU86ePcs777zDxIkTde7bu3dvevfuXYKjezHlbbxCCCGEECVBGucX1KJFCywsLMjOziY1NZVJkyZx6dIlKleuTGBgIDVr1tQ5u5uVlcVHH33EvXv3yMjIoE2bNsyePRszMzMyMzOZO3cuUVFRWFlZ0bhx41zHrl27lj179qDRaLCysuLLL7+kZs2aufYJDg4mLCwMS0tLrl+/TtWqVVm8eDFWVlYAeo03MTGRzz//nEePHpGRkUGPHj2YOnXqyy2qEEII8Yr7T8JJdl7YXmAwjWl0wcE0EoFecmQd5xd05MgRMjIyMDU15fTp0/j4+LBr1y7efPNNNm3alO+xJiYmLFmyhODgYMLDw9FoNOzYsQOALVu2EB8fT3h4ON999x0xMTHKcTt37uTGjRts3bqVkJAQHB0dWbhwYZ6fceLECSZPnszPP/+Mvb098+bNU7bpM97XXnuN1atXExwcTGhoKGfOnCEyMrIopRJCCCHE/9lzZRfXU2JJeHQn3/9u3rzJnTu38v3v2rWrhIeHlvYlGQSZcS4iLy8vzM3NsbS0JDAwkISEBNq3b6+sk9y2bVsOHTqU7zm0Wi3r168nMjISrVZLSkoKFSpUACAqKopBgwahUqlQqVQMGDCA6OhoICdi+8yZM7i5uQGg0WiwtMz7Qfa33npLma0eMmSIslYzoNd4NRoNixYt4uTJk2RnZ5OUlMT58+dxdHQsTLmEEEII8ZQ+Ni6k6xGFblpVvxlniUAvGdI4F9GTZ5yfCA4OxtzcXHltYmKCRpP/l+HCwsI4ceIEP/74I5aWlqxevZrY2FgA8lvsJDs7m/HjxzN48OBCjTk7OztXlLY+492wYQMPHjxg27ZtmJubM336dDIyMgr1uUIIIYTIra1VO9paFRyF3nBSbYNZ0aI8kEc1StHDhw+pVq2aEosdHh6ubOvcuTM7d+4kKyuL9PT0XNucnJwICgoiJSUFgMzMTM6fP5/nZ0RHRyvNeHBwcJ5R2gWNsWbNmpibm5OQkMAff/xRyKsUQgghhHg1yIxzKRo0aBB//PEHLi4uWFlZ8dZbbymzuUOHDuXChQu4uLhQu3ZtOnbsyM2bN5Xj7t+/z8iRI4GcmeThw4fTrFmz5z6jY8eOBAYGcunSJeXLgYUxatQoJk6cyKBBg6hduzadO3d+wasWQgghhCifJADlFabv2s9CCCGEKJskAKVkSQCKKBMkcjtvhnQzKgqpj25SG92kNrpJbXST2gh9yIyzEEII8QrRZGpITknLc5s0h7pJbXQzpNrIjLMOhY3NfhmmTZuGm5sbHTrkvWD5vXv3GDt2LABpaWncvXuXhg0bAtCzZ08mT55cIuMsDndX30YjkdtCCPHSWU+tW9pDEOKVZbCNMxQuNvtleDqMJC/VqlVj586dQM66zgEBAQQHB5fE0IQQQgghxDMMunF+Qp/YbI1Gw5IlSzhw4AAA3bt3x9vbGxMTE1JTU1mwYAEXLlwgIyMDBwcH/Pz8MDExYdSoUbRq1YpTp05x9+5d+vXrh7e3N5CzYsW4cePo0aMHH3zwAT179mT06NFcvnwZT09PNm/eTO3atXWOe9myZWg0GuV8T7/OzMxk6dKlHDp0CCMjIxo2bMiKFSs4fvw4c+fOJTs7G41GwyeffMLbb79NYmIiM2bMID4+HgBPT08GDBgAgKOjI4MHD+avv/4iKSmJDz74gBEjRrzMvxIhhDA4JxNPsZSC6kYAACAASURBVONycIGBGAUxOWOqMzDDxMSowDANkAhnIXSRxpnnY7N//vlnrK2t+eKLL9i0aROTJ09my5YtnDt3Tpnx9fT0ZMuWLYwYMYIFCxbQsWNH5s2bh1arxdvbmx07djB06FAAbt++zY8//sijR49wdnZm8ODByiMXAMbGxixevJghQ4bQokULZs+ezcyZM/NtmguyatUqbt++TXBwMCqViuTkZADWrFnDBx98gKurK9nZ2Tx8mPPM0pw5c2jZsiXffvstCQkJuLu707JlS2xsbICctaK3bt1KXFwcAwYMwN3dXUk5FEII8eJ2XfuF2AfXX/xEeT/eXGjh4aHSOAvxDINunAsTm3348GHc3NwwMzMDwN3dnYiICEaMGMHevXuJiYlhw4YNAKSnp2NlZaV8Tt++fTE2NqZy5crY2Nhw48aNXI0zwOuvv878+fMZM2YMo0aNomfPni90bfv27WPGjBmoVCoAqlevDoCDgwPffvstcXFxdO3alTZt2gBw6NAhZsyYAYCVlRXdu3cnKipKaZxdXFwAqFevHhYWFiQkJNCgQYMXGqMQQoj/cWnUj3RNwRHMBTGpVjwzzhLhLMTzDLpxLkxs9rNx1YDyOjs7m1WrVlGvXr08P0ffKO5z585RrVo17ty5o9f4TU1NUavVyuvMzExMTEyUMeXl/fffx9nZmUOHDjFr1ix69erFZ599lut6nr0+QPmFAXJmyLOysvQaoxBCCP20q2lHu5p2L3we66l1da6AYEirIwjxMkjktp66dOlCSEgIarUatVpNaGiokqLn5OTEmjVrlIY4OTmZuLi4Qp0/JiaGTZs2sXPnTpKTk9m8eXOBx9SrV48zZ84oj1zs27dP2darVy82btyoNNZPHtW4evUqDRo0YPjw4YwaNYqYmBjl+rZs2QJAQkICf/31F/b29oW6BiGEEEKIV5lBzzgXxrBhw7hx4wZubm4AdOvWTXmG2d/fn8WLFzNw4ECMjIxQqVT4+/vrnIF+1oMHD5gyZQoLFy7k9ddfZ8mSJQwbNgw7OzuaN2+u87i3336bPXv24OLiQv369WnVqpWybfz48cqYVCoVjRo14uuvv+b777/n+PHjqFQqzMzMlMczZsyYwfTp0+nfvz8AU6dOVR7TEEIIIYQQEoAihBBCvFIkAKVopDa6GVJtJABFlAkSuZ03Q7oZFYXURzepjW5SGyHEyyKNsygR+f32Zuhq1qxc2kMo06Q+ukltdDOk2uQ3wyyEKF7SOJcSJycnKlWqxM8//4yxsbHy3urVq3Ot9KGPoqYKPh357evrS6tWrRg5ciSBgYGkpaXh4+NTqPPlJ3HtNTQPZCUOIYQobrWnNCntIQhhMGRVjVKUlpamRGqXhnnz5tGhgyxuL4QQQgihD5lxLkUTJkwgMDAQFxeXXOskr1+/nl27dqHRaDA3N2fWrFk0b96cx48f4+Pjw+XLlzE1NaVRo0YsX74cAI1Gw4wZMzh58iRGRkYsW7YMGxsbJVDF2dkZgL1797Jhwwb+/e9/K5HfvXr1yneca9euZc+ePWg0GqysrPjyyy+pWbPmyyuMEEIYuJN3T7P9YpheYSgm/1HpFWoCULmyBW5uwyQRUIgiksa5FLVq1YpWrVqxefNmxowZo7w/aNAgxo0bB+Qk+s2cOZOtW7fy119/8eDBA3bv3g1ASkqKcszly5dZsGABc+bM4dtvv2XVqlUsXboUNzc3QkNDlcY5JCQEDw8Pvce4c+dObty4wdatWzE2NiYoKIiFCxeydOnS4iiBEEKIPOy6+huxD27ot3MhHm++c0eitIV4EdI4l7JJkyYxevRoBg8erLx35swZvvvuO1JSUjAyMiI2NhaAZs2acfXqVWbPno29vX2uWO5GjRrRokULAOzs7Pjzzz8B6NOnDwsWLCA5ORkjIyOOHj1KQECA3uPbu3cvZ86cUdav1mg0WFrKF/2EEOJlcmn8Tx5nZeg341ytcDPOEqUtRNFJ41zKGjduTI8ePdiwYQMAWq2WiRMnsmnTJlq2bElCQgKOjo5ATlLg7t27OXLkCJGRkSxbtoywsDBAdyR2xYoV6d27N7t27QKgd+/eVKpUSe/xZWdnM378+FyNvRBCiJerXa3WtKvVWq99a09povfye7JUnxAvRr4cWAZ89tlnBAUF8ejRIwCysrKwtrYGICgoSNnvzp07mJiY4OzsjJ+fH8nJydy/f7/A87u7uxMSEkJISAju7u6FGpuTkxNBQUHKYyGZmZmcP3++UOcQQgghhHgVyIxzGVC7dm0GDhzI+vXrMTY2xsvLi8GDB2Ntba3MNgNcuHBBebZYq9Xy4YcfYmVlpTzKoUuHDh1ITU1V/lwYgwYN4v79+4wcORLImYEePnw4zZo1K9R5hBBCCCHKO4ncFkIIIcqxwgSgyKMaukltdDOk2kjktigTJHI7b4Z0MyoKqY9uUhvdpDZCiJdFZpyFEEIIUWivWtS3/MKlmyHVRmacyxEnJyfMzMwwMzNDq9Uyfvx4XFxcCnWOwMBAPvroI2WVjaejtIuLvsEpT0tcdw7tA3WxjUEIIUTpsprcprSHIESJk1U1ypgVK1bw888/s2jRImXlDH08WX7um2++Qa2WBlUIIYQQorjJjHMZ1aJFCywsLIiLi2Pt2rUcOHAAgO7du+Pt7Y2JiQm+vr5YWFgQGxvLvXv3aNu2LQDvvPMOxsbG/Pvf/851zsOHD/P111+TkZGBRqPh448/Vma0R40aRatWrTh16hR3796lX79+eHt7AzmphH5+fmRlZWFjY0NGRkYJVkIIIcTLdDLhv2y7+CvpWYW7t5ucNNM7eOVZFStWYMiQEZJgKModaZzLqCNHjpCRkcGRI0c4d+4cwcHBAHh6erJlyxZGjBgBwMmTJ9m0aZMSahIUFMRPP/2EhYXFc+ds0aIFQUFBmJiYkJSUhLu7O926daNKlSoA3L59mx9//JFHjx7h7OzM4MGDadiwIVOnTmXUqFG4ublx6tQphg8fXkJVEEII8bKFX/mT2JT4wh/46AU/V6K/RTkkjXMZ4+Xlhbm5OZaWlgQGBvLTTz/h5uamPLPs7u5ORESE0jj37dtX7yTA5ORk/P39uX79OiYmJqSkpHDt2jXs7OyUcxkbG1O5cmVsbGy4ceMGNWrU4OLFiwwcOBDIifNu2rTpS7hyIYQQpcHVphePNRmFn3Gu+mIzzhL9LcojaZzLmBUrVuRqTDdv3oyRkVGufZ5+XZj47FmzZuHk5MQ333yDkZERffr0yfXYhbm5ufJnExMTNBrNc58nhBDi1dLOqiXtrFoW+jiryW0MZqUFIZ6QLweWcV26dCEkJAS1Wo1arSY0NJTOnTvr3N/CwkJJCXzWw4cPeeONNzAyMuLgwYNcv369wM+3tLSkSZMmhIWFARATE8PFixeLdjFCCCGEEOWYzDiXccOGDePGjRu4ubkB0K1bN4YOHapz/3HjxjF69GgqVKjw3JcDp0yZwuzZs1m7di22trbY2trqNYYnK3xs3LiRli1bKl9CFEIIIYQwJBKAIoQQQohCkwAUw2FItZEAFFEmSOR23gzpZlQUUh/dpDa6SW10k9oI8WJkxlkIIYQQQpSYsvyvFeV2xtnJyYnVq1fnWmHC3d0dHx8fHBwc9D5PfHw8Bw8eZNiwYcp70dHRzJgxA1NTU3x9fenUqVORxxkYGEhaWho+Pj6kpKQwe/ZsLl68iJGREcbGxvj6+ub7ZT5dPD09mT59OvXr1y/y2GJjY5k0aRKQ8+xzVFQUbm5udOiQ/7qZ+UVqFzXCO3H9KbQPMgt1jBBCCCFePVaT7Et7CEVWZhvn4pCVlcXNmzfZsmVLrsZ5586dDBo0iA8++KDQ5zM11V2yr7/+GisrK5YuXYqRkRH37t3j8ePHhfoMrVaLkZERa9euLdRxefntt99o164dM2fOBGDAgAEvfE4hhBBCCENVLhvnsLAwfvjhB9RqNQA+Pj7KrK6TkxMeHh4cOXKEevXq8Z///If4+HgGDhxIgwYNaNOmDb/88gsVKlQgLCyMLVu2cPHiRebNm0daWhqVKlVi2rRptGnThvj4eDw8PBg5ciSHDh1iwIABuLq6Mm3aNC5fvoy1tTXVq1enRo0aANy5cwcHBwdl3eNq1apRrVo1IGdm+vLly6SlpXHr1i0aN27M/PnzqVy5MoGBgVy/fp20tDTi4uLYtGkTbm5uyoy7PnHYjx8/plmzZty4cYPx48fz8OFDvv/+e7RaLdHR0QQGBjJt2jRlJjk1NZUFCxZw4cIFMjIycHBwwM/PDxMTk1y1TkhIYOrUqdy7d4+6desqazsLIYQQwjCdTDjPtgu/Fzo05wmT6AqFCs8pSxHtZbpxfpKi90RsbCyQsySbq6srRkZGXL16lbFjxxIZGansl5iYqCzFFhUVRUBAgBJZDTnN5pPHDTIzM/Hy8mL+/Pl06dKFw4cP4+XlxW+//QbA/fv3sbGx4bPPPgNg4cKFWFhYsHv3bpKTk3F3d6dfv34AjB49Gi8vL8LDw2nXrh1OTk65HtM4ceIEoaGh1KhRAz8/P1atWoWPjw8Ax48fJzg4mOrVq+dZi/zisMeMGcPAgQM5ffq0slTdgAEDlGb8yWc8bcGCBXTs2JF58+ah1Wrx9vZmx44dzy11N3fuXDp27MiECROIi4tjwIABdO/eXY+/PSGEEEK8isKvRBKbcqvoJyhCXHtZiWgv043zsyl67u7uAMTFxTFlyhQSEhIwNTUlKSmJxMREatasCcCgQfrHeF67dg2VSkWXLl0A6Ny5MyqVimvXrmFhYYG5ubnSGENOI/7FF18AUL16df7xj38o2zp37syff/5JVFQUJ06cYNKkSbz//vt8+OGHAPTs2VOZnR48eDBz585VjnV0dNTZNEP+cdj9+/cHoHXr1nqvzbx3715iYmLYsGEDAOnp6VhZWT2339PXW69evSI9ry2EEEKIV4erjSOPswof0/6ESdXCzziXlYj2Mt046/L555/j6+uLs7MzWq2Wtm3b5oqOLkwMdXZ2dp6R0k/eq1ixYq7tBS1CYmlpSe/evenduzetWrXi22+/VRrn/D7XwsIi3/PmFYf95BxFicTOzs5m1apV1KtXr9DHCiGEEMJwtbNqRjurZkU+3mqSfbldFrFcRm4/fPiQunXrArB9+3YyM3Wv1mBpaakzghqgcePGZGZmcuTIEQCOHDlCVlYWDRs2zHP/zp07K4993Lt3j4iICGXbwYMHlc/Kzs7m7NmzyjgB9u3bR3JyMgAhISGFWh0kL5UrV+bNN98kPDwcgP/+9796x2E7OTmxZs0a5Znl5ORk4uLintuvU6dO7NixA8iZ6T98+PALjVkIIYQQorwqlzPOfn5+fPLJJ1hZWWFvb0/VqlV17mtra0ujRo1wdXWlcePGrFixItd2MzMzVqxYkevLgcuXL8fMzCzP833yySf4+/vz9ttv88Ybb9C1a1dl24ULF1i4cKEyK92gQQNmzJihbO/cuTP+/v7ExcXRqFEjfH19X6QMAAQEBODv78+GDRto2bIlzZo1o3LlygUe5+/vz+LFixk4cCBGRkaoVCr8/f2fm4GeNm0aU6dO5ddff6VRo0a5rlcIIYQQwpBIAEoJeXq95+KUlpamPE5y+fJlRo0axa+//kqVKlWK9XOEEEIIIYqDBKCIUhMdHc2iRYuUWe4vv/yyTDbNErmdN4m/zZ/URzepjW5SG92kNrpJbXST2vyPzDgLIYQQoszSZGaRnFK4MLGikOZQN0Oqjcw4vyKGDBlCZmYmarWa2NhYmjRpAkCLFi1YsGBBKY+uYIkbjqJ9WLRla4QQQhguKy/JDhBlhzTO5cS2bdsAlDTDnTt3lvKIhBBCCCEMizTO5VxCQgLe3t6kpqaSkZGBs7Mzn3/+OQDLli0jPj6elJQUYmNjadOmDePGjWPRokXcunWLfv36MWXKFACGDx9O69atOXv2LAkJCbi6ujJx4kQA1q5dy6+//kpWVhYVKlRg9uzZNGtW9PUbhRBCCCHKI2mcy7kqVarw3XffUalSJTIzM3nvvfc4dOiQkoR45swZduzYQYUKFRg0aBArVqzgX//6F5mZmfTu3ZuhQ4cqS9Bdu3aNjRs3kp6ezrBhw2jXrh2Ojo54eHjg6ekJQGRkJLNnz2bz5s2lds1CCCHKr5N3LrLt/J96p86ZHF+rd8pcxYoVGDJkRJmIZhavJmmcyzmNRkNAQAAnT54EIDExkXPnzimNs6OjI5aWOQ+5N23alDZt2mBmZoaZmRkNGzYkLi5OaZzd3NwwNTXF0tKSfv36ceTIERwdHYmJiWHNmjU8ePAAIyMj4uPjS+dihRBClHvhlw8Sm3Jb/wMeFfL84aHSOIuXRhrncm7dunU8evSIHTt2YGZmhp+fX6748aejuo2NjZ97nZWVled5n8R5p6enM3nyZIKCgmjevDm3bt3C2dn55V2QEEKIV5rrm115nJWp/4xz1YqFmnF2dR30IsMTIl/SOJdzDx48oFatWpiZmXH79m3+/PNPRo8eXaRz7dy5kz59+pCens6ePXuYOnUq6enpaDQaateuDUBQUFBxDl8IIYSBaVe7Ke1qN9V7fyuv7gazFJoo+6RxLufGjBnDxIkTGTRoENbW1nTq1KnI52rWrBljxowhISEBFxcXHB0dAfj000/x8PCgTp06dOvWrbiGLoQQQghRrkgAigByVtUYP3680iwLIYQQZYEEoJQ+Q6qNBKCIMkEit/NmSDejopD66Ca10U1qo5vURogXIzPOQgghhBD/p6RmuMsTQ/qFS2acy6HMzEy++uorIiIiMDU1pUKFCkyYMEHnahajRo1i3Lhx9OrVq9jG4OTkxOrVq2naVP8vcOQnaeNfaB+mF8u5hBBCiJel1meycpTQTRrnMmjWrFmkpaWxa9cuzM3NuXjxIh988AFVqlShY8eOufbVaDSlNEohhBBCCMMijXMZc/PmTX755Rf+/PNPZc3lpk2b8vHHH/PNN98wcOBAdu3aRfXq1bly5Qrz5s3LdXxYWBg//PADarUaAB8fHzp37gzkzCIPHDiQQ4cOkZiYyLhx4xg5ciQAx48fZ/bs2Zibm2NnZ8fTT/DExMQwb9480tLSqFSpEtOmTaNNmzYlUQ4hhBBCiDJDGucy5uLFi9SvX5+qVavmet/Ozo7ly5czcOBAoqOj2blzJ/Xr13/u+G7duuHq6oqRkRFXr15l7NixREZGKtvT09PZsmUL8fHx9O/fHzc3N1QqFZMnT2bJkiU4ODiwe/du/v3vfwM5j414eXkxf/58unTpwuHDh/Hy8uK3337DzMzs5RZDCCGEKKLoO5fZfu4Aj/UMWnnC5NgPegeugMR8GxppnMsYfb6r2b59+zybZoC4uDimTJlCQkICpqamJCUlkZiYSM2aNQF4++23Aahbty6vvfYad+7cQa1WU7FiRRwcHJR9ZsyYAcC1a9dQqVRKhHfnzp1RqVRcu3YNW1vbF75eIYQQ4mUIvxTFtZQ7hT/w0b3Cf5bEfBsMaZzLmKZNm3Ljxg3u37+fa9b51KlTSqNqYWGh8/jPP/8cX19fnJ2d0Wq1tG3bVmcEt4mJSYHPSD+J3n5WXu8JIYQQZYVrEwfSszILP+NctVKhZ5wl5ttwSONcxtStW5e+ffsya9YsAgIClC8Hrl69miVLlhAfH5/v8Q8fPqRu3boAbN++nczMzAI/s3HjxqSnp3Ps2DE6duzIr7/+ysOHD5VtmZmZHDlyhE6dOnHkyBGysrJo2LDhC1+rEEII8bK0r/0m7Wu/Wejjan3mbDBLr4nCk8a5DJo1axZLly7l7bffRqVSYW5uzrRp07C3ty+wcfbz8+OTTz7BysoKe3v7556VzouZmRlfffWV8uXATp06UadOHWXbihUrcn05cPny5fJ8sxBCCCEMjgSgCCGEEEL8HwlAeZ4EoPyPzDiLEiGR23kzpJtRUUh9dJPa6Ca10U1qo5vURuhDZpyFEEIIAyezrNI458eQaiMzzqJMSPp+L9qHhn1TFkKIsqrWBJfSHoIQ5YJxaQ9AFK9ly5Yxc+ZM5fWff/6Jra0tly5dUt776KOP2LZtW6HPHRUVxV9//VUs4xRCCCGEKG+kcX7FODg4cPToUeX10aNHadu2rfKeRqPhxIkTdOrUqdDnPnr0KAcPHiy2sQohhBBClCfyqMYrpn379sTHx5OUlESNGjU4duwYn376KSEhIbz77rucPXsWS0tL6tWrx/79+/n222/JzMxEpVLh5+eHnZ0dV69exc/Pj8ePH6PVanFzc6Nbt2789NNPaLVaDh06hIuLCx9++GFpX64QQog8RN+5yvZzh3isLngtfwCTo1sKFfoBEjUtDJM0zq+YChUq0Lp1a44ePYqjoyOPHz/G0dGRBQsWADmzxg4ODty4cYNVq1axbt06LC0tuXTpEp6enuzbt4+goCAcHR359NNPAUhJSaFKlSq88847pKWl4ePjU5qXKIQQogDhl45z7f5d/Q94dL9onyNR08LASOP8CnJwcCAqKgoLCwveeustTExMaNCgAZcuXeLo0aP885//5MCBA9y4cYN3331XOS4rK4ukpCQ6duxIQEAAarUaBweHIj3WIYQQovS4NumQEzet74xzVYsizThL1LQwNNI4v4Ls7e2ZM2cOlStXpmPHjgB07NiRI0eOcOLECaZPn87+/fvp3r07ixYteu74Pn36YGdnx8GDB1m7di07duxgyZIlJX0ZQgghiqh97ca0r91Y7/1rTXAxmOXGhHgR8uXAV1D79u25efMmv/32G/b29gB06NCBTZs28dprr1G3bl26du3KgQMHcq22ERMTA8D169epWbMm7u7ufPrpp5w+fRoAS0tLHj6UG6sQQgghDJPMOL+CzM3Nadu2LQkJCVhZWQHQunVrEhIS6Nu3LwANGzZk8eLFTJs2jfT0dNRqNe3bt6dNmzb88ssvhIWFoVKpMDIywt/fHwBnZ2d27tzJwIEDC/3lwBpjnIr/QoUQQhQLTWZWaQ9BiHJBkgNFiZDI7bwZUhpTUUh9dJPa6Ca10U1qo5vURjdDqk1ByYHSOAshhBCizCit+G9Dag4Ly5BqI5HbokxI+uEXtA/TSnsYQgghyrhan3qU9hCE0Em+HFjC1Go1y5cvp0+fPri4uNCvXz8WLlyIWq3WeYyvry+bNm0CYPPmzWzcuFHZ5ufnh4uLC5MmTSrWcQ4cOJD09PRiPacQQgghRHkmM84lzM/Pj4yMDHbs2IGlpSVqtZrg4GAlva8gw4cPV/6clJTEnj17OH78OMbG+v8OlJWVhalp/n/1O3fu1Pt8QgghhBCGQBrnEhQbG0tERAT79+/H0jLn+RmVSsWwYcO4cOECs2fP5vHjx2RkZDB06FDGjh373DkCAwNJS0vj008/ZfTo0aSnp+Pm5oabmxujRo1iyZIlHDhwAIDu3bvj7e2NiYkJvr6+WFhYEBsby7179wgODsbW1pbJkyfz+++/c//+faZOnUqfPn0AsLW1JTo6GgsLCwICAjh69ChqtZpq1aoxf/583njjjRKrmxBCiPIr+nYs288d43GWnmEsUTsLFcYi0d+iJEnjXILOnj1LgwYNqFKlynPb3njjDTZu3IiZmRmPHj1iyJAhdO/eHRsbmzzPZWlpyZo1a/Dw8FBmh4OCgjh37hzBwcEAeHp6smXLFkaMGAHAyZMn2bRpE5UqVcp1nh07dnDixAkmTZqkNM5P8/T0VGK2t23bxpIlS1i2bNmLFUMIIYRBCL90imv3E/U/IDWl8J8h0d+ihEjjXEakp6cza9YsLly4gJGREXfv3uX8+fM6G+e8HD58GDc3N8zMzABwd3cnIiJCaZz79u2bq2kGePvttwGws7Pj7t27ZGRkYG5unmufyMhIgoKCSEtLIytL1voUQgihP9cmdqRnqfWfca5iWegZZ4n+FiVFGucS1KJFC65fv05KSspzs85fffUVNWvWZOHChZiamjJu3DgyMjIKdf7s7GyMjIxyvff062ebZkBpkk1MTICc55+fbpxv3rzJggUL2L59O/Xq1SM6Ohpvb+9CjUsIIYTham/dkPbWDfXev9anHgaz9Jkof2RVjRLUsGFDnJycmDFjBqmpqQBoNBq+//57Hj58SO3atTE1NeXixYscP3680Ofv0qULISEhqNVq1Go1oaGhdO7c+YXGnJqaikqlombNmmi1Wn766acXOp8QQgghRHklM84lbOHChaxcuRIPDw9UKhVarZYePXrg6emJv78/P//8M/Xr16djx46FPvewYcO4ceMGbm5uAHTr1o2hQ4e+0HhtbW3p27cvLi4u1KlTh44dOxapqa8xut8LjUMIIYRh0GRmYWxsVPCOL0FpfW55YCi1Keg6JTlQCCGEEEIIPcijGkIIIYQQQuhBGmchhBBCCCH0II2zEEIIIYQQepDGWQghhBBCCD1I4yyEEEIIIYQepHEWQgghhBBCD9I4CyGEEEIIoQdpnIUQQgghhNCDNM5CCCGEEELoQRpnIYQQQggh9GBa2gMQ5de1a9fw9fXl/v37VK1alYCAABo2bJhrH41Gw9y5czlw4ABGRkZ8+OGHDBkypMBt5Z0+tVm5ciW7d+/GxMQEU1NTJk+eTPfu3QEIDAwkKCiIWrVqAdC+fXtmzpxZ0pfxUuhTm/yu39B/bqZOncqFCxeU1xcuXGDlypX07t37lf65CQgIYM+ePdy8eZOwsDCaNm363D6Ger/RpzaGer/RpzaGer/RpzaGer/JV7YQRTRq1Kjs0NDQ7Ozs7OzQ0NDsUaNGPbdPSEhI9rhx47I1Gk3233//nd29e/fsuLi4AreVd/rUJjIyMjstLS07Ozs7+9y5c9lvvfVW9uPHj7Ozs7OzV6xYkb1w4cKSG3AJ0qc2+V2/of/cPO3cuXPZ9vb22RkZGdnZ2a/2z82xY8eymjjNYgAACgxJREFUb926ld2rV6/sCxcu5LmPod5v9KmNod5v9KmNod5v9KnN0wzpfpMfeVRDFMnff//N2bNncXV1BcDV1ZWzZ8+SnJyca7/du3czZMgQjI2NqV69Os7Ozvz6668FbivP9K1N9+7dqVixIgC2trZkZ2dz//79Eh9vSdK3Nvkx9J+bp23fvp3+/ftjZmZWUsMsNR06dMDa2jrffQzxfgP61cYQ7zegX23yY+g/N08zpPtNfqRxFkVy+/ZtrKysMDExAcDExIRatWpx+/bt5/arU6eO8tra2po7d+4UuK0807c2TwsNDaV+/frUrl1beW/Xrl3079+fcePGcfLkyZc+7pJQmNroun75ucmRmZlJWFgYHh4eud5/FX9u9GWI95uiMJT7TWEY2v2msOR+8z/yjLMQpezo0aMsX76c9evXK++98847fPzxx6hUKg4ePMgnn3zC7t27qVatWimOtOQY+vXrIyIigjp16tC8eXPlPambKIjcb55n6NevD7nf/I/MOIsisba2JiEhAY1GA+R8geLu3bvP/bOPtbU1t27dUl7fvn1bmeXIb1t5pm9tAE6ePMn/+3//j5UrV9K4cWPl/Zo1a6JSqQDo2rUr1tbWXLp0qWQu4CXStzb5Xb/83OTYsWPHc7M/r+rPjb4M8X5TGIZ2v9GXId5vCkvuN/8jjbMoktdff53mzZsTHh4OQHh4OM2bN6d69eq59uvbty/btm1Dq9WSnJxMREQEffr0KXBbeaZvbWJiYpg8eTIrVqygZcuWubYlJCQofz537hw3b96kUaNGL3/wL5m+tcnv+g395wbgzp07nDhxQnke+olX9edGX4Z4v9GXId5v9GWI95vCkPtNbkbZ2dnZpT0IUT5duXIFX19fHjx4wGuvvUZAQACNGzfG09MTLy8vWrdujUajYc6cORw8eBAAT09Phg0bBpDvtvJOn9p4eHhw8+ZNrKyslOMWLVqEra0tPj4+/Pe//8XY2BiVSoWXlxc9evQoxSsqPvrUJr/rN/SfG4Bvv/2WixcvsmzZslzHv8o/N3PnzuW3334jKSmJatWqUbVqVXbt2iX3G/SrjaHeb/SpjaHeb/SpDRjm/SY/0jgLIYQQQgihB3lUQwghhBBCCD1I4yyEEEIIIYQepHEWQgghhBBCD9I4CyGEEEIIoQdpnIUQQgghhNCDNM5CCCHEU1avXs20adNKexhCiDJIlqMTQghRoFGjRnH+/HkOHjyImZlZaQ+nUHx9fQkPD0elUqFSqWjZsiVffPEFNjY2pT00IUQ5IzPOQggh8hUfH8/x48cxMjLijz/+KPbzZ2VlFfs5n/X+++9z8uRJ9u/fT/Xq1fHz8yu1sQghyi9pnIUQQuQrNDSUtm3b4ubmRmhoKACnTp2ia9euaDQaZb/ff/+d/v37A6DValmzZg3Ozs44ODgwceJE7t+/D+Q04ra2tmzbto2ePXsyZswYALy8vOjatStvvfUW7777LpcuXVLOfe/ePT7++GPat2+Ph4cHy5YtY/jw4cr2K1eu8N5772Fvb0+fPn3YvXt3ntdSsWJF+vfvr5w7MDAQLy8vvL29ad++PSEhIQQGBuLt7a0cc/z4cd555x06dOhAjx49CA4OBiAzM5OAgAB69uxJly5dmDFjBunp6S9cbyFE2SWNsxBCiHzt3LmT/v37079/f/766y+SkpKws7OjYsWKHDlyRNkvLCxMaZx/+OEHIiIi2LRpEwcOHKBKlSrMmTMn13mPHTvG7t27WbduHQCOjo7s2bOHw4cP06JFi1zN65w5c6hYsSIHDx4kICBAaeAB0tLSGDduHK6urhw6dIivvvqK2bNn52q8n3j06BFhYWE0b95cee+PP/6gb9++HD9+XBn/E7du3cLT05ORI0dy+PBhQkNDlWMXL17MtWvXCA0N5bfffuPu3busXLmyqGUWQpQD0jgLIYTQ6fjx49y6dYt+/frRqlUr6tWrR3h4OAAuLi7Kn1NTU4mMjMTFxQWALVu2MHnyZGrXro2ZmRkTJkxgz549uR6F+Oyzz6hUqRIVKlQAYPDgwVhaWmJmZsZnn33G+fPnefjwIRqNht9++43PPvuMihUr8uabbzJo0CDlPPv27eONN97Aw8MDU1NTWrZsSZ8+fdizZ4+yz/r16+nQoQP//Oc/efToEQsXLlS22dnZ4ezsjLGxsTKWJ8LCwujSpQuurq6oVCqqVatG8+bNyc7OZtu2bfj7+1O1alUsLS356KOP2LVrVzH/DQghyhLT0h6AEEKIsis0NJSuXbtSvXp1AFxdXQkJCWHs2LH079+fd955h9mzZ/P777/TokUL3njjDSBnpvbTTz/F2Ph/8zPGxsb8/fffyuvatWsrf9ZoNCxbtoxff/2V5ORk5bh79+6Rnp5OVlYW1tbWyv5P//nmzZvExMTQoUOHXOcbMGCA8nrcuHFMnjw5z2t8ehzPun37NvXr13/u/eTkZB4/foy7u7vyXnZ2NlqtVue5hBDlnzTOQggh8pSens4vv/yCVqula9euQM5zvQ8ePOD8+fM0a9aMOnXqEBkZSXh4OK6ursqxtWvXZv78+bz11lvPnTc+Ph4AIyMj5b2wsDD++OMPNmzYQN26dXn48CEdO3YkOzv7/7d3/y7pxHEcx19kRIOLSoi3SP+BSUVQQiRCoIEICRJE+C9EjY1BFNHQFiE4C12EN7kJDbndostRi5AhNIQIKvQdouP7oy9IDhk9H3DLfTje789nevPmfXfy+/2anJzU4+OjZmdnJb0VtO9CoZAWFhZUKBQ+tc/f8/hbKBSSbdv/3Pf5fJqenla5XFYwGPxUXADfD6MaAIAPVSoVeTwelctlmaYp0zRlWZbm5+fdGeNUKqVisaharab19XX32Vwup7OzMzWbTUlvHdpKpfLfWJ1OR1NTU/L5fOp2uzo9PXXXPB6PEomEzs/P1e125TiOrq+v3fXV1VU9PDzINE31+331+33Zti3HcUY+g42NDd3e3sqyLA0GAz0/P6ter2tiYkKbm5s6PDx0u+itVkvVanXkmADGF4UzAOBDV1dXymQyMgxDMzMz7rW1taWbmxsNBgOlUind3d1paWnJHeeQpO3tba2trSmfz2tubk7ZbPbDzu27dDotwzAUi8WUTCYViUT+WD84ONDLy4uWl5e1v7+vZDLpfk/a6/Xq8vJSlmUpFotpZWVFJycn6vV6I5+BYRi6uLhQoVDQ4uKi0um0Go2GJGlvb0/hcFjZbFbRaFQ7Ozu6v78fOSaA8cUPUAAA387x8bHa7baOjo6+OhUAPwgdZwDA2HMcR41GQ6+vr7JtW6VSSYlE4qvTAvDD8HIgAGDsdTod7e7u6unpSYFAQPl8XvF4/KvTAvDDMKoBAAAADIFRDQAAAGAIFM4AAADAECicAQAAgCFQOAMAAABDoHAGAAAAhvALl5HemvUMDwAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,11))\n", + "ax = sns.barplot(x=\"AveragePrice\",y=\"region\",data= avocadoData)\n", + "plt.title(\"Avg.Price of Avocado by Region\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "8ac2024a-7bd5-4234-856f-2dd28fbe1935", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAG/CAYAAADhOOSwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deVxU5f4H8M/MACqCF+Gya/oTEylDEUTNXTBQBsGliz9ccgnSm1rmvqRilmKrWmaaWkZ5u2aioLhbiltqlNwULcWVYRFcEJBl5vn94cvzi+s28MAw0Of9evmSOfPMeb5nOHx4zjlzHlRCCAEiIqoUdU0XQERUmzFEiYgkMESJiCQwRImIJDBEiYgkMESJiCQwRMkoPj4+uHLlisn6u3v3LsaOHQtfX19MnDjRZP1WpRkzZuDDDz+s0nUOHz4cGzdurNJ1khyLmi6AHjR8+HCkpaXh0KFDsLKyqvL1X716FQEBAbC2tgYANG7cGEOGDEF0dPQjX5OSklLldTzOjh07cP36dRw7dgwWFo/eTb///nvMnDkTH374Ifr162fCCmuvEydOICoqCgAghEBRUZGyLwDAtm3b4ObmVlPl1ToMUTNz9epVnDhxAra2tti7dy/69u1bbX0dP34cFhYWSElJwciRI9G6dWt07969XJuysrLHhlh1ycjIQPPmzZ/Y9+bNm2FnZ4f4+HiGqJH8/PyUX4r3f6He3xeo4ng4b2bi4+PRtm1bDBgwAPHx8cryX375BV26dIFer1eW7d69G6GhoQDuHf5Onz4dHTp0QN++fbF69eoHAvFRfHx80LJlS/z+++8AAE9PT3z99dd44YUX8MILLyjLLl26pPS1ePFi9OrVC76+vvjf//1f3L17V6lzyJAh8PPzQ//+/XHs2LFH9nv+/HkMHz4cfn5+CAkJwd69ewEAy5Ytw4oVK5CUlAQfH59HHr5eu3YNx48fx4IFC5CcnIzr168rz/Xt2xf79+9XHpeVlaFjx4747bffAAB79+5FSEgI/Pz8MHz4cJw/f15pq9PpMH78eHTq1AkdO3bEggULAACXL1/GiBEj0LFjR3Ts2BGTJ0/G7du3ldedPn0aAwYMgI+PD15//XUUFxeXq/ff//43+vTpA39/f4wdOxZZWVkA7o0G33nnHXTu3Bm+vr4IDQ3FuXPnHvm+Xb58GYMHD4avry/GjRuHmzdvAgCio6Px1VdflWsbGhqKPXv2PHJdD5OYmIgXX3yx3LJVq1Ypp1WmTJmCmJgYvPTSS/Dx8cHw4cOh0+mUtn/88QdGjhwJf39/BAcHY+fOnRXqv9YRZFYCAwNFXFycSE1NFc8884zIyclRngsICBDJycnK4wkTJojPPvtMCCHEu+++K4YOHSpu3rwpdDqd0Gq1olu3bg/t48qVK6JVq1aitLRUGAwGceLECeHt7S0OHz4shBCiVatWYuTIkeLGjRuiqKhIWXbx4kUhhBDz588Xw4YNE5mZmaKsrEycPHlSFBcXi8zMTOHv7y9++OEHodfrRXJysvD39xe5ubkP1FBSUiICAwPFp59+KoqLi8Xhw4dFu3btxPnz54UQQixbtkxMnjz5se/Vxx9/LAYNGiSEEEKr1Yq1a9cqzy1fvly88cYbyuP9+/eLoKAgIYQQFy5cEG3bthXJycmipKRErFq1SgQGBori4mJRVlYmQkNDxdtvvy0KCgrE3bt3xfHjx4UQQly8eFEkJyeL4uJikZubKyIjI8XChQuFEEIUFxeLnj17inXr1omSkhKRlJQknnnmGfHBBx8IIYQ4fPiw8Pf3F//5z39EcXGxWLBggYiMjBRCCHHgwAExYMAAcevWLWEwGMQff/whsrKyHrrNw4YNE127dhVnz54VBQUFYvz48cr7tG3bNjF48GCl7ZkzZ4S/v78oLi5+5Hv4533hvqKiIuHr6yvS09OVZVqtVuzevVsIIcTkyZNF+/btxYkTJ0RxcbGyPwghRH5+vujatavYvHmzKC0tFampqcLf31/5vtZFHImakRMnTiAjIwN9+/ZFmzZt0LRpUyQmJirPh4SEKI/v3LmDAwcOICQkBACQlJSEV155BX/729/g4uKCESNGPLG/Tp06wd/fH3PmzMHkyZPRuXNn5bno6GjY2dmhfv365V5jMBiwadMmzJ49G87OztBoNGjfvj2srKywZcsWdO/eHT169IBarUaXLl3Qpk0b/Pjjjw/0/euvv6KwsBDR0dGwsrJC586d0atXL2zbts3o92vLli3QarUAAK1Wi82bNyvPhYaGYt++fSgqKgIAJCQkKG23b9+OHj16oEuXLrC0tMSYMWNw9+5dpKSk4NSpU8jOzsa0adNgbW2NevXqwc/PDwDQrFkzdOnSBVZWVrC3t8eoUaNw/PhxZXtKS0vx0ksvwdLSEsHBwXjuueeUehISEjBo0CA8++yzsLKywhtvvIFffvkFV69ehYWFBQoKCnDhwgUIIeDh4QEnJ6dHbndYWBhatWoFa2trvPbaa9ixYwf0ej0CAwNx6dIlXLx4UXl/+vbtW+Hz6vXr10dwcDC2bt0KADhz5gyys7PRo0cPpc39o5D723L8+HFkZ2dj3759aN68OcLDw2FhYYE2bdogICCgTo9GGaJmJD4+Hl26dIG9vT2AhwfD7t27UVJSgt27d+OZZ56Bu7s7ACA7Oxuurq5KWxcXlyf2d/ToURw/fhxJSUkPhO6f1/VnN27cQHFxMZo2bfrAcxkZGdixYwf8/PyUfydPnkROTs4DbbOzs+Hi4gK1+v93QTc3N+UQ90lOnjyJq1evKr9EtFotzp07hzNnzgC4F3geHh7Yv38/ioqKsG/fPuXUR3Z2drkLJ2q1Gq6ursjKyoJOp4Obm9tDzw/m5uZi0qRJ6NatG9q3b4+pU6fixo0byjqdnZ2hUqnKbc+ft/f+9woAGjZsCDs7O2RlZaFz584YOnQoFixYgOeffx5vvvkm7ty588ht//P3xs3NDaWlpbhx4wasrKyU8DMYDEhMTERYWJhR7+d/Cw8PR0JCAgBg69at6NevHywtLR9ag62tLWxtbZGdnY2MjAykpKSU2weSkpIeug/UFTyTbCbu3r2LpKQkGAwGdOnSBQBQUlKC27dvIy0tDa1bt0bLli3h5uaGAwcOIDExURlZAYCjoyMyMzPRsmVLAEBmZqZUPX8Ogz9r3Lgx6tWrhytXrqB169blnnN1dUVYWBgWLlz4xPU7OTkhMzMTBoNBCVKdTofmzZsbVV98fDyEEAgPD39guZeXF4B7wZqYmAiDwYCWLVuiWbNmSt9/PucohIBOp4OzszOsrKyg0+keekHt/fffh0qlwtatW9G4cWPs2bNHOV/q6OiIrKwsCCGU9y4jI0P5ZePk5IRr164p6yosLMTNmzfh7OwMABgxYgRGjBiB3NxcvP766/j888/x+uuvP3Tb/3z+UafTwdLSEo0bNwYADBgwANOmTYOvry8aNGgAHx8fo97P/3Z/9H3y5EkkJiZi+fLlj6whPz8f+fn5cHJygouLCzp16oTPP/+8Uv3WRhyJmok9e/ZAo9Fg27ZtiI+PR3x8PLZv3w4/P79yF5i0Wi3Wr1+P48ePIzg4WFnet29ffPbZZ7h16xaysrIQFxdXLXWq1WoMGjQIixYtQlZWFvR6PVJSUlBSUoL+/ftj//79OHjwIPR6PYqLi3Hs2LGHBrq3tzcaNGiAzz//HKWlpTh27Bj27dtn1BX24uJiJCUlYcGCBcp7FR8fjzfffBMJCQkoKysDAPTr1w+HDh3Chg0byv3C6du3L3788UccOXIEpaWlWLt2LaysrODj4wNvb284Ojri/fffR2FhIYqLi3Hy5EkAQEFBAaytrdGoUSNkZWWVC4p27drBwsIC69evR1lZGXbt2oXU1FTl+dDQUHz//fc4c+YMSkpK8MEHH8Db2xtNmjTBqVOnlNMBDRo0gJWVFTQazSO3f+vWrfjjjz9QVFSEpUuXIigoSGnv4+MDtVqNxYsXo3///k98Lx8nLCwM8+fPh7W1Ndq1a1fuuf379yvf948++gi+vr5wcnJCQEAA/vjjDyQkJKC0tBSlpaU4deoULly4IFWLOWOImonNmzdj4MCBcHNzg6Ojo/Jv6NCh5YJBq9Xip59+QqdOnZTDfgB49dVX4eLigoCAAIwcORJBQUHlzoW9/PLLWLlyZZXUOn36dLRq1QqDBw+Gv78/3nvvPRgMBri6umLFihX47LPP0LlzZ/To0QNr1qyBwWB4YB1WVlb49NNPceDAAXTq1AkxMTFYsmQJPDw8ntj/nj17UL9+fYSHh5d7rwYPHgy9Xo+DBw8CuDf6a9euHVJSUsqFc4sWLfDuu+/irbfeQqdOnbB//36sXLlSCa+VK1fi0qVL6NWrF7p3746kpCQAwPjx43H69Gn4+fkhOjpa+eTC/e1Zvnw5Nm/ejA4dOmD79u3o06eP8nznzp3x2muvYcKECejatSuuXLmifBC/oKAAc+bMgb+/P3r16gU7OzuMHj36kdsfFhaGGTNmoEuXLigpKcHs2bMfeP7cuXOVPpT/83p+//33h4Zx//798dFHH6Fjx444e/YslixZAuDeof2aNWuwdetWdO3aFV27dsX777+PkpISqVrMmUoITspcF33zzTfYvn17tY1IyXzFx8fj22+/xYYNG6TWU1hYiOeffx4JCQnlzoFPmTIFzZo1w4QJE2RLrRM4Eq0jsrOzcfLkSRgMBly4cAHr1q1DYGBgTZdFJlZUVIRvvvkGERER0uv6+uuv0b59+4deRKT/xwtLdURpaSnmzZuHq1evwtbWFiEhIYiMjKzpssiEDh48iAkTJqBz587lzgFXRvfu3WFhYYEVK1ZUUXV1Fw/niYgk8HCeiEgCQ5SISAJDlIhIQp27sHTjRgEMBp7mJaKqoVar0Lhxw0c+X+dC1GAQDFEiMhkezhMRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIjWcT//fAIxMbPx888naroUojqpzs0nSuVt3PgN0tMv4O7dIrRv71fT5RDVOQxRALaN6qN+PcuaLqNalJQUK/87OtrWcDXV425xKfJv363pMugviiEKoH49S0RO+7qmy6gW16/nAwAyr+fX2W38ZslQ5IMhSjWD50TrOJXGstz/RFS1GKJ1nI1be1jauMDGrX1Nl0JUJ/Fwvo6r97emqPe3pjVdBlGdxZEoEZEEhigRkQSGKBGRBIYoEZEEk4RobGwsevfuDU9PT5w7d+6R7bZv347Q0FBotVqEhobi+vXrpiiPiKjSTHJ1PiAgACNGjMDQoUMf2SY1NRUff/wxvvzySzg6OiI/Px9WVlamKI+IqNJMEqJ+fk++Z/uLL77A6NGj4ejoCACwta2btygSUd1iNp8TPX/+PJo0aYKhQ4eisLAQffr0wbhx46BSqSq0HgcHm2qqkMxZXZ0XgMyf2YSoXq/H2bNnsW7dOpSUlODll1+Gm5sbwsPDK7Se3Nw7MBhEhV7DH8DaLycnv6ZLoDpKrVY9dnBmNlfn3dzcEBwcDCsrK9jY2CAgIACnTp2q6bKIiB7LbEJUq9UiOTkZQgiUlpbi6NGjaN26dU2XRUT0WCYJ0YULF6J79+7IzMzEqFGjEBISAgCIiopCamoqACAkJAQODg7o168fwsPD0bJlSwwePNgU5RERVZpKCFGxE4hmrrLnROvqXJt/Bd8sGcpzolRtas05USKi2oghSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJMEkIRobG4vevXvD09MT586de2zbCxcuoG3btoiNjTVFaUREUkwSogEBAfj666/h7u7+2HZ6vR7z5s1DYGCgKcoiIpJmYYpO/Pz8jGq3atUq9OzZE4WFhSgsLKzmqoiI5JnNOdG0tDQkJydj5MiRNV0KEZHRTDISfZLS0lK8+eabWLRoETQajdS6HBxsqqgqqk0cHW1rugT6izKLEM3JycHly5cRHR0NALh9+zaEELhz5w7eeuutCq0rN/cODAZRodfwB7D2y8nJr+kSqI5Sq1WPHZyZRYi6ubnh2LFjyuPly5ejsLAQ06dPr8GqiIiezCTnRBcuXIju3bsjMzMTo0aNQkhICAAgKioKqamppiiBiKhaqIQQFTv2NXOVPZyPnPZ1NVVE1e2bJUN5OE/V5kmH82ZzdZ6IqDZiiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSTBJiMbGxqJ3797w9PTEuXPnHtrmk08+QUhICPr374+BAwfi4MGDpiiNiEiKhSk6CQgIwIgRIzB06NBHtvH29sbo0aPRoEEDpKWlYdiwYUhOTkb9+vVNUSIRUaWYJET9/Pye2KZbt27K156enhBC4ObNm3BxcanO0oiIpJjlOdH4+Hg89dRTDFAiMnsmGYlWxE8//YSlS5di7dq1lXq9g4NNFVdEtYGjo21Nl0B/UWYVoikpKZg6dSpWrFiBFi1aVGodubl3YDCICr2GP4C1X05Ofk2XQHWUWq167ODMbA7nT506hUmTJmHZsmV49tlna7ocIiKjmCREFy5ciO7duyMzMxOjRo1CSEgIACAqKgqpqakAgJiYGNy9exdz585FWFgYwsLCcPbsWVOUR0RUaSohRMWOfc1cZQ/nI6d9XU0VUXX7ZslQHs5Ttak1h/NERLURQ5SIAAA//3wCMTGz8fPPJ2q6lFrFrK7OE1HN2bjxG6SnX8Ddu0Vo3/7JN8jQPRyJEhEAoKjobrn/yTgciRJVUOO/WcHCql5Nl1HlNBqV8n9d/ex0WUkxbtwqqdJ1MkSJKsjCqh5OLnm5psuoevk5yv91cvsA+E77HEDVhigP54kIAPBCy8Zo0bg+XmjZuKZLqVU4EiUiAICXozW8HK1ruoxahyNRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCUaFaElJCT788EMEBATA19cXAJCcnIy4uLhqLY6IyNwZFaLvvPMOzp07h/feew8qlQoA8PTTT2PDhg3VWhwRkbkz6u/O79mzB7t27YK1tTXU6nu56+zsjKysrGotjojI3Bk1ErW0tIRery+3LC8vD3Z2dtVSFBFRbWFUiAYHB2P69Om4cuUKACA7OxsLFixASEhItRZHRGTujArRSZMmwd3dHf3798ft27cRFBQEJycnvPrqq9VdHxGRWTPqnKiVlRVmz56N2bNnIy8vD40bN1YuMBkjNjYWO3fuxLVr15CQkIBWrVo90Eav12PhwoU4ePAgVCoVoqOj8eKLLxq/JURENcCokWh8fDzS0tIAAPb29lCpVEhLS0N8fLxRnQQEBODrr7+Gu7v7I9skJCTg8uXL2LVrF7799lssX74cV69eNWr9REQ1xagQXbp0KVxdXcstc3FxwdKlS43qxM/P74HX/7ft27fjxRdfhFqthr29PQIDA7Fjxw6j1k9EVFOMOpy/c+cObGxsyi2ztbXF7du3q6wQnU4HNzc35bGrqysyMzMrvB4HB5snN6I6x9HRtqZLoFqiqvcVo0LUw8MDO3fuRL9+/ZRlu3fvhoeHR5UWUxVyc+/AYBAVeg1/AGu/nJx8k/XF/aV2q+i+olarHjs4MypEp0yZgujoaCQlJaFp06a4fPkyjhw5glWrVlWomMdxdXVFRkYGvL29ATw4MiUiMkdGnRP18/NDYmIinnvuORQVFcHb2xuJiYnKffRVITg4GBs3boTBYEBeXh727NmDoKCgKls/EVF1MGokCgBubm6Ijo6uVCcLFy7Erl27cP36dYwaNQp2dnbYtm0boqKiMHHiRDz33HMICwvDr7/+ihdeeAEA8Oqrr6Jp06aV6o+IyFQeGaJvvvkm3nrrLQDA1KlTH/m50CVLljyxkzlz5mDOnDkPLF+9erXytUajQUxMzBPXRURkTh4Zok2aNFG+btasmUmKISKqbR4Zoq+88gqAe3cSubi4IDQ0FPXq1TNZYUREtcETLyxpNBosXryYAUpE9BBGXZ3v1asX9u3bV921EBHVOkZdnS8uLsbEiRPh4+MDFxeXcheZjLmwRERUVxkVoq1atXrozEtERH91RoXo+PHjq7sOIqJa6bHnRC9cuIAhQ4agffv2GD58uDKzPRER3fPYEF24cCGaNGmCDz/8EE5OTli0aJGp6iIiqhUeezj/22+/4cCBA6hXrx78/Px4LzsR0X957Ei0tLRU+Xxow4YNUVJSYpKiiIhqi8eOREtKSsrNXn/37t0HZrN/7bXXqqcyIqJa4LEhGhoaWm52+ZCQkErNNk9EVFc9NkR5IYmI6PGMnk/0/Pnz2LFjB3JzczF37lxcuHABJSUlaN26dXXWR0Rk1oy6dz4pKQlDhw5FVlaW8meSCwoKsHjx4motjojI3Bk1El22bBnWrVsHLy8vJCUlAQBat26t/C16IqK/KqNGonl5ecph+/3JR1Qq1SNnuyci+qswKkSfffZZbNmypdyybdu2KX+Zk4jor8qow/nZs2djzJgx+O6771BYWIgxY8YgPT0da9eure76iIjMmlEh6uHhgaSkJOzfvx89e/aEq6srevbsiYYNG1Z3fUREZs3ojzg1aNAA/fr1q85aiIhqHaNCNDIy8qEXkaysrODi4oI+ffqgd+/eVV4cEZG5M+rCkr+/P65du4YOHTqgf//+6NChAzIyMtCmTRs4ODhg1qxZ5f6GPBHRX4VRI9FDhw5hzZo18PDwUJaFhoZixowZ2LhxI1544QVMmjQJUVFR1VYoEZE5MmokeuHCBTRt2rTcMnd3d6SnpwMAvL29kZeXV/XVERGZOaNCtEOHDpg5cyYuXbqE4uJiXLp0CXPmzIGvry8A4OzZs3B0dKzWQomIzJFRIbp48WIYDAaEhISgXbt2CAkJgcFgUGZ5srS0xPvvv1+thRIRmSOjzona2dnhww8/hMFgQF5eHuzt7aFW/3/+tmjRotoKJCIyZ0Z/ThQACgsLUVRUhGvXrinL/vtcKRHRX4lRIfrHH39gypQpSEtLg0qlghBC+dzomTNnqrVAIiJzZtQ50ZiYGHTs2BE//fQTbGxscPz4cURERHA+USL6yzMqRNPS0jBlyhQ0atQIQgjY2tpi2rRpD/zROiKivxqjQrRevXooKysDADRu3BgZGRkwGAy4efNmtRZHRGTujDon6uvri6SkJAwcOBBBQUGIioqClZUVOnXqZHRH6enpmDFjBm7evAk7OzvExsaiefPm5drk5uZi5syZ0Ol0KC0tRadOnTBnzhxYWFTo+hcRkckYlU5/Pmx/44038PTTT6OgoADh4eFGdzRv3jxERkYiLCwMW7Zswdy5c7F+/fpybVauXAkPDw+sWrUKpaWliIyMxK5duzh7FBGZrScezuv1egwfPhwlJSX3XqBWIywsDJGRkbC2tjaqk9zcXJw+fRparRYAoNVqcfr06QduFVWpVCgoKIDBYEBJSQlKS0vh7Oxc0W0iIjKZJ4aoRqPB1atXYTAYKt2JTqeDs7MzNBqNsk4nJyfodLpy7f75z38iPT0dXbt2Vf7dv7WUiMgcGXU4/+qrr2L+/PmYMGECXFxcys0t+uc7l2Tt2LEDnp6e+PLLL1FQUICoqCjs2LEDwcHBRq/DwcGmyuqh2sPR0bamS6Baoqr3FaNCdM6cOQBQ7o/V3f/AvTEftnd1dUVWVhb0ej00Gg30ej2ys7Ph6uparl1cXBzeeecdqNVq2Nraonfv3jh27FiFQjQ39w4MBmF0e4A/gHVBTk6+yfri/lK7VXRfUatVjx2cGRWie/furVCn/83BwQFeXl5ITExEWFgYEhMT4eXlBXt7+3LtmjRpggMHDsDb2xslJSU4cuQI+vTpI9U3EVF1MupY3N3dHe7u7nB1dYWlpaXy2N3d3eiO5s+fj7i4OAQFBSEuLg4xMTEAgKioKKSmpgIAZs2ahZMnTyI0NBTh4eFo3rw5/vGPf1Ris4iITMOokejt27cRExODnTt3wsLCAr/88gv27t2LU6dOYdKkSUZ15OHhgY0bNz6w/M9/VuSpp57CunXrjCydiKjmGTUSnTdvHmxsbLBv3z5YWloCAHx8fJCUlFStxRERmTujRqJHjhzBwYMHYWlpqVyZt7e3R25ubrUWR0Rk7owaidra2uLGjRvllmVkZPBPghDRX55RIfriiy9i4sSJOHr0KAwGA1JSUjB9+nQMGTKkuusjIjJrRh3O359wZMGCBSgrK8OsWbMQERGBl156qbrrIyIya0aFqEqlwsiRIzFy5MhqLoeIqHYx6nC+f//++Pzzz5GZmVnd9RAR1SpGheiECROQmpqKvn37YtiwYfjXv/7FCZmJiGBkiPbp0wdLly7FwYMHMWjQIOzevRs9e/bE2LFjq7s+IiKzVqEp421sbKDVamFra4uysjIcOHCguuoiIqoVjApRIQSOHj2KhIQE7NmzB25ubggJCeFf+ySivzyjQrRbt26wtrZGv379sGHDBnh4eACA1ETNRER1gVEh+sknn6Bt27bK47NnzyI+Ph4JCQlITk6utuKIiMydUSHatm1b5OXlISEhAfHx8UhLS4Ovry9mz55d3fUREZm1x4ZoaWkp9u3bh82bNyM5ORlPPeI5Nc0AABOFSURBVPUUQkJCkJGRgaVLl8LBwcFUdRIRmaXHhmiXLl2gUqkwcOBATJgwAc8++ywAYMOGDSYpjojI3D32c6Kenp7Iz8/Hr7/+itTUVNy6dctUdRER1QqPDdGvvvoKu3fvRpcuXbB27Vp06dIFY8eORWFhIcrKykxVIxGR2XriHUvu7u549dVXsWvXLnzxxRdwdHSEWq1G//79sWTJElPUSERktip0x5Kfnx/8/PwwZ84c7N69G/Hx8dVVFxFRrVChEL2vXr160Gq10Gq1VV0PEVGtYtQEJERE9HAMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCSYL0fT0dERERCAoKAgRERG4ePHiQ9tt374doaGh0Gq1CA0NxfXr101VIhFRhVVqPtHKmDdvHiIjIxEWFoYtW7Zg7ty5WL9+fbk2qamp+Pjjj/Hll1/C0dER+fn5sLKyMlWJREQVZpKRaG5uLk6fPq1M4qzVanH69Gnk5eWVa/fFF19g9OjRcHR0BADY2tqiXr16piiRiKhSTDIS1el0cHZ2hkajAQBoNBo4OTlBp9PB3t5eaXf+/Hk0adIEQ4cORWFhIfr06YNx48ZBpVIZ3ZeDg02V10/mz9HRtqZLoFqiqvcVkx3OG0Ov1+Ps2bNYt24dSkpK8PLLL8PNzQ3h4eFGryM39w4MBlGhfvkDWPvl5OSbrC/uL7VbRfcVtVr12MGZSQ7nXV1dkZWVBb1eD+BeWGZnZ8PV1bVcOzc3NwQHB8PKygo2NjYICAjAqVOnTFEiEVGlmCREHRwc4OXlhcTERABAYmIivLy8yh3KA/fOlSYnJ0MIgdLSUhw9ehStW7c2RYlERJViso84zZ8/H3FxcQgKCkJcXBxiYmIAAFFRUUhNTQUAhISEwMHBAf369UN4eDhatmyJwYMHm6pEIqIKM9k5UQ8PD2zcuPGB5atXr1a+VqvVmDlzJmbOnGmqsoiIpPCOJSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCSYL0fT0dERERCAoKAgRERG4ePHiI9teuHABbdu2RWxsrKnKIyKqFJOF6Lx58xAZGYmdO3ciMjISc+fOfWg7vV6PefPmITAw0FSlERFVmklCNDc3F6dPn4ZWqwUAaLVanD59Gnl5eQ+0XbVqFXr27InmzZubojQiIikmCVGdTgdnZ2doNBoAgEajgZOTE3Q6Xbl2aWlpSE5OxsiRI01RFhGRNIuaLuC+0tJSvPnmm1i0aJEStpXh4GBThVVRbeHoaFvTJVAtUdX7iklC1NXVFVlZWdDr9dBoNNDr9cjOzoarq6vSJicnB5cvX0Z0dDQA4Pbt2xBC4M6dO3jrrbeM7is39w4MBlGh+vgDWPvl5OSbrC/uL7VbRfcVtVr12MGZSULUwcEBXl5eSExMRFhYGBITE+Hl5QV7e3uljZubG44dO6Y8Xr58OQoLCzF9+nRTlEhEVCkmuzo/f/58xMXFISgoCHFxcYiJiQEAREVFITU11VRlEBFVKZOdE/Xw8MDGjRsfWL569eqHtp8wYUJ1l0REJI13LBERSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJsDBVR+np6ZgxYwZu3rwJOzs7xMbGonnz5uXafPLJJ9i+fTs0Gg0sLCwwadIkdOvWzVQlEhFVmMlCdN68eYiMjERYWBi2bNmCuXPnYv369eXaeHt7Y/To0WjQoAHS0tIwbNgwJCcno379+qYqk4ioQkxyOJ+bm4vTp09Dq9UCALRaLU6fPo28vLxy7bp164YGDRoAADw9PSGEwM2bN01RIhFRpZgkRHU6HZydnaHRaAAAGo0GTk5O0Ol0j3xNfHw8nnrqKbi4uJiiRCKiSjHZ4XxF/PTTT1i6dCnWrl1b4dc6ONhUQ0Vk7hwdbWu6BKolqnpfMUmIurq6IisrC3q9HhqNBnq9HtnZ2XB1dX2gbUpKCqZOnYoVK1agRYsWFe4rN/cODAZRodfwB7D2y8nJN1lf3F9qt4ruK2q16rGDM5Mczjs4OMDLywuJiYkAgMTERHh5ecHe3r5cu1OnTmHSpElYtmwZnn32WVOURkQkxWSfE50/fz7i4uIQFBSEuLg4xMTEAACioqKQmpoKAIiJicHdu3cxd+5chIWFISwsDGfPnjVViUREFWayc6IeHh7YuHHjA8tXr16tfL1p0yZTlUNEVCV4xxIRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBJOFaHp6OiIiIhAUFISIiAhcvHjxgTZ6vR4xMTEIDAxEnz59sHHjRlOVR0RUKSYL0Xnz5iEyMhI7d+5EZGQk5s6d+0CbhIQEXL58Gbt27cK3336L5cuX4+rVq6YqkYiowixM0Ulubi5Onz6NdevWAQC0Wi3eeust5OXlwd7eXmm3fft2vPjii1Cr1bC3t0dgYCB27NiBl19+2ei+1GpVpWr8e+OGlXodmYfKft8ry6qRg0n7o6pT0X3lSe1NEqI6nQ7Ozs7QaDQAAI1GAycnJ+h0unIhqtPp4Obmpjx2dXVFZmZmhfpqXMkwXDYzvFKvI/Pg4GBj0v6eGxtr0v6o6lT1vsILS0REEkwSoq6ursjKyoJerwdw7wJSdnY2XF1dH2iXkZGhPNbpdHBxcTFFiURElWKSEHVwcICXlxcSExMBAImJifDy8ip3KA8AwcHB2LhxIwwGA/Ly8rBnzx4EBQWZokQiokpRCSGEKTo6f/48ZsyYgdu3b6NRo0aIjY1FixYtEBUVhYkTJ+K5556DXq/HggULcOjQIQBAVFQUIiIiTFEeEVGlmCxEiYjqIl5YIiKSwBAlIpLAECUiksAQJSKSwBClB0RFReHy5cs1XQaZie+//x7p6enK47179yI2tvru2Bo+fDj2799fbeuvaia57ZOqh16vV26lrUqrV6+u8nVS7bV582Y0btwY//M//wMACAgIQEBAQA1XZT4YombqwIED+OCDD6DX62Fvb48FCxYgMzMT77zzDvz8/JCamopx48bhmWeewbRp03D9+nU0bdoUANC1a1cMGzYMCQkJWL9+PUpLSwEA06dPR+fOnQEAvXv3RlhYGA4fPoycnByMHj0aw4YNU55buXIlWrVqhaysLCxcuFCZulCr1eKVV14x/RtSx6WkpGDJkiUoKCgAAEybNg2NGjXC22+/jcLCQlhbW2P27Nnw9vbG1atXMWjQIAwZMgQ//vgjioqK8Pbbb8PPzw+zZs2Cp6cnXnrpJQDAuXPnMG7cOOzZswcFBQVYtGgRzp49i+LiYnTs2BEzZ86ERqPB8OHD0aZNG/zyyy/Izs5G3759MWXKFGzatAn/+c9/sHDhQnz00UeYPn06MjMz8cMPP2DZsmUAgFWrVmHr1q0AgOeeew5z5sxBw4YNsXz5cqSnpyM/Px9XrlzBU089haVLl6JBgwY4cuQIPvroIxQXF0Ov12Ps2LEICQmpmTdfliCzc/36ddGxY0fx+++/CyGE+Pe//y0GDx4sjh49Klq3bi1+/vlnpe348ePFJ598IoQQ4urVq8LHx0d89dVXQggh8vLyhMFgEEIIcf78edGtWzfldb169RKLFy8WQghx5coV0a5dO3Hnzh3lubNnzwohhBg2bJhYvXq18rrc3Nzq2uy/rBs3bojnn39enDx5UgghRFlZmcjJyRE9evQQhw4dEkIIcfjwYdGjRw9RXFwsrly5Ilq1aiX27dsnhBBiy5YtIiIiQgghxPHjx0V4eLiy7kWLFonly5cLIYSYNWuW2Lx5sxBCCL1eLyZNmiS+/fZbIcS97/Nrr70m9Hq9uH37tvD39xfp6enKc/f7EkKITZs2iQkTJgghhPjhhx9ESEiIyM/PFwaDQUydOlUsWbJECCHEsmXLRJ8+fcStW7eEwWAQo0aNUvq7efOmKCsrE0IIkZOTI7p16yZu3rz50P7MHc+JmqFff/0VrVu3RsuWLQEAgwYNwpkzZ1BQUIBmzZrBx8dHaXvs2DEMGjQIAODu7q6MNAHgypUrGDNmDEJCQjBp0iRcv34dOTk5yvP9+vUDADRp0gSNGjV6YMasgoICpKSkYOTIkcqy/75Vl+T98ssv8PDwQPv27QHcm+UsNzcXlpaWeP755wEAnTt3hqWlpXJu0traGr169QIAtGvXDleuXAEA+Pn5oaCgAGlpaSgrK0NiYiIGDBgAANi3bx/WrFmDsLAwDBgwAL/99lu5c53BwcFQq9WwtbWFh4eHUefFjxw5gn79+sHGxgYqlQr/+Mc/cOTIEeX5rl27olGjRlCpVPD29lbWmZeXh4kTJ0Kr1WLMmDG4detWuVpqEx7OmyEhBFSqh89haG1tbfR63njjDcyYMQOBgYEwGAxo27YtiouLlefr1aunfK3RaJQJYsi0xENuGnzUPnB/mZWVlbJMrVajrKxMeRwWFob4+Hj4+/vDw8MD7u7uyjpXrFihnPb5b5XZHx63rz5snff3v/nz56N37974+OOPoVKpEBQUVG7frE04EjVDPj4+OHPmDM6fPw/g3on9Z555Bg0bPjhXqr+/PzZv3gzg3qxXR48eVZ7Lz89HkyZNAADfffcdSkpKKlRHw4YN4ePjgy+++EJZlpeXV9HNoSfw8fHB+fPnkZKSAuDeBcO///3vKCkpUb6fR48eRVlZGZo3b/7E9Q0YMACJiYnYuHEjBg4cqCzv3bs3Vq1apYRjXl6eMoJ9nIYNGyI/P/+hzz3//PPYvn077ty5AyEEvvvuO2X0/Dj5+flwd3eHSqXCoUOHcOnSpSe+xlxxJGqG7O3tsWTJEkyZMgVlZWWwt7fHu++++9AJqmfPno1p06Zh+/btaNGiBdq3bw8bm3uTzs6cORP//Oc/4ezsDH9/f9jZ2VW4lvfeew8xMTHQarVQq9XQarWIjo6W3kb6f3Z2dli+fDkWL16MwsJCqNVqTJ8+HcuWLSt3YWnp0qXlRqCP4ubmhpYtW+Knn37CBx98oCyfNWsW3n33XYSFhUGlUsHS0hKzZs165Mj0voiICMTGxmLt2rWYNm1aued69OiBs2fPYsiQIQCANm3aYNy4cU+scfLkyYiJicHq1avh6ekJT0/PJ77GXHECklru7t27sLCwgIWFBbKzszF48GB88cUXaNGiRU2XRvSXwJFoLXfx4kVMnz4dQgiUlZVh/PjxDFAiE+JIlIhIAi8sERFJYIgSEUlgiBIRSWCIEhFJYIhSndC7d28cPny4psugvyCGKBGRBIYo1XpTp05FRkYGxo4dCx8fH3h7e+Orr74q1yY0NBR79uwBAHh6emL9+vUICAhAx44dERsbC4PBoLT97rvv0LdvX3To0AFjxozBtWvXTLo9VLswRKnWe/fdd+Hm5oaVK1ciJSUFixcvVua3BIC0tDRkZ2eje/fuyrLdu3dj06ZN2Lx5M/bt24dNmzYBAPbs2YPPPvsMH3/8MY4cOQJfX19MnjzZ5NtEtQdDlOqcwMBAXLp0SZlIesuWLejbt2+5+86joqJgZ2cHNzc3jBgxAomJiQCAf/3rX4iOjoaHhwcsLCwwduxYnDlzhqNReiSGKNU5VlZWCA4OxtatW2EwGJCYmIiwsLBybVxdXZWv3d3dkZ2dDQDIyMhQ/nqAn58f/P39IYRAVlaWSbeBag/eO0910oABAzBt2jT4+vqiQYMG5SayBu5NG/j0008DuBecTk5OAO6F69ixY9G/f3+T10y1E0eiVCf8/e9/Lzc3po+PD9RqNRYvXvzQQFyzZg1u3boFnU6H9evXK7P8DxkyBKtWrcLvv/8O4N68l0lJSabZCKqVGKJUJ0RHR+PTTz+Fn58f1qxZA+DeDO/nzp174FAeuPcXKwcOHIjw8HD07NkTgwcPBgD06dMHL7/8Mt544w20b98eWq0WBw4cMOm2UO3CWZyozoqPj8e3336LDRs2lFvu6emJXbt2oVmzZjVUGdUlHIlSnVRUVIRvvvkGERERNV0K1XEMUapzDh48iM6dO8PBwQFarbamy6E6jofzREQSOBIlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKS8H/NxOuzAK8adQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(5,7))\n", + "ax = sns.barplot(x=\"type\",y=\"AveragePrice\",data= avocadoData)\n", + "plt.title(\"Avg.Price of Avocados by Type\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "0ade032a-91ce-45fd-ba62-a4d3b755f995", + "metadata": {}, + "source": [ + "### Correlation\n", + "There is high correlation between:\n", + "* 4046 & total volume \n", + "* 4225 & total volume\n", + "* 4770 & total volume\n", + "* total bags & total volume\n", + "* small bags & total bags\n", + "* We can observe that 4046 avocados are the most sold type in US.\n", + "* Since there is high correlation between Total Bags, Total Volume & Small bags, \n", + " we assume most sales comes from small bags" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "03fc6ada-cfa9-4e2e-856d-8eb4104437c4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAGrCAYAAADQPRFYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd3hU1dbA4d+ZPum9A4EAoXdEpfcaIl1AQC7iRYRrvRZEQUDFgqCin1JEFL1IE6T33hGkREgIhBBI7z1Tvz8GJoRJIECKift9njzMnFlzZi/OnsyaffbZkcxmsxlBEARBEARBEO5JVtkNEARBEARBEISqQBTOgiAIgiAIglAKonAWBEEQBEEQhFIQhbMgCIIgCIIglIIonAVBEARBEAShFEThLAiCIAiCIAilIApnQRAEQRAEoUr4+OOP6datG8HBwURERBQbYzQaef/99+nRowc9e/Zk9erVZfb6onAWBEEQBEEQqoTu3bvz888/4+/vX2LMxo0buX79Ojt27ODXX3/lq6++4saNG2Xy+qJwFgRBEARBEKqENm3a4Ovre8+YLVu2MGzYMGQyGW5ubvTo0YNt27aVyesrymQvgiAIgiAIgvCQMjMzyczMtNnu5OSEk5PTA+0rLi4OPz8/631fX1/i4+MfuY0gCucKs1kZXNlNKHOfhCyr7CaUC6NeX9lNKHMaB/vKbkK5MJtNld0EoZQkSZzgrCqcPF0quwnlon23oMpuQrl47SmpsptQJjXO1c+nsHDhQpvtU6ZMYerUqY+8/7IiCmdBEARBEAThoUnKRy/ex40bx6BBg2y2P+hoM1hGmGNjY2nWrBlgOwL9KEThLAiCIAiCIFSqh5mSUZI+ffqwevVqevXqRXp6Ort27eLnn38uk32Lc2eCIAiCIAjCQ5MppEf+Ka05c+bQqVMn4uPjGT9+PP379wdg4sSJnD9/HoDQ0FACAgLo1asXw4cP58UXX6RGjRplkqtkNpvNZbIn4Z7EHOeqQ8xxrjrEHOeqQ8xxrjrEHOeq5e8wx3m7e+NH3kfvlLAyaEn5E1M1BEEQBEEQhIf2ICPGVZ0YAhAEQRAEQRCEUhAjzoIgCIIgCMJDK4tVNaoKUTgLgiAIgiAID+2fNFVDFM6CIAiCIAjCQxMjzoIgCIIgCIJQCmLEWahyak0eTcDYwTg2qU/sr5s4N+Htym5SqQ0b4MvIQf6oVTIOHEvh8++uojcUv0ri65Pq0LyxMwG+Gj7+OpJte5OsjykVEs+PqUW39h6oVTJ2H0rmy6VRGI0Vv+Li8FB/Rg+piVolY/+RJD775nKxOdXw0zJ5fB2aNHRCLpO4eDmLBYsiibmZB0DtmnZMmRBEcF1HXJyUdAjZX9GpFDGkrzcjBvqgVkkcPJHOF0ujSzxWrzxXi2YNHfH3UfPZd9fYcSDF+thLE2rSo4O79b5cLmEwmBn4rzPlnsPdhvTz5umBvqhUMg4eT+OLpddKzmliIM0bOuLvo+Gz76LYvj+5yOPjh/vTp4snGo2MyGu5fPl9NNE38ioiDRvVNq/q2AerYU4AA7o4M6iHKyqlxLGzOXy3KhGDofjYSSM8aVxXi6+nkq9/SWTviSzrY10ec6R/Z2d8PVXk5Zs4cCqLnzelYCrn1Sjzc9M5sGY6NyIOo7F35bE+r1C3ZUixsecO/sDZfUsw6POp3bQXHQfNRK5QAZCWcIXDG2aRdCMMrYMb7fr9l9pNet56LJK9v75JZmoMAJ7+jXly4Du4etct3+SEhyZW1agmCmITifzwG278sLaym/JA2rZwYdRgf16dGcaISX/g661h/NMlL1IeeS2X+YuuEnE1x+axUYP9aRDkwLMv/8noKaepV8eesUMDyrP5xXqspSvPDKnJy9PPMmzCcfx8tEwYHVhsrIO9gkMnUhg16SQhY45yMSKLudObWB83GM3sOZTE3C/DK6j1JWvTzImnQ3347wfhjP7PeXy91IwbWvKfML0SbSmwLl/LtXnsi6XXCRl/xvqz90gqB46nlWfzi9WmmTMjB/rx+pxwRk89i6+3mnHD/EuMvxqdyxffR3M5yjanzo+70aeLJy/PvMigCaf5KyKbt1+sU57NL1H1zas69sHqlxNAiwZ2DO7hysyFsUyaGY23u5Kn+7qXGH8tVsei1UlcvVFg85haJfH92mSeffsqb86LoVmwltBu5b/W9OH1s5DJlYx59xDdnv6Ug7+9T2r8ZZu4mPCDnN23mP4TlzHqrd1kpcZwaudXAJiMBnb8OJmaDbowbuZxOg6exd6Vb5CeFAWAnZMXPZ/5gnEzjjP2vaPUatSV3b+8Wu65lTVJLj3yT1VRqsI5IyODpk2b8sEHH5R3e8rEmDFj6N69O6GhofTp04fly5eXGPvFF1+wZcuWCmxd+Yhfv5OE33ejS0mv7KY8kD5dPNmyO5FrMXlk5xj5cfUN+nT1KjF+/bZ4Tp/PQKe3HWp4so0bazfHkZVtICPTwLrNcfTrXvK+ykvf7t5s2hlP1PVcsnIM/LAymr7dfYqNvXg5i80748nKNmA0mvl1ww1qBdjh5Gg5GRRzM4/NO+OJum77RaGi9erkzta9yUTfyCc7x8iKdbH06uxRYvzvO5M4E5aFXnfvYSGNWkbHx1zZcSD5nnHloVdnD7buSyL6Rp41p973yGnDjkTOXMgstv/5eqm5EJ5FXGIBJjPsOpRCLX9teTa/RNU2r+rYB6thTmAZJd59LJOYeB05eSZWb0+lazvHEuO3HczgfEQeer3tSPv2Q5lcvJqPwQipGUYOnMqmQZ3y7YN6XS5RF3bSptd/UKrt8andmlqNunH5zO82sRGn1xPcdghuPvVQ2znTqvtkIk79BkB60lVyMpNo2vFZZDI5/nUfxzuwJZdPW/aj1jrh6BaAJElgNiNJcjJSrpdrbuVBJpce+aeqKFXhvHHjRlq0aMHmzZvR6XRl9uKGks7ZlIHp06ezYcMGli1bxpdffsmlS5dsYoxGIy+99BL9+vUrt3YI9xZY047Ia4VF4ZVrObi7qnByePBZRJJk+SncAF4eauzt5GXQ0tKrXdOeyKhs6/3Ia9mWnBzvn1OLJs4kpxaQmVV+742HVStAy9XowlGuK9fzcHNR4uTwaP+/HR9zJSPTwLmL2fcPLmOBAVqu3JlTdC5uLg/X//YcScHfR0OArwa5XKJ3Jw9Ons0oy+aWWnXNqzr2weqYE0BNXxXXbhbWC9duFuDqpMDB7tFPdDcK0hATV3a1SHEykq4hSTJcPGtbt7n7BpOWYDvinJYQibtvgzviGpCXnUx+ThoU98eZzdjs54cZbVk6vTmHf59Dy67/LrtEKogkkx75p6oo1W/RtWvX8sYbb/Ddd9+xZ88eOnfuTJcuXdi6dStubm4AzJ07FwcHB6ZMmcLZs2f57LPPyMmxFET/+c9/6NKlCzdu3GDIkCE888wzHDlyhIEDBxIYGMiCBQsoKCjAaDQyadIk698dj4yM5O233yYvL48GDRpw/fp1XnjhBbp27UpiYiJz5swhNjaWgoIC+vfvz6RJk2za7uvrS+3atYmKiiIjI4MPP/yQNm3acP78eV544QW2b99OkyZNeOaZZ9DpdMyfP5+DBw8ik8moUaMGX3/9NQCLFy9m+/btGI1GvL29mT17Np6enmVyEP7JtBo5OblG6/3sW7fttHIysx+seDx+Oo0hA3w5fSEDuUxiSD9fANRqWZHXKG+WnArbnp1zR073KIg93VW8OqkeC5deKfc2PgytRkZOXuH/4+3/U61GTmb2w///9uzkzs6DKfcPLAdaTdG+Yc1JKyPzAeuN1DQ95y9lsXx+M4xGM4kpOl6ffbEsm1tq1Tqv6tgHq1lOYBnxzs0vHBXPzbPc1mpkZOc+/OTkbu0cqVtTwzf/S3zkNt6LXpeLSlN0hFylcURfYHv2T19QNFalcbi1PQcXrzpoHdw4u38pzTqOI/bKceKiTuJX57Ei+3j2/ZPodblE/LEeR5eSp+r8XUnyf87M3/sWzpcuXSIjI4PHH3+cpKQk1q5dS58+fejevTubNm1i7NixGAwGNm3axMqVK8nMzGTGjBksWrQILy8vEhMTGTp0KJs2bQIgPT2doKAgpk6dClimgfzyyy/I5XKSk5MZPHgwHTp0wNnZmTfeeINx48YRGhrK+fPnGT58uLVdb775JpMnT6Zt27bodDqeffZZmjZtSvv27Yu0PzIykqtXrxIcHExSUhIRERHMnDmTd999F4Dt27dbYxctWkRMTAzr1q1DpVKRmpoKwIYNG7h+/TqrVq1CJpPxyy+/MHfuXObNm/eI//3/PD06efDav4MAOH8xk7x8I/bawpGV27dz8x78A+OntTdxsFewdF5z9Hozm3YlUK+2PekZ+rJpfAl6dvbivy/WB+DcXxmWnOwK31q3R7zvlZOLk5LPZzXjty2x7DqQVGJcRerW3o1XnqsFwPlL2eTlm7Arcqwsvyjz8h/+w93TTUnzho7MX3ztkdpaWt3bu/PKxEAAzl/KKiYny+28vAf/YB871J/gIHtGTD5Darqenh09+Ozdhkx4/TwF9zmt/qiqa17VsQ9Wx5wAOrVx4N8jLFPjLl7JI7/AhFZTWEzdvp2X//B95rGm9jwT4s7Mr2PJyinfvqdU2aErKPotU1+QjVJtbxurtkOXXxh7+7ZSbY9MrqTX2K85smE2Z/cvxtO/CXWa9UEuVxX7mo3aPc2Ps59g+Gtb0DqUPCdcqDz3LZzXrFlDaGgokiTRq1cv5syZQ0JCAoMHD+aDDz5g7NixHDhwgKCgIAICAti/fz83btxg4sSJ1n1IkkR0dDSurq6o1Wr69u1rfSw1NZVp06YRHR2NXC4nIyODqKgo6tatS0REBCEhlitYmzZtSnBwMAC5ubmcOHHCWtgC5OTkcOXKFWvhPGfOHBYsWIBarWbWrFnUqVOHpKQkatWqRcuWLYvNde/evbz11luoVJYOfXs0fc+ePVy4cIFBgwYBlikeDg4Opf9fFqx2HUhm1x1z7t59uR5BgfbsPWIZGQkKtCMlTffAo80AOp2JL5ZE8cUSy0UXIT29ibiaU+5XXu/cn8jO/YWjHzNeb0Dd2vbsOWQpgOvWdrDkVMJos6O9gs9nNeXwiRR+XPX3mdu253Aqew4XvsemTalNnZp27D9mudioTi07UtP1jzgq5kFYRDZxieV72vW23YdT2H24cBRu2tQggmrZsf+YJc86tbSkpj9c/wuqZce+o6kkp1q+qG3fn8zksTWpFaAt9mLWslRd86qOfbA65gRw4FQ2B04VFo8vj/Um0E/FkVsLegT6q0nLNDz0aHPLhna8MNKLD76N5Xo5T9MAcPYMxGwykpF8DWePQABS4sJx9a5nE+vqXZeUuEsENe9rjdM6eKCxdwUsUzxCJq2wxm/4+mnqtX6q2Nc1m00YdPnkZCRUqcK5Ks1RflT3LJx1Oh0bN25ErVazYcMGAPR6Pb/99huTJk0iJyeH8PBwfvvtN2tRaTabCQ4O5ueff7bZ340bN9BqtZZJ8LfMnDmTbt26sXDhQiRJonfv3hQUFGA2m5EkqUjsbSaTCUmSWLNmDUqlsti2T58+na5du9pst7OzKzFfc3FzkW5tf+GFFxg6dGiJz61sklyOpJAjyWVIcjkytQqzwYjZWHFTFB7G9v1JvDWlLjsPJJGSpmPssBps21vyKTiFQkJ2ay6zQi6hUkroDWbMZvBwU2E2m0lJ09OovgNjhwXw8deRFZiNxbY9CUx7uQE79iWSkqpj3PCabN0dX2ysnVbOvFlNOX8xk2+XRxUbo1JKKBUy622zmRKXqipPOw+m8N9Jtdl9OIXUdD2jB/myY3/JFx4p5BKSDJAkFAoJpdKyNNadb7OeHd35dWNc+Te+BDsPJPPGC7XZfSiZlHQ9zwzyt1mK7U63c5Iky1Jfd+Z06Uo2ndq5sfdICumZBrp3cEcul7gZn1+BGVlU27yqYx+shjkB7D+ZxZTRXhz4I4u0DCPDeruy93hWifEKObc+82/1QYWEwWjJq0k9LS+P9ebjJXFEXrdddaM8KFV2BDbuyakdX9Jp6BxSYi9xLWw3oZP/ZxNbv9VT7Fv1NvVahmDn6MmZPf9H/TaDrI+nxIVbim+zibCjv5CblURwm8EA1qXu3HyDMejyOLl9AWqtEy5eQRWSZ1mpSnOUH9U9C+ddu3ZRp04d/ve/wo5y5swZ3nzzTSZNmkRoaCjLli3j5MmTfPLJJwC0bNmS6Ohojh07xuOPPw7AuXPnaNq0abGvkZWVhb+/P5IkcfjwYaKjowFwdHSkbt26bNq0iZCQEMLCwoiIiADAwcGB1q1bs2jRIl588UUA4uLiUCgUjzTvuFu3bixfvpzmzZtbp2q4ubnRrVs3fvzxR3r27ImzszM6nY6rV6/SoEGD+++0gtSd9gL135tqvR8wOpSIWV9xefbCSmzV/Z04k87K9TdZMKvxrXWcU1m2Msb6+CfTG3LuYiYr1t4E4LP3GtGyiTMATRs48d/JdXnp3Qv8GZaJn4+Gaf+pi6uzksRkHd+tiOZUJVzEdPx0Gr+sjeHLD5qjVsvYdySZpT9fsz7+2cymnA3L4KfV1+n0hAeN6jtRu6Z9kZU3xrx4koSkAny81KxZ+rh1+551nYhLyGfYc8crMiUATp7N5NeN8cx7NxiVUsbBE2ksXxNrffzDN+tx/lIW/9tg+ZLw8bT6NG9kmffXJNiBVycG8tqscM5etHx4Nqxnj4eb0jrSVhlOns3g19/jmfduQ8t6xydSWb76pvXxj96qz/lLWfyy3lKEfPxOMC0aOQHQJNiR156vzauzLnL2ryxW/h6Hq5OS7+Y2QaOWE5uQz/vzIyt0fn31z6s69sHqlxPAmYu5rN+dzqwp/qhUMo79mc3KrYVnRaZP8uXilXzW7rS0873J/jSpZ1kpo0EdLZNHevHulzcJi8xjWB9X7DQy3plUOPf34pU85nxbvl8OOgx6j/2r3+GnWe1R27nQcdAM3HzqkZ0Wy6rPBzD81U04uPpRI7gjzTtPYNOicZZ1nJv0ok3Pws/jy6c3cOnkGkxGA76Bren33PfWNZ51+Vkc/n0OORkJKJRqPAOa0nfCEhRKdbnmVtb+SSPOkrmkYVbgueeeo1u3bowaNarI9h49evDRRx/h7+9P9+7drdM2bjt37hyffvopGRkZ6PV6atSowbfffktsbCxDhgzh+PHCD/3Dhw/z/vvv4+rqSnBwMGfPnmXatGm0a9eOiIgIpk2bhslkonHjxoSFhTFt2jTatGlDUlISH330EZcvW65Mtbe354MPPiAoKIgxY8bwr3/9y2bE+fjx43z88cesW7fOuu2tt94qcnHgvHnzOHjwIEqlklq1avHll18C8MMPP7B2rWWNZLPZzMiRIxk9enSp/6M3K4NLHVtVfBKyrLKbUC6M+vKdE10ZNA628/KqA7O5nOfhCGVGkv45Fw9VdU6e5b9GcmVo361qjeKW1mtPVX7RerLD4/cPuo+2h46VQUvK3z0L58qWm5trndoRGRnJmDFj2LZtG87OzpXdtAcmCueqQxTOVYconKsOUThXHaJwrlr+DoXzqc5PPPI+2uw/WgYtKX9/6z+5ffr0aT755BPr3OPZs2dXyaJZEARBEAShupJk/5wvxn/rwrlDhw506NChspshCIIgCIIglEBcHCgIgiAIgiAIpfBPujjwnzO2LgiCIAiCIAiPQIw4C4IgCIIgCA9NTNUQBEEQBEEQhFIQFwcKgiAIgiAIQimIEWdBEARBEARBKAVxcaAgCIIgCIIgCEWIEWdBEARBEAThoYmpGkKZq45/nvqNjeMruwnlQuWmrOwmlDlJWT1/qdVo71fZTSgXsafjK7sJZc6sN1d2E8qFb2vvym5CmfP1D67sJpSLjxI/rewmlBNtZTdAXBwoCIIgCIIgCKXxTxpx/ud8RRAEQRAEQRCERyBGnAVBEARBEISH9k8acRaFsyAIgiAIgvDQROEsCIIgCIIgCKUgLg4UBEEQBEEQhFIQfwBFEARBEARBEIQixIizIAiCIAiC8NDEHGdBEARBEARBKAUxx1kQBEEQBEEQSkGMOAuCIAiCIAhCKYjCWfhbGjbAl5GD/FGrZBw4lsLn311FbzAXG/v6pDo0b+xMgK+Gj7+OZNveJOtjSoXE82Nq0a29B2qVjN2HkvlyaRRGY/H7qky1Jo8mYOxgHJvUJ/bXTZyb8HZlN+m+FC5ONJ4/G/cuT6BLSSfywwXEr9tiEyeplNSb/go+oX2QadTE/7aV8OlzMRsMAGhq+NFw7nSc2zTHpNOTsHEHEe9+jNlorOiUULg40eizWbh3egJdajqRc78gYX0JOb39Ct4hvZFpNMRv2ELEjI+tOXUJP14kXq5Rc+PHXwl/96MKyeNuMntHfCa9gn2z1hizMkj63zKyDu8tNtZjxDicuvRCptFSEBVJwvdfo7sRDUC95euLxEoqFek7NpG47Jtyz+FuCmcnGnz4Pm4dnkCflsaVeV+SuHGrTZykUhL0+kt49bMcq8RNW7k85xPrsQLw6t+HwKn/RuPriy45mYtvvkvGqTMVmY6VwtmJhp+8j1vHJ9GnpnHlky9J+L34Phj05st4D7DklfD7Vi6/X9gHO4UdKxIv16i58dOvXJ45t0LyuJPMwRG/ya9i37w1xqxMElcsJfNQ8f3Pc+SzOHftjUyjJT8qkvglX6GLsfQ/pac3Ps//B239hpj1ejKPHSTh+2/AZKrIdKwkjR3avqNRBjbAnJdD3v7f0V88ZROn7fU0qsZtCzfIZGA0krHgdQAcRr6E3C/QmocpK52sJbMrIgVL+9QwtJOK+gEycvLNbDth4M8rxf/+7dBUTpfmSpQKOB9l5LeDeoy3/vufaCynTX0FPm4Sf0YaWb1fb31ei7pyBndUWu9LEqgUEl+uy+dm8t/vM1koReE8bNgwdDoder2ea9euUa9ePQAaNWrERx+V/GF39OhRzGYzTz755H0bsXr1ao4cOcL8+fOLbP/mm2+Iiori008/LbL9tddeo169ekyaNKnEfc6fPx+j0cjrr79+39evCtq2cGHUYH9emRFGcqqOOW82YPzTNVi04nqx8ZHXctlzOIV/j6ll89iowf40CHLg2Zf/RCaDj6Y1ZOzQAJb9GlPeaTywgthEIj/8Bs9eHZFp1ZXdnFJpOHc6Jr2e/Y0749ikAS1+/oassHBywq8Uias99TmcmjfmSOenkORyWvy0kNqv/Jurn35t3Y8uOZUDzbqicHKk1erFBIx/mpglP1d4Tg3mvINJp+dAiy44NG5Ay+Vfk/1XODkRRXMKfHECjs0acbTHICSZnBY/fEXtl57n6jxLAbkvuJ01VqbV0unPfSRs2lGhudzJe8KLmA0GIp8fgSYwCP+3ZlMQfdVaEN/m+HgnnLv05vqMV9EnJeLx9Dh8p/yX6LemAHB53FPWWEmtpu6iX8k6dqBCc7mt/sxpmPR6Dj/RFYeGDWi2+CuyL0aQG1n0WNV6/l84NmnMif5DkORymn73JbUmT+Tal/8HgGv7xwn670uEvfwGmWcvoPLyrIx0rIJnv4NJr+dQmy44NGpA8+8Xkn0xnJzLd+X1wgScmjbmeK/BSHI5zZZ+ReDU54mab+mDBxo/bo2VabV0OLWXpC07KzSX23wmTsVsMBAxYTiawCBqTPuA/Oir1oL4NscnO+HcrQ/R019Gn5SI58hn8f/Pm0T9d7JlP8//B0NGOpefG4HM3oGa732Ma5+BpG1ZX9zLljttz+FgNJCx8G3kXgE4DHuBrKQbmJLji8Tl7VhJ3o6V1vt2/Z7BbC5aLObtXIXu3NEKaffdnmqvxGgyM/unfPzcZYzvqyIu1URCWtE21g+Q0aW5ksWbC8jMMTOml4qebRRsO2H5spaZY2b3aT31a8hRyou+xp+RRv6MLCzGW9eX072VosoVzf+kOc73zXT16tVs2LCBRYsW4ejoyIYNG9iwYcM9i2aAY8eOceTIkUdq3ODBg9m1axfZ2dnWbdnZ2ezZs4dBgwY90r6rmj5dPNmyO5FrMXlk5xj5cfUN+nT1KjF+/bZ4Tp/PQKe3HXF4so0bazfHkZVtICPTwLrNcfTrXvK+KlP8+p0k/L4bXUp6ZTelVGR2Wrz69+TK3K8w5uaRfuIMSdv34TssxCbWs1cXri/5GUN6JvqUNGKW/Iz/yMJ+rakZQMLv2zEV6NAlpZCy5zAOwUEVmQ5gKS68+vXk6qcLMebmkXHyDEk79+E7pJicenQh5vtfLDmlpnH9+1/wG1H8e9W7f090yamkH/+jvFMolqRW49iuA8mrlmMuyCcvPIzsU0dx6tjdJlbp5UNueBj6xHgwm8g8uAeVv+2XUgDHdh0xZKSTd/FCeadgQ6bV4tmrB1ELvrYcqz/OkLx7Pz5PDbCJde/WmRs//oIhw3Ksbvz4C75DC78A1P7PC1xbuIjMP8+D2YwuIRFdQmJFpmMl02rx7NODq/Nu5XXqDMm79uEz2DYvj+6difnh58K8lv2C77CnitkrePXriT4llfQTFd8HJbUGp3YdSPrfD5jz88m7ZOl/zp172MSqvHzJu3QBfUI8mExkHNiNKqCw/ym9fMg8sh+zXo8xPY2cP0+irlF8/yx3ShXK4BbkH9wMeh3Gm1fRXz6PqvFj939e/RboLhy/d1wFUSqgSW05O04Z0BngWoKJv6KNtKwnt4ltVV/OyXADCWlm8nSw+7SBNvULxyXDrpn4K9pEbv79i+HW9eWcjqj4s4qPSpJJj/xTVTzyV4Rvv/2WAQMGMGDAAKZNm0ZeXh4XL15kzZo1rFu3jtDQUJYsWYJOp2PChAkMHjyY/v37M23aNPR6/T337ePjQ6tWrdiypfB03ObNm2nTpg3e3t4lvv7d5s+fz2effVbs/fnz5/Paa6/x3HPP0aNHD1599VUuXLjA2LFj6dGjB/PmzbM+LyEhgalTpzJ06FBCQkJYvHjxI/3fPYjAmnZEXsux3r9yLQd3VxVODg8+20aSLD+FG8DLQ429ne0vBOHB2NephdloJPdq4YhRdlg4DsF1bYMlkO48EJKExt8HhaMDADGLV+D9VF9kWg1qHy88uncgec/h8k7Bhuvou44AACAASURBVH2dWphNRnKjCnPK+isc+/rFFPF3dS5JktD4+SC/ldOdfIcNJH7t7+XS5tJQ+QZgNpnQx920biuIjiq24Mg8sg+Vjy9KX3+Qy3Hu3IOcs7anngGcOvck88Cu8mr2PdnVthyrvGt39L9L4djXsz1WUnHHytcHuYMDyGQ4NmmM0s2Vdrs28sTBHdR7721k6so562N3qw/m3dkHL0ZgX6+495V01/uKkvvgkIHEr9tYHk2+L5WfP2aTCd0d/S//2pVi+1/G4b2ofPxQ3ep/Ll16kvPnSevjqZt/w6l9FySVGoWbO/Yt25Jzpvj+Wd7krl5gMmFKK/ySZUy6idzD957PU9ZvgSkvG2NMZJHtms4DcZo6F4fRr6CoUa9c2lwcT2cJsxmSMwqL3bgUM96utmWTt6uMuJQ740w42knYPeDbxcVBoraPjD8uV8XCWfbIP1XFI7V0z549bN68mZUrV7Jx40YKCgr49ttvadiwIUOHDmXw4MFs2LCB5557DoVCweeff866deussevX3/800pAhQ1i3bp31/rp16xgyZMg9X/9BXbhwgQULFrBt2zYiIiL48ssvWbJkCevXr2fVqlXExFimMLz++uuMHz+eNWvWsHbtWnbv3s2xY8fus/eyodXIycktfDNl37ptp33wYvf46TSGDPDF2UmBm4uSIf0sv9DU6qrTcf+u5PZ2GLKyi2wzZGUht7e3iU3ec4iaE59B6e6KytOdms+NBkCm1QCQdvQUDsFBdI08Rqeze8j8M4ykrbvLP4m7yO3tMGTenVM2CgfbnFL2HqLmhNEo3Sw51fjXKMs+buV0m9rPB9fH2xC7uvIKZ5lGiyk3p8g2U24OMo3WJtaQlkrexQvUWfA99X/aiMPjnUhabvu7RuHuiV2jpmTur5xT/3I7bTH9Lxu5vZ1NbMqBQ9QYN8pyrDzcCRhbeKxUHu7IVEo8+/TgzMjxnBo4HMdGwdSaPLFC8rib3M72fWXMykbuYJtX6r5DBIwv7IMB4y3vK7nGtg+6tGtN3JrK6YMl9z/bnAxpqeRevEDQwh9o8L/NOD7RiYRlhf0vN+wc6hq1CF6xgXqLV5J/5TJZJyr+SzYAKjXmgvwim8wFeUgqTQlPuPW0Ju3QXzhRZFvevvVkfjeTzG+mU3D2CPZD/o3MxaPMm1xse5QS+bqi2/J1ZtRK21i10vJYYdzt7Q82itq6npyoeBNpWVVrmsY/zSNVSkeOHCEkJAQHBwckSWL48OElTs8wmUwsWrSI0NBQQkNDOXHiBBcvXrzva/To0YOoqCiuXr3KlStXiI6Oplu3bg/8+vfSqVMnHBwcUCgU1K9fnyeffBKVSoWDgwOBgYHExMSQnZ3N6dOnef/99wkNDWXYsGEkJydz5cqV+7/AQ+jRyYOtP7dj68/t+GR6Q/LyjdjfUSTfvp2b9+DfTH9ae5PLV3NYOq85X3/YlEMnUtHrTaRn3PsMgHB/xpxcm4JS4eCAMSfHJjZqwSIyz1/k8d1raLt5BYlb92DS6dElp4Ik0XLldyRu2c2e2m3Z16A9Chcn6r37akWlYmXMyUXheHdO9hiyi8npq0VkhV2i3Y7VtFm/gqRtd+R0B7+hA0k/eYb8mJs2+6gopvw8ZNqiRYrMzg5Tvu1ZK4+hz6AJCubKC6OJeGYAKWtWEPDeJ0iqokNKTp17kHcpDH1SQrm2vSTG3LwS+l+uTWz0N0vI+iucthtW0WrVjyTtvHWsUlIx5VsKn5s//Q9dUjL6tHRilv2Ee5eOFZLH3Yy5tu8ruYM9xmzbvK4tXEx22CUe27KK1mt/InlHYV538h0cQvqpM+TfqJw+aMrPQ2Z3V//T2mPKt83Jc/gYNEH1uTxxJJee7kfy6hXUnHmr/0kSNd/9iKzjhwkfFULEuMHI7R3wGvNcRaVSlK4ASV20SJZUGsy6/BKeAJKjC4qadW2maRjjokFXAEYD+gvHMdy8iqJO43Jp9t10ejNqVdFtaqVEQTEfkwV60KgKi2SN6vb2ByuAW1XRaRpA4dnGR/mpIsp8iFEqIfkNGzZw7tw5fvnlFzZu3MiIESMoKCi47/5UKhUhISGsW7eOdevWERISgkqlKjG+uNdXKBSY7ri6WKcr+jVSfcfpR5lMZnPfYDBgMpmQJIm1a9da53nv2rWL0aNH3zeHh7HrQDJ9Rx+n7+jjvDHnIteu5xIUWPjBERRoR0qajsxswz32UjydzsQXS6IYOvEPRk4+TWaWgYirOZV1AXa1knM1GkmhwK52Tes2h8bBZIdH2sSa8gsIn/YhB1t05/BjfdGnpZN5LgxMJpSuzmgDfIlZ+gtmnR59WgaxK9fj0aPiC5ecq9FIcgXaO3JybBRsc2Eg3Mpp+occatODI+37ok/PIPP8XzZX9/sMDSFu9YZyb/u96OJuIMnlKH38rNvUtepQcNeFWbe3Zx7djyE1GUwmMvfvRG7vgCqgZpE45449yKik0WaA3Khbx6rWHf2vQX2bC+gATAUFXJ71EUc69uRYt/7o0zPICrMcK0NmFvlx8TYXalWW3Nt9MPCOvBoGk3O5mPdVQQERMz7i8OM9OdqpH/q0dLIuFNMHB4cQX0mjzQC62JtIMrll+s8t6sB79L8jhf0vY+8O5A6OqGvUQu7giNLTi7St6zEb9Bizs0jfux37VveZU1xOjGmJIJMhcy28mFTu5Y8xOa7E56iatMN4MwpTRsp99m6GCqqvkjLMyCRwdyp8QV93iYQ02w/KhDQTvu53xsnIyjWTe/8Sx6qWtwwnO4lzUVWzcK7oOc5RUVGMGDGC3r17M2LECK5du2YTk5KSwvPPP09ISAh9+vRh5syZGAwPXjPd7ZEK5yeffJLNmzeTk5OD2WxmzZo1PPHEEwA4ODiQlZVljc3KysLV1RV7e3syMjLYvHlzqV9n6NChbNiwgd9//906TeN+r3+nGjVqcOHCBcxmM1lZWezbt++Bc3VycqJFixYsXbrUuu3mzZskJyc/8L4exvb9SfTr7kWtAC0O9nLGDqvBtr0lX6ijUEiolBKSBAp54W0ADzcV7q6W802N6jswdlgA368sfnWOyibJ5cjUKiS57I7bf9+52KbcPBK37CLozSnI7LQ4t22JZ5+uxK22nUep9vFC7W35cHFu3Yw6r0ziyieWK//1qenkRscQ8OwIJLkchZMjfsNDyQoLr9B8AEx5eSRu3UXQay8i02pxbtMCz15diVtbfE6qWzk5tWpG7Zf+zdV5XxeJcW7dHI2PV6WupgFgLigg68RhPIaPRVKr0QY3wqHNE2QetJ0Ok381HMfHOyJ3dgFJwqljdyS5An18rDVGU78RCjcPso4drMg0ijDl5ZG0Yze1X55sOVatWuDRowvx6zfZxKq8vawrZTi1aErgi88TdWtFDYD4tRsIGDMSpZsbCidHAsY9Q8reylkpxJSXR9L2XdR59VYfbN0Cz55diF93n7xaNiNw6r+tK2rc5tSqOWofbxK3VF4fNBfkk3n8EJ5Pj0NSa9AGN8ax7ZNk7LedH58fGY7TE50K+1/nHkhyObq4mxizMtElxOHaO8RSsNrZ49KlJwXXrlZCVoBehz7iLJoO/UGpQu5fB2W9ZujCTpT4FFXjx9CdLzrtUVJrUdRuCHIFSDKUjdqgCKiLIer+Z6rLgt4AYdeM9GqjQKmwFLaNA+WcKWb+8ekII22DFXi5SGhV0K2lglMRhQWaTAKF3PKvTFZ4+06t68s5H2VEV0VP/Fb0HOcZM2YwatQotm/fzqhRo3jvvfdsYr799luCgoLYuHEjGzduJCwsjB07Hv09/0jrOHfr1o2IiAhGjBgBQLNmzaxLxPXu3ZupU6cSGhpKSEgIw4YNY8+ePQwYMABvb2/atm2LsZTr0TZo0ABPT0/r7dK8/p369evH9u3b6d+/PzVr1qRJkyYPle/nn3/Ohx9+SEhICGazGQcHB+bOnYuHR/nPuTpxJp2V62+yYFbjW+s4p7JsZeHycZ9Mb8i5i5msWGs57fjZe41o2cQZgKYNnPjv5Lq89O4F/gzLxM9Hw7T/1MXVWUliso7vVkRz6mxGuefwMOpOe4H670213g8YHUrErK+4PHthJbbq3i6+OZvGC2bTJWw/utQMLr05m5zwK2j8fXji4O8c7TiQ/JvxaANr0OSrD1F5uJEfG8/lD+aTur9wqtHZ8S8TPPstAqf8C7PRRNrhE4S/90ml5HTpnTk0+mw2nc/uQ5+WwcVpc8iJuILaz4cn9m7gaNdQCmLj0daqQeMFH1hzivxoAakHii4l5TsslMStu4udPlDREpYsxOeFV6m7aBXG7EwSlnyF7kY0CndPan++mKhXJ2JISSJ1wyrkTi4EfvwNklqDPiGWm5/PLjJH1blzD7JOHMJczFSPihQx8wMafPQ+HY7tRZ+eTviMD8iNvILa14fHtv7Gib6DKIiLR1szgIafzEHl7kZBXAJXP/uCtEOFx+ra14tQurrQbucGTAU6krbuIPqbirsg+m7h0z+g4aez6PjHPvRp6YRP/4Ccy5Y+2G7neo73fIqC2HjsatWg4eeWvPJjE7jy8QJSD97VB4cOJGnbrkrvg/GLv8Lvxdeo//0qjFlZxC/6Al1MNAoPT4IWLOXKyxMwJCeRsv5X5M6u1Jn3raX/xcdy49NZ1v5345P38R7/Au5PjcBsMpF74WyROdAVLW/Hr9j1HY3zlI8w5+eQu/1XTMnxSI6uOD03ncwlczBnpQEg96uNzNEFXfhd64PL5Gg6DkDu5g1mE8bUBHJ+W4wpteJWdvntkJ5hnVW8N0ZDboGZ3w7qSUgz42Iv8epwNZ+vKiA9x0zEDRP7zxp4foAapQIuRBnZeaqwcO7WSkHP1oWTo1vVU7DzDz27/rDEKOTQrI6cn3bqbNpQVVTkqhgpKSn89ddfLFu2DIABAwYwe/ZsUlNTcXNzK2yTJJGTk4PJZLIuq3x7YYlHIZn/LufiqrnOgx9tab6/ozc2jq/sJpQLlVsxV39UcdIDXqRSVdRo73f/oCoo9nT8/YOqGPMDzvesKnxbP/oH8d+N72PBld2EcvGR66f3D6qCPn7e9oLmihb32qhH3of9jG/JzMy02e7k5ISTk5P1/oULF3jzzTeLzFzo168fn376KY0bF86BT09PZ+rUqVy5coW8vDxGjx5dJn/bQ/zlQEEQBEEQBOGhlcVycsuXL2fhQtuzyVOmTGHq1KnFPOPetm3bRnBwMMuXLycnJ4eJEyeybds2+vTp80jtFIWzIAiCIAiC8NDKYqrGuHHjiv3jdneONgP4+vqSkJCA0WhELpdjNBpJTEzE17foWuErVqzgww8/RCaT4ejoSLdu3Th+/LgonAVBEARBEITKUxaF891TMkri7u5Ow4YN2bRpE6GhoWzatImGDRsWmd8MEBAQwIEDB2jWrBk6nY6jR4/Ss2fPR26n+IsXgiAIgiAIwsOTyR795wHMnDmTFStW0Lt3b1asWMH7778PwMSJEzl//jwA06ZN448//iAkJISnnnqKwMBAhg8f/sipihFnQRAEQRAEocoICgpi9erVNtsXLy5c+admzZrWlTfKkiicBUEQBEEQhIdW0h+/q45E4SwIgiAIgiA8tLJYVaOqEIWzIAiCIAiC8NAq8g+gVLZ/zlcEQRAEQRAEQXgEYsRZEARBEARBeHhiqoZQ1ox6fWU3ocxVxz9NDaBLrX7Hyquda2U3oVxoXe0ruwnlwtHPrrKbUObMxur5J7ft3KtfH1S6OFd2E8qFwWCq7CZUW/+kqRqicBYEQRAEQRAemiSJEWdBEARBEARBuL9/0IjzP+crgiAIgiAIgiA8AjHiLAiCIAiCIDw0sY6zIAiCIAiCIJSCuDhQEARBEARBEEpDXBwoCIIgCIIgCPf3Txpx/ud8RRAEQRAEQRCERyBGnAVBEARBEISHJy4OFARBEARBEIT7k6R/zlQNUTgLgiAIgiAID0+MOAt/R8ND/Rk9pCZqlYz9R5L47JvL6A1mm7gaflomj69Dk4ZOyGUSFy9nsWBRJDE38wCoXdOOKROCCK7riIuTkg4h+ys6FQAULk40nj8b9y5PoEtJJ/LDBcSv22ITJ6mU1Jv+Cj6hfZBp1MT/tpXw6XMxGwwAaGr40XDudJzbNMek05OwcQcR736M2Wis6JRKrdbk0QSMHYxjk/rE/rqJcxPeruwm3ZPc0Ynab0/DqW07DBnp3Pju/0jducMmTlIqCZg0GbfuPZCp1aTu2sn1BZ9bj0Wdd2fi2LoNcq0WfWoKcT+vIHnT7xWdjpXMzgG3sS+iadgcU3YW6etXkHvyYLGxzgNHYv9kN2RqDbqYKNL+txh9XAwA7uNfQtOgGZJKjTEzncwd68k5vKsiU7GSOzoR+OY0nNo8hiEjnZuLvyV1VwnH6vnJuHbrbjlWu3cS8+V8zEYjklJJzVf+i1PrNiicnCi4eZMbi/+PzOPHKiEji+rYB2V2DriPm4KmUQtM2Zmk/baC3BMHio11CR2F/ZPdkWk06K5HkfrLd9b+d5vCyxe/GV+Q88cRUr5fUBEplEpGno5ZO05xNDoBF62aqR2a0LdhTZu4D3adZsvFaOt9g8mMUibj0NSnKqSdWjWM6Kqmfg05OflmthzTceZy8Z8jnZop6NpKiVIucf6qgTX7dRhN99+Pt6vEyO5q3J0sheaNJBPrDxWQkFb0s1wug9dHaFEpYfaPeeWXtPDAROFcRTzW0pVnhtTkpelnSU7R8eE7jZkwOpBvl0fZxDrYKzh0IoUPvwgnN8/I+KdrMXd6E0a/cBIAg9HMnkNJ/LYllrnTm1R0KlYN507HpNezv3FnHJs0oMXP35AVFk5O+JUicbWnPodT88Yc6fwUklxOi58WUvuVf3P106+t+9Elp3KgWVcUTo60Wr2YgPFPE7Pk58pIq1QKYhOJ/PAbPHt1RKZVV3Zz7qvWa69j1hv4c2A/7OrVp94n88iNvEx+VNH+5/vMWOwbNOTCmNFIchn1Pv4M33Hjif1+CQCxK5ZTMPcDzHo9mpq1aPDVN+ReDic3PLwy0sJ15ETMBgM33/gXqoBAPKe8g/7GNZuCxK71k9g/2Z2Ez97BmJKEc+hI3Me/RPyHrwOQuW0dKT99DQYDCm9/vF+dhS7mKvrrVys8p5qvvIZZr+fsoP7Y1a1H3bm3jtW1osfKZ9QY7Bo0IOzZZ5BkMup+9Cm+Y8cTu2wJklyOPjGB8Jcmo0tIwPnxJwmaOYew8c+gi4+v8JygevZBt1HPYzYYuPH6s6hq1MZr6nT0MVHF9L/22LfvQcInb2NIScLlqVG4T3iZ+Dmv3bW/f1NwLbIiUyiVuXvOoJDL2DUphPCkdF767RD1PZ0J8nAuEvdOj1a806OV9f6MbScrdArAkE5qjCaYuSwXfw8ZE/priE3Osylqg2vI6dZKxf9tyCMz18yzfTT0eUzJ5mP6++4nI8fM8u0FpGWZkSRo30TBM700zPu1aHHcpaWSrDwz7sqqMQVCrKpRjSxcuJDg4GAiIiIAiIqKYsSIEfTu3ZsRI0Zw7dq1+z4HoKCggBkzZtCrVy9CQkJ49913KyoFAPp292bTzniirueSlWPgh5XR9O3uU2zsxctZbN4ZT1a2AaPRzK8bblArwA4nR8v3pJibeWzeGU/U9ZyKTKEImZ0Wr/49uTL3K4y5eaSfOEPS9n34DguxifXs1YXrS37GkJ6JPiWNmCU/4z9ykPVxTc0AEn7fjqlAhy4phZQ9h3EIDqrIdB5Y/PqdJPy+G11KemU35b5kGg2unbtyY8l3mPLyyD53lvRDB/Ho3dcm1qV9BxLWrMKYlYkhPZ2ENavw7F94TPOjojDrLR8umM2YzWbU/gEVlUoRkkqNXcvHyfj9F8wF+RRcuUTe2ZPYtetsEyt396bgykWMyQlgNpF7/ABK38J26+Ni4NYZELB8yCo9i39/lieZRoNrp67cXLrIcqzOnyPjyEHce/WxiXV5sgOJa1dbjlVGOonrVuPRbwAApvx8Yn9YaimSzWYyjh6mIC4Ou/oNKjoloHr2QUmlxq7VE6RvuNX/Ii+Se/Yk9o93sYlVeHhREHkRw63+l3NsPyrfGkVi7Np2wJSbQ/6lcxWUQenk6Q3svnyDye0bY6dS0NLfg05Bfmy+eL0Uz7tJSKNaFdJOlQKa1pGz9bgOnQGi4k2EXTPSJth2fLFNsILjF/UkpJnJK4Bdp3S0aaAo1X7ydZCWZfkdIQFmM3g4FS063RwlWtdXsOe0vnyTLkuS7NF/qohqPeIcFhbGn3/+iZ+fn3XbjBkzGDVqFKGhoWzYsIH33nuPH3/88Z7PAfj0009Rq9Vs374dSZJITk6usDwAate05+CxFOv9yGvZuLuqcHJUkJlluMczoUUTZ5JTC+4bV5Hs69TCbDSSe7XwtFx2WDiuT7axDZbuuvBAktD4+6BwdMCQlU3M4hV4P9WX1CMnUTo74dG9A5FzF1ZAFv8Mmho1wWSkIKZwFCzvymUcW7SyDZYky0/hBlTe3sjt7THmWL6o1Xrtv7j37Y9coyEnPJyMo0fKOYPiKbz9MJtMGBLjrNt0N6PR1GtkE5t76hD2bdqj8PLFkJyI/RNdyAs7UyTGdeTz2D/RFZlKje76VfIunC73HO6mrlETTCYKbhQeq9zISBxbtLQNtjlWoPIqeqxuU7i6ogmoYTNqXVGqYx8s7H+x1m36mCjU9W3PAuacPIRd2w4ovPwwpCRg/2S3Iv1P0mhxGTiShM9n4NChR4W0v7Si07KQSxK1XB2t2+p7OvPHjXt/hu6+fBNXOzWtAjzKu4kAeLrIMJshOaNwdDkuxUgdP7lNrI+bRNg1k/V+bIoJJzsZdmpwdSzdfuZMsEOltHTV7SeKFsiDOqrYckxX7FTMv61/0IhztS2cdTods2bN4rPPPmPcuHEApKSk8Ndff7Fs2TIABgwYwOzZs0lNTcXNza3Y5wDk5OSwfv169u/fby3gPDwq5s18m1YjJye3sPDNzrHMl7LTyu9ZEHu6q3h1Uj0WLr1SYkxlkNvbYcjKLrLNkJWF3N7eJjZ5zyFqTnyG1MMnkGQyaj43GgCZVgNZ2aQdPYX/M0PoGnkMmUJB7Mr1JG3dXSF5/BPItFqM2UULKUN2DjI7O5vYjGNH8R46gqzTf4BMhvew4ZZ9aDTWoiV63qdEz5+HQ5OmOLZshVmnK/8kiiFTazDn5RbZZsrLQdJobWKNGWkURP6F36yvMRuNGNOSSZg/o0hM2v8WkbZyCeo69VHXb1I4qlmB5Fotxuyi7ytjTjZybTHH6vhRvIcMtxwruQyvIbeOlVpTpHCW5HLqTH+flO1byb8ebbOfilAd+6BMrS2m/+UiK6n/Xf4L/znfFPa/eYVnPV1CR5F9aBfGtIod0CmNXJ0BB7WyyDYHlZJc3b3fHxvDrtG/Yc0Km6qhUkKermihmlcA6mKmSqiUEnkFd8Td6j5qlVTq/UxfmotKYRm9TssujG9SW45MBheijAT5VZ1RWKkKjRg/qmqb6RdffMHAgQOpUaPwdFZcXBze3t7I5ZZvfnK5HC8vL+Li4kp8DkBMTAwuLi4sXLiQwYMHM2bMGE6dOlWu7e/Z2YsdqzqwY1UHPpvZlLx8I/Z2hd9z7O0sOeTmlXwBnIuTks9nNeO3LbHsOpBUru19UMacXBQORYtkhYODzUgXQNSCRWSev8jju9fQdvMKErfuwaTTo0tOBUmi5crvSNyymz2127KvQXsULk7Ue/fVikql2jPl5SG76wuN3N4eU26uTWzs8h/IvRxO42U/0vDbxaQf2I9Jr0eflnbXTk1knzuLytMTz0FDyrP5JTIV5CPdVVDKNHaY820vxHEeMBxVrbrcfGsiMVNHkLF5Fd6vvI+kVBUNNJsouHIJuas7Dp17l2fzi2Us7ljZ2WPMsz1WcT8tJ/dyBI2W/kjDrxeRfuiA5Vil33GsJIna78zAbNBzfcFn5d38ElXHPmgqyLPpf5LWDlMx/c8lZASqwHrceGMC118cRvrGX/F+bTaSSoUyoDaahs3J3LWxopr+QOxUCnJ0RQd3cnQG7FTKEp4B8Vm5nL6RzIAKmqYBoNOD5q7iVqOCAr3tqK9Ob0Zzx1tfcyuVAp35wfZjgKNhBkZ2V+OgtUzzGPCEit8OVs5gglA61bJwPnPmDOfPn2fUqFFl8hyDwUBMTAyNGjVi3bp1vP7660ydOpXsu0Z2ytLO/Yn0Gn6IXsMP8frM80Rdz6Fu7cIPjrq1HUhJ05U42uxor+DzWU05fCKFH1fdey5ZZci5Go2kUGBXu/DKaofGwWSH217YYsovIHzahxxs0Z3Dj/VFn5ZO5rkwMJlQujqjDfAlZukvmHV69GkZxK5cj0ePjhWZTrWWH3MdSS5HHVD4hdKubl3yomwvfDPrCrg+fx5nBw3k/PAhGDIzyA2/BCaTTSyAJFeg8fcvt7bfiyEhFkkmQ+Hla92mCghEFxtjE6vyDyT3j8MY01PAZCLn6F5kdg4o75pnepskk1fKHOeC28fqjjm72rr1Sj5WX8zj3NCBnB851HKsIooeq8A3p6FwcyPy3WmVukpNdeyDJfU/fazt72tlQCC5Jw/d0f/2WPufJrgJCncvAuYuJuDTZTj1DMWu1RP4TJ9XkemUqJarIwaTietpWdZtEUnpBLk7lficTX9F08zPnQAXh4poIgBJ6SZkMvBwLix6/TxkJKTa9pv4VDN+HrIicZm5JnILHmw/YJmqoVKAs70MD2cZbo4SLw7SMONZLc/20eBkJzHjWS2ujn/zqRAy6dF/qohqWTifPHmSq1ev0r17d7p160Z8fDwTJkzg+vXrJCQkYLz1AWA0GklMTMTX17fE5xw6dAg/Pz8UCgUDBlgunGnevDmurq5ERVXcfL9texLo39OXwBp2ONorGDe8Jlt3F391u51WzrxZTTl/MbPYVTfAcqpJqZDdcbtiN5zQwQAAIABJREFUO60pN4/ELbsIenMKMjstzm1b4tmnK3GrbUdN1D5eqL09AXBu3Yw6r0ziyiffAKBPTSc3OoaAZ0cgyeUonBzxGx5KVljlrNJQWpJcjkytQpLL7rhtO5fu78CUn0/a/n34PzcRmUaDQ9NmuHToRPL2rTaxSg9PlO6WaUz2jRvjN+5f3Fy6GACFi6tliTCtFmQynB5rh1uPnmT+Ub5nb0pi1hWQe+Y4ziFPI6nUqIIaoG3eltzjtsszFkRHom31JDJHZ5AkywWEcjn6pDhkjs7YtWmPpNaAJEPTqAV2bTuQH36+wnMy5eeTfmAffhNuHasmzXBp35GUHdtsYoscq0aN8RtbuPIEQM1X30BTM5DIt/+LWVdg8/yKVB37oKX/HcNl4Mj/Z+++w6Oo2gYO/2Zma3rvkEBI6EWpSpUqCEQFQVFEwS68imJBXwHF8umLBUHFgoJgBQuKBenSRURaIJSEQEjvbfvu98diYNnQErIJcu7rymV25pnhPGZn99kz55xF0mjRxrfAq0MXKrauc4s1Hz2MV6dTzz/vbn2cz7/cbMo3rODEsw+QOXMymTMnU/b7Cgx7dpD71vMez6k6erWKvgnRvLc5GYPFyt8n8ll/JJMbqlmO7h8/JaczrLXnepvB2fu7J9XG9V00aFQQFyHTOk7FnynunVN/pljp0lJFeKCEXgv9O2r484D1gs6TGCMTHSIjSaBVw/DuGipNDnKK7GQX2pn5qYE3vjLyxldGvl5noszg4I2vjBSXN+zxzpIs1/rnciE5HI6G/de4BPr27cu8efNITExk7NixjBw5smpy4NKlS1m0aNE5jwEYP34848ePp0ePHqSlpXHrrbeycuVK/PzO/qn5dJdireTRSTHcPqIRWq3Mus35zHrnYNXkgVkz2rJrXwmLlhzj+r7h/HdyCwxGG6f/dcc+vJ2cPBMRYVqWzu/mcu6sHCO33LPtotoz/Y+Ha5WPKsCP1m/NJLj3NZgLSzj80ptkf/szuugIrtnwA1t6Dsd4IpuAbh1pM+dlNCFBGDOzSX1jHtnf/FR1Hp/WzWk+82l8WyfisNkp2vQH+6e+hCW/sEbtMhfW/djUhOcmkjhtksu2gy/M4dDMupnUGNY1sFbHO9fQfRa/zl2wlpaQMe9dClf+hiY8nDaLvmDv2Nsw5+Tg074DTf87HVVgIObcHDI/+ZjClSsAUAUEED/zZbyaJSDJMqbsLHKWLiH/x2U1bld4m6jzB52DyzrOFWUUf+dcx1kJDCFy+myynn/EOW5UpSZw5F14XdUNSaPFmpdN8fefYUzeiezjR8h9T6CJiQNJwlqYR9nan6jYWPN1nHP3Z50/6Cxc1nEuLeHEB+9RuOo3NGHhtF74OfvGjcGcm4NPuw40eWYaqsBALLk5ZC78uGq9Z014BO2+/g67yeTS05z++qvVrgl9IRy22r3VNNTnYFirmt9ZkL18CL5rUtXzr+jbRVT+8TtKUAhRM+aQOWMStkLn8y/olrvRX90NWaPDkpdF8XeLMZ4xQRXAf9itqEIjarWOc0jH1jU+tjolBjPP//YnW9NzCNBrmNSjLYNbNiartJKRC1ewdNwgIv2cw1Z2ZRbw4NLfWfnAULzPMZyjJqbZnjnnfr0Wbr1OS0IjhUqjg59Orr8c4CPx5G16XvvCUFXA9mqvou9VGtQq2H3EfR3n6s4D0C5eYXAXDf4+EhYrHM+18dNWM1kF7tdHfJTMmP7a867j/PpD7nODPK3y4+nnDzoPr/EN48Pe+VxxhfORI0d4+umnKS0txc/Pj1dffZWmTZue8xhwjnN+5plnKC4uRqVS8eijj9K7t/uyVWdTX18yUpdqWzg3VJ4onD2ttoVzQ1Xbwrmhqk3h3FDVtnBuqGpTODdUl7pwbijOVzhfrkTh7Fn/2lU1TrdmzZqq3+Pj41myZMlFHQPQqFGjanumBUEQBEEQrmiX0VCL2roiCmdBEARBEAShjnjwGx7rmyicBUEQBEEQhBq7nCb31ZYonAVBEARBEISaE1+AIgiCIAiCIAjC6USPsyAIgiAIglBzl9EXmNSWKJwFQRAEQRCEGpOuoKEaonAWBEEQBEEQak70OAuCIAiCIAjCBbiCepyvnEwFQRAEQRAEoRZEj7MgCIIgCIJQc+ILUIRLTedT/98lf6lJ6n/nhRLWNbC+m3DJ5W4rqu8m1AmvYK/6bkKdUGn/fS/NNou9vptQJ9Te+vpuwiUnqZT6bkKdsJkd9d2Efy/xBSiCIAiCIAiCcAHEGGdBEARBEARBEE4nepwFQRAEQRCEmhPL0QmCIAiCIAjCBbiChmqIwlkQBEEQBEGoObGqhiAIgiAIgiBcgCtoVY0rJ1NBEARBEAThspeWlsbo0aMZNGgQo0eP5ujRo9XG/fzzzwwbNoyhQ4cybNgw8vPza/1vix5nQRAEQRAEoeY8PFRj+vTpjBkzhqSkJJYtW8a0adP49NNPXWL27NnD3LlzWbhwIaGhoZSVlaHRaGr9b4seZ0EQBEEQBKHmJLn2PxeooKCA5ORkhg4dCsDQoUNJTk6msLDQJW7BggWMHz+e0NBQAHx9fdFqtbVOVfQ4C4IgCIIgCDV3CcY4l5aWUlpa6rbdz88PPz+/qsdZWVmEh4ejKM5vuFQUhbCwMLKysggKCqqKO3LkCDExMdx+++1UVlYyYMAAHnzwQaRa9o6LwlkQBEEQBEGouUswVGPhwoXMnTvXbfvEiROZNGnSRZ/PZrORkpLCJ598gtls5p577iEqKoobb7yxVu0UhfNlZMTgcEYPj0CrkdjwRzGz56djsTqqjZ18TyztWvoSHaFl1vtH+e33gqp9j0xoTP8ewVWPFUXCanUwfPzOOs/hdKoAP1rNeoHgXtdgLizm8P/NJuf7n93iJI2ahKmTCR82CFmnI3vZzxyc/ioOqxWAPinbXOIVnZaMT78i5blXPJLHmRRfP5pMfQa/zl2xlhST8f57FK78zS1OUquJeeAhgvr1R9ZqKVy1kmNvvYHDZgOg6XMz8O3YCUWvx1JYQNZni8lf/oOn07lgsQ/dTsydN+PbJpHMr5aze8LU+m7SeSk+vkRNegKfDh2xlpaSu+hDSn5fU21s2O3jCeh3PbJOhzH1MFnvv43p+FEANDGNibz/EfTxCVhLS8hZ8D5lWzd6MJNTFF9fGj32NL4dO2MrKSHz4/cpXrvKLU5Sq4mc8ACBvfsiabQUr1tFxruz4eTzL2T4zQQNHIwurinF61ZzbNbLnk7FheLrS+wTU/Hr1AVrSQknPppH0eqVbnGSWk30vQ8SeF0/ZK2GwjWrOD7nLbDZkNRqGj/6OL5Xd0bl54fpRAYnPnqf0j+21kNGIHl5EzD6frTN22KvKKPspy8x/LW52ljfwaPw6tIbSavDcuIoJd98gjU7AwCvHgPx6tIbdWQjDH9tpviLeZ5Mw02JwcTzv25ny9FsAvRa/tOrHYNbxVYbm1Fczmur/mLH8Tw0Kpmktk15tE97AFILSvm/lTvYn11EoJeWR/u0p29iTJ23v3cHNf2uVqNWSew+YuXrtSZs9upjo0Nkbu2nJTxQJqfIzperTZzIt1/QucIDJUb01tIoTKHc4OCHTSb2pNqqjlWrIKm7lg4JKhQZMvPtzPnWUJep16tx48Zx0003uW0/vbcZIDIykpycHGw2G4qiYLPZyM3NJTIy0iUuKiqK66+/Ho1Gg0ajoV+/fuzevVsUzuczd+5c5syZw48//khoaChPPvkkx44dQ6PREBsbywsvvEBQUBBFRUVn3QfQt29fNBpN1fiYKVOm0LNnT4/l0amdH7cmRTDlxRQKiiw8/1gzxo2M4qMvT1QbfyS9knVbCrlnjPuLzOz5x5g9/1jV4yceiMNRff1dp1q8+Cx2s4XfO/TBp3ULrlr4DuXJKVQcPOISF/fwBHzbtWJL/5uQZIUOC+bQ5JH7SH39XQDWNe9aFSvr9fT6ex05y90LVU+JfXwKDouVv4cPwSshkYTXXqfy8CGMaWkucZF33Il3i5bsHXs7kiKT8OosIsfdTebHHwGQuXghpv97CYfFgq5xLC3mvEvloRQqU1LqI63zMmXmcvjldwkd2BNZX/txZJ4Qef8jOKwWUsaNQNekGY2fexljWmpVQfwPv+69Ceh/PWlPP4IlL4ew28cTPXkqqY/dD7JM42dmUvTrj6RPfwLv1u1p/N8XOTL5fsyZGR7PKWbiYzgsFvaNSkIf34ymL76GMfUwxnTXnMJG345XQnMO3HcnyApNX/g/IsaMI3vRxwBYCvLJ+fxTfDt2Qb4E4wJrq/Ejj+OwWtl98zD0zRJIeOV/GI4cxnjU9bqKuO0OvJq3IHn8HUiyQvzLrxE59i6yFsxHUhTMubkcfPRhzLk5+He9hqbTZ5I8fizmnGyP5+Q/YjzYrORMewB1dBxB9z6JJfNYVUH8D12Hbnh17UP+nBnYCvPwHTKagNsfIv/1ZwCwlxRR/tt3aFu0Q1LXfvJTbb2y8i/Usszqh5NIyS3mP0s3kBgWQHyIv0ucxWbjwa/XMeqqBF4dfi2yLJFeWAaA1W5n8rcbGNmhGe+N6s2O43k88u0GvgwZRGyQb521vUVjhf4d1bzznZGSCjsThugZ3E3D8s1mt1hFhgk36Fi/y8LG3Ra6t1Ez4QYdLy2qxGY/97lkCSbcoGfzXgvvLTPSLFrhnqE6Zn1ZSV6x8w159HVaZBleWVxBpclZpDdYl+ALUM4cknE2wcHBtGzZkuXLl5OUlMTy5ctp2bKlyzANcI59Xr9+PUlJSVitVrZu3cqgQYNq3c4G/FeovX379vH3338TFRUFgCRJ3HPPPaxYsYIff/yRRo0aMWvWrPPu+8fbb7/NsmXLWLZsmUeLZoCBvYL5ZW0+6RlGyitsLP42k4G9Q84a/8PKPHbuK8NiPsvH5JN0WpmeXQL57ffaL9FyMWS9nrAhA0j931xslQZKtu8kb+U6IkcMc4sN7d+H4x9/jrW4FEthEcc+/pyo0e6fSgHCbxiAOb+Q4m076jqFask6HYG9ryPjo/exGwyU795F8cYNhAwa7BYb0L0HOUu/xlZWirW4mJylXxN6w6n8jWlpOCwW5wOHA4fDgTa67ntbair7+5Xk/LAac0FxfTflgkhaHb7X9CT3s0+wG41U7t9L2R9b8L9ugFusJjySyuS9WHKywG6nZN0qtI2cPWjamMaogkIo+GEp2O1U7NlJ5f59BPRxP09dk3U6/Hv0JnvhfOxGAxX79lCyZROB/dzfLPy7dSfv+6XYysqwlRST9/1Sgq4fUrW/ZNPvlGzegLWsxJMpVEvW6Qjo1YfMjz905rV3N8WbNxI8oJq8ru1B7rdLsJWVYS0pJvfbJYQMvgEAu9FI1sKPnUWyw0HJ1s2YsjLxat7C0ykhabTo23Wh9JevcZhNmNNSMO7bgb5TD7dYVVAo5rQUbAW54HBg2LERdXh01X7jnu0Y9/6JvaLckylUy2C2svpgBg/1bIuXRs1VMaH0bhbF8n1H3WJ/2HOUUB89Yzs3R69RoVUpJIYFAHC0oJS8ciN3dEpEkWW6xIbTITqk2vNcSp1bqNiabCW70I7BBCu2m+nSovo+xmbRCrIM6/+2YLPD77stSBIkxCjnPVdYoIy/t8S6vy04HHAow0Zalo1OzdXO/QESbZqq+GqNiQojOByQkXfu9/N6JUm1/7kIM2bMYPHixQwaNIjFixfz/PPPA3DvvfeyZ88eAG644QaCg4MZMmQIN954I82aNWPkyJG1TvVf2+NsNpt54YUXmDVrFuPGjQMgICCArl1P9U526NCBL7744rz7GoLYGD2b/zxVkBw5ZiAoQI2fj0Jpue0cR55bzy6BlJRa2b3fsy+43k1jcdhtVKalV20rS04hsFsn9+AzLipJktBFRaD4+mArc2135C3Dyf6m/oYz6Bo1BrsN0/HjVdsMRw7h2+Fq92C3FwsJTXg4irc3tooKAGIff4LgwTeg6HRUpKRQsqX627jCxdNGxYDd7tIrbDx6BO/W7d1iSzasxa/HdWiiYjDnZBHQdyDlf/3h3FndC74E2tgmddX0s9JGNwK7HdOJ055/qYfxadfBPViSXCbJSJKEJjQc2csbe2WFJ5p7wbQxJ/PKOP26OoxP++rywj2vsHBkb2/sFa55qQID0TVqhCEttc7afjZKaCTY7djyTvV0W06ko23W0i3WsHMLuquuQQmNwFaQh1fnXhgP7PJkcy9YelEZiiy59AonhgWw43ieW+yerAKi/Lx5eMl6krMLiQ/x56n+V5MQGkB1N0EdDjiSX7cf5CKCZfamWaoeZ+bb8POW8dJBpdE9NqvAtZjNzLcTESxz4JjtnOc6y8sGkcHO/szYCIXCUjuDu2ro1EJNaYWdX/8ws/tIzd/v65SHvwAlPj6eJUuWuG3/8MMPq36XZZmpU6cydeqlHTb4r+1xnj17NsOHD6dRo0bV7rfb7XzxxRf07dv3gvdNmTKFYcOGMWPGjGpnftYlvU6mwnDqgqmotJ3crtTqvAN6BbNyQ8H5Ay8xxdsLa6lr0WstK0fl4+0WW7B2I40n3I46KBBNaDCNxo9xnkOvc4nTRkUQ2K0TmUvqr3CW9Xps5a5vztbyCmQvL7fYkq1bCB85GlVAAKqgIMJvGeU8h+5UXumv/4+/BvZl/0P3U/T7Ohxm99uFQs3Iej22MwpEe0UFsl7vFmstKqAyeTcJ731KqyW/4te9N9nznUOFTBnHsJUUEXzTaFAUvDt0wqt1+3oZ3iDr9djO6HW0VVSg6N2ff6XbtxJy0y0o/gGoAoMIudHZE3P686+hUPRe1eRVjlLNdVW6bSthI25BdTKvsJtP5qU9Iy9Focmz0ylY8Qum48fczlPXZK0Wu7HSZZvDaEDSuj//bKVFmFMPEP7Mm0S+thBd+66Ufr/IU029KJVmKz5atcs2H62aCrPFLTanrJIVB45xW8dEfntoOD2bRjH5241YbDbigvwI8tKy8I8DWGx2tqRls+N4HkZL3RaOWrWEwXSqbDecfMnVqd0rXa0al1hnvKMq9lznyimyU2Zw0PdqNbIMzRspxEcraE52Z/r7SESFKBjNMP3jCr5Zb+L2/jrCA6+cr7ZuqP6VPc47d+5kz549TJky5awxM2fOxMvLizvuuOOC9n322WdERkZiNpt56aWXqnqz60rf7kFMvsd5K3jPgXIMRjte+lNFsrfe+ZnHYKz5i0hokJr2LX1588OjtWprTdgqKlH5uhbJKh9vrOXuPV1pcz5A5e9L19+WYDdZyPx8Kb6tW2LOd12zMWrkcIq378R4vPpx355gNxiQvV3zUry9sVdWusVmLlxAIx8fWn/yKXaLhfwfluGVkIilqOiMk9op372L4IGDCL1pBLlLv67LFK4YdoPBrfCSvbywG9wn34Teeif6hBakjB+FtaiQgD4DiHvxdQ5PHI/DbOLYy9OIvG8SITffivHIQUo3rTs1zMaDnDmd8fzz8sJmcH/+5Xz+KYq3D83f+xiHxULBLz86JzcWF7nF1jebodItL9nLG1s111XW4oUoPr60/HABDouZ/J9+RN8s0TUvSaLJM9NwWKwcm/1GXTe/WnaTCUnnWiRLOj0Ok/vzz3fQCDSN4sme8TD2smL0HXsQ/NB/yXv1CRyWhvVh2kujosLk+twvN1nw1qjdYrUqhQ7RofRo6pzUdWeX5ny0JZnUglKahwXyxk09eHXVXyzYdoBWEUEMbNEItXJp+/s6JqoYdZ3zQ25qlg2TxYFOc6o41Z0cMm60uPeBmyy4xDrjJYwW+8n9Zz+X3Q7zfzIyoreWfldrOJ5r4+9DVqwn39ItVrDaHPy23YzdAUcy7Rw6YaN5YxU5RZ5/bTkfh4e/AKU+/St7nLdv305qair9+vWjb9++ZGdnM2HCBDZudM5yf/XVV0lPT+ett95CPuP2wtn2/TNbU6PRMGbMGP766686zWHNpkKG3b2TYXfv5JlXD5GeYaBp41Nv8k1jvSgsttRqmMaAXiHsO1hOVq7nX3grUtORFBX6Jo2rtvm2au42MRDAbjSR8t+X2dipP5u7D8ZSXELpnmSwu94iixg5jKwly+q87ediPH4MSVGct5ZP8mrWrNpbwQ6ziWNvvs6um4azZ9QIrKUlVKYccMvrH5KiQhcdXe0+4eKZMjNAVtBEnvp/qmsSj/GMiYEAurh4SjasxVqQD3Y7xWtWoHj7om3s/HBrSk/l6LOTSRl7E+kznkITEYXh0AFPpVLFdOI4KAqaqFNj4fVNm7lNoANwmM2ceOctksfczP5xo7GVlmA4lHLW5199MmU48zp9jL9Xs7PndfztN9gz6kb23j7KeV0ddM0r9ompqAODODL9mapVRDzNlpeFJCsoIRFV29RRjbFku08oVUfFYvh7C/aSQrDbMWz/HdnLG1VEw5vzEBvoi9XuqJrkB3Awr5imIe6TvhJCA845tDUxLID5Y/qy7j838e6o3mQUl9MmMujsB9TAjoNWnnq/gqfer+D9H4xkF9iJOm0SXnSIQmmF3W2YBuAWCxAVLJN9cvjG+c6VVWBn7rcGnv2ognk/GAn2lzmW43w+ZuY3vOvwnDz4BSj17fJp6UW477772LhxI2vWrGHNmjVEREQwf/58evTowZtvvsnevXt555133L568Wz7KisrKStzvgg4HA5+/vlnWrZ0H4dWl1ZuKGDwdSE0jtbh461w+02R/Lb+7BP6VIqEWu0cQ6tSOX8/8wVqQM9gj08K/IfdYCD3l1XEP/4wsl6Pf6cOhA68jqxvfnSL1UaEoQl3fvOP39XtaPLI/aS+/o5LjH/H9ugiwup1NQ1wTj4qWr+O6HvuRdbp8GnbjoAevchf8YtbrDokFHWwc4Knd+vWRI0bz4n5zvFZqoBA5zJ1ej3IMn5duhLUfwClO/70aD4XQ1IUZK0GSZFP+712Q4nqksNkpGzrBsLG3I2k1aFv0RrfLtdSstZ9iTPDoRT8uvdG8Q8EScK/zwAklYI5y3l3QxvbFEmtRtJoCb5xFKrAIIpXr/B0StiNRko2/U7kuAnIOh3erdrif20Piqppizo4BFWQc1lKrxatCL/91IoaAMgKklqDJCsgy87VGuT6+XvajUaKN6wn6u57nHm1aUvAtT0pWFlNXiEhp66rlq2JHHsXmQvmV+1vPPkJdLFxHH7myXod+uQwmzDu/gPfwbcgabRomiSia9MJw5/uyxiaj6eia98V2ccfJMk5gVBWsP4zPlqWQaV2/vf03+uBXqOib2I0723ci8Fs5e+MPNYfymRo6zi32BtaxbIns4CtR7Ox2e189udBArw0NA12FtkHc4sxWW0YLFY+/eMA+RVGhrep27kD2w9Y6dZKRXighF4LAzqp+eOAtdrYwyds2O3Qq70aRYYe7Zy96ocybBd0rshgGZXiXHbuuqvU+HlJbNvv3H8k00ZRmYP+ndTIEjSJlGkWrXDgWPVtqXdXUOEsORz1sRCZZ/Xt25d58+YhSRJDhw4lLi4O3clxfDExMbzzzjscOnTorPuOHz/OpEmTsNls2O124uPj+e9//0tYWNgFt6H/bbUveEYMCefW4RFo1DIb/ihyWcf55acS2HOgjC+WOV9IX3+uOe1buS7Z8/gLKeza7/wA0DLBm9eeSWTUg7swGGv2yfbpDXfXIpt/1nGeSXCvbliKSjj0ylvkfP8z2qgIrlm7jC3XJWHKzCaga0dav/USmpAgjJnZpL31Ptnf/eRyrhb/Nw1Fr2PfI8/Uqk0A/nHu46wvhnMd52fx69wFa2kJGfPepXDlb2jCw2mz6Av2jr0Nc04OPu070PS/01EFBmLOzSHzk48pPFkIqAICiJ/5Ml7NEpBkGVN2FjlLl5D/Y8161HO31f3t94TnJpI4zXWR+oMvzOHQTPcF7S+VuCG164F3Wce5rJTcT53rOKtDwoif+wlHJt6NJT8XSa0mYvyD+HbriazTYc7KJHfRR5Tv3A5A+F33EzhgCCgqKpN3k/3BHMzZmTVul8VQ81uxiq8vjR+fis/VnbCVlpI5fx7Fa1ehDg2jxUeLOHDPWCx5uXi3bU/sE8+iCgjEnJdLzmcLKFpz6kNDxNi7iRg73uXc2Ys+JnvRJzVql81Sux40xdeXuCefca5PXVpCxofOdZzVYeG0XrCYfXfdgSU3B5927Ymb+hzqgEDMublkLfqEwlXOD9Sa8HDafvktdrOpar10gGNv/K8q5mJFdmh8/qCzkLy8Cbj1frSJbbFXllO2/AsMf21GCQgm9OlZ5P3fFGzFBaBS4590B7p2nZE0Wqz5OZT99BWmkxMEfQeNwPd619UCyn5dStmKb2rUroA2CTXOCZzrOM/4ZTtb07MJ0Gn5T2/nOs5ZpRWMmP8r30y4nkg/5+vs6oMZzF63i8JKIy3CA5k6oGPVsnVvrv2b73anYrU7uComhKf6X03jwJovRfdM5ZMXFNeng5p+HZ1rL+867Lr28v3DdRzJtLHqT+c1WrWOc5BMTqH7Os7nOtfw7hq6tXIW3alZNr5ZbyK/5FRJFhEkc2tfLZEhMkVlDn7a4rrO8z/emuRTw/8jl07l+i9rfQ6v3rdegpbUvSuicG4ILkXh3NDUtnBuqGpbODdEniic60NtC+eGqjaFc0NV28K5oapN4dxQ1bZwbqgutHC+3IjC2bP+lZMDBUEQBEEQBA+5jIZa1JYonAVBEARBEISau4JW1RCFsyAIgiAIglBz9TQZtT6IwlkQBEEQBEGoMbGOsyAIgiAIgiAILkSPsyAIgiAIglBzYnKgIAiCIAiCIJyfQxTOgiAIgiAIgnABxBhnQRAEQRAEQRBOJ3qcBUEQBEEQhBoTQzUEQRAEQRAE4UJcQUM1ROHsIQ6Hvb6bcMk16h5V302oE/pA7/puwiXnFexV302oE0d/PlHfTagTnad0re8mXHI2s7W+m1An/BKb1HcTLj2fj2CHAAAgAElEQVRFqe8W1AljpaW+m/DvJXqcBUEQBEEQBOH8xBegCIIgCIIgCILgQvQ4C4IgCIIgCDUnhmoIgiAIgiAIwvk5uHKGaojCWRAEQRAEQagxsRydIAiCIAiCIFyIK6hwvnIyFQRBEARBEIRaED3OgiAIgiAIQo1dScvRicJZEARBEARBqDExxlkQBEEQBEEQLoTocRYaohFDwrl1eCQajcyGbUXMnn8Ui9VRbezke+No39KX6Agds95PY8X6fJf9d4+K5vo+oeh0MoePVvL2x+mkZxg8kUYV2duXiAcm492uI7ayEvK++ISyTWurjQ0ZPQ6/PgORdXpMaYfJ+fgdzBnpACQs/N4lVtJoKP5tObmfvFvnOVRH9vIh6M6H0bVsj728jOLvF1O5fUO1sf7Db8P72r7IWh3m42kUffEhlqzjAATf/Qi6Fu2QNFpspcWU/vY9FZtWeTKVKoqPL1GTnsCnQ0espaXkLvqQkt/XVBsbdvt4Avpdj6zTYUw9TNb7b2M6fhQATUxjIu9/BH18AtbSEnIWvE/Z1o0ezOTixT50OzF33oxvm0Qyv1rO7glT67tJ5yTpvfEbMQFNQlvsFWWUr1iCadcWtzjfG+9C2+HaU8cpCg6blfwZ9wOghEbhm3Qnqug453l+/hJz8g6P5XE+kt6bgNH3oUl05ln281cYd26uNtbn+lvw6tIbSaPDcuIopd9+gjWn4X1de4nBzAu//cmW9BwC9Fom9WjD4JaN3eJeWvUXP+9Pr3pstTtQyzIbJ93oyeaeVYnBxPM/b2NLWhYBei3/6dOBwa3jqo3NKCrntZV/suN4LhpFIaldUx7texUAmcXlvLxiO7sz89EoCv2bN2LKgI6oZM/1bvbrpGVgVx0atcRfKWa++K0Sq6362JgwhbGDvYgMVsgqsLHol0oycp3BnVqqGdpdj7+PjMXqYF+qha9WVWI0O499a3KAy7k0Kli/08RXqzz7viycnyicLxOd2vlz2/AoHn/xAAVFZp5/PIFxt0Tz0RcZ1canpleybksh997WyG1f725BXN8nlEdn7Ccnz8Tdo2OY+nBTHpi6r67TcBE+4WEcViuH7xuNLi6e6KdnYkpPrSqI/+HbrRf+fQZxbPpjWPJyCbl1HJETnyD96YkAHBp36s1C0mpp9sFXlG393aO5nC7wtntxWK2ceHI8mpg4Qic+iyXjaFVB/A+vjtfifW0/cmY9i60gD/+k2wi++xGyX54CQOmv31Kw6B2wWlGFRxP+2AuYj6diOZbq8Zwi738Eh9VCyrgR6Jo0o/FzL2NMS60qiP/h1703Af2vJ+3pR7Dk5RB2+3iiJ08l9bH7QZZp/MxMin79kfTpT+Dduj2N//siRybfjzmz+udxQ2DKzOXwy+8SOrAnsl5b3805L9+kO3HYbOS/NBFVZCz+dz2GNesYtlzXQrHs+wWUfb/g1HEj7wXHyQ/isoz/nY9i2LaG4vmvom7SgoBxj1E45zls+dkezObs/EfcjcNmJXfGg6ii4wia8ATWzHS3gljXviteXfpQMPd5bEV5+A4eRcCYh8h/89l6avnZ/d+anagUmVUPDCMlr5hHvttIYqg/8SH+LnHP9r+aZ/tfXfV4+q/bkRpQj98rK/5Ercis/s/NpOQU8Z8l60kMCyA+1LU4tNhsPPjlGkZ1TODVG3sgyxLphaVV+19esZ0gbx0rJ91MmdHMg1+u4esdhxjTublH8mjVRMWgbjre/LKMkjIHD9zszdAeer5f717MKjI8eLM3a/40sX6niZ4dtDx4szfTPijFZocjGVb+91kZFQYHWjXcPsiL4T31fL3aea5H3yyuOpdGDa9NDGDHAYtH8rwUrqShGv/6TOfOnUvz5s05ePAgGRkZJCUlVf307duXLl26AJxzH0BaWhqjR49m0KBBjB49mqNHj3o0j4G9Q/hlXR7pGQbKK2ws/jaTQb1Dzhq/7Ldcdu4txWyxu+2LDNOyN6WMrFwTdges2lhAbLS+LpvvRtJq8e3ag/yvF+IwGTGk7KP8zy349eznFqsOi6AyZR+W3Gxw2CndsAZNdGy15/Xt2hNrSTGG/XvrOoVqSRotXld1o+SHz3GYjJiOHMCwazteXXu7xSrB4ZiO7MeWnwMOO5XbfkcdGVO135J1HKzWk4+cBY06NMITabiQtDp8r+lJ7mefYDcaqdy/l7I/tuB/3QC3WE14JJXJe7HkZIHdTsm6VWgbOf9W2pjGqIJCKPhhKdjtVOzZSeX+fQT0cT9PQ5L9/UpyfliNuaD4/MH1Ta1B27ozFSu/wWE2YUk/iHn/TnRXdT//cW06YfzLeWdECY1E9g3AsPFXcDiwpO7Hkn7w/OfxEEmjRde2C2W/LHHmmZaCcd8O9J16usUqQWGY01KwFeaCw4Fhx0ZU4dH10OpzM1isrD6UwUPdW+OlUXFVdAi94qP4af+xCzjuBMNaVf+a6GkGs5XVKcd5qGc7vDRqrmoURu9m0Szfe9Qt9ofdaYT66BnbpSV6jQqtSiExLLBqf2ZJBQNaNEarUgjx0XNt0yhS80s8lku3Nlo27TaRlW+n0uTgp81GrmmjqTY2sbEKRZZY/acJqw3W7jAhSRLNY539k0VlDioMp+4Q2x0QFqhUe66rm2soq7RzOMNa7f6GyIFU65/Lxb+6x3nfvn38/fffREVFARATE8OyZcuq9r/00kvYbLbz7gOYPn06Y8aMISkpiWXLljFt2jQ+/fRTD2UCcTF6Nv9ZVPX4SHolQQEa/HxUlJZf3MW1ZnMBfa4JIiZSR1auiUG9Qti+y3MvRgCayBgcdjuWrFO9Q6b0NLxatXWLLd28juhre6GOjMaSm41/7/5U7Pqz2vP69R5A6e/1M5wBQBUehcNux5qbVbXNfCIdXUIrt9jKPzfi3ak7qrBIrPm5eF/TB8O+nS4xgbfdh/c11yFrtJiPpWLY+1ed53AmbVQM2O0uvcLGo0fwbt3eLbZkw1r8elyHJioGc04WAX0HUv7XH86d1fWISaCNbVJXTb/iqEIiwWF36RW2ZB1D06TFOY/TtemMo6IMS1rKyS3VvYlJDabgVEIj3PK0Zh1D07SlW6zx7y3oO3RDCYnAVpiHvnMvTCm7PdncC5JeVIYiScQG+lZtSwz1Z0dG/jmOgtWHThDopeXqmLN3pHhSemEpiiwRG+xXtS0xPJAdx3LcYvdk5hPl783DX60lOauQ+FB/nhrQiYQwZ8/0bZ2as2J/Op1iwykzmtl0JJOHerXzWC5RITK7DpmrHmfk2vD3kfHWSVQYHWfEKmTkuY7hyMi1EhWikJzmfI+Oj1aYeIsveq2Eyexg3nfl1f673dpo2LbXXO2+hupK6nH+1xbOZrOZF154gVmzZjFu3Lhq9//444/Mnz//vPsKCgpITk7mk08+AWDo0KHMnDmTwsJCgoKC6jaRk/Q6mYrKUxflP7/r9TKl1V97Z1VYZGHPgTIWvtkOm81BboGZKTP3X8rmnpes02OvrHDZZq+sQNa593xbiwox7N9L07c+xmGzYSnII+OFJ93iVMGheLVqS868N+qs3ecja3U4DJUu2+yGCqRq8rKVFGE6nEzUC+/gsNmwFeWT8+Z0l5iiLz6g6MuP0DZNRJvYBofF87fuZL0e25l/q4oKZH11f6sCKpN3k/Dep86/VX4uR//7OACmjGPYSooIvmk0BT8sxbvtVXi1bk/l3r89kseVQNJqsRtdn38OowFJqzvncbqre2D8a1PVY1teFo6KUrx6DaFy4wo08S1RN2mBOdWzrxNnI2l02N2us8pq87SVFmFOTSFs6hvO66y4gMJ5L3mqqRes0mzFR6t22eajUVNpPvc1/+O+o9zQsnGDGapRaakmD62aCrN7B09OaSV/HsvhzZG96RoXzufbU5j8zXq+u28oakWhY+Mwvtt1mJ6vL8HmcDCsbROuS4xxO09d0aolDKZTBfI/v+s07oWzVuMaC2A0OdBpTv1djpywMfmtYgJ8JHq011JQ4n5HONBXIrGRikW/VLrta9AayPPPE/61HxFmz57N8OHDadTIfYwvwJo1awgPD6d169bn3ZeVlUV4eDiK4rytoigKYWFhZGVluR17qfTrHszyBR1ZvqAjrzydiMFox0t/6raO98nfDQb3C+987hwZTfN4b0Y/tJPrx25n0TcnmPVcS7Qazz0d7EYDst7LZZvs5YXd6D52LGTkHejim3Pkwds5eMdQCpYuJmbaa0ga1/Gmfr37YziwD0uee8+Gp9hNRqQz89J54agmL/+ho9DENuPE0/dyfNJoSn76mvDJzyOpz7gV6LBjOnIAJTAYn96D6rL51bIbDChe1fytDO45hd56J/qEFqSMH0XyyEHkffkpcS++7vxb2Wwce3kavp260XzBUkJuvIXSTeuw5Od5KpV/PYfJhKx1/UAjaXU4TMazHiP7B6Fu0gLDX6dN0rTbKF40G03zDoQ8Owd9j8GY9mzDXlJYV02/KA6z0e1DtqzTV5un78ARqBs3JeeFiWQ/PY7yld8S9MCzcOZ1Vs+8NCq34rLCbMVLoz7LEZBdVslfGfkMbSDDNAC81CoqTK7FfrnJgrfGvZ9Oq1boEBNKj/go1IrCnV1bUmIwk5pfit3h4OGv1tI3sRGbp4xi7SMjKDWamb227j5od2ml4a3JAbw1OYCJt/hgsjjQa08VhPqTRbDR7D4p32R2VO3/h04rVRtbXO5gX5qFe4Z7u+3r1kbL4QxrtUW10DD8KwvnnTt3smfPHsaMGXPWmG+++YYRI0Zc9D5PWb2pgKF37WDoXTuY+n8HOZphID72VPHSNFZPYbH5oodpAMTHerFuSyH5hRbsdlixPh9fb4XYGM+NczZnZSApCuqIqKpt2timmI6nu8VqY5tSumU91sJ8sNspXb8SxdsHTYzrbHP/nv0pWb+yztt+LtacTCRZRhUWWbVNExOHOfO4W6wmOo7KHZuwFRc4x/xuWYvs5YM6svoPe5Ks1MsYZ1NmBsgKmshTt+l1TeIxnjExEEAXF0/JhrVYC5x/q+I1K1C8fdE2dr6xm9JTOfrsZFLG3kT6jKfQRERhOHTAU6n861nzs0BWUILDq7apIhufcwUJ3VXdsRw7hL3I9QOMLfs4xR++TP7Mhyj55H8oQWFYMjw/MbU6trxsZ54hp64HVVQs1hz3SaaqqMYY/t7qLPrtdgzbf0f28kbdQIad/CM20Ber3c6xorKqbQfziok/bcjDmZYnp9MuKpiYAB9PNPGCxAb5YbU7XCb5HcwtomlIgFtsQmjAWXvKSwwmsksrGd0xEY1KIcBLS1K7pmw8kllnbf8j2cyjbxbz6JvFzF1STma+nZjQUx1WMWEKJeV2t95mgMx8G9FhrmOWo0MVMvOrX4JDliC0mjHO3dpo2HqZDdMAcCDX+udycfm09CJs376d1NRU+vXrR9++fcnOzmbChAls3OjsUcnJyWH79u0MGzbM7djq9kVGRpKTk1M15tlms5Gbm0tkZKTb8XVl5e/5DL4uhNhoHT7eCnfcFO22xNzpVIqEWi0hSaCc9jvAgSPl9OoaRKC/CkmC/j2DURSJE9ln75W61BwmE2V/bCJk1J1IWi365q3w6XQNpRtWu8UaU1Pw7dYTxT8AJAm/nv2QFBWW7FMvoLrEVqiCQijbWv2yb57iMJuo3LkN/2G3Imm0aOJboG/fmcpt691iTemH0V99LbKvP0iScwKhomDJy0L29cerU3fnrWdJRteqA16de2BM2eP5nExGyrZuIGzM3UhaHfoWrfHtci0la90/pBgOpeDXvTeKfyBIEv59BiCpFMwnx7JrY5siqdVIGi3BN45CFRhE8eoVnk7pokiKgqzVICnyab9XP6mn3lnMmPb9ifeAm0GtQR2bgLbV1Rh3bjrrIbqre2Dc4b4koBLRCFRqUGvQ9xyM7BuAcUf9Xl//cJhNGPdsx/f6kUgaLeq4RHStO2L40719luOp6Nt3RfbxA0lC37EHyArW/Pq7M1UdvVpF34Ro3tucjMFi5e8T+aw/kskN1SxH94+fktMZ1rrh9DYD6DUq+jaP4b3f92AwW/k7I4/1h04wtE2cW+wNbZqw50Q+W9OysdntfLY9hQC9lqYhfgR66YgO8GbJzkNY7XbKjGZ+3JNGYph7AV5Xtu41cW07LZHBMl5aicHX6thylqL24DErdruDvh21qBToc7XzjmhKurNzq0srDYG+zjfhID+ZpF56Dhx17ZlvGq0Q4COzI+UyLJwlqdY/lwvJ4XBUvxDwv0jfvn2ZN28eiYmJAMybN4/9+/cze/Zst9iz7Rs7diwjR46smhy4dOlSFi1adMFt6HfrH7VLAhg5JOLUOs5/FPLWR6fWcX7l6UT2HCjj8++dw0den9aCDq1ceyoee2E/u5LLUKslHryjMT26BKLTKmTmGJn/ZcZFTxB81/FcrfKRvX2JePAxvNteja28lLzPP6Zs01pUwaE0eeND0h67F2tBHpJaTejY+/Dt4iwkLTmZ5H2xgMrTJgiG3/sfJI2W7Hf+V6s2AegD3W+fXQyXdZwryij+zrmOsxIYQuT02WQ9/wi2onxQqQkceRdeV3VD0mix5mVT/P1nGJN3Ivv4EXLfE2hi4kCSsBbmUbb2Jyo21mziY1lW7VaEcFnHuayU3E+d6zirQ8KIn/sJRybejSU/F0mtJmL8g/h264ms02HOyiR30UeU79wOQPhd9xM4YAgoKiqTd5P9wRzM2TXvQTr6c92vxZvw3EQSp01y2XbwhTkcmjm3zv7NzlO61vhY5zrO96BJaIO9spzyX7/GtGsLsn8wQZNfofDNqdhLCgBQNW5G4ISnyH9pEg6z6wdn78G3ou/cG2QFy9EUyn9chK0gt8btslUzxrU2JL03AbfejyahDY7Kckp/+hLjzs3IAcGEPvk/8l57AntxAajU+A2/HV3bzs410fNzKPv5q0s2QdAv8dJNbi0xmHn+tz/Zmp5DgF7DpB5tGdyyMVmllYxcuIKl4wYR6ee887grs4AHl/7OygeG4n2O4Rw1IWlrN4ylxGBixk/b2HrUdR3nrJIKRnz4E9/cewOR/s7X2dUpx5m9ZieFlUZaRAQxdWCnqmXrUnKK+N+qHRzMLUKRZDrFhjF1YGeCvM89Zv9sHsv5z0Uf06+zlkFddahVEjsPmvl8xal1nCfe4sPh41Z+3eq8dhqFKdxxch3n7JPrOB8/uY5zUk8d3dpq8dJKVJoc7D1i4fv1Bpfe6zGDvNCoYMFPFze+ed5TgecPqmPZB3aeP+g8IlpcdQlaUveuyMJ50KBBPPvss/Tq1cst9mz7jhw5wtNPP01paSl+fn68+uqrNG3a9ILbcCkK54amtoVzQ1Xbwrkhqm3h3FB5onCuD7UpnBuqS104NxSXsnBuKGpbODdUNSmcLwcNoXDOOlD7seeRLTpcgpbUvX/tqhqnW7PG9RvOVqw4+63hs+2Lj49nyZIll7RdgiAIgiAIwuXjiiicBUEQBEEQhLoh1nEWBEEQBEEQhAtwOU3uqy1ROAuCIAiCIAg1djl9ZXZtXTl964IgCIIgCIJQC6LHWRAEQRAEQagxMcZZEARBEARBEC6AGKohCIIgCIIgCBfAIcm1/rkYaWlpjB49mkGDBjF69GiOHj161tjU1FTat2/Pq6++WsssnUThLAiCIAiCINSYA6nWPxdj+vTpjBkzhhUrVjBmzBimTZtWbZzNZmP69On079//UqQJiMJZEARBEARBuEwUFBSQnJzM0KFDARg6dCjJyckUFha6xX7wwQf06dOHuLi4S/bvizHOgiAIgiAIQo1dismBpaWllJaWum338/PDz8+v6nFWVhbh4eEoigKAoiiEhYWRlZVFUFBQVdyBAwfYuHEjn376Ke+++26t2/cPUTgLNZb5V3Z9N6FO+EZ51XcTLjmV9t95qXee0rW+m1Ants/aVt9NuOQk9b9z8lBAq0P13YRLrknvhPpuQp2I7ep3/iChRi7F5MCFCxcyd+5ct+0TJ05k0qRJF3Uui8XCc889xyuvvFJVYF8q/853U0EQBEEQBMEjLsU3B44bN46bbrrJbfvpvc0AkZGR5OTkYLPZUBQFm81Gbm4ukZGRVTF5eXkcO3aM++67D3D2ZjscDsrLy5k5c2at2ikKZ0EQBEEQBKHGHI7aF85nDsk4m+DgYFq2bMny5ctJSkpi+fLltGzZ0mWYRlRUFNu2nbpzN2fOHCorK3nqqadq3U4xOVAQBEEQBEG4bMyYMYPFixczaNAgFi9ezPPPPw/Avffey549e+r03xY9zoIgCIIgCEKNOTzcDxsfH8+SJUvctn/44YfVxl/sGOlzEYWzIAiCIAiCUGNX0jcHisJZEARBEARBqLErqXAWY5wFQRAEQRAE4QKIHmdBEARBEAShxq6kHmdROAuCIAiCIAg1JgpnQRAEQRAEQbgAl2Id58uFKJwFQRAEQRCEGhM9zkKDNGJIOLcOj0SjkdmwrYjZ849isTqqjZ18bxztW/oSHaFj1vtprFif77L/7lHRXN8nFJ1O5vDRSt7+OJ30DIMn0qii8vejxcvPE9TjGixFRRx5/W1yf/zFLU7SqImf8ghhQwYh63TkLv+FQy++hsNqrYoJu+F64ibdjy4yEnN+Pvufeo6SP3d6Mp0qiq8fcU89g1+nLlhLijnx4TwKV/3mFiep1cTc9xCBffsha7UUrl7J8bffxGGzIanVNJ78BH4dO6Hy88N04gQZH75H6bat9ZARKL6+NHrsaXw7dsZWUkLmx+9TvHaVW5ykVhM54QECe/dF0mgpXreKjHdng80GQMjwmwkaOBhdXFOK163m2KyXPZ2Ka3v13viNmIAmoS32ijLKVyzBtGuLW5zvjXeh7XDtqeMUBYfNSv6M+wFQQqPwTboTVXSc8zw/f4k5eYfH8rhYsQ/dTsydN+PbJpHMr5aze8LU+m7SeakD/Wn73ouE9OuOpaCIlGlvkvn1crc4WaOm+czHiRw5BEWnJXPJTyRPebnq9cK7eVNavzkN/6taY84v5MCz/yPnB/fnsieo/PyIf+6/BHTrhrW4mPS575C/YoVbnKRWEztpIiEDBiBrteSv+I20WbNwnLyu/qFr1IgOX35Bweo1HJo2zVNpnJek9yZg9H1oEp3XWdnPX2HcubnaWJ/rb8GrS28kjQ7LiaOUfvsJ1pwTHm6xk04DQzrJNIkAgwnW7XGQfKz699zOiRLdmkuoFEg54WDFDgc2u3Pf4ze5rsOgUuCvIw5W7nQQFQS92shEBILDAel5sHKnnQpjXWcn1JQonC8Tndr5c9vwKB5/8QAFRWaefzyBcbdE89EXGdXGp6ZXsm5LIffe1shtX+9uQVzfJ5RHZ+wnJ8/E3aNjmPpwUx6Yuq+u03CROOMZ7BYLm665Dp+WLWj34RzK9x+k8vARl7jY+8bj26Y1f9wwAklRaPv+28Q+dC9H334PgMDu3Yh/4hH2Pfokpbv2ogkL9WgeZ2o8+XEcFgu7broBr2YJNPu/16k8fAjj0TSXuIgxY/Fq0YJ9d92BJMs0e+V/RN55N5mffISkKFhyc0h55CHMOTn4d7uW+Bkvsu/uOzBnZ3s8p5iJj+GwWNg3Kgl9fDOavvgaxtTDGNOPusSFjb4dr4TmHLjvTpAVmr7wf0SMGUf2oo8BsBTkk/P5p/h27IKs1Xo8jzP5Jt2Jw2Yj/6WJqCJj8b/rMaxZx7Dlur5Rl32/gLLvF5w6buS9znc5AFnG/85HMWxbQ/H8V1E3aUHAuMconPMctnzP/60uhCkzl8Mvv0vowJ7I+vr/O1yI1m9Ow262sDquB37tWtDp2/cp3XOA8v2HXeKaTrkP/6vbsKHTMCRFpuPS92j29IMcenEOkqLQ6et3OfbRl/wxdDzBPTvTcel7bLrmZioOH/V4Tk2eehKHxcr2gYPwTkyk5ey3qDh0CENqqktc9F3j8GnZkr9H3wqyTMs33yBmwgSOf/CBS1zTp56kPDnZkylcEP8Rd+OwWcmd8SCq6DiCJjyBNTPdrSDWte+KV5c+FMx9HltRHr6DRxEw5iHy33y2Xto96GoJm93B2z84CA+AW3rI5BY7yC91jWsSDte0kPh8nZ1yA9zcXaZna2ehDfD6d/aqWLUC/xkuc+C4c59OA3+n2knNBrsDBl4tMbSzzFcb7FxOrqQe5zpbju6WW24hKSmJIUOG0KpVK5KSkkhKSmLq1HP3bGzZsoXNm6v/JHqmJUuWMHny5Gr3TZkyhd69e5OUlMTQoUMZP348OTk5F51HQzGwdwi/rMsjPcNAeYWNxd9mMqh3yFnjl/2Wy869pZgt7hdfZJiWvSllZOWasDtg1cYCYqP1ddl8N7JeT+jA/qS99Q62SgMlO3aSv3o9ETcOdYsN7tubjE8/x1pSiqWwiIxPPydy5I1V+5v850GOzv2A0r/3gMOBOScXc06uJ9OpIut0BPa6jhPzP8BuMFC+ZzclmzcQPPB6t9iAa3uQ+80SbGWlWEuKyf12CSFDnPnbjUYyF8x3FskOByVbNmHKysIrsYWnU0LW6fDv0ZvshfOxGw1U7NtDyZZNBPYb5Bbr3607ed8vxVZWhq2kmLzvlxJ0/ZCq/SWbfqdk8wasZSWeTKF6ag3a1p2pWPkNDrMJS/pBzPt3oruq+/mPa9MJ418bAFBCI5F9AzBs/BUcDiyp+7GkHzz/eepR9vcryflhNeaC4vpuygVRvPRE3DiAQy+8ja2ikqItf5H70xqibxvuFhs+5DqOvrsIS1EJ5vwi0t9dTMydNwPO3mZtZChpcxaA3U7B+m0UbdlJ1Bj389Q1WacjuG9fjs2bh91goGzXLgp//53QIUPcYoN69iTry6+wlpZiLS4m68uvCBvu2ubggQOwlpVRsn27p1K4IJJGi65tF8p+WeK8ztJSMO7bgb5TT7dYJSgMc1oKtsJccDgw7NiIKjy6HlcTqOUAACAASURBVFrtLHCbR0ts2OvAYoWMfDic6aBNrHuB2DZOYleas6A2WmBTsp22cdUXki1iJCpMcPzkTeDUbDiQAWYrWG2w45CD6LO/tTdYDqRa/1wu6qxwXrJkCcuWLeODDz7A19eXZcuWsWzZMl555ZVzHrd169YLLpzP54EHHmDZsmUsX76chIQEPjjj0/nlJC5Gz5H0yqrHR9IrCQrQ4Odz8TcN1mwuIDpCR0ykDkWRGNQrhO27PFvIeDWJxWG3YTiaXrWt/EAK3gnxbrGSJIEkuTzWRUag+PiALOPbpjXqoEC6rvqRazb8RsK0qfXWm6lt1BjsdkwZx6u2VR4+jL5JU/fgM/IC0ISFo3h7u4WqAgPRxTRy67X2BG10I2dOJ07lZEg9jC6uiXuwJDn/XlUPJTSh4che7jnVN1VIJDjsLr3Clqxj532j1rXpjKOiDEtayskt1b3gS/X2hv9v5J0Qh8Nmd+kVLt2Tgk+r/2fvvsOjKtoGDv/2nO3pPSEJnYQAgtQoUhRBRCkqWAAVFbGgfgqCCAoCNlAREUVQAX31VZQiVZQm0jsvICWUQCAhvWza9rPfHwsJYQPSsgGd+7pykT377OxM2NmdM+eZ2Qaewef3KxUYYqJQ+/tWeG2eG+5XWTlVzFCrJi6nE8vJk2XHSg8fwVj3Et4rVCp0keXvFbKPDzWffZYTn0yp6mpfNjks0qOfOdJPoo6I8Yi1/G8z6tAI5NBIkGQMrTtgTdrrzeqWCfZzzwDnFZcfyzRBaIDnayg0QEXWOeegWQXga1Bh0HqW26S2ir9SKk/3AKgZpvKY0b4RuFyqq/65UVRbqsb06dNZutSdn9a0aVNGjx7NiRMnmDdvHi6Xi/Xr19OjRw8ef/xxnn/+efLz87FarTRr1oxx48ah0Wgu+bkURaGkpISwMPcl/MzMTIYNG0ZxcTFWq5XOnTszdOhQAAoLCxk5ciTJyclEREQQGhpKZGQkw4YNY8WKFXz66afIsozT6WTs2LG0atXq2v9xKmHQS5SUlueznf3dYJAoLL7QoyqXl29n36Eivp3cFKfTRVaujWFvH7yW1f1bstGAo6hixR1Fxcg+Ro/Y3HUbiB3Qj4Kt21FJEjGP93OXYdAjGw1IWg1hd3dmd98ncTkc3PTFJ9QaPIjjkz/zSlvOJRsMOIsrtstZUoxs8GyXaetmIno/RNGunSBLhPd+CABJp8dZUlIWp5Jl6r45jtzfl2M5meJRTlWTDAacJee3qaTSNhVu30Lo/Q9StGc3Kkki9L4+7jL0epTSEo/46qTS6VAspRWOuSxmVDr9RR+nb9EOy66NZbed2em4SgoxdriH0g2/o62XgKZOQ2zJ3u1T/2SyjxFHYVGFY47CItS+nidk2SvWUfuFx8lbtxVkmdqDH3OXYTRQnJSMLTuPukMGcnzqt4R0TCS4fWty/9zmlXacSzIYcRZX7BOO4srfA/M3bSKq7yOYduxAJctEPfKwuwy9+70i9rnnyFq8GNt1eFVVpdWjmCv2M8VcWmk/cxbmY0tOInzkx7icTpwFueRNf9dbVa1AowarveIxqx20lYyatGqw2l0V4s4eN9vK4/yNUDMMft1R+cA5LABua6Ri3sYbK03j36ZaBs5r1qxh2bJlzJkzBx8fH4YNG8b06dMZMmQIffr0wel0MmzYMMA96P34448JCAhAURSGDx/OwoULefDBB//2eaZPn86cOXPIycnB39+fH3/8EYCAgABmzJiB0WjEZrPx5JNPsmnTJtq2bcunn35KSEgIn3/+Ofn5+TzwwAPce++9AEyZMoV33nmH5s2b43A4sFiqLnv/zttCGDKoNgD7DhVhtigYDXLZ/T5nfjebL7+DPd4nmvh6Pjw8eDd5BXa6tA/lo9EJDBy2D6vNOx3WWWr2+NBT+/riLCn1iE2Z9jVqP39aL/oZxW7j9E/z8U1oiC03r6yMtO9+xJbtvvZ1avZ31Br8TLUMnJ1mM9J5M8ay0Qen2bNd6d99i9rXj0Yz/4PLbiN76WKMDeKwF+SXB6lU1HnjLVwOOyc/+aiqq18pxWxGNp7fJmOlbcr84T/IPr7EfzELl91O7vIlGOo1wHFum64TLqsVSVcxRUml0+OyXrhfSwHBaOo0pHDBrPKDipOC76bg1+MxjB27Y089jnXf1gqLV4Wr4ywpRe3nW+GY2s8XR7HnydjRidNpGOBPuy0LUaw2Ts2ei3+zBKxZuaAo7Hz4BRpNGk3doYMw7fqL9Pm/odhsHuVUNcVcinz+e6CPT6XvgWmzZqP286PZD//FZbOTuXAhPvHx2PPzMcbFEdimDXv69/dW1S+Ly2ZB0lfsZ5LeUGk/87urN5qadckc/yJKUQGGlu0Ifu4Nsj98Deze/T+yO0B33vycTu1OqTifzQFatQpwD4jPPu782Ca1VKTmgKmSOYQgX3i4vcSq/7lIzfG8/3qn3ECpFlerWr5ye9OmTfTo0QNfX/els4ceeuiC6RmKovDll1+W5Uhv27aNgwcvbSbnbKrGxo0b6datG2POrDJ2Op1MmDCBHj160Lt3b44dO1ZW5tatW+nduzcAQUFBdOrUqay8W265hffff5+ZM2dy/PhxfH19PZ/0Glm9MZfuT+yk+xM7GTnhMCdSzdSrVT4TUbeWgbwCG4XFl//hXK+WkbWb88jJs6Mo8PufOfj5yNSK8V6ec+nxFFSyGkOtmmXHfBvGUXLkmEesYrVyZPz7bGrfhS2d7sVeYKJo/wFQFByFRVjSM3C5Lnzpy5usp06ikmV00eWXIQ31G2A+nuwR67JZOTllEnv79GRf3z44Ck2UHj4ESvnJS+0Ro1AHB3N09CiPFfTeYk07BbKMtsY5bapbv9K0EZfNRtrnn3Cg3wMcHPAwzkIT5iNJFdp0vXDkpIMkI4dElB1TR9W86Ap+ffPbsJ88gpKfXeG4M+MUBV+9R87bgzHN/hA5OBx7quf/uXBlSo6cQKWWMdarVXbM76Z4ig8c8YhVLFYODH2bNfU7srZxF2x5BZh2Hyh7DRb9dZitXR9jVewtbO/1NMY6sRTs2Oe1tpxlTnG/V+hjyxdwG+MaUJrs+bpRrFaOf/AhO++5l1333YfDZKLk4EFQFAJatkRXI4qWS5fS6rffqPHoowR3uoOm33/nzeZckDM7w93PQiPLjqlr1MKR6bmwXV2jJub/bUEx5YGiYN6+Dsnog6Ya0p7yikBSuQe0Z4UHQo7J87Mmx+QiPLBiXLHZVWG2Gdy50PsqSdPwN8IjHSU2HnRdNI3jeiZynKtBZblnAIsWLWLv3r388MMPLFmyhIcffhir1XrZ5Xft2pWNG92XV2fOnElJSQnz589nyZIl3HHHHRXKvFBdRo8ezfjx45FlmRdffJF58+Zddj2u1Mp1OXS7I5Ra0Xp8fWQevT/aY4u5c6llFRqNCpUK5HN+Bzh0rJgOicEEBahRqaBz+xBkWUVahvf2v1HMZrJXrKbOK4ORDAYCWtxMaOfbyVjoub2UNiK8bKcM/5tvovYLz3D8zI4aABnzFxHzWF80wcGo/f2IGfAouX+s81pbzqVYLBSsW0uNgYOQ9Hp8mzQl8Lb25K74zSNWExqGJsS9CsSnUWNqPP4kp2d9XXZ/zaGvoa9Zm6Mjh+OyXf5r/lpRLBZMG9cRNWAgkl6PT6ObCGjbjvzVnttmaUJCUQeHAGBs2IiI/uU7agAgyag0WlSSDJKESqMFSfYoxyvsNqz7d+DT5QHQaNHUaoCuUQssuzde8CH6Fu2w7NzgcVyOjAW1BjRaDO27IfkFYtm5viprf1VUsoyk06KSpXN+r6b/h0vgLDWTsWglcaP/D9loIOiW5kR0v5O0Hxd7xOpqhKOLCgcgsHWzsh01zvJrEoek0yIZ9NR5+Sl0kWGkfbfAa205S7FYyPvjD2KfexZJr8evWVOCO3Yk+9dfPWK1YWFoQt3vFb5NmhAzcCAnZ7jX7GQuWMCu++5nT//+7Onfn4z5CyjYuJEDL77k1fZciMtmxbJvO35390Gl1aGpHYe+cUvMOzz7h/1UMoZmiUi+/qBSYWjZDiQZR473U1DsTve2ch2aqNDIEB0CDWpUnp/8V4qLZnVUhPiDXgNtEyT2nagYFx0CvgbKdtM4y9cA/W6X2HXUxe5jN+agGUSOc5Vr27YtU6ZMoX///hiNRubNm8ett94KgK+vL6mp5WeiRUVFBAUF4ePjg8lkYtmyZbRo0eKyn3Pr1q3Url0bcOcxh4eHo9VqSU9P548//uDxxx8HIDExkQULFtC0aVMKCgr4448/uOfMKufk5GQaNmxIw4YNKS4u5q+//qJPnz5X+de4NNv3mPhpcQaTRie493Helse3c8tnxt5/PY59h4r4YWE6ABPfiOfmRv4ANIn349Vn6jB0/EH2HChizuJ0gvw1zJjQBL1O5nSmhXGTj1bIofaGw2PfpeH742i35Q/sBQUkvfUupUePoYuKpM3yX9jW7X6s6RkYasaQ8ME7aEOCsaZnkvzRFPI3lO+1e+LzL9EEBZK4chGK1Ub28hWkTPvKq205V8rkj6g9YhTNFv6Ko9DEyckfYjlxHG14BI2//YH9A/phy8pEVyOaOqPGoA4Kwp6VSeqMaRTucOdaaiMiCe91P4rVSrMF5ScTKZMmVrondFVLnTqJmq+OpPHPi3EWFnLq00lYUk6gCQun4dffcejpx7BnZ6GtEU2t4W+gDgzClp1F+swZFO0sX+Uf2f9xIh97qux2cOeuZHw3i4zvZnu9TQBFi77Fv/fThL35OUppMUULv8WZlYYUEELwkPfJmzwSxZQLgLpmfeSAYKz7PPNh9c1vw9C6I0gy9hNJFMyaCM7rN1Wj/qjniRtTPrCK6d+Lw+OncuRt76c3Xar9r4znpunvcmfKRux5Bex/eRzFB4+ij4miw66lrGvRHUtqOsY6NWn29UR0YcGYUzNIGj2JnNXlJ0PRfXsR+0QfVBo1eZt2sq37Uyg2+0WeueokT5hIvTGjab1yBQ6TieT3J2BOTkYbEUHzuT+z+8GHsGVmoo+Jof64sWiCg7FlZpLy2WeYtm4F3LPRyjkTP4q5FMVqw1Fw/eyYYpo/i8BHniV87Be4SosxzZ+FIzMNKTCEsNc+JPuD4SgFuRSvWYLk60/oq++j0upw5mRS8O0nuCye6Sve8PsuF/e2lvi/XirMVvftnEL3DPGgrhJf/a5QWOreGWNLkov+t0vufZxTXazfX3EQfFNtFYdTXR7pGzfXURHkq6JdI2jXqHzweO4WdjeCG2nG+GqpXFV8jTs1NZXevXuz9UwnP6uyxYEGg4GTJ0/y0kvuN/QePXrw4IMP8tJLL5GXl0dERATR0dE4nU7effdd5s6dy6ZNm5g8ebLH8w4bNozt27cTGBiIoij4+/szZswY4uPjOXXqFC+//DKKohAVFYVOpyMuLo7BgwdjMpl4/fXXOXnyJLGxsfj4+BAXF8ezzz7Lc889R2pqKrIs4+/vz/vvv09MjOfK4Mrc+Yj3F59UtTd3DqruKlQJvxqei3NudGrdP3PL9hotK9nZ4x9g+0db/z7oBqPS/DM/WAMb+VV3Fa65Oh29v8uIN3yTeH2kr1xrIx+q/qtFOw/nXXUZLeOCr0FNql6VD5xvNHa7HZfLhVarpaioiEceeYQxY8aQmJh4VeWKgfONQwycbxxi4HzjEAPnG4cYON9YroeB846kq18A3io+6BrUpOr9Mz9Nr0J+fj7PPvssTqcTm81Gr169rnrQLAiCIAiC8E/1b0rVEAPn84SHh/PLL79UdzUEQRAEQRBuCDfS4r6rJQbOgiAIgiAIwhW7sZYyXp3rZjs6QRAEQRAEQbieiRlnQRAEQRAE4YqJVA1BEARBEARBuARicaAgCIIgCIIgXIJ/04yzyHEWBEEQBEEQhEsgZpwFQRAEQRCEKyZSNQRBEARBEAThEij/ou+gFgNnL1Gp/nlZMS77P7OnuJz/vHY57f/MXTadNkd1V6FK/BO/nvqf+n7hE2qo7ipcc65/6ChI+We+DV4XxIyzIAiCIAiCIFwCsThQEARBEARBEIQKxIyzIAiCIAiCcMVc/8zsnkqJgbMgCIIgCIJwxRSR4ywIgiAIgiAIf+/flOMsBs6CIAiCIAjCFfs3pWqIxYGCIAiCIAiCcAnEjLMgCIIgCIJwxcQ+zoIgCIIgCIJwCf6h35lTKTFwFgRBEARBEK7Yv2lxoMhxFgRBEARBEIRLIGacbyC9u0XwcM9IdFoV67cVMGVmCnZH5ddHhjxdi6YJfkRH6vhoxglWrMstu+/lgTXp3C6k7LYsq3A4XPR8aneVt+Fc6gB/Ej4YR3D7ttjz8jn2wadkLv7VI06l1VBvxCtEdO+KpNeTuXg5R8ZNxOVwANBh/5YK8bJeR+p3P3Fk7ASvtON8sp8/dUaOwr91Ig5TAakzviBv5QqPOJVGQ8xzgwm+szOSTkfeqpWc/ORjXE4nAHVHj8WvZStkgwF7Xi7p//2enKWLvd0cAGQ/P2oNH4l/qzY4TCbSvp5O/uqVHnEqjYboQc8TdMedSDoteWtWcWrqJ+B0otJoqPnKq/i1aI3a3x9rWippX8+gcNuWSp6xeqgMPgQ+/AzauJtQSooo+vUnLLs3VRrre/eDGNt0RKXVY087QeGC2Tgy07xcY0+aoABu+uIdQu+8DXtuPkljJnP656UecZJWQ/zbrxLV5x5kvY7Tc5dxYNh7Zf3KJ74ujSePIaB5Y2w5eRx640MyF6/ydnMuS63B/Yl5/AH8msRx+qel7B04srqrdFlkXz9ih4zAt2VrnCYT6bO/pGCt599cpdEQ9eSzBHbshEqro2DtKtKmfwpn3juqm8roQ+DDz6KLP9OPls3BvKvyfuTX7SF3P9K5+5Fp/mwcGakAGNvdhbFNRzRRsZh3baLgx+nebAZ6LXRvI1EnEsxW+GOvi/0plX/mtolTcWuCCrUMSakulu9w4VTK729UU0X7xir8faDEAku2KpzKrlhG+8YqOtwk8d8/nJzIrMKGVYF/064a13zgvHz5cmbMmIHL5cJqtdK4cWMmTZp0zcqfOnUqpaWljBgxggULFrB27Vo+/fRTj7jXX3+dTZs2ERQUhKIohIaG8t577xEVFXXN6uJNrZr680ivSIa9k0Ruvp1xQ+szoE8Nvp5T+Qf1sZRS1m7O4+l+MR73TZl5kikzT5bdHv5c7Wp50ce//QaK3c6GVrfj26ghzWZ9RvHBJEqOHKsQV+v5gfjf1Jitdz2ASpZpOnMqtV96huOTpwGwrvEtZbGSwUC7HX+Q/avnoM5bar06DJfdwf963oOxQRwNPphE6dEjWI4frxAX9ejj+DRM4K/H+qOSJRpM/IioAU9yetbXAJz+/lusE97FZbejr1mLhlOnUXokidKkJK+3qebLr+JyONj7QA8M9RvQ4P0PMR87iuVExTZF9n0UY3xDDjz1KCpJpt57HxD12BOkfzMTlSxjy8ri8CsvYMvKJCDxVuq+9TYHnnoMW2aG19tUmYDeT+JyOsga+zzq6NoEDxyO43SKx4BY3ywRY5vbyf1sHM78bPy6PURgv8HkTH6jmmpervHkMSg2O6trt8O/aUNaLZhB4b5DFB88WiGu7rBnCGjRhPWteqCSJVrO+4L6rz/PkXemopJlWv08jZNfz2Fb96cIad+alvO+YOOtD1By9ET1NOwSWE9ncfS9aYTd1R7JoKvu6ly26BeH4HI4OPDIfRjq1afO+ImYjx/FmnKiQlz4Q/0xxMWT9OwAkCXqjJ1ARN/Hyfx+dvVU/DwBvZ8Cp4PMMc+hia5N8KDXsJ8+WTYgPkt/8y0YE28nZ+pYnHnZ+N3zMIH9B5MzaRQAiimf4hW/oGvYFJVG6/V23N1ShVNx8clCFxGB8HAHicx8FzmFFePqRsKtjVT8d41CsRn6tJfo0MQ90AaoEwGdmqlYsEnhdC74GTyfK9AXGsaqKDLfmCPQf9MXoFzTVI2srCzGjRvHF198waJFi1i+fDlPP/30tXyKy/LMM8+waNEilixZQkJCAtOne/ds9Vq6q0MIy//IISXVQnGJk+8XnOaujqEXjF+8Mpvd+4uw25QLxgDodRLt2wSxYl3Ota7yRUkGA2F3dyZ50uc4S82YduwmZ9VaIh/o7hEbemdHTn3zXxymQux5+aTO/oGoB++rtNzwe7pgz82jYNvOqm5CpSS9nqCOd5D69QwUs5nivXso2LCe0K7dPGIDb2tH5ryfcRYV4igoIHPez4Td26Psfsvx47jsdvcNlwuXy4Uu2vNEqKpJej2BHW7n9KyvUCxmSv7aS8GmDYR06eoRG9C2HVkL5uIsKsJhKiBrwVxCu90LgGKxkP7tLPcg2eXCtGUT1vTTGOMbertJlVJpdehvakPR8rm4bFbsx5Ow7N+JoVV7j1g5OBzb8SSceVngcmHeuQF1RHQ11Pq8ehkNRN7XhSPjP8VZUkr+5l1kLVtDdN+eHrER99zBiWnfYc83YcvJJ2Xa98Q8/gDgnm3WRYVxfOo3oCjk/rmV/M27qdHPs5zrScbClWQuXo0tt6C6q3LZJJ2egNs6kv6fr939bP8+TFs2EtzJs5/5J7YlZ9F8nMVFOE0mchbNJ7jrvdVQa08qrQ5D0zYULv8Zl82KrawftfOIVQeHuftRbnk/0pzTjyz7tmP5awdKSbE3mwCARoaGMSr+3OfC7oDUHDhy2sVNtT0HiDfVUbEn2T2gtthhw36FpnXK4zrcJLF+v4vTZy78FpndP+e6u4XEmj1KhVnqG4nLdfU/N4prOuOck5ODWq0mMDAQAJVKRUJCQtn98fHxvPLKK6xatYqCggLeeecdNm3axPr163E4HEyZMoV69eqRnZ3N0KFDKSkpwWq10rFjR1577bUrrpeiKJSUlBAQEABw0fKLiooYNWoUR44cISIigoiICEJCQhgxYgSrVq1iypQpSJKE0+lk9OjRJCYmXsVf7NLVijGwaUf5h8Gxk2aCAzX4+8oUFl/55bn2bYIwFTrYe9C7b0zGurVwKU7Mx1PKjhUdPExQYivPYJUKleqcNysV6GtEIvv54iyqWO+o3j3JWLCkqqr9t/SxNUFxYj11quyY+dgR/G5u4RmsUrl/yg+gjYhA9vHBWVICQK1XhxPS7V5kvZ6SpCRMmyu/3FmVdDGxoChYU89t01F8m93sGayiwv+VSqVCGx6B5OODcqZNZ6mDgtDHxmI+nlxldb8cclgkuBScOeWz3470k2jrJnjEWv63GcPNtyCHRuLMy8bQugPWpL3erG6lfBrUxuVUKswKF+5LIrh9a8/g819/KjDERKH2963Y384J92vUoApqLUB5P7Ollc/KWpKP4XNTM89glQrOneFTqdCGhSMZfVBKSzzjvUgOiwJFwZld3o/saSno6nv2I/Puzeib34ocFokzNxtj6w5YDu3xZnUvKNjPvVNEXlH5scx8qBWuAiqO8sL8VRxOdVWI8zWoMGjdA+moIDisg+fvlVDLcDjVxeo9LhxnProbxoJTgWPpXmhYFfk3LQ68pgPnhg0b0rRpU26//XYSExNp0aIFvXr1IigoqCzG39+f+fPns3z5cgYPHszkyZN59dVX+eqrr/jiiy/46KOP8Pf3Z/r06fj4+GC32xk4cCDr1q2jQ4cOl1WfL7/8krlz55KTk4Ovry8//vhjWR0uVP7nn3+Ov78/v/32GwUFBTzwwAN07eo+4//000956623aNWqFU6nE7PZfLGnv6YMeokSc/kAuaTUeeb41Q2cu3QIYeX63L8PvMZkoxHHeYNeZ1Exsq/RIzZv7QZinuxP/ubtqGSJmCf7u8vQ6ysMnHU1IglMbMnB196q2spfhGQw4Cyu+MHlKC5BMnq2y7RlMxF9HqZo106QJCIefMhdhl5fNnBOmfQhKZMn4dvkJvyat8Bls1V9I84jG4w4z5vxcZYUI1fSpsKtWwjv/SBFu3eBJBH+QB/APZtWYeAsy9R54y1yf1+O9dRJj3Kqg0qrRzGXVjimmEtR6fQesc7CfGzJSYSPdOekOwtyyZv+rreqekGyjxFHYVGFY47CItS+Ph6x2SvWUfuFx8lbtxVkmdqDH3OXYTRQnJSMLTuPukMGcnzqt4R0TCS4fWty/9zmlXb8G0l6wyX3s6IdWwm7rw/Fe3ehkmRCe/U+U4a+2gfOkk6HYqnYj1wWMyqdZ36Cux8dImLU5LJ+lDvtHW9V9aK0GrDaKx6z2t3HK491VYg7e1yW3OuIEmLhu9XuGeUH20u0awRr97nQqOGOphI/rL1Bp5r/ha7pwFmSJKZNm8bhw4fZvn07q1atYubMmSxZsqRsFrpbN/cl68aNGwNw++23A9CkSRNWrnTnpTqdTj744AN2796Ny+UiJyeHQ4cOXfbA+ZlnnuHRRx8F4PPPP+fNN99k2rRpFy1/69atvPnmmwAEBgbSuXPnsvJuueUWJkyYwN13302HDh2Ii4u78j/W3+h0WzBDnq4FwL5DxZgtCkaDXHa/j8GdZWO2XPmgOSxYQ7MEPyZ/deKq6nolnKWlHh/msq8PzuJSj9gTn31FfX8/2vz6M4rNzuk58/Fr1BBbbl6FuKgHelCwYzeW1OpboKWYzUg+57XLxwel1LNdp7/9hlhfXxrP/g+K3U7O4kUYG8Rhz88/r1CF4r17CLmrK2H39yZr3s9V2QQPTnMpsrFimySjD85K2pT+/bfIvn4kfPUNLruNnGVLMNSPw1FwTptUKuqMGoPL7uDklI+ruvqXzGWzIOkrfrhLegMuq8Uj1u+u3mhq1iVz/IsoRQUYWrYj+Lk3yP7wNbB7/+TmLGdJKWo/3wrH1H6+OIo9B1NHJ06nYYA/7bYsRLHaODV7Lv7NErBm5YKisPPhF2g0aTR1hw7CtOsv0uf/hlINJ27/ForF7NHP5Av0s8wf/4Ps40v857NQ7HbyfluCoV6Div2smihWOG0z5gAAIABJREFUK6rz+pFKb8Bl9Zxo8uvaG21sPTLGvlDWj0IGv0n2xOG4qrEfAdjsoDtvkKzTuI9XHls+E332cTZ7eQrC9sMuis+8lWxNUmjXWGLtPhcdmqjYd8KFqXrPd66at/dxPn78OK+//joFBQUEBgYyceJEateuXSHm888/59dff0WWZdRqNUOGDKF9e8/Uu8tVJdvRxcXF0b9/f2bPno2fnx/btpXPUuh07gUbkiSh1ZYn+0uShOPMau7Zs2dTWFjI3LlzWbJkCZ07d8ZqtV5Vne6++242bdr0t+W7XK5KL1MCjBo1infffReNRsPLL7/Mzz9X3QBmzcY8ejy5mx5P7mbUxCOkpJqpW7N85qFuLSN5BfarnG0OZf/hYtKzvP8GVZqcgkpWY6hds+yYb0I8JUeOesQqViuH33qfjbd0YXOHe7DnF1D01wFQKp6hRz7Qg4x51bPrxFmWUydRybL7susZxvr1K01HcNmsnJw8iT3392TfQ71xFJooTTrk0a6zVLIafbT382itqadAlivkVxvr1/dYGAjgstk49enH7HvoPv7q/5C7TYeTKrSp1vCRaIKCOfbWqOtmFwDAfWlZkpFDI8uOqWvUwpGZ6hGrrlET8/+2oJjyQFEwb1+HZPSpkJ9ZHUqOnEClljHWq1V2zO+meIoPHPGIVSxWDgx9mzX1O7K2cRdseQWYdpf3q6K/DrO162Osir2F7b2exlgnloId+7zWln+bs/1MW6O8n+nr1vNYGAjufpY27RMOPNqbQ08+gqOwEPPRpAu+d3iTMzsd1Xn9SFOjJvYMz36kqVEL8/82e/QjdaT313KcL68IJBUEnXMeGh4I2SbPEWJ2oXvx4LlxxWYXZps7VaOw9MKjyjoRKlrHqXi5l8TLvST8DfBAW4lbG95YqQ/eznF+66236NevH7///jv9+vVjzJgxHjFNmzZl3rx5LF68mPfee48hQ4ZgsXhOhFyuazpwzszMZPfu8i3NMjIyyMvLIybm8jpBUVERYWFh6HQ6MjMzWb169VXXbcuWLWVnIxcrPzExkYULFwJgMpkq3JecnEx8fDwDBgygZ8+e7NvnvQ+Rletz6XZHKDWj9fj6yPS/P4oVf154QZ9aVqHRuHMY1Wr37+efD3RpH+L1RYFnKWYz2b+vou7QF5AMBgJa3kxYl9vJWOC5bZY2IhxteBgA/s2bUvulZ8t21DjLv0UzdJERZP3que2bNykWC/l/riX66UFIej2+NzUlsF0Hcn5f7hGrCQ1DE+Je4OnTuDE1BjxF2syvAFAHBrm3qTMYQJLwb5NIcOcuFO7c4dX2gLtNBev/pMaTTyPp9fg0uYnAtu3JXfm7R6wmNLS8TQmNiXrsCU5/M7Ps/ppDhqOvVZujo16rlrSTi3HZrFj2bcfv7j6otDo0tePQN26Jecd6j1j7qWQMzRKRfP1BpcLQsh1IMo6c6t1DyllqJmPRSuJG/x+y0UDQLc2J6H4naT96nlDqaoSjiwoHILB1s7IdNc7yaxKHpNMiGfTUefkpdJFhpH23wGttuRIqWUbSaVHJ0jm/y3//wOuAYrVg2riOyMefQtLpMTZqQsCt7chb49nP1CGhqIPdW4oaGzYiot8AMr67PnbUcNmsWPZuw6/bg6i0OrR14tA3aYV5xwaPWNupZPTNEpF8A9z9qNWZfnQ2P1qSQK1x/3vu715gd8KhVBcdb1KhkSEmFOKi3bPD59t33EWzuipC/UGvgXaNJfYeL4/bk+yiVQMVRp37/jbxEkdPu+//7x8KXy5X+Pp390+xBX7dobDj6A20Wg73V25f7c+lys3N5cCBA3Tv7t5MoHv37hw4cIC8vIpXodu3b4/B4L76ER8fj8vloqDg6hcOX9NUDYfDwdSpU0lLS0Ov16MoCq+88gqNGjW6rHIee+wxXn75Ze677z4iIyO59dZbr6g+Z3OcFUXB19eXCRMm/G35L7zwAiNHjuTee+8lOjqaFi1a4OvrPuWcNGkSKSkpyLKMv78/777rvZzG7XsK+WlJBpNGx6PVSKzfls+3806X3f/eiAbsO1TEj4vcbzgTR8XRrJEfAE3ifRk6qDavjk9iz0F3/mNCAx9CgzX8uaX6Lu0lvfkuCR+Op/3OtdjzC0h6811KjhxDVyOSxJUL2drlPqynMzDWiiXh43fQhgRjOZ3JsYmfkLd+c4Wyovr0JPu3VThLPC9relvKpA+pM/INbl6yHEehiZRJH2A5fhxtRARNvvuRvx7riy0zE110NHXffAt1UBC2rExOTZ9G4fazV2dchN33ALWGjUAlSVgz0jn56ScUbPAcxHnDyU8+ovZro2i6YCnOQhMpn3yE5cRxNOERNP7me/Y/8Sj2rEx0NaKpPXI0msAgbFlZpH01naId7jZpIyII63kfis1K0wXlA7mTH39I3qrqPeE5yzR/FoGPPEv42C9wlRZjmj8LR2YaUmAIYa99SPYHw1EKcileswTJ15/QV99HpdXhzMmk4NtPcFmq//W3/5Xx3DT9Xe5M2Yg9r4D9L4+j+OBR9DFRdNi1lHUtumNJTcdYpybNvp6ILiwYc2oGSaMnkbN6Y1k50X17EftEH1QaNXmbdrKt+1MolV2nvo7UH/U8cWNeKrsd078Xh8dP5cjbn1VjrS5d2mcfEzv0dRr9tAhnYSGpUz/GmnICTVg48V/+h6RnHseenYUuKpqaw0ehDgjClpNF+qwZFO/aXt3VL1Nwph9FjJ+OUlqMad5MHBmpyIEhhL3+EdkThuEsyKV49WJkX3/Chrv7kSMnk/xvyvuRX5f78bu7T1m5xlbtKfptHkW/z/dKO37b6aJ7G4lX7ldhtrpv5xSCvxGe7SYxY7lCYSkkZ8DmQy76d5LQyHDolIt1f5UPfDfsd2E8szjQ4YSDp1xs2O++33ze/IHiAosN7A6vNPGauRapGoWFhRQWFnoc9/f3x9/fv+x2eno6ERERyGdOimVZJjw8nPT0dIKDgyste+HChdSsWZPIyMhK778cKpfrRtoEpOrZ7XYURUGn01FcXEzfvn0ZOXIkbdu2vapyO/f1/kxhVRu1+anqrkKV8IvxXIxzo5M0N8as2+Wq0aLW3wfdgHZ/sau6q3DNuez/zI+amDsjqrsK11xYQvVvrVgVZid+X91VqBJvPFL97+/ztl59mlD6ts/57DPPk9wXX3yRl14qPyH+66+/GDFiBMuWLSs7ds899/Dhhx+WrZ8717Zt23jttdeYNWsWdevWvep6im8OPE9hYSGDBg3C6XRitVrp3r37VQ+aBUEQBEEQ/qmuxRTsgAEDuP/++z2OnzvbDBAVFUVmZiZOpxNZlnE6nWRlZVX6BXe7d+9m+PDhTJs27ZoMmkEMnD2EhISwYMH1nccnCIIgCIJwvbgWA+fzUzIuJCQkhISEBJYuXUqvXr1YunQpCQkJHmkae/fuZciQIXz66aeVzkRfKe9k2QuCIAiCIAj/SIpLddU/l2Ps2LF8//33dO3ale+//55x48YBMGjQoLKNG8aNG4fFYmHMmDH06tWLXr16kZSUdNVtFTPOgiAIgiAIwg2jXr16zJ071+P4V199Vfb7/PlVs4hUDJwFQRAEQRCEK/Zv2mZCDJwFQRAEQRCEKyYGzoIgCIIgCIJwCbz9ldvVSQycBUEQBEEQhCvmuszFfTcysauGIAiCIAiCIFwCMeMsCIIgCIIgXDGR4ywIlyCq5T/vq2YBjCE+1V2Fa07jY6juKlQJ/7g61V2FKhHY6Eh1V+Ga8wn9Z74GU1dnVncVrrl6Pf+Z35ar0/570gm8TeQ4C4IgCIIgCMIlEDPOgiAIgiAIgnAJ/k0DZ7E4UBAEQRAEQRAugZhxFgRBEARBEK6YyHEWBEEQBEEQhEvwb0rVEANnQRAEQRAE4YopSnXXwHtEjrMgCIIgCIIgXAIx4ywIgiAIgiBcMZGqIQiCIAiCIAiXQAycBUEQBEEQBOESiF01BEEQBEEQBOESuK7JlPON8ZXoYuB8A+ndLYKHe0ai06pYv62AKTNTsDsqf7EOeboWTRP8iI7U8dGME6xYl1t238sDa9K5XUjZbVlW4XC46PnU7ipvw7kkXz9qDB6KT7OWOIsKyfp+JoUb/qg0NqzvEwTc0RVJb8By/CgZX0/FdioFAE1YBJHP/B+GuARcdjuFW9aTOWtatS3zlYy+hAx4EX2jm1GKC8n/5XtKt62rNDawVz982t6JpNdjO3mcvB9mYE8/VSFGHR5FjbemULJzE7mzPvFGEzyojD4EPvwsuvibUEqKKFo2B/OuTZXG+nV7CGObjqh0euxpJzDNn40jIxUAY7u7MLbpiCYqFvOuTRT8ON2bzfhbJrON8St2sDklk0CDjpfaNaFbQk2PuHdX7eLXgylltx2KC40kseGl+7xZ3Uqp/f2pN/pNAm+5BUdBASmffU7O7797xKk0Gmq99CKhXbog6XTk/L6C4x99hMvprBCnj43l5jk/krt6DUfGjPFWM/6W7OtH7JAR+LZsjdNkIn32lxSsXeURp9JoiHryWQI7dkKl1VGwdhVp0z+F89p5vao1uD8xjz+AX5M4Tv+0lL0DR1Z3lf6WyWJj/KpdbEnJItCg5cW2jenWMNYj7r3Vu/k1qfz97mw/Wj+4BwA/7TnGkgMnOZpbSNe4GMbd1dJrbQCwlBawbv6bpB3ZhN4nkNZdh1L/5u6Vxu7b8A17/pyJw26hTpO7aHffW8hqLQBF+WlsXDiOzJN7kNVa6jS5i1u7j0SS3UOwY3uXs2vVZ5SYMvAJjKL1Xa9Qu3Fnr7VTuDxi4HyDaNXUn0d6RTLsnSRy8+2MG1qfAX1q8PWctErjj6WUsnZzHk/3i/G4b8rMk0yZebLs9vDnaldLflLkoJdwORwcHvgQ+tr1iB31LpaU5LIB8Vl+bTsQ0OluUt58BXt2FmF9nyD6/0ZwfPhgdznP/B8OUwFHnn4YyceXmmMmEnR3T/J/Xej9RgHB/Z7B5XCQOuwJtLF1CH/pTeynjnsMiI0tb8Pnts5kfjASR242gff1I2TgK2S88+p55T2L9cRRbzbBQ0Dvp8DpIHPMc2iiaxM86DXsp0+WDYjP0t98C8bE28mZOhZnXjZ+9zxMYP/B5EwaBYBiyqd4xS/oGjZFpdFWR1MuasKa3ahliVXP9SApu4CXf9lAXFgA9UIDKsS90bkFb3RuUXb7rd+2o1JdH7MldUa8hsvuYPtdXfGJiyNhyieUHDmCOTm5Qlz0EwPwTUjgfw8/ApJEwuSPiRk4kFNfflkhru6I1yg+cMCbTbgk0S8OweVwcOCR+zDUq0+d8RMxHz+KNeVEhbjwh/pjiIsn6dkBIEvUGTuBiL6Pk/n97Oqp+GWyns7i6HvTCLurPZJBV93VuSQT/9iDRpJYOegedz9avNndj0L8K8SNurM5o+5sXnb7rRU7kc7pRmE+ega2iWdzShZWh/dPdDYtehtZ1vDoG+vJTT/Eb988R3BUPMERDSrEnTq8gT1/fs09T8/Gxz+cld+9xM5VU2lzt/u9fOPCceh9Q+g/ah02SyG/zhzIgS0/0uS2xygxZbL25xHc9dhnxMS151TSn6z6YQh9X1uFwTeksmpdl/5NOc7XfDu6Tp06cfjw4Wtd7BWJj4+nR48e9OrVi7vvvpvJkydXd5Wu2F0dQlj+Rw4pqRaKS5x8v+A0d3UMvWD84pXZ7N5fhN128VlXvU6ifZsgVqzLudZVviiVTo9/Yjuyf/wGl8WC+dB+indsJqCj51m2NjwK86G/sGdmgKJgWrcabUytsvs14ZEUbvoTl92OsyCfkv9tRxdby6Mcb1BpdRhb3ErBoh9wWS1Yjx6kdM92fG653SNWHRqO9ehBHDmZ4FIo2fIn2qiKszLG1u1QSkuwHNrrpRZ4Uml1GJq2oXD5z7hsVmzHk7Ds34mhVTuPWHVwGLbjSThzs8DlwrxzA5qI6LL7Lfu2Y/lrB0pJsTebcEnMdgerj6Qy+LbGGLVqmkeH0qFeDZYdPHkJj0ujR6Pqec2dS9LrCenUiZPTp6OYzRTt2UPeunWE3XOPR2xw+/akz/kJR2EhjoIC0uf8RHjPnhViQu7qgqOoCNP27d5qwiWRdHoCbutI+n++RrGYKdm/D9OWjQR36uoR65/YlpxF83EWF+E0mchZNJ/grvdWQ62vTMbClWQuXo0tt6C6q3JJzHYHq4+m8fytCWX9qGPdqEvqR2uOnqZ7Qnk/6lQ/mjvq1SBQ7/2TbLutlOP7V9Kyy/+h0fkQWbsltRLu4OjuxR6xR3YtJL5Vb4IjGqAzBNC80/Mc3lk+cVOUn0bdm+5GrdFh9AsjNq49+VnuyZASUwZavR+x8R1QqVTUbHg7Gq2BwtyL/72uN4py9T83iutuH2eHw3FNy5szZw6LFi3il19+YcmSJezZs+ealu8ttWIMJKeUlt0+dtJMcKAGf1/5qspt3yYIU6GDvQe9O5DR1ojGpSjY0stnzC0njlU64DVt/ANtZA20UdEgywTe3oWS/5V/kOct+wX/225HpdWhDg7Bp3lrSnbv8Eo7zqeOqIFLUXBknS47Zj91HE0Nz8v9Jds3oA6PRB1eA2QZn7adMO8vT5dR6Q0E9uxL/tzqnRmTw6JAUXBmZ5Qds6eloIn0vJph3r0ZOTQCOSwSJBlj6w5YDt0YfS4lvwhZpaJWkF/ZsbiwAI7lFl70cauPpBFk1NEi5sInst5iqFUTl9OJ5WT5h27p4SMY69b1DFap3D/n3NZFRiD7+AAg+/hQ89lnOfHJlKqu9mXTxcSComBLK7/iYUk+hq5Wbc9glYoKuZMqFdqwcCSjT5XX898oJb/Yox81CA0gOa/ooo9bffQ0QQYtLaKvj1lWU84JVCqJwLA6ZcdCohqSn+l59S8/8yjBUfEV4szFOVhK8gFofNtjHNv7Kw6bmRJTJqcOryMmzj3xEBrThMDwuqQcWIOiODmxfxWyrK1Q3o3A5br6nxuF11I1Jk6cyLZt27Db7QQFBfHee+8RHR1NamoqvXv35tFHH2XTpk307NmT7t27M2rUKI4cOUJERAQRERGEhIQwYsQIbDYbkydPZvv27djtduLi4hg7diw+Phd/EzSbzTgcDvz83J15yZIl/Oc//8FutwMwYsQIbr31VgB27NjBuHHjAEhMTGT16tXMmDGD+vXrM378eLZs2YJWq8VoNDJnzpwq/KuVM+glSszll6pKSp1njssUFl/5JawuHUJYuT737wOvMUlvQCktqXBMKS1B0hs9Yh35eZQe/It6n32Dy+nEnpPFybGvld1fun8vgZ27Ef/9IlSyTMEfKyjatrHK21AZSWfAZS6tcEwxlyLpDR6xTlM+1iMHiH5nGi6nE2d+DpmTRpfdH9irH8UbVuHM9+7VgPNJOh2KpWKbXBYzKl0lbSrMx5Z8iIhRk91tKsgld9o73qrqVSm1OfDVaSoc89VqKLXZL/q4JftPcG9CzesiVUMyGHEWV+xXjuJiZB/PfpW/aRNRfR/BtGMHKlkm6pGH3WXo9ThLSoh97jmyFi/GlpnplbpfDklvwHneVQtnSTGy0bOdRTu2EnZfH4r37kIlyYT26n2mDL3He5Bw9cz2SvqRTk2p7eKTYksPnLxu+hGA3VqKVu9X4ZhW74vd6vmasdtK0er8KsSdPa73CSKqTmuSts3lm3GtcSlOGrS4j9qN3FdXJUmmQfNerPlpOE6HFUnW0LnfZDRaz9fy9UzsqlEFBg0axIgRIwCYO3cuH330UVnqREFBAfXq1eOll14CYMKECfj7+/Pbb79RUFDAAw88QNeu7ktwX3/9NX5+fsybNw+ADz/8kC+//JIhQ4ZU+ryPPPIIACkpKfTt25e6Z2Ze2rVrR/fu3VGpVCQnJ/PEE0+wbt06bDYbQ4cO5eOPP6ZVq1asXLmS7777DoBDhw6xefNmli9fjiRJmEymKvprQafbghnytHv2dd+hYswWBaOhfHbZx+C+WGC2XPmgOSxYQ7MEPyZ/deKq6nolFIsZ6bwPOcng4zFAAwh76DH09eI4MqgvjoI8Ajp2pubYD0h+ZRAuu42ao98nf+UyUka9gqTXE/XCMMIfe5qs7772VnPKKFYzKkPFdqkMRhSL2SM2sMfDaGs3IPW1gTgL8/FJvJ2IV9/m9NiXUIdHo09oRvrbQ71V9QtSrFZU5w38VXoDLqtnm/y69kYbW4+MsS+gFBVgaNmOkMFvkj1xOC67zVtVviJGrZqS8z7cS2wOjFrNBR4BGUWl7ErNYXQX7y5auhDFXIrsW3ESQe3jg7PEs1+lzZqN2s+PZj/8F5fNTubChfjEx2PPz8cYF0dgmzbs6d/fW1W/LIrFjHzejLFs9MFZ6tnOzB//g+zjS/zns1DsdvJ+W4KhXgMcBfnequ6/ikGjprjSfnTh4UZGUSm70nJ4s3PzC8Z4m0ZnxGateHJms5ag0XlO0mm0FWNtluKy4y5FYfmsQSQkPkTP53/Ebi1h3fw32fbbRyR2G07a0U1sW/4R3Qd9S2iNRuSk7ef37wbT7YkvCamRULWNFK6I1wbO69at44cffqC0tNQjHUOn09GtW7ey21u3buXNN98EIDAwkM6dy/Ne16xZQ3FxMb+fWSVus9lo2LDhBZ93zpw5+Pj4UFhYyIABA1i1ahWdO3fm1KlTvPrqq2RmZqJWq8nJySE7O5vc3Fz0ej2tWrUCoEuXLvj7uxc0xMbG4nQ6eeONN0hMTOSOO+64Nn+cSqzZmMeajXllt0e9WIe6NY38ucX9Zl+3lpG8AvtVzjaHsv9wMelZ3h/Q2E6noZJkNFHR2M+ka+hq18V63sJAAF2tuhRu+hNHnnvm1fTHCiKefB5dbC3sWRlowsLJX74Ql8OOs9hOwR+/E9b3CaiGgbMj8zQqSUIdHoUjKx0AbUxt7Kc989U0MbUp3b4BZ4F7xr9k8xqCHx6IJioWXf1GqEPCiZnwFeDOCUeS0NSI9Vg8WNWc2emoJBk5NBJnjjtdQ1OjJvbzFga6j9fC/L/NKCb3a9e8fR0B9z+OOjIG+6lkj/jrSa0gPxyKwsn8Imqeucx8OLvAY0HTuZYeSKFpjRBiAn29Vc2LMqecRCXL6GNjsZxyL0Y1xjWgNNnzb69YrRz/4EOOf/AhABH330/JwYOgKAS0bImuRhQtly4FQDYaQJJoWvc79j76mPcadAHW1FMgy2hrxGA77X4d6uvW81gYCOCy2Uib9glp09w70gR364H5aNKNlVR5A6kV5ItTUTiZX0zNIHe/OJJtom6w3wUfs+zgKZpGBRMTcP2kzwSE1salODHlnCAgtDYAuemHCIqo7xEbFFGfvPQk6jV1j2NyM5Iw+Iai9wnCUpJPiSmdxrf2R1ZrkdVa4lrez46VU0jsNpzc04eIrNOKsJgmAITF3kR4bDPSjm6+oQbON1KqxdXySo5zWloa77//PpMmTWLp0qW899572GzlgzWDwVDh8ozL5brg5RqXy8Vbb73FokWLWLRoEcuXL7+kRX/+/v60bduWjRvdl/CHDh1Kv379WLZsGb/88guyLGO1WgEu+Nx+fn4sW7aMbt26kZSUxL333kt2dvYl/x2uxsr1uXS7I5Sa0Xp8fWT63x/Fij8vfAlfLavQaNw5jGq1+/fzm9WlfYjXFwWe5bJaKNy6gbBHBqDS6THEN8avdVtMf3puJ2U5moT/rR2QAwJBpcK/Y2dUsowtPQ1nUSG2zHSCuvYASUIy+hB4exesJ6pnkOayWSndvYXAnn1RaXXo6jXEeHMbSras9Yi1nTiKsVVbJL8AUKncCwhlGXtWBsXrfyftjec4/fYQTr89hKJ1v2Pet5OsT8ZVS5sse7fh1+1BVFod2jpx6Ju0wrxjg2ebTiWjb5aI5Otuk6FVO5BkHGfzoyUJ1Br3v+f+fh0waNR0ahDNF5sOYLY7+F9aDn8eO829lWxHd9ayAyn0aFz9iwLPUiwW8v74g9jnnkXS6/Fr1pTgjh3J/vVXj1htWBiaUHdetm+TJsQMHMjJGe4dNTIXLGDXffezp39/9vTvT8b8BRRs3MiBF1/yansuRLFaMG1cR+TjTyHp9BgbNSHg1nbkrfHcdk8dEoo62J03a2zYiIh+A8j47sbYUQNAJctIOi0qWTrn96tb21KVDBo1nerXYPqWg+5+dDqXtcnpF+9HB0/So5Hn/Q5Fwepw4nS5UFwurA4nDi+d8Gi0Rmo37szOlVOx20rJOLGLlANrqN+8p0dsg+a9SNoxn/zMo1jNJnavmU5cS/fWlHqfIPyCYjiwZQ6K04HVXMjhXQsJjnRP+IXFNCHjxE5yTx8EIOf0ATKO7yA48gbLcVZcV/1zo/DKjHNxcTEajYawsDAURfnbvODExEQWLlxIixYtMJlMrF69mrvuugtw79rxzTff0Lx5c/R6PcXFxWRmZlKvXr2Llmmz2di9e3dZykdRURExMe7FTfPmzSsbyNetW5fS0lJ27txJy5YtWbVqFYWF7sVBeXl5yLJMhw4duO2221i7di2nTp0iLCzsqv4+l2L7nkJ+WpLBpNHxaDUS67fl8+288gVo741owL5DRfy4yD1AmTgqjmaN3Gf4TeJ9GTqoNq+OT2LPQfcCjYQGPoQGa8pmsKtDxldTqfHCq8TN+hlnUREZX07BdioFdWgY9T6ZybFXBuLIySZ34U/IAUHUnTTdvTdwxmlSPxxflp+Y+sE4Ip58npD7HsalKJT+tYfM2dW3P3Def2cQ8sRLxEz6FqWkiNz/uvdmloNDqTF2KqfHvoQzLwfTbwuQ/QKIGjMZSavHnp1O9vSJuMzudrnOObl0WS247DaU4osvVKsqBfNnEfjIs0SMn45SWoxp3kwcGanIgSGEvf4R2ROG4SzIpXj1YmRff8KGv49Kq8ORk0n+N5/gOpOC49flfvzu7lNWrrFVe4p+m0fR7/OrpV3nG9mpBeNW7ODOL5YQaNAy8s6SIUZYAAAgAElEQVQW1AsNIL2wlD7f/s68AV2J8nen4uw5nUtmkZkucZ6LJKtT8oSJ1BszmtYrV+AwmUh+fwLm5GS0ERE0n/szux98CFtmJvqYGOqPG4smOBhbZiYpn32GaetWwD0brZyZSAB3CohiteEouH52dkj77GNih75Oo58W4SwsJHXqx1hTTqAJCyf+y/+Q9Mzj2LOz0EVFU3P4KNQBQdhyskifNYPiXdfXLiEXU3/U88SNKT9hienfi8Pjp3Lk7c+qsVYX9/odNzNu5S46f/krAXotI++4mXoh/qQXlvLg96uY+2jnsn60Nz2XzGIznRtEe5Qzc1sSX249VHb710OneCaxIc/e4p2Z2Nt6jWHd/Df5/p126IyBtLvvLYIjGlBccJq5k3vw4JAl+AbWIDa+PU07DGTZ10+U7ePcsnP5/1mXRz9l89L32fPn16gkiRp1E7m1++sARNVtQ8v/Z+++w6Oo1geOf2drKimQhBQgoYQWOoQiiEZ6C0VAsKD3iooCXhUUrqiAXn/Xile8yrV3RXqV3qRDAoQSOqGkQXrdPr8/NmwSdoH0JXA+z7MP2dmzs++bLDPvnDlz5qHJbPrlHxTmpeHi7kv7B58lJPy+GsmxqtSiurfSJLlqbvdiExUVhV6vR1niiHjVqlXMnz+frVu3EhQURJcuXVi+fDlbtmyxXRy4r2iDDZCTk8PMmTNJSEggODgYLy8vQkNDeeGFFzAajXz22Wds3rwZSZKQJInJkyfbCuuSmjdvTnh4OAqFAr1eT2RkJLNmzUKj0bB8+XI+/fRTAgICiIyM5Pfff2fJkiWEhISwf/9+3n77bVxcXOjWrRtLly5l8eLFZGRk8MYbb2AymTCbzfTs2ZPXXnsNRRl6zPqMc84sD9VpvuHOn4i/Itzq3jmnC6uK2t3+Qr67gVcLB7NF3AWOfLXB2SFUOfd6d+d38MrmO+/iycrq/Z8Rzg6hWiyo/66zQ6gW00Y6/6zd+0sqfybg1VHOz6MsqrxwrgpGoxGLxYJWqyUvL49x48Yxc+ZMevToUSOfn5eXh4eHdWzW3r17mTFjBlu2bClTgXwzonCuPUThXHuIwrn2EIVz7SEK59rlTiic31tc+cL5tYedn0dZ3JF3DszJyWHixImYzWb0ej1DhgypsaIZYMOGDXz//ffIsoxGo+Gjjz6qVNEsCIIgCIJwt7LcQ2M17sjCuW7duixdutRpnz9y5EhGjhzptM8XBEEQBEGoLe68sQvV544snAVBEARBEITa4V4qnMX4A0EQBEEQBEEoA9HjLAiCIAiCIFSY5R7qchaFsyAIgiAIglBh8j10I05ROAuCIAiCIAgVdgfObFxtROEsCIIgCIIgVFgN3Qn9jiAuDhQEQRAEQRCEMhA9zoIgCIIgCEKFiaEaQpWr4+ft7BCqXGBwc2eHUC3U3l7ODqHKSSqls0OoHsq7M6+w3s2cHUKVk+/SO4s1GVZzd7WtKdtfXObsEKqF5fe785bbd4K79L+3Q6JwFgRBEARBECrsbj0wdkSMcRYEQRAEQRCEMhA9zoIgCIIgCEKF3UNDnEXhLAiCIAiCIFSc5R4aqiEKZ0EQBEEQBKHC7qVZNcQYZ0EQBEEQBKHCZEvlH+Vx4cIFxo4dS//+/Rk7diwJCQl2bcxmM3PmzKFPnz707duXRYsWVUmuonAWBEEQBEEQao233nqL8ePHs379esaPH8+bb75p12bVqlVcunSJDRs2sHDhQubPn8+VK1cq/dmicBYEQRAEQRAqzCLLlX6UVXp6OidOnGDIkCEADBkyhBMnTpCRkVGq3dq1axk9ejQKhQJfX1/69OnDunXrKp2rGOMsCIIgCIIgVFhVjHHOyckhJyfHbnmdOnWoU6eO7XlycjIBAQEoi26ApVQq8ff3Jzk5GV9f31LtgoKCbM8DAwNJSUmpdJyicBYEQRAEQRAqrCpm1fjhhx/47LPP7JZPnjyZKVOmVHr9VUUUzoIgCIIgCIJTTZgwgREjRtgtL9nbDNae49TUVMxmM0qlErPZzNWrVwkMDLRrl5SURNu2bQH7HuiKEoVzLTLkAS9G9PFBo5bYeySf//1xFZPJcdvnxvrRuqkrgX5q/vvrVbbuz7W99kCkJ4N7exHop6FQZ2HHwVx+WZ2OpZxXtVaW5OKG68BHUYe2QC7Mp3D7SozxB+3aufZ7BE3rLsULFAowm8n+ZBoAHuNeRBkUyvUELLlZ5H79dk2kcFvZhQbmbjjInoupeLtqmdIzgoEtG9q1+9emWNbGX7Q9N1lk1AoFO6cMr8lwbyq7UM+cdQfYk5CCt6uWqfe3ZWCrRg7bXsnK4/1NscRcvoZGpSC6TWP+8UA7AM6n5/DvjTHEp2Ti46blHw+0Iyo8pCZTKSW7UM+ctfvYcyHZmtcD7RnYOtRh2yuZeby/8SAxl6+iUSqJbtuYf0R1ACApK4931x8gLikNjVJJn+YNmNa3EyqF8y8jkVzd8R77DJrwNljyc8lduxDdod0O23oMGI1bZG8kjQvGxARyln6HKTWxhiN2THJzx3vss2ibF+Wx5ncKYx3n4TlwjDUPrTWP7CXfYUqxXhTk1rMfbpG9UQc2oDB2N1m/LajJNErJ1hmYuymWvRev4u2qYXKP1gxs0cCu3bubD7H21GXb8+vbh7+eHwrAwiPnWHXiEmfTc+gfHsKcfp1qLIeKavT8o4Q8MRLPiHCSFq4m7u8znR2SHX1BFn8tnUXimd1o3b3p0u9lmrQf4rDtsZ3fE7fjG0xGHaER/bgv+i2UKg0AuZmJ7F4xh6uXjqBUaQiN6Ee3wTNRKFWYTQa2LZxOWuIx8rKSGPT0DwQ2jqzJNKtEVcxGd+OQjJupW7cuLVu2ZPXq1URHR7N69WpatmxZapgGwIABA1i0aBH9+vUjKyuLTZs28csvv1Q6znIVzllZWURHRzN//nxbBf/FF19w4sQJ5s+fz9KlS9m2bRuffvpppQOrrPnz5/Prr7/i7++PLMu4uroyZ84cWrRo4ezQKqR9CzdG9vHhrc+SyMg28drTgTwysC4/r0p32D4hycCuQ3k8Pqyu3WtajcS3S9I4c1FHHQ8lM58JJK/Am2Wbsqo7jVJc+44Bs4nsz2ai9A/BY/Qkcq9dwZJWegxS4YbfKdzwu+2526DH7MZTFW78A0PcnhqJuzz+veUQKqWCTc8N5dS1LF5ctpNwPy+a1PMq1e71Ph15vU9H2/O31h1AkqSaDvem/m9jLGqFgs0vRHPqahZTF/9FuL+3XR5Gs5lJf2xjTIdmvDesBwqFxMUM60GbyWLhpaV/8XD7pnwxpjcxl6/x4tK/+L1efxr5ejojLf5v/UHUSgWbp47kVGomUxdtt+bl512qndFsZtLvWxjTqRnvDe9ZlFfxWLx31x/A192FjVNGkqszMOn3LfwRc4bxXZrXdEp2vEY9hWw2cXX2JFTBofj+fTqmpIt2BbFLu664RT5A+mdzMGdew3PgGLzHP0/avNedFHlpXqP+BmYTqW8+hzo4FN+Jr2JMumQriK9zad8Nt64PkDZ/NuaMa3gOGov3o8+T9tE/AbBkZ5K3YRnaFm2R1BpnpGLz3tYjqBUKNk4cZN0+rNxj3T7ULV08/POhDvzzoQ62529tiEFRYvPg5+7C3yObs+fiVfQmc02FXyn6pKucffdz/Pr1QuGqdXY4Du1e+TYKpZrx//yL9OSTbPjhOXwDm+MT0KxUuyund3Jk+9cMevo73Or4s+nnKcRumk+XAa9Y17NiDq4edRk3cwcGXQ7rvv078ft+o3WPxwEICO1I6/ueYMtv/6jxHKuKXMM3QJk9ezYzZszg888/p06dOrz33nsATJw4kalTp9KmTRuio6M5cuQI/fr1A+CFF16gQQP7A9PyKld3iLe3N2+88QYzZszAYDBw6tQpfv31V2bPnl3pQABMN+s+raDhw4ezYsUKVq5cybBhw/jwww+rdP016YFITzbvzeFyioH8QguL1mfwYNebFxvr/srm6OlCjEb7L/P6nTnEn9dhMkNGtpkdB/No0di1OsO3p9agbt4e3V9rwGjAnHge45mjaFrf5khbrUEd3h7DsX01E2clFBpNbD5zhefva42bRkWH4Hrc3ySINfGXyvC+RIbepEe3phUaTGw+fYXne7XBTaOmQ4gfvZsGsfp4gl3blUcT8PNw5fEuzXHVqNCqlIT7W4vQhPQcruXpeKxzOEqFgshGAbQPrudwPTWh0GBi86nLPN+rrTWvBv70bhrM6mP28ayMu2DNK7Jlibx8bK8nZefTt0VDtCol9Txc6dE4iPNp2TWYjWOSRotLm0hy/1yEbNBjvHAK3fEYXDv3smur9PXHcOEU5oyrIMsUxuxEFRDshKjtSRotrm0jyfnzD2SDHoMtj552bVW+ftY80ovzUJfIQ3f0ALpjB7Hk59VkCnYKjSY2n01kUveWtu1D78aBZdo+bDmbxJCWxduHqKbBPNgkCG8X5x4IlEfK8o2krtyMIb1mO2zKymgoIOH4Rjr1nYpa60790E40bPkgZw+ttGt7JnY5zTuPwiegGVpXLzo8OIkzscttr+dmJhLWZgAqtRY3Tz9CwnuRmXoWAKVKQ8R9E6gf2glJUtZYflWtJmfVAGjSpAmLFi1i/fr1LFq0iMaNGwPw1Vdf0aZNG8B60eCcOXPYtGkTmzZtYuzYsVWSa7mHalyfzuPDDz/kwIEDzJw5k7p17Xs1Szp16hRz5syhsLAQvV7PmDFjePLJJwGYMWMG7u7uJCQkkJmZydKlS1m/fj3z5s3DxcWFAQMGMG/ePGJjY3F3d+fIkSN8+OGH5OfnAzB16lQeeOCB28adl5eHl5e1d8xkMvHss8+SmZmJXq+nbdu2zJkzB41Gg8Fg4O2332b//v34+vrSsmVL0tLS+PTTT4mNjeXtt9/GYrFgMpmYNGmSbTqU6tYwUMOBo/m25wmJenzqqPBwU5BXULkxFq2auHA52VDZEMtF6eMPFguWzKu2ZeZriagaNL3l+9Th7bEU5mG+fLbUcpfew3DpHY0lIxXdjtWYLp+plrjL42JmLkpJopFP8QFOuJ8XMVfSbvm+zWcS8XHT0jGkXnWHWCYXM3NRKqRSvcLh/t7EXL5m1/ZocjpBddx5YdF2TqRk0KSeF6/16UgzP28cbRZlGc45qcC8mJFjzatE7154gA8xl1Lt2h5NSiPIy50XFm7lRHIGTfy8eK1vZ5oVHRSM69yc9fEX6dwogFydgV3nknj+/rY1lsvNKP3qg2zBXOIsjin5EprGLe3a6g7vwbV9N5T16mPOuIZrl/vRn4qryXBvSukXCBYL5mvFeRgTL6Jtap9H4aE9uHTojtKvPub0a7h1uR/dySM1GW6ZXMzMs9s+NKvnRWzibbYPZ5PwcdXQMfjW+12hcrLTEpAkBV71wmzL6ga2IPnCAbu2WVfP0qhVlO25b2ALCvPS0BVk4uLmQ+sej3M+bi2BYZHoC3O4fGoHnfpOrZE8akpN9zg7U4XGOL/xxhs8+OCDdO/enUGDBt22fXBwMN9//z0ajYb8/HxGjx5Nr169aNKkCQCHDh3i559/xs3NjfT0dN58800WLlxIaGgo33//vW09OTk5vPXWW3z55Zf4+/tz9epVHn74YVavXu1wXMzy5cvZvXs32dnZmEwmfvrpJ8B6FPLhhx/i4+ODLMu89tprLFmyhHHjxrFw4UKSkpJYs2YNZrOZxx9/nPr16wPWI5kJEyYwfPhwZFkmNzfX7jOri4tWQYGuuEAuKLT+7OpSucI5qqsnTRu68PlvV2/fuCpptMh6XalFsr4QSeNy67dFdMV4bH+pZYXblmNOTwGzGXXLTriPepbc7/+NJevWO6DqVmAw4aFVl1rmoVFTYDDe8n2rjicwuGXDO2aohsM8tGryHeSRmlvAwUtXmTeyF10b+fPrwTO8tHQny54eSKhvHXzdtPyw/ySPdm7OwUtXibl8jS4N/WsqlVIKjDfLy/7MV2pOAQcvpTLv4d50DQ3g1wOneGnJdpY9MwS1Ukmnhv4sO3KWXh8twizLDG0TxoNOHLt9naRxwVJYUGqZpbAASWv//8yck4nh/Cn8Z36MbDZjzkonY8G/airUW1JotVh0pfOQdYVIWvszZdY8ThLwz3m2PNI/f6emQi2zQoffPxUFDr5/Ja0+cemO2j7crUz6AjQupc/qql08MOrz7doaDaXbalw8rMv1Bbi4+RAY1oVTBxbx49wuyBYzzToOp1GrPtWbgFBtKnTlyt69e/Hw8ODChQsYDLfvqdTpdPzzn/9k6NChjBs3jqtXr3Ly5Enb6wMGDMDNzQ2Aw4cP06pVK0JDQwEYNWqUrd2hQ4e4cuUKEydOJDo6mokTJyJJEhcvXsSR60M1tm3bxrRp03jppZcAsFgsfPvtt0RHRzNs2DD27t1LfHw8APv27SM6OhqVSoVWq2Xw4MG29XXt2pUvv/ySzz//nLi4uDINYq+o+zt78MsHjfnlg8bMei4Qnd6Cq0vxn+v6z4W6ihfNkW3ceWxoXd7+Ionc/Bq+MtCgt9t5SxoXZIPuJm8AydMbVcOmdsM0zMkXwaAHswnjsX2YEs+jaty6WsIuDzeNyq4IyzeYcNOob/IOSMktIPZKGkPukGEaUJSHvnSRnKc34u4gD61KSftgP3o2DkStVPJEZHOyCw2cT89BrVTw8Yie/HUumb7/XcFPB07Rr0UD/D1reJhQETf1zfKy70/QqpW0D/GjZ5Mga15dW1rzSsvBIsu8sHArUeEN2D1tDFtfHEWOzsB/th6uqVRuSjboULiU/v0qXFztDloBPPuNQt2wMalzJ5MyYwJ5G5fi+9zr4ORxwAAWvR7phjwkF1dkfaFdW8/+o9A0aELK7BdIfvUJctcvoe7zs5w+nvlGrmoVeQ63Dzfvz0rJLSA2MY3BDi4wFqqWSuuGQV96OI9Rl49a627XVq1xw6Arbnv9fWqtG7LFwrrvJhLaui8TZsfy6Kzd6AtzOLCu9g4ddUS2yJV+1BblLpwzMjL417/+xZdffklERESZLgT8+OOP8fPzY9myZaxcuZK2bdui1+ttr18vmsE6ifbNjqRlWaZ58+asWLHC9ti+fbttPMutDBgwgPj4eDIyMli1ahUxMTH88ssvrFq1ivHjx9sOAG71+U8++SQLFizA19eXt99+m3nz5t32cytqx8E8Hp1+nkenn+edBclcSjYQGlS84Q8N1pKZY6pwb3OHlm5MGufPu19a113TzJlXQaFA4eNnW6b0D8aclnzT92giumJOvIAl2/EFkcVkuAM6Yxr5eGKyWLiUWXxm4vS1LLsLf0pafeIibYPqEuLtURMhlok1D9l2kR9Y82hczz6PZn7e3KojLNzfm2/GR7Ft6gg+H9ObK1l5RAT63vwN1aiRb52ivIov8jt9NZPG9bzt2lrzcpxYdqGelJwCxnYKR6NS4u2mJbptY3aeS6q22MvKfC0FFEqU9erblqmCGmFKtb/trCqoIYWH92LJzgCLhcIDO1C4uZcaH+ws5mvJSDfkoQ5qiDHFPg91UCMKD++xy0NV3/lnAEpq5OOB2WLhUmZxwXXmWjaNb3Gh7Jr4y7QN9CXEy754E6qWV71QZIuZ7LQE27KMlJP4+NsPJ/T2b0pGyqnidsmncPWoh4ubD/rCbPKzk2nV/VGUKg0ubj406zSCy6d21EQaNcYiV/5RW5S7cJ4zZw5jxoyhRYsWvP7666xevZq4uFuPg8vNzaV+/fqoVCpOnz7NwYP2U45d1759e44fP27rRV66dKnttQ4dOnDx4kX27t1rWxYXF1emO9bs27cPb29vvL29yc3NxcfHBw8PD3Jzc1m9erWtXdeuXVm5ciUmkwm9Xs+ff/5pe+3ChQs0bNiQRx55hCeeeIKjR4/e9nOryvYDuTzUvQ4h9dW4uyoY3d+HrftuPlREpQS1SkKSQKmUbD8DRDRz5R9PBPDBN8mcvaS/6TqqldGA8fQRXHoOBrUGZXBj1M3aYji+/6Zv0bSOxHB0b6llktYVVVhLUKpAUqBu1RlVSFNMF+KrO4PbclWriGoWzBe7T1BoNHE4MY3t55Ju2Vu05sRFhra+c3qbAVw1KqLCg/li5zEKDSYOX7nG9jNJDHEwbdvgVo04mpTO3oQUzBYLvxw8jbebhsZFBwunr2ahN5kpNJr4cf9J0vJ1DIsIs1tPTXDVqIhqHsIXO46WyCuRIRGhdm0HR4RxNDGNvReK8jpwCm9XLY3r1cHHzYVgb3cWHTqDyWIhV2dg1dELtosinUk26NEdPYDngIeRNFrUoeG4tO5E4cG/7NoaL5/HtV1XFB51QJJw7dQTFEpMafZjvmuabNCji9uP58DRSBotmrBwXCI6U3hwp11bw+XzuLTrisLDy5pH56I8ro+PVihApbb+W/LnGuaqVhHVNIgFe+Ot24ekdLadT7719iH+EkNb2b9usljQm8yYiy6y0pvMmGp6ftFykpRKFFoNklJR4uc75+I4tcaNRq36ELtpPkZDAakXY7l4YgtNOwyza9usYzSnDy4hM/Us+sJsDm9dQLOO1qlEXdx98PQJIX7f71jMJvSFOZyNXU7dwOIZvswmAyajdV9sNhsxGfVVcie+mnQv9ThLcjn+OmvXruV///sfixcvRq22nqbdsmUL8+bNY8mSJaxevZo5c+bYLsIDGDlyJP369ePVV19Fq9XSsGFDcnJyGDx4MCNHjmTGjBlERETw2GOP2d7z559/8sknn+Dj40NUVBSffvopcXFxKBQK4uLi+OCDD8jOzsZoNNKgQQMWLFiA4oYN343T0alUKl599VW6detGbm4uU6ZM4dq1awQEBNCgQQP0ej3//ve/MRgMzJ49m5iYGAIDA2nSpAmFhYW8++67zJ07l3379qFWq9FoNMyaNcs2Ld/tjJx69vaNbmPog96MeMgbjUbB3sN5LCgxj/Os5wKJP6djycZMAOZOCSaiWelTm298msjxs4XMmRJEq8auGEzFf/r4c4W8s+Dmvb2OfBv8SaXykVzccBv4KKrQFsi6fAq3Wedxljx9qPP0LHK+fgc515qPMigMj7GTyf7vP63DMq6vw9UD99GTUPoGWC+CykhF99caTAknb/axt6X29rp9ozLKLjQwZ8NB9l5MxdtVw5SebRjYsiHJOQU8/MN6Fk/oT2Ad6xmXI0npTFq8g43PDXE4DKIyJFXldkjZhXpm/3mAvRdT8HbRMrW3dR7n5Jx8Rn2zjiV/H0BgHWsv2ObTV/jPtiNkFOhoEeDDzL6dbNPWzdt6mGVx5zFZZDqE1OO1Ph1p6FOJqegquaPNLtQze80+9iaUnsc5OTufUV+tYcnEwQQW9e5tPnWZ/2w5ZM2rvi8z+3W2TVt3KjWTDzbFcPpqJkpJQedG/szs1wVf91uP2b9pXEdP3b5RGUmu7ng/8iyaZhHIBXnkrPkd3aHdKLzr4vfqB1x7fzqWrHRQqakz7FFc2nRB0mgxp6WSu3ZhlV0gWNkdo+RmzUMb3gZLQR65q3+jMHY3Su+6+M34kGv/noa5KA+v6MdwaWvNw5SWSu6aheiLLhD07D8KzwEPl1p37rrF5K5fUqG46jSr+IFuts7AnI2x7Lt0FS8XDVPus87jnJxTwOifN7HosT627UNccjqTlu5iw8SBdtuH/+2N58t9pbd5z3RtwbPd7C+eLIvtLy6rWELl0OyNyYS/WfpucKfnzufM2/Z3jqsqx38vX4eKviCLHUtmkXR2N1o3b7r0t87jnJeVxJJPhjLqH6vw8LbeUOPozu+J2/41ZpOO0Nb9uG/4bNs8zulJ8exd839kJJ9CUigIbNyVHsPewNXDeoHnwvcfIi+r9BmqMdM34elTtrM9r45y/nzxz/47o9Lr+N8M55x9LK9yFc41JS8vDw8P66nqJUuWsHjxYn777bca/3yDwcCkSZMYMGAAo0ePrtQ6q6JwvtNUtnC+U1Vl4XynqGzhfMe6g3qoqlJVFs53itrUo1QelSmc71Q1UTg7Q3kL59pCFM416468c+BPP/3EunXrMJvNeHl58c47NXtF9FNPPYXBYECv19OjRw+Ht4AUBEEQBEEQwHKXHhg7ckcWzpMmTWLSpElO+/xFixY57bMFQRAEQRBqkztw8EK1uSMLZ0EQBEEQBKF2uFuHYjni/IExgiAIgiAIglALiB5nQRAEQRAEocLupR5nUTgLgiAIgiAIFWYRY5wFQRAEQRAE4fZEj7MgCIIgCIIglMG9NKuGuDhQEARBEARBEMpA9DgLgiAIgiAIFSZugCIIgiAIgiAIZSDGOAtV7r6oJs4Oocr939UPnB1CtTCZLM4OocqZDXfnRk1XYHR2CNWiUdc6zg6hylnuvv9WAGg1krNDqHKW3991dgjVovUjLZ0dQvUwnnJ2BPfUGGdROAuCIAiCIAgVJt+tR8YOiIsDBUEQBEEQBKEMRI+zIAiCIAiCUGHi4kBBEARBEARBKAMxxlkQBEEQBEEQyuBemlVDjHEWBEEQBEEQhDIQPc6CIAiCIAhChd1LPc6icBYEQRAEQRAqzCLfO9PRicJZEARBEARBqDDR4ywIgiAIgiAIZXAvFc7i4kBBEARBEARBKAPR43yH0hVksWPxLK6c3oWLuw+RA16iaYehDtvG/fU9R7Z9jcmoI6xNP3qNmI1SpQEgM/Ucu1bM5dqV47h6+NJ10HTCIvoWvXaWrQtfIyfjMgB+wa3pMex1fAKaVktOrlp4+H4N4SEK8nUy6/abOHzO7LBtzzZKHminRq2CoxfMLPvLiLloCFX31ko6h6uo7ytx+KyZRduNtve1b6pkZC+17bkkgUYl8elSHYlpVXNE7KqFsQ9qCW+gJF8ns3avgUNnHOdxf1sVD3ZUo1ZKHD1vYvF2gy2PW60nwEdi3ENa6taxHtteuWZh+U49qZmlc1AqYNpYVzRqePvHwkrn1ru9mjT2LckAACAASURBVIc6qlGrJOLOmfhjq94W742C6yl45CEtAT4KUjMt/L5ZT2KapUzrCvCRGNVbSwN/JXmFMit36Tl6vvh3qFZB9H1a2jdToVRAUpqF+Usrn991D3XW0q+rCxq1ROwpA79tKMDk+E9IiL+Sxwe6EVhXSXK6mZ/+LODKVWvjzi3VDLnPFS8PBUaTzPHzRhZuKkBnsL73k5e8S61Lo4Lth/Qs3FR1ubhoYFBnBWH1oVAP247KnLjk+LveJVyiW3MJlRJOJcqsj5Ftf5NXRpTuR1EpIfaczMZDMkG+cH+Egvo+IMtw8RpsPGQhX1dlaTjMa0hkcV5b42SOX3ScV2S4RPeWRXldkfnzoFzqe9uqoUSv1hJ13CFfB6v2Wbh8rfQ6erWWuL+Ngl+2mklIrb68dAVZ7Fgyi8Qzu3Fx96ZL/5dp2n6Iw7ZHd37Pke3fWLftEf3oOfwt27Y9NzORXcvnkHrpCEqVhrCIfnQfMhOF0rpbPxf3J7GbPiM/OwV370C69PsHoa37VEtO+oIs/lpqzUnr7k2Xfi/T5CY5Hdv5PXE7rDmFRvTjvujSOe1eMYerRTmFRvSj22BrTmaTgW0Lp5OWeIy8rCQGPf0DgY0jqyWfymj0/KOEPDESz4hwkhauJu7vM50dUo24l+ZxVs6ePXu2s4O4F+w5Wb722xf9E0lSMGzSz9Rv1JHNv02jUcsHcfWoW6rd5VN/sW/N+wye+D2dHnqe+H2/k51+iZBmPbCYTaxa8ChN2w+h3xOf4Vu/OZt+/gdhbfrj4u6DQqkitFUUkQNepl3vv2PU53Jg3TxadR9Xphjz803lyml0bzUysGClgYupMuMe0hB/0Wy38w0PUTC4m4av1ujZHGuiWysV9bwkziZa94Re7hLnky3ojdbC8cTF4j1kSobM1sMm2yMnX6a+r8S6/WWP9XZ3QHokSosM/HeZjospFh7t68LxBJNdHs0bKBl2n5YFK3RsijHSvbUaP2+JM1cst12P2QLHE8ys3Wdk22GjtTjqpmXP8dJ5RHVU4+km4aaV2HHk5jmWZZvWoqGS4T01fL5cx4YDBu6L0ODno+D0ZfuKUqmAFx92Zc9xE9+t1aFUSIy8X8vOo0Zk+dbrUkgwdZQbsadNfLtWR3K6hScHunDkrImCot/h+Ie0aNTw5apC1u03kphmIafAPgmTsfwXpLQKU/FwlBufLMxl7S4dvTto8fNRcvKi/e9PqYBXH/Nk5xEDXy7PR6mQGNvHle2xemQZCvUyfx0xsGqnjh2H9LRrpiYsSMXxC9Z1rdursz22xOiI6uzCih06MnJuHbe3j7bM+QzuIiHL8PNWmcR0mWFdFZxNkinQl24XFgAPtVfw23YLu0/IdGiiwNcDEq5aX99zUrY9Dp6R6RIusf2oTE4B+HnBtWyZDYdk9p+WCQ2ANo0UHL9Jge5IeferQyIlZODHzTJX0mSGd1dwJtE+r8b14aEOCn7ZamHXcZmOzYrySi3Ou38nBSv2WlgfI3PysozOAIYSf25vD+jdRoFFthbeWfllj1OllMqV147FryNJCoY++zMBjTqy5ffpNHS0bT+9k31r32fQ09/R8aFJxO/7nZz0iwQ37QHA1t+n4eJRlyETfyC803AObfkCWbbg37Ad+dmprP7qCXo//C73j/oXnj7BbP79FVp0GY1a43bbGMtbAv21xJrTkGesOW1b6DinKyVy6hA1iZM35LRt4TRcPeoy6OkfaNZpOIe3FuXUoB2yxUxhfjqtuj/KldM7CIvoj6dPcLni9F/833JmVn6uwfXJ2LEfc24+klpF6srN1f6Z4W9OqfbPuJ1fV11DluVKPcYP9XN2GmUihmpUgslUvsKxrIyGAi4c20jnflNRa92pH9aJRq2iOHNopV3b07HLad5lFL71m6F186LjQ89z+uAyALKunSc/5xptej2JQqEkuGk3AkI7cCbWuh6tax08fUOQJAlkGUlSkp1+qVpyUqsgIkzJhoMmDCZISLVw4qKZDs2Udm07his5cMpEaqZMoQE2x5roHF58cuR4goUTFy0U6G6/ee8UriT29E26EitAo4I2jZX8uc+AwQQXUiwcTzDTubn9yZvOzVXsizda89DDpoMGOrdQlWk9OgNk5lrzk7AWHfXqlN5B+3pKdApXsSXWSFXo0kLF3hMmUjIsFOph/QEDkS0cn5RqGqxEoYDth61nAnbEGZEkaBaivO26/H0UeLlLbDtsLbLPXDFzIdlM5+bWMwX+3hIRjVUs3KInX2fN/cq1qrtiu1uEll1xepLTLBToZdbs1tE9QuOwbXhDFUqFxOaDekxm2BqjR5Ikmjey5pKZK5NfWPw9tMjg72P/nQbo2FxDboGFs1eqbruhVkLzYIm/jskYTXAlDc4myUQ0si/m2oRKHLkgk5YDOiPsOmGhTajjoq9FiES+Hi6nWZ+fT4GTV6zFpskMMWdkgutVWRoO82oRYi3cr+d1Jkl2GG+bMIkj54vz2nncQtuw4nb3t1Hw13GZpHTr89xC66OkAR0VbDliuenZlapiNBRw4fhGOvUt2raHdqJRywc562DbfiZ2Oc07j8I3oBlaVy86RE3idMxy2+u5mYk0bjMAlVqLm6cfDcJ7kXn1LAD52SloXDxp0Px+JEmiYYsHUGtcyamG7bvRUEDCDTk1vE1OPtdzenASZ2JL5xRWIqeQ8F5kplpzUqo0RNw3gfqhnZAkx//H7gQpyzeSunIzhvQsZ4dSo2SLXOlHbXHXD9X46quvSE5O5s033wQgLS2NYcOGsWHDBv773/9y4MABjEYj4eHhzJ49G3d3d1atWsWPP/6I0WgtSF577TW6d+8OQFRUFKNGjWLv3r00aNCAd999t8pjzr6WgCQp8PYLsy2rG9ic5AsH7Npmpp4ltNVDJdq1oDAvDV1+puMuHhkyU8+UWvT9W10wGgqQZQud+06tukRK8POy9oqlZRfHlJwuExZof+wW4KPgRIKpRDtLUa8qdr1Nt+LtIRFWX1FqKEdl+XkrHORhpnGQ/Ya8vq/E8YTiPXFSuoU6bgrctODjWbb1vPN3NzRq65CT9ftL5zGil4a1ew0YTVWzwalfV8GxC8WfkZRmpo67AjcXbD3BJdsmp5euMpLSLNSvq+DkJfMt1yU5qNUkILCu9bvQqL6SjBwLA7tq6NxCTU6+hXX7DcTdZFhPeQXVU3DkjMH2/MpVM14eCtxdJPJvOBgLqqfkyrXSn3vlqomgekpOFPUqNwlWMnm0J65aCb1BZsGyPIef2y1Cw75jBoevVZSvp7VYzyjxkanZ0NBP4sZ+w3peEmeSipddzQIPVwlXDRTeEFZEqMSxmwyLAOv603KqIgPHbHnlFi9LzYRG/vZ5+dWROH1FLtXuel46IwT6wGktTBqsQKWE01dkNh+RbUNzWjSwnuE5l1x9+VyXneZo297iptv2Rq2iSrW7vm13cfeh9X2Pcy5uLUGNI9EX5nD59A46FW2/64VE4O3fmIsnttCgRW8uxW9FqdTgG9i82nLyqnf7nLKuls7J93pOBZm4uPnQusfjnI9bS2BYUU6ninMS7myymI7u7jFmzBgGDRrEK6+8gru7OwsXLmTIkCH8+OOPeHp6snjxYgA++OADvvzyS1566SV69uzJkCFDkCSJ8+fP8+STT7Jjxw7bOq9du8ZPP/1UbTEbDQVoXDxLLdO4eGLU258/NOpLt9W4eBQtz8fbvzGuHr4c2f4NbXtNIOncPpIvHCDohnFhT845gNFQwOmY5Xh6B1VDRqBRS7Zxn9fpDDJatX1brdr6WnG768slCvRlLxI7NVNyIcVi67mtCho1FBpKr69Qb43Nvq1EYYlC/3pxotVIZV7PrG8K0KisvdeZecXtI8KsPb7HLphpElQ1J460aonCEr/f6/G6qCW73n2tmlJtre1lXIriv9W6UjMt5BbKRHVUs+2wkWbBSpoEKzl7xVrJeHlIBNVTEnfOzFvf5hNaX8EzQ11JzSiwG+NdJXkW/eyisS+ctRrJLk+dXsZFU/x3Opdo5qVPsvD2kOjZTkt6tv0OxMdTIryBip/+LKh0/CWpVaC/4bhQb7Se0biRRgV6o1yq3fXlJQvnOm7Q0A/WHnT8u/bzgvtaSSzeVX07So36Jnk52F5Y2zrIS20daqNUSrRsAD9ttvYoj+6loGcr61hwtQoebKvg1201s9O/cXsN1m22w227oQCN1sG23VCAi7sPgWFdOLV/Ed/P6YJsMdOs43BCW1nHMCsUSpp1iGbLwumYTXoUSjV9xs8r0zCN8jI5yEl9q5wc7q8KcHEryunAIn6cW5xTo1bVMy5bECrqri+cvby8iIqKYsWKFYwZM4ZFixbx3XffMX36dPLy8li/fj0ABoOBFi1aAHD58mVeeeUVUlNTUalUpKWlce3aNfz8rONvhg8fXq0xqzVuGPSle62M+jzUWnf7tlo3DLrittd/VmvdUSjV9Hviv+xe8TZHtn+FX3AEjdsOQKm0Py2t1rjRqusj/Ph2d8a8stZubFplGYwy2hs+VquW7HaOYN3xlSxMXDTXl5evaOoYrmTroaodTmMwYisOr3PROI7NYJRtsQO4FO309QYZg1Eq+3pMsOe4iTl/c+P93wowGGFIdw1fr6nclVmdwlWMedA6lvZ8shm9UXb4e9c5iOnGv5G1vYSuaMzxrdZlscA3a3SM6q3loY4aLl81c/iMydYDaDSBySyz4YABiwznkiycSTTTvKGK1Mzynz2IbKVhfH9rwXD2igm9UcZVWxyba1GcOoODPA2y7XVbLlrJYdusPJnjF4w8Pcydd3/ILfVatwgtZ6+YHBbVlWE0YXfwqVWVHr97ncFkvVD2eo/t9ffd2DaikcSVNMh2MM7XxwPG9lKw6bDMlbTKx38zBqODvNTW5Y7bOsjLWHzS7cBpmbyi/y77Tlno2VrBtqMy90dIHE2QHeZaHdRa+227QZ/veNt+w37Atm3XuCFbLPz57URadh3DsEm/YdTns2PJLPav+5CuA6eTeHY3+//8kCETf6BeUCvSEo+z/qfnGfjkl9QNalmlOakc5GTU3SKnkvsr/fX9lTWndd9NpEXkGIY+9xtGQz5/LZnFgXUfEjlwepXGLFS92jTUorLu+sIZ4PHHH+eVV16hbt26NGnShLCwMGRZ5q233rINwSjp5ZdfZsaMGfTp0weLxUK7du3Q64u7Dt3cqv6ovSQvv1Bki5nstAS86oUCkJ58Cp+AZnZtfQKakp58kibtBtrauXrUw8XdB7AO8Rj63M+29iv++wjNOjku/GXZgsmgIz87tcoL52vZMgoJ6taRSM+x/gcLrGvtfbxRaqaFwLoScecpaqcgt8D+oqBbaRSgoI6bRNyFqhvfDHAty4JCYT3tfX2YRVA9BakZ9nmkZMjWYQFFQwyC6inIKbBQoAeTuezrgeuzg4CXu3WIh6+nxAsjXABQKSRcNPDWk658ukRX5h72mNMmYk4XV02P99MSVE/BYeuQQoLrKcnJt9gN0wBISbfwYIfSlU1QXQU744y212+1ruR0C5+VmCXjxYddORBvfW9SWtUWl/tPGNh/orhL9W9D3QnxUxJz0vp5If5KsvMsdr3N1ljM9Il0KbUs2E/JtljHX0aFBH4Oxjh3i9Cwfm/VT0GRkWv9TB8PyCyqR/y9Sw8Bui4tW8bf2zpW+Xq7vELZbphGm1CJPSft31/HDR7prWBXvHzLYRxV4WZ5XXOQ17UcmQBviL9c3K5kXo4uKr0uLEDC0w06NbUeHLlpYWQPBXviZYe/g8ryqudo237S4UxGPgFNyUg+RZO2Rdv2lOJtuy4/k/zsZFp3fxSlSoNSpSG80wgObvwPXQdOJz3pJPXDOuMXEgGAX4M2+DdoR+LZPVVeODvKKSPlJD7+9jl5+zclI+UUjYtyyri+v3IrzqlViZyadRpBzIb/iMK5FriXCud74uLA8PBwvL29effddxk/fjxgHav8/fffo9NZd2Z5eXmcO3cOgNzcXEJCQgBYvHgxBkPVjku8HbXGjdDWfTm44VOMhgJSEmJJOL6ZZh2G2bUN7zicUweWkJl6Fn1BNoe2fEF45xG219OTT2Ey6jEZCjmy/RsKcq/RvPNIAK6c3kVa4gksFjMGXR57Vv8brWsdvP2bVHlORpN1loh+nVWoVdbCtnWo0uE0brGnzXRprsLf2zpOMaqDioMlCjyFZJ0qSyGBQlH8c0mdwpUcvWB22ENVGQYTHD1vZkCkBo0KQusraB2q4uAp+y6+g6dMRLZUEeAj4aqFPp00HDxpKtN6wkMUBNdTIEnWHrRh92ko0MukZlpIybDw9o+FfLxQx8cLdfyxTU9uoczHC3Vk5VV843XgpHUGk+vx9u2sZv9Jxz32ZxPNWCxwfzs1SgX0bGstos8UDbe43boC61rHm6pV8GAHNXXcJPbFW18/l2QmM1emT2c1CgnCAhU0DVZy8lLVnD3Ye0xPj7ZaAusqcNNKDOzhwp6bjD0+fcmExSIT1UmLSgkPdLT20J8qmoEjspUGH0/rl8+3joLo+105mVD6S9c4WIm3h4KYU1W/HTGardPK3R8hoVZCcF1oFuR4fPKxizLtwiTq1rGe/ejRUsHRhNLtguuChyucvFx6uYcrjH9AQexZmUPnqn8HaTTDySsyvdtY8wqpB+HBkl28AEcvyLRrLFGvKK+erRXEXShud+S8TOdm1mskXNQQ2dw66wjAL1stfPmnha/XWx95Olh70MLBs9WTo3Xb3oeYjfNt2/aLJ7bQ1MG2vVmHaE4dLNq2F2ZzaMsCwos6PVzcffD0CeHE3t+xmE3oC3M4Hbsc3/rWs6Z+IRGkJMSQnhQPQFrSCVIuHMS3ftWPcVZr3GjUqg+xm6w5pV68RU4dozldIqfDWxfQrGPpnOL3Fed0NnY5dQNb2N5vNhkwGa0HrWazEZNRf8dNgyYplSi0GiSlosTPd+7FjFXFIlsq/agtJPlO+9ZVk5UrVzJv3jw2bdqEUqnEaDTy2WefsXnzZiRJQpIkJk+eTL9+/Vi+fDmffvopAQEBREZG8vvvv7NkyRJCQkKIiopiwYIFhIeHl+vzP1pevl+zriCL7Ytet86L6eZN14Ev07TDUPIyk/jj4yGMeXk1Hj7W8chxO77jyPavbXN99ho5xzYv5t4173PywGIsZhOBoZ3oET0Lr3qNADgft44DG/5DfnYqKrUWv5A2RA58hbplvIDk6tXy9aC5amF0bw3NghUU6GX+3Gedx9nbXeLlMVo+/kNPVr7199SrjYre7axF9rELZpaWmMe5TycVfTuV7u3cGGNkU4y1mFEpYdZjLvy00cC5pPL/ZzSZbv0eVy088qCWZg2UFOhk1hTNv+ztIfHqOFfe/63QVsDe305FVAcNahXEnbOfx9nRegDaNlEyMFKDl4eE0QSXr5pZs9dAcrr996hJkILxfbS3nMfZbC7b9++B9moe6mSde/nI2dJzLz87zIVzSWY2HbQWhrZ5nH2tPeU3zuN8q3UNu09Dt1bWovt8spkl2/Wleknr+yp4JEpLYD0Fmbkya/aUnuf5Ol1BxY6MHuqipX9XF9QqiUOnDfy6vnge58mjPTh72cS6oh7iBv5KHiuaxzmlaB7ny0XzOEf3cqFbGy1uWuv4+2PnjCzfXliq93p8fzc0Kvh+TdnHNzcKq1Pmti4aGNxFQWhA6Xmc67jBxP4KvlpvIafoo7uES3RvUTzf8bqY0vMdD+hkLVRX7S/9fenZSqJXhALDDcN2PlpW9v9flnL+V7zZPM513ODZgQr+92dxXpHNrfM4q5XWor/kPM4KCfp1lGjdSMJkhvjLMpsPyw5n0HhhqII1+y3lmsdZq7G/vuFWSs7jrHXzJnKAdR7nvKwkFs0byuiXVuFRdK1J3F/fE7fj6xLzOBfP0Z+eFM+e1f9HevIpJIWCoMZduS/6DdvZwuO7f+HYrh8pzEvDxd2XVt3H07bXU2WKsbydh/qinJLOWnPq0t86j3NeVhJLPhnKqH8U53R05/fEbf8as0lHaOt+3HdDTnvX/B8ZRTkFNu5Kj2HFOS18/yHyspJKffaY6ZvKPC1d60eqtrfdkWZvTLabHu703PmcefuzavvMwcZT1bbusuo/4XCl17H+h/ZVEEn1u2cK59dff52wsDCefvppp3x+eQvn2qC8hXNtcbvCuTYqa+Fc21S0cL7Tladwri3KWzjXFuUtnGuDu/Wse00Uzs5wJxTO/R4/VOl1bPipQxVEUv3u+qEaqamp9O/fn4sXL/Loo486OxxBEARBEIS7imyxVPpRW9z1FwcGBATYZs4QBEEQBEEQqta9dHHgXV84C4IgCIIgCNXnXroByl0/VEMQBEEQBEEQqoLocRYEQRAEQRAqzCKGagiCIAiCIAjC7d1JF/cVFhYyc+ZMjh8/jlKp5LXXXuPBBx+0a7dp0yY+//xzDAYDsiwzatQo/va3v912/aJwFgRBEARBECrsTro48JtvvsHd3Z2NGzeSkJDAo48+yoYNG3B3L30beD8/P7744gsCAgLIzc1l5MiRtG3bls6dO99y/WKMsyAIgiAIglBhsmyp9KOq/PnnnzzyyCMAhIaGEhERwY4dO+zatWvXjoCAAAA8PT1p0qQJiYmJt12/6HEWBEEQBEEQnConJ4ecnBy75XXq1KFOnbLfFCopKYng4OK7SQYGBpKSknLL95w7d47Dhw8zZ86c265fFM6CIAiCIAhChVXFUI0ffviBzz6zvzX55MmTmTKl+DbmI0aMICkpya4dwO7du8v9uVevXuX555/nzTfftPVA34oonAVBEARBEIQKq4qLAydMmMCIESPslt/Y27xs2bJbricoKIjExER8fX0BSE5OpmvXrg7bpqen89RTT/H0008zaNCgMsUpybJ854zoFgRBEARBEIQKmj9/PqmpqbzzzjskJCQwfvx4NmzYgIeHR6l2mZmZTJgwgUceeYTx48eXef2icBYEQRAEQRDuCgUFBcyYMYP4+HgUCgXTp0+nT58+APznP//B39+fcePG8d577/HLL78QFhZme+8TTzzBqFGjbrl+UTgLgiAIgiAIQhmI6egEQRAEQRAEoQxE4SwIgiAIgiAIZSAKZ0EQBEEQBEEoA1E4C4IgCIIgCEIZiMJZEARBEARBEMpAFM6CIAiCIAiCUAaicBYEQRAEQRCEMhCFsyAIgiAIgiCUgSichTva/v37+e233wDrPeUvXbrk5IgEoXaLiYmhoKAAgKVLlzJ37lySkpKcHFXlHDhwgPz8fAAWLVrEm2++yeXLl50cVdVKT0/n8OHDzg6jSqxdu5a8vDzAeie3v//97xw7dszJUQlC2YjC+S6Qnp7OtGnTePTRRwE4efKkrdiszb755hs+/vhjvvvuOwD0ej0zZsxwclRVJz8/n+PHj9t2IMKdJzMzk/j4eOLj48nMzHR2OFVi9uzZuLi4cPbsWb788kt8fX2ZOXOms8OqlLlz5+Lm5saZM2f47rvvCAoK4vXXX3d2WJU2fvx4cnNzycnJYfjw4bz++uu89957zg6r0r744gs8PDyIi4tj586dDB8+nHfeecfZYVWY2Wxm1qxZzg5DqCGicL4LzJo1i06dOpGTkwNA48aN+fXXX50cVeWtWLGCn376CTc3NwCCgoLIzc11clQV9+abb5KRkQFYe/369u3Lq6++St++fdm5c6eTo6uYXbt22X7Ozc1l+vTp9OnThylTppCWlubEyCrn0qVLTJgwgX79+jFt2jSmTZtGv379mDBhAgkJCc4Or1JUKhUKhYIdO3Ywfvx4Jk+eTHZ2trPDqhSVSoUkSezYsYNx48bx3HPP2baHtVlBQQGenp5s3bqVoUOHsmrVqlq7rShJpVIB1u3H6NGjGTp0KHq93slRVZxSqRRnQ+8honC+C6SmpjJu3DiUSiUAGo0GhaL2/2ldXFxQq9WllkmS5KRoKu/w4cP4+voC1tOTCxYsYM2aNfz66698/PHHTo6uYj788EPbz/PmzcPd3Z3PP/+cxo0b1+oepFdffZVRo0axb98+1qxZw5o1a9i3bx8jR47ktddec3Z4lWIymThy5AgbNmygW7dugLXHrDYzmUzExMSwfv36uyYnAIPBAMC+ffvo0aMHCoXCtp2vzSRJYuXKlaxZs4bu3bsDYDQanRxV5XTr1o25c+cSFxfH2bNnbQ/h7qNydgBC5V0/er8uJycHWZadFE3VqV+/PocPH0aSJGRZ5quvvqJJkybODqvCSvao5Ofn07ZtWwDCwsJq7U6j5PcsJiaGxYsXo1arCQ8PZ+jQoU6MrHKysrIYNmxYqWUKhYLo6Gi++OILJ0VVNaZMmcLrr79Ot27dCA8P58KFC4SEhDg7rEp58cUXmTt3Lt26daNZs2ZcuHCBRo0aOTusSouMjKR///7Isszs2bPJycm5KzpFZs2axddff83o0aNp0KABCQkJdO3a1dlhVcrixYsB2LZtm22ZJEls3rzZSREJ1UWS74YK6x739ddfc+nSJfbs2cOkSZP49ddfGTp0KBMmTHB2aJWSmprK9OnTiY2NRaFQ0K5dO+bNm0e9evWcHVqFXB9b+uKLLzJ//nwiIiIYNGgQu3btYsGCBfz000/ODrHcBg0axPz585FlmWnTprF8+XLba9HR0axYscKJ0VXcI488wmOPPcbgwYNtZzlkWWbVqlX8/PPP/PHHH06OULgXyLLMyZMnadCgAR4eHmRkZJCSkkKrVq2cHZog3LNE4XyXWLlyJVu2bEGWZaKiooiOjnZ2SFUmLy8PWZbx9PR0diiVYjAYeP/991mxYgXe3t5cvnwZlUpF165dmT17Ng0aNHB2iOUWFRVlOyMA8NtvvxEQEEBeXh6PP/44y5Ytc3KEFZOQkMBbb71FfHw8AQEBgPVArkWLFsyePZvGjRs7OcKKczQsyMPDgw4dOtClSxcnRFR59mdWiAAAHuBJREFU77//vt0yT09P2rdvbxsKUBs5OtXv6elp+07WVlOnTrUbdnf97zVy5Mha3auenp5e6uxiUFCQE6MRqoMonIU7WmJiIpcuXSo1XrFnz55OjKjyCgoKbDkFBQXh4+Pj7JCqXGFhIWlpabXyYKCkjIwMkpOTAQgMDLSNUa/Npk+fTkxMDFFRUQBs2bKFTp06ER8fz7Bhw3jmmWecHGH5vfbaaxw8eJA+ffoAsHnzZltOAwcOZNKkSU6OsGKioqJITk62dRrk5uZSt25dNBoNH3/8Me3bt3dyhBXz9ttvc+zYMQYPHgxYp6eLiIjgwoULhIWF1coZKvbs2cOMGTNIT09HoVBgNBrx9vZmz549zg5NqGqyUOtNnjxZzszMtD3PyMiQp06d6sSIqsZHH30kd+3aVR47dqw8btw4edy4cfL48eOdHVaV2rVrl7NDEO4xTz31VKntRWZmpvzcc8/Jubm58sCBA50YWcU9+eSTclZWlu15VlaW/Oyzz9bqnGRZlt955x1548aNtucbN26UP/roI3nv3r3yww8/7MTIKmf8+PGyXq+3PdfpdPJTTz0l6/X6Wvv3GjFihHz+/Hk5Ojpatlgs8sKFC+V58+Y5OyyhGoiLA+8Cly9fxtvb2/bcx8fnrpgaZ926dWzevBl3d3dnh1IlHJ12nTlzJt9++y2yLNO0aVMnRFU5mZmZfPjhhyQnJxMVFcVjjz1me23KlCnMnz/fidFVXNeuXRk6dCijRo2iZcuWzg6nSqWmppbaXnh7e3PlyhU8PDzsZrGpLVJTU/Hy8rI99/LyIjExEQ8PDzQajRMjq5z9+/eXmo+6T58+fPXVV7z88svodDonRlY5aWlppb5rKpWK5ORkNBpNrf57hYWFYTKZkCSJMWPG2O6tINxdROF8FzCbzZjNZts0RUaj0TaNUW0WGBiIi4uLs8OoMkOGDLEb75aWlsbEiRNr7dXXb731FiEhIfTu3ZvffvuNvXv38sknn6BSqWr1ndvc3d1RKBT87W9/o379+owaNYqhQ4eWKs5qq7CwMGbPns3IkSORJImlS5fSsGFDDAZDrZ3qrGnTprzxxhulcgoNDcVgMNTq8bIWi4XY2Fg6duwIwKFDhygsLASo1XlFRkbyzDPPEB0dbZuarlOnTuTn59fawvn67FYBAQFs2bKF4OBgUlJSnByVUB3EGOe7wHvvvUdiYiJPPPEEAD/++CNBQUG1/i57x48fZ/78+fTo0QOtVmtbPnbsWCdGVXGfffYZR44cYfbs2QQHBwPWMYxbtmxxcmQVV3LmDFmWmTt3LpcuXeLzzz9n7NixpWbZqE1GjBjBsmXLMBqNbN68mf9v786DorrSv4F/r2AjsnSI4hKNoihiERcmkhgoF9ApQAFpF4SolUwUcAtR8afRoCJYEFSMIUWBlEpKnRiVVRajM5DgMLQocXQwgoiixDhhUZBu0s3W9/2Dol9QidiNHu/1+VRR1X37n++pxuvDuec8JyUlBZcuXcLMmTOxcOFCODk5sY6oM4VCgZiYGBQWFoLnebz//vsICgpC//79UVdXB0tLS9YRn5tSqURsbGyXMa1ZswbGxsZoaGgQ7Nr0oqIiBAcHo1+/fuA4DiqVCtHR0Rg/fjzOnTsHmUzGOqJOWlpa8P333+PixYva78vX11ewTzwAIDMzE9OmTcPdu3cRHBwMhUKBLVu2iGqjPmlHhbMItLS04MCBA/jpp5/A8zycnZ0REBAg2L/cOwQHB6OsrAw2Njba2RWO4566g14orl+/jrCwMMybNw9+fn6YNWuWIGeaO7i7u+PMmTNdrkVFReH69euorq5+4jOh6CicO6uurkZKSgrS0tLwww8/MEpGXjfNzc2oqKgAz/MYPXq04O/rhAgdFc7klfXXv/4VZ8+eFfQjyadpbm5GTEwMiouLUVFRgfPnz7OOpLOAgAD4+/s/0cbsq6++QkJCAkpKShgl04+3t7dgZ8t7Qi6Xo7S0tEvbrJUrVzJMpL/8/HyUlJR0GdPatWsZJuo9Ymtx1traiuTk5Ce+r8jISIap9KNSqRAfH4979+4hOjoat27dQkVFhbbTCxEPWuMsYGfOnIG7uzv+/ve/P/VzoW9MsLKyglqtRv/+/VlH6VUSiQQbN27ElStXcPHiRdZx9LJ79+6nHoO+fv16QZ8cGBsbyzrCC/PVV1/h559/xu3btzFz5kz8+OOPgu51DLQf/V5cXIzy8nLtUxyhjwkQb4uz7du3o62tDYWFhfDz80NmZiamTJnCOpZeQkNDYWlpidLSUgDtJ98GBwdT4SxC4prKe83cvHkTAHDt2rWn/gidubk5FixYgMjISOzbt0/7I3R1dXUoKSmBkZERFi1axDqOXt54441uN8wJsUtIh4416GKUk5ODxMREDBw4EBEREUhJSeky6ydEeXl5OHToEAYMGICwsDCkpKTgjz/+YB1Lb3v27MG3336LMWPG4OrVq9i5c6dg93h0VlxcjKioKJiZmSEwMBDfffed4DtBlZWVYePGjdp12iYmJtBoNIxTkReBZpwFLCgoCBqNBm5ubpgxYwbrOL3u7bffFvwBGp1VVlZi27ZtuH79OgYNGgQAqKmpwfjx47Fz505YWVmxDaiDzu3oZs2a1eUpB7WjezVJJBLtf+6tra0YOnSo9pAXoZJIJDA0NATHcWhpacHgwYNF09FAjC3OOjZ7GxgYQKVSwczMDNXV1YxT6efxjY1NTU2glbDiRIWzwPXp0wdxcXGiLJzXrVvHOkKv2rRpEz788EMkJiZq121rNBpkZGRg8+bNOHHiBOOEz+/xdnRyuZza0b3iTExMoFarMXnyZGzZsgWDBg166nIbITExMYFKpYK9vT0+//xzWFpaCra1XmdibXEmlUrx6NEjTJs2Df7+/rCwsMDAgQNZx9LLlClTEB8fj+bmZhQWFiIxMVF7OicRF9ocKAK7du2Cl5cXJk6cyDpKr+puWcaGDRtecpLe4ebm1m03hj/77FVG7eiEp6qqChYWFmhtbcXBgwehUCjw0UcfYfjw4ayj6ay2thbm5uZoa2vD4cOHoVQqsWzZMsFvontai7OtW7fCy8uLdTS9dJw70DFxoFAo4O3tDVNTU9bRdNbY2IgjR44gNzcXPM/DxcUFAQEB2j9+iHhQ4SwC3t7euHnzJkaOHNllI11SUhLDVPrbv3+/9nVTUxPy8vIwYcIEREVFMUylO19fXyxduhRz587VzvDxPI+MjAwcO3YMJ0+eZJzw+b1O7eiqqqqQmppK7egI6UV1dXWwsLBgHUNvTk5O8PT0hJ+fH0aOHMk6DnmBqHAWge46M7z33nsvOcmLpVAosGnTJsTFxbGOopM7d+5gx44dKCkpweDBgwG0F2O2trYIDQ3F6NGjGSd8fn/Wju7AgQPaHeZCI8Z2dNXV1UhISIBUKsVHH32EkJAQyOVyWFlZISIiAmPHjmUd8blVVVUhPj4e5ubm+Nvf/oYvvvgCBQUFGDVqFCIjIzFu3DjWEXX23//+F+bm5rCyskJOTo52XL6+voKdxbxx4wb27t0LqVSKTz/9FOvWrUNJSQksLCwQExPzxH1ESB48eIATJ07g1KlTsLa2xtKlSzFjxgzBL4MiT6LCWeBu3LiBO3fuYNy4cYLcXPa8PDw8kJmZyTqGXh4+fKjdjFVZWQl3d3fGiXRXX18PjuO6rP0tKCiAo6MjysvLBdtZ47fffnuis0bHuIRq+fLlGDt2LBobG3H58mW4ubnB1dUVFy5cwD/+8Q8cPXqUdcTntnz5ctja2qKxsRGFhYXw9PTUjik7O7vbVp2vuv379+P06dPQaDRwd3dHYWEhHB0d8Z///Adjx45FaGgo64g68fX1hZeXF5RKJY4ePYrg4GC4u7vjwoUL+OabbwT/lBRoX4aSk5ODiIgI9OnTB0uXLsWSJUu6nH5LhE2Yf7YSAO1Ha8fExGDUqFGoqKhAWFgY5syZwzpWr+m8xlmj0eDatWsYMWIEw0T6KS8v177uuIl++eWXsLGxAc/zgiwya2trAbR3B+mwZcsWHD58mFWkXqFSqbp8X8D/H5dQv6vq6mocOnQIGo0G06dPx6effgoAsLGxEWzB8viYVq9eDQCwtrYW5GbbDufOncOZM2fQ2NgIFxcX5Ofnw9TUFM3NzfD29mYdT2cqlQoffvghAOD48ePascyYMUMUrUZVKhXS09Px3XffYcSIEVi0aBEKCwvh7++PI0eOsI5HegkVzgL2/fffIzMzE0OGDEF5eTlCQkJEVTh3PjFQIpFAJpMJenbWw8Pjic1KtbW18Pf3B8dxgjx6W4xjAsQ5ro7H+3369IGlpWWXz4TagUKMYwLa73dGRkYwMjLCiBEjtJvmJBKJoI/c7nxPf+ONN7r9TIjCw8Nx9uxZuLi4IDo6Wrv0ydPTE25ubozTkd5EhbOASSQSDBkyBED7YRNCP8TgcWJrR7d27VpcvXoVoaGh2mUALi4uyM3NZZxMd2IcEyDOcdXV1WlnYevr67vMyNbX17OKpZeHDx9ql2N0fg20j1eoeJ6HWq2GRqMBx3FQq9XansBCXl1ZVVWF3bt3P/Ga53nB93EeOnQosrOzYW5u/sRnNNssLlQ4C5hSqUReXl6374Xa2/lZj+yE2o5u7dq1uH79OoKDgzFv3jz4+fkJfuOIGMcEiHNcDg4OKCoqAtDec7bjdcd7IXJ0dNSektr5NQBBH7l948YN2Nvba4vkyZMng+M48Dwv6N/DjmUaj78GAD8/v5cdp1etWLGi2886Drwi4kCbAwVs2bJl3X7GcZxg/8rt3IbuaYQ+E93c3IyYmBgUFxejoqIC58+fZx1Jb2IcEyDecRFCCNENFc6EMHLlyhVcvHgRAQEBrKP0GjGOCRDvuAghhDwfKpxFQi6X49atW1i6dCkePHiAhoYGjBo1inUsvTQ1NSEuLg5yuRwcx8HR0RGBgYHU1ocQQgghTFDhLAIJCQnIy8tDTU0Nzp07h99//x3r16/H8ePHWUfTS0hICNRqNXx8fAC0n4QokUiwa9cuxskIIYQQ8jqizYEikJmZieTkZCxatAgAMGTIECiVSsap9Hf16lVkZGRo3zs4OMDLy4thIkIIIb1BqVTi7t27sLOzYx2FkOdChbMI9OvXD3379u1yTcg7rztTqVQwNjbWviaE6GbDhg1/el+Ijo5+iWl6R1BQ0J+O6euvv36JaXqfSqVCfHw87t27h+joaNy6dQsVFRWYPXs262h6ycvLw/bt22FgYIDc3FwUFxcjNjYW8fHxrKMR8kxUOIvAkCFDUFRUBI7joNFoEB8fr22+LmRz586Fr68vPDw8wHEcsrKy4OnpyToWIYIk5PZs3XF2dmYd4YUKDQ2FpaUlSktLAbTf64ODgwVfOMfExCApKQn+/v4AgAkTJqCyspJxKkJ6hgpnEdi2bRs2b96MmzdvYtKkSZgyZQr27t3LOpbeVq5cCRsbG8jlcvA8j6CgINH/R0nIi9KxlEtMZDIZ6wgvVFlZGaKiopCfnw8AMDExgUajYZyqdzx+0qOQT0QkrxcqnEXA0tIShw8fhkqlgkajgYmJCetIeklISIBMJoOlpSVcXFzg4uLCOhIhotHW1obU1FSUlpZ2OW00PDycYSrddJw8151Nmza9pCQvxuNL8JqamgR9cmAHExMT1NbWapfZFBYWwszMjHEqQnqGCmcR6HxaYAdTU1PY2NgI8mZUVlYGV1dXODg4YOHChXB2doahIf2qEtIbduzYAbVajUuXLsHHxwdZWVlwcHBgHUsn/fv3Zx3hhZoyZQri4+PR3NyMwsJCJCYmimIiYePGjfD398e9e/ewbNky3LlzB3FxcaxjEdIj1I5OBBYvXozi4mKMGzcOQHvhaWtri99//x27du0S5PIGpVKJ7OxspKSkoLKyEp6enliwYAFsbGxYRyNE0Dw9PXH69Gl4eXkhIyMDjx49QnBwMA4ePMg6GnlMS0sLDh48iNzcXPA8DxcXFwQEBIhiIkGhUODy5csAAHt7e5ibmzNOREjPCP9fH8GIESOwbds2vPPOOwCAX375BSdOnMDu3buxYcMGQRbOpqam8PHxgY+PD27duoXU1FT4+/tj0KBBOHXqFOt4hAiWkZEROI6DgYEB1Go1pFIpqqqqWMfSW35+PkpKSrosP1m7di3DRPrr27cvVq1ahVWrVrGO0qtUKhUMDQ3x3nvvsY5CyHOjwlkESktLtUUzANjZ2eGXX36BtbW1KNbDGRgYgOM48DyPtrY21nEIETSpVAqFQgEnJycEBgbCwsICb775JutYetm7dy+Ki4tRXl6OWbNmIScnRxRdRJ62htvMzAyTJ08W9Pjs7e2faCNoaGiIiRMnIjw8HKNHj2aUjJBno8JZBIyNjZGZmQkPDw8A7QeiGBgYABBuP+fGxkZkZ2cjOTkZd+/ehYeHBxISEmBra8s6GiGCFhcXB4lEgg0bNiA9PR0NDQ1YsGAB61h6ycvLQ2pqKubPn4+wsDCsWbMGO3fuZB1Lbw8ePEBRUZG2/VxOTg7effddnDlzBu7u7oKdiV6/fj2MjIywcOFC8DyPlJQUNDU1YeDAgdixYweOHj3KOiIh3eOJ4JWXl/MymYyfMGECP3HiRF4mk/FlZWX8H3/8wefn57OO99z+7//+j//LX/7Cr1ixgs/Ozuabm5tZRyJENA4dOtSja0Iyf/58nud53svLS3u/kMlkLCP1io8//pivr6/Xvq+vr+cDAwN5hULBu7u7M0ymn6d9N35+fjzP87yHh8fLjkPIc6EZZxGwtrZGSkqK9phtU1NT7WdOTk6sYuls1KhRyM7OxuDBg1lHIUR0MjIy8MknnzzzmpCYmJhApVLB3t4en3/+OSwtLbVP3YSsqqoKUqlU+14qleK3336DqampoPseq1Qq/Prrr3j77bcBAL/++ivq6uoAQBTfGxE3KpxFQqFQoKKiosvGGKG2mBLq40dCXmVyuRwFBQWoqanBvn37tNcVCoXg90Ls27cPBgYG2Lx5MxITE6FQKAR/3DYAjBkzBtu2bcP8+fPBcRxSUlJgZWWF5uZm9OnTh3U8na1btw4LFy7ssqF9586daGxshJubG+N0hPw5akcnAtnZ2YiKikJDQwMGDRqEyspK2NraIjU1lXU0Qsgr4sKFC7hw4QKSkpKwcOFC7XVTU1O4urpqZ//Iq0OpVCI2NhaFhYXgeR7vv/8+1qxZA2NjYzQ0NAh6U+fDhw9x5coV8DyPyZMnY8CAAawjEdIjVDiLgJeXFxITE7F8+XKkpaXh3//+N86dOyeKzTGEkN5VWloquk22t2/fRnx8PCorK9Ha2qq9npSUxDCVftra2pCUlITFixezjtKr2tra4OPjg+TkZNZRCNEJLdUQAUNDQwwYMEDbqs3JyQnffPMN41SEkFfRqFGjsH//fsjlcnAcB0dHRwQGBsLIyIh1NJ199tlnmDdvHmQymWjWyBoYGCA9PV10hbOBgQEsLCzQ1NQk6N858vqiwlkEJBIJeJ7HyJEjcfToUQwbNky70UKINmzY8Kdt9KKjo19iGkLEJTw8HGq1GsHBwQDaZ2XDw8Oxa9cuxsl0Z2hoiBUrVrCO0escHR3xww8/iG7dr5WVFZYsWQJXV9cux6YvWbKEYSpCeoYKZxH47LPPoFQqsXHjRoSGhkKhUGDHjh2sY+lMyI39CXnVXb16FRkZGdr3Dg4O8PLyYphIf9OmTcP58+cxffp01lF61bFjx1BfX49+/frB2NgYPM+D4zjI5XLW0fTS2NiIsWPH4vbt26yjEPLcqHAWuLa2NlRWVuKDDz6AmZkZvv32W9aR9LZo0SLWEQgRNZVKBWNjY+1rofvggw+wevVq9OnTR/sETgwFpljXAUdGRrKOQIjOqHAWOLGugwPa/yhITU1FaWlplzZ74eHhDFMRImxz586Fr68vPDw8wHEcsrKy4OnpyTqWXrZv347IyEjY2dkJuk3b44YNG8Y6wgtz+/ZtlJaWorm5WXvN29ubYSJCeoYKZxEQ6zq4HTt2QK1W49KlS/Dx8UFWVpZge1MT8qpYuXIlxo0bh4KCAvA8j6CgIDg7O7OOpRepVCq6+x8A/O9//8OePXuemDzIyclhmEp/R44cwYkTJ1BTU4MJEyagqKgIDg4OVDgTQaDCWQTEug7u6tWrOH36NLy8vLBmzRosXbpUu6GJEPJ8tm7dioiICACAs7Oz4IvlzmbPno3jx4/D3d29S6eGjuUoQrV161bMmTMHJSUl2Lt3L44fP44RI0awjqW3kydP4tSpU/Dz88OhQ4dQVlaGAwcOsI5FSI9Q4SwCYl0HZ2RkBI7jYGBgALVaDalUiqqqKtaxCBGkkpIS1hFemP379wNAl971HMcJfsx1dXVYtGgRjhw5Ant7e0yaNAkff/wx61h6k0gk6N+/PzQaDXieh42NDSorK1nHIqRHqHAWgWHDhkGpVOLu3buws7NjHafXSKVSKBQKODk5ITAwEBYWFoI+KYsQ8mKUlpayjvBC9O3bFwDQv39/3L9/HwMHDsT9+/cZp9KfsbExWlpaYGtriz179mDo0KFQq9WsYxHSI3RyoAjk5eVh+/btMDAwQG5uLoqLixEbG4v4+HjW0fTS3NwMiUSCtrY2pKeno6GhAQsWLICZmRnraIQIjp2dHczNzZ+4LpalXQDQ0NCAixcvYvjw4aI4HTEqKgqBgYH46aef8OWXX0IikcDV1RVffPEF62h6KSsrw/Dhw6FSqbBv3z4oFAqsXr1aFN8ZET8qnEVgwYIFiI+Ph7+/P9LS0gAAc+bMQXZ2NuNk+jl8+DA++eSTZ14jhDzb3LlzkZCQ0O3nQuzgsHHjRqxYsQK2traor6/HvHnzYGpqirq6Oqxfv15UrS3v378PpVKJoUOHinLyICYmBkFBQaxjEPJM4unb85qztLTs8l4ikTBK0ns6H9LwZ9cIIc8mkUgwbNiwbn+E6Pr169pZyvT0dFhbWyMrKwspKSk4duwY43S966233oKNjY3gWwd2JyUlhXUEQnqE1jiLgImJCWpra7XHVBcWFgp6RkIul6OgoAA1NTXYt2+f9rpCoQA9ICFENx3rZcWkcweNn3/+GbNnzwYADBkyRHs/FBux3gPFOi4iPlQ4i0BwcDD8/f1x7949LFu2DHfu3EFcXBzrWDrr6KQBoMthBsOGDaNlGoTo6OTJk6wjvBBVVVWQSqW4ePFil0f9nfsei4lY/yAQ67iI+FDhLAKTJk3CkSNHcPnyZQCAvb39UzcBCcXUqVMxdepUuLm50WYRQki3AgIC4O3tjb59++Ldd9/FmDFjAABXrlzBW2+9xTid7srLy7v9rLW19SUm6V1BQUFPLZB5nsejR48YJCLk+dHmQBGIjY3F/PnzMXToUNZRelVTUxPi4uIgl8vBcRwcHR0RGBjY5fEsIeT1VlNTg9raWtja2mqLsqqqKrS1tQm2eHZxcen2M47jBHtyYGpq6p9+LpPJXlISQnRHhbMIREVFITMzE2PGjIFMJoOrq6soisuQkBCo1Wr4+PgAAJKSkiCRSLBr1y7GyQghhPSm1tZWGBrSQ3Dy6qPCWSTa2tqQl5eHtLQ0FBUVYfbs2QgLC2MdSy+enp5dumjwPA8vLy/qrEEIIQIUFBSEnTt3wsLCosv1a9euYevWrTh9+jSjZIT0HLWjEwkDAwO4uLhg7dq1mD59umiO4VapVE99TQghRFjGjx8Pb29vnD17FgDQ0tKC6OhoBAUFYf369YzTEdIz9FxEBOrr65GZmYmUlBQ0NjbC29sb//znP1nH0tvcuXPh6+sLDw8PcByHrKws0fYwJYQQsVu1ahVcXFywZcsWZGZmoqKiAu+88w7S0tIEvaGdvF5oqYYITJ06FbNnz4a3tzemTJkCACgqKtK+FrIff/wRBQUF4HkeTk5OcHZ2Zh2JEEKIjlpaWrB3714kJSXBzMwMBw4cwLhx41jHIqTHqHAWAbVajX79+qG6uhppaWlITk4Gz/M4d+4c62g62bp1KyIiIljHIIQQ0ouuXbuGzZs3w87ODiEhIZDL5YiIiMDixYsRGBio7d9PyKuMCmeBa21tRW5uLpKTk3HlyhW0trbi0KFDmDx5MutoOpPJZM9sW0QIIURYZs6ciW3btmHWrFnaaw8fPkRYWBju3r1L930iCLTGWcAiIyORlZUFGxsbyGQyfP3115gzZ46gi2ZCCCHilJ6eDqlU2uXam2++if379+PMmTOMUhHyfGjGWcAmTpwIe3t7rFq1ClOnTgUAzJo1S7DN8TvY2dk9daMIz/PgOA5yuZxBKkIIIYS87mjGWcDy8/ORkZGB3bt349GjR/D29kZbWxvrWHqzsrJCQkIC6xiEEEIIIV3QjLNIlJaWIikpCZmZmbC2toanpyd8fX1Zx9IJrXEmhBBCyKuIDkARCVtbW4SEhOBf//oXlixZIujlGn379mUdgRBCCCHkCTTjTAghhBBCSA/QjDMhhBBCCCE9QIUzIYQQQgghPUCFMyGEEEIIIT1AhTMhhBBCCCE9QIUzIYQQQgghPfD/AH7jgSP+dVxvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,6))\n", + "sns.heatmap(avocadoData.corr(),cmap='coolwarm',annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "8a8680eb-d9bd-4844-a114-71795bca5aec", + "metadata": {}, + "outputs": [], + "source": [ + "features = [\"4046\", \"4225\", \"4770\", \"Small Bags\", \"Large Bags\", \"XLarge Bags\", \"type\", \"year\", \"region\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "8b53c26c-e365-4534-b6c7-350b1abd1487", + "metadata": {}, + "outputs": [], + "source": [ + "X = avocadoData[features]\n", + "y = avocadoData[\"AveragePrice\"]\n", + "y = np.log1p(y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "14d8c3c0-7e64-49c2-9d87-f2f03728707d", + "metadata": {}, + "outputs": [], + "source": [ + "def one_hot_encode(data, dimensions, drop=False):\n", + " for dim in dimensions:\n", + " if(type(data.iloc[:,dim].values[0]) == str):\n", + " uniq = data.iloc[:, dim].unique()\n", + " for val in uniq:\n", + " data[f\"{data.columns[dim]}_{val}\"] = data.iloc[:,dim].apply(lambda x: 1 if x == val else 0)\n", + " if drop:\n", + " data.drop(data.columns[dimensions], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "cc9ff7b9-6f0e-4abf-a758-444c78e21881", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/art3mis/anaconda3/envs/notebook/lib/python3.7/site-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n", + "A value is trying to be set on a copy of a slice from a DataFrame.\n", + "Try using .loc[row_indexer,col_indexer] = value instead\n", + "\n", + "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", + " \n" + ] + } + ], + "source": [ + "one_hot_encode(X, [6,8], True)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "92c6d1d5-1f16-4f47-a292-c87b66e67323", + "metadata": {}, + "outputs": [], + "source": [ + "train_len = len(X)\n", + "train_idxs = list(range(train_len))\n", + "np.random.shuffle(train_idxs)\n", + "split = int(np.floor(0.2 * train_len))\n", + "Xtest = X.iloc[:split, :].values\n", + "Xtrain = X.iloc[split:, :].values\n", + "ytest = y.iloc[:split].values\n", + "ytrain = y.iloc[split:].values" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "841c5115-73ff-4dc2-8ba0-a72eca7e3115", + "metadata": {}, + "outputs": [], + "source": [ + "output = mlpack.linear_regression(training=Xtrain, training_responses=ytrain, lambda_=0.5, verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "00be0879-6ad3-4877-bb42-7cb9c7e07fd9", + "metadata": {}, + "outputs": [], + "source": [ + "model = output[\"output_model\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "18bd0698-09e9-4afb-9ab8-006ff6c1c2a8", + "metadata": {}, + "outputs": [], + "source": [ + "predictions = mlpack.linear_regression(input_model=model, test=Xtest)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "8bce9ee6-3047-4cab-b08f-8a3866374be1", + "metadata": {}, + "outputs": [], + "source": [ + "yPreds = predictions[\"output_predictions\"].reshape(-1, 1).squeeze()" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "aeea1f4b-80c1-4ae7-9733-e0e2089eab6b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFtCAYAAADMATsiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9e5gcV33n/TlV1dW3uU+PRiPJYyFhSzJGLGBHBowXbCSE7cixYyCvzSU2aJMNu7wvT56w3htxAruJTHYTyAshG17zZIMdCHfZOEJcwmJxEXbsIBtbCCTbY1kaSXOfvtbtvH9UV093T3dPz0zPTHfrfJ4HrO6prjrVXf3tU7/z+31/QkopUSgUCkVLoK31ABQKhUJRP0q0FQqFooVQoq1QKBQthBJthUKhaCGUaCsUCkULoURboVAoWghjrQfQaMbHk3he/VmMvb0xJifTKzii5kKdb3ujzrc9GBjorPq3i36mbRj6Wg9hVVHn296o821/LnrRVigUilZCibZCoVC0EEq0FQqFooVQoq1QKBQthBJthUKhaCGUaCsUCkULoURboVAoWohVEe0DBw5w/fXXs23bNk6cOFFxm0996lPcdNNN7Nu3j9tuu41HH310NYamUCgULcWqVETecMMNvOc97+HOO++sus3OnTu5++67iUajHD9+nHe9610cOXKESCSyGkNUKBSKlmBVRPuqq65acJs3vvGNhX9v27YNKSVTU1OsX79+JYemUCgULUVTeo98/etfZ3h4eEmC3d/fsejX1Krzb0fU+bY36nzbm6YT7Z/+9Kd84hOf4P7771/S6xdrGDUw0MmFC7NLOlYros63vVHn2x7U+iFqKtF+8skn+YM/+AM+/elPs2XLlrUejkKhUCwaiUQgVmz/TZPyd+zYMT70oQ/xyU9+kle84hVrPRyFQqFYNKfOzvDtx07jet6KHWNVRPtjH/sY1113HaOjo9x1113cdNNNAOzfv5+nnnoKgD/6oz8im83ykY98hFtuuYVbbrmFX/ziF6sxPIVCoVg2Pzs5xp/83T/zhe/+kl++OL1ixxFSyvoDwC2AimnXRp1ve6POd214+tQYn/zKUziuZF1vlHvvupqIufTos2qCoFAoFCvEM89N8JdffRrHlSS6I3zg1lcuS7AXQom2QqFQLJHjI5N84ivHsB2Pvq4w77v5Cno6wyt6TCXaCoVCsQR+8eIkf/EPP8N2PHo7w7z/5isY6IkSj6xsUp4SbYVCoVgkvzw9xV/8w8+wHI+eDpP333wF63pj9HSYaGLl0v1AibZCoVAsipNnpvnzf/gZOdujO+4L9mDf6gg2KNFWKBSKunludIb/8YV/IWu5dOUFe31/fNUEG5RoKxQKRV2MnJvlz/7eF+zOWIj337SDocTqCjYo0VYoFIoFefF8ko///ZNkcg4d0RDvu/kKNgx0rLpggxJthUKhqMnpC0nue/AJUlmHeMTgfTfvYNMaCTYo0VYoFIqqvDSW4r4HnySVdYhFDN538xVcsq5zzQQblGgrFApFRc6Op/j4g0+QzNhEwwbvu2kHw4NrK9igRFuhUCjmcW7Sn2HPpG0ips77btrBpeu71lywQYm2QqFQlHB+Ms2BB55kOmURMXXuvmkHm4eaQ7BBibZCoVAUuDCV5k8feJKppEU4pHPXjdvZsqG7aQQblGgrFAoFAOMzGQ48+CRTyRxmSOOuG7ezdWNPUwk2KNFWKBQKJmezHHjgSSZmcpiGxm+/bTsv39R8gg1KtBUKxUXOVDLHnz7wBGPTWUK6xnv2buPyS3qbUrBBibZCobiImUrmOPDAE1yYymLogvfs3cb2S/uaVrBBibZCobhImU5Z3Pfgk5ybzGDogne/dRs7Nje3YIMSbYVCcREyk7a478EnGJ1Io2uCd+3Zxite1t/0gg1KtBUKxUXGbNqfYZ8d9wX7zj2Xc+WW1hBsgJXti6NQ1ODYyTEOHR1hbDpLojvC9uEejo9MFR7v3TUMULLN3l3D7NyaqLqP8r8vdMxK2x88corDj50mYzkIBOGQ4NL1XXWNp9axejtMfnZygozlIGXl8f3GtZvZd+2WxbyNq8bBI6c4eOR5vPxjAVxzxTr277uy6msW+/kslXqPk8zYfPzv/4UzYyk0IbjjLZexc2tiSYJ97OQYX/7+Sc6Op3G9uQ9UE7AhEef2N21dkXPV77333nsbvtc1JJOxqn4hKhGPh0mnrZUbUJPRLOd77OQYD3z7BJbjETF1xmeyHDs1juNKOqIhUjmHnz57nidPXMCVEDF1UjmHn/1qjMHeKIN9sXn7KP87lJ5vPdsfPHKKgz96Hsf1kBIk4LiSTH7bJ381jitl1ddXO7/RiTSnzs76+63xvhwfmUIg2Tbcu6T3daU+34NHTvH1I8/PG/vpCynOT6R47bZ1815Tz/u9XOLxMD956kxdx0lnbT7+hSd58XwSTcBvveVyXn35wJIF+/5HjjM2ncUre1MkMJu2eeaFSTYkYks613i8enNgFR5RrAmHjo6g6xrhkI4QgozlIhBkcg5CCMIhnWzOIWu5hW3CIR1d1zh0dKTiPsr/vtAxK21/+LHTCERBnIKvciY/lmzOqet4884v5wDUFOziMTQbtcZ09NkLFZ9f7OezVOo5Tjrr8Gdf+BdGzvmC/c4bLuM1SxTs4JjZnFPzA83mnIafK6jwiGKNGJvOEivqWu04HpoAx/UKz7mex5xs+piGxth0tuI+yv++0DErbZ+1HHRN4HqlR/Yk+VtgWfP11Y5VPhurRdZy6t94lag1Jq/KrW2l99t1PU6+NM2H/+pHREIaWdtjfDpb8iMZj+hEwiGk5zGdsnC8ebuui9HxNHf/6feIhTUcDyzb39G1O4d47bZ1y4phj01ncb3qd00S//qtdi0uBzXTVqwJie4IVtG30TA0PAmGPndJ6pqGrpV+qSzHI9EdqbiP8r8vdMxK20dMA0+CEKXyrAnQNYGuaTVfX+1Y2iK0IWI231yq1piqCV/5e5DJOUzMZBFCAJIz42nGigQb/Pc8mXWZmMkyPrt0wZ4bG9junGBHTJ0XzycZnUgua9Ex0R1B1zSq7UHgX7/VrsXloERbsSbs3TWM63rkbBcpJVFTRyKJhg2klORsl0jYIGLqhW1ytovreoUFwfJ9lP99oWNW2n7P1ZuQyMKXMRCUaH4skbBR1/HmnV/YF716ZGLP1ZvqfRtXjVpj2rVjoOLz5e/B1GwOEHR3mMxmnJp3H4u5M6mGJkDXNey88gsBXR0mpqnz8A9fWNa+9+4aJhI2an6gkbBR9VpcDmohskkW5laLZjnfwb4Yg71RTp9PMp2yWNcb5Q1XridruUynLPo6w7z9zVt59eUDhW36OsPcdt2Wwop8+T7K/w6l51vP9tuGe0FKXjiXxPE8NCGImBrDg528/c0v59WXJWq+vtr5DfXHuGxjF+MzOWy3+vQxFtb50DtfveT3daU+323DvQgkJ0amSkIZr6uRPVL+HmQtl55Ok3jUZGo2t6jv6WIRwr9rs4um6gPdYaT0xz2dsth99SVL3v9gX4wNiRinzydJZUuzgTQBGwfi3Ln78iVnj9RaiBRSruRbt/qMjyfxFvEzPTDQyYULsys4ouZCne/ac9+DT3DqzAyelIVbdE/6X/YtG7r48B2vWfK+m/F8A+578AmmUr7l6ehEmpzlrshxKgl2b2eYkCGYTtn0dobpiZvLep9XmoGBzqp/U+ERhWKV2btrmIipI6W/iOd6Eim9FbudbhaKwyWdUaNmnH8xawDFCCBUQbA1TTA+kyNq6jVDaK2AEm2FYpXZuTXB3TftYKgvikCgCRjqj3P3jdtXpBijWdi5NcGduy+nJ24Cgg39MRLdkZKwsAA6Ijp9XRH6O02MOhVKiLxgG1rJ4mdvZ5iwqZHJOsTCBuv7YssKWzQDzbdMrVBcBOzcmmhp4VgqjT7vIBzkuB6f/tpT/MuvxgG48ZpLuf61m1qmNH0xqJm2QqFoaRzX46++/nRBsPf+2nDbCjYo0VYoFC2M63r89cGf8+QvxwDYfdUlvOXqS9pWsGGVRPvAgQNcf/31bNu2jRMnTlTc5siRI9x2221ceeWVHDhwYDWGpVAoWhjX8/izB/6Zf/6FX0Z/w2s38dZdw20t2LBKon3DDTfwwAMPsHHjxqrbXHLJJXzsYx/jfe9732oMSaFQtDCeJ/nsw89y5GdnAHjzazbytmsubXvBhlUS7auuuoqhoaGa21x66aVcccUVGIZaG1UoFNXxpOT+R57l6DPnAPjX/2oDN14kgg0qe0ShULQQnpT87T8e50dPjwKwe9cwe167yc/FvggEG9pQtPv7Oxb9mlrVR+2IOt/2ptb5Pv7sOb76/V9xbiLNYF+M2970coCS5165tZ+nTo5z8sUpsrY7r8JYAy4Z6kQguDCVJpObvw345kzgm2p5niQc0ujpDJPM2IXXBM9JBNGwzvRsjumUb0VhaNDfE0UiGOyLceu/3sojP3yOx4+fB/zc7F+OTHBuPMXoRKZwPlftGGzQO9mctJ1oqzL22qjzbW9qnW/QlEDXNSIhjQuTaf78wX8GIYhFDCIhjdPnZvn5qTFCukbOruyR4gEvnF34Pc2WlannbI9zE5mKz8XCGhcmSq1OHQ/OTWTojoc4P5Hifzzwz6SycxaxvR0mMymHF84mSfREuDCZ5tNf/peWL54BVcauUCio3CygvLFDJue3WKsm2I2iPJCRzlX3pp5J2di2VxBsAQz0hEFoTMz4ftWzaXvFmiw0G6si2h/72Me47rrrGB0d5a677uKmm24CYP/+/Tz11FMAPP7441x33XV87nOf4wtf+ALXXXcdjz766GoMT6G4KBibzmKW1YW7nsw3m/BxXG/Jvh9LZaHDhQyNidlc4XGiJ4xWJNh+Szj/HGo1wWgXlMufun1ua9T5zlHsshdwdiwFwFAiDsC5iTS245U0ql0J/DYICxMySv2wezrCGLrGdNK3uA2sVsOmzmBfjJztNr2DXz2o8IhCoajYBKK8sUM0bCDxFwhXknLBjoXnd4EpFuxwSGNjf4xo2GBiJoPryZI7gs5YaMEmGO1C2y1EKhSKygSLc4eOjjA2nSXRHeG3rn95yXODvVH+9auGOD4yxQujM+RsOa8HpAA2JmIgBBMzWbKWV7FPZCD8tuPvwzQ0uuIm6axdeE3wHEBfp8ZM2mY2bWMUCbZpaGy/tIfdVw/jOB5f/v5Jzk2kAY2+XpOw4cfme+Ime3cNt/wi5EIo0VYoLiKqueyVP7dvtQZUgYM/fI6vP/ocAK/c0s+73rqN/q65POzisV5s4S9Qoq1QKJqIb/74+YJgv+Jlfbz7rdvo67p4CmfqQcW0FQpFU3Do6At85f+cAmDHpb28Vwl2RZRoKxSKNefwYyP8wz+dBGD7cC+//bbt9HVHlGBXQIm2QqFYU77z+It84bu/AmDbJT3cdeN2+pVgV0WJtkKhWDO+98RpHvzOLwG4bFM3v33jDiXYC6AWIhVNz7GTYyVpaguldR08corDj50mazlEIyF2v3Yj+67dUnFf24d7OD4yVfVxvSlktcZ47OQYX/6nX3FmPE2QGWeG/HLyDYn4vGME+zr50hS2O/9YmoB9b9hcOKfi10wkLfo6qqe+BWM5N5nFdr2SIhcBbByIc/ubti54zvV+JsdOjhVS9DwJuiYImzobE3E2revgO4+fBsDQfcOo8ZkMg73Rmse+2FEVkRdZylCrnW+xyZGZ77Ttul5VU6CDR05x8EfPF7qce4CUkn2v38zmoa6Sfc2kLGbSFt3xMJ2xELNpm+lUjq6YSVfcXPBY9YwR4P5vPsts2p5XUDJX4ScKxwj2NZ3MYTm1r+OOqEE661DpctcExCIGOcsFBOGQIGt7OG793w1N+N3MhRCMT2cL49c1UVIxqeuCeCTE9a/ewPGRKc6MpchaLo7rVRybEBCPGCQzvpdIyNDYMtQFGkxMZxdl+NRq13O9qIpIRctSyeSolinQ4cdOIxDomkAIgaFpCASHHzs9b18Zy0WQN0kqMkvKWG5dx6pnjIeOjsxzuysgIZNzSo4R7GshwQZIZioLNoAn/b87rsR2PZJZd1GCHexjfCbHWJFgA/NK3F1XMpOyeOhHL3BuMsNs2vbtWKscThOiINgC2LKhC9PUyebci8Lwabko0VY0NZVMjmqZAmUtZ57hkSb858v35Ti+OVJgNhSYJTnOnIFSPQZEtcY4Np3F9WRFn43A6Kj4GJX2tSxWODRcvHvXk2RyTtVtwRfsYtHv7QpjhnRmUhZwcRg+LRcl2oqmJtEdwXJKbUItxyPRHam4fcQ05s3wPOk/X74vw9DwJBi6/zUw9PzjItGsdax6xpjojviz/gqvE/ljFh+j0r6Ww2oEP4vPzXGrW6xqQhTK3YWAgZ4Ihi4Kgg31vd8XO0q0FU1NJZOjWqZAe67ehET6s1spcTwPiWTP1Zvm7Stq6kjyJklFZklRU6/rWPWMce+u4UIHl3kIiIaNkmME+zKNxkyRVzoJQ0JRrNv/Eap0SE2jxJ9kYyJOxNTJWvV/tgof/d577713rQfRSDIZa1Gzi3g8TDptLbxhm9Bq5zvYF2OwN8rp80mmUxZ9nWFuu25L1YWqbcO9ICUvjCaxHY9oOMSNu4bZd+2Wefta1xvlDVeuJ2u5/uOe0scLHaueMQ72xdiQiHP6/CzJjA3krURDGrGwwVB/rOQYwb6CWHI1QoZA1jEhX63EuZAhiIVDmPnGCsXH1wQldz8bEjGG+v2smVdflqj7s61Eq13P9RKPh6v+TWWPtOnqczXU+bYWxemLEdNgz9Wb2HftlkIq3ZmxlO8pLXxxlEKgAd0dYaSU+dCDnz1iu7IQeqn1rQ+EXlTJHvHT8wyyOQcQDPZGuP3Nc26BQfZIYJ9q5xdAh/pj/N5vXMmGgTiVA0aLp9U/32rUyh5Rot2mH3o11Pm2N5XOtzg32/U8QoZWSNtbTlsxgZ9vrmsCy5lLJwyHNN6WD3F848jzBbHv7/J/AKaTVkHol2uj2q6fby3RVsU1iouGSgUhwKIKdxZ7nIipg5SMzWTJ2XOdVvo6Td74Kj+v+aWxFK4rMXRBVywEQjCdskhl7Kppc8X0d4V591u3VS1u+etvPE3GmhPnRvV/lFX2lbM9vvHD50tm8z0dfsf18XzI5/RYmr/40rHC33VNIKVE1/zO65UKfCrddbzv1lc15FxaCTXTbtNf6mpcrOdbqQAmnXVASmLRUF2FO/VQfBzX9ZiYyeJ51VtrxSMGWdsFCZ4nEcIPXSz2SxkN6/zOvldwwzUvK/l8P/LZn3B6LL2kc1kq5a3EejrCaJoo9HRc6LWaBvGoyd03bi98DvOKpiRIJL+1extvefXGFTmPtUQV1ygueip2Is85ZC237sKdxR5nNm0jhFZTgP2CHn+mCdQ1s65E1nIrjvvc5OrmPC9HsIMdCKGRzTkl51NeNOWnUQq+8YNTDR1/K6BEW3FRULkT+fwGtsst7ig+Tj2dzT05t/Any/67GKSkyrhX90Z6WYKNfx6a8D+b4vOpVjS1UDFPO6Ji2oqWop64dLHp09BABze8egMRU2d0PI0nJYae70soBJ4neelCsvCcpom6ijsOHjnFIz8ZKWRjhHSNSFjHdf0c8a64iaFrdZWO+9kVyxfXseksv/7730AI2Lap2z+/NQp+di9BsMHPWPGNpbSSzyFi+s2H9SLh9qSf536xoWLaF2mMtxWpGJfO2CAEsYiBaWjzTJ88KZlJWtiuh2V7hZixJ2VhUVDXhf+cJ9E0QTxisCERZ/twD48fP58PMcjCAtnzZ2f4+pHn541PCIiaOlnbpTvuG0EtFNNuF4rDIt0dYfQlCHawHxXTVtkjijbh0NERbMdjJm3jOB6GoeE4Lrqm0dvpFyMUmz51dwgiIZ3zVgaAvq5w4bXgV/D1dUWYSdtYluuLjoCezjDnJjMcH5lCE6BpvqifHU9x/yPH8/nJ85ESXAldMZOc5aJHDIb642SyNuOzpQUgIv+/xhWsrx2lgm0uSbAXyh4JbGjLs0f+rz3bW3YSslSUaCtahpfGUqTzC3eaANf1cD3wvDnpq2T65MetJbFIiFgkBMDp87OAKDw3OpHGzRtHBY5/4M/oDCFAgCcF2ZxT0xvEcTy6eqOksw73/dvXA3Dfg08QMg3Cobly9pztMjqeJqT7RS/lC3itwnzB1uYJthB++Aj8zyIc0vl/P3Tdoo+179otJR7iFytqIVLRMriunwunCT+DoNDdpCjOWcn0SdcEulZ6qeuaVsjYAF9sZZF5VOD8V0ywQFZrbdEwtHmmR9VcAAX5hUjRBoIdryzYUFp9GTguKpaOEm1Fy2DovkwESxaB4AFzJlBlpk/+rbROJGyUGBNFwgYRUy885wu4v4DoH2v+VyNYIOuvslAZxLTLTY+quQD2d0eQyFXzB2kkxT803XETXa8s2MG2AYHjomLpKNFWtAwbEnG68gt8fhaIoKcjzMZEnJ64STrrMNgbZd/rN7O+L0Y669DbFeXum3Zw943bC9v0xP1Frrtv2lF4bl1PhHjUzMevZSErwV/0ClwDPSJhg3ftuZzfuHZzyew5pGt0REOs74vNK86p5gL4rj2Xs+/1m4mYBkKsvCNfowgWc2FhwYb8jDx4D/OOi4qlo7JHWjibYim08vkutvUYLO58K/WPrJQ9spRqyUX1VMz7hFQ6ZmAUdXY8Xcgx1zXBUF+US9Z18MQvxxpWph5QLNLF/w7SGqsJdqI7wmUbu/jZyYl5hleNopWv51oow6gatOuHXo1WP9/FNvlt9fNdLCt1vmfHU9z34JNMpyyiYYPf+40r2bG5d827prfr56tS/hRtw86tiWUbOrUzjz97ji8ePr5g8dHjv7hQ6JDuFbVDCxz69l27pcS3pHiGHTI0vvaDX/HF70lOX0hVHUuwzhsy/LL+rrhJJucU7GKLnf4W+2N8MaNm2m36S10Ndb7NR4krYEhjKmWRyjhI5kT08ePnV934KWAxIZG69sdcQVM8YnD9azbyw6dHFxX2CmiFz3cpKMMohaJJCeL0UykLkJweS5PMCzb4NqdfP/J8cwh2bPmCHeCnbfpGV4cfO121m71iPio8omg7imeugfdIs95qF7sCTs7m1no4JRQLdmfMxDAaI9jBD5LAL7ZxXIeEUZpGqbqyV0eJtqKtKM4wiUUMJmcyPPDtEwBNI9xBBshLF1JNW1RTLtihBgl2MRI/88XQdWZSFhnLxbZ9OwEpIRY2OHZyrGk+t2ZhVcIjBw4c4Prrr2fbtm2cOHGi4jau6/JHf/RHvOUtb2H37t186UtfWo2hKdqMct/siGk01a32sZNj3P/IcU5f5IIdGHZFTJ1Xbe1jJm1h265vBFWUXvjAt09w7ORYQ4/d6qyKaN9www088MADbNxY3Y3roYceYmRkhMOHD/PFL36Rv/zLv+T06dOrMTxFG1GtZLxZbrUPHR2pajjVDJQKdmhFBDtoYDDU5xc+TSYtuou6jwvhm3k5nmyqH9xmYVXCI1ddddWC2zzyyCO8/e1vR9M0+vr6eMtb3sKhQ4d4//vfvwojVLQLie4IUymrxJyp3AtkLRmb9pvrNiPzBVtvmGBrAjb0xyo28/384RN0xkLMpi3fnAu/gtJxvKb6wW0WmiamffbsWTZs2FB4PDQ0xOjo6BqOSNGK7N01zAPfPkEOf4adtZx5XiBrSaI7wkzKajrhLhbsjgYIdkfUYNNABx++4zULbhv80AZNI7S8r0kl8y1FE4l2o+jv71j0a2rlRLYj7Xy+Nwx00t0d46vf/xXnJ9Ks64tx25tezlU7Btd6aAC8c892PvnFJ7GWmSkSDmkYhk46Yy87Nl4i2NEQ5jIFOxrW6IiavHPP9rqutXfu2c5ff/UY8WiIqdkcLn5mSUfUAMmC+2nn67kSTSPaQ0NDnDlzhp07dwLzZ971oopranMxnO+liRgfut2/joLzbZZzvjQR4717t1XMHtGE35Qhm7NJZf0sCkMXhHRBxpqbmfd3hXn3W7cBzPMhWSzzBDu0eMHu7wpjOx6OK9F1wcZEnL27hrk0Eavrfb80EeO3bni53+TCdgv7GeiOLrifdr2eW6KMfe/evXzpS19iz549TE1N8Z3vfIcHHnhgrYelUDScRpbil+9nIRH7d3/+A9L5hdBGCDZAJucuqalBMcqeoH5WJXvkYx/7GNdddx2jo6Pcdddd3HTTTQDs37+fp556CoBbbrmFTZs2sWfPHt7xjnfwgQ98gEsuuWQ1hqdQXDQEDQgaJdjF+1SsDsp7pE1vr6qhzre9Weh8P/A//w9Z2y0IdjwaIrwMwQa/CGa5M+2l0q6fb0uERxTtxR986khJM9v+TpOPf+DaNRxR4zl45NS8RrObh7rmmT8lM3MzUQHEowa242E7XuF14DetTefKto3ohE2DmZQNSLo7wkgpmUpaeJ5ECL85xFXbBjg+MsVE0qKvw2T7cA/HR6ZKXPMu29RDLGKQsVwAYhFj2YINqKYGq4yaabfpL3U1VuN8ywU7YC2Ee7nnW6kpwVXbBjjy1GjF/GFNAEKgC7DdxX21ajX31TU/nFHr0tYErOuLkbNcplM5umImXXETy/FIZWzSWZug9WUsYhAxjWUJtiZg3xs2r2mz3Xb9/qqZtmJVqSTYtZ5fSerxly73bg4Mp86MpUhlHVxvrlv66Qupmh7SXt44YylZ2LUkvkKf4YrHHh1PY+h+xWHGcunuELiuRzI9lxoYCy9fsLdf0s2H73ztkl+vWDpKtBVty7GTY3zhu7+CfP/FU2dm+MSXjyGA7o4wnbEQ5yYzfOqrTxMJ62xMxNk+3FPwdi6embbS7aiTn+G7lssLo7MlM/hY2CASXp5gAxx/cXrBbf7m4NMcffYCnpxriyalXJG2YxcTSrQVbcuhoyMYhsCyvbztqW+8L4HZtIWUkmTGRkqwbI+plMU3fzJCRzQEeDjNVbS4JIoFO9ogwa6Hvzn4ND9+5nzJc8EdS852Ofij5wGUcC8BJdqKhtPfaVaNaQdUai8FFMIS6ZxTmDEWt8BaqPFtMX54wy4KLczNl13XX8wrPPZcRsfTCCCdtVunNfoCzL2PG/AAACAASURBVAm2TixiMN5AH4/3HfgeUgb2qgLP83/oaq2SBXasrucvvBaLdkkHH1MHKcnanmo/VoYSbUXD+fgHrq2ZPVLueT2Vsrj/m8/6C3iaYCZtl+wvZ3t844fPc24izc+fnySVdQp5xmfHU9z/yHHuvnH7vLh0MmNXXbirpisyf7x2whfsUEMFG+bE2fXkoisyNVGa3118TQjhf64g6O00mUpZTeeJvpYo0VasCLWyRIo9rwE/7SwvKJpWeYYrJRx99oK/yCb8dlUI8KQgm3M4dHSk5At96OhIzUyLi4WIuTKCvVw8CRFzTn6Kr4lzszmE0ADJbMZhfZ9JLr+NEm3VI1KxBlTyvPZnax5OhTSJQMY9KQtx0QBNgOt589LvlJ2nL9jxaHMJdtBiTCJL8ruLrwnH9dD832Sc/MKCsmidQ4m2YtVJdEewylb5dE2gaxqGPv+SDCbMWj58UjyB9iTomjbPvjPRHSmEpZcSnRb4PwitGtoOBHs1Fh3rRdf8u6RwSGff60vzu4uvCUPX/A42+Pas0Fye6GuNCo8oVp1yz2vL8fyFp7woZ/MVe8UIAbt2DBRi2h4yH1OVRCLmPL/svbuGeWF0hozlzYtfd8dDOK4kla3smSHwxcKvO/PzLzQh6O4wefmGrnlZEc1GuEiwm6F0TstXbVZbMIbSa6IzFvzYCDqjBjnbbSpP9LVGv/fee+9d60E0kkzGWtSFGo+HSadXv+hjrWiG8x3sizHYG+X0+STTKYu+zjBvf/PLefVlCUbH01i2i+vJQkw6HNK4+XWXcsfubWxIxHnx3CyprIsQsL4/zp27L58nBoN9MS5Z18HJs9Nk8uJsaL71qa5pDPXHuGxjF2fK7FHDIQ0PSVfMJB4xCmNZ3xflt264jBtftxmB5MSLU02Zux02deIRg8nZXNMIthCCZMbi589PsiERY7AvNm+74msinXXo7QzTGTVwPOjrDHPbdVsqCn4zXM8rQbyo/Vo5qoy9Tctgq6HOdz4lqWYhjZm0zWxRBaHAz3EuLggpTj206ylXrINi572lEA7pxKPNI9iViJoal67vqlqNulja9XpWZewKRQ0CL+egU3oqW9oNRuKnpwUFIZuHugrpaSED7PnRnCWxXMHuiBlMzDSvYANkLI/nzs4w2BdTqXxLRC1EKhR5gk7pfrpZKX50W3D4sdMl6Wnp3NrndJshrSUEOyBnewghCId01W19CSjRVijyBJ3SK6WKSzlXEFIpZbESq5F9YhpafuHOF+z1fVHW98fQhL/g2uyoVL7Fo8IjCkWeoFN6tSWRwGp1Nm2RtebK7Kux0sU9pqHRGQ+VzLDPTWTo6zTZkIjjeJKZ1PIb/64kKpVv8SjRVrQdxQuLQwMd3PDqDXXFTPfuGvZj2pna2Qg52/Nv8Rs14CVQSbDBD+OMz1qEszZSihUT7ODcl7L/cMhPp7QcT6XyLQEl2opVo5JJVD1iupjXlfuaTM5k6l7s2rk1wd03bq/YKT2gOMNjrWawIUOjK24yXiMPO2dLljtC09DwpJx3R7H9km5GzqfIWg6aEPN8RzRR/S5j+yXdIETDskcuRpRoK+qilitf+Rew2rblJlH1iGklc6lar/vy908yMZvDc6W/eJifEv6vg8/wb/ZdMe815el+WdtjOpnzq/E0gSdliQCt9UJfyNDoXkCwyzGLqgproQn47H+4frlDVKwwKk+7TfM8q7HY8w3ykc+MpzF0je4O028QkPHtS2MRo1DV6Loeb7hyPT98ehTb8cjkXGzXQ9cEXbEQoZBeMIkC31e5J27y4TteU/X49z34BFMpq+R1MymLnOUSixgkuiOFfohnxlLzHAKLCYc0BrojBbvP3g6Tnx6/sGiHurViKYIN9Yv2WjboXSrt+v1VedqKJRHMcqeTFpom8CRMzubo64oUSs17O/3KrXBIJ4fvkWyGNGYzNgLQBXieZHwmR6I7XCK+9WQOjE1niUXmLtNMzmEmlUMiSPREGJ1Ic+L0FN3xMLkFEqZztsfZiQwbB+KMTqQ5PjK1tDdmDQjpixPsvAkinvQNmqqYJ5Zsrxr0tgZKtBVVCfKRgy+9yFuhzqSs/Oy0VD1MQyNrObienjdc8pVCF75wzKRs4tG5Rgjj01kyOZf3H/geEdPgVVv7mExahVBFEPukYmcryci5ZGFBLJNzsOtoNeN6/utaiVD+DmcxM2xNCOIRg1ds7uVnJyfIWg6xsMHwujjPjc6WeIYXN5lQND9KtBVVCWa5hqHhul7B+c7JhzzK/fN84yeDrO2iF/3Jk2DoAsf1yNkupqExPp0llXXQBHmTKIcfP3OeeMQgGtY5O5GpK2wRbFHJZGq1KW7tFdJhsDcGQtRsBLwQRhXBNg3/zqd4kVDXBJ7nx/JdTzKbtnnq1Hi+clMjk3P4xYvTeT/yucXCnO3x9SPP8/Ujzxf2M9RfvSNQOQePnOLwY6fJWA4CQTgkuHR9l1pkXCGUaCuqkuiOMJWy6IqF/MU9KQvtpQJXvkCEg5j2nqs38c2fjOB50g+N5J34OvMGTB3REGP5GbYmKFixyrzcZXIOjidb0hK1+CfGdmEyaeF5S6+YNHRBT6fJxPScYGsC9r1hM5uHuvi7Q8eZmLUKC66BYBePJ5l1gdIftIVm664neWksxV8f/DnxSIjppN9fc7A3wu1vfjkwtwAtpWRiNuf/YEn/c8xYvqHWiRen6O0MEw0bZC236mI1+OsUjuuVNP0tX9AO1i6KF7hvqBH7bVfUQmSbLmRUYzHnW5y54TguMykbx/UKNptAxS/VC6MzZC0PBAXh9uRcJkdwxQnh3/pD6SKZrgk0MVfMcjHiC3aYiensmnfgCXywpfRn+KGQUViAfvF8suqPQHDnoQfuirpWslit6xqZrM10yl88DhwBJZJd29fxqzMz6LqGaWjMpCxm0hbd8TCdsVBhkvB7t/8rLk3Mdw1sdWotRCrRVqJdk3pzpMsFfippldy6F4cOitE0gaGJEtFerttdq6Prgt4mEWyYyz5xPa/QJDnwHC9eRyj/jIPP0dA1DF0w2BcjZ7vMJC26OkzCIZ0Xz80WzjH4EXc9/45uXV+0sHA9OpHGcTxChlawds3ZLgO9MT50+84VfgdWH5U9olgygQPeQhQWLV2PyaQ1r1qwmvZ4nsQt+6sS7OYR7ODuyG/1Nve8hHkLv+XDLQ7pBG3kgsXqhBHJ73dO7Iu3tz1Z4u/iOF7JfoJ9nZ9IL/MMWw9lGKVoCIGJ0kzaLskcqUWwhev54hAL636svE6CPoLtgq41l2DD3OdYvii80PseLFPrWrAQPRcGi5hG4c5KE3NiP/cD4R+3+O7LMLSS/QT7WlehoUK7o0Rb0RCCHn+OM+fJUeuLLYQfGomF/QKZS9Z1MNBbuatJMUY+xrl9uIfP/ofrEcIXhlZcuCxG1wS9Xc0l2OCLteV48+5+yodYbnqoaX7bMBBI6dEZCxXahu25ehNuPpPI38ZH4M/eXU8SMgTj01m/OlVKoqaORBING0gpC/u67U0vX4nTbmqUaCsawt5dw7j5VEBJ/rY3v4BVCZkv+njV1r55jX5rNeSV0iMSNgql8Yau4XqtHVJpRsHW8mmB2kJVOUA4JOjtirC+P8bwYAe9nWE0oSGBob4oQ/1xpISeuMmduy9n37VbuHP35fTETUKGTqI7kvc58ffXETUY7IvREQ2RyjhMzuZY3xdj3+s3M9gbJZ11Cvu6asfgyr4RTYiKaSsaQhD3nit592/1HVcWFeOUIoCfPz/J9a/ZyA+fHi00+o2aOumcW8gnLo6lDvXPNYg9dnIMQ9cWLM9uZgqCPZNrCsEWRf/ojodJ5xwsq3zVoRTLkYWmEABdcZOwqde0KKi0VlJuWVBpP/uWc3JtghJtRcMobtsVZJwM9kZ5795tHDo6wqkzM/l4pb+9JyVZy+X4yBR37r688JrhwU56O8ySSr7i/owBh46O0NVhYoY0ppKt19y1EMOeyS0q42mlCOl+JHqwN8JM2qYzFmImZdUUbF3zf1TLm0IspblBuWXBUvfT7ijRVjScSrOozx8+get56Nrcl1vgh0jGprN1Z6kUE3zJw6EwWcvFcWUhu2AxaYPV0hHr4dL1nZw+n1y06ZQWCPZsYwU7HNIX9GApxjT8FLtwSC8xiwpmvYah4VWZafthLD+n3nK8El+ZpTQ3CIq5lrufdkeJ9kVCMPudSFr0dZg1862DLuMgGeyLzSukiZg6SFlwy1vIkvXQ0RGmkxau5+f6QqlQprMOB4+c4vFfXODcRJri6rviMQb7PzOWwnH9xaiZlEU0rON6siQdbDEqHFQULiUufmYstSTB7lsBwQYWJdgwV9SUzjnc/affA6C/0wQh/K7u1HgrJUgh2bXDL4QJwltLbW6wd9cwD3z7xLL30+6sWnHNc889xz333MPU1BQ9PT0cOHCAzZs3l2xz4cIFPvKRj3D69Gkcx+F3f/d3ueWWWxZ1HFVcM5/iwpd4xCCVdXBdjzt3Xz5PFO//5rOksk6RiEnCIQNDF8SiIVzXY2ImCwh6O00MQ59X5RZ84YrtW9MZu6ptaiysk7FcXwQq/L2/0+SNr9rAt346QtbyKm6ja/54l6qBIv8rstJfBk0T9HdFGJ/JNkVIpBoCiJgaGWv+ekHwg1sctlpqg4tyFrufdv3+NkVF5Hve8x5+8zd/k1tuuYVvfOMbfOUrX+F//+//XbLN7//+77NlyxY+8IEPMDExwW233cbf//3fMzQ0VPdxlGjPp3iBJ5SvYqvkZX3fg0/k486ykJ/rSXBdvxJtKBHn3EQ6X+noLz6tr1DlFnB2zDdKCl5n2e48UQ3pAk3XyDXI8CkS0rFdF13TEEJguy7S8zNZ/MKOtTOW0gT0dUeZWAPB1jSBLPMmqYVgLi0TRElF40Ie6KtJu35/17wicnx8nGeeeYbPfe5zANx888189KMfZWJigr6+vsJ2x48f573vfS8AfX19bN++nX/8x3/k7rvvXo1htiXHTo5x8qVpPCkJGTq9XX56VaUFHr8buS/Idr6UWOSLH4IQgON6aEIgpV+lBvOr3AJcT+JJybmJNFnLLeRUu54v1kL4nWGcBmZ/ZPPhgSAMownQ82XUXXGTrJVp2LEWQyDYk2s0w17sMYMKRS//A+24figoYmqMT2X5vz/5KK4rMXTBhkS8ZritETNwxRyrkqd99uxZBgcH0XV/FqbrOuvWrePs2bMl273iFa/gkUceQUrJiy++yJNPPsmZM2dWY4htSRAWEcIXSMeVXJjMkMk5FRd4Et0RRD7FTgblxUW+EODnRXv5MIJhVK5yCwhCLI4rC/92vbnb66DCzSivzGggvlmVh+N6zKTWJsPEF+wIkzPZRce/mwnb8ZhNOzieRzrnkLNdUlmbc5N+H85jJ8dKtg+uv6mUVdIqrnw7xeJoqoXIe+65h//+3/87t9xyCxs2bOCaa67BMBY3xP7+jkUft9atSCvz3S8fI2zq9HdHuDCVyYulZDpp0dsZ5p17tpec+zv3bOej9/+k8Li4vNj3nvDo6QxzYdKfrfZ2mP6MVsJvvGkr33vsRVzPK2QwSCkLpea6JgoGUpo2Fy/v6YxgO27DwiOV8DwwTa2uJgmNRgjf4W5yJtfSgl2OhkDTRSFts787zHefPMMN17yssE1w/UVM/ztshnSyljNvu+XSrt/faqyKaA8NDXHu3Dlc10XXdVzX5fz58/Ni1X19ffzZn/1Z4fH+/fvZunXroo6lYtpznL2QJBYx0EMavZ1hZtI2rivxPMlv3fByLk3ESs790kSMeCREJut7WkPQlzBEzvboiPhe2EP9sUL2SE9HqHDLu64rXHIrHI+E8q3HHBxHEjI0pOfhSdjQHwUhyFouA91RLt/YXbNfoyYCv+Yqf2N+9kdxhoppaGhCkLXdVQtPCAH9XREmZ9tLsIMf3OBuzHZcNCE4eyFZcj0F11/xj2Wl7ZZDu35/1zym3d/fz44dO3j44Ye55ZZbePjhh9mxY0dJPBtgcnKSzs5ODMPgxz/+MSdOnOCTn/zkagyxLSnOe41FQsQiIVzPF99qccWNifi8XNmc7ZLoji64+FSeax0sgK7vm2sxVmsha9cr/Pjn86Mz5GyvIAp9nSbv3rud58/OcPix02Qth4jpt8468dI0AoFe5L+dTx8uiHg4pPEXH3xjITsmmbHnLYgWd3JpBPUItgDCpr4ii6NzBUxL30fxj15xdk3wIxn0oAyqUiuF21TedeOpKdr1dt3QtIVjkvfeey/33HMPn/70p+nq6uLAgQOAP5v+4Ac/yCtf+UqOHTvGf/tv/w1N0+jt7eUzn/kM0Wi0rjEo5lMp7xVJzbzXRubKLnZfCxXY7NyamFcVGbS6ylpOvqWZRMs3UQgE62354+3cmuDum3aU5KFHw4bvTCgEuii1H10qQUhkKll7hh0NGysm2p2xEK4nSWacJb0+HJq7XoDCf4Xwx5213cKidTQcrvi5qrzrlaFmyt/27dsRddinPfvssw0d1HJQ4ZFSylfv37ln+4KdPhq54l9PW6nybYPiGV0XdMdChTBKPWM5eOQU/3h0pNC41tAF0bDBxnyGA8CXv3+ScxNpPOnH2qX0cD2/Y4ppaHREDITmh3KSWb9hsK5peNJbUNQDwZ5O5vwfEJhXoGIaGjdeM8zmoa7C+aaydkmDgWAmW3zHUA+GLujpCAP+TLe3w+SJX46VNPItPkY5sfBcg+UzYylytps/fz/l76ptAxwfmeKlsVRTZI+06/d3yXnaL730UuHf3//+9/nWt77F7/zO77BhwwbOnDnD3/zN37Bnzx7uuOOOxo54GSjRrs1ane/BI6c4+KPnEczNgiWSfa/fzL5rt3DwyCm++eMRHM8Pi1SLU2sC4tFQiQiXtzz74dOjOK5kKplblOCZhkbE1IlFQ4UWV4vxNCkX7NJxz0mxV2NQmxIxJmYt0jlnziExv7kZ0goGWq7nL/J2xU2iYYPplIXrSsyQzvq+6DxxDMTzpbEU2ZyL7c6lRAafh6FrdMX9UFarpOe16/e3IcU1u3fv5itf+QpdXV2F56anp/nN3/xNvvOd7yx/lA1CiXZt1up8/92f/4Cc7ea7uPsEnhf/Zt8VfOprT+Pl87oXuiJ1TTCQt+hEyoLIWo7H+HSWjmiIZMbGznt7Lyasqwm4ZLCTdNbmwlT9RkW1BHs10DQQeY++rriJoYtCxWuQemc7HtMpa8H3tzseIhoJVayabTba9ftbS7TrTpCdnZ0lkyktTMhms8zOtt8bpmg8WctBK4u0acJ//tDRkcLMMVh8rEUg9qmMxWzG5vxkhtPnk5yfSGM7HpOzuULGwmLl05Pwwujs4gQb6OuMMF3WF3M18bx8Q2RNkMk56LrGoaMjwFwruIzl1nXnMZu2CYf0kn0omoe6s0duvfVW7rrrLt773veyfv16RkdH+bu/+ztuvfXWlRyfok2ImIY/0y5SZE/6z49NZ/MNXb1CEc5CM+R0UQx4LXtTC/zCGV+w197XO+ijWFzxGrgh1lN5GmSEgLJFbVbqDo94nscXv/hFDh06xPnz5xkYGOBtb3sb73jHOwqVjs2ACo/Uphlj2sdHphidSDObsUEuLYNjOfaqS6XZBBv8MI2ha/R3R3Acj3TWIZ1bXAZJECLK2S6GJuiIhpq2DL1dv79NYRi1WijRrs1Knm+1TIHg+edHZ7BsiUT6M24h8Dy/6EbTBK7rYTmtczn2d4eZSdlrUmlZCyH8WXLO9paUfx7EtCutGTRbnLtdv78NKa6RUvKlL32Jb37zm0xMTPDQQw/x2GOPceHCBW688caGDFTRuhTbvxb7TDx/dqZg2bquN8Zs2mZqNoeTr6rTNd+bxLWbS/gWoq+rOQVb1wS6JsjZfpperUyVShi6IGT4Lb4MAY6kUBwTDunk8GPkzSLaFyN1L0R+4hOf4Mtf/jLveMc7CkZP69ev57Of/eyKDU7ROgSLXeGQjhCisJB1+LHTheezlstsurR9leu1Xif1vq4ws+mlC3ZnzJ8r1dEzd1HomuBlG7pY3x8r7L+ehV1dE1y6vpPhwQ56OsLc929fz4fveA1Z22tIGzFFY6lbtL/2ta/xmc98hptuuqlQcLNp0yZefPHFFRuconUYm85W/IJnLafwvO+yNychwb9ayZejrytMcomCLYCuWIh41ETLOy9W3C7/dDi0OPfDYtdFTQi8Imvdel9XXGKe6I7Mc25UZehrT91Xheu6xONxgMLFlkqliMVqV9cpLg6qfcGLLVt9L+7S1xXbvzY7gWAvpvt7cL49HSaXDHYUuv/s2jGARM57P2JhnUR3hP/n7Tv5q99/E79x7ea67kQ0AZ1Rg6zllOy/nsl8Z9TP7CkvMd+7axjX9QqOjZW2Uaw+dYv2ddddx5/8yZ9gWX6FmJSST3ziE7z5zW9escEpWodqX/A9V28qPK9romRWXV7e3cz0doVJZZxFCTbkMzm6wqzvi5HOOvTETe7cfTn7913JvtdvJmIafocYIYiYGsODnSULffuu3cItb9hcMuvWtXxnGfzQRqI7wob+GCDo7YpW3b+uzc3iBdARNdiU8F8XjKs4Vr1za4I7d19OT9wsGbuKZ68tdWePJJNJPvzhD/Poo4/iOA7hcJg3vOENHDhwgI6OxXtYrxQqe6Q2a5k9cmYsRcZyiUcMPE8ym7GR0g8DvOayBP9ycpxMrtQ8KRbWyeTmdwMXojSneKlowr9zlFJW3VdvZ5h01ll009xwyC8LX02hU9dze7DslD8pJadPn2ZoaIjp6WleeuklhoaGGBgYaOhAG4ES7dqs9fnWMhD6m4NPc/TZCyUZD+XNY4sd+rriJkIIv+di/iV6vheiRz6GHA/RGQ0xnfcSD/w/dF0U/EuC4/v+Jy8ULF6hPsHu7zQZny31KDENwZYN3aue17zWn+9q067nu+yUPyEEv/7rv84TTzxBf38//f39DRuc4uKimv3qwSOnOHr8/HyDKA1++PQom4d8z5uc49HfE8FxXCZnrYLA65rv0ud5fmszQ4ArYTplM5OyMXRfqLNF3cWPj0xxfGTKP44QGDolgt3TGS601YqaGpeu72q64hLFxUfdedo7duzgueeeW3QnGYWiHg4/dhqBQArfaT+ocExnHTpiZsEDI0gfnJzN+fHZvAbruigU5khZGjaR+GJs1/AF8aTEKioc7Ok0yeScQhu0rOUVcs8BJdyKNaNu0f61X/s19u/fz6233sr69etL0pVuv/32FRmc4uIhazn5hcq554KYdXFucDJjlcyWAxa7QFiLng6TbK60b6VEFZcomoO6RfuJJ55g48aN/PSnPy15XgihRFuxbIKWVQHBnFgTc7nBp8/PVhTsRtLdYZKzvYrdZF4Y9WOno+Np7v7T71XdhyZgQyLO7W/aqsRd0XAWFO1MJsNf/dVfEY/HueKKK/jd3/1dTNNc6GWKi5DiRcZISKu748yxk2PzRDvADOmMT2VJZWyS2ZXr2A6+D7Vle2QWabBUjifh9IUU9z9ynLtv3K6EW9FQFhTtP/7jP+bpp5/mjW98I4cPH2Z6epr/+l//62qMTdFCFHuPTCezjBXp60zS4lNffZpIWC/pOPP5wycYn87WzNUOZrx2emVn2F1xE9tZvmAXk8raKpSiaDgLivajjz7KV7/6VdatW8e73/1u7rzzTiXainkE3iMzySzl2XFW0NrKFoxOpPnkV45RZ8/oVaErbuK4jRVsANeVnBlLNXSfCsWCop1Op1m3bh0AQ0NDJJPJFR+UovUIjPbTuepqbNkujuc1nWC7ru87vRKsVScbRfuyoGi7rstPfvKTQncQx3FKHgO87nWvW7kRKtaUertpJ7ojTKUWaIIrFnacW006YyFcT5JaIcHWND8VUaFoJAuKdn9/P//pP/2nwuOenp6Sx0IIvvvd767M6BRrSjWPbJifp7x313Dhb9UQRf9b6/lnRzSElJDK2CuyfyGgK2ayvk8Zqikay4Ki/b3vVU9tUrQ3xR7ZUDtPOXj82YefIZmpPHOV+DasQR/ItSIeDSGE38C2EWgComGDdM4pnJeu+V15lCOeotEszrBXcVFRzSO7mgn+zq0J3n/zFYSM+SEBQ/eNnT0JsYixZmGSeNRA10TDBBv8c0plnULDgcBVr+W6OyhagrqLaxQXH0GcOphpw8Im+IeOjtDfHSUc0hmdSOO6vnWToQs2DsSYTuawbA9D95sAdHeYxCIhMjmHC5OZFQ2bxCMGuqblmzE0FiEgpGsMJeKF53K2q1L+FA1HzbQVVVmKCX7x7NxxvPyMWpKzXF66kCSZsX0DprDhe4I4HhMzGS5M+YId0lfmkoxFDAxjZQQb/HCPW5YWo1pzKVYCNdNWVCWYIdaTPRJQPDs3DA3HcQt+IsXpb0KA63pMJUtF1HYbnw8YixiYhs5UMtfwfQcIAbpW+oOjWnMpVoK6myC0CspPuzYrfb7FGSeO4zI2vXJCWQ/RsE7YNJiaXf1xhEMaA90RsrZX1w9eI1DXc3uwbD9txcVFvbnZ5U0JBvti3P6mrdy5+/LC69eSiKkTDulrItgAOdu3c+3riihbV0XDUDPtNv2lrsZC51s8UzYNjdm0TTJtF3xDtg/38PgvLnB2PN3UXdQjpk7E1OeFX5qBkA6DfXGQsuGzcHU9twdqpq2om+Lc7EzOYTZtIaVv3PTL03OdXpqZsKkTDRtMrtEMeyFs13cB1DVBb6epZuGKRaGyRxQlFGd/+JkWfv2i7TSXZ0g1wiGNWBMLdjFCwGzGIRzS0XWt0J1HoaiFEm1FCYnuSMHX2nE9NAGu1xyl5wthhjTi0VBLCDb476mTf69VeqCiXpRoK0oozs3223/5Uq1pjSnwM3SBtgKFgqah0RkLMTHTGoIN/o+gkb+rUemBinpZtZj2c889xz333MPU1BQ9PT0cOHCAzZs3l2wzJlNwHAAAIABJREFUPj7Of/yP/5GzZ89i2zbXXHMN/+W//BcMQ4XeV4vi3Ox0xsaTLr68CPx+58tjJaxKTUOjM95agg1+QU5n1KiraEmhCFi1mfYf/uEfcscdd/Ctb32LO+64g4985CPztvnMZz7D1q1beeihh3jooYf4+c9/zuHDh1driIo8O7cm+PAdr+EvPvhGPnDrlQz1x5FSYuganTHD9xFpEkKGRlfcZGImt6YmVLUoL/IM6bBpIM5QXxQQ9MRN7tx9uVqEVNTFqkxhx8fHeeaZZ/jc5z4HwM0338xHP/pRJiYm6OvrK2wnhCCVSuF5HpZlYds2g4ODqzFERRV2bk2wc2uiJHd7Y6KD7cM9/PDpUVIZm4zlrolgGrpGd9xkfCbbkOObhmBdb6yQireYPpcKxWqxKqJ99uxZBgcH0XXfeEjXddatW8fZs2dLRPv3fu/3+Pf//t9z7bXXkslkuPPOO3nta1+7qGP193cseny1ciLbkaWc7w0DndxwzctKnnvV9vV89fu/4vxEmnV9MV65tZ+nTo4XHt/2ppdz1Q7/R/fXf/8bDRl7gKFr9HSaTEwvTbBNQ+B48I2P72vouJoBdT23N00VLD506BDbtm3jb//2b0mlUuzfv59Dhw6xd+/euvehimtq08jzvTQR40O37yx57i2v3ljyODiWJgReg6bjhu7nN49PZ1noo67k3S3yGTGRkN52n726ntuDWj9EqxLTHhoa4ty5c7iu3/HVdV3Onz/P0NBQyXaf//zn2bdvH5qm0dnZyfXXX8/Ro0dXY4iKFWbXjoGG7McvSAkzPpOrKdjhkIYQc51yivHTFyV7rt7UkDEpFKvJqoh2f38/O3bs4OGHHwbg4YcfZseOHSWhEYBNmzbxgx/8AADLsvjxj3/MZZddthpDVKww+/ddyeuuWFez+UFIF5iGL7a6LuYteOqaoL874gt2DcU2DcHLhrq45Q2bGV7fVZJmKARETIN9r9/Mvmu3NODMFIrVZdW8R06ePMk999zDzMwMXV1dHDhwgC1btrB//34++MEP8spXvpKRkRH+8A//kLGxMVzXZdeuXfzn//yfF5Xyp8IjtWmF8w0WPV88nyw03d0+3MNbd13C175/irMTGQKDqqu2DXB8ZKqquVUrnG8jUefbHtQKjyjDqDb90KuxUudb7vjX3REmEtJKDJG+/E+/4vRYuvCacEijM2YCMDGdpbhKXhMUwh+aJkh0Rxifzpb0mBSAofteHpXQhOAVW3qxba9uP/BWR13P7YEyjFKsKMdOjnH/N58llXUQAjxPMjadRRPQ1xVmKmXxF186Nu91OdvDms5WLNipJtgwt7AoqS7Y/j4kT52cKDwem87WNLwKhzRec1mCyaR10Yi8ovVQoq1YMsdOjvF3h44zPlvZ/tSTLNgEodY9kSZ8wZ6Yya6KDWzO9vjxM+fpiBrKA1vRtCjRVtRFeWOE7cM9fOunI2SslbH+0wT09/iCvRKl77VIZhySmSSagGjYUM15FU2FEu2LhEB0z06ksfPd0EOGRjJjYzseEdNgz9Wb2HftlsK2Z8ZSOK5ESg/LkQQeJBOzuRX11dYEJHqjTEznVl2wi/EkpLIOvxiZ4r4Hn1ChEkVToES7jSkW34zlEtIFluMhJaRzc2Koa5DJOXz9yPP849ERPOmbMGUtBxBloYmVFVEhINETCHZzGHhLUKESRdOgrFnblKBt2FTKIme7eJ4knfP/q5d5o7renBTnbA/Pk6SyDlIyb9uVRAgY6IkyOds8gh2gGhUomgUl2m1Kcdswt0ioy+fJosK/q227kgh8wZ6azWE7zSXYwe+WalSgaAaUaLcpxW3DDF0rpNCVZ+VXCnxU23alEMBAb5TppFXomrPamIZWtTlDV9zPJVeNChTNgBLtNqW4bZgvOhIt78VRK30uHjEK2wIrHqYoFuxcraTrFR6D60mEJnzPkqLnO6IGXXFTNSpQNA1KtNuUvbuGSWcdzo6lGJ/O+HkfQhAN64RDOl2xEP1dYcIh/xIIBEpKD8eVhdn2SqdHJ3qjTKfWTrDBv8NwPYnrSnK2V7jjkPjpfyPnkoyOp7kwleXzh09w7OTYmo1VoVDZIy1Oef50SVqalHhS4k+WfSkSmqC3I1ww+n/ZUFdh9vj/ffNZ0rnVC08M9EaZTVnkrLUT7MUyNp3lfx18hn+z7wqVRaJYE9RMu4UpzhCJRYxCWlog5JomkFASq01lHF4aSxVMl4pT2VIZ35ypUmi30TkkiZ4oybRNtoUEO3gPMjlHZZEo1gw1025hijNEwE9Ly+WfH5vOksm5CCgYMfk+0v7/CQ1mMw7r+8zCaxrVpGAhEj0Rv01ZzlmV4zWK4rDJC6Mz3PfgE4xNZ8laDslM6bn4ZlYaXTEDoWlMJ33/b10ThE2d7lhItTJTLAkl2i3M2HSWWKT0IwzS0hLdESZmc+ii1GAp+K8AnPxCZfCaRnaXqUaiO0Iq47ScYJeTsTzOTWbI5uyKpfy+mZU3z5fF9SSW45FM22gayuNEsWhUeKSFKc4QCQjS0vbuGkbXBJ70i1aKCWbcRj4lMHhN0F2mkmw3QsoT3RHSudYXbPBDTpmcsyzvFSE0ZtO2KtxRLAol2i3M3l3DuK5HznaRUpakpe3cmuCma4bRhCgoriby8e387LszapS8Juguo+VVXuRfI/L/i4X9rJN6Kf6tSHRHyOQc0tnWFmxd87vg6JpYVjpksNYQ7EMV7ijqRYVHWpjgVrpa9si+a7eweaiLQ0dHeGkshetKzJBOR9QoZI/0xM2S1+zfdyX7yxqU3/fgE0ylLDxPMjGTxdC1EsEydDHP2KkQP8f31M5YbqELDfjtxKSUdMVMMjkXx/XyPw5i1SsiTUNbsKhH0wSXrOsAYHQijeN4hAwNx13aQqrAT6c09NK7HYViIZRotzg7tyZqxkHL/77YTh/HTo5x8qUZPCkJmhwZuigR5fJinXLBtmyPVMYu2cZz/Q400ymrrPJydV396rFW0XWBJgQ528U0NKKmzozjEg0bCOSSQyRSenTGIqpwR7EoVHhEUZUgpTCIiXvS/5/reSVx8mLRLYrG0NsVxnElyTLBBn8bT65eqXwltl/Sja5puJ5XVbwFEI+EuOmaYXriJumsw/q+GPtev5nB3ijxqOnfuVTBD6XMPdY16IyF2JiIMdQfR0roiZvcuftytQipqAs1074IqVmQU0SQUtjTGWZiJluYQXseaLqgK2wwk54TZFGUqdLbGcZ1JTOpyl1tFks8YmBZLnadJZqxsMGrtvaRtDzOXkgSMfVCSKj4nIvfC4DJ2SxB5EcTsCER5/Y3bWXn1gRlUaN5j8up931WKBaDEu2LjMefPccD3z6BrmslBTkwP90sSCkUQtDXFWEy78AnAelJZmsIticbJ9hASTy8Fprg/2/v3qOrrM9Ej3/fy77v7OzcCIlAUdSQeitCS+cUZ1EvEAW8UukRUYdK15p2VntsV9Ue6621a4lTZ2ynzun01PEGnbZqixaUUet4EKuo1RZHBOTWcAkJSch1Z9/e93f+eLM3e4edkECyk508n7VcmuRN8nsJPvuX531+z0N1mZ/v3/p54MTpoBOll07FSH5tMXFJemSC+e3ru9IHcjRNG7DcrLzYS2ckQWNrhNaO7MoGWx1Lg2QG7HCRG6WgvWv4AvZQ2Ire055CjE+y0x7n+v6Kfri1h1Agu2wvs9ws8/p4wspKf+R6SJgZsIuDbkCjrWvgYb4jzbIV/+snb1BdHuDC2kre/7gxZ4pC0heiEEnQHsdSDxIzUyGRaAJNc9q19sSSdHTHSSQtPC6TFzbv4c3/Poxh6GgafQL28TIDdijgRtc0jnaObsBO6Ygk6KhvY3t9G25Tozjo4ZMDztsaTkVIejiEUhztjLL7YAeL/mZaukwyc4jx9vo2Ce5iTJCgPY7l6k1SFHDR0eUE447uGOCcnHG7dDa8XU/Q58LvNWg8QfDVtWNtW0N+N6ahH5dCGSviScWRtmNrU5CuK0/929DBVorf//GvBHwu/F4Tv9fkcGuEnQfaKA54KPK75Mi5GHWS0x7HMqfXpISDHrweg1jcQqFhmjqlRR6Kgx4sWxGJOgE9ddgll8yAXeR3YZpjN2APlq2c+7JsRTSWTOf8e+IWGho9seQJnwEIkQ+y0x7HyoudZkSpnTZALGFxWnnA+VU/7EXLiMwuQyeesJwTf1bu0rrMgB30uXC7DFrGwfFrpTIPCx07LJNM2lnHzUGOnIvRJTvtcSxXb5JkUlE3d1rOZlOG3ps6SOY+bOJ0AXT+O+hz4fWMj4ANx05xGjoY+rH/LUxTzzpuDnLkXIwu2WmPY7l6kyxbMJNPlfsBWPvKTmIc672RsBRBn0nSUsdNk8ls2xrwmuMqYIPTACroc2H3tkXMdWRdKaetqhw5F6NJgvY411/vkVwBPdKTIFzkQdM0Dh7pSqdIdF1zghn0PqBz0dzeM6pH0IdK1zV0FEnbSfG4TOcBbSjgPu6kJBz7c5lc6mf+Z6qlekSMGRK0J7C+AT3Vzc/jMno7+VnZAdtjEvC5aGkrrIANTpAuKfIQDri5/YYLT3h936B8oiPrQuSL5LRFWmYOPOA1nSEKvQHb5zEI+J2APdIT2keCz21IWkOMC7LTFmmp3eWGP+7jr+3RdMtVn9ugyO+muQADtq47Xfoml/olrSHGBQnaAjh2pLuprYdozCLeW0Gy/LKz+eRAO/VNXUytLAIgEk3Q2uF0wzMMDauf8sDRFPK7eOQbFw25f7gQY50EbZHRN9s5RNITcypHTFPn//3lEK0dUUpDTolbJJrIOl04lgJ25vCF/urMhSh0eQvae/fu5c4776StrY1wOMzq1auZPn161jW33347O3bsSL+9Y8cOHn30US655JJ8LXNMytXYCI4fM9b3fSVBN3/Z3Uo0nsTrNlnw2Sl85ZoL0l/3hc17ePndA0R6B+1mjt1yHtx5OXikuzdNEqWs2EfLGD75mArTuu78BiDEeKQplZ86gJtuuonrrruOq666iueff57nnnuOp556qt/rt2/fzs0338wbb7yB2+0e9PdpaelKPzwbjLHy63PfwIxSbN/fnnWNy3AmeJ9onuFA5l94Gp+ZUcbT/7mDlo5j/UUy0xwuU6c05KWlvSdrx2rocAqzbPPCZeoEvCaTS/3cfsOFY+bnmy9yv+NDRUVRvx/LS/VIS0sL27ZtY/HixQAsXryYbdu20dra2u/nPPvssyxZsmRIAbtQpdITbd1x/F6TvQ0dxwVsgITFKQVsgNffP8i/vfBRVsA2MwO2oeUM2DA2Anbq1L2Gs+7Uyc1w0M20yiBlxV5cpi5VImLcykt6pKGhgcrKSgzD6YFhGAaTJk2ioaGB0tLS466Px+P8/ve/54knnhjy9yorCw75cwZ6VcuHPzy7FY/bwOt2fhyxxMhEx1TON5WzhuxJ6qahURb20dwWHZM5Yb/HYFJpgEg0kW4BO3VykC+cX82Hu1toao0wqdTPtfPPZE5tZfrzRvvnm29yv+PbmHwQ+eqrr1JdXU1tbe2QP7cQ0yMNR7rwe00Sp7iLPpG+fyp9A3Z52EdLezSrOdJYMXNqMbcvn93vxy+ddVrW26mf6Vj4+eaT3O/4MNALUV6CdlVVFY2NjViWhWEYWJZFU1MTVVVVOa9/7rnnuO666/KxtDEhVze+kZYVsHUnYLe2R0mO8AvHyTB0ONgS4aFfvs/MaWHe295E49EooKgs9TO1InDcA9cr550x2ssWYkTkJWiXlZVRW1vL+vXrueqqq1i/fj21tbU5UyOHDx/mT3/6Ew8//HA+ljYm1M2dltW8yePSRyRFEvSZRGJJdE1P76YNXaO8xMfRjpjzPs150JHZqnS0WTZ09SSob+xke31b1scOHOnmwJHu9NuRWJJ1m/exbvM+yorc/MOyC9MNsmS8mBgPjPvuu+++fHyjCy64gH/6p3/iscceY8eOHfzwhz+kpKSEVatWcfrpp1NZ6eQgn376aUKhEFdfffVJfZ+enviQ+mIEAh4ikdEZQptSWeqnssTHgaYu2rvjnFYeoDzkobkje3rMzKnFlId9g+7l7DY1qsoChPxO3+vKEh8+r4u23nywoWtMLvPR2h7DNJwj6/YYCtZ9JYaYZ++JW7z7UQNTJgVpPBph7Ss7iSdtvG6D7liSv+xqprLER2Wpf4RWnH9j4e9zPo3X+w0EPP1+LG8lf/kymjntVN1zTzyJhobbpTF9cig9Y/BQczdJS6GU7bT47LOZ1jWNubUVrLryXP7vC//N2x83pV+AdCDgd3FaeSC9Q0xVnSSSNm39TD8vC3lYsbCGT08v5WfP/zfv72wGoLzYQ3mxj8bWHuJJi2jCAqXGRIXIcNI0qJkaBsg5EGKwDaQKxXjN8fZnvN7vqOe0C0HqV+eDzd1YliJpWSQtZ26grml43TrTKotAKXYe6Ej3lgYn2Bp69k5QoYjGFdvr29ixv42A16QnlkQp+u3fYSvFW9ua2Ll/My2d2UHYBjojCQ63RtIzClMzIAcawNvaGWPNyzsoDfnYud9JLSz47FSWzDudgMfk9v/zR5IxhQb03chqmjMQYCw+mBwspUj/ZuL3Zv91lwk0ohBJ0IasHWskljzuaLatFJGYxSf7244LbKmP29bx709RCrqjSQxdx1YnDoB9A3amnriF12Omc7N+rzngw0OlIJqw0wF7ybzTWTBnCkGviVLOQ9DWzhhGxmT1zM/NNcFmtGSOOhssTSM9ZabvTlsm0IhCJK1ZObZjdYa49u9USpdTAfBUk1HJpJ3eIaZGhplm/z9Gt6nT1bsT/+Ks07j+0hqCPld6HXVzpzktWBXHDfLVeoOkhlPBMdpKgm5mTi0e0uf43AZ1c6flHL0mrVpFIRoD/yuOvtTU8mTS7jdoD8eGM1dgHCqztz9IqvrBsmx87tylgq6MXiLhoJurLjqd4qA764Xj/BnlLPr8NPRcC1OglI3PYxLwukY1cPs9BhUlfm5fPpur503H7xn4l0QNKCty850Vn00Pe1h+2dmEA24i0SThgJvll50t1SOi4Eh6hGN10qapY/WTvz3Vp7XOLtvO6kTXn7Iid78pksxm/pkjwyxbEYkm0g8S3S6deG/ZoNdtsGLh2YT8rqzp66kHp9F4EtPQKQt5iScsIrGk88AU54VGKZtQwEfI7+JAc+QU/ySGriLsxecx0/nnK+edMeg67MwHVX0n9QhRiCRoc6xO2uc26OzpPz9saENPkRg6uF0GZSEvHd3xU64e6dvMv28gspXiJ89uZevuFgCKAy5WLDybWWdVABrvfdzIr1/eTn1jJ5GYkw7SNCe/29weJeR34feY6LpGZ08ClPOx7mgScxQ653ncBn6vi1jCkvyzEEjQBrKnllsnWT3idTud8VCKjkiCpKUwDC2rRG8oVl15LqsGGEyY66DIeWeUsfaVnemA/flzKll28ZkU99Z8bt3dzJMbd9DRHUu/YCiy8+wdkQSGrqFpqV4lCtsm3esj34p8puSfhcggQbtXIf3q/MLmPWx4qx5b2ZiGjmUrp6yvyMvOA053wJDfxYU15YQyivSffX03bZ2xE6ZnNM0ZInAy1RrDxdRhcqmfaMImHHDL6UUheknQLjBbdzez4e16bKUwdB3Lho7uGF63yc72Y+1c3S6DtS9/wgtv7GPp/BmcP6OcxtbB5aNTO+/MHbg2DJUvfbkMDctW/OKOi4f3CwsxjknQLjCph46p9LKGwjQNuqPJ9DVlxR6SlqK9K05XTyJ9GMe5euDIq+tOUiSzoRQ4KSBrGKO2hrOLT7WjFUIMjpT8FZjm9iguQ+/NRStMUycaP3aypzTkwbKhvcvJQduWwjB0Nm6pp7Jk4Ad5qYM0AZ+bySU+J7eNE8hdvY2sButEtd2a5uTLF3x2yqC/phBCdtoFp7zYS9Ky6eyxMQ0ta6BBWciDraCtM5ZVV546jHPjgrP5+QsfEYllH9/UNXoP2Cg8LoOVV8zM6m1iGHp6fuSRo5Gc/Un0jIM4pqHx9WvPS3+NZ/9rF41Ho+kugoC0UBXiJEnQLjCp8sSA16Sj2znpqGlQXeYnlrBp6x28m0pkZB7GOX9GOd9Z8VkeW7eVhtYeLNtJg4SDbkzTqf/OPHCSWVWTqlL58sVnpt+3c38bCtA0Zyce8rswDJ1wwN1vSaIQ4tRI0C4w588o5087mnhj62EAAl6T5ZedRSjo4efPf4SeMXxX0yDoc2WVy82preRT5Z8HsssG+6vQ6C/o9rcTl9I8IUaWBO0C89KW+nTA/vT0Em5eWENZ2IeuaaxcVJvVqdA0NCpLfP2Wy53qLjjXTlxK84QYWRK0C8h/vlPPM/+1C4CZ08KsWFhDabEv3TdkNFIRkv4QIr8kaBeIV/90gF+/5gTsmqlhbrq8hopiX2+JnhBiopCgXQD+64OD/LK31vqsKcXcVFfDpLAvd2c+IcS4JnXaY9zrfz7I0/+5A4AZp4W4pa6GSSU+dE1+dEJMRLLTHsM2/eUQT210AvbpVSH+rm4mFaUBDEmJCDFhyXZtjHrzwwaefGk7ANMnF7HyiplMKg1gSsAWYkKToD0GvfXRYf59w8coYFplkJVX1DKp1D8q/ayFEGOLpEdGWd++2DOmhHjxrXoUMHVSkJWLammPxPjVa5/QdLSH8mIvM6eFefW9/XRF+58m7HHpKKWIJ3M3eXIZUFniB00jGrfwug1QivZIIl3jXX2SvcBP5r5nTguzvb5N6r2FOAEJ2qMgFbAONXf3dudTWDZEYkm21ztT00N+F19ZVEtHJM7jGz6muyeZni6TumYgscTAU98TFhxojmDozqnJo51RbNs5RalpGrGEovFoT7pD4HAG0MyTlH6vyeHWCDsPtFEc8FDkd9HWHR+R7yvEeCBBO88yA1YklsTqnTLg95pEMtqrJiyb7fVHeevDBjq6E+nrhp9GZySBruuAja1AR2GrY9NqfvzMVmqmhYdt97txSz2GoeNxOQOJe+IWGho9sSShgBuPyyDWe50EbSGySdDOs8yAZVm5A7bHpVNS5OHFt+rpiSVPeYL7QFIvBqYGqRX0fX1QQH1j53G738zBwP117cs1Fq25PYrfe+yvXjJpo2s4XQB7pToTCiGySdDOs74Bq2/Adrt0SkJe2jpjROMWhq4N+8SYXOLJgdMpPTGLUNCT3v2+sHkPL/xxHxoahu7sktdt3sfL7+5nWmVRumlUZhoklfbwug3iSTu90zZNnWTSxmUeey6e6kwohMgmQTvPyou9tHXH8bgMgn4XnZFE+mNu0xkOfLQ9StJWeN0mpSEPDS3do7hihyJ79/vyuwfSAduy7XQr2J6YlQ7OHlPPSoN4XAbtsSTtXXGSljPfsjjoxuc26Eha+Dxm78NT6RYoRH+k5C/P6uZOw7Js4kmLroyA7TI0Sou9HO2IkbDs9FSXpfNnEPC5R3HFx2TufqPxZHrSTSqd4gwqc4KzYejO4IOkxeHWCAeaujjQ1EVbV5x4bzrEVoqW9ihBn4sr/8d0Kkt8RKJJwgF3Vl9vIcQxstPOs/NnlHOouZtnXt+NwpkYUxH24nHpNLXFiCctfG6TC2aU8t6OI2x4669ZsxpHiqE7wXegVMzhlgiNrRH+4Z83ofVOqjEyBv4qjo0sc5s6lm1ztDPem5NXWRNvkrYzsdLvNUEptte3pVvKHkp0s3FLPSDVI0L0JUE7z7bXH2XdG3tRCspCXlZd+WmmVATxe479KLbububfX9xOd08cpTjBKN7hkWuEWC66BrGEhW2THhKc2mEDhALObwXx3hx10rJRSsv59RXQHU3SHU1i6JGs4Q0jVW4oRKGToD2C+lZOzDqrnOc27SGetCkt8nDrklpO6xOwwakwicaSaJqzWx1Nmpa9+7aVk8oBZ0K7y3RKFzUg4DMJBdzEEhaW5Txo9LqN9Fi0gWTeplLQ1ZOgrNgrZX9C9CFBe4T0PUDS2RPnV6/tQikIB93cutjZYQe9ZlZQ3Lq7md0HO0hYNvk8tG7qoOk6iT5VJC5DT1eWaBwL4LoGlm3zb7fNT6+7b2nfxi317DnUgWHoWJY94G8MfT+WTNpS9idEDhK0R0hmPbamwYEjPSjl5LBvXfxpplQGCfpcxwXsta/sTNdl5yMtklJe4sfjMjjcGsGy7HQNeSZniK/z37ZyJqqn9DfB5ifPbkXXtSHfi0LK/oTIJW/VI3v37mXZsmUsXLiQZcuWsW/fvpzXvfjiiyxZsoTFixezZMkSmpub87XEYdXcHsVt6mga1Dd2YdsKXdcI+V1Mqyw6bocNxwJ9uMiT17WWF3uxLJtYwqLI17suzfnHslXW4R69932p6paBnD+jnOoy/0mvS8r+hDhe3nba9957LzfccANXXXUVzz//PPfccw9PPfVU1jUffvghP/3pT3nyySepqKigs7MTt3tslLsNVXmxl66eBAePdKcDdjjoZkZ1MUGfCTmSH6mDN5qmObtTW43oblvXIOh3c+OCs4FjA3qrSn2gaXR0x0laCsPQcBsaXdEkiaSN123kPP2Yy5yZk3jhj/tOan1S9ifE8fIStFtaWti2bRuPP/44AIsXL+YHP/gBra2tlJaWpq974oknWLlyJRUVFQAUFRXlY3kjYu6nJ/H0y584AVtz8tjlxT7+9oIqcgVsyD544zb13lI/hVJOTbNSzsO/s6eE2Hu4M90UytTB53VxWm9Xvn0NHbz87gF64kk0NNwujYDHpCuaJJaw0TUNr1tPn1xMBcaRCJDb69sI+d109wb8wdA1J40kAVuI4+UlaDc0NFBZWYlhOCfjDMNg0qRJNDQ0ZAXt3bt3M2XKFJYvX04kEuGyyy7j7//+79EKbBbi/iNdPPv6nvQOu8hrMqO6mL/9TBXnTC/r9/Pq5k5j7Ss7iQFFfhetHVFAo6TIjWkaWJY9qN3n+TPK+90FV1QUceRI5ynQv3diAAAOnElEQVTc3dA0t0cJBdwUBz20dUZpH0QliaZBZenJp1WEGM/G1INIy7LYsWMHjz/+OPF4nFtvvZXq6mquvvrqQX+NsrLgkL9vRcXw7ej/2tDBw7/6M93RJEGfi9v+54XMmBKmpMhzwsnpl1QUUVzs57ev76KpNcLUyhAKRTRmUVHi59r5ZzKntvKU1zic93siVRVBDh3pJBJNEotbx5UQ5hIKePjKVecN2zrzeb9jgdzv+JaXoF1VVUVjYyOWZWEYBpZl0dTURFVVVdZ11dXV1NXV4Xa7cbvdXHLJJWzdunVIQbulxXnoN1jDufNsaOlm9dr36Ygk8HlM/u6KmZQGXFjxBC0tJ95hAnyq3M9tS8/v9+OnutZ877RnTA7y0Z5mlJ1dDeNxOaWEuq5hWyqdMTqtPMDS+TP4VLl/WNaZ7/sdbXK/48NAL0R5qR4pKyujtraW9evXA7B+/Xpqa2uzUiPg5Lo3b96MUopEIsHbb7/NzJkz87HEU3b4aISHfvkBHZEEXrfBVxbVcnp1iFDAndd667Fme70z3KBvhiuRtPG5DTymQVmxl5qpYb659Hy+/5W5kssWYgB5K/m77777WLNmDQsXLmTNmjXcf//9AKxatYoPP/wQgEWLFlFWVsYVV1zB1VdfzZlnnsnSpUvztcST1tTWw0Nr36e9O47XbbByUS1nnBYiHPBM6IANTk67yO86LiViK4jELKLxZO5PFELkpCmVj27N+ZPv9MiRth4eXPs+RztjeFxOwD5rSjHhYH5rrQcr379OPvTL92nrjtPYGuk3l10R9qZPTQ53md94/fW5P3K/48Oop0fGq+b2KKt/6QRst0vn766YyZmnFVMcLMza8pFQN3cakZ7EgA8fOyOJdDvXVHc/IURuErRPUktHlNVr36e1I4bb1Lnl8pmcNSVMuMiNNuGTIn1oWr8j07SMMWPSa0SIE5OgfRJaO2OsXvs+LR1RXIbOTXUzOXtqCcVBCdh9bdxSj99r9ttDRNc0TMP5ayi9RoQ4MQnaQ3S0ywnYze1RTEPjproaZk4LEw660QvsEFA+pHqw+L0uQn5X1sf03uEIRX5Xup2r9BoRYmBj6nDNWNfWHeehte9zpK0H09BYsbCGmZ8qoTjokYDdR6pVa3tXjKOdUXRdx7YVLlPHtp2j9JUlTo+TaNwiHHBnHakXQuQmQXuQOiJOwG482oOha9y4oIba6SWUBE980nGiyewl7vOYdEQSWLbtjDTrPWSz6G8+NaiGU0KIbJIeGYTOngQPrX2fw60RDF1j+YKz+fTpJZQO4mj6RJTZSzyWdIK1hhOwXaZOccDD9vq20V6mEAVJdtonkArYh1oi6JrGDZeexbmnlzo7bE1e83JJtZgFZwKNrmkYpoatFJWlfpRSUiUixEmSqDOA7miCf/yPDzjY3I2uwZcvPYvzzigjXOTF0OWPrj/lxd70iDLT1FE4JyClSkSIUyeRpx/d0ST/+B8fcKCpC12DZZecxQUzygiHvJiSEhlQ3dxpx03CUcqWKhEhhoGkR3KIxJL86FcfUN/YhabBl754Jp85s5ySIgnYA8kc7ut1G6AUSbT0JBypEhHi1EnQ7qMnnuThX/2Zvx7uRAOWzp/BhWdXEC7yYBoSsPtKBeqDzd1EYxZBv4siv4t40saybG5cICPDhBhOkh7JEItbPPKbv7C3oQMNuG7+DGbXTKI46MFlyB9VX6nSvrbuOPGEja0UnZE40bglvUSEGCGy087wiw3b+ORAOwDX/O0ZzKmZRDjowW1KwM4ls7QvadnoGiicgcA+j5mzl0hmCqW82CupEiGGSIJ2hv2NXQBcNe90PldbKQH7BDJL+0zTaa2qZzSA6lslknnoxu81aeuOs/aVncDIDBUWYjySoJ3hf6+YzdGuGD6PSTjgxu2SgD2QzOnxIb+L1s4Ylq0wDS1nlUjmzhxwDt/0vl+CthCDI1EpQyjgpqosQHHQjbs3sIj+ZZb2+TwmRT4Xuq7hcRmEA+7jBhqkmkdlknasQgyN7LT7kHTI4PPOqfelrp1c6h8wR525M0+RgzZCDI0EbZFlqHnn82eUDzq1UTd3Gmtf2UkM58UxVRYoB22EGDzZVoosmXlnTdOGtXTv/BnlLL/sbMIBN5FoMmcKRQgxMNlpiyyZFSEpw5l3HsrOXAhxPNlpiyyZzZ5SJO8sxNghQVtkyawIUUpJgychxhhJj4gsfStC5NSiEGOLBG1xHMk7CzF2SXpECCEKiARtIYQoIBK0hRCigEjQFkKIAiJBWwghCogEbSGEKCAStIUQooBI0BZCiAIy7g7X6PrQJ6afzOcUMrnf8U3ud3zTlFJqtBchhBBicCQ9IoQQBUSCthBCFBAJ2kIIUUAkaAshRAGRoC2EEAVEgrYQQhQQCdpCCFFAJGgLIUQBkaAthBAFZMIE7b1797Js2TIWLlzIsmXL2LdvX7/X7tmzhwsuuIDVq1fnb4HDaLD3+uKLL7JkyRIWL17MkiVLaG5uzu9Ch8lg7relpYWvfvWrLFmyhLq6Ou677z6SyWT+FzsMVq9ezcUXX0xNTQ07d+7MeY1lWdx///1ceumlXHbZZTzzzDN5XuXwGcz9PvrooyxatIgrr7ySa6+9ljfeeCPPq8wjNUGsWLFCrVu3Timl1Lp169SKFStyXpdMJtWNN96ovvWtb6kHH3wwn0scNoO5161bt6rLL79cNTU1KaWU6ujoUNFoNK/rHC6Dud8HHngg/fOMx+Nq6dKlasOGDXld53B599131aFDh9QXv/hFtWPHjpzX/O53v1MrV65UlmWplpYWddFFF6n9+/fneaXDYzD3u2nTJhWJRJRSSn388cdq9uzZqqenJ5/LzJsJsdNuaWlh27ZtLF68GIDFixezbds2Wltbj7v25z//OfPnz2f69Ol5XuXwGOy9PvHEE6xcuZKKigoAioqK8Hg8eV/vqRrs/WqaRnd3N7ZtE4/HSSQSVFZWjsaST9mcOXOoqqoa8JoXX3yRL33pS+i6TmlpKZdeeikbN27M0wqH12Du96KLLsLn8wFQU1ODUoq2trZ8LC/vJkTQbmhooLKyEsMwADAMg0mTJtHQ0JB13fbt29m8eTO33HLLKKxyeAz2Xnfv3s3+/ftZvnw511xzDf/6r/+KKsDeYYO936997Wvs3buXefPmpf+ZPXv2aCw5LxoaGqiurk6/XVVVxeHDh0dxRfmzbt06pk2bxuTJk0d7KSNiQgTtwUgkEtx9993cf//96QAwnlmWxY4dO3j88cd5+umn2bRpE88///xoL2vEbNy4kZqaGjZv3symTZt47733CnbnKfr3zjvv8OMf/5iHH354tJcyYiZE0K6qqqKxsRHLsgAnYDU1NWX9ynXkyBHq6+v56le/ysUXX8yTTz7Jb37zG+6+++7RWvZJGcy9AlRXV1NXV4fb7SYYDHLJJZewdevW0VjyKRns/a5Zs4Yrr7wSXdcpKiri4osvZsuWLaOx5Lyoqqri0KFD6bcbGhrG7c4z5YMPPuA73/kOjz76KGecccZoL2fETIigXVZWRm1tLevXrwdg/fr11NbWUlpamr6murqaLVu28Nprr/Haa69x8803c/311/ODH/xgtJZ9UgZzr+Dkfjdv3oxSikQiwdtvv83MmTNHY8mnZLD3O2XKFDZt2gRAPB7nrbfe4qyzzsr7evOlrq6OZ555Btu2aW1t5dVXX2XhwoWjvawRs3XrVm677TZ+8pOfcM4554z2ckbUhBmCsHv3bu688046OjoIhUKsXr2aM844g1WrVvGNb3yD8847L+v6f/mXfyESiXDHHXeM0opP3mDu1bZtVq9ezaZNm9B1nXnz5nHHHXeg64X3Oj6Y+62vr+fee++lubkZy7KYO3cud911F6ZZeMObHnjgAV5++WWam5spKSkhHA6zYcOGrPu1LIvvf//7vPnmmwCsWrWKZcuWjfLKT85g7ve6667j4MGDWQ+XH3roIWpqakZx5SNjwgRtIYQYDwpvWyWEEBOYBG0hhCggErSFEKKASNAWQogCIkFbCCEKiARtIYQoIBK0xYTw7W9/m+9+97tZ73vnnXeYO3cuTU1NWe+/9dZbmTVrFrNmzeKcc87h3HPPTb99zz33nPQafvSjH3HXXXed9OcLAVB4JwuEOAnf+973WLx4MW+++SZf+MIXiMVi3H333dxxxx1MmjQp69pf/OIX6f++8847qays5Lbbbsv3koXISXbaYkIoKSnhe9/7HnfffTeRSISf/vSnTJ06lWuvvfakvt4rr7zCkiVLmDNnDjfccAO7du1Kf+zRRx9l3rx5XHjhhVx++eW89957vPrqqzzxxBOsW7eOWbNmsXTp0uG6NTHByE5bTBiXX345L730Et/61rf44IMP+N3vfndSX+fPf/4z999/Pz/72c+ora3l2Wef5etf/zobNmxg165d/Pa3v2XdunWUlZVx4MABwOkJfcstt3D06FF++MMfDudtiQlGdtpiQrnnnnvYsmULX/va17L6TQ/Fr3/9a5YvX865556LYRgsW7aMeDzORx99hGEYxGIxdu3ahWVZTJ06lalTpw7zXYiJTHbaYkIpLy+npKTklDr8HTx4kJdeeonHHnss/b5EIkFjYyMLFizg29/+No888gh79uzhoosu4rvf/S7l5eXDsXwhJGgLMVRVVVXMnz+flStX5vz4NddcwzXXXENHRwd33XUXjzzyCA888ACapuV5pWI8kvSIEEN0/fXXs2bNGj788EOUUnR3d/OHP/yBnp4edu3axTvvvEM8Hsfr9eLxeNLtblM5bmmsKU6FBG0hhmj27Nncdddd3HvvvcyZM4eFCxeyfv16NE0jGo3y4IMPMnfuXObNm0ckEuGb3/wmAIsWLSIajfK5z32OL3/5y6N8F6JQST9tIYQoILLTFkKIAiJBWwghCogEbSGEKCAStIUQooBI0BZCiAIiQVsIIQqIBG0hhCggErSFEKKASNAWQogC8v8Ba6yBNB4ECygAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = pd.DataFrame({'Y Test':ytest , 'Pred':yPreds},columns=['Y Test','Pred'])\n", + "sns.lmplot(x='Y Test',y='Pred',data=data,palette='rainbow')" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "60c8d01e-d5ff-48fc-8cd3-6ac3c88649b1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/art3mis/anaconda3/envs/notebook/lib/python3.7/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", + " warnings.warn(msg, FutureWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAELCAYAAADeNe2OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU9b3/8dfsWWay7wthD8gum6AoAgqyVpSrdbm3Wmu11vbWn1upSwXForZUrUptb2m9l1utVhA3VDbRK0pAFoUAIWQP2feZZNbz+yMkJSaESZg183k+HjySnDlzzjuT5MN3vud7vl+VoigKQgghQoba3wGEEEL4lhR+IYQIMVL4hRAixEjhF0KIECOFXwghQowUfiGECDFS+IVHPPbYY7z00kseOVZ5eTmTJk3C6XQCcOutt/Lmm2965NgAd9xxB5s2bfLY8dy1bt06pk+fzqWXXurV86xfv55f/epX53x8zpw5fPHFFxd8nrfffpvvf//7F3wc4XtafwcQgW/OnDnU1NSg0WjQaDQMHz6cZcuWccMNN6BWt7cdVq1a5faxnnzySWbOnHnOfdLS0jhw4IBHsr/44osUFRXx3HPPdW7785//7JFj98Xp06fZsGEDO3fuJD4+3qvnuuuuu7x6fBH8pPALt6xfv56ZM2fS3NzM3r17eeqppzh8+DBPP/20R8/jcDjQagfer2VZWRkxMTFuF/2B+jqIwCBdPaJPTCYTc+fO5fe//z2bNm3ixIkTADz88MOsW7cOgLq6On784x8zZcoUpk2bxk033YTL5eKBBx6gvLycu+66i0mTJvGnP/2J0tJSsrOzefPNN5k9ezb/8R//0bnN4XB0nre4uJjrr7+eyZMnc/fdd9PQ0ADAV199xeWXX94lY0dXxu7du/njH//Ihx9+yKRJk1i6dCnQtevI5XLx8ssvc+WVVzJjxgwefPBBmpubATpzbNq0idmzZzN9+nReeeWVc742zc3NPPjgg1xyySVceeWVvPzyy7hcLr744gtuv/12qqqqmDRpEg8//HC353Z8H6+++iqXXnopv/zlLwHYuXMny5YtY8qUKdx4440cO3as8zmvvvoqs2bNYtKkScyfP589e/YA7e9y7r///s79Nm/ezJVXXtlj/rN/bj29nq+++irz5s1j0qRJLFy4kE8++aTH711RFNasWcOMGTOYPHkyS5Ys6fzdEIFHmhSiX8aPH09KSgr79u1j5MiRXR7bsGEDycnJnYXo0KFDqFQqnn32Wfbv39+lq6e0tBSAnJwcPvjgA9RqNTU1Nd3Ot3nzZv7rv/6LjIwMHnroIZ588sku3Tc9ufzyy/nxj3/cravnbG+//TabNm3itddeIy4ujoceeohVq1bx7LPPdu6zf/9+tm7dSmFhIddffz1XX301w4YN63as1atX09zczLZt22hoaOCHP/whiYmJrFixgj/96U888MAD7N69+5x5a2pqaGxsZOfOnbhcLo4cOcLKlStZv349Y8eOZcuWLfzkJz9h69atlJaWsnHjRt566y2Sk5MpLS3F5XJ1O+bJkyd54oknePXVV5kwYQK//e1vqaio6PV1O1tmZiYbN24kMTGRrVu38sADD/Dxxx+TlJTUZb/PP/+cffv28dFHH2EymTh16hQmk8nt8wjfkha/6LekpCQaGxu7bddqtVRXV1NeXo5Op2PKlCmoVKpej3XvvfcSERFBWFhYj48vW7aMkSNHEhERwc9//nO2bt3aefH3Qrz77rv84Ac/IDMzk8jISO677z4++OCDLu82fvrTnxIWFsaoUaMYNWpUl1Z3B6fTyQcffMD/+3//D6PRSEZGBrfddhtbtmxxO4tareZnP/sZer2esLAw/vGPf3DDDTcwYcIENBoN1157LTqdjoMHD6LRaLDZbOTn52O328nIyGDQoEHdjrl161Zmz57N1KlT0ev1/PznP++8LuOOa665huTkZNRqNQsXLiQrK4vDhw9320+r1WI2mzl16hSKojBs2LBu/zmIwCGFX/RbZWUl0dHR3bb/8Ic/JCsri9tvv525c+fy6quvnvdYKSkpvT6empra+XlaWhp2u536+vq+h/6Oqqoq0tPTO79OT0/H4XBQW1vbuS0hIaHz8/DwcCwWS7fj1NfXY7fbSUtL65KzsrLS7SyxsbEYDIbOr8vLy9mwYQNTpkzp/FdRUUFVVRVZWVmsXLmSF198kZkzZ/KLX/yix3NVVVV1eW0jIiKIiYlxO9PmzZs7u5qmTJlCXl5ej6/7jBkzuPnmm1m1ahUzZ87k0UcfpaWlxe3zCN+Swi/65fDhw1RWVjJ58uRujxmNRh5++GG2b9/O+vXr2bBhQ2e3z7mc7x3B6dOnu3yu0+mIjY0lPDyctra2zsecTid1dXVuHzcpKYmysrLOr8vLy9FqtX0eeRMbG4tOp6O8vLxLzuTkZLeP8d2sqamp3HXXXezbt6/z36FDh1i8eDEAS5Ys4e9//zs7d+5EpVL12J2VlJTUpWuntbW18/oI0O31O7ubraysjEceeYRHH32Ur776in379jFixIhz5v/3f/933n77bd5//30KCwv9MnpKuEcKv+iTlpYWdu7cyX333cfSpUvJzs7uts/OnTspKipCURSMRiMajaazeyEhIYGSkpI+n3fLli2cPHmS1tZWnn/+eebPn49Go2HIkCFYrVZ27dqF3W7nlVdewWazdT4vPj6esrKyHvu/ARYvXszf/vY3SkpKMJvNrFu3jmuuuabPI2o0Gg0LFixg3bp1tLS0UFZWxoYNGzovKPfHihUreP311zl06BCKomCxWNi1axctLS2cOnWKPXv2YLPZ0Ov1GAwGNBpNt2PMnz+fXbt2sW/fPmw2Gy+88EKX12L06NF8+umnNDQ0UF1dzd/+9rfOx1pbW1GpVMTFxQHwz3/+k7y8vB6zHj58mEOHDmG32wkPD0ev1/eYRwQGubgr3HLXXXd1FvDhw4dz2223ceONN/a4b1FREatXr6auro6oqCi+//3vM336dADuvPNOnnzySZ599lnuvvtu5s+f79b5ly1bxsMPP8ypU6eYNm0av/71r4H2UUaPP/44jzzyCE6nkzvuuKNL18aCBQvYsmUL06dPJyMjo9uNW9dddx2VlZXccsstWK1WLrvsMh599NF+vELw6KOPsnr1aubNm4fBYGDFihVcd911/ToWwLhx41i9ejWrVq2iqKiIsLAwLr74YqZMmYLNZuO3v/0t+fn56HQ6Jk2a1OO9FCNGjOCxxx7j/vvvp7W1lR/84AddXp9ly5bxxRdfMGfOHNLT07nuuuv4y1/+AsDw4cO5/fbbufHGG1GpVHzve9/j4osv7jGr2WxmzZo1lJaWotfrueyyy7j99tv7/b0L71LJQixCCBFapKtHCCFCjBR+IYQIMVL4hRAixEjhF0KIECOFXwghQowUfiGECDFBM46/vt6MyxU4I0/j443U1gbuLemSr/8CORtIvgsRyNnAs/nUahWxsZE9PhY0hd/lUgKq8AMBl+e7JF//BXI2kHwXIpCzgW/ySVePEEKEGCn8QggRYqTwCyFEiJHCL4QQIUYKvxBChBgp/EIIEWKk8AshRIgJmnH8QoQ6hwusdgdKnQWLtX0xeINOi1aab6KPfFb4rVYra9asYc+ePRgMBiZOnMjq1at9dXohgp7V7iAntxKTMYzmlvZ1cqeOTkZrkPab6Buf/cY8++yzGAwGPvroI1QqVZdFnYUQQviOTwq/2Wxm8+bNfPrpp6hUKqB90W0hhBC+55PewZKSEmJiYvjDH/7A8uXLufXWW9m3b58vTi2EEOI7fNLidzgclJSUcNFFF/HQQw9x6NAh7rrrLj755BOMRqNbx4iPd28/X0pMNPk7Qq8kX/8FYjalzoLJGAbQ+TEiwkBiXIQ/Y/UoEF+/DoGcDXyTzyeFPy0tDa1Wy+LFiwGYMGECsbGxFBQUMG7cOLeOUVvbElCz6iUmmqiubvZ3jHOSfP0XqNksVgfNLW1dLu5aLFaqnU4/J+sqUF8/COxs4Nl8arXqnA1mn3T1xMXFMX36dP7v//4PgIKCAmpra8nKyvLF6YUQQpzFZ6N6nnjiCVauXMnatWvRarU888wzREVF+er0QgghzvBZ4c/MzOS///u/fXU6IYQQ5yD3/AkhRIiRW/6ECGIqtQrzmekbziZTOYjeSOEXIohZ7U4Onajutl2mchC9kTaBEEKEGGkSCBGEzK12SqpaCA/X4XS60GikDSfcJ4VfiCCzL7eSnNxKXC6FvblVxBj1zJ82CINe4+9oIkhIM0GIIHKsqJ6vjlSQmRjJ0ksHc9PVI2my2Nm+vxS7w+XveCJISOEXIkicLG0gJ7eKwalRzJqYRozJwORRSVw+IZWaxjZyC+v8HVEECSn8QgQBh9PFG9tPEhmu46rpg1Cfmd4cYFCyicwkI0cK62mztc/b0zHM8+x/8oZAdJDCL0QQ+CSnhIo6C9NGJ6HXdu/LnzgiAbvDxZGCWqB9mGfOmWsBHf+s9u7j/UVoksIvRIBrabXz7heFjB0aR0ZSz7MtxpoMDE4xkVfSiNMpTXvROyn8QgS4j3OKsdqcLLl0SK/7Dc+IxuZwUVJt9lEyEayk8AsRwFpa7WzbV8qUUUmkJUT2um9KfAQRBi35ZY0+SieClRR+IQLYxznFtNmcLLl08Hn3VatUDEmLorzGTLPF5v1wImhJ4RciQJ3d2s9IdG/p0WFpUSgKfHOy1svpRDCTwi9EgOpo7S91o7XfIdqoxxiukzH9oldS+IUIQJ2t/exEt1v7ACqVivTESPJKG3HI6B5xDlL4hQhAH+1tH8mz9LLeR/L0JCPRiN3horKu1QvJxEAghV+IANNksbFtXylTR7vft3+2lLhwdFo1pdUtXkgnBgIp/EIEmK1fFWNzOFnWj9Y+gEajZkRGNOU1Mp5f9EwKvxABpNFsY8f+Ui65KJnU+N7H7fdmRGYMzRY75ja7B9OJgUIKvxAB5MMvi3A4FZae5y7d8xmaHg0g/fyiR1L4hQgQtY1t7DxQxowxySTHRVzQsdISItFp1VTWWTyUTgwkUviFCBBv7jqJCvjerKEXfCy1WkVybDgVUvhFD6TwCxEATpY2sje3igXTBxEfHeaRYybHRdBssWNpk+mYRVc+W3N3zpw56PV6DAYDAPfffz+zZs3y1emF8DuHi25z4ht0WtQqhf/ddoIYo55rpmf1uB+AS+nb+Tq6iyrrLQxJjep3bjHw+HSx9RdeeIGRI0f68pRCBAyr3UFObmWXbVNHJ3PwRDWFFc3csXg0Br0Gs7X7fgATRib26XxxJgMatYqahjYp/KIL6eoRwo+sNif//DSfIalRXDImxaPHVqtVxEeHUd0gI3tEVz5t8d9///0oisLkyZO57777iIqSVogIbdv2ldDQYuMn3xvXZR1dT0mIDuNYcQPOvvYTiQHNZ4V/48aNpKamYrPZeOqpp1i1ahXPPfec28+Pj+/7revelpho8neEXkm+/vNGNqXOgsn4rwu3zRYb2/eXMu2iZIZlxdFRmjU6uuzXQafTdm7v+Hj2tp72zUyJ4mhhPVaHQkSEgcQLHCbqrlD72XqSL/L5rPCnpqYCoNfruemmm7j77rv79Pza2hZcAdRqSUw0UV3d7O8Y5yT5+s9b2SxWB80tbZ1ff3aoHEVRyEiM5NP9xZ3bJ4xM7LJfB7u9/fkmY1jn4x3bzrVvpKF9Yfbi041YLFaqnU5Pf1vdhOLP1lM8mU+tVp2zweyTPn6LxUJzc/s3oygKH3zwAaNHj/bFqYUISDUNrRScbuaKSekYw3VeO09kmJZwg4aaxu7/OYjQ5ZMWf21tLffeey9OpxOXy8WwYcN4/PHHfXFqIQKOoijkHKsiTK9hzpQMjhfWe+1cKpWKhOhwucAruvBJ4c/MzGTz5s2+OJUQAa+s2kx1QxuXjEkmTO/9P8GE6DBKqlowt9mJNPh0PIcIUDKcUwgfUhSFw/m1GMN1DD8zkZq3JcS0X/wtqgjcvm3hW1L4hfCh8hoLNY1tjB0ah1rt+eGbPemYAqLwtBR+0U4KvxA+dKSgjogwLcN81NoH0Gs1xBj1FFU0+eycIrBJ4RfCR8przFTUWRg1KAaNj1r7HRKiwymqaEZRAmdItPAfKfxC+Mhnh8rRqFUMz4jx+bkTYsIwtzlkdI8ApPAL4ROWNgd7j1YyONVEmF7j8/MnnOnnP1Uu3T1CCr8QPpFzrBKbw0X2IN+39gFijAb0WjWnTkvhF1L4hfCJPd9WkBwXTnyUZxZZ6Su1WkVGklFG9ghACr8QXlfT0MqJ0kamjk5G5YUZON2VlWKiuLIZp8vltwwiMEjhF8LL9hypAGBKdpJfcwxKNmFzuCirNvs1h/A/KfxCeFnOsSpGZER7bC3d/spKaZ/ut1Du4A15UviF8KKqegul1WYm+7m1D+0jeyIMWgrkAm/Ik8IvhBcdyKsBYNKIBD8naZ+pc3CqSQq/kMIvhKc5XGC2OjBbHew7XkV6YiQR4ToCYR2hIalRlFWbsTu8vyCLCFxS+IXwMKvdQU5uJZ8dKuNUWRPxUWHk5FbiCIDRNINTonC6FIorW/wdRfiRFH4hvKS8xowCZCYFznrRQ1LbL/BKd09ok8IvhJeU11gw6DTERRn8HaVTrMlAdKSeArmRK6RJ4RfCCxRF4XStmdT4CL/etPVdKpWKIalRFMoUzSFNCr8QXtDQYqPV6iQ1IdLfUboZnGqiotZCq9Xh7yjCT6TwC+EFp2va745Ni4/wc5LuhqRGoSA3coUyKfxCeEF5rYWoSD2R4Tp/R+lmcMcdvHKBN2RJ4RfCw5wuhap6CylxgdXaV6lVmK0O1Bo18VFh5JU14vD/CFPhB1p/BxBioCmrbsHhVEiOC/d3lC6sdieHTlQDYIzQkVfSgNXuQGuQMhBqpMUvhIedLGsEIDk2sAr/2RKi25dibLbY/B1F+IEUfiE8LL+0EWO4joiwwOvf79AxU6jcwRuafF74//CHP5Cdnc2JEyd8fWohvE5RFPLLGgOum+e7OlYCK5KRPSHJp4X/yJEjHDx4kLS0NF+eVgifKa+1YG5zkBwbWBd2v0unVRNt1FNcKYU/FPms8NtsNlatWsXjjz8eUHcyCuFJ+Wf695MCuH+/Q0JUGMWVzShKAEwbKnzKZ5fzn3/+eZYuXUpmZma/nh8fHzgTXXVITDT5O0KvJF//9TdbWa0FY7iOtCRTtwaOTqfFZAzr17bvbu/46M6+59qWnmwiv7wJl0ZDSrxn7zAeiD9bX/FFPp8U/gMHDvDNN99w//339/sYtbUtuAJhQvMzEhNNVFcH7ttkydd/F5LtyKlaslJMtJit3R6z2x00t7T1a9vZ203GsM7Hz7dvb9uiI9r//L86XMbMsalufofnN1B/tr7gyXxqteqcDWafdPXk5ORw6tQp5s6dy5w5c6ioqOCHP/whn3/+uS9OL4RPWNrslNeYGZwa2C3KDtFGA+EGDXmljf6OInzMJy3+O++8kzvvvLPz6zlz5rB+/XpGjhzpi9ML4RMdUx0PTokKivHx6jMzdZ6Uwh9yZBy/EB6SX96ICshKCY4WP8DQtGjKasy0tNr9HUX4kF/u1d6xY4c/TiuEV50qbyItIZLwIJoCYWh6FNB+t/HE4f5fEF74hrT4hfAARVEoON3EkNQof0fpk6xkExq1irzSBn9HET7kduHfvn07Docs3CBET+qbrTRb7EHVzQOg12nISjFJP3+IcbvwP//881x22WWsWrWKQ4cOeTOTEEGnY1GTwUFW+AFGZERTcLoJu8Pp7yjCR9wu/Fu2bOGvf/0rBoOBe++9l/nz5/Pyyy9TWlrqzXxCBIXCimZUKshICrwbDc9nREYMDqciK3KFkD718Y8aNYqHHnqITz/9lMcff5ytW7dy1VVXcfPNN7NlyxZcLlnVQYSm4spm0hIiMeg0/o7SZ8MzogFkPH8I6fPwg+LiYrZs2cKWLVtQqVT87Gc/IzU1lY0bN/Lxxx/zhz/8wRs5hQhYitLeWh43JM7fUfolKkJPclwEeSUNcEmWv+MIH3C78G/cuJF33nmHoqIirrnmGp555hkmTpzY+fj8+fOZOXOmV0IKEagcLqist9BktpGaEInZ6iCAZhZx24iMaA6cqMalKKhlEsUBz+3Cv3v3bm677Tbmzp2LXq/v9nh4eDgvvviiR8MJEeisdgc79rdf52pptZGTW8mEkYl+TtV3IzNi+PzwacqqzWQG4XUK0Tdu9/FPmzaNa665plvR37BhQ+fnl112meeSCREkahvbUAGxpu6zZAaLiwbHAnC0sM7PSYQvuF34X3rppR63v/LKKx4LI0QwqmtqI8qoR6cN3vsh46LCSImL4IgU/pBw3q6ePXv2AOB0Ovnyyy+7LNpQWlpKZKRn5/EWItjUNrWR6uH57P1hzOA4PvumHLvDFdT/iYnzO2/h/9WvfgW0r6C1cuXKzu0qlYrExEQeeeQR76UTIsA1tlhptTqJizL4O8oFu2hILNu/LiW/rJFRWbH+jiO86LyFv2NCtQcffJBnnnnG64GECCYlVS3AvxYvD2bZmbGoVSqOFNZJ4R/g3H4/J0VfiO46Cn/cACj8EWFahqZFcbSw3t9RhJf12uK/5ppr+PDDDwG44oorzrlI+q5duzweTIhgUFLZQlRkcF/YPdtFg2N594tCzG12IsN0/o4jvKTXwr969erOz5999lmvhxEi2JRUNRMfxP37KrUKs/Vfs+4OTY9GUeBIYT3TRiX5MZnwpl4L/5QpUzo/nzZtmtfDCBFMmsw2GlpsDE+P9neUfrPanRw6Ud35tculoNWo+PZUrRT+Aczt96cbNmwgNzcXgIMHDzJ79mzmzp3LgQMHvBZOiEDWMZtlXHTw9+93UKtVpMRFcLxY+vkHMrcL/1//+lcyMjIA+O1vf8sPfvAD7rrrLtasWeO1cEIEsqLKM4XfFLxdPT1JjY+kuqGN6oZWf0cRXuJ24W9ubsZkMtHS0sLx48e59dZbWbFiBQUFBd7MJ0TAKqpoJjEmHH0QTsXcm/TE9pvRDufX+jmJ8Ba3C39qaipff/01H3zwAVOmTEGj0dDS0oJGM7B+6YVwV1FFE5nJA29Cs6hIPUmx4RzKr/F3FOElbs/O+eCDD/Kzn/0MvV7PCy+8AMDOnTsZN26c18IJEaiaLTZqm6zMmjDwCj/A2KHx7D5YRl2zFYO+vXFn0GkZIKNWQ57bhf+KK67g888/77JtwYIFLFiwwOOhhAh0Hf37GUlGmsw2P6fxvOxBMezYX8p7XxQwKLl9HeGpo5PRGvq8dpMIQH36KTY3N1NQUIDZbO6yfcaMGR4NJUSgKzozoiczycSRgoHXFz4kLQqdVk1ptbmz8IuBw+3C//bbb7Nq1SoiIiIIC/vX8DWVSsX27dvP+/yf/OQnlJaWolariYiI4NFHH2X06NH9Sy2EnxVWNJMUE05E2MBsAWs0atISIimrbkFRlHPetS+Ck9u/tevWreP555/niiuu6NeJ1q5di8nU3nLYtm0bK1euZNOmTf06lhD+VlTRzODUKH/H8KqMxEiKKpqpa7ISP4DuVRB9GNXjdDovaIWtjqIP0NLSIi0IEbRaWu3UNLYxOGVgd4F0DOssrW7xcxLhaW4X/h/96Ee88soruFyufp/sV7/6FbNnz2bdunWsXbu238cRwp86LuxmDfDCH6bXkhgTRmm1+fw7i6DidlfPX//6V2pqavjzn/9MTExMl8fcnZ3zqaeeAmDz5s0888wz/OlPf3I7aHx84A2bS0wM7D98ydd/vWWr+aYCgMljUmltc2Aydu0G0em03bada7u72767veOjt881ND2Gr45UoNZoiIgwkBgX0W3fngTrzzYQ+CKf24Xfk7Nzfu973+Oxxx6jvr6e2Fj3FnyorW3B5VLOv6OPJCaaqK5u9neMc5J8/Xe+bEfza0iIDqPNbMViddDc0tblcbu9+7ZzbXd329nbTcawzse9fa6kmPb/FI4X1jJ5ZALVTme3fb8rmH+2/ubJfGq16pwNZrcL/4XMzmk2m2lqaiI1NRVoX9UrOjq62zsHIYJBUUXzgO/m6RBj1GMM13UuOCMGBrcLv81m46WXXuK9996joaGB/fv38/nnn1NYWMgtt9zS63NbW1v5+c9/TmtrK2q1mujoaNavXy8XeEXQaWm1U9XQyqwJqf6O4hMqlYrMJCMnShqw2p1Eyg1cA4LbP8U1a9ZQWVnJc889x49+9CMARowYwdNPP33ewp+QkMA//vGPC0sqRAAoPN0EwNABPpTzbBlJkeQW1XO8uJ4ZF6X4O47wALcL/7Zt2/j444+JiIhArW4fDJScnExlZaXXwgkRaE6VN6GCAT+G/2zJsRHotWq+ya+Vwj9AuD2cU6fT4fzOhZ26ujrppxch5dTpJlITIgkPoS4PtVpFemIk356qC6gBFqL/3C78CxYs4KGHHqKkpASAqqoqVq1axaJFi7wWTohAoigKBaebQqqbp0NGkpGWVjunypv8HUV4gNuF/xe/+AUZGRksXbqUpqYm5s+fT2JiIvfcc4838wkRMGoa22i22BmSFnqFPz0hErVaxYGT1effWQQ8t9+vFhcXM3ToUH784x/jdDqZN28e2dnZ3swmREApCMELux30Og0jMqI5mFfDitnD/R1HXKDzFn5FUVi5ciWbN28mJSWFpKQkKisreemll1i2bBlr1qyRYZkiJOSXNaHTqImNMmC2OgAIpS7vccPieWtnPhV1FlLcvINXBKbzdvW88cYb7N27lzfeeIOdO3fyxhtvsGvXLl5//XX27dvH66+/7oucQvhdfnkjMSY9X5+oJie3kpzcShwXMHdVsBk3NB6Ag3myJGOwO2/hf+edd3jkkUcYP358l+3jx49n5cqVvPPOO14LJ0SgcDhdlFS1kBAd7u8ofhMXFUZmkpGDedLPH+zOW/jz8/OZOnVqj49NnTqV/Px8j4cSItCUVZuxO1wkxIT2vPSTRiSQV9ZIs2XgLTcZSs5b+J1OJ0ZjzxP9GI3GC5qmWYhg0XFhNyHEFySZOCIBRYHD+QNvuclQct6Luw6Hgy+//BJF6fkq1ndv6hJiIDpFNlcAABjpSURBVDp1ugljuA5juM7fUfwqK9lErMnAwbwaLh0XGvMVDUTnLfzx8fGsXLnynI/HxcV5NJAQgaigvIlBKaaQH8GmUqmYODyBL76twO5wolJrsNodXfZR6iw4XaB1+y4h4WvnLfw7duzwRQ4hApalzUF5jZnxwxP8HSUgTByRwM4DZeQWNTAsI5qc3K7zdZmMYYzKjEYbQtNaBBv5P1mI88gvb0QBhqWH3o1bPRk1KBaDXiOje4KYFH4hzuNESQNqlYrBKVL4AXRaNeOGxHHwZA2uc1z7E4FNCr8Q55FX0kBWihGDXuPvKAFj4ogEGlpslFTKylzBSAq/EL2wO1ycOt3MiAyZfvxs44cloFLBN6dkWGcwksIvRC8KK5pwOF1S+AGVWoXZ6sBsdaBSqxiWFs03Mp4/KMlldyF6caKkAYARmdF+TuJ/VruTQyf+dUE3xqjn5Jm7eE0Rej8mE30lLX4henG8uIG0hEiipLB1k5HUfkd/aZXZz0lEX0nhF+IcHE4XJ0obGJ0V6+8oASkqUk9ybDgl1XKBN9hI4RfiHE6VN2Gzu6Tw92LM0Hgq6yzY7DJ1SzCRwi/EOeQW1aMCsgfJhd1zGTM0DkVpn71UBA8p/EKcQ25RPYNSTESGhfbEbL0ZlGwiTK+hpEq6e4KJFH4hemC1Ockva5RunvNQq1VkJBkpqzHjDKV1KIOcT4Zz1tfX8+CDD1JcXIxerycrK4tVq1bJzJ4iYB0rrsfpUhgzRH5HzyczycjJ0kYq6yykJUT6O45wg09a/CqVijvuuIOPPvqId999l8zMTJ577jlfnFqIPmu22Pg6rwa9Tk16orHzpiVp0PYsNT4CtVol/fxBxCeFPyYmhunTp3d+PXHiRMrLy31xaiH6zNJq58CJapJiwjmYF5oLq/eFVqMmJS6CMhnWGTR83sfvcrn4+9//zpw5c3x9aiHcUllnoaXVTnqidFu4Kz0xkiaLnSazrMUbDHw+ZcPq1auJiIjglltu6dPz4uN7XvfXnxITTf6O0CvJ1z8f7y8DYGRWPKbIf92xq9NpMRm7rrnr7jZPP7/joy/O5c627Kw4cnKrqGmykp4MEREGEuMiuh03EATq710HX+TzaeFfu3YtRUVFrF+/HrW6b282amtbcAVQJ2tioonq6mZ/xzgnydd/h/KqiY7Uo1JcNLe0dW632x1dvu7LNk8+32QM63zc2+dyd5ua9jt5T5U1MGFEIhaLleoAXI87kH/vwLP51GrVORvMPuvqWbduHd9++y0vvfQSer3MeyICU0urneNF9WQmB947zECXnhBJRV0rdkfgFXzRlU8Kf15eHuvXr6eqqoobb7yRZcuWcc899/ji1EL0yaEzq0oNksLfZ+mJkbhcCmUyaVvA80lXz4gRIzh+/LgvTiXEBfn6RDWxJgPxUd37vUXvkuPC0WpUFFU0+TuKOA+5c1eIM6w2J98W1DEpOwmVSuXvOEFHo1aTGh9JUUUTiqzFG9Ck8AtxxoGT1dgdLqaMSvJ3lKCVnhhJs8VORZ3F31FEL6TwC3HGV0cqiTUZGDFI5ufpr/QzUzYcLajzcxLRGyn8QtA+mufbgjqmX5SMWrp5+i0yXEd8dBhHpPAHNCn8QgA5x6pwuhQuuSjZ31GCXlZKFPnlTVjaHP6OIs5BCr8QwBffnCY9IZLMJBnGeaGyUky4XApHC6XVH6ik8IuQV1LVQn55E7MmpMloHg9IiY8k3KDh8Klaf0cR5yCFX4S83QfL0WpUzByb4u8oA4JarWJUVhzf5NfKsM4AJYVfhDSr3cmeIxVMyU7CGC5LLHrKmMGxNJptFFfKVM2BSAq/CGl7jlRgsTq4YmKav6MMKKMHt69cJt09gUkKvwhZLkXhk5wSspJNjMyM8XecASUqUs/gFBPf5EvhD0RS+EXI+vZULadrLcyflikXdb1g/LB48ssbaWm1+zuK+A4p/CJkffhlMTFGAxcNietcV9dsdWC1y7TCnjBuWDyKAt9Id0/A8fkKXEIEgtyieo6XNHD97GF8faK6y2NTxqT6KdXAMiQ1iqgIHYdO1jBjjIyYCiTS4hchR1EU3vnsFDFGPTPHSZH3FrVKxcQRiRzKr5XFWQKMFH4Rco4U1nGitJFFMwaj08qfgDdNzk7EanNypLDe31HEWeS3XoQUl0vhjR0nSYwJ4/IJMoTT20ZnxRJu0HTrThP+JYVfhJTPDpdTVm1mxezh0tr3Aa1GzYRhCRzMq8Hpcvk7jjhDfvNFyKhvsfHWrnyGpkUxanAsZqsDl8wo4HWTs5NoabWTK909AUMKvwgZf992nFarg7FD4th3rIqc3Eoc0gr1uvHD4gg3aPnyaKW/o4gzpPCLkHDoZA37jlUzblg8MSaDv+OEFJ1Ww+SRiXx9ohqb3CMREKTwiwGv1ergvz8+Tmp8BGOHxvs7TkiaPiaZNpuTwzKFQ0CQwi8GvLd25VPfZOX7V41Eo5apGXxBpVZ1uRt6ULKJqEg9X3xb4e9oArlzVwxwB/Kq2XmgjKunZjIkNYqahlZ/RwoJVruTQ98Zwjn9omS27SuhvtlKrHS3+ZW0+MWAVdfUxl/ezyUr2cR1Vwzzd5yQN2NsCooCnx8u93eUkOeTwr927VrmzJlDdnY2J06c8MUpRYhzulz8ccsRHC6Fu5aNkTH7ASAxJpzRWbF8dvg0LlmZy6988tcwd+5cNm7cSHp6ui9OJ0KcwwVvfXqKvNJGbpgzHGOkXsbsB4jZk9KpaWzjYF6Nv6OENJ8U/ilTppCaKpNhCd84nF/NR18VMyw9CoCc3EoZsx8gLh6ZQEJ0GFu/KvZ3lJAm73/FgNJktvHah8eJjtQzbXSyv+OI79Co1Vw1NZOTZY2cLG30d5yQFTSjeuLjjf6O0E1iosnfEXoVavmcThe/f+swrTYHy2cPJy4mvMvjOp0WkzHsvNuAHre5+/xzHdOTz+/46Itzeer5eoMORaPmskkZbPm/Qt7dU8gvfzANU4S+2/O9KdT+LnoSNIW/trYFVwB10iYmmqiubvZ3jHMKxXz//DSfwydruPnq9vH6zS1tXR632x1ubQN63Obu8891TE8932QM63zc2+fqzzaTMazH7S0Wa+cQz+zMaL4+UcOXh8qYODyh2/m9JZT+LtRq1TkbzNLVI4KawwVmq4M9Ryt4f08RM8emMO0iWe0p0I3KiiUiTMvmzwpQZISPz/mk8D/55JNcfvnlVFRUcNttt7Fo0SJfnFaEAKvdwfZ9Jfz1g2PER4UxJNUkF3GDgFajZtKIBIorm9l9SMb1+5pPunoeeeQRHnnkEV+cSoQYm93JpwfLUangiklpaDTyJjZYDE2LorqhjTd2nGTc0HjiorpfKxDeIX8lImgpisLr2/Oob7Zy+YQ0jOE6f0cSfaBSqfj+vBG4FIX/ej9XFmrxISn8Imht3VtMTm4VE4fHk5YQ6e84oh8SYsK55apscovq+eeuU/6OEzKCZlSPEGc7kFfNWzvzmTQykbFDYv0dR1yAy8anUljRxNa9xcRHhzF3coa/Iw140uIXQae4splXtxxlcKqJW+aPRKWSqZaD3Y1zRzBpRAIbPznBrgNl/o4z4EnhF0GlrqmNF/55mIgwLfdeNx69VuPvSMIDtBo1dy0by/hh8bz20XHe3JVPc5u9y5z+DrkE4DHS1SOCRpPZxrOvH6TV6uDB719MjNGA2erwdyzhITqtmp8uH8fGT07w4ZdFHC2s49JxKWjPjNSaOjoZrUFKlifIqyiCgrnNzm/fOEh9Uxv33TCRrJTAvu1e9I9Wo+bf52cTGxXG5t2nMLfamT0pnYgwKVWeJF09IuBZ2uz8/h+HOF1r5qfXjWNkZoy/IwkvUqlUzJ2cwexJaTS0WHl/T6GsnOZhUvhFQKtrauPp//mawopmfrRkLEPSorv0+wbQ9E3CwwYlm7jmkiw0ajVb95aQk1vp70gDhrx/EgGrtKqFdW8eos3m4L5/m8Cg1Khuf/wTRib6KZ3whViTgYUzsth9sJzXth6n0Wxj3pTMzscNOi2yuFrfSeEXAcfhgr25FWz8+Dh6rYafr5hAeqJRWvcDkEqt6vEC/dk/6zC9hrlTMjhSUMc7nxVwsrSBi0cmolKp5IJvP8krJgJKq9XB6zvy+OzQaeKjDFwxKZ3yGjPlNWZp3Q9AVruzc6rms333Z61Rq7h5fjatVgdHCuppszmZMVZmYe0vKfwiICiKQs6xKt7ceZK6Jiujs2K5ODsBjVrex4t2arWKaaOTMOg0HM6vxeVSmDJKVlnrDyn8wq+cLhcHTtTw/p4iiiqbyUg08p83jKK2sfviIEKoVComjkhArVZxMK+G17Ye4+5lY6SB0EdS+IVflFW3sGVXPv/37WkaW2wkx4Zz+8LRzBybQqvdKYVf9Gr8sHjUKvj6eDV/3HKUO5dc1Hmjlzg/KfzCZ6obrXx59DRfH6+mqKIZtQrGDk3g8qtTmTi8vRUnhLvGDo1nULKpcxWvHy8dI8XfTVL4hVc1mW3sP17FV7lV5JU0oABxUQZmjEslPT6CKyalEymjMkQ/zZ2SSZhey+vb83hl87fc/b2xUvzdIH9xwuMsbXb2n6hmb24VuYX1uBSF1PgIFs7IQqdVExWp71wwvKfhfDJsU/TF1VMzUavgf7fl8fKm9uKvk8H9vZLCLzzC0mbnUH4tOblVfHOqFqdLITEmjGsuGcT00cmkJ0ZisTm73YDV03A+GbYp+mrelEzUahX/8/EJXtr0DfdcOxadzNx6TlL4Rb/VNraxP6+GAyeqyCttxOVSiDHqufLiDCaNSCAz2dg5V77F5pSWvPC4s98xTh+TgsPZvhznc68f5J5rxxEVqfdzwsAkhV+4rdFs42RpA8eKGzhWXE9ZtRmA6Eg9o7NiGZRkJCEmjInZSRw6UU1lvaXL86UlLzztu+8Y9To1syak8uWRSlb9LYd7l4+XmVx7IIU/hDhcYLV37U//7lwnljYHVQ1tVNSZqWtuo67JSkWtmdJqM01mGwB6rZoRGdHMHJNCdlYsxZXNvvw2hOjVkNQoZoxJ4c/vHeXp/9nPrfOzmTk2RVZqO4sU/hBitTvIya2k1eqgrslKc6sNY7iehmYr1Q2t1DS20fqdC61qtYqoCB0J0WHMnZJBdkYMQ9OiOkdOmK0OKfwi4AxKjeL+70/iL+/n8l/v55JzvIqbrxpFYqK0/kEKf0hobLFyvKSBbwvq+OZULY0tts7HdFo18VFhxEWHMTg1irgoA7GmMCrrzBjDdYTpNZ0tpWljUlBcClaHC+uZdfCk314EIqvdybGiei4Zk0xUpJ6DeTU89ucvWTF3BDNGJxEe4kOIQ/u7H6Dqm60cKWlk35HTHC9uoKKuva/doNMQHx3G0LQokmLCMUXomT4uhW/yaro8f9zweFwnui9wKiNwRLBRq1SMHRJHVrKRk2VN/M/WY2zadZLLJ6Qxa0IaKXER/o7oFz4r/AUFBTz88MM0NDQQExPD2rVrGTx4sK9OP2ApikJtYxsnShs4XtzA8ZIGqurbVysKN2gYkRHDrAmpjBoUS3xMOF8fr+ryfLX0e4oQYIrQc+fSMdhcsPHDXD7aW8KHXxWTlhDJ8PRoBqeayEo2ER8VhjFCN+D/LnxW+B9//HFuuukmli1bxjvvvMNjjz3Ga6+95qvTBz1FUWi1OqlpbKWizkJFrYWiymbyy5s6L7pGGLQMS4/mionpzJyYjkmn7jINgixMLkKZSq0iJkLPbYtG09Bi5WBeDUcL69h/vIrdh8o791OrVBgjdIQbNITptYTr2z9GhOuINGg7t0eEaQnTawg3aNv/nfW5Qa8J6P88fFL4a2trOXr0KBs2bABg8eLFrF69mrq6OuLi4tw6Rn/mcSmubCG/vBHFpeBCweVS2vukFc583v61cuZzh9OF06Vgdyo4na72r50uHC4Fh0PB6XJhd7pwOtufZ7M7cbhcOB0uFEClAhUqVKr2L9Sq9tkE279s/xpV++Oqjo8djwGoOOuxM/sDVruLllYbTue/OtRVQHxMONMvSkalgrioMKIj9ahUKiYMTyAjNZra2pYur4dWoyYiTNevbZ5+frhBi9Oh89v5e9+m8vP5e39+x2vni3P1Z1u4QRswr9XZnC6F3MI6WsxWABJjwvnZ9RMI06mpa7ZyusZMk8VOk8VGQ4uVyrpWHE4nNruL5jY7LW0OrDYHVruz2/l6YtBpCDO0/+cQptNg0Gsw6LUYdGp0mvZGmVatRqNRoVaDRq0mMlJPq8XWXieApNgILhoc69b5vqu3mqlSFMXrl+e+/fZbHnroId5///3ObQsXLuTZZ59lzJgx3j69EEKIs8iEFkIIEWJ8UvhTU1OprKzE6Wx/i+R0OqmqqiI1NdUXpxdCCHEWnxT++Ph4Ro8ezXvvvQfAe++9x+jRo93u3xdCCOE5PunjB8jPz+fhhx+mqamJqKgo1q5dy9ChQ31xaiGEEGfxWeEXQggRGOTirhBChBgp/EIIEWKk8AshRIiRwi+EECFGCr+bWltb+c///E+uuuoqFixYwM6dO3vd32q1snDhQpYvXx5Q+XJzc7n22mtZtmwZixYt4tFHH8Vms/W4r6+zbdu2jeXLl7N48WIWLVrEX/7yF6/m6mu+yspKbr31ViZPnuz1n2tBQQE33HAD8+fP54YbbqCwsLDbPk6nkyeeeIJ58+Zx1VVX8eabb3o1U1/zff755yxfvpyxY8eydu3agMr20ksvsWjRIpYuXcry5cv57LPPAirfP//5T5YsWcKyZctYsmSJ5+c1U4RbXnzxRWXlypWKoihKQUGBMnPmTKWlpeWc+z/99NPKL3/5S+Xaa68NqHytra2K1WpVFEVRnE6n8tOf/lT529/+FhDZDh48qFRUVCiKoihNTU3KvHnzlJycHK9m60u+pqYmZe/evcqOHTu8/nO99dZblc2bNyuKoiibN29Wbr311m77bNq0Sbn99tsVp9Op1NbWKrNmzVJKSkq8mqsv+QoLC5UjR44ov/vd75Tf/OY3Psnlbrbdu3crFotFURRFyc3NVSZPnqy0trYGTL7m5mbF5XJ1fj579mwlNzfXYxmkxe+mDz/8kBtvvBGAwYMHM3bsWHbv3t3jvvv27aOwsJBly5YFXL6wsDD0+vYFqB0OB21tbajV3v01cDfbhAkTSE5OBsBkMjFs2DDKysq8mq0v+UwmE1OnTiUiwrtzuHdMarh48WKgfVLDo0ePUldX12W/Dz74gBUrVqBWq4mLi2PevHls3brVq9n6ki8rK4uLLroIrdZ3y364m23WrFmEh4cDkJ2djaIoNDQ0BEw+o9HYuQBSW1sbdrvdo0tHSuF3U3l5Oenp6Z1fp6amUlFR0W0/i8XCmjVreOKJJ3wZz+180N5lsWzZMqZPn05kZCT/9m//FjDZOuTn53Pw4EEuueQSr2aD/uXzptOnT5OcnIxGowFAo9GQlJTE6dOnu+2XlpbW+bWvcrubzx/6k23z5s0MGjSIlJSUgMq3fft2Fi1axJVXXskdd9xBdna2x3LIClxnXHvttZSXl/f42BdffOH2cZ555hluuukmkpOTe+y76y9P5QNITk7mnXfewWKx8MADD/DJJ5+waNGigMgGUFVVxU9+8hMee+yxzncAF8LT+cTAsXfvXp5//nmfXU/qi7lz5zJ37lzKy8u55557uPzyyz0224EU/jM2bdrU6+NpaWmUlZV1zi90+vRppk+f3m2//fv3s3v3bl5++WWsViuNjY0sWbKEd999NyDynS0iIoKFCxfy7rvvXlDh92S22tpabrvtNu644w4WLlzY70zeyucLZ09qqNFozjmpYWpqKuXl5YwfPx7o/g7A3/n8oS/ZDhw4wAMPPMDLL7/ss+lj+vPapaWlMW7cOHbt2uWxnNLV46YFCxbwxhtvAFBYWMg333zDrFmzuu337rvvsmPHDnbs2MHvfvc7Ro4cecFF35P5SkpKOkfx2Gw2tm/fzsiRIwMiW319Pbfddhs333wzK1as8Gqm/uTzFXcnNVywYAFvvvkmLpeLuro6tm3bxvz58wMmnz+4m+3w4cP84he/4IUXXvDpmiDu5svPz+/8vK6ujq+++sqzf6ceu0w8wJnNZuXee+9V5s2bp1x99dXKJ5980vnY73//e+V///d/uz3nyy+/9NmoHnfzbd68WVm8eLGyZMkSZdGiRcqvf/1rr49mcDfbb37zG2XcuHHK0qVLO/+99dZbXs3Wl3wOh0OZNWuWMn36dGXMmDHKrFmzlBdeeMErmU6ePKlcf/31ytVXX61cf/31Sn5+vqIoinLHHXcohw8f7szz2GOPKXPnzlXmzp2rvP76617J0t98OTk5yqxZs5RJkyYpEydOVGbNmqXs3r07ILItX75cmT59epfftWPHjnk9m7v5nnrqKWXhwoXK0qVLlSVLliivvfaaRzPIJG1CCBFipKtHCCFCjBR+IYQIMVL4hRAixEjhF0KIECOFXwghQowUfiGECDFS+IUQIsRI4RdCiBDz/wFmu12aQZ4TpwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(6,4))\n", + "sns.distplot(ytest - yPreds)\n", + "plt.title(\"Distribution of residuals\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a724a32e-61bb-49a3-971c-2639d2311430", + "metadata": {}, + "source": [ + "## Evaluation Metrics for Regression model\n", + "\n", + "In the Previous cell we have visualized our model performance by plotting the best fit line. Now we will use various evaluation metrics to understand how well our model has performed.\n", + "\n", + "* Mean Absolute Error (MAE) is the sum of absolute differences between actual and predicted values, without considering the direction.\n", + "$$ MAE = \\frac{\\sum_{i=1}^n\\lvert y_{i} - \\hat{y_{i}}\\rvert} {n} $$\n", + "* Mean Squared Error (MSE) is calculated as the mean or average of the squared differences between predicted and expected target values in a dataset, a lower value is better\n", + "$$ MSE = \\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2 $$\n", + "* Root Mean Squared Error (RMSE), Square root of MSE yields root mean square error (RMSE) it indicates the spread of the residual errors. It is always positive, and a lower value indicates better performance.\n", + "$$ RMSE = \\sqrt{\\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2} $$" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "ebd976fd-078f-4ef4-817d-e27b258a32b7", + "metadata": {}, + "outputs": [], + "source": [ + "# Utility functions for evaulation metrics.\n", + "\n", + "def mae(y_true, y_preds):\n", + " return np.mean(np.abs(y_preds - y_true))\n", + "\n", + "def mse(y_true, y_preds):\n", + " return np.mean(np.power(y_preds - y_true, 2))" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "ce01c5c7-bca1-4a0b-b08e-64f348b96ced", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---- Evaluation Metrics ----\n", + "Mean Absoulte Error: 0.06\n", + "Mean Squared Error: 0.01\n", + "Root Mean Squared Error: 0.08\n" + ] + } + ], + "source": [ + "print(\"---- Evaluation Metrics ----\")\n", + "print(f\"Mean Absoulte Error: {mae(ytest, yPreds):.2f}\")\n", + "print(f\"Mean Squared Error: {mse(ytest, yPreds):.2f}\")\n", + "print(f\"Root Mean Squared Error: {np.sqrt(mse(ytest, yPreds)):.2f}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 2582849100c462594dc2fb3df30824001568f352 Mon Sep 17 00:00:00 2001 From: Shah Anwaar Khalid Date: Wed, 16 Jun 2021 10:39:35 +0530 Subject: [PATCH 22/69] apply suggested change Co-authored-by: Marcus Edel --- mnist_vae_cnn/mnist_vae_cnn.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mnist_vae_cnn/mnist_vae_cnn.cpp b/mnist_vae_cnn/mnist_vae_cnn.cpp index 51b4c7fd..0ceea063 100644 --- a/mnist_vae_cnn/mnist_vae_cnn.cpp +++ b/mnist_vae_cnn/mnist_vae_cnn.cpp @@ -91,7 +91,7 @@ int main() arma::mat train_test, dump; data::Split(train, dump, train_test, 0.045); - // No of iterations of the optimizer + // No of iterations of the optimizer. int iterPerCycle = (epochs * train.n_cols); /** From 8aa85e56b796b650d1cdddcdd876cc5957931bbb Mon Sep 17 00:00:00 2001 From: Shah Anwaar Khalid Date: Wed, 16 Jun 2021 10:39:50 +0530 Subject: [PATCH 23/69] apply suggested change Co-authored-by: Marcus Edel --- mnist_vae_cnn/mnist_vae_cnn.cpp | 1 - 1 file changed, 1 deletion(-) diff --git a/mnist_vae_cnn/mnist_vae_cnn.cpp b/mnist_vae_cnn/mnist_vae_cnn.cpp index 0ceea063..eb9dfcf0 100644 --- a/mnist_vae_cnn/mnist_vae_cnn.cpp +++ b/mnist_vae_cnn/mnist_vae_cnn.cpp @@ -212,7 +212,6 @@ int main() const clock_t begin_time = clock(); clock_t cycle_time = begin_time; - // Cycles for monitoring the progress. for (int i = 0; i < cycles; i++) From 088a84210973473322eca8fd947fed0e9fb4fc90 Mon Sep 17 00:00:00 2001 From: Shah Anwaar Khalid Date: Wed, 16 Jun 2021 10:41:09 +0530 Subject: [PATCH 24/69] apply suggested change Co-authored-by: Marcus Edel --- mnist_vae_cnn/vae_generate.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mnist_vae_cnn/vae_generate.cpp b/mnist_vae_cnn/vae_generate.cpp index 576e0285..c8b1316b 100644 --- a/mnist_vae_cnn/vae_generate.cpp +++ b/mnist_vae_cnn/vae_generate.cpp @@ -47,7 +47,7 @@ int main() if (loadData) { data::Load("../data/mnist_train.csv", fullData, true, false); - // Get rid of the header + // Get rid of the header. fullData = fullData.submat(0, 1, fullData.n_rows - 1, fullData.n_cols -1); fullData /= 255.0; From 9006ed9a2abb931b2caf6549f8b3a7210da1e428 Mon Sep 17 00:00:00 2001 From: Shah Anwaar Khalid Date: Wed, 16 Jun 2021 10:41:19 +0530 Subject: [PATCH 25/69] apply suggested change Co-authored-by: Marcus Edel --- mnist_vae_cnn/vae_generate.cpp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mnist_vae_cnn/vae_generate.cpp b/mnist_vae_cnn/vae_generate.cpp index c8b1316b..14d6d461 100644 --- a/mnist_vae_cnn/vae_generate.cpp +++ b/mnist_vae_cnn/vae_generate.cpp @@ -51,7 +51,7 @@ int main() fullData = fullData.submat(0, 1, fullData.n_rows - 1, fullData.n_cols -1); fullData /= 255.0; - // Get rid of the labels + // Get rid of the labels. fullData = fullData.submat(1, 0, fullData.n_rows - 1, fullData.n_cols - 1); From 36f6f813f075ff44116c633215988360820d925a Mon Sep 17 00:00:00 2001 From: Anwaar Date: Wed, 16 Jun 2021 10:46:37 +0530 Subject: [PATCH 26/69] convert to camel casing --- mnist_vae_cnn/mnist_vae_cnn.cpp | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/mnist_vae_cnn/mnist_vae_cnn.cpp b/mnist_vae_cnn/mnist_vae_cnn.cpp index eb9dfcf0..863fe680 100644 --- a/mnist_vae_cnn/mnist_vae_cnn.cpp +++ b/mnist_vae_cnn/mnist_vae_cnn.cpp @@ -88,8 +88,8 @@ int main() data::Split(fullData, validation, train, trainRatio); // Loss is calculated on train_test data after each cycle. - arma::mat train_test, dump; - data::Split(train, dump, train_test, 0.045); + arma::mat trainTest, dump; + data::Split(train, dump, trainTest, 0.045); // No of iterations of the optimizer. int iterPerCycle = (epochs * train.n_cols); @@ -210,8 +210,8 @@ int main() 1e-8, // Tolerance. true); - const clock_t begin_time = clock(); - clock_t cycle_time = begin_time; + const clock_t beginTime = clock(); + clock_t cycleTime = beginTime; // Cycles for monitoring the progress. for (int i = 0; i < cycles; i++) @@ -219,22 +219,22 @@ int main() // Train neural network. If this is the first iteration, weights are // random, using current values as starting point otherwise. vaeModel.Train(train, - train, - optimizer, - ens::PrintLoss(), - ens::ProgressBar()); + train, + optimizer, + ens::PrintLoss(), + ens::ProgressBar()); // Don't reset optimizer's parameters between cycles. optimizer.ResetPolicy() = false; std::cout << "Loss after cycle " << i << " -> " << MeanTestLoss(vaeModel, train_test, batchSize) << std::endl; - std::cout << "Time taken for cycle -> " << float(clock() - cycle_time) / + std::cout << "Time taken for cycle -> " << float(clock() - cycleTime) / CLOCKS_PER_SEC << " seconds" << std::endl; - cycle_time = clock(); + cycleTime = clock(); } - std::cout << "Time taken to train -> " << float(clock() - begin_time) / + std::cout << "Time taken to train -> " << float(clock() - beginTime) / CLOCKS_PER_SEC << " seconds" << std::endl; // Save the model if specified. From cf9a695b0b56398e3a68140e7a6d1823ad480de0 Mon Sep 17 00:00:00 2001 From: Anwaar Date: Wed, 16 Jun 2021 10:53:08 +0530 Subject: [PATCH 27/69] Added report callback & minor bug fix --- mnist_vae_cnn/mnist_vae_cnn.cpp | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/mnist_vae_cnn/mnist_vae_cnn.cpp b/mnist_vae_cnn/mnist_vae_cnn.cpp index 863fe680..f95adabd 100644 --- a/mnist_vae_cnn/mnist_vae_cnn.cpp +++ b/mnist_vae_cnn/mnist_vae_cnn.cpp @@ -222,13 +222,14 @@ int main() train, optimizer, ens::PrintLoss(), - ens::ProgressBar()); + ens::ProgressBar(), + ens::Report()); // Don't reset optimizer's parameters between cycles. optimizer.ResetPolicy() = false; std::cout << "Loss after cycle " << i << " -> " << - MeanTestLoss(vaeModel, train_test, batchSize) << std::endl; + MeanTestLoss(vaeModel, trainTest, batchSize) << std::endl; std::cout << "Time taken for cycle -> " << float(clock() - cycleTime) / CLOCKS_PER_SEC << " seconds" << std::endl; cycleTime = clock(); From b6ebd7dca9b4c59cd24341e3edeaa86e5c79fd71 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Fri, 18 Jun 2021 07:05:37 +0530 Subject: [PATCH 28/69] python nb annotated with markdown --- .../avocado_price_prediction_with_lr_py.ipynb | 144 +++++++++++++----- 1 file changed, 104 insertions(+), 40 deletions(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb index cae70dca..4cb6db0e 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 7, "id": "916a3d8e-547c-461a-a90f-7bcbd60c7504", "metadata": {}, "outputs": [], @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 8, "id": "0f700cb9-6292-457e-883c-7f849d89240d", "metadata": {}, "outputs": [], @@ -61,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 9, "id": "8d54f581-e4fd-4e41-aee0-0085441d46c0", "metadata": {}, "outputs": [], @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 10, "id": "1b4c813d-d1b6-4e9d-8664-3a48c73724fb", "metadata": {}, "outputs": [ @@ -213,7 +213,7 @@ "4 6183.95 5986.26 197.69 0.0 conventional 2015 Albany " ] }, - "execution_count": 16, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -225,7 +225,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 11, "id": "f22211f2-7881-45ee-b061-8a3fb1773695", "metadata": {}, "outputs": [ @@ -393,7 +393,7 @@ "max 1.937313e+07 1.338459e+07 5.719097e+06 551693.650000 2018.000000 " ] }, - "execution_count": 17, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -405,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 12, "id": "525649f0-825a-4554-bde5-0e38ee1b50e1", "metadata": {}, "outputs": [ @@ -443,7 +443,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 13, "id": "8330ca8c-3f69-43b2-a588-5bc254f6f46a", "metadata": {}, "outputs": [], @@ -470,7 +470,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, "id": "8cb1ab09-9c42-47f5-a240-7112e52514c9", "metadata": {}, "outputs": [ @@ -505,7 +505,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 15, "id": "a7ab8224-24f2-4649-add1-6c10b99eb1b0", "metadata": {}, "outputs": [ @@ -637,23 +637,35 @@ "plt.show()" ] }, + { + "cell_type": "markdown", + "id": "a3b0f6df-b3fa-4102-958b-079ddf4a3354", + "metadata": {}, + "source": [ + "As we can from the heatmap above, all the Features are not corroleted with the Average Price column, instead most of them are correlated with each other. " + ] + }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 16, "id": "8a8680eb-d9bd-4844-a114-71795bca5aec", "metadata": {}, "outputs": [], "source": [ + "# Features of interest\n", + "\n", "features = [\"4046\", \"4225\", \"4770\", \"Small Bags\", \"Large Bags\", \"XLarge Bags\", \"type\", \"year\", \"region\"]" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 17, "id": "8b53c26c-e365-4534-b6c7-350b1abd1487", "metadata": {}, "outputs": [], "source": [ + "# Split data into features (X) and targets (y).\n", + "\n", "X = avocadoData[features]\n", "y = avocadoData[\"AveragePrice\"]\n", "y = np.log1p(y)" @@ -661,11 +673,13 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 18, "id": "14d8c3c0-7e64-49c2-9d87-f2f03728707d", "metadata": {}, "outputs": [], "source": [ + "# Utility functions for onehot encoding.\n", + "\n", "def one_hot_encode(data, dimensions, drop=False):\n", " for dim in dimensions:\n", " if(type(data.iloc[:,dim].values[0]) == str):\n", @@ -676,32 +690,41 @@ " data.drop(data.columns[dimensions], axis=1, inplace=True)" ] }, + { + "cell_type": "markdown", + "id": "4c5c4124-a522-4d82-8367-497b6e52335e", + "metadata": {}, + "source": [ + "### Handling Categorical Features\n", + "\n", + "* One hot encoding is used to to perform “binarization” of the category and include it as a feature to train the model.\n", + "* As we can see we have 54 regions and 2 unique types, so it's going to be easy to to transform the type & regions" + ] + }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 20, "id": "cc9ff7b9-6f0e-4abf-a758-444c78e21881", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/art3mis/anaconda3/envs/notebook/lib/python3.7/site-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " \n" - ] - } - ], + "outputs": [], "source": [ "one_hot_encode(X, [6,8], True)" ] }, + { + "cell_type": "markdown", + "id": "d4f17b20-e452-4e54-8a0c-ccdd3423f1fa", + "metadata": {}, + "source": [ + "\n", + "### Train Test Split\n", + "\n", + "The dataset has to be split into a training set and a test set. Here the dataset has 18249 observations and the testRatio is taken as 20% of the total observations. This indicates the test set should have 20% * 18249 = 3649 observations and training test should have 14600 observations respectively.\n" + ] + }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 21, "id": "92c6d1d5-1f16-4f47-a292-c87b66e67323", "metadata": {}, "outputs": [], @@ -716,19 +739,34 @@ "ytrain = y.iloc[split:].values" ] }, + { + "cell_type": "markdown", + "id": "f5998acd-8e91-4f98-85e5-743ae86253bb", + "metadata": {}, + "source": [ + "### Training the linear model\n", + "\n", + "Regression analysis is the most widely used method of prediction. Linear regression is used when the dataset has a linear correlation and as the name suggests, multiple linear regression has one independent variable (predictor) and one or more dependent variable(response).\n", + "\n", + "The simple linear regression equation is represented as y = $a + b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3} + ... + b_{n}x_{n}$ where $x_{i}$ is the ith explanatory variable, y is the dependent variable, $b_{i}$ is ith coefficient and a is the intercept\n", + "\n", + "To perform linear regression we'll be using `LinearRegression()` api from mlpack." + ] + }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 22, "id": "841c5115-73ff-4dc2-8ba0-a72eca7e3115", "metadata": {}, "outputs": [], "source": [ + "# Create and train Linear Regression model.\n", "output = mlpack.linear_regression(training=Xtrain, training_responses=ytrain, lambda_=0.5, verbose=True)" ] }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 23, "id": "00be0879-6ad3-4877-bb42-7cb9c7e07fd9", "metadata": {}, "outputs": [], @@ -736,19 +774,28 @@ "model = output[\"output_model\"]" ] }, + { + "cell_type": "markdown", + "id": "61487b8e-852d-44ed-a867-48bd3ee9e171", + "metadata": {}, + "source": [ + "### Making Predictions on Test set" + ] + }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 24, "id": "18bd0698-09e9-4afb-9ab8-006ff6c1c2a8", "metadata": {}, "outputs": [], "source": [ + "# Predict the values of the test data.\n", "predictions = mlpack.linear_regression(input_model=model, test=Xtest)" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 25, "id": "8bce9ee6-3047-4cab-b08f-8a3866374be1", "metadata": {}, "outputs": [], @@ -756,25 +803,34 @@ "yPreds = predictions[\"output_predictions\"].reshape(-1, 1).squeeze()" ] }, + { + "cell_type": "markdown", + "id": "50f3cfde-fc8d-4be7-882f-12dd99163dff", + "metadata": {}, + "source": [ + "### Model Evaluation\n", + "Test data is visualized with `yTest` and `yPreds`, the blue points indicates the data points and the blue line indicates the regression line or best fit line." + ] + }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 26, "id": "aeea1f4b-80c1-4ae7-9733-e0e2089eab6b", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 34, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFtCAYAAADMATsiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9e5gcV33n/TlV1dW3uU+PRiPJYyFhSzJGLGBHBowXbCSE7cixYyCvzSU2aJMNu7wvT56w3htxAruJTHYTyAshG17zZIMdCHfZOEJcwmJxEXbsIBtbCCTbY1kaSXOfvtbtvH9UV093T3dPz0zPTHfrfJ4HrO6prjrVXf3tU7/z+31/QkopUSgUCkVLoK31ABQKhUJRP0q0FQqFooVQoq1QKBQthBJthUKhaCGUaCsUCkULoURboVAoWghjrQfQaMbHk3he/VmMvb0xJifTKzii5kKdb3ujzrc9GBjorPq3i36mbRj6Wg9hVVHn296o821/LnrRVigUilZCibZCoVC0EEq0FQqFooVQoq1QKBQthBJthUKhaCGUaCsUCkULoURboVAoWohVEe0DBw5w/fXXs23bNk6cOFFxm0996lPcdNNN7Nu3j9tuu41HH310NYamUCgULcWqVETecMMNvOc97+HOO++sus3OnTu5++67iUajHD9+nHe9610cOXKESCSyGkNUKBSKlmBVRPuqq65acJs3vvGNhX9v27YNKSVTU1OsX79+JYemUCgULUVTeo98/etfZ3h4eEmC3d/fsejX1Krzb0fU+bY36nzbm6YT7Z/+9Kd84hOf4P7771/S6xdrGDUw0MmFC7NLOlYros63vVHn2x7U+iFqKtF+8skn+YM/+AM+/elPs2XLlrUejkKhUCwaiUQgVmz/TZPyd+zYMT70oQ/xyU9+kle84hVrPRyFQqFYNKfOzvDtx07jet6KHWNVRPtjH/sY1113HaOjo9x1113cdNNNAOzfv5+nnnoKgD/6oz8im83ykY98hFtuuYVbbrmFX/ziF6sxPIVCoVg2Pzs5xp/83T/zhe/+kl++OL1ixxFSyvoDwC2AimnXRp1ve6POd214+tQYn/zKUziuZF1vlHvvupqIufTos2qCoFAoFCvEM89N8JdffRrHlSS6I3zg1lcuS7AXQom2QqFQLJHjI5N84ivHsB2Pvq4w77v5Cno6wyt6TCXaCoVCsQR+8eIkf/EPP8N2PHo7w7z/5isY6IkSj6xsUp4SbYVCoVgkvzw9xV/8w8+wHI+eDpP333wF63pj9HSYaGLl0v1AibZCoVAsipNnpvnzf/gZOdujO+4L9mDf6gg2KNFWKBSKunludIb/8YV/IWu5dOUFe31/fNUEG5RoKxQKRV2MnJvlz/7eF+zOWIj337SDocTqCjYo0VYoFIoFefF8ko///ZNkcg4d0RDvu/kKNgx0rLpggxJthUKhqMnpC0nue/AJUlmHeMTgfTfvYNMaCTYo0VYoFIqqvDSW4r4HnySVdYhFDN538xVcsq5zzQQblGgrFApFRc6Op/j4g0+QzNhEwwbvu2kHw4NrK9igRFuhUCjmcW7Sn2HPpG0ips77btrBpeu71lywQYm2QqFQlHB+Ms2BB55kOmURMXXuvmkHm4eaQ7BBibZCoVAUuDCV5k8feJKppEU4pHPXjdvZsqG7aQQblGgrFAoFAOMzGQ48+CRTyRxmSOOuG7ezdWNPUwk2KNFWKBQKJmezHHjgSSZmcpiGxm+/bTsv39R8gg1KtBUKxUXOVDLHnz7wBGPTWUK6xnv2buPyS3qbUrBBibZCobiImUrmOPDAE1yYymLogvfs3cb2S/uaVrBBibZCobhImU5Z3Pfgk5ybzGDogne/dRs7Nje3YIMSbYVCcREyk7a478EnGJ1Io2uCd+3Zxite1t/0gg1KtBUKxUXGbNqfYZ8d9wX7zj2Xc+WW1hBsgJXti6NQ1ODYyTEOHR1hbDpLojvC9uEejo9MFR7v3TUMULLN3l3D7NyaqLqP8r8vdMxK2x88corDj50mYzkIBOGQ4NL1XXWNp9axejtMfnZygozlIGXl8f3GtZvZd+2WxbyNq8bBI6c4eOR5vPxjAVxzxTr277uy6msW+/kslXqPk8zYfPzv/4UzYyk0IbjjLZexc2tiSYJ97OQYX/7+Sc6Op3G9uQ9UE7AhEef2N21dkXPV77333nsbvtc1JJOxqn4hKhGPh0mnrZUbUJPRLOd77OQYD3z7BJbjETF1xmeyHDs1juNKOqIhUjmHnz57nidPXMCVEDF1UjmHn/1qjMHeKIN9sXn7KP87lJ5vPdsfPHKKgz96Hsf1kBIk4LiSTH7bJ381jitl1ddXO7/RiTSnzs76+63xvhwfmUIg2Tbcu6T3daU+34NHTvH1I8/PG/vpCynOT6R47bZ1815Tz/u9XOLxMD956kxdx0lnbT7+hSd58XwSTcBvveVyXn35wJIF+/5HjjM2ncUre1MkMJu2eeaFSTYkYks613i8enNgFR5RrAmHjo6g6xrhkI4QgozlIhBkcg5CCMIhnWzOIWu5hW3CIR1d1zh0dKTiPsr/vtAxK21/+LHTCERBnIKvciY/lmzOqet4884v5wDUFOziMTQbtcZ09NkLFZ9f7OezVOo5Tjrr8Gdf+BdGzvmC/c4bLuM1SxTs4JjZnFPzA83mnIafK6jwiGKNGJvOEivqWu04HpoAx/UKz7mex5xs+piGxth0tuI+yv++0DErbZ+1HHRN4HqlR/Yk+VtgWfP11Y5VPhurRdZy6t94lag1Jq/KrW2l99t1PU6+NM2H/+pHREIaWdtjfDpb8iMZj+hEwiGk5zGdsnC8ebuui9HxNHf/6feIhTUcDyzb39G1O4d47bZ1y4phj01ncb3qd00S//qtdi0uBzXTVqwJie4IVtG30TA0PAmGPndJ6pqGrpV+qSzHI9EdqbiP8r8vdMxK20dMA0+CEKXyrAnQNYGuaTVfX+1Y2iK0IWI231yq1piqCV/5e5DJOUzMZBFCAJIz42nGigQb/Pc8mXWZmMkyPrt0wZ4bG9junGBHTJ0XzycZnUgua9Ex0R1B1zSq7UHgX7/VrsXloERbsSbs3TWM63rkbBcpJVFTRyKJhg2klORsl0jYIGLqhW1ytovreoUFwfJ9lP99oWNW2n7P1ZuQyMKXMRCUaH4skbBR1/HmnV/YF716ZGLP1ZvqfRtXjVpj2rVjoOLz5e/B1GwOEHR3mMxmnJp3H4u5M6mGJkDXNey88gsBXR0mpqnz8A9fWNa+9+4aJhI2an6gkbBR9VpcDmohskkW5laLZjnfwb4Yg71RTp9PMp2yWNcb5Q1XridruUynLPo6w7z9zVt59eUDhW36OsPcdt2Wwop8+T7K/w6l51vP9tuGe0FKXjiXxPE8NCGImBrDg528/c0v59WXJWq+vtr5DfXHuGxjF+MzOWy3+vQxFtb50DtfveT3daU+323DvQgkJ0amSkIZr6uRPVL+HmQtl55Ok3jUZGo2t6jv6WIRwr9rs4um6gPdYaT0xz2dsth99SVL3v9gX4wNiRinzydJZUuzgTQBGwfi3Ln78iVnj9RaiBRSruRbt/qMjyfxFvEzPTDQyYULsys4ouZCne/ac9+DT3DqzAyelIVbdE/6X/YtG7r48B2vWfK+m/F8A+578AmmUr7l6ehEmpzlrshxKgl2b2eYkCGYTtn0dobpiZvLep9XmoGBzqp/U+ERhWKV2btrmIipI6W/iOd6Eim9FbudbhaKwyWdUaNmnH8xawDFCCBUQbA1TTA+kyNq6jVDaK2AEm2FYpXZuTXB3TftYKgvikCgCRjqj3P3jdtXpBijWdi5NcGduy+nJ24Cgg39MRLdkZKwsAA6Ijp9XRH6O02MOhVKiLxgG1rJ4mdvZ5iwqZHJOsTCBuv7YssKWzQDzbdMrVBcBOzcmmhp4VgqjT7vIBzkuB6f/tpT/MuvxgG48ZpLuf61m1qmNH0xqJm2QqFoaRzX46++/nRBsPf+2nDbCjYo0VYoFC2M63r89cGf8+QvxwDYfdUlvOXqS9pWsGGVRPvAgQNcf/31bNu2jRMnTlTc5siRI9x2221ceeWVHDhwYDWGpVAoWhjX8/izB/6Zf/6FX0Z/w2s38dZdw20t2LBKon3DDTfwwAMPsHHjxqrbXHLJJXzsYx/jfe9732oMSaFQtDCeJ/nsw89y5GdnAHjzazbytmsubXvBhlUS7auuuoqhoaGa21x66aVcccUVGIZaG1UoFNXxpOT+R57l6DPnAPjX/2oDN14kgg0qe0ShULQQnpT87T8e50dPjwKwe9cwe167yc/FvggEG9pQtPv7Oxb9mlrVR+2IOt/2ptb5Pv7sOb76/V9xbiLNYF+M2970coCS5165tZ+nTo5z8sUpsrY7r8JYAy4Z6kQguDCVJpObvw345kzgm2p5niQc0ujpDJPM2IXXBM9JBNGwzvRsjumUb0VhaNDfE0UiGOyLceu/3sojP3yOx4+fB/zc7F+OTHBuPMXoRKZwPlftGGzQO9mctJ1oqzL22qjzbW9qnW/QlEDXNSIhjQuTaf78wX8GIYhFDCIhjdPnZvn5qTFCukbOruyR4gEvnF34Pc2WlannbI9zE5mKz8XCGhcmSq1OHQ/OTWTojoc4P5Hifzzwz6SycxaxvR0mMymHF84mSfREuDCZ5tNf/peWL54BVcauUCio3CygvLFDJue3WKsm2I2iPJCRzlX3pp5J2di2VxBsAQz0hEFoTMz4ftWzaXvFmiw0G6si2h/72Me47rrrGB0d5a677uKmm24CYP/+/Tz11FMAPP7441x33XV87nOf4wtf+ALXXXcdjz766GoMT6G4KBibzmKW1YW7nsw3m/BxXG/Jvh9LZaHDhQyNidlc4XGiJ4xWJNh+Szj/HGo1wWgXlMufun1ua9T5zlHsshdwdiwFwFAiDsC5iTS245U0ql0J/DYICxMySv2wezrCGLrGdNK3uA2sVsOmzmBfjJztNr2DXz2o8IhCoajYBKK8sUM0bCDxFwhXknLBjoXnd4EpFuxwSGNjf4xo2GBiJoPryZI7gs5YaMEmGO1C2y1EKhSKygSLc4eOjjA2nSXRHeG3rn95yXODvVH+9auGOD4yxQujM+RsOa8HpAA2JmIgBBMzWbKWV7FPZCD8tuPvwzQ0uuIm6axdeE3wHEBfp8ZM2mY2bWMUCbZpaGy/tIfdVw/jOB5f/v5Jzk2kAY2+XpOw4cfme+Ime3cNt/wi5EIo0VYoLiKqueyVP7dvtQZUgYM/fI6vP/ocAK/c0s+73rqN/q65POzisV5s4S9Qoq1QKJqIb/74+YJgv+Jlfbz7rdvo67p4CmfqQcW0FQpFU3Do6At85f+cAmDHpb28Vwl2RZRoKxSKNefwYyP8wz+dBGD7cC+//bbt9HVHlGBXQIm2QqFYU77z+It84bu/AmDbJT3cdeN2+pVgV0WJtkKhWDO+98RpHvzOLwG4bFM3v33jDiXYC6AWIhVNz7GTYyVpaguldR08corDj50mazlEIyF2v3Yj+67dUnFf24d7OD4yVfVxvSlktcZ47OQYX/6nX3FmPE2QGWeG/HLyDYn4vGME+zr50hS2O/9YmoB9b9hcOKfi10wkLfo6qqe+BWM5N5nFdr2SIhcBbByIc/ubti54zvV+JsdOjhVS9DwJuiYImzobE3E2revgO4+fBsDQfcOo8ZkMg73Rmse+2FEVkRdZylCrnW+xyZGZ77Ttul5VU6CDR05x8EfPF7qce4CUkn2v38zmoa6Sfc2kLGbSFt3xMJ2xELNpm+lUjq6YSVfcXPBY9YwR4P5vPsts2p5XUDJX4ScKxwj2NZ3MYTm1r+OOqEE661DpctcExCIGOcsFBOGQIGt7OG793w1N+N3MhRCMT2cL49c1UVIxqeuCeCTE9a/ewPGRKc6MpchaLo7rVRybEBCPGCQzvpdIyNDYMtQFGkxMZxdl+NRq13O9qIpIRctSyeSolinQ4cdOIxDomkAIgaFpCASHHzs9b18Zy0WQN0kqMkvKWG5dx6pnjIeOjsxzuysgIZNzSo4R7GshwQZIZioLNoAn/b87rsR2PZJZd1GCHexjfCbHWJFgA/NK3F1XMpOyeOhHL3BuMsNs2vbtWKscThOiINgC2LKhC9PUyebci8Lwabko0VY0NZVMjmqZAmUtZ57hkSb858v35Ti+OVJgNhSYJTnOnIFSPQZEtcY4Np3F9WRFn43A6Kj4GJX2tSxWODRcvHvXk2RyTtVtwRfsYtHv7QpjhnRmUhZwcRg+LRcl2oqmJtEdwXJKbUItxyPRHam4fcQ05s3wPOk/X74vw9DwJBi6/zUw9PzjItGsdax6xpjojviz/gqvE/ljFh+j0r6Ww2oEP4vPzXGrW6xqQhTK3YWAgZ4Ihi4Kgg31vd8XO0q0FU1NJZOjWqZAe67ehET6s1spcTwPiWTP1Zvm7Stq6kjyJklFZklRU6/rWPWMce+u4UIHl3kIiIaNkmME+zKNxkyRVzoJQ0JRrNv/Eap0SE2jxJ9kYyJOxNTJWvV/tgof/d577713rQfRSDIZa1Gzi3g8TDptLbxhm9Bq5zvYF2OwN8rp80mmUxZ9nWFuu25L1YWqbcO9ICUvjCaxHY9oOMSNu4bZd+2Wefta1xvlDVeuJ2u5/uOe0scLHaueMQ72xdiQiHP6/CzJjA3krURDGrGwwVB/rOQYwb6CWHI1QoZA1jEhX63EuZAhiIVDmPnGCsXH1wQldz8bEjGG+v2smVdflqj7s61Eq13P9RKPh6v+TWWPtOnqczXU+bYWxemLEdNgz9Wb2HftlkIq3ZmxlO8pLXxxlEKgAd0dYaSU+dCDnz1iu7IQeqn1rQ+EXlTJHvHT8wyyOQcQDPZGuP3Nc26BQfZIYJ9q5xdAh/pj/N5vXMmGgTiVA0aLp9U/32rUyh5Rot2mH3o11Pm2N5XOtzg32/U8QoZWSNtbTlsxgZ9vrmsCy5lLJwyHNN6WD3F848jzBbHv7/J/AKaTVkHol2uj2q6fby3RVsU1iouGSgUhwKIKdxZ7nIipg5SMzWTJ2XOdVvo6Td74Kj+v+aWxFK4rMXRBVywEQjCdskhl7Kppc8X0d4V591u3VS1u+etvPE3GmhPnRvV/lFX2lbM9vvHD50tm8z0dfsf18XzI5/RYmr/40rHC33VNIKVE1/zO65UKfCrddbzv1lc15FxaCTXTbtNf6mpcrOdbqQAmnXVASmLRUF2FO/VQfBzX9ZiYyeJ51VtrxSMGWdsFCZ4nEcIPXSz2SxkN6/zOvldwwzUvK/l8P/LZn3B6LL2kc1kq5a3EejrCaJoo9HRc6LWaBvGoyd03bi98DvOKpiRIJL+1extvefXGFTmPtUQV1ygueip2Is85ZC237sKdxR5nNm0jhFZTgP2CHn+mCdQ1s65E1nIrjvvc5OrmPC9HsIMdCKGRzTkl51NeNOWnUQq+8YNTDR1/K6BEW3FRULkT+fwGtsst7ig+Tj2dzT05t/Any/67GKSkyrhX90Z6WYKNfx6a8D+b4vOpVjS1UDFPO6Ji2oqWop64dLHp09BABze8egMRU2d0PI0nJYae70soBJ4neelCsvCcpom6ijsOHjnFIz8ZKWRjhHSNSFjHdf0c8a64iaFrdZWO+9kVyxfXseksv/7730AI2Lap2z+/NQp+di9BsMHPWPGNpbSSzyFi+s2H9SLh9qSf536xoWLaF2mMtxWpGJfO2CAEsYiBaWjzTJ88KZlJWtiuh2V7hZixJ2VhUVDXhf+cJ9E0QTxisCERZ/twD48fP58PMcjCAtnzZ2f4+pHn541PCIiaOlnbpTvuG0EtFNNuF4rDIt0dYfQlCHawHxXTVtkjijbh0NERbMdjJm3jOB6GoeE4Lrqm0dvpFyMUmz51dwgiIZ3zVgaAvq5w4bXgV/D1dUWYSdtYluuLjoCezjDnJjMcH5lCE6BpvqifHU9x/yPH8/nJ85ESXAldMZOc5aJHDIb642SyNuOzpQUgIv+/xhWsrx2lgm0uSbAXyh4JbGjLs0f+rz3bW3YSslSUaCtahpfGUqTzC3eaANf1cD3wvDnpq2T65MetJbFIiFgkBMDp87OAKDw3OpHGzRtHBY5/4M/oDCFAgCcF2ZxT0xvEcTy6eqOksw73/dvXA3Dfg08QMg3Cobly9pztMjqeJqT7RS/lC3itwnzB1uYJthB++Aj8zyIc0vl/P3Tdoo+179otJR7iFytqIVLRMriunwunCT+DoNDdpCjOWcn0SdcEulZ6qeuaVsjYAF9sZZF5VOD8V0ywQFZrbdEwtHmmR9VcAAX5hUjRBoIdryzYUFp9GTguKpaOEm1Fy2DovkwESxaB4AFzJlBlpk/+rbROJGyUGBNFwgYRUy885wu4v4DoH2v+VyNYIOuvslAZxLTLTY+quQD2d0eQyFXzB2kkxT803XETXa8s2MG2AYHjomLpKNFWtAwbEnG68gt8fhaIoKcjzMZEnJ64STrrMNgbZd/rN7O+L0Y669DbFeXum3Zw943bC9v0xP1Frrtv2lF4bl1PhHjUzMevZSErwV/0ClwDPSJhg3ftuZzfuHZzyew5pGt0REOs74vNK86p5gL4rj2Xs+/1m4mYBkKsvCNfowgWc2FhwYb8jDx4D/OOi4qlo7JHWjibYim08vkutvUYLO58K/WPrJQ9spRqyUX1VMz7hFQ6ZmAUdXY8Xcgx1zXBUF+US9Z18MQvxxpWph5QLNLF/w7SGqsJdqI7wmUbu/jZyYl5hleNopWv51oow6gatOuHXo1WP9/FNvlt9fNdLCt1vmfHU9z34JNMpyyiYYPf+40r2bG5d827prfr56tS/hRtw86tiWUbOrUzjz97ji8ePr5g8dHjv7hQ6JDuFbVDCxz69l27pcS3pHiGHTI0vvaDX/HF70lOX0hVHUuwzhsy/LL+rrhJJucU7GKLnf4W+2N8MaNm2m36S10Ndb7NR4krYEhjKmWRyjhI5kT08ePnV934KWAxIZG69sdcQVM8YnD9azbyw6dHFxX2CmiFz3cpKMMohaJJCeL0UykLkJweS5PMCzb4NqdfP/J8cwh2bPmCHeCnbfpGV4cfO121m71iPio8omg7imeugfdIs95qF7sCTs7m1no4JRQLdmfMxDAaI9jBD5LAL7ZxXIeEUZpGqbqyV0eJtqKtKM4wiUUMJmcyPPDtEwBNI9xBBshLF1JNW1RTLtihBgl2MRI/88XQdWZSFhnLxbZ9OwEpIRY2OHZyrGk+t2ZhVcIjBw4c4Prrr2fbtm2cOHGi4jau6/JHf/RHvOUtb2H37t186UtfWo2hKdqMct/siGk01a32sZNj3P/IcU5f5IIdGHZFTJ1Xbe1jJm1h265vBFWUXvjAt09w7ORYQ4/d6qyKaN9www088MADbNxY3Y3roYceYmRkhMOHD/PFL36Rv/zLv+T06dOrMTxFG1GtZLxZbrUPHR2pajjVDJQKdmhFBDtoYDDU5xc+TSYtuou6jwvhm3k5nmyqH9xmYVXCI1ddddWC2zzyyCO8/e1vR9M0+vr6eMtb3sKhQ4d4//vfvwojVLQLie4IUymrxJyp3AtkLRmb9pvrNiPzBVtvmGBrAjb0xyo28/384RN0xkLMpi3fnAu/gtJxvKb6wW0WmiamffbsWTZs2FB4PDQ0xOjo6BqOSNGK7N01zAPfPkEOf4adtZx5XiBrSaI7wkzKajrhLhbsjgYIdkfUYNNABx++4zULbhv80AZNI7S8r0kl8y1FE4l2o+jv71j0a2rlRLYj7Xy+Nwx00t0d46vf/xXnJ9Ks64tx25tezlU7Btd6aAC8c892PvnFJ7GWmSkSDmkYhk46Yy87Nl4i2NEQ5jIFOxrW6IiavHPP9rqutXfu2c5ff/UY8WiIqdkcLn5mSUfUAMmC+2nn67kSTSPaQ0NDnDlzhp07dwLzZ971oopranMxnO+liRgfut2/joLzbZZzvjQR4717t1XMHtGE35Qhm7NJZf0sCkMXhHRBxpqbmfd3hXn3W7cBzPMhWSzzBDu0eMHu7wpjOx6OK9F1wcZEnL27hrk0Eavrfb80EeO3bni53+TCdgv7GeiOLrifdr2eW6KMfe/evXzpS19iz549TE1N8Z3vfIcHHnhgrYelUDScRpbil+9nIRH7d3/+A9L5hdBGCDZAJucuqalBMcqeoH5WJXvkYx/7GNdddx2jo6Pcdddd3HTTTQDs37+fp556CoBbbrmFTZs2sWfPHt7xjnfwgQ98gEsuuWQ1hqdQXDQEDQgaJdjF+1SsDsp7pE1vr6qhzre9Weh8P/A//w9Z2y0IdjwaIrwMwQa/CGa5M+2l0q6fb0uERxTtxR986khJM9v+TpOPf+DaNRxR4zl45NS8RrObh7rmmT8lM3MzUQHEowa242E7XuF14DetTefKto3ohE2DmZQNSLo7wkgpmUpaeJ5ECL85xFXbBjg+MsVE0qKvw2T7cA/HR6ZKXPMu29RDLGKQsVwAYhFj2YINqKYGq4yaabfpL3U1VuN8ywU7YC2Ee7nnW6kpwVXbBjjy1GjF/GFNAEKgC7DdxX21ajX31TU/nFHr0tYErOuLkbNcplM5umImXXETy/FIZWzSWZug9WUsYhAxjWUJtiZg3xs2r2mz3Xb9/qqZtmJVqSTYtZ5fSerxly73bg4Mp86MpUhlHVxvrlv66Qupmh7SXt44YylZ2LUkvkKf4YrHHh1PY+h+xWHGcunuELiuRzI9lxoYCy9fsLdf0s2H73ztkl+vWDpKtBVty7GTY3zhu7+CfP/FU2dm+MSXjyGA7o4wnbEQ5yYzfOqrTxMJ62xMxNk+3FPwdi6embbS7aiTn+G7lssLo7MlM/hY2CASXp5gAxx/cXrBbf7m4NMcffYCnpxriyalXJG2YxcTSrQVbcuhoyMYhsCyvbztqW+8L4HZtIWUkmTGRkqwbI+plMU3fzJCRzQEeDjNVbS4JIoFO9ogwa6Hvzn4ND9+5nzJc8EdS852Ofij5wGUcC8BJdqKhtPfaVaNaQdUai8FFMIS6ZxTmDEWt8BaqPFtMX54wy4KLczNl13XX8wrPPZcRsfTCCCdtVunNfoCzL2PG/AAACAASURBVAm2TixiMN5AH4/3HfgeUgb2qgLP83/oaq2SBXasrucvvBaLdkkHH1MHKcnanmo/VoYSbUXD+fgHrq2ZPVLueT2Vsrj/m8/6C3iaYCZtl+wvZ3t844fPc24izc+fnySVdQp5xmfHU9z/yHHuvnH7vLh0MmNXXbirpisyf7x2whfsUEMFG+bE2fXkoisyNVGa3118TQjhf64g6O00mUpZTeeJvpYo0VasCLWyRIo9rwE/7SwvKJpWeYYrJRx99oK/yCb8dlUI8KQgm3M4dHSk5At96OhIzUyLi4WIuTKCvVw8CRFzTn6Kr4lzszmE0ADJbMZhfZ9JLr+NEm3VI1KxBlTyvPZnax5OhTSJQMY9KQtx0QBNgOt589LvlJ2nL9jxaHMJdtBiTCJL8ruLrwnH9dD832Sc/MKCsmidQ4m2YtVJdEewylb5dE2gaxqGPv+SDCbMWj58UjyB9iTomjbPvjPRHSmEpZcSnRb4PwitGtoOBHs1Fh3rRdf8u6RwSGff60vzu4uvCUPX/A42+Pas0Fye6GuNCo8oVp1yz2vL8fyFp7woZ/MVe8UIAbt2DBRi2h4yH1OVRCLmPL/svbuGeWF0hozlzYtfd8dDOK4kla3smSHwxcKvO/PzLzQh6O4wefmGrnlZEc1GuEiwm6F0TstXbVZbMIbSa6IzFvzYCDqjBjnbbSpP9LVGv/fee+9d60E0kkzGWtSFGo+HSadXv+hjrWiG8x3sizHYG+X0+STTKYu+zjBvf/PLefVlCUbH01i2i+vJQkw6HNK4+XWXcsfubWxIxHnx3CyprIsQsL4/zp27L58nBoN9MS5Z18HJs9Nk8uJsaL71qa5pDPXHuGxjF2fK7FHDIQ0PSVfMJB4xCmNZ3xflt264jBtftxmB5MSLU02Zux02deIRg8nZXNMIthCCZMbi589PsiERY7AvNm+74msinXXo7QzTGTVwPOjrDHPbdVsqCn4zXM8rQbyo/Vo5qoy9Tctgq6HOdz4lqWYhjZm0zWxRBaHAz3EuLggpTj206ylXrINi572lEA7pxKPNI9iViJoal67vqlqNulja9XpWZewKRQ0CL+egU3oqW9oNRuKnpwUFIZuHugrpaSED7PnRnCWxXMHuiBlMzDSvYANkLI/nzs4w2BdTqXxLRC1EKhR5gk7pfrpZKX50W3D4sdMl6Wnp3NrndJshrSUEOyBnewghCId01W19CSjRVijyBJ3SK6WKSzlXEFIpZbESq5F9YhpafuHOF+z1fVHW98fQhL/g2uyoVL7Fo8IjCkWeoFN6tSWRwGp1Nm2RtebK7Kux0sU9pqHRGQ+VzLDPTWTo6zTZkIjjeJKZ1PIb/64kKpVv8SjRVrQdxQuLQwMd3PDqDXXFTPfuGvZj2pna2Qg52/Nv8Rs14CVQSbDBD+OMz1qEszZSihUT7ODcl7L/cMhPp7QcT6XyLQEl2opVo5JJVD1iupjXlfuaTM5k6l7s2rk1wd03bq/YKT2gOMNjrWawIUOjK24yXiMPO2dLljtC09DwpJx3R7H9km5GzqfIWg6aEPN8RzRR/S5j+yXdIETDskcuRpRoK+qilitf+Rew2rblJlH1iGklc6lar/vy908yMZvDc6W/eJifEv6vg8/wb/ZdMe815el+WdtjOpnzq/E0gSdliQCt9UJfyNDoXkCwyzGLqgproQn47H+4frlDVKwwKk+7TfM8q7HY8w3ykc+MpzF0je4O028QkPHtS2MRo1DV6Loeb7hyPT98ehTb8cjkXGzXQ9cEXbEQoZBeMIkC31e5J27y4TteU/X49z34BFMpq+R1MymLnOUSixgkuiOFfohnxlLzHAKLCYc0BrojBbvP3g6Tnx6/sGiHurViKYIN9Yv2WjboXSrt+v1VedqKJRHMcqeTFpom8CRMzubo64oUSs17O/3KrXBIJ4fvkWyGNGYzNgLQBXieZHwmR6I7XCK+9WQOjE1niUXmLtNMzmEmlUMiSPREGJ1Ic+L0FN3xMLkFEqZztsfZiQwbB+KMTqQ5PjK1tDdmDQjpixPsvAkinvQNmqqYJ5Zsrxr0tgZKtBVVCfKRgy+9yFuhzqSs/Oy0VD1MQyNrObienjdc8pVCF75wzKRs4tG5Rgjj01kyOZf3H/geEdPgVVv7mExahVBFEPukYmcryci5ZGFBLJNzsOtoNeN6/utaiVD+DmcxM2xNCOIRg1ds7uVnJyfIWg6xsMHwujjPjc6WeIYXN5lQND9KtBVVCWa5hqHhul7B+c7JhzzK/fN84yeDrO2iF/3Jk2DoAsf1yNkupqExPp0llXXQBHmTKIcfP3OeeMQgGtY5O5GpK2wRbFHJZGq1KW7tFdJhsDcGQtRsBLwQRhXBNg3/zqd4kVDXBJ7nx/JdTzKbtnnq1Hi+clMjk3P4xYvTeT/yucXCnO3x9SPP8/Ujzxf2M9RfvSNQOQePnOLwY6fJWA4CQTgkuHR9l1pkXCGUaCuqkuiOMJWy6IqF/MU9KQvtpQJXvkCEg5j2nqs38c2fjOB50g+N5J34OvMGTB3REGP5GbYmKFixyrzcZXIOjidb0hK1+CfGdmEyaeF5S6+YNHRBT6fJxPScYGsC9r1hM5uHuvi7Q8eZmLUKC66BYBePJ5l1gdIftIVm664neWksxV8f/DnxSIjppN9fc7A3wu1vfjkwtwAtpWRiNuf/YEn/c8xYvqHWiRen6O0MEw0bZC236mI1+OsUjuuVNP0tX9AO1i6KF7hvqBH7bVfUQmSbLmRUYzHnW5y54TguMykbx/UKNptAxS/VC6MzZC0PBAXh9uRcJkdwxQnh3/pD6SKZrgk0MVfMcjHiC3aYiensmnfgCXywpfRn+KGQUViAfvF8suqPQHDnoQfuirpWslit6xqZrM10yl88DhwBJZJd29fxqzMz6LqGaWjMpCxm0hbd8TCdsVBhkvB7t/8rLk3Mdw1sdWotRCrRVqJdk3pzpMsFfippldy6F4cOitE0gaGJEtFerttdq6Prgt4mEWyYyz5xPa/QJDnwHC9eRyj/jIPP0dA1DF0w2BcjZ7vMJC26OkzCIZ0Xz80WzjH4EXc9/45uXV+0sHA9OpHGcTxChlawds3ZLgO9MT50+84VfgdWH5U9olgygQPeQhQWLV2PyaQ1r1qwmvZ4nsQt+6sS7OYR7ODuyG/1Nve8hHkLv+XDLQ7pBG3kgsXqhBHJ73dO7Iu3tz1Z4u/iOF7JfoJ9nZ9IL/MMWw9lGKVoCIGJ0kzaLskcqUWwhev54hAL636svE6CPoLtgq41l2DD3OdYvii80PseLFPrWrAQPRcGi5hG4c5KE3NiP/cD4R+3+O7LMLSS/QT7WlehoUK7o0Rb0RCCHn+OM+fJUeuLLYQfGomF/QKZS9Z1MNBbuatJMUY+xrl9uIfP/ofrEcIXhlZcuCxG1wS9Xc0l2OCLteV48+5+yodYbnqoaX7bMBBI6dEZCxXahu25ehNuPpPI38ZH4M/eXU8SMgTj01m/OlVKoqaORBING0gpC/u67U0vX4nTbmqUaCsawt5dw7j5VEBJ/rY3v4BVCZkv+njV1r55jX5rNeSV0iMSNgql8Yau4XqtHVJpRsHW8mmB2kJVOUA4JOjtirC+P8bwYAe9nWE0oSGBob4oQ/1xpISeuMmduy9n37VbuHP35fTETUKGTqI7kvc58ffXETUY7IvREQ2RyjhMzuZY3xdj3+s3M9gbJZ11Cvu6asfgyr4RTYiKaSsaQhD3nit592/1HVcWFeOUIoCfPz/J9a/ZyA+fHi00+o2aOumcW8gnLo6lDvXPNYg9dnIMQ9cWLM9uZgqCPZNrCsEWRf/ojodJ5xwsq3zVoRTLkYWmEABdcZOwqde0KKi0VlJuWVBpP/uWc3JtghJtRcMobtsVZJwM9kZ5795tHDo6wqkzM/l4pb+9JyVZy+X4yBR37r688JrhwU56O8ySSr7i/owBh46O0NVhYoY0ppKt19y1EMOeyS0q42mlCOl+JHqwN8JM2qYzFmImZdUUbF3zf1TLm0IspblBuWXBUvfT7ijRVjScSrOozx8+get56Nrcl1vgh0jGprN1Z6kUE3zJw6EwWcvFcWUhu2AxaYPV0hHr4dL1nZw+n1y06ZQWCPZsYwU7HNIX9GApxjT8FLtwSC8xiwpmvYah4VWZafthLD+n3nK8El+ZpTQ3CIq5lrufdkeJ9kVCMPudSFr0dZg1862DLuMgGeyLzSukiZg6SFlwy1vIkvXQ0RGmkxau5+f6QqlQprMOB4+c4vFfXODcRJri6rviMQb7PzOWwnH9xaiZlEU0rON6siQdbDEqHFQULiUufmYstSTB7lsBwQYWJdgwV9SUzjnc/affA6C/0wQh/K7u1HgrJUgh2bXDL4QJwltLbW6wd9cwD3z7xLL30+6sWnHNc889xz333MPU1BQ9PT0cOHCAzZs3l2xz4cIFPvKRj3D69Gkcx+F3f/d3ueWWWxZ1HFVcM5/iwpd4xCCVdXBdjzt3Xz5PFO//5rOksk6RiEnCIQNDF8SiIVzXY2ImCwh6O00MQ59X5RZ84YrtW9MZu6ptaiysk7FcXwQq/L2/0+SNr9rAt346QtbyKm6ja/54l6qBIv8rstJfBk0T9HdFGJ/JNkVIpBoCiJgaGWv+ekHwg1sctlpqg4tyFrufdv3+NkVF5Hve8x5+8zd/k1tuuYVvfOMbfOUrX+F//+//XbLN7//+77NlyxY+8IEPMDExwW233cbf//3fMzQ0VPdxlGjPp3iBJ5SvYqvkZX3fg0/k486ykJ/rSXBdvxJtKBHn3EQ6X+noLz6tr1DlFnB2zDdKCl5n2e48UQ3pAk3XyDXI8CkS0rFdF13TEEJguy7S8zNZ/MKOtTOW0gT0dUeZWAPB1jSBLPMmqYVgLi0TRElF40Ie6KtJu35/17wicnx8nGeeeYbPfe5zANx888189KMfZWJigr6+vsJ2x48f573vfS8AfX19bN++nX/8x3/k7rvvXo1htiXHTo5x8qVpPCkJGTq9XX56VaUFHr8buS/Idr6UWOSLH4IQgON6aEIgpV+lBvOr3AJcT+JJybmJNFnLLeRUu54v1kL4nWGcBmZ/ZPPhgSAMownQ82XUXXGTrJVp2LEWQyDYk2s0w17sMYMKRS//A+24figoYmqMT2X5vz/5KK4rMXTBhkS8ZritETNwxRyrkqd99uxZBgcH0XV/FqbrOuvWrePs2bMl273iFa/gkUceQUrJiy++yJNPPsmZM2dWY4htSRAWEcIXSMeVXJjMkMk5FRd4Et0RRD7FTgblxUW+EODnRXv5MIJhVK5yCwhCLI4rC/92vbnb66DCzSivzGggvlmVh+N6zKTWJsPEF+wIkzPZRce/mwnb8ZhNOzieRzrnkLNdUlmbc5N+H85jJ8dKtg+uv6mUVdIqrnw7xeJoqoXIe+65h//+3/87t9xyCxs2bOCaa67BMBY3xP7+jkUft9atSCvz3S8fI2zq9HdHuDCVyYulZDpp0dsZ5p17tpec+zv3bOej9/+k8Li4vNj3nvDo6QxzYdKfrfZ2mP6MVsJvvGkr33vsRVzPK2QwSCkLpea6JgoGUpo2Fy/v6YxgO27DwiOV8DwwTa2uJgmNRgjf4W5yJtfSgl2OhkDTRSFts787zHefPMMN17yssE1w/UVM/ztshnSyljNvu+XSrt/faqyKaA8NDXHu3Dlc10XXdVzX5fz58/Ni1X19ffzZn/1Z4fH+/fvZunXroo6lYtpznL2QJBYx0EMavZ1hZtI2rivxPMlv3fByLk3ESs790kSMeCREJut7WkPQlzBEzvboiPhe2EP9sUL2SE9HqHDLu64rXHIrHI+E8q3HHBxHEjI0pOfhSdjQHwUhyFouA91RLt/YXbNfoyYCv+Yqf2N+9kdxhoppaGhCkLXdVQtPCAH9XREmZ9tLsIMf3OBuzHZcNCE4eyFZcj0F11/xj2Wl7ZZDu35/1zym3d/fz44dO3j44Ye55ZZbePjhh9mxY0dJPBtgcnKSzs5ODMPgxz/+MSdOnOCTn/zkagyxLSnOe41FQsQiIVzPF99qccWNifi8XNmc7ZLoji64+FSeax0sgK7vm2sxVmsha9cr/Pjn86Mz5GyvIAp9nSbv3rud58/OcPix02Qth4jpt8468dI0AoFe5L+dTx8uiHg4pPEXH3xjITsmmbHnLYgWd3JpBPUItgDCpr4ii6NzBUxL30fxj15xdk3wIxn0oAyqUiuF21TedeOpKdr1dt3QtIVjkvfeey/33HMPn/70p+nq6uLAgQOAP5v+4Ac/yCtf+UqOHTvGf/tv/w1N0+jt7eUzn/kM0Wi0rjEo5lMp7xVJzbzXRubKLnZfCxXY7NyamFcVGbS6ylpOvqWZRMs3UQgE62354+3cmuDum3aU5KFHw4bvTCgEuii1H10qQUhkKll7hh0NGysm2p2xEK4nSWacJb0+HJq7XoDCf4Xwx5213cKidTQcrvi5qrzrlaFmyt/27dsRddinPfvssw0d1HJQ4ZFSylfv37ln+4KdPhq54l9PW6nybYPiGV0XdMdChTBKPWM5eOQU/3h0pNC41tAF0bDBxnyGA8CXv3+ScxNpPOnH2qX0cD2/Y4ppaHREDITmh3KSWb9hsK5peNJbUNQDwZ5O5vwfEJhXoGIaGjdeM8zmoa7C+aaydkmDgWAmW3zHUA+GLujpCAP+TLe3w+SJX46VNPItPkY5sfBcg+UzYylytps/fz/l76ptAxwfmeKlsVRTZI+06/d3yXnaL730UuHf3//+9/nWt77F7/zO77BhwwbOnDnD3/zN37Bnzx7uuOOOxo54GSjRrs1ane/BI6c4+KPnEczNgiWSfa/fzL5rt3DwyCm++eMRHM8Pi1SLU2sC4tFQiQiXtzz74dOjOK5kKplblOCZhkbE1IlFQ4UWV4vxNCkX7NJxz0mxV2NQmxIxJmYt0jlnziExv7kZ0goGWq7nL/J2xU2iYYPplIXrSsyQzvq+6DxxDMTzpbEU2ZyL7c6lRAafh6FrdMX9UFarpOe16/e3IcU1u3fv5itf+QpdXV2F56anp/nN3/xNvvOd7yx/lA1CiXZt1up8/92f/4Cc7ea7uPsEnhf/Zt8VfOprT+Pl87oXuiJ1TTCQt+hEyoLIWo7H+HSWjmiIZMbGznt7Lyasqwm4ZLCTdNbmwlT9RkW1BHs10DQQeY++rriJoYtCxWuQemc7HtMpa8H3tzseIhoJVayabTba9ftbS7TrTpCdnZ0lkyktTMhms8zOtt8bpmg8WctBK4u0acJ//tDRkcLMMVh8rEUg9qmMxWzG5vxkhtPnk5yfSGM7HpOzuULGwmLl05Pwwujs4gQb6OuMMF3WF3M18bx8Q2RNkMk56LrGoaMjwFwruIzl1nXnMZu2CYf0kn0omoe6s0duvfVW7rrrLt773veyfv16RkdH+bu/+ztuvfXWlRyfok2ImIY/0y5SZE/6z49NZ/MNXb1CEc5CM+R0UQx4LXtTC/zCGV+w197XO+ijWFzxGrgh1lN5GmSEgLJFbVbqDo94nscXv/hFDh06xPnz5xkYGOBtb3sb73jHOwqVjs2ACo/Uphlj2sdHphidSDObsUEuLYNjOfaqS6XZBBv8MI2ha/R3R3Acj3TWIZ1bXAZJECLK2S6GJuiIhpq2DL1dv79NYRi1WijRrs1Knm+1TIHg+edHZ7BsiUT6M24h8Dy/6EbTBK7rYTmtczn2d4eZSdlrUmlZCyH8WXLO9paUfx7EtCutGTRbnLtdv78NKa6RUvKlL32Jb37zm0xMTPDQQw/x2GOPceHCBW688caGDFTRuhTbvxb7TDx/dqZg2bquN8Zs2mZqNoeTr6rTNd+bxLWbS/gWoq+rOQVb1wS6JsjZfpperUyVShi6IGT4Lb4MAY6kUBwTDunk8GPkzSLaFyN1L0R+4hOf4Mtf/jLveMc7CkZP69ev57Of/eyKDU7ROgSLXeGQjhCisJB1+LHTheezlstsurR9leu1Xif1vq4ws+mlC3ZnzJ8r1dEzd1HomuBlG7pY3x8r7L+ehV1dE1y6vpPhwQ56OsLc929fz4fveA1Z22tIGzFFY6lbtL/2ta/xmc98hptuuqlQcLNp0yZefPHFFRuconUYm85W/IJnLafwvO+yNychwb9ayZejrytMcomCLYCuWIh41ETLOy9W3C7/dDi0OPfDYtdFTQi8Imvdel9XXGKe6I7Mc25UZehrT91Xheu6xONxgMLFlkqliMVqV9cpLg6qfcGLLVt9L+7S1xXbvzY7gWAvpvt7cL49HSaXDHYUuv/s2jGARM57P2JhnUR3hP/n7Tv5q99/E79x7ea67kQ0AZ1Rg6zllOy/nsl8Z9TP7CkvMd+7axjX9QqOjZW2Uaw+dYv2ddddx5/8yZ9gWX6FmJSST3ziE7z5zW9escEpWodqX/A9V28qPK9romRWXV7e3cz0doVJZZxFCTbkMzm6wqzvi5HOOvTETe7cfTn7913JvtdvJmIafocYIYiYGsODnSULffuu3cItb9hcMuvWtXxnGfzQRqI7wob+GCDo7YpW3b+uzc3iBdARNdiU8F8XjKs4Vr1za4I7d19OT9wsGbuKZ68tdWePJJNJPvzhD/Poo4/iOA7hcJg3vOENHDhwgI6OxXtYrxQqe6Q2a5k9cmYsRcZyiUcMPE8ym7GR0g8DvOayBP9ycpxMrtQ8KRbWyeTmdwMXojSneKlowr9zlFJW3VdvZ5h01ll009xwyC8LX02hU9dze7DslD8pJadPn2ZoaIjp6WleeuklhoaGGBgYaOhAG4ES7dqs9fnWMhD6m4NPc/TZCyUZD+XNY4sd+rriJkIIv+di/iV6vheiRz6GHA/RGQ0xnfcSD/w/dF0U/EuC4/v+Jy8ULF6hPsHu7zQZny31KDENwZYN3aue17zWn+9q067nu+yUPyEEv/7rv84TTzxBf38//f39DRuc4uKimv3qwSOnOHr8/HyDKA1++PQom4d8z5uc49HfE8FxXCZnrYLA65rv0ud5fmszQ4ArYTplM5OyMXRfqLNF3cWPj0xxfGTKP44QGDolgt3TGS601YqaGpeu72q64hLFxUfdedo7duzgueeeW3QnGYWiHg4/dhqBQArfaT+ocExnHTpiZsEDI0gfnJzN+fHZvAbruigU5khZGjaR+GJs1/AF8aTEKioc7Ok0yeScQhu0rOUVcs8BJdyKNaNu0f61X/s19u/fz6233sr69etL0pVuv/32FRmc4uIhazn5hcq554KYdXFucDJjlcyWAxa7QFiLng6TbK60b6VEFZcomoO6RfuJJ55g48aN/PSnPy15XgihRFuxbIKWVQHBnFgTc7nBp8/PVhTsRtLdYZKzvYrdZF4Y9WOno+Np7v7T71XdhyZgQyLO7W/aqsRd0XAWFO1MJsNf/dVfEY/HueKKK/jd3/1dTNNc6GWKi5DiRcZISKu748yxk2PzRDvADOmMT2VJZWyS2ZXr2A6+D7Vle2QWabBUjifh9IUU9z9ynLtv3K6EW9FQFhTtP/7jP+bpp5/mjW98I4cPH2Z6epr/+l//62qMTdFCFHuPTCezjBXp60zS4lNffZpIWC/pOPP5wycYn87WzNUOZrx2emVn2F1xE9tZvmAXk8raKpSiaDgLivajjz7KV7/6VdatW8e73/1u7rzzTiXainkE3iMzySzl2XFW0NrKFoxOpPnkV45RZ8/oVaErbuK4jRVsANeVnBlLNXSfCsWCop1Op1m3bh0AQ0NDJJPJFR+UovUIjPbTuepqbNkujuc1nWC7ru87vRKsVScbRfuyoGi7rstPfvKTQncQx3FKHgO87nWvW7kRKtaUertpJ7ojTKUWaIIrFnacW006YyFcT5JaIcHWND8VUaFoJAuKdn9/P//pP/2nwuOenp6Sx0IIvvvd767M6BRrSjWPbJifp7x313Dhb9UQRf9b6/lnRzSElJDK2CuyfyGgK2ayvk8Zqikay4Ki/b3vVU9tUrQ3xR7ZUDtPOXj82YefIZmpPHOV+DasQR/ItSIeDSGE38C2EWgComGDdM4pnJeu+V15lCOeotEszrBXcVFRzSO7mgn+zq0J3n/zFYSM+SEBQ/eNnT0JsYixZmGSeNRA10TDBBv8c0plnULDgcBVr+W6OyhagrqLaxQXH0GcOphpw8Im+IeOjtDfHSUc0hmdSOO6vnWToQs2DsSYTuawbA9D95sAdHeYxCIhMjmHC5OZFQ2bxCMGuqblmzE0FiEgpGsMJeKF53K2q1L+FA1HzbQVVVmKCX7x7NxxvPyMWpKzXF66kCSZsX0DprDhe4I4HhMzGS5M+YId0lfmkoxFDAxjZQQb/HCPW5YWo1pzKVYCNdNWVCWYIdaTPRJQPDs3DA3HcQt+IsXpb0KA63pMJUtF1HYbnw8YixiYhs5UMtfwfQcIAbpW+oOjWnMpVoK6myC0CspPuzYrfb7FGSeO4zI2vXJCWQ/RsE7YNJiaXf1xhEMaA90RsrZX1w9eI1DXc3uwbD9txcVFvbnZ5U0JBvti3P6mrdy5+/LC69eSiKkTDulrItgAOdu3c+3riihbV0XDUDPtNv2lrsZC51s8UzYNjdm0TTJtF3xDtg/38PgvLnB2PN3UXdQjpk7E1OeFX5qBkA6DfXGQsuGzcHU9twdqpq2om+Lc7EzOYTZtIaVv3PTL03OdXpqZsKkTDRtMrtEMeyFs13cB1DVBb6epZuGKRaGyRxQlFGd/+JkWfv2i7TSXZ0g1wiGNWBMLdjFCwGzGIRzS0XWt0J1HoaiFEm1FCYnuSMHX2nE9NAGu1xyl5wthhjTi0VBLCDb476mTf69VeqCiXpRoK0oozs3223/5Uq1pjSnwM3SBtgKFgqah0RkLMTHTGoIN/o+gkb+rUemBinpZtZj2c889xz333MPU1BQ9PT0cOHCAzZs3l2wzJlNwHAAAIABJREFUPj7Of/yP/5GzZ89i2zbXXHMN/+W//BcMQ4XeV4vi3Ox0xsaTLr68CPx+58tjJaxKTUOjM95agg1+QU5n1KiraEmhCFi1mfYf/uEfcscdd/Ctb32LO+64g4985CPztvnMZz7D1q1beeihh3jooYf4+c9/zuHDh1driIo8O7cm+PAdr+EvPvhGPnDrlQz1x5FSYuganTHD9xFpEkKGRlfcZGImt6YmVLUoL/IM6bBpIM5QXxQQ9MRN7tx9uVqEVNTFqkxhx8fHeeaZZ/jc5z4HwM0338xHP/pRJiYm6OvrK2wnhCCVSuF5HpZlYds2g4ODqzFERRV2bk2wc2uiJHd7Y6KD7cM9/PDpUVIZm4zlrolgGrpGd9xkfCbbkOObhmBdb6yQireYPpcKxWqxKqJ99uxZBgcH0XXfeEjXddatW8fZs2dLRPv3fu/3+Pf//t9z7bXXkslkuPPOO3nta1+7qGP193cseny1ciLbkaWc7w0DndxwzctKnnvV9vV89fu/4vxEmnV9MV65tZ+nTo4XHt/2ppdz1Q7/R/fXf/8bDRl7gKFr9HSaTEwvTbBNQ+B48I2P72vouJoBdT23N00VLD506BDbtm3jb//2b0mlUuzfv59Dhw6xd+/euvehimtq08jzvTQR40O37yx57i2v3ljyODiWJgReg6bjhu7nN49PZ1noo67k3S3yGTGRkN52n726ntuDWj9EqxLTHhoa4ty5c7iu3/HVdV3Onz/P0NBQyXaf//zn2bdvH5qm0dnZyfXXX8/Ro0dXY4iKFWbXjoGG7McvSAkzPpOrKdjhkIYQc51yivHTFyV7rt7UkDEpFKvJqoh2f38/O3bs4OGHHwbg4YcfZseOHSWhEYBNmzbxgx/8AADLsvjxj3/MZZddthpDVKww+/ddyeuuWFez+UFIF5iGL7a6LuYteOqaoL874gt2DcU2DcHLhrq45Q2bGV7fVZJmKARETIN9r9/Mvmu3NODMFIrVZdW8R06ePMk999zDzMwMXV1dHDhwgC1btrB//34++MEP8spXvpKRkRH+8A//kLGxMVzXZdeuXfzn//yfF5Xyp8IjtWmF8w0WPV88nyw03d0+3MNbd13C175/irMTGQKDqqu2DXB8ZKqquVUrnG8jUefbHtQKjyjDqDb90KuxUudb7vjX3REmEtJKDJG+/E+/4vRYuvCacEijM2YCMDGdpbhKXhMUwh+aJkh0Rxifzpb0mBSAofteHpXQhOAVW3qxba9uP/BWR13P7YEyjFKsKMdOjnH/N58llXUQAjxPMjadRRPQ1xVmKmXxF186Nu91OdvDms5WLNipJtgwt7AoqS7Y/j4kT52cKDwem87WNLwKhzRec1mCyaR10Yi8ovVQoq1YMsdOjvF3h44zPlvZ/tSTLNgEodY9kSZ8wZ6Yya6KDWzO9vjxM+fpiBrKA1vRtCjRVtRFeWOE7cM9fOunI2SslbH+0wT09/iCvRKl77VIZhySmSSagGjYUM15FU2FEu2LhEB0z06ksfPd0EOGRjJjYzseEdNgz9Wb2HftlsK2Z8ZSOK5ESg/LkQQeJBOzuRX11dYEJHqjTEznVl2wi/EkpLIOvxiZ4r4Hn1ChEkVToES7jSkW34zlEtIFluMhJaRzc2Koa5DJOXz9yPP849ERPOmbMGUtBxBloYmVFVEhINETCHZzGHhLUKESRdOgrFnblKBt2FTKIme7eJ4knfP/q5d5o7renBTnbA/Pk6SyDlIyb9uVRAgY6IkyOds8gh2gGhUomgUl2m1Kcdswt0ioy+fJosK/q227kgh8wZ6azWE7zSXYwe+WalSgaAaUaLcpxW3DDF0rpNCVZ+VXCnxU23alEMBAb5TppFXomrPamIZWtTlDV9zPJVeNChTNgBLtNqW4bZgvOhIt78VRK30uHjEK2wIrHqYoFuxcraTrFR6D60mEJnzPkqLnO6IGXXFTNSpQNA1KtNuUvbuGSWcdzo6lGJ/O+HkfQhAN64RDOl2xEP1dYcIh/xIIBEpKD8eVhdn2SqdHJ3qjTKfWTrDBv8NwPYnrSnK2V7jjkPjpfyPnkoyOp7kwleXzh09w7OTYmo1VoVDZIy1Oef50SVqalHhS4k+WfSkSmqC3I1ww+n/ZUFdh9vj/ffNZ0rnVC08M9EaZTVnkrLUT7MUyNp3lfx18hn+z7wqVRaJYE9RMu4UpzhCJRYxCWlog5JomkFASq01lHF4aSxVMl4pT2VIZ35ypUmi30TkkiZ4oybRNtoUEO3gPMjlHZZEo1gw1025hijNEwE9Ly+WfH5vOksm5CCgYMfk+0v7/CQ1mMw7r+8zCaxrVpGAhEj0Rv01ZzlmV4zWK4rDJC6Mz3PfgE4xNZ8laDslM6bn4ZlYaXTEDoWlMJ33/b10ThE2d7lhItTJTLAkl2i3M2HSWWKT0IwzS0hLdESZmc+ii1GAp+K8AnPxCZfCaRnaXqUaiO0Iq47ScYJeTsTzOTWbI5uyKpfy+mZU3z5fF9SSW45FM22gayuNEsWhUeKSFKc4QCQjS0vbuGkbXBJ70i1aKCWbcRj4lMHhN0F2mkmw3QsoT3RHSudYXbPBDTpmcsyzvFSE0ZtO2KtxRLAol2i3M3l3DuK5HznaRUpakpe3cmuCma4bRhCgoriby8e387LszapS8Juguo+VVXuRfI/L/i4X9rJN6Kf6tSHRHyOQc0tnWFmxd87vg6JpYVjpksNYQ7EMV7ijqRYVHWpjgVrpa9si+a7eweaiLQ0dHeGkshetKzJBOR9QoZI/0xM2S1+zfdyX7yxqU3/fgE0ylLDxPMjGTxdC1EsEydDHP2KkQP8f31M5YbqELDfjtxKSUdMVMMjkXx/XyPw5i1SsiTUNbsKhH0wSXrOsAYHQijeN4hAwNx13aQqrAT6c09NK7HYViIZRotzg7tyZqxkHL/77YTh/HTo5x8qUZPCkJmhwZuigR5fJinXLBtmyPVMYu2cZz/Q400ymrrPJydV396rFW0XWBJgQ528U0NKKmzozjEg0bCOSSQyRSenTGIqpwR7EoVHhEUZUgpTCIiXvS/5/reSVx8mLRLYrG0NsVxnElyTLBBn8bT65eqXwltl/Sja5puJ5XVbwFEI+EuOmaYXriJumsw/q+GPtev5nB3ijxqOnfuVTBD6XMPdY16IyF2JiIMdQfR0roiZvcuftytQipqAs1074IqVmQU0SQUtjTGWZiJluYQXseaLqgK2wwk54TZFGUqdLbGcZ1JTOpyl1tFks8YmBZLnadJZqxsMGrtvaRtDzOXkgSMfVCSKj4nIvfC4DJ2SxB5EcTsCER5/Y3bWXn1gRlUaN5j8up931WKBaDEu2LjMefPccD3z6BrmslBTkwP90sSCkUQtDXFWEy78AnAelJZmsIticbJ9hASTy8Fprg/2/v3qOrrM9Ej3/fy77v7OzcCIlAUdSQeitCS+cUZ1EvEAW8UukRUYdK15p2VntsV9Ue6621a4lTZ2ynzun01PEGnbZqixaUUet4EKuo1RZHBOTWcAkJSch1Z9/e93f+eLM3e4edkECyk508n7VcmuRN8nsJPvuX531+z0N1mZ/v3/p54MTpoBOll07FSH5tMXFJemSC+e3ru9IHcjRNG7DcrLzYS2ckQWNrhNaO7MoGWx1Lg2QG7HCRG6WgvWv4AvZQ2Ire055CjE+y0x7n+v6Kfri1h1Agu2wvs9ws8/p4wspKf+R6SJgZsIuDbkCjrWvgYb4jzbIV/+snb1BdHuDC2kre/7gxZ4pC0heiEEnQHsdSDxIzUyGRaAJNc9q19sSSdHTHSSQtPC6TFzbv4c3/Poxh6GgafQL28TIDdijgRtc0jnaObsBO6Ygk6KhvY3t9G25Tozjo4ZMDztsaTkVIejiEUhztjLL7YAeL/mZaukwyc4jx9vo2Ce5iTJCgPY7l6k1SFHDR0eUE447uGOCcnHG7dDa8XU/Q58LvNWg8QfDVtWNtW0N+N6ahH5dCGSviScWRtmNrU5CuK0/929DBVorf//GvBHwu/F4Tv9fkcGuEnQfaKA54KPK75Mi5GHWS0x7HMqfXpISDHrweg1jcQqFhmjqlRR6Kgx4sWxGJOgE9ddgll8yAXeR3YZpjN2APlq2c+7JsRTSWTOf8e+IWGho9seQJnwEIkQ+y0x7HyoudZkSpnTZALGFxWnnA+VU/7EXLiMwuQyeesJwTf1bu0rrMgB30uXC7DFrGwfFrpTIPCx07LJNM2lnHzUGOnIvRJTvtcSxXb5JkUlE3d1rOZlOG3ps6SOY+bOJ0AXT+O+hz4fWMj4ANx05xGjoY+rH/LUxTzzpuDnLkXIwu2WmPY7l6kyxbMJNPlfsBWPvKTmIc672RsBRBn0nSUsdNk8ls2xrwmuMqYIPTACroc2H3tkXMdWRdKaetqhw5F6NJgvY411/vkVwBPdKTIFzkQdM0Dh7pSqdIdF1zghn0PqBz0dzeM6pH0IdK1zV0FEnbSfG4TOcBbSjgPu6kJBz7c5lc6mf+Z6qlekSMGRK0J7C+AT3Vzc/jMno7+VnZAdtjEvC5aGkrrIANTpAuKfIQDri5/YYLT3h936B8oiPrQuSL5LRFWmYOPOA1nSEKvQHb5zEI+J2APdIT2keCz21IWkOMC7LTFmmp3eWGP+7jr+3RdMtVn9ugyO+muQADtq47Xfoml/olrSHGBQnaAjh2pLuprYdozCLeW0Gy/LKz+eRAO/VNXUytLAIgEk3Q2uF0wzMMDauf8sDRFPK7eOQbFw25f7gQY50EbZHRN9s5RNITcypHTFPn//3lEK0dUUpDTolbJJrIOl04lgJ25vCF/urMhSh0eQvae/fu5c4776StrY1wOMzq1auZPn161jW33347O3bsSL+9Y8cOHn30US655JJ8LXNMytXYCI4fM9b3fSVBN3/Z3Uo0nsTrNlnw2Sl85ZoL0l/3hc17ePndA0R6B+1mjt1yHtx5OXikuzdNEqWs2EfLGD75mArTuu78BiDEeKQplZ86gJtuuonrrruOq666iueff57nnnuOp556qt/rt2/fzs0338wbb7yB2+0e9PdpaelKPzwbjLHy63PfwIxSbN/fnnWNy3AmeJ9onuFA5l94Gp+ZUcbT/7mDlo5j/UUy0xwuU6c05KWlvSdrx2rocAqzbPPCZeoEvCaTS/3cfsOFY+bnmy9yv+NDRUVRvx/LS/VIS0sL27ZtY/HixQAsXryYbdu20dra2u/nPPvssyxZsmRIAbtQpdITbd1x/F6TvQ0dxwVsgITFKQVsgNffP8i/vfBRVsA2MwO2oeUM2DA2Anbq1L2Gs+7Uyc1w0M20yiBlxV5cpi5VImLcykt6pKGhgcrKSgzD6YFhGAaTJk2ioaGB0tLS466Px+P8/ve/54knnhjy9yorCw75cwZ6VcuHPzy7FY/bwOt2fhyxxMhEx1TON5WzhuxJ6qahURb20dwWHZM5Yb/HYFJpgEg0kW4BO3VykC+cX82Hu1toao0wqdTPtfPPZE5tZfrzRvvnm29yv+PbmHwQ+eqrr1JdXU1tbe2QP7cQ0yMNR7rwe00Sp7iLPpG+fyp9A3Z52EdLezSrOdJYMXNqMbcvn93vxy+ddVrW26mf6Vj4+eaT3O/4MNALUV6CdlVVFY2NjViWhWEYWJZFU1MTVVVVOa9/7rnnuO666/KxtDEhVze+kZYVsHUnYLe2R0mO8AvHyTB0ONgS4aFfvs/MaWHe295E49EooKgs9TO1InDcA9cr550x2ssWYkTkJWiXlZVRW1vL+vXrueqqq1i/fj21tbU5UyOHDx/mT3/6Ew8//HA+ljYm1M2dltW8yePSRyRFEvSZRGJJdE1P76YNXaO8xMfRjpjzPs150JHZqnS0WTZ09SSob+xke31b1scOHOnmwJHu9NuRWJJ1m/exbvM+yorc/MOyC9MNsmS8mBgPjPvuu+++fHyjCy64gH/6p3/iscceY8eOHfzwhz+kpKSEVatWcfrpp1NZ6eQgn376aUKhEFdfffVJfZ+enviQ+mIEAh4ikdEZQptSWeqnssTHgaYu2rvjnFYeoDzkobkje3rMzKnFlId9g+7l7DY1qsoChPxO3+vKEh8+r4u23nywoWtMLvPR2h7DNJwj6/YYCtZ9JYaYZ++JW7z7UQNTJgVpPBph7Ss7iSdtvG6D7liSv+xqprLER2Wpf4RWnH9j4e9zPo3X+w0EPP1+LG8lf/kymjntVN1zTzyJhobbpTF9cig9Y/BQczdJS6GU7bT47LOZ1jWNubUVrLryXP7vC//N2x83pV+AdCDgd3FaeSC9Q0xVnSSSNm39TD8vC3lYsbCGT08v5WfP/zfv72wGoLzYQ3mxj8bWHuJJi2jCAqXGRIXIcNI0qJkaBsg5EGKwDaQKxXjN8fZnvN7vqOe0C0HqV+eDzd1YliJpWSQtZ26grml43TrTKotAKXYe6Ej3lgYn2Bp69k5QoYjGFdvr29ixv42A16QnlkQp+u3fYSvFW9ua2Ll/My2d2UHYBjojCQ63RtIzClMzIAcawNvaGWPNyzsoDfnYud9JLSz47FSWzDudgMfk9v/zR5IxhQb03chqmjMQYCw+mBwspUj/ZuL3Zv91lwk0ohBJ0IasHWskljzuaLatFJGYxSf7244LbKmP29bx709RCrqjSQxdx1YnDoB9A3amnriF12Omc7N+rzngw0OlIJqw0wF7ybzTWTBnCkGviVLOQ9DWzhhGxmT1zM/NNcFmtGSOOhssTSM9ZabvTlsm0IhCJK1ZObZjdYa49u9USpdTAfBUk1HJpJ3eIaZGhplm/z9Gt6nT1bsT/+Ks07j+0hqCPld6HXVzpzktWBXHDfLVeoOkhlPBMdpKgm5mTi0e0uf43AZ1c6flHL0mrVpFIRoD/yuOvtTU8mTS7jdoD8eGM1dgHCqztz9IqvrBsmx87tylgq6MXiLhoJurLjqd4qA764Xj/BnlLPr8NPRcC1OglI3PYxLwukY1cPs9BhUlfm5fPpur503H7xn4l0QNKCty850Vn00Pe1h+2dmEA24i0SThgJvll50t1SOi4Eh6hGN10qapY/WTvz3Vp7XOLtvO6kTXn7Iid78pksxm/pkjwyxbEYkm0g8S3S6deG/ZoNdtsGLh2YT8rqzp66kHp9F4EtPQKQt5iScsIrGk88AU54VGKZtQwEfI7+JAc+QU/ySGriLsxecx0/nnK+edMeg67MwHVX0n9QhRiCRoc6xO2uc26OzpPz9saENPkRg6uF0GZSEvHd3xU64e6dvMv28gspXiJ89uZevuFgCKAy5WLDybWWdVABrvfdzIr1/eTn1jJ5GYkw7SNCe/29weJeR34feY6LpGZ08ClPOx7mgScxQ653ncBn6vi1jCkvyzEEjQBrKnllsnWT3idTud8VCKjkiCpKUwDC2rRG8oVl15LqsGGEyY66DIeWeUsfaVnemA/flzKll28ZkU99Z8bt3dzJMbd9DRHUu/YCiy8+wdkQSGrqFpqV4lCtsm3esj34p8puSfhcggQbtXIf3q/MLmPWx4qx5b2ZiGjmUrp6yvyMvOA053wJDfxYU15YQyivSffX03bZ2xE6ZnNM0ZInAy1RrDxdRhcqmfaMImHHDL6UUheknQLjBbdzez4e16bKUwdB3Lho7uGF63yc72Y+1c3S6DtS9/wgtv7GPp/BmcP6OcxtbB5aNTO+/MHbg2DJUvfbkMDctW/OKOi4f3CwsxjknQLjCph46p9LKGwjQNuqPJ9DVlxR6SlqK9K05XTyJ9GMe5euDIq+tOUiSzoRQ4KSBrGKO2hrOLT7WjFUIMjpT8FZjm9iguQ+/NRStMUycaP3aypzTkwbKhvcvJQduWwjB0Nm6pp7Jk4Ad5qYM0AZ+bySU+J7eNE8hdvY2sButEtd2a5uTLF3x2yqC/phBCdtoFp7zYS9Ky6eyxMQ0ta6BBWciDraCtM5ZVV546jHPjgrP5+QsfEYllH9/UNXoP2Cg8LoOVV8zM6m1iGHp6fuSRo5Gc/Un0jIM4pqHx9WvPS3+NZ/9rF41Ho+kugoC0UBXiJEnQLjCp8sSA16Sj2znpqGlQXeYnlrBp6x28m0pkZB7GOX9GOd9Z8VkeW7eVhtYeLNtJg4SDbkzTqf/OPHCSWVWTqlL58sVnpt+3c38bCtA0Zyce8rswDJ1wwN1vSaIQ4tRI0C4w588o5087mnhj62EAAl6T5ZedRSjo4efPf4SeMXxX0yDoc2WVy82preRT5Z8HsssG+6vQ6C/o9rcTl9I8IUaWBO0C89KW+nTA/vT0Em5eWENZ2IeuaaxcVJvVqdA0NCpLfP2Wy53qLjjXTlxK84QYWRK0C8h/vlPPM/+1C4CZ08KsWFhDabEv3TdkNFIRkv4QIr8kaBeIV/90gF+/5gTsmqlhbrq8hopiX2+JnhBiopCgXQD+64OD/LK31vqsKcXcVFfDpLAvd2c+IcS4JnXaY9zrfz7I0/+5A4AZp4W4pa6GSSU+dE1+dEJMRLLTHsM2/eUQT210AvbpVSH+rm4mFaUBDEmJCDFhyXZtjHrzwwaefGk7ANMnF7HyiplMKg1gSsAWYkKToD0GvfXRYf59w8coYFplkJVX1DKp1D8q/ayFEGOLpEdGWd++2DOmhHjxrXoUMHVSkJWLammPxPjVa5/QdLSH8mIvM6eFefW9/XRF+58m7HHpKKWIJ3M3eXIZUFniB00jGrfwug1QivZIIl3jXX2SvcBP5r5nTguzvb5N6r2FOAEJ2qMgFbAONXf3dudTWDZEYkm21ztT00N+F19ZVEtHJM7jGz6muyeZni6TumYgscTAU98TFhxojmDozqnJo51RbNs5RalpGrGEovFoT7pD4HAG0MyTlH6vyeHWCDsPtFEc8FDkd9HWHR+R7yvEeCBBO88yA1YklsTqnTLg95pEMtqrJiyb7fVHeevDBjq6E+nrhp9GZySBruuAja1AR2GrY9NqfvzMVmqmhYdt97txSz2GoeNxOQOJe+IWGho9sSShgBuPyyDWe50EbSGySdDOs8yAZVm5A7bHpVNS5OHFt+rpiSVPeYL7QFIvBqYGqRX0fX1QQH1j53G738zBwP117cs1Fq25PYrfe+yvXjJpo2s4XQB7pToTCiGySdDOs74Bq2/Adrt0SkJe2jpjROMWhq4N+8SYXOLJgdMpPTGLUNCT3v2+sHkPL/xxHxoahu7sktdt3sfL7+5nWmVRumlUZhoklfbwug3iSTu90zZNnWTSxmUeey6e6kwohMgmQTvPyou9tHXH8bgMgn4XnZFE+mNu0xkOfLQ9StJWeN0mpSEPDS3do7hihyJ79/vyuwfSAduy7XQr2J6YlQ7OHlPPSoN4XAbtsSTtXXGSljPfsjjoxuc26Eha+Dxm78NT6RYoRH+k5C/P6uZOw7Js4kmLroyA7TI0Sou9HO2IkbDs9FSXpfNnEPC5R3HFx2TufqPxZHrSTSqd4gwqc4KzYejO4IOkxeHWCAeaujjQ1EVbV5x4bzrEVoqW9ihBn4sr/8d0Kkt8RKJJwgF3Vl9vIcQxstPOs/NnlHOouZtnXt+NwpkYUxH24nHpNLXFiCctfG6TC2aU8t6OI2x4669ZsxpHiqE7wXegVMzhlgiNrRH+4Z83ofVOqjEyBv4qjo0sc5s6lm1ztDPem5NXWRNvkrYzsdLvNUEptte3pVvKHkp0s3FLPSDVI0L0JUE7z7bXH2XdG3tRCspCXlZd+WmmVATxe479KLbububfX9xOd08cpTjBKN7hkWuEWC66BrGEhW2THhKc2mEDhALObwXx3hx10rJRSsv59RXQHU3SHU1i6JGs4Q0jVW4oRKGToD2C+lZOzDqrnOc27SGetCkt8nDrklpO6xOwwakwicaSaJqzWx1Nmpa9+7aVk8oBZ0K7y3RKFzUg4DMJBdzEEhaW5Txo9LqN9Fi0gWTeplLQ1ZOgrNgrZX9C9CFBe4T0PUDS2RPnV6/tQikIB93cutjZYQe9ZlZQ3Lq7md0HO0hYNvk8tG7qoOk6iT5VJC5DT1eWaBwL4LoGlm3zb7fNT6+7b2nfxi317DnUgWHoWJY94G8MfT+WTNpS9idEDhK0R0hmPbamwYEjPSjl5LBvXfxpplQGCfpcxwXsta/sTNdl5yMtklJe4sfjMjjcGsGy7HQNeSZniK/z37ZyJqqn9DfB5ifPbkXXtSHfi0LK/oTIJW/VI3v37mXZsmUsXLiQZcuWsW/fvpzXvfjiiyxZsoTFixezZMkSmpub87XEYdXcHsVt6mga1Dd2YdsKXdcI+V1Mqyw6bocNxwJ9uMiT17WWF3uxLJtYwqLI17suzfnHslXW4R69932p6paBnD+jnOoy/0mvS8r+hDhe3nba9957LzfccANXXXUVzz//PPfccw9PPfVU1jUffvghP/3pT3nyySepqKigs7MTt3tslLsNVXmxl66eBAePdKcDdjjoZkZ1MUGfCTmSH6mDN5qmObtTW43oblvXIOh3c+OCs4FjA3qrSn2gaXR0x0laCsPQcBsaXdEkiaSN123kPP2Yy5yZk3jhj/tOan1S9ifE8fIStFtaWti2bRuPP/44AIsXL+YHP/gBra2tlJaWpq974oknWLlyJRUVFQAUFRXlY3kjYu6nJ/H0y584AVtz8tjlxT7+9oIqcgVsyD544zb13lI/hVJOTbNSzsO/s6eE2Hu4M90UytTB53VxWm9Xvn0NHbz87gF64kk0NNwujYDHpCuaJJaw0TUNr1tPn1xMBcaRCJDb69sI+d109wb8wdA1J40kAVuI4+UlaDc0NFBZWYlhOCfjDMNg0qRJNDQ0ZAXt3bt3M2XKFJYvX04kEuGyyy7j7//+79EKbBbi/iNdPPv6nvQOu8hrMqO6mL/9TBXnTC/r9/Pq5k5j7Ss7iQFFfhetHVFAo6TIjWkaWJY9qN3n+TPK+90FV1QUceRI5ynQv3diAAAOnElEQVTc3dA0t0cJBdwUBz20dUZpH0QliaZBZenJp1WEGM/G1INIy7LYsWMHjz/+OPF4nFtvvZXq6mquvvrqQX+NsrLgkL9vRcXw7ej/2tDBw7/6M93RJEGfi9v+54XMmBKmpMhzwsnpl1QUUVzs57ev76KpNcLUyhAKRTRmUVHi59r5ZzKntvKU1zic93siVRVBDh3pJBJNEotbx5UQ5hIKePjKVecN2zrzeb9jgdzv+JaXoF1VVUVjYyOWZWEYBpZl0dTURFVVVdZ11dXV1NXV4Xa7cbvdXHLJJWzdunVIQbulxXnoN1jDufNsaOlm9dr36Ygk8HlM/u6KmZQGXFjxBC0tJ95hAnyq3M9tS8/v9+OnutZ877RnTA7y0Z5mlJ1dDeNxOaWEuq5hWyqdMTqtPMDS+TP4VLl/WNaZ7/sdbXK/48NAL0R5qR4pKyujtraW9evXA7B+/Xpqa2uzUiPg5Lo3b96MUopEIsHbb7/NzJkz87HEU3b4aISHfvkBHZEEXrfBVxbVcnp1iFDAndd667Fme70z3KBvhiuRtPG5DTymQVmxl5qpYb659Hy+/5W5kssWYgB5K/m77777WLNmDQsXLmTNmjXcf//9AKxatYoPP/wQgEWLFlFWVsYVV1zB1VdfzZlnnsnSpUvztcST1tTWw0Nr36e9O47XbbByUS1nnBYiHPBM6IANTk67yO86LiViK4jELKLxZO5PFELkpCmVj27N+ZPv9MiRth4eXPs+RztjeFxOwD5rSjHhYH5rrQcr379OPvTL92nrjtPYGuk3l10R9qZPTQ53md94/fW5P3K/48Oop0fGq+b2KKt/6QRst0vn766YyZmnFVMcLMza8pFQN3cakZ7EgA8fOyOJdDvXVHc/IURuErRPUktHlNVr36e1I4bb1Lnl8pmcNSVMuMiNNuGTIn1oWr8j07SMMWPSa0SIE5OgfRJaO2OsXvs+LR1RXIbOTXUzOXtqCcVBCdh9bdxSj99r9ttDRNc0TMP5ayi9RoQ4MQnaQ3S0ywnYze1RTEPjproaZk4LEw660QvsEFA+pHqw+L0uQn5X1sf03uEIRX5Xup2r9BoRYmBj6nDNWNfWHeehte9zpK0H09BYsbCGmZ8qoTjokYDdR6pVa3tXjKOdUXRdx7YVLlPHtp2j9JUlTo+TaNwiHHBnHakXQuQmQXuQOiJOwG482oOha9y4oIba6SWUBE980nGiyewl7vOYdEQSWLbtjDTrPWSz6G8+NaiGU0KIbJIeGYTOngQPrX2fw60RDF1j+YKz+fTpJZQO4mj6RJTZSzyWdIK1hhOwXaZOccDD9vq20V6mEAVJdtonkArYh1oi6JrGDZeexbmnlzo7bE1e83JJtZgFZwKNrmkYpoatFJWlfpRSUiUixEmSqDOA7miCf/yPDzjY3I2uwZcvPYvzzigjXOTF0OWPrj/lxd70iDLT1FE4JyClSkSIUyeRpx/d0ST/+B8fcKCpC12DZZecxQUzygiHvJiSEhlQ3dxpx03CUcqWKhEhhoGkR3KIxJL86FcfUN/YhabBl754Jp85s5ySIgnYA8kc7ut1G6AUSbT0JBypEhHi1EnQ7qMnnuThX/2Zvx7uRAOWzp/BhWdXEC7yYBoSsPtKBeqDzd1EYxZBv4siv4t40saybG5cICPDhBhOkh7JEItbPPKbv7C3oQMNuG7+DGbXTKI46MFlyB9VX6nSvrbuOPGEja0UnZE40bglvUSEGCGy087wiw3b+ORAOwDX/O0ZzKmZRDjowW1KwM4ls7QvadnoGiicgcA+j5mzl0hmCqW82CupEiGGSIJ2hv2NXQBcNe90PldbKQH7BDJL+0zTaa2qZzSA6lslknnoxu81aeuOs/aVncDIDBUWYjySoJ3hf6+YzdGuGD6PSTjgxu2SgD2QzOnxIb+L1s4Ylq0wDS1nlUjmzhxwDt/0vl+CthCDI1EpQyjgpqosQHHQjbs3sIj+ZZb2+TwmRT4Xuq7hcRmEA+7jBhqkmkdlknasQgyN7LT7kHTI4PPOqfelrp1c6h8wR525M0+RgzZCDI0EbZFlqHnn82eUDzq1UTd3Gmtf2UkM58UxVRYoB22EGDzZVoosmXlnTdOGtXTv/BnlLL/sbMIBN5FoMmcKRQgxMNlpiyyZFSEpw5l3HsrOXAhxPNlpiyyZzZ5SJO8sxNghQVtkyawIUUpJgychxhhJj4gsfStC5NSiEGOLBG1xHMk7CzF2SXpECCEKiARtIYQoIBK0hRCigEjQFkKIAiJBWwghCogEbSGEKCAStIUQooBI0BZCiAIy7g7X6PrQJ6afzOcUMrnf8U3ud3zTlFJqtBchhBBicCQ9IoQQBUSCthBCFBAJ2kIIUUAkaAshRAGRoC2EEAVEgrYQQhQQCdpCCFFAJGgLIUQBkaAthBAFZMIE7b1797Js2TIWLlzIsmXL2LdvX7/X7tmzhwsuuIDVq1fnb4HDaLD3+uKLL7JkyRIWL17MkiVLaG5uzu9Ch8lg7relpYWvfvWrLFmyhLq6Ou677z6SyWT+FzsMVq9ezcUXX0xNTQ07d+7MeY1lWdx///1ceumlXHbZZTzzzDN5XuXwGcz9PvrooyxatIgrr7ySa6+9ljfeeCPPq8wjNUGsWLFCrVu3Timl1Lp169SKFStyXpdMJtWNN96ovvWtb6kHH3wwn0scNoO5161bt6rLL79cNTU1KaWU6ujoUNFoNK/rHC6Dud8HHngg/fOMx+Nq6dKlasOGDXld53B599131aFDh9QXv/hFtWPHjpzX/O53v1MrV65UlmWplpYWddFFF6n9+/fneaXDYzD3u2nTJhWJRJRSSn388cdq9uzZqqenJ5/LzJsJsdNuaWlh27ZtLF68GIDFixezbds2Wltbj7v25z//OfPnz2f69Ol5XuXwGOy9PvHEE6xcuZKKigoAioqK8Hg8eV/vqRrs/WqaRnd3N7ZtE4/HSSQSVFZWjsaST9mcOXOoqqoa8JoXX3yRL33pS+i6TmlpKZdeeikbN27M0wqH12Du96KLLsLn8wFQU1ODUoq2trZ8LC/vJkTQbmhooLKyEsMwADAMg0mTJtHQ0JB13fbt29m8eTO33HLLKKxyeAz2Xnfv3s3+/ftZvnw511xzDf/6r/+KKsDeYYO936997Wvs3buXefPmpf+ZPXv2aCw5LxoaGqiurk6/XVVVxeHDh0dxRfmzbt06pk2bxuTJk0d7KSNiQgTtwUgkEtx9993cf//96QAwnlmWxY4dO3j88cd5+umn2bRpE88///xoL2vEbNy4kZqaGjZv3symTZt47733CnbnKfr3zjvv8OMf/5iHH354tJcyYiZE0K6qqqKxsRHLsgAnYDU1NWX9ynXkyBHq6+v56le/ysUXX8yTTz7Jb37zG+6+++7RWvZJGcy9AlRXV1NXV4fb7SYYDHLJJZewdevW0VjyKRns/a5Zs4Yrr7wSXdcpKiri4osvZsuWLaOx5Lyoqqri0KFD6bcbGhrG7c4z5YMPPuA73/kOjz76KGecccZoL2fETIigXVZWRm1tLevXrwdg/fr11NbWUlpamr6murqaLVu28Nprr/Haa69x8803c/311/ODH/xgtJZ9UgZzr+Dkfjdv3oxSikQiwdtvv83MmTNHY8mnZLD3O2XKFDZt2gRAPB7nrbfe4qyzzsr7evOlrq6OZ555Btu2aW1t5dVXX2XhwoWjvawRs3XrVm677TZ+8pOfcM4554z2ckbUhBmCsHv3bu688046OjoIhUKsXr2aM844g1WrVvGNb3yD8847L+v6f/mXfyESiXDHHXeM0opP3mDu1bZtVq9ezaZNm9B1nXnz5nHHHXeg64X3Oj6Y+62vr+fee++lubkZy7KYO3cud911F6ZZeMObHnjgAV5++WWam5spKSkhHA6zYcOGrPu1LIvvf//7vPnmmwCsWrWKZcuWjfLKT85g7ve6667j4MGDWQ+XH3roIWpqakZx5SNjwgRtIYQYDwpvWyWEEBOYBG0hhCggErSFEKKASNAWQogCIkFbCCEKiARtIYQoIBK0xYTw7W9/m+9+97tZ73vnnXeYO3cuTU1NWe+/9dZbmTVrFrNmzeKcc87h3HPPTb99zz33nPQafvSjH3HXXXed9OcLAVB4JwuEOAnf+973WLx4MW+++SZf+MIXiMVi3H333dxxxx1MmjQp69pf/OIX6f++8847qays5Lbbbsv3koXISXbaYkIoKSnhe9/7HnfffTeRSISf/vSnTJ06lWuvvfakvt4rr7zCkiVLmDNnDjfccAO7du1Kf+zRRx9l3rx5XHjhhVx++eW89957vPrqqzzxxBOsW7eOWbNmsXTp0uG6NTHByE5bTBiXX345L730Et/61rf44IMP+N3vfndSX+fPf/4z999/Pz/72c+ora3l2Wef5etf/zobNmxg165d/Pa3v2XdunWUlZVx4MABwOkJfcstt3D06FF++MMfDudtiQlGdtpiQrnnnnvYsmULX/va17L6TQ/Fr3/9a5YvX865556LYRgsW7aMeDzORx99hGEYxGIxdu3ahWVZTJ06lalTpw7zXYiJTHbaYkIpLy+npKTklDr8HTx4kJdeeonHHnss/b5EIkFjYyMLFizg29/+No888gh79uzhoosu4rvf/S7l5eXDsXwhJGgLMVRVVVXMnz+flStX5vz4NddcwzXXXENHRwd33XUXjzzyCA888ACapuV5pWI8kvSIEEN0/fXXs2bNGj788EOUUnR3d/OHP/yBnp4edu3axTvvvEM8Hsfr9eLxeNLtblM5bmmsKU6FBG0hhmj27Nncdddd3HvvvcyZM4eFCxeyfv16NE0jGo3y4IMPMnfuXObNm0ckEuGb3/wmAIsWLSIajfK5z32OL3/5y6N8F6JQST9tIYQoILLTFkKIAiJBWwghCogEbSGEKCAStIUQooBI0BZCiAIiQVsIIQqIBG0hhCggErSFEKKASNAWQogC8v8Ba6yBNB4ECygAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFtCAYAAADMATsiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9e5hcV3mn+669d927u/omtVqXtpBsSzK2udhEBl8O2NgjbEcKxnCInYSDQRMmTHgmT554nMs4kPGQyCHnBGcInAnHJBNsYGwI+BYhAnFix0bYI4N8E8JtRFu3lvpa3XXbt3X+2LV3V3VXVVd3V3dXldb7PAlW9a6916pd9atV3/q+3yeklBKFQqFQNAXaag9AoVAoFLWjRFuhUCiaCCXaCoVC0UQo0VYoFIomQom2QqFQNBFKtBUKhaKJMFZ7APVmdHQa1609i7GrK874eGYZR9RYqPm2Nmq+rcGaNe0V/3bOr7QNQ1/tIawoar6tjZpv63POi7ZCoVA0E0q0FQqFoolQoq1QKBRNhBJthUKhaCKUaCsUCkUToURboVAomggl2gqFQtFErIho79u3j2uvvZZt27Zx9OjRssd84Qtf4KabbmL37t3ccsstPPXUUysxNIVCoWgqVqQi8rrrruM3fuM3uP322ysec+mll3LHHXcQi8U4cuQIv/Zrv8bTTz9NNBpdiSEqFApFU7Aion355ZfPe8zVV18d/Pe2bduQUjIxMcG6deuWc2gKhULRVDRkTPvb3/42AwMDSrAVCoViFg1nGPWjH/2Iz3/+89x///2Len5PT9uCn1PNnKUVUfNtbdR8W5uGEu0XXniB3/u93+Ov//qv2bJly6LOsVCXvzVr2jl7dmpR12pG1HxbGzXf1UciEYglnaMpXP4OHz7M7/zO73Dffffx5je/ebWHo1AoFAvm1FiGZ18axpW1LxwXyoqI9j333MM111zD6dOn+ehHP8pNN90EwN69e3nxxRcB+MxnPkMul+Puu+9mz5497Nmzh5/+9KcrMTyFQqFYMkffGOczX/kRX37sFV47Prls1xFSLuNXwiqgwiPVUfNtbdR8V4fXTkzwF1//CXnLobMtwj0f/yXi0dCiz9cU4RGFQqFoRl4/McH//Q1PsJOJMP/xlouXJNjzoURboVAoFsnrJ1P8xf/6CTnToSMe4uM3X8SarviyXlOJtkKhUCyCY6dT/MU3fkw279Ae8wS7vydOIrq8SXlKtBUKhWKB/GJ4is997cdk8zZtsRAf++WLWN+boLM9giaWlu43H0q0FQqFYgEMnZniz7/2Apm8TSIW4mM372DjCgk2KNFWKBSKmjl+dprPfe3HZHI28ajBx27awaY1bSsm2KBEW6FQKGrixMg09z74AtNZi3jE4OM3X8TA2pUVbFCirVAoFPNyajQdCHYsYvCxm3ewaW0bybaVFWxQoq1QKBRVGR7LsO+BQ0xlLGIRnY/dtIOBvnY62yLo2soKNjSYYZRCoVA0EqfHMvzZA4dIZSyiYZ07btzBeetWT7BBrbQVCoWiLMPjGe598BCptEkk5An25v6OVRVsUCtthUKhmMOZiSz7HniBiemCYN+0nS3rO1Z807EcSrQVCoWiiJGJTEGw84RDGv/X+7azdX2yIQQblGgrFApFwOhkln0PvsD4VJ6w4Qn2BZs66WwLN4Rgg4ppKxQKBQBjqSx/9uALjKbyhAyNj7xvOxdu6moowQYl2gqFQsH4VI59D7zA6GSOkK7xkV3b2DbQeIINSrQVCsU5zmQ6z74HX+DsZA5DF/z6rm1sP6+7IQUblGgrFIpzmFTG5M++eogz41lPsP/dNi7a3LiCDWojUqFQnKOk0iZ/9sAhhguC/Ws3bOPNb+ppaMEGtdJWKBTnIKmMyb4HD3F6LIOuCW6//kIu3tL4gg1KtBUKxTnGVMbk3gdf4NTojGBfsrW3KQQbVHhEsYocHhxh/8EhRiZz9CajbB/o5MjQRPDvXTsHAEqO2bVzgEu39lY8x+y/z3fNcsc/8vTrHHjuOFnTRiCIhATnreuoaTzVrtXVFuYng2NkTRspy4/vV67azO6rtizkZVwxHnn6dR55+hhu4d8CuOKitezdfXHF5yz0/iyWWq8znbX486+9wMmRNJoQ/Op7L+DS8xcn2IcHR3j4yUFOjWZw3JkbqglY35vg1ndvXZa56p/+9Kc/XfezriLZrFnxA1GORCJCJmMu34AajEaZ7+HBER743lFM2yUa1hlN5Tj8+ii2I2mLhUjnbX706hleOHoWR0I0rJPO2/zktRH6umL0dcfnnGP236F0vrUc/8jTr/PIM8ewHRcpQQK2I8kWjn3htVEcKSs+v9L8To9leP3UlHfeKq/LkaEJBJJtA12Lel2X6/4+8vTrfPvpY3PGfvxsmjNjaS7btnbOc2p5vZdKIhHhhy+erOk66Zwn2MfPzgj22y5cs2jBvv+JI4xM5nBnvSgSmMpYvPKLcdb3xhc110QiUvFvKjyiWBX2HxxC1zUiIR0hBFnTQSDI5m2EEERCOrm8Tc50gmMiIR1d19h/cKjsOWb/fb5rljv+wHPHEYhAnPyPcrYwllzerul6c+aXtwGqCnbxGBqNamM6+OrZso8v9P4sllqukykI9htnptEEfPi683n7IgXbv2Yub1e9obm8Xfe5ghJtxSoxMpkjbMy8/WzbRRNgO27wmOO6JT87AcKGxshkruw5Zv99vmuWOz5n2mgCpJwRbABXguNKHNet+vxK15q9GqtGzrRrP3iFqDYmt8JP24Xen8Uy33UyOZs///qPGRqeRgj40LUXcNm2tSSXEMMemczhuJV/NUm892+95woqpq1YJXqTUSYKlpcAhqFh2y6hog+frs1dU5i2S28yWvYcs/8+3zXLHR8NG+QtBzFLuDVBwY6z9ENe6Xqzr6WJ2oU7Gm68j2U0bJDJlxfuSsJX7vWeyljkTYc7v/gM0ZBGznIZncyV/LJJRHWikRDSdZlMm9hu2dOXMln+4b33/gBd0zALJ1mTjNLVEaGzPYxg8ZuOvckoqbSJW0G4Bd77t9J7cSmolbZiVdi1cwDHcclbDlJKYmEdiSQWMZBSkrccohGDaFgPjslbDo7jBhuCs88x++/zXbPc8Te8YyMSGXyc/Q9krDCWaMSo6Xpz5hfxhLgWmbjhHRtrfRlXjGpj2rljTdnHZ78GqbTJZNpzzgPJydEMI0WCDd7rPZ1zGEvlGJ2qUbAroGugFQm2EBCNGBz40RAvDo4u/sR4c4tGjKo3NBoxKr4Xl4LaiGyQjbmVolHm29cdp68rxvEz00ymTdZ2xbjy4nXkTIfJtEl3e4QPvmcrb7twTXBMd3uEW67ZEuzIzz7H7L9D6XxrOX7bQBdIyS+Gp7FdF00IomGNgb52Pvie83nbBb1Vn19pfv09cS7Y0MFoKo/lVFai3mSU//iBSxf9ui7X/d020IVAcnRoomRV/M4q2SOzX4Nc3iEeNUi2RRibymM7lT+oC/gIl0UToOsaVpHqr+2KYrsS25EcPzPNlZf0L/r8fd1x1vfGOX5mmnSuNBtIE7BhTYLbr79w0dkj1TYihZQLkbjGZ3R0GncBAcQ1a9o5e3ZqGUfUWKj5rj53fvEZxqfyaAJEUWjBcV262qPc+x/etehzN+J8fe784jPEowZCCI6fmZ6zX1EvhABjlmD3JKNoSMamTDasSZDJ2Ut6nZebNWvaK/5NhUcUihWmNxlF10TJatKVyxcDbRR6k9EgVGEYyyM9lQTbcSXj0yaGoVXd92gGlGgrFCvMrp0DRMM6UnqZF44rkdJdthhoo1Ac426PGVRrs7iYFoyCyoI9OZVHArGwXnXfoxlQoq1QrDCXbu3ljpt20N8dQyDQBPT3JLjjxu3LUkHXKFy6tZfbr7+QzkQYEKzvidObjJbs5QmgLarT3RGlpz1MrQtyTXir93KCnc1ZxCIG8YjBuu74kmLNjUDj5RYpFOcAl27tbWrhWCz1nveaNe2cPDXBX33zRV76+RgAv/yuzbzn7RtIti0tra9RUStthULRtFi2w3//1oxg3/TO81pasEGJtkKhaFJsx+Wzf/scL77uCfaNV5zHdZdtbGnBhhUS7X379nHttdeybds2jh49WvaYp59+mltuuYWLL76Yffv2rcSwFApFk2I7Ln/97Zd4/tVhwNvkfO/lG+lsi7S0YMMKifZ1113HAw88wIYNGyoes2nTJu655x4+9rGPrcSQFApFk2I7Ll/6zsv8+GcjANzwjk3c8I5NdLZVLkhpJVZkI/Lyyy+f95jzzjsPgO9///uY5upX7CkUisbDcV3+xyMvc+io5yy4++otvPst/eeMYEMLZo/09LQt+DnVqo9aETXf1qbafJ9/dZhvPfkaw2MZ+rrj3PLu8wFKHrtkaw8vDo4y+MYEOcuZU2GsAZv62xEIzk5kyObnHgOeBzp4plquK4mENDrbI0xnreA5/mMSQSyiMzmVZzLtWVEYGvR0xpAI+rrj/Mo1W/mHJ1/jpdc93xBNwCs/H+H1k5OcGc8G87l8R1+dXsnGpOVEW5WxV0fNt7WpNl+/KYGua0RDGmfHM/w/D/5vEIJ41CAa0jg+PMXLr48Q0jXyVnmPFBf4xan5X9Oc6ZT8O2+5DI9lyz4Wj2icHSt1zLNdGB7LkkyEODOW5nMPPE82751TAD0dEUYm80xOpejtjHJ2PMNfP/zjps/DBlXGrlAoKN8sYHZjh2zea7FWSbDrxeytwky+sjd1Km2Ryzszgi088yfLgYmpPOBZvi5Xk4VGQ4m2QnGOUK5ZwOzGDrbjLqqEfCnMdznD0JhMz+xzre2M4rgwMe0JttcSzpvDcjRZaDRWRLTvuecerrnmGk6fPs1HP/pRbrrpJgD27t3Liy++CMDzzz/PNddcw1e+8hW+/vWvc8011/DUU0+txPAUinOCYsMmH10TJc0mDF1bUJedelDtcqGi0nRNQE8yguVAKm3iGyT6niNQvQlGq6CsWVXMs6VR852hOKYdLrjdZbJWENMOGxpTGYvJdL5qTHs5iEc0srNCJMWCHQvr9HZGsWyXsxNZPKmWOK73X72dUXRdw3Hclo9pt9xGpEKhKI8vZPsPDjEymaM3GeXD155f8lhfV4z/4y39HBma4BenU+QtOacHpAA29MZBCMZSOXKmW7ZPZCTkrX4t2ztH2NDoSITJ5KzgOf5jAN3tGqmMRSpjlQh2JKSxY3MX1162Edt2efjJQYbHMoBGd1eYiOHF5jsTYXbtHGh6wZ4PJdoKxTlEJcOm2Y/tXqkBzUJKyVe/d5R/PnQCgJ0X9fGha7fS1TYT8ige67n2SwrURqRCoWgQpJQ8+E8zgv1LO9bywVmCrVCirVAoGgApJV///s/4/v/2BPvy7Wv50HXn060Eew5KtBUKxaoipeShJwf53vPHAbhs2xo+/F4l2JVQoq1QKFYNKSXf/JfBoCDm7Rf28qvXX6AEuwpKtBUKxaogpeQfnnqdJ37oCfZbz+/ltusvVII9Dyp7RNHwHB4cKUlTmy+t65GnX+fAc8fJmTaxaIjrL9vA7qu2lD3X9oFOjgxNVPx3rSlk1cZ4eHCEh//5NU6OZvAz48Ihr5x8fW9izjX8cw2emMBy5l5LE7D7ys3BnIqfMzZt0t1WOfXNH8vweA7LcQvZzh4C2LAmwa3v3jrvnGu9J4cHR4IUPa/jvCAS1tnQm6CzPcIPX/b8sMOGhqbB6bEM3e1KtKuhimvOsZShZptvuYKQagUUjzz9Oo88cyxomOvireh2v2szm/s7Ss6VSpukMibJRIT2eCgoLOmIh+lIhOe9Vi1jBLj/8VeZylhzKv+EgM62CIYugmv455qczmPa1d/HbTGDTM4uW8GoCYhHDfKmAwgiIUHOcrGd2j8bmoCu9ghCCEYnc8H4dU3gFF1U1wWJaIhr37aeI0MTnBxJkzMdbMctOzYhIB4xSOdswMvD3roxiWm5TE7nF1Qc02zv51pRhlGKpqWcyVE1U6ADzx1HINA1gRACQ9MQCA48d3zOubKmg6BgklRklpQ1nZquVcsY9x8cmuN2FyAhm7dLruGfaz7BBpjOlhdsAFd6f7cdieW4TOecBQm2f47RVJ6RIsEGSgQbwHEkqbTJo8/8guHxLFMZy7NjrXA5TYhAsIWA8zclAbBs95wwfFoqSrQVDU05k6NqpkA5055jeKQJ7/HZ57JtzxzJNxvyzZLsIn+OWgyIqo1xZDKH48qy/hq+0VHxNcqda0kss/lT8ekdV5LN21WPn71K701GkRLSWe9554Lh01JRoq1oaMqZHFUzBYqGjTkrPFd6j88+l2F45ki+2ZBvlmQUiWYtBkTVxtibjHqr/jLP842Oiq9R7lxLYSWCn8Vzs53KFqtakWBrAtZ1x3BdGQg2nBuGT0tFibaiodm1cwDHcclbDlJK8paD47js2jlQ9vgb3rERifRWt1Jiuy4SyQ3v2DjnXLGwjkQSixjevyOG9++wXtO1ahnjrp0DQQeXOQiIRYySa/jnChv1WSKLZV5pSyiKdXtfQuUuqQlRstc00NeGJgSWI2u+twoP/dOf/vSnV3sQ9SSbNRe0ukgkImQy505Pymabb193nL6uGMfPTDOZNuluj3DLNVsqblRtG+gCKfnF6Wks2yUWCXHjzgF2X7VlzrnWdsW48uJ15EzH+3dn6b/nu1YtY+zrjrO+N8HxM1NMZy3AW5lGQhrxiEF/T7zkGv65/FhyJUKGQNawIF8pa+yQIYhHQoQLjRWKr68JERhKaQI29bXRk4xy4zvP420X9NZ8b8vRbO/nWkkkKve8VNkjLbr7XAk13+aiOH0xGja44R0b2X3VliCV7uRIGim9FbUmQAqBBiTbIkjpbRD62SOWI4PQS7VPvS/0okL2iKELYhGDXN4GBH1dUW59z4xboJ894rgSTYBV2AC9YGOSvb/8ZnqS0bp9mTT7/a1EtewRJdotetMroebb2pSbb3FutuO6hAwt2BBcime2wMs31zWBac+kE0ZCGu/bOUAqY/GDgvkTeC3CTMslnbUDoV+qjWqr3l/lp61QUL4gBFhQ4c5CrxMN6yAlI6kcecv1VsVAd3uYq9/i5TWfGEnjOBJDF3TEQyAEk2mTdNaqqYtMT0eEX/932yoWt/y/33mJrDkjzvVqbiArnCtvuXzn346VrOZ7k1FypltY+cPxkQx/+dDh4O+6JpBSomte5/VyBT7lfnV87P1vqctcmgm10m7Rb+pKnKvzLdu1JWeDlMRjoZoKd2qh+DqO4zKWyuG6lVtqJaIGOcsBCa4rEcILXSz0QxmL6Pzm7jdz3RVvKrm/d3/5hxwfySxqLovFn4NPbzKK5bhMTs8fexaApkEiFuaOG7cH92FO0ZQEieTD12/jvW/bsEwzWT1UcY3inKdsJ/K8Tc50ai7cWeh1pjIWQmhVBdgr6PFWmsCi+zPmTKfsuIfHVzbneSmC7Z0AhNDI5e2S+cwumvLSKAXf+dfX6zyDxkeJtuKcoHwncndOdd9SizuKr1NLZ3NXzmz8yVn/uxCkpMK4V+6HtGCJgl14via8e1M8n0pFU/MV87QiKqataCpqiUsXmz71r2njuretJxrWOT2awZUSQy/0JSzkDp84Ox08pmmipuKOR5723On8bIyQrhGN6DiOlyPekQhj6FpNpeNedsXSxXVkMscv/+53EAK2bUx681shzS42ngLoWYRgg7dS94yltJL7EA0b5C0HvUi4XenluZ9rqJj2ORrjbUYOD45w/+OvBulkuibQNQiFjDndxH3TJ1dKUtMmluNiWm7w892VMtgU1HXhPeZKNE2QiBqs702wfaCT54+cKYQYZLBBduxUim8/fWzO+ITwuobnLIdkwjOCmi+m3QqUE2x7EYLtn0vFtFX2iKJFePifXyOds4OcZFdKTFNi2iZd7V4xQrHpU7JNEA3pnDGzAHR3REhlrMBbRNeguyNKKmNhmo4nPAI62yMMj2c5MjSBJrzyaynh1Gia+584UshPnouU4EjoiIfJmw561KC/J0E2ZzE6VSpgovB/9StYXz3mrLDtmSyRWpkve8S3oZ2dPfKrN2xv2kXIYlGirWgahsdzBcH2fiN7/1/iFClfOdMnL24tiUdDxKMhAI6fmQJE8NjpsQxO4US+4x94KzpDCBDgSkEub1f1BrFtl46uGJmczb3/4V0A3PvgIUJhg0hoppw9bzmcHs0Q0r2il9mr1WakkmAL4YWPwLsXkZDOf/+daxZ8/t1XbSnxED9XURuRiiZCzmtRUM70yQujlL7VdU0LMjbAE1tZZB5lO3OF2d8gq7a3aBjaHNOjSi6AgsJGpGhdwYbSzUnfcVGxeJRoK5qGvu44IIPNNV/wdE3MmEDNMn3yfkrrRCNGiTFRNGIQDevBY56AexuIMCPexfgbZD0VNir9mPZs06NKLoA9ySgSuWL+IMtFT0f1kIiYtXkYDasf+EtBibaiabj13VtJxMLBilcT0B4P88vvOo/ORJhMzqavK8bud21mXXecTM6mqyPGHTft4I4btwfHdCa8Ta47btoRPLa2M+qduxBb9bMS/Ni55xroEo0Y/NoNF/IrV20uWT2HdI22WIh13fE5xTmVXAB/7YYL2f2uzUTDBkIsvyPfctDT4WWJVIthe6mAhdew4LioWDwqe6SJsykWQ7PPd6H9Ihcy33L9I8tljyymWnJBPRULPiHlrukbRZ0azQQ55rom6O+OsWltG4d+NlK3MnWf2QUzPvNtOvYmo1ywoYOfDI7NMbyqF83+fq6EMoyqQqve9Eqo+bY2yzXfl14f5b5vvojtuKzpjPHbH7iEDWvaVj2006r3V6X8KRRNRLlV+cGXT3Pw1bO40vMnMTRKOrULQRCusWyJKyWaEETDGrGIwcR0njJ7q4vClZLPff3H5E17Qav6SEjz/LZnWbr6DY3rbdzVqijRVihWmWLBkq7L+LQZbLaOT+cZ/NaLgSc1eKEKa1avYCnnOu65UpLJO2TyFRoLL4LuReZhgzc+f4yGDqfGstz/+Ktc+/YN/NtLp9F1jXjUYCJt8sD3jgIo4S6D2ohUKFYR3xVwIm0CktEps6T03HFkiWCvJt3JKPYiBXs2mhAI4RldHXjueMVu9oq5qJW2ouUoXrn63iONtGLzNxNPnE03TX52PQXbR+AV29iOTdzWGZ/KY1mFylQJoxM5Dg+ONNS9awSUaCtaimI/63jUYDyVbaif2ocHR7j/iSN1Fb/lpjsZqbtgg1dQ5OXHC8anvF8axb8yXOk21L1rFFYkPLJv3z6uvfZatm3bxtGjR8se4zgOn/nMZ3jve9/L9ddfz0MPPbQSQ1O0GLN9s6Nho6F+au8/OFTRu6QR6e6IYNuy7oLtG3ZFw3qhoEniztrT1DStoe5do7Aion3dddfxwAMPsGFDZTeuRx99lKGhIQ4cOMA3vvEN/uqv/orjx4+vxPAULUSlkvGleGTXk5FJr09jM9DdEcF26ivYsbBGSPcaGPR3e4VP3rVmqky9KlfPdbGR7l2jsCLhkcsvv3zeY5544gk++MEPomka3d3dvPe972X//v18/OMfX4ERKlqF3mSUibRZYs402wtkNelNRkmlzYYX7noItia8knVDF6zvTVRM4+tNDnn3LKxjOzKoQtX1uT4uigaKaZ86dYr169cH/+7v7+f06dOrOCJFM7Jr5wAPfO8oebwVds6053iBrCa7dg5w/xNHMO2lrV41Da+v5DLsZHbVQbDjEYN/v/uimmLR/j2LRQxS6TyO9FwVy/m4KBpItOtFT0/bgp9TrfqoFWnl+V63pp1kMs63nnyNM2MZ1nbHueXd53P5jr7VHhowM76/e/wVfnE6VeqAp3nd2CfmaR6QTIT4T796GT97Y5z/9U9Ha+qOUytdHRGcJQp2si3Ef/rwZTW/5sX37I3TYDkuhi7YtK6jpnvXyu/ncjSMaPf393Py5EkuvfRSYO7Ku1ZUGXt1zoX5ntcb53du9d5H/nwbac7n9ca5+yPzhwxrOc/ajgj7Dw5x7HQK05JIKRFCoAlJFdvvsnS1L06wNSHo7ojMqWRcyGtefM9mU+08rfp+booy9l27dvHQQw9xww03MDExwT/90z/xwAMPrPawFIqG5tKtvSUhiPlE7OP7flA2pNLVHsFxF7vClkHDB8XysyLZI/fccw/XXHMNp0+f5qMf/Sg33XQTAHv37uXFF18EYM+ePWzcuJEbbriBD33oQ3zyk59k06ZNKzE8heKcoZyX9dIEW/ljrzTK5a9Ff15VQs23tZlvvg8cOML3D50M/r1UwQb4las2r1obsFa9v00RHlG0Fr/3hadLmtn2tIf5809etYojWhzV3Oceefr1kkazb9nazRtn0wyPZQBBR9wgb7tMZ2eKaQSQiBlYtotlu4HHNHhNazP5WcdGdSJhg1TaAiTJtghSSiamTVzXc/xb35vg8m1rODI0wdi0SXdbmO0DnRwZmigZ95rOGM//dCQ4f1d7BFdKQhps35TkyBuTC3ptNAG7r1w9wT5XUSvtFv2mrsRKzHe2YPushnAvZb5+Sbxlu2TzDpbjomuCrf3tDJ6cwqrgdeq3LquXFepC0DWIRQwyeZuOeJiORBjTdpnKWGRyVpCt0tkWQSKZnCdTpRzbNyW58/bL6jzyxdGqn1+10lasKOUEu9rjy8nzrw7zjQNHSlacQLB6joZ1kJKc5c75++CJSSSUpNS5rpx3ReosR/J0jTguTGdtNAHTWats+uBSBBvgyBuT3PvA/55XuP/mkZcCD3DwvsyklMvSweZcQom2omU5PDjC17//GhT6L75+MsXnHz6MAJJtEQxdcGo0DQi62sNMpE3uf/xVEIJ41MB2ZNO48M3GleCWyd9eqmD7zPfF9TePvMSzr5wpecxxvSbGecvhkWeOASjhXgTKT1vRsuw/OIRhCFxXMj6Vx5VeswBXwlTGZGLaRAgNIWAqaxMJ6eRMh1zeq6JsVsGuRL0EuxYOvnoWYE47Mt/ZTyA48JzyFloMaqWtqDs97eGKMW2fcht84AntyZE0mbwdhCUiIY337Rxg91Vb5m18W8zJkTTpnFUUW56RYcfxOoP72I7DL07PxEZHW8ykqLMtXOgsRKQAACAASURBVHfB/ti+HyClJ8KGLnBdF9stbQJc6YtPE5AzS90Oi98T5cJWyp7VQ4m2ou78+Sevqpo9MtvzujgsoWuCVMYqOV/ecvnOvx1jeCzDy8fGSefsoEP4qdE09z9xhDtu3F7yoT48OMJ01qrozTHfKnoVw9J1xxNs6r7C9sXZceWC4/iuLM3vLn5PCMGcsJXy1Z5BibZiWaiWJVLseQ0QCemMFVa2mla+v7eU3k9uQ/faVGnCMxVypSCXt9l/cKjkA73/4FBLCe9iSS6TYC8Wv1uNRAapjlD6nhieyiOE54g1lbVZ1x0mXzhGibYSbcUqMDKZIx4tfet5KzWJK+eKtpdA59l1Oq7309pHE+C47hzPZeXBDMlEGClpmC45fvZIJKTPyR4pfk/YjosmBFKCXTBQUb7aMyjRVqw45Tyv/bZTmiawndLu4f6CWSuET1wpgw0uV4KuaXM8l3uTUUZTOaScEf2F4H8xSLxVvhCeCKbSVpDC1sgkE94KuxEEWwAb1iQq7j1A6XvC0LVgP8MoNLRQvtozqOwRxYqza+cAjuOStxyklOQth2hYJxoxiEXKryOEgJ071hAN64UMEC+OKqVLNGLM8VzetXOAaMh7e8+W2GQiRCJaeb0igHjUCMIwui5IJsKEDI2dO9YsZeorQiMJto+/93B4cKTs34vfE+3xEFK6SAntMYO85Shf7SL0T3/6059e7UHUk2zWZCELoUQiQibTOG/u5aYR5tvXHaevK8bxM9NMpk262yN88D3n87YLejk9msG0HBx3pslrJKRx8zvP47brt7G+N8Ebw1Okcw5CwLqeBLdff+GcFVxfd5xNa9sYPDVJNudlKRia19ZK1zT6e+JcsKGD06Ppkth3bzLKDe/YiGm75E0HTQgiIZ31PQluuWYLN75zMwLJaycmS55XPhK/8jSaYOsaGLoGCBzHZTSV48pL+uccV/yeyORsutojtMcMbBe62yPccs2Wsqv0Rng/LweJRKTi31QZe4uWwVZCzbc6hwdHePjJQYbHMt5P9IIax2ZV8RWnp9Ur1upnxCyWjrYwNFAMuxyGBudv7Czr5bIYWvX9rMrYFYoaODw4wv1PHCGdNWdyuwsimjPtoIpvc39HkJ6WydVPIJck2InGF2wA24Wfn0rR1x1XqXyLRMW0FYoC+w8OkcvbhXSzUiQEVXzF6WmZ/Oo36O1IeEVLjS7YPnnLRRTCTrqusf/g0GoPqalQoq1QFBiZzOG4LuVSxaWcqeIbmcwRNub/6OiaQF/mT1ixYGvCiw1vH+ikIx5ioK+tYt57o6BS+RaOCo8oFAV6k1FSabNiUY5VSEObypjkTHvehrrL7fY3e4XtSpiczvPOi9YCMJE2WXiy48qiUvkWjhJtRcNTrRHBfMf3r2njuretrylmumvnQBDTrkbecslbqxsWaU+EgLkhkZzp8O2njxEJCaQUuMs0TH/9vpivhEhIQ0qJabsqlW8RKNFW1J1KIrtQ8fXPNdunpNrmlb+ZmMvbOK5n/v+LU6k53iTluHRrL3fcuJ2HnxzkxNl0w65R2xMhBKJqDDtveRWmSyFsaLhSzvlFsX1TkqEzaXKmjSbEnF8Umqjs3bJ9UxKEqFv2yLmIEm1FVXyhPTGSxnEkhi5Y35uY00yg2KmvuNvL2FSewZMvcfmFvbx2MlWz+PqU8ymZ7UNR/GUwOW2WdJRxXIe85fCXDx2eIxjbBzp5/qdnS9qDWY5kKmMFcrfUNLx60x6fX7BnEy6qKqyGJuDL//naJY1Psfwo0VZUpLjdViZvg/RWcMPj2ZJmAcUiHDE0LNtlKmshAF143V5++MoZkm1h4lHvZ3058S1HWZ8Sx2XwxCR3fvEZoiGNVNYOKhgrtQADz7g/EtLo645zeizDT9+YKBJkWdZOtuEEWyxMsBeC6qreHKi7pKiIv8pNZTwB1jSBKwXZvB0UMHW1e5VbvggPj+fQNOEdL7zIpy68Tbls3iHZNnP+YvH1V75+M9poSAtWxRQ1SSle+Y5O5gJjkWhYZ2IqP++c8pbL0PA0WoOtoOejbYGCXTBBxJXeaz9fEokQlLjuKRoXJdqKivirXNueSYPThOfC5gleqep5P8MlliPRi0TCLRQWFq+Cs3mbkQlPdMen8kxM5zkyNEFXewRdg1Nj2bLZF3MM9gv/PjOeXdDcmsm2tS0WQlvgCltK76XRKPhd13D8t58+xrefPoauCfp7KjeXmI3flT5r2ggEkZDgvHUdKl69TKg8bUVFepNRTNvFMLRAnl3peUl4Ocilbx/Tdunrjhec+GaOB0kiZqBrIjCJGp3MeqIi/C8C7wnTGZOprNfkoNlJRI2Ce+HiaYuF0PW5gh02vG4xxZS70mKSRxxXcmKkusGTzyNPv84jzxwjZ9qBkVfWdHnjzDQPfO/ovM9XLBzlPdKi3gWVWMh8i2PaU1krWNp2JCI4jhvEtMOGhmm7ZHI2HTGD0VSOnOmC8Fbf8WgIQxdcefG6IPwxOplD0wiE398k88MwmpjJiz5X8QV7dgMDQ4Ob37WZf3r+DaZz862hF4d3H7wvaO/zJOjrinLre84HZjagx1J5KDRum22Dq2kCQxOs7YqRM52KmUTgpS7ajlvSqX12tlFx+Mw/13VXvKklP7/VvEeUaCvRrkqt2SPRsE4qbRKPhQgbGqm0STpnY2jguIVuJXLmww3eBzxUyGywgpALRMI6juPOW7zSyrTFQhi6xsT0/HH65UbXRLCXEDYEoZARfFkPDU8Hx832LfdT/3TfXVHXcByXKy9ex7+9dBpd18jmLCbTVnC8EAKJZOf2tUG2kf9+SmVMkokI7fFQkOP9W7e+lfN64yv7gqwASrSroES7Ptz74KHAxD6Ts0hlLEzLCVZfokLuriYomN67wd9DujinV9mJmEFI1xtCsIu/WB3XDYy0BF6DArvoy7bccyXe/TV0QV93nLzlkJo26WgLEwnpvDE8Fdx3ISCka4UveFjbHQtSPU+PZbBtl5DhZf8A5C2HNV1xfufWS5dt/qtFNdFWMW1FXfD9ODI5i7GpPE7Rh9lrFVb+ea70Vtn+ZqWhLSws0gqx72Li0cYRbAC9EDf3W735SMCy5xdsXZvZvAYvXJYz7SB33L/vMPMLzFuhyxJ/F38z3C4aRNjQODOWqcMsmwsl2oq64G9aBumBNaipv0dnaIKwodHbGWXD2vaqQuwbMGkCtg90Eja0ws/qpc9htYlHDcKhxhFsAMfxys2rharKvfaGLggZGkKIYPMavL2LaNgI9jA0QUkhk+O6wZf26dEMmZwXOjEMreQ8/rnWdrdeaGQ+lGgr6oLfLsqy3SA/uJqOikL8Mh4xSLZFWNcTDwpvqgXshPBinBdu6uTO296OZbuFTJbmVu1AsGvINV9JavnNI6VnXrWuJ86azii65t3/aFjzUg+lS3s8FLQNu+EdG0taixWfx19IxyM6jusylsqTzprEwjoSSSxiBC3qHMfllnefvzwTb2BUnraiLvj5uP/jkVfIWzYhQ6MtFiaVscruMUgJjpS8ZWs349NmSaNff9OrXENeKV2i0XCwEWro2rzl2Y1OIwm2X5Tjp2O6srYipHjU8O5fSEcIwcRUnlzepb87BkKQMx06E+Ege2Rzfwf7Dw5h2y69SW8T2yx84SfbwiTbImTzNhNTeSanLbZu6ODdb10/J3vk8h1959SeFCjRVtSRS7f28u93XxQYPIULP49TabNsoYwAXj42zrVv38C/vXSaPF6cMhbWyeSdQmNdSmKp/T0zXb0PD440vWg3kmBrwkvTk9KzHuhORhlL5XFqUO3i+HMsYhAN62RyNn/y8SvKHn/p1t45hTd3fvGZgh2BmHOeO297OwC7Fzu5FkKJtqKu+B9EPxWwryvGR3ZtY//BIV4/mcKVM7FsV0pypsORoQluv/7C4DkDfe10tYX5yeAYOdMmHintz+iz/+AQHW1hwiGNiVm5zI1m9FSOWEQnZGgNIdgCCiEmwbruKAiB7Uovlmw6FcMk3r0UmLYb/FKCxflk9yajJb+4FnueVkeJtqLulFtFffXAURzXLamiFHj52yOTubLPmQ+/zD4SihAO6Yylcrh+F/d5BLvYPlQA4ZC2YI9sTcCmvnaOn5lGSrmg0vhYRCcc0ucUziyVkK5VNc2aja55edG737W55EvRL6yKhXVMyyn7ehb0mp3b1/DayVTwS2mxPtm7dg7wwPeOLvk8rY7K0z5H8rT9IpmxaZPutnBFX4jDgyM8/M+vMTyeAyR93Z4HBZQW0iAlOcud1y/bf97giVSJmBTHq/2VdLFNql99VzxG//wnR9LYjrcZpWuCWEQnZ7mFFDTPdCMWMciZdomQikKFpmW5JeXdmvAc7hx34c0NQgVXw4WwXIJdL3raw8SiISbTJqblYFpuSYYHeL9iin8BLcYrvRwLPU+rfn4borjm5z//OXfddRcTExN0dnayb98+Nm/eXHLM2bNnufvuuzl+/Di2bfOJT3yCPXv2LOg6SrTnUtxIIBE1SOdsHMfl9usvnCOK9z/+KumcXRRekERCBoYuiMdCOI7LWCoHCLrawxiGPqfKLShrz1pBqXsm6xXclCMe0cma3mqu3J3raQ9z9VvW890fDZEz3aqLaIEn2N3tYUYK5fSaIPBDqdQCLBE1yFvOsldhNrpg+wg8K9h0zgZkSUXj7PfNatKqn9+GEO3f+I3f4AMf+AB79uzhO9/5Dt/85jf5n//zf5Yc87u/+7ts2bKFT37yk4yNjXHLLbfwta99jf7+/pqvo0R7LsXViv7KMG95u/n+Bo9/nBd3lkGetSs9C9WQodHfm2B4LFMQNomua6wrU+Xmc2okDRA8z7ScOSGEkC7QdI28WV8PDX8T1HIcpAuikBa40FVxPYlGdCJNINiViIT1gnuj90XcCJ1nWvXzu+oVkaOjo7zyyivcfPPNANx888288sorjI2NlRx35MgRrr76agC6u7vZvn07//iP/7gSQ2xZDg+OMHhikrPjGYbHMoWVU/ku2F43cs8jxHJcL6boeitbf4VqO97KVeBVqfnnKq5y83Fc7zzDYxlyhc0svzYipHsFNbLoPEulOFPbLHwxIQlW/6uZyx0NN7dgA5imQybvkDW91ffrJ1Pc9/Bh7v7/DlZ08zs8OMK9Dx7izi8+w70PHlKuf3VgRTYiT506RV9fH7rurcJ0XWft2rWcOnWK7u7u4Lg3v/nNPPHEE1xyySUcP36cF154gY0bF2bM3tPTNv9Bs6j2rdbMPP/qMF///mtomoCCadPZ8SxrumLoGvSvaSuZe/+aNiamTWxHBn4hgbmT8CrcQoZeKCUWhEPeYznTJhYN4UpJtGilLQTIwnX9cznSj4sKJBAydMBrkLBUyv2+ciUIKbGXxwyvJqJh3WvS0MSCDTOvr5QwMW0iEGia4OxEjq9//zWSyTiX7+gLjvfff4YhSLaFmc5ZZY9bKq36+a1EQ2WP3HXXXXz2s59lz549rF+/niuuuALDWNgQVXhkhm8cOALCq1Ybm8ojCgo8OpEl2RbmuretL5n7dW9bz8uFlVBxgwEBuK7LdNaiLWYEMe1ENMR01sJxXK6/zMu1th0ZxLS9MAvIwv86xefzSuVoawsH/SSXC8eVhe7ky3aJirSKYJfDK8QROK5nw/uNA0dKHPf895+uadiO9P5XOHOOWwqt+vmt9kW0IqLd39/P8PAwjuOg6zqO43DmzJk5seru7m4+97nPBf/eu3cvW7duXYkhtiR+SpworH5TGSswciq3mXTp1l4SsRDZnI1d+OILGRrJRIi85dKZCDMymaO/JxFkj5SrcvN3/jNZi3BIYyprFxzaBNL1zKGKK+XWdcfZMdDJj46crbhR6LcHq6S75aonix+LhHQ6EmGGxzNY9sqod6SVBbvwv74fSKVw2+z+nuWOUyyMFRHtnp4eduzYwWOPPcaePXt47LHH2LFjR0loBGB8fJz29nYMw+DZZ5/l6NGj3HfffSsxxJakuFghHg0Rj4ZwXJe2aKji5tGG3sScAoe85dCbjJVsWpZjdq61vwG6rjtccq7ZG6A+O9/spXsdO50ib7lBKXt3e5hf37WdY6dSHHjuODnTDszygeAxfyVt6CKw9wSIhDT+8lPeXsnhwRH+/rs/ZSyVLxH5sFFqD7tUImGd2DyC7XumLEdFZzIRwnEl01l70ecozmUv/tI0dFHki+41xShXBKOKZZaHqtkjrlvbm0nT5t/PHBwc5K677iKVStHR0cG+ffvYsmULe/fu5VOf+hSXXHIJ//Iv/8J/+2//DU3T6Orq4u6772bHjh21zwYVHimmONXPD1kg4cPXnV9RtMs9Z7FpXvU8Vy34ra8EokRwfvld582ppqz2HInkwg1Jjp6YRBTW68X1Kn6uck9HlGhIYzSVI2vOHBAJed16xqtUOsYiOv/uHZt4/qdnOTmSLrGxXQqGLuhs85ot9yajICVH3pic51kzaJogYggSsTBjKa9JM9JrW6Zrgssv7OWNM9OcHM1g6BrJtnDFVMCVuP+t+vlddMrf9u3bAx+Aarz66quLG9kyoES7lNnFCv/nDdvnjSfWq1Bi9rmgfFup2cf6xTN6IcNkOmth2dWf44+1qy3MoZ+NBEUyhi6IRQw2FHXbefjJQYbHMoWuKgIpXRzXqwwMGxptUQOhaUjXZSJtVQzZlKMWwfZKxqHcArsjHqIjHiJnuURDGjnLZXwqX3UMhi4I6cJzQAzprOuOldyzw4MjfPnRl2tqTWbonvPi+t5E2fZexees5T1Sz/dSOVr187to0T5x4kTw308++STf/e53+c3f/E3Wr1/PyZMn+Zu/+RtuuOEGbrvttvqOeAko0a7Oas230orWL59+5OnXefzZIWzXC4sUr5RnEwtrnLeug+0DnRULenRNMDGdX9DmY9jQiIb1oGXa8FhmQRWStQh2LVSbe8XnaBR+FXgbz4YughVtca/PybQ572uSTISIRUMNV0hTjlb9/C56I3LDhg3Bf//t3/4t3/zmN+no6ADgTW96ExdffDEf+MAHGkq0FY3JgeeOI5jxvdYL7n0HnjvO5v4OHv/hkJdRUqCaaOVMl4m0yePPDpGIGYEPdySkM1ZY0fsx13IblJXwzP5dujqiZHLWggQ7XCfBhoULNoDrev0bJZDN23S2R9h/cIhLt/ay/+AQuq6Rylg1fYlNZSw626PkITiHonGoeSNyamqKbDYbiDZALpdjaqr1vuUU9Sdn2nOKWzThPb7/4BCOKwMhn09oJZ5A2463ckxlrCChfLbgLVT/XAm/OL2w93TY0EjUSbCXit+SqzhLw8/iqKWIyW9gASrTo1GpWbTf//7389GPfpSPfOQjrFu3jtOnT/P3f//3vP/971/O8SlahGjY8/bQi3Tb625iMDKZKzR0das2QCgmk7OCXPLV9DwLGxqJWGMINsyk4BVnafhZHIah4cxjF+A3PwCV6dGo1Ow94rou3/jGN9i/fz9nzpxhzZo1vO997+NDH/pQUOnYCKiYdnUaJabtFCxUo2ENTWgIAVnTpsaEpYbA687TOILt0xYziEUMzl/fwU8Gx8jkF5b2VxzTvvLidRU3IxuBVv38NoRh1EqhRLs6yznfSpkC/uPF+dc+freU5XbXqzchQ6M9HmIs1TiC7VsP6LrG1v52jp6Y9NL1FvDSdsRDhEM6vclo2Y3eRtucbNXPb10qIqWUPPTQQzz++OOMjY3x6KOP8txzz3H27FluvPHGugxU0bwU5+TGowYTaZMHvneUY6dSwQe/PR7GSuUo1mffG6SZaETBBgiHdTatbWM6a3H0eMrrhF5DVD8S1gO3xuLCp3sfPISua0FxTCSkq83JBqBml7/Pf/7zPPzww3zoQx/i1KlTAKxbt44vf/nLyzY4RfPgZyhECo1dIyEdXdc48Nzx4PGpjIUQpZ1rYHHZEqtFSNfoSCwtJNIe99ZK9TYdLHZdnPF9KXU/nO95xRuPI5O5Oc6NanNy9alZtP/hH/6BL33pS9x0001Bwc3GjRt54403lm1wiuah0ge82LLVt3UtRtD4vRx9DF2jo81bYS9mzAIv/JCIhdGEqFi45j8cCS3MOdkovM6m7aIJr+mDEPNn0BQ/r3jjsTcZnVNirzYnV5+a3xWO45BIJACCN1s6nSYer49bl6K5qfQBj4aN4HFD10pW1bLwf6vncl07Xnl4eMGC7c+tsy3Mpr62oPvPzh1rkMg5X2LxiBdP/k8fvJQv/u67+ZWrNlNDUTKagPaY12Kt+Py1vLbtMS+zZ3Y/xl07B3Acz5dcSln2GMXKU7NoX3PNNfzpn/4ppukZ4Egp+fznP8973vOeZRuconmo9AG/4R0bg8fb4yGkdIMNMx+tUK7eqPh+HqOp3IJX2Iah8c6L1rKuO04mZ9OZCHP79Reyd/fF7H7XZqJhAyFAE4JoWGOgr71ko2/3VVvYc+XmklW3rhU2HfHK8HuTUdb3xAFBV0es4vl1beZ1F3hZJht7vef54yqOVV+6tZfbr7+QzkS4ZOwqnr261Jw9Mj09zZ133slTTz2FbdtEIhGuvPJK9u3bR1vbwhsPLBcqe6Q6q5k9UtwUeDJj4TgSQxesL/iC+C5+2bxdZKnqpQPmZ/WG1IRgfU+MU2PZBXmDzEYT3i9HTXgbjJlZvt66LuhqjzA2masYe+9pDzM6VermFzYEW9YnVzxFTr2fW4MlZ49IKRkfH+e+++5jcnKSEydO0N/fz5o1a+o2SEXzM9uadb7HZ3PsVArbcYOQSUdRvvAn9lxY8gVwYiTN8Hgu8NmYnPaMqLraPYe7VNr0YrqFIIEmIBoxyOasEqOmkKHxvp0DQUfxv/vHI4wX7FR1XdDTEcF1vca2jZinrDj3qHml/da3vpVDhw7VZMO6mqiVdnUadb5+8c3s4prOtjDRiBE0W/DTCsdT+UDgwVt5e2599RmPrgm6OmZW2B3xUBCPbuQQQaPe3+WiVedbl8a+O3bs4Oc//3ldBqRQzMY3lPLx/yuVNoM0s+K0Qj8TRboS6RbamS2TYANMZa0gjXH/waH6XEihWAQ1F9f80i/9Env37uX9738/69atK0lXuvXWW5dlcIpzB99Qyi1uJoyXw+2nmY1M5pjOmuQKDQeKo8/16v6ia4UYdipfmulSZCR1ejTDHX/2g4rn0ASs701w67u3NuyKXNG81Czahw4dYsOGDfzoRz8qeVwIoURbsWR8kyMfXy8FBGlmX3705UCwlwNNE3R3RBlN5RYUYpuNK+H42TT3P3GEO27croRbUVfmFe1sNssXv/hFEokEF110EZ/4xCcIh8PzPU1xDlKSJRLSgsa9823gHR4cmSPaPu3xEBFD46sHjtbUeWWxaJqgpw6CXUwub6uSb0XdmVe0/+RP/oSXXnqJq6++mgMHDjA5Ocl/+S//ZSXGpmgiir1HJqdzjBTpa2ra5AvfeoloRC9p+/XVA0cZncxVrdhLZSzPL3sZ8QV7rI6CDWA5rir5VtSdeUX7qaee4lvf+hZr167l13/917n99tuVaCvmEHRHmc5hzVoQm4UdQs0SnB7LcN83DzeMBasmZgR7Kfne5ZASLy9doagj84p2JpNh7dq1APT39zM9Pb3sg1I0DrU2ZvW7o2TyldXYtBxs120swU4uj2B756d5jFUUTcO8ou04Dj/84Q+D7iC2bZf8G+Cd73zn8o1QsWpUslsF5gi33x2lKqJxfEY0Ad3LKNgA3R0RcgvoM6lQ1MK8ot3T08Mf/MEfBP/u7Ows+bcQgu9///vLMzrFqlKcFw3V/ZT9wpdqyEJrsIU0210OPMGOMTFVu2AL4aUD6rpGV3sk8J2+98FDTKRNxqfyOM6Mu56hCwxDpzOhNu0V9WVe0f7BDyrnoypaGz/kUUwlP2VfxL/82CtMZ8u3txLUrwBmsRQL9kK65UgJtiOxHYfTo5mSXG1NQCxiYFoSW84kK2ayFh++9vxlmIXiXKaxa9IVq8pC/ZQv3drLx2++iJAxNwgSMrTAYU7XBath6icKIZGFCvZ8uBLSOTtoOOC76tXkqapQLBAl2oqKLMZPef/BIXqSMc5b146uCUK6wNA1dE2wqa+d3mQEDUE8GiJkaHS2hRnoa2NdT5yOeGjZDPaFgJ5klIkpc1n6UQrh/QoZWNfOQF87/b0J4lFDlbwr6k7NFZGKcw8/5FFL9ohPcUjFMDQcx8WVkpzpBmXghu6tQKWUTEybTEwXb2DWPydbCO9Xw/iU5wS4HEgJzqy0GNWaS7EcKNFWVKVWW1UfP4skEtLpiIcYmZzbOMB25LIXzPgEK+zp5RNsH8ed8ScBL0dbE4I7v/iMsnVV1A0l2oo51JqbXe44P4skj7c5t5ppyr5gT06bWHUylFoIOdMhEpo/XVKhWAg1+2k3C8pPuzrzzbc4NztsaExlLKYzVlCCvn2gk+d/epZTo5my6XKxsEZPMgZSkrO8Mm5dA10r7y2yXAigpzNKatpc0etWGkvxKxUNa/QWvUb1XIWr93NrsOTONYpzh+Lc7GzeZipjIqW3avzZ8QmODE1UfX7WdDl+Nl3ymOPOjfcuJ40k2DA3Jz1XeI08G9iwWoUrFoTKHlGUMDKZC5rsptIm/jrRshun/Hw+ejqjTKWthhDsaggBU1lbNVdQLAgl2ooSinOz/e4wjjv3J36j0tsZZSpjkZ/tWtWACMAuvNYq00RRK0q0FSUU52brmgji1ppWn1qRkL58BSe9ySjTGYu82fiCDd6XoFH4VVOtaEmhKGbFYto///nPueuuu5iYmKCzs5N9+/axefPmkmNGR0f5/d//fU6dOoVlWVxxxRX80R/9EYahQu8rRXFudiZr4UoHCv3Rvc7mS8NahsIW8LJEprMWuSYRbPByu9tjRk1FSwqFz4qttP/4j/+Y2267je9+97vcdttt3H333XOO+dKXvsTWrVt59NFH4BWc/wAAIABJREFUefTRR3n55Zc5cODASg1RUeDSrb3cedvb+ctPXc0n338x/T0JpJQYukZ73AiKYxqF7o4omZzdVILd0xGhvzsGCDoT4Ybu8K5oLFZkCTs6Osorr7zCV77yFQBuvvlm/ut//a+MjY3R3d0dHCeEIJ1O47oupmliWRZ9fX0rMURFBfzimuKc7A29bWwf6OTxZ4/NaXiw0nR3RMnmbbL58iZVCyFsCNZ2xcnmLFIZG8d1EWImRBQ2NG68YoDdV20p+3z/NTo5ksZ2JLougjTJI0MTNVeVKhTVWBHRPnXqFH19fei6Z/Gp6zpr167l1KlTJaL9W7/1W/z2b/82V111Fdlslttvv53LLrtsJYaomIdylZGb+zt4+J9fY3g8F6T0zU7dFni+0qOpfN3HtBTBDumeGH/5P19bt/FUqx7dXberKM51GipYvH//frZt28bf/d3fkU6n2bt3L/v372fXrl01n6Onp23B162WyN6K1Gu+161p57or3lTTsXt+75G69l/s7oiQM+cXbCHmNo8RAlwgFg215L1vxTlV41yb74qIdn9/P8PDwziOg67rOI7DmTNn6O/vLznuq1/9Kp/97GfRNI329nauvfZaDh48uCDRVhWR1Vmt+e7cvoZnXzmz6OcXpxx2d0TImw6ZXGXBjoS8Ckw/+l78jvC6gEmuv2xDy9179X5uDap9Ea3IRmRPTw87duzgscceA+Cxxx5jx44dJaERgI0bN/Kv//qvAJimybPPPssFF1ywEkNULDN7d1/M9k3JqseEdEG44Lut6yLY8Jwj2JZLuopghw3Bm/o72HPlZgbWdWDowuvXiLfKjoYNdr9rc8XYtELRyKyY98jg4CB33XUXqVSKjo4O9u3bx5YtW9i7dy+f+tSnuOSSSxgaGuKP//iPGRkZwXEcdu7cyR/+4R8uKOVPrbSrs9rzrcWMyj9meDzLdNbCsl3CIY3dV27mJz87y7HTaUDS1x3n8m1rqm7yrfZ8Vxo139ag2kpbGUa16E2vRLPMdyyVY9+Dhzg7kcPQBedvSJLJ2cSjxoKyL5plvvVCzbc1UIZRimXn8OBIkEkCkmRbhGhIK3Gxe/ifX+P4SCZ4TiSk0R4PY1rOHH/t4pBIIhbixEiaqcIxvmmVAAydBaUdbt+U5M7bVUaSonlRK+0W/aauRL3ne3hwhIefHJzj7OcTC2tkzYUZNxVnfCTbwkjpm1ctL5GQxtsv6GV82mzanGr1fm4N1EpbsWTKxaKPnUrx6DO/KOur7bMkwU6snGAD5C2XZ185Q1vMoLsjqixTFQ2JWmm36Df1bHzRHZs26W4LL2gFWa4xQiptVhXrxTBbsBEwOb0ygl0JTRPoArZuSDbFqvtceT/7tOp81Ur7HKW4rDprOiSiBtGwzusnU9z38GESsRCm5WDZLoau0ZEIA15vQ6TXx9F2JDnTBiHqWhwzm2LB7kiEGkKwAVxX4oJadSsaBiXaLUrx6jhvObiuJJUxSaW91aMrCTb2BJ416MhkjnhEZ3zKa8Yr5cyxy9nscbZga0JjYrr+Ze9LIRLSyeO5HyrRVqwmyk+7RSluG+a4El0TuG5BiGcZYxfLcSbvIIQWeIjo2vI6+hULdns8hKY1nmD7qEYFikZAiXaLUtw2zNBnRHj2elmU+W9fp5d7s6NYsNtiIQxdY2Kq8QTbfz1UowJFI6BEu0Upbhvmxao9dRSUOvEVC7P/3/7fl3ONPVuwQ4bG+CoJtsD7RVGpM097PKQaFSgaBiXaLUpx27BoWKc9Hg5CHZqAeGTm1hdrVdgQ2I4n9hKWpTnubMEOh/RVE2zw5um4smLYfjJtcXo0w9mJHF89cJTDgyMrOj6Fohi1EdnkVPLyuHRrL8dOpfjHg0PkLU94DQ3iMQPbdsmZBQe8gmKHdY1IWGd6VmVivSkW7ETUIBzSGUs1T5x4ZDLH/3jkFf797ovUhqRiVVCi3cQUZ4jEo0ZJWhrADw6dwHYkmvBCHrYLTtYG4W1GdneEMQwdx3G5/foL+eqBo0yxfKI9W7CjEYPRJtrY80vrs3lbZZEoVg0l2k1McYYIlKalAeRMxzP8nxXDFhKEBlNZm3Xd4eA5voAW+374lHtsIWhF44g3oWD7+K+DyiJRrBZKtJuYkckc8WjpLSxOS3Ncb5UtizYWJX5vdbAL8Wr/OcuVLVIi2BGDeLQ5Bbtk01ZK7n3wECOTOXKmzXS21N9b4P2y0DSvKMm/ByHDC0Ml4yEQgpzpNKXHiWL1UKLdxPQmPX8Mf6UNpWlpqbSJK2UQlvBFxxdvo5AS6D8nlTYxbbeseC9W0IsFOxbRicc8wW5284SxqTyuhFzeKuuv4tcjuU7pRE3bxbRdpjMWmobyOFEsGJU90sQUZ4hIKUvS0nbtHCAa1pGyTC52QcTbY0bJc268or7pbJoQgWBHwzptsXDTC7auCUKGhiaE11R4gYZYxQjh+bhEQjq6rgVhLYWiGmql3cT4q7JKnWDuuGnHjMe16xIyNGKREG0xA6QkZ7l0JsIlGScAB547Ts60vaISIbAdb7XeHgshhJcCNx+eYHvqHA3rtCfCjE5kG1Kww4Y2b2qjrgk2rvWaRh8/M40mCFIjF4OEknOoaktFrSjRbnKKxbaWv83nirb7qi0lvRMPD47whW+9hCslWdNblRu6huPMhFEM3RN2n2LBjoS0QLCLN0QFXry3uyPCWCrvxd4RJef1j1ttnfeLb3wMQ8O2vS9B21lAB4ZZ53SlV60KqtpSUTsqPKKoiJ9S6FcKWraLK0FKt6R6sJJgh0MaybbIHMEGX4glI5M5HFdiORLbmRtPX27B9mLusmL1pwBiEc8d0Q9DxcI6EkksYhALL/4jJKWrqi0VC0attBUV8VMKO9sjJQUwrguaLuiIGExnrUCQ/UwJ8AS7sy3CyGRujmD7LCS6sNAVtyj8X6VLtMUM3nvZRp4/cobh8RyG7olzOmcF49IErO9NcOu7twIzYah13XHe/db1hYbCAl1fWvZIcYhKoZgPJdrnILV0RIeZlEIhBN0dUUYKK2YJdLdHAJjOevHtEsE2NLrao5ydyNbNg7vWswgBe67cHIR4agkH1crs12h3zc9UKOqHCo+cYzz/6jAPfO8oE2mzpIqynJ9GbzLKVMZieCzDWCqHXoi/CgFjqTxnJ7xVdLFghwyNLl/gl7FpQiWkhH9UWRiKFkattFuc2avqnOVWrKKcvZLsagsHnc89CpFoCU7h936xYBu6FqzI692KbCHkLZfDgyMq3KBoSZRotzDlvEnOjGfp6YhAUUFOcbpZcYuyqXnMo3RNBOJs6Bo9ySijk6sr2D5/+dBhAHRd0BkPYTmSnOkU3PwkIUMLxm/ZLrqm0dcV5db3nA+UplFuH+gsxK+bs0O7orVQot3ClPMmCemCyWmTeDT0/7d379FRlff+x99777lnJpkkk8REoBRUiBdalEpb4VRFBEvAG5UeqMseFNeq7WqXuqp0WS+0nvMTW1vbatvT0xZssa1VK1pQfmpdHoo/Ra0XUATkZriESxJyncxlX35/7JnJTDIJISSTTPJ9rZUlJDvDsxf4mSfPfp7vl46oTkt7jLhu4HY6eG7THl774HCqRVlv0ZsZ2AqhoIf6pkjGTpLhwDAsGlq795pMVj5MMU3qGjv472c/wOm0j9r7PA4ON4bZeaCJogI3AZ9TTi+KISdr2iNYeveapOKAG90waWmP0dDcQVw3QVFwOVXWv1GLblipFmU9NQVID2xNVSgtSgb2wNfezhULe60+EjeJRHXcTg1FUeiIGSjYpx8VRZHTi2LISWiPYOnda5IcDpWqUh/RmIGFgsOhUhJwU+R3Y5gWre1RDjeG0Y3sTQG6BnYo6KGxJZrXgQ2kjvtbFhhm573outnt9KOcXhRDSUJ7BMtWm0TXLRZecgY+j4MxZQWcVuLD53EC9j8G3QTDMFGzzLJ7Cuz4IHS3yTVF6Zxta2rn/xYOh5pxchHk9KIYWrKmPYJlq02y6PLJfCrkI1RU261CYOexQAWry4p2emCrCoSCHo6PkMCGzlm2x6nidNqFtFwOFa9Lo0U38LodWJZFTDfl9KIYUhLaI1zX+iPJwyZzp4/j8Zd2EqWzYJJpWhQVOInGTfS0khpdA7us2EtTa2xQ+kfmgqrQ590jmacfZfeIGHoS2qNUtlm4Q1XQTYtgQONIY5hIzMgoBqUkA7stRjTev0JJQ8Xt0igOuAkWuLhj8fknvF5OP4rhSkJ7FOs6C0/u645i1+bQDTMjsMuLvTS3xYjG8iuwAbwuTZY1xIggoS1SkgH+whufcLA+njnDDnppaY8TybPAVgC/z8lpJT5Z1hAjgoS2yHDehFK27TvOjv3NAJw5pgi3U2VPXSuRmI6CvR7scTuoKvGy40DzsGxs4HaqfOOqc5n1+U/3WjBKiHwjoS0Ae2nEnmGHU5X7FCAaM4jEDAoLXJQFvQCEI3EaWyJs39/9pOFQSm5+sQDTtGRWLUaknIX23r17Wb58OU1NTQSDQVauXMn48eMzrrnjjjvYsWNH6vc7duzg0UcfZdasWbka5rCUrAdysL4dw7BwaAqFBS6wLJrD8W6fi8TtfcTFfhfv724kEtPxuBxc/rkx3Hj1Z1Kv+9ymPbz41gE6Yrq93c2lEknreVhW7KWhJUJ7RMfn1jAtiMWNHutjDwedQ+uprYEQ+S1noX3vvfeyePFirrzySp599lnuuece/vCHP2Rc8+CDD6Z+vX37dm644QZmzpyZqyEOqa7V+LAstieWKNJpqkI4atGSpZhT+ue6ntgLR3XWbtpHUzjOZyeW8sf/u4OGlmjq6w5NyQzsoIf2iE57RE98v5HRWX04Sg5NVaCiWA6/iJEpJyciGxoa2LZtGzU1NQDU1NSwbds2Ghsbe/yep556ivnz5+NyuXIxxCGV3LWRrHG9t64la2ADp1xB79V3DvLfz33YLbDTCz2VBT10RA3aOzLfGIZzYCc5NAW/15naby3ESJOTmXZdXR0VFRVomn36TtM0ysvLqauro6SkpNv1sViMv//976xevToXwxtyXavxdatAN0CSLbs6op07QJwONeNUYyjoIRIzUuvaw4nHpRIq8qaqE4JCRbGHaZPL5fCLGDWG5YPIl19+maqqKqqrq0/6e0tL/Sf9PWVlgZP+noHU2BYj4LXbeg2mrhPlbIEdi5snrKM9FM6bWMJ/3dK/pbKh/vvNNbnfkS0noV1ZWcmRI0cwDANN0zAMg6NHj1JZWZn1+qeffpprr722X39WQ0PbSbW5OlEPwVwo8bu61wEZRAp2IaSMwC6yA9uewQ4vmgr76lr57s/+N2tDgn11Lbz41oGMB6597RE50sj9jgy9vRHlJLRLS0uprq5m3bp1XHnllaxbt47q6uqsSyOHDx/mX//6Fw899FAuhjYsdK0D4naqg7JE4vc66IgZqIqSEdilRW50w8LlUHE5VAzTxDRPrvv5YDJMu4Fw7ZFWdh5oSlUjrG+OdGmH1vnAde2mfZQGXHxr0fl8KuQD+t7QWIjhLGelWe+77z7WrFnDnDlzWLNmDStWrABg2bJlbN26NXXdM888wyWXXEIwGMzV0IbclIkhlsw+i2CBi3BE59OVhUweW9Ttui+cXc7vl19KaeDED2cVwOtSGVNWwJiQj1CRhzFlfqaeVZYR2BXFHpyqgt9rV7bTjeEV2EmWZe9gMU07sPuioTXGj/74Flt213d72NtbQ2MhhjPFsobjebb+G8rlkRPN5NL7Lyb7FabvBlEVhenVZSxbcC7/89wHvPHR0dRpQxUo8Dk5PVSQ8brJ19x3uCVjyx7Yx89PL/Wx8JIzmDIxxEtv1fLnf+wCwOvWOK3Ei8epcbChA1WxH1B2LQSVbNw73Lf79URRYNJYewLQdQkqGjf6XEAqX4zU5YKejNT7HfLlkXzQ9QCLbhjoBpiWhaooeFwq4yoCYFnsPNCCaWWGrdOhENet1OeTP7q7HCoXnBVi/7F2DtW3o6pKj30UTcvi9W1H2bl/U7e+hibQGo5zuDGc6lEI8PhLO4nrZrfABnt2evh4R2JG2cAr7xwE7KPpN847m7JiDz/607uoCrR2xOl6Hl1V7A+L/AxssG8puWfd58n85y4daEQ+ktCmc590XDcJR3WMLqFqWhbhqMHH+5vIlremZRGNZ0+1mG7y+rajaCooSs+BnS5bI9qkjpiBx+1I9SjUNDXrQZsk3bBn88nAnjy+hBvmnEUo6EFBob45QkfUQIFu95YoF9WtIcJQ6c9sX1FIdZnpOtOWDjQiH0m7MTr3SdtNXHt2Ko3GDdM+zXiqdN1MzRCTjXv1XhZ5XQ6VxsRBmglVhXz7us9SFvSiJrYXhoo8xA0z1bklnWWRajvmGICxn6qqUh9jEg8V+8rr0pg7fVzW1mtSqlXkI5lpY//47PM4Uk1cs0keTDkVppXoRXgKL+RIdJlJnz06HCpGlpKpLqdGLLFG7XFp3DivmtNKC2g63p66Zu70cew+9AFmovt6+tgU7BOYyfKmTW1Dtx1QVUmtzf/Pcx+w+aNjGUtUXSlASZfdI4DsHhF5T0Ibe7aZCr8euoqfamAriVdRFQXjBKldGnD1uETStZj/4y/txOuywzn9ZdMD26EpLL7sTMqLfTgdnT9cJdfxNRV0PbPUkkVyLdvC6VBoj+gD8sbVH5qmEPA62bC5likTQyxbcC7LFmTeQ09BnP6gqmvTByHykYQ2nfukvS6N1o6elxo0pf9LJAVeB163g+a2WK/1Q75wdnmvu0eyFfPfsLkWw7SIJnakODQ1tQvE7dRYPPtMvnjuaahpP0Zs2V3P75/fTiSqY5gmdgNyBbdTtV8rsU9cVRWK/PY+7rZwnHgPb2qDRVGgJODG63ZkfWgoQSxGGwltMvslGv3cPeJxqfg8TlraY8R1MzUj9bkdfGZiCcfbYtQ3R5hQVZiaJfc2Q0yfTWbTdYZ547xqpkwM8fqHdfz27x8BMK7Cz001Z1MV8qEq9gz7zy9uZ+2ruwlH9dRraSqJvdl2t3Gf24Fl2fdumhb1TREUVelx6WgwhYo8+DxOonFDHhoKgYR2ylDM2Pr75yV3u2iamnFQ5OMDTTz/Ri0WMLbcz03zqqks7Qzs5zbt4e//75Nu+9jTJ8+6YdEe0VNr3MlLLdMi173X3U4Vr9shDw2FSCOhnYeeenU3zW0xTMteCikscKEosP51exugqkB7R5xVL2zH49KYc6E9i3/xrQOY1ok38CkKkPZQMtdr2aoC06vLUz+dyENDITpJaOeZLbvrOVTfjqIoaImDOm3hGOG0cqsel4bTqVF7tI1Cnyt1GCcS03t62QyWZQd1cmZtMTjBrakKbqfGI7f+2wC/shAjl+zTzjMbNtfi0FSSVVzdTjUjsL1ujUCBm/qmDgzDoq0jjqapbNhci8flOOF2Q/t17Rm8U+tcxHY41AFv4GVhcfnnxgzwqwoxsklo55n65giFBU4s7K18yXZgAD63RmEisJPr1umHcU4UkJoKTk2lwOuiPOjB43bg1FSKA24qS33djoFnoyr2jhOvW8PtVLt9LcntVFnwxfGpEqpCiL6R5ZE8k9xTXhJwc6ypcwucx6URDLg51tSROhCTlDyMs2DGBJrCcf73nYOppQ4FUFRSJyLLg57UIRbI3KUyttxPsd/FWzuOdTuO73SoYNm1V9xOjZsXnJ31NWR9WohTI6GdZ+ZOH8efXtpJfSKwNVWhtMhNccDDvrrWVN2UVJNbTcnYeXH7kml8dmJpqtqgblhomtKtemBStl01yxL/Td/F4kqc1DQMkyWzz8r4HtlLLcTAkdDOM6qi0NASxcJebvh0pZ8FMyZgWRa/W/cRlmXZ9bITU+3KEh8LL544KCGavr9dZtFC5IaEdh75cF8jv3h6K4ZpESrycPOCsxlTHsCTqFy3dF51zgNUZtFC5JaEdp74aF8jP39yC3HDpLTIw7L5mYENEqBCjAayeyQP7Kg9zsNPJQK70A7s08v9GYEthBgdJLSHuZ37m/jpk+8T101KAm6Wza9mTJkfn0t+SBJiNJLQHsY+PtDET/76HrG4SXHAnZhhB/C5JbCFGK0ktIepXQeb+ckT7xOLmwT9LpbVVDOm3I+/DwdchBAjl4T2MLT7UDMP/eU9onGDogIXN9WczZiKAH6v85S63ggh8p9M24aZvXUtmYE9/2zGVQTwezrrhmQ7YbivroUX3zpAJKbjcTlSR9aTn1NVu2yfiYLHqXH558YwvrIw9ToelwaWRSRuyn5rIYYxxbJG1tytoaGtW73o3qS3oxoKz23aw4tvHSAc1fF5HHREdSzLrs3xrWumMO60AJveP8j612szGhcMBFWBIr8bh6bQ2BIBFHwejWjMRDdMqkIF3Q7mDJSubzyTxwXZXts04HvMh/rvN9fkfkeGsrJAj1+TmfYQSAZW7ZHWVIW+9MAGiBsmnxxpofZIC09v3IM5CB0ITAua22NoqoKiqJimSWu4sxfkgWPtPPzkFpwaTDw9OGBB2rWJw+HGMDsPNFFU4Cbgc6aaOkD/G0UIMVJJaOdYemB19BDYClAe9PLqu4cIR3SUQWxDYJp2SzGXQ031v+z6J8UNqD3S2i1I+1sIasPmWjRNxZ3YZ94RM1BQ6IjqFBa4cDs1oonrJLSFyCShnWPpgWVhN/wNRzIDO1TsJRozaG63O7JrqoLR4ysOjJje+1S+I2pQ6HengrRrY+DjrRE+PtBMgcdBVVrxqWzBXt8cySjzqusmqgJ6Wt+zZDlZIUQmCe0cSw+sroENEAragd3eEceTOECT7Kw+lCwyg/SpV3fT3hFDSfSftPPWIhzVU8sb++paeO2Dwxm9LH+//iOicYPjrRGcDo3CAhcOh4qum3Z514RkOVkhRCbZ8pdjoSIPMd1EUxUiUaNLYHuI6Qat7bFUV5fLPzeGE3d1zI30ID3SGAbsDu3pz30Nw66nrWkqL751IPVThaIohDvitITjROMmhgmxuEFDcwcOVcHCwut2YFmWNPIVohcS2jk2d/o4NBU+OdKKkZZ2pUUedN2iuS2G1+1g+uRy3t5xjPWvfzIoDyG70lRSLcx6crghzI79TXzrpxuJG1bq+mz7j1wOlUhMR9cNDjeG2X+klZZwPPX1xA7E1MeCL46nwOOgrr6dhqYIbof80xQiG1keybGyYh/HW2MYht1dpirk48qZE7hgUlnigSOp9eL2jljODtMYfXxjUJXO5RrdsHBomU1/HYmwjekmDk3leGsMsOi6C9NMNA9WFdA0hbe3H+VQQxiHplLkd6FbyA4SIbKQ0B5EXR/CXXTeaTz16h7CER2PS2PpvGomVhURDLhSgQ32w8pIVEdRVIxcTLN7oSiZM2nTAqemYFl2EKuKgpGIbEWBoN+VWt4oLHDR0BLp8Y3HAnQT2sJx2jriWBbEdZOGliihIk+qIbGEthCd5GfQQZLc2tfUHrO39MUMHtuwg+b2GG6nxn98uZoJVUUU+TMDe8vuenYfbEm17soVh0rGg8Akp9b5uWQfSSCxtxsmVBVSWuRhTMjH6aECLAuCBS6WzD6r87oT/NlW2uta2NsQj7dGZQeJEFnITHuQpG/tczoUPjnchp5YB/6PL09m4ulFBP0uVCUzsB9/aWfnWnEOxxsq9uF2ahxuDGMYZqrXZDqLznVv0wKvy8Edi8/v+TWLahO7RFTiunlS96PrpuwgESILmWkPkvrmCC6HmgrsuG6iAH6PgzOyBDZ0Bn0w4M7pWAt9TgzDJBo3CHgTNU4U+8MwrYwHlGric8ndLb2ZO30cqqKiGycX2GC/QcgOEiG6y9lMe+/evSxfvpympiaCwSArV65k/Pjx3a57/vnn+dWvfoVlWSiKwqpVqwiF8m9NM1TkIRI3MgK70O9ifIWfIr+7W2BD5x5uRVFQVQXLHPzNfj63g6XzqoHOBr2VJV5QFFraY6lu7S5NoS2iE9dNPC674NSCGRN6fe0pE0NMmxTi9W1HT3pcCnTr6i6EyGFo33vvvSxevJgrr7ySZ599lnvuuYc//OEPGdds3bqVRx55hMcee4yysjJaW1txuVy5GuKA+tLUKn63bju60RnYQb+L2Z8bi6ZmX+UNFXloSqx5uxwqumEBFpYFpmX/V1UUzhpTyN7DrUTj9pq3QwWvx8npiZOImz88zOaPjmEmFoqdGhT6XLRFdKJxE1VR8LhUxlUEMo6eD0ZAHm+LEfS7aE8Efl+pqiKBLUQWOQnthoYGtm3bxqpVqwCoqanhhz/8IY2NjZSUlKSuW716NUuXLqWsrAyAQKDnSlfD2fHWKE+/uicV2AUeB+PK/cy5cBxnjy/p8fvmTh/H4y/tJAoEfM5U5b3igAuHQ8MwzD7NPqdMDLFsQfav5boqWn1zhMICF0V+N4fq2/sU3KpifwghustJaNfV1VFRUYGm2QWCNE2jvLycurq6jNDevXs3Y8aMYcmSJYTDYWbPns03vvENlBOd+khTWuo/6fH1VgbxZB1r6uBHf36D+mb7Adw3F36GcyaUUFLoxXWCRryzygIUFfn426u7ONoYZmxFIRYWkahBWbGPay4+g2nVFac8xoG83xOpLPNzvKUDj1PD73HQ1BY74ZKPoiicXh4YsHHm8n6HA7nfkW1Y7R4xDIMdO3awatUqYrEYN910E1VVVVx11VV9fo2hrKfd3Bbl/zz+DkePd+DQFL52+VlUFXtAN2huCvfpNT4V8nHrwik9fv1Ux5rrmfasqVX8fv1H1EXa+3yAp8Dr5KoZ4wdknCO13nJP5H5Hht7eiHKye6SyspIjR45gGPZJOsMwOHr0KJWVlRnXVVVVMXfuXFwuF36/n1mzZrFly5ZcDPGUtbTHeOBPdmBrqsLXLp9E9bhiggEPmjrKN+koSupEpIK9Xl1U4ERVUptUUBT7Y0xZAUu/PFnWs4XoQU7SpLS0lOrqatatWwcy39klAAANMUlEQVTAunXrqK6uzlgaAXute9OmTViWRTwe54033mDy5Mm5GOIpaQnHeODxdzjSmAzsszj7U8UECz04Rvni7IbNtfg8DlTFLi6FYh+eaQ3HKfA6cGgqpUUeJo0N8p2FU/jBjdMlsIXoRc6mgPfddx9r1qxhzpw5rFmzhhUrVgCwbNkytm7dCsC8efMoLS3ly1/+MldddRVnnHEGCxcuzNUQ+6W1I8bKx9/hcGMYTVVYMvsszh5fQjAggQ2d+9WVRDXA5MlH04LWsD5sKhgKkS+kR+QprIm1dsR48PF3OVjfjqooLJ59JudNKCUYcGcc/x5Ocr0G+OCf3qGpPUZDc6THnSNlQbvOSF93x5yMkbrm2RO535FhyNe0R6K2SIwH/9QZ2P9+2ZmcO6GUIv/wDeyhMHf6OMId8V63+rWG46ka3Bs21+ZwdELkH0mXfmiPxPjRn97j4LF2VAW+OusMzptYStDvxiV1oLtTlB5rdStpbcakQJQQJyYJc5LaI3F+9Of32H+0DVWB6y49kykTQxLYPUg+iOyp8JOqKDi0zhrcUiBKiN4Nq33aw104GufHf36P2iNtKAp85ZIz+OwZEtjZJGuJ79zflOgF6aTQ5+zWvQYsAj6ntBgToo8ktPsoHI3z47+8xydHWu3AvvgMPntmiCK/C5dTAjtdssSspqk4HSqxuMGxJgNVsWt2m6Zd/6Si2C5MFYkZBAtcGXVQhBDZSWj3QUcszkN/eZ99da0owLVfmsjUs0IU+d24T3A0fTRKryXucWmpwlamBUqicuG8L3zqhFUChRDdyRTxBCIxnYf+8j5761pQgGu+ZPdzLPK78UhgZ5Xcmw0QiZsZTYOdDpWiAjfba5uGcIRC5C+ZafciEtf5yRPvs+dQCwBX/dsEpk0up7DAJYHdi/QSs7puL4UoioJDU6go8WFZluwSEaKfZKbdg2hc56dPvM+ug80AXDnj01xYXU6gwIXXJe91vZk7fVyqE45DUxN1RywKC+za6LJLRIj+k/TJIhrX+elft/DxATuwF1w0ns+fU0HA58Ingd2j9O7zHpcGloXLqWKaFn6fM7G+LbtEhDgVkkBdxHSdnz25hZ377TXXmi+O5wvnnIbf56LA42BkHfofOOk7RnweR6qb/I1dWpmFijyyS0SIUyChnSaumzzy9Aeph2TzvvApLjr3NPw+J34J7KySs+vdB1tQFAgG3CiKgtupEcUO6zsWny8hLcQAkTXtNKtf2M4HexsBuOLz47jovEoKfE78XqcEdhbJ2XVTewzTsjBMi8aWCB1RHZBj6UIMBplpp/n4gD3DnnvhOGZOqaLAKzPs3qTvx3Y47Cp9YHdx97odWR84pq97y1KJECdPQjvNd/99Ko2tUYJ+Fz6Pk4DXgd1XRWRT3xzB57H/CRX6nDS2RlGwiOtm1geOXde9m9pjPP7STmBwOsELMRLJ8kiasqCXT1cW4nM7JLD7IFTkIZYouerzOCkJuBMdahSCBa5utbHTZ+bJdW8pxyrEyZGZdhcOTcHlcyKBfWJzp4/j8Zd2EsVev9Y0lSJ/97BOSp+ZJ8m6txAnR0K7C7Wnws+jSF/XnZOf6+sadfpJySQ5aCPEyZHQFhlOdt15ysRQn9eju87Mk3u55aCNEH0na9oiw2CuO0+ZGGLJ7LMIFrgIR/Ss695CiN7JTFtkGOx155OZmQshupOZtsiQviMkSdadhRg+JLRFhvQKfZZlSYEnIYYZWR4RGU52R4gQIrcktEU3su4sxPAlyyNCCJFHJLSFECKPSGgLIUQekdAWQog8IqEthBB5REJbCCHyiIS2EELkEQltIYTIIyPucI2qnnw97P58Tz6T+x3Z5H5HNsWypG2tEELkC1keEUKIPCKhLYQQeURCWwgh8oiEthBC5BEJbSGEyCMS2kIIkUcktIUQIo9IaAshRB6R0BZCiDwyakJ77969LFq0iDlz5rBo0SL27dvX47V79uzhM5/5DCtXrszdAAdQX+/1+eefZ/78+dTU1DB//nzq6+tzO9AB0pf7bWho4Oabb2b+/PnMnTuX++67D13Xcz/YAbBy5UouvfRSJk2axM6dO7NeYxgGK1as4LLLLmP27Nk8+eSTOR7lwOnL/T766KPMmzePBQsWcM011/DPf/4zx6PMIWuUuP766621a9dalmVZa9euta6//vqs1+m6bn3ta1+zbrvtNuuBBx7I5RAHTF/udcuWLdYVV1xhHT161LIsy2ppabEikUhOxzlQ+nK/999/f+rvMxaLWQsXLrTWr1+f03EOlLfeess6dOiQdckll1g7duzIes0zzzxjLV261DIMw2poaLBmzpxp7d+/P8cjHRh9ud+NGzda4XDYsizL+uijj6wLLrjA6ujoyOUwc2ZUzLQbGhrYtm0bNTU1ANTU1LBt2zYaGxu7Xfub3/yGiy++mPHjx+d4lAOjr/e6evVqli5dSllZGQCBQAC3253z8Z6qvt6voii0t7djmiaxWIx4PE5FRcVQDPmUTZs2jcrKyl6vef755/nKV76CqqqUlJRw2WWXsWHDhhyNcGD15X5nzpyJ1+sFYNKkSViWRVNTUy6Gl3OjIrTr6uqoqKhA0zQANE2jvLycurq6jOu2b9/Opk2b+PrXvz4EoxwYfb3X3bt3s3//fpYsWcLVV1/NL3/5S6w8rB3W1/u95ZZb2Lt3LzNmzEh9XHDBBUMx5Jyoq6ujqqoq9fvKykoOHz48hCPKnbVr1zJu3DhOO+20oR7KoBgVod0X8Xicu+++mxUrVqQCYCQzDIMdO3awatUq/vjHP7Jx40aeffbZoR7WoNmwYQOTJk1i06ZNbNy4kbfffjtvZ56iZ2+++SY/+9nPeOihh4Z6KINmVIR2ZWUlR44cwTAMwA6so0ePZvzIdezYMWpra7n55pu59NJLeeyxx/jrX//K3XffPVTD7pe+3CtAVVUVc+fOxeVy4ff7mTVrFlu2bBmKIZ+Svt7vmjVrWLBgAaqqEggEuPTSS9m8efNQDDknKisrOXToUOr3dXV1I3bmmfTuu+/y3e9+l0cffZQJEyYM9XAGzagI7dLSUqqrq1m3bh0A69ato7q6mpKSktQ1VVVVbN68mVdeeYVXXnmFG264geuuu44f/vCHQzXsfunLvYK99rtp0yYsyyIej/PGG28wefLkoRjyKenr/Y4ZM4aNGzcCEIvFeP311znzzDNzPt5cmTt3Lk8++SSmadLY2MjLL7/MnDlzhnpYg2bLli3ceuut/PznP+ecc84Z6uEMqlHTBGH37t0sX76clpYWCgsLWblyJRMmTGDZsmV8+9vf5rzzzsu4/he/+AXhcJg777xziEbcf325V9M0WblyJRs3bkRVVWbMmMGdd96Jqubf+3hf7re2tpZ7772X+vp6DMNg+vTp3HXXXTgc+de86f777+fFF1+kvr6e4uJigsEg69evz7hfwzD4wQ9+wGuvvQbAsmXLWLRo0RCPvH/6cr/XXnstBw8ezHi4/OCDDzJp0qQhHPngGDWhLYQQI0H+TauEEGIUk9AWQog8IqEthBB5REJbCCHyiIS2EELkEQltIYTIIxLaYlS4/fbb+d73vpfxuTfffJPp06dz9OjRjM/fdNNNTJ06lalTp3LOOedw7rnnpn5/zz339HsMP/7xj7nrrrv6/f1CAOTfyQIh+uH73/8+NTU1vPbaa1x00UVEo1Huvvtu7rzzTsrLyzOu/e1vf5v69fLly6moqODWW2/N9ZCFyEpm2mJUKC4u5vvf/z5333034XCYRx55hLFjx3LNNdf06/Veeukl5s+fz7Rp01i8eDG7du1Kfe3RRx9lxowZnH/++VxxxRW8/fbbvPzyy6xevZq1a9cydepUFi5cOFC3JkYZmWmLUeOKK67ghRde4LbbbuPdd9/lmWee6dfrvPfee6xYsYJf//rXVFdX89RTT/HNb36T9evXs2vXLv72t7+xdu1aSktLOXDgAGDXhP7617/O8ePH+c///M+BvC0xyshMW4wq99xzD5s3b+aWW27JqDd9Mp544gmWLFnCueeei6ZpLFq0iFgsxocffoimaUSjUXbt2oVhGIwdO5axY8cO8F2I0Uxm2mJUCYVCFBcXn1KFv4MHD/LCCy/wu9/9LvW5eDzOkSNHuPzyy7n99tt5+OGH2bNnDzNnzuR73/seoVBoIIYvhIS2ECersrKSiy++mKVLl2b9+tVXX83VV19NS0sLd911Fw8//DD3338/iqLkeKRiJJLlESFO0nXXXceaNWvYunUrlmXR3t7OP/7xDzo6Oti1axdvvvkmsVgMj8eD2+1OlbtNrnFLYU1xKiS0hThJF1xwAXfddRf33nsv06ZNY86cOaxbtw5FUYhEIjzwwANMnz6dGTNmEA6H+c53vgPAvHnziEQiXHjhhXz1q18d4rsQ+UrqaQshRB6RmbYQQuQRCW0hhMgjEtpCCJFHJLSFECKPSGgLIUQekdAWQog8IqEthBB5REJbCCHyiIS2EELkkf8P1/t4FFvkIYUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -790,7 +846,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 27, "id": "60c8d01e-d5ff-48fc-8cd3-6ac3c88649b1", "metadata": {}, "outputs": [ @@ -804,7 +860,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAELCAYAAADeNe2OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxU9b3/8dfsWWay7wthD8gum6AoAgqyVpSrdbm3Wmu11vbWn1upSwXForZUrUptb2m9l1utVhA3VDbRK0pAFoUAIWQP2feZZNbz+yMkJSaESZg183k+HjySnDlzzjuT5MN3vud7vl+VoigKQgghQoba3wGEEEL4lhR+IYQIMVL4hRAixEjhF0KIECOFXwghQowUfiGECDFS+IVHPPbYY7z00kseOVZ5eTmTJk3C6XQCcOutt/Lmm2965NgAd9xxB5s2bfLY8dy1bt06pk+fzqWXXurV86xfv55f/epX53x8zpw5fPHFFxd8nrfffpvvf//7F3wc4XtafwcQgW/OnDnU1NSg0WjQaDQMHz6cZcuWccMNN6BWt7cdVq1a5faxnnzySWbOnHnOfdLS0jhw4IBHsr/44osUFRXx3HPPdW7785//7JFj98Xp06fZsGEDO3fuJD4+3qvnuuuuu7x6fBH8pPALt6xfv56ZM2fS3NzM3r17eeqppzh8+DBPP/20R8/jcDjQagfer2VZWRkxMTFuF/2B+jqIwCBdPaJPTCYTc+fO5fe//z2bNm3ixIkTADz88MOsW7cOgLq6On784x8zZcoUpk2bxk033YTL5eKBBx6gvLycu+66i0mTJvGnP/2J0tJSsrOzefPNN5k9ezb/8R//0bnN4XB0nre4uJjrr7+eyZMnc/fdd9PQ0ADAV199xeWXX94lY0dXxu7du/njH//Ihx9+yKRJk1i6dCnQtevI5XLx8ssvc+WVVzJjxgwefPBBmpubATpzbNq0idmzZzN9+nReeeWVc742zc3NPPjgg1xyySVceeWVvPzyy7hcLr744gtuv/12qqqqmDRpEg8//HC353Z8H6+++iqXXnopv/zlLwHYuXMny5YtY8qUKdx4440cO3as8zmvvvoqs2bNYtKkScyfP589e/YA7e9y7r///s79Nm/ezJVXXtlj/rN/bj29nq+++irz5s1j0qRJLFy4kE8++aTH711RFNasWcOMGTOYPHkyS5Ys6fzdEIFHmhSiX8aPH09KSgr79u1j5MiRXR7bsGEDycnJnYXo0KFDqFQqnn32Wfbv39+lq6e0tBSAnJwcPvjgA9RqNTU1Nd3Ot3nzZv7rv/6LjIwMHnroIZ588sku3Tc9ufzyy/nxj3/cravnbG+//TabNm3itddeIy4ujoceeohVq1bx7LPPdu6zf/9+tm7dSmFhIddffz1XX301w4YN63as1atX09zczLZt22hoaOCHP/whiYmJrFixgj/96U888MAD7N69+5x5a2pqaGxsZOfOnbhcLo4cOcLKlStZv349Y8eOZcuWLfzkJz9h69atlJaWsnHjRt566y2Sk5MpLS3F5XJ1O+bJkyd54oknePXVV5kwYQK//e1vqaio6PV1O1tmZiYbN24kMTGRrVu38sADD/Dxxx+TlJTUZb/PP/+cffv28dFHH2EymTh16hQmk8nt8wjfkha/6LekpCQaGxu7bddqtVRXV1NeXo5Op2PKlCmoVKpej3XvvfcSERFBWFhYj48vW7aMkSNHEhERwc9//nO2bt3aefH3Qrz77rv84Ac/IDMzk8jISO677z4++OCDLu82fvrTnxIWFsaoUaMYNWpUl1Z3B6fTyQcffMD/+3//D6PRSEZGBrfddhtbtmxxO4tareZnP/sZer2esLAw/vGPf3DDDTcwYcIENBoN1157LTqdjoMHD6LRaLDZbOTn52O328nIyGDQoEHdjrl161Zmz57N1KlT0ev1/PznP++8LuOOa665huTkZNRqNQsXLiQrK4vDhw9320+r1WI2mzl16hSKojBs2LBu/zmIwCGFX/RbZWUl0dHR3bb/8Ic/JCsri9tvv525c+fy6quvnvdYKSkpvT6empra+XlaWhp2u536+vq+h/6Oqqoq0tPTO79OT0/H4XBQW1vbuS0hIaHz8/DwcCwWS7fj1NfXY7fbSUtL65KzsrLS7SyxsbEYDIbOr8vLy9mwYQNTpkzp/FdRUUFVVRVZWVmsXLmSF198kZkzZ/KLX/yix3NVVVV1eW0jIiKIiYlxO9PmzZs7u5qmTJlCXl5ej6/7jBkzuPnmm1m1ahUzZ87k0UcfpaWlxe3zCN+Swi/65fDhw1RWVjJ58uRujxmNRh5++GG2b9/O+vXr2bBhQ2e3z7mc7x3B6dOnu3yu0+mIjY0lPDyctra2zsecTid1dXVuHzcpKYmysrLOr8vLy9FqtX0eeRMbG4tOp6O8vLxLzuTkZLeP8d2sqamp3HXXXezbt6/z36FDh1i8eDEAS5Ys4e9//zs7d+5EpVL12J2VlJTUpWuntbW18/oI0O31O7ubraysjEceeYRHH32Ur776in379jFixIhz5v/3f/933n77bd5//30KCwv9MnpKuEcKv+iTlpYWdu7cyX333cfSpUvJzs7uts/OnTspKipCURSMRiMajaazeyEhIYGSkpI+n3fLli2cPHmS1tZWnn/+eebPn49Go2HIkCFYrVZ27dqF3W7nlVdewWazdT4vPj6esrKyHvu/ARYvXszf/vY3SkpKMJvNrFu3jmuuuabPI2o0Gg0LFixg3bp1tLS0UFZWxoYNGzovKPfHihUreP311zl06BCKomCxWNi1axctLS2cOnWKPXv2YLPZ0Ov1GAwGNBpNt2PMnz+fXbt2sW/fPmw2Gy+88EKX12L06NF8+umnNDQ0UF1dzd/+9rfOx1pbW1GpVMTFxQHwz3/+k7y8vB6zHj58mEOHDmG32wkPD0ev1/eYRwQGubgr3HLXXXd1FvDhw4dz2223ceONN/a4b1FREatXr6auro6oqCi+//3vM336dADuvPNOnnzySZ599lnuvvtu5s+f79b5ly1bxsMPP8ypU6eYNm0av/71r4H2UUaPP/44jzzyCE6nkzvuuKNL18aCBQvYsmUL06dPJyMjo9uNW9dddx2VlZXccsstWK1WLrvsMh599NF+vELw6KOPsnr1aubNm4fBYGDFihVcd911/ToWwLhx41i9ejWrVq2iqKiIsLAwLr74YqZMmYLNZuO3v/0t+fn56HQ6Jk2a1OO9FCNGjOCxxx7j/vvvp7W1lR/84AddXp9ly5bxxRdfMGfOHNLT07nuuuv4y1/+AsDw4cO5/fbbufHGG1GpVHzve9/j4osv7jGr2WxmzZo1lJaWotfrueyyy7j99tv7/b0L71LJQixCCBFapKtHCCFCjBR+IYQIMVL4hRAixEjhF0KIECOFXwghQowUfiGECDFBM46/vt6MyxU4I0/j443U1gbuLemSr/8CORtIvgsRyNnAs/nUahWxsZE9PhY0hd/lUgKq8AMBl+e7JF//BXI2kHwXIpCzgW/ySVePEEKEGCn8QggRYqTwCyFEiJHCL4QQIUYKvxBChBgp/EIIEWKk8AshRIgJmnH8QoQ6hwusdgdKnQWLtX0xeINOi1aab6KPfFb4rVYra9asYc+ePRgMBiZOnMjq1at9dXohgp7V7iAntxKTMYzmlvZ1cqeOTkZrkPab6Buf/cY8++yzGAwGPvroI1QqVZdFnYUQQviOTwq/2Wxm8+bNfPrpp6hUKqB90W0hhBC+55PewZKSEmJiYvjDH/7A8uXLufXWW9m3b58vTi2EEOI7fNLidzgclJSUcNFFF/HQQw9x6NAh7rrrLj755BOMRqNbx4iPd28/X0pMNPk7Qq8kX/8FYjalzoLJGAbQ+TEiwkBiXIQ/Y/UoEF+/DoGcDXyTzyeFPy0tDa1Wy+LFiwGYMGECsbGxFBQUMG7cOLeOUVvbElCz6iUmmqiubvZ3jHOSfP0XqNksVgfNLW1dLu5aLFaqnU4/J+sqUF8/COxs4Nl8arXqnA1mn3T1xMXFMX36dP7v//4PgIKCAmpra8nKyvLF6YUQQpzFZ6N6nnjiCVauXMnatWvRarU888wzREVF+er0QgghzvBZ4c/MzOS///u/fXU6IYQQ5yD3/AkhRIiRW/6ECGIqtQrzmekbziZTOYjeSOEXIohZ7U4Onajutl2mchC9kTaBEEKEGGkSCBGEzK12SqpaCA/X4XS60GikDSfcJ4VfiCCzL7eSnNxKXC6FvblVxBj1zJ82CINe4+9oIkhIM0GIIHKsqJ6vjlSQmRjJ0ksHc9PVI2my2Nm+vxS7w+XveCJISOEXIkicLG0gJ7eKwalRzJqYRozJwORRSVw+IZWaxjZyC+v8HVEECSn8QgQBh9PFG9tPEhmu46rpg1Cfmd4cYFCyicwkI0cK62mztc/b0zHM8+x/8oZAdJDCL0QQ+CSnhIo6C9NGJ6HXdu/LnzgiAbvDxZGCWqB9mGfOmWsBHf+s9u7j/UVoksIvRIBrabXz7heFjB0aR0ZSz7MtxpoMDE4xkVfSiNMpTXvROyn8QgS4j3OKsdqcLLl0SK/7Dc+IxuZwUVJt9lEyEayk8AsRwFpa7WzbV8qUUUmkJUT2um9KfAQRBi35ZY0+SieClRR+IQLYxznFtNmcLLl08Hn3VatUDEmLorzGTLPF5v1wImhJ4RciQJ3d2s9IdG/p0WFpUSgKfHOy1svpRDCTwi9EgOpo7S91o7XfIdqoxxiukzH9oldS+IUIQJ2t/exEt1v7ACqVivTESPJKG3HI6B5xDlL4hQhAH+1tH8mz9LLeR/L0JCPRiN3horKu1QvJxEAghV+IANNksbFtXylTR7vft3+2lLhwdFo1pdUtXkgnBgIp/EIEmK1fFWNzOFnWj9Y+gEajZkRGNOU1Mp5f9EwKvxABpNFsY8f+Ui65KJnU+N7H7fdmRGYMzRY75ja7B9OJgUIKvxAB5MMvi3A4FZae5y7d8xmaHg0g/fyiR1L4hQgQtY1t7DxQxowxySTHRVzQsdISItFp1VTWWTyUTgwkUviFCBBv7jqJCvjerKEXfCy1WkVybDgVUvhFD6TwCxEATpY2sje3igXTBxEfHeaRYybHRdBssWNpk+mYRVc+W3N3zpw56PV6DAYDAPfffz+zZs3y1emF8DuHi25z4ht0WtQqhf/ddoIYo55rpmf1uB+AS+nb+Tq6iyrrLQxJjep3bjHw+HSx9RdeeIGRI0f68pRCBAyr3UFObmWXbVNHJ3PwRDWFFc3csXg0Br0Gs7X7fgATRib26XxxJgMatYqahjYp/KIL6eoRwo+sNif//DSfIalRXDImxaPHVqtVxEeHUd0gI3tEVz5t8d9///0oisLkyZO57777iIqSVogIbdv2ldDQYuMn3xvXZR1dT0mIDuNYcQPOvvYTiQHNZ4V/48aNpKamYrPZeOqpp1i1ahXPPfec28+Pj+/7revelpho8neEXkm+/vNGNqXOgsn4rwu3zRYb2/eXMu2iZIZlxdFRmjU6uuzXQafTdm7v+Hj2tp72zUyJ4mhhPVaHQkSEgcQLHCbqrlD72XqSL/L5rPCnpqYCoNfruemmm7j77rv79Pza2hZcAdRqSUw0UV3d7O8Y5yT5+s9b2SxWB80tbZ1ff3aoHEVRyEiM5NP9xZ3bJ4xM7LJfB7u9/fkmY1jn4x3bzrVvpKF9Yfbi041YLFaqnU5Pf1vdhOLP1lM8mU+tVp2zweyTPn6LxUJzc/s3oygKH3zwAaNHj/bFqYUISDUNrRScbuaKSekYw3VeO09kmJZwg4aaxu7/OYjQ5ZMWf21tLffeey9OpxOXy8WwYcN4/PHHfXFqIQKOoijkHKsiTK9hzpQMjhfWe+1cKpWKhOhwucAruvBJ4c/MzGTz5s2+OJUQAa+s2kx1QxuXjEkmTO/9P8GE6DBKqlowt9mJNPh0PIcIUDKcUwgfUhSFw/m1GMN1DD8zkZq3JcS0X/wtqgjcvm3hW1L4hfCh8hoLNY1tjB0ah1rt+eGbPemYAqLwtBR+0U4KvxA+dKSgjogwLcN81NoH0Gs1xBj1FFU0+eycIrBJ4RfCR8przFTUWRg1KAaNj1r7HRKiwymqaEZRAmdItPAfKfxC+Mhnh8rRqFUMz4jx+bkTYsIwtzlkdI8ApPAL4ROWNgd7j1YyONVEmF7j8/MnnOnnP1Uu3T1CCr8QPpFzrBKbw0X2IN+39gFijAb0WjWnTkvhF1L4hfCJPd9WkBwXTnyUZxZZ6Su1WkVGklFG9ghACr8QXlfT0MqJ0kamjk5G5YUZON2VlWKiuLIZp8vltwwiMEjhF8LL9hypAGBKdpJfcwxKNmFzuCirNvs1h/A/KfxCeFnOsSpGZER7bC3d/spKaZ/ut1Du4A15UviF8KKqegul1WYm+7m1D+0jeyIMWgrkAm/Ik8IvhBcdyKsBYNKIBD8naZ+pc3CqSQq/kMIvhKc5XGC2OjBbHew7XkV6YiQR4ToCYR2hIalRlFWbsTu8vyCLCFxS+IXwMKvdQU5uJZ8dKuNUWRPxUWHk5FbiCIDRNINTonC6FIorW/wdRfiRFH4hvKS8xowCZCYFznrRQ1LbL/BKd09ok8IvhJeU11gw6DTERRn8HaVTrMlAdKSeArmRK6RJ4RfCCxRF4XStmdT4CL/etPVdKpWKIalRFMoUzSFNCr8QXtDQYqPV6iQ1IdLfUboZnGqiotZCq9Xh7yjCT6TwC+EFp2va745Ni4/wc5LuhqRGoSA3coUyKfxCeEF5rYWoSD2R4Tp/R+lmcMcdvHKBN2RJ4RfCw5wuhap6CylxgdXaV6lVmK0O1Bo18VFh5JU14vD/CFPhB1p/BxBioCmrbsHhVEiOC/d3lC6sdieHTlQDYIzQkVfSgNXuQGuQMhBqpMUvhIedLGsEIDk2sAr/2RKi25dibLbY/B1F+IEUfiE8LL+0EWO4joiwwOvf79AxU6jcwRuafF74//CHP5Cdnc2JEyd8fWohvE5RFPLLGgOum+e7OlYCK5KRPSHJp4X/yJEjHDx4kLS0NF+eVgifKa+1YG5zkBwbWBd2v0unVRNt1FNcKYU/FPms8NtsNlatWsXjjz8eUHcyCuFJ+Wf695MCuH+/Q0JUGMWVzShKAEwbKnzKZ5fzn3/+eZYuXUpmZma/nh8fHzgTXXVITDT5O0KvJF//9TdbWa0FY7iOtCRTtwaOTqfFZAzr17bvbu/46M6+59qWnmwiv7wJl0ZDSrxn7zAeiD9bX/FFPp8U/gMHDvDNN99w//339/sYtbUtuAJhQvMzEhNNVFcH7ttkydd/F5LtyKlaslJMtJit3R6z2x00t7T1a9vZ203GsM7Hz7dvb9uiI9r//L86XMbMsalufofnN1B/tr7gyXxqteqcDWafdPXk5ORw6tQp5s6dy5w5c6ioqOCHP/whn3/+uS9OL4RPWNrslNeYGZwa2C3KDtFGA+EGDXmljf6OInzMJy3+O++8kzvvvLPz6zlz5rB+/XpGjhzpi9ML4RMdUx0PTokKivHx6jMzdZ6Uwh9yZBy/EB6SX96ICshKCY4WP8DQtGjKasy0tNr9HUX4kF/u1d6xY4c/TiuEV50qbyItIZLwIJoCYWh6FNB+t/HE4f5fEF74hrT4hfAARVEoON3EkNQof0fpk6xkExq1irzSBn9HET7kduHfvn07Docs3CBET+qbrTRb7EHVzQOg12nISjFJP3+IcbvwP//881x22WWsWrWKQ4cOeTOTEEGnY1GTwUFW+AFGZERTcLoJu8Pp7yjCR9wu/Fu2bOGvf/0rBoOBe++9l/nz5/Pyyy9TWlrqzXxCBIXCimZUKshICrwbDc9nREYMDqciK3KFkD718Y8aNYqHHnqITz/9lMcff5ytW7dy1VVXcfPNN7NlyxZcLlnVQYSm4spm0hIiMeg0/o7SZ8MzogFkPH8I6fPwg+LiYrZs2cKWLVtQqVT87Gc/IzU1lY0bN/Lxxx/zhz/8wRs5hQhYitLeWh43JM7fUfolKkJPclwEeSUNcEmWv+MIH3C78G/cuJF33nmHoqIirrnmGp555hkmTpzY+fj8+fOZOXOmV0IKEagcLqist9BktpGaEInZ6iCAZhZx24iMaA6cqMalKKhlEsUBz+3Cv3v3bm677Tbmzp2LXq/v9nh4eDgvvviiR8MJEeisdgc79rdf52pptZGTW8mEkYl+TtV3IzNi+PzwacqqzWQG4XUK0Tdu9/FPmzaNa665plvR37BhQ+fnl112meeSCREkahvbUAGxpu6zZAaLiwbHAnC0sM7PSYQvuF34X3rppR63v/LKKx4LI0QwqmtqI8qoR6cN3vsh46LCSImL4IgU/pBw3q6ePXv2AOB0Ovnyyy+7LNpQWlpKZKRn5/EWItjUNrWR6uH57P1hzOA4PvumHLvDFdT/iYnzO2/h/9WvfgW0r6C1cuXKzu0qlYrExEQeeeQR76UTIsA1tlhptTqJizL4O8oFu2hILNu/LiW/rJFRWbH+jiO86LyFv2NCtQcffJBnnnnG64GECCYlVS3AvxYvD2bZmbGoVSqOFNZJ4R/g3H4/J0VfiO46Cn/cACj8EWFahqZFcbSw3t9RhJf12uK/5ppr+PDDDwG44oorzrlI+q5duzweTIhgUFLZQlRkcF/YPdtFg2N594tCzG12IsN0/o4jvKTXwr969erOz5999lmvhxEi2JRUNRMfxP37KrUKs/Vfs+4OTY9GUeBIYT3TRiX5MZnwpl4L/5QpUzo/nzZtmtfDCBFMmsw2GlpsDE+P9neUfrPanRw6Ud35tculoNWo+PZUrRT+Aczt96cbNmwgNzcXgIMHDzJ79mzmzp3LgQMHvBZOiEDWMZtlXHTw9+93UKtVpMRFcLxY+vkHMrcL/1//+lcyMjIA+O1vf8sPfvAD7rrrLtasWeO1cEIEsqLKM4XfFLxdPT1JjY+kuqGN6oZWf0cRXuJ24W9ubsZkMtHS0sLx48e59dZbWbFiBQUFBd7MJ0TAKqpoJjEmHH0QTsXcm/TE9pvRDufX+jmJ8Ba3C39qaipff/01H3zwAVOmTEGj0dDS0oJGM7B+6YVwV1FFE5nJA29Cs6hIPUmx4RzKr/F3FOElbs/O+eCDD/Kzn/0MvV7PCy+8AMDOnTsZN26c18IJEaiaLTZqm6zMmjDwCj/A2KHx7D5YRl2zFYO+vXFn0GkZIKNWQ57bhf+KK67g888/77JtwYIFLFiwwOOhhAh0Hf37GUlGmsw2P6fxvOxBMezYX8p7XxQwKLl9HeGpo5PRGvq8dpMIQH36KTY3N1NQUIDZbO6yfcaMGR4NJUSgKzozoiczycSRgoHXFz4kLQqdVk1ptbmz8IuBw+3C//bbb7Nq1SoiIiIIC/vX8DWVSsX27dvP+/yf/OQnlJaWolariYiI4NFHH2X06NH9Sy2EnxVWNJMUE05E2MBsAWs0atISIimrbkFRlHPetS+Ck9u/tevWreP555/niiuu6NeJ1q5di8nU3nLYtm0bK1euZNOmTf06lhD+VlTRzODUKH/H8KqMxEiKKpqpa7ISP4DuVRB9GNXjdDovaIWtjqIP0NLSIi0IEbRaWu3UNLYxOGVgd4F0DOssrW7xcxLhaW4X/h/96Ee88soruFyufp/sV7/6FbNnz2bdunWsXbu238cRwp86LuxmDfDCH6bXkhgTRmm1+fw7i6DidlfPX//6V2pqavjzn/9MTExMl8fcnZ3zqaeeAmDz5s0888wz/OlPf3I7aHx84A2bS0wM7D98ydd/vWWr+aYCgMljUmltc2Aydu0G0em03bada7u72767veOjt881ND2Gr45UoNZoiIgwkBgX0W3fngTrzzYQ+CKf24Xfk7Nzfu973+Oxxx6jvr6e2Fj3FnyorW3B5VLOv6OPJCaaqK5u9neMc5J8/Xe+bEfza0iIDqPNbMViddDc0tblcbu9+7ZzbXd329nbTcawzse9fa6kmPb/FI4X1jJ5ZALVTme3fb8rmH+2/ubJfGq16pwNZrcL/4XMzmk2m2lqaiI1NRVoX9UrOjq62zsHIYJBUUXzgO/m6RBj1GMM13UuOCMGBrcLv81m46WXXuK9996joaGB/fv38/nnn1NYWMgtt9zS63NbW1v5+c9/TmtrK2q1mujoaNavXy8XeEXQaWm1U9XQyqwJqf6O4hMqlYrMJCMnShqw2p1Eyg1cA4LbP8U1a9ZQWVnJc889x49+9CMARowYwdNPP33ewp+QkMA//vGPC0sqRAAoPN0EwNABPpTzbBlJkeQW1XO8uJ4ZF6X4O47wALcL/7Zt2/j444+JiIhArW4fDJScnExlZaXXwgkRaE6VN6GCAT+G/2zJsRHotWq+ya+Vwj9AuD2cU6fT4fzOhZ26ujrppxch5dTpJlITIgkPoS4PtVpFemIk356qC6gBFqL/3C78CxYs4KGHHqKkpASAqqoqVq1axaJFi7wWTohAoigKBaebQqqbp0NGkpGWVjunypv8HUV4gNuF/xe/+AUZGRksXbqUpqYm5s+fT2JiIvfcc4838wkRMGoa22i22BmSFnqFPz0hErVaxYGT1effWQQ8t9+vFhcXM3ToUH784x/jdDqZN28e2dnZ3swmREApCMELux30Og0jMqI5mFfDitnD/R1HXKDzFn5FUVi5ciWbN28mJSWFpKQkKisreemll1i2bBlr1qyRYZkiJOSXNaHTqImNMmC2OgAIpS7vccPieWtnPhV1FlLcvINXBKbzdvW88cYb7N27lzfeeIOdO3fyxhtvsGvXLl5//XX27dvH66+/7oucQvhdfnkjMSY9X5+oJie3kpzcShwXMHdVsBk3NB6Ag3myJGOwO2/hf+edd3jkkUcYP358l+3jx49n5cqVvPPOO14LJ0SgcDhdlFS1kBAd7u8ofhMXFUZmkpGDedLPH+zOW/jz8/OZOnVqj49NnTqV/Px8j4cSItCUVZuxO1wkxIT2vPSTRiSQV9ZIs2XgLTcZSs5b+J1OJ0ZjzxP9GI3GC5qmWYhg0XFhNyHEFySZOCIBRYHD+QNvuclQct6Luw6Hgy+//BJF6fkq1ndv6hJiIDpFNlcAABjpSURBVDp1ugljuA5juM7fUfwqK9lErMnAwbwaLh0XGvMVDUTnLfzx8fGsXLnynI/HxcV5NJAQgaigvIlBKaaQH8GmUqmYODyBL76twO5wolJrsNodXfZR6iw4XaB1+y4h4WvnLfw7duzwRQ4hApalzUF5jZnxwxP8HSUgTByRwM4DZeQWNTAsI5qc3K7zdZmMYYzKjEYbQtNaBBv5P1mI88gvb0QBhqWH3o1bPRk1KBaDXiOje4KYFH4hzuNESQNqlYrBKVL4AXRaNeOGxHHwZA2uc1z7E4FNCr8Q55FX0kBWihGDXuPvKAFj4ogEGlpslFTKylzBSAq/EL2wO1ycOt3MiAyZfvxs44cloFLBN6dkWGcwksIvRC8KK5pwOF1S+AGVWoXZ6sBsdaBSqxiWFs03Mp4/KMlldyF6caKkAYARmdF+TuJ/VruTQyf+dUE3xqjn5Jm7eE0Rej8mE30lLX4henG8uIG0hEiipLB1k5HUfkd/aZXZz0lEX0nhF+IcHE4XJ0obGJ0V6+8oASkqUk9ybDgl1XKBN9hI4RfiHE6VN2Gzu6Tw92LM0Hgq6yzY7DJ1SzCRwi/EOeQW1aMCsgfJhd1zGTM0DkVpn71UBA8p/EKcQ25RPYNSTESGhfbEbL0ZlGwiTK+hpEq6e4KJFH4hemC1Ockva5RunvNQq1VkJBkpqzHjDKV1KIOcT4Zz1tfX8+CDD1JcXIxerycrK4tVq1bJzJ4iYB0rrsfpUhgzRH5HzyczycjJ0kYq6yykJUT6O45wg09a/CqVijvuuIOPPvqId999l8zMTJ577jlfnFqIPmu22Pg6rwa9Tk16orHzpiVp0PYsNT4CtVol/fxBxCeFPyYmhunTp3d+PXHiRMrLy31xaiH6zNJq58CJapJiwjmYF5oLq/eFVqMmJS6CMhnWGTR83sfvcrn4+9//zpw5c3x9aiHcUllnoaXVTnqidFu4Kz0xkiaLnSazrMUbDHw+ZcPq1auJiIjglltu6dPz4uN7XvfXnxITTf6O0CvJ1z8f7y8DYGRWPKbIf92xq9NpMRm7rrnr7jZPP7/joy/O5c627Kw4cnKrqGmykp4MEREGEuMiuh03EATq710HX+TzaeFfu3YtRUVFrF+/HrW6b282amtbcAVQJ2tioonq6mZ/xzgnydd/h/KqiY7Uo1JcNLe0dW632x1dvu7LNk8+32QM63zc2+dyd5ua9jt5T5U1MGFEIhaLleoAXI87kH/vwLP51GrVORvMPuvqWbduHd9++y0vvfQSer3MeyICU0urneNF9WQmB947zECXnhBJRV0rdkfgFXzRlU8Kf15eHuvXr6eqqoobb7yRZcuWcc899/ji1EL0yaEzq0oNksLfZ+mJkbhcCmUyaVvA80lXz4gRIzh+/LgvTiXEBfn6RDWxJgPxUd37vUXvkuPC0WpUFFU0+TuKOA+5c1eIM6w2J98W1DEpOwmVSuXvOEFHo1aTGh9JUUUTiqzFG9Ck8AtxxoGT1dgdLqaMSvJ3lKCVnhhJs8VORZ3F31FEL6TwC3HGV0cqiTUZGDFI5ufpr/QzUzYcLajzcxLRGyn8QtA+mufbgjqmX5SMWrp5+i0yXEd8dBhHpPAHNCn8QgA5x6pwuhQuuSjZ31GCXlZKFPnlTVjaHP6OIs5BCr8QwBffnCY9IZLMJBnGeaGyUky4XApHC6XVH6ik8IuQV1LVQn55E7MmpMloHg9IiY8k3KDh8Klaf0cR5yCFX4S83QfL0WpUzByb4u8oA4JarWJUVhzf5NfKsM4AJYVfhDSr3cmeIxVMyU7CGC5LLHrKmMGxNJptFFfKVM2BSAq/CGl7jlRgsTq4YmKav6MMKKMHt69cJt09gUkKvwhZLkXhk5wSspJNjMyM8XecASUqUs/gFBPf5EvhD0RS+EXI+vZULadrLcyflikXdb1g/LB48ssbaWm1+zuK+A4p/CJkffhlMTFGAxcNietcV9dsdWC1y7TCnjBuWDyKAt9Id0/A8fkKXEIEgtyieo6XNHD97GF8faK6y2NTxqT6KdXAMiQ1iqgIHYdO1jBjjIyYCiTS4hchR1EU3vnsFDFGPTPHSZH3FrVKxcQRiRzKr5XFWQKMFH4Rco4U1nGitJFFMwaj08qfgDdNzk7EanNypLDe31HEWeS3XoQUl0vhjR0nSYwJ4/IJMoTT20ZnxRJu0HTrThP+JYVfhJTPDpdTVm1mxezh0tr3Aa1GzYRhCRzMq8Hpcvk7jjhDfvNFyKhvsfHWrnyGpkUxanAsZqsDl8wo4HWTs5NoabWTK909AUMKvwgZf992nFarg7FD4th3rIqc3Eoc0gr1uvHD4gg3aPnyaKW/o4gzpPCLkHDoZA37jlUzblg8MSaDv+OEFJ1Ww+SRiXx9ohqb3CMREKTwiwGv1ergvz8+Tmp8BGOHxvs7TkiaPiaZNpuTwzKFQ0CQwi8GvLd25VPfZOX7V41Eo5apGXxBpVZ1uRt6ULKJqEg9X3xb4e9oArlzVwxwB/Kq2XmgjKunZjIkNYqahlZ/RwoJVruTQ98Zwjn9omS27SuhvtlKrHS3+ZW0+MWAVdfUxl/ezyUr2cR1Vwzzd5yQN2NsCooCnx8u93eUkOeTwr927VrmzJlDdnY2J06c8MUpRYhzulz8ccsRHC6Fu5aNkTH7ASAxJpzRWbF8dvg0LlmZy6988tcwd+5cNm7cSHp6ui9OJ0KcwwVvfXqKvNJGbpgzHGOkXsbsB4jZk9KpaWzjYF6Nv6OENJ8U/ilTppCaKpNhCd84nF/NR18VMyw9CoCc3EoZsx8gLh6ZQEJ0GFu/KvZ3lJAm73/FgNJktvHah8eJjtQzbXSyv+OI79Co1Vw1NZOTZY2cLG30d5yQFTSjeuLjjf6O0E1iosnfEXoVavmcThe/f+swrTYHy2cPJy4mvMvjOp0WkzHsvNuAHre5+/xzHdOTz+/46Itzeer5eoMORaPmskkZbPm/Qt7dU8gvfzANU4S+2/O9KdT+LnoSNIW/trYFVwB10iYmmqiubvZ3jHMKxXz//DSfwydruPnq9vH6zS1tXR632x1ubQN63Obu8891TE8932QM63zc2+fqzzaTMazH7S0Wa+cQz+zMaL4+UcOXh8qYODyh2/m9JZT+LtRq1TkbzNLVI4KawwVmq4M9Ryt4f08RM8emMO0iWe0p0I3KiiUiTMvmzwpQZISPz/mk8D/55JNcfvnlVFRUcNttt7Fo0SJfnFaEAKvdwfZ9Jfz1g2PER4UxJNUkF3GDgFajZtKIBIorm9l9SMb1+5pPunoeeeQRHnnkEV+cSoQYm93JpwfLUangiklpaDTyJjZYDE2LorqhjTd2nGTc0HjiorpfKxDeIX8lImgpisLr2/Oob7Zy+YQ0jOE6f0cSfaBSqfj+vBG4FIX/ej9XFmrxISn8Imht3VtMTm4VE4fHk5YQ6e84oh8SYsK55apscovq+eeuU/6OEzKCZlSPEGc7kFfNWzvzmTQykbFDYv0dR1yAy8anUljRxNa9xcRHhzF3coa/Iw140uIXQae4splXtxxlcKqJW+aPRKWSqZaD3Y1zRzBpRAIbPznBrgNl/o4z4EnhF0GlrqmNF/55mIgwLfdeNx69VuPvSMIDtBo1dy0by/hh8bz20XHe3JVPc5u9y5z+DrkE4DHS1SOCRpPZxrOvH6TV6uDB719MjNGA2erwdyzhITqtmp8uH8fGT07w4ZdFHC2s49JxKWjPjNSaOjoZrUFKlifIqyiCgrnNzm/fOEh9Uxv33TCRrJTAvu1e9I9Wo+bf52cTGxXG5t2nMLfamT0pnYgwKVWeJF09IuBZ2uz8/h+HOF1r5qfXjWNkZoy/IwkvUqlUzJ2cwexJaTS0WHl/T6GsnOZhUvhFQKtrauPp//mawopmfrRkLEPSorv0+wbQ9E3CwwYlm7jmkiw0ajVb95aQk1vp70gDhrx/EgGrtKqFdW8eos3m4L5/m8Cg1Khuf/wTRib6KZ3whViTgYUzsth9sJzXth6n0Wxj3pTMzscNOi2yuFrfSeEXAcfhgr25FWz8+Dh6rYafr5hAeqJRWvcDkEqt6vEC/dk/6zC9hrlTMjhSUMc7nxVwsrSBi0cmolKp5IJvP8krJgJKq9XB6zvy+OzQaeKjDFwxKZ3yGjPlNWZp3Q9AVruzc6rms333Z61Rq7h5fjatVgdHCuppszmZMVZmYe0vKfwiICiKQs6xKt7ceZK6Jiujs2K5ODsBjVrex4t2arWKaaOTMOg0HM6vxeVSmDJKVlnrDyn8wq+cLhcHTtTw/p4iiiqbyUg08p83jKK2sfviIEKoVComjkhArVZxMK+G17Ye4+5lY6SB0EdS+IVflFW3sGVXPv/37WkaW2wkx4Zz+8LRzBybQqvdKYVf9Gr8sHjUKvj6eDV/3HKUO5dc1Hmjlzg/KfzCZ6obrXx59DRfH6+mqKIZtQrGDk3g8qtTmTi8vRUnhLvGDo1nULKpcxWvHy8dI8XfTVL4hVc1mW3sP17FV7lV5JU0oABxUQZmjEslPT6CKyalEymjMkQ/zZ2SSZhey+vb83hl87fc/b2xUvzdIH9xwuMsbXb2n6hmb24VuYX1uBSF1PgIFs7IQqdVExWp71wwvKfhfDJsU/TF1VMzUavgf7fl8fKm9uKvk8H9vZLCLzzC0mbnUH4tOblVfHOqFqdLITEmjGsuGcT00cmkJ0ZisTm73YDV03A+GbYp+mrelEzUahX/8/EJXtr0DfdcOxadzNx6TlL4Rb/VNraxP6+GAyeqyCttxOVSiDHqufLiDCaNSCAz2dg5V77F5pSWvPC4s98xTh+TgsPZvhznc68f5J5rxxEVqfdzwsAkhV+4rdFs42RpA8eKGzhWXE9ZtRmA6Eg9o7NiGZRkJCEmjInZSRw6UU1lvaXL86UlLzztu+8Y9To1syak8uWRSlb9LYd7l4+XmVx7IIU/hDhcYLV37U//7lwnljYHVQ1tVNSZqWtuo67JSkWtmdJqM01mGwB6rZoRGdHMHJNCdlYsxZXNvvw2hOjVkNQoZoxJ4c/vHeXp/9nPrfOzmTk2RVZqO4sU/hBitTvIya2k1eqgrslKc6sNY7iehmYr1Q2t1DS20fqdC61qtYqoCB0J0WHMnZJBdkYMQ9OiOkdOmK0OKfwi4AxKjeL+70/iL+/n8l/v55JzvIqbrxpFYqK0/kEKf0hobLFyvKSBbwvq+OZULY0tts7HdFo18VFhxEWHMTg1irgoA7GmMCrrzBjDdYTpNZ0tpWljUlBcClaHC+uZdfCk314EIqvdybGiei4Zk0xUpJ6DeTU89ucvWTF3BDNGJxEe4kOIQ/u7H6Dqm60cKWlk35HTHC9uoKKuva/doNMQHx3G0LQokmLCMUXomT4uhW/yaro8f9zweFwnui9wKiNwRLBRq1SMHRJHVrKRk2VN/M/WY2zadZLLJ6Qxa0IaKXER/o7oFz4r/AUFBTz88MM0NDQQExPD2rVrGTx4sK9OP2ApikJtYxsnShs4XtzA8ZIGqurbVysKN2gYkRHDrAmpjBoUS3xMOF8fr+ryfLX0e4oQYIrQc+fSMdhcsPHDXD7aW8KHXxWTlhDJ8PRoBqeayEo2ER8VhjFCN+D/LnxW+B9//HFuuukmli1bxjvvvMNjjz3Ga6+95qvTBz1FUWi1OqlpbKWizkJFrYWiymbyy5s6L7pGGLQMS4/mionpzJyYjkmn7jINgixMLkKZSq0iJkLPbYtG09Bi5WBeDUcL69h/vIrdh8o791OrVBgjdIQbNITptYTr2z9GhOuINGg7t0eEaQnTawg3aNv/nfW5Qa8J6P88fFL4a2trOXr0KBs2bABg8eLFrF69mrq6OuLi4tw6Rn/mcSmubCG/vBHFpeBCweVS2vukFc583v61cuZzh9OF06Vgdyo4na72r50uHC4Fh0PB6XJhd7pwOtufZ7M7cbhcOB0uFEClAhUqVKr2L9Sq9tkE279s/xpV++Oqjo8djwGoOOuxM/sDVruLllYbTue/OtRVQHxMONMvSkalgrioMKIj9ahUKiYMTyAjNZra2pYur4dWoyYiTNevbZ5+frhBi9Oh89v5e9+m8vP5e39+x2vni3P1Z1u4QRswr9XZnC6F3MI6WsxWABJjwvnZ9RMI06mpa7ZyusZMk8VOk8VGQ4uVyrpWHE4nNruL5jY7LW0OrDYHVruz2/l6YtBpCDO0/+cQptNg0Gsw6LUYdGp0mvZGmVatRqNRoVaDRq0mMlJPq8XWXieApNgILhoc69b5vqu3mqlSFMXrl+e+/fZbHnroId5///3ObQsXLuTZZ59lzJgx3j69EEKIs8iEFkIIEWJ8UvhTU1OprKzE6Wx/i+R0OqmqqiI1NdUXpxdCCHEWnxT++Ph4Ro8ezXvvvQfAe++9x+jRo93u3xdCCOE5PunjB8jPz+fhhx+mqamJqKgo1q5dy9ChQ31xaiGEEGfxWeEXQggRGOTirhBChBgp/EIIEWKk8AshRIiRwi+EECFGCr+bWltb+c///E+uuuoqFixYwM6dO3vd32q1snDhQpYvXx5Q+XJzc7n22mtZtmwZixYt4tFHH8Vms/W4r6+zbdu2jeXLl7N48WIWLVrEX/7yF6/m6mu+yspKbr31ViZPnuz1n2tBQQE33HAD8+fP54YbbqCwsLDbPk6nkyeeeIJ58+Zx1VVX8eabb3o1U1/zff755yxfvpyxY8eydu3agMr20ksvsWjRIpYuXcry5cv57LPPAirfP//5T5YsWcKyZctYsmSJ5+c1U4RbXnzxRWXlypWKoihKQUGBMnPmTKWlpeWc+z/99NPKL3/5S+Xaa68NqHytra2K1WpVFEVRnE6n8tOf/lT529/+FhDZDh48qFRUVCiKoihNTU3KvHnzlJycHK9m60u+pqYmZe/evcqOHTu8/nO99dZblc2bNyuKoiibN29Wbr311m77bNq0Sbn99tsVp9Op1NbWKrNmzVJKSkq8mqsv+QoLC5UjR44ov/vd75Tf/OY3Psnlbrbdu3crFotFURRFyc3NVSZPnqy0trYGTL7m5mbF5XJ1fj579mwlNzfXYxmkxe+mDz/8kBtvvBGAwYMHM3bsWHbv3t3jvvv27aOwsJBly5YFXL6wsDD0+vYFqB0OB21tbajV3v01cDfbhAkTSE5OBsBkMjFs2DDKysq8mq0v+UwmE1OnTiUiwrtzuHdMarh48WKgfVLDo0ePUldX12W/Dz74gBUrVqBWq4mLi2PevHls3brVq9n6ki8rK4uLLroIrdZ3y364m23WrFmEh4cDkJ2djaIoNDQ0BEw+o9HYuQBSW1sbdrvdo0tHSuF3U3l5Oenp6Z1fp6amUlFR0W0/i8XCmjVreOKJJ3wZz+180N5lsWzZMqZPn05kZCT/9m//FjDZOuTn53Pw4EEuueQSr2aD/uXzptOnT5OcnIxGowFAo9GQlJTE6dOnu+2XlpbW+bWvcrubzx/6k23z5s0MGjSIlJSUgMq3fft2Fi1axJVXXskdd9xBdna2x3LIClxnXHvttZSXl/f42BdffOH2cZ555hluuukmkpOTe+y76y9P5QNITk7mnXfewWKx8MADD/DJJ5+waNGigMgGUFVVxU9+8hMee+yxzncAF8LT+cTAsXfvXp5//nmfXU/qi7lz5zJ37lzKy8u55557uPzyyz0224EU/jM2bdrU6+NpaWmUlZV1zi90+vRppk+f3m2//fv3s3v3bl5++WWsViuNjY0sWbKEd999NyDynS0iIoKFCxfy7rvvXlDh92S22tpabrvtNu644w4WLlzY70zeyucLZ09qqNFozjmpYWpqKuXl5YwfPx7o/g7A3/n8oS/ZDhw4wAMPPMDLL7/ss+lj+vPapaWlMW7cOHbt2uWxnNLV46YFCxbwxhtvAFBYWMg333zDrFmzuu337rvvsmPHDnbs2MHvfvc7Ro4cecFF35P5SkpKOkfx2Gw2tm/fzsiRIwMiW319Pbfddhs333wzK1as8Gqm/uTzFXcnNVywYAFvvvkmLpeLuro6tm3bxvz58wMmnz+4m+3w4cP84he/4IUXXvDpmiDu5svPz+/8vK6ujq+++sqzf6ceu0w8wJnNZuXee+9V5s2bp1x99dXKJ5980vnY73//e+V///d/uz3nyy+/9NmoHnfzbd68WVm8eLGyZMkSZdGiRcqvf/1rr49mcDfbb37zG2XcuHHK0qVLO/+99dZbXs3Wl3wOh0OZNWuWMn36dGXMmDHKrFmzlBdeeMErmU6ePKlcf/31ytVXX61cf/31Sn5+vqIoinLHHXcohw8f7szz2GOPKXPnzlXmzp2rvP76617J0t98OTk5yqxZs5RJkyYpEydOVGbNmqXs3r07ILItX75cmT59epfftWPHjnk9m7v5nnrqKWXhwoXK0qVLlSVLliivvfaaRzPIJG1CCBFipKtHCCFCjBR+IYQIMVL4hRAixEjhF0KIECOFXwghQowUfiGECDFS+IUQIsRI4RdCiBDz/wFmu12aQZ4TpwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAELCAYAAADeNe2OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXhTZb4H8O/J3jTplqb7Xmgpe6FQQYpIUXaqKFdcuCPIVUZHvToqDAM4guIgOowoylXvoN6HcZcKiriwiAjK2palUOjeplvSLUub9dw/CpXSFlJITk6a3+d5tO3JyXm/pO2vJ+95z/syLMuyIIQQ4jMEng5ACCGEW1T4CSHEx1DhJ4QQH0OFnxBCfAwVfkII8TFU+AkhxMdQ4ScusWrVKmzatMklx9JoNEhPT4fdbgcALFiwAJ999plLjg0AixcvxrZt21x2PGdt2LABmZmZuPnmm93azubNm/HXv/6118cnT56MgwcP3nA7X375Je69994bPg7hnsjTAQj/TZ48GVqtFkKhEEKhEAMGDEBOTg7uueceCAQd5w6rV692+lgvvvgixo8f3+s+UVFROHHihEuyv/HGGygvL8err77aue29995zybH7oqamBlu2bMHevXuhUqnc2taSJUvcenzi/ajwE6ds3rwZ48ePh16vx+HDh/HSSy+hoKAAL7/8skvbsdlsEIn6349ldXU1goKCnC76/fV1IPxAXT2kT5RKJbKzs/HPf/4T27ZtQ1FREQBg2bJl2LBhAwCgsbERjzzyCDIyMjB27Fjcd999cDgcePbZZ6HRaLBkyRKkp6fj3XffRVVVFVJTU/HZZ59h0qRJ+MMf/tC5zWazdbZbUVGBu+++G6NHj8Yf//hHNDc3AwB+++03TJw4sUvGS10Z+/fvx//8z//g22+/RXp6OubMmQOga9eRw+HAW2+9hVtvvRXjxo3Dc889B71eDwCdObZt24ZJkyYhMzMTb7/9dq+vjV6vx3PPPYebbroJt956K9566y04HA4cPHgQixYtQn19PdLT07Fs2bJuz73073jnnXdw88034y9/+QsAYO/evcjJyUFGRgbmz5+Ps2fPdj7nnXfeQVZWFtLT0zF16lQcOnQIQMe7nGeeeaZzv9zcXNx666095r/8+9bT6/nOO+9gypQpSE9Px4wZM/DDDz/0+G9nWRZr167FuHHjMHr0aMyePbvzZ4PwD51SkOsyfPhwRERE4OjRo0hJSeny2JYtWxAeHt5ZiPLz88EwDNavX49jx4516eqpqqoCABw5cgQ7d+6EQCCAVqvt1l5ubi7+93//FzExMVi6dClefPHFLt03PZk4cSIeeeSRbl09l/vyyy+xbds2fPjhhwgJCcHSpUuxevVqrF+/vnOfY8eOYdeuXSgrK8Pdd9+N22+/HcnJyd2OtWbNGuj1evz4449obm7GQw89BLVajXnz5uHdd9/Fs88+i/379/eaV6vVoqWlBXv37oXD4cDp06exfPlybN68GUOHDsX27dvx6KOPYteuXaiqqsLWrVvx+eefIzw8HFVVVXA4HN2OeeHCBbzwwgt45513MGLECLz22muora296ut2udjYWGzduhVqtRq7du3Cs88+i++//x5hYWFd9jtw4ACOHj2K7777DkqlEiUlJVAqlU63Q7hFZ/zkuoWFhaGlpaXbdpFIhIaGBmg0GojFYmRkZIBhmKse6/HHH4dcLodMJuvx8ZycHKSkpEAul+PJJ5/Erl27Oi/+3ogdO3bgwQcfRGxsLPz9/fH0009j586dXd5t/OlPf4JMJsOgQYMwaNCgLmfdl9jtduzcuRN//vOfoVAoEBMTg4ULF2L79u1OZxEIBHjiiScgkUggk8nw6aef4p577sGIESMgFApx5513QiwWIy8vD0KhEBaLBcXFxbBarYiJiUFcXFy3Y+7atQuTJk3CmDFjIJFI8OSTT3Zel3HG9OnTER4eDoFAgBkzZiA+Ph4FBQXd9hOJRDAajSgpKQHLskhOTu72x4HwBxV+ct3q6uoQGBjYbftDDz2E+Ph4LFq0CNnZ2XjnnXeueayIiIirPh4ZGdn5eVRUFKxWK5qamvoe+gr19fWIjo7u/Do6Oho2mw06na5zW2hoaOfnfn5+MJlM3Y7T1NQEq9WKqKioLjnr6uqczhIcHAypVNr5tUajwZYtW5CRkdH5X21tLerr6xEfH4/ly5fjjTfewPjx4/HUU0/12FZ9fX2X11YulyMoKMjpTLm5uZ1dTRkZGTh//nyPr/u4ceNw//33Y/Xq1Rg/fjxWrlwJg8HgdDuEW1T4yXUpKChAXV0dRo8e3e0xhUKBZcuWYffu3di8eTO2bNnS2e3Tm2u9I6ipqenyuVgsRnBwMPz8/NDe3t75mN1uR2Njo9PHDQsLQ3V1defXGo0GIpGozyNvgoODIRaLodFouuQMDw93+hhXZo2MjMSSJUtw9OjRzv/y8/Mxa9YsAMDs2bPx0UcfYe/evWAYpsfurLCwsC5dO21tbZ3XRwB0e/0u72arrq7GihUrsHLlSvz22284evQoBg4c2Gv+//zP/8SXX36Jb775BmVlZR4ZPUWcQ4Wf9InBYMDevXvx9NNPY86cOUhNTe22z969e1FeXg6WZaFQKCAUCju7F0JDQ1FZWdnndrdv344LFy6gra0Nr7/+OqZOnQqhUIjExESYzWbs27cPVqsVb7/9NiwWS+fzVCoVqqure+z/BoBZs2bhgw8+QGVlJYxGIzZs2IDp06f3eUSNUCjEtGnTsGHDBhgMBlRXV2PLli2dF5Svx7x58/Dxxx8jPz8fLMvCZDJh3759MBgMKCkpwaFDh2CxWCCRSCCVSiEUCrsdY+rUqdi3bx+OHj0Ki8WCjRs3dnkt0tLS8NNPP6G5uRkNDQ344IMPOh9ra2sDwzAICQkBAHzxxRc4f/58j1kLCgqQn58Pq9UKPz8/SCSSHvMQfqCLu8QpS5Ys6SzgAwYMwMKFCzF//vwe9y0vL8eaNWvQ2NiIgIAA3HvvvcjMzAQAPPzww3jxxRexfv16/PGPf8TUqVOdaj8nJwfLli1DSUkJxo4di7/97W8AOkYZPf/881ixYgXsdjsWL17cpWtj2rRp2L59OzIzMxETE9Ptxq277roLdXV1eOCBB2A2mzFhwgSsXLnyOl4hYOXKlVizZg2mTJkCqVSKefPm4a677rquYwHAsGHDsGbNGqxevRrl5eWQyWQYNWoUMjIyYLFY8Nprr6G4uBhisRjp6ek93ksxcOBArFq1Cs888wza2trw4IMPdnl9cnJycPDgQUyePBnR0dG466678K9//QsAMGDAACxatAjz588HwzC44447MGrUqB6zGo1GrF27FlVVVZBIJJgwYQIWLVp03f924l4MLcRCCCG+hbp6CCHEx1DhJ4QQH0OFnxBCfAwVfkII8TFU+AkhxMdQ4SeEEB/jNeP4m5qMcDj4NfJUpVJAp+Pnbel8zgZQvhvB52wAv/PxORvg2nwCAYPgYP8eH/Oawu9wsLwr/AB4mekSPmcDKN+N4HM2gN/5+JwN4CYfdfUQQoiPocJPCCE+hgo/IYT4GCr8hBDiY6jwE0KIj6HCTwghPoYKPyGE+BivGcdPiK+zOQCz1Qa20QSTuWMxeKlYBBGdvpE+osJPiJcwW204UlgHpUIGvaFjndwxaeEQSenXmPQNnSsQQoiPocJPCCE+hrP3iGazGWvXrsWhQ4cglUoxcuRIrFmzhqvmCSGEXMRZ4V+/fj2kUim+++47MAwDrVbLVdOEEEIuw0nhNxqNyM3NxU8//QSGYQAAoaGhXDRNCCHkCpz08VdWViIoKAhvvvkm5s6diwULFuDo0aNcNE0IIeQKnJzx22w2VFZWYvDgwVi6dCny8/OxZMkS/PDDD1AoFE4dQ6Vybj+uqdVKT0foFZ+zAZSvr9hGE5QKGQB0fpTLpVCHyD0Zq0d8e+0ux+dsADf5OCn8UVFREIlEmDVrFgBgxIgRCA4ORmlpKYYNG+bUMXQ6A+8WUFCrlWho0Hs6Ro/4nA2gfNfDZLZBb2jvMo7fZDKjwW73cLKu+PjaXcLnbIBr8wkETK8nzJx09YSEhCAzMxO//PILAKC0tBQ6nQ7x8fFcNE8IIeQynI3qeeGFF7B8+XKsW7cOIpEIr7zyCgICArhqnhBCyEWcFf7Y2Fj83//9H1fNEUII6QXduUsIIT6GZncixIsxAgbGizN1Xo5m7SRXQ4WfEC9mttqRX9TQbTvN2kmuhs4JCCHEx9ApASFeiGVZtBgsMFv5NYafeAcq/IR4GY3WgJ+OV6Gx1YwdB8sQH6HEzcMiIRQwno5GvAQVfkK8SENzG74/XAmZRIgxaWGQSUX4OU8Dh4PFxBFREFDxJ06gwk+Il2jSt2Pv8Wr4+4kxLTMWMokII1LUaG+34cjZepyraEZaQrCnYxIvQBd3CfESn+0phs3uwMybEyGT/H7ONig+CBEqOQqKdbBQnz9xAhV+QrxA3nktTpboMHxAKEICZF0eYxgGo1PUMFvtOF3a6KGExJtQ4SeE52x2Bz7aXYSIEDkGx/fclaMKlCE+QolzFc2w2x0cJyTehgo/ITx34GQNGprbccfEpKtevE2JDYTF5kBFvaHzjt7L/7PR3wNyEV3cJYTHrDYHvj5YhuToAAxOCMbRs/W97hsRIoe/TIQLVS093tFLd/OSS+iMnxAe25+vQWOrGXdkJXWuV90bhmGQHB2IGp0JTfp2jhISb0SFnxCesljt+OZQGVJiAnvt279ScnTHGhcFF3RuTEa8HRV+QnjqpzwNmg0Wp872L1HKJQhSSHCGRveQq6DCTwgPmS12fPNrOdLigzHIybP9S2LCFCjRtNKYftIrKvyE8NCPxyrRarTgzqykPj83Vq2Aw8GiWmt0QzLSH1DhJ4RnTO1W7PqtAsOTVRgQE9jn56uCZFD4iVFVb3BDOtIfUOEnhGd2Ha6Esd2GuRP7frYPAAKGwaD4YGi0JrAs6+J0pD+gwk8Ij7QaLfjhSCXGpoUhLlx53ccZEBsIs9WOZoPZhelIf0GFnxAe2flrOSw2O3ImJN7QcS51EdXq2lwRi/QzVPgJ4YjNgatOo1DfZMKe49W4eWgkIlX+N9RWsFIGpVyM2kbTDaYm/RHdv00IR8xWG44U1nXZdvk0Ch/vvgChkMGd19m3f6XwEDkqavVwsCwETt4HQHwDnfETwgMFxVrkXdBizs0JCFZKXXLMiBA5LDYHmlqpn590xdkZ/+TJkyGRSCCVdvxQP/PMM8jKyuKqeUJ4y2pz4N8/nkdEiBy3ZcS67LgRIXIAQF2TCapA2TX2Jr6E066ejRs3IiUlhcsmCeG9749UoL6pDU/fMwIioevehMtlIvjLRNA204RtpCvq6iHEg5r0Zuw4WIZRKWoMTVS5/PjqID80NNPIHtIVp2f8zzzzDFiWxejRo/H0008jICDA6eeqVAo3Jrt+avX1j7V2Nz5nA3wvH9toglLRtcvlm0PlAAv88e4RUF8cyaM3WdDWbuv2fKEYnc+/9FEsFnU75uXbY8KVKKvVQyAUQi6XQn2x+8fd+Py95XM2gJt8nBX+rVu3IjIyEhaLBS+99BJWr16NV1991enn63QGOBz8ugtRrVaioUHv6Rg94nM2wDfzmcw26A2/d7vUNZrw2+lazLk5AUKHo7M9o7n76B8AGJGiht7QDqVC1nkcq7XrMS+5tF3p1/ErXqZpxuiUUDTY3T9xG5+/t3zOBrg2n0DA9HrCzFlXT2RkJABAIpHgvvvuw/Hjx7lqmhDecbAsDhfWI1gpxfSb4t3WTkiAFAKGoe4e0gUnZ/wmkwl2ux1KpRIsy2Lnzp1IS0vjomlCeOlCZQua9GYsmpUGm4OFzfx7144r39gKBQKEBEjRQBd4yWU4Kfw6nQ6PP/447HY7HA4HkpOT8fzzz3PRNCG8Y7HaceK8FuHBfhicGNKtW2dEitql7amD/FBU2Qy7nVZbJx04KfyxsbHIzc3loilCeK+wvAlmqx0Zg8KcXlnrRqiDZCgs75ifPyBO4vb2CP/RcE5COGSx2nGmrAmxYQrObqoKDfIDAJTV8PeiJuEWFX5COFRY3gSrzYHhA1w/Zr83/jIR/KRClNW0ctYm4Tcq/IRwxGpz4FxFM6LV/lAFcDeFAsMwUAf5oZQKP7mICj8hHDl+rh7tFjvS+rh4uiuEBvlB29KOVpOF87YJ/1DhJ4QDLMtiX54GgQoJIlXc3D17OfXF6wklGjrrJ1T4CeFESU0rquoNGBQXzMlIniupAmUQMECJpoXztgn/UOEnhAMHT9ZCLBQgMcoz88SIhAJEhfqjlEb2EFDhJ8TtrDYHDhfWYfgAFSQiocdyxEcoUappBcvya84rwj0q/IS4WUGxFsZ2GzIHh3s0R3yEEiazDfVNNG+Pr6PCT4ibHTpdh0B/CVLiuB/Nc7n4iI5p0EtoWKfPo8JPiBuZrXacKtEhIzUMQoFnFzyPCJFDKhailEb2+Dwq/IS40enSRlhsDoxKCfV0FAgETEc/P53x+zwq/IS40YmiBvjLRBgYG+TpKACApMgAlNcZYKOZOn0aFX5CXMzm6FhFq7XNihMXtBicGAKzzeHSefavV2JUAGx2B6oaDJ6OQjyICj8hLma2diyduPNQGUztNsilIhwprIPN4fmz7MTIjvsIqJ/ft1HhJ8RNarRGMAwQGcr9FA29UQXIECAX08geH0eFnxA30WhNUAf5efSmrSsxDIPEyAC6g9fHUeEnxA3aLXboWtsR5YEJ2a4lMSoANVoj2i5b55f4Fir8hLhBrc4IAIgM9fdwkt8xAgZGsw1Rof5gAZytbIbN85cdiAdQ4SfEDTQ6EyQiAacLrlyL2WrHkcI66FraAQC/FGhgttJZvy+iwk+IG9TqTIhQySHw8N26PZFKhFDKxdBe/ANAfA8VfkJcrElvhqHNivBg/vXvXxIaKKPC78Oo8BPiYsXVHYudhIX4eThJ71SBMpjabWgxmD0dhXgAFX5CXKy4ugVikQDBSqmno/QqNLDjj1J5HQ3r9EWcF/4333wTqampKCoq4rppQjhxoaoFYcF+EHhgiUVnhQRIwTBAeS0Vfl/EaeE/ffo08vLyEBUVxWWzhHCm1WRBbaMJ4cH87eYBOpZiDFZKqfD7KM4Kv8ViwerVq/H88897ZLFpQrhQXHWxf5/nhR/ouMBbUaeHg5Zi9DmcFf7XX38dc+bMQWxsLFdNEsK50tpWCAQMQng0fr83oYF+aDPbodEaPR2FcEzERSMnTpzAyZMn8cwzz1z3MVQqhQsTuY5arfR0hF7xORvQP/NpdG2IVisQHNh9KKdYLIJSIbuubVduv/TRmX1725YUw+DgqVrUNrcjfXCkk/9C5/D5e8vnbAA3+Tgp/EeOHEFJSQmys7MBALW1tXjooYfw8ssvY8KECU4dQ6czwMGHCc0vo1Yr0dDAzz5SPmcD+mc+lmVRVNGEYckq6A3dx8hbrbZu253ddvl2pULW+fi19r3aNoZlESCX4PjZOmQMdN0KYXz+3vI5G+DafAIB0+sJMyeF/+GHH8bDDz/c+fXkyZOxefNmpKSkcNE8IZzQtrTD0GZFXDg/351eiWEYJEcH4Hxls6ejEI7ROH5CXKTs4giZuHB+dyVcLik6ELpWc+f8PcQ3OF34d+/eDZvNNRM67dmzh872Sb9TVtMKkZBBFI9m5LyW5OhAAMD5Kjrr9yVOF/7XX38dEyZMwOrVq5Gfn+/OTIR4pbJaPWLDFBAJveeNdHSoP2QSIc5fHIZKfIPTP6Hbt2/H+++/D6lUiscffxxTp07FW2+9haqqKnfmI8QrOFgWZbWtSIgI8HSUPhEIGAyIDkQRnfH7lD6dmgwaNAhLly7FTz/9hOeffx67du3Cbbfdhvvvvx/bt2+HgweLSRPiCfVNbWgz25EQ4T39+5cMjAlEdYMRxnarp6MQjvR5VE9FRQW2b9+O7du3g2EYPPHEE4iMjMTWrVvx/fff480333RHTkJ4rezi4uWJkd51xg8AKbFBAIDzVS0YOcB1wzoJfzld+Ldu3YqvvvoK5eXlmD59Ol555RWMHDmy8/GpU6di/PjxbglJCN+V1ughEQkQGSpHu9W73vkmRgZAKGBwvqqZCr+PcLrw79+/HwsXLkR2djYkEkm3x/38/PDGG2+4NBwh3qKsthVx4UoIBQIA3lX4JWIhEiKVdIHXhzjdxz927FhMnz69W9HfsmVL5+fO3oVLSH9hcwD6NivKa/WIVvvDaLaBZzeYO2VgTBDKalphsdo9HYVwwOnCv2nTph63v/322y4LQ4i3MVtt2H20EhabA3aHA0cK62DzwkEOg+KCYLOzOF9NZ/2+4JpdPYcOHQIA2O12/Prrr2Avm8K1qqoK/v7ec7MKIe5wae1alRfMyNmb1NhgCAUMzpQ2YkhCiKfjEDe7ZuH/61//CqBjPv3ly5d3bmcYBmq1GitWrHBfOkK8gK61HSIhgwD/7te+vIVUIsSA6ECcLmvEPE+HIW53zcK/Z88eAMBzzz2HV155xe2BCPE2upZ2qAJkXr/A0ODEEGzbX4JWo8Wr/4iRa3O6j5+KPiHd2e0ONOrNUAV6bzfPJUMTO7p4zpQ3ejgJcbernvFPnz4d3377LQDglltu6fWMZt++fS4PRog30OhMcDhYry38jICB0dwx+WJokB/kUhEKinXIGBQBkfdMOUT66KqFf82aNZ2fr1+/3u1hCPE2FXUdUzGHemnhN1vtyC9q6PxaHSRDQbEO7RYrFDKxB5MRd7pq4c/IyOj8fOzYsW4PQ4i3qazTQyIWQOHXP4pkZKg/yusMqGtqgyKyf/ybSHdOv5nbsmULCgsLAQB5eXmYNGkSsrOzceLECbeFI4TvKuoM/eLC7iWRqo61gs+VN3k4CXEnpwv/+++/j5iYGADAa6+9hgcffBBLlizB2rVr3RaOED6z2uyo1hq9tn+/J0q5BEq5GGep8PdrThd+vV4PpVIJg8GAc+fOYcGCBZg3bx5KS0vdmY8Q3qqsN3Zc2PXiG7d6Eqnyx/mqFtjs3ncHMnGO04U/MjISx48fx86dO5GRkQGhUAiDwQChUOjOfITwVlltx1TM/emMHwCiQuUwW+00aVs/5vTsnM899xyeeOIJSCQSbNy4EQCwd+9eDBs2zG3hCOGz0ppWKPzE8Jf1eVkLXotU+UMkZFBQrEVafLCn4xA3cPon9pZbbsGBAwe6bJs2bRqmTZvm8lCEeIOyWj3iIpT95sLuJWKRAANjgpB/QYd7Jg/0dBziBn06VdHr9SgtLYXRaOyyfdy4cS4NRQjfmS12aLRGDEtSeTqKWwxJCsHne4tR12hCeIjc03GIizld+L/88kusXr0acrkcMtnvfZoMw2D37t1uCUcIX1XU68GyQFy4Eu0Wm6fjuNzQRBU+31uM/Ata3D42ztNxiIs5Xfg3bNiA119/Hbfccos78xDiFUprOu7YjQtXoKiy2cNpXE8VKEO02h/5xToq/P2Q04Xfbrff0Apbjz76KKqqqiAQCCCXy7Fy5UqkpaVd9/EI8aSy2lYEK6UIVEg9HcVtRiSH4rvDFTC12yDvZxewfZ3Twzn/67/+C2+//TYc17m60Lp167B9+3bk5uZi0aJFXeb2J8TblNXokRCh9HQMt2EEDFLjgmB3sDhW1ACj2QYbDevvN5z+M/7+++9Dq9XivffeQ1BQUJfHnJmdU6n8/ZfEYDD0u5EQxHe0mW2obTRh3JBwT0dxG7PVjoaWNkjFQvyUVw27w4ExaeEQSenMvz9w+rvoitk5//rXv+KXX34By7J47733bvh4hHhCWW1H/35CZICHk7iXgGEQrfZHdYMRDtYLV5AnvXK68Ltids6XXnoJAJCbm4tXXnkF7777rtPPVakUN9y+O6jV/H27z+dsgPfm+/lULQBg9JBImC12KBVd79wVi0XdtvW23dltV26/9NHdbQ2IDUaJphVGsx1yuRRqJ4d28vl7y+dsADf5nC78FosFmzZtwtdff43m5mYcO3YMBw4cQFlZGR544IE+NXrHHXdg1apVaGpqQnCwc3cG6nQGOBz8OutQq5VoaNB7OkaP+JwN8O58py5oERoog6XNApPZBr2hvcvjVmv3bb1td3bb5duVClnn4+5uK0QphoABzpU1YnJ6NBrs9m77XonP31s+ZwNcm08gYHo9YXb64u7atWtRVFSEV199tbN/fuDAgfjoo4+u+Vyj0YiamprOr/fs2YPAwMBu1woI8QalNa39+sLu5SQiIcJD5KisN4Cl7p5+w+kz/h9//BHff/895HI5BIKOvxfh4eGoq6u75nPb2trw5JNPoq2tDQKBAIGBgdi8eTNd4CVep9VkgbalHbemR3s6CmdiwxU4fKYedY1tUETR4iz9gdOFXywWw37F27zGxkanztpDQ0Px6aef9j0dITxToumYkTMpqn9f2L1cbFhH4S8o1iLZh/7d/ZnTXT3Tpk3D0qVLUVlZCQCor6/H6tWrMXPmTLeFI4RvSjStEDAMEiJ8pwD6y8RQBchwskTn6SjERZwu/E899RRiYmIwZ84ctLa2YurUqVCr1XjsscfcmY8QXinVtCBG7Q+pxLfWoYgNV6C8Ro9mg9nTUYgLON3VU1FRgaSkJDzyyCOw2+2YMmUKUlNT3ZmNEF5xsCxKalqROTjC01E4FxumQN55LfIuaDFppO9c3+ivrln4WZbF8uXLkZubi4iICISFhaGurg6bNm1CTk4O1q5dSxdpiU+o1ZnQZrYjqZ/fuNWTIIUEqgAZ8s5T4e8Prln4P/nkExw+fBiffPIJhg8f3rm9oKAAf/7zn/Hxxx/j3nvvdWtIQvigWNOxFGFytO8VfoZhMCxZhQMFNWi32CCT0NQN3uyaffxfffUVVqxY0aXoA8Dw4cOxfPlyfPXVV24LRwifFFe3wk8qhMJfAqPZBqPZBp7dU+hWwweoYLM7cKqk0dNRyA26ZuEvLi7GmDFjenxszJgxKC4udnkoQvioWNOCIIUUx87W40hhHY4U1sF2nbPVeqOkqED4y0Q4cV7r6SjkBl2z8NvtdigUPd/2q1AornuaZkK8yaWlFtVBfp6O4jFCAYMRA0s/OUEAABjCSURBVEJRUKyFnX7vvdo1O+psNht+/fXXXm/XvvKmLkL6o7LaVrAsEBrUfUIzX5I+MBQHT9WiqLIFafHOzbNF+OeahV+lUl110ZSQkBCXBiKEjy7dsRsa6NuFf0hiCERCAU6cb6DC78WuWfj37NnDRQ5CeK1Y0wp1kMznR7PIJCIMSQhG3nkt7s0eSEO5vZTTd+4S4qtYlkWJpgXxPjRNw9Wkp6ihbWlHVYMRNgc6Rzhd+q++0UTLNPKcb5++EOIEXUs7mg0WJPrgjVs9GTEgFAyAE+cbEBIow5HCrjP0KhUyDIoNpGUaeYzO+Am5hnOVzQCAATGBHk7CD4H+EiRFB+BEEQ3r9FZU+Am5hqLKZvjLRIhQObfsYH/FCJjO7pwhiSqU1+mha+2+ehfhP3ovRsg1FFU2Y2BMEAQ+fiHTbLUjv6gBAMCgY3h3/gUtlH60OIu3oTN+Qq6i2WBGXVMbUmJpmdDLBSqkCPCX4DRN3+CVqPATchVFF/v3U+Oo8F8pNkyB4uoWWKx0E6e3ocJPyFWcq2iGVCJEXHjP05b4stgwBewOFtVao6ejkD6iwk/IVZwpb0JqbBCEAvpVuVJokAwKPzEq6wyejkL6iH6aCemFrqUddY0mDE6gaUl6ImAYDE4MQbXWCLsvzU/dD1DhJ6QXZ8o7LlwOTqA5aXozNCkEVpsDdY0mT0chfUCFn5BeFJY1IcBfguhQf09H4a2UuCCIhAwq66m7x5tQ4SekByzL4kx5EwbHB9NEZFchFgkRFeqPynpDr1O3E/7h5AaupqYmPPfcc6ioqIBEIkF8fDxWr15NUzoT3irVtKLVaKH+fSfEhilQUWeArtXs89NWewtOzvgZhsHixYvx3XffYceOHYiNjcWrr77KRdOEXJcjhbUAgGFJVPivJVrtDwZAFXX3eA1OCn9QUBAyMzM7vx45ciQ0Gg0XTRPSZzYHcKigBnHhCojEQp9cWL0vZBIRQoP8UN1Ahd9bcN7H73A48NFHH2Hy5MlcN02IU3StbSiu7lhY/dKi6r62sHpfxYT5Q9dqhqnd5ukoxAmcT9K2Zs0ayOVyPPDAA316nkrFzzsn1WqlpyP0is/ZAP7mO1RYDwBIiQ+BUvF7n7VYLOrydV+2ufr5lz5y0ZYz21LjQ3CiSAud3ozwUAXkcinUIfyczZSvP3eXcJGP08K/bt06lJeXY/PmzRD08U5Inc4AB8/ea6vVSjQ06D0do0d8zgbwO9+xwjr4SUXwEzPQG36fdthqtXX5ui/bXPl8pULW+bi723J2m1gA+MtEuFDZjMGJKphMZjTY+TeHD59/7gDX5hMImF5PmDnr6tmwYQNOnTqFTZs2QSKRcNUsIX1itdlxurQRiVEBNIyzDxiGQUyYAjU6I2x26hLjO04K//nz57F582bU19dj/vz5yMnJwWOPPcZF04T0yanSRpitdiRH02pbfRWjVsBmZ+kirxfgpKtn4MCBOHfuHBdNEXJDjp9rgJ9UhOgwBUwmi6fjeJWIED+IhAzKa1o9HYVcA925S8hFNrsDeRe0GJYUQrNxXgehUIBIlT/KalrpLl6eo59uQi46XdoIY7sNIweqPR3Fa0Wr/aE3WVGjo0nb+IwKPyEXHTpdC4WfGGk0G+d1i1F3TGh3upSWZOQzKvyEAGgz23DivBZj0sIgEtKvxfWSy8RQB/nhVInO01HIVdBPOCEAjp1rgNXmwLghEZ6O4vXiIwNQWtMKQ5vV01FIL6jwEwLgwMkahAX5ITkqwNNRvF5CZABYFjhJZ/28RYWf+DyN1oiiymZMHBlFN225QFiwH5RyMfIvaD0dhfSCCj/xeT/laSAUMJgwLNLTUfoFhmEwJDEEp0oa6S5enqLCT3yaxWrHLydrMDpVjQB/mkrEVYYmqWAy21Bc3eLpKKQHVPiJTzt4uhYmsw23pkd7Okq/knpxLd78C9TPz0dU+InPcrAsvjtcifgIJVJigzwdp1+RSURIjQtGfjH18/MRFX7is/IvaFHXaMKto6JhsthppS0XG56sQo3OhPomuouXb6jwE5/Esix2/lqOkAApbDYHrbTlBiOSVQBA3T08RIWf+KSTJY0orm7FbWNiIRDQEE53CAuWI0btj2NFDZ6OQq5AhZ/4HJZlkftzCUIDZbiJ7tR1q9GpYThf2YwWg9nTUchlqPATn3O8qAFltXrMHp9A8/K4WUaqGiw6XnPCH/RTT3yK1ebAJ3suIFrtj/HD6Gzf3aJC/RGpkuPoOSr8fEKFn/iUH45WQtvSjvmTB9JiKxxgGAajU8NwtqIJLUZa0Ywv6Cef+Axtcxu2/1KKkQNCMSQxxNNxfEbm4HCwLHC4sM7TUchFVPiJT2BZFh9+XwQAuPOWJBqzz6HoUH/EhSvw6+laT0chF1HhJz7h1zN1OFWiw/BkFYqrW2jMPsfGDYlAaY0eNTqjp6MQUOEnPqCxtR1bvy9CYmQABsXTsopcYARM57sqo9mGYckqMEzH8pbE80SeDkCIOzkcLP73m0LYHSwWTEtFWU2rpyP5BLPVjvwrhnCmJYTg54IazLk5kYbRehi9+qRf++ZQGQrLm3DvlIFQB/l5Oo5PmzAsEi0GC03hwAOcFP5169Zh8uTJSE1NRVFRERdNEoJzFU3IPVCKmwaHI2s4LbLiaYMTQxCslGJfXrWno/g8Tgp/dnY2tm7diuhomvOccKPVaMHm7acRFizHgqmptKQiDwgFDG4ZEYXTpY10kdfDOCn8GRkZiIykMy7CDYuNxeavTsHUZsPCGYPgAGjoJk9MSo+GWCTAt79VeDqKT6M+ftLvfPHTBZytaEbGIDU0WiMN3eSRAH8JsoZH4tCpWjS2tns6js/ymlE9KpXC0xF6pFYrPR2hV3zOBrgn3y8FGvxwpBKDE0MwKq3rXDxisQhKhcypbQCc3teZba5+/qWPXLTlqudLpGKwQgGmjkvEvhMafHukEg/NGQqlnNu1jn3x9+JKXlP4dToDHDx7r65WK9HQoPd0jB7xORvgnnzVDQZs+PdxJEQqkT5QBb2h6xml1WpzehuAG3r+ldtc+XylQtb5uLvbup5tSoWsx+0Gk7lziGdSdAD2Hq3EzUMjkBDOXSH2pd8LgYDp9YSZunqIV7M5OvrvG1rasfGLk5CIBVg4czBNwMZzIweEQiBgsONAqaej+CROfjtefPFFTJw4EbW1tVi4cCFmzpzJRbPEB5itNhw+U4s3Ps+HtqUN44dFQCEXezoWuQa5TITBCSE4cV6LM2WNno7jczjp6lmxYgVWrFjBRVPEB+Vf0KGqwYixaWEID5Z7Og5x0tCkENToTNiy8yxWPzQWflKv6Xn2evR+mHi1k8U6FBTrkBwdgNS4IE/HIX0gEgrwwO0paGxtx8e7z3s6jk+hwk+8VnWDAR/uOgtVgBQ3DQ6nm7S8UFJ0IGaMi8fPBTXYd4Lu6OUKFX7ilVoMZvzzswJIxEJMSo+GkCb98lp3ZiVhWJIKW38owqlSmseHC/TbQryO2WrHxi8KoG+z4JGcIfD3o4u53kwgYPDInMGICvXHm1+cxNnyJk9H6veo8BOv4nCweG/HGZTV6PHI7CGI43AMOHEfuUyMP88fidAgP/zj03z8eqauy3z+RrMNNrrx2mXoMjrxGg6WxfvfnsWxogbMzx6I9BQ1jGabp2MRFwmQS7Ds/lF444sCvLP9NEaldKyNfOnazZi0cIho5I9L0Bk/8Qosy2LrD0U4cLIGc25OwO1jYj0dibiBwk+MZ+aPxKhUNY4XaXHodB3sPLtjvz+gP5+E91iWxad7L2Dv8WpMz4xDzoRET0cibiQWCfGH6YNgtdpxsqQReqMFt6RHeTpWv0Jn/ITXbHYH3v/2LL47XInsUTG4e1IyDdv0AQKGQXqKGhOGR6KhpR07D1VAo6U5/F2FCj/hnUvz7+j07djwaT5+LqjBtMw43D15IEwWe5cLftQL0L8lRQVgWmYs7A4HNnySRyN+XIS6egjvmK027DlWiX0nNGg2mDFuSDjCgv1gsli7LeA9IkXtoZTEFRgB0+MF+sv/oIcG+mHGuHj8crIW//g0D3+YnoaRA0MBAFKxCCI6fe0zKvyEV1iWxbFz9fj6YDkAYPKoGESr/T2ciriL2Wrv9scc6P4H3V8mxmN3DcPGT/Pxr6/PIHNIOFJig2ikz3WiV4zwRn2TCR/vvoC8C1qEBsqQNSKS80U6CH/JZWJMyYjF/jwNfj1dB7udxZi0cE/H8kpU+InHaZvbsOtwBX7K00AoZHDHxCQoZCIIBHQRl3QlFgkwaVQ0fs7X4MjZekSr/THnZhrl1VdU+IlHWG0OHDtXjwMFNThZ0giGAW4eFomcCYmQSIQ4Uljn6YiEp4QCBhNHROFAQQ1yfy4FwzCYPT7B07G8ChV+whmLjcWZch2On2tA3gUtDCYrAv0lmJYZh8mjohES0LFGK92NS65FIGAwYXgk1MF+2La/BHa7AzkTEmmor5Oo8BO3crAsiqtbcLiwHkfO1qPVaIFQwCAhKgBj0xSYMyEJATTJGrkOAgGDB25PhVQsxPZfymCzs7jrliQq/k6gwk9cjmVZlGhaceRsR7Fv0pshEgowODEYgf4SxKgVCAmSQ29oh5D68ckNEAgYPDh9EERCAXb+Wg6b3YF7Jg+g4n8NVPjJDbE5OsbdsyyLijoDThQ1IO+8FrrWdoiEDIYmqnD3pGSMHBAKB9Ct776ncdx0UxbpCwHDYMHtKRAJGHx/pBI2uwP33ZYCARX/XlHhJ9fNanMgr1iL3UcrUVVvhMlsA8MAaQkhuCMrEekDQyGX/d6N01PffU/juOmmLOKsy08c5mQlggWw+1gVjO02LJw+CBKx0LMBeYoKP3Gaw8Gist6AcxVNOFvRjMKKJpgtdoiEDKJC/RGjViA2TIGs9GiwDhYsuhZ7OpMnrnbliUNUqBzpA0Nx+EwdanUm/GnuMKgCZR5MyE9U+EkXLMtC32aFrqUdja3t0LW0Q6MzobLegGqtARZrx2oYYcF+GDc4HIMSQqA3mrssfejs3ZiEuBrDMBiWrMKYtHD833dnsfqDI3hkzhAMTgjxdDReocLvQy71x5utdtTpTNC2tKPFaEFjSxsaWto7i73liqWO5FIRotX+yBoehaTIAKTGBXUZeklj7gnfDB8YiqeD0/HejtN49eM8TBwZhbtuGQA69ehAhb+fc7AsNFojzlU042xFEy5UtaDFaOmyj79MBFWgDBEqOdISghGslKGxtQ3+fmL4y8SQigVgGAZj0sLhT/OiEC9gttpRWadH9ugYHC9qwP48DfKKtPjPmYMxPCEIIqFvz+xGv8X9UENzG45d0OG3kxqcrWiGoc0KAAhSSKD0lyA+QolgpRRKuRjjhkXi3BVT3Y5IUffYVUMjcIi3EQkFGJsWjqSoAJwpa8Kbn+VBFSDFpPRo3DwsEkEKqacjegRnhb+0tBTLli1Dc3MzgoKCsG7dOiQkJHDVfL/WarKgqKIZZ8oacbqsEQ3N7QCAYKUUw5NVGBQXjEFxQfDzE3frlpH14QyeRuAQbxUa6Ien74mHzmDFx9+dxRc/leDLn0qQFBWA5OhAxEcoERemQEiADDKJsN/fB8BZ4X/++edx3333IScnB1999RVWrVqFDz/8kKvm+wWzxQ5tSxtqG9tQ12RCRZ0eJZpWaFs6Cr1MIsTAmCBkZ8Rh4qgYSBm2yw8wTYVAfJlAKEBcuBJ/uns46hpNOHG+AYVlTdh7ohrWy65riUUCKOViyCQiyCRCyKQdHxUyMeQyEfwubvOTiOAnFcJPKoLfxX38Lm6XXOwe5StOCr9Op8OZM2ewZcsWAMCsWbOwZs0aNDY2IiTEuavt1zNTY0WdAcWaFrAOFg6wcDjYjq4JFhc/7/iaZTs+t9sdsNlZ2Ows7A4HrHYH7DYHbI6OJQDtjo7HO7axsDtYWO122G0sWLAdN4wwHSMLGHT9KOj4BMylx5mOG08YAAw6/ifo4XEwgNlsh8FshdXa9aJrkEKKockqCBgGqgAZgpVSCAQMRgwIRUy4Ejqdocv+IqGgy7j6vmxz9fP9pCLYbWKPtX+tbZfyear9qz3/8mx8eK2u3OYnFfHmtbqc3cGisKwRBqMZABAbpsSs8YmQihjUN7dDozNCb7TCYLKi2WhGfVMbbHYHbDYHmsw2NOnNMFvtsF0x+KEnDAPIxB1/DKRSIaRiEaQSAWRiEaRiAUQiAQQCBiJGAKGQgUAACAUC+PtL0GaydNQKAGHBcgxOCL5mez25Ws1kWJZ1ey/tqVOnsHTpUnzzzTed22bMmIH169djyJAh7m6eEELIZXz70jYhhPggTgp/ZGQk6urqYLfbAQB2ux319fWIjIzkonlCCCGX4aTwq1QqpKWl4euvvwYAfP3110hLS3O6f58QQojrcNLHDwDFxcVYtmwZWltbERAQgHXr1iEpKYmLpgkhhFyGs8JPCCGEH+jiLiGE+Bgq/IQQ4mOo8BNCiI+hwk8IIT6GCr+T2tra8N///d+47bbbMG3aNOzdu/eq+5vNZsyYMQNz587lVb7CwkLceeedyMnJwcyZM7Fy5UpYLJYe9/VEvh9//BFz587FrFmzMHPmTPzrX//iTba6ujosWLAAo0ePdvv3tbS0FPfccw+mTp2Ke+65B2VlZd32sdvteOGFFzBlyhTcdttt+Oyzz9yaqa/5Dhw4gLlz52Lo0KFYt24dZ9mczbdp0ybMnDkTc+bMwdy5c/Hzzz/zJtsXX3yB2bNnIycnB7Nnz3b9vGYsccobb7zBLl++nGVZli0tLWXHjx/PGgyGXvd/+eWX2b/85S/snXfeyat8bW1trNlsZlmWZe12O/unP/2J/eCDD3iTLy8vj62trWVZlmVbW1vZKVOmsEeOHOFFttbWVvbw4cPsnj173P59XbBgAZubm8uyLMvm5uayCxYs6LbPtm3b2EWLFrF2u53V6XRsVlYWW1lZ6dZcfclXVlbGnj59mv3HP/7B/v3vf+ckV1/y7d+/nzWZTCzLsmxhYSE7evRotq2tjRfZ9Ho963A4Oj+fNGkSW1hY6LIMdMbvpG+//Rbz588HACQkJGDo0KHYv39/j/sePXoUZWVlyMnJ4V0+mUwGiUQCALDZbGhvb4dA4P4fA2fzjRgxAuHh4QAApVKJ5ORkVFdX8yKbUqnEmDFjIJfL3Zrn0qSGs2bNAtAxqeGZM2fQ2NjYZb+dO3di3rx5EAgECAkJwZQpU7Br1y63ZutLvvj4eAwePBgiEbfLfjibLysrC35+fgCA1NRUsCyL5uZmXmRTKBSds3u2t7fDarW6dLZPKvxO0mg0iI6O7vw6MjIStbW13fYzmUxYu3YtXnjhBS7jOZ0P6OiyyMnJQWZmJvz9/fEf//EfvMp3SXFxMfLy8nDTTTfxLps71dTUIDw8HEKhEAAgFAoRFhaGmpqabvtFRUV1fs1Vbmfzecr15MvNzUVcXBwiIiJ4k2337t2YOXMmbr31VixevBipqakuy0ErcF105513QqPR9PjYwYMHnT7OK6+8gvvuuw/h4eE99t1dL1flA4Dw8HB89dVXMJlMePbZZ/HDDz9g5syZvMkHAPX19Xj00UexatWqzncAfMlG+pfDhw/j9ddf5+R6Ul9kZ2cjOzsbGo0Gjz32GCZOnOiy2Q6o8F+0bdu2qz4eFRWF6urqzvmFampqkJmZ2W2/Y8eOYf/+/XjrrbdgNpvR0tKC2bNnY8eOHbzIdzm5XI4ZM2Zgx44dN1z4XZlPp9Nh4cKFWLx4MWbMmHFDuVydjQuXT2ooFAp7ndQwMjISGo0Gw4cPB9D9HYCn83lKX/KdOHECzz77LN566y1OppC5ntcuKioKw4YNw759+1yWkbp6nDRt2jR88sknAICysjKcPHkSWVlZ3fbbsWMH9uzZgz179uAf//gHUlJSbrjouzJfZWVl5ygei8WC3bt3IyUlhTf5mpqasHDhQtx///2YN2+e23P1JRtXnJ3UcNq0afjss8/gcDjQ2NiIH3/8EVOnTuVNPk9xNl9BQQGeeuopbNy4kbN1QZzNVlxc3Pl5Y2MjfvvtN9f+nrrsMnE/ZzQa2ccff5ydMmUKe/vtt7M//PBD52P//Oc/2X//+9/dnvPrr79yNqrH2Xy5ubnsrFmz2NmzZ7MzZ85k//a3v3EyksHZfH//+9/ZYcOGsXPmzOn87/PPP+dFNpvNxmZlZbGZmZnskCFD2KysLHbjxo1uyXThwgX27rvvZm+//Xb27rvvZouLi1mWZdnFixezBQUFnXlWrVrFZmdns9nZ2ezHH3/slizXm+/IkSNsVlYWm56ezo4cOZLNyspi9+/fz5t8c+fOZTMzM7v8rJ09e5YX2V566SV2xowZ7Jw5c9jZs2ezH374oUsz0CRthBDiY6irhxBCfAwVfkII8TFU+AkhxMdQ4SeEEB9DhZ8QQnwMFX5CCPExVPgJIcTHUOEnhBAf8/9eKY6wxlZ2uAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -876,6 +932,14 @@ "print(f\"Mean Squared Error: {mse(ytest, yPreds):.2f}\")\n", "print(f\"Root Mean Squared Error: {np.sqrt(mse(ytest, yPreds)):.2f}\")" ] + }, + { + "cell_type": "markdown", + "id": "2b9903d3-fe7d-4710-8be7-e2ebff50e47d", + "metadata": {}, + "source": [ + "From the above metrics, we can notice that our model MAE is ~0.06, which is relatively small compared to our average price of $1.405, from this and the above plot we can conclude our model is a reasonably good fit." + ] } ], "metadata": { From 7fc5c438198983c4dcfbdf0184b49948e10abe02 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Fri, 18 Jun 2021 08:10:53 +0530 Subject: [PATCH 29/69] implemented lr in cpp nb, visualization pending --- ...avocado_price_prediction_with_lr_cpp.ipynb | 382 ++++++++++++++++++ 1 file changed, 382 insertions(+) create mode 100644 avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb new file mode 100644 index 00000000..c186357d --- /dev/null +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "78d0ce16-4ec6-4998-ab5e-94326b6e4f6e", + "metadata": {}, + "source": [ + "### Predicting Avocado's Average Price using Linear Regression\n", + "\n", + "### Objective\n", + "* Out target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...)\n", + "\n", + "### Dataset\n", + "Avocado Prices dataset has the following features:\n", + "\n", + "PLU - Product Lookup Code in Hass avocado board.\n", + "* Date - The date of the observation\n", + "* AveragePrice - observed average price of single avocado\n", + "* Total Volume - Total number of avocado's sold\n", + "* 4046 - Total number of avocado's with PLU 4046 sold\n", + "* 4225 - Total number of avocado's with PLU 4225 sold\n", + "* 4770 - Total number of avocado's with PLU 4770 sold\n", + "* Total Bags = Small Bags + Large Bags + XLarge Bags\n", + "* Type - conventional or organic\n", + "* Year - year of observation\n", + "* Region - city or region of observation\n", + "\n", + "### Approach\n", + "* In this example, first we will do EDA on the dataset to find correlation between various features\n", + "* Then we'll be using onehot encoding to encode categorical features\n", + "* Finally we will use LinearRegression API from mlpack to learn the correlation between various features and the target i.e AveragePrice\n", + "* After training the model, we will use it to do some predictions, followed by various evaluation metrics to quanitfy how well our model behaves" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "3d374b30-e54a-4990-b191-aade8144d0a6", + "metadata": {}, + "outputs": [], + "source": [ + "#include \n", + "#include \n", + "#include \n", + "#include \n", + "#include " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "aaa7fa57-80c6-48aa-9d9d-5816c947b74b", + "metadata": {}, + "outputs": [], + "source": [ + "#define WITHOUT_NUMPY 1\n", + "#include \"matplotlibcpp.h\"\n", + "#include \"xwidgets/ximage.hpp\"\n", + "\n", + "namespace plt = matplotlibcpp;" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "324c030a-d1ec-41c6-b6ad-92d62c9fbf57", + "metadata": {}, + "outputs": [], + "source": [ + "using namespace mlpack;\n", + "using namespace mlpack::data;" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ce45d9ac-b131-462c-8f2e-e019a0f5f303", + "metadata": {}, + "outputs": [], + "source": [ + "!cat avocado.csv | sed 1d > avocado_trim.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6d45544e-9f6d-4fab-93b2-ded5b51aa9dd", + "metadata": {}, + "outputs": [], + "source": [ + "!cut -d, -f1-2 --complement avocado_trim.csv > avocado_trim2.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "9d79dabe-286d-4278-9d41-d06a4048b7b0", + "metadata": {}, + "outputs": [], + "source": [ + "!rm avocado_trim.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "edec6ad1-be42-46b9-8487-d44501db6fc0", + "metadata": {}, + "outputs": [], + "source": [ + "!mv avocado_trim2.csv avocado_trim.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ae1a3152-76bc-43ce-894b-6554a2f0ad8a", + "metadata": {}, + "outputs": [], + "source": [ + "arma::mat matrix;\n", + "mlpack::data::DatasetInfo info;\n", + "info.Type(9) = mlpack::data::Datatype::categorical;\n", + "info.Type(11) = mlpack::data::Datatype::categorical;\n", + "data::Load(\"avocado_trim.csv\", matrix, info);" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "7619f5f1-7e33-4257-9868-999593810d96", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AveragePrice Total Volume 4046 4225 4770 Total Bags Small Bags Large Bags XLarge Bags Type Year Region\n", + " 1.3300e+00 6.4237e+04 1.0367e+03 5.4455e+04 4.8160e+01 8.6969e+03 8.6036e+03 9.3250e+01 0 0 2.0150e+03 0\n", + " 1.3500e+00 5.4877e+04 6.7428e+02 4.4639e+04 5.8330e+01 9.5056e+03 9.4081e+03 9.7490e+01 0 0 2.0150e+03 0\n", + " 9.3000e-01 1.1822e+05 7.9470e+02 1.0915e+05 1.3050e+02 8.1454e+03 8.0422e+03 1.0314e+02 0 0 2.0150e+03 0\n", + " 1.0800e+00 7.8992e+04 1.1320e+03 7.1976e+04 7.2580e+01 5.8112e+03 5.6774e+03 1.3376e+02 0 0 2.0150e+03 0\n", + " 1.2800e+00 5.1040e+04 9.4148e+02 4.3838e+04 7.5780e+01 6.1839e+03 5.9863e+03 1.9769e+02 0 0 2.0150e+03 0\n", + " 1.2600e+00 5.5980e+04 1.1843e+03 4.8068e+04 4.3610e+01 6.6839e+03 6.5565e+03 1.2744e+02 0 0 2.0150e+03 0\n", + "\n" + ] + } + ], + "source": [ + "// Printing header for dataset.\n", + "std::cout << std::setw(10) << \"AveragePrice\" << std::setw(14) << \"Total Volume\" << std::setw(9) << \"4046\" << std::setw(13) << \"4225\" << std::setw(13) << \"4770\" \n", + " << std::setw(17) << \"Total Bags\" << std::setw(13) << \"Small Bags\" << std::setw(13) << \"Large Bags\" << std::setw(17) << \"XLarge Bags\" << \n", + " std::setw(10) << \"Type\" << std::setw(10) << \"Year\" << std::setw(15) << \"Region\" << std::endl;\n", + "\n", + "std::cout << matrix.submat(0, 0, matrix.n_rows-1, 5).t() << std::endl;" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "e26a5936-d0ee-474a-a733-7b8063b3a672", + "metadata": {}, + "outputs": [], + "source": [ + "arma::mat output;\n", + "data::OneHotEncoding(matrix, output, info);" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "a89befd5-ba75-4acc-bf11-fa55b9a91ba1", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "66" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "output.n_rows" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "536d598e-9894-4047-96fa-82ac14ded328", + "metadata": {}, + "outputs": [], + "source": [ + "arma::Row targets = arma::conv_to>::from(output.row(0));" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "30bba7d3-0c09-4472-bf6f-1150b13535a1", + "metadata": {}, + "outputs": [], + "source": [ + "output.shed_row(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "e9de23c5-4d88-4d25-a157-05bb7650685c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{ 64236.620, 1036.7400, 54454.850, 48.160000, 8696.8700, 8603.6200, 93.250000, 0.0000000, 1.0000000, 0.0000000, 2015.0000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000 }" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "output.col(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "c39b65dd-aa03-4281-a057-86d4f8b293b6", + "metadata": {}, + "outputs": [], + "source": [ + "arma::mat Xtrain;\n", + "arma::mat Xtest;\n", + "arma::Row Ytrain;\n", + "arma::Row Ytest;" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "b4e567e6-4d54-43cb-b94f-b77776128877", + "metadata": {}, + "outputs": [], + "source": [ + "data::Split(output, targets, Xtrain, Xtest, Ytrain, Ytest, 0.2);" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "3f936744-df4a-44d0-ac13-b2614fb06960", + "metadata": {}, + "outputs": [], + "source": [ + "arma::rowvec yTrain = arma::conv_to::from(Ytrain);\n", + "arma::rowvec yTest = arma::conv_to::from(Ytest);" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "97fdc354-57d0-4e28-91e8-1d707fc24226", + "metadata": {}, + "outputs": [], + "source": [ + "regression::LinearRegression lr(Xtrain, yTrain, 0.5);" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "5d4cd76e-3a6b-4f4b-9bde-002acf0d126e", + "metadata": {}, + "outputs": [], + "source": [ + "arma::rowvec yPreds;\n", + "lr.Predict(Xtest, yPreds);" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "cd46e5ca-6192-4a63-b662-8278b6ba303b", + "metadata": {}, + "outputs": [], + "source": [ + "std::vector yTestPlot = arma::conv_to>::from(Ytest);\n", + "std::vector yPredsPlot = arma::conv_to>::from(yPreds);\n" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "212b13a9-77c9-4b71-96fa-46fb66f7f461", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "44fcb4267b534cc19217bcff32a0522d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 44fcb4267b534cc19217bcff32a0522d" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "// Visualize Predicted datapoints.\n", + "plt::figure_size(800, 800);\n", + "\n", + "plt::scatter(yTestPlot, yPredsPlot, 12); //{{\"color\", \"blue\"}});\n", + "//plt::plot();\n", + "plt::xlabel(\"Y Test\");\n", + "plt::ylabel(\"Pred\");\n", + "plt::title(\"AveragePrice vs Predicted Average Price\");\n", + "\n", + "plt::save(\"./scatter1.png\");\n", + "auto img = xw::image_from_file(\"scatter1.png\").finalize();\n", + "img" + ] + }, + { + "cell_type": "markdown", + "id": "ea1c1047-9570-4c47-8a5b-89f984e98f28", + "metadata": {}, + "source": [ + "## Evaluation Metrics for Regression model\n", + "\n", + "In the Previous cell we have visualized our model performance by plotting the best fit line. Now we will use various evaluation metrics to understand how well our model has performed.\n", + "\n", + "* Mean Absolute Error (MAE) is the sum of absolute differences between actual and predicted values, without considering the direction.\n", + "$$ MAE = \\frac{\\sum_{i=1}^n\\lvert y_{i} - \\hat{y_{i}}\\rvert} {n} $$\n", + "* Mean Squared Error (MSE) is calculated as the mean or average of the squared differences between predicted and expected target values in a dataset, a lower value is better\n", + "$$ MSE = \\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2 $$\n", + "* Root Mean Squared Error (RMSE), Square root of MSE yields root mean square error (RMSE) it indicates the spread of the residual errors. It is always positive, and a lower value indicates better performance.\n", + "$$ RMSE = \\sqrt{\\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2} $$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8b323dc0-61f8-43c1-ae8a-38027c04ff88", + "metadata": {}, + "outputs": [], + "source": [ + "// Model evaluation metrics.\n", + "\n", + "std::cout << \"Mean Absolute Error: \" << arma::mean(arma::abs(yPreds - yTest)) << std::endl;\n", + "std::cout << \"Mean Squared Error: \" << arma::mean(arma::pow(yPreds - yTest,2)) << std::endl;\n", + "std::cout << \"Root Mean Squared Error: \" << sqrt(arma::mean(arma::pow(yPreds - yTest,2))) << std::endl;" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "C++14", + "language": "C++14", + "name": "xcpp14" + }, + "language_info": { + "codemirror_mode": "text/x-c++src", + "file_extension": ".cpp", + "mimetype": "text/x-c++src", + "name": "c++", + "version": "14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 989d9ad7695afb9bab999fac0a48f58e0860e127 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Sun, 20 Jun 2021 10:01:11 +0530 Subject: [PATCH 30/69] python nb completed, visualization pending in c++ nb --- .../avocado_price_prediction_with_lr_cpp.ipynb | 2 +- .../avocado_price_prediction_with_lr_py.ipynb | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb index c186357d..f3a2bfc5 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb @@ -8,7 +8,7 @@ "### Predicting Avocado's Average Price using Linear Regression\n", "\n", "### Objective\n", - "* Out target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...)\n", + "* Our target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...)\n", "\n", "### Dataset\n", "Avocado Prices dataset has the following features:\n", diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb index 4cb6db0e..f28f8f73 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -8,7 +8,7 @@ "### Predicting Avocado's Average Price using Linear Regression\n", "\n", "### Objective\n", - "* Out target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...)\n", + "* Our target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...)\n", "\n", "### Dataset\n", "Avocado Prices dataset has the following features:\n", From 148d132aa2b210e0932421d70fe8404b74214196 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 21 Jun 2021 08:37:15 +0530 Subject: [PATCH 31/69] fixed minor style issues, modified onehot encode func & updated displot API --- .../avocado_price_prediction_with_lr_py.ipynb | 113 +++++++++--------- 1 file changed, 54 insertions(+), 59 deletions(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb index f28f8f73..59f6873b 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 1, "id": "916a3d8e-547c-461a-a90f-7bcbd60c7504", "metadata": {}, "outputs": [], @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 2, "id": "0f700cb9-6292-457e-883c-7f849d89240d", "metadata": {}, "outputs": [], @@ -61,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 3, "id": "8d54f581-e4fd-4e41-aee0-0085441d46c0", "metadata": {}, "outputs": [], @@ -72,7 +72,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 4, "id": "1b4c813d-d1b6-4e9d-8664-3a48c73724fb", "metadata": {}, "outputs": [ @@ -213,7 +213,7 @@ "4 6183.95 5986.26 197.69 0.0 conventional 2015 Albany " ] }, - "execution_count": 10, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -225,7 +225,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 5, "id": "f22211f2-7881-45ee-b061-8a3fb1773695", "metadata": {}, "outputs": [ @@ -393,7 +393,7 @@ "max 1.937313e+07 1.338459e+07 5.719097e+06 551693.650000 2018.000000 " ] }, - "execution_count": 11, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -405,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 6, "id": "525649f0-825a-4554-bde5-0e38ee1b50e1", "metadata": {}, "outputs": [ @@ -443,7 +443,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 7, "id": "8330ca8c-3f69-43b2-a588-5bc254f6f46a", "metadata": {}, "outputs": [], @@ -452,6 +452,16 @@ "avocadoData.sort_values(by=['Date'], inplace=True, ascending=True)" ] }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ea2ea034-0e54-4834-b254-641523960e38", + "metadata": {}, + "outputs": [], + "source": [ + "meanDates = avocadoData.groupby(\"Date\").mean()" + ] + }, { "cell_type": "markdown", "id": "f00da70d-2312-4c8b-a4f3-0e556949a984", @@ -470,7 +480,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 9, "id": "8cb1ab09-9c42-47f5-a240-7112e52514c9", "metadata": {}, "outputs": [ @@ -487,7 +497,7 @@ ], "source": [ "conv = avocadoData[\"type\"] == \"conventional\"\n", - "fig = plt.figure(figsize = (26,7))\n", + "fig = plt.figure(figsize = (26, 7))\n", "plt.scatter(x=avocadoData[conv].Date, y=avocadoData[conv].AveragePrice, c=avocadoData[conv].AveragePrice, cmap=\"plasma\")\n", "plt.xlabel(\"Date\")\n", "plt.ylabel(\"Average Price (USD)\")\n", @@ -505,7 +515,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 10, "id": "a7ab8224-24f2-4649-add1-6c10b99eb1b0", "metadata": {}, "outputs": [ @@ -522,7 +532,7 @@ ], "source": [ "org = avocadoData[\"type\"] == \"organic\"\n", - "fig = plt.figure(figsize = (26,7))\n", + "fig = plt.figure(figsize = (26, 7))\n", "plt.scatter(x=avocadoData[org].Date, y=avocadoData[org].AveragePrice, c=avocadoData[org].AveragePrice, cmap=\"plasma\")\n", "plt.xlabel(\"Date\")\n", "plt.ylabel(\"Average Price (USD)\")\n", @@ -551,13 +561,13 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 11, "id": "d690cbc5-7e21-48da-ba00-603c28073b1f", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAKYCAYAAABjO37GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1SUV/7H8TcMDBgRxQQRu0ElwQaGZrASC4gIiK66iTVrWxONJaKm2WJioiGLrrFE48aSKFIUWyLBFmnW1dgj9gJ2RXQqvz/4+axEBlEBKd/XOTnHmafd545n8p3rfe7HLDs7OxshhBBCCCFEvsxfdAOEEEIIIYQoDaRwFkIIIYQQogCkcBZCCCGEEKIApHAWQgghhBCiAKRwFkIIIYQQogCkcBZCCCGEEKIApHAWQogyzM3NjfPnzxfb9R48eMCwYcN44403GDlyZLFdtzBNmDCB8PDwpz7uwoULODs7o9fri6BVhWfPnj107tz5RTdDiFJJCmchhCgkffv2xcPDA61WWyTnf1iYubm54ebmhq+vLwsXLsz3mP3791O7du0iaU9eNm/ezLVr10hJSSEiIsLkftHR0Tg7O7Nx48Zia1tpMmfOHBo3boybmxvu7u707t2b/fv3F8q53d3d+eWXXwrlXEKUN1I4CyFEIbhw4QJ79uzBzMyM3377rUivtXv3bvbv38/s2bP597//zY4dOx7b50WNel66dIl69ephYWGR734xMTFUqVKF2NjYYmpZ6ePv78/+/ftJTk7Gy8uLUaNGvegmCVHuSeEshBCFIDY2lubNmxMSEpKrGDxw4AA+Pj4YDAblvS1bthAYGAjkTG0ICwvDw8MDf39/Fi1aRJs2bQp0TTc3Nxo0aMDJkycBcHZ2ZsWKFXTq1IlOnTop7509e1a51pdffkn79u1544036NOnDw8ePFDa2bt3b9zd3enWrRspKSkmr3vq1Cn69u2Lu7s7AQEByg+FiIgI5s2bx6ZNm3BzcyMyMjLP4y9evMju3buZOnUqv//+O9euXVO2+fv7s3XrVuW1Xq/Hy8uLw4cPA/Dbb78REBCAu7s7ffv25dSpU8q+ly9f5r333sPb2xsvLy+mTp0KwLlz5+jXrx9eXl54eXkxduxY7ty5oxx35MgRQkJCcHNz44MPPkCj0eRq7+rVq+nYsSOenp4MGzaM9PT0/D4WoqKiaNWqFa1atWLJkiUAXL16lebNm3Pz5k1lvz/++ANvb290Ol2+57OwsCAwMJD09HRu3LihvL9161aCgoKUEeljx44p2w4fPkxwcDBubm6MHDmSDz74QJl+kpKSkuvvmKnPE3KmrUyZMoUhQ4bg5uZGz549OXfuXL7tFaIsk8JZCCEKwdq1awkMDCQwMDBXMejq6kqFChVITk5W9o2Li1MK57lz53Lx4kXi4+P54YcfWLduXYGul52dzd69e/nzzz9xcXFR3o+Pj2f16tV5ToGYOXMmhw8f5ueffyY1NZUPP/wQc3Nz0tPTGTp0KMOHDyc1NZWwsDBGjhyZq0h7SKfTMWzYMHx8fEhMTOTjjz9m3LhxpKWlMXLkSIYOHaqMlPbs2TPPtsfGxtKkSRM6d+6Mk5MTcXFxyraAgADWr1+vvP7999+xs7OjcePGnD59mrFjxzJp0iSSkpJo06YNw4YNQ6vVYjAYGDp0KDVq1CAhIYEdO3bQpUsXpa+GDh3Kzp072bRpE1euXGHOnDkAaLVaRowYQVBQEKmpqfj5+fHrr78q109KSmL27Nl8++23/P7779SsWZMxY8bk+9mkpKTw66+/snjxYhYuXEhiYiL29vZ4enqyadMmZb9169YREBCApaVlvufTarXExsZSpUoVbG1tgZzCeNKkSUydOpWUlBR69erFP//5T7RaLVqtlvfee4+QkBBSU1Pp2rUr8fHxeZ47v8/zoQ0bNvDee++xe/du6tSp80zzv4UoK6RwFkKI57Rnzx4uXbqEv78/TZo0oXbt2rmKv0eLwczMTHbs2EFAQAAAmzZtYujQoVSuXJnq1avTr1+/J17P29sbT09PPv74Y8aOHUvLli2VbUOGDKFKlSpYW1vnOsZoNBIVFcVHH32Eg4MDKpWKFi1aoFarWbt2LW3atKFt27aYm5vj4+NDkyZN2L59+2PX/u9//0tWVhZDhgxBrVbTsmVL2rdvz4YNGwrcX2vXrqVr164AdO3alZiYGGVbYGAgCQkJ3L9/H8j5kfFw340bN9K2bVt8fHywtLTk3Xff5cGDB+zfv5+DBw+SkZHB+PHjeemll7CyssLd3R2AunXr4uPjg1qtpmrVqgwcOJDdu3cr96PT6ejfvz+Wlpb4+fnRtGlTpT1xcXGEhobSuHFj1Go1Y8aM4cCBA1y4cMHk/Y0YMYKXXnoJZ2dnunfvrnz2ISEhyg8jg8HAhg0bCAoKMnmezZs34+7uTvPmzYmMjCQiIkKZArN69Wp69epF8+bNUalUhISEYGlpyYEDB/jvf/+LXq+nX79+WFpa0qlTp1z39KiCfJ4dO3akWbNmWFhY0K1bN44ePWqyzUKUdVI4CyHEc4qNjcXHx4eqVasCeReDW7ZsQavVsmXLFlxcXKhZsyYAGRkZODo6KvtWr179iddLTk5m9+7dbNq06bFC+9FzPermzZtoNJo8HxS8dOmSUqQ9/G/v3r1cvXr1sX0zMjKoXr065ub/+99HjRo1njh94aG9e/dy4cIF5YdD165dOXHihFKM1a1bFycnJ7Zu3cr9+/dJSEhQRuczMjKoUaOGci5zc3McHR1JT0/n8uXL1KhRI8+51devX2f06NG0bt2aFi1a8OGHHypTJjIyMnBwcMDMzCzX/Tx6vw8/K4CKFStSpUqVfO/30c+gZs2aZGRkAPDWW29x6tQpzp8/z65du7CxsaFZs2Ymz+Pn58eePXvYtWsXDRs2VKarQM5n9sMPP+T6zK5cuUJGRkae92Tq70VBPs9XXnlF+bO1tTVZWVkm2yxEWZf/0xtCCCHy9eDBAzZt2oTRaMTHxwfI+af1O3fucOzYMV577TUaNGhAjRo12LFjB+vXr1dGUAHs7e25cuUKDRo0AODKlSvP1Z5Hi6VH2dnZYWVlxfnz53nttddybXN0dCQoKIjp06c/8fzVqlXjypUrGI1Gpdi6fPky9erVK1D7YmNjyc7OJjg4+LH3X3/9dSCnmF6/fj1Go5EGDRpQt25d5donTpxQjsnOzuby5cs4ODigVqu5fPkyer3+seJ59uzZmJmZsW7dOuzs7IiPj1fmP9vb25Oenk52drbSd5cuXVJ+YFSrVo2LFy8q58rKyuLWrVs4ODiYvMfLly/j5OSknKtatWoAWFlZ4e/vz7p160hLS8t3tPlRVatWZcqUKfTo0YOuXbtSrVo1HB0dGTZsGMOHD39s/9TU1Mfu6fLly3n+aHrez1OI8kZGnIUQ4jnEx8ejUqnYsGEDsbGxxMbGsnHjRtzd3XM9JNi1a1d+/PFHdu/ejZ+fn/K+v78/CxYs4Pbt26Snp7N8+fIiaae5uTmhoaF88cUXpKenYzAY2L9/P1qtlm7durF161Z27tyJwWBAo9GQkpKSZxHfrFkzKlSowPfff49OpyMlJYWEhARlPnF+NBoNmzZtYurUqUpfxcbG8sknnxAXF6esBNKlSxd27drFTz/9lOtHhr+/P9u3bycpKQmdTseSJUtQq9W4ubnRrFkz7O3tmT17NllZWWg0Gvbu3QvAvXv3eOmll7C1tSU9PZ3vv/9eOaerqysWFhb8+OOP6PV6fv31Vw4dOqRsDwwMJDo6mqNHj6LVavnmm29o1qwZtWrVMnmf8+bN4/79+5w8eZLo6OhcfRMUFERMTAwJCQl069btiX32kJOTE61bt1ba3rNnT37++Wf++9//kp2dTVZWFtu2bSMzMxNXV1dUKhXLly9Hr9cTHx+f654e9TyfpxDlkRTOQgjxHGJiYujevTs1atTA3t5e+e/tt9/OVQx27dqV1NRUvL29lSkdkDMftnr16rz11lsMGDCAzp07o1arle3/+Mc/mD9/fqG0NSwsjEaNGtGjRw88PT2ZNWsWRqMRR0dH5s2bx4IFC2jZsiVt27Zl8eLFGI3Gx86hVqv57rvv2LFjB97e3kyZMoWvvvpKGWHNT3x8PNbW1gQHB+fqqx49emAwGNi5cyeQMwrq6urK/v37cxVwr776Kl9//TXTpk3D29ubrVu3Mn/+fNRqNSqVivnz53P27Fnat29PmzZtlAfx3nvvPY4cOYK7uztDhgxRVhx5eD9z5swhJiYGDw8PNm7cSMeOHZXtLVu2ZNSoUbz//vu0atWK8+fPP/HhOE9PTzp27MiAAQMYNGgQrVq1Ura98cYbmJub07hx43yL77y8++67rF69muvXr9O0aVOmTZvG1KlT8fDwoFOnTkRHR+e6pzVr1uDh4cG6deto165drr9Xj97/s36eQpRHZtnZ2dkvuhFCCCFyrFy5ko0bNxbZyLN48fr160dgYKDJVUeKQs+ePenduzehoaHFdk0hyiIZcRZCiBcoIyODvXv3YjQaSUtL44cffqBDhw4vulmiiBw8eJAjR47g7+9fpNdJTU3l6tWr6PV6YmJiOH78OK1bty7SawpRHsjDgUII8QLpdDo+++wzLly4QKVKlQgICODvf//7i26WKAJhYWHEx8fz0UcfYWNjU6TXOn36NB988AFZWVnUrl2biIgI5SFFIcSzk6kaQgghhBBCFIBM1RBCCCGEEKIApHAWQgghhBCiAGSOsxBCCCFKFINWx627mmK95ssv23D9emaxXrO0KE99Y25uhp1dRZPbpXAWxeL68hiMd++96GYIIYQoBeyHv4PR+KDYr2s0ymNfpkjf5JCpGsVk06ZNBAcHExQUhJ+fH2PHjn3mcx09epSNGzfmes/Z2Zl794q+MI2Pj+fgwYNFfh0hhBBCiJJGRpyLQUZGBlOmTCEmJgZHR0eys7M5duzYM5/v6NGjbNu27YVEosbHx9OkSROaNWtW7NcWQgghhHiRpHAuBteuXcPCwoIqVaoAYGZmxuuvvw7Ajh07+OabbzAYDFStWpWpU6dSt25doqOj2bZtGxEREQDK6ylTphAREUFmZiZBQUF4eHjw8ccfA7Bs2TK2bNnCrVu3GD9+PJ07dwbgv//9L7NmzVJGpEeOHEm7du3Q6/UMHTqUmzdvotFoaNasGVOmTEGtVrNv3z6mTZuG0WhEr9czfPhwKleuTEJCAomJiURGRjJw4ECCg4OLuzuFEEKUUvsunyfy8H7u63X57qdK+hWD4clTAypUsKZnz7/TooV7YTVRiHxJ4VwMXnvtNZo1a0a7du3w8vKiRYsWBAUFYTQaGT9+PMuXL6dBgwZERkYybtw4IiMjTZ7Lzs6OkSNH5iqqH7KxsSEqKoq9e/fywQcf0LlzZ+7cucNnn33GwoULqVatGhkZGfTo0YP169dTqVIlZs2ahZ2dHdnZ2YSFhREVFUWfPn1YtGgR/fv3Jzg4mOzsbO7evYutrS2+vr40adKEd955p6i7TQghRBkTd/wPTt+6/uQdM+8U+Jzr18dK4SyKjRTOxcDc3Jx58+Zx4sQJdu/eTXx8PIsXL2bMmDG89tprNGjQAIDQ0FCmTJlCZuazPbn6cOqGq6srGRkZaDQa9u/fz4ULFxg8eLCyn5mZGWfPnsXFxYUlS5awY8cOjEYjt2/fxtraGgAvLy8WLlzIpUuX8PHxoXnz5s/ZC0IIIcq7QOcmPNDrnjziXLlSgUecu3aVf/kUxUcK52LUqFEjGjVqxNtvv02XLl0wMzPDzMwsz31VKhVGo1F5rdE8eVkeKysr5VgAvV5PdnY2zs7OrFix4rH9Y2Nj2bt3LytWrMDGxob58+dz5swZAAYMGICvry+JiYlMmzYNHx8fRo8e/bS3LIQQQihaONamhWPtJ+5nP/wdrl69WwwtEuLpyKoaxSA9PZ39+/crr69cucKNGzd49dVXOXr0KKdOnQIgJiYGFxcXbGxsqFOnDsePH0er1aLVavnll1+U421sbLh7t2BfKG5ubpw9e5bk5GTlvYMHDyrTL+zs7JTzrV+/Xtnn9OnT1KlTh969e9OvXz8OHTr01NcWQgghhChLZMS5GOj1eubMmcPFixextrbGaDTywQcf0KxZM7766ivGjRuHXq+natWqfP3110BOwduyZUu6du1KrVq1cHJy4urVqwC0bNmSJUuW0K1bNzw9PZWHA/NSuXJl5s2bx9dff82MGTPQ6XTUrl2b+fPnExwczG+//UZAQAAODg688cYbysj2smXLSElJwdLSErVarVyjW7duTJw4kc2bNz/Vw4EvvxPyPF0ohBCiHDFo85/KIcSLYpadnS0rWosid/16piyengd7+0ryz5H5kP4xTfrGNOkb06RvTJO+Ma089Y25uRkvv2xjensxtkUIIYQQQohSS0achRBCCCGek0Gr48bt4o8JLw4y4vw/Mse5BNLpdMybN4+NGzdiYWGB0Wikbdu2vPrqq/z++++Prd8M8Ntvv7Fnzx7CwsJeQIuf7PqKnzDefbZl9oQQQoiSzn7YYKBsFs7if6RwLoEmTpyIRqMhKioKGxsbdDod0dHRaLVak8e89dZbvPXWW8XYSiGEEEKI8kWmapQwZ86cITg4mO3bt1O5cuVc26Kjo1m/fj22tracPHmSSpUqMWfOHOzt7R+L6F6zZg0//vgjAJaWlixYsIAqVaqYjNjWarVMmzaN1NRUqlatyuuvv861a9eIiIjAYDAwa9Ysdu7cCUDr1q0ZN26csl50QciIsxBCiNJm3+VLRP5xiPt6/RP3VVW2LVBoC5S+qHCZqvE/MuJcwhw5coS6des+VjQ/dOjQIdatW4ejoyMff/wxy5cvfyyYJCUlhQULFrBy5Urs7e25d+8eFhYWqFQqkxHbq1at4tKlS2zYsAGDwUDfvn2pXr06AKtWreLo0aNER0cDMHjwYFatWsXf//73ou0MIYQQ4gWKO36U07duFmznzKcrLCUqvHSSwrmUadGiBY6OjgA0b96cxMTEx/bZtm0bQUFB2NvbA1CxYkUADAaDyYjtlJQUgoKCsLCwwMLCgoCAAPbu3QtAUlISISEhqNVqALp37058fLwUzkIIIcq0QOfXeaDTF8mIs0SFl05SOJcwLi4unD17ltu3b+c56vwwVhtyorUNBkOBzx0XF2cyYjs7O9tk/Hde20ztK4QQQpQVLRxr0MKxRoH2tR82uNxMZyjPZB3nEqZevXr4+vry6aefkpmZMyfYYDDwn//8h6ysrAKdo3379qxdu5Zr164BcO/ePbRabb4R215eXqxbtw69Xo9Go2HTpk3KtjfffJOYmBh0Oh06nY7Y2FhatmxZiHcthBBCCFHyyYhzCfTll1/y73//m9DQUCwtLZXl6OrXr1+g4z09PRkyZAgDBw7EzMwMtVr9xIjt3r17c+zYMQICAnB0dKRx48bcv38fgF69enHu3DlCQnJis1u1asXf/va3p7qnl9/u81T7CyGEEKWJxISXD7KqhlBkZmZiY2ODVqtl+PDh+Pn50bNnz0I5t0Ru5608Pan8LKR/TJO+MU36xjTpG9Okb0wrT30jq2qIAhs4cCBarRaNRsObb76pjDALIYQQQggZcRZCCCGEeExZjtB+WjLi/D8lbsTZ19eX+fPn06hRI+W97t27ExYWhpeX13Od+1//+hcNGzakS5cuJvfp27cvgwYNon379s91rfxkZ2czZ84cfvnlF1QqFXq9np49ezJw4MAiu+ajoqOjcXNzK/Cc6cJwbcVijHfvFNv1hBBCiOdRbdhoJEJb/FWJK5wLg16vx8Ii960ZDAZGjRr1wq7/qM2bN5OUlER0dDRWVlZotVrOnTtXqNfIT0xMDHZ2dsVaOAshhBBClHalqnCOi4vjxx9/RKfLeXI1LCxMWRbN19eX0NBQkpOTqV27NkFBQcyYMQN3d3cOHTrE8OHD+eWXX2jSpAnvvPMO8fHx/Otf/8Lc3ByDwcAnn3yijGgnJiayZMkSrly5gr+/P2PGjFGu8eho+KOv/3r9GTNmEB4ezsaNG6lSpQqenp5KsZyeno6dnZ0SKKJWq2nQoIFyn3nFZT948IDQ0FDeeecdEhMT6datG/Xq1ePbb79Fo9FgMBgYNmwYAQEBQM7IeZMmTThw4AAZGRn4+/szbtw4oqKi+OOPP5g+fTrffvutMpJvKlJ7woQJqNVqzpw5w5UrV3B1dWXmzJmyjrMQQohSZ9/ldNb8caJggSaJ+wsUaFLa4rPF8ymRhfPIkSNzBX08DOlo1aoVXbt2xczMjLS0NAYMGMCOHTuU/a5evcqyZcuAnCS8EydOMHnyZD755BMAfvnlF2XfiIgIPvvsM9zd3TEYDMrSawCnTp3ihx9+QKPR0Lt3b9zc3Ao0dePR6yckJLB161bWrl2LtbU1I0eOVPbr0qULP/30E506dcLd3R1vb28CAgKwsLAwGZf94MEDbt26hZOTE++//z4At2/fZuXKlahUKq5du0b37t1p1aqVEpxy+fJlVqxYwb179+jQoQM9evQgNDSU2NjYXNNRVq5cmW+k9smTJ1m6dClmZmaEhISQmJiIj49PQT5KIYQQosRYf/wUp2/dLtjOmfcKfl6Jzy43SmThHBER8dgcZ4Dz588zduxY0tPTsbCw4Nq1a1y9elWJlg4Ozh1fWbduXdzc3PK8hre3N19++SV+fn60adMm1/WCg4OV6OkuXbqQnJxcoML50eunpKTg7+/PSy+9pGybN28eANWqVWPDhg0cOHCAvXv3Mn/+fNatW8fixYtNxmVDTmqgv7+/8vrGjRtMmjSJs2fPolKpuH37NqdPn8bV1RUAPz8/zM3NqVSpEk5OTpw7d4569eo91u4nRWp36NBB+SHj4uLCuXPnpHAWQghR6nR1duKBzlDACO0qBR5xlvjs8qNEFs6mjBkzhgkTJtChQweMRiPNmzdXAjwApUg19fpRkyZN4vjx4yQnJzNq1CgGDhyYZ6jHo3HTKpUKo9GobHv02n+9Xn4R1gAWFha4u7vj7u5OaGgoPj4+3Lp1y+T+ABUqVMh1zsmTJ+Pr68vcuXMxMzOjc+fOudpU0HjuJ0VqP0/MtxBCCFFStHB0oIWjQ4H2rTZsdLlZSUIUXKmK3L579y61atUCcuYBa7XaZz5XWloazs7O9O/fn27dunHo0CFl29q1a9Hr9WRlZbF582Zl7nOdOnWU/ZKSkpRI67x4eXmxefNm7t+/j9FoZN26dcq2P/74gwsXLiivDx8+TOXKlbG1tTUZl52Xu3fvUrNmTczMzNi1axdnz54t0L1XrFiRu3f/92UgkdpCCCGEEE9WqkacJ06cyD//+U8cHBzw9PSkSpUqz3yu2bNnK1McbG1t+fzzz5VtjRs3ZuDAgaSnp+Pn56dM0xg1ahQTJkwgMjKSFi1aUKNGDZPnf+utt9i/fz9BQUE4ODjQvHlzbt/OmVd18+ZNpkyZQmZmJmq1mgoVKvDvf/8bc3Nzk3HZeRk7dixTpkxh0aJFODs74+zsXKB779WrFzNnzmTJkiWMHz++UCK1n+SVt98t1PMJIYQQRUkitEVeJAClCD2MsDYajXz00UdUq1aN0aNHv+hmvRASuZ238rSo/LOQ/jFN+sY06RvTpG9Mk74xrTz1TakLQClLwsLCuHjxIg8ePKBx48YMHjz4RTdJCCGEEEI8IxlxFkIIIUSxMWi13LitefKOxaw8jao+rfLUNzLi/IL5+vqiVqtRq9UYjUaGDx+OtbU1e/bsISwsjAsXLrBr1y569eqlHLN06VICAwN5+eWX8z13ccSDp6SkMHPmTGWN52d1dVk4hrv5rxoihBCi7Kv+zylAySuchSgIKZyLwcN1qY8cOULv3r3Ztm0bb731FgAXL15k1apVuQrnH3/8kTfffPOJhXNheJ7obiGEEEKI8kQqpmLk4uJCxYoViY6O5uDBg0RERDB16lQuXLhAUFAQdevW5fXXXycjI0NJT5w9ezZnzpx5YfHgAAaDgU8//ZT9+/djZmZGeHg4Tk5OL6YThRBClHj7L99gzZGzPNA/vu6/KrnfY8EiElstSgspnItRcnIyGo0m1wjvp59++thUiMjIyFzpiWPGjHlh8eAAf/75J1988QVTp07lu+++Y968ecyePfu5+kIIIUTZteHEBc7cMhFZnXkxz7cltlqUBlI4F4OHo8c2NjbMmTOH9PT0pzr+RcaDA9SvXx8XFxcAXF1d2bp161O1XwghRPkS0KgW9/UmRpwrv5zniLPEVovSQArnYvDo6DHw1A/aveh4cLVarfzZ3NwcvV7/VO0XQghRvrg5VsXNsWqe26r/c0q5WaFBlD2lKnK7LLKxsSEzMzPXe3+NxH6R8eBCCCGEECKHjDi/YM7OztSvX5+uXbvy6quvEhERQb9+/Zg0aRLW1tbMnj2b8PDwFxYPLoQQQgghckgAigAkHlwIIUTxkACU0qc89Y0EoIgCKep48OvXMzEa5TfaX5WnL6NnIf1jmvSNadI3pknfCPF8ZMRZCCGEEEXCoNVw47b2RTejQORHhWnlqW9kxLkceRjvbWVlhUajwd3dnc8++wxLS0uTx3z00UeEhITg7l60a2de/s8kDHevF+k1hBBClCy13lsAlI7CWYiCkMK5jHm49J3BYODtt99my5YtdOnSxeT+jz5oKIQQQgghTJPCuYzSaDRoNBpsbW25d+8e06dPV5an69atG0OGDAGgb9++DBo0iPbt27Nq1SqWLl2KWq3GaDTy7bff4uTkRFpaGjNmzODmzZvodDr69+9PaGjoi7w9IYQQxeTAlXtEH73BA53xyTv/hUXq4/HaBSER3KKkksK5jHmYUnju3DlatWpFq1at+PrrrzEajcTFxXHv3j169eqFs7Mzbdu2zXXsV199xfr163F0dESr1WIwGNDr9YwbN46vv/4aJycnMjMzCQ0NxdXVFScnpxd0l0IIIYrLppM3OXvrGVfBuJd3vHZBSAS3KImkcC5jHk7V0Gg0vP/++yxdupSkpCQmTZqEmZkZNjY2BAQEkJSU9Fjh7O3tzcSJE3nrrbdo164dtWvX5s8//yVTFz8AACAASURBVOTUqVOMGTNG2U+n05GWliaFsxBClAP+De24r3/GEecq1Z55xFkiuEVJJIVzGWVlZUW7du3Ytm1bnpHaeUVsz507l0OHDpGcnEy/fv2YPHkyNWrUwM7OjrVr1xZX04UQQpQgrtUr4lq94jMdW+u9BeVmNQZRPkjkdhllNBrZvXs39erV480332TNmjVkZ2eTmZnJxo0badmyZa799Xo958+fp1mzZgwZMgQfHx+OHj1K/fr1sba2JjY2Vtn31KlTj8WECyGEEEKUdTLiXMY8nOOs0+lo2LAhI0aMwMLCgmnTphEYGAjkPBzYpk2bXMcZjUYmTJjA3bt3MTMzw9HRkbFjx2JhYcH8+fOZMWMGixcvxmg08vLLL/Ptt9++iNsTQgghhHhhJABFCCGEEEVCAlDKhvLUNxKAIkoEidzOW3n6MnoW0j+mSd+YJn1jmvSNEM9HRpyFEEKIckiv1XCzlIwGFwf5UWFaeeqbUjHiHB4ezq1bt5gyZQoAW7duZdiwYaxfv56GDRsCMHToUDp06EDPnj2f6twpKSnodDpatWrFzZs3GTBgAABZWVlkZGRQr149ANq1a8fo0aOfqf1t2rShSpUqrF27Vlmtok2bNvzwww+FsmRbnz59OHz4MLt27aJSpUoA7Nq1i0GDBjF48GDGjRv3TOc1GAx0796dyMhI1Gr1c7czP2f+Mxj93YwivYYQQoiCa/DeWiQOW4inUyJW1fDy8iI1NVV5nZqaSvPmzZX3DAYDe/fuxdvb+6nPnZqayq5duwCUZdXWrl3L9OnTcXJyUl4/a9H8UGZmJnFxcc91jvw4OTmxceNG5XV0dDSNGzd+rnOqVCrWrl1b5EWzEEIIIURZUCJGnFu0aMGFCxe4du0ar7zyCrt372bEiBHExMTw9ttvc+TIEWxsbKhduzbbt2/nu+++Q6vVYmlpycSJE3F1dSUtLY2JEydy//59jEYjISEhtGrVip9//hmj0UhiYiIBAQFK1HResrOzWbBgAfHx8ej1ehwdHZk+fTovv/wyEyZMoGrVqowfP56MjAx69+7Nd999h7OzMwDvv/8+c+bMwd/fH0tLy1znTU9PZ/r06Vy+fBmNRkO3bt0YPHgw27ZtY9WqVXz33Xekp6fTpk0b5s6dS8eOHZk/fz4ajYZRo0YBEBISQkxMDL169SIzM5NDhw7RuXNnHs60eZa2Ozk50bhxYw4ePIiVlRUnT57k888/58aNG2RnZ/OPf/yDoKAgTp8+zWeffcbNmzextLRk7Nix+Pj4FNHfBiGEEAVx6IqedUe1PNA924xLy2eMwwaJxBblV4konK2trWnatCmpqam0adOG+/fv06ZNG7744gsgZ9TYy8uLc+fOMW/ePBYvXoyNjQ0nT55UCtCVK1fSpk0bRowYAcDt27epXLkyvXv3Jisri7CwsCe2IyYmhitXrrB69WrMzc1ZtmwZX331FTNnzuSzzz6jZ8+euLu7s3TpUoYOHaoUzQDNmjWjUaNGrF69mrfffjvXeceNG8fo0aNp0aIFWq2Wfv360bRpU9zd3QkLC8NgMJCUlISbmxtJSUl07NiRpKQk5V4AZUrJ6dOn2b17N506dcLc3ByDwfDMbdfr9cr5tVotw4cPJywsjI4dO5Kdnc2tW7cAGDt2LH379iUkJITjx4/Tv39/Nm3ahJ2d3TN82kIIIQrDrye1nLv19Gl+iueIwwaJxBblU4konCFnukZKSgoVK1bkjTfeQKVSUbduXU6ePElqaiqdOnVi586dnDt3LldhqtfruXbtGh4eHsycOROdToeXl9czTetISEjg6NGjhISEADlTRKpUqQJAhQoVCA8Pp2fPnrRr145evXo9dvzo0aMZNGgQ3bt3V97LzMxk3759yvxtgHv37nHq1Cm8vb2pX78+hw4dIikpiffee4+vvvoKjUbDsWPHcHV1zXX+kJAQYmNjSU1NZfr06axbt67Q2p6WloZKpaJjx45ATrKgnZ0dt2/f5s8//yQ4OCf61NnZmYYNG3Lw4MHHIruFEEIUn04N1TzQP8eIc5UazzXiLJHYojwqMYWzp6cnU6dOpVKlSnh4eADg4eFBcnIye/fu5ZNPPmH79u20bt2ar7766rHjO3fujKurK7t27WLRokVERUUxa9asp2pDdnY277//vlIk/tXJkyexsbHh6tWrGAwGVCpVru0NGjTgzTff5D//+Y/yntFoxMzMjKioKCwsHu9ub29vkpKSOHjwINOnT6dy5cps2LCBxo0bPzb3OCAggICAAKpXr/7YQ4fP2/b8FlfJK547r/eEEEIUn6bVLWha/dn/N97gvR/LzUoJQhSWEvFwIOTMc7548SK//vornp6eALi7u7N8+XJsbW2pVasWPj4+7Ny5k5MnTyrHHTx4EICzZ89ib29P9+7dGTFiBIcOHQLAxsaGu3cL9sXg6+vLihUruHPnDoAy8gtw7tw5Zs6cycqVK6levToRERF5nuP9999n2bJl3L9/HwBbW1tcXV1ZvHixss/Fixe5du0aAC1btiQyMpI6depgaWmJt7c3c+fOzXPE3MbGhg8//JAPP/yw0Nvu5OSEwWBgy5YtQE4hffPmTSpXrqw8RAk5BfjJkydp2rRpAXpUCCGEEKLsKDEjzlZWVjRv3pz09HQcHBwAaNq0Kenp6fj5+QE583y//vprPvroIx48eIBOp6NFixY0a9aMTZs2ERcXh6WlJWZmZkyaNAmADh06sHbtWoKCgp74cGBoaCi3bt1SpoJkZ2fzzjvv8Oqrr/LBBx8QFhZGnTp1mDp1KqGhoXh4eNCqVatc56hZsyZdunThxx9/VN775ptvmDFjBoGBgWRnZ2NjY8OXX37JK6+8gpubG9evX6dfv35ATiEdERFhcqpJ165dC63tj15DrVbz3XffMW3aNCIiIjAzM2Pw4MEEBgYye/ZsPvvsM5YsWYJKpWL27Nkyv1kIIYQQ5Y4EoAghhBDlkASg5FaeQj6eVnnqm1IRgCLKPonczlt5+jJ6FtI/pknfmCZ9Y5r0jRDPRwpnUSzy+/VW3tnbV3rRTSjRpH9Mk74xrbz1jYweC1E8pHAuJL6+vsyfP59GjRo997lWrFjB1KlTiY2N5fXXXy+E1pnm7OzMvn37qFixYpFe5+jyf6CTyG0hhCgSzYavQ+KzhSh6JWZVDfE/UVFReHt7ExUV9aKbIoQQQggh/p+MOBehgwcP8vnnn5OVlcVLL73ERx99RLNmzbh+/Tpjx47l+vXrQM5KGg9XATl+/Dg3b95kzpw5hIaGMn78eGU9Z19fX4KCgkhMTOTq1asMGjSId955B4A9e/YoISteXl789ttvLFiwgEaNGpGWlsaMGTO4efMmOp2O/v37Exoa+lh7Te13//59wsLC+PPPP7GwsKB+/fr861//Ko4uFEKIcunwZT2bD+vQ6Av2bIg6qWDx2SqVGQZDtkRmC/GMpHAuIlqtlpEjRzJjxgzefPNNkpKSGDlyJL/++itxcXHUqFGDpUuXAjnx4A+tWbOG4OBgatasyeuvv058fDxdunRRtj948IBVq1Zx4cIFAgMDCQkJwdLSkjFjxvDNN9/g7u7Oli1bWLZsGZCTrDhu3Di+/vprnJycyMzMJDQ0FFdX11whKvntl5aWxp07d9i4ceNj7RVCCFH4th7XceFp4rQznz4+WyKzhXh6UjgXkdOnT2Npacmbb74J5IwqW1pacvr0aZo3b84PP/zAzJkz8fT0VNaC1mq1rF+/nlWrVgE5EdtRUVG5CueHf65Vqxa2trZcuXIFnU6HtbU17u45X4AdO3bE1tYWgDNnznDq1CnGjBmjnEOn05GWlparcM5vv9dee420tDSmTJmCp6cn7dq1K4IeE0II8VB7Z0s0+qcYca5csPjsR0ecJTJbiKcnhXMRyc7ONhlV7ebmRmxsLImJiaxdu5aFCxfy008/kZCQQGZmJgMGDABy4rqvXbvG5cuXcXR0BHKCYh5SqVQYDAblvKbaYWdnpyT/5dfe/PbbuHEjycnJ7Nixg/DwcOLi4nK1RQghROFp7GhBY8eC/y+62fCCxWfLcnRCPB95OLCIvPrqq2i1WpKTkwFITk5Gr9dTr149zp8/j42NDQEBAUycOJHDhw9jNBqJiori008/JSEhgYSEBLZt20b37t2JiYl54rWysrLYu3cvAPHx8Ur0dv369bG2tiY2NlbZ/9SpU2RmZuY6R377XblyBZVKRYcOHZg4cSI3btzg1q1bhdJPQgghhBClhYw4F6KBAweiUqmU13Pnzs31cOC//vUv1Go1qamp/PDDD6hUKoxGI1OmTOHq1avs3r2b2bNn5zpnYGAgEydOZPjw4Savq1armT17NpMnT8ba2hpvb29eeeUVKlWqhIWFBfPnz2fGjBksXrwYo9HIyy+/zLfffpvrHPntd/z4caVdRqORIUOGKLHoQgghhBDlhURulxGZmZnY2OSEjCQnJzNhwgQSEhIwN5d/VBBCiLKuoAEoMlXDNOkb08pT30jkdjnx66+/snTpUrKzs5UR6JJUNEvkdt7K05fRs5D+MU36xjTpGyFEUZERZyGEEEK8MCUlLlx+cJlWnvpGRpxLmOeN5k5PT8fPz4/t27crS85BzvSMjz/+mC1btphcYeNF2r9iENpMidwWQgiRm9fQ9UhcuCgtSs6/5YsCcXBwwN3dnQ0bNuR6PyYmhu7du5fIolkIIYQQoiyQEecSYObMmaSmpqLT6bCzs2PGjBnUrFnTZDR3aGgoixcvpk+fPkDOg4FbtmxRiun8IrZ/+eUXwsPDsba2xs/Pj/DwcPbt20fFihUZO3Ysp0+fRqfTUadOHWbMmEHlypVJS0tj4sSJ3L9/H6PRSEhICO++++6L6SwhhBAl0rFLBuIP69Donu44610Fiws3ReLDRXGSwrkEGDx4MGFhYQBERkYya9YsJWQkr2huX19fJk+ezJ9//kmDBg3YtGkTbm5uODo65hudXaVKFT799FNWrVpFvXr1lPM+9NFHH1G1alUAwsPDWbRoEePGjWPlypW0adOGESNG5GqHEEII8dDO43ou3XyGAvgZ4sL/SuLDRXGRwrkE2LFjBytXriQrKwu9Xq+8byqaW61WExgYSFRUFGFhYURHR9O3b18g/+hsc3NzXFxcqFevHgChoaF88cUXyn5r164lLi4OnU5HVlaWsp+HhwczZ85Ep9Ph5eWFt7d3EfeIEEKI0qa1s0VOTPjTjjgXMC7cFIkPF8VJCucX7OLFi3zxxResWbOG2rVrs2/fPsaNGwdgMpoboEePHgwaNIgePXqQlpZGhw4dgPyjs+Pj403Ogd6zZw8//fQTP//8M1WrViUuLo7Vq1cD0LlzZ1xdXdm1axeLFi0iKiqKWbNmFUV3CCGEKKVeq6HitRqqJ+/4F15DCxYXLkRJIA8HvmCZmZlYWlpib2+P0Wjk559/VraZiuYGcHZ2xsHBgfHjxxMYGIharQbyj852dXXl8OHDnD17FoDo6Ghlnzt37mBjY0OVKlXQarVERUUp286ePYu9vT3du3dnxIgRHDp0qEj7RAghhBCiJJIR5xfgr9Hcfn5+BAQEUKNGDTw8PNizZw9AntHcj4aa9OjRgylTpjB9+nTlvfyis1955RUmT57MkCFDsLOzw9fXF0tLSypUqECbNm1Yt24d/v7+ODg40KRJE6VA3rRpE3FxcVhaWmJmZsakSZOKqaeEEEIIIUoOCUApZx6N5o6KimLNmjXK9A8hhBCiuEkASslXnvpGAlBELsuWLWPz5s0YDAYqV66ca7S6KEnkdt7K05fRs5D+MU36xjTpG9Okb4R4PjLiLIQQQohCU1JGkJ+W/KgwrTz1jYw4lxG3b9+mVatW9O7dm48++giAlJQUdDqdskzdhQsXCA0NJSUl5Zmvc+HCBXbt2kWvXr0Kpd0PJf80EI1EbgshRJnXdvAGJEJblFWyqkYpERcXh6urKxs2bECrzflCSk1NZdeuXYV6nYsXL7Jq1apCPacQQgghRFkgI86lRFRUFOPHj2fBggUkJCRQv359fv75Z4xGI4mJiQQEBNClS5dcx5iK0E5JSWHGjBk0b96c/fv3Y2ZmRnh4OE5OTkydOpULFy4QFBRE3bp1iYiIMBkJLoQQouw7ccnA9kN6NPon7wuweOfTRWhLZLYoTWSOcylw7Ngx/vnPf/Lbb78RFxdHXFwcixYtYs6cOWRlZSlx3X+dqnHjxo1cEdoGg4Fx48aRkpLCoEGDiIyMxMXFhe+++44///yT2bNnk5KSwsyZM3Ot8fzoeSIjI0lMTCQ8PPyp7kGmagghROn0n980nL1atKWCi0sTPv20eB5WN6U8zeN9WuWpb2SOcxmwZs0agoKCMDMzo1OnTkyfPp309PQnHmcqQhtyglJcXFwAcHV1ZevWrSbPYyoSXAghRNnX8nULtPqCjzhXsH26CG2JzBaliRTOJZxWqyUuLg4rKyslRlun0xETE5PvcflFaANK0iCAubm5yYI4v0hwIYQQZV+jGioaPUWUdtvBEqEtyi4pnEu4+Ph4Xn311VwhJfv37ycsLIw+ffqYHHnOL0I7PzY2NmRmZiqv84sEF0IIIYQoT2RVjRIuOjqawMDAXO+5ublhNBpp3Lgxf/zxB0FBQSxcuDDXPm3atKFOnTr4+/vzj3/8Q5mW8STOzs7Ur1+frl27MnLkSJydnZVI8P79+1OrVq1CuzchhBBCiNJEHg4UQgghRKGRAJSypzz1jTwcKEoEidzOW3n6MnoW0j+mSd+YJn1jmvSNEM9HCmdRLPL79Vbe2dtXetFNKNGkf0yTvjGtKPtGp9VwqxSOqAohnp8Uzv/P19cXtVqNWq3m/v37NGjQgMGDB9OiRYt8j+vbty+DBg2iffv2TJgwgSZNmvDOO+88VxusrKwA8PLyYtKkScTHx1OtWjWaNWsGQJ8+fejbt68SeDJz5kxiY2NJTEzEzMwMg8GAp6cnMTEx1KlT56naMGfOHIYOHaqsuvG89/TQ9lUDeCDrOAshyoDO725EIqWFKJ+kcH5EREQEjRo1AuDXX39lyJAhLF68mObNm7+QNjwUHx9PkyZNlMLZ09OTlJQUpXBOTU2lVq1a/PnnnzRs2JAjR45QqVKlpyqa9Xo9FhYWzJ07l0GDBuVark4IIYQQQkjhbFKnTp04ePAgixcvpk+fPnz77bdoNBoMBgPDhg0jICAg3+OTkpJMHjN37lzWr1+PlZUVZmZm/Pjjj9ja2uZ5np07d5KQkEBiYiKRkZEMHDgQb29vpk6dCuQsF6fRaOjevTupqak0bNiQ1NRUPD09ATAYDMyaNYudO3cC0Lp1a8aNG4dKpWLChAlUrFiRM2fOcPPmTeUHQu/evTE3N2fZsmUAnDhxgn79+nHlyhVcXV2ZOXMmZmZmz9/JQgghhBCliBTO+WjevDkJCQm4uLiwcuVKVCoV165do3v37rRq1YrKlSubPNbUMQCLFy8mKSkJa2trMjMzsba2Vo4bOXKkMlVj3LhxtG7dGl9f31zTJR48eMCFCxe4du0ahw8fpkWLFri7u/P999/z9ttvk5qaSqdOnQBYtWoVR48eVSK0Bw8ezKpVq/j73/8O5KwJvXz5cl566SUAVq5cyc8//0zFihWVNp08eZKlS5diZmZGSEgIiYmJ+Pj4FFY3CyFEiXHqooHfDxrQ5pOSt2J7vycm41WoYE3Pnn+nRQv3Qm6hEOJFksI5Hw9X6rtx4waTJk3i7NmzqFQqbt++zenTp3F1dTV5rKljmjZtSv369fnwww9p3bo17dq1w8bmfw/O5TVV46+sra1p1qwZqampHD58GE9PTxo3bszRo0cxGAzs3buXjz/+GMgZ+Q4JCVGmXnTv3p34+HilcPbz81OKZlM6dOigFPMuLi6cO3dOCmchRJmUetRA+s38i+Kbdy8W6Fzr18dK4SxEGSOFcz4OHTpEw4YNmTx5Mr6+vsydOxczMzM6d+6MRqPJ91hTx6hUKlavXs2+fftITk6me/fufP/997z22mtP1baH85yPHj1Kv379UKlU1KlTh3Xr1mFra0vt2rWBnOL/r9MqHn39pKIZUIpmAJVKhcFgeKq2CiFEaeH5ugqtLv8R55dsaxRoxLlr1+BCbp0Q4kWTwtmE+Ph4fvrpJ77//numTp1KzZo1MTMzY9euXZw9e/aJx9+9ezfPYzIzM8nKysLT0xNPT08OHDjAyZMn8y2cbWxsuHs397qbD1fcqFChAg4ODgB4eHgwf/58ZX4zwJtvvklMTAz+/v4AxMbGKtM48lKxYkUyMzNzTdUQQojywqmmCqeaqnz36fzuj7IWshDllBTOjxg5cqSyHJ2TkxMLFy7E1dWVsWPHMmXKFBYtWoSzszPOzs5PPJepYzIzM3n//fd58OAB2dnZuLi45FvIAnTr1o2JEyeyefNmBg4cSHBwMG5ubly9epWgoCBlPw8PD8LDwxk6dKjyXq9evTh37hwhISEAtGrVir/97W8mrzVo0CD69euHtbW18nCgEEIIIYSQyG0hhBDiqZTmABRJDjRN+sa08tQ3ErktSgSJ3M5befoyehbSP6ZJ35gmfSOEKCoy4iyEEEKIUqewR/7lB5dp5alvSvWIs6+vL1qtlu3bt6NS5TysERUVxaRJk/jkk09QqVRoNBoGDBhQaNccPHgwn3zyCXXq1GHChAkkJiZiZ2cH5Dw4t3LlSo4ePcrp06eV5L6HbZ0/f/4Tl5J7FikpKcycOVNZi/l5PBoRnh9nZ2f27dtXaA8Jblndn/sSuS2EEKKQdBu0CYk+F8WtRBfOAPb29vz++++0bdsWyFkVonHjxgD06dOn0K+3aNGiXK+HDBmiBI88dPToUbZt25arcC6JDAaD8oNDCCGEEEI8nxJfOIeEhBAdHU3btm05f/489+/fV0Z158yZQ1ZWFmFhYRw/fpwpU6Zw//59NBoNf/vb35SR6AkTJqBWqzlz5gznz5+nY8eOtG/fnjlz5nDlyhX69+9P//79gSePHN+8eZOIiAgyMzMJCgrCw8NDCRvJy8yZM0lNTUWn02FnZ8eMGTOoWbPmY6PIf30dHh7Oxo0bcXBwoGnTprnOGRMTw8qVKzEYDNjY2DB58mReffVVoqOj2bBhA1WrVuXUqVN8/vnnWFpaMnHiRPR6PU5OTrnWn16yZAkbNmzAYDBgZWXF5MmTef311x+7h7S0NGbMmMHNmzfR6XT079+f0NDQAn6CQgghhBBlQ4kvnL28vFi5ciW3b98mJiaG4OBg/vjjj8f2q1mzJkuXLkWtVnPv3j169uxJ69atcXJyAnJio//zn/9gMBjw9fXl7t27LF++nKtXr+Ln50ePHj3ynJawcOFCIiMjgZyUveHDhzNy5Ei2bdtGRETEE9s/ePBgwsLCAIiMjGTWrFmEh4fne0xCQgIJCQnExsZibW3NiBEjlG179uxh06ZNrFixArVazfbt25k0aRI///wzAPv27WPt2rXUqVMHyEkK7Nu3LyEhIRw4cCDXKH1wcDCDBg0CIDExkc8++4zVq1fnaoter2fcuHF8/fXXODk5kZmZSWhoKK6urkrfCiGEEM/r9EUjyQcNaHUFe/RqzbYnR5+DxJ+LwlXiC2czMzP8/f3ZsGEDGzdu5KeffsqzcH7w4AGTJ0/m+PHjmJmZkZGRwbFjx5TirkOHDkrsdP369Wnbti3m5uY4ODhga2vLlStX8iwE85qq8TR27NjBypUrycrKQq/PJ4rqESkpKXTp0kUp5Hv06MG8efOAnKL62LFj9OzZE8hJBrxz545ybIsWLZSiOTMzkxMnTihrPbu6uuYaSf/jjz9YsGABt2/fxszMjDNnzjzWljNnznDq1CnGjBmjvKfT6UhLS5PCWQghRKHZe8RAxo2Cr1dwq4DR5yDx56LwlPjCGXJGTXv27Imnp6fyoN5fffPNN9jb2/Pll19iYWHBoEGDck1L+GtsdHHESF+8eJEvvviCNWvWULt2bfbt28e4ceOUaz66oMmjbc1voZPs7GxCQ0MZNWpUntv/Omr+17jth7RaLaNGjWL58uU0btyY9PR02rRpk+f17OzsWLt2rekbFUIIIZ7TGy4qdPqCjzhXtK1Z4BFniT8XhaVUFM61a9dm9OjRNG/e3OQ+d+/exdnZGQsLC06cOMGePXvo2rVrkbQnrwjsvGRmZmJpaYm9vT1Go1GZTgE593T+/Hlu376Nra0tGzZsULa1bNmS8PBw+vfvj5WVFVFRUco2X19fwsLC6NWrF9WrV8dgMHD06FGaNGmSZzsbNmxIXFwcQUFBHDx4kBMnTgA5hbNer8fR0RGAlStX5nkP9evXx9ramtjYWIKDc754Tp06hYODAzY2ppdrEUIIIZ5G/Zrm1K9pXuD9uw2S6HNR/EpF4Qw50dH5GT58OOPHj2fdunXUqVMHDw+PImtLy5YtWbJkCd26dcPT01N5OHDgwIG5VrGIi4vDz8+PgIAAatSogYeHB3v27AHAwcGBgQMH0r17d2rVqkXTpk05efIkAO3bt+fAgQMEBwdTrVo1vLy8SE9PB3JitT/44AOGDx+OwWBAp9Ph5+eXZ+EM8NVXXzFx4kSWLl1K48aNlR8fNjY2jBw5kh49euDo6JjnaDOAhYUF8+fPZ8aMGSxevBij0cjLL7/Mt99+WzidKYQQQghRSkgAihBCCCFKHQlAKT7lqW9KdQCKKDskcjtv5enL6FlI/5gmfWOa9I1p0jdCPB8ZcRZCCCFEqVVYI8/yo8K08tQ3MuIsSoQNkf3Jykx/0c0QQghRxvQcuBmJ3hbFRQrnUs7X1xe1Wo1arcZoNDJ8+HA0Gk2BAlp++uknNBqNkrAohBBCCCFMk8K5DIiIiKBRo0YcOXKE3r17m1zj+a8eTREUQgghhBD5k8K5DHFxcaFixYq5AlSuXr3KmDFjuHfvHhqNHLlwzQAAIABJREFUhrZt2zJ+/HgA5syZQ1ZWFmFhYURHR7N+/XpsbW05efIklSpVYs6cOdjb27Nv3z6mTZuG0WhEr9czfPjwIlsjWwghhDh7wcjugwZ0uifvG7f1ydHbErstCosUzmVIcnIyGo0GC4v/fay2trbMnz+fihUrotPpePfdd9mxY0ee6zYfOnSIdevW4ejoyMcff8zy5csZPXo0ixYton///gQHB5OdnV2g8BchhBDiWR04YuTajYLte7uA0dsSuy0KgxTOZcDIkSOxsrLCxsaGOXPmKGEpAAaDga+++or9+/eTnZ3NtWvXOHbsWJ6Fc4sWLZQkwebNm5OYmAiAl5cXCxcu5NKlS/j4+OSb4CiEEEI8L1cXc3T6go042xQgeltit0VhkcK5DHg4x/mh6Oho5c8//PADd+7cITIyEisrKz755BM0Gk2e57GyslL+rFKpMBgMAAwYMABfX18SExOZNm0aPj4+jB49uojuRgghRHlXt5Y5dWsVLH6750CJ3hbFRwrnMu7u3bvY29tjZWVFeno6v/3221M/FHj69Gnq169PnTp1eOmll4iNjS2i1gohhBBClFxSOJdxffv2ZdSoUQQHB1O9enVatmz51OdYtmwZKSkpWFpaolar/4+9O4/Kqtz///+8mRUcoIjINJwA0YVoqTkbdZyRSdDSyKMHP1nJkcTZVNRMHDJFzfHEUTMQBBGHY5mpFYOalvo9ThmK2JEhRSbhHn9/8ONOkhsQUUDej7Vay31z7Wtf+yJZby73vl7MnTv3ofsY5vfvhz5HCCGEqIxKWf6/ogrxOEhyoHgiJHK7fA0pjak6ZH4Mk7kxTObGMJkbw2RuDGtIc1NZcqAUzkIIIYSod1SqInJyqvD2YBU1pOLwYTWkuZHIbVEnxMYEUCCR20IIIWrI2+MOATVXOAtRFVV7ZVXUqoMHD+Ll5YWnpyeDBw9m6tSpQEmAiVKp1LcLDw8nLCysxq4bGBhIWlpajfUnhBBCCFGfyYpzHZeZmUloaChxcXHY29uj0+m4ePEiAGvXrmX8+PGYmZk9lmtv3rz5sfQrhBBCCFEfSeFcx2VnZ2NiYkLz5s0BUCgUdOjQgdDQUABGjx6NkZER27dvN9hHQUEBixcv5ty5cwCMGDGCiRMnAuDu7s6GDRv0+0Dff3z/n9euXcu+ffswNzdHoVCwbds2mjZt+jhvXQghRANwI13Lz79oqxR2cr9vjlQetX0/id0WNUEK5zrO2dkZV1dXBgwYQI8ePejatSuenp7Mnz+fnTt3EhkZiaWlZYV9rF+/Hq1WS0JCAgUFBYwaNQonJyf69+9fpTHcvXuXrVu3kpSUhIWFBfn5+VhYWNTE7QkhhGjgzv9Xyx9VjNe+X24Vo7bvJ7Hb4lFJ4VzHGRkZsX79ei5fvszJkyc5fPgwW7duJSEhocp9JCUlMXv2bBQKBVZWVgwbNoykpKQqF85WVla0bt2aadOm0bdvXwYMGICVleE3ToUQQoiq6uRihFr18CvOTaoQtX0/id0WNUEK53rC0dERR0dHxowZw9ChQzlx4kSVz9XpdCgUijKflR4bGxuj1Wr1n5cXx21sbMyuXbs4ffo0ycnJ+Pj4sGXLFpydnat5N0IIIUSJli8a0bKK8dr3e3ucRG2LJ0921ajjMjIyOHPmjP741q1b3L59mxdffBFLS0vy8/Mr7aNXr17ExMSg0+nIz8/nwIED+gTBVq1a6Z99TkpKIjs7+4Hz8/PzuX37Nt27dycoKAhHR0euXLlSQ3cohBBCCFE/yIpzHadWqwkPD+fmzZtYWFig1WqZMmUKLi4ujB8/noCAACwsLPQvB0ZGRrJ//379+e+99x7vvfceixYtwsPDAyh5ObBfv34A/POf/2TmzJlER0fTtWtXXnjhhQfGkJ+fz+TJkykqKkKn0+Hi4sLAgQMf6j58Rm6r7hQIIYQQD1Cpimp7CKIBkuRA8URI5Hb5GlIaU3XI/Bgmc2OYzI1hMjeGydwY1pDmRiK3hRBCCCGqSakq4m4NRnvXR1I4/0ke1RBPROTuAPILJHJbCCFE/fKPAIn2Fn+SwrkWHTx4kI0bN6LT6SguLqZjx46sXLmytoclhBBCCCHKIYVzLakoSrsqtFotCoXigW3mhBBCCCHE4yGFcy0xFKW9efNm/ve//zFv3jx9uxEjRvDtt9+yZcsWrl+/TmFhITdu3GDHjh1s2LCBEydOoFKpsLa2ZsmSJbRo0QKA7777jvDwcNRqNUZGRixduhQrKyt8fX1JSUkBID09XX/8xx9/MHXqVP744w8AevbsyezZswHYvHkzhw4dQqPRYGdnx6JFi7C1tX3S0yaEEELUmJvpWs6d0aJWG25z/LDhaG+J8W54pHCuJYaitP39/Rk6dChTp07F0tKSqKgohg8fTqNGjQA4deoUsbGx2NjYABAYGMiMGTMAiI6OZsWKFaxatYrU1FTmzp3Ll19+iYODA0qlEqVSSU5OjsExJSQk8MILLxAREQGURG0DxMfHk5aWxq5duzAyMmLnzp0sXbpUHisRQghRr108r+VOJXHfebkVR3tLjHfDIoVzLakoStvd3Z34+Hj8/f2Jjo7miy++0J/Xr18/fdEMcPz4cXbu3ElhYSHq+35lTkxMpF+/fjg4OABgZmaGmZlZhYVz586d+eKLLwgLC6N79+706dMHgCNHjnD+/Hm8vb0B0Gg0ErkthBCi3nPuZIRKVfGKc9MmhqO9Jca74ZHCuZaVF6X99ttvM3XqVJ555hnatm1L69at9e0tLS31f7558yaffPIJMTExtGzZktOnTxMSEgKUxGyXx8TEpMzX7o/Y7tKlC3v27CExMZH4+Hg2bdrEV199hU6nY9KkSYwcObKmb18IIYSoNS1eNKJFJXHf/wiQaG/xJ4ncriUVRWk7OjrSvHlzlixZwltvvWWwj/z8fExNTbG1tUWr1RIZGan/Wp8+fTh+/DjXrl0DQKlUkp+fz7PPPotKpeL69esA7Nu3T3/OjRs3sLKyYtiwYcyaNYv/9//+H1qtFnd3d3bu3Kl/dEOpVD7Ui4xCCCGEEE8DWXGuJRVFaQP4+fmxatUqBgwYYLAPJycnBg8ezLBhw3jhhRfo1q0bp06dAsDBwYFFixYRHByMRqPB2NiYpUuX4uTkxJw5c/j73/9OixYt6NGjh76/EydO8MUXX2BsbIxWqyU0NBQjIyO8vLzIyclh7NixQMlq9ptvvomzs3OV73e0r0RuCyGEqH+UEu0t7iPJgXXUnDlzaN26Nf/4xz9qeyg1QiK3y9eQ0piqQ+bHMJkbw2RuDJO5MUzmxrCGNDcSuV3PZGRkEBAQgK2tLZs3b9bvpiGEEEI0NE8y7rohFYcPqyHNjURu1zN2dnYcOnSotodR47bFBZAnkdtCCCEewvtjJe5a1C3ycmAtcXd3p0+fPmg0Gv1nu3fvxsnJiR07dvDVV1/p91P+q9jYWIKCgh7LuMLDw1EqlfrjmTNnsmPHjsdyLSGEEEKI+kQK51pka2vLDz/8oD/es2cPHTt2BODNN99k3LhxT3xMa9euRaWS3+6FEEIIIf5KHtWoRd7e3sTGxtK/f39u3LjBvXv3cHR0BEpWfgsLC5kxYwZKpZLFixeTkpKCnZ0dbdq00fdx+vRpFi1ahFarRa1WM2nSJIYPH052djbz588nLS0NgAkTJuDlVbJJu5OTE6dPn9bvCV16vGLFCgBGjx6NkZER27dvB+Dy5csEBARw69Yt3NzcCAsLQ6FQPLF5EkII8fT53w0tF85oUVewVpPyteG4a5DIa/HkSeFci3r06KHfHzkuLg4vLy/Onz//QLuoqCjS09PZt28farWaMWPG8OKLLwKwefNm3nnnHby8vNDpdOTllTy8v3jxYtq3b8+6devIzMzEx8cHFxcXfWFenvnz57Nz504iIyPLBK1cuXKFiIgIFAoF3t7eJCYm0rt37xqeDSGEEA3JlfNacv6ouE1+JXHXIJHX4smSwrkWKRQKhgwZwv79+zlw4ABfffVVuYVzSkoKXl5emJqaYmpqyogRIzh9+jRQUnxv2rSJ33//nd69e9O5c2cAkpKSmDlzJgDPPfcc/fv3JyUlpcLC2ZA33ngDc3NzAFxcXEhLS5PCWQghxCNp38kItariFedmFcRdg0ReiydPCuda5uPjg5+fH927d8fa2rrcNhXtGDhu3Djc3d1JTExk0aJF9O7dm+DgYIAHHqcoPTY2Ntb3eX/ktiGlRXPpufe/0CiEEEJUh31LI+xbVvyq1ftjJe5a1C3ycmAta9myJcHBwbz33nsG2/Ts2ZP4+HjUajVFRUVlYrJTU1Np1aoVo0ePJiAggHPnzunPiYqKAiArK4tjx47pUwJbtmypb5eQkFDmWpaWluTn59foPQohhBBCPA1kxbkOGDVqVIVf9/f359KlSwwbNoznn3+ebt26cfNmyXNf27dvJyUlBVNTU8zMzJg7dy4Ac+fOZd68eXh4eAAQEhJC+/btAZg9ezbz5s3D1tb2gUjv8ePHExAQgIWFhf7lwJoQ4C2R20IIIR6OxF2LukaSA8UTIZHb5WtIaUzVIfNjmMyNYTI3hsncGCZzY1hDmpvKkgPlUQ0hhBBCCCGqQFachRBCCCHqEKWqiLs5dSeMTFac/yTPOFfTwYMH2bhxIzqdjuLiYjp27MjKlStre1iPLDc3l6ioKAIDA2u03817A8gtyKjRPoUQQoin0dQ3DwF1p3AWf5LCuRoyMzMJDQ0lLi4Oe3t7dDodFy9erJG+1Wo1Jia1923Jzc1ly5YtNV44CyGEEELUd1I4V0N2djYmJiY0b94cKNkfuUOHDgBMnTqV1NRUVCoVrVq1YsmSJTRr1gyAmJgYtm0r2V3C1NSUjRs3UlRUhK+vL2PHjiUxMZERI0bg4ODAZ599RnFxMRqNhnfffZdhw4YB8Pbbb9OxY0fOnj3LzZs3CQgIwM7Ojh07dpCZmcm0adMYMmQIAL/88gsrVqygoKAAgKCgIAYMGEB6ejq+vr6MHj2aY8eOce/ePT7++GNeeeUVFi5cSF5eHp6enjRq1IjIyEiuX7/OvHnzuH37NiYmJgQHB9OvX78nOudCCCFEfZOZpuXyTxWHvJTnl4MVR42XR+LHnwwpnKvB2dkZV1dXBgwYQI8ePejatSuenp5YW1szZ84cbGxsAFi1ahWbN28mJCSElJQUNm7cyM6dO7G1taWgoAATExOKiorIycmhbdu2TJ48GYC7d++yc+dOjI2Nyc7OxsfHhz59+ugL8Fu3brFjxw6ysrIYOHAg48aNIzIykrNnz/LBBx8wZMgQcnNzmT9/Pps2beK5554jMzOTkSNH6veAzsnJwc3NjeDgYPbu3cuKFSuIjIxk3rx5+Pr6Eh8fr7/fkJAQ/P398fPz49dff2XMmDEcPHhQf59CCCGEeNBvZ7XkVhIrXp7CKkSNl0fixx8/KZyrwcjIiPXr13P58mVOnjzJ4cOH2bp1KwkJCcTHx5OQkIBKpaKwsBAHBwcAjh49iqenJ7a2tkBJ0Egpc3Nz/SoxwO3bt5k9ezbXr1/H2NiYu3fvkpqaipubGwCDBw/GyMgIOzs7mjdvzhtvvAFAx44dycjIoLi4mDNnzpCenl7mkQuFQsH169extramcePGvPbaawC4ubkRFhZW7r3m5+dz4cIFfH19AWjXrh0dOnTg559/xt3dvYZmVAghhHj6tHGtPFa8PNaVRI2XR+LHnwwpnB+Bo6Mjjo6OjBkzhqFDh7Jjxw727t1LZGQkNjY2JCQksGvXrkr7adSoUZl47AULFuDu7s7atWtRKBQMGjSoTDT2XyOwS4+NjY2BkuekdTodTk5OfPnllw9cLz09HTMzM/2xkZERarX6oe79r3HeQgghhCjruVZGPNfq4Xf+nfqmRI3XVbKPczVkZGRw5swZ/fGtW7e4ffs2CoUCKysrmjdvjlKpZPfu3fo2r732GvHx8WRnZwNQUFCAUqkst/+8vDxatGiBQqHgxx9/5Pr16w89xi5dunD9+nWSk5P1n509e5bKdh+0srKiqKhIX0hbWVnRoUMH4uLiALh69SoXL16kc+fODz0mIYQQQoj6TFacq0GtVhMeHs7NmzexsLBAq9UyZcoURo4cyZUrVxgyZAh2dnZ06tSJc+fOAdC9e3cmTpzI3//+dxQKBWZmZmzYsKHc/qdOnUpoaCibN2/GyckJJyenhx5js2bNWL9+PcuXL2fJkiWoVCpatmxp8JqlmjdvjoeHBx4eHjRr1ozIyEhWrFjBvHnziIiIwMTEhGXLlj30882BIyRyWwghhKgKiRqvuyQARTwRErldvoa0qXx1yPwYJnNjmMyNYTI3hsncGNaQ5kYit4UQQgghhKgBsuIshBBCCFEFdS0K+0mRFec/yTPO9Yi7uztmZmaYm5tTXFzMK6+8wvz58zE1NX3ovsLDw/m///u/MrtrPE5rEgK4WyiR20IIIeqvj0ZJFHZDJ49q1DNr1qwhPj6e/fv38+uvv/LNN99Uq5+1a9eiUslffiGEEEKIqpIV53qquLiY4uJimjZtSkFBAYsXL9bv4DFixAgmTpwIlBTI+/btw9zcHIVCwbZt21i1ahUAo0ePxsjIiO3bt6NUKpk/fz5paWkATJgwAS+vko3U3d3d8fT0JDExkaysLMaPH8/YsWNr4a6FEEKImvdHmpbUU1o0lawnBeyvPApboq+fblI41zNBQUGYm5uTlpZGnz596NOnD8uXL0er1ZKQkEBBQQGjRo3CyckJNzc3tm7dSlJSEhYWFuTn52NhYcH8+fPZuXMnkZGR+gTDKVOm0L59e9atW0dmZiY+Pj64uLjg6OgIQFFREVFRUaSnp+Ph4YG3t3eZ9EMhhBCivkr7RUt+duXtbt6tWhS2RF8/vaRwrmfWrFmDo6MjxcXFTJ48mYiICJKSkpg9e7Y+gGXYsGEkJSXRp08fWrduzbRp0+jbty8DBgzAyqr8B96TkpKYOXMmAM899xz9+/cnJSVFXzgPHToUgBdffJGmTZty69Yt2rZt+2RuWgghhHiMWnU2IlVV+YqzjVXlUdgSff10k8K5njI3N2fAgAEcPXoUnU73QAS2QqHA2NiYXbt2cfr0aZKTk/Hx8WHLli04OzuX22d5fdx/vVLGxsZoNJoavBshhBCi9jzTyohnqhCN/dEoicJu6OTlwHpKq9Vy8uRJHBwc6NWrFzExMeh0OvLz8zlw4AA9e/YkPz+f27dv0717d4KCgnB0dOTKlSsAWFpakp+fr++vZ8+eREVFAZCVlcWxY8fo0aNHrdybEEIIIURdJCvO9UzpM84qlYr27dvz/vvvY2JiwqJFi/Dw8ABKXg7s168ft27dYvLkyRQVFaHT6XBxcWHgwIEAjB8/noCAACwsLNi+fTtz585l3rx5+j5CQkJo3759zY3bQyK3hRBC1G8ShS0kAEU8ERK5Xb6GtKl8dcj8GCZzY5jMjWEyN4bJ3BjWkOZGIreFEEIIIYSoAbLiLIQQQghRS4pVxeTmKGt7GBWSFec/yTPOtUSlUrF+/XoOHDiAiYkJWq2W/v3706ZNG3744QfWrFnzyNdwcnLi9OnTFe63nJubS1RUFIGBgfrPYmNj6dKlC61bt37kMZRacuAd7kjkthBCCFHG8pH/Aep24Sz+JI9q1JJZs2bx66+/snv3bvbv38/evXtp3bo1SuWj/+VRq9VVbpubm8uWLVvKfBYXF8e1a9ceeRxCCCGEEE8TeVSjFly7dg0vLy+OHTtGs2bNynwtNjaWffv20bRpU65cuUKTJk0IDw/H1taWS5cuERoayr179yguLsbf359x48YBMHPmTCwtLbl27Rp37twhNja2zIrz2bNn+fjjjyksLKRx48bMmTMHV1dXJk6cyA8//ED79u1p1KgRfn5+LF68GBsbG6ysrJgxYwa9evVi8+bNHDp0CI1Gg52dHYsWLcLW1rbK9ywrzkIIIZ52d69r+f2EBm0lQSr3e7YKoSrleZLR3vKoxp/kUY1a8N///peXXnrpgaK51Llz59i7dy/29vbMnTuXHTt2EBwcTIsWLYiIiMDMzIyCggL8/Pzo27evPsHvzJkz7Nixg8aNG5fpT6lUEhQUxJIlS+jVqxdJSUkEBQXx9ddfM2/ePHx9fYmPj9e337NnD+PHj+e1114DID4+nrS0NHbt2oWRkRE7d+5k6dKlrFy58jHNkBBCCFH/ZPys5V4VorvvV9UY7/JItPeTJ4VzHdS1a1fs7e0B6Ny5M4mJiQAUFRWxYMECLl26hEKhIDMzk4sXL+oL58GDBz9QNAOkpqZiampKr169gJKwE1NTU1JTUyt8/rnUkSNHOH/+PN7e3gBoNBqD0d1CCCFEQ2XnZoRG+eRWnCXa+8mTwrkWuLi4cP36de7evVvuqrOheOtPP/0UW1tbli5diomJCePHj6e4uFjftryiGSg3khsejNg2RKfTMWnSJEaOHFml9kIIIURD1OwlI5q99HCvjy0fKTHe9Ym8HFgLHBwccHd3Z968efrYa41Gw7///W8KCwsNnpeXl8fzzz+PiYkJly9f5tSpU1W6Xps2bVAqlSQnJwOQnJyMWq3GwcEBKysrioqKyrxQaGlpSV7en3+J3d3d2blzJ3fv3gVKHv24ePHiQ9+3EEIIIUR9JivOtWTp0qWsW7cOX19fTE1N9dvRVbQF3KRJk5g+fTp79+6lVatWdOvWrUrXMjMzY82aNWVeDly9ejVmZmaYmZnh4eGBh4cHzZo1IzIyklGjRhEWFsa//vUvpk+fjpeXFzk5OYwdOxYoWYF+8803cXZ2rpG5EEIIIYSoD2RXDSGEEEKIWiIBKHWL7Koh6oQ//shHq5Xf0f6qIf0wqg6ZH8NkbgyTuTFM5sYwmRtRFbLiLIQQQoinwqOs3krhbFhDmhtZca4nDh48yMaNG9HpdBQXF9OxY8dq75OckpJCWFgYsbGxNTzK6gs59A5/SACKEEKIx+gLb4mvFo+XFM51QGZmJqGhocTFxWFvb49Op5NdK4QQQggh6hgpnOuA7OxsTExMaN68OVCyv3KHDh0AcHJy4oMPPuDHH3/kzp07fPjhhwwaNAiA48eP8+mnn6LRaLCxsWHhwoW89NJLZfrOzc3lgw8+wN3dnXHjxhEWFsaJEydQqVRYW1uzZMkSWrRoQXp6Or6+vowePZpjx45x7949Pv74Y155pSSR6NixY3z++ecolUpMTU2ZNWsWbm5uT3CWhBBCPO3uXdOSk6JBV81F44C4gGqHifzjHxNo27Zj9S4sGgwpnOsAZ2dnXF1dGTBgAD169KBr1654enpibW0NlBTSkZGR/Pbbb7z55pv6Ynb69Ons2LGDdu3aER0dTUhICNHR0fp+b968yeTJk5k4cSKDBw8GIDAwkBkzZgAQHR3NihUrWLVqFQA5OTm4ubkRHBzM3r17WbFiBZGRkaSlpbF+/Xq2bt2KlZUVV65cITAwkKNHjz7BWRJCCPG0yz2tRZVV/fMfJb56165dzJoVWv2LiwZBCuc6wMjIiPXr13P58mVOnjzJ4cOH2bp1KwkJCQD4+fkBJUEmLi4u/PzzzygUCpydnWnXrh0Avr6+hIaG6gNVsrKyCAgIICwsTF9oQ8kq9c6dOyksLCwTegIlyYOvvfYaAG5uboSFhQHw/fffk5aWxpgxY/Rt1Wo12dnZPPvss49pVoQQQjQ0TbsakaOq/oqz3SPEV/v7+1fvoqJBkcK5DnF0dMTR0ZExY8YwdOhQTpw48UCb0vhsQzHapZo1a8bzzz/P8ePH9YXzzZs3+eSTT4iJiaFly5acPn2akJAQ/TlmZmb6PxsZGZUprPv27cuyZctq4jaFEEKIcjVyMKKRQ/VDjb/wrn58dUPaOUJUn0Ru1wEZGRmcOXNGf3zr1i1u377Niy++CMDu3bsBuHbtGhcuXKBz58506dKFCxcucPXqVQDi4uJwcXHByqpkCxUzMzPWr1/P1atXWbx4MTqdjvz8fExNTbG1tUWr1RIZGVml8fXu3Zvvv/+eK1eu6D87e/Zsjdy7EEIIIUR9ISvOdYBarSY8PJybN29iYWGBVqtlypQpuLi4ACVF8OjRo7lz5w4LFy7kmWeeAWDZsmWEhISgVquxsbFh+fLlZfo1MzNj9erVTJs2jY8++oiFCxcyePBghg0bxgsvvEC3bt04depUpeNzcHBg+fLlzJkzh6KiIlQqFV27dsXV1bXmJ0MIIYQQoo6SAJQ6zsnJidOnT2NpaVnbQxFCCCHqNAlAeTwa0txIAIqoEyRyu3wN6YdRdcj8GCZzY5jMjWEyN0I8GllxFkIIIYSoAUWqYvKqueJdlzWkX7hkxfkpc/fuXfr06cPo0aOZM2cOAOHh4RQWFjJjxgxiY2M5evQoa9asqeWRlvXO1x+Qee8RNucUQggh6riDnlHkSeT3U0121ahnEhIScHNzY//+/SiV8pdTCCGEEOJJkRXnemb37t1Mnz6djRs3cuTIEX0i4P3y8vKYPHky169fp3nz5ixfvhw7OzsuXbpEaGgo9+7do7i4GH9/f8aNGwfAzJkzMTMz49q1a9y6dUsfgJKZmYmvry/ffvst5ubmALz77rsMGzYMDw+PJ3nrQgghRK3RpirRJBegUxl+wjVgd+WR340aWeDn9xZdu75SYTtRN0nhXI9cvHiRu3fv8uqrr5KVlcXu3bvLLZx/+ukn9uzZQ5s2bVi7di0ff/wxa9asoUWLFkRERGBmZkZBQQF+fn707duXtm3bAnDlyhUiIiJQKBR4e3uTmJhI79696datGwcOHMDb25ubN29y/vz5OvcoiBBCCPE4aU4XosvSVNjmZk7VIr/37dsjhXM9JYVzPRITE4OnpycKhYKBAweyePFiMjIyHmj38ssv06ZNG6Akrrt0ZbioqIgFCxZw6dIlFAoFmZmZXLx4UV+9qXweAAAgAElEQVQ4v/HGG/pVZRcXF9LS0ujduzdvv/02n3zyCd7e3nz11Vf4+vqWSRkUQgghnnbGXRujUVa84tzC0r5KK87Dh3vV9PDEEyKFcz2hVCpJSEjA3Nyc+Ph4AFQqFXFxcRWed38096effoqtrS1Lly7FxMSE8ePHU1xcrG9bWjQDGBsbo9GU/GbdtWtXNBqNfiU7Ojq6pm9PCCGEqNOMWpth1LriRaNtntWP/Bb1g7wcWE8cPnyYNm3acPz4cY4cOcKRI0f417/+RWxs7ANtT58+zbVr1wCIjY2lR48eQMmzz88//zwmJiZcvny5SqmBpd5++20+/PBD3NzcsLe3r5F7EkIIIYSoT6RwridiY2MfeBmvS5cuaLVaTp48Webzbt26ER4ezogRI0hOTtZvWzdp0iSio6Px9fXl888/p1u3blW+/rBhw8jNzeWtt9569JsRQgghhKiHJABFVMmpU6dYsGABCQkJ+kc/hBBCCPEnCUCp/yQARTyy2bNnk5iYSFhYWLWLZoncLl9D+mFUHTI/hsncGCZzY5jMjWEyN6IqZMVZCCFEg1ekUpKXU1x5w3pOikPDZG4Ma0hzIyvO9Yi7uzsbNmzA0dFR/5mPjw8zZszQv+BXE9LT0/nxxx8ZNWpUjfVZmXe+DiWz8PYTu54QQjyMg16ryePpL5yFEI9GXg5sgG7evElUVFRtD0MIIYQQol6RFed6Ijs7m/nz55OWlgbAhAkT8PIq2UDdycmJ06dPY2lpWebYyMiIGTNm8Ouvv2JiYkLr1q1ZvXo1CxcuJD09HU9PT1566SXWrFnD2bNn+fjjjyksLKRx48bMmTMHV1dX0tPT8fX1ZfTo0Rw7dox79+7x8ccf88orkngkhKj7tKl5aFIy0Km0FbYLiK08KhkkLlmIhk4K5zomKCioTBBJ6X7Mixcvpn379qxbt47MzEx8fHxwcXEp81jHX/3www/k5uZy4MABAO7evQvAvHnzCAsL0+8BrVQqCQoKYsmSJfTq1YukpCSCgoL4+uuvAcjJycHNzY3g4GD27t3LihUriIyMfBy3L4QQNUpzJgtdVlGl7aoalQwSlyxEQyaFcx2zZs2aB55xBkhKSmLmzJkAPPfcc/Tv35+UlJQKC2dnZ2d+++03QkND6d69OwMGDCi3XWpqKqampvTq1QuAnj17YmpqSmpqKpaWljRu3JjXXnsNADc3N8LCwmriVoUQ4rEz7mKLRln5inMLS9sqrzhLXLIQDZcUzvXIX7eCKz02NjamdHOU+yO0W7ZsyYEDB0hOTub48eOsWrWKhISEB/q9P5a7vP7NzP6MGDUyMkKtVj/6zQghxBNg1LoJRq2bVNpum9fqBrNrgBCi+uTlwHqiZ8+e+hf6srKyOHbsmH6njZYtW3Lu3DmAMoXxrVu3MDY25o033mDWrFncvn2bnJwcrKysyM/P17dr06YNSqWS5ORkAJKTk1Gr1Tg4ODyhuxNCCCGEqPtkxbmemDt3LvPmzdPHboeEhNC+fXugJKBk3rx52Nralnkc49KlS6xcuRIArVbLxIkTsbOz45lnnqF169YMHz6cNm3asGbNGtasWVPm5cDVq1eXWWkWQgghhGjoJABFCCFEgycBKELmxrCGNDcSgCLqBIncLl9D+mFUHTI/hsncGCZzI4R4XGTFWQghhBB10pP8lwD5hcuwhjQ3suL8kA4ePMjGjRvR6XQUFxfTsWNH/XPCD+vChQukpqYydOhQ/Wd/DSu5n0qlYv369Rw4cAATExO0Wi39+/dn6tSpmJqaVvue7peSkqLfwzkjI4OQkBC2b99eI31XZNzXK8kszHns1xFCCPH0OOC1SKLQRZ0ihfN9MjMzCQ0NJS4uDnt7e3Q6HRcvXqx2fxcuXODo0aNlCueKzJo1i+LiYnbv3o2VlRUqlYrY2FiUSmWVC2e1Wo2JSdW+rXZ2dk+kaBZCCCGEeBpI4Xyf7OxsTExMaN68OVCyj3GHDh0AOH78OJ9++ikajQYbGxsWLlzISy+9RGxsLEePHmXNmjUA+uPQ0FDWrFlDfn4+np6edOvWjblz5wKwfft2vvnmG3Jycpg+fTqDBg3i2rVrHD58mGPHjmFlVfJPBKampowaNQoo2SEjNDSUe/fuUVxcjL+/P+PGjQNg5syZWFpacu3aNe7cuUNsbKzB8d6vNE47JSUFKFkNDw4OfmBsAFOnTiU1NRWVSkWrVq1YsmQJzZo1e4zfDSGEEE8jTeptNCk3QKWptK1EoYu6Rgrn+zg7O+Pq6sqAAQPo0aMHXbt2xdPTE61Wy/Tp09mxYwft2rUjOjqakJAQoqOjDfZlbW1NUFBQmaK6lJWVFbt37+ann35iypQpDBo0iP/+97+89NJLBovRFi1aEBERgZmZGQUFBfj5+dG3b1/atm0LwJkzZ9ixYweNGzfmjz/+eOjxVjQ2gDlz5mBjYwPAqlWr2Lx5MyEhIVWaVyGEEKKU5szv6LIKqtRWotBFXSOF832MjIxYv349ly9f5uTJkxw+fJitW7fy4Ycf4uzsTLt27QDw9fUlNDS0TIjIwyh9dMPNzY3MzMwyaX+GFBUVsWDBAi5duoRCoSAzM5OLFy/qC+fBgwfTuHFjAH755Zdqj7e8sZmbmxMfH09CQgIqlYrCwkIJRxFCCFEtxl1eQKPUVGnF+QXLZyQKXdQpUjiXw9HREUdHR8aMGcPQoUNRKBTlRlJDSdy1VqvVH1elCDY3N9efCyXPJbu4uHD9+nXu3r1b7qrzp59+iq2tLUuXLsXExITx48eXuVZp0QyGI7SroryxnTt3jq+++orIyEhsbGxISEhg165d1epfCCFEw2bc2gbj1jZVarvNa1GD2c1B1A8SuX2fjIwMzpw5oz++desWt2/fpk2bNly4cIGrV68CEBcXh4uLC1ZWVrRq1YpLly6hVCpRKpUcOnRIf76VlRV5eVX7C+/g4IC7uzvz5s3TrwxrNBr+/e9/U1BQQF5eHs8//zwmJiZcvnyZU6dOGeyrS5cuBsdbHbm5uVhZWdG8eXOUSiW7d++uVj9CCCGEEPWZrDjfR61WEx4ezs2bN7GwsECr1TJlyhRcXV1ZtmwZISEhqNVqbGxsWL58OVBSpPbs2ZPhw4fz4osv0rZtW7KysgDo2bMn//rXvxgxYgTdu3fXvxxoyNKlS1m3bh2+vr6Ymprqt6MzMzNj0qRJTJ8+nb1799KqVSu6detmsB8bGxuD462Ofv36sXfvXoYMGYKdnR2dOnXi3Llz1e5PCCGEEKI+kgAUIYQQQtRJEoBSNzSkuZEAFFEnSOR2+RrSD6PqkPkxTObGMJkbw2RuhHg0suIshBBCCCEemyf5LwePSlacH1FNRnCnp6czcOBA2rdvr/9swoQJjBgxoqaGa9C3337LqVOnmDFjxmO/VnnGHVpPZuHdWrm2EEIIIWrPAe9ZT010uhTOFajpCG6AJk2aEB8fX2Gbh4nNrqrXX3+d119/vUb7FEIIIYRoSKRwrkBFEdyGIqhTUlJYsmQJnTt35syZMygUClatWqUPKjHE3d0dX19fkpOTadmyJcHBwXz44YcUFBRQXFxM//79mT59OgDh4eGkpqaSl5fHjRs3aNWqFatXr6ZRo0YolUpWrVrF999/j5GRES1btmTdunVlosF/++03Zs2axb1799BqtXh7ezNhwgSD52o0GlasWMH3338PQN++fQkJCdHv9SyEEEKIp4vmWjaalKugrDyopjIBcVWLTq9MXYhWl8K5AoYiuK2trSuMoP7111/55JNPWLhwIZ9//jnr16/XP96Rl5eHp6en/hoRERFYW1sDkJWVxfbt24GSIJUNGzZgaWmJSqViwoQJHD9+nH79+gFw/vx5YmJiaNKkCRMmTCAhIQF/f382bdrEjRs3iI2NxczMjNu3bz9wXzt37qRfv368//77ANy9W/IIhaFzo6KiuHDhArGxsQAEBgYSFRXFW2+9VbMTLoQQQog6QXP6GroaepH05t3CGukHaj9aXQrnChiK4E5ISKgwgrp169a4uLgAJdHV3333nf5rFT2q4eX1Z1yoRqNh2bJlnDlzBp1OR3Z2NhcvXtQXzn369KFp06YAuLq6kpaWBsB3333HzJkzMTMzA9AX9/fr1q0bYWFhqFQqevTowauvvlrhuUlJSXh7e+s/9/Hx4fDhw1I4CyGEEE8p464OaFQ1s+L8gpV1ja0413a0uhTOVfDXCO4dO3awd+9egxHUpQUmlBTfarW6Ste5Pzb7iy++IDc3l+joaMzNzfnoo4/KRGyXRmNDSTx26deqsknKoEGDcHNz48cff2Tz5s3s3r2bFStWGDy3vAjv6kZ6CyGEEKLuM3Z4FmOHZ2ukr23es56abRAlcrsChiK4FQrFY4+gzsvLw9bWFnNzczIyMvj222+rdJ67uzv//ve/USqVAOU+qnH9+nVsbW3x8fHh/fff16cAGjq3V69exMXFoVKpUKlU7Nmzh549e9bEbQohhBBC1Buy4lwBQxHcI0eO5MqVK481gvrtt9/mn//8J15eXjz//PNVLlQnTpzIypUr8fLywtTUlJdeeok1a9aUaXPw4EESEhIwNTVFoVAwe/bsCs8dNWoUaWlpeHt7AyWPifj7+9fo/QohhBBC1HUSgCKEEEIIIR4bCUAR4iFJ5Hb5JP62YjI/hsncGCZzY5jMjWEyN4bJ3PxJVpyFEEIIUS1FKhV5OUW1PYwaIcWhYQ1pbmTFuR7y8/NDqVSiUqm4du2aPqLbxcWFTz75pNxzkpKS0Ol09OrVq9L+o6OjSUxMZNWqVSQmJvLZZ5+V2RXkwoULBAUF8c033wCwfft2du3ahUKhQKVS8frrr+v3rK6qv/9nK5mFuQ91jhBCiLptv08weTwdhbMQVSGFcx0UHR0NQHp6Or6+vpVGdAMkJyej0WiqVDg/jDNnzrBjxw592IpGo+HKlSs1eg0hhBBCiPpACud6ZsOGDezbtw8oCT756KOPuHbtGjExMeh0Or7//ns8PDwICAhg0qRJ3Llzh+LiYjp37kxoaCimpqYPdb1bt27RtGlT/R7TxsbGODs71/h9CSGEEELUdVI41yNHjhxh//79REZGYmlpSUhICBs2bCA4OJiRI0ei0Wj0j1BotVo+/fRTmjVrhlarZdq0aezZswc/P7+Huma/fv3YunUrr732Gt26daNHjx6MGDECCwuLx3GLQgghapnmWgbqE5dBWXl4V8CeM5UmwjVqZIGf31u1GpMsRE2RwrkeSUxMxMPDAyurkofW/f39WbFiBcHBwQ+01Wq1bNq0iR9++AGtVktOTg7NmjV7oJ2hBMDSzy0tLYmOjubcuXOcOnWKqKgovvrqK3bt2vXQq9dCCCHqPvWZq+iy7lap7c27BVVqt2/fHimcxVNBCud6zlDhGx8fz9mzZ9m5cyeWlpasXbuW//3vfw+0s7a2Jicnp8xnd+7cwcbGpsw1XF1dcXV1ZezYsfTo0YOrV6/KIxtCCPEUMunSFrVKU6UV5xesmldpxXn4cK+aGp4QtUoK53qkV69erF69mjFjxtC4cWNiYmL0iYJWVlakp6fr2+bl5WFtbY2lpSV3795l//79dO3a9YE+27Rpg0qlIikpiZ49e6JWq9m1axd9+vQB4OrVq+h0Otq1a6c/1mq12NnZPYE7FkII8aQZO9hh7FC1n/HbfIIbzDZlQoAUzvWKu7s7ly9fZtSoUUDJy4HvvvsuAIMGDWLy5Ml4enri4eGBn58fR44cYfjw4djZ2dGtWzc0Gs0DfZqZmREeHk5YWBhLly5Fq9XSo0cPAgMDASgoKGDp0qXcvn0bCwsLjIyMWLlyJdbW1k/uxoUQQggh6gAJQBFCCCFEtUgASsPQkOZGAlBEnSCR2+VrSD+MqkPmxzCZG8NkbgyTuRHi0ciKsxBCCCHEI3qaVt//qiH9wlWvV5zd3d0xMzPDzMwMlUrF+PHjK92HeObMmXTq1ImxY8dW2G716tW0b9+eoUOHVtguPDycwsJCZsyYUe7Xz507x2effUZqairNmzdHp9MxfPhwJkyYUPHNPQHu7u5s2LABR0fH2h4Kf//PdjILG8ZfOiGEEA3Pfp/3JH68AajThTPAmjVrcHR05PLly/j4+NCvX78a2dHhn//85yP3cenSJQIDAwkLC6N///4AZGVlsXHjxnLbq9VqTEzq/JSXUR/HLIQQQgjxONSbisjR0ZGmTZuSkZFBTk4OoaGh3Lt3j+LiYvz9/Rk3btwD5yiVSlatWsXJkydRqVQ4OjqyYMECLC0ty6xM5+XlMXv2bK5cuYKdnR12dnY888wz+lXmjIwMAgMDuXHjBq1atWL16tU0atSIzZs34+fnpy+aAWxtbZk7d67+2MnJiWnTpnHs2DFefvllpkyZwubNmzl06BAajQY7OzsWLVqEra1tpeM1MzPj2rVr3Lp1Czc3N8LCwlAoFERFRREREYGZmRlarZbPPvuMtm3bApCQkMDp06fJzMzknXfe0a/Enz17lo8//pjCwkIaN27MnDlzcHV1JT09HV9fX8aOHUtiYiIjRoxgxIgRLF68mHPnzgEwYsQIJk6c+Li+1UIIIYQQdVK9KZx/+uknrK2tcXZ2RqlU6gvFgoIC/Pz86Nu3r75YLLVlyxaaNGlCTEwMAMuXL2fTpk0PJO2tW7eOpk2b8p///IecnBx8fHwYNGiQ/uvnz58nJiaGJk2aMGHCBBISEvD39+e///0vgwcPrnTsWq2W7du3AyXBJGlpaezatQsjIyN27tzJ0qVLWblyZaXjvXLlChERESgUCry9vUlMTKR3794sW7aMffv2YW9vj1KpLLPtXHZ2Nl9++SXZ2dl4eXnxyiuv0KZNG4KCgliyZAm9evUiKSmJoKAgvv76awBycnJo27YtkydP1o9Dq9WSkJBAQUEBo0aNwsnJqcwvDEIIIcTTQHPtf6hP/LdKATD3C9iTXGkYzF9JHHn9U+cL56CgIHQ6HTdu3GDt2rWYmZmRm5vLggULuHTpEgqFgszMTC5evPhA4XzkyBHy8/M5dOgQULICXV7aXUpKin6VuHnz5rzxxhtlvt6nTx+aNm0KlOydnJaWVu5YFy9ezMmTJ/njjz+Ijo7G3t4eAG9v7zJjOn/+vP4zjUajj9CubLxvvPEG5ubmALi4uJCWlkbv3r159dVXmTVrFq+//joDBgygZcuW+nNGjhwJwLPPPsuAAQM4ceIECoUCU1NTevXqBUDPnj0xNTUlNTUVS0tLzM3NGTJkiL6PpKQkZs+ejUKhwMrKimHDhpGUlCSFsxBCiKeO+sxldFk5lTf8i5t386t1PYkjr1/qfOFc+ozzwYMHmTZtGocOHeLTTz/F1taWpUuXYmJiwvjx4ykuLn7gXJ1Ox/z58/XpeobodDqD0dWAvlgFMDY21l+rQ4cOnDt3Tl9olxbfPXr0KLPq27hx4zLXmjRpkr6gfZjx/nUcpddYu3Yt586dIzk5mYCAABYsWFBuUVt6n4but/SzRo0alfl6ee0rmi8hhBCivjLp4ohapX7oFecXrJpVa8VZ4sjrlzpfOJcaMmQIBw8eZNOmTeTl5eHk5ISJiQmXL1/m1KlTDB8+/IFz3N3diYiIoEuXLlhYWJCfn09GRsYDK9M9evRgz549dO3albt37/Ltt98ycODASscUGBjIuHHjePnll+nXrx9Qskqs1WoNnuPu7s62bdv429/+RrNmzVAqlfz22284OztXebz3U6vV/P7777i6uupXwy9cuKAvnOPi4nj55Ze5ffs2x48fJyAggNatW6NUKklOTubVV18lOTkZtVqNg4MDmZmZD1yjV69exMTE0LVrVwoKCjhw4ADTp0+vdH6EEEKI+sbYwR5jB/uHPm+bz3sNZsu2hqzeFM4AU6dOxcfHhy1btvDRRx+xd+9eWrVqRbdu3cptP3HiRNauXcvIkSNRKBQoFAo++OCDBwrR999/n1mzZjFs2DBatGhB165d9Y9PVMTZ2ZmNGzeyevVqFixYgI2NDaamprz77rs899xz5Z7j5eVFTk6O/iU9nU7Hm2++ibOzc5XHez+tVsvMmTPJy8tDoVBgb2/P1KlT9V+3t7fnrbfeIisri//7v//DyckJKFnJv//lwNWrV2NmZlbuNd577z0WLVqEh4cHUPJyYOkvCkIIIYQQDYUEoAAqlQqtVou5uTn5+fm8+eabzJo1S/8MsBBCCCFERSQA5elQrwNQnpTc3FwCAwPRaDQUFxczfPhwKZprmERul68h/TCqDpkfw2RuDJO5MUzmxjCZG1EVsuIshBBCCFGOp3kV+WE0pF8qZMVZ1Al/P/gVmYXV26pHCCGEqA37fQMlRluU8dQUzu7u7piZmWFubk5xcTGvvPIK8+fPx9TU1OA5d+7cYdKkSdy7dw8PDw98fX3LHP/jH/+o8HobNmzA0dGxSuMyMzNDpVIxfvx4/Pz8qn2f4eHhFBYW6lMNH1VERAQeHh4888wzNdKfEEIIIcTT6qkpnOHPPZ81Gg1jxozhm2++YejQoQbbJyUl0bRpUyIjIwE4cOBAmeOaHtfly5fx8fGhX79+2NnZ1eg1qmvbtm306tXroQtntVqNiclT9b+PEEIIIUSFnsrKp7i4mOLiYpo2bcrMmTPp1KmTfvu30uN27dqxbNky8vPz8fT0ZODAgURHR+uPP/roI/73v/+xbds2VCoVADNmzCg3nOT69evMmzeP27dvY2JiQnBwcLnbtTk6OtK0aVMyMjKws7NDo9GwYsUKvv/+ewD69u1LSEgIxsbG5OXlsWTJEs6fP49CoeCVV15h3rx5AGRkZBAYGMiNGzdo1aoVq1evplGjRiiVSlatWsXJkydRqVQ4OjqyYMECLC0tiYqK0seUa7VaPvvsM77++msyMzMJCgrC3NyclStX0qpVK4N9zJw5E0tLS65du8adO3eIjY19XN9CIYQQ4rHRXPsd9clzlYacBMR/X2moicRmNyxPVeFcWgCmpaXRp08f+vTpw759+8pt++qrrxIUFMTRo0dZs2YNULLn8f3Hd+7cYfjw4SgUCn777TfGjRvH8ePHH+grJCQEf39//Pz8+PXXXxkzZgwHDx7ExsamTLuffvoJa2trfYx2VFQUFy5c0BeggYGBREVF8dZbb7FkyRIaN25MfHw8RkZG3L59W9/P+fPniYmJoUmTJkyYMIGEhAT8/f3ZsmULTZo0ISYmBoDly5ezadMmgoODWbZsGfv27cPe3h6lUolGo2HSpElER0frV8QB1q9fb7APgDNnzrBjx44yaYhCCCFEfaL++QK6rDuVtrt5t2ovxElsdsPxUIVzXl4eqampFBQUlPm8skjrJ6W0ACwuLmby5MlEREQ8Un83btxg6tSpZGRkYGJiQnZ2NllZWdja2urb5Ofnc+HCBXx9fQFo164dHTp04Oeff8bd3R0oKeh1Oh03btxg7dq1+qCRpKQkvL299cc+Pj4cPnyYt956i++++47Y2FiMjIwAyhThffr0oWnTpgD6tECAI0eOkJ+fz6FDh4CSFMPSIv3VV19l1qxZvP766wwYMICWLVuWe88V9QEwePBgKZqFEELUayZuHaoUq/2CVdMqrThLbHbDUeXCOTY2loULF9K4cWMsLCz0nysUCr799tvHMrjqMjc3Z8CAARw9ehRbW9syEdjFxcVV7ufDDz9k5syZvPHGG2i1Wjp37lzl8xUKhf7PpQX9wYMHmTZtGocOHeLZZ59Fp9OVaffX8wwxNzfX/9nY2Fg/Jp1Ox/z588v9RWbt2rWcO3eO5ORkAgICWLBggT6W+34V9QFI0SyEEKLeM3Z4AWOHFyptt803sMFswyaqxqiqDVetWsXq1atJTEzkyJEj+v/qWtEMJTHUJ0+exMHBgVatWnHu3DkAMjMzSUlJqXI/eXl5vPjiiwDExMSgVCofaGNlZUWHDh2Ii4sD4OrVq1y8eJHOnTs/0HbIkCH07t2bTZs2AdCrVy/i4uJQqVSoVCr27NmjL1hfe+01tm7dSuk22/c/qmGIu7s7ERERFBWVbJ2Tn5/P1atXUavV3LhxA1dXVyZOnEjv3r25cOECAJaWluTl5VXahxBCCCFEQ1flFWeNRkOfPn0e51geWekzziqVivbt2/P++++j1WoJCgpixIgRODg44OrqWuX+Zs2axXvvvYednR3du3enefPm5bZbsWIF8+bNIyIiAhMTE5YtW/bA882lpk6dio+PD4GBgYwaNYq0tDS8vb2Bkkcw/P399ddesmQJw4cPx9jYmO7duzN37twKxztx4kTWrl3LyJEjUSgUKBQKPvjgA1q2bMnMmTPJy8tDoVBgb2/P1KlTAQgICGD27NlYWFiwcuVKg320bdu2yvNWni+GvPlI5wshhBBPWtH/vzmAEKWqnBz4xRdfUFBQwHvvvad/7laIqpLI7fI1pDSm6pD5MUzmxjCZG8NkbgyTuTGsIc1NZcmBVS6c+/fvT3Z2Nqampg+svB49evSRBimEEEII8SQYitFuSMXhw2pIc1NjkdvLly+vkQGJhmn8wRiJ3BZCCFHr9vmOkxhtUW1Vfuaie/fuBv+rCnd3d4YPH15mhwt3d3cuX778UAO+cOECBw4cKPOZk5PTA1vk1bTY2FicnJzKXDs2NpagoKAa6T8lJYXOnTvj6emp/2/69OmP1GdNjq9UeHg4YWFhNdqnEEIIIUR9UOUVZ5VKxeeff058fDyZmZk899xzeHp68u677+r3Ia5MYWEh8fHx+pfhHpZarebChQscPXq0wijt6vZdWYR0ixYtWL16NQMHDnwscdNt27aVND4hhBBCiDrqoR7VOHv2LKGhobzwwgv8/vvvrF+/nvz8fGbPnl2lPj744APCw8MZNmxYmWK7oshqJycnpk2bxrFjx3B0dOTbb7/Vx2J369ZNv9PE9u3b+eabb8jJyWH69OkMGjQIgF3tPbkAACAASURBVF9++YUVK1boV6SDgoIYMGAA6enp+Pr6MnbsWBITExkxYgTZ2dmkpqaSl5f3QJw1QKdOnVAqlcTExDB69OgH7i8uLo6dO3ei0WiwsrJiwYIFtGnThlGjRjFnzhxcXV1ZsGABJ0+eZP/+/ajVanr37s13331X4bzFxsayb98+mjZtypUrV2jSpAnh4eHY2tqiVCpZtGgRJ06cwMbGhg4dOpCdna1PPyyVlZXFhx9+SEFBAcXFxfTv31+/oh0eHm7wvvPy8pgzZw6//vor9vb22NjY8Oyzz1bp+y2EEEI8CZpr6ahO/gLKynfBCIg/Um6oibGxQv+5xGgLQ6pcOP/nP/8hPj4ea2trANq0aYOLiwuenp5VLpw7depEp06d+Oqrr3jnnXf0n1cWWa3Vatm+fTsAHTt2LBOLXcrKyordu3fz008/MWXKFAYNGkRubi7z589n06ZNPPfcc2RmZjJy5Eh9DHdOTg5t27Zl8uTJQEkBaSjOulRwcDATJ07Ey6tsStCpU6c4ePAgX375JWZmZhw7dozZs2cTGRnJq6++SnJyMq6urvz000+Ym5uTmZnJzZs3adu2rT5U5OrVq3h6eur7/Nvf/sYHH3wAwLlz59i7dy/29vbMnTuXHTt2EBwcTFRUFL///jv79+9Ho9Hw9ttv8/zzzz8w902bNmXDhg1YWlqiUqmYMGECx48f1/+CYui+161bh6WlJQcOHOD27dv4+PgwZMiQKn2/hRBCiCdB/fN/0WVVnncAEqMtHk2VC2dDm29UcVMOvSlTphAQEMDIkSP151cWWV2VRztKH91wc3MjMzOT4uJizpw5Q3p6OoGBgfp2CoWC69evY21tjbm5+QNFoKE461JOTk5069aN7du388wzz+g/P3LkCBcvXsTPz09/X7m5uUBJ3PXGjRvx8PCgefPmdO/enaSkJNLT08sk9FX0qEbXrl2xt7cHoHPnziQmJgIlz0Z7enpiYmKCiYkJw4YN46effnrgfI1Gw7Jlyzhz5gw6nY7s7GwuXryoL5wN3XdKSop+Vd/Gxoa//e1vBr4DQgjx/7F352FR1/v//+/DriAohUsu4BIoooCpiJoL+hUVFVFyyTSXNC3FDfdyKzEVjyVEiLkct9xAQUo7mrn8UsHSFE+aS6ymKC7IIszA8PuDj3MkGRgQEeF5u66u68zM+/16v97POlxPXrzn9RDi5TBwskelUum04qwtRvufK84Soy0Ko3Pj3Lt3byZNmsTHH3/MG2+8wc2bN/nmm29KvPrYpEkTunbtyqZNmwDtjffT0dO6xDw/iaHW19cH8p9ZzsvLw87Oju3btz9zfFJSEtWqVXsm4lpbnPXTpk6dyrBhwwo05Hl5eQwePJipU6c+c/xbb73FH3/8wbFjx3B1daV9+/aEhoaSlJSk85f3/jmv3NxczXV1ienetGkTjx49Ys+ePRgbG/Ppp58WuLeiYryFEEKIikzfpgH6Ng10OnbL4NGFbq1WlbZcE6Wn864as2bNwtXVlaVLlzJo0CA+++wzXFxcmDVrVokvOmXKFHbs2EFGRgZ6eno6R1ZD/iMZT0dEF8XZ2Zn4+HjOnDmjee/ixYvP3Qw2bNgQd3d3tmzZonnPzc2N8PBwbt++DeSv8F66dAkAIyMj7O3tWb9+PR07dsTR0ZFz587x559/ar1PXbm4uBAREUFOTg7Z2dkcPHiw0OPS0tKwsrLC2NiY5ORknaPSXV1dNavgDx484MiRI881XyGEEEKIV5XOK85GRkZMnTq10BXVkqpbty6enp5s3LgRKFlktaurKxs3bmTAgAHFxlBbWFgQFBTEqlWr8PPzQ6VS0bBhQ4KDg5/7Hj766CNNsw/Qrl07pk2bxqRJk8jNzUWlUtG7d28cHBw0846JicHBwQEDAwMaNWpEgwYNCnxJ8p/PONeuXZv169cXOY9hw4Zx5coVPDw8qFevHi1btuTx48fPHDdy5EimTp3KwIEDqVu3boFHRIq7z/nz59O3b1/q169Pp06ddDrvnzb28S7VeUIIIURZkhht8TyKTA48e/Ys7dq1A+D06dNaB9G1CRMvRnp6OmZmZiiVSiZNmkTv3r01z1pXFBK5XTj502DRpD7aSW20k9poJ7XRTmqjXVWqzXNFbvfr10+zA8WTL+o9M4BCofOf/cWL8c4776BUKsnOzqZjx47Mnz//hewzLYQQQlR22iK5qzJpnP+nyMZZiLIy9of93Ml8semOQgghxPOK9B5RZZpEXUnj/NTn5TiXV5pKpSIgIAB3d3c8PDzw9PTEx8eH69evv7BrJiUl4eLionltZ2dH//79GTBgAP379y+Tlf4FCxbw66+/FvrZ3Llz2bZt23NfQwghhBCiMtD57/ldu3YtdNszIyMj6tSpQ69evRg+fHilfURg3rx5ZGVlsWfPHszNzcnLy+PQoUPcuHGDZs2aaY5Tq9UoFAqdtogrjZ07d2Jqasrx48eZNm0aZ8+efa6aL1u2rAxnJ4QQQghReenccY0cOZKIiAhGjhxJvXr1uHXrFtu3b6d3795YWFiwadMmbt26pYlxrkzi4uI4cuQIx48f14SEKBQKzR7WAQEBxMfHk5mZSWJiItu2bSM4OJjo6GhUKhW1atXCz8+P+vXra6K+hw0bxvHjx3n8+DHLli2jbdv8dKLt27ezefNmrKysaN++vdY5ubi4kJmZyaNHj7C0tOT06dN8+eWXZGdnk5uby8SJE/Hw8ADy/901b96cK1eucPv2bfr06cOMGTM0n40dO5bu3buTnJzM7NmzefDgAQ0aNNDsFQ2wa9cuNm/ejJGREWq1mi+//JKmTZu+kHoLIYQQZSU3PhFV9DnQcTeNURE/FhqQUhiJ5q56dG6c9+3bx8aNG6lTp47mvS5dujB27Fi+//57XFxcGDNmTKVsnP/44w+sra2xsLDQesyvv/5KWFiYZhu98ePHM2fOHAD27NmDv78/a9asAfKjvp2cnJg+fToRERH4+/uzc+dOrly5wjfffMP+/ft5/fXXWbx4sdbrHT58mA4dOmiuZ29vz44dO9DX1yclJYVBgwbRuXNnzZxv3LjBpk2byM7OZtiwYTg7O9O9e/cCY37++ee0a9eOyZMnk5iYyIABA3j77bcBWLlyJZGRkdSrVw+lUlmgqRZCCCEqqpzfY8hLuafz8TdTH5VofInmrlp0bpzv3r2LqalpgfeqVavGnTt3AGjcuLEmYrqyu379OjNnziQrK4u3334bCwsLunTpUmDv6RMnTrBjxw4yMzPJyckpcH716tU1TauTkxMrVqwAIDo6mm7duvH6668DMHTo0GcCTYYNG0ZGRgb37t0r8Pzx/fv3mT9/PvHx8ejr65OamkpsbCxOTk4ADBw4UBPL3bdvX86cOfNM4/x0vHbDhg0LbDPYoUMH5s2bR48ePejWrRsNGzZ8rhoKIYQQ5cHAqRUqpUrnFec3zGqUaMVZormrFp0b5+7duzNp0iQmTZpEnTp1SE5OZt26dZrm6/z58zRooFvc5avG3t6e+Ph4Hj16hLm5Oc2aNSM8PJxt27Zx6dIlLCwsCvxScfPmTZYvX87evXtp2LAh586dw9fXV/P506Enenp6msZalw1OnjzjvGHDBnx8fDh06BDGxsYsXrwYNzc3AgMDUSgUuLu7FxoX/uQ6JX0GOzAwkJiYGM6cOcOoUaNYvHgxXbt2LdEYQgghRHnTt26IvrXuiz1bZFcNUQSdd9VYunQpjo6OLFy4EC8vLxYuXEirVq1YsmQJkL9CuW7duhc20ZfJxsaGHj168MknnxSI+87MzCz0+PT0dAwNDbGyskKtVrNz506druPi4sLx48e5dy//T0p79+7VeuzYsWN57bXXNGOnpaVRv359FAoFv/zyC/Hx8QWODw8PJycnh8zMTA4dOlRgt44nOnToQGhoKACJiYma0JucnBwSExNp3bo1EyZMoFOnTly+fFmnexJCCCGEqCx0XnE2NjbG19e3wMrp06ysrMpsUhXR8uXLCQoKwtvbGwMDA8zNzalduzYTJkzg6NGjBY61s7Ojd+/eeHh48MYbb9CuXTutW749rXnz5kycOJHhw4fz+uuv061bN63HKhQK5syZw/Tp0xk2bBgzZ85kyZIlrF+/Hjs7O+zs7Aoc37JlS8aMGUNycjK9e/d+5jENyN+abvbs2Rw6dIjGjRtr4rXVajVz584lLS0NhUJBvXr1mDlzpg5V+5+NfeVPWUIIISo+ieQWRSlRAMovv/zC999/z/379wkODiYmJob09HSJ3K7gnt4542WRyO3CVaVN5UtD6qOd1EY7qY12UhvtpDbaVaXalFkAytatW1m8eDE2NjacPXsWABMTE7766qvnn6UQQgghhBAVnM4rzj179mTz5s00aNCAdu3acfbsWXJzc+nYsSNRUVEvep5CCCGEKEKWKoe0h4+LPKYqrRyWlNRGu6pUm+JWnHV+xjkjI4N69eoBaHZkyMnJwdDQ8DmnKIri5uaGkZERRkZGPH78mGbNmjF+/HjatGnzsqdWImN/iOSOli9TCiGEeH6R3kOoGq2NEC+Pzo9qtG3blpCQkALvbdmypdDdGUTZWrt2LRERERw+fBgvLy8mTJjAhQsXXuqcJABFCCGEEFWNzivO8+fP5+OPP2bPnj1kZGTg7u6OmZkZwcHBL3J+4h969erFxYsX2bBhgyaN8OzZs6hUKmxtbVm8eDGmpqbMnTsXIyMj4uLiuH37tiZo5datW7zzzjscO3ZM89eCKVOm4ObmhpeXF8ePH+ebb75BqVRiaGjIvHnzcHJyIioqCj8/P9q2bUtMTAyTJk16qV82FEKIqiI3Ph5V9K/FBniMiogsNrhDX19Bbm6eREULUUo6Nc65ubm4u7sTHR3Nn3/+yd9//029evVo3bo1eno6L1qLMuLo6MjRo0f59ttvqVGjhma/51WrVhESEsL06dMBuHbtGps3b0ahUODl5cWpU6fo1KkTzZo148SJE/To0YMHDx4QHR3NihUrSEhIICgoiA0bNmBmZsa1a9cYP348x44dA+Dq1assXryYTz/99GXduhBCVDk5v18gLyWl2ONupqaWaFyJihai5HRqnPX19bGxsSE1NRVHR0ccHR1f9LxEEZ58n/Po0aOkp6fz448/AqBUKmnevLnmuJ49e2JsbAzkpx8mJCTQqVMnvLy82LdvHz169CAyMpIePXpQvXp1Tp48SUJCAiNGjNCMkZOTQ8r//cC2trbG2dm5vG5TCCEEYODkqFNk9BtmZiVacZaoaCFKTudHNfr378/EiRMZNWoUdevWLfCZ7ONcvmJiYnjzzTdJSkpi0aJFWuv/pGmG/F9+njyX7O7uzvLly3nw4AH79u1j/vz5muPefvttVq5c+cxYN27coHr16mV8J0IIIYqjb22NvrV1scdt8R5S7M4HVWl3BCFeBJ0b5++++w6AgICAAu8rFAp++umnsp2V0OrIkSN89913fPvtt/zyyy9s3rwZZ2dnTExMSE9PJzk5maZNmxY5RrVq1ejRowdr1qwhPT2dtm3z/1TXqVMnAgMDuXbtGm+++SYAFy9epHXr1i/8voQQQgghKjqdG+d/xkqL8uPj46PZjq5p06aEhITg5OREy5YtCQwMxNvbG4VCgUKhYPLkycU2zgCDBg1ixIgRTJ06VfOejY0Nq1atYsGCBWRlZaFSqWjTpk2ZNM4b+/Z77jGEEEJol6XKedlTEKLSK1HkthClJZHbhZM/mxZN6qOd1EY7qY12UhvtpDbaVaXalFnkthBCCCGEEFWZrDgLIYQQokLRJT68rFWlVdWSqkq1KbPIbVE2Dh48yLp168jLyyM7O5uWLVuyevXqUo2VlJREr169ePPNN1Gr1ahUKtq2bcvkyZM1O58sWLAALy8vzRcAX5ZxP/wokdtCCCF0csDbS+LDRYUkjXM5unPnDkuWLGHfvn3Uq1ePvLw8rly58lxj1qhRg/DwcCB/H+dvvvmGYcOGceDAAWrUqMGyZcvKYupCCCGEEFWeNM7lKCUlBQMDA2rWrAnkb+XXokULAGbOnElsbCwqlYpGjRrh5+eHhYWFJura0dGR8+fPo1AoWLNmTaE7ZxgZGTF16lROnTpFREQEI0aMYOTIkYwdO5bu3buTnp7O8uXL+fPPP8nOzsbFxYV58+ahr6/P9evXmTdvHo8fP6Z58+YkJCRoYrXj4+NZuHAh9+/fx8DAgOnTp9OlS5dyrZ0QQohXT258HMroKFApS3TeqIh9xYa5aCNx4uJFksa5HDVv3pzWrVvTrVs3XFxcaNOmDZ6entSqVYsFCxZgaWkJwJo1a1i/fj2+vr4AXL9+neXLl7N06VK++eYbgoKCiny8o1WrVly7du2Z95cvX067du1YtmwZarUaX19fQkNDGTJkCLNnz+b999/H09OTmJgYhgwZojnP19eXIUOG8M4773D9+nVGjBjBwYMHNfMVQgghCqP6/Rx5KXdLfF5J48P/SeLExYsijXM50tPTIygoiKtXr3L27FmOHDnChg0bOHDgAOHh4Rw4cACVSkVmZiY2Njaa8xo3boy9vT0ATk5O/Pzzz6W6/tGjR7l48SKbNm0CICsrizp16pCens7Vq1fp378/kN9429nZAZCens7ly5cZPHgwAM2aNaNFixb8/vvvuLm5lbYUQgghqgBDpzYolaoSrzjrEh+ujcSJixdJGueXwNbWFltbW0aMGEHfvn3Ztm0bERER7Ny5E0tLSw4cOMDu3bs1xxsZGWn+t56eHjk5RW9yHxMTw4ABA555Py8vj6CgIBo2bFjg/bS0NE2Aiq5KcqwQQoiqSd/ahmrWNiU+b4u3V5XZxUG8WmQf53KUnJzM+fPnNa9v377N/fv3USgUmJmZUbNmTZRKJaGhoaUaX6lUEhgYyO3btwttnN3c3AgJCSE3NxeA+/fvk5iYSI0aNWjWrBmRkZEA/Pe//+Xq1asAmJmZ0aJFC/bt2wfAjRs3uHLlCo6OjqWaoxBCCCHEq0pWnMtRTk4OAQEB3Lx5ExMTE9RqNdOmTcPb25tr167Rp08f6tSpg4ODAzExMTqNmZaWhqenJ7m5uZrt6Hbu3EmNGjWeOXb+/PmsWrUKT09PFAoFhoaGzJ8/n4YNG7JixQrmz5/Ppk2baNmyJc2bN9eM4e/vz8KFC9m8eTMGBgasXLmyxM83b+jrXqLjhRBCVF0SHy4qKglAEQBkZmZSrVo1FAoF169fZ+TIkRw6dAgLC4syGV8itwtXlTaVLw2pj3ZSG+2kNtpJbbST2mhXlWojAShCJ+fOnWPlypU8+T3qs88+K7OmWQghhBCiMpAVZyGEEEIIHb2MOPCXTVac/6dcVpzd3NwwMjLC2NiY7Oxs2rZty6JFizA0NNR6ztPBHUeOHKF27dq0bt0ayN81YvPmzaWOqn5evr6+2NraMmHCBAC2bduGn58f0dHRmJnlF7tfv34sWLAAV1fXEo//9L3/U1lEaP+znuXhgx9+4k5m1fpBI4QQovKJ8O4nceBVWLntqrF27VrCw8P5/vvvuX79OocPH9b53CNHjnDx4kXN61atWr3Qprm47d5cXFyIjo7WvI6OjsbBwYFff/0VyN+tIj4+Hmdn5zKf27Jly56raYZn6ymEEEIIIYpX7s84Z2dnk52djbm5OadPn+bLL78kOzub3NxcJk6ciIeHR4HjT548ydGjRzl16hR79uxhzJgx1KtXjxUrVhAWFkZSUhKDBw9myJAhnDx5kqysLPz9/dm5cycXLlzAxMSEoKAgrKysyM3Nxd/fn5MnTwLw9ttv4+vri76+PnPnzsXU1JS4uDgePHhAWFgYFy5cwN/fn4yMDAB8fHw0qX9+fn7k5ORgYGDAH3/8wYwZM4iKiqJbt25ER0fTunVrTExMuHv3LjNmzCAjI4Ps7Gy6du3K7NmzgfwG9quvvkJPT4/c3Fw+/fRTXFxcgPxmPCQkhDt37tCnTx9NiuDTq9Fz587FyMiIuLg4bt++jZOTEytWrEChUJCcnMzs2bNJSUnR7NvcuXNnrK2tn6nnwIEDCQkJISIiAsj/xeSTTz7B1NSUgIAAYmNjSUtLIzExkUaNGvHVV19RrVq1F/8fixBCCFFOcuL/QhV9mrxiwlpGRewuNpxFYr8rr3JrnH18fDA2NiYhIYHOnTvTuXNnUlNT2bFjB/r6+qSkpDBo0CA6d+5c4Etpb7/9Nm5ubjg4OPDee+8BEBUVVWDshw8f8tZbbzFz5ky+/fZbRo8ezdatW/n8889ZvHgx27ZtY/r06ezatYvLly8TFhYGwPjx49m1axfvvvsuAOfPn2fbtm1Ur16dR48esWjRIkJCQqhduzZ37tzB29ubyMhIGjVqhIWFBf/9738xNTXF2tqaDh06sHHjRiC/6X3SAJubmxMcHIypqSkqlYpx48Zx4sQJunTpwtq1a1m0aBFt27YlNzeXx4//9yjDrVu32L59OxkZGfTs2RNvb+8CaYJPXLt2jc2bN6NQKPDy8uLUqVN06tSJzz//HBcXFz766CNu3rxJ//796dy5c6H1PH78uCaAxdTUlDlz5hAUFMSsWbMAuHTpEnv37qVGjRqMGzeOAwcOFIjkFkIIIV51qt9/Q51yp9jjbqY+1Gk8if2unMqtcV67di22trZkZ2czZcoUNm/eTNeuXZk/fz7x8fHo6+uTmppKbGwsTk5OJRq7evXqdOvWDYCWLVtSt25dWrRooXl96tQpAE6fPo2Xl5cmiW/QoEEcOXJE0zj37t2b6tWrA/lNdFJSEuPHj9dcR6FQEB8fT6tWrWjfvj1RUVGYmZnRvn17LC0tyc7OJj09nejoaD755BMAcnNzWblyJefPnycvL4+UlBSuXLlCly5d6NChA1988QW9e/emS5cu2Nraaq7Vu3dv9PT0qFGjBk2bNiUhIaHQxrlnz54YGxsDYG9vT0JCAp06dSIqKkozh/r16xf5rPXp06fp27ev5vnsIUOG4Ofnp/m8c+fOmJubA9C6dWsSEhJ0+dcihBBCvDIMnd5CpVQWu+L8hpmpTivOEvtdOZX7oxrGxsZ069aNY8eO8fPPP+Pm5kZgYCAKhQJ3d3eys7NLPOY/I6mffq2vr69JysvLy3smKvrp10+a5ifH2tnZsX379kKv2b59ew4dOkSNGjUYOXIkAM7Ozhw+fJiEhATN882bNm3i0aNH7NmzB2NjYz799FPNPc6fP58///yTM2fOMHXqVMaMGaNZyX3SDP/zHv5J1+OKUlhdirpGaf4dCSGEEBWZgXUTDKybFHvcFu9+VWaHCfGsco/cVqvVnD17FhsbG9LS0qhfvz4KhYJffvmF+Pj4Qs8xMzMjLe35/yPt2LEj+/btQ6VSoVKp2L9/v9aVWGdnZ+Lj4zlz5ozmvYsXL2r2OXZxceHcuXPExMTQqlUrANq1a0dwcDCOjo6aZjMtLQ0rKyuMjY1JTk7mp59+0oz3119/YWdnx/vvv8+AAQN0TgvURfv27TUx2bdu3SpwH/+sZ8eOHfnhhx9IT08nLy+PvXv30rFjxzKbixBCCCFEZVDuzzirVCrefPNNPv74Yy5dusSSJUtYv349dnZ22NnZFXrugAEDmDdvHocOHdJ8ObA0hg4dSkJCAl5eXkD+IwjantW1sLAgKCiIVatW4efnh0qlomHDhgQHB6NQKGjYsCE1a9akYcOGmm312rdvT1xcHP369dOMM3LkSKZOncrAgQOpW7dugUZ99erVmsdUzM3NWbZsWanuqzALFixg9uzZ/PDDDzRp0oQ2bdpoHsX4Zz0HDhzIn3/+ybBhwwBwcHBg0qRJZTYXIYQQQojKQAJQKqmsrCwMDAwwMDDQfLFx8+bNNGlS/J+hhBBCCFE4CUCp3CpEAIoof3FxccyZM4e8vDxycnKYPHnyS22a791LR62W39H+qSr9MCoNqY92UhvtpDbaSW20k9oIXciKsxBCCFEFZKlyMDE0kOZQC2mctatKtZEV51fAk0hyIyMjVCoVY8eO5Z133inXOTwJkvnnHtllZfwPJ7iTmfVCxhZCCFG8cO9eL3sKQrzypHGuIJ7sc3316lUGDRpEly5dqFOnzsuelhBCCCGE+D/SOFcwtra2mJubk5yczOuvv641IvzAgQNs2bIFlUoFwJw5czQ7dri5ueHp6cmpU6e4e/cuY8eO1aQEXrx4kWXLlpGZmUn16tVZsGABrVu3LjAHpVLJrFmzqFu3LnPnzuXu3bt8/vnn/P3332RnZ+Ph4cHEiRPLsSpCCCGKkhN/A2X0ySLDO0ZFbAMoMrxDoqKFKJo0zhXMb7/9Rq1atWjevHmREeGdO3emX79+KBQK/vrrL0aPHs2JEyc042RlZbFr1y6SkpLo378/Xl5eGBoa4uPjg5+fHx07duT06dP4+Pjwn//8R3Pew4cPmTJlCj179uT9998H8pvyjz76iHbt2qFUKhk9ejStWrWiU6dO5VscIYQQhVL+HoU6JbnIY26mPtBpLImKFkI7aZwrCB8fH/Ly8khMTCQwMBAjI6MiI8ITExOZOXMmycnJGBgYkJKSwt27d7GysgKgb9++ADRo0ABzc3Nu375NTk4OhoaGmnATV1dXDA0NiY2NxdTUFKVSybvvvsuUKVPo06cPAJmZmURHR3P//n3NXDMyMrhx44Y0zkIIUUEYObmgLCYu+g2z/HTc4lacJSpaCO2kca4gnjzjfPDgQWbNmsWPP/5YZET4jBkzmDt3Lj179kStVuPo6FggCruwKG5t0dpP3jM0NMTR0ZGjR4/Sq1cv9PX1UavVKBQK9u7dqwl6EUIIUbEYWDfFwLppkcds+b8vB1aV3RGEeBHKPXJbFK1Pnz506tSJkJCQIiPC09LSaNCgAQB79+5FqdS+yvBEkyZNUCqVmvjtM2fOkJOTg42NDZDfQPv5+WFmZsb06dNRqVSYmZnx1ltvmKTaZAAAIABJREFUERISohnn1q1b3L17t4zvXAghhBCiYpMV5wpo5syZDBo0iB9++EFrRPi8efP46KOPqFOnDu3bt6dmzZrFjmtkZMTatWsLfDnwq6++0jwKAvnN86JFi1ixYgUff/wxAQEB+Pv7s3z5cvr37w+Aqakpy5Yt0zwWIoQQQghRFUgAihBCCFEFSABK0apSyEdJVaXaSACKqBAkcrtwVemHUWlIfbST2mgntdHOxKrGy56CEK80WXEWQgghRKGyVDmkPXz8sqdRLuQXLu2qUm2qzIqzttjqn376iV9//ZU5c+ZoPfdFx02X1Ny5c3FwcOC9994jICCAwMBAdu/ejaOjIwABAQFkZmYWeU/aHDlyhNWrV2NsbMy//vUvmjRpUuhxUVFRrFixgrCwsDKpz4SDZ7ibmV38gUIIISqMfYO7UjXaJSF0U2kaZyg8trpHjx706NHjZU/tudSvXx9/f3+2bt1a6jFycnIwMDBg586d+Pj4aPZpFkIIIYQQuqlUjfMTT8dW//LLLxw7doy1a9cC+Vu3bdmyBcjft3jdunWa89asWcPx48d5/Pgxy5Yto23btprV1iFDhnDy5EmysrLw9/dn586dXLhwARMTE4KCgrCysiI3N1drRPbcuXMxMjIiLi6O27dv4+TkxIoVK1AoFCQnJzN79mwePHhAgwYNyM3NLXA/vXr14vTp05w8eZK33367wGfFXdPU1JS4uDgePHhA27Zt+e2334iNjWXHjh1s3bqVEydO8K9//Yvc3FwsLS1ZunQp1tbWWmv7zzjuwvaFFkIIUfGp4q6SffY4KLX/NXBU+AaJ6BbiKZVyH+enY6ufFhUVxbp169iwYQMRERFs2bKFGjXyvyjx8OFDnJyc2L9/Px9//DH+/v6a8x4+fMhbb73F/v378fb2ZvTo0YwYMYIDBw7QsmVLtm3bBlAgIjssLIw//viDXbt2aca5du0a69evJzIykv/+97+cOnUKgM8//5x27doRERHBvHnziI6OLjBvhULB9OnTWbNmDf98JL24a54/f56AgADCwsKYP38+Dg4OfPLJJ2zdupV79+4xe/Zs/P39OXDgAP369cPX11drXR8+fMi4ceNo06YN8+bNk6ZZCCFeYcrfT6O+ewt16n2t/9y8eZPbt//W+k9s7F9ERu5/2bciRLmpVI2zj48P7u7ujBw5kpkzZxbYnxjg2LFjeHp6avYfNjU11STsVa9ene7duwPg5OREYmKi5rzq1avTrVs3AFq2bEndunVp0aKF5nVCQgJAgYhsIyMjBg0axOnTpzXj9OzZE2NjY4yMjLC3t9ecFxUVxTvvvANAw4YNNSEnT+vWrRsmJiYcPHiwwPvFXbN3795Ur1690HpduHCB5s2b06xZMwAGDx7M5cuXSU9Pf+bYJ3Hc7777Lu+//36h4wkhhHh1GDm5omdVDz0LS63/1K9fn7p139D6T+PGTSSiW1QplepRjcJiq3X1dJOtp6dHTk6O1s+efv0kzhooMiIbCo/BLokZM2awYMECevfurXmvuGtqa5q1natNYXHcQgghXl2GNrYY2tgWecyWwV2rzG4KQuiiUq04P/F0bPXTunfvTnh4OCkpKQBkZGToFFWtq6IisovSoUMHQkNDAUhMTCywYvy0tm3bYmNjw4EDB577mgDOzs5cvnyZGzduALBv3z7s7e0xM3t2G5bC4riFEEIIIaqSSrXi/LQnsdUffvih5r327dszYcIExowZg0KhwMjIiODg4DK75tChQ7VGZBdlwYIFzJ49m0OHDtG4cWM6deqk9djp06drxn+eawJYWlqycuVKfH19ycnJwdLSklWrVmk9vrA47qdX0YUQQgghKjMJQBFCCCFEoSQARUDVqk2VCUARFZtEbheuKv0wKg2pj3ZSG+2kNtpJbYR4PrLiLIQQQgjxEmSpckl7mPmyp1GsqvQLl6w4VxBubm5Ur16diIgI9PT0NO8FBwdja1v0t5qfdvnyZWJjY+nbt6/mPTs7O86dO4epqWmZz/tpR44coXbt2rRu3brE53548LxEbgshhBBPCRvcQSLNXzGVcleNiiozM5Pw8PBSn5+Tk8Ply5c5dOhQGc5Kd0eOHOHixYsv5dpCCCGEEC+brDiXo8mTJxMQEICHh0eBvaDj4+NZuHAh9+/fx8DAgOnTp9OlSxcgfzV51qxZHD9+HFtbW3766SfS09Px9PSkXbt2fPLJJwBs3bqVw4cP8/DhQ2bPno27uzuQH3Li7+9PRkYGkB8S061bN3Jycvjwww958OAB2dnZtG7dmiVLlmBkZMS5c+f47LPPUKvV5OTkMGnSJCwsLDh69CinTp1iz549jBkzhoEDZdN7IYQQ4p9UcVfIOvtTkXHmAKPCTYqMNAeJNa9opHEuRw4ODjg4OPDdd98VSN/z9fVlyJAhvPPOO1y/fp0RI0Zw8OBBLC0tAVCr1WzduhXITyo8duwYa9euLTC2mZkZoaGh/Pbbb0ybNg13d3cePXrEokWLCAkJoXbt2ty5cwdvb28iIyOpUaMG/v7+1KpVi7y8PObMmUNoaCjDhw9n/fr1vP/++wwcOJC8vDzS0tIwNzfHzc0NBwcH3nvvvfIrmhBCCPGKyf79/0N99+9ij7uZqtt4kZH7pXGuIKRxLmfTpk1j1KhReHt7A/npfZcvX2bw4MEANGvWjBYtWvD777/j5uYGUGDfZm2ePPPs5OTEnTt3yM7O5vz58yQlJTF+/HjNcQqFgvj4eOzt7dm4cSMnTpxArVaTmpqKiYkJAC4uLoSEhPD333/TqVMnHB0dy7QGQgghRGVm7NSZLFV2sSvO9cx0W3GWWPOKQxrnctakSRO6du3Kpk2bgPzGuTC6xmY/8SSI5EkUdk5ODnl5edjZ2bF9+/Znjt+/fz+//fYb27dvx8zMjODgYOLi4gAYPXo0bm5unDp1is8++4xOnToxffr0Et2nEEIIUVUZ2jTH0KZ5scdtGdyhyuxWUVnIlwNfgilTprBjxw4yMjLQ09OjRYsW7Nu3D4AbN25w5coVrau8ZmZmpKXp9n8yZ2dn4uPjOXPmjOa9ixcvah6/qFWrlma8yMhIzTGxsbE0atSIYcOGMWrUKGJiYkp8bSGEEEKIykYa55egbt26eHp68vDhQwD8/f2JiIigf//++Pr6snLlSs3zzf/k6urK48ePGTBgAJ9//nmR17GwsCAoKIivv/6aAQMG0KdPHwIDA8nLy2PgwIFkZGTg4eHB1KlTeeuttzTnbd26FQ8PDwYOHMi2bduYNm0aAAMGDCAyMhJPT0/2799fRtUQQgghhHg1SACKEEIIIcRLIAEoFY8EoIgKQSK3C1eVfhiVhtRHO6mNdlIb7aQ22klthC6kcRbloqjf3qo6K6saL3sKFZrURzupjXblXZtXZeVQCPF8pHHWwcGDB1m3bh15eXlkZ2fTsmVLVq9eXaqxShqZrVKpCAoK4ocffsDAwAC1Wk3Xrl2ZOXMmhoaGpZpDVFQUKpWKzp07l+r8kSNHMnbsWLp3767zOZMO/sHdTFWprieEEBXd3sGOEp0sRBUgjXMx7ty5w5IlS9i3bx/16tUjLy+PK1eulHq8y5cvc+zYsQKNc1HmzZtHdnY2oaGhmJmZoVKpCAsLQ6lUlrpxjo6OJjMzU2vjnJOTg4GB/KchhBBCCPE06Y6KkZKSgoGBATVr1gTy91du0aIFACdOnOBf//oXubm5WFpasnTpUqytrQkLCyuQ7vfk9ZIlS1i7dq3OkdlxcXEcOXKE48ePY2aW/6iDoaEhQ4cO1cxv/fr1/Pjjj+Tm5lKnTh0+++wzrKysCAgIIDY2lrS0NBITE2nUqBFfffUVCQkJ7Ny5E7VazalTp/Dw8KBv374MHjyY9957j1OnTjFgwABsbGz48ssvyc7OJjc3l4kTJ+Lh4VGepRdCiJdOFfcHj88eIq/Y6GQjiU4WogqQxrkYzZs3p3Xr1nTr1g0XFxfatGmDp6cnarWa2bNns23bNpo1a8aePXvw9fVlz549WseqVasWPj4+Okdm//HHH1hbW2NhYVHoeOHh4SQkJLB792709PTYsWMHX3zxheYxkkuXLrF3715q1KjBuHHjOHDgAEOGDGHYsGFkZmYyZ84cAJKSknj48CFNmzZlypQpAKSmprJjxw709fVJSUlh0KBBdO7cWetchBCiMsr6/Wdy7yYVe5xEJwtRNUjjXAw9PT2CgoK4evUqZ8+e5ciRI2zYsIEZM2bQvHlzmjVrBsDgwYNZsmQJ6enppbpOYZHZxTl69CiXLl3SRHLn5uZqVqYBOnfujLm5OQCtW7cmISFB61jGxsb06dNH8/r+/fvMnz+f+Ph49PX1SU1NJTY2Ficnp1LdnxBCvIpMnLrzWJVd7IpzPTPdVpwlOlmIV5s0zjqytbXF1taWESNG0LdvXxQKRYFY7Kfp6+ujVqs1r3VpgguLzLa3tyc+Pp7U1NRCV3rz8vKYNGkS3t7eRY75ZNyi5lGtWrUC97N48WLc3NwIDAxEoVDg7u6u030IIURlYmhjj6GNfbHHbRnsKFuZCVEFSHJgMZKTkzl//rzm9e3bt7l//z5NmjTh8uXL3LhxA4B9+/Zhb2+PmZkZjRo14s8//0SpVKJUKvnxxx8155ckttrGxgY3NzcWLlyoWcnOzc3l3//+NxkZGbi5ubFjxw5SU/P/RqhUKnX64qIuc0hLS6N+/fooFAp++eUX4uPjdZqzEEIIIURlJSvOxcjJySEgIICbN29iYmKCWq1m2rRptG7dmpUrV+Lr60tOTg6WlpasWrUKAGdnZ1xdXenXrx8NGjSgadOm3L17F8iPzN64cSMDBgygffv2mi8HavPFF1/w9ddfM3jwYAwNDTXb0RkZGTFw4EAePnzIe++9B+SvQA8fPpzmzZsXOWbPnj0JDw/H09NT8+XAf5o5cyZLlixh/fr12NnZYWdnV5ryCSGEEEJUGhK5LYQQQjynVyUARdLxtJPaaFeVaiOR26JCkMjtwlWlH0alIfXRTmqjndRGCPGiyIqzEEIIIcrMq7L6/k/yC5d2Vak2suJcTlQqFcHBwURGRmJgYICBgQHW1tb4+Photqx7XklJSfzyyy8FAlBKE39dVMT3izL5YCx3M3PK7XpCCCFejl2D35T4cVFpSeNcRubNm0dWVhZ79uzB3NycvLw8Dh06xI0bNwo0zmq1usit7Ipy8+ZNdu3aVaBxFkIIIYQQ5UMa5zLwdDT2k8ARhUKhCRQJCAggPj6ezMxMEhMT2bZtG/fu3cPPz48HDx6gUql4//33GTx4MJC/o0VsbCwqlYpGjRrh5+eHhYUFS5cuJSkpCU9PT6ytrZ9JH3zaxo0b+f7778nNzcXY2JjFixdrosKfUKvVfPHFF6SkpPDFF1+gVCpZvnw5f/75J9nZ2bi4uDBv3jz09fUJDAwkMjISY2NjFAoFW7Zs0dyrEEKIqkMZF0PG2QPkKbMK/XxUuGGRYTASPS5eZdI4l4HiorEBfv31V8LCwrC0tCQnJ4cxY8awatUqmjZtSnp6OoMHD8bJyYmmTZuyYMECLC0tAVizZg3r16/H19eXhQsXsmLFCsLCwoqd08CBAxk7diwAp06dYtGiRezevVvzeXZ2NvPmzaN+/fqsXr0ahULBkiVLaNeuHcuWLUOtVuPr60toaCju7u5s2LCB06dPY2JiQnp6OiYmJs9ZNSGEEK+izN//Q+5d7Um0usSPS/S4eFVJ4/wCXL9+nZkzZ5KVlcXbb7+NhYUFXbp00TTDcXFx3LhxgxkzZmjOUalU/PXXXzRt2pTw8HAOHDiASqUiMzMTGxubEs/h0qVLrFu3jtTUVBQKBXFxcQU+/+CDD/Dw8GDcuHGa944ePcrFixfZtGkTAFlZWdSpUwczMzMaN27MrFmzePvtt+nWrVuBaG8hhBBVR3WnXmSosrWuONczK37FWaLHxatKGucy8CQa+9GjR5ibm9OsWTPCw8PZtm0bly5dwsLCosAX8fLy8qhVqxbh4eHPjPXrr7/y3XffsXPnTiwtLTlw4ECBlWJdKJVKpk6dyrZt22jZsiXJycl06dKlwDEuLi6cPHmS4cOHU716dc28goKCaNiw4TNj7t69m3PnznHmzBkGDRrEt99+W2zQihBCiMrHyKYVRjattH6+ZfCbVWYHBlH1SOR2GbCxsaFHjx588sknBaKsMzML346ncePGmJiYsH//fs17N27cID09nUePHmFmZkbNmjVRKpWEhoZqjjEzM9NEbxdFqVSSk5NDvXr1ANixY8czx0yePJmOHTvywQcfaMZ0c3MjJCSE3NxcAO7fv09iYiLp6encv3+f9u3b4+Pjg62tLdeuXdOhMkIIIYQQlYesOJeR5cuXExQUhLe3NwYGBpibm1O7dm0mTJjA0aNHCxxrYGBAcHAwfn5+bNiwAbVazWuvvcaXX35Jly5diIiIoE+fPtSpUwcHBwdiYmKA/G3kGjduTL9+/WjSpInmy4Fz587F2NhYM35ISAg+Pj54e3tTr169Z1abn5gwYQImJiaMHj2ab7/9lvnz57Nq1So8PT1RKBQYGhoyf/58DA0NmTJlCllZWeTl5WFvb0+vXr1eUCWFEEIIISomCUARQgghRJmRAJTKpyrVRgJQRIUgkduFq0o/jEpD6qOd1EY7qY12Uhshno+sOAshhBCigGxVLo9ewVXj5yG/VGhXlWojK84VkJubG8HBwdja2j7XODExMWzevJnVq1eX6vzx48fz6aef0qhRowLR3XPnzsXBwYH33nvvueb3tMU//s39zNwyG08IIcSLs9br2d2VhBDSOL/SWrVqVeqmGWD9+vVlOBshhBBCiMpNtqOrIC5evMjQoUPp378/Q4cO5eLFiwBERUUxaNAgzXFPv376f9+7d4/Ro0fTv39/+vfvj5+fHwC9evXiypUrmvO3bt3KvHnzgPyV76tXrxY5L6VSyYoVK/D29sbT05NZs2aRkZFRdjcuhBBCCPGKkBXnCkCpVOLj44Ofnx8dO3bk9OnT+Pj48J///EfnMQ4cOMAbb7zB5s2bAUhNzc889fT0ZN++fZpm+en/rYtvv/2WGjVqsHfvXgBWrVpFSEgI06dP13kMIYQQFUNa3O/cidqHWkvq3xOj9hkUmf73RLVqJrzzzrsSny2qDGmcK4DY2FgMDQ3p2LEjAK6urhgaGhIbG6vzGI6OjmzatIkVK1bQvn17OnfuDICXlxdDhgxh1qxZ/PXXX6SlpdG2re4/4I4ePUp6ejo//vgjkN/kS2KgEEK8mlLOHSTrbnyxx91M1X3MyMj90jiLKkMa5wogLy8PhULxzPsKhQJ9fX2e3vgkOzu70DGcnZ3Zv38/p06dIjw8nJCQEL777jveeOMNmjZtyokTJ4iOjmbgwIGFXquouS1atAhXV9eS35gQQogK5fU2fbijyip2xdnKTPcV5379BpbV9ISo8KRxrgCaNGmCUqnkzJkzdOjQgTNnzpCTk4ONjQ0PHjwgMTGR1NRUzM3N+f777wsdIzExkbp16+Lh4UHbtm35f//v/6FWq9HT08PLy4s9e/YQExPD7t27SzQ3Nzc3Nm/ejLOzMyYmJqSnp5OcnEzTpk3L4taFEEKUoxo2TtSwcSr2uLVeDavM9mNClIQ0zi/JmDFj0NfX17wODAxk2bJlZGZmUr16db766iuMjIyoU6cOY8aMYdCgQTRo0IBWrVpx7dq1Z8aLjo5m06ZN6Ovro1arWbJkCXp6+d/9dHd357PPPqNVq1a88cYbJZrnhAkTCAwMxNvbG4VCgUKhYPLkydI4CyGEEKLKkQAUIYQQQhQgASjiaVWpNhKAIioEidwuXFX6YVQaUh/tpDbaSW20k9oI8XxkxVkIIYQQrzylKpfU51gll18qtKtKtZEV50ri4MGDrFu3jry8PLKzs2nZsmWpUwMvX75MbGwsffv21bwXEBDAhx9+iJGREUCZx25//eMdUiVyWwghxAsy36vey56CqAKkcX4F3LlzhyVLlrBv3z7q1atHXl5egTTAkrp8+TLHjh0r0DgHBgYyduxYTeMshBBCCCEKksb5FZCSkoKBgQE1a9YE8vd3btGiBQAXLlzA399fE4Pt4+NDt27dyMnJ4cMPP+TBgwdkZ2fTunVrlixZQkZGBmvXriU9PR1PT0/atWtHbm7+SvCwYcPQ09Nj69atBa6vVCpZs2YNZ8+eRaVSYWtry+LFizE1NS3HKgghhBBCvFzSOL8CmjdvTuvWrenWrRsuLi60adMGT09P9PX1WbRoESEhIdSuXZs7d+7g7e1NZGQkNWrUwN/fn1q1apGXl8ecOXMIDQ1l+PDh+Pj4cOzYMdauXau5xo4dO9i5c2ehzbDEbgshhCgPKXHn+SsqlJxiAloKM2qfvk6hLf/0JDbc3b17ic8VVY80zq8APT09goKCuHr1KmfPnuXIkSNs2LCB2bNnk5SUxPjx4zXHKhQK4uPjsbe3Z+PGjZw4cQK1Wk1qaiomJialur7EbgshhCgP8ee+J+1uXKnOLUlM+D9FRu6XxlnoRBrnV4itrS22traMGDGCvn37kpeXh52dHdu3b3/m2P379/Pbb7+xfft2zMzMCA4OJi4urlTXldhtIYQQ5cG6jQe5qqxSrThbmpV+xVliw4WupHF+BSQnJ/P333/j7OwMwO3bt7l//z7NmjUjPj5eE9UNcPHiRVq1akVaWhq1atXCzMyMtLQ0IiMjcXBwANC89zRTU1PS09MLfVRDYreFEEKUh9dtnHndxrlU5873qldltkwTL480zq+AnJwcAgICuHnzJiYmJqjVaqZNm4a9vT1BQUGsWrUKPz8/VCoVDRs2JDg4mIEDB/LTTz/h4eFBnTp1eOutt8jOzgbA1dWVjRs3MmDAANq3b88nn3zC2LFjGTVqFCYmJs98OVBit4UQQgghJABFCCGEEJWABKC8OFWpNhKAIioEidwuXFX6YVQaUh/tpDbaSW20k9oI8XykcRbloqjf3qo6K6saL3sKFZrURzupjXZVpTZKlZrUhxkvexpCVBnSOItysf3QXdIy1S97GkIIUalMHFTnZU9BiCpF72VPoKyoVCq++uor3N3d8fDwoE+fPnzxxRccOXKEFStWlHrc5ORkRo4cWYYzLSgpKYldu3YVeG/8+PEkJCQAMHfuXLp06cLAgQPp1asXw4cPZ//+/c993YCAAJRK5XOPI4QQQghRVVSaFed58+aRnZ1NaGgoZmZmqFQqwsLCcHV1pWfPnqUet06dOs/sMlGWbt68ya5duxg6dKjmvfXr1xc4ZsKECbz33nsAXL58mWnTpvHgwQPGjBlT6usGBgYyduxYjIyMSj2GEEIIIURVUika57i4OI4cOcLx48cxM8t/ltbQ0JChQ4cSFhamiZeOiorCz88PR0dHzp8/j0KhYM2aNZpt1fbu3cuWLVs0569bt46srCwGDx5MVFQUAHZ2dkyfPp3Dhw/z8OFDZs+ejbu7e7GfzZw5k9jYWFQqFY0aNcLPzw8LCwuWLl1KUlISnp6eWFtbs3btWtzc3AgODsbW1vaZe23RogULFixg7ty5jB49mpSUFGbMmEFGRgbZ2dl07dqV2bNnk5WVRc+ePQkLC6N27doAfP7557z++uskJycDMGzYMPT09Ni6dStKpZJFixZpVrrHjRvHwIH5G8K7ubnh6enJqVOnuHv3LmPHjtU08kIIIcrWrbjzXIreo1MIyKn9uod+VKtmwgcfjKNp05bPO0UhqqxK0Tj/8ccfWFtbY2FhUeyx169fZ/ny5SxdupRvvvmGoKAgVq9eTVRUFOvWrWPHjh1YWVmRkZGBgYEBWVnP/uAyMzMjNDSU3377jWnTpmma46I+W7BgAZaWlgCsWbOG9evX4+vry8KFC1mxYgVhYWE636+joyP37t3j/v37mJubExwcjKmpKSqVinHjxnHixAnN4x27d+9m8uTJZGZm8v333xMZGclrr73Gjh072LlzpybwZNq0abz55pt8/fXX3Llzh0GDBmFvb69p3rOysti1axdJSUn0798fLy+vQsNShBBCPJ8/z0fyUMfY6fQSxkzv3r2befOWlHxSQgigkjTOJdG4cWPs7e0BcHJy4ueffwbg2LFjeHp6YmVlBVBkU9i3b1/N+Xfu3CE7OxtjY+MiPwsPD+fAgQOoVCoyMzOxsbEp9T08vfV2bm4uK1eu5Pz58+Tl5ZGSksKVK1fo0qULI0aM4N1332XixImEh4fTqVMnXnvttULHPH36NHPnzgWgdu3adO3alaioKE3j/OS+GjRogLm5Obdv35YAFCGEeAHsnPuhUj3WacXZogQx09WqmTBkyJDnnZ4QVVqlaJzt7e2Jj48nNTW12FXnp5/p1dPTIycnp8TXe9Ik6+vrA/nJfk/eK+yzmJgYvvvuO3bu3ImlpSUHDhxg9+7dJb7uEzExMbz22mtYWloSFBTEo0eP2LNnD8bGxnz66aeahMB69erRqlUrfvrpJ3bs2MHSpUuLHFehUGh9/eS+ntxbbm5uqecvhBBCu3o2ztTTMXZ64qA6JdqXWfZxFuL5VIpdNWxsbHBzc2PhwoWkp6cD+Sux//73v8nM1C1FqHv37oSHh5OSkgJARkZGme068ejRI8zMzKhZsyZKpZLQ0FDNZ2ZmZpo56+LKlSv4+fkxfvx4FAoFaWlpWFlZYWxsTHJyMj/99FOB49977z38/PwwMDDA2fl/P4hNTU0LXNfV1VWzu8fdu3c5fvw4Li4upb1lIYQQQohKp1KsOAN88cUXfP311wwePBhDQ0PUajVdu3alcePGOp3fvn17JkyYwJgxY1AoFBgZGREcHFwmc+vSpQsRERH06dOHOnXq4ODgQExMDJD/hcLGjRvTr18/mjRpwtq1a585PyQkhD179pCVlYWlpSUffvih5ot7I0eOZOrUqQwcOJC6devV71sDAAAgAElEQVTi6ur6zH0ZGxvz7rvvFnh/7NixjBo1ChMTE7Zu3conn3zCwoUL6d+/PwC+vr68+eabZXL/ACN6W5XZWEIIIfIpVbI/vhDlSZH39AOzotJJTExk+PDhHD58mGrVqr20eUjkduHkz6ZFk/poJ7XRTmqjndRGO6mNdlWpNnp6iiLTjqVxrsS++uorQkNDmT17Nv369XvZ0xFCCCFEBaZSqXlYSIS7NM7/I42zKBcRB++RIZHbQgghRIU1fLBVoQ2yNM5PfV6OcxGFcHNzo1+/fqjV6gLvXb169bnGDQwMZNq0aQXemz9/PqtWrSrxWMOHD+fEiRPPNR8hhBBCiFedNM4VQGZmJuHh4WU65sSJE0lISODQoUMAnDx5kosXLzJ16lSdx8jLy5Nt54QQQggh/k+l2VXjVTZ58mQCAgLw8PAosM/0nTt3+Pzzz/n777/Jzs7Gw8ODiRMncvLkSbZu3UpISAj37t2jY8eOfPnll/Tp04f169eTlpbGjBkzWLFiBR988AH29vYsWbKENWvWaMYPDQ1l8+bNQP52fkuWLMHS0pI9e/Zw+PBhatSowV9//cWKFSsKzDUiIoItW7bw9ddfU6dOnXKrkRBCCCF0lxB3jt/O7kGlfKzzOQfDCw/U0ddXFPp+tWomvPPOu7Rp0/a55voqkca5AnBwcMDBwYHvvvuO999/X/P+nDlz+Oijj2jXrh1KpZLRo0fTqlUr2rZti6+vLyqVitOnT+Ps7Mzp06fp06cPZ86c4YMPPgDgzTffZMSIEXh5eTFq1ChatWoF5O8F/eSLg1ZWVqxevZply5axevVqAH799VciIiJo0KBBgXmuW7eO6OhoNm/ejJmZ9ud/hBBCCPFyXfz9APfuxpbonEcljHAHiIzcL42zKH/Tpk1j1KhReHt7A6BWq4mOjub+/fuaYzIyMrhx4wadOnWiWbNmXLhwgVOnTvHRRx+xatUqlEolly5dok2bNppzxo0bx+rVqxk7dqzmvTNnztCtWzdNvPjQoUMLxLC2a9fumab5yy+/pEGDBgQHB2NoaPhCaiCEEEKIstHaqT8qVVaJVpxraIlwL2rFuV+/gc81z1eNNM4VRJMmTejatSubNm0C8uOuFQoFe/fuLbRRdXV15cyZM1y4cIHFixfz2muvERkZiZ2d3TPx2JAfL/5EXl5ekfHa1atXf+Z6zs7O/PLLL9y6dYtGjRo9380KIYQQ4oVqZNOGRjZtij/wKbKrRvHky4EVyJQpU9ixYwcZGRkoFAreeustQkJCNJ/funWLu3fvAtChQwfCwsKoW7cuRkZGuLq6EhgY+ExyYGFcXV35+eefuXfvHgB79uwp9ryuXbvy6aef8sEHH3Djxo3nuEshhBBCiFeTrDhXIHXr1sXT05ONGzcC4O/vz/LlyzUx2KampixbtgwrKyscHR158OCBJkrb1dWVf/3rX3To0KHY6zRv3pypU6cyevRoAKytrVm6dGmx53Xq1Illy5bx4YcfEhgYSPPmzXW+twF9XtP5WCGEEEKUP5VEuBdLAlBEuZDI7cLJn7+KJvXRTmqjndRGO6mNdlIb7apSbSQ5UAghhBBlQlskc2VQlZrDkqpKtSmucZZHNUS5OPz9fR5L5LYQQrzSBrzz+sueghAv1Svz5cAXFU0N+Vu/BQcH4+7uTp8+fejbty+7d+8u8py5c+eybdu25752SdnZ2Wm2rHti7dq12NnZ8fPPPxd7flE1Gz9+PAkJCQCMHDlSp/GEEEIIIaqKV2rF+Uk0tZeXV5mO+80333D69Gl27dpFzZo1uXXrFh988AHGxv8/e/cdFtWZ/n/8TRlQwViiIsZOFLtoFKyoyK4asACWaGwxIYmJQY38pBhrbFhilGiMriVZg7EBBjQxIUYxFizoomsvKFgQgqKIwDDD7w++nhVlYECkOPfrunKtM6fMc27Zc908nnk+5gwcOPC5/Us7hlqr1XL58mXefPNNsrOz2b17N02bNn3h865du7YYRieEEEII8WoqV43zy4imnjBhAmvWrCE4OJiqVasCYG1tzdSpU/nyyy8ZOHAgUVFRzJ8/nw4dOnD69GnGjx+fa1yZmZksW7aMY8eOoVaradq0KbNmzcLCwoKwsDB++OEH1Go1kJMG+GTpNycnJwYOHMihQ4dITExk3LhxjBw5Eq1Wy5w5czhy5AhmZmZUqlSJn376Sfm8QYMGERwczNSpU4mKiqJp06bcu3dP2Z6UlMTMmTOV2eP333+fQYP+t0B5WFgY0dHR3L17lzFjxjBy5EhlPKtXr36uCU9NTWXBggVcuHCBjIwMHBwc8PPzU9aIFkIIUX5dux7NkWNbyVSnF7jv9jDjPIMwnjDECGZhWMrNoxqQO5r6aT4+PowaNYrt27ezY8cOIiMjOXjwIB06dOA///nPc9HUkJOe17lzZ2JjY1GpVNjY2OQ6p52dHXFxcaSmpgJw8eJFXF1d2bp1K7169cq177/+9S8qV67M9u3b2blzJ7Vq1VLWX+7WrRtbt24lNDSUr776Ch8fn1zHpqens2XLFn744QeWLl3Ko0ePOH/+PIcPH2b37t38/PPPfPfdd7mO6devHxEREWg0GkJCQp6bgZ87dy5NmjQhLCyMdevWsWTJklyPZyQlJfHjjz+yefNmVq9ezfnz5/Ot+4IFC+jYsaNyfcnJyezYsSPfY4QQQpQPJ06FcTfpGvdTbhf4382bN7lz55bO/65du0p4eGhpX5IQL025mnGG4o+mjo2NzfNzniTpPfnfBg0a0K5duzz33bt3L6mpqezZswfImYF+ssZxXFwcU6ZMISEhAVNTU5KSkkhMTFTirt9++20A6taty2uvvcadO3eoV68eGo2GadOm4eDg8FyjXqlSJezs7Pj999+Jjo5m3rx5ytrPAIcPH8bX1xeAWrVq0aNHD2VmGlBqV6NGDXr27MnRo0fzXZN57969xMTEKKmG6enpWFlZ6dxfCCFE+fGWXX/U6sd6zThbWBY842xoEczCsJS7xrm4o6kbNmyIWq3mypUruWadT548Sd26dbGwsADyjqF+Ijs7m5kzZ+aZvvf555/j6+uLs7MzWq2Wtm3bkpGRoWx/Nh5bo9FQuXJldu3aRVRUFIcPH2bJkiWEhIQozTaAm5sbkyZNwt3dHVPT5/8a84vUfnbsurY9vc+qVauoV69evvsJIYQofxo1aE+jBvpFMw8YUsNgliUTIi/l6lGNJ4ozmtrc3BxPT09mzZpFSkqKcvzixYv57LPP9BqPk5MTGzduJD0957f11NRUJZb64cOH1K1bF4Dt27eTmZlZ4PmSk5NJT0/H0dERb29vKleuTFxcXK59OnXqxEcffcS777773PGdO3dmy5YtACQmJrJ//34cHByU7SEhIcrnREZGYm9vX+D1rVmzRvlSZHJy8nPjEUIIIYR41ZW7GWco/mjqTz75BGNjY4YMGaJ84W306NG5vlCXnw8//JBvvvmGwYMHKzPgEyZMwMbGBj8/Pz755BOsrKywt7dXvoCYn9u3bzN9+nSysrLQaDQ4OjpiZ2eXax8jIyPGjRuX5/FffPEFM2bMUOrh7e1NkyZNlO3W1taMGDGCxMREPvroI2xtbfMdj7+/P4sXL2bgwIEYGRmhUqnw9/cv1Az0P1yq672vEEKIskkimYWhk+RAUSIkcjtvhpTGVBRSH92kNrpJbXST2ugmtdHNkGojkdtCCCGEKFavYvS2ITWHhWVItZHIbVEm/PXz36Q/kn/iE0KIV4Hz8JoF7yTEK6hcfjmwLChK3PfTMdbTpk3j+PHjL2NoRRYcHIyXlxcAp0+fZsqUKaU8IiGEEEKIskNmnEvJvHnzSnsI+WrdujVLly4t7WEIIYQQQpQZ0ji/oFGjRtGqVStOnTrF3bt36devH97e3gBcvnwZPz8/srKysLGxybV+86hRoxg3bhy9evUqUiw3QEBAAEePHkWtVlOtWjXmz5/PG2+8QXx8PB4eHri7u3Ps2DEyMjKYOXMmHTrkRKCGhoaybt06AOrXr8+cOXN4/fXXc11XVFQUAQEBBAcH8/fffzNlyhT+/vtvIGdlEn9//5dYVSGEEKXl8o1oDpzYRob6sc59fvjFJN8gFJD4bfFqksa5GNy+fZsff/yRR48e4ezszODBg2nYsCFTp05l1KhRuLm5cerUKYYPH57n8d26dcPV1RUjIyOuXr3K2LFjiYyMVLY/ieWOj4+nf//+uLm5YWFhgaenpxLhvW3bNpYsWcKyZcsAuH//Pra2tvj4+HD06FE+//xzIiIiiI2NZcmSJQQHB1OrVi2+/vprvvzyS77++mud1xcWFkadOnXYuHEjgLLetRBCiFdPVEwYd/6+lu8+9x7od67w8FBpnMUrRRrnYtC3b1+MjY2pXLkyNjY23Lhxgxo1anDx4kUGDhwIgJ2dnRJ5/ayixHLb2NgQGRlJUFAQaWlpZGVl5TqnSqViwIABANjb21OhQgWuXr3KsWPH6NGjB7Vq1QLgnXfeUcaoS9u2bdmwYQMBAQHY29vTrVu3ohdLCCFEmebQpj+Z6vR8Z5wrVdZvxlnit8WrRhrnYpBXbDbojrl+VlFiuW/evMmCBQvYvn079erVIzo6WnlEJC9PorX1idh+Vrt27QgNDeXQoUPs3LmTNWvWsHnz5kKdQwghRPnwZv32vFk//whu5+E1DWZ5MiGeJqtqvCSWlpY0adKEsLAwAGJiYnSuwlGUWO7U1FRUKhU1a9ZEq9Xy008/5dquVquVzz5+/DgZGRk0atSIzp07s3//fiWSfOvWrXTp0iXfz4qLi8PS0hIXFxf8/Pz473//i1YrS8sJIYQQwrDIjPNLtGjRIvz8/Ni4cSMtW7akbdu2ee5XlFhuW1tb+vbti4uLC3Xq1KFjx465lrerWrUq169fZ8iQIaSnp/PVV19hZmZGkyZNmDJlihLXXa9ePebMmZPvZx09epQNGzZgYmKCVqtl9uzZGBsX7neubgNeL3gnIYQQ5YJEbwtDJcmBr6Anq2pERUWV9lAUErmdN0NKYyoKqY9uUhvdpDa6SW10k9roZki1KSg5UB7VEEIIIYQQQg8y4yyEEEII8ZQstZZ79x+V9jDKDJlx/h95xvkFOTk5sXr1ap1Lzb2sY4vD5s2bycjIYOzYsQQHB7Nv3z5WrFiRK/ykuBzf8TcZj+SZOCGEEGVf19E1S3sIooySxtmA6QpkEUIIIYQQz5PGuZisX7+eXbt2odFoMDc3Z9asWTRv3hyAkydPsmjRIh49yvlnn6lTpz4XIrJ+/Xr279/PN998Q1RUFMuXL8fY2BiNRsP06dNxcHDg+vXrzJgxg+TkZExNTZk8eTKOjo5AziobkydP5vfff+f+/ftMnTqVPn36sHLlSlJSUpSI7Hv37tG3b1/+/PNP1q1bR1pampI+qMv+/fv59ttvyczMRKVS4efnh52dXXGXUAghhCh2F+Kj2XtyG5lZugNdnvVdRMEBL3mRmPFXnzTOxWTQoEHKEm+HDh1i5syZbN26lfv37zNhwgQCAwNp3749Go2G1NRU5TitVsvcuXO5d+8ea9euxczMjBUrVjBz5kw6dOiARqPh8eOc/7N7e3szdOhQhgwZwuXLl3n33Xf55ZdfqF69OpCzdvSOHTs4ceIEkyZNok+fPri5uTF06FCmTp2Kqakp4eHhODk5UalSJb2u68aNG6xatYp169ZhaWnJpUuX8PT0ZN++fcVbQCGEEOIlOHgmjNvJ+UeIP0fPSPG8SMz4q00a52Jy5swZvvvuO1JSUjAyMiI2NhaAU6dOYWNjQ/v2OSlMJiYmVKlSRTnO39+fdu3asWTJEiXRr1OnTixcuJC+ffvi6OhI06ZNSU1N5dy5c3h4eADw5ptv0rx5c06dOoWTkxPwv2huOzs77t69S0ZGBnXq1MHGxob9+/fTu3dvQkJClNlnfRw4cIAbN27w7rvvKu9lZWWRlJREjRo1il4wIYQQogR0bdWfDHV6oWacK+gRKZ4XiRl/9UnjXAy0Wi0TJ05k06ZNtGzZkoSEBOURioIWLenYsSNHjx4lOTmZ11/PCQnx9/fnwoULHDlyhIkTJ/Lee+8pTfGzno7PfhLNbWJiAuQ0uObm5ri5uREaGkq9evV4+PAhHToU7jfh7t27s2jRokIdI4QQQpQFtnXbY1s3/wjxZ3UdLZHiIm+yjnMxycrKwtraGoCgoCDl/Xbt2nHlyhVOnjwJgEajISUlRdnu4eHBe++9x9ixY0lISADg6tWr2NraMmbMGAYMGMDp06extLSkefPmhISEAHDlyhXOnz+vM43waX369OHYsWOsX78eNze3Ql1X165dOXDgAJcuXVLei4mJKdQ5hBBCCCFeBTLj/IKysrKoWLEiXl5eDB48GGtra2W2GXKirwMDA1m4cCFpaWkYGxvj4+NDly5dlH0GDBiAubk5Y8eOZe3atSxdupTr169jYmLCa6+9xrx58wBYsmQJM2bMYOPGjZiamrJo0SLl+eb8VKxYkd69exMcHMwff/xRqOtr2LAhixcvZtq0aaSnp6NWq2nfvj1t2rQp1Hk6eEjkthBCiPIhSyLFhQ4SgPIC7t69S79+/Th48CAVKlQo7eGUaRK5nTdDWlS+KKQ+ukltdJPa6Ca10U1qo5sh1UYCUF6SH374gaCgIHx8fKRpFkIIIYQwADLjLIQQQhiQrEwt91IkTvpZhjSrWliGVBuZcS5D1Go1q1atYvfu3ZiamqLVaunRowdTpkxBpVLleYyvry+tWrVi5MiRxTaO0oj6Pr0licxUeWZMCCFK21vv1yrtIQhRbknjXIL8/PzIyMhgx44dWFpaolarCQ4OVhL5hBBCCCFE2SWNcwmJjY0lIiKC/fv3Y2mZ808AKpWKYcOGodFoCAgI4MCBA0DOusne3t7KesxPPDv7/PRrX19fzMzMiI2NJS4ujn/84x/06tWLwMBA7ty5w5gxYxgzZoxyrrCwMKKjo7l79y5jxoxRzmlra0t0dDQWFha5Xj9ZDeTy5cuYmprSqFEjli9f/tLrJoQQomDnbkbzW8x2MvQI+TDfX3C4h0RHC5E3aZxLyNmzZ2nQoEGu1MAntmzZwrlz5wgODgbA09OTLVu2MGLEiEJ9xqVLl/j+++/RaDQ4OTnx8OFDNm3aRGJiIn379mXw4MFKQ5yUlMSPP/5IUlISgwYNokOHDjRr1kznuf/66y8ePHjA7t27AXKtRS2EEKJ07T8Xzs17esZK6/moqkRHC/E8aZzLgMOHD+Pm5oaZmRkA7u7uREREFLpxdnZ2Vs7RqFEjevTogbGxMVZWVrz22mvcuXMHGxsbAAYPHgxAjRo16NmzJ0ePHs23cW7WrBlXr15l9uzZ2Nvb07NnzyJcqRBCiJehR3NXMtTp+s04v6bfjLNERwvxPGmcS0iLFi24fv06KSkpz806Z2dn54rOBp57DTlR2lrt/75gl5GRkWv7k8jtJ/s++1qj0eQ5tqc/38TERIkJf/r89erVY/fu3Rw5coTIyEiWLVtGWFhYrs8QQghROpq/0Z7mb+gXK/3W+7UMZoUEIYqbRG6XkIYNG+Lk5MSMGTNITU0FcuK3v//+exwcHAgJCUGtVqNWqwkNDaVz587PnaN+/fqcPn0ayAlfiYqKKvJ4nkR3JycnExkZib29PZDTID/5jLCwMGX/O3fuYGJigrOzM35+fiQnJ3P//v0if74QQgghRHkjM84laOHChaxcuRIPDw9UKpWyHN3kyZO5efMmbm5uAHTr1o2hQ4c+d/zQoUPx8vJiwIABNGzYsNCx10+ztrZmxIgRJCYm8tFHH2FrawuAv78/M2bMoGbNmrkex7hw4QJLly4FQKvV8uGHH2JlZaX357UeVqPIYxVCCFF8sjJlaVAhikoCUESJkMjtvBnSovJFIfXRTWqjm9RGN6mNblIb3QypNgUFoMijGkIIIYQQQuhBZpyFEEIIYfBR3IY0q1pYhlQbidx+RTg5OWFmZoaZmRmPHz/mzTffxNPTk/bt8/8WdUREBLVq1Sry89Cenp5Mnz6d+vXrExwcTLt27WjUqFGhz3NpUyLqh/JcnRBClFUtxuv/vRUhDJU8qlGOrFixgp9//pnff/8dNzc3PvzwQ/7zn//ke0xERAQxMTE6t+taou6JtWvXUr9+fSBnJY7Y2NhCj1sIIYQQ4lUgM87l1D//+U9iYmJYt24dS5YsYdmyZRw7dgy1Wk3Tpk2ZNWsW0dHR7N27l0OHDrFt2zbee+89rK2tmT9/Ph06dOD06dOMHz+e1q1bM3PmTG7cuAHA+++/z6BBOQvfOzk5sXr1ak6fPs2ZM2eYO3cuX3/9NT4+PnTp0qU0SyCEEEIPZ26fZPd/t5GelZ7vfmaHCw5GeUIiuYWhksa5HGvbti179+7lX//6F5UrV2b79u0ALF68mDVr1jB58mScnJxo1aoVI0eOBCAqKoqLFy8ya9Yspk+fDsCkSZNo0qQJK1eu5O7du7i7u9OiRQuaNm2qfJaHhwehoaGMGzeOXr16lfzFCiGEKJI/LoQTdz+24B1TC3deieQWhkga53Lsyfc69+7dS2pqKnv27AEgMzMz3/jsBg0a0K5dO+X14cOH8fX1BaBWrVr06NGDqKioXI2zEEKI8qm3rSsZWY8LnnGuUrgZZ4nkFoZIGudy7PTp0zRp0oT4+HhmzpyZZ9pgXipVqvTce/pEfgshhCh/Wlm3o5V1uwL3azHeymBWThCiqOTLgeVUREQEmzdv5r333sPJyYmNGzeSnp4zm5CamsqVK1cAsLS05OHD/G+EnTt3ZsuWLQAkJiayf/9+HBwcntvPwsKiwHMJIYQQQryqZMa5HPHy8lKWo7OxsWHNmjXY2dnRsmVLvvnmGwYPHoyRkRFGRkZMmDABGxsbBgwYgJ+fH7/++qvy5cBnffHFF8yYMYP+/fsD4O3tTZMmTZ7bb9iwYQQEBLB+/XqmTp0qXw4UQgghhEGRABQhhBBCSACKAYV8FJYh1UYCUESZ8PffqWi18jvaswzpZlQUUh/dpDa6SW10k9oI8WJkxlkIIYQQoozSZGpJLuV/CTCkX7hkxvkleDr+WqvVMn78eDIyMti3bx8rVqx4bv8//viD48eP4+PjQ1RUFAEBAQQHBxfqM4ODg3We/2mBgYGkpaXh4+NT5PM9Pd7iEr8+kawH+acUCiGEECK3hpNql/YQxFOkcS6iFStW0LRpU86ePcs777zDxIkTde7bu3dvevfuXYKjezHlbbxCCCGEECVBGucX1KJFCywsLMjOziY1NZVJkyZx6dIlKleuTGBgIDVr1tQ5u5uVlcVHH33EvXv3yMjIoE2bNsyePRszMzMyMzOZO3cuUVFRWFlZ0bhx41zHrl27lj179qDRaLCysuLLL7+kZs2aufYJDg4mLCwMS0tLrl+/TtWqVVm8eDFWVlYAeo03MTGRzz//nEePHpGRkUGPHj2YOnXqyy2qEEII8Yr7T8JJdl7YXmAwjWl0wcE0EoFecmQd5xd05MgRMjIyMDU15fTp0/j4+LBr1y7efPNNNm3alO+xJiYmLFmyhODgYMLDw9FoNOzYsQOALVu2EB8fT3h4ON999x0xMTHKcTt37uTGjRts3bqVkJAQHB0dWbhwYZ6fceLECSZPnszPP/+Mvb098+bNU7bpM97XXnuN1atXExwcTGhoKGfOnCEyMrIopRJCCCHE/9lzZRfXU2JJeHQn3/9u3rzJnTu38v3v2rWrhIeHlvYlGQSZcS4iLy8vzM3NsbS0JDAwkISEBNq3b6+sk9y2bVsOHTqU7zm0Wi3r168nMjISrVZLSkoKFSpUACAqKopBgwahUqlQqVQMGDCA6OhoICdi+8yZM7i5uQGg0WiwtMz7Qfa33npLma0eMmSIslYzoNd4NRoNixYt4uTJk2RnZ5OUlMT58+dxdHQsTLmEEEII8ZQ+Ni6k6xGFblpVvxlniUAvGdI4F9GTZ5yfCA4OxtzcXHltYmKCRpP/l+HCwsI4ceIEP/74I5aWlqxevZrY2FgA8lvsJDs7m/HjxzN48OBCjTk7OztXlLY+492wYQMPHjxg27ZtmJubM336dDIyMgr1uUIIIYTIra1VO9paFRyF3nBSbYNZ0aI8kEc1StHDhw+pVq2aEosdHh6ubOvcuTM7d+4kKyuL9PT0XNucnJwICgoiJSUFgMzMTM6fP5/nZ0RHRyvNeHBwcJ5R2gWNsWbNmpibm5OQkMAff/xRyKsUQgghhHg1yIxzKRo0aBB//PEHLi4uWFlZ8dZbbymzuUOHDuXChQu4uLhQu3ZtOnbsyM2bN5Xj7t+/z8iRI4GcmeThw4fTrFmz5z6jY8eOBAYGcunSJeXLgYUxatQoJk6cyKBBg6hduzadO3d+wasWQgghhCifJADlFabv2s9CCCGEKJskAKVkSQCKKBMkcjtvhnQzKgqpj25SG92kNrpJbXST2gh9yIyzEEII8QrRZGpITknLc5s0h7pJbXQzpNrIjLMOhY3NfhmmTZuGm5sbHTrkvWD5vXv3GDt2LABpaWncvXuXhg0bAtCzZ08mT55cIuMsDndX30YjkdtCCPHSWU+tW9pDEOKVZbCNMxQuNvtleDqMJC/VqlVj586dQM66zgEBAQQHB5fE0IQQQgghxDMMunF+Qp/YbI1Gw5IlSzhw4AAA3bt3x9vbGxMTE1JTU1mwYAEXLlwgIyMDBwcH/Pz8MDExYdSoUbRq1YpTp05x9+5d+vXrh7e3N5CzYsW4cePo0aMHH3zwAT179mT06NFcvnwZT09PNm/eTO3atXWOe9myZWg0GuV8T7/OzMxk6dKlHDp0CCMjIxo2bMiKFSs4fvw4c+fOJTs7G41GwyeffMLbb79NYmIiM2bMID4+HgBPT08GDBgAgKOjI4MHD+avv/4iKSmJDz74gBEjRrzMvxIhhDA4JxNPsZSC6kYAACAASURBVONycIGBGAUxOWOqMzDDxMSowDANkAhnIXSRxpnnY7N//vlnrK2t+eKLL9i0aROTJ09my5YtnDt3Tpnx9fT0ZMuWLYwYMYIFCxbQsWNH5s2bh1arxdvbmx07djB06FAAbt++zY8//sijR49wdnZm8ODByiMXAMbGxixevJghQ4bQokULZs+ezcyZM/NtmguyatUqbt++TXBwMCqViuTkZADWrFnDBx98gKurK9nZ2Tx8mPPM0pw5c2jZsiXffvstCQkJuLu707JlS2xsbICctaK3bt1KXFwcAwYMwN3dXUk5FEII8eJ2XfuF2AfXX/xEeT/eXGjh4aHSOAvxDINunAsTm3348GHc3NwwMzMDwN3dnYiICEaMGMHevXuJiYlhw4YNAKSnp2NlZaV8Tt++fTE2NqZy5crY2Nhw48aNXI0zwOuvv878+fMZM2YMo0aNomfPni90bfv27WPGjBmoVCoAqlevDoCDgwPffvstcXFxdO3alTZt2gBw6NAhZsyYAYCVlRXdu3cnKipKaZxdXFwAqFevHhYWFiQkJNCgQYMXGqMQQoj/cWnUj3RNwRHMBTGpVjwzzhLhLMTzDLpxLkxs9rNx1YDyOjs7m1WrVlGvXr08P0ffKO5z585RrVo17ty5o9f4TU1NUavVyuvMzExMTEyUMeXl/fffx9nZmUOHDjFr1ix69erFZ599lut6nr0+QPmFAXJmyLOysvQaoxBCCP20q2lHu5p2L3we66l1da6AYEirIwjxMkjktp66dOlCSEgIarUatVpNaGiokqLn5OTEmjVrlIY4OTmZuLi4Qp0/JiaGTZs2sXPnTpKTk9m8eXOBx9SrV48zZ84oj1zs27dP2darVy82btyoNNZPHtW4evUqDRo0YPjw4YwaNYqYmBjl+rZs2QJAQkICf/31F/b29oW6BiGEEEKIV5lBzzgXxrBhw7hx4wZubm4AdOvWTXmG2d/fn8WLFzNw4ECMjIxQqVT4+/vrnIF+1oMHD5gyZQoLFy7k9ddfZ8mSJQwbNgw7OzuaN2+u87i3336bPXv24OLiQv369WnVqpWybfz48cqYVCoVjRo14uuvv+b777/n+PHjqFQqzMzMlMczZsyYwfTp0+nfvz8AU6dOVR7TEEIIIYQQEoAihBBCvFIkAKVopDa6GVJtJABFlAkSuZ03Q7oZFYXURzepjW5SGyHEyyKNsygR+f32Zuhq1qxc2kMo06Q+ukltdDOk2uQ3wyyEKF7SOJcSJycnKlWqxM8//4yxsbHy3urVq3Ot9KGPoqYKPh357evrS6tWrRg5ciSBgYGkpaXh4+NTqPPlJ3HtNTQPZCUOIYQobrWnNCntIQhhMGRVjVKUlpamRGqXhnnz5tGhgyxuL4QQQgihD5lxLkUTJkwgMDAQFxeXXOskr1+/nl27dqHRaDA3N2fWrFk0b96cx48f4+Pjw+XLlzE1NaVRo0YsX74cAI1Gw4wZMzh58iRGRkYsW7YMGxsbJVDF2dkZgL1797Jhwwb+/e9/K5HfvXr1yneca9euZc+ePWg0GqysrPjyyy+pWbPmyyuMEEIYuJN3T7P9YpheYSgm/1HpFWoCULmyBW5uwyQRUIgiksa5FLVq1YpWrVqxefNmxowZo7w/aNAgxo0bB+Qk+s2cOZOtW7fy119/8eDBA3bv3g1ASkqKcszly5dZsGABc+bM4dtvv2XVqlUsXboUNzc3QkNDlcY5JCQEDw8Pvce4c+dObty4wdatWzE2NiYoKIiFCxeydOnS4iiBEEKIPOy6+huxD27ot3MhHm++c0eitIV4EdI4l7JJkyYxevRoBg8erLx35swZvvvuO1JSUjAyMiI2NhaAZs2acfXqVWbPno29vX2uWO5GjRrRokULAOzs7Pjzzz8B6NOnDwsWLCA5ORkjIyOOHj1KQECA3uPbu3cvZ86cUdav1mg0WFrKF/2EEOJlcmn8Tx5nZeg341ytcDPOEqUtRNFJ41zKGjduTI8ePdiwYQMAWq2WiRMnsmnTJlq2bElCQgKOjo5ATlLg7t27OXLkCJGRkSxbtoywsDBAdyR2xYoV6d27N7t27QKgd+/eVKpUSe/xZWdnM378+FyNvRBCiJerXa3WtKvVWq99a09povfye7JUnxAvRr4cWAZ89tlnBAUF8ejRIwCysrKwtrYGICgoSNnvzp07mJiY4OzsjJ+fH8nJydy/f7/A87u7uxMSEkJISAju7u6FGpuTkxNBQUHKYyGZmZmcP3++UOcQQgghhHgVyIxzGVC7dm0GDhzI+vXrMTY2xsvLi8GDB2Ntba3MNgNcuHBBebZYq9Xy4YcfYmVlpTzKoUuHDh1ITU1V/lwYgwYN4v79+4wcORLImYEePnw4zZo1K9R5hBBCCCHKO4ncFkIIIcqxwgSgyKMaukltdDOk2kjktigTJHI7b4Z0MyoKqY9uUhvdpDZCiJdFZpyFEEIIUWivWtS3/MKlmyHVRmacyxEnJyfMzMwwMzNDq9Uyfvx4XFxcCnWOwMBAPvroI2WVjaejtIuLvsEpT0tcdw7tA3WxjUEIIUTpsprcprSHIESJk1U1ypgVK1bw888/s2jRImXlDH08WX7um2++Qa2WBlUIIYQQorjJjHMZ1aJFCywsLIiLi2Pt2rUcOHAAgO7du+Pt7Y2JiQm+vr5YWFgQGxvLvXv3aNu2LQDvvPMOxsbG/Pvf/851zsOHD/P111+TkZGBRqPh448/Vma0R40aRatWrTh16hR3796lX79+eHt7AzmphH5+fmRlZWFjY0NGRkYJVkIIIcTLdDLhv2y7+CvpWYW7t5ucNNM7eOVZFStWYMiQEZJgKModaZzLqCNHjpCRkcGRI0c4d+4cwcHBAHh6erJlyxZGjBgBwMmTJ9m0aZMSahIUFMRPP/2EhYXFc+ds0aIFQUFBmJiYkJSUhLu7O926daNKlSoA3L59mx9//JFHjx7h7OzM4MGDadiwIVOnTmXUqFG4ublx6tQphg8fXkJVEEII8bKFX/mT2JT4wh/46AU/V6K/RTkkjXMZ4+Xlhbm5OZaWlgQGBvLTTz/h5uamPLPs7u5ORESE0jj37dtX7yTA5ORk/P39uX79OiYmJqSkpHDt2jXs7OyUcxkbG1O5cmVsbGy4ceMGNWrU4OLFiwwcOBDIifNu2rTpS7hyIYQQpcHVphePNRmFn3Gu+mIzzhL9LcojaZzLmBUrVuRqTDdv3oyRkVGufZ5+XZj47FmzZuHk5MQ333yDkZERffr0yfXYhbm5ufJnExMTNBrNc58nhBDi1dLOqiXtrFoW+jiryW0MZqUFIZ6QLweWcV26dCEkJAS1Wo1arSY0NJTOnTvr3N/CwkJJCXzWw4cPeeONNzAyMuLgwYNcv369wM+3tLSkSZMmhIWFARATE8PFixeLdjFCCCGEEOWYzDiXccOGDePGjRu4ubkB0K1bN4YOHapz/3HjxjF69GgqVKjw3JcDp0yZwuzZs1m7di22trbY2trqNYYnK3xs3LiRli1bKl9CFEIIIYQwJBKAIoQQQohCkwAUw2FItZEAFFEmSOR23gzpZlQUUh/dpDa6SW10k9oI8WJkxlkIIYQQQpSYsvyvFeV2xtnJyYnVq1fnWmHC3d0dHx8fHBwc9D5PfHw8Bw8eZNiwYcp70dHRzJgxA1NTU3x9fenUqVORxxkYGEhaWho+Pj6kpKQwe/ZsLl68iJGREcbGxvj6+ub7ZT5dPD09mT59OvXr1y/y2GJjY5k0aRKQ8+xzVFQUbm5udOiQ/7qZ+UVqFzXCO3H9KbQPMgt1jBBCCCFePVaT7Et7CEVWZhvn4pCVlcXNmzfZsmVLrsZ5586dDBo0iA8++KDQ5zM11V2yr7/+GisrK5YuXYqRkRH37t3j8ePHhfoMrVaLkZERa9euLdRxefntt99o164dM2fOBGDAgAEvfE4hhBBCCENVLhvnsLAwfvjhB9RqNQA+Pj7KrK6TkxMeHh4cOXKEevXq8Z///If4+HgGDhxIgwYNaNOmDb/88gsVKlQgLCyMLVu2cPHiRebNm0daWhqVKlVi2rRptGnThvj4eDw8PBg5ciSHDh1iwIABuLq6Mm3aNC5fvoy1tTXVq1enRo0aANy5cwcHBwdl3eNq1apRrVo1IGdm+vLly6SlpXHr1i0aN27M/PnzqVy5MoGBgVy/fp20tDTi4uLYtGkTbm5uyoy7PnHYjx8/plmzZty4cYPx48fz8OFDvv/+e7RaLdHR0QQGBjJt2jRlJjk1NZUFCxZw4cIFMjIycHBwwM/PDxMTk1y1TkhIYOrUqdy7d4+6desqazsLIYQQwjCdTDjPtgu/Fzo05wmT6AqFCs8pSxHtZbpxfpKi90RsbCyQsySbq6srRkZGXL16lbFjxxIZGansl5iYqCzFFhUVRUBAgBJZDTnN5pPHDTIzM/Hy8mL+/Pl06dKFw4cP4+XlxW+//QbA/fv3sbGx4bPPPgNg4cKFWFhYsHv3bpKTk3F3d6dfv34AjB49Gi8vL8LDw2nXrh1OTk65HtM4ceIEoaGh1KhRAz8/P1atWoWPjw8Ax48fJzg4mOrVq+dZi/zisMeMGcPAgQM5ffq0slTdgAEDlGb8yWc8bcGCBXTs2JF58+ah1Wrx9vZmx44dzy11N3fuXDp27MiECROIi4tjwIABdO/eXY+/PSGEEEK8isKvRBKbcqvoJyhCXHtZiWgv043zsyl67u7uAMTFxTFlyhQSEhIwNTUlKSmJxMREatasCcCgQfrHeF67dg2VSkWXLl0A6Ny5MyqVimvXrmFhYYG5ubnSGENOI/7FF18AUL16df7xj38o2zp37syff/5JVFQUJ06cYNKkSbz//vt8+OGHAPTs2VOZnR48eDBz585VjnV0dNTZNEP+cdj9+/cHoHXr1nqvzbx3715iYmLYsGEDAOnp6VhZWT2339PXW69evSI9ry2EEEKIV4erjSOPswof0/6ESdXCzziXlYj2Mt046/L555/j6+uLs7MzWq2Wtm3b5oqOLkwMdXZ2dp6R0k/eq1ixYq7tBS1CYmlpSe/evenduzetWrXi22+/VRrn/D7XwsIi3/PmFYf95BxFicTOzs5m1apV1KtXr9DHCiGEEMJwtbNqRjurZkU+3mqSfbldFrFcRm4/fPiQunXrArB9+3YyM3Wv1mBpaakzghqgcePGZGZmcuTIEQCOHDlCVlYWDRs2zHP/zp07K4993Lt3j4iICGXbwYMHlc/Kzs7m7NmzyjgB9u3bR3JyMgAhISGFWh0kL5UrV+bNN98kPDwcgP/+9796x2E7OTmxZs0a5Znl5ORk4uLintuvU6dO7NixA8iZ6T98+PALjVkIIYQQorwqlzPOfn5+fPLJJ1hZWWFvb0/VqlV17mtra0ujRo1wdXWlcePGrFixItd2MzMzVqxYkevLgcuXL8fMzCzP833yySf4+/vz9ttv88Ybb9C1a1dl24ULF1i4cKEyK92gQQNmzJihbO/cuTP+/v7ExcXRqFEjfH19X6QMAAQEBODv78+GDRto2bIlzZo1o3LlygUe5+/vz+LFixk4cCBGRkaoVCr8/f2fm4GeNm0aU6dO5ddff6VRo0a5rlcIIYQQwpBIAEoJeXq95+KUlpamPE5y+fJlRo0axa+//kqVKlWK9XOEEEIIIYqDBKCIUhMdHc2iRYuUWe4vv/yyTDbNErmdN4m/zZ/URzepjW5SG92kNrpJbXST2vyPzDgLIYQQoszSZGaRnFK4MLGikOZQN0Oqjcw4vyKGDBlCZmYmarWa2NhYmjRpAkCLFi1YsGBBKY+uYIkbjqJ9WLRla4QQQhguKy/JDhBlhzTO5cS2bdsAlDTDnTt3lvKIhBBCCCEMizTO5VxCQgLe3t6kpqaSkZGBs7Mzn3/+OQDLli0jPj6elJQUYmNjadOmDePGjWPRokXcunWLfv36MWXKFACGDx9O69atOXv2LAkJCbi6ujJx4kQA1q5dy6+//kpWVhYVKlRg9uzZNGtW9PUbhRBCCCHKI2mcy7kqVarw3XffUalSJTIzM3nvvfc4dOiQkoR45swZduzYQYUKFRg0aBArVqzgX//6F5mZmfTu3ZuhQ4cqS9Bdu3aNjRs3kp6ezrBhw2jXrh2Ojo54eHjg6ekJQGRkJLNnz2bz5s2lds1CCCHKr5N3LrLt/J96p86ZHF+rd8pcxYoVGDJkRJmIZhavJmmcyzmNRkNAQAAnT54EIDExkXPnzimNs6OjI5aWOQ+5N23alDZt2mBmZoaZmRkNGzYkLi5OaZzd3NwwNTXF0tKSfv36ceTIERwdHYmJiWHNmjU8ePAAIyMj4uPjS+dihRBClHvhlw8Sm3Jb/wMeFfL84aHSOIuXRhrncm7dunU8evSIHTt2YGZmhp+fX6748aejuo2NjZ97nZWVled5n8R5p6enM3nyZIKCgmjevDm3bt3C2dn55V2QEEKIV5rrm115nJWp/4xz1YqFmnF2dR30IsMTIl/SOJdzDx48oFatWpiZmXH79m3+/PNPRo8eXaRz7dy5kz59+pCens6ePXuYOnUq6enpaDQaateuDUBQUFBxDl8IIYSBaVe7Ke1qN9V7fyuv7gazFJoo+6RxLufGjBnDxIkTGTRoENbW1nTq1KnI52rWrBljxowhISEBFxcXHB0dAfj000/x8PCgTp06dOvWrbiGLoQQQghRrkgAigByVtUYP3680iwLIYQQZYEEoJQ+Q6qNBKCIMkEit/NmSDejopD66Ca10U1qo5vURogXIzPOQgghhBD/p6RmuMsTQ/qFS2acy6HMzEy++uorIiIiMDU1pUKFCkyYMEHnahajRo1i3Lhx9OrVq9jG4OTkxOrVq2naVP8vcOQnaeNfaB+mF8u5hBBCiJel1meycpTQTRrnMmjWrFmkpaWxa9cuzM3NuXjxIh988AFVqlShY8eOufbVaDSlNEohhBBCCMMijXMZc/PmTX755Rf+/PNPZc3lpk2b8vHHH/PNN98wcOBAdu3aRfXq1bly5Qrz5s3LdXxYWBg//PADarUaAB8fHzp37gzkzCIPHDiQQ4cOkZiYyLhx4xg5ciQAx48fZ/bs2Zibm2NnZ8fTT/DExMQwb9480tLSqFSpEtOmTaNNmzYlUQ4hhBBCiDJDGucy5uLFi9SvX5+qVavmet/Ozo7ly5czcOBAoqOj2blzJ/Xr13/u+G7duuHq6oqRkRFXr15l7NixREZGKtvT09PZsmUL8fHx9O/fHzc3N1QqFZMnT2bJkiU4ODiwe/du/v3vfwM5j414eXkxf/58unTpwuHDh/Hy8uK3337DzMzs5RZDCCGEKKLoO5fZfu4Aj/UMWnnC5NgPegeugMR8GxppnMsYfb6r2b59+zybZoC4uDimTJlCQkICpqamJCUlkZiYSM2aNQF4++23Aahbty6vvfYad+7cQa1WU7FiRRwcHJR9ZsyYAcC1a9dQqVRKhHfnzp1RqVRcu3YNW1vbF75eIYQQ4mUIvxTFtZQ7hT/w0b3Cf5bEfBsMaZzLmKZNm3Ljxg3u37+fa9b51KlTSqNqYWGh8/jPP/8cX19fnJ2d0Wq1tG3bVmcEt4mJSYHPSD+J3n5WXu8JIYQQZYVrEwfSszILP+NctVKhZ5wl5ttwSONcxtStW5e+ffsya9YsAgIClC8Hrl69miVLlhAfH5/v8Q8fPqRu3boAbN++nczMzAI/s3HjxqSnp3Ps2DE6duzIr7/+ysOHD5VtmZmZHDlyhE6dOnHkyBGysrJo2LDhC1+rEEII8bK0r/0m7Wu/Wejjan3mbDBLr4nCk8a5DJo1axZLly7l7bffRqVSYW5uzrRp07C3ty+wcfbz8+OTTz7BysoKe3v7556VzouZmRlfffWV8uXATp06UadOHWXbihUrcn05cPny5fJ8sxBCCCEMjgSgCCGEEEL8HwlAeZ4EoPyPzDiLEiGR23kzpJtRUUh9dJPa6Ca10U1qo5vURuhDZpyFEEIIAyezrNI458eQaiMzzqJMSPp+L9qHhn1TFkKIsqrWBJfSHoIQ5YJxaQ9AFK9ly5Yxc+ZM5fWff/6Jra0tly5dUt776KOP2LZtW6HPHRUVxV9//VUs4xRCCCGEKG+kcX7FODg4cPToUeX10aNHadu2rfKeRqPhxIkTdOrUqdDnPnr0KAcPHiy2sQohhBBClCfyqMYrpn379sTHx5OUlESNGjU4duwYn376KSEhIbz77rucPXsWS0tL6tWrx/79+/n222/JzMxEpVLh5+eHnZ0dV69exc/Pj8ePH6PVanFzc6Nbt2789NNPaLVaDh06hIuLCx9++GFpX64QQog8RN+5yvZzh3isLngtfwCTo1sKFfoBEjUtDJM0zq+YChUq0Lp1a44ePYqjoyOPHz/G0dGRBQsWADmzxg4ODty4cYNVq1axbt06LC0tuXTpEp6enuzbt4+goCAcHR359NNPAUhJSaFKlSq88847pKWl4ePjU5qXKIQQogDhl45z7f5d/Q94dL9onyNR08LASOP8CnJwcCAqKgoLCwveeustTExMaNCgAZcuXeLo0aP885//5MCBA9y4cYN3331XOS4rK4ukpCQ6duxIQEAAarUaBweHIj3WIYQQovS4NumQEzet74xzVYsizThL1LQwNNI4v4Ls7e2ZM2cOlStXpmPHjgB07NiRI0eOcOLECaZPn87+/fvp3r07ixYteu74Pn36YGdnx8GDB1m7di07duxgyZIlJX0ZQgghiqh97ca0r91Y7/1rTXAxmOXGhHgR8uXAV1D79u25efMmv/32G/b29gB06NCBTZs28dprr1G3bl26du3KgQMHcq22ERMTA8D169epWbMm7u7ufPrpp5w+fRoAS0tLHj6UG6sQQgghDJPMOL+CzM3Nadu2LQkJCVhZWQHQunVrEhIS6Nu3LwANGzZk8eLFTJs2jfT0dNRqNe3bt6dNmzb88ssvhIWFoVKpMDIywt/fHwBnZ2d27tzJwIEDC/3lwBpjnIr/QoUQQhQLTWZWaQ9BiHJBkgNFiZDI7bwZUhpTUUh9dJPa6Ca10U1qo5vURjdDqk1ByYHSOAshhBCizCit+G9Dag4Ly5BqI5HbokxI+uEXtA/TSnsYQgghyrhan3qU9hCE0Em+HFjC1Go1y5cvp0+fPri4uNCvXz8WLlyIWq3WeYyvry+bNm0CYPPmzWzcuFHZ5ufnh4uLC5MmTSrWcQ4cOJD09PRiPacQQgghRHkmM84lzM/Pj4yMDHbs2IGlpSVqtZrg4GAlva8gw4cPV/6clJTEnj17OH78OMbG+v8OlJWVhalp/n/1O3fu1Pt8QgghhBCGQBrnEhQbG0tERAT79+/H0jLn+RmVSsWwYcO4cOECs2fP5vHjx2RkZDB06FDGjh373DkCAwNJS0vj008/ZfTo0aSnp+Pm5oabmxujRo1iyZIlHDhwAIDu3bvj7e2NiYkJvr6+WFhYEBsby7179wgODsbW1pbJkyfz+++/c//+faZOnUqfPn0AsLW1JTo6GgsLCwICAjh69ChqtZpq1aoxf/583njjjRKrmxBCiPIr+nYs288d43GWnmEsUTsLFcYi0d+iJEnjXILOnj1LgwYNqFKlynPb3njjDTZu3IiZmRmPHj1iyJAhdO/eHRsbmzzPZWlpyZo1a/Dw8FBmh4OCgjh37hzBwcEAeHp6smXLFkaMGAHAyZMn2bRpE5UqVcp1nh07dnDixAkmTZqkNM5P8/T0VGK2t23bxpIlS1i2bNmLFUMIIYRBCL90imv3E/U/IDWl8J8h0d+ihEjjXEakp6cza9YsLly4gJGREXfv3uX8+fM6G+e8HD58GDc3N8zMzABwd3cnIiJCaZz79u2bq2kGePvttwGws7Pj7t27ZGRkYG5unmufyMhIgoKCSEtLIytL1voUQgihP9cmdqRnqfWfca5iWegZZ4n+FiVFGucS1KJFC65fv05KSspzs85fffUVNWvWZOHChZiamjJu3DgyMjIKdf7s7GyMjIxyvff062ebZkBpkk1MTICc55+fbpxv3rzJggUL2L59O/Xq1SM6Ohpvb+9CjUsIIYTham/dkPbWDfXev9anHgaz9Jkof2RVjRLUsGFDnJycmDFjBqmpqQBoNBq+//57Hj58SO3atTE1NeXixYscP3680Ofv0qULISEhqNVq1Go1oaGhdO7c+YXGnJqaikqlombNmmi1Wn766acXOp8QQgghRHklM84lbOHChaxcuRIPDw9UKhVarZYePXrg6emJv78/P//8M/Xr16djx46FPvewYcO4ceMGbm5uAHTr1o2hQ4e+0HhtbW3p27cvLi4u1KlTh44dOxapqa8xut8LjUMIIYRh0GRmYWxsVPCOL0FpfW55YCi1Keg6JTlQCCGEEEIIPcijGkIIIYQQQuhBGmchhBBCCCH0II2zEEIIIYQQepDGWQghhBBCCD1I4yyEEEIIIYQepHEWQgghhBBCD9I4CyGEEEIIoQdpnIUQQgghhNCDNM5CCCGEEELoQRpnIYQQQggh9GBa2gMQ5de1a9fw9fXl/v37VK1alYCAABo2bJhrH41Gw9y5czlw4ABGRkZ8+OGHDBkypMBt5Z0+tVm5ciW7d+/GxMQEU1NTJk+eTPfu3QEIDAwkKCiIWrVqAdC+fXtmzpxZ0pfxUuhTm/yu39B/bqZOncqFCxeU1xcuXGDlypX07t37lf65CQgIYM+ePdy8eZOwsDCaNm363D6Ger/RpzaGer/RpzaGer/RpzaGer/JV7YQRTRq1Kjs0NDQ7Ozs7OzQ0NDsUaNGPbdPSEhI9rhx47I1Gk3233//nd29e/fsuLi4AreVd/rUJjIyMjstLS07Ozs7+9y5c9lvvfVW9uPHj7Ozs7OzV6xYkb1w4cKSG3AJ0qc2+V2/of/cPO3cuXPZ9vb22RkZGdnZ2a/2z82xY8eymjjNYgAACgxJREFUb926ld2rV6/sCxcu5LmPod5v9KmNod5v9KmNod5v9KnN0wzpfpMfeVRDFMnff//N2bNncXV1BcDV1ZWzZ8+SnJyca7/du3czZMgQjI2NqV69Os7Ozvz6668FbivP9K1N9+7dqVixIgC2trZkZ2dz//79Eh9vSdK3Nvkx9J+bp23fvp3+/ftjZmZWUsMsNR06dMDa2jrffQzxfgP61cYQ7zegX23yY+g/N08zpPtNfqRxFkVy+/ZtrKysMDExAcDExIRatWpx+/bt5/arU6eO8tra2po7d+4UuK0807c2TwsNDaV+/frUrl1beW/Xrl3079+fcePGcfLkyZc+7pJQmNroun75ucmRmZlJWFgYHh4eud5/FX9u9GWI95uiMJT7TWEY2v2msOR+8z/yjLMQpezo0aMsX76c9evXK++98847fPzxx6hUKg4ePMgnn3zC7t27qVatWimOtOQY+vXrIyIigjp16tC8eXPlPambKIjcb55n6NevD7nf/I/MOIsisba2JiEhAY1GA+R8geLu3bvP/bOPtbU1t27dUl7fvn1bmeXIb1t5pm9tAE6ePMn/+3//j5UrV9K4cWPl/Zo1a6JSqQDo2rUr1tbWXLp0qWQu4CXStzb5Xb/83OTYsWPHc7M/r+rPjb4M8X5TGIZ2v9GXId5vCkvuN/8jjbMoktdff53mzZsTHh4OQHh4OM2bN6d69eq59uvbty/btm1Dq9WSnJxMREQEffr0KXBbeaZvbWJiYpg8eTIrVqygZcuWubYlJCQofz537hw3b96kUaNGL3/wL5m+tcnv+g395wbgzp07nDhxQnke+olX9edGX4Z4v9GXId5v9GWI95vCkPtNbkbZ2dnZpT0IUT5duXIFX19fHjx4wGuvvUZAQACNGzfG09MTLy8vWrdujUajYc6cORw8eBAAT09Phg0bBpDvtvJOn9p4eHhw8+ZNrKyslOMWLVqEra0tPj4+/Pe//8XY2BiVSoWXlxc9evQoxSsqPvrUJr/rN/SfG4Bvv/2WixcvsmzZslzHv8o/N3PnzuW3334jKSmJatWqUbVqVXbt2iX3G/SrjaHeb/SpjaHeb/SpDRjm/SY/0jgLIYQQQgihB3lUQwghhBBCCD1I4yyEEEIIIYQepHEWQgghhBBCD9I4CyGEEEIIoQdpnIUQQgghhNCDNM5CCCHEU1avXs20adNKexhCiDJIlqMTQghRoFGjRnH+/HkOHjyImZlZaQ+nUHx9fQkPD0elUqFSqWjZsiVffPEFNjY2pT00IUQ5IzPOQggh8hUfH8/x48cxMjLijz/+KPbzZ2VlFfs5n/X+++9z8uRJ9u/fT/Xq1fHz8yu1sQghyi9pnIUQQuQrNDSUtm3b4ubmRmhoKACnTp2ia9euaDQaZb/ff/+d/v37A6DValmzZg3Ozs44ODgwceJE7t+/D+Q04ra2tmzbto2ePXsyZswYALy8vOjatStvvfUW7777LpcuXVLOfe/ePT7++GPat2+Ph4cHy5YtY/jw4cr2K1eu8N5772Fvb0+fPn3YvXt3ntdSsWJF+vfvr5w7MDAQLy8vvL29ad++PSEhIQQGBuLt7a0cc/z4cd555x06dOhAjx49CA4OBiAzM5OAgAB69uxJly5dmDFjBunp6S9cbyFE2SWNsxBCiHzt3LmT/v37079/f/766y+SkpKws7OjYsWKHDlyRNkvLCxMaZx/+OEHIiIi2LRpEwcOHKBKlSrMmTMn13mPHTvG7t27WbduHQCOjo7s2bOHw4cP06JFi1zN65w5c6hYsSIHDx4kICBAaeAB0tLSGDduHK6urhw6dIivvvqK2bNn52q8n3j06BFhYWE0b95cee+PP/6gb9++HD9+XBn/E7du3cLT05ORI0dy+PBhQkNDlWMXL17MtWvXCA0N5bfffuPu3busXLmyqGUWQpQD0jgLIYTQ6fjx49y6dYt+/frRqlUr6tWrR3h4OAAuLi7Kn1NTU4mMjMTFxQWALVu2MHnyZGrXro2ZmRkTJkxgz549uR6F+Oyzz6hUqRIVKlQAYPDgwVhaWmJmZsZnn33G+fPnefjwIRqNht9++43PPvuMihUr8uabbzJo0CDlPPv27eONN97Aw8MDU1NTWrZsSZ8+fdizZ4+yz/r16+nQoQP//Oc/efToEQsXLlS22dnZ4ezsjLGxsTKWJ8LCwujSpQuurq6oVCqqVatG8+bNyc7OZtu2bfj7+1O1alUsLS356KOP2LVrVzH/DQghyhLT0h6AEEKIsis0NJSuXbtSvXp1AFxdXQkJCWHs2LH079+fd955h9mzZ/P777/TokUL3njjDSBnpvbTTz/F2Ph/8zPGxsb8/fffyuvatWsrf9ZoNCxbtoxff/2V5ORk5bh79+6Rnp5OVlYW1tbWyv5P//nmzZvExMTQoUOHXOcbMGCA8nrcuHFMnjw5z2t8ehzPun37NvXr13/u/eTkZB4/foy7u7vyXnZ2NlqtVue5hBDlnzTOQggh8pSens4vv/yCVqula9euQM5zvQ8ePOD8+fM0a9aMOnXqEBkZSXh4OK6ursqxtWvXZv78+bz11lvPnTc+Ph4AIyMj5b2wsDD++OMPNmzYQN26dXn48CEdO3YkOzv7/7d3/y7pxHEcx19kRIOLSoi3SP+BSUVQQiRCoIEICRJE+C9EjY1BFNHQFiE4C12EN7kJDbndostRi5AhNIQIKvQdouP7oy9IDhk9H3DLfTje789nevPmfXfy+/2anJzU4+OjZmdnJb0VtO9CoZAWFhZUKBQ+tc/f8/hbKBSSbdv/3Pf5fJqenla5XFYwGPxUXADfD6MaAIAPVSoVeTwelctlmaYp0zRlWZbm5+fdGeNUKqVisaharab19XX32Vwup7OzMzWbTUlvHdpKpfLfWJ1OR1NTU/L5fOp2uzo9PXXXPB6PEomEzs/P1e125TiOrq+v3fXV1VU9PDzINE31+331+33Zti3HcUY+g42NDd3e3sqyLA0GAz0/P6ter2tiYkKbm5s6PDx0u+itVkvVanXkmADGF4UzAOBDV1dXymQyMgxDMzMz7rW1taWbmxsNBgOlUind3d1paWnJHeeQpO3tba2trSmfz2tubk7ZbPbDzu27dDotwzAUi8WUTCYViUT+WD84ONDLy4uWl5e1v7+vZDLpfk/a6/Xq8vJSlmUpFotpZWVFJycn6vV6I5+BYRi6uLhQoVDQ4uKi0um0Go2GJGlvb0/hcFjZbFbRaFQ7Ozu6v78fOSaA8cUPUAAA387x8bHa7baOjo6+OhUAPwgdZwDA2HMcR41GQ6+vr7JtW6VSSYlE4qvTAvDD8HIgAGDsdTod7e7u6unpSYFAQPl8XvF4/KvTAvDDMKoBAAAADIFRDQAAAGAIFM4AAADAECicAQAAgCFQOAMAAABDoHAGAAAAhvALl5HemvUMDwAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAKYCAYAAABjO37GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1RVV9rH8S9cuGBEFBNE7AaVxAqGZrASC4gIiI46iTVjGxONJaKm2WJioiGDjrFE48SSKFIUWyLBFmnW0dgj9gJ2RfRW3j94PSORC6iAlOezVtaSe/c5Z599XeS52332zywrKysLIYQQQgghRJ7MX3QHhBBCCCGEKA2kcBZCCCGEEKIApHAWQgghhBCiAKRwFkIIIYQQogCkcBZCCCGEEKIApHAWQgghhBCiAKRwFkKIMszV1ZULFy4U2/UePnzI8OHDeeONNxg1alSxXbcwTZw4kbCwsKc+7uLFizg7O6PX64ugV4Vn7969dOnS5UV3Q4hSSQpnIYQoJP369cPd3R2tVlsk539UmLm6uuLq6oqPjw+LFi3K85gDBw5Qu3btIulPbrZs2cL169dJTk4mPDzcZLuoqCicnZ3ZtGlTsfWtNJk7dy5NmjTB1dUVNzc3+vTpw4EDBwrl3G5ubvzyyy+Fci4hyhspnIUQohBcvHiRvXv3YmZmxm+//Vak19qzZw8HDhxgzpw5/Pvf/2bnzp1PtHlRs56XL1+mXr16WFhY5NkuOjqaKlWqEBMTU0w9K338/Pw4cOAASUlJeHp6Mnr06BfdJSHKPSmchRCiEMTExNCiRQuCg4NzFIMHDx7E29sbg8GgvLZ161YCAgKA7KUNoaGhuLu74+fnx+LFi2nbtm2Brunq6kqDBg04deoUAM7OzqxcuZLOnTvTuXNn5bVz584p1/ryyy/p0KEDb7zxBn379uXhw4dKP/v06YObmxvdu3cnOTnZ5HVPnz5Nv379cHNzw9/fX/miEB4ezvz589m8eTOurq5ERETkevylS5fYs2cP06ZN4/fff+f69evKe35+fmzbtk35Wa/X4+npyZEjRwD47bff8Pf3x83NjX79+nH69Gml7ZUrV3jvvffw8vLC09OTadOmAXD+/Hn69++Pp6cnnp6ejBs3jrt37yrHHT16lODgYFxdXfnggw/QaDQ5+rtmzRo6deqEh4cHw4cPJy0tLa+PhcjISFq3bk3r1q1ZunQpANeuXaNFixbcunVLaffHH3/g5eWFTqfL83wWFhYEBASQlpbGzZs3lde3bdtGYGCgMiN9/Phx5b0jR44QFBSEq6sro0aN4oMPPlCWnyQnJ+f4O2bq84TsZStTp05l6NChuLq60qtXL86fP59nf4Uoy6RwFkKIQrBu3ToCAgIICAjIUQy6uLhQoUIFkpKSlLaxsbFK4Txv3jwuXbpEXFwcP/zwA+vXry/Q9bKysti3bx9//vknjRs3Vl6Pi4tjzZo1uS6BmDVrFkeOHOHnn38mJSWFDz/8EHNzc9LS0hg2bBgjRowgJSWF0NBQRo0alaNIe0Sn0zF8+HC8vb1JSEjg448/Zvz48aSmpjJq1CiGDRumzJT26tUr177HxMTQtGlTunTpgpOTE7Gxscp7/v7+bNiwQfn5999/x87OjiZNmnDmzBnGjRvH5MmTSUxMpG3btgwfPhytVovBYGDYsGHUqFGD+Ph4du7cSdeuXZWxGjZsGLt27WLz5s1cvXqVuXPnAqDVahk5ciSBgYGkpKTg6+vLr7/+qlw/MTGROXPm8O233/L7779Ts2ZNxo4dm+dnk5yczK+//sqSJUtYtGgRCQkJ2Nvb4+HhwebNm5V269evx9/fH0tLyzzPp9VqiYmJoUqVKtja2gLZhfHkyZOZNm0aycnJ9O7dm3/+859otVq0Wi3vvfcewcHBpKSk0K1bN+Li4nI9d16f5yMbN27kvffeY8+ePdSpU+eZ1n8LUVZI4SyEEM9p7969XL58GT8/P5o2bUrt2rVzFH+PF4MZGRns3LkTf39/ADZv3sywYcOoXLky1atXp3///vlez8vLCw8PDz7++GPGjRtHq1atlPeGDh1KlSpVsLa2znGM0WgkMjKSjz76CAcHB1QqFS1btkStVrNu3Tratm1Lu3btMDc3x9vbm6ZNm7Jjx44nrv3f//6XzMxMhg4dilqtplWrVnTo0IGNGzcWeLzWrVtHt27dAOjWrRvR0dHKewEBAcTHx/PgwQMg+0vGo7abNm2iXbt2eHt7Y2lpybvvvsvDhw85cOAAhw4dIj09nQkTJvDSSy9hZWWFm5sbAHXr1sXb2xu1Wk3VqlUZNGgQe/bsUe5Hp9MxYMAALC0t8fX1pVmzZkp/YmNjCQkJoUmTJqjVasaOHcvBgwe5ePGiyfsbOXIkL730Es7OzvTo0UP57IODg5UvRgaDgY0bNxIYGGjyPFu2bMHNzY0WLVoQERFBeHi4sgRmzZo19O7dmxYtWqBSqQgODsbS0pKDBw/y3//+F71eT//+/bG0tKRz58457ulxBfk8O3XqRPPmzbGwsKB79+4cO3bMZJ+FKOukcBZCiOcUExODt7c3VatWBXIvBrdu3YpWq2Xr1q00btyYmjVrApCeno6jo6PStnr16vleLykpiT179rB58+YnCu3Hz/W4W7duodFocn1Q8PLly0qR9ui/ffv2ce3atSfapqenU716dczN//e/jxo1auS7fOGRffv2cfHiReWLQ7du3Th58qRSjNWtWxcnJye2bdvGgwcPiI+PV2bn09PTqVGjhnIuc3NzHB0dSUtL48qVK9SoUSPXtdU3btxgzJgxtGnThpYtW/Lhhx8qSybS09NxcHDAzMwsx/08fr+PPiuAihUrUqVKlTzv9/HPoGbNmqSnpwPw1ltvcfr0aS5cuMDu3buxsbGhefPmJs/j6+vL3r172b17Nw0bNlSWq0D2Z/bDDz/k+MyuXr1Kenp6rvdk6u9FQT7PV155RfmztbU1mZmZJvssRFmX99MbQggh8vTw4UM2b96M0WjE29sbyP6n9bt373L8+HFee+01GjRoQI0aNdi5cycbNmxQZlAB7O3tuXr1Kg0aNADg6tWrz9Wfx4ulx9nZ2WFlZcWFCxd47bXXcrzn6OhIYGAgM2bMyPf81apV4+rVqxiNRqXYunLlCvXq1StQ/2JiYsjKyiIoKOiJ119//XUgu5jesGEDRqORBg0aULduXeXaJ0+eVI7JysriypUrODg4oFaruXLlCnq9/oniec6cOZiZmbF+/Xrs7OyIi4tT1j/b29uTlpZGVlaWMnaXL19WvmBUq1aNS5cuKefKzMzk9u3bODg4mLzHK1eu4OTkpJyrWrVqAFhZWeHn58f69etJTU3Nc7b5cVWrVmXq1Kn07NmTbt26Ua1aNRwdHRk+fDgjRox4on1KSsoT93TlypVcvzQ97+cpRHkjM85CCPEc4uLiUKlUbNy4kZiYGGJiYti0aRNubm45HhLs1q0bP/74I3v27MHX11d53c/Pj4ULF3Lnzh3S0tJYsWJFkfTT3NyckJAQvvjiC9LS0jAYDBw4cACtVkv37t3Ztm0bu3btwmAwoNFoSE5OzrWIb968ORUqVOD7779Hp9ORnJxMfHy8sp44LxqNhs2bNzNt2jRlrGJiYvjkk0+IjY1VdgLp2rUru3fv5qeffsrxJcPPz48dO3aQmJiITqdj6dKlqNVqXF1dad68Ofb29syZM4fMzEw0Gg379u0D4P79+7z00kvY2tqSlpbG999/r5zTxcUFCwsLfvzxR/R6Pb/++iuHDx9W3g8ICCAqKopjx46h1Wr55ptvaN68ObVq1TJ5n/Pnz+fBgwecOnWKqKioHGMTGBhIdHQ08fHxdO/ePd8xe8TJyYk2bdoofe/Vqxc///wz//3vf8nKyiIzM5Pt27eTkZGBi4sLKpWKFStWoNfriYuLy3FPj3uez1OI8kgKZyGEeA7R0dH06NGDGjVqYG9vr/z39ttv5ygGu3XrRkpKCl5eXsqSDsheD1u9enXeeustBg4cSJcuXVCr1cr7//jHP1iwYEGh9DU0NJRGjRrRs2dPPDw8mD17NkajEUdHR+bPn8/ChQtp1aoV7dq1Y8mSJRiNxifOoVar+e6779i5cydeXl5MnTqVr776SplhzUtcXBzW1tYEBQXlGKuePXtiMBjYtWsXkD0L6uLiwoEDB3IUcK+++ipff/0106dPx8vLi23btrFgwQLUajUqlYoFCxZw7tw5OnToQNu2bZUH8d577z2OHj2Km5sbQ4cOVXYceXQ/c+fOJTo6Gnd3dzZt2kSnTp2U91u1asXo0aN5//33ad26NRcuXMj34TgPDw86derEwIEDGTx4MK1bt1bee+ONNzA3N6dJkyZ5Ft+5effdd1mzZg03btygWbNmTJ8+nWnTpuHu7k7nzp2JiorKcU9r167F3d2d9evX0759+xx/rx6//2f9PIUoj8yysrKyXnQnhBBCZFu1ahWbNm0qspln8eL179+fgIAAk7uOFIVevXrRp08fQkJCiu2aQpRFMuMshBAvUHp6Ovv27cNoNJKamsoPP/xAx44dX3S3RBE5dOgQR48exc/Pr0ivk5KSwrVr19Dr9URHR3PixAnatGlTpNcUojyQhwOFEOIF0ul0fPbZZ1y8eJFKlSrh7+/P3//+9xfdLVEEQkNDiYuL46OPPsLGxqZIr3XmzBk++OADMjMzqV27NuHh4cpDikKIZydLNYQQQgghhCgAWaohhBBCCCFEAUjhLIQQQgghRAHIGmchhBBClCgGrY7b9zTFdr2XX7bhxo2MYrteaVOexsfc3Aw7u4om35fCWRSLGyuiMd67/6K7IYQQohSwH/EORuPDYr2m0SiPfOVFxiebLNUoJps3byYoKIjAwEB8fX0ZN27cM5/r2LFjbNq0Kcdrzs7O3L9f9IVpXFwchw4dKvLrCCGEEEKUNDLjXAzS09OZOnUq0dHRODo6kpWVxfHjx5/5fMeOHWP79u0vJBI1Li6Opk2b0rx582K/thBCCCHEiySFczG4fv06FhYWVKlSBQAzMzNef/11AHbu3Mk333yDwWCgatWqTJs2jbp16xIVFcX27dsJDw8HUH6eOnUq4eHhZGRkEBgYiLu7Ox9//DEAy5cvZ+vWrdy+fZsJEybQpUsXAP773/8ye/ZsZUZ61KhRtG/fHr1ez7Bhw7h16xYajYbmzZszdepU1Go1+/fvZ/r06RiNRvR6PSNGjKBy5crEx8eTkJBAREQEgwYNIigoqLiHUwghRCm0/8oFIo4c4IFel29bVeKvGAx5Lw2oUMGaXr3+TsuWboXVRSHyJYVzMXjttddo3rw57du3x9PTk5YtWxIYGIjRaGTChAmsWLGCBg0aEBERwfjx44mIiDB5Ljs7O0aNGpWjqH7ExsaGyMhI9u3bxwcffECXLl24e/cun332GYsWLaJatWqkp6fTs2dPNmzYQKVKlZg9ezZ2dnZkZWURGhpKZGQkffv2ZfHixQwYMICgoCCysrK4d+8etra2+Pj40LRpU955552iHjYhhBBlSOyJPzhz+0bBGmfcLVCzDRtipHAWxUoK52Jgbm7O/PnzOXnyJHv27CEuLo4lS5YwduxYXnvtNRo0aABASEgIU6dOJSPj2Z5cfbR0w8XFhfT0dDQaDQcOHODixYsMGTJEaWdmZsa5c+do3LgxS5cuZefOnRiNRu7cuYO1tTUAnp6eLFq0iMuXL+Pt7U2LFi2ecxSEEEKUZwHOTXmo1xVsxrlypQLNOHfrJv/qKYqXFM7FqFGjRjRq1Ii3336brl27YmZmhpmZWa5tVSoVRqNR+VmjyX9bHisrK+VYAL1eT1ZWFs7OzqxcufKJ9jExMezbt4+VK1diY2PDggULOHv2LAADBw7Ex8eHhIQEpk+fjre3N2PGjHnaWxZCCCEAaOlYm5aOtQvU1n7EO1y7dq+IeyTE05NdNYpBWloaBw4cUH6+evUqN2/e5NVXX+XYsWOcPn0agOjoaBo3boyNjQ116tThxIkTaLVatFotv/zyi3K8jY0N9+4V7BeKq6sr586dIykpSXnt0KFDyvILOzs75XwbNmxQ2pw5c4Y6derQp08f+vfvz+HDh5/62kIIIYQQZYnMOBcDvV7P3LlzuXTpEtbW1hiNRj744AOaN2/OV199xfjx49Hr9VStWpWvv/4ayC54W7VqRbdu3ahVqxZOTk5cu3YNgFatWrF06VK6d++Oh4eH8nBgbipXrsz8+fP5+uuvmTlzJjqdjtq1a7NgwQKCgoL47bff8Pf3x8HBgTfeeEOZ2V6+fDnJyclYWlqiVquVa3Tv3p1JkyaxZcuWp3o48OV3gp9nCIUQQpQjBm3+yzmEeBHMsrKyZEdrUeRu3MiQzdNzYW9fSf450gQZG9NkbEyTsTFNxsY0GZu8lafxMTc34+WXbUy/X4x9EUIIIYQQotSSGWchhBBCiOdk0Oq4ead4Y8KLi8w4/4+scS6BdDod8+fPZ9OmTVhYWGA0GmnXrh2vvvoqv//++xP7NwP89ttv7N27l9DQ0BfQ4/zdWPkTxnvPts2eEEIIUdLZDx8ClM3CWfyPFM4l0KRJk9BoNERGRmJjY4NOpyMqKgqtVmvymLfeeou33nqrGHsphBBCCFG+yFKNEubs2bMEBQWxY8cOKleunOO9qKgoNmzYgK2tLadOnaJSpUrMnTsXe3v7JyK6165dy48//giApaUlCxcupEqVKiYjtrVaLdOnTyclJYWqVavy+uuvc/36dcLDwzEYDMyePZtdu3YB0KZNG8aPH6/sF10QMuMshBCitNl/5TIRfxzmgV6fb1tVZdt8Q1ugdEaFy1KN/5EZ5xLm6NGj1K1b94mi+ZHDhw+zfv16HB0d+fjjj1mxYsUTwSTJycksXLiQVatWYW9vz/3797GwsEClUpmM2F69ejWXL19m48aNGAwG+vXrR/Xq1QFYvXo1x44dIyoqCoAhQ4awevVq/v73vxftYAghhBAvUOyJY5y5fatgjTMKXlhKVHjpJYVzKdOyZUscHR0BaNGiBQkJCU+02b59O4GBgdjb2wNQsWJFAAwGg8mI7eTkZAIDA7GwsMDCwgJ/f3/27dsHQGJiIsHBwajVagB69OhBXFycFM5CCCHKtADn13mo0xf6jLNEhZdeUjiXMI0bN+bcuXPcuXMn11nnR7HakB2tbTAYCnzu2NhYkxHbWVlZJuO/c3vPVFshhBCirGjpWIOWjjUK1NZ++JBys5yhPJN9nEuYevXq4ePjw6effkpGRvaaYIPBwH/+8x8yMzMLdI4OHTqwbt06rl+/DsD9+/fRarV5Rmx7enqyfv169Ho9Go2GzZs3K++9+eabREdHo9Pp0Ol0xMTE0KpVq0K8ayGEEEKIkk9mnEugL7/8kn//+9+EhIRgaWmpbEdXv379Ah3v4eHB0KFDGTRoEGZmZqjV6nwjtvv06cPx48fx9/fH0dGRJk2a8ODBAwB69+7N+fPnCQ7Ojs1u3bo1f/vb357qnl5+u+9TtRdCCCFKE4kJLx9kVw2hyMjIwMbGBq1Wy4gRI/D19aVXr16Fcm6J3M5deXpS+WnJ2JgmY2OajI1pMjamydjkrTyNj+yqIQps0KBBaLVaNBoNb775pjLDLIQQQgghZMZZCCGEECKHshyf/Sxkxvl/StyMs4+PDwsWLKBRo0bKaz169CA0NBRPT8/nOve//vUvGjZsSNeuXU226devH4MHD6ZDhw7Pda28ZGVlMXfuXH755RdUKhV6vZ5evXoxaNCgIrvm46KionB1dS3wmunCcH3lEoz37hbb9YQQQohnVW34GCQ+W+SmxBXOhUGv12NhkfPWDAYDo0ePfmHXf9yWLVtITEwkKioKKysrtFot58+fL9Rr5CU6Oho7O7tiLZyFEEIIIUq7UlU4x8bG8uOPP6LTZT+5GhoaqmyL5uPjQ0hICElJSdSuXZvAwEBmzpyJm5sbhw8fZsSIEfzyyy80bdqUd955h7i4OP71r39hbm6OwWDgk08+UWa0ExISWLp0KVevXsXPz4+xY8cq13h8Nvzxn/96/ZkzZxIWFsamTZuoUqUKHh4eSrGclpaGnZ2dEiiiVqtp0KCBcp+5xWU/fPiQkJAQ3nnnHRISEujevTv16tXj22+/RaPRYDAYGD58OP7+/kD2zHnTpk05ePAg6enp+Pn5MX78eCIjI/njjz+YMWMG3377rTKTbypSe+LEiajVas6ePcvVq1dxcXFh1qxZso+zEEKIUmf/lTTW/nEy30ATVcKBMhufLZ5PiSycR40alSPo41FIR+vWrenWrRtmZmakpqYycOBAdu7cqbS7du0ay5cvB7KT8E6ePMmUKVP45JNPAPjll1+UtuHh4Xz22We4ublhMBiUrdcATp8+zQ8//IBGo6FPnz64uroWaOnG49ePj49n27ZtrFu3Dmtra0aNGqW069q1Kz/99BOdO3fGzc0NLy8v/P39sbCwMBmX/fDhQ27fvo2TkxPvv/8+AHfu3GHVqlWoVCquX79Ojx49aN26tRKccuXKFVauXMn9+/fp2LEjPXv2JCQkhJiYmBzLUVatWpVnpPapU6dYtmwZZmZmBAcHk5CQgLe3d0E+SiGEEKLE2HDiNGdu38m/Ycb9gp9T4rPLlRJZOIeHhz+xxhngwoULjBs3jrS0NCwsLLh+/TrXrl1ToqWDgnJGWNatWxdXV9dcr+Hl5cWXX36Jr68vbdu2zXG9oKAgJXq6a9euJCUlFahwfvz6ycnJ+Pn58dJLLynvzZ8/H4Bq1aqxceNGDh48yL59+1iwYAHr169nyZIlJuOyITs10M/PT/n55s2bTJ48mXPnzqFSqbhz5w5nzpzBxcUFAF9fX8zNzalUqRJOTk6cP3+eevXqPdHv/CK1O3bsqHyRady4MefPn5fCWQghRKnTzdmJhzpD/jPOlatIfLbIVYksnE0ZO3YsEydOpGPHjhiNRlq0aKEEeABKkWrq58dNnjyZEydOkJSUxOjRoxk0aFCuoR6Px02rVCqMRqPy3uPX/uv18oqwBrCwsMDNzQ03NzdCQkLw9vbm9u3bJtsDVKhQIcc5p0yZgo+PD/PmzcPMzIwuXbrk6FNB47nzi9R+nphvIYQQoqRo6ehAS0eHfNtVGz6m3OwiIZ5OqYrcvnfvHrVq1QKy1wFrtdpnPldqairOzs4MGDCA7t27c/jwYeW9devWodfryczMZMuWLcra5zp16ijtEhMTlUjr3Hh6erJlyxYePHiA0Whk/fr1ynt//PEHFy9eVH4+cuQIlStXxtbW1mRcdm7u3btHzZo1MTMzY/fu3Zw7d65A916xYkXu3fvfLwSJ1BZCCCGEyF+pmnGeNGkS//znP3FwcMDDw4MqVao887nmzJmjLHGwtbXl888/V95r0qQJgwYNIi0tDV9fX2WZxujRo5k4cSIRERG0bNmSGjVqmDz/W2+9xYEDBwgMDMTBwYEWLVpw5072uqpbt24xdepUMjIyUKvVVKhQgX//+9+Ym5ubjMvOzbhx45g6dSqLFy/G2dkZZ2fnAt177969mTVrFkuXLmXChAmFEqmdn1fefrdQzyeEEEIUFYnPFqZIAEoRehRhbTQa+eijj6hWrRpjxox50d16ISRyO3flaVP5pyVjY5qMjWkyNqbJ2JgmY5O38jQ+pS4ApSwJDQ3l0qVLPHz4kCZNmjBkyJAX3SUhhBBCCPGMZMZZCCGEEMXCoNVy844m/4bFrDzNqD6L8jQ+MuP8gvn4+KBWq1Gr1RiNRkaMGIG1tTV79+4lNDSUixcvsnv3bnr37q0cs2zZMgICAnj55ZfzPHdxxIMnJycza9YsZY/nZ3VteRiGe3nvGiKEEKJsq/7PqUDJK5yFKCgpnIvBo32pjx49Sp8+fdi+fTtvvfUWAJcuXWL16tU5Cucff/yRN998M9/CuTA8T3S3EEIIIUR5IhVTMWrcuDEVK1YkKiqKQ4cOER4ezrRp07h48SKBgYHUrVuX119/nfT0dCU9cc6cOZw9e/aFxYMDGAwGPv30Uw4cOICZmRlhYWE4OTm9mEEUQghRoh24cpO1R8/xUP/knv+qpP5PBItIbLUoTaRwLkZJSUloNJocM7yffvrpE0shIiIicqQnjh079oXFgwP8+eeffPHFF0ybNo3vvvuO+fPnM2fOnOcaCyGEEGXTxpMXOXvbRGR1xqVcX5bYalFaSOFcDB7NHtvY2DB37lzS0tKe6vgXGQ8OUL9+fRo3bgyAi4sL27Zte6r+CyGEKD/8G9Xigd7EjHPll3OdcZbYalFaSOFcDB6fPQae+kG7Fx0PrlarlT+bm5uj1+ufqv9CCCHKD1fHqrg6Vs31ver/nFpudmcQZVOpitwui2xsbMjIyMjx2l8jsV9kPLgQQgghhMgmM84vmLOzM/Xr16dbt268+uqrhIeH079/fyZPnoy1tTVz5swhLCzshcWDCyGEEEKIbBKAIgCJBxdCCFH0JACldCpP4yMBKKJAijoe/MaNDIxG+Y72V+Xpl9HTkrExTcbGNBkb02RshHh+MuMshBBCiEJn0Gq4eUf7ortRIPKlIm/laXxkxrkceRTvbWVlhUajwc3Njc8++wxLS0uTx3z00UcEBwfj5la0+2de+c9kDPduFOk1hBBClBy13lsIlI7CWYiCksK5jHm09Z3BYODtt99m69atdO3a1WT7xx80FEIIIYQQpknhXEZpNBo0Gg22trbcv3+fGTNmKNvTde/enaFDhwLQr18/Bg8eTIcOHVi9ejXLli1DrVZjNBr59ttvcXJyIjU1lZkzZ3Lr1i10Oh0DBgwgJCTkRd6eEEKIYnLw6n2ijt3koc6Yf+PHWKQ8Ga9dEBLBLUoyKZzLmEcphefPn6d169a0bt2ar7/+GqPRSGxsLPfv36d37944OzvTrl27HMd+9dVXbNiwAUdHR7RaLQaDAb1ez/jx4/n6669xcnIiIyODkJAQXFxccHJyekF3KYQQorhsPnWLc7efYSeM+7nHaxeERHCLkkoK5zLm0VINjUbD+++/z7Jly0hMTGTy5MmYmZlhY2ODv78/iYmJTxTOXl5eTJo0ibfeeov27dtTu3Zt/vzzT06fPr6r9AkAACAASURBVM3YsWOVdjqdjtTUVCmchRCiHPBraMcD/TPMOFep9swzzhLBLUoqKZzLKCsrK9q3b8/27dtzjdTOLWJ73rx5HD58mKSkJPr378+UKVOoUaMGdnZ2rFu3rri6LoQQogRxqV4Rl+oVn/q4Wu8tLDc7MYjyQyK3yyij0ciePXuoV68eb775JmvXriUrK4uMjAw2bdpEq1atcrTX6/VcuHCB5s2bM3ToULy9vTl27Bj169fH2tqamJgYpe3p06efiAkXQgghhCjrZMa5jHm0xlmn09GwYUNGjhyJhYUF06dPJyAgAMh+OLBt27Y5jjMajUycOJF79+5hZmaGo6Mj48aNw8LCggULFjBz5kyWLFmC0Wjk5Zdf5ttvv30RtyeEEEII8cJIAIoQQgghCp0EoJQd5Wl8JABFlAgSuZ278vTL6GnJ2JgmY2OajI1pMjZCPD+ZcRZCCCHKIb1Ww61SMiNc1ORLRd7K0/iUihnnsLAwbt++zdSpUwHYtm0bw4cPZ8OGDTRs2BCAYcOG0bFjR3r16vVU505OTkan09G6dWtu3brFwIEDAcjMzCQ9PZ169eoB0L59e8aMGfNM/W/bti1VqlRh3bp1ym4Vbdu25YcffiiULdv69u3LkSNH2L17N5UqVQJg9+7dDB48mCFDhjB+/PhnOq/BYKBHjx5ERESgVqufu595OfufIejvpRfpNYQQQhRcg/fWIZHYQjydErGrhqenJykpKcrPKSkptGjRQnnNYDCwb98+vLy8nvrcKSkp7N69G0DZVm3dunXMmDEDJycn5ednLZofycjIIDY29rnOkRcnJyc2bdqk/BwVFUWTJk2e65wqlYp169YVedEshBBCCFEWlIgZ55YtW3Lx4kWuX7/OK6+8wp49exg5ciTR0dG8/fbbHD16FBsbG2rXrs2OHTv47rvv0Gq1WFpaMmnSJFxcXEhNTWXSpEk8ePAAo9FIcHAwrVu35ueff8ZoNJKQkIC/v78SNZ2brKwsFi5cSFxcHHq9HkdHR2bMmMHLL7/MxIkTqVq1KhMmTCA9PZ0+ffrw3Xff4ezsDMD777/P3Llz8fPzw9LSMsd509LSmDFjBleuXEGj0dC9e3eGDBnC9u3bWb16Nd999x1paWm0bduWefPm0alTJxYsWIBGo2H06NEABAcHEx0dTe/evcnIyODw4cN06dKFRyttnqXvTk5ONGnShEOHDmFlZcWpU6f4/PPPuXnzJllZWfzjH/8gMDCQM2fO8Nlnn3Hr1i0sLS0ZN24c3t7eRfS3QQghREEcvqpn/TEtD3XPtuLS8hkjsR+RaGxRHpWIwtna2ppmzZqRkpJC27ZtefDgAW3btuWLL74AsmeNPT09OX/+PPPnz2fJkiXY2Nhw6tQppQBdtWoVbdu2ZeTIkQDcuXOHypUr06dPHzIzMwkNDc23H9HR0Vy9epU1a9Zgbm7O8uXL+eqrr5g1axafffYZvXr1ws3NjWXLljFs2DClaAZo3rw5jRo1Ys2aNbz99ts5zjt+/HjGjBlDy5Yt0Wq19O/fn2bNmuHm5kZoaCgGg4HExERcXV1JTEykU6dOJCYmKvcCKEtKzpw5w549e+jcuTPm5uYYDIZn7rter1fOr9VqGTFiBKGhoXTq1ImsrCxu374NwLhx4+jXrx/BwcGcOHGCAQMGsHnzZuzs7J7h0xZCCFEYfj2l5fztp0vzy+E5IrEfkWhsUd6UiMIZspdrJCcnU7FiRd544w1UKhV169bl1KlTpKSk0LlzZ3bt2sX58+dzFKZ6vZ7r16/j7u7OrFmz0Ol0eHp6PtOyjvj4eI4dO0ZwcDCQvUSkSpUqAFSoUIGwsDB69epF+/bt6d279xPHjxkzhsGDB9OjRw/ltYyMDPbv36+s3wa4f/8+p0+fxsvLi/r163P48GESExN57733+Oqrr9BoNBw/fhwXF5cc5w8ODiYmJoaUlBRmzJjB+vXrC63vqampqFQqOnXqBGQnC9rZ2XHnzh3+/PNPgoKy40+dnZ1p2LAhhw4deiKyWwghRPHp3FDNQ/1zzDhXqfHcM84SjS3KmxJTOHt4eDBt2jQqVaqEu7s7AO7u7iQlJbFv3z4++eQTduzYQZs2bfjqq6+eOL5Lly64uLiwe/duFi9eTGRkJLNnz36qPmRlZfH+++8rReJfnTp1ChsbG65du4bBYEClUuV4v0GDBrz55pv85z//UV4zGo2YmZkRGRmJhcWTw+3l5UViYiKHDh1ixowZVK5cmY0bN9KkSZMn1h77+/vj7+9P9erVn3jo8Hn7ntfmKrnFc+f2mhBCiOLTrLoFzao/+//GG7z3Y7nZKUGIwlIiHg6E7HXOly5d4tdff8XDwwMANzc3VqxYga2tLbVq1cLb25tdu3Zx6tQp5bhDhw4BcO7cOezt7enRowcjR47k8OHDANjY2HDvXsF+Mfj4+LBy5Uru3r0LoMz8Apw/f55Zs2axatUqqlevTnh4eK7neP/991m+fDkPHjwAwNbWFhcXF5YsWaK0uXTpEtevXwegVatWREREUKdOHSwtLfHy8mLevHm5zpjb2Njw4Ycf8uGHHxZ6352cnDAYDGzduhXILqRv3bpF5cqVlYcoIbsAP3XqFM2aNSvAiAohhBBClB0lZsbZysqKFi1akJaWhoODAwDNmjUjLS0NX19fIHud79dff81HH33Ew4cP0el0tGzZkubNm7N582ZiY2OxtLTEzMyMyZMnA9CxY0fWrVtHYGBgvg8HhoSEcPv2bWUpSFZWFu+88w6vvvoqH3zwAaGhodSpU4dp06YREhKCu7s7rVu3znGOmjVr0rVrV3788UfltW+++YaZM2cSEBBAVlYWNjY2fPnll7zyyiu4urpy48YN+vfvD2QX0uHh4SaXmnTr1q3Q+v74NdRqNd999x3Tp08nPDwcMzMzhgwZQkBAAHPmzOGzzz5j6dKlqFQq5syZI+ubhRBCCFHuSACKEEIIUQ5JAMr/lKeAj2dRnsanVASgiLJPIrdzV55+GT0tGRvTZGxMk7ExTcZGiOcnhbMoFnl9eyvv7O0rvegulFgyNqbJ2JhWHsdGZo+FKB5SOBcSHx8fFixYQKNGjZ77XCtXrmTatGnExMTw+uuvF0LvTHN2dmb//v1UrFixSK9zbMU/0EnkthBCFInmI9Yj8dlCFL0Ss6uG+J/IyEi8vLyIjIx80V0RQgghhBD/T2aci9ChQ4f4/PPPyczM5KWXXuKjjz6iefPm3Lhxg3HjxnHjxg0geyeNR7uAnDhxglu3bjF37lxCQkKYMGGCsp+zj48PgYGBJCQkcO3aNQYPHsw777wDwN69e5WQFU9PT3777TcWLlxIo0aNSE1NZebMmdy6dQudTseAAQMICQl5or+m2j148IDQ0FD+/PNPLCwsqF+/Pv/617+KYwiFEKJcOnJFz5YjOjT6gj0bok7MPz5bpTJT2khcthDPRgrnIqLVahk1ahQzZ87kzTffJDExkVGjRvHrr78SGxtLjRo1WLZsGZAdD/7I2rVrCQoKombNmrz++uvExcXRtWtX5f2HDx+yevVqLl68SEBAAMHBwVhaWjJ27Fi++eYb3Nzc2Lp1K8uXLweykxXHjx/P119/jZOTExkZGYSEhODi4pIjRCWvdqmpqdy9e5dNmzY90V8hhBCFb9sJHRefJk474+njsyUuW4inJ4VzETlz5gyWlpa8+eabQPassqWlJWfOnKFFixb88MMPzJo1Cw8PD2UvaK1Wy4YNG1i9ejWQHbEdGRmZo3B+9OdatWpha2vL1atX0el0WFtb4+aW/QuwU6dO2NraAnD27FlOnz7N2LFjlXPodDpSU1NzFM55tXvttddITU1l6tSpeHh40L59+yIYMSGEEI90cLZEo3+KGefK+cdn/3XGWeKyhXh6UjgXkaysLJNR1a6ursTExJCQkMC6detYtGgRP/30E/Hx8WRkZDBw4EAgO677+vXrXLlyBUdHRyA7KOYRlUqFwWBQzmuqH3Z2dkryX179zavdpk2bSEpKYufOnYSFhREbG5ujL0IIIQpPE0cLmjgW/H/RzUfkH58t29EJ8fzk4cAi8uqrr6LVaklKSgIgKSkJvV5PvXr1uHDhAjY2Nvj7+zNp0iSOHDmC0WgkMjKSTz/9lPj4eOLj49m+fTs9evQgOjo632tlZmayb98+AOLi4pTo7fr162NtbU1MTIzS/vTp02RkZOQ4R17trl69ikqlomPHjkyaNImbN29y+/btQhknIYQQQojSQmacC9GgQYNQqVTKz/PmzcvxcOC//vUv1Go1KSkp/PDDD6hUKoxGI1OnTuXatWvs2bOHOXPm5DhnQEAAkyZNYsSIESavq1armTNnDlOmTMHa2hovLy9eeeUVKlWqhIWFBQsWLGDmzJksWbIEo9HIyy+/zLfffpvjHHm1O3HihNIvo9HI0KFDlVh0IYQQQojyQiK3y4iMjAxsbLJDRpKSkpg4cSLx8fGYm8s/KgghRFlXkAAUWaphmoxN3srT+Ejkdjnx66+/smzZMrKyspQZ6JJUNEvkdu7K0y+jpyVjY5qMjWkyNkKIoiQzzkIIIYR4YUpCXLh84cpbeRofmXEuYZ43mjstLQ1fX1927NihbDkH2cszPv74Y7Zu3Wpyh40X6cDKwWgzJHJbCCFETp7DNiBx4aK0KDn/li8KxMHBATc3NzZu3Jjj9ejoaHr06FEii2YhhBBCiLJAZpxLgFmzZpGSkoJOp8POzo6ZM2dSs2ZNk9HcISEhLFmyhL59+wLZDwZu3bpVKabzitj+5ZdfCAsLw9raGl9fX8LCwti/fz8VK1Zk3LhxnDlzBp1OR506dZg5cyaVK1cmNTWVSZMm8eDBA4xGI8HBwbz77rsvZrCEEEKUOMcvG4g7okOje/pjrXfnHxduikSHi+ImhXMJMGTIEEJDQwGIiIhg9uzZSshIbtHcPj4+TJkyhT///JMGDRqwefNmXF1dcXR0zDM6u0qVKnz66aesXr2aevXqKed95KOPPqJq1aoAhIWFsXjxYsaPH8+qVato27YtI0eOzNEPIYQQAmDXCT2Xbz3jI1PPEBf+OIkOF8VJCucSYOfOnaxatYrMzEz0er3yuqlobrVaTUBAAJGRkYSGhhIVFUW/fv2AvKOzzc3Nady4MfXq1QMgJCSEL774Qmm3bt06YmNj0el0ZGZmKu3c3d2ZNWsWOp0OT09PvLy8inhEhBBClCZtnC2yI8KfZca5AHHhpkh0uChuUji/YJcuXeKLL75g7dq11K5dm/379zN+/HgAk9HcAD179mTw4MH07NmT1NRUOnbsCOQdnR0XF2dyDfTevXv56aef+Pnnn6latSqxsbGsWbMGgC5duuDi4sLu3btZvHgxkZGRzJ49uyiGQwghRCn0Wg0Vr9VQ5d8wF57D8o8LF6KkkIcDX7CMjAwsLS2xt7fHaDTy888/K++ZiuYGcHZ2xsHBgQkTJhAQEIBarQbyjs52cXHhyJEjnDt3DoCoqCilzd27d7GxsaFKlSpotVoiIyOV986dO4e9vT09evRg5MiRHD58uEjHRAghhBCiJJIZ5xfgr9Hcvr6++Pv7U6NGDdzd3dm7dy9ArtHcj4ea9OzZk6lTpzJjxgzltbyis1955RWmTJnC0KFDsbOzw8fHB0tLSypUqEDbtm1Zv349fn5+ODg40LRpU6VA3rx5M7GxsVhaWmJmZsbkyZOLaaSEEEIIIUoOCUApZx6P5o6MjGTt2rXK8g8hhBCiuEkASslXnsZHAlBEDsuXL2fLli0YDAYqV66cY7a6KEnkdu7K0y+jpyVjY5qMjWkyNqbJ2Ajx/GTGWQghhBCFoiTMHj8L+VKRt/I0PjLjXEbcuXOH1q1b06dPHz766CMAkpOT0el0yjZ1Fy9eJCQkhOTk5Ge+zsWLF9m9eze9e/culH4/kvTTIDQSuS2EEGVauyEbkfhsUZbJrhqlRGxsLC4uLmzcuBGtNvuXUkpKCrt37y7U61y6dInVq1cX6jmFEEIIIcoCmXEuJSIjI5kwYQILFy4kPj6e+vXr8/PPP2M0GklISMDf35+uXbvmOMZUhHZycjIzZ86kRYsWHDhwADMzM8LCwnBycmLatGlcvHiRwMBA6tatS3h4uMlIcCGEEGXbycsGdhzWo9Hn3xZgya6nj8+W2GxRmsga51Lg+PHj/POf/+S3334jNjaW2NhYFi9ezNy5c8nMzFTiuv+6VOPmzZs5IrQNBgPjx48nOTmZwYMHExERQePGjfnuu+/4888/mTNnDsnJycyaNSvHHs+PnyciIoKEhATCwsKe6h5kqYYQQpQ+//lNw7lrRV8mNG7clE8/LZ6H1XNTntbwPovyND6yxrkMWLt2LYGBgZiZmdG5c2dmzJhBWlpavseZitCG7KCUxo0bA+Di4sK2bdtMnsdUJLgQQoiyrdXrFmj1BZ9xrmD79PHZEpstShMpnEs4rVZLbGwsVlZWSoy2TqcjOjo6z+PyitAGlKRBAHNzc5MFcV6R4EIIIcq2RjVUNHqKKO12QyQ+W5RtUjiXcHFxcbz66qs5QkoOHDhAaGgoffv2NTnznFeEdl5sbGzIyMhQfs4rElwIIYQQojyRXTVKuKioKAICAnK85urqitFopEmTJvzxxx8EBgayaNGiHG3atm1LnTp18PPz4x//+IeyLCM/zs7O1K9fn27dujFq1CicnZ2VSPABAwZQq1atQrs3IYQQQojSRB4OFEIIIUShkACUsqk8jY88HChKBInczl15+mX0tGRsTJOxMU3GxjQZGyGenxTOoljk9e2tvLO3r/Siu1BiydiYJmNjWlGPjU6r4XYpnFUVQjw/KZz/n4+PD2q1GrVazYMHD2jQoAFDhgyhZcuWeR7Xr18/Bg8eTIcOHZg4cSJNmzblnXfeea4+WFlZAeDp6cnkyZOJi4ujWrVqNG/eHIC+ffvSr18/JfBk1qxZxMTEkJCQgJmZGQaDAQ8PD6Kjo6lTp85T9WHu3LkMGzZM2XXjee/pkR2rB/JQ9nEWQpQBXd7dhMRKC1E+SeH8mPDwcBo1agTAr7/+ytChQ1myZAktWrR4IX14JC4ujqZNmyqFs4eHB8nJyUrhnJKSQq1atfjzzz9p2LAhR48epVKlSk9VNOv1eiwsLJg3bx6DBw/OsV2dEEIIIYSQwtmkzp07c+jQIZYsWULfvn359ttv0Wg0GAwGhg8fjr+/f57HJyYmmjxm3rx5bNiwASsrK8zMzPjxxx+xtbXN9Ty7du0iPj6ehIQEIiIiGDRoEF5eXkybNg3I3i5Oo9HQo0cPUlJSaNiwISkpKXh4eABgMBiYPXs2u3btAqBNmzaMHz8elUrFxIkTqVixImfPnuXWrVvKF4Q+ffpgbm7O8uXLATh58iT9+/fn6tWruLi4MGvWLMzMzJ5/kIUQQgghShEpnPPQokUL4uPjady4MatWrUKlUnH9+nV69OhB69atqVy5ssljTR0DsGTJEhITE7G2tiYjIwNra2vluFGjRilLNcaPH0+bNm3w8fHJsVzi4cOHXLx4kevXr3PkyBFatmyJm5sb33//PW+//TYpKSl07twZgNWrV3Ps2DElQnvIkCGsXr2av//970D2ntArVqzgpZdeAmDVqlX8/PPPVKxYUenTqVOnWLZsGWZmZgQHB5OQkIC3t3dhDbMQQrxwpy8Z+P2QAW0BEvJW7uifbzpehQrW9Or1d1q2dCukHgohSgIpnPPwaKe+mzdvMnnyZM6dO4dKpeLOnTucOXMGFxcXk8eaOqZZs2bUr1+fDz/8kDZt2tC+fXtsbP734FxuSzX+ytramubNm5OSksKRI0fw8PCgSZMmHDt2DIPBwL59+/j444+B7Jnv4OBgZelFjx49iIuLUwpnX19fpWg2pWPHjkox37hxY86fPy+FsxCiTEk5ZiDtVsF2/rl171KB2m3YECOFsxBljBTOeTh8+DANGzZkypQp+Pj4MG/ePMzMzOjSpQsajSbPY00do1KpWLNmDfv37ycpKYkePXrw/fff89prrz1V3x6tcz527Bj9+/dHpVJRp04d1q9fj62tLbVr1wayi/+/Lqt4/Of8imZAKZoBVCoVBoPhqfoqhBAlncfrKrS6gs04v2Rbo0Azzt26BRVS74QQJYUUzibExcXx008/8f333zNt2jRq1qyJmZkZu3fv5ty5c/kef+/evVyPycjIIDMzEw8PDzw8PDh48CCnTp3Ks3C2sbHh3r2ce28+2nGjQoUKODg4AODu7s6CBQuU9c0Ab775JtHR0fj5+QEQExOjLOPITcWKFcnIyMixVEMIIco6p5oqnGqqCtS2y7s/yn7IQpRTUjg/ZtSoUcp2dE5OTixatAgXFxfGjRvH1KlTWbx4Mc7Ozjg7O+d7LlPHZGRk8P777/Pw4UOysrJo3LhxnoUsQPfu3Zk0aRJbtmxh0KBBBAUF4erqyrVr1wgMDFTaubu7ExYWxrBhw5TXevfuzfnz5wkODgagdevW/O1vfzN5rcGDB9O/f3+sra2VhwOFEEIIIYREbgshhBBPpbQGoEhyoGkyNnkrT+MjkduiRJDI7dyVp19GT0vGxjQZG9NkbIQQRUlmnIUQQghRqhT2rL984cpbeRqfUj3j7OPjg1arZceOHahU2Q9tREZGMnnyZD755BNUKhUajYaBAwcW2jWHDBnCJ598Qp06dZg4cSIJCQnY2dkB2Q/OrVq1imPHjnHmzBklue9RXxcsWJDvVnLPIjk5mVmzZil7MT+PxyPC8+Ls7Mz+/fsL7SHBrWsG8EAit4UQQhSC7oM3I7Hn4kUo0YUzgL29Pb///jvt2rUDsneFaNKkCQB9+/Yt9OstXrw4x89Dhw5VgkceOXbsGNu3b89ROJdEBoNB+cIhhBBCCCGeT4kvnIODg4mKiqJdu3ZcuHCBBw8eKLO6c+fOJTMzk9DQUE6cOMHUqVN58OABGo2Gv/3tb8pM9MSJE1Gr1Zw9e5YLFy7QqVMnOnTowNy5c7l69SoDBgxgwIABQP4zx7du3SI8PJyMjAwCAwNxd3dXwkZyM2vWLFJSUtDpdNjZ2TFz5kxq1qz5xCzyX38OCwtj06ZNODg40KxZsxznjI6OZtWqVRgMBmxsbJgyZQqvvvoqUVFRbNy4kapVq3L69Gk+//xzLC0tmTRpEnq9Hicnpxz7Ty9dupSNGzdiMBiwsrJiypQpvP7660/cQ2pqKjNnzuTWrVvodDoGDBhASEhIAT9BIYQQQoiyocQXzp6enqxatYo7d+4QHR1NUFAQf/zxxxPtatasybJly1Cr1dy/f59evXrRpk0bnJycgOzY6P/85z8YDAZ8fHy4d+8eK1as4Nq1a/j6+tKzZ89clyUsWrSIiIgIIDtlb8SIEYwaNYrt27cTHh6eb/+HDBlCaGgoABEREcyePZuwsLA8j4mPjyc+Pp6YmBisra0ZOXKk8t7evXvZvHkzK1euRK1Ws2PHDiZPnszPP/8MwP79+1m3bh116tQBspMC+/XrR3BwMAcPHswxSx8UFMTgwYMBSEhI4LPPPmPNmjU5+qLX6xk/fjxff/01Tk5OZGRkEBISgouLizK2QgghxPM6c8lI0iEDWl3+j16t3Z5/7PkjEn8uClOJL5zNzMzw8/Nj48aNbNq0iZ9++inXwvnhw4dMmTKFEydOYGZmRnp6OsePH1eKu44dOyqx0/Xr16ddu3aYm5vj4OCAra0tV69ezbUQzG2pxtPYuXMnq1atIjMzE72+AJFUZM8+d+3aVSnke/bsyfz584Hsovr48eP06tULyE4GvHv3rnJsy5YtlaI5IyODkydPKns9u7i45JhJ/+OPP1i4cCF37tzBzMyMs2fPPtGXs2fPcvr0acaOHau8ptPpSE1NlcJZCCFEodl31ED6zYIVw7cLGHv+iMSfi8JS4gtnyJ417dWrFx4eHsqDen/1zTffYG9vz5dffomFhQWDBw/OsSzhr7HRxREjfenSJb744gvWrl1L7dq12b9/P+PHj1eu+fiGJo/3Na+NTrKysggJCWH06NG5vv/XWfO/xm0/otVqGT16NCtWrKBJkyakpaXRtm3bXK9nZ2fHunXrTN+oEEII8ZzeaKxCpy/YjHNF25pPNeMs8eeisJSKwrl27dqMGTOGFi1amGxz7949nJ2dsbCw4OTJk+zdu5du3boVSX9yi8DOTUZGBpaWltjb22M0GpXlFJB9TxcuXODOnTvY2tqyceNG5b1WrVoRFhbGgAEDsLKyIjIyUnnPx8eH0NBQevfuTfXq1TEYDBw7doymTZvm2s+GDRsSGxtLYGAghw4d4uTJk0B24azX63F0dARg1apVud5D/fr1sba2JiYmhqCg7F88p0+fxsHBARsb09u1CCGEEE+jfk1z6tc0L1Db7oMl9ly8GKWicIbs6Oi8jBgxggkTJrB+/Xrq1KmDu7t7kfWlVatWLF26lO7du+Ph4aE8HDho0KAcu1jExsbi6+uLv78/NWrUwN3dnb179wLg4ODAoEGD6NGjB7Vq1aJZs2acOnUKgA4dOnDw4EGCgoKoVq0anp6epKWlAdmx2h988AEjRozAYDCg0+nw9fXNtXAG+Oqrr5g0aRLLli2jSZMmypcPGxsbRo0aRc+ePXF0dMx1thnAwsKCBQsWMHPmTJYsWYLRaOTll1/m22+/LZzBFEIIIYQoJSQARQghhBCligSgFK/yND6lOgBFlB0SuZ278vTL6GnJ2JgmY2OajI1pMjZCPD+ZcRZCCCFEqVRYM8/ypSJv5Wl8ZMZZlAgbIwaQmZH2orshhBCiDOk1aAsSvS2KkxTOpZyPjw9qtRq1Wo3RaGTEiBFoNJoCBbT89NNPaDQaJWFRCCGEEEKYJoVzGRAeHk6jRo04evQoffr0MbnH8189niIohBBCCCHyJoVzGdK4cWMqVqyYI0Dl2rVrjB07lvv376PRNJLbXwAAIABJREFUaGjXrh0TJkwAYO7cuWRmZhIaGkpUVBQbNmzA1taWU6dOUalSJebOnYu9vT379+9n+vTpGI1G9Ho9I0aMKLI9soUQQohzF43sOWRAp8u7Xey2gkVvS+y2KCxSOJchSUlJaDQaLCz+97Ha2tqyYMECKlasiE6n491332Xnzp257tt8+PBh1q9fj6OjIx9//DErVqxgzJgxLF68mAEDBhAUFERWVlaBwl+EEEKIZ3XwqJHrN/Nvd+cporcldlsUBimcy4BRo0ZhZWWFjY0Nc+fOVcJSAAwGA1999RUHDhwgKyuL69evc/z48VwL55YtWypJgi1atCAhIQEAT09PFi1axOXLl/H29s4zwVEIIYR4Xi6NzdHp859xtilg9LbEbovCIoVzGfBojfMjUVFRyp9/+OEH7t69S0REBFZWVnzyySdoNJpcz2NlZaX8WaVSYTAYABg4cCA+Pj4kJCQwffp0vL29GTNmTBHdjRBCiPKubi1z6tbKP3671yCJ3hbFSwrnMu7evXvY29tjZWVFWloav/3221M/FHjmzBnq169PnTp1eOmll4iJiSmi3gohhBBClFxSOJdx/fr1Y/To0QQFBVG9enVatWr11OdYvnw5ycnJWFpaolar+fj/2LvzqKzK/f//z5tZQRSKiEzDCRBdiJaas1HHGREQtTTy6MFPVnIkcTYVNROHTFFzPHHUDARRxOFYZmrFoKalfo9ThiJ2ZEiRSbjH3x/8uJPkhhtFAXk/1mot983e1772RbLeXF77es2ZU+U2Bgf8u8rXCCGEEBVRKcv/F1QhHhdJDhRPhERul68+pTFVlYyNYTI2hsnYGCZjY5iMTcXq0/hUlhwohbMQQggh6hyVqoicnEreHjRSfSoMH0Z9Gh+J3Ba1QlxsIAUSuS2EEKKavD32EFA9hbMQxqr8lVVR4w4ePMiwYcPw8fFhwIABTJkyBSgJMFEqlfrzIiIiCA8Pr7b7BgUFkZaWVm3tCSGEEELUZTLjXMtlZmYSFhbG7t27cXJyQqfTcfHiRQDWrFnDuHHjsLCweCz33rRp02NpVwghhBCiLpLCuZbLzs7GzMyMJk2aAKBQKGjbti1hYWEAjBo1ChMTE7Zt22awjYKCAhYtWsS5c+cAGDp0KBMmTADAy8uL9evX6/eBvv/4/j+vWbOGffv2YWlpiUKhYOvWrdja2j7ORxdCCFFP3EjX8vMv2koDT+73zRHj4rbvJ9Hb4lFJ4VzLubm54eHhQd++fenatSudOnXCx8eHefPmsWPHDqKiorC2tq6wjXXr1qHVaklISKCgoICRI0fi6upKnz59jOrD3bt32bJlC0lJSVhZWZGfn4+VlVV1PJ4QQgjB+f9q+cOIiO375VYhbvt+Er0tHoUUzrWciYkJ69at4/Lly5w8eZLDhw+zZcsWEhISjG4jKSmJWbNmoVAosLGxYfDgwSQlJRldONvY2NCiRQumTp1Kr1696Nu3LzY2ht84FUIIIaqivbsJalXVZpwbGRm3fT+J3haPSgrnOsLFxQUXFxdGjx7NoEGDOHHihNHX6nQ6FApFmc9Kj01NTdFqtfrPy4vjNjU1ZefOnZw+fZrk5GT8/PzYvHkzbm5uD/k0QgghxJ+avWhCMyMitu/39liJ2xZPnuyqUctlZGRw5swZ/fGtW7e4ffs2L774ItbW1uTn51faRvfu3YmNjUWn05Gfn8+BAwf0CYLNmzfXr31OSkoiOzv7gevz8/O5ffs2Xbp0ITg4GBcXF65cuVJNTyiEEEIIUTfIjHMtp1ariYiI4ObNm1hZWaHVapk8eTLu7u6MGzeOwMBArKys9C8HRkVFsX//fv317733Hu+99x4LFy7E29sbKHk5sHfv3gD885//ZMaMGcTExNCpUydeeOGFB/qQn5/PpEmTKCoqQqfT4e7uTr9+/ar0HH7Dtz7sEAghhBAPUKmKaroLoh6S5EDxREjkdvnqUxpTVcnYGCZjY5iMjWEyNobJ2FSsPo2PRG4LIYQQQjwEpaqIu9UU612XSeH8J1mqIZ6IqF2B5BdI5LYQQoi64x+BEustypLCuQYdPHiQDRs2oNPpKC4upl27dqxYsaKmuyWEEEIIIcohhXMNqShK2xharRaFQvHANnNCCCGEEOLxkMK5hhiK0t60aRP/+9//mDt3rv68oUOH8u2337J582auX79OYWEhN27cYPv27axfv54TJ06gUqmws7Nj8eLFNG3aFIDvvvuOiIgI1Go1JiYmLFmyBBsbG/z9/UlJSQEgPT1df/zHH38wZcoU/vjjDwC6devGrFmzANi0aROHDh1Co9Hg6OjIwoULcXBweNLDJoQQQlSbm+lazp3RolaX//XjhyuO9ZYI7/pHCucaYihKe8SIEQwaNIgpU6ZgbW1NdHQ0Q4YMoUGDBgCcOnWKuLg47O3tAQgKCmL69OkAxMTEsHz5clauXElqaipz5szhyy+/xNnZGaVSiVKpJCcnx2CfEhISeOGFF4iMjARKorYB4uPjSUtLY+fOnZiYmLBjxw6WLFkiy0qEEELUaRfPa7lTQdR3Xm7lsd4S4V2/SOFcQyqK0vby8iI+Pp4RI0YQExPDF198ob+ud+/e+qIZ4Pjx4+zYsYPCwkLU9/3KnJiYSO/evXF2dgbAwsICCwuLCgvnDh068MUXXxAeHk6XLl3o2bMnAEeOHOH8+fP4+voCoNFoJHJbCCFEnefW3gSVyvCMs22jimO9JcK7/pHCuYaVF6X99ttvM2XKFJ555hlatWpFixYt9OdbW1vr/3zz5k0++eQTYmNjadasGadPnyY0NBQoidkuj5mZWZmv3R+x3bFjR/bs2UNiYiLx8fFs3LiRr776Cp1Ox8SJExk+fHh1P74QQghRY5q+aELTCqK+/xEosd6iLIncriEVRWm7uLjQpEkTFi9ezFtvvWWwjfz8fMzNzXFwcECr1RIVFaX/Ws+ePTl+/DjXrl0DQKlUkp+fz7PPPotKpeL69esA7Nu3T3/NjRs3sLGxYfDgwcycOZP/9//+H1qtFi8vL3bs2KFfuqFUKqv0IqMQQgghxNNAZpxrSEVR2gABAQGsXLmSvn37GmzD1dWVAQMGMHjwYF544QU6d+7MqVOnAHB2dmbhwoWEhISg0WgwNTVlyZIluLq6Mnv2bP7+97/TtGlTunbtqm/vxIkTfPHFF5iamqLVagkLC8PExIRhw4aRk5PDmDFjgJLZ7DfffBM3Nzejn3eUv0RuCyGEqFuUEust/kKSA2up2bNn06JFC/7xj3/UdFeqhURul68+pTFVlYyNYTI2hsnYGCZjY5iMTcXq0/hI5HYdk5GRQWBgIA4ODmzatEm/m4YQQghRnzzJuOv6VBg+jPo0PhK5Xcc4Ojpy6NChmu5Gtdu6O5A8idwWQghhpPfHSNy1qH3k5cAa4uXlRc+ePdFoNPrPdu3ahaurK9u3b+err77S76f8V3FxcQQHBz+WfkVERKBUKvXHM2bMYPv27Y/lXkIIIYQQdYkUzjXIwcGBH374QX+8Z88e2rVrB8Cbb77J2LFjn3if1qxZg0olv+ELIYQQQvyVLNWoQb6+vsTFxdGnTx9u3LjBvXv3cHFxAUpmfgsLC5k+fTpKpZJFixaRkpKCo6MjLVu21Ldx+vRpFi5ciFarRa1WM3HiRIYMGUJ2djbz5s0jLS0NgPHjxzNsWMkm7a6urpw+fVq/J3Tp8fLlywEYNWoUJiYmbNu2DYDLly8TGBjIrVu38PT0JDw8HIVC8cTGSQghxNPlfze0XDijRV3BPE3K1xXHXYNEXosnTwrnGtS1a1f9/si7d+9m2LBhnD9//oHzoqOjSU9PZ9++fajVakaPHs2LL74IwKZNm3jnnXcYNmwYOp2OvLySxfuLFi2iTZs2rF27lszMTPz8/HB3d9cX5uWZN28eO3bsICoqqkzQypUrV4iMjEShUODr60tiYiI9evSo5tEQQghRX1w5ryXnj4rPyTci7hok8lo8WVI41yCFQsHAgQPZv38/Bw4c4Kuvviq3cE5JSWHYsGGYm5tjbm7O0KFDOX36NFBSfG/cuJHff/+dHj160KFDBwCSkpKYMWMGAM899xx9+vQhJSWlwsLZkDfeeANLS0sA3N3dSUtLk8JZCCHEQ2vT3gS1quIZ58aVxF2DRF6LJ08K5xrm5+dHQEAAXbp0wc7OrtxzKtoxcOzYsXh5eZGYmMjChQvp0aMHISEhAA8spyg9NjU11bd5f+S2IaVFc+m197/QKIQQQlSVUzMTnJpV/JrV+2Mk7lrUPvJyYA1r1qwZISEhvPfeewbP6datG/Hx8ajVaoqKisrEZKemptK8eXNGjRpFYGAg586d018THR0NQFZWFseOHdOnBDZr1kx/XkJCQpl7WVtbk5+fX63PKIQQQgjxNJAZ51pg5MiRFX59xIgRXLp0icGDB/P888/TuXNnbt4sWfu1bds2UlJSMDc3x8LCgjlz5gAwZ84c5s6di7e3NwChoaG0adMGgFmzZjF37lwcHBweiPQeN24cgYGBWFlZ6V8OrA6BvhK5LYQQwngSdy1qI0kOFE+ERG6Xrz6lMVWVjI1hMjaGydgYJmNjmIxNxerT+FSWHChLNYQQQgghhDCCzDgLIYQQQtQSSlURd3NqVxCZzDj/SdY4P6SDBw+yYcMGdDodxcXFtGvXjhUrVtR0tx5Zbm4u0dHRBAUFVWu7m/YGkluQUa1tCiGEEE+bKW8eAmpX4Sz+JIXzQ8jMzCQsLIzdu3fj5OSETqfj4sWL1dK2Wq3GzKzmvi25ubls3ry52gtnIYQQQoi6Tgrnh5CdnY2ZmRlNmjQBSvZHbtu2LQBTpkwhNTUVlUpF8+bNWbx4MY0bNwYgNjaWrVtLdpcwNzdnw4YNFBUV4e/vz5gxY0hMTGTo0KE4Ozvz2WefUVxcjEaj4d1332Xw4MEAvP3227Rr146zZ89y8+ZNAgMDcXR0ZPv27WRmZjJ16lQGDhwIwC+//MLy5cspKCgAIDg4mL59+5Keno6/vz+jRo3i2LFj3Lt3j48//phXXnmFBQsWkJeXh4+PDw0aNCAqKorr168zd+5cbt++jZmZGSEhIfTu3fuJjrkQQghR12Smabn8U8VBL3/1y8HKo8b/SqLHnxwpnB+Cm5sbHh4e9O3bl65du9KpUyd8fHyws7Nj9uzZ2NvbA7By5Uo2bdpEaGgoKSkpbNiwgR07duDg4EBBQQFmZmYUFRWRk5NDq1atmDRpEgB3795lx44dmJqakp2djZ+fHz179tQX4Ldu3WL79u1kZWXRr18/xo4dS1RUFGfPnuWDDz5g4MCB5ObmMm/ePDZu3Mhzzz1HZmYmw4cP1+8BnZOTg6enJyEhIezdu5fly5cTFRXF3Llz8ff3Jz4+Xv+8oaGhjBgxgoCAAH799VdGjx7NwYMH9c8phBBCiAf9dlZLbiXR4n9VaGTU+F9J9PiTIYXzQzAxMWHdunVcvnyZkydPcvjwYbZs2UJCQgLx8fEkJCSgUqkoLCzE2dkZgKNHj+Lj44ODgwNQEjRSytLSUj9LDHD79m1mzZrF9evXMTU15e7du6SmpuLp6QnAgAEDMDExwdHRkSZNmvDGG28A0K5dOzIyMiguLubMmTOkp6eXWXKhUCi4fv06dnZ2NGzYkNdeew0AT09PwsPDy33W/Px8Lly4gL+/PwCtW7embdu2/Pzzz3h5eVXTiAohhBBPn5YelUeL/5WdEVHjfyXR40+OFM6PwMXFBRcXF0aPHs2gQYPYvn07e/fuJSoqCnt7exISEti5c2el7TRo0KBMPPb8+fPx8vJizZo1KBQK+vfvXyYa+68R2KXHpqamQMk6aZ1Oh6urK19++eUD90tPT8fCwkJ/bGJiglqtrtKz/zXOWwghhBBlPdfchOeaV23n3ylvStR4bSb7OD+EjIwMzpw5oz++desWt2/fRqFQYGNjQ5MmTVAqlezatUt/zmuvvUZ8fDzZ2dkAFBQUoFQqy20/Ly+Ppk2bolAo+PHHH7l+/XqV+9ixY0euX79OcnKy/rOzZ89S2e6DNjY2FBUV6QtpGxsb2rZty+7duwG4evUqFy9epEOHDlXukxBCCCFEXSYzzg9BrVYTERHBzZs3sbKyQqvVMnnyZIYPH86VK1cYOHAgjo6OtG/fnnPnzgHQpUsXJkyYwN///ncUCgUWFhasX7++3PanTJlCWFgYmzZtwtXVFVdX1yr3sXHjxqxbt45ly5axePFiVCoVzZo1M3jPUk2aNMHb2xtvb28aN25MVFQUy5cvZ+7cuURGRmJmZsbSpUurvL45aKhEbgshhBCVkajx2k0CUMQTIZHb5atPm8pXlYyNYTI2hsnYGCZjY5iMTcXq0/hI5LYQQgghhBDVQGachRBCCCEqURujsJ8UmXH+k6xxrkO8vLywsLDA0tKS4uJiXnnlFebNm4e5uXmV24qIiOD//u//yuyu8TitTgjkbqFEbgshhKibPhopUdhClmrUOatXryY+Pp79+/fz66+/8s033zxUO2vWrEGlkh8AQgghhBDGkhnnOqq4uJji4mJsbW0pKChg0aJF+h08hg4dyoQJE4CSAnnfvn1YWlqiUCjYunUrK1euBGDUqFGYmJiwbds2lEol8+bNIy0tDYDx48czbFjJZupeXl74+PiQmJhIVlYW48aNY8yYMTXw1EIIIUT1+SNNS+opLRoj5pEC9xsfhS0R2E8vKZzrmODgYCwtLUlLS6Nnz5707NmTZcuWodVqSUhIoKCggJEjR+Lq6oqnpydbtmwhKSkJKysr8vPzsbKyYt68eezYsYOoqCh9guHkyZNp06YNa9euJTMzEz8/P9zd3XFxcQGgqKiI6Oho0tPT8fb2xtfXt0z6oRBCCFHXpP2iJT/buHNv3q1aFLZEYD+dpHCuY1avXo2LiwvFxcVMmjSJyMhIkpKSmDVrlj6AZfDgwSQlJdGzZ09atGjB1KlT6dWrF3379sXGpvwF70lJScyYMQOA5557jj59+pCSkqIvnAcNGgTAiy++iK2tLbdu3aJVq1ZP5qGFEEKIx6B5BxNSVcbNONvbGB+FLRHYTy8pnOsoS0tL+vbty9GjR9HpdA9EYCsUCkxNTdm5cyenT58mOTkZPz8/Nm/ejJubW7ltltfG/fcrZWpqikajqcanEUIIIZ68Z5qb8IyRkdgfjZQobCEvB9ZZWq2WkydP4uzsTPfu3YmNjUWn05Gfn8+BAwfo1q0b+fn53L59my5duhAcHIyLiwtXrlwBwNramvz8fH173bp1Izo6GoCsrCyOHTtG165da+TZhBBCCCFqI5lxrmNK1zirVCratGnD+++/j5mZGQsXLsTb2xsoeTmwd+/e3Lp1i0mTJlFUVIROp8Pd3Z1+/foBMG7cOAIDA7GysmLbtm3MmTOHuXPn6tsIDQ2lTZs21ddvb4ncFkIIUXdJFLYACUART4hEbpevPm0qX1UyNobJ2BgmY2OYjI1hMjYVq0/jI5HbQgghhBBCVAOZcRZCCCGEqCHFqmJyc5Q13Y0KyYzzn2SNcw1RqVSsW7eOAwcOYGZmhlarpU+fPrRs2ZIffviB1atXP/I9XF1dOX36dIX7Lefm5hIdHU1QUJD+s7i4ODp27EiLFi0euQ+lFh94hzsSuS2EEEKUsWz4f4DaXTiLP8lSjRoyc+ZMfv31V3bt2sX+/fvZu3cvLVq0QKl89L88arXa6HNzc3PZvHlzmc92797NtWvXHrkfQgghhBBPE1mqUQOuXbvGsGHDOHbsGI0bNy7ztbi4OPbt24etrS1XrlyhUaNGRERE4ODgwKVLlwgLC+PevXsUFxczYsQIxo4dC8CMGTOwtrbm2rVr3Llzh7i4uDIzzmfPnuXjjz+msLCQhg0bMnv2bDw8PJgwYQI//PADbdq0oUGDBgQEBLBo0SLs7e2xsbFh+vTpdO/enU2bNnHo0CE0Gg2Ojo4sXLgQBwcHo59ZZpyFEEI8ze5e1/L7CQ1aI8JU7vdsFYJVSj3pSG9ZqvEnWapRA/773//y0ksvPVA0lzp37hx79+7FycmJOXPmsH37dkJCQmjatCmRkZFYWFhQUFBAQEAAvXr10if4nTlzhu3bt9OwYcMy7SmVSoKDg1m8eDHdu3cnKSmJ4OBgvv76a+bOnYu/vz/x8fH68/fs2cO4ceN47bXXAIiPjyctLY2dO3diYmLCjh07WLJkCStWrHhMIySEEELULRk/a7lnZHz3/aoa5V1KIr1rhhTOtVCnTp1wcnICoEOHDiQmJgJQVFTE/PnzuXTpEgqFgszMTC5evKgvnAcMGPBA0QyQmpqKubk53bt3B0rCTszNzUlNTa1w/XOpI0eOcP78eXx9fQHQaDQGo7uFEEKI+sjR0wSN8snNOEukd82QwrkGuLu7c/36de7evVvurLOheOtPP/0UBwcHlixZgpmZGePGjaO4uFh/bnlFM1BuJDc8GLFtiE6nY+LEiQwfPtyo84UQQoj6pvFLJjR+qeqvji0bLlHedYm8HFgDnJ2d8fLyYu7cufrYa41Gw7///W8KCwsNXpeXl8fzzz+PmZkZly9f5tSpU0bdr2XLliiVSpKTkwFITk5GrVbj7OyMjY0NRUVFZV4otLa2Ji/vz7/EXl5e7Nixg7t37wIlSz8uXrxY5ecWQgghhKjLZMa5hixZsoS1a9fi7++Pubm5fju6iraAmzhxItOmTWPv3r00b96czp07G3UvCwsLVq9eXeblwFWrVmFhYYGFhQXe3t54e3vTuHFjoqKiGDlyJOHh4fzrX/9i2rRpDBs2jJycHMaMGQOUzEC/+eabuLm5VctYCCGEEELUBbKrhhBCCCFEDZEAlNpFdtUQtcIff+Sj1crvaH9Vn34YVZWMjWEyNobJ2BgmY2OYjI0wlsw4CyGEEKLOe5SZWymcK1afxkdmnOuIgwcPsmHDBnQ6HcXFxbRr1+6h90lOSUkhPDycuLi4au7lwws99A5/SACKEEKIx+QLX4muFo+fFM61QGZmJmFhYezevRsnJyd0Op3sWiGEEEIIUctI4VwLZGdnY2ZmRpMmTYCS/ZXbtm0LgKurKx988AE//vgjd+7c4cMPP6R///4AHD9+nE8//RSNRoO9vT0LFizgpZdeKtN2bm4uH3zwAV5eXowdO5bw8HBOnDiBSqXCzs6OxYsX07RpU9LT0/H392fUqFEcO3aMe/fu8fHHH/PKKyWpRMeOHePzzz9HqVRibm7OzJkz8fT0fIKjJIQQ4ml375qWnBQNuoeYOA7cHVjlIJFSjRpZ4+s7UpL4RKWkcK4F3Nzc8PDwoG/fvnTt2pVOnTrh4+ODnZ0dUFJIR0VF8dtvv/Hmm2/qi9lp06axfft2WrduTUxMDKGhocTExOjbvXnzJpMmTWLChAkMGDAAgKCgIKZPnw5ATEwMy5cvZ+XKlQDk5OTg6elJSEgIe/fuZfny5URFRZGWlsa6devYsmULNjY2XLlyhaCgII4ePfoER0kIIcTTLve0FlXWw137sNHVALduSYS1MI4UzrWAiYkJ69at4/Lly5w8eZLDhw+zZcsWEhISAAgICABKgkzc3d35+eefUSgUuLm50bp1awD8/f0JCwvTB6pkZWURGBhIeHi4vtCGklnqHTt2UFhYWCb0BEqSB1977TUAPD09CQ8PB+D7778nLS2N0aNH689Vq9VkZ2fz7LPPPqZREUIIUd/YdjIhR/VwM86ODxFdXapRI2uJsBZGkcK5FnFxccHFxYXRo0czaNAgTpw48cA5pfHZhmK0SzVu3Jjnn3+e48eP6wvnmzdv8sknnxAbG0uzZs04ffo0oaGh+mssLCz0fzYxMSlTWPfq1YulS5dWx2MKIYQQ5WrgbEID54cLNf7C9+Gjq+vTrhHi0Ujkdi2QkZHBmTNn9Me3bt3i9u3bvPjiiwDs2rULgGvXrnHhwgU6dOhAx44duXDhAlevXgVg9+7duLu7Y2NTsoWKhYUF69at4+rVqyxatAidTkd+fj7m5uY4ODig1WqJiooyqn89evTg+++/58qVK/rPzp49Wy3PLoQQQghRV8iMcy2gVquJiIjg5s2bWFlZodVqmTx5Mu7u7kBJETxq1Cju3LnDggULeOaZZwBYunQpoaGhqNVq7O3tWbZsWZl2LSwsWLVqFVOnTuWjjz5iwYIFDBgwgMGDB/PCCy/QuXNnTp06VWn/nJ2dWbZsGbNnz6aoqAiVSkWnTp3w8PCo/sEQQgghhKilJACllnN1deX06dNYW1vXdFeEEEKIWksCUB6f+jQ+EoAiagWJ3C5fffphVFUyNobJ2BgmY2OYjI0Qj05mnIUQQgghqkGRqpi8h5z1rs3q0y9dMuP8lLl79y49e/Zk1KhRzJ49G4CIiAgKCwuZPn06cXFxHD16lNWrV9dwT8t65+sPyLz3kJtzCiGEEHXAQZ9o8iT2+6kmu2rUMQkJCXh6erJ//36USvnLKYQQQgjxpMiMcx2za9cupk2bxoYNGzhy5Ig+EfB+eXl5TJo0ievXr9OkSROWLVuGo6Mjly5dIiwsjHv37lFcXMyIESMYO3YsADNmzMDCwoJr165x69YtfQBKZmYm/v7+fPvtt1haWgLw7rvvMnjwYLy9vZ/kowshhBA1QpuqRJNcgE5V8erWwF2Vx343aGBFQMBbklJYR0nhXIdcvHiRu3fv8uqrr5KVlcWuXbvKLZx/+ukn9uzZQ8uWLVmzZg0ff/wxq1evpmnTpkRGRmJhYUFBQQEBAQH06tWLVq1aAXDlyhUiIyNRKBT4+vqSmJhIjx496Ny5MwcOHMDX15ebN29y/vz5WrcURAghhHhcNKcL0WVpKj3vZo5xsd8S7113SeFch8TGxuLj44NCoaBfv34sWrSIjIyMB857+eWXadmyJVAS1106M1xUVMT8+fO5dOkSCoWCzMxMLl68qC+c33jjDf2ssrs0fUtNAAAgAElEQVS7O2lpafTo0YO3336bTz75BF9fX7766iv8/f3LpAwKIYQQTzPTTg3RKCufcW5q7WTUjLPEe9ddUjjXEUqlkoSEBCwtLYmPjwdApVKxe/fuCq+7P5r7008/xcHBgSVLlmBmZsa4ceMoLi7Wn1taNAOYmpqi0ZT8dt2pUyc0Go1+JjsmJqa6H08IIYSotUxaWGDSovIJo60+Dx/7LeoGeTmwjjh8+DAtW7bk+PHjHDlyhCNHjvCvf/2LuLi4B849ffo0165dAyAuLo6uXbsCJWufn3/+eczMzLh8+bJRqYGl3n77bT788EM8PT1xcnKqlmcSQgghhKhLpHCuI+Li4h54Ga9jx45otVpOnjxZ5vPOnTsTERHB0KFDSU5O1m9bN3HiRGJiYvD39+fzzz+nc+fORt9/8ODB5Obm8tZbbz36wwghhBBC1EESgCKMcurUKebPn09CQoJ+6YcQQggh/iQBKHWfBKCIRzZr1iwSExMJDw9/6KJZIrfLV59+GFWVjI1hMjaGydgYJmNjmIyNMJbMOAshhKj3ilRK8nKKKz+xDpPi0DAZm4rVp/GRGec6xMvLi/Xr1+Pi4qL/zM/Pj+nTp+tf8KsO6enp/Pjjj4wcObLa2qzMO1+HkVl4+4ndTwghquLgsFXk8XQXzkKIRycvB9ZDN2/eJDo6uqa7IYQQQghRp8iMcx2RnZ3NvHnzSEtLA2D8+PEMG1aygbqrqyunT5/G2tq6zLGJiQnTp0/n119/xczMjBYtWrBq1SoWLFhAeno6Pj4+vPTSS6xevZqzZ8/y8ccfU1hYSMOGDZk9ezYeHh6kp6fj7+/PqFGjOHbsGPfu3ePjjz/mlVck8UgIUbtpU/PQpGSgU2krPTcwTqKShRCVk8K5lgkODi4TRFK6H/OiRYto06YNa9euJTMzEz8/P9zd3css6/irH374gdzcXA4cOADA3bt3AZg7dy7h4eH6PaCVSiXBwcEsXryY7t27k5SURHBwMF9//TUAOTk5eHp6EhISwt69e1m+fDlRUVGP4/GFEKLaaM5kocsqMupciUoWQhhDCudaZvXq1Q+scQZISkpixowZADz33HP06dOHlJSUCgtnNzc3fvvtN8LCwujSpQt9+/Yt97zU1FTMzc3p3r07AN26dcPc3JzU1FSsra1p2LAhr732GgCenp6Eh4dXx6MKIcRjZdrRAY3SuBnnptYOEpUshKiUFM51yF+3gis9NjU1pXRzlPsjtJs1a8aBAwdITk7m+PHjrFy5koSEhAfavT+Wu7z2LSz+jBk1MTFBrVY/+sMIIcRjZtKiESYtGhl17tZhq+rNrgFCiIcnLwfWEd26ddO/0JeVlcWxY8f0O200a9aMc+fOAZQpjG/duoWpqSlvvPEGM2fO5Pbt2+Tk5GBjY0N+fr7+vJYtW6JUKklOTgYgOTkZtVqNs7PzE3o6IYQQQojaT2ac64g5c+Ywd+5cfex2aGgobdq0AUoCSubOnYuDg0OZ5RiXLl1ixYoVAGi1WiZMmICjoyPPPPMMLVq0YMiQIbRs2ZLVq1ezevXqMi8Hrlq1qsxMsxBCCCFEfScBKEIIIeo9CUCp32RsKlafxkcCUEStIJHb5atPP4yqSsbGMBkbw2RshBCPk8w4CyGEEKLWeZL/CiC/cFWsPo2PzDhX0cGDB9mwYQM6nY7i4mLatWunXydcVRcuXCA1NZVBgwbpP/trWMn9VCoV69at48CBA5iZmaHVaunTpw9TpkzB3Nz8oZ/pfikpKfo9nDMyMggNDWXbtm3V0nZFxn69gszCnMd+HyGEEE+HA8MWSgy6qHWkcL5PZmYmYWFh7N69GycnJ3Q6HRcvXnzo9i5cuMDRo0fLFM4VmTlzJsXFxezatQsbGxtUKhVxcXEolUqjC2e1Wo2ZmXHfVkdHxydSNAshhBBCPA2kcL5PdnY2ZmZmNGnSBCjZx7ht27YAHD9+nE8//RSNRoO9vT0LFizgpZdeIi4ujqNHj7J69WoA/XFYWBirV68mPz8fHx8fOnfuzJw5cwDYtm0b33zzDTk5OUybNo3+/ftz7do1Dh8+zLFjx7CxKfknAnNzc0aOHAmU7JARFhbGvXv3KC4uZsSIEYwdOxaAGTNmYG1tzbVr17hz5w5xcXEG+3u/0jjtlJQUoGQ2PCQk5IG+AUyZMoXU1FRUKhXNmzdn8eLFNG7c+DF+N4QQQjxtNKm30aTcAJWm0nONiUEHiUIXT5YUzvdxc3PDw8ODvn370rVrVzp16oSPjw9arZZp06axfft2WrduTUxMDKGhocTExBhsy87OjuDg4DJFdSkbGxt27drFTz/9xOTJk+nfvz///e9/eemllwwWo02bNiUyMhILCwsKCgoICAigV69etGrVCoAzZ86wfft2GjZsyB9//FHl/lbUN4DZs2djb28PwMqVK9m0aROhoaFGjasQQggBoDnzO7qsAqPONTYGHSQKXTw5Ujjfx8TEhHXr1nH58mVOnjzJ4cOH2bJlCx9++CFubm60bt0aAH9/f8LCwsqEiFRF6dINT09PMjMzy6T9GVJUVMT8+fO5dOkSCoWCzMxMLl68qC+cBwwYQMOGDQH45ZdfHrq/5fXN0tKS+Ph4EhISUKlUFBYWSjiKEEKIKjPt+AIapcaoGecXrJ8xesZZotDFkyKFczlcXFxwcXFh9OjRDBo0CIVCUW4kNZTEXWu1Wv2xMUWwpaWl/looWZfs7u7O9evXuXv3brmzzp9++ikODg4sWbIEMzMzxo0bV+ZepUUzGI7QNkZ5fTt37hxfffUVUVFR2Nvbk5CQwM6dOx+qfSGEEPWXaQt7TFvYG3Xu1mEL681ODqLukMjt+2RkZHDmzBn98a1bt7h9+zYtW7bkwoULXL16FYDdu3fj7u6OjY0NzZs359KlSyiVSpRKJYcOHdJfb2NjQ16ecX/pnZ2d8fLyYu7cufqZYY1Gw7///W8KCgrIy8vj+eefx8zMjMuXL3Pq1CmDbXXs2NFgfx9Gbm4uNjY2NGnSBKVSya5dux6qHSGEEEKIukxmnO+jVquJiIjg5s2bWFlZodVqmTx5Mh4eHixdupTQ0FDUajX29vYsW7YMKClSu3XrxpAhQ3jxxRdp1aoVWVlZAHTr1o1//etfDB06lC5duuhfDjRkyZIlrF27Fn9/f8zNzfXb0VlYWDBx4kSmTZvG3r17ad68OZ07dzbYjr29vcH+PozevXuzd+9eBg4ciKOjI+3bt+fcuXMP3Z4QQgghRF0kAShCCCGEqHUkAKX2qE/jIwEoolaQyO3y1acfRlUlY2OYjI1hMjaGydgI8ehkxlkIIYQQQjwWT/JfDqqDzDg/ouqM4E5PT6dfv360adNG/9n48eMZOnRodXXXoG+//ZZTp04xffr0x36v8ow9tI7Mwrs1cm8hhBBC1IwDvjOfquh0KZwrUN0R3ACNGjUiPj6+wnOqEpttrNdff53XX3+9WtsUQgghhKhPpHCuQEUR3IYiqFNSUli8eDEdOnTgzJkzKBQKVq5cqQ8qMcTLywt/f3+Sk5Np1qwZISEhfPjhhxQUFFBcXEyfPn2YNm0aABEREaSmppKXl8eNGzdo3rw5q1atokGDBiiVSlauXMn333+PiYkJzZo1Y+3atWWiwX/77TdmzpzJvXv30Gq1+Pr6Mn78eIPXajQali9fzvfffw9Ar169CA0N1e/1LIQQQoini+ZaNpqUq6CsPKymIoG7jYtOr0htilWXwrkChiK47ezsKoyg/vXXX/nkk09YsGABn3/+OevWrdMv78jLy8PHx0d/j8jISOzs7ADIyspi27ZtQEmQyvr167G2tkalUjF+/HiOHz9O7969ATh//jyxsbE0atSI8ePHk5CQwIgRI9i4cSM3btwgLi4OCwsLbt++/cBz7dixg969e/P+++8DcPduyRIKQ9dGR0dz4cIF4uLiAAgKCiI6Opq33nqregdcCCGEELWC5vQ1dNXwMunNu4XV0JvaE6suhXMFDEVwJyQkVBhB3aJFC9zd3YGS6OrvvvtO/7WKlmoMG/ZnZKhGo2Hp0qWcOXMGnU5HdnY2Fy9e1BfOPXv2xNbWFgAPDw/S0tIA+O6775gxYwYWFhYA+uL+fp07dyY8PByVSkXXrl159dVXK7w2KSkJX19f/ed+fn4cPnxYCmchhBDiKWXayRmN6tFnnF+wsauWGefaEqsuhbMR/hrBvX37dvbu3Wswgrq0wISS4lutVht1n/tjs7/44gtyc3OJiYnB0tKSjz76qEzEdmk0NpTEY5d+zZhNUvr374+npyc//vgjmzZtYteuXSxfvtzgteVFeD9spLcQQgghaj9T52cxdX72kdvZ6jvzqdoGUSK3K2AogluhUDz2COq8vDwcHBywtLQkIyODb7/91qjrvLy8+Pe//41SqQQod6nG9evXcXBwwM/Pj/fff1+fAmjo2u7du7N7925UKhUqlYo9e/bQrVu36nhMIYQQQog6Q2acK2Aognv48OFcuXLlsUZQv/322/zzn/9k2LBhPP/880YXqhMmTGDFihUMGzYMc3NzXnrpJVavXl3mnIMHD5KQkIC5uTkKhYJZs2ZVeO3IkSNJS0vD19cXKFkmMmLEiGp9XiGEEEKI2k4CUIQQQgghxGMhAShCPASJ3C6fROAaJmNjmIyNYTI2hsnYGCZjUzEZnz/JjLMQQgghqqxIpSIvp6imu1EtpDCsWH0aH5lxroMCAgJQKpWoVCquXbumj+h2d3fnk08+KfeapKQkdDod3bt3r7T9mJgYEhMTWblyJYmJiXz22WdldgW5cOECwcHBfPPNNwBs27aNnTt3olAoUKlUvP766/o9q4319/9sIbMwt0rXCCGEqL32+4WQx9NROAthLCmca6GYmBgA0tPT8ff3rzSiGyA5ORmNRmNU4VwVZ86cYfv27fqwFY1Gw5UrV6r1HkIIIYQQdYEUznXM+vXr2bdvH1ASfPLRRx9x7do1YmNj0el0fP/993h7exMYGMjEiRO5c+cOxcXFdOjQgbCwMMzNzat0v1u3bmFra6vfY9rU1BQ3N7dqfy4hhBBCiNpOCuc65MiRI+zfv5+oqCisra0JDQ1l/fr1hISEMHz4cDQajX4JhVar5dNPP6Vx48ZotVqmTp3Knj17CAgIqNI9e/fuzZYtW3jttdfo3LkzXbt2ZejQoVhZWT2ORxRCCFELaK5loD5xGZSGA7wC95ypNBGuQQMrAgLeqhVRyUJUBymc65DExES8vb2xsSlZtD5ixAiWL19OSEjIA+dqtVo2btzIDz/8gFarJScnh8aNGz9wnqEEwNLPra2tiYmJ4dy5c5w6dYro6Gi++uordu7cWeXZayGEEHWD+sxVdFl3Kzzn5t0Co9rat2+PFM7iqSGFcx1nqPCNj4/n7Nmz7NixA2tra9asWcP//ve/B86zs7MjJyenzGd37tzB3t6+zD08PDzw8PBgzJgxdO3alatXr8qSDSGEeEqZdWyFWqWpcMb5BZsmRs04DxkyrLq7J0SNkcK5DunevTurVq1i9OjRNGzYkNjYWH2ioI2NDenp6fpz8/LysLOzw9ramrt377J//346der0QJstW7ZEpVKRlJREt27dUKvV7Ny5k549ewJw9epVdDodrVu31h9rtVocHR2fwBMLIYSoCabOjpg6V/xzfqtfSL3ZokyIUlI41yFeXl5cvnyZkSNHAiUvB7777rsA9O/fn0mTJuHj44O3tzcBAQEcOXKEIUOG4OjoSOfOndFoNA+0aWFhQUREBOHh4SxZsgStVkvXrl0JCgoCoKCggCVLlnD79m2srKwwMTFhxYoV2NnZPbkHF0IIIYSoBSQARQghhBBVJgEo9Ud9Gh8JQBG1gkRul68+/TCqKhkbw2RsDJOxMUzGRohHJzPOQgghhBCP4GmafS9Pffqlq07POHt5eWFhYYGFhQUqlYpx48ZVug/xjBkzaN++PWPGjKnwvFWrVtGmTRsGDRpU4XkREREUFhYyffr0cr9+7tw5PvvsM1JTU2nSpAk6nY4hQ4Ywfvz4ih/uCfDy8mL9+vW4uLjUdFf4+3+2kVlYP/7SCSGEqF/2+70n8eP1RK0unAFWr16Ni4sLly9fxs/Pj969e1fLjg7//Oc/H7mNS5cuERQURHh4OH369AEgKyuLDRs2lHu+Wq3GzKzWD3kZdbHPQgghhBCPQ52piFxcXLC1tSUjI4OcnBzCwsK4d+8excXFjBgxgrFjxz5wjVKpZOXKlZw8eRKVSoWLiwvz58/H2tq6zMx0Xl4es2bN4sqVKzg6OuLo6Mgzzzyjn2XOyMggKCiIGzdu0Lx5c1atWkWDBg3YtGkTAQEB+qIZwMHBgTlz5uiPXV1dmTp1KseOHePll19m8uTJbNq0iUOHDqHRaHB0dGThwoU4ODhU2l8LCwuuXbvGrVu38PT0JDw8HIVCQXR0NJGRkVhYWKDVavnss89o1aoVAAkJCZw+fZrMzEzeeecd/Uz82bNn+fjjjyksLKRhw4bMnj0bDw8P0tPT8ff3Z8yYMSQmJjJ06FCGDh3KokWLOHfuHABDhw5lwoQJj+tbLYQQQghRK9WZwvmnn37Czs4ONzc3lEqlvlAsKCggICCAXr166YvFUps3b6ZRo0bExsYCsGzZMjZu3PhA0t7atWuxtbXlP//5Dzk5Ofj5+dG/f3/918+fP09sbCyNGjVi/PjxJCQkMGLECP773/8yYMCASvuu1WrZtm0bUBJMkpaWxs6dOzExMWHHjh0sWbKEFStWVNrfK1euEBkZiUKhwNfXl8TERHr06MHSpUvZt28fTk5OKJXKMtvOZWdn8+WXX5Kdnc2wYcN45ZVXaNmyJcHBwSxevJju3buTlJREcHAwX3/9NQA5OTm0atWKSZMm6fuh1WpJSEigoKCAkSNH4urqWuYXBiGEEOJpoLn2P9Qn/lth+MtfBe5JrjQM5q8kjrxuqvWFc3BwMDqdjhs3brBmzRosLCzIzc1l/vz5XLp0CYVCQWZmJhcvXnygcD5y5Aj5+fkcOnQIKJmBLi/tLiUlRT9L3KRJE954440yX+/Zsye2trZAyd7JaWlp5fZ10aJFnDx5kj/++IOYmBicnJwA8PX1LdOn8+fP6z/TaDT6CO3K+vvGG29gaWkJgLu7O2lpafTo0YNXX32VmTNn8vrrr9O3b1+aNWumv2b48OEAPPvss/Tt25cTJ06gUCgwNzene/fuAHTr1g1zc3NSU1OxtrbG0tKSgQMH6ttISkpi1qxZKBQKbGxsGDx4MElJSVI4CyGEeOqoz1xGl5VT+Yn3uXk3/6HuJXHkdU+tL5xL1zgfPHiQqVOncujQIT799FMcHBxYsmQJZmZmjBs3juLi4geu1el0zJs3T5+uZ4hOpzMYXQ3oi1UAU1NT/b3atm3LuXPn9IV2afHdtWvXMrO+DRs2LHOviRMn6gvaqvT3r/0ovceaNWs4d+4cycnJBAYGMn/+/HKL2tLnNPS8pZ81aNCgzNfLO7+i8RJCCCHqKrOOLqhV6irNOL9g0/ihZpwljrzuqfWFc6mBAwdy8OBBNm7cSF5eHq6urpiZmXH58mVOnTrFkCFDHrjGy8uLyMhIOnbsiJWVFfn5+WRkZDwwM921a1f27NlDp06duHv3Lt9++y39+vWrtE9BQUGMHTuWl19+md69ewMls8RardbgNV5eXmzdupW//e1vNG7cGKVSyW+//Yabm5vR/b2fWq3m999/x8PDQz8bfuHCBX3hvHv3bl5++WVu377N8ePHCQwMpEWLFiiVSpKTk3n11VdJTk5GrVbj7OxMZmbmA/fo3r07sbGxdOrUiYKCAg4cOMC0adMqHR8hhBCirjF1dsLU2alK12z1e6/ebNdW39WZwhlgypQp+Pn5sXnzZj766CP27t1L8+bN6dy5c7nnT5gwgTVr1jB8+HAUCgUKhYIPPvjggUL0/fffZ+bMmQwePJimTZvSqVMn/fKJiri5ubFhwwZWrVrF/Pnzsbe3x9zcnHfffZfnnnuu3GuGDRtGTk6O/iU9nU7Hm2++iZubm9H9vZ9Wq2XGjBnk5eWhUChwcnJiypQp+q87OTnx1ltvkZWVxf/93//h6uoKlMzk3/9y4KpVq7CwsCj3Hu+99x4LFy7E29sbKHk5sPQXBSGEEEKI+kICUACVSoVWq8XS0pL8/HzefPNNZs6cqV8DLIQQQghhiASgPD3qdADKk5Kbm0tQUBAajYbi4mKGDBkiRXM1k8jt8tWnH0ZVJWNjmIyNYTI2hsnYGCZjI4wlM85CCCGEEH/xtM8iV0V9+sVCZpxFrfD3g1+RWfhw2/UIIYQQT9p+/yCJ0RYPeGoKZy8vLywsLLC0tKS4uJhXXnmFefPmYW5ubvCaO3fuMHHiRO7du4e3tzf+/v5ljv/xj39UeL/169fj4uJiVL8sLCxQqVSMGzeOgICAh37OiIgICgsL9amGjyoyMhJvb2+eeeaZamlPCCGEEOJp9dQUzvDnns8ajYbRo0fzzTffMGjQIIPnJyUlYWtrS1RUFAAHDhwoc1zd/bp8+TJ+fn707t0bR0fHar3Hw9q6dSvdu3evcuGsVqsxM3uq/vcRQgghhKjQU1n5FBcXU1xcjK2tLTNmzKB9+/b67d9Kj1u3bs3SpUvJz8/Hx8eHfv36ERMToz/+6KOP+N///sfWrVtRqVQATJ8+vdxwkuvXrzN37lxu376NmZkZISEh5W7X5uLigq2tLRkZGTg6OqLRaFi+fDnff/89AL169SI0NBRTU1Py8vJYvHgx58+fR6FQ8MorrzB37lwAMjIyCAoK4saNGzRv3pxVq1bRoEEDlEolK1eu5OTJk6hUKlxcXJg/fz7W1tZER0frY8q1Wi2fffYZX3/9NZmZmQQHB2NpacmKFSto3ry5wTZmzJiBtbU1165d486dO8TFxT2ub6EQQgjx2Giu/Y765LkKQ04C47+vMNREIrPrp6eqcC4tANPS0ujZsyc9e/Zk37595Z776quvEhwczNGjR1m9ejVQsufx/cd37txhyJAhKBQKfvvtN8aOHcvx48cfaCs0NJQRI0YQEBDAr7/+yujRozl48CD29vZlzvvpp5+ws7PTx2hHR0dz4cIFfQEaFBREdHQ0b731FosXL6Zhw4bEx8djYmLC7du39e2cP3+e2NhYGjVqxPjx40lISGDEiBFs3ryZRo0aERsbC8CyZcvYuHEjISEhLF26lH379uHk5IRSqUSj0TBx4kRiYmL0M+IA69atM9gGwJkzZ9i+fXuZNEQhhBCiLlH/fAFd1p0Kz7l5t/KX4SQyu/6pUuGcl5dHamoqBQUFZT6vLNL6SSktAIuLi5k0aRKRkZGP1N6NGzeYMmUKGRkZmJmZkZ2dTVZWFg4ODvpz8vPzuXDhAv7+/gC0bt2atm3b8vPPP+Pl5QWUFPQ6nY4bN26wZs0afdBIUlISvr6++mM/Pz8OHz7MW2+9xXfffUdcXBwmJiYAZYrwnj17YmtrC6BPCwQ4cuQI+fn5HDp0CChJMSwt0l999VVmzpzJ66+/Tt++fWnWrFm5z1xRGwADBgyQolkIIUSdZubZttJY7RdsbCudcZbI7PrH6MI5Li6OBQsW0LBhQ6ysrPSfKxQKvv3228fSuYdlaWlJ3759OXr0KA4ODmUisIuLi41u58MPP2TGjBm88cYbaLVaOnToYPT1CoVC/+fSgv7gwYNMnTqVQ4cO8eyzz6LT6cqc99frDLG0tNT/2dTUVN8nnU7HvHnzyv1FZs2aNZw7d47k5GQCAwOZP3++Ppb7fhW1AUjRLIQQos4zdX4BU+cXKjxnq39QvdmCTRjPxNgTV65cyapVq0hMTOTIkSP6/2pb0QwlMdQnT57E2dmZ5s2bc+7cOQAyMzNJSUkxup28vDxefPFFAGJjY1EqlQ+cY2NjQ9u2bdm9ezcAV69e5eLFi3To0OGBcwcOHEiPHj3YuHEjAN27d2f37t2oVCpUKhV79uzRF6yvvfYaW7ZsoXSb7fuXahji5eVFZGQkRUUl2+fk5+dz9epV1Go1N27cwMPDgwkTJtCjRw8uXLgAgLW1NXl5eZW2IYQQQghR3xk946zRaOjZs+fj7MsjK13jrFKpaNOmDe+//z5arZbg4GCGDh2Ks7MzHh4eRrc3c+ZM3nvvPRwdHenSpQtNmjQp97zly5czd+5cIiMjMTMzY+nSpQ+sby41ZcoU/Pz8CAoKYuTIkaSlpeHr6wuULMEYMWKE/t6LFy9myJAhmJqa0qVLF+bMmVNhfydMmMCaNWsYPnw4CoUChULBBx98QLNmzZgxYwZ5eXkoFAqcnJyYMmUKAIGBgcyaNQsrKytWrFhhsI1WrVoZPW7l+WLgm490vRBCCPEkFf3/GwMIcT+jkwO/+OILCgoKeO+99/TrboUwlkRul68+pTFVlYyNYTI2hsnYGCZjY5iMTcXq0/hUlhxodOHcp08fsrOzMTc3f2Dm9ejRo4/USSGEEEKIx81QjHZ9KgwfRn0an2qL3F62bFm1dEjUT+MOxkrkthBCiBq1z3+sxGiLR2L0mosuXboY/M8YXl5eDBkypMwOF15eXly+fLlKHb5w4QIHDhwo85mrq+sDW+RVt7i4OFxdXcvcOy4ujuDg4GppPyUlhQ4dOuDj46P/b9q0aY/UZnX2r1RERATh4eHV2qYQQgghRF1g9IyzSqXi888/Jz4+nszMTJ577jl8fHx499139fsQV6awsJD4+Hj9y3BVpVaruXDhAkePHq0wSvth264sQrpp06asWrWKfv36PZa46VatWkkanxBCCCFELVWlpRpnz54lLCyMF154gd9//51169aRn5/PrFmzjGrjgw8+ICIigsGDB5cptiuKrHZ1dWXq1KkcO3YMFxcXvv32W30sdufOnfU7TWzbto1vvvmGnJwcpk2bRv/+/QH45ZdfWL58uX5GOubm72QAACAASURBVDg4mL59+5Keno6/vz9jxowhMTGRoUOHkp2dTWpqKnl5eQ/EWQO0b98epVJJbGwso0aNeuD5du/ezY4dO9BoNNjY2DB//nxatmzJyJEjmT17Nh4eHsyfP5+TJ0+yf/9+1Go1PXr04Lvvvqtw3OLi4ti3bx+2trZcuXKFRo0aERERgYODA0qlkoULF3LixAns7e1p27Yt2dnZ+vTDUllZWXz44YcUFBRQXFxMnz599DPaERERBp87Ly+P2bNn8+uvv+Lk5IS9vT3PPvusUd9vIYQQ4knQXEtHdfIXUFa8E0Zg/JFyQ01MTRX6zyVKW1TE6ML5P//5D/Hx8djZ2QHQsmVL3N3d8fHxMbpwbt++Pe3bt+err77inXfe0X9eWWS1Vqtl27ZtALRr165MLHYpGxsbdu3axU8//cTkyZPp378/ubm5zJs3j40bN/Lcc8+RmZnJ8OHD9THcOTk5tGrVikmTJgElBaShOOtSISEhTJgwgWHDyqYFnTp1ioMHD/Lll19iYWHBsWPHmDVrFlFRUbz66qskJyfj4eHBTz/9hKWlJZmZmdy8eZNWrVrpQ0WuXr2Kj4+Pvs2//e1vfPDBBwCcO3eOvXv34uTkxJw5c9i+fTshISFER0fz+++/s3//fjQaDW+//TbPP//8A2Nva2vL+vXrsba2RqVSMX78eI4fP67/BcXQc69duxZra2sOHDjA7du38fPzY+DAgUZ9v4UQQognQf3zf9FlVZ53YEyMNkiUtjDM6MLZ0OYbRm7KoTd58mQCAwMZPny4/vrKIquNWdpRunTD09OTzMxMiouLOXPmDOnp6QQFBenPUygUXL9+HTs7OywtLR8oAg3FWZdydXWlc+fObNu2jWeeeUb/+ZEjR7h48SIBAQH658rNzQVK4q43bNiAt7c3TZo0oUuXLiQlJZGenl4moa+ipRqdOnXCyckJgA4dOpCYmAiUrI328fHBzMwMMzMzBg8ezE8//fTA9RqNhqVLl3LmzBl0Oh3Z2dlcvHhRXzgbeu6UlBT9rL69vT1/+9vfDHwHhBBCiJph5un+/7F352FR1/v//+/DriAohUsu4BIoooCpiJoL+hUVFVByyTSXNC3FDfdyKzG3YwkRYi7HLVcUpLSjmcsvFSxN8aS5xGqK4oIswgwMvz/4MEeSgUEQEZ636+q6zsy836/36/2sw/XkxXteD1QqVbErztpitP+54ixR2kIbnRvn3r17M3HiRD7++GPeeOMNbt26xTfffFPi1ccmTZrQtWtXNm3aBGhvvJ+OntYl5jk/hlpfXx/Ie2Y5NzcXOzs7tm/f/szxiYmJVKtW7ZmIa21x1k+bMmUKQ4cOLdCQ5+bmMmjQIKZMmfLM8W+99RZ//PEHx48fx9XVlfbt27Nv3z4SExN1/vLeP+eVk5Ojua4uMd2bNm3i8ePH7NmzB2NjYz799NMC91ZUjLcQQghRkenbNEDfpkGxx20ZNKrQbdWq0nZronR03lVj5syZuLq6smTJEgYOHMhnn32Gi4sLM2fOLPFFJ0+ezI4dO0hPT0dPT0/nyGrIeyTj6Yjoojg7OxMXF8fZs2c17126dKnUzWDDhg1xd3dny5Ytmvfc3NwICwvjzp07QN4K7+XLlwEwMjLC3t6e9evX07FjRxwdHTl//jx//vmn1vvUlYuLC+Hh4WRnZ5OVlcWhQ4cKPS41NRUrKyuMjY1JSkrSOSrd1dVVswr+8OFDjh49Wqr5CiGEEEK8qnRecTYyMmLKlCmFrqiWVN26dfH09GTjxo1AySKrXV1d2bhxIwMGDCg2htrCwoKgoCBWrlyJv78/KpWKhg0bEhwcXOp7+OijjzTNPkC7du2YOnUqEydOJCcnB5VKRe/evXFwcNDMOzo6GgcHBwwMDGjUqBENGjQo8CXJfz7jXLt2bdavX1/kPIYOHcrVq1fx8PCgXr16tGzZkidPnjxz3IgRI5gyZQpeXl7UrVu3wCMixd3nvHnz6Nu3L/Xr16dTp046nfdPG/v4PNd5QgghRFmRGG1RWkUmB547d4527doBcObMGa2D6NqEiRcjLS0NMzMzlEolEydOpHfv3ppnrSsKidwunPx5UDupjXZSG+2kNtpJbbST2hStKtWnVJHb/fr10+xAkf9FvWcGUCh0/rO/eDHeeecdlEolWVlZdOzYkXnz5r2QfaaFEEKIykxbJHdVJ43z/xTZOAtRVsb8cIC7GS823VEIIYQojQif4VWmQSwJaZyf+rwc5/JKU6lUBAQE4O7ujoeHB56envj6+nLjxo0Xds3ExERcXFw0r+3s7Ojfvz8DBgygf//+ZbLSP3/+fH799ddCP5szZw7btm0r9TWEEEIIISoDnf+e37Vr10K3PTMyMqJOnTr06tWLYcOGVdpHBObOnUtmZiZ79uzB3Nyc3NxcDh8+zM2bN2nWrJnmOLVajUKh0GmLuOexc+dOTE1NOXHiBFOnTuXcuXOlqvnSpUvLcHZCCCGEEJWXzh3XiBEjCA8PZ8SIEdSrV4/bt2+zfft2evfujYWFBZs2beL27duaGOfKJDY2lqNHj3LixAlNSIhCodDsYR0QEEBcXBwZGRkkJCSwbds2goODiYqKQqVSUatWLfz9/alfv74m6nvo0KGcOHGCJ0+esHTpUtq2zUso2r59O5s3b8bKyor27dtrnZOLiwsZGRk8fvwYS0tLzpw5w5dffklWVhY5OTlMmDABDw8PIO/fXfPmzbl69Sp37tyhT58+TJ8+XfPZmDFj6N69O0lJScyaNYuHDx/SoEEDzV7RALt27WLz5s0YGRmhVqv58ssvadq06QuptxBCCFFaOXEJqKLOQwl20hgZ/mOhASn/JLHcVZfOjfP+/fvZuHEjderU0bzXpUsXxowZw/fff4+LiwujR4+ulI3zH3/8gbW1NRYWFlqP+fXXXwkNDdVsozdu3Dhmz54NwJ49e1i1ahVr1qwB8qK+nZycmDZtGuHh4axatYqdO3dy9epVvvnmGw4cOMDrr7/OokWLtF7vyJEjdOjQQXM9e3t7duzYgb6+PsnJyQwcOJDOnTtr5nzz5k02bdpEVlYWQ4cOxdnZme7duxcY8/PPP6ddu3ZMmjSJhIQEBgwYwNtvvw3AihUriIiIoF69eiiVygJNtRBCCFHRZP8eTW7y/RKdcyvlsc7HSix31aRz43zv3j1MTU0LvFetWjXu3r0LQOPGjTUR05XdjRs3mDFjBpmZmbz99ttYWFjQpUuXAntPnzx5kh07dpCRkUF2dnaB86tXr65pWp2cnFi+fDkAUVFRdOvWjddffx2AIUOGPBNoMnToUNLT07l//36B548fPHjAvHnziIuLQ19fn5SUFGJiYnBycgLAy8tLE8vdt29fzp49+0zj/HS8dsOGDQtsM9ihQwfmzp1Ljx496NatGw0bNixVDYUQQogXycCpFSqlqkQrzm+Y1dB5xVliuasmnRvn7t27M3HiRCZOnEidOnVISkpi3bp1mubrwoULNGhQfNzlq8je3p64uDgeP36Mubk5zZo1IywsjG3btnH58mUsLCwK/FJx69Ytli1bxt69e2nYsCHnz5/Hz89P8/nToSd6enqaxlqXDU7yn3HesGEDvr6+HD58GGNjYxYtWoSbmxuBgYEoFArc3d0LjQvPv05Jn8EODAwkOjqas2fPMnLkSBYtWkTXrl1LNIYQQghRXvStG6JvXbJFni2yq4Yohs67aixZsgRHR0cWLFiAt7c3CxYsoFWrVixevBjIW6Fct27dC5voy2RjY0OPHj345JNPCsR9Z2RkFHp8WloahoaGWFlZoVar2blzp07XcXFx4cSJE9y/n/enpb1792o9dsyYMbz22muasVNTU6lfvz4KhYJffvmFuLi4AseHhYWRnZ1NRkYGhw8fLrBbR74OHTqwb98+ABISEjShN9nZ2SQkJNC6dWvGjx9Pp06duHLlik73JIQQQghRWei84mxsbIyfn1+BldOnWVlZldmkKqJly5YRFBSEj48PBgYGmJubU7t2bcaPH8+xY8cKHGtnZ0fv3r3x8PDgjTfeoF27dlq3fHta8+bNmTBhAsOGDeP111+nW7duWo9VKBTMnj2badOmMXToUGbMmMHixYtZv349dnZ22NnZFTi+ZcuWjB49mqSkJHr37v3MYxqQtzXdrFmzOHz4MI0bN9bEa6vVaubMmUNqaioKhYJ69eoxY8YMHar2Pxv7yp+0hBBCVGwSyS2KU6IAlF9++YXvv/+eBw8eEBwcTHR0NGlpaRK5XcE9vXPGyyKR24WrSpvKl5TURjupjXZSG+2kNtpJbYpWlepTZgEoW7duZdGiRdjY2HDu3DkATExM+Oqrr0o/SyGEEEIIISo4nVece/bsyebNm2nQoAHt2rXj3Llz5OTk0LFjRyIjI1/0PIUQQghRhExVNqmPnmj9vCqtGpaU1KZoVak+xa046/yMc3p6OvXq1QPQ7MiQnZ2NoaFhKacoiuLm5oaRkRFGRkY8efKEZs2aMW7cONq0afOyp1YiY36I4K6WL1MKIYQovQifwVSN1kaIl0fnRzXatm1LSEhIgfe2bNlS6O4MomytXbuW8PBwjhw5gre3N+PHj+fixYsvdU4SgCKEEEKIqkbnFed58+bx8ccfs2fPHtLT03F3d8fMzIzg4OAXOT/xD7169eLSpUts2LBBk0Z47tw5VCoVtra2LFq0CFNTU+bMmYORkRGxsbHcuXNHE7Ry+/Zt3nnnHY4fP675a8HkyZNxc3PD29ubEydO8M0336BUKjE0NGTu3Lk4OTkRGRmJv78/bdu2JTo6mokTJ77ULxsKIURVkBMXhyrqV51CPEaGRxQZ3qGvr8DIyFiiooUoBZ0a55ycHNzd3YmKiuLPP//k77//pl69erRu3Ro9PZ0XrUUZcXR05NixY3z77bfUqFFDs9/zypUrCQkJYdq0aQBcv36dzZs3o1Ao8Pb25vTp03Tq1IlmzZpx8uRJevTowcOHD4mKimL58uXEx8cTFBTEhg0bMDMz4/r164wbN47jx48DcO3aNRYtWsSnn376sm5dCCGqlOzfL5KbnKzTsbdSUnQ6TqKihXh+OjXO+vr62NjYkJKSgqOjI46Oji96XqII+d/nPHbsGGlpafz4448AKJVKmjdvrjmuZ8+eGBsbA3nph/Hx8XTq1Alvb2/2799Pjx49iIiIoEePHlSvXp1Tp04RHx/P8OHDNWNkZ2eT/H8/tK2trXF2di6v2xRCiCrPwMlR59joN8zMdFpxlqhoIZ6fzo9q9O/fnwkTJjBy5Ejq1q1b4DPZx7l8RUdH8+abb5KYmMjChQu11j+/aYa8X37yn0t2d3dn2bJlPHz4kP379zNv3jzNcW+//TYrVqx4ZqybN29SvXr1Mr4TIYQQRdG3tkbf2lqnY7f4DC5y54OqtDOCEC+Kzo3zd999B0BAQECB9xUKBT/99FPZzkpodfToUb777ju+/fZbfvnlFzZv3oyzszMmJiakpaWRlJRE06ZNixyjWrVq9OjRgzVr1pCWlkbbtnl/suvUqROBgYFcv36dN998E4BLly7RunXrF35fQgghhBAVnc6N8z9jpUX58fX11WxH17RpU0JCQnBycqJly5YEBgbi4+ODQqFAoVAwadKkYhtngIEDBzJ8+HCmTJmiec/GxoaVK1cyf/58MjMzUalUtGnTpkwa5419+5V6DCGEENplqrJf9hSEqPRKFLktxPOSyO3CyZ9OtZPaaCe10U5qo53URjupTdGqUn3KLHJbCCGEEEKIqkxWnIUQQghRoRQXH17WqtKK6vOoSvUps8htUTYOHTrEunXryM3NJSsri5YtW7J69ernGisxMZFevXrx5ptvolarUalUtG3blkmTJml2Ppk/fz7e3t6aLwC+LGN/+FEit4UQQujkoI+3xIeLCkka53J09+5dFi9ezP79+6lXrx65ublcvXq1VGPWqFGDsLAwIG8f52+++YahQ4dy8OBBatSowdKlS8ti6kIIIYQQVZ40zuUoOTkZAwMDatasCeRt5deiRQsAZsyYQUxMDCqVikaNGuHv74+FhYUm6trR0ZELFy6gUChYs2ZNoTtnGBkZMWXKFE6fPk14eDjDhw9nxIgRjBkzhu7du5OWlsayZcv4888/ycrKwsXFhblz56Kvr8+NGzeYO3cuT548oXnz5sTHx2titePi4liwYAEPHjzAwMCAadOm0aVLl3KtnRBCiFdLTlwsyqhIUClLfO7I8P1FhrkUplo1E4kTFy+cNM7lqHnz5rRu3Zpu3brh4uJCmzZt8PT0pFatWsyfPx9LS0sA1qxZw/r16/Hz8wPgxo0bLFu2jCVLlvDNN98QFBRU5OMdrVq14vr168+8v2zZMtq1a8fSpUtRq9X4+fmxb98+Bg8ezKxZs3j//ffx9PQkOjqawYMHa87z8/Nj8ODBvPPOO9y4cYPhw4dz6NAhzXyFEEKIf1L9fp7c5HvPda6u8eH/JHHi4kWTxrkc6enpERQUxLVr1zh37hxHjx5lw4YNHDx4kLCwMA4ePIhKpSIjIwMbGxvNeY0bN8be3h4AJycnfv755+e6/rFjx7h06RKbNm0CIDMzkzp16pCWlsa1a9fo378/kNd429nZAZCWlsaVK1cYNGgQAM2aNaNFixb8/vvvuLm5PW8phBBCVHKGTm1QKlXPteJcXHx4YapVM5E4cfHCSeP8Etja2mJra8vw4cPp27cv27ZtIzw8nJ07d2JpacnBgwfZvXu35ngjIyPN/9bT0yM7u+hN7qOjoxkwYMAz7+fm5hIUFETDhg0LvJ+amqoJUNFVSY4VQghR9ehb21DN2ua5zt3i411ldnEQrxbZx7kcJSUlceHCBc3rO3fu8ODBAxQKBWZmZtSsWROlUsm+ffuea3ylUklgYCB37twptHF2c3MjJCSEnJwcAB48eEBCQgI1atSgWbNmREREAPDf//6Xa9euAWBmZkaLFi3Yv38/ADdv3uTq1as4Ojo+1xyFEEIIIV5VsuJcjrKzswkICODWrVuYmJigVquZOnUqPj4+XL9+nT59+lCnTh0cHByIjo7WaczU1FQ8PT3JycnRbEe3c+dOatSo8cyx8+bNY+XKlXh6eqJQKDA0NGTevHk0bNiQ5cuXM2/ePDZt2kTLli1p3ry5ZoxVq1axYMECNm/ejIGBAStWrCjx880b+rqX6HghhBBVl8SHi4pKAlAEABkZGVSrVg2FQsGNGzcYMWIEhw8fxsLCokzGl8jtwlWlTeVLSmqjndRGO6mNdlIb7aQ2RatK9ZEAFKGT8+fPs2LFCvJ/j/rss8/KrGkWQgghhKgMZMVZCCGEEEIH5R0FXlHIivP/lMuKs5ubG0ZGRhgbG5OVlUXbtm1ZuHAhhoaGWs95Orjj6NGj1K5dm9atWwN5u0Zs3rz5uaOqS8vPzw9bW1vGjx8PwLZt2/D39ycqKgozs7xi9+vXj/nz5+Pq6lri8Z++938qiwjtf9azPHzww0/czah6P2yEEEJUHuE+/SQKvIort1011q5dS1hYGN9//z03btzgyJEjOp979OhRLl26pHndqlWrF9o0F7fdm4uLC1FRUZrXUVFRODg48OuvvwJ5u1XExcXh7Oxc5nNbunRpqZpmeLaeQgghhBCieOX+jHNWVhZZWVmYm5tz5swZvvzyS7KyssjJyWHChAl4eHgUOP7UqVMcO3aM06dPs2fPHkaPHk29evVYvnw5oaGhJCYmMmjQIAYPHsypU6fIzMxk1apV7Ny5k4sXL2JiYkJQUBBWVlbk5OSwatUqTp06BcDbb7+Nn58f+vr6zJkzB1NTU2JjY3n48CGhoaFcvHiRVatWkZ6eDoCvr68m9c/f35/s7GwMDAz4448/mD59OpGRkXTr1o2oqChat26NiYkJ9+7dY/r06aSnp5OVlUXXrl2ZNWsWkNfAfvXVV+jp6ZGTk8Onn36Ki4sLkNeMh4SEcPfuXfr06aNJEXx6NXrOnDkYGRkRGxvLnTt3cHJyYvny5SgUCpKSkpg1axbJycmafZs7d+6MtbX1M/X08vIiJCSE8PBwIO8Xk08++QRTU1MCAgKIiYkhNTWVhIQEGjVqxFdffUW1atVe/H8sQgghRDnJjvsLVdQZcosIbBkZvrvYYBaJ/q7cyq1x9vX1xdjYmPj4eDp37kznzp1JSUlhx44d6Ovrk5yczMCBA+ncuXOBL6W9/fbbuLm54eDgwHvvvQdAZGRkgbEfPXrEW2+9xYwZM/j2228ZNWoUW7du5fPPP2fRokVs27aNadOmsWvXLq5cuUJoaCgA48aNY9euXbz77rsAXLhwgW3btlG9enUeP37MwoULCQkJoXbt2ty9excfHx8iIiJo1KgRFhYW/Pe//8XU1BRra2s6dOjAxo0bgbymN78BNjc3Jzg4GFNTU1QqFWPHjuXkyZN06dKFtWvXsnDhQtq2bUtOTg5PnvzvUYbbt2+zfft20tPT6dmzJz4+PgXSBPNdv36dzZs3o1Ao8Pb25vTp03Tq1InPP/8cFxcXPvroI27dukX//v3p3LlzofU8ceKEJoDF1NSU2bNnExQUxMyZMwG4fPkye/fupUaNGowdO5aDBw8WiOQWQgghXnWq339DnXy3yGNupTzSaSyJ/q68yq1xXrt2Lba2tmRlZTF58mQ2b95M165dmTdvHnFxcejr65OSkkJMTAxOTk4lGrt69ep069YNgJYtW1K3bl1atGiheX369GkAzpw5g7e3tyaJb+DAgRw9elTTOPfu3Zvq1asDeU10YmIi48aN01xHoVAQFxdHq1ataN++PZGRkZiZmdG+fXssLS3JysoiLS2NqKgoPvnkEwBycnJYsWIFFy5cIDc3l+TkZK5evUqXLl3o0KEDX3zxBb1796ZLly7Y2tpqrtW7d2/09PSoUaMGTZs2JT4+vtDGuWfPnhgbGwNgb29PfHw8nTp1IjIyUjOH+vXrF/ms9ZkzZ+jbt6/m+ezBgwfj7++v+bxz586Ym5sD0Lp1a+Lj43X51yKEEEK8Mgyd3kKlVBa54vyGmalOK84S/V15lfujGsbGxnTr1o3jx4/z888/4+bmRmBgIAqFAnd3d7Kysko85j8jqZ9+ra+vr0nKy83NfSYq+unX+U1z/rF2dnZs37690Gu2b9+ew4cPU6NGDUaMGAGAs7MzR44cIT4+XvN886ZNm3j8+DF79uzB2NiYTz/9VHOP8+bN488//+Ts2bNMmTKF0aNHa1Zy85vhf97DP+l6XFEKq0tR13ief0dCCCFERWZg3QQD6yZFHrPFp1+V2V1CFK7cI7fVajXnzp3DxsaG1NRU6tevj0Kh4JdffiEuLq7Qc8zMzEhNLf1/qB07dmT//v2oVCpUKhUHDhzQuhLr7OxMXFwcZ8+e1bx36dIlzT7HLi4unD9/nujoaFq1agVAu3btCA4OxtHRUdNspqamYmVlhbGxMUlJSfz000+a8f766y/s7Ox4//33GTBggM5pgbpo3769Jib79u3bBe7jn/Xs2LEjP/zwA2lpaeTm5rJ37146duxYZnMRQgghhKgMyv0ZZ5VKxZtvvsnHH3/M5cuXWbx4MevXr8fOzg47O7tCzx0wYABz587l8OHDmi8HPo8hQ4YQHx+Pt7c3kPcIgrZndS0sLAgKCmLlypX4+/ujUqlo2LAhwcHBKBQKGjZsSM2aNWnYsKFmW7327dsTGxtLv379NOOMGDGCKVOm4OXlRd26dQs06qtXr9Y8pmJubs7SpUuf674KM3/+fGbNmsUPP/xAkyZNaNOmjeZRjH/W08vLiz///JOhQ4cC4ODgwMSJE8tsLkIIIYQQlYEEoFRSmZmZGBgYYGBgoPli4+bNm2nSpOg/QwkhhBCicBKAUvlViAAUUf5iY2OZPXs2ubm5ZGdnM2nSpJfaNN+/n4ZaLb+j/VNV+mFUUlIb7aQ22klttJPaaCe1EbqSFWchhBCiClDm5JDyIONlT6NCksa5aFWpPrLi/ArIjyQ3MjJCpVIxZswY3nnnnXKdQ36QzD/3yC4r4344yd2MzBcythBCiOKF+fR62VMQ4pUnjXMFkb/P9bVr1xg4cCBdunShTp06L3taQgghhBDi/0jjXMHY2tpibm5OUlISr7/+utaI8IMHD7JlyxZUKhUAs2fP1uzY4ebmhqenJ6dPn+bevXuMGTNGkxJ46dIlli5dSkZGBtWrV2f+/Pm0bt26wByUSiUzZ86kbt26zJkzh3v37vH555/z999/k5WVhYeHBxMmTCjHqgghhChKdtxNlFGniomL3iZx0UKUkjTOFcxvv/1GrVq1aN68eZER4Z07d6Zfv34oFAr++usvRo0axcmTJzXjZGZmsmvXLhITE+nfvz/e3t4YGhri6+uLv78/HTt25MyZM/j6+vKf//xHc96jR4+YPHkyPXv25P333wfymvKPPvqIdu3aoVQqGTVqFK1ataJTp07lWxwhhBCFUv4eiTo5qchjbqU81GksiYsWQjtpnCsIX19fcnNzSUhIIDAwECMjoyIjwhMSEpgxYwZJSUkYGBiQnJzMvXv3sLKyAqBv374ANGjQAHNzc+7cuUN2djaGhoaacBNXV1cMDQ2JiYnB1NQUpVLJu+++y+TJk+nTpw8AGRkZREVF8eDBA81c09PTuXnzpjTOQghRQRg5uaAsNi66usRFC1FK0jhXEPnPOB86dIiZM2fy448/FhkRPn36dObMmUPPnj1Rq9U4OjoWiMIuLIpbW7R2/nuGhoY4Ojpy7NgxevXqhb6+Pmq1GoVCwd69ezVBL0IIISoWA+umGFg3LfKYLT69qszOCEK8KOUeuS2K1qdPHzp16kRISEiREeGpqak0aNAAgL1796JUal9lyNekSROUSqUmfvvs2bNkZ2djY2MD5DXQ/v7+mJmZMW3aNFQqFWZmZrz11luEhIRoxrl9+zb37t0r4zsXVGJPvQAAIABJREFUQgghhKjYZMW5ApoxYwYDBw7khx9+0BoRPnfuXD766CPq1KlD+/btqVmzZrHjGhkZsXbt2gJfDvzqq680j4JAXvO8cOFCli9fzscff0xAQACrVq1i2bJl9O/fHwBTU1OWLl2qeSxECCGEEKIqkAAUIYQQogqQABTtqlLAx/OoSvWRABRRIUjkduGq0g+jkpLaaCe10U5qo52VVY2XPQUhXnmy4iyEEEKIZ2Sqskl99ORlT6NcyC9cRatK9akyK87aYqt/+uknfv31V2bPnq313BcdN11Sc+bMwcHBgffee4+AgAACAwPZvXs3jo6OAAQEBJCRkVHkPWlz9OhRVq9ejbGxMf/6179o0qRJocdFRkayfPlyQkNDy6Q+4w+d5V5GVvEHCiGEqBD2D+pK1WiVhNBdpWmcofDY6h49etCjR4+XPbVSqV+/PqtWrWLr1q3PPUZ2djYGBgbs3LkTX19fzT7NQgghhBBCN5Wqcc73dGz1L7/8wvHjx1m7di2Qt3Xbli1bgLx9i9etW6c5b82aNZw4cYInT56wdOlS2rZtq1ltHTx4MKdOnSIzM5NVq1axc+dOLl68iImJCUFBQVhZWZGTk6M1InvOnDkYGRkRGxvLnTt3cHJyYvny5SgUCpKSkpg1axYPHz6kQYMG5OTkFLifXr16cebMGU6dOsXbb79d4LPirmlqakpsbCwPHz6kbdu2/Pbbb8TExLBjxw62bt3KyZMn+de//kVOTg6WlpYsWbIEa2trrbX9Zxx3YftCCyGEqPhUsdfIOncClIX/NXBk2IYiA1MknltURZVyH+enY6ufFhkZybp169iwYQPh4eFs2bKFGjXyvizx6NEjnJycOHDgAB9//DGrVq3SnPfo0SPeeustDhw4gI+PD6NGjWL48OEcPHiQli1bsm3bNoACEdmhoaH88ccf7Nq1SzPO9evXWb9+PREREfz3v//l9OnTAHz++ee0a9eO8PBw5s6dS1RUVIF5KxQKpk2bxpo1a/jnI+nFXfPChQsEBAQQGhrKvHnzcHBw4JNPPmHr1q3cv3+fWbNmsWrVKg4ePEi/fv3w8/PTWtdHjx4xduxY2rRpw9y5c6VpFkKIV5jy9zOo791GnfKg0H9u3brFnTt/a/0nJuYvIiIOvOzbEKJcVarG2dfXF3d3d0aMGMGMGTMK7E8McPz4cTw9PTX7D5uammoS9qpXr0737t0BcHJyIiEhQXNe9erV6datGwAtW7akbt26tGjRQvM6Pj4eoEBEtpGREQMHDuTMmTOacXr27ImxsTFGRkbY29trzouMjOSdd94BoGHDhpqQk6d169YNExMTDh06VOD94q7Zu3dvqlevXmi9Ll68SPPmzWnWrBkAgwYN4sqVK6SlpT1zbH4c97vvvsv7779f6HhCCCFeHUZOruhZ1UPPwrLQf+rXr0/dum9o/adx4yYSzy2qnEr1qEZhsdW6errJ1tPTIzs7W+tnT7/Oj7MGiozIhsJjsEti+vTpzJ8/n969e2veK+6a2ppmbedqU1gctxBCiFeXoY0thja2Wj/fMqhrldlJQQhdVaoV53xPx1Y/rXv37oSFhZGcnAxAenq6TlHVuioqIrsoHTp0YN++fQAkJCQUWDF+Wtu2bbGxseHgwYOlviaAs7MzV65c4ebNmwDs378fe3t7zMye3YalsDhuIYQQQoiqpFKtOD8tP7b6ww8/1LzXvn17xo8fz+jRo1EoFBgZGREcHFxm1xwyZIjWiOyizJ8/n1mzZnH48GEaN25Mp06dtB47bdo0zfiluSaApaUlK1aswM/Pj+zsbCwtLVm5cqXW4wuL4356FV0IIYQQojKTABQhhBBCPEMCUES+qlSfKhOAIio2idwuXFX6YVRSUhvtpDbaSW20k9oIUXqy4iyEEEIIUc4yVTmkPsp42dPQSVX6pUtWnCsINzc3qlevTnh4OHp6epr3goODsbXV/q3mf7py5QoxMTH07dtX856dnR3nz5/H1NS0zOf9tKNHj1K7dm1at25d4nM/PHRBIreFEEKI/xM6qINEmr+CKuWuGhVVRkYGYWFhz31+dnY2V65c4fDhw2U4K90dPXqUS5cuvZRrCyGEEEK8bLLiXI4mTZpEQEAAHh4eBfaCjouLY8GCBTx48AADAwOmTZtGly5dgLzV5JkzZ3LixAlsbW356aefSEtLw9PTk3bt2vHJJ58AsHXrVo4cOcKjR4+YNWsW7u7uQF7IyapVq0hPTwfyQmK6detGdnY2H374IQ8fPiQrK4vWrVuzePFijIyMOH/+PJ999hlqtZrs7GwmTpyIhYUFx44d4/Tp0+zZs4fRo0fj5SUb3wshhBD5VLFXyTz3k9YY86eNDDMpMtL8aRJvXnFI41yOHBwccHBw4LvvviuQvufn58fgwYN55513uHHjBsOHD+fQoUNYWloCoFar2bp1K5CXVHj8+HHWrl1bYGwzMzP27dvHb7/9xtSpU3F3d+fx48csXLiQkJAQateuzd27d/Hx8SEiIoIaNWqwatUqatWqRW5uLrNnz2bfvn0MGzaM9evX8/777+Pl5UVubi6pqamYm5vj5uaGg4MD7733XvkVTQghhHhFZP3+/6G+97dOx95KKdnYEREHpHGuAKRxLmdTp05l5MiR+Pj4AHnpfVeuXGHQoEEANGvWjBYtWvD777/j5uYGUGDfZm3yn3l2cnLi7t27ZGVlceHCBRITExk3bpzmOIVCQVxcHPb29mzcuJGTJ0+iVqtJSUnBxMQEABcXF0JCQvj777/p1KkTjo6OZVoDIYQQojIydupMpipLpxXnemYlW3GWePOKQRrnctakSRO6du3Kpk2bgLzGuTC6xmbnyw8iyY/Czs7OJjc3Fzs7O7Zv3/7M8QcOHOC3335j+/btmJmZERwcTGxsLACjRo3Czc2N06dP89lnn9GpUyemTZtWovsUQgghqhpDm+YY2jTX6dgtgzpUmZ0qKhP5cuBLMHnyZHbs2EF6ejp6enq0aNGC/fv3A3Dz5k2uXr2qdZXXzMyM1FTd/o/m7OxMXFwcZ8+e1bx36dIlzeMXtWrV0owXERGhOSYmJoZGjRoxdOhQRo4cSXR0dImvLYQQQghR2Ujj/BLUrVsXT09PHj16BMCqVasIDw+nf//++Pn5sWLFCs3zzf/k6urKkydPGDBgAJ9//nmR17GwsCAoKIivv/6aAQMG0KdPHwIDA8nNzcXLy4v09HQ8PDyYMmUKb731lua8rVu34uHhgZeXF9u2bWPq1KkADBgwgIiICDw9PTlw4EAZVUMIIYQQ4tUgAShCCCGEEOVMAlAqJglAERWCRG4Xrir9MCopqY12UhvtpDbaSW20k9oIXUnjLMpFUb+9VXVWVjVe9hQqLKmNdlIb7cq7Nq/SyqEQonSkcdbBoUOHWLduHbm5uWRlZdGyZUtWr179XGOVNDJbpVIRFBTEDz/8gIGBAWq1mq5duzJjxgwMDQ2faw6RkZGoVCo6d+78XOePGDGCMWPG0L17d53PmXjoD+5lqJ7rekIIUZHtHeQo0clCVBHSOBfj7t27LF68mP3791OvXj1yc3O5evXqc4935coVjh8/XqBxLsrcuXPJyspi3759mJmZoVKpCA0NRalUPnfjHBUVRUZGhtbGOTs7GwMD+U9DCCGEEOJp0h0VIzk5GQMDA2rWrAnk7a/cokULAE6ePMm//vUvcnJysLS0ZMmSJVhbWxMaGlog3S//9eLFi1m7dq3OkdmxsbEcPXqUEydOYGaW96iDoaEhQ4YM0cxv/fr1/Pjjj+Tk5FCnTh0+++wzrKysCAgIICYmhtTUVBISEmjUqBFfffUV8fHx7Ny5E7VazenTp/Hw8KBv374MGjSI9957j9OnTzNgwABsbGz48ssvycrKIicnhwkTJuDh4VGepRdCiJdKFfsHT84dJreYMIuRYUZFBllIXLIQlYc0zsVo3rw5rVu3plu3bri4uNCmTRs8PT1Rq9XMmjWLbdu20axZM/bs2YOfnx979uzROlatWrXw9fXVOTL7jz/+wNraGgsLi0LHCwsLIz4+nt27d6Onp8eOHTv44osvNI+RXL58mb1791KjRg3Gjh3LwYMHGTx4MEOHDiUjI4PZs2cDkJiYyKNHj2jatCmTJ08GICUlhR07dqCvr09ycjIDBw6kc+fOWucihBCVTebvP5NzL7HY43SJTpa4ZCEqB2mci6Gnp0dQUBDXrl3j3LlzHD16lA0bNjB9+nSaN29Os2bNABg0aBCLFy8mLS3tua5TWGR2cY4dO8bly5c1kdw5OTmalWmAzp07Y25uDkDr1q2Jj4/XOpaxsTF9+vTRvH7w4AHz5s0jLi4OfX19UlJSiImJwcnJ6bnuTwghXjUmTt15osoqdsW5nlnxK84SlyxE5SCNs45sbW2xtbVl+PDh9O3bF4VCUSAW+2n6+vqo1WrNa12a4MIis+3t7YmLiyMlJaXQld7c3FwmTpyIj49PkWPmj1vUPKpVq1bgfhYtWoSbmxuBgYEoFArc3d11ug8hhKgsDG3sMbSxL/a4LYMcZSszIaoISQ4sRlJSEhcuXNC8vnPnDg8ePKBJkyZcuXKFmzdvArB//37s7e0xMzOjUaNG/PnnnyiVSpRKJT/++KPm/JLEVtvY2ODm5saCBQs0K9k5OTn8+9//Jj09HTc3N3bs2EFKSt7fCZVKpU5fXNRlDqmpqdSvXx+FQsEvv/xCXFycTnMWQgghhKisZMW5GNnZ2QQEBHDr1i1MTExQq9VMnTqV1q1bs2LFCvz8/MjOzsbS0pKVK1cC4OzsjKurK/369aNBgwY0bdqUe/fuAXmR2Rs3bmTAgAG0b99e8+VAbb744gu+/vprBg0ahKGhoWY7OiMjI7y8vHj06BHvvfcekLcCPWzYMJo3b17kmD179iQsLAxPT0/NlwP/acaMGSxevJj169djZ2eHnZ3d85RPCCGEEKLSkMhtIYQQohRelQAUScfTTmpTtKpUH4ncFhWCRG4Xrir9MCopqY12UhvtpDZCiBdJVpyFEEIIUWZelRX4p8kvXEWrSvWRFedyolKpCA4OJiIiAgMDAwwMDLC2tsbX11ezZV1pJSYm8ssvvxQIQHme+OuiIr5flEmHYriXkV1u1xNCCPFy7Br0pkSQi0pLGucyMnfuXDIzM9mzZw/m5ubk5uZy+PBhbt68WaBxVqvVRW5lV5Rbt26xa9euAo2zEEIIIYQoH9I4l4Gno7HzA0cUCoUmUCQgIIC4uDgyMjJISEhg27Zt3L9/H39/fx4+fIhKpeL9999n0KBBQN6OFjExMahUKho1aoS/vz8WFhYsWbKExMREPD09sba2fiZ98GkbN27k+++/JycnB2NjYxYtWqSJCs+nVqv54osvSE5O5osvvkCpVLJs2TL+/PNPsrKycHFxYe7cuejr6xMYGEhERATGxsYoFAq2bNmiuVchhBBVgzI2mvRzB8lVZmo9ZmSYoUSQi0pLGucyUFw0NsCvv/5KaGgolpaWZGdnM3r0aFauXEnTpk1JS0tj0KBBODk50bRpU+bPn4+lpSUAa9asYf369fj5+bFgwQKWL19OaGhosXPy8vJizJgxAJw+fZqFCxeye/duzedZWVnMnTuX+vXrs3r1ahQKBYsXL6Zdu3YsXboUtVqNn58f+/btw93dnQ0bNnDmzBlMTExIS0vDxMSklFUTQgjxqsn4/T/k3NOeQgsSQS4qN2mcX4AbN24wY8YMMjMzefvtt7GwsKBLly6aZjg2NpabN28yffp0zTkqlYq//vqLpk2bEhYWxsGDB1GpVGRkZGBjY1PiOVy+fJl169aRkpKCQqEgNja2wOcffPABHh4ejB07VvPesWPHuHTpEps2bQIgMzOTOnXqYGZmRuPGjZk5cyZvv/023bp1KxDtLYQQomqo7tSLdFVWkSvO9cyKX3GWCHLxqpLGuQzkR2M/fvwYc3NzmjVrRlhYGNu2bePy5ctYWFgU+CJebm4utWrVIiws7Jmxfv31V7777jt27tyJpaUlBw8eLLBSrAulUsmUKVPYtm0bLVu2JCkpiS5duhQ4xsXFhVOnTjFs2DCqV6+umVdQUBANGzZ8Zszdu3dz/vx5zp49y8CBA/n222+LDVoRQghRuRjZtMLIplWRx2wZ9GaV2YFBVD0SuV0GbGxs6NGjB5988kmBKOuMjMK342ncuDEmJiYcOHBA897NmzdJS0vj8ePHmJmZUbNmTZRKJfv27dMcY2ZmponeLopSqSQ7O5t69eoBsGPHjmeOmTRpEh07duSDDz7QjOnm5kZISAg5OTkAPHjwgISEBNLS0njw4AHt27fH19cXW1tbrl+/rkNlhBBCCCEqD1lxLiPLli0jKCgIHx8fDAwMMDc3p3bt2owfP55jx44VONbAwIDg4GD8/f3ZsGEDarWa1157jS+//JIuXboQHh5Onz59qFOnDg4ODkRHRwN528g1btyYfv360aRJE82XA+fMmYOxsbFm/JCQEHx9ffHx8aFevXrPrDbnGz9+PCYmJowaNYpvv/2WefPmsXLlSjw9PVEoFBgaGjJv3jwMDQ2ZPHkymZmZ5ObmYm9vT69evV5QJYUQQgghKiYJQBFCCCFEmZEAlMqnKtVHAlBEhSCR24WrSj+MSkpqo53URjupjXZSGyFKT1achRBCCFFAliqHx6/YqnFpyC8VRatK9ZEV5wrIzc2N4OBgbG1tSzVOdHQ0mzdvZvXq1c91/rhx4/j0009p1KhRgejuOXPm4ODgwHvvvVeq+T1t0Y9/8yAjp8zGE0II8eKs9X52dyUhhDTOr7RWrVo9d9MMsH79+jKcjRBCCCFE5Sbb0VUQly5dYsiQIfTv358hQ4Zw6dIlACIjIxk4cKDmuKdfP/2/79+/z6hRo+jfvz/9+/fH398fgF69enH16lXN+Vu3bmXu3LlA3sr3tWvXipyXUqlk+fLl+Pj44OnpycyZM0lPTy+7GxdCCCGEeEXIinMFoFQq8fX1xd/fn44dO3LmzBl8fX35z3/+o/MYBw8e5I033mDz5s0ApKTkZZ56enqyf/9+TbP89P/WxbfffkuNGjXYu3cvACtXriQkJIRp06bpPIYQQoiXLzX2d+5G7kddROpfvpH7DYpM/4O8BMB33nlXorNFlSKNcwUQExODoaEhHTt2BMDV1RVDQ0NiYmJ0HsPR0ZFNmzaxfPly2rdvT+fOnQHw9vZm8ODBzJw5k7/++ovU1FTattX9h9yxY8dIS0vjxx9/BPKafEkMFEKIV0/y+UNk3ovT6dhbKbqNGRFxQBpnUaVI41wB5ObmolAonnlfoVCgr6/P0xufZGVlFTqGs7MzBw4c4PTp04SFhRESEsJ3333HG2+8QdOmTTl58iRRUVF4eXkVeq2i5rZw4UJcXV1LfmNCCCEqjNfb9OGuKlOnFWcrM91WnPv18yqr6QnxSpDGuQJo0qQJSqWSs2fP0qFDB86ePUt2djY2NjY8fPiQhIQEUlJSMDc35/vvvy90jISEBOrWrYuHhwdt27bl//2//4darUZPTw9vb2/27NlDdHQ0u3fvLtHc3Nzc2Lx5M87OzpiYmJCWlkZSUhJNmzYti1sXQghRTmrYOFHDxkmnY9d6N6wy248JURLSOL8ko0ePRl9fX/M6MDCQpUuXkpGRQfXq1fnqq68wMjKiTp06jB49moEDB9KgQQNatWrF9evXnxkvKiqKTZs2oa+vj1qtZvHixejp5X33093dnc8++4xWrVrxxhtvlGie48ePJzAwEB8fHxQKBQqFgkmTJknjLIQQQogqRwJQhBBCCFGABKCIp1Wl+kgAiqgQJHK7cFXph1FJSW20k9poJ7XRTmojROnJirMQQgghXmlKVQ4ppVghl18qilaV6iMrzpXEoUOHWLduHbm5uWRlZdGyZcvnTg28cuUKMTEx9O3bV/NeQEAAH374IUZGRgBlHrv99Y93SZHIbSGEEC/APO96L3sKooqQxvkVcPfuXRYvXsz+/fupV68eubm5BdIAS+rKlSscP368QOMcGBjImDFjNI2zEEIIIYQoSBrnV0BycjIGBgbUrFkTyNvfuUWLFgBcvHiRVatWaWKwfX196datG9nZ2Xz44Yc8fPiQrKwsWrduzeLFi0lPT2ft2rWkpaXh6elJu3btyMnJWwkeOnQoenp6bN26tcD1lUola9as4dy5c6hUKmxtbVm0aBGmpqblWAUhhBBCiJdLnnF+BajVaiZNmsRvv/2Gi4sLbdq0wdPTE319fUaOHElISAi1a9fm7t27+Pj4EBERQY0aNXj06BG1atUiNzeX2bNn4+zszLBhwwgNDeX48eOsXbtWcw07OzvOnz+vaYafflQjKCgIgI8++gjIi902MDAoUey2PKohhBCiOMmxF/grch/ZOoS0PM3STL/YwBZtqlUz4YMPxtK0acvnOr8qkGec/0dWnF8Benp6BAUFce3aNc6dO8fRo0fZsGEDs2bNIjExkXHjxmmOVSgUxMXFYW9vz8aNGzl58iRqtZqUlBRMTEye6/oSuy2EEKI8xJ3/ntR7sSU+T9eIcG12797N3LmLSzeIqBKkcX6F2NraYmtry/Dhw+nbty+5ubnY2dmxffv2Z449cOAAv/32G9u3b8fMzIzg4GBiY2Of67oSuy2EEKI8WLfxIEeVWe4rzoMHD36uc0XVI43zKyApKYm///4bZ2dnAO7cucODBw9o1qwZcXFxmqhugEuXLtGqVStSU1OpVasWZmZmpKamEhERgYODA4DmvaeZmpqSlpZW6HPLErsthBCiPLxu48zrNs4lPm+ed71SPUpQlR5FEKUjjfMrIDs7m4CAAG7duoWJiQlqtZqpU6dib29PUFAQK1euxN/fH5VKRcOGDQkODsbLy4uffvoJDw8P6tSpw1tvvUVWVhYArq6ubNy4kQEDBtC+fXs++eQTxowZw8iRIzExMXnmy4ESuy2EEEIIIV8OFEIIIcQrTgJQXqyqVB/5cqCoECRyu3BV6YdRSUlttJPaaCe10U5qI0TpSeMsykVRv71VdVZWNV72FCosqY12UhvtqlJtlCo1KY/SX/Y0hKgypHEW5WL74XukZqhf9jSEEKJSmTCwzsueghBVit7LnkBZUalUfPXVV7i7u+Ph4UGfPn344osvOHr0KMuXL3/ucZOSkhgxYkQZzrSgxMREdu3aVeC9cePGER8fD+QFkXTp0gUvLy969erFsGHDOHDgQKmvGxAQgFKpLPU4QgghhBBVRaVZcZ47dy5ZWVns27cPMzMzVCoVoaGhuLq60rNnz+cet06dOs/sMlGWbt26xa5duxgyZIjmvfXr1xc4Zvz48bz33nsAXLlyhalTp/Lw4UNGjx793NcNDAxkzJgxGBkZPfcYQgghhBBVSaVonGNjYzl69CgnTpzAzCzvWVpDQ0OGDBlSIF46MjISf39/HB0duXDhAgqFgjVr1mi2Vdu7dy9btmzRnL9u3ToyMzMZNGgQkZGRQF409bRp0zhy5AiPHj1i1qxZuLu7F/vZjBkziImJQaVS0ahRI/z9/bGwsGDJkiUkJibi6emJtbU1a9euxc3NjeDgYGxtbZ+51xYtWjB//nzmzJnDqFGjSE5OZvr06aSnp5OVlUXXrl2ZNWsWmZmZ9OzZk9DQUGrXrg3A559/zuuvv05SUhIAQ4cORU9Pj61bt6JUKlm4cKFmpXvs2LF4eXkBefs4e3p6cvr0ae7du8eYMWM0jbwQQoiyczv2Apej9ugcAHL6gG7BHxIrLUTZqBSN8x9//IG1tTUWFhbFHnvjxg2WLVvGkiVL+OabbwgKCmL16tVERkaybt06duzYgZWVFenp6RgYGJCZ+ewPLzMzM/bt28dvv/3G1KlTNc1xUZ/Nnz8fS0tLANasWcP69evx8/NjwYIFLF++nNDQUJ3v19HRkfv37/PgwQPMzc0JDg7G1NQUlUrF2LFjOXnypObxjt27dzNp0iQyMjL4/vvviYiI4LXXXmPHjh3s3LlTE3gydepU3nzzTb7++mvu3r3LwIEDsbe31zTvmZmZ7Nq1i8TERPr374+3t3ehYSlCCCGe358XInhUgsjptBJETUustBClVyka55Jo3Lgx9vb2ADg5OfHzzz8DcPz4cTw9PbGysgIosins27ev5vy7d++SlZWFsbFxkZ+FhYVx8OBBVCoVGRkZ2NjYPPc9PL31dk5ODitWrODChQvk5uaSnJzM1atX6dKlC8OHD+fdd99lwoQJhIWF0alTJ1577bVCxzxz5gxz5swBoHbt2nTt2pXIyEhN45x/Xw0aNMDc3Jw7d+5IAIoQQpQxO+d+qFRPdF5xttAxalpipYUoG5Wicba3tycuLo6UlJRiV52ffqZXT0+P7OzsEl8vv0nW19cH8pL98t8r7LPo6Gi+++47du7ciaWlJQcPHmT37t0lvm6+6OhoXnvtNSwtLQkKCuLx48fs2bMHY2NjPv30U01CYL169WjVqhU//fQTO3bsYMmSJUWOq1AotL7Ov6/8e8vJyXnu+QshhChcPRtn6pUgcnrCwDo6780s+zgLUXqVYlcNGxsb3NzcWLBgAWlpaUDeSuy///1vMjJ0SxLq3r07YWFhJCcnA5Cenl5mu048fvwYMzMzatasiVKpZN++fZrPzMzMNHPWxdWrV/H392fcuHEoFApSU1OxsrLC2NiYpKQkfvrppwLHv/fee/j7+2NgYICz8/9+GJuamha4rqurq2Z3j3v37nHixAlcXFye95aFEEIIISqdSrHiDPDFF1/w9ddfM2jQIAwNDVGr1XTt2pXGjRvrdH779u0ZP348o0ePRqFQYGRkRHBwcJnMrUuXLoSHh9OnTx/q1KmDg4MD0dHRQN4XChs3bky/fv1o0qQJa9eufeb8kJAQ9uzZQ2ZmJpaWlnz44YeaL+6NGDGCKVOm4OXlRd26dXF1dX0r25E/AAAgAElEQVTmvoyNjXn33XcLvD9mzBhGjhyJiYkJW7du5ZNPPmHBggX0798fAD8/P958880yuX+A4b2tymwsIYQQeZQq2R9fiPKkyH36gVlR6SQkJDBs2DCOHDlCtWrVXto8JHK7cPKnU+2kNtpJbbST2mgntdFOalO0qlQfPT1FkWnH0jhXYl999RX79u1j1qxZ9OvX72VPRwghhBAVlEql5pGW+HZpnP9HGmdRLsIP3SddIreFEEKICmnYICutzbE0zk99Xo5zEYVwc3OjX79+qNXqAu9du3atVOMGBgYyderUAu/NmzePlStXlnisYcOGcfLkyVLNRwghhBDiVSeNcwWQkZFBWFhYmY45YcIE4uPjOXz4MACnTp3i0qVLTJkyRecxcnNzZds5IYQQQoj/U2l21XiVTZo0iYCAADw8PArsM3337l0+//xz/v77b7KysvDw8GDChAmcOnWKrVu3EhISwv379+nYsSNffvklffr0Yf369aSmpjJ9+nSWL1/OBx98gL29PYsXL2bNmjWa8fft28fmzZuBvO38Fi9ejKWlJXv27OHIkSPUqFGDv/76i+XLlxeYa3h4OFu2bOHrr7+mTp065VYjIYQQQugmPvY8v53bg0r5ROdzDoVpD9PR11c881m1aia88867tGnTtlRzfdVI41wBODg44ODgwHfffcf777+veX/27Nl89NFHtGvXDqVSyahRo2jVqhVt27bFz88PlUrFmTNncHZ25syZM/Tp04ezZ8/ywQcfAPDmm28yfPhwvL29GTlyJK1atQLy9oLO/+KglZUVq1evZunSpaxevRqAX3/9lfDwcBo0aFBgnuvWrSMqKorNmzdjZqb9+R8hhBBCvDyXfj/I/XsxJTrncQni2/NFRByQxlm8HFOnTmXkyJH4+PgAoFariYqK4sGDB5pj0tPTuXnzJp06daJZs2ZcvHiR06dP89FHH7Fy5UqUSiWXL1+mTZs2mnPGjh3L6tWrGTNmjOa9s2fP0q1bN028+JAhQwpEsbZr1+6ZpvnLL7+kQYMGBAcHY2ho+EJqIIQQQojSa+3UH5Uqs0QrzjWKiG/XtuLcr59Xqeb5KpLGuYJo0qQJXbt2ZdOmTUBe3LVCoWDv3r2FNqqurq6cPXuWixcvsmjRIl577TUiIiKws7N7Jh4b8uLF8+Xm5hYZr129evVnrufs7Mwvv/zC7du3adSoUeluVgghhBAvTCObNjSyaVP8gU+RXTV0I18OrEAmT57Mjh07SE9PR6FQ8NZbbxESEqL5/Pbt29y7dw+ADh06EBoaSt26dTEyMsLV1ZXAwMBnkgML4+rqys8//8z9+/cB2LNnT7Hnde3alU8//ZQPPviAmzdvluIuhRBCCCFeTbLiXIHUrVsXT09PNm7cCMCqVatYtmyZJgbb1NSUpUuXYmVlhaOjIw8fPtREabu6uvKvf/2LDh06FHud5s2bM2XKFEaNGgWAtbU1S5YsKfa8Tp06sXTpUj788EMCAwNp3ry5zvc2oM9rOh8rhBBCiPKlkvh2nUgAiigXErldOPnzl3ZSG+2kNtpJbbST2mgntSlaVaqPJAcKIYQQotSKimR+1VWlxvB5VKX6FNc4y6Maolwc+f4BTyRyWwghXlkD3nn9ZU9BiJfulfly4IuKpoa8rd+Cg4Nxd3enT58+9O3bl927dxd5zpw5c9i2bVupr11SdnZ2mi3r8q1duxY7Ozt+/vnnYs8vqmbjxo0jPj4egBEjRug0nhBCCCFEVfFKrTjnR1N7e3uX6bjffPMNZ86cYdeuXdSsWZPbt2/zwQcfYGxsjKen5zPHv+wYarVazY0bN2jWrBm5ubn88MMP/P/s3XlYlPX+//Eny4AK5pKKmDsp7qIJuKIi56iBC+CSJmoWdSxDTb6ymLjkhkumpJkelzqmuQEGWhaZYi64oAc97guKG0IoiggMM/z+4OedKAMDooDzflxX13HmXuZzv+Xc15uP93xeTZs2fe7zrlq1qgRGJ4QQQgjxaipXjfOLiKYeN24cK1euJDQ0lKpVqwJgbW3N5MmT+eKLLxgwYAAxMTHMmTOHDh06cPLkScaOHZtnXFlZWSxevJgjR46gVqtp2rQp06dPx8LCgoiICL7//nvUajWQmwb4eOk3Z2dnBgwYwIEDB0hKSmLMmDGMGDECrVbLzJkzOXToEGZmZlSqVIkff/xR+byBAwcSGhrK5MmTiYmJoWnTpty9e1fZnpyczLRp05TZ4/fff5+BA/9epDwiIoLY2Fju3LnDqFGjGDFihDKeFStWPNOEp6WlMXfuXM6dO0dmZiaOjo4EBAQoa0QLIYQov65cjeXQkc1kqTMK3G9rhLHOgIzHDDWGWRiOcvOoBuSNpn6Sn58fXl5ebN26lW3bthEdHc3+/fvp0KED//3vf5+Jpobc9LxOnToRHx+PSqXCxsYmzznt7OxISEggLS0NgPPnz+Pm5sbmzZvp2bNnnn3//e9/U7lyZbZu3cr27dupVauWsv5y165d2bx5M+Hh4Xz55Zf4+fnlOTYjI4NNmzbx/fffs2jRIh4+fMjZs2c5ePAgO3fu5KeffuLbb7/Nc0zfvn2JiopCo9EQFhb2zAz8rFmzaNKkCREREaxevZqFCxfmeTwjOTmZH374gY0bN7JixQrOnj1bYN3nzp2Lvb29cn0pKSls27atwGOEEEKUD8dORHAn+Qr3Um8V+N+NGze4fftmgf9duXKZyMjw0r4kIV6YcjXjDCUfTR0fH5/v5zxO0nv8vw0aNKBdu3b57rt7927S0tLYtWsXkDsD/XiN44SEBCZNmkRiYiKmpqYkJyeTlJSkxF2//fbbANStW5fXXnuN27dvU69ePTQaDVOmTMHR0fGZRr1SpUrY2dnx22+/ERsby+zZs5W1nwEOHjyIv78/ALVq1aJ79+7KzDSg1K5GjRr06NGDw4cPF7gm8+7du4mLi1NSDTMyMrCystK5vxBCiPLjLbt+qNWPCp1xtrDUb8bZEGOYheEod41zSUdTN2zYELVazaVLl/LMOh8/fpy6detiYWEB5B9D/VhOTg7Tpk3LN33vs88+w9/fHxcXF7RaLW3btiUzM1PZ/nQ8tkajoXLlyuzYsYOYmBgOHjzIwoULCQsLU5ptAHd3dyZMmICHhwemps/+NRYUqf302HVte3Kf5cuXU69evQL3E0IIUf40atCeRg0Kj2fuP7iGwSxJJoQu5epRjcdKMpra3Nwcb29vpk+fTmpqqnL8ggUL+PTTT/Uaj7OzM+vWrSMjI/e39bS0NCWW+sGDB9StWxeArVu3kpWVVej5UlJSyMjIwMnJCV9fXypXrkxCQkKefTp27MhHH33Eu++++8zxnTp1YtOmTQAkJSWxd+9eHB0dle1hYWHK50RHR+Pg4FDo9a1cuVL5UmRKSsoz4xFCCCGEeNWVuxlnKPlo6o8//hhjY2MGDx6sfOFt5MiReb5QV5APP/yQr7/+mkGDBikz4OPGjcPGxoaAgAA+/vhjrKyscHBwUL6AWJBbt24xdepUsrOz0Wg0ODk5YWdnl2cfIyMjxowZk+/xn3/+OUFBQUo9fH19adKkibLd2tqa4cOHk5SUxEcffYStrW2B4wkMDGTBggUMGDAAIyMjVCoVgYGBRZqB/odrdb33FUIIUfZIJLMQkhwoXhKJ3M6fIaUxFZXURjepjW5SG92kNrpJbQpmSPWRyG0hhBBClKhXLX7bkBrD4jCk+kjktigT/vzpLzIeyj/zCSHEq8BlWM3CdxLiFVQuvxxYFhQn7vvJGOspU6Zw9OjRFzG0YgsNDcXHxweAkydPMmnSpFIekRBCCCFE2SEzzqVk9uzZpT2EArVu3ZpFixaV9jCEEEIIIcoMaZyfk5eXF61ateLEiRPcuXOHvn374uvrC8DFixcJCAggOzsbGxubPOs3e3l5MWbMGHr27FmsWG6A4OBgDh8+jFqtplq1asyZM4c33niD69ev4+npiYeHB0eOHCEzM5Np06bRoUNuBGp4eDirV68GoH79+sycOZPXX389z3XFxMQQHBxMaGgof/31F5MmTeKvv/4CclcmCQwMfIFVFUIIURouXotl37EtZKofFbjf9z+bFBiGItHb4lUljXMJuHXrFj/88AMPHz7ExcWFQYMG0bBhQyZPnoyXlxfu7u6cOHGCYcOG5Xt8165dcXNzw8jIiMuXLzN69Giio6OV7Y9jua9fv06/fv1wd3fHwsICb29vJcJ7y5YtLFy4kMWLFwNw7949bG1t8fPz4/Dhw3z22WdERUURHx/PwoULCQ0NpVatWnz11Vd88cUXfPXVVzqvLyIigjp16rBu3ToAZb1rIYQQr5aYuAhu/3Wl0P3u3i/8XJGR4dI4i1eONM4loE+fPhgbG1O5cmVsbGy4du0aNWrU4Pz58wwYMAAAOzs7JfL6acWJ5baxsSE6OpoNGzaQnp5OdnZ2nnOqVCr69+8PgIODAxUqVODy5cscOXKE7t27U6tWLQDeeecdZYy6tG3blrVr1xIcHIyDgwNdu3YtfrGEEEKUWY5t+pGlzih0xrlS5cJnnCV6W7yKpHEuAfnFZoPumOunFSeW+8aNG8ydO5etW7dSr149YmNjlUdE8vM4WlufiO2ntWvXjvDwcA4cOMD27dtZuXIlGzduLNI5hBBClH1v1m/Pm/ULj992GVbTYJYnE+JJsqrGC2JpaUmTJk2IiIgAIC4uTucqHMWJ5U5LS0OlUlGzZk20Wi0//vhjnu1qtVr57KNHj5KZmUmjRo3o1KkTe/fuVSLJN2/eTOfOnQv8rISEBCwtLXF1dSUgIID//e9/aLWytJwQQgghDIvMOL9A8+fPJyAggHXr1tGyZUvatm2b737FieW2tbWlT58+uLq6UqdOHezt7fMsb1e1alWuXr3K4MGDycjI4Msvv8TMzIwmTZowadIkJa67Xr16zJw5s8DPOnz4MGvXrsXExAStVsuMGTMwNi7a71xd+79e+E5CCCHKBYnfFoZKkgNfQY9X1YiJiSntoSgkcjt/hpTGVFRSG92kNrpJbXST2ugmtSmYIdWnsORAeVRDCCGEEEIIPciMsxBCCCHEE7LVWu7ee1jawygzZMb5b/KM83NydnZmxYoVOpeae1HHloSNGzeSmZnJ6NGjCQ0NZc+ePSxdujRP+ElJObrtLzIfyjNxQgghyr4uI2uW9hBEGSWNswHTFcgihBBCCCGeJY1zCVmzZg07duxAo9Fgbm7O9OnTad68OQDHjx9n/vz5PHyY+88+kydPfiZEZM2aNezdu5evv/6amJgYlixZgrGxMRqNhqlTp+Lo6MjVq1cJCgoiJSUFU1NTJk6ciJOTE5C7ysbEiRP57bffuHfvHpMnT6Z3794sW7aM1NRUJSL77t279OnThz/++IPVq1eTnp6upA/qsnfvXr755huysrJQqVQEBARgZ2dX0iUUQgghStS567HsPr6FrOyCA12e9m1UwQEv+ZGYccMgjXMJGThwoLLE24EDB5g2bRqbN2/m3r17jBs3jpCQENq3b49GoyEtLU05TqvVMmvWLO7evcuqVaswMzNj6dKlTJs2jQ4dOqDRaHj0KPf/8L6+vgwZMoTBgwdz8eJF3n33XX7++WeqV68O5K4dvW3bNo4dO8aECRPo3bs37u7uDBkyhMmTJ2NqakpkZCTOzs5UqlRJr+u6du0ay5cvZ/Xq1VhaWnLhwgW8vb3Zs2dPyRZQCCGEKGH7T0VwK6XwCPFn6BEpnh+JGX/1SeNcQk6dOsW3335LamoqRkZGxMfHA3DixAlsbGxo3z43icnExIQqVaooxwUGBtKuXTsWLlyoJPp17NiRefPm0adPH5ycnGjatClpaWmcOXMGT09PAN58802aN2/OiRMncHZ2Bv6O5razs+POnTtkZmZSp04dbGxs2Lt3L7169SIsLEyZfdbHvn37uHbtGu+++67yXnZ2NsnJydSoUaP4BRNCCCFesC6t+pGpzijyjHOFQiLF8yMx44ZBGucSoNVqGT9+POvXr6dly5YkJiYqj1AUtmiJvb09hw8fJiUlhddfzw0JCQwM5Ny5cxw6dIjx48fz3nvvKU3x056Mz34czW1iYgLkNrjm5ua4u7sTHh5OvXr1ePDgAR06FO234W7dujF//vwiHSOEEEKUNtu67bGtW3iE+NO6jJRIcZE/Wce5hGRnZ2NtbQ3Ahg0blPfbtWvHpUuXOH78OAAajYbU1FRlu6enJ++99x6jR48mMTERgMuXL2Nra8uoUaPo378/J0+exNLSkubNmxMWFgbApUuXOHv2rM40wif17t2bI0eOsGbNGtzd3Yt0XV26dGHfvn1cuHBBeS8uLq5I5xBCCCGEeBXIjPNzys7OpmLFivj4+DBo0CCsra2V2WbIjb4OCQlh3rx5pKenY2xsjJ+fH507d1b26d+/P+bm5owePZpVq1axaNEirl69iomJCa+99hqzZ88GYOHChQQFBbFu3TpMTU2ZP3++8nxzQSpWrEivXr0IDQ3l999/L9L1NWzYkAULFjBlyhQyMjJQq9W0b9+eNm3aFOk8HTwlclsIIUT5kC2R4kIHCUB5Dnfu3KFv377s37+fChUqlPZwyjSJ3M6fIS0qX1RSG92kNrpJbXST2ugmtSmYIdVHAlBekO+//54NGzbg5+cnTbMQQgghhAGQGWchhBDCQGRnabmbKlHSTzOkGdXiMKT6yIxzGaJWq1m+fDk7d+7E1NQUrVZL9+7dmTRpEiqVKt9j/P39adWqFSNGjCixcZRG1PfJTclkpckzY0IIUZreer9WaQ9BiHJNGueXKCAggMzMTLZt24alpSVqtZrQ0FAlkU8IIYQQQpRd0ji/JPHx8URFRbF3714sLXP/CUClUjF06FA0Gg3BwcHs27cPyF032dfXV1mP+bGnZ5+ffO3v74+ZmRnx8fEkJCTwj3/8g549exISEsLt27cZNWoUo0aNUs4VERFBbGwsd+7cYdSoUco5bW1tiY2NxcLCIs/rx6uBXLx4EVNTUxo1asSSJUteeN2EEEIU7syNWH6N20pmIUEf5nv1C/aQ+Ggh8ieN80ty+vRpGjRokCc18LFNmzZx5swZQkNDAfD29mbTpk0MHz68SJ9x4cIFvvvuOzQaDc7Ozjx48ID169eTlJREnz59GDRokNIQJycn88MPP5CcnMzAgQPp0KEDzZo103nuP//8k/v377Nz506APGtRCyGEKF17z0Ry464e0dJFeExV4qOFeJY0zmXAwYMHcXd3x8zMDAAPDw+ioqKK3Di7uLgo52jUqBHdu3fH2NgYKysrXnvtNW7fvo2NjQ0AgwYNAqBGjRr06NGDw4cPF9g4N2vWjMuXLzNjxgwcHBzo0aNHMa5UCCHEi9C9uRuZ6ozCZ5xf03/GWeKjhXiWNM4vSYsWLbh69SqpqanPzDrn5OTkic4GnnkNuVHaWu3fX7DLzMzMs/1x5PbjfZ9+rdFo8h3bk59vYmKixIQ/ef569eqxc+dODh06RHR0NIsXLyYiIiLPZwghhCgdzd9oT/M3Co+Wfuv9WgazOoIQL4JEbr8kDRs2xNnZmaCgINLS0oDc+O3vvvsOR0dHwsLCUKvVqNVqwsPD6dSp0zPnqF+/PidPngRyw1diYmKKPZ7H0d0pKSlER0fj4OAA5DbIjz8jIiJC2f/27duYmJjg4uJCQEAAKSkp3Lt3r9ifL4QQQghR3siM80s0b948li1bhqenJyqVSlmObuLEidy4cQN3d3cAunbtypAhQ545fsiQIfj4+NC/f38aNmxY5NjrJ1lbWzN8+HCSkpL46KOPsLW1BSAwMJCgoCBq1qyZ53GMc+fOsWjRIgC0Wi0ffvghVlZWen9e66E1ij1WIYQQJSM7S5YFFeJ5SACKeCkkcjt/hrSofFFJbXST2ugmtdFNaqOb1KZghlSfwgJQ5FENIYQQQggh9CAzzkIIIYQw6DhuQ5pRLQ5Dqo9Ebr8inJ2dMTMzw8zMjEePHvHmm2/i7e1N+/YFf4s6KiqKWrVqFft5aG9vb6ZOnUr9+vUJDQ2lXbt2NGrUqMjnubA+CfUDebZOCCHKqhZj9f/eihCGSh7VKEeWLl3KTz/9xG+//Ya7uzsffvgh//3vfws8Jioqiri4OJ3bdS1R99iqVauoX78+kLsSR3x8fJHHLYQQQgjxKpAZ53Lqn//8J3FxcaxevZqFCxeyePFijhw5glqtpmnTpkyfPp3Y2Fh2797NgQMH2LJlC++99x7W1tbMmTOHDh06cPLkScaOHUvr1q2ZNm0a165dA+D9999n4MDche+dnZ1ZsWIFJ0+e5NSpU8yaNYuvvvoKPz8/OnfuXJolEEIIUYhTt46z839byMjOKHRfs4OFh6NIFLcwdNI4l2Nt27Zl9+7d/Pvf/6Zy5cps3boVgAULFrBy5UomTpyIs7MzrVq1YsSIEQDExMRw/vx5pk+fztSpUwGYMGECTZo0YdmyZdy5cwcPDw9atGhB06ZNlc/y9PQkPDycMWPG0LNnz5d/sUIIIYrs93ORJNyL12/nNP12kyhuYcikcS7HHn+vc/fu3aSlpbFr1y4AsrKyCozPbtCgAe3atVNeHzx4EH9/fwBq1apF9+7diYmJydM4CyGEKH962bqRmf1IvxnnKvrNOEsUtzBk0jiXYydPnqRJkyZcv36dadOm5Zs2mJ9KlSo9854+kd9CCCHKl1bW7Whl3a7wHcn9cqChrJwgRHHJlwPLqaioKDZu3Mh7772Hs7Mz69atIyMjd0YhLS2NS5cuAWBpacmDBwXfCDt16sSmTZsASEpKYu/evTg6Oj6zn4WFRaHnEkIIIYR4VcmMczni4+OjLEdnY2PDypUrsbOzo2XLlnz99dcMGjQIIyMjjIyMGDduHDY2NvTv35+AgAB++eUX5cuBT/v8888JCgqiX79+APj6+tKkSZNn9hs6dCjBwcGsWbOGyZMny5cDhRBCCGFQJABFCCGEEBKAIo+p6GRI9ZEAFFEm/PVXGlqt/I72NEO6GRWV1EY3qY1uUhvdpDZCPD+ZcRZCCCGEKIM0WVpSysC/AhjSL10y4/wCPBl/rdVqGTt2LJmZmezZs4elS5c+s//vv//O0aNH8fPzIyYmhuDgYEJDQ4v0maGhoTrP/6SQkBDS09Px8/Mr9vmeHG9Jub4miez7BacUCiGEEOJvDSfULu0hiKdI41xMS5cupWnTppw+fZp33nmH8ePH69y3V69e9OrV6yWO7vmUt/EKIYQQQrwM0jg/pxYtWmBhYUFOTg5paWlMmDCBCxcuULlyZUJCQqhZs6bO2d3s7Gw++ugj7t69S2ZmJm3atGHGjBmYmZmRlZXFrFmziImJwcrKisaNG+c5dtWqVezatQuNRoOVlRVffPEFNWvWzLNPaGgoERERWFpacvXqVapWrcqCBQuwsrIC0Gu8SUlJfPbZZzx8+JDMzEy6d+/O5MmTX2xRhRBCiFfYfxOPs/3c1kKDaUxjJQa9rJF1nJ/ToUOHyMzMxNTUlJMnT+Ln58eOHTt48803Wb9+fYHHmpiYsHDhQkJDQ4mMjESj0bBt2zYANm3axPXr14mMjOTbb78lLi5OOW779u1cu3aNzZs3ExYWhpOTE/Pmzcv3M44dO8bEiRP56aefcHBwYPbs2co2fcb72muvsWLFCkJDQwkPD+fUqVNER0cXp1RCCCGEAHZd2sHV1HgSH94u8L8bN25w+/bNAv+7cuUykZHhpX1JBkNmnIvJx8cHc3NzLC0tCQkJITExkfbt2yvrJLdt25YDBw4UeA6tVsuaNWuIjo5Gq9WSmppKhQoVAIiJiWHgwIGoVCpUKhX9+/cnNjYWyI3YPnXqFO7u7gBoNBosLfN/kP2tt95SZqsHDx6srNUM6DVejUbD/PnzOX78ODk5OSQnJ3P27FmcnJyKUi4hhBBC/H+9bVzJ0CMK3bSqxKCXNdI4F9PjZ5wfCw0NxdzcXHltYmKCRlPwl+EiIiI4duwYP/zwA5aWlqxYsYL4+HgAClrsJCcnh7FjxzJo0KAijTknJydPlLY+4127di33799ny5YtmJubM3XqVDIzM4v0uUIIIYT4W1urdrS1KjwKveGE2gazmkV5IY9qlKIHDx5QrVo1JRY7MjJS2dapUye2b99OdnY2GRkZebY5OzuzYcMGUlNTAcjKyuLs2bP5fkZsbKzSjIeGhuYbpV3YGGvWrIm5uTmJiYn8/vvvRbxKIYQQQohXg8w4l6KBAwfy+++/4+rqipWVFW+99ZYymztkyBDOnTuHq6srtWvXxt7enhs3bijH3bt3jxEjRgC5M8nDhg2jWbNmz3yGvb09ISEhXLhwQflyYFF4eXkxfvx4Bg4cSO3atenUqdNzXrUQQgghRPkkASivMH3XfhZCCCFE2SMBKC+fBKCIMkEit/NnSDejopLa6Ca10U1qo5vURjepjdCXzDgLIYQQrwhNloaU1PR8t0lzqJvUpmCGVB+ZcdahqLHZL8KUKVNwd3enQ4f8Fy2/e/cuo0ePBiA9PZ07d+7QsGFDAHr06MHEiRNfyjhLwp0Vt9BI5LYQQrxQ1pPrlvYQhHilGWzjDEWLzX4RngwjyU+1atXYvn07kLuuc3BwMKGhoS9jaEIIIYQQ4ikG3Tg/pk9stkajYeHChezbtw+Abt264evri4mJCWlpacydO5dz586RmZmJo6MjAQEBmJiY4OXlRatWrThx4gR37tyhb9+++Pr6ArkrVowZM4bu3bvzwQcf0KNHD0aOHMnFixfx9vZm48aN1K5dW+e4Fy9ejEajUc735OusrCwWLVrEgQMHMDIyomHDhixdupSjR48ya9YscnJy0Gg0fPzxx7z99tskJSURFBTE9evXAfD29qZ///4AODk5MWjQIP7880+Sk5P54IMPGD58+Iv8KxFCCINzPOkE2y6GFhqKURCTU6Y6AzNMTLd03bkAACAASURBVIwKDdMAiXAWoiDSOPNsbPZPP/2EtbU1n3/+OevXr2fixIls2rSJM2fOKDO+3t7ebNq0ieHDhzN37lzs7e2ZPXs2Wq0WX19ftm3bxpAhQwC4desWP/zwAw8fPsTFxYVBgwYpj1wAGBsbs2DBAgYPHkyLFi2YMWMG06ZNK7BpLszy5cu5desWoaGhqFQqUlJSAFi5ciUffPABbm5u5OTk8OBB7jNLM2fOpGXLlnzzzTckJibi4eFBy5YtsbGxAXLXit68eTMJCQn0798fDw8PJeVQCCHE89tx5Wfi7199vpPk/3hzkUVGhkvjLEQ+DLpxLkps9sGDB3F3d8fMzAwADw8PoqKiGD58OLt37yYuLo61a9cCkJGRgZWVlfI5ffr0wdjYmMqVK2NjY8O1a9fyNM4Ar7/+OnPmzGHUqFF4eXnRo0eP57q2PXv2EBQUhEqlAqB69eoAODo68s0335CQkECXLl1o06YNAAcOHCAoKAgAKysrunXrRkxMjNI4u7q6AlCvXj0sLCxITEykQYMGzzVGIYQQf3Nt1JcMTeExzAUxqVYyM84S4SxE/gy6cS5KbPbTcdWA8jonJ4fly5dTr169fD9H3yjuM2fOUK1aNW7fvq3X+E1NTVGr1crrrKwsTExMlDHl5/3338fFxYUDBw4wffp0evbsyaeffprnep6+PkD5hQFyZ8izs7P1GqMQQgj9tKtpR7uads91DuvJdXWufmBIKyMI8aJI5LaeOnfuTFhYGGq1GrVaTXh4uJKi5+zszMqVK5WGOCUlhYSEhCKdPy4ujvXr17N9+3ZSUlLYuHFjocfUq1ePU6dOKY9c7NmzR9nWs2dP1q1bpzTWjx/VuHz5Mg0aNGDYsGF4eXkRFxenXN+mTZsASExM5M8//8TBwaFI1yCEEEII8Soz6Bnnohg6dCjXrl3D3d0dgK5duyrPMAcGBrJgwQIGDBiAkZERKpWKwMBAnTPQT7t//z6TJk1i3rx5vP766yxcuJChQ4diZ2dH8+bNdR739ttvs2vXLlxdXalfvz6tWrVSto0dO1YZk0qlolGjRnz11Vd89913HD16FJVKhZmZmfJ4RlBQEFOnTqVfv34ATJ48WXlMQwghhBBCSACKEEII8cqQAJTikdoUzJDqIwEookyQyO38GdLNqKikNrpJbXST2gghXiRpnMVLUdBvb4auZs3KpT2EMktqo5vURjdDq01Bs8xCiJIljXMpcXZ2plKlSvz0008YGxsr761YsSLPSh/6KG6q4JOR3/7+/rRq1YoRI0YQEhJCeno6fn5+RTpfQZJWXUFzX1biEEKIklZ7UpPSHoIQBkNW1ShF6enpSqR2aZg9ezYdOsgC90IIIYQQ+pAZ51I0btw4QkJCcHV1zbNO8po1a9ixYwcajQZzc3OmT59O8+bNefToEX5+fly8eBFTU1MaNWrEkiVLANBoNAQFBXH8+HGMjIxYvHgxNjY2SqCKi4sLALt372bt2rX85z//USK/e/bsWeA4V61axa5du9BoNFhZWfHFF19Qs2bNF1cYIYQwcMfvnGTr+Qi9wlBM/qvSK9ikcmUL3N2HSiKgEM9BGudS1KpVK1q1asXGjRsZNWqU8v7AgQMZM2YMkJvoN23aNDZv3syff/7J/fv32blzJwCpqanKMRcvXmTu3LnMnDmTb775huXLl7No0SLc3d0JDw9XGuewsDA8PT31HuP27du5du0amzdvxtjYmA0bNjBv3jwWLVpUEiUQQgiRjx2XfyX+/jX9dtbz8ebbtyVKW4jnJY1zKZswYQIjR45k0KBBynunTp3i22+/JTU1FSMjI+Lj4wFo1qwZly9fZsaMGTg4OOSJ5W7UqBEtWrQAwM7Ojj/++AOA3r17M3fuXFJSUjAyMuLw4cMEBwfrPb7du3dz6tQpZf1qjUaDpaV80U8IIV4k18b/5FF2pn4zztX0n3GWKG0hno80zqWscePGdO/enbVr1wKg1WoZP34869evp2XLliQmJuLk5ATkJgXu3LmTQ4cOER0dzeLFi4mIiAB0R2JXrFiRXr16sWPHDgB69epFpUqV9B5fTk4OY8eOzdPYCyGEeLHa1WpNu1qt9dq39qQmei3BJ0v1CfH85MuBZcCnn37Khg0bePjwIQDZ2dlYW1sDsGHDBmW/27dvY2JigouLCwEBAaSkpHDv3r1Cz+/h4UFYWBhhYWF4eHgUaWzOzs5s2LBBeSwkKyuLs2fPFukcQgghhBCvAplxLgNq167NgAEDWLNmDcbGxvj4+DBo0CCsra2V2WaAc+fOKc8Wa7VaPvzwQ6ysrJRHOXTp0KEDaWlpyp+LYuDAgdy7d48RI0YAuTPQw4YNo1mzZkU6jxBCCCFEeSeR20IIIUQ5pm8AijyqoZvUpmCGVB+J3BZlgkRu58+QbkZFJbXRTWqjm9RGCPEiyYyzEEIIIYrsVYr6ll+4CmZI9ZEZ53LE2dkZMzMzzMzM0Gq1jB07FldX1yKdIyQkhI8++khZZePJKO2Som9wypOSVp9Be19dYmMQQghRuqwmtintIQjx0smqGmXM0qVL+emnn5g/f76ycoY+Hi8/9/XXX6NWS4MqhBBCCFHSZMa5jGrRogUWFhYkJCSwatUq9u3bB0C3bt3w9fXFxMQEf39/LCwsiI+P5+7du7Rt2xaAd955B2NjY/7zn//kOefBgwf56quvyMzMRKPR8K9//UuZ0fby8qJVq1acOHGCO3fu0LdvX3x9fYHcVMKAgACys7OxsbEhMzPzJVZCCCHEi3I88X9sOf8LGdlFv6+bHDfTK3jlSRUrVmDw4OGSXijKLWmcy6hDhw6RmZnJoUOHOHPmDKGhoQB4e3uzadMmhg8fDsDx48dZv369EmqyYcMGfvzxRywsLJ45Z4sWLdiwYQMmJiYkJyfj4eFB165dqVKlCgC3bt3ihx9+4OHDh7i4uDBo0CAaNmzI5MmT8fLywt3dnRMnTjBs2LCXVAUhhBAvUuSlP4hPvV68gx8W8zMl9luUY9I4lzE+Pj6Ym5tjaWlJSEgIP/74I+7u7sozyx4eHkRFRSmNc58+ffROAkxJSSEwMJCrV69iYmJCamoqV65cwc7OTjmXsbExlStXxsbGhmvXrlGjRg3Onz/PgAEDgNw476ZNm76AKxdCCPGyudn05JEms3gzzlWLN+Mssd+iPJPGuYxZunRpnsZ048aNGBkZ5dnnyddFic+ePn06zs7OfP311xgZGdG7d+88j12Ym5srfzYxMUGj0TzzeUIIIV4d7axa0s6qZbGOtZrYxmBWWhDiMflyYBnXuXNnwsLCUKvVqNVqwsPD6dSpk879LSwslJTApz148IA33ngDIyMj9u/fz9WrVwv9fEtLS5o0aUJERAQAcXFxnD9/vngXI4QQQghRjsmMcxk3dOhQrl27hru7OwBdu3ZlyJAhOvcfM2YMI0eOpEKFCs98OXDSpEnMmDGDVatWYWtri62trV5jeLzCx7p162jZsqXyJUQhhBBCCEMiAShCCCGEKDIJQDEchlQfCUARZYJEbufPkG5GRSW10U1qo5vURjepjRDPT2achRBCCCHES1HW/6Wi3M44Ozs7s2LFijwrTHh4eODn54ejo6Pe57l+/Tr79+9n6NChynuxsbEEBQVhamqKv78/HTt2LPY4Q0JCSE9Px8/Pj9TUVGbMmMH58+cxMjLC2NgYf3//Ar/Mp4u3tzdTp06lfv36xR5bfHw8EyZMAHKffY6JicHd3Z0OHQpeP7OgSO3iRngnrTmB9n5WkY4RQgghxKvFaoJDaQ/huZTZxrkkZGdnc+PGDTZt2pSncd6+fTsDBw7kgw8+KPL5TE11l+yrr77CysqKRYsWYWRkxN27d3n06FGRPkOr1WJkZMSqVauKdFx+fv31V9q1a8e0adMA6N+//3OfUwghhBDCUJXLxjkiIoLvv/8etVoNgJ+fnzKr6+zsjKenJ4cOHaJevXr897//5fr16wwYMIAGDRrQpk0bfv75ZypUqEBERASbNm3i/PnzzJ49m/T0dCpVqsSUKVNo06YN169fx9PTkxEjRnDgwAH69++Pm5sbU6ZM4eLFi1hbW1O9enVq1KgBwO3bt3F0dFTWPa5WrRrVqlUDcmemL168SHp6Ojdv3qRx48bMmTOHypUrExISwtWrV0lPTychIYH169fj7u6uzLjrE4f96NEjmjVrxrVr1xg7diwPHjzgu+++Q6vVEhsbS0hICFOmTFFmktPS0pg7dy7nzp0jMzMTR0dHAgICMDExyVPrxMREJk+ezN27d6lbt66ytrMQQgghDNPxxLNsOfdb8YJzYisUOTjnsbIQ2V6mG+fHKXqPxcfHA7lLsrm5uWFkZMTly5cZPXo00dHRyn5JSUnKUmwxMTEEBwcrkdWQ22w+ftwgKysLHx8f5syZQ+fOnTl48CA+Pj78+uuvANy7dw8bGxs+/fRTAObNm4eFhQU7d+4kJSUFDw8P+vbtC8DIkSPx8fEhMjKSdu3a4ezsnOcxjWPHjhEeHk6NGjUICAhg+fLl+Pn5AXD06FFCQ0OpXr16vrUoKA571KhRDBgwgJMnTypL1fXv319pxh9/xpPmzp2Lvb09s2fPRqvV4uvry7Zt255Z6m7WrFnY29szbtw4EhIS6N+/P926ddPjb08IIYQQr6LIS9HEp94s3sHFjGpXPruUI9vLdOP8dIqeh4cHAAkJCUyaNInExERMTU1JTk4mKSmJmjVrAjBwoP5xnleuXEGlUtG5c2cAOnXqhEql4sqVK1hYWGBubq40xpDbiH/++ecAVK9enX/84x/Ktk6dOvHHH38QExPDsWPHmDBhAu+//z4ffvghAD169FBmpwcNGsSsWbOUY52cnHQ2zVBwHHa/fv0AaN26td5rM+/evZu4uDjWrl0LQEZGBlZWVs/s9+T11qtXr1jPawshhBDi1eFm48Sj7OJGtT/fjHNpR7aX6cZZl88++wx/f39cXFzQarW0bds2T3R0UWKoc3Jy8o2UfvxexYoV82wvbBESS0tLevXqRa9evWjVqhXffPON0jgX9LkWFhYFnje/OOzH5yhOJHZOTg7Lly+nXr16RT5WCCGEEIarnVUz2lk1K9axVhMcyvWyiOUycvvBgwfUrVsXgK1bt5KVpXu1BktLS50R1ACNGzcmKyuLQ4cOAXDo0CGys7Np2LBhvvt36tRJeezj7t27REVFKdv279+vfFZOTg6nT59WxgmwZ88eUlJSAAgLCyvS6iD5qVy5Mm+++SaRkZEA/O9//9M7DtvZ2ZmVK1cqzyynpKSQkJDwzH4dO3Zk27ZtQO5M/8GDB59rzEIIIYQQ5VW5nHEOCAjg448/xsrKCgcHB6pWrapzX1tbWxo1aoSbmxuNGzdm6dKlebabmZmxdOnSPF8OXLJkCWZmZvme7+OPPyYwMJC3336bN954gy5duijbzp07x7x585RZ6QYNGhAUFKRs79SpE4GBgSQkJNCoUSP8/f2fpwwABAcHExgYyNq1a2nZsiXNmjWjcuXKhR4XGBjIggULGDBgAEZGRqhUKgIDA5+ZgZ4yZQqTJ0/ml19+oVGjRnmuVwghhBDCkEgAykvy5HrPJSk9PV15nOTixYt4eXnxyy+/UKVKlRL9HCGEEEKI5yUBKKJUxcbGMn/+fGWW+4svviiTTbNEbudPInB1k9roJrXRTWqjm9RGN6lNwaQ+f5MZZyGEEEKUWZqsbFJSixYmVlTSGBbMkOojM86viMGDB5OVlYVarSY+Pp4mTZoA0KJFC+bOnVvKoytc0trDaB8UfdkaIYQQhs3KR7IDRNkhjXM5sWXLFgAlzXD79u2lPCIhhBBCCMMijXM5l5iYiK+vL2lpaWRmZuLi4sJnn30GwOLFi7l+/TqpqanEx8fTpk0bxowZw/z587l58yZ9+/Zl0qRJAAwbNozWrVtz+vRpEhMTcXNzY/z48QCsWrWKX375hezsbCpUqMCMGTNo1qx46zcKIYQQQpRX0jiXc1WqVOHbb7+lUqVKZGVl8d5773HgwAElCfHUqVNs27aNChUqMHDgQJYuXcq///1vsrKy6NWrF0OGDFGWoLty5Qrr1q0jIyODoUOH0q5dO5ycnPD09MTb2xuA6OhoZsyYwcaNG0vtmoUQQpRfx2+fZ8vZP/ROnTM5ukrvpLmKFSswePDwUo1kFq82aZzLOY1GQ3BwMMePHwcgKSmJM2fOKI2zk5MTlpa5D7k3bdqUNm3aYGZmhpmZGQ0bNiQhIUFpnN3d3TE1NcXS0pK+ffty6NAhnJyciIuLY+XKldy/fx8jIyOuX79eOhcrhBCi3Iu8uJ/41Fv6H/CwiOePDJfGWbww0jiXc6tXr+bhw4ds27YNMzMzAgIC8sSPPxnVbWxs/Mzr7OzsfM/7OM47IyODiRMnsmHDBpo3b87NmzdxcXF5cRckhBDileb2ZhceZWfpP+NctWKRZpzd3AY+z/CEKJA0zuXc/fv3qVWrFmZmZty6dYs//viDkSNHFutc27dvp3fv3mRkZLBr1y4mT55MRkYGGo2G2rVrA7Bhw4aSHL4QQggD0652U9rVbqr3/lY+3QxmKTRR9knjXM6NGjWK8ePHM3DgQKytrenYsWOxz9WsWTNGjRpFYmIirq6uODk5AfDJJ5/g6elJnTp16Nq1a0kNXQghhBCiXJEAFAHkrqoxduxYpVkWQgghygIJQCl9hlQfCUARZYJEbufPkG5GRSW10U1qo5vURjepjRDPT2achRBCCCF4ObPb5ZEh/dIlM87lUFZWFl9++SVRUVGYmppSoUIFxo0bp3M1Cy8vL8aMGUPPnj1LbAzOzs6sWLGCpk31/wJHQZLX/Yn2QUaJnEsIIYR4EWp9KqtGiYJJ41wGTZ8+nfT0dHbs2IG5uTnnz5/ngw8+oEqVKtjb2+fZV6PRlNIohRBCCCEMizTOZcyNGzf4+eef+eOPP5Q1l5s2bcq//vUvvv76awYMGMCOHTuoXr06ly5dYvbs2XmOj4iI4Pvvv0etVgPg5+dHp06dgNxZ5AEDBnDgwAGSkpIYM2YMI0aMAODo0aPMmDEDc3Nz7OzsePIJnri4OGbPnk16ejqVKlViypQptGnT5mWUQwghhBCizJDGuYw5f/489evXp2rVqnnet7OzY8mSJQwYMIDY2Fi2b99O/fr1nzm+a9euuLm5YWRkxOXLlxk9ejTR0dHK9oyMDDZt2sT169fp168f7u7uqFQqJk6cyMKFC3F0dGTnzp385z//AXIfG/Hx8WHOnDl07tyZgwcP4uPjw6+//oqZmdmLLYYQQgjxHGJvX2TrmX080jds5cj3eoetgER8GyJpnMsYfb6r2b59+3ybZoCEhAQmTZpEYmIipqamJCcnk5SURM2aNQF4++23Aahbty6vvfYat2/fRq1WU7FiRRwdHZV9goKCALhy5QoqlUqJ8O7UqRMqlYorV65ga2v73NcrhBBCvCiRF2K4knpb/wMe3i36Z0jEt0GRxrmMadq0KdeuXePevXt5Zp1PnDihNKoWFhY6j//ss8/w9/fHxcUFrVZL27ZtdUZwm5iYFPqM9OPo7afl954QQghRlrg1cSQjO0v/GeeqlYo84ywR34ZFGucypm7duvTp04fp06cTHBysfDlwxYoVLFy4kOvXrxd4/IMHD6hbty4AW7duJSsrq9DPbNy4MRkZGRw5cgR7e3t++eUXHjx4oGzLysri0KFDdOzYkUOHDpGdnU3Dhg2f+1qFEEKIF6l97TdpX/tNvfev9amLwSy7JopHGucyaPr06SxatIi3334blUqFubk5U6ZMwcHBodDGOSAggI8//hgrKyscHByeeVY6P2ZmZnz55ZfKlwM7duxInTp1lG1Lly7N8+XAJUuWyPPNQgghhDA4EoAihBBCCIEEoOgiASh/kxln8VJI5Hb+DOlmVFRSG92kNrpJbXST2ugmtRH6khlnIYQQwsAZ+kyrNM4FM6T6yIyzKBOSv9uN9oHh3pSFEKIsqzXOtbSHIES5YFzaAxAla/HixUybNk15/ccff2Bra8uFCxeU9z766CO2bNlS5HPHxMTw559/lsg4hRBCCCHKG2mcXzGOjo4cPnxYeX348GHatm2rvKfRaDh27BgdO3Ys8rkPHz7M/v37S2ysQgghhBDliTyq8Ypp3749169fJzk5mRo1anDkyBE++eQTwsLCePfddzl9+jSWlpbUq1ePvXv38s0335CVlYVKpSIgIAA7OzsuX75MQEAAjx49QqvV4u7uTteuXfnxxx/RarUcOHAAV1dXPvzww9K+XCGEEE+JvX2ZrWcO8Ehd+Dr+j5kc3qR38IfETAtDJo3zK6ZChQq0bt2aw4cP4+TkxKNHj3BycmLu3LlA7qyxo6Mj165dY/ny5axevRpLS0suXLiAt7c3e/bsYcOGDTg5OfHJJ58AkJqaSpUqVXjnnXdIT0/Hz8+vNC9RCCFEASIvHOXKvTtFO+jhvaJ9hsRMCwMljfMryNHRkZiYGCwsLHjrrbcwMTGhQYMGXLhwgcOHD/PPf/6Tffv2ce3aNd59913luOzsbJKTk7G3tyc4OBi1Wo2jo2OxHusQQghROtyadMiNmS7KjHNViyLNOEvMtDBU0ji/ghwcHJg5cyaVK1fG3t4eAHt7ew4dOsSxY8eYOnUqe/fupVu3bsyfP/+Z43v37o2dnR379+9n1apVbNu2jYULF77syxBCCFEM7Ws3pn3txkU6ptY4V4NZbkyI5yFfDnwFtW/fnhs3bvDrr7/i4OAAQIcOHVi/fj2vvfYadevWpUuXLuzbty/PahtxcXEAXL16lZo1a+Lh4cEnn3zCyZMnAbC0tOTBA7mxCiGEEMIwyYzzK8jc3Jy2bduSmJiIlZUVAK1btyYxMZE+ffoA0LBhQxYsWMCUKVPIyMhArVbTvn172rRpw88//0xERAQqlQojIyMCAwMBcHFxYfv27QwYMKDIXw6sMcq55C9UCCFEidBkZZf2EIQoFyQ5ULwUErmdP0NKYyoqqY1uUhvdpDa6SW10k9oUzJDqU1hyoDTOQgghhCgzSiP+25Aaw+IwpPpI5LYoE5K//xntg/TSHoYQQogyrtYnnqU9BCF0ki8HvmRqtZolS5bQu3dvXF1d6du3L/PmzUOtVus8xt/fn/Xr1wOwceNG1q1bp2wLCAjA1dWVCRMmlOg4BwwYQEZGRomeUwghhBCiPJMZ55csICCAzMxMtm3bhqWlJWq1mtDQUCW9rzDDhg1T/pycnMyuXbs4evQoxsb6/w6UnZ2NqWnBf/Xbt2/X+3xCCCGEEIZAGueXKD4+nqioKPbu3YulZe7zMyqViqFDh3Lu3DlmzJjBo0ePyMzMZMiQIYwePfqZc4SEhJCens4nn3zCyJEjycjIwN3dHXd3d7y8vFi4cCH79u0DoFu3bvj6+mJiYoK/vz8WFhbEx8dz9+5dQkNDsbW1ZeLEifz222/cu3ePyZMn07t3bwBsbW2JjY3FwsKC4OBgDh8+jFqtplq1asyZM4c33njjpdVNCCFE+RN7K56tZ47wKFv/IBYAk5jtEv8tyixpnF+i06dP06BBA6pUqfLMtjfeeIN169ZhZmbGw4cPGTx4MN26dcPGxibfc1laWrJy5Uo8PT2V2eENGzZw5swZQkNDAfD29mbTpk0MHz4cgOPHj7N+/XoqVaqU5zzbtm3j2LFjTJgwQWmcn+Tt7a3EbG/ZsoWFCxeyePHi5yuGEEKIV1rkhRNcuZdU9APTUov2ORL/LV4iaZzLiIyMDKZPn865c+cwMjLizp07nD17VmfjnJ+DBw/i7u6OmZkZAB4eHkRFRSmNc58+ffI0zQBvv/02AHZ2dty5c4fMzEzMzc3z7BMdHc2GDRtIT08nO1vW+hRCCFE4tyZ2ZGSriz7jXMVS4r9FmSWN80vUokULrl69Smpq6jOzzl9++SU1a9Zk3rx5mJqaMmbMGDIzM4t0/pycHIyMjPK89+Trp5tmQGmSTUxMgNznn59snG/cuMHcuXPZunUr9erVIzY2Fl9f3yKNSwghhOFpb92Q9tYNi3xcrU88DWbpM1H+yKoaL1HDhg1xdnYmKCiItLQ0ADQaDd999x0PHjygdu3amJqacv78eY4ePVrk83fu3JmwsDDUajVqtZrw8HA6der0XGNOS0tDpVJRs2ZNtFotP/7443OdTwghhBCivJIZ55ds3rx5LFu2DE9PT1QqFVqtlu7du+Pt7U1gYCA//fQT9evXx97evsjnHjp0KNeuXcPd3R2Arl27MmTIkOcar62tLX369MHV1ZU6depgb29frKa+xsi+zzUOIYQQhkGTlY2xsVHhO5aw0vjM8sRQ6lPYdUpyoBBCCCGEEHqQRzWEEEIIIYTQgzTOQgghhBBC6EEaZyGEEEIIIfQgjbMQQgghhBB6kMZZCCGEEEIIPUjjLIQQQgghhB6kcRZCCCGEEEIP0jgLIYQQQgihB2mchRBCCCGE0IM0zkIIIYQQQujBtLQHIMqvK1eu4O/vz71796hatSrBwcE0bNgwzz4ajYZZs2axb98+jIyM+PDDDxk8eHCh28o7fWqzbNkydu7ciYmJCaampkycOJFu3boBEBISwoYNG6hVqxYA7du3Z9q0aS/7Ml4IfWpT0PUb+s/N5MmTOXfunPL63LlzLFu2jF69er2yPzfBwcHs2rWLGzduEBERQdOmTZ/Zx1DvNfrUxlDvNaBffQz1fqNPbQzxflOoHCGKycvLKyc8PDwnJycnJzw8PMfLy+uZfcLCwnLGjBmTo9Focv7666+cbt265SQkJBS6rbzTpzbR0dE56enpOTk5OTlnzpzJeeutt3IePXqUk5OTk7N06dKcefPmvbwBv0T61Kag6zf0n5snnTlzJsfBwSEnMzMzJyfn1f25OXLkSM7NmzdzevbsmXPu3Ll89zHUe40+tTHUe01OZDtHwAAACfVJREFUjn71MdT7jT61eZKh3G8KI49qiGL566+/OH36NG5ubgC4ublx+vRpUlJS8uy3c+dOBg8ejLGxMdWrV8fFxYVffvml0G3lmb616datGxUrVgTA1taWnJwc7t2799LH+zLpW5uCGPrPzZO2bt1Kv379MDMze1nDLBUdOnTA2tq6wH0M8V4D+tXGEO81j+lTn4IY+s/OkwzlflMYaZxFsdy6dQsrKytMTEwAMDExoVatWty6deuZ/erUqaO8tra25vbt24VuK8/0rc2TwsPDqV+/PrVr11be27FjB/369WPMmDEcP378hY/7ZShKbXRdv/zc5MrKyiIiIgJPT88877+KPzf6MMR7TXEYyr2mqAztflNUcr/5mzzjLEQpO3z4MEuWLGHNmjXKe++88w7/+te/UKlU7N+/n48//pidO3dSrVq1Uhzpy2Po16+PqKgo6tSpQ/PmzZX3pG6iIHKvyZ/UoHByv/mbzDiLYrG2tiYxMRGNRgPkfoHizp07z/yzj7W1NTdv3lRe37p1S5npKGhbeaZvbQCOHz/O//3f/7Fs2TIaN26svF+zZk1UKhUAXbp0wdramgsXLrycC3iB9K1NQdcvPze5tm3b9szsz6v6c6MPQ7zXFIWh3WuKwhDvN0Ul95u/SeMsiuX111+nefPmREZGAhAZGUnz5s2pXr16nv369OnDli1b0Gq1pKSkEBUVRe/evQvdVp7pW5u4uDgmTpzI0qVLadmyZZ5tiYmJyp/PnDnDjRs3aNSo0Ysf/Aumb20Kun5D/7kBuH37NseOHVOeh37sVf250Ych3mv0ZYj3mqIwxPtNUcj9Ji+jnJycnNIehCifLl26hL+/P/fv3+e1114jODiYxo0b4+3tjY+PD61bt0aj0TBz5kz2798PgLe3N0OHDgUocFt5p09tPD09uXHjBlZWVspx8+fPx9bWFj8/P/73v/9hbGyMSqXCx8eH7t27l+IVlRx9alPQ9Rv6zw3AN998w/nz51m8eHGe41/Vn5tZs2bx66+/kpycTLVq1ahatSo7duyQew361cZQ7zWgX30M9X6jT23A8O43hZHGWQghhBBCCD3IoxpCCCGEEELoQRpnIYQQQggh9CCNsxBCCCGEEHqQxlkIIYQQQgg9SOMshBBCCCGEHqRxFkIIIZ6wYsUKpkyZUtrDEEKUQbIcnRBCiEJ5eXlx9uxZ9u/fj5mZWWkPp0j8/f2JjIxEpVKhUqlo2bIln3/+OTY2NqU9NCFEOSMzzkIIIQp0/fp1jh49ipGREb///nuJnz87O7vEz/m0999/n+PHj7N3716qV69OQEBAqY1FCFF+SeMshBCiQOHh4bRt2xZ3d3fCw8MBOHHiBF26dEGj0Sj7/fbbb/Tr1w8ArVbLypUrcXFxwdHRkfHjx3Pv3j0gtxG3tbVly5Yt9OjRg1GjRgHg4+NDly5deOutt3j33Xe5cOGCcu67d+/yr3/9i/bt2+Pp6cnixYsZNmyYsv3SpUu89957ODg40Lt3b3bu3JnvtVSsWJF+/fop5w4JCcHHxwdfX1/at29PWFgYISEh+Pr6KsccPXqUd955hw4dOtC9e3dCQ0MByMrKIjg4mB49etC5c2eCgoLIyMh47noLIcouaZyFEEIUaPv27fTr149+/frx559/kpycjJ2dHRUrVuTQoUPKfhEREUrj/P333xMVFcX69evZt28fVapUYebMmXnOe+TIEXbu3Mnq1asBcHJyYteuXRw8eJAWLVrkaV5nzpxJxYoV2b9/P8HBwUoDD5Cens6YMWNwc3PjwIEDfPnll8yYMSNP4/3Yw4cPiYiIoHnz5sp7v//+O3369OHo0aPK+B+7efMm3t7ejBgxgoMHDxIeHq4cu2DBAq5cuUJ4eDi//vord+7cYdmyZcUtsxCiHJDGWQghhE5Hjx7l5s2b9O3bl1atWlGvXj0iIyMBcHV1Vf6clpZGdHQ0rq6uAGzatImJEydSu3ZtzMzMGDduHLt27crzKMSnn35KpUqVqFChAgCDBg3C0tISMzMzPv30U86ePcuDBw/QaDT8+uuvfPrpp1SsWJE333yTgQMHKufZs2cPb7zxBp6enpiamtKyZUt69+7Nrl27lH3WrFlDhw4d+Oc//8nDhw+ZN2+ess3Ozg4XFxeMjY2VsTwWERFB586dcXNzQ6VSUa1aNZo3b05OTg5btmwhMDCQqlWrYmlpyUcffcSOHTtK+G9ACFGWmJb2AIQQQpRd4eHhdOnSherVqwPg5uZGWFgYo0ePpl+/frzzzjvMmDGD3377jRYtWvDGG28AuTO1n3zyCcbGf8/PGBsb89dffymva9eurfxZo9GwePFifvnlF1JSUpTj7t69S0ZGBtnZ2VhbWyv7P/nnGzduEBcXR4cOHfKcr3///srrMWPGMHHixHyv8clxPO3WrVvUr1//mfdTUlJ49OgRHh4eyns5OTlotVqd5xJClH/SOAshhMhXRkYGP//8M1qtli5dugC5z/Xev3+fs2fP0qxZM+rUqUN0dDSRkZG4ubkpx9auXZs5c+bw1ltvPXPe69evA2BkZKS8FxERwe+//87atWupW7cuDx48wN7enpycHKpXr46pqSm3b9+mUaNGQG5D+5i1tTX29vasXbu2WNf55DieZm39/9q7Y5dk4jiO4x8SosFFQuS5pX/BIkJQIRJBUEEChQgi7l+IGhuFKMLBTURwFjoRb3ILHHK7JZejlgYjcIhDSKFneHgOHp4ekMcho/cLbrkvx/fLb/ry5Xt3P+Q4zl/3Q6GQ1tbW1O12FYlE/isvgK+HVQ0AwId6vZ4CgYC63a4sy5JlWbJtW9vb2/6OcS6XU7PZ1GAwUCaT8Z89ODhQpVLR09OTpF8T2l6v989cnudpdXVVoVBIk8lE19fXfiwQCCidTqtarWoymch1XbXbbT++u7urx8dHWZal6XSq6XQqx3Hkuu7CZ5DP59Xv92Xbtmazmcbjse7v77WysqJisahyuexP0UejkW5vbxfOCWB50TgDAD50c3Oj/f19GYahcDjsX4eHh+p0OprNZsrlcrq7u1MsFvPXOSTp6OhIe3t7Mk1Tm5ubKpVKH05ufysUCjIMQ8lkUtlsVtFo9I/4+fm5Xl9fFY/HdXZ2pmw2639POhgMql6vy7ZtJZNJJRIJXV1d6e3tbeEzMAxDtVpNjUZDOzs7KhQKGg6HkqTT01NtbGyoVCppa2tLx8fHenh4WDgngOXFD1AAAF/O5eWlXl5edHFx8dmlAPhGmDgDAJae67oaDod6f3+X4zhqtVpKp9OfXRaAb4aXAwEAS8/zPJ2cnOj5+Vnr6+syTVOpVOqzywLwzbCqAQAAAMyBVQ0AAABgDjTOAAAAwBxonAEAAIA50DgDAAAAc6BxBgAAAObwE/FJ6Yv5a3UWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -567,21 +577,21 @@ } ], "source": [ - "plt.figure(figsize=(10,11))\n", - "ax = sns.barplot(x=\"AveragePrice\",y=\"region\",data= avocadoData)\n", + "plt.figure(figsize=(10, 11))\n", + "ax = sns.barplot(x=\"AveragePrice\", y=\"region\", data= avocadoData)\n", "plt.title(\"Avg.Price of Avocado by Region\")\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 12, "id": "8ac2024a-7bd5-4234-856f-2dd28fbe1935", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAG/CAYAAADhOOSwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deVxU5f4H8M/MACqCF+Gya/oTEylDEUTNXTBQBsGliz9ccgnSm1rmvqRilmKrWmaaWkZ5u2aioLhbiltqlNwULcWVYRFcEJBl5vn94cvzi+s28MAw0Of9evmSOfPMeb5nOHx4zjlzHlRCCAEiIqoUdU0XQERUmzFEiYgkMESJiCQwRImIJDBEiYgkMESJiCQwRMkoPj4+uHLlisn6u3v3LsaOHQtfX19MnDjRZP1WpRkzZuDDDz+s0nUOHz4cGzdurNJ1khyLmi6AHjR8+HCkpaXh0KFDsLKyqvL1X716FQEBAbC2tgYANG7cGEOGDEF0dPQjX5OSklLldTzOjh07cP36dRw7dgwWFo/eTb///nvMnDkTH374Ifr162fCCmuvEydOICoqCgAghEBRUZGyLwDAtm3b4ObmVlPl1ToMUTNz9epVnDhxAra2tti7dy/69u1bbX0dP34cFhYWSElJwciRI9G6dWt07969XJuysrLHhlh1ycjIQPPmzZ/Y9+bNm2FnZ4f4+HiGqJH8/PyUX4r3f6He3xeo4ng4b2bi4+PRtm1bDBgwAPHx8cryX375BV26dIFer1eW7d69G6GhoQDuHf5Onz4dHTp0QN++fbF69eoHAvFRfHx80LJlS/z+++8AAE9PT3z99dd44YUX8MILLyjLLl26pPS1ePFi9OrVC76+vvjf//1f3L17V6lzyJAh8PPzQ//+/XHs2LFH9nv+/HkMHz4cfn5+CAkJwd69ewEAy5Ytw4oVK5CUlAQfH59HHr5eu3YNx48fx4IFC5CcnIzr168rz/Xt2xf79+9XHpeVlaFjx4747bffAAB79+5FSEgI/Pz8MHz4cJw/f15pq9PpMH78eHTq1AkdO3bEggULAACXL1/GiBEj0LFjR3Ts2BGTJ0/G7du3ldedPn0aAwYMgI+PD15//XUUFxeXq/ff//43+vTpA39/f4wdOxZZWVkA7o0G33nnHXTu3Bm+vr4IDQ3FuXPnHvm+Xb58GYMHD4avry/GjRuHmzdvAgCio6Px1VdflWsbGhqKPXv2PHJdD5OYmIgXX3yx3LJVq1Ypp1WmTJmCmJgYvPTSS/Dx8cHw4cOh0+mUtn/88QdGjhwJf39/BAcHY+fOnRXqv9YRZFYCAwNFXFycSE1NFc8884zIyclRngsICBDJycnK4wkTJojPPvtMCCHEu+++K4YOHSpu3rwpdDqd0Gq1olu3bg/t48qVK6JVq1aitLRUGAwGceLECeHt7S0OHz4shBCiVatWYuTIkeLGjRuiqKhIWXbx4kUhhBDz588Xw4YNE5mZmaKsrEycPHlSFBcXi8zMTOHv7y9++OEHodfrRXJysvD39xe5ubkP1FBSUiICAwPFp59+KoqLi8Xhw4dFu3btxPnz54UQQixbtkxMnjz5se/Vxx9/LAYNGiSEEEKr1Yq1a9cqzy1fvly88cYbyuP9+/eLoKAgIYQQFy5cEG3bthXJycmipKRErFq1SgQGBori4mJRVlYmQkNDxdtvvy0KCgrE3bt3xfHjx4UQQly8eFEkJyeL4uJikZubKyIjI8XChQuFEEIUFxeLnj17inXr1omSkhKRlJQknnnmGfHBBx8IIYQ4fPiw8Pf3F//5z39EcXGxWLBggYiMjBRCCHHgwAExYMAAcevWLWEwGMQff/whsrKyHrrNw4YNE127dhVnz54VBQUFYvz48cr7tG3bNjF48GCl7ZkzZ4S/v78oLi5+5Hv4533hvqKiIuHr6yvS09OVZVqtVuzevVsIIcTkyZNF+/btxYkTJ0RxcbGyPwghRH5+vujatavYvHmzKC0tFampqcLf31/5vtZFHImakRMnTiAjIwN9+/ZFmzZt0LRpUyQmJirPh4SEKI/v3LmDAwcOICQkBACQlJSEV155BX/729/g4uKCESNGPLG/Tp06wd/fH3PmzMHkyZPRuXNn5bno6GjY2dmhfv365V5jMBiwadMmzJ49G87OztBoNGjfvj2srKywZcsWdO/eHT169IBarUaXLl3Qpk0b/Pjjjw/0/euvv6KwsBDR0dGwsrJC586d0atXL2zbts3o92vLli3QarUAAK1Wi82bNyvPhYaGYt++fSgqKgIAJCQkKG23b9+OHj16oEuXLrC0tMSYMWNw9+5dpKSk4NSpU8jOzsa0adNgbW2NevXqwc/PDwDQrFkzdOnSBVZWVrC3t8eoUaNw/PhxZXtKS0vx0ksvwdLSEsHBwXjuueeUehISEjBo0CA8++yzsLKywhtvvIFffvkFV69ehYWFBQoKCnDhwgUIIeDh4QEnJ6dHbndYWBhatWoFa2trvPbaa9ixYwf0ej0CAwNx6dIlXLx4UXl/+vbtW+Hz6vXr10dwcDC2bt0KADhz5gyys7PRo0cPpc39o5D723L8+HFkZ2dj3759aN68OcLDw2FhYYE2bdogICCgTo9GGaJmJD4+Hl26dIG9vT2AhwfD7t27UVJSgt27d+OZZ56Bu7s7ACA7Oxuurq5KWxcXlyf2d/ToURw/fhxJSUkPhO6f1/VnN27cQHFxMZo2bfrAcxkZGdixYwf8/PyUfydPnkROTs4DbbOzs+Hi4gK1+v93QTc3N+UQ90lOnjyJq1evKr9EtFotzp07hzNnzgC4F3geHh7Yv38/ioqKsG/fPuXUR3Z2drkLJ2q1Gq6ursjKyoJOp4Obm9tDzw/m5uZi0qRJ6NatG9q3b4+pU6fixo0byjqdnZ2hUqnKbc+ft/f+9woAGjZsCDs7O2RlZaFz584YOnQoFixYgOeffx5vvvkm7ty588ht//P3xs3NDaWlpbhx4wasrKyU8DMYDEhMTERYWJhR7+d/Cw8PR0JCAgBg69at6NevHywtLR9ag62tLWxtbZGdnY2MjAykpKSU2weSkpIeug/UFTyTbCbu3r2LpKQkGAwGdOnSBQBQUlKC27dvIy0tDa1bt0bLli3h5uaGAwcOIDExURlZAYCjoyMyMzPRsmVLAEBmZqZUPX8Ogz9r3Lgx6tWrhytXrqB169blnnN1dUVYWBgWLlz4xPU7OTkhMzMTBoNBCVKdTofmzZsbVV98fDyEEAgPD39guZeXF4B7wZqYmAiDwYCWLVuiWbNmSt9/PucohIBOp4OzszOsrKyg0+keekHt/fffh0qlwtatW9G4cWPs2bNHOV/q6OiIrKwsCCGU9y4jI0P5ZePk5IRr164p6yosLMTNmzfh7OwMABgxYgRGjBiB3NxcvP766/j888/x+uuvP3Tb/3z+UafTwdLSEo0bNwYADBgwANOmTYOvry8aNGgAHx8fo97P/3Z/9H3y5EkkJiZi+fLlj6whPz8f+fn5cHJygouLCzp16oTPP/+8Uv3WRhyJmok9e/ZAo9Fg27ZtiI+PR3x8PLZv3w4/P79yF5i0Wi3Wr1+P48ePIzg4WFnet29ffPbZZ7h16xaysrIQFxdXLXWq1WoMGjQIixYtQlZWFvR6PVJSUlBSUoL+/ftj//79OHjwIPR6PYqLi3Hs2LGHBrq3tzcaNGiAzz//HKWlpTh27Bj27dtn1BX24uJiJCUlYcGCBcp7FR8fjzfffBMJCQkoKysDAPTr1w+HDh3Chg0byv3C6du3L3788UccOXIEpaWlWLt2LaysrODj4wNvb284Ojri/fffR2FhIYqLi3Hy5EkAQEFBAaytrdGoUSNkZWWVC4p27drBwsIC69evR1lZGXbt2oXU1FTl+dDQUHz//fc4c+YMSkpK8MEHH8Db2xtNmjTBqVOnlNMBDRo0gJWVFTQazSO3f+vWrfjjjz9QVFSEpUuXIigoSGnv4+MDtVqNxYsXo3///k98Lx8nLCwM8+fPh7W1Ndq1a1fuuf379yvf948++gi+vr5wcnJCQEAA/vjjDyQkJKC0tBSlpaU4deoULly4IFWLOWOImonNmzdj4MCBcHNzg6Ojo/Jv6NCh5YJBq9Xip59+QqdOnZTDfgB49dVX4eLigoCAAIwcORJBQUHlzoW9/PLLWLlyZZXUOn36dLRq1QqDBw+Gv78/3nvvPRgMBri6umLFihX47LPP0LlzZ/To0QNr1qyBwWB4YB1WVlb49NNPceDAAXTq1AkxMTFYsmQJPDw8ntj/nj17UL9+fYSHh5d7rwYPHgy9Xo+DBw8CuDf6a9euHVJSUsqFc4sWLfDuu+/irbfeQqdOnbB//36sXLlSCa+VK1fi0qVL6NWrF7p3746kpCQAwPjx43H69Gn4+fkhOjpa+eTC/e1Zvnw5Nm/ejA4dOmD79u3o06eP8nznzp3x2muvYcKECejatSuuXLmifBC/oKAAc+bMgb+/P3r16gU7OzuMHj36kdsfFhaGGTNmoEuXLigpKcHs2bMfeP7cuXOVPpT/83p+//33h4Zx//798dFHH6Fjx444e/YslixZAuDeof2aNWuwdetWdO3aFV27dsX777+PkpISqVrMmUoITspcF33zzTfYvn17tY1IyXzFx8fj22+/xYYNG6TWU1hYiOeffx4JCQnlzoFPmTIFzZo1w4QJE2RLrRM4Eq0jsrOzcfLkSRgMBly4cAHr1q1DYGBgTZdFJlZUVIRvvvkGERER0uv6+uuv0b59+4deRKT/xwtLdURpaSnmzZuHq1evwtbWFiEhIYiMjKzpssiEDh48iAkTJqBz587lzgFXRvfu3WFhYYEVK1ZUUXV1Fw/niYgk8HCeiEgCQ5SISAJDlIhIQp27sHTjRgEMBp7mJaKqoVar0Lhxw0c+X+dC1GAQDFEiMhkezhMRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIjWcT//fAIxMbPx888naroUojqpzs0nSuVt3PgN0tMv4O7dIrRv71fT5RDVOQxRALaN6qN+PcuaLqNalJQUK/87OtrWcDXV425xKfJv363pMugviiEKoH49S0RO+7qmy6gW16/nAwAyr+fX2W38ZslQ5IMhSjWD50TrOJXGstz/RFS1GKJ1nI1be1jauMDGrX1Nl0JUJ/Fwvo6r97emqPe3pjVdBlGdxZEoEZEEhigRkQSGKBGRBIYoEZEEk4RobGwsevfuDU9PT5w7d+6R7bZv347Q0FBotVqEhobi+vXrpiiPiKjSTHJ1PiAgACNGjMDQoUMf2SY1NRUff/wxvvzySzg6OiI/Px9WVlamKI+IqNJMEqJ+fk++Z/uLL77A6NGj4ejoCACwta2btygSUd1iNp8TPX/+PJo0aYKhQ4eisLAQffr0wbhx46BSqSq0HgcHm2qqkMxZXZ0XgMyf2YSoXq/H2bNnsW7dOpSUlODll1+Gm5sbwsPDK7Se3Nw7MBhEhV7DH8DaLycnv6ZLoDpKrVY9dnBmNlfn3dzcEBwcDCsrK9jY2CAgIACnTp2q6bKIiB7LbEJUq9UiOTkZQgiUlpbi6NGjaN26dU2XRUT0WCYJ0YULF6J79+7IzMzEqFGjEBISAgCIiopCamoqACAkJAQODg7o168fwsPD0bJlSwwePNgU5RERVZpKCFGxE4hmrrLnROvqXJt/Bd8sGcpzolRtas05USKi2oghSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJMEkIRobG4vevXvD09MT586de2zbCxcuoG3btoiNjTVFaUREUkwSogEBAfj666/h7u7+2HZ6vR7z5s1DYGCgKcoiIpJmYYpO/Pz8jGq3atUq9OzZE4WFhSgsLKzmqoiI5JnNOdG0tDQkJydj5MiRNV0KEZHRTDISfZLS0lK8+eabWLRoETQajdS6HBxsqqgqqk0cHW1rugT6izKLEM3JycHly5cRHR0NALh9+zaEELhz5w7eeuutCq0rN/cODAZRodfwB7D2y8nJr+kSqI5Sq1WPHZyZRYi6ubnh2LFjyuPly5ejsLAQ06dPr8GqiIiezCTnRBcuXIju3bsjMzMTo0aNQkhICAAgKioKqamppiiBiKhaqIQQFTv2NXOVPZyPnPZ1NVVE1e2bJUN5OE/V5kmH82ZzdZ6IqDZiiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSTBJiMbGxqJ3797w9PTEuXPnHtrmk08+QUhICPr374+BAwfi4MGDpiiNiEiKhSk6CQgIwIgRIzB06NBHtvH29sbo0aPRoEEDpKWlYdiwYUhOTkb9+vVNUSIRUaWYJET9/Pye2KZbt27K156enhBC4ObNm3BxcanO0oiIpJjlOdH4+Hg89dRTDFAiMnsmGYlWxE8//YSlS5di7dq1lXq9g4NNFVdEtYGjo21Nl0B/UWYVoikpKZg6dSpWrFiBFi1aVGodubl3YDCICr2GP4C1X05Ofk2XQHWUWq167ODMbA7nT506hUmTJmHZsmV49tlna7ocIiKjmCREFy5ciO7duyMzMxOjRo1CSEgIACAqKgqpqakAgJiYGNy9exdz585FWFgYwsLCcPbsWVOUR0RUaSohRMWOfc1cZQ/nI6d9XU0VUXX7ZslQHs5Ttak1h/NERLURQ5SIAAA//3wCMTGz8fPPJ2q6lFrFrK7OE1HN2bjxG6SnX8Ddu0Vo3/7JN8jQPRyJEhEAoKjobrn/yTgciRJVUOO/WcHCql5Nl1HlNBqV8n9d/ex0WUkxbtwqqdJ1MkSJKsjCqh5OLnm5psuoevk5yv91cvsA+E77HEDVhigP54kIAPBCy8Zo0bg+XmjZuKZLqVU4EiUiAICXozW8HK1ruoxahyNRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCUaFaElJCT788EMEBATA19cXAJCcnIy4uLhqLY6IyNwZFaLvvPMOzp07h/feew8qlQoA8PTTT2PDhg3VWhwRkbkz6u/O79mzB7t27YK1tTXU6nu56+zsjKysrGotjojI3Bk1ErW0tIRery+3LC8vD3Z2dtVSFBFRbWFUiAYHB2P69Om4cuUKACA7OxsLFixASEhItRZHRGTujArRSZMmwd3dHf3798ft27cRFBQEJycnvPrqq9VdHxGRWTPqnKiVlRVmz56N2bNnIy8vD40bN1YuMBkjNjYWO3fuxLVr15CQkIBWrVo90Eav12PhwoU4ePAgVCoVoqOj8eKLLxq/JURENcCokWh8fDzS0tIAAPb29lCpVEhLS0N8fLxRnQQEBODrr7+Gu7v7I9skJCTg8uXL2LVrF7799lssX74cV69eNWr9REQ1xagQXbp0KVxdXcstc3FxwdKlS43qxM/P74HX/7ft27fjxRdfhFqthr29PQIDA7Fjxw6j1k9EVFOMOpy/c+cObGxsyi2ztbXF7du3q6wQnU4HNzc35bGrqysyMzMrvB4HB5snN6I6x9HRtqZLoFqiqvcVo0LUw8MDO3fuRL9+/ZRlu3fvhoeHR5UWUxVyc+/AYBAVeg1/AGu/nJx8k/XF/aV2q+i+olarHjs4MypEp0yZgujoaCQlJaFp06a4fPkyjhw5glWrVlWomMdxdXVFRkYGvL29ATw4MiUiMkdGnRP18/NDYmIinnvuORQVFcHb2xuJiYnKffRVITg4GBs3boTBYEBeXh727NmDoKCgKls/EVF1MGokCgBubm6Ijo6uVCcLFy7Erl27cP36dYwaNQp2dnbYtm0boqKiMHHiRDz33HMICwvDr7/+ihdeeAEA8Oqrr6Jp06aV6o+IyFQeGaJvvvkm3nrrLQDA1KlTH/m50CVLljyxkzlz5mDOnDkPLF+9erXytUajQUxMzBPXRURkTh4Zok2aNFG+btasmUmKISKqbR4Zoq+88gqAe3cSubi4IDQ0FPXq1TNZYUREtcETLyxpNBosXryYAUpE9BBGXZ3v1asX9u3bV921EBHVOkZdnS8uLsbEiRPh4+MDFxeXcheZjLmwRERUVxkVoq1atXrozEtERH91RoXo+PHjq7sOIqJa6bHnRC9cuIAhQ4agffv2GD58uDKzPRER3fPYEF24cCGaNGmCDz/8EE5OTli0aJGp6iIiqhUeezj/22+/4cCBA6hXrx78/Px4LzsR0X957Ei0tLRU+Xxow4YNUVJSYpKiiIhqi8eOREtKSsrNXn/37t0HZrN/7bXXqqcyIqJa4LEhGhoaWm52+ZCQkErNNk9EVFc9NkR5IYmI6PGMnk/0/Pnz2LFjB3JzczF37lxcuHABJSUlaN26dXXWR0Rk1oy6dz4pKQlDhw5FVlaW8meSCwoKsHjx4motjojI3Bk1El22bBnWrVsHLy8vJCUlAQBat26t/C16IqK/KqNGonl5ecph+/3JR1Qq1SNnuyci+qswKkSfffZZbNmypdyybdu2KX+Zk4jor8qow/nZs2djzJgx+O6771BYWIgxY8YgPT0da9eure76iIjMmlEh6uHhgaSkJOzfvx89e/aEq6srevbsiYYNG1Z3fUREZs3ojzg1aNAA/fr1q85aiIhqHaNCNDIy8qEXkaysrODi4oI+ffqgd+/eVV4cEZG5M+rCkr+/P65du4YOHTqgf//+6NChAzIyMtCmTRs4ODhg1qxZ5f6GPBHRX4VRI9FDhw5hzZo18PDwUJaFhoZixowZ2LhxI1544QVMmjQJUVFR1VYoEZE5MmokeuHCBTRt2rTcMnd3d6SnpwMAvL29kZeXV/XVERGZOaNCtEOHDpg5cyYuXbqE4uJiXLp0CXPmzIGvry8A4OzZs3B0dKzWQomIzJFRIbp48WIYDAaEhISgXbt2CAkJgcFgUGZ5srS0xPvvv1+thRIRmSOjzona2dnhww8/hMFgQF5eHuzt7aFW/3/+tmjRotoKJCIyZ0Z/ThQACgsLUVRUhGvXrinL/vtcKRHRX4lRIfrHH39gypQpSEtLg0qlghBC+dzomTNnqrVAIiJzZtQ50ZiYGHTs2BE//fQTbGxscPz4cURERHA+USL6yzMqRNPS0jBlyhQ0atQIQgjY2tpi2rRpD/zROiKivxqjQrRevXooKysDADRu3BgZGRkwGAy4efNmtRZHRGTujDon6uvri6SkJAwcOBBBQUGIioqClZUVOnXqZHRH6enpmDFjBm7evAk7OzvExsaiefPm5drk5uZi5syZ0Ol0KC0tRadOnTBnzhxYWFTo+hcRkckYlU5/Pmx/44038PTTT6OgoADh4eFGdzRv3jxERkYiLCwMW7Zswdy5c7F+/fpybVauXAkPDw+sWrUKpaWliIyMxK5duzh7FBGZrScezuv1egwfPhwlJSX3XqBWIywsDJGRkbC2tjaqk9zcXJw+fRparRYAoNVqcfr06QduFVWpVCgoKIDBYEBJSQlKS0vh7Oxc0W0iIjKZJ4aoRqPB1atXYTAYKt2JTqeDs7MzNBqNsk4nJyfodLpy7f75z38iPT0dXbt2Vf7dv7WUiMgcGXU4/+qrr2L+/PmYMGECXFxcys0t+uc7l2Tt2LEDnp6e+PLLL1FQUICoqCjs2LEDwcHBRq/DwcGmyuqh2sPR0bamS6Baoqr3FaNCdM6cOQBQ7o/V3f/AvTEftnd1dUVWVhb0ej00Gg30ej2ys7Ph6uparl1cXBzeeecdqNVq2Nraonfv3jh27FiFQjQ39w4MBmF0e4A/gHVBTk6+yfri/lK7VXRfUatVjx2cGRWie/furVCn/83BwQFeXl5ITExEWFgYEhMT4eXlBXt7+3LtmjRpggMHDsDb2xslJSU4cuQI+vTpI9U3EVF1MupY3N3dHe7u7nB1dYWlpaXy2N3d3eiO5s+fj7i4OAQFBSEuLg4xMTEAgKioKKSmpgIAZs2ahZMnTyI0NBTh4eFo3rw5/vGPf1Ris4iITMOokejt27cRExODnTt3wsLCAr/88gv27t2LU6dOYdKkSUZ15OHhgY0bNz6w/M9/VuSpp57CunXrjCydiKjmGTUSnTdvHmxsbLBv3z5YWloCAHx8fJCUlFStxRERmTujRqJHjhzBwYMHYWlpqVyZt7e3R25ubrUWR0Rk7owaidra2uLGjRvllmVkZPBPghDRX55RIfriiy9i4sSJOHr0KAwGA1JSUjB9+nQMGTKkuusjIjJrRh3O359wZMGCBSgrK8OsWbMQERGBl156qbrrIyIya0aFqEqlwsiRIzFy5MhqLoeIqHYx6nC+f//++Pzzz5GZmVnd9RAR1SpGheiECROQmpqKvn37YtiwYfjXv/7FCZmJiGBkiPbp0wdLly7FwYMHMWjQIOzevRs9e/bE2LFjq7s+IiKzVqEp421sbKDVamFra4uysjIcOHCguuoiIqoVjApRIQSOHj2KhIQE7NmzB25ubggJCeFf+ySivzyjQrRbt26wtrZGv379sGHDBnh4eACA1ETNRER1gVEh+sknn6Bt27bK47NnzyI+Ph4JCQlITk6utuKIiMydUSHatm1b5OXlISEhAfHx8UhLS4Ovry9mz55d3fUREZm1x4ZoaWkp9u3bh82bNyM5ORlPPeI5Nc0AABOFSURBVPUUQkJCkJGRgaVLl8LBwcFUdRIRmaXHhmiXLl2gUqkwcOBATJgwAc8++ywAYMOGDSYpjojI3D32c6Kenp7Iz8/Hr7/+itTUVNy6dctUdRER1QqPDdGvvvoKu3fvRpcuXbB27Vp06dIFY8eORWFhIcrKykxVIxGR2XriHUvu7u549dVXsWvXLnzxxRdwdHSEWq1G//79sWTJElPUSERktip0x5Kfnx/8/PwwZ84c7N69G/Hx8dVVFxFRrVChEL2vXr160Gq10Gq1VV0PEVGtYtQEJERE9HAMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCSYL0fT0dERERCAoKAgRERG4ePHiQ9tt374doaGh0Gq1CA0NxfXr101VIhFRhVVqPtHKmDdvHiIjIxEWFoYtW7Zg7ty5WL9+fbk2qamp+Pjjj/Hll1/C0dER+fn5sLKyMlWJREQVZpKRaG5uLk6fPq1M4qzVanH69Gnk5eWVa/fFF19g9OjRcHR0BADY2tqiXr16piiRiKhSTDIS1el0cHZ2hkajAQBoNBo4OTlBp9PB3t5eaXf+/Hk0adIEQ4cORWFhIfr06YNx48ZBpVIZ3ZeDg02V10/mz9HRtqZLoFqiqvcVkx3OG0Ov1+Ps2bNYt24dSkpK8PLLL8PNzQ3h4eFGryM39w4MBlGhfvkDWPvl5OSbrC/uL7VbRfcVtVr12MGZSQ7nXV1dkZWVBb1eD+BeWGZnZ8PV1bVcOzc3NwQHB8PKygo2NjYICAjAqVOnTFEiEVGlmCREHRwc4OXlhcTERABAYmIivLy8yh3KA/fOlSYnJ0MIgdLSUhw9ehStW7c2RYlERJViso84zZ8/H3FxcQgKCkJcXBxiYmIAAFFRUUhNTQUAhISEwMHBAf369UN4eDhatmyJwYMHm6pEIqIKM9k5UQ8PD2zcuPGB5atXr1a+VqvVmDlzJmbOnGmqsoiIpPCOJSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCQxRIiIJDFEiIgkMUSIiCSYL0fT0dERERCAoKAgRERG4ePHiI9teuHABbdu2RWxsrKnKIyKqFJOF6Lx58xAZGYmdO3ciMjISc+fOfWg7vV6PefPmITAw0FSlERFVmklCNDc3F6dPn4ZWqwUAaLVanD59Gnl5eQ+0XbVqFXr27InmzZubojQiIikmCVGdTgdnZ2doNBoAgEajgZOTE3Q6Xbl2aWlpSE5OxsiRI01RFhGRNIuaLuC+0tJSvPnmm1i0aJEStpXh4GBThVVRbeHoaFvTJVAtUdX7iklC1NXVFVlZWdDr9dBoNNDr9cjOzoarq6vSJicnB5cvX0Z0dDQA4Pbt2xBC4M6dO3jrrbeM7is39w4MBlGh+vgDWPvl5OSbrC/uL7VbRfcVtVr12MGZSULUwcEBXl5eSExMRFhYGBITE+Hl5QV7e3uljZubG44dO6Y8Xr58OQoLCzF9+nRTlEhEVCkmuzo/f/58xMXFISgoCHFxcYiJiQEAREVFITU11VRlEBFVKZOdE/Xw8MDGjRsfWL569eqHtp8wYUJ1l0REJI13LBERSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJsDBVR+np6ZgxYwZu3rwJOzs7xMbGonnz5uXafPLJJ9i+fTs0Gg0sLCwwadIkdOvWzVQlEhFVmMlCdN68eYiMjERYWBi2bNmCuXPnYv369eXaeHt7Y/To0WjQoAHS0tIwbNgwJCcno379+qYqk4ioQkxyOJ+bm4vTp09Dq9UCALRaLU6fPo28vLxy7bp164YGDRoAADw9PSGEwM2bN01RIhFRpZgkRHU6HZydnaHRaAAAGo0GTk5O0Ol0j3xNfHw8nnrqKbi4uJiiRCKiSjHZ4XxF/PTTT1i6dCnWrl1b4dc6ONhUQ0Vk7hwdbWu6BKolqnpfMUmIurq6IisrC3q9HhqNBnq9HtnZ2XB1dX2gbUpKCqZOnYoVK1agRYsWFe4rN/cODAZRodfwB7D2y8nJN1lf3F9qt4ruK2q16rGDM5Mczjs4OMDLywuJiYkAgMTERHh5ecHe3r5cu1OnTmHSpElYtmwZnn32WVOURkQkxWSfE50/fz7i4uIQFBSEuLg4xMTEAACioqKQmpoKAIiJicHdu3cxd+5chIWFISwsDGfPnjVViUREFWayc6IeHh7YuHHjA8tXr16tfL1p0yZTlUNEVCV4xxIRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBIYoEZEEhigRkQSGKBGRBJOFaHp6OiIiIhAUFISIiAhcvHjxgTZ6vR4xMTEIDAxEnz59sHHjRlOVR0RUKSYL0Xnz5iEyMhI7d+5EZGQk5s6d+0CbhIQEXL58Gbt27cK3336L5cuX4+rVq6YqkYiowixM0Ulubi5Onz6NdevWAQC0Wi3eeust5OXlwd7eXmm3fft2vPjii1Cr1bC3t0dgYCB27NiBl19+2ei+1GpVpWr8e+OGlXodmYfKft8ry6qRg0n7o6pT0X3lSe1NEqI6nQ7Ozs7QaDQAAI1GAycnJ+h0unIhqtPp4Obmpjx2dXVFZmZmhfpqXMkwXDYzvFKvI/Pg4GBj0v6eGxtr0v6o6lT1vsILS0REEkwSoq6ursjKyoJerwdw7wJSdnY2XF1dH2iXkZGhPNbpdHBxcTFFiURElWKSEHVwcICXlxcSExMBAImJifDy8ip3KA8AwcHB2LhxIwwGA/Ly8rBnzx4EBQWZokQiokpRCSGEKTo6f/48ZsyYgdu3b6NRo0aIjY1FixYtEBUVhYkTJ+K5556DXq/HggULcOjQIQBAVFQUIiIiTFEeEVGlmCxEiYjqIl5YIiKSwBAlIpLAECUiksAQJSKSwBClB0RFReHy5cs1XQaZie+//x7p6enK47179yI2tvru2Bo+fDj2799fbeuvaia57ZOqh16vV26lrUqrV6+u8nVS7bV582Y0btwY//M//wMACAgIQEBAQA1XZT4YombqwIED+OCDD6DX62Fvb48FCxYgMzMT77zzDvz8/JCamopx48bhmWeewbRp03D9+nU0bdoUANC1a1cMGzYMCQkJWL9+PUpLSwEA06dPR+fOnQEAvXv3RlhYGA4fPoycnByMHj0aw4YNU55buXIlWrVqhaysLCxcuFCZulCr1eKVV14x/RtSx6WkpGDJkiUoKCgAAEybNg2NGjXC22+/jcLCQlhbW2P27Nnw9vbG1atXMWjQIAwZMgQ//vgjioqK8Pbbb8PPzw+zZs2Cp6cnXnrpJQDAuXPnMG7cOOzZswcFBQVYtGgRzp49i+LiYnTs2BEzZ86ERqPB8OHD0aZNG/zyyy/Izs5G3759MWXKFGzatAn/+c9/sHDhQnz00UeYPn06MjMz8cMPP2DZsmUAgFWrVmHr1q0AgOeeew5z5sxBw4YNsXz5cqSnpyM/Px9XrlzBU089haVLl6JBgwY4cuQIPvroIxQXF0Ov12Ps2LEICQmpmTdfliCzc/36ddGxY0fx+++/CyGE+Pe//y0GDx4sjh49Klq3bi1+/vlnpe348ePFJ598IoQQ4urVq8LHx0d89dVXQggh8vLyhMFgEEIIcf78edGtWzfldb169RKLFy8WQghx5coV0a5dO3Hnzh3lubNnzwohhBg2bJhYvXq18rrc3Nzq2uy/rBs3bojnn39enDx5UgghRFlZmcjJyRE9evQQhw4dEkIIcfjwYdGjRw9RXFwsrly5Ilq1aiX27dsnhBBiy5YtIiIiQgghxPHjx0V4eLiy7kWLFonly5cLIYSYNWuW2Lx5sxBCCL1eLyZNmiS+/fZbIcS97/Nrr70m9Hq9uH37tvD39xfp6enKc/f7EkKITZs2iQkTJgghhPjhhx9ESEiIyM/PFwaDQUydOlUsWbJECCHEsmXLRJ8+fcStW7eEwWAQo0aNUvq7efOmKCsrE0IIkZOTI7p16yZu3rz50P7MHc+JmqFff/0VrVu3RsuWLQEAgwYNwpkzZ1BQUIBmzZrBx8dHaXvs2DEMGjQIAODu7q6MNAHgypUrGDNmDEJCQjBp0iRcv34dOTk5yvP9+vUDADRp0gSNGjV6YMasgoICpKSkYOTIkcqy/75Vl+T98ssv8PDwQPv27QHcm+UsNzcXlpaWeP755wEAnTt3hqWlpXJu0traGr169QIAtGvXDleuXAEA+Pn5oaCgAGlpaSgrK0NiYiIGDBgAANi3bx/WrFmDsLAwDBgwAL/99lu5c53BwcFQq9WwtbWFh4eHUefFjxw5gn79+sHGxgYqlQr/+Mc/cOTIEeX5rl27olGjRlCpVPD29lbWmZeXh4kTJ0Kr1WLMmDG4detWuVpqEx7OmyEhBFSqh89haG1tbfR63njjDcyYMQOBgYEwGAxo27YtiouLlefr1aunfK3RaJQJYsi0xENuGnzUPnB/mZWVlbJMrVajrKxMeRwWFob4+Hj4+/vDw8MD7u7uyjpXrFihnPb5b5XZHx63rz5snff3v/nz56N37974+OOPoVKpEBQUVG7frE04EjVDPj4+OHPmDM6fPw/g3on9Z555Bg0bPjhXqr+/PzZv3gzg3qxXR48eVZ7Lz89HkyZNAADfffcdSkpKKlRHw4YN4ePjgy+++EJZlpeXV9HNoSfw8fHB+fPnkZKSAuDeBcO///3vKCkpUb6fR48eRVlZGZo3b/7E9Q0YMACJiYnYuHEjBg4cqCzv3bs3Vq1apYRjXl6eMoJ9nIYNGyI/P/+hzz3//PPYvn077ty5AyEEvvvuO2X0/Dj5+flwd3eHSqXCoUOHcOnSpSe+xlxxJGqG7O3tsWTJEkyZMgVlZWWwt7fHu++++9AJqmfPno1p06Zh+/btaNGiBdq3bw8bm3uTzs6cORP//Oc/4ezsDH9/f9jZ2VW4lvfeew8xMTHQarVQq9XQarWIjo6W3kb6f3Z2dli+fDkWL16MwsJCqNVqTJ8+HcuWLSt3YWnp0qXlRqCP4ubmhpYtW+Knn37CBx98oCyfNWsW3n33XYSFhUGlUsHS0hKzZs165Mj0voiICMTGxmLt2rWYNm1aued69OiBs2fPYsiQIQCANm3aYNy4cU+scfLkyYiJicHq1avh6ekJT0/PJ77GXHECklru7t27sLCwgIWFBbKzszF48GB88cUXaNGiRU2XRvSXwJFoLXfx4kVMnz4dQgiUlZVh/PjxDFAiE+JIlIhIAi8sERFJYIgSEUlgiBIRSWCIEhFJYIhSndC7d28cPny4psugvyCGKBGRBIYo1XpTp05FRkYGxo4dCx8fH3h7e+Orr74q1yY0NBR79uwBAHh6emL9+vUICAhAx44dERsbC4PBoLT97rvv0LdvX3To0AFjxozBtWvXTLo9VLswRKnWe/fdd+Hm5oaVK1ciJSUFixcvVua3BIC0tDRkZ2eje/fuyrLdu3dj06ZN2Lx5M/bt24dNmzYBAPbs2YPPPvsMH3/8MY4cOQJfX19MnjzZ5NtEtQdDlOqcwMBAXLp0SZlIesuWLejbt2+5+86joqJgZ2cHNzc3jBgxAomJiQCAf/3rX4iOjoaHhwcsLCwwduxYnDlzhqNReiSGKNU5VlZWCA4OxtatW2EwGJCYmIiwsLBybVxdXZWv3d3dkZ2dDQDIyMhQ/nqAn58f/P39IYRAVlaWSbeBag/eO0910oABAzBt2jT4+vqiQYMG5SayBu5NG/j0008DuBecTk5OAO6F69ixY9G/f3+T10y1E0eiVCf8/e9/Lzc3po+PD9RqNRYvXvzQQFyzZg1u3boFnU6H9evXK7P8DxkyBKtWrcLvv/8O4N68l0lJSabZCKqVGKJUJ0RHR+PTTz+Fn58f1qxZA+DeDO/nzp174FAeuPcXKwcOHIjw8HD07NkTgwcPBgD06dMHL7/8Mt544w20b98eWq0WBw4cMOm2UO3CWZyozoqPj8e3336LDRs2lFvu6emJXbt2oVmzZjVUGdUlHIlSnVRUVIRvvvkGERERNV0K1XEMUapzDh48iM6dO8PBwQFarbamy6E6jofzREQSOBIlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKS8H/NxOuzAK8adQAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVEAAAG/CAYAAADhOOSwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deVxU5f4H8M8Mi4rgRbjsmv7ERMpQBFFzFwyUQXDp4g+XXIL0ppa5L6mYpdiqlpmmllHeLpkoKO6W4pYaJTdFS3FlWAQXZGfm+f3hy/OL6zbwwDDQ5/16+ZI555nzfM9w5sNzzplzRiWEECAioipR13YBRER1GUOUiEgCQ5SISAJDlIhIAkOUiEgCQ5SISAJDlAzi7e2Nq1evGq2/4uJijB8/Hj4+Ppg8ebLR+q1Os2bNwocfflityxw5ciTi4uKqdZkkx7y2C6AHjRw5EmlpaTh8+DAsLS2rffnXrl2Dv78/rKysAABNmzbFsGHDEBUV9cjnpKSkVHsdj7Nz507cuHEDx48fh7n5ozfT77//HrNnz8aHH36IAQMGGLHCuuvkyZOIjIwEAAghUFRUpGwLALB9+3a4urrWVnl1DkPUxFy7dg0nT56EjY0N9u3bh/79+9dYXydOnIC5uTlSUlIwevRotG3bFj179qzQpry8/LEhVlMyMjLQsmXLJ/a9ZcsW2NraIj4+niFqIF9fX+WP4v0/qPe3Bao87s6bmPj4eLRv3x6DBg1CfHy8Mv2XX35Bt27doNPplGl79uxBSEgIgHu7vzNnzkSnTp3Qv39/rF279oFAfBRvb2+0bt0av//+OwDAw8MDX3/9NV544QW88MILyrTLly8rfS1duhR9+vSBj48P/vd//xfFxcVKncOGDYOvry8GDhyI48ePP7LfCxcuYOTIkfD19UVwcDD27dsHAFixYgVWrVqFpKQkeHt7P3L39fr16zhx4gQWLVqE5ORk3LhxQ5nXv39/HDhwQHlcXl6Ozp0747fffgMA7Nu3D8HBwfD19cXIkSNx4cIFpa1Wq8XEiRPRpUsXdO7cGYsWLQIAXLlyBaNGjULnzp3RuXNnTJ06FXfu3FGed+bMGQwaNAje3t54/fXXUVJSUqHef//73+jXrx/8/Pwwfvx4ZGVlAbg3GnznnXfQtWtX+Pj4ICQkBOfPn3/k63blyhUMHToUPj4+mDBhAm7dugUAiIqKwldffVWhbUhICPbu3fvIZT1MYmIiXnzxxQrT1qxZoxxWmTZtGqKjo/HSSy/B29sbI0eOhFarVdr+8ccfGD16NPz8/BAUFIRdu3ZVqv86R5BJCQgIELGxsSI1NVU888wzIicnR5nn7+8vkpOTlceTJk0Sn332mRBCiHfffVcMHz5c3Lp1S2i1WqHRaESPHj0e2sfVq1dFmzZtRFlZmdDr9eLkyZPCy8tLHDlyRAghRJs2bcTo0aPFzZs3RVFRkTLt0qVLQgghFi5cKEaMGCEyMzNFeXm5OHXqlCgpKRGZmZnCz89P/PDDD0Kn04nk5GTh5+cncnNzH6ihtLRUBAQEiE8//VSUlJSII0eOiA4dOogLFy4IIYRYsWKFmDp16mNfq48//lgMGTJECCGERqMR69evV+atXLlSvPHGG8rjAwcOiMDAQCGEEBcvXhTt27cXycnJorS0VKxZs0YEBASIkpISUV5eLkJCQsTbb78tCgoKRHFxsThx4oQQQohLly6J5ORkUVJSInJzc0VERIRYvHixEEKIkpIS0bt3b7FhwwZRWloqkpKSxDPPPCM++OADIYQQR44cEX5+fuI///mPKCkpEYsWLRIRERFCCCEOHjwoBg0aJG7fvi30er34448/RFZW1kPXecSIEaJ79+7i3LlzoqCgQEycOFF5nbZv3y6GDh2qtD179qzw8/MTJSUlj3wN/7wt3FdUVCR8fHxEenq6Mk2j0Yg9e/YIIYSYOnWq6Nixozh58qQoKSlRtgchhMjPzxfdu3cXW7ZsEWVlZSI1NVX4+fkpv9f6iCNRE3Ly5ElkZGSgf//+aNeuHZo3b47ExERlfnBwsPL47t27OHjwIIKDgwEASUlJeOWVV/C3v/0Nzs7OGDVq1BP769KlC/z8/DBv3jxMnToVXbt2VeZFRUXB1tYWDRs2rPAcvV6PzZs3Y+7cuXBycoKZmRk6duwIS0tLbN26FT179kSvXr2gVqvRrVs3tGvXDj/++OMDff/6668oLCxEVFQULC0t0bVrV/Tp0wfbt283+PXaunUrNBoNAECj0WDLli3KvJCQEOzfvx9FRUUAgISEBKXtjh070KtXL3Tr1g0WFhYYN24ciouLkZKSgtOnTyM7OxszZsyAlZUVGjRoAF9fXwBAixYt0K1bN1haWsLOzg5jxozBiRMnlPUpKyvDSy+9BAsLCwQFBeG5555T6klISMCQIUPw7LPPwtLSEm+88QZ++eUXXLt2Debm5igoKMDFixchhIC7uzscHR0fud6hoaFo06YNrKys8Nprr2Hnzp3Q6XQICAjA5cuXcenSJeX16d+/f6WPqzds2BBBQUHYtm0bAODs2bPIzs5Gr169lDb390Lur8uJEyeQnZ2N/fv3o2XLlggLC4O5uTnatWsHf3//ej0aZYiakPj4eHTr1g12dnYAHh4Me/bsQWlpKfbs2YNnnnkGbm5uAIDs7Gy4uLgobZ2dnZ/Y37Fjx3DixAkkJSU9ELp/Xtaf3bx5EyUlJWjevPkD8zIyMrBz5074+voq/06dOoWcnJwH2mZnZ8PZ2Rlq9f9vgq6ursou7pOcOnUK165dU/6IaDQanD9/HmfPngVwL/Dc3d1x4MABFBUVYf/+/cqhj+zs7AonTtRqNVxcXJCVlQWtVgtXV9eHHh/Mzc3FlClT0KNHD3Ts2BHTp0/HzZs3lWU6OTlBpVJVWJ8/r+/93xUANG7cGLa2tsjKykLXrl0xfPhwLFq0CM8//zzefPNN3L1795Hr/uffjaurK8rKynDz5k1YWloq4afX65GYmIjQ0FCDXs//FhYWhoSEBADAtm3bMGDAAFhYWDy0BhsbG9jY2CA7OxsZGRlISUmpsA0kJSU9dBuoL3gk2UQUFxcjKSkJer0e3bp1AwCUlpbizp07SEtLQ9u2bdG6dWu4urri4MGDSExMVEZWAODg4IDMzEy0bt0aAJCZmSlVz5/D4M+aNm2KBg0a4OrVq2jbtm2FeS4uLggNDcXixYufuHxHR0dkZmZCr9crQarVatGyZUuD6ouPj4cQAmFhYQ9M9/T0BHAvWBMTE6HX69G6dWu0aNFC6fvPxxyFENBqtXBycoKlpSW0Wu1DT6i9//77UKlU2LZtG5o2bYq9e/cqx0sdHByQlZUFIYTy2mVkZCh/bBwdHXH9+nVlWYWFhbh16xacnJwAAKNGjcKoUaOQm5uL119/HZ9//jlef/31h677n48/arVaWFhYoGnTpgCAQYMGYcaMGfDx8UGjRo3g7e1t0Ov53+6Pvk+dOoXExESsXLnykTXk5+cjPz8fjo6OcHZ2RpcuXfD5559Xqd+6iCNRE7F3716YmZlh+/btiI+PR3x8PHbs2AFfX98KJ5g0Gg02btyIEydOICgoSJnev39/fPbZZ7h9+zaysrIQGxtbI3Wq1WoMGTIES5YsQVZWFnQ6HVJSUlBaWoqBAwfiwIEDOHToEHQ6HUpKSnD8+PGHBrqXlxcaNWqEzz//HGVlZTh+/Dj2799v0Bn2kpISJCUlYdGiRcprFR8fjzfffBMJCQkoLy8HAAwYMACHDx/Gpk2bKvzB6d+/P3788UccPXoUZWVlWL9+PSwtLeHt7Q0vLy84ODjg/fffR2FhIUpKSnDq1CkAQEFBAaysrNCkSRNkZWVVCIoOHTrA3NwcGzduRHl5OXbv3o3U1FRlfkhICL7//nucPXsWpaWl+OCDD+Dl5YVmzZrh9OnTyuGARo0awdLSEmZmZo9c/23btuGPP/5AUVERli9fjsDAQKW9t7c31Go1li5dioEDBz7xtXyc0NBQLFy4EFZWVujQoUOFeQcOHFB+7x999BF8fHzg6OgIf39//PHHH0hISEBZWRnKyspw+vRpXLx4UaoWU8YQNRFbtmzB4MGD4erqCgcHB+Xf8OHDKwSDRqPBTz/9hC5duii7/QDw6quvwtnZGf7+/hg9ejQCAwMrHAt7+eWXsXr16mqpdebMmWjTpg2GDh0KPz8/vPfee9Dr9XBxccGqVavw2WefoWvXrujVqxfWrVsHvV7/wDIsLS3x6aef4uDBg+jSpQuio6OxbNkyuLu7P7H/vXv3omHDhggLC6vwWg0dOhQ6nQ6HDh0CcG/016FDB6SkpFQI51atWuHdd9/FW2+9hS5duuDAgQNYvXq1El6rV6/G5cuX0adPH/Ts2RNJSUkAgIkTJ+LMmTPw9fVFVFSU8smF++uzcuVKbNmyBZ06dcKOHTvQr18/ZX7Xrl3x2muvYdKkSejevTuuXr2qfBC/oKAA8+bNg5+fH/r06QNbW1uMHTv2kesfGhqKWbNmoVu3bigtLcXcuXMfmH/+/Pkq78r/eTm///77Q8N44MCB+Oijj9C5c2ecO3cOy5YtA3Bv137dunXYtm0bunfvju7du+P9999HaWmpVC2mTCUEb8pcH33zzTfYsWNHjY1IyXTFx8fj22+/xaZNm6SWU1hYiOeffx4JCQkVjoFPmzYNLVq0wKRJk2RLrRc4Eq0nsrOzcerUKej1ely8eBEbNmxAQEBAbZdFRlZUVIRvvvkG4eHh0sv6+uuv0bFjx4eeRKT/xxNL9URZWRkWLFiAa9euwcbGBsHBwYiIiKjtssiIDh06hEmTJqFr164VjgFXRc+ePWFubo5Vq1ZVU3X1F3fniYgkcHeeiEgCQ5SISAJDlIhIQr07sXTzZgH0eh7mJaLqoVar0LRp40fOr3chqtcLhigRGQ1354mIJDBEiYgkMESJiCQwRImIJDBEiYgkMESJiCQwRImIJDBEiYgkMESJiCQwRImIJDBEiYgkMESJiCQwRImIJDBEiYgkMETruZ9/Pono6Ln4+eeTtV0KUb1U7+4nShXFxX2D9PSLKC4uQseOvrVdDlG9w5FoPVdUVFzhfyKqXhyJArBp0hANG1jUdhk1wsxMpfzv4GBTy9XUjOKSMuTf4R8Jqh0MUQANG1ggYsbXtV1Gjci9eS9csm4W19t1/GbZcOSDIUq1g7vz9Zy1a0dYWDvD2rVjbZdCVC9xJFrPNfhbczT4W/PaLoOo3uJIlIhIAkOUiEgCQ5SISAJDlIhIglFCNCYmBn379oWHhwfOnz//yHY7duxASEgINBoNQkJCcOPGDWOUR0RUZUY5O+/v749Ro0Zh+PDhj2yTmpqKjz/+GF9++SUcHByQn58PS0tLY5RHRFRlRglRX98nX7P9xRdfYOzYsXBwcAAA2NjUz6triKh+MZnPiV64cAHNmjXD8OHDUVhYiH79+mHChAlQqVSVWo69vXUNVUimrL5e0kqmz2RCVKfT4dy5c9iwYQNKS0vx8ssvw9XVFWFhYZVaTm7uXej1olLP4Ruw7svJya/tEqieUqtVjx2cmczZeVdXVwQFBcHS0hLW1tbw9/fH6dOna7ssIqLHMpkQ1Wg0SE5OhhACZWVlOHbsGNq2bVvbZRERPZZRQnTx4sXo2bMnMjMzMWbMGAQHBwMAIiMjkZqaCgAIDg6Gvb09BgwYgLCwMLRu3RpDhw41RnlERFWmEkJU7gCiiavqMdH6epu4v4Jvlg3nMVGqMXXmmCgRUV3EECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpJglBCNiYlB37594eHhgfPnzz+27cWLF9G+fXvExMQYozQiIilGCVF/f398/fXXcHNze2w7nU6HBQsWICAgwBhlERFJMzdGJ76+vga1W7NmDXr37o3CwkIUFhbWcFVERPJM5phoWloakpOTMXr06NouhYjIYEYZiT5JWVkZ3nzzTSxZsgRmZmZSy7K3t66mqqgucXCwqe0S6C/KJEI0JycHV65cQVRUFADgzp07EELg7t27eOuttyq1rNzcu9DrRaWewzdg3ZeTk1/bJVA9pVarHjs4M4kQdXV1xfHjx5XHK1euRGFhIWbOnFmLVRERPZlRjokuXrwYPXv2RGZmJsaMGYPg4GAAQGRkJFJTU41RAhFRjVAJISq372viqro7HzHj6xqqiGraN8uGc3eeasyTdudN5uw8EVFdxBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpJglBCNiYlB37594eHhgfPnzz+0zSeffILg4GAMHDgQgwcPxqFDh4xRGhGRFHNjdOLv749Ro0Zh+PDhj2zj5eWFsWPHolGjRkhLS8OIESOQnJyMhg0bGqNEIqIqMUqI+vr6PrFNjx49lJ89PDwghMCtW7fg7Oxck6UREUkxyWOi8fHxeOqppxigRGTyjDISrYyffvoJy5cvx/r166v0fHt762quiOoCBweb2i6B/qJMKkRTUlIwffp0rFq1Cq1atarSMnJz70KvF5V6Dt+AdV9OTn5tl0D1lFqteuzgzGR250+fPo0pU6ZgxYoVePbZZ2u7HCIigxglRBcvXoyePXsiMzMTY8aMQXBwMAAgMjISqampAIDo6GgUFxdj/vz5CA0NRWhoKM6dO2eM8oiIqkwlhKjcvq+Jq+rufMSMr2uoIqpp3ywbzt15qjF1ZneeiKguYogSEUlgiBIRAODnn08iOnoufv75ZG2XUqeY1EeciKj2xMV9g/T0iyguLkLHjk++ypDuYYgSVVLTv1nC3LJBbZdR7UpLS5T/6+tnp8tLS3Dzdmm1LpMhSlRJ5pYNcGrZy7VdRvXLz1H+r5frB8BnxucAqjdEeUyUiAAAL7RuilZNG+KF1k1ru5Q6hSNRIgIAeDpYwdPBqrbLqHM4EiUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpJgUIiWlpbiww8/hL+/P3x8fAAAycnJiI2NrdHiiIhMnUEh+s477+D8+fN47733oFKpAABPP/00Nm3aVKPFERGZOoO+d37v3r3YvXs3rKysoFbfy10nJydkZWXVaHFERKbOoJGohYUFdDpdhWl5eXmwtbWtkaKIiOoKg0I0KCgIM2fOxNWrVwEA2dnZWLRoEYKDg2u0OCIiU2dQiE6ZMgVubm4YOHAg7ty5g8DAQDg6OuLVV1+t6fqIiEyaQcdELS0tMXfuXMydOxd5eXlo2rSpcoLJEDExMdi1axeuX7+OhIQEtGnT5oE2Op0OixcvxqFDh6BSqRAVFYUXX3zR8DUhIqoFBo1E4+PjkZaWBgCws7ODSqVCWloa4uPjDerE398fX3/9Ndzc3B7ZJiEhAVeuXMHu3bvx7bffYuXKlbh27ZpByyciqi0Ghejy5cvh4uJSYZqzszOWL19uUCe+vr4PPP+/7dixAy+++CLUajXs7OwQEBCAnTt3GrR8IqLaYtDu/N27d2FtbV1hmo2NDe7cuVNthWi1Wri6uiqPXVxckJmZWenl2NtbP7kR1TsODja1XQLVEdW9rRgUou7u7ti1axcGDBigTNuzZw/c3d2rtZjqkJt7F3q9qNRz+Aas+3Jy8o3WF7eXuq2y24parXrs4MygEJ02bRqioqKQlJSE5s2b48qVKzh69CjWrFlTqWIex8XFBRkZGfDy8gLw4MiUiMgUGXRM1NfXF4mJiXjuuedQVFQELy8vJCYmKtfRV4egoCDExcVBr9cjLy8Pe/fuRWBgYLUtn4ioJhg0EgUAV1dXREVFVamTxYsXY/fu3bhx4wbGjBkDW1tbbN++HZGRkZg8eTKee+45hIaG4tdff8ULL7wAAHj11VfRvHnzKvVHRGQsjwzRN998E2+99RYAYPr06Y/8XOiyZcue2Mm8efMwb968B6avXbtW+dnMzAzR0dFPXBYRkSl5ZIg2a9ZM+blFixZGKYaIqK55ZIi+8sorAO5dSeTs7IyQkBA0aNDAaIUREdUFTzyxZGZmhqVLlzJAiYgewqCz83369MH+/ftruhYiojrHoLPzJSUlmDx5Mry9veHs7FzhJJMhJ5aIiOorg0K0TZs2D73zEhHRX51BITpx4sSaroOIqE567DHRixcvYtiwYejYsSNGjhyp3NmeiIjueWyILl68GM2aNcOHH34IR0dHLFmyxFh1ERHVCY/dnf/tt99w8OBBNGjQAL6+vryWnYjovzx2JFpWVqZ8PrRx48YoLS01SlFERHXFY0eipaWlFe5eX1xc/MDd7F977bWaqYyIqA54bIiGhIRUuLt8cHBwle42T0RUXz02RHkiiYjo8Qy+n+iFCxewc+dO5ObmYv78+bh48SJKS0vRtm3bmqyPiMikGXTtfFJSEoYPH46srCzla5ILCgqwdOnSGi2OiMjUGTQSXbFiBTZs2ABPT08kJSUBANq2bat8Fz0R0V+VQSPRvLw8Zbf9/s1HVCrVI+92T0T0V2FQiD777LPYunVrhWnbt29XvpmTiOivyqDd+blz52LcuHH47rvvUFhYiHHjxiE9PR3r16+v6fqIiEyaQSHq7u6OpKQkHDhwAL1794aLiwt69+6Nxo0b13R9REQmzeCPODVq1AgDBgyoyVqIiOocg0I0IiLioSeRLC0t4ezsjH79+qFv377VXhwRkakz6MSSn58frl+/jk6dOmHgwIHo1KkTMjIy0K5dO9jb22POnDkVvkOeiOivwqCR6OHDh7Fu3Tq4u7sr00JCQjBr1izExcXhhRdewJQpUxAZGVljhRIRmSKDRqIXL15E8+bNK0xzc3NDeno6AMDLywt5eXnVXx0RkYkzKEQ7deqE2bNn4/LlyygpKcHly5cxb948+Pj4AADOnTsHBweHGi2UiMgUGRSiS5cuhV6vR3BwMDp06IDg4GDo9XrlLk8WFhZ4//33a7RQIiJTZNAxUVtbW3z44YfQ6/XIy8uDnZ0d1Or/z99WrVrVWIFERKbM4M+JAkBhYSGKiopw/fp1Zdp/HyslIvorMShE//jjD0ybNg1paWlQqVQQQiifGz179myNFkhEZMoMOiYaHR2Nzp0746effoK1tTVOnDiB8PBw3k+UiP7yDArRtLQ0TJs2DU2aNIEQAjY2NpgxY8YDX1pHRPRXY1CINmjQAOXl5QCApk2bIiMjA3q9Hrdu3arR4oiITJ1Bx0R9fHyQlJSEwYMHIzAwEJGRkbC0tESXLl0M7ig9PR2zZs3CrVu3YGtri5iYGLRs2bJCm9zcXMyePRtarRZlZWXo0qUL5s2bB3PzSp3/IiIyGoPS6c+77W+88QaefvppFBQUICwszOCOFixYgIiICISGhmLr1q2YP38+Nm7cWKHN6tWr4e7ujjVr1qCsrAwRERHYvXs37x5FRCbribvzOp0OI0eORGlp6b0nqNUIDQ1FREQErKysDOokNzcXZ86cgUajAQBoNBqcOXPmgUtFVSoVCgoKoNfrUVpairKyMjg5OVV2nYiIjOaJIWpmZoZr165Br9dXuROtVgsnJyeYmZkpy3R0dIRWq63Q7p///CfS09PRvXt35d/9S0uJiEyRQbvzr776KhYuXIhJkybB2dm5wr1F/3zlkqydO3fCw8MDX375JQoKChAZGYmdO3ciKCjI4GXY21tXWz1Udzg42NR2CVRHVPe2YlCIzps3DwAqfFnd/Q/cG/JhexcXF2RlZUGn08HMzAw6nQ7Z2dlwcXGp0C42NhbvvPMO1Go1bGxs0LdvXxw/frxSIZqbexd6vTC4PcA3YH2Qk5NvtL64vdRtld1W1GrVYwdnBoXovn37KtXpf7O3t4enpycSExMRGhqKxMREeHp6ws7OrkK7Zs2a4eDBg/Dy8kJpaSmOHj2Kfv36SfVNRFSTDNoXd3Nzg5ubG1xcXGBhYaE8dnNzM7ijhQsXIjY2FoGBgYiNjUV0dDQAIDIyEqmpqQCAOXPm4NSpUwgJCUFYWBhatmyJf/zjH1VYLSIi4zBoJHrnzh1ER0dj165dMDc3xy+//IJ9+/bh9OnTmDJlikEdubu7Iy4u7oHpf/5akaeeegobNmwwsHQiotpn0Eh0wYIFsLa2xv79+2FhYQEA8Pb2RlJSUo0WR0Rk6gwaiR49ehSHDh2ChYWFcmbezs4Oubm5NVocEZGpM2gkamNjg5s3b1aYlpGRwa8EIaK/PINC9MUXX8TkyZNx7Ngx6PV6pKSkYObMmRg2bFhN10dEZNIM2p2/f8ORRYsWoby8HHPmzEF4eDheeumlmq6PiMikGRSiKpUKo0ePxujRo2u4HCKiusWg3fmBAwfi888/R2ZmZk3XQ0RUpxgUopMmTUJqair69++PESNG4F//+hdvyExEBANDtF+/fli+fDkOHTqEIUOGYM+ePejduzfGjx9f0/UREZm0St0y3traGhqNBjY2NigvL8fBgwdrqi4iojrBoBAVQuDYsWNISEjA3r174erqiuDgYH7bJxH95RkUoj169ICVlRUGDBiATZs2wd3dHQCkbtRMRFQfGBSin3zyCdq3b688PnfuHOLj45GQkIDk5OQaK46IyNQZFKLt27dHXl4eEhISEB8fj7S0NPj4+GDu3Lk1XR8RkUl7bIiWlZVh//792LJlC5KTk/HUU08hODgYGRkZWL58OWFRnNcAABOBSURBVOzt7Y1VJxGRSXpsiHbr1g0qlQqDBw/GpEmT8OyzzwIANm3aZJTiiIhM3WM/J+rh4YH8/Hz8+uuvSE1Nxe3bt41VFxFRnfDYEP3qq6+wZ88edOvWDevXr0e3bt0wfvx4FBYWory83Fg1EhGZrCdeseTm5oZXX30Vu3fvxhdffAEHBweo1WoMHDgQy5YtM0aNREQmq1JXLPn6+sLX1xfz5s3Dnj17EB8fX1N1ERHVCZUK0fsaNGgAjUYDjUZT3fUQEdUpBt2AhIiIHo4hSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkgSFKRCSBIUpEJIEhSkQkwWghmp6ejvDwcAQGBiI8PByXLl16aLsdO3YgJCQEGo0GISEhuHHjhrFKJCKqtCrdT7QqFixYgIiICISGhmLr1q2YP38+Nm7cWKFNamoqPv74Y3z55ZdwcHBAfn4+LC0tjVUiEVGlGWUkmpubizNnzig3cdZoNDhz5gzy8vIqtPviiy8wduxYODg4AABsbGzQoEEDY5RIRFQlRhmJarVaODk5wczMDABgZmYGR0dHaLVa2NnZKe0uXLiAZs2aYfjw4SgsLES/fv0wYcIEqFQqg/uyt7eu9vrJ9Dk42NR2CVRHVPe2YrTdeUPodDqcO3cOGzZsQGlpKV5++WW4uroiLCzM4GXk5t6FXi8q1S/fgHVfTk6+0fri9lK3VXZbUatVjx2cGWV33sXFBVlZWdDpdADuhWV2djZcXFwqtHN1dUVQUBAsLS1hbW0Nf39/nD592hglEhFViVFC1N7eHp6enkhMTAQAJCYmwtPTs8KuPHDvWGlycjKEECgrK8OxY8fQtm1bY5RIRFQlRvuI08KFCxEbG4vAwEDExsYiOjoaABAZGYnU1FQAQHBwMOzt7TFgwACEhYWhdevWGDp0qLFKJCKqNKMdE3V3d0dcXNwD09euXav8rFarMXv2bMyePdtYZRERSeEVS0REEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBIYokREEhiiREQSjBai6enpCA8PR2BgIMLDw3Hp0qVHtr148SLat2+PmJgYY5VHRFQlRgvRBQsWICIiArt27UJERATmz5//0HY6nQ4LFixAQECAsUojIqoyo4Robm4uzpw5A41GAwDQaDQ4c+YM8vLyHmi7Zs0a9O7dGy1btjRGaUREUsyN0YlWq4WTkxPMzMwAAGZmZnB0dIRWq4WdnZ3SLi0tDcnJydi4cSNWrVpVpb7s7a2rpWaqWxwcbGq7BKojqntbMUqIGqKsrAxvvvkmlixZooRtVeTm3oVeLyr1HL4B676cnHyj9cXtpW6r7LaiVqseOzgzSoi6uLggKysLOp0OZmZm0Ol0yM7OhouLi9ImJycHV65cQVRUFADgzp07EELg7t27eOutt4xRJhFRpRklRO3t7eHp6YnExESEhoYiMTERnp6eFXblXV1dcfz4ceXxypUrUVhYiJkzZxqjRCKiKjHa2fmFCxciNjYWgYGBiI2NRXR0NAAgMjISqampxiqDiKhaGe2YqLu7O+Li4h6Yvnbt2oe2nzRpUk2XREQkjVcsERFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJYIgSEUlgiBIRSWCIEhFJMDdWR+np6Zg1axZu3boFW1tbxMTEoGXLlhXafPLJJ9ixYwfMzMxgbm6OKVOmoEePHsYqkYio0owWogsWLEBERARCQ0OxdetWzJ8/Hxs3bqzQxsvLC2PHjkWjRo2QlpaGESNGIDk5GQ0bNjRWmURElWKU3fnc3FycOXMGGo0GAKDRaHDmzBnk5eVVaNejRw80atQIAODh4QEhBG7dumWMEomIqsQoIarVauHk5AQzMzMAgJmZGRwdHaHVah/5nPj4eDz11FNwdnY2RolERFVitN35yvjpp5+wfPlyrF+/vtLPtbe3roGKyNQ5ONjUdglUR1T3tmKUEHVxcUFWVhZ0Oh3MzMyg0+mQnZ0NFxeXB9qmpKRg+vTpWLVqFVq1alXpvnJz70KvF5V6Dt+AdV9OTr7R+uL2UrdVdltRq1WPHZwZZXfe3t4enp6eSExMBAAkJibC09MTdnZ2FdqdPn0aU6ZMwYoVK/Dss88aozQiIilG+5zowoULERsbi8DAQMTGxiI6OhoAEBkZidTUVABAdHQ0iouLMX/+fISGhiI0NBTnzp0zVolERJVmtGOi7u7uiIuLe2D62rVrlZ83b95srHKIiKoFr1giIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUiksAQJSKSwBAlIpLAECUikmC0EE1PT0d4eDgCAwMRHh6OS5cuPdBGp9MhOjoaAQEB6NevH+Li4oxVHhFRlRgtRBcsWICIiAjs2rULERERmD9//gNtEhIScOXKFezevRvffvstVq5ciWvXrhmrRCKiSjM3Rie5ubk4c+YMNmzYAADQaDR46623kJeXBzs7O6Xdjh078OKLL0KtVsPOzg4BAQHYuXMnXn75ZYP7UqtVVarx700bV+l5ZBqq+nuvKssm9kbtj6pPZbeVJ7U3SohqtVo4OTnBzMwMAGBmZgZHR0dotdoKIarVauHq6qo8dnFxQWZmZqX6alrFMFwxO6xKzyPTYG9vbdT+nhsfY9T+qPpU97bCE0tERBKMEqIuLi7IysqCTqcDcO8EUnZ2NlxcXB5ol5GRoTzWarVwdnY2RolERFVilBC1t7eHp6cnEhMTAQCJiYnw9PSssCsPAEFBQYiLi4Ner0deXh727t2LwMBAY5RIRFQlKiGEMEZHFy5cwKxZs3Dnzh00adIEMTExaNWqFSIjIzF58mQ899xz0Ol0WLRoEQ4fPgwAiIyMRHh4uDHKIyKqEqOFKBFRfcQTS0REEhiiREQSGKJERBIYokREEhii9IDIyEhcuXKltssgE/H9998jPT1debxv3z7ExNTcFVsjR47EgQMHamz51c0ol31SzdDpdMqltNVp7dq11b5Mqru2bNmCpk2b4n/+538AAP7+/vD396/lqkwHQ9REHTx4EB988AF0Oh3s7OywaNEiZGZm4p133oGvry9SU1MxYcIEPPPMM5gxYwZu3LiB5s2bAwC6d++OESNGICEhARs3bkRZWRkAYObMmejatSsAoG/fvggNDcWRI0eQk5ODsWPHYsSIEcq81atXo02bNsjKysLixYuVWxdqNBq88sorxn9B6rmUlBQsW7YMBQUFAIAZM2agSZMmePvtt1FYWAgrKyvMnTsXXl5euHbtGoYMGYJhw4bhxx9/RFFREd5++234+vpizpw58PDwwEsvvQQAOH/+PCZMmIC9e/eioKAAS5Yswblz51BSUoLOnTtj9uzZMDMzw8iRI9GuXTv88ssvyM7ORv/+/TFt2jRs3rwZ//nPf7B48WJ89NFHmDlzJjIzM/HDDz9gxYoVAIA1a9Zg27ZtAIDnnnsO8+bNQ+PGjbFy5Uqkp6cjPz8fV69exVNPPYXly5ejUaNGOHr0KD766COUlJRAp9Nh/PjxCA4Orp0XX5Ygk3Pjxg3RuXNn8fvvvwshhPj3v/8thg4dKo4dOybatm0rfv75Z6XtxIkTxSeffCKEEOLatWvC29tbfPXVV0IIIfLy8oRerxdCCHHhwgXRo0cP5Xl9+vQRS5cuFUIIcfXqVdGhQwdx9+5dZd65c+eEEEKMGDFCrF27Vnlebm5uTa32X9bNmzfF888/L06dOiWEEKK8vFzk5OSIXr16icOHDwshhDhy5Ijo1auXKCkpEVevXhVt2rQR+/fvF0IIsXXrVhEeHi6EEOLEiRMiLCxMWfaSJUvEypUrhRBCzJkzR2zZskUIIYROpxNTpkwR3377rRDi3u/5tddeEzqdTty5c0f4+fmJ9PR0Zd79voQQYvPmzWLSpElCCCF++OEHERwcLPLz84VerxfTp08Xy5YtE0IIsWLFCtGvXz9x+/ZtodfrxZgxY5T+bt26JcrLy4UQQuTk5IgePXqIW7duPbQ/U8djoibo119/Rdu2bdG6dWsAwJAhQ3D27FkUFBSgRYsW8Pb2VtoeP34cQ4YMAQC4ubkpI00AuHr1KsaNG4fg4GBMmTIFN27cQE5OjjJ/wIABAIBmzZqhSZMmD9wxq6CgACkpKRg9erQy7b8v1SV5v/zyC9zd3dGxY0cA9+5ylpubCwsLCzz//PMAgK5du8LCwkI5NmllZYU+ffoAADp06ICrV68CAHx9fVFQUIC0tDSUl5cjMTERgwYNAgDs378f69atQ2hoKAYNGoTffvutwrHOoKAgqNVq2NjYwN3d3aDj4kePHsWAAQNgbW0NlUqFf/zjHzh69Kgyv3v37mjSpAlUKhW8vLyUZebl5WHy5MnQaDQYN24cbt++XaGWuoS78yZICAGV6uH3MLSysjJ4OW+88QZmzZqFgIAA6PV6tG/fHiUlJcr8Bg0aKD+bmZkpN4gh4xIPuWjwUdvA/WmWlpbKNLVajfLycuVxaGgo4uPj4efnB3d3d7i5uSnLXLVqlXLY579VZXt43Lb6sGXe3/4WLlyIvn374uOPP4ZKpUJgYGCFbbMu4UjUBHl7e+Ps2bO4cOECgHsH9p955hk0bvzgvVL9/PywZcsWAPfuenXs2DFlXn5+Ppo1awYA+O6771BaWlqpOho3bgxvb2988cUXyrS8vLzKrg49gbe3Ny5cuICUlBQA904Y/v3vf0dpaany+zx27BjKy8vRsmXLJy5v0KBBSExMRFxcHAYPHqxM79u3L9asWaOEY15enjKCfZzGjRsjPz//ofOef/557NixA3fv3oUQAt99950yen6c/Px8uLm5QaVS4fDhw7h8+fITn2OqOBI1QXZ2dli2bBmmTZuG8vJy2NnZ4d13333oDarnzp2LGTNmYMeOHWjVqhU6duwIa+t7N52dPXs2/vnPf8LJyQl+fn6wtbWtdC3vvfceoqOjodFooFarodFoEBUVJb2O9P9sbW2xcuVKLF26FIWFhVCr1Zg5cyZWrFhR4cTS8uXLK4xAH8XV1RWtW7fGTz/9hA8++ECZPmfOHLz77rsIDQ2FSqWChYUF5syZ88iR6X3h4eGIiYnB+vXrMWPGjArzevXqhXPnzmHYsGEAgHbt2mHChAlPrHHq1KmIjo7G2rVr4eHhAQ8Pjyc+x1TxBiR1XHFxMczNzWFubo7s7GwMHToUX3zxBVq1alXbpRH9JXAkWsddunQJM2fOhBAC5eXlmDhxIgOUyIg4EiUiksATS0REEhiiREQSGKJERBIYokREEhiiVC/07dsXR44cqe0y6C+IIUpEJIEhSnXe9OnTkZGRgfHjx8Pb2xteXl746quvKrQJCQnB3r17AQAeHh7YuHEj/P390blzZ8TExECv1yttv/vuO/Tv3x+dOnXCuHHjcP36daOuD9UtDFGq89599124urpi9erVSElJwdKlS5X7WwJAWloasrOz0bNnT2Xanj17sHnzZmzZsgX79+/H5s2bAQB79+7FZ599ho8//hhHjx6Fj48Ppk6davR1orqDIUr1TkBAAC5fvqzcSHrr1q3o379/hevOIyMjYWtrC1dXV4waNQqJiYkAgH/961+IioqCu7s7zM3NMX78eJw9e5ajUXokhijVO5aWlggKCsK2bdug1+uRmJiI0NDQCm1cXFyUn93c3JCdnQ0AyMjIUL49wNfXF35+fhBCICsry6jrQHUHr52nemnQoEGYMWMGfHx80KhRowo3sgbu3Tbw6aefBnAvOB0dHQHcC9fx48dj4MCBRq+Z6iaORKle+Pvf/17h3pje3t5Qq9VYunTpQwNx3bp1uH37NrRaLTZu3Kjc5X/YsGFYs2YNfv/9dwD37nuZlJRknJWgOokhSvVCVFQUPv30U/j6+mLdunUA7t3h/fz58w/sygP3vrFy8ODBCAsLQ+/evTF06FAAQL9+/fDyyy/jjTfeQMeOHaHRaHDw4EGjrgvVLbyLE9Vb8fHx+Pbbb7Fp06YK0z08PLB79260aNGiliqj+oQjUaqXioqK8M033yA8PLy2S6F6jiFK9c6hQ4fQtWtX2NvbQ6PR1HY5VM9xd56ISAJHokREEhiiREQSGKJERBIYokREEhiiREQSGKJERBL+D9ej7nOYiIgVAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -591,8 +601,8 @@ } ], "source": [ - "plt.figure(figsize=(5,7))\n", - "ax = sns.barplot(x=\"type\",y=\"AveragePrice\",data= avocadoData)\n", + "plt.figure(figsize=(5, 7))\n", + "ax = sns.barplot(x=\"type\", y=\"AveragePrice\", data= avocadoData)\n", "plt.title(\"Avg.Price of Avocados by Type\")\n", "plt.show()" ] @@ -616,7 +626,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 13, "id": "03fc6ada-cfa9-4e2e-856d-8eb4104437c4", "metadata": {}, "outputs": [ @@ -632,8 +642,8 @@ } ], "source": [ - "plt.figure(figsize=(12,6))\n", - "sns.heatmap(avocadoData.corr(),cmap='coolwarm',annot=True)\n", + "plt.figure(figsize=(12, 6))\n", + "sns.heatmap(avocadoData.corr(), cmap='coolwarm', annot=True)\n", "plt.show()" ] }, @@ -647,7 +657,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 14, "id": "8a8680eb-d9bd-4844-a114-71795bca5aec", "metadata": {}, "outputs": [], @@ -659,7 +669,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 15, "id": "8b53c26c-e365-4534-b6c7-350b1abd1487", "metadata": {}, "outputs": [], @@ -673,7 +683,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "14d8c3c0-7e64-49c2-9d87-f2f03728707d", "metadata": {}, "outputs": [], @@ -681,13 +691,15 @@ "# Utility functions for onehot encoding.\n", "\n", "def one_hot_encode(data, dimensions, drop=False):\n", + " data = data.copy()\n", " for dim in dimensions:\n", " if(type(data.iloc[:,dim].values[0]) == str):\n", " uniq = data.iloc[:, dim].unique()\n", " for val in uniq:\n", " data[f\"{data.columns[dim]}_{val}\"] = data.iloc[:,dim].apply(lambda x: 1 if x == val else 0)\n", " if drop:\n", - " data.drop(data.columns[dimensions], axis=1, inplace=True)" + " data.drop(data.columns[dimensions], axis=1, inplace=True)\n", + " return data" ] }, { @@ -708,7 +720,7 @@ "metadata": {}, "outputs": [], "source": [ - "one_hot_encode(X, [6,8], True)" + "X = one_hot_encode(X, [6,8], True)" ] }, { @@ -724,7 +736,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "id": "92c6d1d5-1f16-4f47-a292-c87b66e67323", "metadata": {}, "outputs": [], @@ -755,7 +767,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "id": "841c5115-73ff-4dc2-8ba0-a72eca7e3115", "metadata": {}, "outputs": [], @@ -766,7 +778,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "id": "00be0879-6ad3-4877-bb42-7cb9c7e07fd9", "metadata": {}, "outputs": [], @@ -784,7 +796,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "id": "18bd0698-09e9-4afb-9ab8-006ff6c1c2a8", "metadata": {}, "outputs": [], @@ -795,7 +807,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "id": "8bce9ee6-3047-4cab-b08f-8a3866374be1", "metadata": {}, "outputs": [], @@ -814,23 +826,13 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 28, "id": "aeea1f4b-80c1-4ae7-9733-e0e2089eab6b", "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFtCAYAAADMATsiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9e5hcV3mn+669d927u/omtVqXtpBsSzK2udhEBl8O2NgjbEcKxnCInYSDQRMmTHgmT554nMs4kPGQyCHnBGcInAnHJBNsYGwI+BYhAnFix0bYI4N8E8JtRFu3lvpa3XXbt3X+2LV3V3VXVVd3V3dXldb7PAlW9a6916pd9atV3/q+3yeklBKFQqFQNAXaag9AoVAoFLWjRFuhUCiaCCXaCoVC0UQo0VYoFIomQom2QqFQNBFKtBUKhaKJMFZ7APVmdHQa1609i7GrK874eGYZR9RYqPm2Nmq+rcGaNe0V/3bOr7QNQ1/tIawoar6tjZpv63POi7ZCoVA0E0q0FQqFoolQoq1QKBRNhBJthUKhaCKUaCsUCkUToURboVAomggl2gqFQtFErIho79u3j2uvvZZt27Zx9OjRssd84Qtf4KabbmL37t3ccsstPPXUUysxNIVCoWgqVqQi8rrrruM3fuM3uP322ysec+mll3LHHXcQi8U4cuQIv/Zrv8bTTz9NNBpdiSEqFApFU7Aion355ZfPe8zVV18d/Pe2bduQUjIxMcG6deuWc2gKhULRVDRkTPvb3/42AwMDSrAVCoViFg1nGPWjH/2Iz3/+89x///2Len5PT9uCn1PNnKUVUfNtbdR8W5uGEu0XXniB3/u93+Ov//qv2bJly6LOsVCXvzVr2jl7dmpR12pG1HxbGzXf1UciEYglnaMpXP4OHz7M7/zO73Dffffx5je/ebWHo1AoFAvm1FiGZ18axpW1LxwXyoqI9j333MM111zD6dOn+ehHP8pNN90EwN69e3nxxRcB+MxnPkMul+Puu+9mz5497Nmzh5/+9KcrMTyFQqFYMkffGOczX/kRX37sFV47Prls1xFSLuNXwiqgwiPVUfNtbdR8V4fXTkzwF1//CXnLobMtwj0f/yXi0dCiz9cU4RGFQqFoRl4/McH//Q1PsJOJMP/xlouXJNjzoURboVAoFsnrJ1P8xf/6CTnToSMe4uM3X8SarviyXlOJtkKhUCyCY6dT/MU3fkw279Ae8wS7vydOIrq8SXlKtBUKhWKB/GJ4is997cdk8zZtsRAf++WLWN+boLM9giaWlu43H0q0FQqFYgEMnZniz7/2Apm8TSIW4mM372DjCgk2KNFWKBSKmjl+dprPfe3HZHI28ajBx27awaY1bSsm2KBEW6FQKGrixMg09z74AtNZi3jE4OM3X8TA2pUVbFCirVAoFPNyajQdCHYsYvCxm3ewaW0bybaVFWxQoq1QKBRVGR7LsO+BQ0xlLGIRnY/dtIOBvnY62yLo2soKNjSYYZRCoVA0EqfHMvzZA4dIZSyiYZ07btzBeetWT7BBrbQVCoWiLMPjGe598BCptEkk5An25v6OVRVsUCtthUKhmMOZiSz7HniBiemCYN+0nS3rO1Z807EcSrQVCoWiiJGJTEGw84RDGv/X+7azdX2yIQQblGgrFApFwOhkln0PvsD4VJ6w4Qn2BZs66WwLN4Rgg4ppKxQKBQBjqSx/9uALjKbyhAyNj7xvOxdu6moowQYl2gqFQsH4VI59D7zA6GSOkK7xkV3b2DbQeIINSrQVCsU5zmQ6z74HX+DsZA5DF/z6rm1sP6+7IQUblGgrFIpzmFTG5M++eogz41lPsP/dNi7a3LiCDWojUqFQnKOk0iZ/9sAhhguC/Ws3bOPNb+ppaMEGtdJWKBTnIKmMyb4HD3F6LIOuCW6//kIu3tL4gg1KtBUKxTnGVMbk3gdf4NTojGBfsrW3KQQbVHhEsYocHhxh/8EhRiZz9CajbB/o5MjQRPDvXTsHAEqO2bVzgEu39lY8x+y/z3fNcsc/8vTrHHjuOFnTRiCIhATnreuoaTzVrtXVFuYng2NkTRspy4/vV67azO6rtizkZVwxHnn6dR55+hhu4d8CuOKitezdfXHF5yz0/iyWWq8znbX486+9wMmRNJoQ/Op7L+DS8xcn2IcHR3j4yUFOjWZw3JkbqglY35vg1ndvXZa56p/+9Kc/XfezriLZrFnxA1GORCJCJmMu34AajEaZ7+HBER743lFM2yUa1hlN5Tj8+ii2I2mLhUjnbX706hleOHoWR0I0rJPO2/zktRH6umL0dcfnnGP236F0vrUc/8jTr/PIM8ewHRcpQQK2I8kWjn3htVEcKSs+v9L8To9leP3UlHfeKq/LkaEJBJJtA12Lel2X6/4+8vTrfPvpY3PGfvxsmjNjaS7btnbOc2p5vZdKIhHhhy+erOk66Zwn2MfPzgj22y5cs2jBvv+JI4xM5nBnvSgSmMpYvPKLcdb3xhc110QiUvFvKjyiWBX2HxxC1zUiIR0hBFnTQSDI5m2EEERCOrm8Tc50gmMiIR1d19h/cKjsOWb/fb5rljv+wHPHEYhAnPyPcrYwllzerul6c+aXtwGqCnbxGBqNamM6+OrZso8v9P4sllqukykI9htnptEEfPi683n7IgXbv2Yub1e9obm8Xfe5ghJtxSoxMpkjbMy8/WzbRRNgO27wmOO6JT87AcKGxshkruw5Zv99vmuWOz5n2mgCpJwRbABXguNKHNet+vxK15q9GqtGzrRrP3iFqDYmt8JP24Xen8Uy33UyOZs///qPGRqeRgj40LUXcNm2tSSXEMMemczhuJV/NUm892+95woqpq1YJXqTUSYKlpcAhqFh2y6hog+frs1dU5i2S28yWvYcs/8+3zXLHR8NG+QtBzFLuDVBwY6z9ENe6Xqzr6WJ2oU7Gm68j2U0bJDJlxfuSsJX7vWeyljkTYc7v/gM0ZBGznIZncyV/LJJRHWikRDSdZlMm9hu2dOXMln+4b33/gBd0zALJ1mTjNLVEaGzPYxg8ZuOvckoqbSJW0G4Bd77t9J7cSmolbZiVdi1cwDHcclbDlJKYmEdiSQWMZBSkrccohGDaFgPjslbDo7jBhuCs88x++/zXbPc8Te8YyMSGXyc/Q9krDCWaMSo6Xpz5hfxhLgWmbjhHRtrfRlXjGpj2rljTdnHZ78GqbTJZNpzzgPJydEMI0WCDd7rPZ1zGEvlGJ2qUbAroGugFQm2EBCNGBz40RAvDo4u/sR4c4tGjKo3NBoxKr4Xl4LaiGyQjbmVolHm29cdp68rxvEz00ymTdZ2xbjy4nXkTIfJtEl3e4QPvmcrb7twTXBMd3uEW67ZEuzIzz7H7L9D6XxrOX7bQBdIyS+Gp7FdF00IomGNgb52Pvie83nbBb1Vn19pfv09cS7Y0MFoKo/lVFai3mSU//iBSxf9ui7X/d020IVAcnRoomRV/M4q2SOzX4Nc3iEeNUi2RRibymM7lT+oC/gIl0UToOsaVpHqr+2KYrsS25EcPzPNlZf0L/r8fd1x1vfGOX5mmnSuNBtIE7BhTYLbr79w0dkj1TYihZQLkbjGZ3R0GncBAcQ1a9o5e3ZqGUfUWKj5rj53fvEZxqfyaAJEUWjBcV262qPc+x/etehzN+J8fe784jPEowZCCI6fmZ6zX1EvhABjlmD3JKNoSMamTDasSZDJ2Ut6nZebNWvaK/5NhUcUihWmNxlF10TJatKVyxcDbRR6k9EgVGEYyyM9lQTbcSXj0yaGoVXd92gGlGgrFCvMrp0DRMM6UnqZF44rkdJdthhoo1Ac426PGVRrs7iYFoyCyoI9OZVHArGwXnXfoxlQoq1QrDCXbu3ljpt20N8dQyDQBPT3JLjjxu3LUkHXKFy6tZfbr7+QzkQYEKzvidObjJbs5QmgLarT3RGlpz1MrQtyTXir93KCnc1ZxCIG8YjBuu74kmLNjUDj5RYpFOcAl27tbWrhWCz1nveaNe2cPDXBX33zRV76+RgAv/yuzbzn7RtIti0tra9RUStthULRtFi2w3//1oxg3/TO81pasEGJtkKhaFJsx+Wzf/scL77uCfaNV5zHdZdtbGnBhhUS7X379nHttdeybds2jh49WvaYp59+mltuuYWLL76Yffv2rcSwFApFk2I7Ln/97Zd4/tVhwNvkfO/lG+lsi7S0YMMKifZ1113HAw88wIYNGyoes2nTJu655x4+9rGPrcSQFApFk2I7Ll/6zsv8+GcjANzwjk3c8I5NdLZVLkhpJVZkI/Lyyy+f95jzzjsPgO9///uY5upX7CkUisbDcV3+xyMvc+io5yy4++otvPst/eeMYEMLZo/09LQt+DnVqo9aETXf1qbafJ9/dZhvPfkaw2MZ+rrj3PLu8wFKHrtkaw8vDo4y+MYEOcuZU2GsAZv62xEIzk5kyObnHgOeBzp4plquK4mENDrbI0xnreA5/mMSQSyiMzmVZzLtWVEYGvR0xpAI+rrj/Mo1W/mHJ1/jpdc93xBNwCs/H+H1k5OcGc8G87l8R1+dXsnGpOVEW5WxV0fNt7WpNl+/KYGua0RDGmfHM/w/D/5vEIJ41CAa0jg+PMXLr48Q0jXyVnmPFBf4xan5X9Oc6ZT8O2+5DI9lyz4Wj2icHSt1zLNdGB7LkkyEODOW5nMPPE82751TAD0dEUYm80xOpejtjHJ2PMNfP/zjps/DBlXGrlAoKN8sYHZjh2zea7FWSbDrxeytwky+sjd1Km2Ryzszgi088yfLgYmpPOBZvi5Xk4VGQ4m2QnGOUK5ZwOzGDrbjLqqEfCnMdznD0JhMz+xzre2M4rgwMe0JttcSzpvDcjRZaDRWRLTvuecerrnmGk6fPs1HP/pRbrrpJgD27t3Liy++CMDzzz/PNddcw1e+8hW+/vWvc8011/DUU0+txPAUinOCYsMmH10TJc0mDF1bUJedelDtcqGi0nRNQE8yguVAKm3iGyT6niNQvQlGq6CsWVXMs6VR852hOKYdLrjdZbJWENMOGxpTGYvJdL5qTHs5iEc0srNCJMWCHQvr9HZGsWyXsxNZPKmWOK73X72dUXRdw3Hclo9pt9xGpEKhKI8vZPsPDjEymaM3GeXD155f8lhfV4z/4y39HBma4BenU+QtOacHpAA29MZBCMZSOXKmW7ZPZCTkrX4t2ztH2NDoSITJ5KzgOf5jAN3tGqmMRSpjlQh2JKSxY3MX1162Edt2efjJQYbHMoBGd1eYiOHF5jsTYXbtHGh6wZ4PJdoKxTlEJcOm2Y/tXqkBzUJKyVe/d5R/PnQCgJ0X9fGha7fS1TYT8ige67n2SwrURqRCoWgQpJQ8+E8zgv1LO9bywVmCrVCirVAoGgApJV///s/4/v/2BPvy7Wv50HXn060Eew5KtBUKxaoipeShJwf53vPHAbhs2xo+/F4l2JVQoq1QKFYNKSXf/JfBoCDm7Rf28qvXX6AEuwpKtBUKxaogpeQfnnqdJ37oCfZbz+/ltusvVII9Dyp7RNHwHB4cKUlTmy+t65GnX+fAc8fJmTaxaIjrL9vA7qu2lD3X9oFOjgxNVPx3rSlk1cZ4eHCEh//5NU6OZvAz48Ihr5x8fW9izjX8cw2emMBy5l5LE7D7ys3BnIqfMzZt0t1WOfXNH8vweA7LcQvZzh4C2LAmwa3v3jrvnGu9J4cHR4IUPa/jvCAS1tnQm6CzPcIPX/b8sMOGhqbB6bEM3e1KtKuhimvOsZShZptvuYKQagUUjzz9Oo88cyxomOvireh2v2szm/s7Ss6VSpukMibJRIT2eCgoLOmIh+lIhOe9Vi1jBLj/8VeZylhzKv+EgM62CIYugmv455qczmPa1d/HbTGDTM4uW8GoCYhHDfKmAwgiIUHOcrGd2j8bmoCu9ghCCEYnc8H4dU3gFF1U1wWJaIhr37aeI0MTnBxJkzMdbMctOzYhIB4xSOdswMvD3roxiWm5TE7nF1Qc02zv51pRhlGKpqWcyVE1U6ADzx1HINA1gRACQ9MQCA48d3zOubKmg6BgklRklpQ1nZquVcsY9x8cmuN2FyAhm7dLruGfaz7BBpjOlhdsAFd6f7cdieW4TOecBQm2f47RVJ6RIsEGSgQbwHEkqbTJo8/8guHxLFMZy7NjrXA5TYhAsIWA8zclAbBs95wwfFoqSrQVDU05k6NqpkA5055jeKQJ7/HZ57JtzxzJNxvyzZLsIn+OWgyIqo1xZDKH48qy/hq+0VHxNcqda0kss/lT8ekdV5LN21WPn71K701GkRLSWe9554Lh01JRoq1oaMqZHFUzBYqGjTkrPFd6j88+l2F45ki+2ZBvlmQUiWYtBkTVxtibjHqr/jLP842Oiq9R7lxLYSWCn8Vzs53KFqtakWBrAtZ1x3BdGQg2nBuGT0tFibaiodm1cwDHcclbDlJK8paD47js2jlQ9vgb3rERifRWt1Jiuy4SyQ3v2DjnXLGwjkQSixjevyOG9++wXtO1ahnjrp0DQQeXOQiIRYySa/jnChv1WSKLZV5pSyiKdXtfQuUuqQlRstc00NeGJgSWI2u+twoP/dOf/vSnV3sQ9SSbNRe0ukgkImQy505Pymabb193nL6uGMfPTDOZNuluj3DLNVsqblRtG+gCKfnF6Wks2yUWCXHjzgF2X7VlzrnWdsW48uJ15EzH+3dn6b/nu1YtY+zrjrO+N8HxM1NMZy3AW5lGQhrxiEF/T7zkGv65/FhyJUKGQNawIF8pa+yQIYhHQoQLjRWKr68JERhKaQI29bXRk4xy4zvP420X9NZ8b8vRbO/nWkkkKve8VNkjLbr7XAk13+aiOH0xGja44R0b2X3VliCV7uRIGim9FbUmQAqBBiTbIkjpbRD62SOWI4PQS7VPvS/0okL2iKELYhGDXN4GBH1dUW59z4xboJ894rgSTYBV2AC9YGOSvb/8ZnqS0bp9mTT7/a1EtewRJdotetMroebb2pSbb3FutuO6hAwt2BBcime2wMs31zWBac+kE0ZCGu/bOUAqY/GDgvkTeC3CTMslnbUDoV+qjWqr3l/lp61QUL4gBFhQ4c5CrxMN6yAlI6kcecv1VsVAd3uYq9/i5TWfGEnjOBJDF3TEQyAEk2mTdNaqqYtMT0eEX/932yoWt/y/33mJrDkjzvVqbiArnCtvuXzn346VrOZ7k1FypltY+cPxkQx/+dDh4O+6JpBSomte5/VyBT7lfnV87P1vqctcmgm10m7Rb+pKnKvzLdu1JWeDlMRjoZoKd2qh+DqO4zKWyuG6lVtqJaIGOcsBCa4rEcILXSz0QxmL6Pzm7jdz3RVvKrm/d3/5hxwfySxqLovFn4NPbzKK5bhMTs8fexaApkEiFuaOG7cH92FO0ZQEieTD12/jvW/bsEwzWT1UcY3inKdsJ/K8Tc50ai7cWeh1pjIWQmhVBdgr6PFWmsCi+zPmTKfsuIfHVzbneSmC7Z0AhNDI5e2S+cwumvLSKAXf+dfX6zyDxkeJtuKcoHwncndOdd9SizuKr1NLZ3NXzmz8yVn/uxCkpMK4V+6HtGCJgl14via8e1M8n0pFU/MV87QiKqataCpqiUsXmz71r2njuretJxrWOT2awZUSQy/0JSzkDp84Ox08pmmipuKOR5723On8bIyQrhGN6DiOlyPekQhj6FpNpeNedsXSxXVkMscv/+53EAK2bUx681shzS42ngLoWYRgg7dS94yltJL7EA0b5C0HvUi4XenluZ9rqJj2ORrjbUYOD45w/+OvBulkuibQNQiFjDndxH3TJ1dKUtMmluNiWm7w892VMtgU1HXhPeZKNE2QiBqs702wfaCT54+cKYQYZLBBduxUim8/fWzO+ITwuobnLIdkwjOCmi+m3QqUE2x7EYLtn0vFtFX2iKJFePifXyOds4OcZFdKTFNi2iZd7V4xQrHpU7JNEA3pnDGzAHR3REhlrMBbRNeguyNKKmNhmo4nPAI62yMMj2c5MjSBJrzyaynh1Gia+584UshPnouU4EjoiIfJmw561KC/J0E2ZzE6VSpgovB/9StYXz3mrLDtmSyRWpkve8S3oZ2dPfKrN2xv2kXIYlGirWgahsdzBcH2fiN7/1/iFClfOdMnL24tiUdDxKMhAI6fmQJE8NjpsQxO4US+4x94KzpDCBDgSkEub1f1BrFtl46uGJmczb3/4V0A3PvgIUJhg0hoppw9bzmcHs0Q0r2il9mr1WakkmAL4YWPwLsXkZDOf/+daxZ8/t1XbSnxED9XURuRiiZCzmtRUM70yQujlL7VdU0LMjbAE1tZZB5lO3OF2d8gq7a3aBjaHNOjSi6AgsJGpGhdwYbSzUnfcVGxeJRoK5qGvu44IIPNNV/wdE3MmEDNMn3yfkrrRCNGiTFRNGIQDevBY56AexuIMCPexfgbZD0VNir9mPZs06NKLoA9ySgSuWL+IMtFT0f1kIiYtXkYDasf+EtBibaiabj13VtJxMLBilcT0B4P88vvOo/ORJhMzqavK8bud21mXXecTM6mqyPGHTft4I4btwfHdCa8Ta47btoRPLa2M+qduxBb9bMS/Ni55xroEo0Y/NoNF/IrV20uWT2HdI22WIh13fE5xTmVXAB/7YYL2f2uzUTDBkIsvyPfctDT4WWJVIthe6mAhdew4LioWDwqe6SJsykWQ7PPd6H9Ihcy33L9I8tljyymWnJBPRULPiHlrukbRZ0azQQ55rom6O+OsWltG4d+NlK3MnWf2QUzPvNtOvYmo1ywoYOfDI7NMbyqF83+fq6EMoyqQqve9Eqo+bY2yzXfl14f5b5vvojtuKzpjPHbH7iEDWvaVj2006r3V6X8KRRNRLlV+cGXT3Pw1bO40vMnMTRKOrULQRCusWyJKyWaEETDGrGIwcR0njJ7q4vClZLPff3H5E17Qav6SEjz/LZnWbr6DY3rbdzVqijRVihWmWLBkq7L+LQZbLaOT+cZ/NaLgSc1eKEKa1avYCnnOu65UpLJO2TyFRoLL4LuReZhgzc+f4yGDqfGstz/+Ktc+/YN/NtLp9F1jXjUYCJt8sD3jgIo4S6D2ohUKFYR3xVwIm0CktEps6T03HFkiWCvJt3JKPYiBXs2mhAI4RldHXjueMVu9oq5qJW2ouUoXrn63iONtGLzNxNPnE03TX52PQXbR+AV29iOTdzWGZ/KY1mFylQJoxM5Dg+ONNS9awSUaCtaimI/63jUYDyVbaif2ocHR7j/iSN1Fb/lpjsZqbtgg1dQ5OXHC8anvF8axb8yXOk21L1rFFYkPLJv3z6uvfZatm3bxtGjR8se4zgOn/nMZ3jve9/L9ddfz0MPPbQSQ1O0GLN9s6Nho6F+au8/OFTRu6QR6e6IYNuy7oLtG3ZFw3qhoEniztrT1DStoe5do7Aion3dddfxwAMPsGFDZTeuRx99lKGhIQ4cOMA3vvEN/uqv/orjx4+vxPAULUSlkvGleGTXk5FJr09jM9DdEcF26ivYsbBGSPcaGPR3e4VP3rVmqky9KlfPdbGR7l2jsCLhkcsvv3zeY5544gk++MEPomka3d3dvPe972X//v18/OMfX4ERKlqF3mSUibRZYs402wtkNelNRkmlzYYX7noItia8knVDF6zvTVRM4+tNDnn3LKxjOzKoQtX1uT4uigaKaZ86dYr169cH/+7v7+f06dOrOCJFM7Jr5wAPfO8oebwVds6053iBrCa7dg5w/xNHMO2lrV41Da+v5DLsZHbVQbDjEYN/v/uimmLR/j2LRQxS6TyO9FwVy/m4KBpItOtFT0/bgp9TrfqoFWnl+V63pp1kMs63nnyNM2MZ1nbHueXd53P5jr7VHhowM76/e/wVfnE6VeqAp3nd2CfmaR6QTIT4T796GT97Y5z/9U9Ha+qOUytdHRGcJQp2si3Ef/rwZTW/5sX37I3TYDkuhi7YtK6jpnvXyu/ncjSMaPf393Py5EkuvfRSYO7Ku1ZUGXt1zoX5ntcb53du9d5H/nwbac7n9ca5+yPzhwxrOc/ajgj7Dw5x7HQK05JIKRFCoAlJFdvvsnS1L06wNSHo7ojMqWRcyGtefM9mU+08rfp+booy9l27dvHQQw9xww03MDExwT/90z/xwAMPrPawFIqG5tKtvSUhiPlE7OP7flA2pNLVHsFxF7vClkHDB8XysyLZI/fccw/XXHMNp0+f5qMf/Sg33XQTAHv37uXFF18EYM+ePWzcuJEbbriBD33oQ3zyk59k06ZNKzE8heKcoZyX9dIEW/ljrzTK5a9Ff15VQs23tZlvvg8cOML3D50M/r1UwQb4las2r1obsFa9v00RHlG0Fr/3hadLmtn2tIf5809etYojWhzV3Oceefr1kkazb9nazRtn0wyPZQBBR9wgb7tMZ2eKaQSQiBlYtotlu4HHNHhNazP5WcdGdSJhg1TaAiTJtghSSiamTVzXc/xb35vg8m1rODI0wdi0SXdbmO0DnRwZmigZ95rOGM//dCQ4f1d7BFdKQhps35TkyBuTC3ptNAG7r1w9wT5XUSvtFv2mrsRKzHe2YPushnAvZb5+Sbxlu2TzDpbjomuCrf3tDJ6cwqrgdeq3LquXFepC0DWIRQwyeZuOeJiORBjTdpnKWGRyVpCt0tkWQSKZnCdTpRzbNyW58/bL6jzyxdGqn1+10lasKOUEu9rjy8nzrw7zjQNHSlacQLB6joZ1kJKc5c75++CJSSSUpNS5rpx3ReosR/J0jTguTGdtNAHTWats+uBSBBvgyBuT3PvA/55XuP/mkZcCD3DwvsyklMvSweZcQom2omU5PDjC17//GhT6L75+MsXnHz6MAJJtEQxdcGo0DQi62sNMpE3uf/xVEIJ41MB2ZNO48M3GleCWyd9eqmD7zPfF9TePvMSzr5wpecxxvSbGecvhkWeOASjhXgTKT1vRsuw/OIRhCFxXMj6Vx5VeswBXwlTGZGLaRAgNIWAqaxMJ6eRMh1zeq6JsVsGuRL0EuxYOvnoWYE47Mt/ZTyA48JzyFloMaqWtqDs97eGKMW2fcht84AntyZE0mbwdhCUiIY337Rxg91Vb5m18W8zJkTTpnFUUW56RYcfxOoP72I7DL07PxEZHW8ykqLMtXOgsRKQAACAASURBVHfB/ti+HyClJ8KGLnBdF9stbQJc6YtPE5AzS90Oi98T5cJWyp7VQ4m2ou78+Sevqpo9MtvzujgsoWuCVMYqOV/ecvnOvx1jeCzDy8fGSefsoEP4qdE09z9xhDtu3F7yoT48OMJ01qrozTHfKnoVw9J1xxNs6r7C9sXZceWC4/iuLM3vLn5PCMGcsJXy1Z5BibZiWaiWJVLseQ0QCemMFVa2mla+v7eU3k9uQ/faVGnCMxVypSCXt9l/cKjkA73/4FBLCe9iSS6TYC8Wv1uNRAapjlD6nhieyiOE54g1lbVZ1x0mXzhGibYSbcUqMDKZIx4tfet5KzWJK+eKtpdA59l1Oq7309pHE+C47hzPZeXBDMlEGClpmC45fvZIJKTPyR4pfk/YjosmBFKCXTBQUb7aMyjRVqw45Tyv/bZTmiawndLu4f6CWSuET1wpgw0uV4KuaXM8l3uTUUZTOaScEf2F4H8xSLxVvhCeCKbSVpDC1sgkE94KuxEEWwAb1iQq7j1A6XvC0LVgP8MoNLRQvtozqOwRxYqza+cAjuOStxyklOQth2hYJxoxiEXKryOEgJ071hAN64UMEC+OKqVLNGLM8VzetXOAaMh7e8+W2GQiRCJaeb0igHjUCMIwui5IJsKEDI2dO9YsZeorQiMJto+/93B4cKTs34vfE+3xEFK6SAntMYO85Shf7SL0T3/6059e7UHUk2zWZCELoUQiQibTOG/u5aYR5tvXHaevK8bxM9NMpk262yN88D3n87YLejk9msG0HBx3pslrJKRx8zvP47brt7G+N8Ebw1Okcw5CwLqeBLdff+GcFVxfd5xNa9sYPDVJNudlKRia19ZK1zT6e+JcsKGD06Ppkth3bzLKDe/YiGm75E0HTQgiIZ31PQluuWYLN75zMwLJaycmS55XPhK/8jSaYOsaGLoGCBzHZTSV48pL+uccV/yeyORsutojtMcMbBe62yPccs2Wsqv0Rng/LweJRKTi31QZe4uWwVZCzbc6hwdHePjJQYbHMt5P9IIax2ZV8RWnp9Ur1upnxCyWjrYwNFAMuxyGBudv7Czr5bIYWvX9rMrYFYoaODw4wv1PHCGdNWdyuwsimjPtoIpvc39HkJ6WydVPIJck2InGF2wA24Wfn0rR1x1XqXyLRMW0FYoC+w8OkcvbhXSzUiQEVXzF6WmZ/Oo36O1IeEVLjS7YPnnLRRTCTrqusf/g0GoPqalQoq1QFBiZzOG4LuVSxaWcqeIbmcwRNub/6OiaQF/mT1ixYGvCiw1vH+ikIx5ioK+tYt57o6BS+RaOCo8oFAV6k1FSabNiUY5VSEObypjkTHvehrrL7fY3e4XtSpiczvPOi9YCMJE2WXiy48qiUvkWjhJtRcNTrRHBfMf3r2njuretrylmumvnQBDTrkbecslbqxsWaU+EgLkhkZzp8O2njxEJCaQUuMs0TH/9vpivhEhIQ0qJabsqlW8RKNFW1J1KIrtQ8fXPNdunpNrmlb+ZmMvbOK5n/v+LU6k53iTluHRrL3fcuJ2HnxzkxNl0w65R2xMhBKJqDDtveRWmSyFsaLhSzvlFsX1TkqEzaXKmjSbEnF8Umqjs3bJ9UxKEqFv2yLmIEm1FVXyhPTGSxnEkhi5Y35uY00yg2KmvuNvL2FSewZMvcfmFvbx2MlWz+PqU8ymZ7UNR/GUwOW2WdJRxXIe85fCXDx2eIxjbBzp5/qdnS9qDWY5kKmMFcrfUNLx60x6fX7BnEy6qKqyGJuDL//naJY1Psfwo0VZUpLjdViZvg/RWcMPj2ZJmAcUiHDE0LNtlKmshAF143V5++MoZkm1h4lHvZ3058S1HWZ8Sx2XwxCR3fvEZoiGNVNYOKhgrtQADz7g/EtLo645zeizDT9+YKBJkWdZOtuEEWyxMsBeC6qreHKi7pKiIv8pNZTwB1jSBKwXZvB0UMHW1e5VbvggPj+fQNOEdL7zIpy68Tbls3iHZNnP+YvH1V75+M9poSAtWxRQ1SSle+Y5O5gJjkWhYZ2IqP++c8pbL0PA0WoOtoOejbYGCXTBBxJXeaz9fEokQlLjuKRoXJdqKivirXNueSYPThOfC5gleqep5P8MlliPRi0TCLRQWFq+Cs3mbkQlPdMen8kxM5zkyNEFXewRdg1Nj2bLZF3MM9gv/PjOeXdDcmsm2tS0WQlvgCltK76XRKPhd13D8t58+xrefPoauCfp7KjeXmI3flT5r2ggEkZDgvHUdKl69TKg8bUVFepNRTNvFMLRAnl3peUl4Ocilbx/Tdunrjhec+GaOB0kiZqBrIjCJGp3MeqIi/C8C7wnTGZOprNfkoNlJRI2Ce+HiaYuF0PW5gh02vG4xxZS70mKSRxxXcmKkusGTzyNPv84jzxwjZ9qBkVfWdHnjzDQPfO/ovM9XLBzlPdKi3gWVWMh8i2PaU1krWNp2JCI4jhvEtMOGhmm7ZHI2HTGD0VSOnOmC8Fbf8WgIQxdcefG6IPwxOplD0wiE398k88MwmpjJiz5X8QV7dgMDQ4Ob37WZf3r+DaZz862hF4d3H7wvaO/zJOjrinLre84HZjagx1J5KDRum22Dq2kCQxOs7YqRM52KmUTgpS7ajlvSqX12tlFx+Mw/13VXvKklP7/VvEeUaCvRrkqt2SPRsE4qbRKPhQgbGqm0STpnY2jguIVuJXLmww3eBzxUyGywgpALRMI6juPOW7zSyrTFQhi6xsT0/HH65UbXRLCXEDYEoZARfFkPDU8Hx832LfdT/3TfXVHXcByXKy9ex7+9dBpd18jmLCbTVnC8EAKJZOf2tUG2kf9+SmVMkokI7fFQkOP9W7e+lfN64yv7gqwASrSroES7Ptz74KHAxD6Ts0hlLEzLCVZfokLuriYomN67wd9DujinV9mJmEFI1xtCsIu/WB3XDYy0BF6DArvoy7bccyXe/TV0QV93nLzlkJo26WgLEwnpvDE8Fdx3ISCka4UveFjbHQtSPU+PZbBtl5DhZf8A5C2HNV1xfufWS5dt/qtFNdFWMW1FXfD9ODI5i7GpPE7Rh9lrFVb+ea70Vtn+ZqWhLSws0gqx72Li0cYRbAC9EDf3W735SMCy5xdsXZvZvAYvXJYz7SB33L/vMPMLzFuhyxJ/F38z3C4aRNjQODOWqcMsmwsl2oq64G9aBumBNaipv0dnaIKwodHbGWXD2vaqQuwbMGkCtg90Eja0ws/qpc9htYlHDcKhxhFsAMfxys2rharKvfaGLggZGkKIYPMavL2LaNgI9jA0QUkhk+O6wZf26dEMmZwXOjEMreQ8/rnWdrdeaGQ+lGgr6oLfLsqy3SA/uJqOikL8Mh4xSLZFWNcTDwpvqgXshPBinBdu6uTO296OZbuFTJbmVu1AsGvINV9JavnNI6VnXrWuJ86azii65t3/aFjzUg+lS3s8FLQNu+EdG0taixWfx19IxyM6jusylsqTzprEwjoSSSxiBC3qHMfllnefvzwTb2BUnraiLvj5uP/jkVfIWzYhQ6MtFiaVscruMUgJjpS8ZWs349NmSaNff9OrXENeKV2i0XCwEWro2rzl2Y1OIwm2X5Tjp2O6srYipHjU8O5fSEcIwcRUnlzepb87BkKQMx06E+Ege2Rzfwf7Dw5h2y69SW8T2yx84SfbwiTbImTzNhNTeSanLbZu6ODdb10/J3vk8h1959SeFCjRVtSRS7f28u93XxQYPIULP49TabNsoYwAXj42zrVv38C/vXSaPF6cMhbWyeSdQmNdSmKp/T0zXb0PD440vWg3kmBrwkvTk9KzHuhORhlL5XFqUO3i+HMsYhAN62RyNn/y8SvKHn/p1t45hTd3fvGZgh2BmHOeO297OwC7Fzu5FkKJtqKu+B9EPxWwryvGR3ZtY//BIV4/mcKVM7FsV0pypsORoQluv/7C4DkDfe10tYX5yeAYOdMmHintz+iz/+AQHW1hwiGNiVm5zI1m9FSOWEQnZGgNIdgCCiEmwbruKAiB7Uovlmw6FcMk3r0UmLYb/FKCxflk9yajJb+4FnueVkeJtqLulFtFffXAURzXLamiFHj52yOTubLPmQ+/zD4SihAO6Yylcrh+F/d5BLvYPlQA4ZC2YI9sTcCmvnaOn5lGSrmg0vhYRCcc0ucUziyVkK5VNc2aja55edG737W55EvRL6yKhXVMyyn7ehb0mp3b1/DayVTwS2mxPtm7dg7wwPeOLvk8rY7K0z5H8rT9IpmxaZPutnBFX4jDgyM8/M+vMTyeAyR93Z4HBZQW0iAlOcud1y/bf97giVSJmBTHq/2VdLFNql99VzxG//wnR9LYjrcZpWuCWEQnZ7mFFDTPdCMWMciZdomQikKFpmW5JeXdmvAc7hx34c0NQgVXw4WwXIJdL3raw8SiISbTJqblYFpuSYYHeL9iin8BLcYrvRwLPU+rfn4borjm5z//OXfddRcTExN0dnayb98+Nm/eXHLM2bNnufvuuzl+/Di2bfOJT3yCPXv2LOg6SrTnUtxIIBE1SOdsHMfl9usvnCOK9z/+KumcXRRekERCBoYuiMdCOI7LWCoHCLrawxiGPqfKLShrz1pBqXsm6xXclCMe0cma3mqu3J3raQ9z9VvW890fDZEz3aqLaIEn2N3tYUYK5fSaIPBDqdQCLBE1yFvOsldhNrpg+wg8K9h0zgZkSUXj7PfNatKqn9+GEO3f+I3f4AMf+AB79uzhO9/5Dt/85jf5n//zf5Yc87u/+7ts2bKFT37yk4yNjXHLLbfwta99jf7+/pqvo0R7LsXViv7KMG95u/n+Bo9/nBd3lkGetSs9C9WQodHfm2B4LFMQNomua6wrU+Xmc2okDRA8z7ScOSGEkC7QdI28WV8PDX8T1HIcpAuikBa40FVxPYlGdCJNINiViIT1gnuj90XcCJ1nWvXzu+oVkaOjo7zyyivcfPPNANx888288sorjI2NlRx35MgRrr76agC6u7vZvn07//iP/7gSQ2xZDg+OMHhikrPjGYbHMoWVU/ku2F43cs8jxHJcL6boeitbf4VqO97KVeBVqfnnKq5y83Fc7zzDYxlyhc0svzYipHsFNbLoPEulOFPbLHwxIQlW/6uZyx0NN7dgA5imQybvkDW91ffrJ1Pc9/Bh7v7/DlZ08zs8OMK9Dx7izi8+w70PHlKuf3VgRTYiT506RV9fH7rurcJ0XWft2rWcOnWK7u7u4Lg3v/nNPPHEE1xyySUcP36cF154gY0bF2bM3tPTNv9Bs6j2rdbMPP/qMF///mtomoCCadPZ8SxrumLoGvSvaSuZe/+aNiamTWxHBn4hgbmT8CrcQoZeKCUWhEPeYznTJhYN4UpJtGilLQTIwnX9cznSj4sKJBAydMBrkLBUyv2+ciUIKbGXxwyvJqJh3WvS0MSCDTOvr5QwMW0iEGia4OxEjq9//zWSyTiX7+gLjvfff4YhSLaFmc5ZZY9bKq36+a1EQ2WP3HXXXXz2s59lz549rF+/niuuuALDWNgQVXhkhm8cOALCq1Ybm8ojCgo8OpEl2RbmuretL5n7dW9bz8uFlVBxgwEBuK7LdNaiLWYEMe1ENMR01sJxXK6/zMu1th0ZxLS9MAvIwv86xefzSuVoawsH/SSXC8eVhe7ky3aJirSKYJfDK8QROK5nw/uNA0dKHPf895+uadiO9P5XOHOOWwqt+vmt9kW0IqLd39/P8PAwjuOg6zqO43DmzJk5seru7m4+97nPBf/eu3cvW7duXYkhtiR+SpworH5TGSswciq3mXTp1l4SsRDZnI1d+OILGRrJRIi85dKZCDMymaO/JxFkj5SrcvN3/jNZi3BIYyprFxzaBNL1zKGKK+XWdcfZMdDJj46crbhR6LcHq6S75aonix+LhHQ6EmGGxzNY9sqod6SVBbvwv74fSKVw2+z+nuWOUyyMFRHtnp4eduzYwWOPPcaePXt47LHH2LFjR0loBGB8fJz29nYMw+DZZ5/l6NGj3HfffSsxxJakuFghHg0Rj4ZwXJe2aKji5tGG3sScAoe85dCbjJVsWpZjdq61vwG6rjtccq7ZG6A+O9/spXsdO50ib7lBKXt3e5hf37WdY6dSHHjuODnTDszygeAxfyVt6CKw9wSIhDT+8lPeXsnhwRH+/rs/ZSyVLxH5sFFqD7tUImGd2DyC7XumLEdFZzIRwnEl01l70ecozmUv/tI0dFHki+41xShXBKOKZZaHqtkjrlvbm0nT5t/PHBwc5K677iKVStHR0cG+ffvYsmULe/fu5VOf+hSXXHIJ//Iv/8J/+2//DU3T6Orq4u6772bHjh21zwYVHimmONXPD1kg4cPXnV9RtMs9Z7FpXvU8Vy34ra8EokRwfvld582ppqz2HInkwg1Jjp6YRBTW68X1Kn6uck9HlGhIYzSVI2vOHBAJed16xqtUOsYiOv/uHZt4/qdnOTmSLrGxXQqGLuhs85ot9yajICVH3pic51kzaJogYggSsTBjKa9JM9JrW6Zrgssv7OWNM9OcHM1g6BrJtnDFVMCVuP+t+vlddMrf9u3bAx+Aarz66quLG9kyoES7lNnFCv/nDdvnjSfWq1Bi9rmgfFup2cf6xTN6IcNkOmth2dWf44+1qy3MoZ+NBEUyhi6IRQw2FHXbefjJQYbHMoWuKgIpXRzXqwwMGxptUQOhaUjXZSJtVQzZlKMWwfZKxqHcArsjHqIjHiJnuURDGjnLZXwqX3UMhi4I6cJzQAzprOuOldyzw4MjfPnRl2tqTWbonvPi+t5E2fZexees5T1Sz/dSOVr187to0T5x4kTw308++STf/e53+c3f/E3Wr1/PyZMn+Zu/+RtuuOEGbrvttvqOeAko0a7Oas230orWL59+5OnXefzZIWzXC4sUr5RnEwtrnLeug+0DnRULenRNMDGdX9DmY9jQiIb1oGXa8FhmQRWStQh2LVSbe8XnaBR+FXgbz4YughVtca/PybQ572uSTISIRUMNV0hTjlb9/C56I3LDhg3Bf//t3/4t3/zmN+no6ADgTW96ExdffDEf+MAHGkq0FY3JgeeOI5jxvdYL7n0HnjvO5v4OHv/hkJdRUqCaaOVMl4m0yePPDpGIGYEPdySkM1ZY0fsx13IblJXwzP5dujqiZHLWggQ7XCfBhoULNoDrev0bJZDN23S2R9h/cIhLt/ay/+AQuq6Rylg1fYlNZSw626PkITiHonGoeSNyamqKbDYbiDZALpdjaqr1vuUU9Sdn2nOKWzThPb7/4BCOKwMhn09oJZ5A2463ckxlrCChfLbgLVT/XAm/OL2w93TY0EjUSbCXit+SqzhLw8/iqKWIyW9gASrTo1GpWbTf//7389GPfpSPfOQjrFu3jtOnT/P3f//3vP/971/O8SlahGjY8/bQi3Tb625iMDKZKzR0das2QCgmk7OCXPLV9DwLGxqJWGMINsyk4BVnafhZHIah4cxjF+A3PwCV6dGo1Ow94rou3/jGN9i/fz9nzpxhzZo1vO997+NDH/pQUOnYCKiYdnUaJabtFCxUo2ENTWgIAVnTpsaEpYbA687TOILt0xYziEUMzl/fwU8Gx8jkF5b2VxzTvvLidRU3IxuBVv38NoRh1EqhRLs6yznfSpkC/uPF+dc+freU5XbXqzchQ6M9HmIs1TiC7VsP6LrG1v52jp6Y9NL1FvDSdsRDhEM6vclo2Y3eRtucbNXPb10qIqWUPPTQQzz++OOMjY3x6KOP8txzz3H27FluvPHGugxU0bwU5+TGowYTaZMHvneUY6dSwQe/PR7GSuUo1mffG6SZaETBBgiHdTatbWM6a3H0eMrrhF5DVD8S1gO3xuLCp3sfPISua0FxTCSkq83JBqBml7/Pf/7zPPzww3zoQx/i1KlTAKxbt44vf/nLyzY4RfPgZyhECo1dIyEdXdc48Nzx4PGpjIUQpZ1rYHHZEqtFSNfoSCwtJNIe99ZK9TYdLHZdnPF9KXU/nO95xRuPI5O5Oc6NanNy9alZtP/hH/6BL33pS9x0001Bwc3GjRt54403lm1wiuah0ge82LLVt3UtRtD4vRx9DF2jo81bYS9mzAIv/JCIhdGEqFi45j8cCS3MOdkovM6m7aIJr+mDEPNn0BQ/r3jjsTcZnVNirzYnV5+a3xWO45BIJACCN1s6nSYer49bl6K5qfQBj4aN4HFD10pW1bLwf6vncl07Xnl4eMGC7c+tsy3Mpr62oPvPzh1rkMg5X2LxiBdP/k8fvJQv/u67+ZWrNlNDUTKagPaY12Kt+Py1vLbtMS+zZ3Y/xl07B3Acz5dcSln2GMXKU7NoX3PNNfzpn/4ppukZ4Egp+fznP8973vOeZRuconmo9AG/4R0bg8fb4yGkdIMNMx+tUK7eqPh+HqOp3IJX2Iah8c6L1rKuO04mZ9OZCHP79Reyd/fF7H7XZqJhAyFAE4JoWGOgr71ko2/3VVvYc+XmklW3rhU2HfHK8HuTUdb3xAFBV0es4vl1beZ1F3hZJht7vef54yqOVV+6tZfbr7+QzkS4ZOwqnr261Jw9Mj09zZ133slTTz2FbdtEIhGuvPJK9u3bR1vbwhsPLBcqe6Q6q5k9UtwUeDJj4TgSQxesL/iC+C5+2bxdZKnqpQPmZ/WG1IRgfU+MU2PZBXmDzEYT3i9HTXgbjJlZvt66LuhqjzA2masYe+9pDzM6VermFzYEW9YnVzxFTr2fW4MlZ49IKRkfH+e+++5jcnKSEydO0N/fz5o1a+o2SEXzM9uadb7HZ3PsVArbcYOQSUdRvvAn9lxY8gVwYiTN8Hgu8NmYnPaMqLraPYe7VNr0YrqFIIEmIBoxyOasEqOmkKHxvp0DQUfxv/vHI4wX7FR1XdDTEcF1vca2jZinrDj3qHml/da3vpVDhw7VZMO6mqiVdnUadb5+8c3s4prOtjDRiBE0W/DTCsdT+UDgwVt5e2599RmPrgm6OmZW2B3xUBCPbuQQQaPe3+WiVedbl8a+O3bs4Oc//3ldBqRQzMY3lPLx/yuVNoM0s+K0Qj8TRboS6RbamS2TYANMZa0gjXH/waH6XEihWAQ1F9f80i/9Env37uX9738/69atK0lXuvXWW5dlcIpzB99Qyi1uJoyXw+2nmY1M5pjOmuQKDQeKo8/16v6ia4UYdipfmulSZCR1ejTDHX/2g4rn0ASs701w67u3NuyKXNG81Czahw4dYsOGDfzoRz8qeVwIoURbsWR8kyMfXy8FBGlmX3705UCwlwNNE3R3RBlN5RYUYpuNK+H42TT3P3GEO27croRbUVfmFe1sNssXv/hFEokEF110EZ/4xCcIh8PzPU1xDlKSJRLSgsa9823gHR4cmSPaPu3xEBFD46sHjtbUeWWxaJqgpw6CXUwub6uSb0XdmVe0/+RP/oSXXnqJq6++mgMHDjA5Ocl/+S//ZSXGpmgiir1HJqdzjBTpa2ra5AvfeoloRC9p+/XVA0cZncxVrdhLZSzPL3sZ8QV7rI6CDWA5rir5VtSdeUX7qaee4lvf+hZr167l13/917n99tuVaCvmEHRHmc5hzVoQm4UdQs0SnB7LcN83DzeMBasmZgR7Kfne5ZASLy9doagj84p2JpNh7dq1APT39zM9Pb3sg1I0DrU2ZvW7o2TyldXYtBxs120swU4uj2B756d5jFUUTcO8ou04Dj/84Q+D7iC2bZf8G+Cd73zn8o1QsWpUslsF5gi33x2lKqJxfEY0Ad3LKNgA3R0RcgvoM6lQ1MK8ot3T08Mf/MEfBP/u7Ows+bcQgu9///vLMzrFqlKcFw3V/ZT9wpdqyEJrsIU0210OPMGOMTFVu2AL4aUD6rpGV3sk8J2+98FDTKRNxqfyOM6Mu56hCwxDpzOhNu0V9WVe0f7BDyrnoypaGz/kUUwlP2VfxL/82CtMZ8u3txLUrwBmsRQL9kK65UgJtiOxHYfTo5mSXG1NQCxiYFoSW84kK2ayFh++9vxlmIXiXKaxa9IVq8pC/ZQv3drLx2++iJAxNwgSMrTAYU7XBath6icKIZGFCvZ8uBLSOTtoOOC76tXkqapQLBAl2oqKLMZPef/BIXqSMc5b146uCUK6wNA1dE2wqa+d3mQEDUE8GiJkaHS2hRnoa2NdT5yOeGjZDPaFgJ5klIkpc1n6UQrh/QoZWNfOQF87/b0J4lFDlbwr6k7NFZGKcw8/5FFL9ohPcUjFMDQcx8WVkpzpBmXghu6tQKWUTEybTEwXb2DWPydbCO9Xw/iU5wS4HEgJzqy0GNWaS7EcKNFWVKVWW1UfP4skEtLpiIcYmZzbOMB25LIXzPgEK+zp5RNsH8ed8ScBL0dbE4I7v/iMsnVV1A0l2oo51JqbXe44P4skj7c5t5ppyr5gT06bWHUylFoIOdMhEpo/XVKhWAg1+2k3C8pPuzrzzbc4NztsaExlLKYzVlCCvn2gk+d/epZTo5my6XKxsEZPMgZSkrO8Mm5dA10r7y2yXAigpzNKatpc0etWGkvxKxUNa/QWvUb1XIWr93NrsOTONYpzh+Lc7GzeZipjIqW3avzZ8QmODE1UfX7WdDl+Nl3ymOPOjfcuJ40k2DA3Jz1XeI08G9iwWoUrFoTKHlGUMDKZC5rsptIm/jrRshun/Hw+ejqjTKWthhDsaggBU1lbNVdQLAgl2ooSinOz/e4wjjv3J36j0tsZZSpjkZ/tWtWACMAuvNYq00RRK0q0FSUU52brmgji1ppWn1qRkL58BSe9ySjTGYu82fiCDd6XoFH4VVOtaEmhKGbFYto///nPueuuu5iYmKCzs5N9+/axefPmkmNGR0f5/d//fU6dOoVlWVxxxRX80R/9EYahQu8rRXFudiZr4UoHCv3Rvc7mS8NahsIW8LJEprMWuSYRbPByu9tjRk1FSwqFz4qttP/4j/+Y2267je9+97vcdttt3H333XOO+dKXvsTWrVt59NFH4BWc/wAAIABJREFUefTRR3n55Zc5cODASg1RUeDSrb3cedvb+ctPXc0n338x/T0JpJQYukZ73AiKYxqF7o4omZzdVILd0xGhvzsGCDoT4Ybu8K5oLFZkCTs6Osorr7zCV77yFQBuvvlm/ut//a+MjY3R3d0dHCeEIJ1O47oupmliWRZ9fX0rMURFBfzimuKc7A29bWwf6OTxZ4/NaXiw0nR3RMnmbbL58iZVCyFsCNZ2xcnmLFIZG8d1EWImRBQ2NG68YoDdV20p+3z/NTo5ksZ2JLougjTJI0MTNVeVKhTVWBHRPnXqFH19fei6Z/Gp6zpr167l1KlTJaL9W7/1W/z2b/82V111Fdlslttvv53LLrtsJYaomIdylZGb+zt4+J9fY3g8F6T0zU7dFni+0qOpfN3HtBTBDumeGH/5P19bt/FUqx7dXberKM51GipYvH//frZt28bf/d3fkU6n2bt3L/v372fXrl01n6Onp23B162WyN6K1Gu+161p57or3lTTsXt+75G69l/s7oiQM+cXbCHmNo8RAlwgFg215L1vxTlV41yb74qIdn9/P8PDwziOg67rOI7DmTNn6O/vLznuq1/9Kp/97GfRNI329nauvfZaDh48uCDRVhWR1Vmt+e7cvoZnXzmz6OcXpxx2d0TImw6ZXGXBjoS8Ckw/+l78jvC6gEmuv2xDy9179X5uDap9Ea3IRmRPTw87duzgscceA+Cxxx5jx44dJaERgI0bN/Kv//qvAJimybPPPssFF1ywEkNULDN7d1/M9k3JqseEdEG44Lut6yLY8Jwj2JZLuopghw3Bm/o72HPlZgbWdWDowuvXiLfKjoYNdr9rc8XYtELRyKyY98jg4CB33XUXqVSKjo4O9u3bx5YtW9i7dy+f+tSnuOSSSxgaGuKP//iPGRkZwXEcdu7cyR/+4R8uKOVPrbSrs9rzrcWMyj9meDzLdNbCsl3CIY3dV27mJz87y7HTaUDS1x3n8m1rqm7yrfZ8Vxo139ag2kpbGUa16E2vRLPMdyyVY9+Dhzg7kcPQBedvSJLJ2cSjxoKyL5plvvVCzbc1UIZRimXn8OBIkEkCkmRbhGhIK3Gxe/ifX+P4SCZ4TiSk0R4PY1rOHH/t4pBIIhbixEiaqcIxvmmVAAydBaUdbt+U5M7bVUaSonlRK+0W/aauRL3ne3hwhIefHJzj7OcTC2tkzYUZNxVnfCTbwkjpm1ctL5GQxtsv6GV82mzanGr1fm4N1EpbsWTKxaKPnUrx6DO/KOur7bMkwU6snGAD5C2XZ185Q1vMoLsjqixTFQ2JWmm36Df1bHzRHZs26W4LL2gFWa4xQiptVhXrxTBbsBEwOb0ygl0JTRPoArZuSDbFqvtceT/7tOp81Ur7HKW4rDprOiSiBtGwzusnU9z38GESsRCm5WDZLoau0ZEIA15vQ6TXx9F2JDnTBiHqWhwzm2LB7kiEGkKwAVxX4oJadSsaBiXaLUrx6jhvObiuJJUxSaW91aMrCTb2BJ416MhkjnhEZ3zKa8Yr5cyxy9nscbZga0JjYrr+Ze9LIRLSyeO5HyrRVqwmyk+7RSluG+a4El0TuG5BiGcZYxfLcSbvIIQWeIjo2vI6+hULdns8hKY1nmD7qEYFikZAiXaLUtw2zNBnRHj2elmU+W9fp5d7s6NYsNtiIQxdY2Kq8QTbfz1UowJFI6BEu0Upbhvmxao9dRSUOvEVC7P/3/7fl3ONPVuwQ4bG+CoJtsD7RVGpM097PKQaFSgaBiXaLUpx27BoWKc9Hg5CHZqAeGTm1hdrVdgQ2I4n9hKWpTnubMEOh/RVE2zw5um4smLYfjJtcXo0w9mJHF89cJTDgyMrOj6Fohi1EdnkVPLyuHRrL8dOpfjHg0PkLU94DQ3iMQPbdsmZBQe8gmKHdY1IWGd6VmVivSkW7ETUIBzSGUs1T5x4ZDLH/3jkFf797ovUhqRiVVCi3cQUZ4jEo0ZJWhrADw6dwHYkmvBCHrYLTtYG4W1GdneEMQwdx3G5/foL+eqBo0yxfKI9W7CjEYPRJtrY80vrs3lbZZEoVg0l2k1McYYIlKalAeRMxzP8nxXDFhKEBlNZm3Xd4eA5voAW+374lHtsIWhF44g3oWD7+K+DyiJRrBZKtJuYkckc8WjpLSxOS3Ncb5UtizYWJX5vdbAL8Wr/OcuVLVIi2BGDeLQ5Bbtk01ZK7n3wECOTOXKmzXS21N9b4P2y0DSvKMm/ByHDC0Ml4yEQgpzpNKXHiWL1UKLdxPQmPX8Mf6UNpWlpqbSJK2UQlvBFxxdvo5AS6D8nlTYxbbeseC9W0IsFOxbRicc8wW5284SxqTyuhFzeKuuv4tcjuU7pRE3bxbRdpjMWmobyOFEsGJU90sQUZ4hIKUvS0nbtHCAa1pGyTC52QcTbY0bJc268or7pbJoQgWBHwzptsXDTC7auCUKGhiaE11R4gYZYxQjh+bhEQjq6rgVhLYWiGmql3cT4q7JKnWDuuGnHjMe16xIyNGKREG0xA6QkZ7l0JsIlGScAB547Ts60vaISIbAdb7XeHgshhJcCNx+eYHvqHA3rtCfCjE5kG1Kww4Y2b2qjrgk2rvWaRh8/M40mCFIjF4OEknOoaktFrSjRbnKKxbaWv83nirb7qi0lvRMPD47whW+9hCslWdNblRu6huPMhFEM3RN2n2LBjoS0QLCLN0QFXry3uyPCWCrvxd4RJef1j1ttnfeLb3wMQ8O2vS9B21lAB4ZZ53SlV60KqtpSUTsqPKKoiJ9S6FcKWraLK0FKt6R6sJJgh0MaybbIHMEGX4glI5M5HFdiORLbmRtPX27B9mLusmL1pwBiEc8d0Q9DxcI6EkksYhALL/4jJKWrqi0VC0attBUV8VMKO9sjJQUwrguaLuiIGExnrUCQ/UwJ8AS7sy3CyGRujmD7LCS6sNAVtyj8X6VLtMUM3nvZRp4/cobh8RyG7olzOmcF49IErO9NcOu7twIzYah13XHe/db1hYbCAl1fWvZIcYhKoZgPJdrnILV0RIeZlEIhBN0dUUYKK2YJdLdHAJjOevHtEsE2NLrao5ydyNbNg7vWswgBe67cHIR4agkH1crs12h3zc9UKOqHCo+cYzz/6jAPfO8oE2mzpIqynJ9GbzLKVMZieCzDWCqHXoi/CgFjqTxnJ7xVdLFghwyNLl/gl7FpQiWkhH9UWRiKFkattFuc2avqnOVWrKKcvZLsagsHnc89CpFoCU7h936xYBu6FqzI692KbCHkLZfDgyMq3KBoSZRotzDlvEnOjGfp6YhAUUFOcbpZcYuyqXnMo3RNBOJs6Bo9ySijk6sr2D5/+dBhAHRd0BkPYTmSnOkU3PwkIUMLxm/ZLrqm0dcV5db3nA+UplFuH+gsxK+bs0O7orVQot3ClPMmCemCyWmTeDT0/7d379FRlff+x99777lnJpkkk8REoBRUiBdalEpb4VRFBEvAG5UeqMseFNeq7WqXuqp0WS+0nvMTW1vbatvT0xZssa1VK1pQfmpdHoo/Ra0XUATkZriESxJyncxlX35/7JnJTDIJISSTTPJ9rZUlJDvDsxf4mSfPfp7vl46oTkt7jLhu4HY6eG7THl774HCqRVlv0ZsZ2AqhoIf6pkjGTpLhwDAsGlq795pMVj5MMU3qGjv472c/wOm0j9r7PA4ON4bZeaCJogI3AZ9TTi+KISdr2iNYeveapOKAG90waWmP0dDcQVw3QVFwOVXWv1GLblipFmU9NQVID2xNVSgtSgb2wNfezhULe60+EjeJRHXcTg1FUeiIGSjYpx8VRZHTi2LISWiPYOnda5IcDpWqUh/RmIGFgsOhUhJwU+R3Y5gWre1RDjeG0Y3sTQG6BnYo6KGxJZrXgQ2kjvtbFhhm573outnt9KOcXhRDSUJ7BMtWm0TXLRZecgY+j4MxZQWcVuLD53EC9j8G3QTDMFGzzLJ7Cuz4IHS3yTVF6Zxta2rn/xYOh5pxchHk9KIYWrKmPYJlq02y6PLJfCrkI1RU261CYOexQAWry4p2emCrCoSCHo6PkMCGzlm2x6nidNqFtFwOFa9Lo0U38LodWJZFTDfl9KIYUhLaI1zX+iPJwyZzp4/j8Zd2EqWzYJJpWhQVOInGTfS0khpdA7us2EtTa2xQ+kfmgqrQ590jmacfZfeIGHoS2qNUtlm4Q1XQTYtgQONIY5hIzMgoBqUkA7stRjTev0JJQ8Xt0igOuAkWuLhj8fknvF5OP4rhSkJ7FOs6C0/u645i1+bQDTMjsMuLvTS3xYjG8iuwAbwuTZY1xIggoS1SkgH+whufcLA+njnDDnppaY8TybPAVgC/z8lpJT5Z1hAjgoS2yHDehFK27TvOjv3NAJw5pgi3U2VPXSuRmI6CvR7scTuoKvGy40DzsGxs4HaqfOOqc5n1+U/3WjBKiHwjoS0Ae2nEnmGHU5X7FCAaM4jEDAoLXJQFvQCEI3EaWyJs39/9pOFQSm5+sQDTtGRWLUaknIX23r17Wb58OU1NTQSDQVauXMn48eMzrrnjjjvYsWNH6vc7duzg0UcfZdasWbka5rCUrAdysL4dw7BwaAqFBS6wLJrD8W6fi8TtfcTFfhfv724kEtPxuBxc/rkx3Hj1Z1Kv+9ymPbz41gE6Yrq93c2lEknreVhW7KWhJUJ7RMfn1jAtiMWNHutjDwedQ+uprYEQ+S1noX3vvfeyePFirrzySp599lnuuece/vCHP2Rc8+CDD6Z+vX37dm644QZmzpyZqyEOqa7V+LAstieWKNJpqkI4atGSpZhT+ue6ntgLR3XWbtpHUzjOZyeW8sf/u4OGlmjq6w5NyQzsoIf2iE57RE98v5HRWX04Sg5NVaCiWA6/iJEpJyciGxoa2LZtGzU1NQDU1NSwbds2Ghsbe/yep556ivnz5+NyuXIxxCGV3LWRrHG9t64la2ADp1xB79V3DvLfz33YLbDTCz2VBT10RA3aOzLfGIZzYCc5NAW/15naby3ESJOTmXZdXR0VFRVomn36TtM0ysvLqauro6SkpNv1sViMv//976xevToXwxtyXavxdatAN0CSLbs6op07QJwONeNUYyjoIRIzUuvaw4nHpRIq8qaqE4JCRbGHaZPL5fCLGDWG5YPIl19+maqqKqqrq0/6e0tL/Sf9PWVlgZP+noHU2BYj4LXbeg2mrhPlbIEdi5snrKM9FM6bWMJ/3dK/pbKh/vvNNbnfkS0noV1ZWcmRI0cwDANN0zAMg6NHj1JZWZn1+qeffpprr722X39WQ0PbSbW5OlEPwVwo8bu61wEZRAp2IaSMwC6yA9uewQ4vmgr76lr57s/+N2tDgn11Lbz41oGMB6597RE50sj9jgy9vRHlJLRLS0uprq5m3bp1XHnllaxbt47q6uqsSyOHDx/mX//6Fw899FAuhjYsdK0D4naqg7JE4vc66IgZqIqSEdilRW50w8LlUHE5VAzTxDRPrvv5YDJMu4Fw7ZFWdh5oSlUjrG+OdGmH1vnAde2mfZQGXHxr0fl8KuQD+t7QWIjhLGelWe+77z7WrFnDnDlzWLNmDStWrABg2bJlbN26NXXdM888wyWXXEIwGMzV0IbclIkhlsw+i2CBi3BE59OVhUweW9Ttui+cXc7vl19KaeDED2cVwOtSGVNWwJiQj1CRhzFlfqaeVZYR2BXFHpyqgt9rV7bTjeEV2EmWZe9gMU07sPuioTXGj/74Flt213d72NtbQ2MhhjPFsobjebb+G8rlkRPN5NL7Lyb7FabvBlEVhenVZSxbcC7/89wHvPHR0dRpQxUo8Dk5PVSQ8brJ19x3uCVjyx7Yx89PL/Wx8JIzmDIxxEtv1fLnf+wCwOvWOK3Ei8epcbChA1WxH1B2LQSVbNw73Lf79URRYNJYewLQdQkqGjf6XEAqX4zU5YKejNT7HfLlkXzQ9QCLbhjoBpiWhaooeFwq4yoCYFnsPNCCaWWGrdOhENet1OeTP7q7HCoXnBVi/7F2DtW3o6pKj30UTcvi9W1H2bl/U7e+hibQGo5zuDGc6lEI8PhLO4nrZrfABnt2evh4R2JG2cAr7xwE7KPpN847m7JiDz/607uoCrR2xOl6Hl1V7A+L/AxssG8puWfd58n85y4daEQ+ktCmc590XDcJR3WMLqFqWhbhqMHH+5vIlremZRGNZ0+1mG7y+rajaCooSs+BnS5bI9qkjpiBx+1I9SjUNDXrQZsk3bBn88nAnjy+hBvmnEUo6EFBob45QkfUQIFu95YoF9WtIcJQ6c9sX1FIdZnpOtOWDjQiH0m7MTr3SdtNXHt2Ko3GDdM+zXiqdN1MzRCTjXv1XhZ5XQ6VxsRBmglVhXz7us9SFvSiJrYXhoo8xA0z1bklnWWRajvmGICxn6qqUh9jEg8V+8rr0pg7fVzW1mtSqlXkI5lpY//47PM4Uk1cs0keTDkVppXoRXgKL+RIdJlJnz06HCpGlpKpLqdGLLFG7XFp3DivmtNKC2g63p66Zu70cew+9AFmovt6+tgU7BOYyfKmTW1Dtx1QVUmtzf/Pcx+w+aNjGUtUXSlASZfdI4DsHhF5T0Ibe7aZCr8euoqfamAriVdRFQXjBKldGnD1uETStZj/4y/txOuywzn9ZdMD26EpLL7sTMqLfTgdnT9cJdfxNRV0PbPUkkVyLdvC6VBoj+gD8sbVH5qmEPA62bC5likTQyxbcC7LFmTeQ09BnP6gqmvTByHykYQ2nfukvS6N1o6elxo0pf9LJAVeB163g+a2WK/1Q75wdnmvu0eyFfPfsLkWw7SIJnakODQ1tQvE7dRYPPtMvnjuaahpP0Zs2V3P75/fTiSqY5gmdgNyBbdTtV8rsU9cVRWK/PY+7rZwnHgPb2qDRVGgJODG63ZkfWgoQSxGGwltMvslGv3cPeJxqfg8TlraY8R1MzUj9bkdfGZiCcfbYtQ3R5hQVZiaJfc2Q0yfTWbTdYZ547xqpkwM8fqHdfz27x8BMK7Cz001Z1MV8qEq9gz7zy9uZ+2ruwlH9dRraSqJvdl2t3Gf24Fl2fdumhb1TREUVelx6WgwhYo8+DxOonFDHhoKgYR2ylDM2Pr75yV3u2iamnFQ5OMDTTz/Ri0WMLbcz03zqqks7Qzs5zbt4e//75Nu+9jTJ8+6YdEe0VNr3MlLLdMi173X3U4Vr9shDw2FSCOhnYeeenU3zW0xTMteCikscKEosP51exugqkB7R5xVL2zH49KYc6E9i3/xrQOY1ok38CkKkPZQMtdr2aoC06vLUz+dyENDITpJaOeZLbvrOVTfjqIoaImDOm3hGOG0cqsel4bTqVF7tI1Cnyt1GCcS03t62QyWZQd1cmZtMTjBrakKbqfGI7f+2wC/shAjl+zTzjMbNtfi0FSSVVzdTjUjsL1ujUCBm/qmDgzDoq0jjqapbNhci8flOOF2Q/t17Rm8U+tcxHY41AFv4GVhcfnnxgzwqwoxsklo55n65giFBU4s7K18yXZgAD63RmEisJPr1umHcU4UkJoKTk2lwOuiPOjB43bg1FSKA24qS33djoFnoyr2jhOvW8PtVLt9LcntVFnwxfGpEqpCiL6R5ZE8k9xTXhJwc6ypcwucx6URDLg51tSROhCTlDyMs2DGBJrCcf73nYOppQ4FUFRSJyLLg57UIRbI3KUyttxPsd/FWzuOdTuO73SoYNm1V9xOjZsXnJ31NWR9WohTI6GdZ+ZOH8efXtpJfSKwNVWhtMhNccDDvrrWVN2UVJNbTcnYeXH7kml8dmJpqtqgblhomtKtemBStl01yxL/Td/F4kqc1DQMkyWzz8r4HtlLLcTAkdDOM6qi0NASxcJebvh0pZ8FMyZgWRa/W/cRlmXZ9bITU+3KEh8LL544KCGavr9dZtFC5IaEdh75cF8jv3h6K4ZpESrycPOCsxlTHsCTqFy3dF51zgNUZtFC5JaEdp74aF8jP39yC3HDpLTIw7L5mYENEqBCjAayeyQP7Kg9zsNPJQK70A7s08v9GYEthBgdJLSHuZ37m/jpk+8T101KAm6Wza9mTJkfn0t+SBJiNJLQHsY+PtDET/76HrG4SXHAnZhhB/C5JbCFGK0ktIepXQeb+ckT7xOLmwT9LpbVVDOm3I+/DwdchBAjl4T2MLT7UDMP/eU9onGDogIXN9WczZiKAH6v85S63ggh8p9M24aZvXUtmYE9/2zGVQTwezrrhmQ7YbivroUX3zpAJKbjcTlSR9aTn1NVu2yfiYLHqXH558YwvrIw9ToelwaWRSRuyn5rIYYxxbJG1tytoaGtW73o3qS3oxoKz23aw4tvHSAc1fF5HHREdSzLrs3xrWumMO60AJveP8j612szGhcMBFWBIr8bh6bQ2BIBFHwejWjMRDdMqkIF3Q7mDJSubzyTxwXZXts04HvMh/rvN9fkfkeGsrJAj1+TmfYQSAZW7ZHWVIW+9MAGiBsmnxxpofZIC09v3IM5CB0ITAua22NoqoKiqJimSWu4sxfkgWPtPPzkFpwaTDw9OGBB2rWJw+HGMDsPNFFU4Cbgc6aaOkD/G0UIMVJJaOdYemB19BDYClAe9PLqu4cIR3SUQWxDYJp2SzGXQ031v+z6J8UNqD3S2i1I+1sIasPmWjRNxZ3YZ94RM1BQ6IjqFBa4cDs1oonrJLSFyCShnWPpgWVhN/wNRzIDO1TsJRozaG63O7JrqoLR4ysOjJje+1S+I2pQ6HengrRrY+DjrRE+PtBMgcdBVVrxqWzBXt8cySjzqusmqgJ6Wt+zZDlZIUQmCe0cSw+sroENEAragd3eEceTOECT7Kw+lCwyg/SpV3fT3hFDSfSftPPWIhzVU8sb++paeO2Dwxm9LH+//iOicYPjrRGcDo3CAhcOh4qum3Z514RkOVkhRCbZ8pdjoSIPMd1EUxUiUaNLYHuI6Qat7bFUV5fLPzeGE3d1zI30ID3SGAbsDu3pz30Nw66nrWkqL751IPVThaIohDvitITjROMmhgmxuEFDcwcOVcHCwut2YFmWNPIVohcS2jk2d/o4NBU+OdKKkZZ2pUUedN2iuS2G1+1g+uRy3t5xjPWvfzIoDyG70lRSLcx6crghzI79TXzrpxuJG1bq+mz7j1wOlUhMR9cNDjeG2X+klZZwPPX1xA7E1MeCL46nwOOgrr6dhqYIbof80xQiG1keybGyYh/HW2MYht1dpirk48qZE7hgUlnigSOp9eL2jljODtMYfXxjUJXO5RrdsHBomU1/HYmwjekmDk3leGsMsOi6C9NMNA9WFdA0hbe3H+VQQxiHplLkd6FbyA4SIbKQ0B5EXR/CXXTeaTz16h7CER2PS2PpvGomVhURDLhSgQ32w8pIVEdRVIxcTLN7oSiZM2nTAqemYFl2EKuKgpGIbEWBoN+VWt4oLHDR0BLp8Y3HAnQT2sJx2jriWBbEdZOGliihIk+qIbGEthCd5GfQQZLc2tfUHrO39MUMHtuwg+b2GG6nxn98uZoJVUUU+TMDe8vuenYfbEm17soVh0rGg8Akp9b5uWQfSSCxtxsmVBVSWuRhTMjH6aECLAuCBS6WzD6r87oT/NlW2uta2NsQj7dGZQeJEFnITHuQpG/tczoUPjnchp5YB/6PL09m4ulFBP0uVCUzsB9/aWfnWnEOxxsq9uF2ahxuDGMYZqrXZDqLznVv0wKvy8Edi8/v+TWLahO7RFTiunlS96PrpuwgESILmWkPkvrmCC6HmgrsuG6iAH6PgzOyBDZ0Bn0w4M7pWAt9TgzDJBo3CHgTNU4U+8MwrYwHlGric8ndLb2ZO30cqqKiGycX2GC/QcgOEiG6y9lMe+/evSxfvpympiaCwSArV65k/Pjx3a57/vnn+dWvfoVlWSiKwqpVqwiF8m9NM1TkIRI3MgK70O9ifIWfIr+7W2BD5x5uRVFQVQXLHPzNfj63g6XzqoHOBr2VJV5QFFraY6lu7S5NoS2iE9dNPC674NSCGRN6fe0pE0NMmxTi9W1HT3pcCnTr6i6EyGFo33vvvSxevJgrr7ySZ599lnvuuYc//OEPGdds3bqVRx55hMcee4yysjJaW1txuVy5GuKA+tLUKn63bju60RnYQb+L2Z8bi6ZmX+UNFXloSqx5uxwqumEBFpYFpmX/V1UUzhpTyN7DrUTj9pq3QwWvx8npiZOImz88zOaPjmEmFoqdGhT6XLRFdKJxE1VR8LhUxlUEMo6eD0ZAHm+LEfS7aE8Efl+pqiKBLUQWOQnthoYGtm3bxqpVqwCoqanhhz/8IY2NjZSUlKSuW716NUuXLqWsrAyAQKDnSlfD2fHWKE+/uicV2AUeB+PK/cy5cBxnjy/p8fvmTh/H4y/tJAoEfM5U5b3igAuHQ8MwzD7NPqdMDLFsQfav5boqWn1zhMICF0V+N4fq2/sU3KpifwghustJaNfV1VFRUYGm2QWCNE2jvLycurq6jNDevXs3Y8aMYcmSJYTDYWbPns03vvENlBOd+khTWuo/6fH1VgbxZB1r6uBHf36D+mb7Adw3F36GcyaUUFLoxXWCRryzygIUFfn426u7ONoYZmxFIRYWkahBWbGPay4+g2nVFac8xoG83xOpLPNzvKUDj1PD73HQ1BY74ZKPoiicXh4YsHHm8n6HA7nfkW1Y7R4xDIMdO3awatUqYrEYN910E1VVVVx11VV9fo2hrKfd3Bbl/zz+DkePd+DQFL52+VlUFXtAN2huCvfpNT4V8nHrwik9fv1Ux5rrmfasqVX8fv1H1EXa+3yAp8Dr5KoZ4wdknCO13nJP5H5Hht7eiHKye6SyspIjR45gGPZJOsMwOHr0KJWVlRnXVVVVMXfuXFwuF36/n1mzZrFly5ZcDPGUtbTHeOBPdmBrqsLXLp9E9bhiggEPmjrKN+koSupEpIK9Xl1U4ERVUptUUBT7Y0xZAUu/PFnWs4XoQU7SpLS0lOrqatatWwcy39klAAANMUlEQVTAunXrqK6uzlgaAXute9OmTViWRTwe54033mDy5Mm5GOIpaQnHeODxdzjSmAzsszj7U8UECz04Rvni7IbNtfg8DlTFLi6FYh+eaQ3HKfA6cGgqpUUeJo0N8p2FU/jBjdMlsIXoRc6mgPfddx9r1qxhzpw5rFmzhhUrVgCwbNkytm7dCsC8efMoLS3ly1/+MldddRVnnHEGCxcuzNUQ+6W1I8bKx9/hcGMYTVVYMvsszh5fQjAggQ2d+9WVRDXA5MlH04LWsD5sKhgKkS+kR+QprIm1dsR48PF3OVjfjqooLJ59JudNKCUYcGcc/x5Ocr0G+OCf3qGpPUZDc6THnSNlQbvOSF93x5yMkbrm2RO535FhyNe0R6K2SIwH/9QZ2P9+2ZmcO6GUIv/wDeyhMHf6OMId8V63+rWG46ka3Bs21+ZwdELkH0mXfmiPxPjRn97j4LF2VAW+OusMzptYStDvxiV1oLtTlB5rdStpbcakQJQQJyYJc5LaI3F+9Of32H+0DVWB6y49kykTQxLYPUg+iOyp8JOqKDi0zhrcUiBKiN4Nq33aw104GufHf36P2iNtKAp85ZIz+OwZEtjZJGuJ79zflOgF6aTQ5+zWvQYsAj6ntBgToo8ktPsoHI3z47+8xydHWu3AvvgMPntmiCK/C5dTAjtdssSspqk4HSqxuMGxJgNVsWt2m6Zd/6Si2C5MFYkZBAtcGXVQhBDZSWj3QUcszkN/eZ99da0owLVfmsjUs0IU+d24T3A0fTRKryXucWmpwlamBUqicuG8L3zqhFUChRDdyRTxBCIxnYf+8j5761pQgGu+ZPdzLPK78UhgZ5Xcmw0QiZsZTYOdDpWiAjfba5uGcIRC5C+ZafciEtf5yRPvs+dQCwBX/dsEpk0up7DAJYHdi/QSs7puL4UoioJDU6go8WFZluwSEaKfZKbdg2hc56dPvM+ug80AXDnj01xYXU6gwIXXJe91vZk7fVyqE45DUxN1RywKC+za6LJLRIj+k/TJIhrX+elft/DxATuwF1w0ns+fU0HA58Ingd2j9O7zHpcGloXLqWKaFn6fM7G+LbtEhDgVkkBdxHSdnz25hZ377TXXmi+O5wvnnIbf56LA42BkHfofOOk7RnweR6qb/I1dWpmFijyyS0SIUyChnSaumzzy9Aeph2TzvvApLjr3NPw+J34J7KySs+vdB1tQFAgG3CiKgtupEcUO6zsWny8hLcQAkTXtNKtf2M4HexsBuOLz47jovEoKfE78XqcEdhbJ2XVTewzTsjBMi8aWCB1RHZBj6UIMBplpp/n4gD3DnnvhOGZOqaLAKzPs3qTvx3Y47Cp9YHdx97odWR84pq97y1KJECdPQjvNd/99Ko2tUYJ+Fz6Pk4DXgd1XRWRT3xzB57H/CRX6nDS2RlGwiOtm1geOXde9m9pjPP7STmBwOsELMRLJ8kiasqCXT1cW4nM7JLD7IFTkIZYouerzOCkJuBMdahSCBa5utbHTZ+bJdW8pxyrEyZGZdhcOTcHlcyKBfWJzp4/j8Zd2EsVev9Y0lSJ/97BOSp+ZJ8m6txAnR0K7C7Wnws+jSF/XnZOf6+sadfpJySQ5aCPEyZHQFhlOdt15ysRQn9eju87Mk3u55aCNEH0na9oiw2CuO0+ZGGLJ7LMIFrgIR/Ss695CiN7JTFtkGOx155OZmQshupOZtsiQviMkSdadhRg+JLRFhvQKfZZlSYEnIYYZWR4RGU52R4gQIrcktEU3su4sxPAlyyNCCJFHJLSFECKPSGgLIUQekdAWQog8IqEthBB5REJbCCHyiIS2EELkEQltIYTIIyPucI2qnnw97P58Tz6T+x3Z5H5HNsWypG2tEELkC1keEUKIPCKhLYQQeURCWwgh8oiEthBC5BEJbSGEyCMS2kIIkUcktIUQIo9IaAshRB6R0BZCiDwyakJ77969LFq0iDlz5rBo0SL27dvX47V79uzhM5/5DCtXrszdAAdQX+/1+eefZ/78+dTU1DB//nzq6+tzO9AB0pf7bWho4Oabb2b+/PnMnTuX++67D13Xcz/YAbBy5UouvfRSJk2axM6dO7NeYxgGK1as4LLLLmP27Nk8+eSTOR7lwOnL/T766KPMmzePBQsWcM011/DPf/4zx6PMIWuUuP766621a9dalmVZa9euta6//vqs1+m6bn3ta1+zbrvtNuuBBx7I5RAHTF/udcuWLdYVV1xhHT161LIsy2ppabEikUhOxzlQ+nK/999/f+rvMxaLWQsXLrTWr1+f03EOlLfeess6dOiQdckll1g7duzIes0zzzxjLV261DIMw2poaLBmzpxp7d+/P8cjHRh9ud+NGzda4XDYsizL+uijj6wLLrjA6ujoyOUwc2ZUzLQbGhrYtm0bNTU1ANTU1LBt2zYaGxu7Xfub3/yGiy++mPHjx+d4lAOjr/e6evVqli5dSllZGQCBQAC3253z8Z6qvt6voii0t7djmiaxWIx4PE5FRcVQDPmUTZs2jcrKyl6vef755/nKV76CqqqUlJRw2WWXsWHDhhyNcGD15X5nzpyJ1+sFYNKkSViWRVNTUy6Gl3OjIrTr6uqoqKhA0zQANE2jvLycurq6jOu2b9/Opk2b+PrXvz4EoxwYfb3X3bt3s3//fpYsWcLVV1/NL3/5S6w8rB3W1/u95ZZb2Lt3LzNmzEh9XHDBBUMx5Jyoq6ujqqoq9fvKykoOHz48hCPKnbVr1zJu3DhOO+20oR7KoBgVod0X8Xicu+++mxUrVqQCYCQzDIMdO3awatUq/vjHP7Jx40aeffbZoR7WoNmwYQOTJk1i06ZNbNy4kbfffjtvZ56iZ2+++SY/+9nPeOihh4Z6KINmVIR2ZWUlR44cwTAMwA6so0ePZvzIdezYMWpra7n55pu59NJLeeyxx/jrX//K3XffPVTD7pe+3CtAVVUVc+fOxeVy4ff7mTVrFlu2bBmKIZ+Svt7vmjVrWLBgAaqqEggEuPTSS9m8efNQDDknKisrOXToUOr3dXV1I3bmmfTuu+/y3e9+l0cffZQJEyYM9XAGzagI7dLSUqqrq1m3bh0A69ato7q6mpKSktQ1VVVVbN68mVdeeYVXXnmFG264geuuu44f/vCHQzXsfunLvYK99rtp0yYsyyIej/PGG28wefLkoRjyKenr/Y4ZM4aNGzcCEIvFeP311znzzDNzPt5cmTt3Lk8++SSmadLY2MjLL7/MnDlzhnpYg2bLli3ceuut/PznP+ecc84Z6uEMqlHTBGH37t0sX76clpYWCgsLWblyJRMmTGDZsmV8+9vf5rzzzsu4/he/+AXhcJg777xziEbcf325V9M0WblyJRs3bkRVVWbMmMGdd96Jqubf+3hf7re2tpZ7772X+vp6DMNg+vTp3HXXXTgc+de86f777+fFF1+kvr6e4uJigsEg69evz7hfwzD4wQ9+wGuvvQbAsmXLWLRo0RCPvH/6cr/XXnstBw8ezHi4/OCDDzJp0qQhHPngGDWhLYQQI0H+TauEEGIUk9AWQog8IqEthBB5REJbCCHyiIS2EELkEQltIYTIIxLaYlS4/fbb+d73vpfxuTfffJPp06dz9OjRjM/fdNNNTJ06lalTp3LOOedw7rnnpn5/zz339HsMP/7xj7nrrrv6/f1CAOTfyQIh+uH73/8+NTU1vPbaa1x00UVEo1Huvvtu7rzzTsrLyzOu/e1vf5v69fLly6moqODWW2/N9ZCFyEpm2mJUKC4u5vvf/z5333034XCYRx55hLFjx3LNNdf06/Veeukl5s+fz7Rp01i8eDG7du1Kfe3RRx9lxowZnH/++VxxxRW8/fbbvPzyy6xevZq1a9cydepUFi5cOFC3JkYZmWmLUeOKK67ghRde4LbbbuPdd9/lmWee6dfrvPfee6xYsYJf//rXVFdX89RTT/HNb36T9evXs2vXLv72t7+xdu1aSktLOXDgAGDXhP7617/O8ePH+c///M+BvC0xyshMW4wq99xzD5s3b+aWW27JqDd9Mp544gmWLFnCueeei6ZpLFq0iFgsxocffoimaUSjUXbt2oVhGIwdO5axY8cO8F2I0Uxm2mJUCYVCFBcXn1KFv4MHD/LCCy/wu9/9LvW5eDzOkSNHuPzyy7n99tt5+OGH2bNnDzNnzuR73/seoVBoIIYvhIS2ECersrKSiy++mKVLl2b9+tVXX83VV19NS0sLd911Fw8//DD3338/iqLkeKRiJJLlESFO0nXXXceaNWvYunUrlmXR3t7OP/7xDzo6Oti1axdvvvkmsVgMj8eD2+1OlbtNrnFLYU1xKiS0hThJF1xwAXfddRf33nsv06ZNY86cOaxbtw5FUYhEIjzwwANMnz6dGTNmEA6H+c53vgPAvHnziEQiXHjhhXz1q18d4rsQ+UrqaQshRB6RmbYQQuQRCW0hhMgjEtpCCJFHJLSFECKPSGgLIUQekdAWQog8IqEthBB5REJbCCHyiIS2EELkkf8P1/t4FFvkIYUAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAFtCAYAAADMATsiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9e5hcVZnv/1l779p16+p7p9NJaEICJAGMN5ggYESQTCQaBsTLgVF/oBmdccbfz2ee4TCXozgyl+CcmdE53o4efGZGUAe8EEBjVMaRCEQ4oOEWI+HS5NJJujt9q/vee/3+2LWr695V3dXdVZX1eR4lVb1r77Xq8q1V73rf7yuklBKFQqFQNAXaUg9AoVAoFNWjRFuhUCiaCCXaCoVC0UQo0VYoFIomQom2QqFQNBFKtBUKhaKJMJZ6APVmdHQax6k+i7GrK8SpU7EFHFFjoebb2qj5tgZ9fZGyfzvtV9qGoS/1EBYVNd/WRs239TntRVuhUCiaCSXaCoVC0UQo0VYoFIomQom2QqFQNBFKtBUKhaKJUKKtUCgUTYQSbYVCoWgiFkW0d+7cyRVXXMG6des4ePBgyWO+8IUvsG3bNrZv3851113Hww8/vBhDUygUiqZiUSoir7zySj7wgQ9w4403lj1m48aN3HzzzQSDQQ4cOMDv//7vs3fvXgKBwGIMUaFQKJqCRRHtCy+8cNZj3vzmN2f/vW7dOqSUjI+Ps3z58oUcmkKhUDQVDek98v3vf5/BwcE5CXZPT1vNj6lU59+KqPm2Nmq+rU3DifYvf/lLPve5z3HnnXfO6fG1Gkb19UU4eXJqTtdqRtR8Wxs139ag0hdRQ4n2U089xZ/92Z/xxS9+kTVr1iz1cBQKhaJmJBKBWLDzN0zK3/79+/nEJz7B5z//ec4///ylHo5CoVDUzOhkgl/9dgQpq/+1XyuLItq33347mzdvZnh4mJtuuolt27YBsGPHDp5++mkAPv3pT5NIJPjkJz/JNddcwzXXXMNvfvObxRieQqFQzJuXhyf51P/5Jf/ynac5dGRywa4j5EJ+JSwBKqZdGTXf1kbNd2l49fgkd3zzV0QTFm1BH3+zYxORkDnn86kmCAqFQrFAvHpims9+69dEExahgMHHrr1gXoI9G0q0FQqFYo4cGZnmH775FNPxNCG/wYe2bWCgN7yg11SirVAoFHPg6GiUz979FFPxNEG/zs3bNnDGsjbCgYVNylOirVAoFDVybMwV7MlYmoCpc/O28xjsb6Mr4kfXFlZWlWgrFApFDZwYj3HH3U8xEU3h9+ncfPUGzlwkwQYl2gqFQlE1IxNxdt71FBPTrmDfdPV6Vg9EFk2wQYm2QqFQVMXIRIK/v+tJTk0lMX0a/8/b17NmRfuiCjY0WBm7QqFQNCKjkwnuuPtJxiaT+AyND25dz9oV7XRFAujawpWsl0KttBUKhaICY1NJ7rj7SUYmEvh0jQ9uXcc5Kzvoal98wQa10lYoFIqyTEwnuOPupzg5nsDQBe/fuo5zV3UumWCDWmkrFApFSSajSXbe/StOnIq7gv2761h/xtIKNijRVigUiiKmYkl23v0Uw2MxdE1w41XnsmGwa8kFG5RoKxQKRR7ReJo77v4Vx0ZnBPv81d10NoBggxJthUKhyBJLpNl595McGYmiCcF/e9s5XHCWK9hGAwg2KNFWKBQKAOLJNHd88ykOn4yiCXjflWezcU1PQwk2qOwRhUKhIJaw+Oy3fsXQ8WmEgPdccQ6vO6d3SfKwZ0OttBUKxWlNPGnxP7/9K14ZnkIIePdbz+YN5/ZmKh0bS7BBibZCoTiNSaQs/vE/fsVLxyYRwPVvWcuF6/oWvTS9FhpzVAqFQrHAJFM2//gfv+bQEVewr3vLGi7asKyhBRuUaCsUitOQZNrmn+75NS8cngDg9zavYdN5/Q0v2KBEW6FQnGak0jafu+fXHHx1HIBrLjuLN53fHIINKntEsYTsPzTC7n1DjEwk6O0IsH6wkwND49nbWzcNAuQds3XTIBvX9pY9R+HfZ7tmqeN37X2RPY8fJp6yEAj8PsGZy9urGk+la3W1mfz60BjxlIWUpcf3e5etZvtla2p5GheNXXtfZNfel3EytwVw8XnL2LH9grKPqfX1mSvVXidt2fzLd/ZzYMgV7HdeuppLX7N8ToK9/9AI9/7sEMdGY9jOzAuqCVjRG+b6y9cuyFz122677ba6n3UJicdTZT8QpQiH/cRiqYUbUIPRKPPdf2iEu358kJTlEDB1RicT7H9xFMuWtAV9RJMWv3z+BE8dPIktIWDqRJMWv35hhP6uIP3doaJzFP4d8udbzfG79r7IrkdexrIdpAQJWLYknjn2qRdGsaUs+/hy8xsei/HisSn3vBWelwND4wgk6wa75vS8LtTru2vvi3x/78tFYz98MsqJsShvXLes6DHVPN/zJRz289jTR6u6Ttpy+F/ffZpnXjoFwLY3ncnm166Ys2Df+YMDjEwkcAqeFAlMxdI898opVvSG5jTXcNhf9m+N/1tA0ZLs3jeErmv4fTpCCOIpG4EgnrQQQuD36SSSFomUnT3G79PRdY3d+4ZKnqPw77Nds9Txex4/jEBkxclL+IpnxpJIWlVdr2h+SQugomDnjqHRqDSmfc+fLHl/ra/PXKnmOpbt8IXvPc3TL44BcPXFZ/KW181NsL1rJpJWxRc0kbTqPldQoq1YIkYmEpjGzNvPshw04X64PGzHyfvZCWAaGiMTiZLnKPz7bNcsdXwiZaEJkHJGsAEcCbYjsR2n4uPLXatwNVaJRMqq/uBFotKYnDI/bWt9febKbNexbIcvfv8Z9h8aBWDr7wxy+RtW0N0+9xj2yEQC2yn/q0nivn/rPVdQMW3FEtHbEWA80xgVwDA0LMvBl/PhK/WBSlkOvR2Bkuco/Pts1yx1fMA0SKZtRIFwa4JMoUV+sUW56xVeSxPVC3fAbLyPZcA0iCVLC7cmSheglHq+p2JpkimbW770CAGfRiLtMDqRyPtlEw7oBPw+pOMwEU1hOSVPn89E6bs/tPMhAj6deMoGoCtiMri8je6IH03Mfc3a2xFgMprCKSPcAvf9W+69OB/USluxJGzdNIhtOyTTNlJKgqaORBL0G0gpSaZtAn6DgKlnj0mmbWzbyW4IFp6j8O+zXbPU8VsuWoVEZqXZ+0AGM2MJ+I2qrlc0P78rxNXU1225aFW1T+OiUWlMmzb0lby/8DmYjKaYiLr9FUFydDTGSI5gg/t8TydsxiYTjE5VKdhlEIBpzAi2EBD0+/ivXx3hmUyYZK5s3TRIwG9UfEEDfqPse3E+qI3IBtmYWywaZb793SH6u4IcPjHNRDTFsq4gl16wnETKZiKaojvi591vXcvrz+3LHtMd8XPd5jXZHfnCcxT+HfLnW83x6wa7QEpeOT6N5ThoQhAwNQb7I7z7rWfz+nN6Kz6+3PwGekKcs7Kd0ckkabu8EvV2BPjjd22c8/O6UK/vusEuBJKDQ+N5q+I3VcgeKXwOEkmbUMCgo83P2FQSyy7/Qa3hI1wSAZiZL3yProiJz3DvO3ximktfMzDn8/d3h1jRG+LwiWmiifxsIE3Ayr4wN1517pyzRyptRAopa5G4xmd0dBqnhgBiX1+EkyenFnBEjYWa79Jzy5ce4dRUEk2AyAkt2I5DVyTAHX94yZzP3Yjz9bjlS48QChgIITh8Yrpov6Ke+E2dZGpGsCMhH+GAwehEgoHeMLGENa/neaHp64uU/ZsKjygUi0xvh+sclytZjly4GGij0NsRIJWJdxjGwklPoECw28M+AqbB6GQCTdcq7ns0A0q0FYpFZuumQQKmjpRu5oXtSKR0FiwG2ijkxrgjQYNKBnpzNdfzmzqJAsH2+wxGJ+I4EoKmXnHfoxlQoq1QLDIb1/Zy87YNDHQHEQg0AQM9YW6+ev2CVNA1ChvX9nLjVefSGTYBwYqeEL0dgby9PAG0BXS62wP0RExqWZAXhkQ8wZ6KJQmYBiG/wfLu0LxizY1A4+UWKRSnARvX9ja1cMyVes+7ry/CiROT3PXjgzz05BEANp3Xz7vechbdkSBaA/phzxe10lYoFE2LlJJv/vS3WcG+aP0yrmthwQYl2gqFokmRUnLnrmf5yRNuif0b1/Vx/VvX0NPCgg2LJNo7d+7kiiuuYN26dRw8eLDkMXv37uW6667jggsuYOfOnYsxLIVC0aRIKbn3vw7x/Z8fAuAN5/bynivObnnBhkUS7SuvvJK77rqLlStXlj3mjDPO4Pbbb+dDH/rQYgxJoVA0KVJKvvfwS/zwMdeM6XVn9/LeK86hOxJoecGGRdqIvPDCC2c95swzzwTgpz/9KanU0lfsKRSKxuS+vS/zwCMvA3Dhhn6uf8sautsbr2v6QtFy2SM9PW01P6ZS9VEroubb2lSa7xPPH+e7P3uB42Mx+rtDXHf52QB5971mbQ9PHxrl0KvjJNJ2UYWxBpwxEEEgODkeI54sPgbcIhdwTbUcR+L3aXRG/EzH09nHePdJBEG/zsRUkomoa0VhaNDTGUQismN9+FeHeSgTwxYCTp6a5ps//S3DozGWZY65cEN/nZ7JxqTlRFuVsVdGzbe1qTRfrymBrmsEfBonT8X4p7v/LwhBKGAQ8GkcPj7Fsy+O4NM1kunSHikO8Mqx2Z/T3CIXgGTa4fhYvOR9Ib/GybF8xzzLgeNjcTrCPk6eivGPdz/BVGzGabAjbBJN2Lx6fISejgAnT8X44r2/avo8bFBl7AqFgtLNAgobO8STbou1coJdLwoDGbFkeW/qqVgax3HyBLu33Y9haK6tq3SPWagmC42GEm2F4jShVLOAwsYOlu3MuYR8rsx2OcPQOHFqpplAoWC7LeHcOSxEk4VGY1FE+/bbb2fz5s0MDw9z0003sW3bNgB27NjB008/DcATTzzB5s2b+frXv863vvUtNm/ezMMPP7wYw1MoTgtyDZs8dE3kNZswdK2mLjv1oNLlTJ9GKrPqF0BHm4mma5yaSmaPEbjjhspNMFoFZc2qYp4tjZrvDLkxbdNw3e5i8XQ2pm0aGlOxNBPRZMWY9kIQ8mvEC0Ik3hgBfIZGX0cAIQTDY1FcqZbYjvuv3s4Auq5h207Lx7RbbiNSoVCUxhOy3fuGGJlI0NsR4H1XnJ13X39XkLe8doADQ+O8MjxJMi2LekAKYGVvCIRgbDJBIuWU7BPp97mr37TlnsM0NNrDJrFEOvsY7z6A7ojGZCzNVCyNL0ewDV2w/oxOfvfiM7Asyb0/O8TxsRig0d1l4jfc2Hxn2GTrpsGmF+zZUKKtUJxGlDNsKrxv+2INqAR7nz7KnQ8eAOCsgQgffsd59HeHsr0oc8d6uv2SArURqVAoGohHnznG1zOCfebyYsFWKNFWKBQNwmPPDvO1B59HAoP9bexQgl0SJdoKhWLJ+eXzx/nqA88hJZyxrI0/eOd5LO9Rgl0KJdoKhWJJeeLACf73rmeR0u1i7gp2WAl2GZRoKxSKJePJgyf58q5ncSSs6A3zkXeez0CvEuxKqOwRRcOz/9BIXprabGldu/a+yJ7HD5NIWQQDPq5640q2X7am5LnWD3ZyYGi87O1qU8gqjXH/oRHu/c8XODoaw8uMM31uOfmK3nDRNbxzHToyTtouvpYmYPulq7Nzyn3M2HSK7rbyqW/eWI6fSpC2nUy2s4vAXelef/naWedc7Wuy/9BINkXP7Tgv8Js6K3vDrBvs5P5HXsFxJLom6GrzMRlPskrUbvp2OqGKa06zlKFmm2+pgpBKBRS79r7IrkdezjbMdXD9l7dfsprVA+1555qMppiMpegI+4mEfNnCkvaQSXvYnPVa1YwR4M4Hn2cqli6q/BMCOtv8GLrIXsM718R0kpRV+X3cFjSIJaySFYyagFDAyDS6Ffh9gkTawbKr/2xoAroifoQQbsl45n5dE9g5F9V1QTjg44rXr+DA0DhHR6IkUjaW7ZQcmxAQCfmYjKaz51s9EMFnaIxNJLihhuKYZns/V4syjFI0LaVMjiqZAu15/DACga4JhBAYmoZAsOfxw0XniqdsBBmTpByzpHjKrupa1Yxx976hIre7LBLiSSvvGt65ZhNsgOl4acEGcKT7d8uWpG2H6YRdk2B75xidTDKSI9hAnmAD2LZkMpri/kde4fipOFOxtGvHWuZymhBZwQZYPdBOOOgjkbTRTgPDp/miRFvR0JQyOapkCpRIWUWGR5pw7y88l2W55kie2ZBnlmTl+HNUY0BUaYwjEwlsR5b01/CMjnKvUepc82KBQ8O5p7cdSTxplT0WQCtYpXe2mYSDBpPTKSSnh+HTfFGirWhoSpkcVTIFCphG0QrPke79hecyDNccyTMb8sySjBzRrMaAqNIYezvcjiqltNMzOsq9RqlzzYfFCH7mzs2yy1usahp5ocvuiJ+AqWcFG04Pw6f5okRb0dBs3TSIbTsk0zZSSpJpG9t22LppsOTxWy5ahUS6q1spsRwHiWTLRauKzhU0dSSSoN9wb/sN97apV3Wtasa4ddNgtoNLEQKCfiPvGt65TKM+S+SFTsKQkBPrdr+ESl1SE5DjAMtAT5BI2Ec8ZZOo8rVVuOi33XbbbUs9iHoSj6dqWl2Ew35isdOnJ2Wzzbe/O0R/V5DDJ6aZiKbojvi5bvOashtV6wa7QEpeGZ4mbTkE/T6u3jTI9svWFJ1rWVeQSy9YTiJlu7c782/Pdq1qxtjfHWJFb5jDJ6aYjrtxXIFrphTyGwz0hPKu4Z3LiyWXw2cIZBUL8sVKnPMZgpDfh5lprJB7fZGbogL0dwUZ7I+w5aIzeP05vVW/tqVotvdztYTD/rJ/U9kjLbr7XA413+YiN30xYBpsuWgV2y9bk02lOzoSRUpXGDUBUgg0oKPNj5TuBqGXPZK2ZTb0UulT7wm9KJM9YuiCoN8gkbQAQX9XgOvfOuMW6GWP2I5EE26s25Fu/PqPrr2ANSs66paH3eyvbzkqZY8o0W7RF70car6tTan55uZm246Dz9CyaXvz8cwWuPnmuiZIWTPphH6fxts3DRLwG/zHQy9k9xg6IyamrjE+nWJZpyv087VRbdXXV/lpKxSULggBaircqfU6AVMHKRmZTJBMO+6qGOiOmLz5tW5e85GRKLYtMXRBe8gHQjARTRGNp6vqItPT7uf9v7uubHHLV+57hnhqRpzr1dxAljlXMu1w396XQcys6CNhE13TOJlpEXZ4JMY/37M/+xhdE0jpFtn0d4dKFviU+tXxoWtfW5e5NBNqpd2i39TlOF3nW7JrS8ICKQkFfVUV7lRD7nVs22FsMoHjlG+pFQ4YJNI2SDezQmSErtYPZdCv85Ht53PlxWflvb6f/NpjHB6JzWku80HkCbYP09AZm0zMut8kcLNMwkGTm69en30dioqmJEgk77tqHW97/cqFncwSoIprFKc9JTuRJy0SKbvqwp1arzMVSyOEVlGA3YIed6UJzLk/YyJllxz38VOLn/M8V8F2HwxCaCSSVt58Coum3DRKwX0/f3FhJtHAKNFWnBaU7kTuFFX3zbe4I/c61XQ2d+TMxp8s+G8tSEmZcS/uD+k8wQ65gu11Ta8GKclsXjp58ylXNDVbMU8romLaiqaimrh0runTQF8bV75+BQFTZ3g0hiMlhp7pSygEjiM5cnI6e5+miaqKO3btfZEfPDY003hW1wj4dWzbzRFvD5sYulZV6Xjazs12njsjEwne+af3IQSsW9Xhzm8RNbtIsH2uYNd6DtdYSst7HQKmQTJto+cItyPdPPfTDRXTPk1jvM1ILd3EPdMnR0omp1OkbYdU2skKiyNldlNQ14V7nyPRNEE4YGTd96B4o/LlY5N8f+/LReMTAoKmTiJt0xF2jaBmi2m3CvUQbFAxbQ+VPaJoCXbvGyJtOUzG0liWg2FoWJaNrml0RdxihFzTp442QcCncyIVB6C73Z99LLgVfN3tASZjaVIp2xVWAZ0RP+PRFF/Z9SyptAO4q3PbkRkHvtLFHFKCLaE9ZJJM2egBg4GeMPFEmtGp/MeIzP/qV7C+dOQKdtscBXu27BHPhrYwe+S/bVnftIuQuaJEW9E0HBmJEsts3GkCbNvBdsDJqY8uZfrkxq0loYCPUMAHwOETU4DI3jc8FsPOGEeJTNgknnQr+0xDw3ZgKpYiEjIreoNYlkN7V5BYwuKOP7wEgDvufhKfaeD3zZSzJ9M2w6MxfLpb9FJQNNg0FAq2v4RgC+GGj8B9Lfw+nf/1ic01X2v7ZWvyPMRPV9RGpKJpsG03F04TbgZBtqouJ85ZyvRJ1wS6lv9W1zUtm7EBrtjKHPMot5JwBvdQQSyRrlgabhhakelRORdAQWYjUrSuYEN+9aXnuKiYO0q0FU2DobvrUW/LwhM8YMYEqsD0yf0prRPwG3mGTgG/QcDUs/e5Au5uIIK7Yi8UZ8/GtafMRqUX0y40PSrnAtjTEUAiF80fpJ5UK9jesR6e46Ji7ijRVjQNK3rDtGc2+NwsEEFnm5+VvWE6wyaxhEV/V5Dtl6xmeXeIWMKiqz3Izds2cPPV67PHdIbdTa6bt23I3resM0A46GaPSCmzq3hN8zYtZcZLQ+P3t5zL7122Om/17NM12oI+lneHiopzyrkA/v6Wc9l+yWoCpoEQC+/IVy+0XMEOVhZscH8Iec+f57iomDsqe6SJsynmQjPPt9bWY1DbfAvLzyejKTRNEE/apG0HXRNsu3hwTnHVmnoqZnxCQBZtynlGUcdGY9kcc10TDHQHOWNZG0/+dqRuZeoeuatqUSjYZvnCmd6OAOesbOfXh8aKDK/qRTO/nyuhDKMq0Kovejmafb61Nvmdz3xrvVYjsFCv7/h0kp13PcnxU3F8usaH3rGBC9cvW/Ku6c3+fi6HEu0KtOqLXg4139bmlZEY395zYNbioyd+czLbId3JaYfmOfRtv2xNnm9J7go7HPSxvCtAMu1w+GS07Fi8fV6f4Zb1t4dN4kkraxfrWbp6DY3n8gXZqq+vEu0KtOqLXg4138YjLyzj0xiPpojGLSQzIvrEgRNLYvwEZItZwBXsgDm3whmP3IKmcMDgijes5BfPDNcU9vJohtd3LijDKIWiQfHi9OPRFCA5PBJjOiPY4Nqcfn/vy0sm2CJPsI15C7aHm7bpGl3tefxw2W72imJU7o2i5chduXreI40ai851BTw1lVzq4eShFQm2URfB9r6QBG6xjWVb9Br5aZSqK3t5lGgrWorcDJNQwODUZJy7fnwQoGGE28sAOXIy2rBFNXkr7ED9BDsXiZv5Yuhupk48ZZNOu3YCUkLIb7D/0EjDvG6NwqKER3bu3MkVV1zBunXrOHjwYMljbNvm05/+NG9729u46qqruOeeexZjaIoWo9A3O2AaDfVTe/+hEe78wQEON7hgeztdoYBBwF9/wfYMuwKmzmvXdjMZS5FO264RVE564V0/Psj+QyN1vXazsyiifeWVV3LXXXexcmV5N67777+foaEh9uzZw7e//W3+5V/+hcOHDy/G8BQtRLmS8Ub5qb1731CmIW5jUijYwQUQbK+BwUC3W/h0ajpFR073cSFcMy/LkQ31hdsoLEp45MILL5z1mB/84Ae8+93vRtM0uru7edvb3sbu3bv58Ic/vAgjVLQKvR0BxqOpPHOmQi+QpWRkwm2u24jkxrDrLdiagBU9oZLNfL+x5yCRkI+pWAojk/ctpcSynIb6wm0UGiamfezYMVasWJG9PTAwwPDw8BKOSNGMbN00yF0/PkgSd4WdSFlFXiBLSW9HgMloquGEW9RZsNuCBqv62rjlhjfMeqz3Res1jdAyBlqlzLcUDSTa9aKnp63mx1TKiWxFWnm+V/ZF6OgI8d2fvcCJsRjLukNcd/nZXLihf6mHBsB7t6zn899+itQ8M0X8Pg3D0InF0/OOjeeGRIJ1EOygX6MtaPLeLeureq+9d8t6vvLd/YSDPsankti4mSVtQQMks56nld/PpWgY0R4YGODo0aNs3LgRKF55V4sqrqnM6TDfM3tDfOJ6933kzbdR5nxmb4gPbl1XMntEE25ThkQyTTThZlEYusCnC+KpmZV5T7uf9//uOoAiH5JayRNsv0FoDoLd0+4nbTlYtkTXBSszXX/O7A1V9byf2RvifVee7Ta5SNvZ8/R1BGc9T6u+n5uic83WrVu555572LJlC+Pj4/zkJz/hrrvuWuphKRR1Z+Pa3rqlsRWeZzYR++N/+jmxzEZokWAH5rbCjiftOTU1yKWez0mrsyjZI7fffjubN29meHiYm266iW3btgGwY8cOnn76aQCuueYaVq1axZYtW3jPe97Dxz72Mc4444zFGJ5CcdrgNSCol2DnnlOxOCjvkRb9eVUONd/WZrb5fuwf/4uE1w8TCPp1QgHfvGLYIb8x75X2XGnV17cpwiOK1uLPvrA3r5ltT8Tksx+7bAlHVH927X2xqNHs6oH2PLe6rjYz63EtcJsLn7uqo8hjGtymtXFv1ZppfdYeMkAIJqNpQNLR5kdKyfh0CseRCOE2h7hwXR8HhsYZm07R3WayfrCTA0Pjea55563upqPNT3zM9TEJ1EGwAdXUYJFRK+0W/aYux2LMt1CwPZZCuOc731JNCS5c18fep4dL5g9rAhACn65h2TZ2DZl9uXnSheiaG86o9NbWBCzrDpFM2UxEk7SHTNrDbiPiaDxNLJHOjidg6oSD8xNsTcD2S1cvabPdVv38qpW2YlEpJdiV7l9sZvNu9v5+dCRKNGFhOzPd0g+fjFb0kHYyxhlJx655XJUEuRrxdyQMj8YwdLfiMJ6y6WgT2LbDdGwmNbAegr3+jA5uufGNc368Yu4o0Va0NE88f5xv7znA0ZEoli1xpINtu81oIyEfx0/F+cJ3nyHg11nZG2b9YGfW2zl3ZdpMP0ct2x2tnbJ5ZXgq+4UD9RFsgAOvTsx6zFd3PcO+50/iyJm2aFLKBWk7djqhRFvRsuw/NMK3fvoCybRNNJEGRHbVPBVLIaVkOp5GSkilHcajKR58bIi2oA9wsBqraHHOZLvS1Emwq+Gru57h0edO5N3nPffJtM2uR14GUMI9B5RoK+pOT8QsG9P2KBWiALJhiVjSyq4Yc8AgKgEAACAASURBVFtglXtsqRzfe392iJPjsZzQgsz+v227m3ketmMzPBpDALFEunlao1eJ39RpCxqMTdZPsD+08yGk9OxVBY7jftFV2iXz7Fhtx914zRXtwsbKSEki7TRNf87FQom2ou589mOXVcweKfS8Ho+muPPB50EIdE0wGUvnnS+ZdrjvFy9nbz/46BCOdDB0DduRJf2y9x8aqehXXen+enczX2r8Pk+wkxUFtVa8c9mOrLkiUxP5+d257wkh4NhoFBB0RUzGo6mG80RfSpRoKxaESlkiuZ7X4IrKWOYnu6aVXuFKCT94bAiJ68Wsaxq244Y5IiGT3fuG8j7Qu/cNNVUceqHw+3TaQvUX7PniSAiYM/KT+544PpVECA2QTMUtlnebJDPHKNFWPSIVS0Apz2t3teZglUiT8GQ8ZTnYjsx2+Xb/K4gl0kXpd8rOE8wGFGyvxZhE5uV3574nLNtBE+6xVmZjQVm0zqBEW7Ho9HYESBXs8umaQNc0DL34LZnbU9Cna0UmS5ZdbN/Z2xGYV1haZM7drKFt09CINJhg65rbzNfv09l+SX5+d+57wtA1t4MNrj0rNJYn+lKjwiOKRafQ8zplOe7GUyamnUgV5zgLAT3tASzbYSru4Eg3E8GRoAmtyC9766ZBXhmezHPH8+gI+7BsSTRR2jND4IqFW3fmJsxpQtDRZnL2ivairIhGwzQ0ImFfwwi2lqnavP7ytWXDG7nviUjIl9kwFUSCBsm03VCe6EuNftttt9221IOoJ/F4qqY3ajjsJxZrjKKPxaAR5tvfHaK/K8jhE9NMRFN0R/y8+61n8/pzehkejZFK29iOzBab+H0a73jTmWx+3QqefXksswGZaUelCba9aZDNr1tZdI0zlrVx6NgE8Yw4G5prfaprGgM9Ic5Z2c7Rgs1Kv0/DQdIeMgkHjOxYlncHed+V53D1m1YjkBx8dbwhY+aNKNhCCKbjKZ59+RQrekP0d4eKjst9T8QSFl0RP5GggeVAd8TPdZvXlBT8Rng/LwThnPZrhagy9hYtgy1Hs8+32nQ/j2rmm5dq5tOYjKWZyqkgFLhOeLkFIbnl7elaatUrkOu8Nxd8hkZ7Awl2KYKmxpnL26t+/Waj2d/P5VBl7IqWYSF8l71zep3So4n8bjASNz3NKwhZPdCeTU/zGZCuvWK9JPMV7I6wyehkomEFGyCecnjp2CT93SGVyjdH1EakQpHB65Tuppvl40a3BXseP5yXnhZLLn1Od7MItkcy7SCEwO/TVbf1OaBEW6HI4HVKL5UqLuVMQUiplMVSLEb2SaFgL+8OsrwnhCbcDddGR6Xy1Y4KjygUGbxO6eW2RNKZsvqpWIpEaqbMvhxzbNtYNT69eIV9fCxOd8RkRW8Yy5FMRuff+HchUal8taNW2gpFhq2bBgn4DaSsHPJIph2m4xbJEqmJi4Wha3S0FYdEJDA2neKMvjAT08kFE2zBTNFTrfh9bjqlSuWbG2qlrVg0as38mOvjco8f6GvjytevqOo6G9f2cvPV60t2SvfIzfBYqhWsoWt0lhBsDynh0edOYOjzi82YhoYjZdEvivVndDB0IkoiZaEJUeQ7UqmZw/ozOkCIumWPnI4o0VZURSVXvsIPYLljC02iqskcKGUuVelxu/a+yP2PvJIVkpGJBM8cGmFlT4jr33r2rALhZZLc8qVHCAUMjpyM5onSUm/0Gbqgs81krIpNR8uW6Bro2kxVYSU0AV/771fUa6iKBULlabdonmc5ap2vl498dDSW/Umu6xqxuGtfGgoY2apG23a49ILl/OKZYdKWQzxpk7YddE3QHvLh8+lZkyhwfZU7wya33PCGste/4+4nGY+m8h43GU2RTNmEAga9HYFsP8SjI9Eih8Bc/D6Nvo5A1u5z/WBnUduwwlVibgOBpcbQBZ0RP2MTiZri5aZRnWgvZYPeudKqn1+Vp62YE94qd2I6haYJHAmnppJ0tweypeZdEbdyy+/TSeJ6JJs+jal4GgHoAhxHMjqZpLfDnye+1WQOjEwkCAVm3qbxpMVkNIlE0NsZYHgsxsHD43SE/SRnSZhOph2OjcVZ2RdmeCzGgaHxomMKxbBZBdvLWpGSPJOtSserBr3NgRJtRVm8fGTvQy8EOFIwGU1lQgb56mEaGomUhe3oGcMlVyl04QrHZDRNODjTCGF0IkE8afPhnQ8RMA1eu7abU9OpbGWiF/ukZGcrydDx6exmWDxpka6i1YztuI9rJnSt9hW2rgk04Xp3xFMOiZRFyG8wuCzMS8NTeZ7hhU0mFI2NEm1FWbxVrmFo2LaTdb6zMiGPwvwB1/jJIJG2yd0Dc6S7UrRsh2TaxjQ0RicSRBMWmiBjEmXx6HMnCAcMgn6dY2Pxqoz1vSNKmUwtNbomCJh6WWOqas/R1V57SMTdPJRMJ9KYPgOfoRFPWvzm1QmEyA8DJdMO39/7Mt/f+3L2mgM9oYoGT7ns2vsiex4/TDxlIRD4fYIzl7erTcYFQom2oiy9HQHGoynaQz7GppI4UmbbS3mufJ4IezHtLRet4sHHhnAc6YZGJIAkkjFgagv6GMmssDVB1opVZuQ3nrSwHNm0lqi5GLognpyfYHeWEWxDo6oelsm0JJnOj/PPtotlO5IjI1G+sutZwgEfE9NJQNDfFeD6t54NzGxASykZm0q6sX/pvo7xlGuodfDVcboifoJ+g0TKLrtZDe4+hWU7eU1/Cze0vb2L3A3uKyvEflsVtRHZohsZ5ahlvrmZG5ZlMxlNY9lO1mYTKPmhemV4kkTKAUFWuB2ZH2cF97ZPL94kc3/azxSznI54gn2qxhX2Qo3FS3U0DYHPZ2Q3oF89MV32S8DbxNU9d0Vdy9us1nWNeCLNRNT9UvEcASWSTeuX8cLRSXRdwzQ0JqMpJmMpOsJ+IiFfdpHwR9e/jjN7i10Dm51KG5FKtJVoV6TaHOlCgR+fTuXl95bLwtA0gaGJPNGer9tds+PFsE9NLr1gw0z2ie042SbJnud47j5C4WvsvY6GrmHogv7uEMm0zeR0ivY2E79P59XjU9k5el/ituP+olvWHcxuXA+PxbAsB5+hZa1dk2mbvq4Qn7h+4wI/A4uPyh5RzJlqXfWym5a2w6npVFG1XDntcRyJXfBXJdiNI9jeryNHSnIdaCUUbfwWDtd7Hb19EJjZrO41Apnzzoh97vFpR+b5u1iWk3ce71wnxmLznGHzocrYFXXBM1GajKXzMkcq4R1hO644hPy6GyuvEq+PYKugaYKuBhJsmHkdCzeFZ3vevW1qXfM2omfCYAHTyP6y0kROO7nsF4R73dxfX4ah5Z3HO9eyEg0VWh0l2oq64PX4sywn+4Gu9MEWwhWpkN8tkDljWRt9XaW7muRiZGKc6wc7+dp/vwIhXGFo9o1LTRN0R/yMNZBggyvWKcsp+vVTOMRC00NNc9uGgUBKh0jIl/Ua2XLRKuxMJpF7jIvAXb3bjsRnCEYnEq5/ipQETR2JJOg38nxLrrv87IWYdkOjRFtRF7ZuGsTOpAJKMj97MxtYpfCKPl67truo0a/3mFIPldIh4DeypfFe67FmDqlkBXsq2TCCrWXSArXZqnIAv0/Q1R5geU+Iwf42uiJ+NOE2YB7oDjLQE0ZK6Ayb3HjVuWy/bA03XnUunWETn6HT2xHI+Jy452sLGvR3h2gL+ojGLU5NJVneHWL7Javp7woSS1jZc124oX9hn4gGRMW0FXXBi3vPlLy7P/UtW+YU4+QjgGdfPsUVb1jJL54Zzjb6DZo6saSdzSfOjaUO9Mw0iN1/aARD12Ytz25k8gS7ARRb5PyjI+wnlrRIpQp3HfJJWTLbFAKgPWziN/WKFgWl9koKLQtKnWf7fCbXIijRVtSN3LZdXsZJf1eQD25dx+59Q7x4dDITr3SPd6QkkbI5MDTOjVedm33MYH+ErjaTXx8ay1by5fZn9Ni9b4j2NhPTpzE+3XzNXTXhfrE1imD7dDcS3d8VYDKWJhLyMRlNVRRsXXO/VAubQsyluUGhZcFcz9PqKNFW1J1Sq6hv7DmI7ThZxzlwV3W2IxmZSMyp96P3Iff7/CRSNpYts9kFtaQNzscU6szlEQ6fmK6qejMXTUB3h5+xyfoKtt+nz+rBkotpuCl2fp+eZxblrXoNQ8Mps9J2w1huTn3KcvJ8ZebS3MAr5prveVodJdqnCd7qd2w6RXebWTHf2usyDpL+7lBRIU3A1EHKrFvebJasu/cNMTGdwnbcXF/IF8pYwmLX3hd54jcnOT4WI7f6LneM3vmPjkSxbHczajKaIujXsR2Zlw5WiwpL5p4bfnQkOjfBbg/UXbCBmgQbZoqaYkmLm//+IQB6IiYIwakpt4lC2RFKkEKyaYNbCOOFt7zCl1qbG2zdNMhdPz447/O0OotWXPPSSy9x6623Mj4+TmdnJzt37mT16tV5x5w8eZJPfvKTHD58GMuy+OhHP8o111xT03VUcU0xuYUv4YBBNGFh2w43XnVukSje+eDzRBNWjohJ/D4DQxeEgj5s22FsMgEIuiImhqEXVbl5H7hc+9ZYPF3WNjXk14lnvEMKTfU9M6PVA+185b5nSKSckiKia+5456qBIvMtstAfBiGgpz3QMCGRcgggYGrEU8X7Bd4Xbm7Yaq4NLgqp9Tyt+vltiIrID3zgA7zrXe/immuu4b777uM73/kO//Zv/5Z3zJ/+6Z+yZs0aPvaxjzE2NsZ1113HN7/5TQYGBqq+jhLtYnI3eHyZKrZSXtZ33P1kJu4ss/m5jgTbdivRBnrDHB+LZc2IdF1jeYkqN49jI1GA7ONSabtIVH26QNO1WVt3Veu1EfDppG0bXdMQQpC2baTjZrK4hR2lr7MYvtmeYJ+aSta8Op8vmiaQjqx6joKZtEwQeRWNs3mgLyat+vld8orI0dFRnnvuOb7+9a8D8I53vIPPfOYzjI2N0d3dnT3uwIEDfPCDHwSgu7ub9evX88Mf/pCbb755MYbZkuw/NMKhIxM4UuIzdLra3fSqUhs8bjdyV5DTmVJikSl+8ETGsh00IZDSrVKD4io3D9uROFJyfCxGImVnc6ptxxVrIYTbzqoKNa42QSSRCQ94YRhNgJ4po24PmyRS8ZKPWwzB7l4iwQZqXtV7FYpO5gvast1QUMDUGB1P8P9+/mFsW2LoghW94YrhtnqswBUzLEqe9rFjx+jv70fX3VWYrussW7aMY8eO5R13/vnn84Mf/AApJa+++ipPPfUUR48eXYwhtiReWEQIVyAtW3LyVJx40iq5wdPbEUBkUuykV16c4wsBbl60kwkjGEbpKjcPL8Ri2TL7b9uZWdV6FW5GYWVGHXHNqhws22EyujQZJp5gT0wvjWDXi7TlMBWzsByHWNIimbaJJtIcPxXnrh8fZP+hkbzjvfffeDSV1yqu8DhFbTTURuStt97K3/7t33LNNdewYsUKLr74YgyjtiH29LTVfN1KP0WamZ/eux+/qdPTEeDkeDwjlpKJ6RRdET/v3bI+b+7v3bKez9z5WPZ2bnmx6z3h0Bnxc/KUu1rtajPdFa2E37t8LQ89/iq242QzGKSU2VJzXRNZAylNm4mXd0YCpC17QTubOw6YplZVk4R6kyvYhQ1ymxkNgaaLbNpmT4efnz51lCsvPit7jPf+C5juZ9j06SRSVtFx86VVP7/lWBTRHhgY4Pjx49i2ja7r2LbNiRMnimLV3d3d/MM//EP29o4dO1i7dm1N11Ix7RmOnZwmFDDQfRpdET+TsTS2LXEcyfuuPJsze0N5cz+zN0Q44COecD2tAXyGRkfYRzLt0BZwvbAHekLZ7JHONl/2J++ydn/eT+FwwJdpPWZhWRKfoSEdB0fCip4gCEEiZdPXEQRHMhFLlxU2L6xSCs+/onB3JjdObRoamhDE5uFvXSutKtjeF673ayxt2WhCcOzkdN77yXv/5X5ZljpuPrTq53fJY9o9PT1s2LCBBx54gGuuuYYHHniADRs25MWzAU6dOkUkEsEwDB599FEOHjzI5z//+cUYYkuSm/caCvgIBXzYjiu+5eKKK3vDRbmyybRNb0dw1s2nwlxrbwN0efdMi7FyG1m5GS7jUwnXjxtX+IKmTjjo4+wV7dmCm4Dpts46eGQCgUDP8d/OpA9nRdzv0/jnj7+Z/YdG+MquZ4kni1f19d6IFAK6IwEmCixqC6/pN/UF6bozU8A093PkPie52TXel6RgJsRVLtym8q7rT0XRdpzqfk5q2uwxydtuu41bb72VL37xi7S3t7Nz507AXU1//OMf5zWveQ379+/nb/7mb9A0ja6uLr785S8TDAarGoOimFJ5r0gq5r3WM1e2lnN5Yr973xCW5dDbrmVX4pU2sLxWV4mUlWlpJtEyTRQ8wXp75nob1/byke3n8+8/+g1jk8msQb/teFkSsuxqvhYE0BUJMJHpxlKOoN9YMNGOhHzYjmQ6PrdfFn7fzPsFyP5XCHfcibSd3bQO+v0lX1eVd70wVEz5W79+PaIK+7Tnn3++roOaDyo8kk/h7v17t6yftdNHPXf8q2krVXisVzyj64KOkK8q8fbYtfdFfrhvKNu41tAFQb/BykyGA8C9PzvE8bEYjnRj7VI62I7bMcU0NNoCBkJzQznTCbdhsK5pONKZVdQF0N3hrbAdNCgqUDENjasvdnPPvflGE+m8BgPeSjb3F0M1GLqgs80PuCvdrjaTJ387ktfIN/cahYT8Mw2Wj45ESabtzPzdlL8L1/VxYGicIyPRhsgeadXP75zztI8cOZL9989+9jN+9KMf8ZGPfIQVK1Zw9OhRvvrVr7JlyxZuuOGG+o54HijRrsxSzXfX3hfZ9cjLCGZWwRLJ9ktWs/2yNeza+yIPPjqE5bg2oOXi1JqAcNCXJ8KFLc9+8cwwli0Zn07WJHimoREwdUJBX7bFVa2eJj0dASajqaJNT03MSLFTYVCrekOMTaWIJa0Zh8TM4aZPyxpo2Y67ydseNgn6DSaiKWxbYvp0lncHi8TRE88jI1ESSZu0PZMS6b0ehq7RHnZDWc2Snteqn9+6FNdcddVVfOc736G9vT1738TEBO9617v4yU9+Mv9R1gkl2pVZqvn+8T/9nGTaznRxd/E8L/5g+3l84XvP4GTyumd7R+qaoC9j0YmUWZFNWQ6jEwnagj6m42nSGW/vWsK6moAz+iPEEmlOjtdmVNTd7mcqll6SLBVNA5Hx6GsPmxi6yFa8evsFacthIpqa9fntCPsIBnwlq2YbjVb9/FYS7aoTZKempojH8wsTEokEU1Ot94Qp6k8iZVFozawJ9/7d+4ayK0cvI6ESnthH4ymm4mlOnIpz+MQ0J8ZipC2HU1PJrHDWug/nSHhleKqpBBvctEZdE2ia2wFe1zV27xsCZlrBxVN2Vb88pmJp/D497xyKxqHq7JFrr72Wm266iQ9+8IMsX76c4eFh/v3f/51rr712IcenaBECpuGutHMU2ZHu/SMTiUxDVydbhDPbCjmWEwNe6t7U3e1+ppdQsHPx+ijmVrx6bojVVJ56GSGgbFEblarDI47j8O1vf5vdu3dz4sQJ+vr6ePvb38573vOebKVjI6DCI5VpxJj2gaFxhsdiTMXTIOeWwbEY3iGl8AS7URoxCOHGpns6AliWQyxh1Zyb7oWIkmkbQxO0BX0NW4beqp/fhjCMWiyUaFdmIedbLlPAu//l4UlSaYlEuituIXAct+hG09yIbLU/4RuBrnY/sbhVsx3qQiOEu0pOpp281Mdq8WLapfYMGi3O3aqf37oU10gpueeee3jwwQcZGxvj/vvv5/HHH+fkyZNcffXVdRmoonnJLY7J9Zl4+dhk1rJ1WVeIqVia8akkVqaqTtdcbxI73Rgr1WppVMHWNYGuCZJpN02vUqZKKQxd4DPcFl+GAEuSLY7x+3SSuDHyRhHt05GqNyI/97nPce+99/Ke97wna/S0fPlyvva1ry3Y4BTNg7fZ5ffpCCGyG1l7Hj+cvT+RspmK5bevsp3m66TeFfETS8xdsCMhd61URc/cmtA1wVkr2lneE8qev5qNXV0TnLk8wmB/G51tfu74w0u45YY3kEg7dWkjpqgvVYv29773Pb785S+zbdu2bMHNqlWrePXVVxdscIrmYWQiUfIDnkhZ2ftdl70ZCfH+1UzOd10Rt9ntXAyuBNAe8hEOmmgZ58WSx2Xu9vtqcz/MdV3UhMDJsdat9nG5Jea9HYGiWL0qQ196qn5X2LZNOBwGyL7ZotEooVDl6jrF6UG5D3iuZavrxZ3/uFz710anM2ISr1Gwvfl2tpmc0d+W7f6zaUMfEln0fIT8Or0dAf6/d2/kS396Ob932eqqfoloAiJBg0TKyjt/NYv5SNDN7CksMd+6aRDbdrKOjaWOUSw+VYv25s2b+bu/+ztSKbdCTErJ5z73Od761rcu2OAUzUO5D/iWi1Zl79e1/FZiFfsPNhgdbSbJlFOzT4iha/S0+1neHSKWsOgMm9x41bns2H4B2y9ZTcA03A4xQhAwNQb7I3kbfdsvW8M1l67OW3XrWqazDG5oo7cjwIqeECDoag+WPb+uzaziBdAWNFjV6z7OG1durHrj2l5uvOpcOsNm3thVPHtpqTp7ZHp6mltuuYWHH34Yy7Lw+/1ceuml7Ny5k7a22j2sFwqVPVKZpcweOToSJZ6yCQcMHEcyFU8jpRsGOGt5hN8cnihadZuGIG0Vt8kSIj+neK5owv3lKKUse66ONpNU2iFeY+qc3+eWhS+m0Kn3c2sw75Q/KSWHDx9mYGCAiYkJjhw5wsDAAH19fXUdaD1Qol2ZpZ5vJQOhO+76vxx4dSLv+ErNY9cPdvLEb05ydCRaXnDDPiJBHxMZL3HP/0PXRda/xLu+63/yStbi1X28ScqqLNg9EZPRqXyPEtMQrFnRseh5zUv9+i42rTrfeaf8CSF45zvfyZNPPklPTw89PT11G5zi9KLQc9tj194XM97Y+SETTYNfPDPM6oH2PPvWIyNRDh2ZxG9qbu9J4br0yUw2iibAljARTTMZTWPorlAncrqLHxga58DQuHsdITB08gS7PWyStl3BDpoaZy5vb7jiEsXpR9V52hs2bOCll16quZOMQlENex4/jEAgheu074l3LGHRFjKzHhheLngq7eBISTRuoWVyk1Nu8rfbkDZH+SWuGKcrdI9xpCSVs5huD5vYtltRCJBIOdncc0AJt2LJqFq0f+d3focdO3Zw7bXXsnz58rx0peuvv35BBqc4fUikrMxG5cx9Xszayw3evW+IaDxdVDVpO7KuaYPtYRPbkUQTMyouUcUlisagatF+8sknWblyJb/85S/z7hdCKNFWzBuvZZWHJ8GamMkNfnl4Mi+8sRB4HV+i8XTR314ZdmOnw6Mxbv77h8qeQxOwojfM9ZevVeKuqDuzinY8HudLX/oS4XCY8847j49+9KOYpjnbwxSnIbkbhQFfde3CvMcVirZHKGBkc4P/+Z79Czr+SMiHlJQU7FpwJBw+GeXOHxzg5qvXK+FW1JVZRfuv//qveeaZZ3jzm9/Mnj17mJiY4H/8j/+xGGNTNBG53iMT0wlGctKZJ6dTfOG7zxDw63kdZ76x5yCjE4mKudrTcYvpuLXggt0W9GWuNz/BziWaSKtQiqLuzCraDz/8MN/97ndZtmwZ73//+7nxxhuVaCuK8LxHJqcTFFpypLzWVmnB8FiMz39nP1X2jF4UwkEfmiYyZfb1w7YlR0eidT2nQjGraMdiMZYtWwbAwMAA09PTCz4oRfPhGe3HkuXVOJW2sRynsQQ7YKAvgGB7WBUyVhSKuTCraNu2zWOPPZbtDmJZVt5tgDe96U0LN0LFklJtN+3ejgDjswmfmN1xbjEJBwwMQ2Oixua91aJpoOuNNGNFKzCraPf09PAXf/EX2dudnZ15t4UQ/PSnP12Y0SmWlHIe2VCcp7x102D2b+UQOf9b6vVnKGDgM3TGp5MLcn4hoD1ksrxbGaop6susov3QQ+VTmxStTa5HNlTOU/Zuf+2B55iOly75lrg51V4fyKUiFDAwfTrjU/URbE1A0G8QS1rZeema25VHOeIp6k1thr2K04pyHtnlTPA3ru3lw+84D59RHBIwdNfY2ZGuaC5V0CDo1+sq2ODOKZqwsg0HPFe9puvuoGgKqi6uUZx+eHFqb6UNs5vg7943RE9HEL9PZ3gshm07gMDQBSv7QkxMJ0mlHQzdbQLQ0WYSCviIJy1OnoovaNgk6Nfx11mwPYQAn64x0BvO3pdM2yrlT1F31EpbUZa5mODnrs4ty8msqCXJlM2Rk9NMx9Mk0zZBv+F6glgOY5NxTo67gu3TF+YtGTB1AqbB+AJtOkoJdkFajGrNpVgI1EpbUZZcV73Zskc8clfnhqFhWXbWTyQ3/U0IsG2nSETTdv3zAf2mTtBvcGoBVtgeQoCu5X/hqNZcioWg6iYIzYLy067MQs83N+PEsmxGJhZOKKvB79MJBRZWsMtfW6OvI0Ai7VT1hVcP1Pu5NZi3n7bi9KLa3Oz9h0a49z9f4PipBCDp7w5x/eVrufGqc7OPX0r8Po1w0GBscmm+OJJp1861uz2gbF0VdUOttFv0m7ocs803d6VsGhpTsTTTsXTWN8TrFnNsNFbWDlUDREE/yMXG9GlEQj5Gl3ilXwqfDv3dYZCy7qtw9X5uDdRKW1E1ubnZ8aTFVCyFlJBI2fz28Eynl0o4MP/mjfPANFzBXqoV9mykbdcFUNcEXRFTrcIVNaGyRxR55GZ/uH4cbv1i2mosz5By+Ay3me7YZHJJC3iqQQiYilv4fTq6rmW78ygUlVCircijtyOQ9bW2bMftteg0Run5bPh0jY42k7HJRMMLNrjPqZV5rlV6oKJalGgr8sjNzdZz4tKaVp8CP0MXaAtQKGjoGh0Rk7GJxFJGZmpCAkbmV41KD1RUy6LFtF966SVuoovPmwAAIABJREFUvfVWxsfH6ezsZOfOnaxevTrvmNHRUf78z/+cY8eOkU6nufjii/mrv/orDEOF3heL3NzsWDyNI21ceRG4/c7nx0JYlRq6GxsebSLBBrcgJxI0qipaUig8Fm2l/alPfYobbriBH/3oR9xwww188pOfLDrmy1/+MmvXruX+++/n/vvv59lnn2XPnj2LNURFho1re7nlhjfwzx9/Mx+79gIGesJIKTF0jUjIcH1EGgR3M8/P6GSyYQW7sMjTp8OqvjAD3UFA0Bk2ufGqc9UmpKIqFmUJOzo6ynPPPcfXv/51AN7xjnfwmc98hrGxMbq7u7PHCSGIRqM4jkMqlSKdTtPf378YQ1SUYePaXjau7c3L3V7Z28b6wU4eevII0/H0komlrgl6OgKMTCRqSvMsh2kIlnWFsql4tfS5VCgWi0UR7WPHjtHf34+uu8ZDuq6zbNkyjh07lifaf/RHf8Sf/MmfcNlllxGPx7nxxht54xvfWNO1enraah5fpZzIVmQu872yL8KVF5+Vd99r1y/nuz97gRNjMZZ1h3jN2h6ePjSavX3d5Wdz4Qb3S/edf3pfXcbu4Qn26BwF2zQElgP3fXZ7XcfVCKj3c2vTUMHi3bt3s27dOv71X/+VaDTKjh072L17N1u3bq36HKq4pjL1nO+ZvSE+cf3GvPve9vqVebe9a2lC4NQppUPLCPbYZGLWAp5S3t0ikxET8Okt99qr93NrUOmLaFFi2gMDAxw/fhzbdju+2rbNiRMnGBgYyDvuG9/4Btu3b0fTNCKRCFdccQX79u1bjCEqFphNG/rqch5NCHozgl1pU9Pv0xBiplNOLm76omTLRavqMiaFYjFZFNHu6elhw4YNPPDAAwA88MADbNiwIS80ArBq1Sp+/vOfA5BKpXj00Uc555xzFmOIigVmx/YLWH9GR8VjfLrANFyx1XVRtOGpCUFfV4CxyWRFwTYNwVkD7Vxz6WoGl7fnpRkKAQHTYPslq9l+2Zp5z0uhWGwWzXvk0KFD3HrrrUxOTtLe3s7OnTtZs2YNO3bs4OMf/zivec1rGBoa4lOf+hQjIyPYts2mTZv4y7/8y5pS/lR4pDJLPd9qzKi8Yw6fnM62LjtrIMI7LjmT+/e+zJGRGJ5B1YXr+jgwNF72fEs938VGzbc1qBQeUYZRLfqil2Oh5lvo+NfR5ifg0/IMke79zxc4PBLLPsbv04iETAC3KCbnfJqYsS8RAvq6gpyaTJK2nGycWgCG7np5lEITgvPXdJFOO1X7gTc76v3cGijDKMWCsv/QCHc++DzRhIUQ4DiSkYkEmoDudj/j0RT/fM/+oscl0w6piUTJgp1CwR7PCDbMbCxKygu2ew7J04fGsrdHJhIcGBrPluR7IRPvWn6fxhvO6eXUdOq0EXlF86FEWzEvdu19kV2/eKVkZogjmbUJQqXfREJAX2eQialU1g+lHnjXLPxBlkw7PPrcCdqChvLAVjQsSrQVVVEqFr3v2WEefe7EglxPkBHsaIpkpeX0AjAdt0ikohi6RtBvqOa8ioZCifZpgie6x8ZipDPd0H2GxnQ8TdpyCJgGWy5axfbL1mSPPToSxbIlUjqkLInnQTI2leTAUHG4o570dQWZjKZIphZXsD0sW2LZNomUzfh0kjvuflKFShQNgRLtFiZXfOMpG58uSFkOUkIsORMb0DWIJy2+v/dlfrhvCEe6VqGJlAUUdqBZ+H3rvs4gU7E0iSUS7EKkRIVKFA2DsmZtUby2YeOZ8ILjSGJJ9796gTeq7cxIcTLt4DiSaMJCSoqOXWj6OoNMx9PEk9aiXnc2VKMCRaOgRLtFyW0bZucIdeE6WZT4d7ljF5q+ziDRROMJtve8qEYFikZAiXaLkts2zNC1bKZEYZJHqcBHuWMXkt7OILGkRSyxNILtPVelUI0KFI2EEu0WJbdtWHvYBCRaxoujkslSOGBkjwW35dhC09MRIJG0iMbTC36tUnjPiVbi0yAEdLaZqlGBomFQot2ibN00SCxhcWwkyuhE3M37EIKgX8fv02kP+ehp9+P3uW8BAbQFDaR0sGyZXW0vtFd2d0eAVNpmeokEG9xfGLYjSzYulhJOjicYHo1xcjzBN/YcZP+hkUUfo0LhobJHmpyKXh5S4kiJu1h21Vdogq42f9bo/6yB9uzq8f88+Dyx5OK1XO/u8GNZDlOxpRPsWhmZSPC/dz3HH2w/T2WRKJYEtdJuYnIzREIBI5uW5gm5pom8cm2AaNziyEiUY2NxQOalskUz5kyl8kXqnUPS3e7HsiST0VSdz7xweM9BPGmpLBLFkqFEu4nJzRARQuSlpY1MJIgn7azPBuQIr3RjtVNxK+8x9WpSMBtdERPHoakE28N7PlUWiWKpUOGRJmZkIkEokP8SemlpvR0BxqaS6CLfYMn7rwCszEal95h6dpcpR2ebiUQwPl3Zk6QRycu0kZI77n6SkYkEiZSVtZD1ELhfjJomcByZfQ18hobf1OkI+VT/ScWcUCvtJiY3Q8TDS0vbumkQXRM4mVV1Lt5qsTCVzesuU0q25yrluZfuCJsgBONTzSfYhYxNJTl+Kk40nioSbHCfL0eS3dT1TABSmRj+kZEYx0ajCEFeWEuhmA0l2k3M1k2D2LZDMm0jpcxLS9u4tpdtFw+iCZFVXE1k4tuZ1XckaOQ9Zsf2C3jTecvcx7iHuWmCmf+F/G7WSbXkhmY6wiaaNiPYi1tnWT90zfVs0YQgnrSIp+a+cSuExlQsraotFTWhwiNNjPdzulz2yPbL1rB6oJ3d+4Y4MhLFtiWmT6ctaGSzRzrDZt5jdmy/gB0FDcrvuPtJxqMpHEcyNpnA0LW8/G1DF0Xtv3Ib6naETXRdY2xyJg4cDhrEkhbtIZN40sayncyXg8j6Zi8WpqHNav2qa4JVy9oAOHxiGk3ML4fd2yD2zqGqLRXVokS7ydm4trdiLLTw77V2+th/aIRDRyZxpMRrcmToIm8VXViskyvY7SFfkWAD2crHiWiqoPKy8RopCfI9WAxDw7IcfIaGZc/N1Erghk8MXVVbKmpDhUcUZfFSCr2YuCPd/9mOkxcnzxXdXMGOhHz4fHqRYOeea6mb3bltzWTZcI0Agn6DgKlnw1BBU0ciCfoNgubcP0JSOkRCPlVtqagJtdJWlMVLKeyM+BmbTGRX144Dmi5o9xtM5hTG5Ap2W9CH39QZrdNP/nDAIJWySVdZohnKCOroVHFaocDNE3/zxgGeOHCC46cSGLorztFEGi/qoQlY0Rvm+svXAjNhqOXdIS5/3YpMQ2GBrs8ve6QwRKVQVEKJ9mlINR3RYSalUAhBd3uAU1Nun0YJSEfmVTLmC7ZB0G8wMhGv20o6WqWRlCZgRU+Iv/7wxfz/7d17dFX1mfDx776cfW45J3dCEPACGlItjopD+xbfwSsg4JVKK1otla417ax22a5WXdZba9cSp87Yjs4706njDe3FG1pQBrUzpVhFrVgckSA3wyUkJCHXc997v3/sc07OCSchCclJTvJ81nIJyU7y2wGe/M6zn9/zwPHTQVfMO23Aa+j9Pbqij+uEGEkStCeY9z9p5JnXd6JpatYpSjg2KFUUe2g8GiYcTSQfFPYkEaw+UiJ+j47X7RrWgD0Ylk3ytKcQ45ME7XGu9646ErfSpyjBae4fhfQcxMzrY3EzK/2R6yFhZsD2eXR8XhctbaMTsFNMy2bb7mZmz6jg/U8a+e3GHTlfVQz0FYcQY4li26P9KGh4tbR0YQ2iNd1gqykKSepBoqap6bK2pqNhyoNufB4X4WiCju4Y8YSJqigs/uLJvPW/h9E0FdO0ONLWfz7aeYjn/NpraAT8Bs1t4RHvDDhYPreG3+uitSOCaSWrQTSlZziEbSdL8FQWf3F6ukwyFcxnTS9J5q/HfnAfz3+fcxmv91tZGejzfbLTHscye5OAs6t2aQrtXTEURUlWdSgoivPf+nfqKfK68Hk0Go9zajEzYHtSAbs9MuYCNkAoahKK9pTm2ZCuK0/9X1OdKpLf//kz/F6X86rBo3O4NcTOA20U+90EfC6ZFSlGnZT8jWOZ02tSSgNuEqZFW2c0mcJwdpnFRQamZROKOOmQ1GGXXJweJc6vPYZGcZHbCdhjMWIPkGU7P4hMyyYSTaSbcIVjJgrO6cfeTbmEGA0StMexXL1JdF1lSrkvnXPWNJWygJMucWkqsbjF4dYQCdPOmZdW1Z6mUm6X6gTstnBBB2xw8vI9h4V6vmeJhHXM6Uc5vShGkwTtcSxXb5JEwmbZhTOZcVKQylIvk8t8+DxOPxFNTaYOkoGqt1TNMTgBuyTgobkt3O/4skKRqkHXVNAy5o7pupp1chHk9KIYXZLTHsdy9SZZftksTq7wAfDM6zuJ0tN7I27aFHl1EqZNNJZ9PDszYBu6E7Bb2sdHwAbnmHqR1+Xco6IQjZsYuorX0OhImHjdOrZtE0tYcnpRjCoJ2uNcX71HcgX0UDhOScCNoigcPNKVfkjXO2CXBp2A3btJ1FimqgoqNgnLyV27dOcBbdBvpJtnpSpDoK/Tj2O/ekSMfxK0J7DeAT3Vzc/t0pKd/Ew0VUnvpl26Slmxh+a2SEEFbHDWXhpwU+I3+OH15x73ejn9KMYqyWmLtMwcuN+jZwVsXVcpL/bQ0h45oZako8VraJLWEOOC7LRFWmp3uf7tz6jviPTssDUlHbDz3ev6RKkq+D0uJpf5JK0hxgUJ2gLoOdLd1BYmGjOJxp067esunMlnhzs42BJiSoUfgFAknj5dqGkK5hhMlQR9Lh7+zgXj9sScmLgkaIuevtmqQiRqEoo6HfVURWHL9kbauiIE/W7ACdiZx9vHUsDOHMxQaDl3IQYqb0F779693H777bS1tVFSUsLq1as55ZRTsq754Q9/SF1dXfr3dXV1PProo1x88cX5WmbByNXsCLKrQUqLDP66u5VILIHH0Lns/Kl84+qz05/jlc172PjegXSQNlzO4RpwSuAqS700tIaIxkwSpk15sZeWHAMNxopUmFZV5xWAEONR3hpGfe1rX+Paa6/lyiuv5OWXX+aFF17gqaee6vP6HTt2cNNNN/GnP/0JwzAG/HUKtWFU7yCMbbNjf3vWNaoCHkNPB9mhmH/uSfzNjHKe/q86Wjp6+otkznlUFYVJZV6Odkaz6rU1Fcb6M0iXruL36Ewu8/HD688dM3+++SL3Oz701zAqL9UjLS0tbN++nSVLlgCwZMkStm/fTmtra58f8/zzz7N06dJBBexClUpPtHXH8Hl09jZ0HBOwwemPcSIBG+B/PjjIv7/y8XEDdluvgA1jI2Cn+qEoOOtOndwsKTKYXlVEebEHl65KlYgYt/KSHmloaKCqqgpNc7rNaZrGpEmTaGhooKys7JjrY7EYv//973niiScG/bXKy4sG/TH9/VTLhzef34bb0PAYzh9HND4y0TGV8w1ndLzLDthQWeqlvStGJDa0gbUjyefWmFTmJxSJczTZhXDa5CK+NHsKH+1uoak1xKQyH9fMn8mc2qr0x432n2++yf2Ob2PyQeQbb7zBlClTqK2tHfTHFmJ6pOFIFz6PPuLldL2/Ky5NJZ7cPisKVJb66OiOET7B3fxImDWtmB+uOK/P919yzklZv0/9mY6FP998kvsdH0a9n3Z1dTWNjY2YpommaZimSVNTE9XV1Tmvf+GFF7j22mvzsbQxoaLYkz6JmC8uXU3/kFAUmFTqozMUIzIGA7amwsGWEA8++0HOgQT7GjrY+N6BrAeug5n9KEQhyUvQLi8vp7a2lnXr1nHllVeybt06amtrc6ZGDh8+zF/+8hceeuihfCxtTFg4d3pW8ya3Sx2RFEmR13mIqanHBuyuVMBWnAcdma1KR5tpQVc4Tn1jJzsPtKECCcvpF76jvi3r2lA0wdrN+1i7eR/lAYN/WH5uukGWjBcT44F277333puPL3T22WfzT//0Tzz22GPU1dXx05/+lNLSUlatWsWpp55KVZWTg3z66acJBoNcddVVQ/o64XBsUPMJ/X43oVBsSF9ruFSV+agq9XKgqYv27hgnVfipCLpp7sieHpNqdDTQznqGrlBd7ifoc2G4NKpKvfh9Bq3Jz6sqMLnMS2fY2V1blo01hoJ1b/Fkj++BZr/CMZP3Pm5g6qQiGo+GeOb1ncQSFh5Dozua4K+7mqkq9VJV5hvZhefRWPj7nE/j9X79yXMRuciMyGHMiaXqnsOxBAoKhkvhlMnB9Ev6Q83dyeECltPis9dmWlUU5tZWsuqKs/iPV/6Xdz5pSv8AUgG/z8VJFf705zvY3E0kamK4VLojudMa5UE3Ny6o4cxTy/iP32/n3U+aACgNGJQXe2nvihKKJIjETbDtMVEhMpwUBWqmlQAck4KKxs0BN5AqFOM1x9uX8Xq/o57TLgSpl84Hm7sxTZuEaZIwnbmBqqLgMVSmVwXAttl5oCM9vQWcYKupzk4wxcYmErPZUd9G3f42/B6dcDTR707Rsm3e3t7Ezv2baenM3j1YQGcozuHWEC0dEVZcegYbttTT1h1LV1Lk0toZZc3GOipLfHzy2VEALjz3JK740qkE/Qa3/b8/kzBtFKD3IUJFcQYCFGKDqBTbJj1lxufJ/usuE2hEIZKgTU+ddDxhEYomjjmabdk2oajJp/vbjglsqfdb/VTI2TZ0R5xcsmUfPwD2DtiZwjETj1tP52Z9Hp1EP1Untu1MWkkF7AVfOJnL5pxE0G+g4DwEbe2MojlDyY/52FwTbEZL5jDhgVIU0lNmeu+0ZQKNKETSmpWeqeXOENe+nUg7i1QAPNFkVCJhpXeIqRmQut73H6PhUunodob1XjC7musuPoPSIk/6PhfOnY6mOoN6ew/yVZJBUsGp4BhtpUUGUysGl3/2GhoL507POXpNWrWKQjQG/imOvtTU8kTC6jNoD8eGM1dgHCw9ORosVf1gmhZeI3epYGYvkWK/iyvnnUp5r53l7BkVLP7CdNRcC7PBti28bh2/xzWqgdvn1qgs9fHjW77AFz83Kfd6MyhAecDgBzeenx72sOLSMyjxG4QiCUr8BisuPUOqR0TBkfQIPXXSuq5i9pG/PdGntc4u28rqRNeX8oDRZ4oks5l/5sgw07IJReLpB4mZZYNul8pXLzmd0qAbLSPyph6cRmIJdE2lPOghFne6/CVMGxvnB41tWwT9XoI+FweaQyf4nRi8yhIPXreezj+vuuIsVg1wlEzmg6rek3qEKEQStOmpk/YaGp3hvvPDmjL4FImmguHSKA966OiOnXD1SO9m/r0DkW3bPPLiR2z9tBlw+kpff8lM5syqQkHh/U8a+e3GHdQ3dhKKOukgRXHyu83tEYI+Fz63jqoqdIbjkMyJd0cS6KPQOc9taPg8LqJxU/LPQiBBG8ieWm4OsXrEY6iUBZ3ufB2hOAnTRtMUTqrwD+kQx/F2k7kOinz+tHJ+8+an6YB9/qxJfPnCGZQFPaiKwrbdzTy5oY6O7mj6B4ZNdp69IxRHUxUUJdWrxMay6LdCZSQFvLrkn4XIIEE7qZBeOr+yeQ/r367Hsi10zTlss2ZjHRXFHnbUO90BA14X55xRTmnAk87/Pv8/u2nrjB43PaMozhCBoVRrDKfygAEolPgNOb0oRJIE7QKzbXcz69+px7JtNFXFtKCjO4rXracDNoCiwkub9vHa2/VcO38Gs2dU0Ng6sHx0aueduQNXhqHypTeX5gwO/tVtF8kRcyEGSIJ2gUk9dEyll1UFdF2nK9xzIjLgc+E2dJrbwqiqwjOv70y+R8E+zj5bVZ2kSGbLVufrKJjDGLUVnF18qh1tIb3SEWI0SclfgWluj+DS1HTodelq1mCEIq+Ox63T2hZ2Tl+aNpqmsmFLPVWl/T/ISx2k8XsNJpd6ndw2TiB3JRtZDdTxarsVxcmXX3b+1AF/TiGE7LQLTkWxh4Rp0Rl2DtVk9hwJeHW8HhfNyYCdkjqMc8NlZ/DLVz4mFM0+vqkqJA/Y2LhdGisvn8XsGRXpk6KapmIk68OPHA3l7E+iZhzE0TWFb1/z+fTneP6/d9F4NOIch0/+YJAWqkIMjQTtApMqTwx6XRztcmq5nePoTg32kbZI1sPDzMM4s2dU8IMbz+extdtoaA1jWk4apKTIQNed+u/MAyeZVTWpXPNXLpqZftvO/W3YgKI4O/Ggz4WmqZT4jT5LEoUQJ0aCdoGZPaOCrZ8288cPDwHOScHlF59OedDDr9ZtJ/PojqJAkdeVVS43p7aKkyu+AGSXDfZVodFX0O1rJy6leUKMLAnaBWbje/XpgF0zvYSvLaihosSLS1O5edGsrE6FuqZQVertsxLjRHfBuXbiUvUhxMiSoF1A3vjLfn7z5i4AzphWzA2X1VBe7ARsGJ1UhKQ/hMgvqR4pEP+99QDPvv4pADNPKubGy2qoLPFi9NPhTwgx/si/+ALwxw8P8vR/ObXWp00J8rUFNVSW+CRgCzEByb/6MW7TXw/x1IY6AE6pDnDTwhoqS70Yg6iZFkKMH/Ivfwx766MGnnxtBzZw8uQANy+aRWWpL2v6ihBiYpGgPUa9/fFh/vPVT7CB6VVFfH3RLCaV+vBIwBZiQpOgPQa9s/0wv1q3HduGqZV+vn75LCpLvRKwhRBS8jfaene3O31aCev/vA/bhpMq/axcXEt7V5wX//i/NLSEqCj2MGt6CW+8v5+uSN/ThN0uFdu2iSVyN3lyaVBV6gNFIRIz8Rga2DbtoXi6xnvKEHuBD+W+Z00vYUd9m9R7C3EcErRHQSpgHWruTvYOsTEtiMRMdtS3AU4/7G8srqW9O8azr++kvSuWni6TuqY/qVFjfYmbcKA5hKY6pyaPdkawLOcUpaIoROM2jUfD6Q6BwxlAM09S+jw6h1tD7DzQRrHfTcDnoq07NiJfV4jxQIJ2nmUGrFA0gZlsFFLkddEVjqevC8fi7Pislb/UHaG1I5q+bvgpdIbiqKoKWFg2qNhYds+0mp8/t42a6SXDtvvdsKUeTVPTD1TDMRMFhXA0QdBv4HZpRJPXSdAWIpsE7TzLDFimmTtgqwpUlvh48y+H6OiOnfAE9/6kfhjoCqT6Bfb++WAD9Y2dx+x+MwcD99W1L9dwg+b2CD5Pz1+9RMJCVXC6ACalOhMKIbJJ0M6z3gEr4HPRGeoJ2IoClaU+usMxusIJNFUZ9okxucQS/adTwlGTYJE7vft9ZfMeXvnzPhQUNNXZJa/dvI+N7+1nelUg3TQqMw2SSnt4DI1YwkrvtHVdJZGwcGUcFkp1JhRCZJOgnWcVxR7aumO4XRrBIhftXdkBe1Kpj65wnEjUxGPolAXdNLR0j+KKHTbZu9+N7x1IB2zTstK9BcNRMx2c3bqalQZxuzTaownau2IkTGe+ZXGRgdfQ6EiYeN168uGpdAsUoi9S8pdnC+dOxzQtTMuiozsjYAOVJV66w3HCkXh6qsuy+TPwe43RW3CGzN1vJJZIT7pJpVOcQWVOcNY01Rl8kDA53BriQFMXB5q6aEs+UHWGJti0tEco8rq44v+cQlWpl1AkQYnfyOrrLYToITvtPJs9o4LDLSF+99+7sG1nYkxZ0MBwaXSGEnRH4ngNnbNnlPF+3RHWv/1Z1qzGkaKpTvDtLxVzuCVEY2uIf/jnTSjJSTVaxsBfm56RZYauYloWRztTOXk7e+KNogI2xUVusG121LelW8oeinezYUs9INUjQvQmQTvP6vYf5cVNe7BsKA24WbX0c1SX+wn6jdQkLrbtbuY/X91BdziGbXOcUbzDI9cIsVxUBaJxE8siPSQ4tcMGCPqdVwWxZI46YVrYtnLM50+YFgrQ3hnlaCdoas8YM0VhxMoNhSh0ErRHUO/KiXPPqOSFP+4hlrAoDbi5ZcnnmFzuI+jrCdjgVJhEogkUxdmtjiZFyd59Wza4kqPg1eSYsVA0gQL4vTpBv0E0bmKazoNGj6FlpYEy2fQE+8zbtG3oCscpL/ZI2Z8QvUjQHiG9D5B0RxP8+s1PsW0o9ht8Y3Et1eU+SvzuYz5u98EO4smdaL7oKiiqSrxXFYlLU9OVJQo9AVxVwLQs/v3W+el19y7t27Clnj2HOtA0FdO0+n3F0Pt9iYQlZX9C5CBBe4Rk1mO7dIU9BzvTOexbkimR4qLsB4ypQJ+qy85HWiSlItk98HBryHlQmiOP7gzxdX5t2c5E9ZS+Jtj84vltqKoy6HuxkbI/IXLJW/XI3r17Wb58OQsWLGD58uXs27cv53WvvvoqS5cuZcmSJSxdupTm5uZ8LXFYNbdHMHTVCdiHOrFsG1VR8Ht0ppT7KQkYKL320qlAXxJw9/FZR0bQ5wz/jcZNAl7d2U0rzn+mZWcd7lGTb0tVt/Rn9owKppT7hrwuKfsT4lh522nfc889XH/99Vx55ZW8/PLL3H333Tz11FNZ13z00Uc88sgjPPnkk1RWVtLZ2YlhjI1yt8GqKPYQjpnsPdSJZTkBO1jk4pTJAYqLjg3Y0HPwRlEUZ3dq2SO+2/a5dVYurgV6BvRWl3lBUejojpEwbTRNwdAUuiIJ4gkLj6HlPP2Yy5xZk3jlz/uGtDYp+xPiWHkJ2i0tLWzfvp3HH38cgCVLlvCTn/yE1tZWysrK0tc98cQTrFy5ksrKSgACgUA+ljci5n6uiqc37kwGbAgWuSgtMrhkzlTUPs6lZx68MXQ1WepnY9tOTbNtOw//zpgaZO/hznRTKF0Fr8fFScmufPsaOtj43gHCsQQKCoZLwe/W6YokiMYtVEXBY6jpk4upwDgSAXJHfRtBn0F3MuAPhKo4aSQJ2EIcKy9Bu6GhgaqqKjTNORmnaRqTJk2ioaEhK2jv3r2bqVOnsmLFCkKhEJdeeil///d/jzKSzTdGwIEjXbzwxz1OwFYVitwaJ08q4tLzp/G5k8v7/LiFc6fzzOs7ieIcb2/tiAAKpQEDXdcwTWtAu8/ZMyofrvdBAAAOzElEQVT63AVXVgY4cqTzBO5ucJrbIwT9BsVFbto6I7T3UUmSSVGgqmzoaRUhxrMx9SDSNE3q6up4/PHHicVi3HLLLUyZMoWrrrpqwJ+jvLxo0F+3snL4dvT7Gtr52W8+pCscx+/RufWr53JydYDyYi8uvf8hBhdXBigu9vHi/+yiqTXEtKogNjaRqEllqY9r5s9kTm3VCa9xOO/3eKorizh0pJNQJEE0Zh5TQphL0O/mG1d+ftjWmc/7HQvkfse3vATt6upqGhsbMU0TTdMwTZOmpiaqq6uzrpsyZQoLFy7EMAwMw+Diiy9m27ZtgwraLS1dWINoYzqcO8+Glm5WP/MBHaE4XrfG1y+vJejRUEyTtqOhAX2Okyt83Lpsdp/vP9G15nunPWNyER/vaca2sqth3C6nlFBVFSzTJpXiP6nCz7L5Mzi5wjcs68z3/Y42ud/xob8fRHmpHikvL6e2tpZ169YBsG7dOmpra7NSI+Dkujdv3oxt28Tjcd555x1mzZqVjyWesMOtIR58disdoTgeQ2Pl5bVMn1REacCDqkzcFi876p3hBr0zXPGEhdfQcOsa5cUeaqaV8N1ls/nxN+ZKLluIfuQtmtx7772sWbOGBQsWsGbNGu677z4AVq1axUcffQTA4sWLKS8v5/LLL+eqq65i5syZLFu2LF9LHLLGoyEefPYD2pMPEb9+eS3TqwKUBD1oamHl44dbc3uEgM91TErEsiEUNYnEErk/UAiRk2Lb+ejWnD/5To8caQvzwDMfcLQzmgzYszi1OkhpwIOujb2Ane+Xkw8++wFt3TEaW0N95rIrSzzpU5PDXeY3Xl8+90Xud3wY9fTIeNXcHmb1s07ANnSVmxfN4pTqIMVF7jEZsEfDwrnTCYXj/T587AzF0+1cU939hBC5SdAeopaOCKuf2UprRxSXrnLTImeHXVLkxtDl25pFUfocmaZkjBmTXiNCHJ9ElyFo7Yyw+pkPaOmI4NJUvrawhhlTiiVg57BhSz0+j95nDxFVUdA153smvUaEOD6JMIN0tDPCg89upbk9gq4p3LiwhpknFVNSZGC45NvZW6oHi8/jIuhzZb1PTQ5HCPhc6Xau0mtEiP6NqcM1Y11bV5QHn91K09EwuqZww2U1nD41ucN29X9wZqJJtWpt74pytDOCqqpYlo1LV7Es5yh9VanT4yQSMynxG1lH6oUQuUnQHqD2bidgNx4No6kKKy49g5rpJRQXudODa4Ujs5e4163TEYpjWpYz0ix5yGbxF08eUMMpIUQ2eT0/AB2hGP/47Iccbg2hqQrXX3oGs04uJeg38EjAPkZmL/FowgnWCk7AdukqxX43O+rbRnuZQhQk2WkfR2c4xj8+u5VDLd2oisJXLzmdz51SSsBv4DXk25dLqsUsOBNoVEVB0xUs26aqzIdt21IlIsQQyU67H13hGD/79YccbO5GVWD5xTM589QyAj4DnwTsPlUUe9IjynRdxcY5ASlVIkKcOAnafeiKxPnZrz9kf1MXigLXXTST2aeVU+Qz8HskYPdn4dzpx0zCsW1LqkSEGAYSfXIIReI89JsPqU8G7C9fOJOzZ1RQ5HNR5NGP21p0osoc7usxNLBtEijpSThSJSLEiZOg3UsoGueh3/6Vzw53ogDX/t0M/mZmBX6viyLvsY2PJrpUoD7Y3E0kalLkcxHwuYglLEzT4obLZGSYEMNJ0iMZojGTnz+3jb0NHQBc83ence4ZlcmALTvs3lKlfW3dMWJxC8u26QzFiMRM6SUixAiRnXaGx9Zv59MD7QBc/X9P47yaSfg8OgGvDjkG8U50maV9CdNCVcDGGQjsdes5e4lkplAqij2SKhFikCRoZ6hv7ALgynmncv4sJ2AHfYU5DT4fMkv7dN1prapmNIDqXSWSeejG59Fp647xzOs7gZEZKizEeCRBO8MdN55HW1cUj6HhMXQCErD7lTk9Puhz0doZxbRsdE3JWSWSuTMHnMM3ybdL0BZiYCSnnaHYb1Bd7sdjaAT9hiREjiOztM/r1gl4XaiqgtulUeI3jhlokGoelUnasQoxOLLT7kXXFIr97tFexqgaaN459bbUtZPLfP3mqDN35ily0EaIwZGg3YvaV7f+CWKweefZMyoGnNpYOHc6z7y+kyjODjtVFigHbYQYOEmPiCyZeWdFUYa1dG/2jApWXHoGJX6DUCSRM4UihOif7LRFlsyKkJThzDsPZmcuhDiW7LRFlsxmTymSdxZi7JCgLbJkVoTYti0NnoQYYyQ9IrL0rgiRU4tCjC0StMUxJO8sxNgl6REhhCggErSFEKKASNAWQogCIkFbCCEKiARtIYQoIBK0hRCigEjQFkKIAiJBWwghCsi4O1yjqoNvrTqUjylkcr/jm9zv+KbYtswYF0KIQiHpESGEKCAStIUQooBI0BZCiAIiQVsIIQqIBG0hhCggErSFEKKASNAWQogCIkFbCCEKiARtIYQoIBMmaO/du5fly5ezYMECli9fzr59+/q8ds+ePZx99tmsXr06fwscRgO911dffZWlS5eyZMkSli5dSnNzc34XOkwGcr8tLS1885vfZOnSpSxcuJB7772XRCKR/8UOg9WrV3PRRRdRU1PDzp07c15jmib33Xcfl1xyCZdeeinPPfdcnlc5fAZyv48++iiLFy/miiuu4JprruFPf/pTnleZR/YEceONN9pr1661bdu2165da9944405r0skEvYNN9xgf+9737MfeOCBfC5x2AzkXrdt22YvWrTIbmpqsm3btjs6OuxIJJLXdQ6Xgdzv/fffn/7zjMVi9rJly+z169fndZ3D5b333rMPHTpkX3jhhXZdXV3Oa1566SV75cqVtmmadktLi33BBRfY+/fvz/NKh8dA7nfTpk12KBSybdu2P/nkE/u8886zw+FwPpeZNxNip93S0sL27dtZsmQJAEuWLGH79u20trYec+0vf/lL5s+fzymnnJLnVQ6Pgd7rE088wcqVK6msrAQgEAjgdrvzvt4TNdD7VRSF7u5uLMsiFosRj8epqqoajSWfsDlz5lBdXd3vNa+++ipf/vKXUVWVsrIyLrnkEjZs2JCnFQ6vgdzvBRdcgNfrBaCmpgbbtmlra8vH8vJuQgTthoYGqqqq0DQNAE3TmDRpEg0NDVnX7dixg82bN3PzzTePwiqHx0Dvdffu3ezfv58VK1Zw9dVX86//+q/YBdg7bKD3+61vfYu9e/cyb9689H/nnXfeaCw5LxoaGpgyZUr699XV1Rw+fHgUV5Q/a9euZfr06UyePHm0lzIiJkTQHoh4PM5dd93Ffffdlw4A45lpmtTV1fH444/z9NNPs2nTJl5++eXRXtaI2bBhAzU1NWzevJlNmzbx/vvvF+zOU/Tt3Xff5ec//zkPPfTQaC9lxEyIoF1dXU1jYyOmaQJOwGpqasp6yXXkyBHq6+v55je/yUUXXcSTTz7J7373O+66667RWvaQDOReAaZMmcLChQsxDIOioiIuvvhitm3bNhpLPiEDvd81a9ZwxRVXoKoqgUCAiy66iC1btozGkvOiurqaQ4cOpX/f0NAwbneeKVu3buUHP/gBjz76KKeddtpoL2fETIigXV5eTm1tLevWrQNg3bp11NbWUlZWlr5mypQpbNmyhT/84Q/84Q9/4KabbuK6667jJz/5yWgte0gGcq/g5H43b96MbdvE43HeeecdZs2aNRpLPiEDvd+pU6eyadMmAGKxGG+//Tann3563tebLwsXLuS5557DsixaW1t54403WLBgwWgva8Rs27aNW2+9lV/84heceeaZo72cETVhhiDs3r2b22+/nY6ODoLBIKtXr+a0005j1apVfOc73+Hzn/981vX/8i//QigU4rbbbhulFQ/dQO7VsixWr17Npk2bUFWVefPmcdttt6GqhfdzfCD3W19fzz333ENzczOmaTJ37lzuvPNOdL3whjfdf//9bNy4kebmZkpLSykpKWH9+vVZ92uaJj/+8Y956623AFi1ahXLly8f5ZUPzUDu99prr+XgwYNZD5cffPBBampqRnHlI2PCBG0hhBgPCm9bJYQQE5gEbSGEKCAStIUQooBI0BZCiAIiQVsIIQqIBG0hhCggErTFhPD973+fO+64I+tt7777LnPnzqWpqSnr7bfccgvnnHMO55xzDmeeeSZnnXVW+vd33333kNfws5/9jDvvvHPIHy8EQOGdLBBiCH70ox+xZMkS3nrrLb70pS8RjUa56667uO2225g0aVLWtb/61a/Sv7799tupqqri1ltvzfeShchJdtpiQigtLeVHP/oRd911F6FQiEceeYRp06ZxzTXXDOnzvf766yxdupQ5c+Zw/fXXs2vXrvT7Hn30UebNm8e5557LokWLeP/993njjTd44oknWLt2Leeccw7Lli0brlsTE4zstMWEsWjRIl577TW+973vsXXrVl566aUhfZ4PP/yQ++67j3/7t3+jtraW559/nm9/+9usX7+eXbt28eKLL7J27VrKy8s5cOAA4PSEvvnmmzl69Cg//elPh/O2xAQjO20xodx9991s2bKFb33rW1n9pgfjt7/9LStWrOCss85C0zSWL19OLBbj448/RtM0otEou3btwjRNpk2bxrRp04b5LsREJjttMaFUVFRQWlp6Qh3+Dh48yGuvvcZjjz2Wfls8HqexsZHLLruM73//+zz88MPs2bOHCy64gDvuuIOKiorhWL4QErSFGKzq6mrmz5/PypUrc77/6quv5uqrr6ajo4M777yThx9+mPvvvx9FUfK8UjEeSXpEiEG67rrrWLNmDR999BG2bdPd3c2bb75JOBxm165dvPvuu8RiMTweD263O93uNpXjlsaa4kRI0BZikM477zzuvPNO7rnnHubMmcOCBQtYt24diqIQiUR44IEHmDt3LvPmzSMUCvHd734XgMWLFxOJRPjbv/1bvvKVr4zyXYhCJf20hRCigMhOWwghCogEbSGEKCAStIUQooBI0BZCiAIiQVsIIQqIBG0hhCggErSFEKKASNAWQogCIkFbCCEKyP8HBlrhOCrFkM8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -841,26 +843,19 @@ ], "source": [ "data = pd.DataFrame({'Y Test':ytest , 'Pred':yPreds},columns=['Y Test','Pred'])\n", - "sns.lmplot(x='Y Test',y='Pred',data=data,palette='rainbow')" + "sns.lmplot(x='Y Test', y='Pred', data=data, palette='rainbow')\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 33, "id": "60c8d01e-d5ff-48fc-8cd3-6ac3c88649b1", "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/art3mis/anaconda3/envs/notebook/lib/python3.7/site-packages/seaborn/distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n", - " warnings.warn(msg, FutureWarning)\n" - ] - }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAELCAYAAADeNe2OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXhTZb4H8O/J3jTplqb7Xmgpe6FQQYpIUXaqKFdcuCPIVUZHvToqDAM4guIgOowoylXvoN6HcZcKiriwiAjK2palUOjeplvSLUub9dw/CpXSFlJITk6a3+d5tO3JyXm/pO2vJ+95z/syLMuyIIQQ4jMEng5ACCGEW1T4CSHEx1DhJ4QQH0OFnxBCfAwVfkII8TFU+AkhxMdQ4ScusWrVKmzatMklx9JoNEhPT4fdbgcALFiwAJ999plLjg0AixcvxrZt21x2PGdt2LABmZmZuPnmm93azubNm/HXv/6118cnT56MgwcP3nA7X375Je69994bPg7hnsjTAQj/TZ48GVqtFkKhEEKhEAMGDEBOTg7uueceCAQd5w6rV692+lgvvvgixo8f3+s+UVFROHHihEuyv/HGGygvL8err77aue29995zybH7oqamBlu2bMHevXuhUqnc2taSJUvcenzi/ajwE6ds3rwZ48ePh16vx+HDh/HSSy+hoKAAL7/8skvbsdlsEIn6349ldXU1goKCnC76/fV1IPxAXT2kT5RKJbKzs/HPf/4T27ZtQ1FREQBg2bJl2LBhAwCgsbERjzzyCDIyMjB27Fjcd999cDgcePbZZ6HRaLBkyRKkp6fj3XffRVVVFVJTU/HZZ59h0qRJ+MMf/tC5zWazdbZbUVGBu+++G6NHj8Yf//hHNDc3AwB+++03TJw4sUvGS10Z+/fvx//8z//g22+/RXp6OubMmQOga9eRw+HAW2+9hVtvvRXjxo3Dc889B71eDwCdObZt24ZJkyYhMzMTb7/9dq+vjV6vx3PPPYebbroJt956K9566y04HA4cPHgQixYtQn19PdLT07Fs2bJuz73073jnnXdw88034y9/+QsAYO/evcjJyUFGRgbmz5+Ps2fPdj7nnXfeQVZWFtLT0zF16lQcOnQIQMe7nGeeeaZzv9zcXNx666095r/8+9bT6/nOO+9gypQpSE9Px4wZM/DDDz/0+G9nWRZr167FuHHjMHr0aMyePbvzZ4PwD51SkOsyfPhwRERE4OjRo0hJSeny2JYtWxAeHt5ZiPLz88EwDNavX49jx4516eqpqqoCABw5cgQ7d+6EQCCAVqvt1l5ubi7+93//FzExMVi6dClefPHFLt03PZk4cSIeeeSRbl09l/vyyy+xbds2fPjhhwgJCcHSpUuxevVqrF+/vnOfY8eOYdeuXSgrK8Pdd9+N22+/HcnJyd2OtWbNGuj1evz4449obm7GQw89BLVajXnz5uHdd9/Fs88+i/379/eaV6vVoqWlBXv37oXD4cDp06exfPlybN68GUOHDsX27dvx6KOPYteuXaiqqsLWrVvx+eefIzw8HFVVVXA4HN2OeeHCBbzwwgt45513MGLECLz22muora296ut2udjYWGzduhVqtRq7du3Cs88+i++//x5hYWFd9jtw4ACOHj2K7777DkqlEiUlJVAqlU63Q7hFZ/zkuoWFhaGlpaXbdpFIhIaGBmg0GojFYmRkZIBhmKse6/HHH4dcLodMJuvx8ZycHKSkpEAul+PJJ5/Erl27Oi/+3ogdO3bgwQcfRGxsLPz9/fH0009j586dXd5t/OlPf4JMJsOgQYMwaNCgLmfdl9jtduzcuRN//vOfoVAoEBMTg4ULF2L79u1OZxEIBHjiiScgkUggk8nw6aef4p577sGIESMgFApx5513QiwWIy8vD0KhEBaLBcXFxbBarYiJiUFcXFy3Y+7atQuTJk3CmDFjIJFI8OSTT3Zel3HG9OnTER4eDoFAgBkzZiA+Ph4FBQXd9hOJRDAajSgpKQHLskhOTu72x4HwBxV+ct3q6uoQGBjYbftDDz2E+Ph4LFq0CNnZ2XjnnXeueayIiIirPh4ZGdn5eVRUFKxWK5qamvoe+gr19fWIjo7u/Do6Oho2mw06na5zW2hoaOfnfn5+MJlM3Y7T1NQEq9WKqKioLjnr6uqczhIcHAypVNr5tUajwZYtW5CRkdH5X21tLerr6xEfH4/ly5fjjTfewPjx4/HUU0/12FZ9fX2X11YulyMoKMjpTLm5uZ1dTRkZGTh//nyPr/u4ceNw//33Y/Xq1Rg/fjxWrlwJg8HgdDuEW1T4yXUpKChAXV0dRo8e3e0xhUKBZcuWYffu3di8eTO2bNnS2e3Tm2u9I6ipqenyuVgsRnBwMPz8/NDe3t75mN1uR2Njo9PHDQsLQ3V1defXGo0GIpGozyNvgoODIRaLodFouuQMDw93+hhXZo2MjMSSJUtw9OjRzv/y8/Mxa9YsAMDs2bPx0UcfYe/evWAYpsfurLCwsC5dO21tbZ3XRwB0e/0u72arrq7GihUrsHLlSvz22284evQoBg4c2Gv+//zP/8SXX36Jb775BmVlZR4ZPUWcQ4Wf9InBYMDevXvx9NNPY86cOUhNTe22z969e1FeXg6WZaFQKCAUCju7F0JDQ1FZWdnndrdv344LFy6gra0Nr7/+OqZOnQqhUIjExESYzWbs27cPVqsVb7/9NiwWS+fzVCoVqqure+z/BoBZs2bhgw8+QGVlJYxGIzZs2IDp06f3eUSNUCjEtGnTsGHDBhgMBlRXV2PLli2dF5Svx7x58/Dxxx8jPz8fLMvCZDJh3759MBgMKCkpwaFDh2CxWCCRSCCVSiEUCrsdY+rUqdi3bx+OHj0Ki8WCjRs3dnkt0tLS8NNPP6G5uRkNDQ344IMPOh9ra2sDwzAICQkBAHzxxRc4f/58j1kLCgqQn58Pq9UKPz8/SCSSHvMQfqCLu8QpS5Ys6SzgAwYMwMKFCzF//vwe9y0vL8eaNWvQ2NiIgIAA3HvvvcjMzAQAPPzww3jxxRexfv16/PGPf8TUqVOdaj8nJwfLli1DSUkJxo4di7/97W8AOkYZPf/881ixYgXsdjsWL17cpWtj2rRp2L59OzIzMxETE9Ptxq277roLdXV1eOCBB2A2mzFhwgSsXLnyOl4hYOXKlVizZg2mTJkCqVSKefPm4a677rquYwHAsGHDsGbNGqxevRrl5eWQyWQYNWoUMjIyYLFY8Nprr6G4uBhisRjp6ek93ksxcOBArFq1Cs888wza2trw4IMPdnl9cnJycPDgQUyePBnR0dG466678K9//QsAMGDAACxatAjz588HwzC44447MGrUqB6zGo1GrF27FlVVVZBIJJgwYQIWLVp03f924l4MLcRCCCG+hbp6CCHEx1DhJ4QQH0OFnxBCfAwVfkII8TFU+AkhxMdQ4SeEEB/jNeP4m5qMcDj4NfJUpVJAp+Pnbel8zgZQvhvB52wAv/PxORvg2nwCAYPgYP8eH/Oawu9wsLwr/AB4mekSPmcDKN+N4HM2gN/5+JwN4CYfdfUQQoiPocJPCCE+hgo/IYT4GCr8hBDiY6jwE0KIj6HCTwghPoYKPyGE+BivGcdPiK+zOQCz1Qa20QSTuWMxeKlYBBGdvpE+osJPiJcwW204UlgHpUIGvaFjndwxaeEQSenXmPQNnSsQQoiPocJPCCE+hrP3iGazGWvXrsWhQ4cglUoxcuRIrFmzhqvmCSGEXMRZ4V+/fj2kUim+++47MAwDrVbLVdOEEEIuw0nhNxqNyM3NxU8//QSGYQAAoaGhXDRNCCHkCpz08VdWViIoKAhvvvkm5s6diwULFuDo0aNcNE0IIeQKnJzx22w2VFZWYvDgwVi6dCny8/OxZMkS/PDDD1AoFE4dQ6Vybj+uqdVKT0foFZ+zAZSvr9hGE5QKGQB0fpTLpVCHyD0Zq0d8e+0ux+dsADf5OCn8UVFREIlEmDVrFgBgxIgRCA4ORmlpKYYNG+bUMXQ6A+8WUFCrlWho0Hs6Ro/4nA2gfNfDZLZBb2jvMo7fZDKjwW73cLKu+PjaXcLnbIBr8wkETK8nzJx09YSEhCAzMxO//PILAKC0tBQ6nQ7x8fFcNE8IIeQynI3qeeGFF7B8+XKsW7cOIpEIr7zyCgICArhqnhBCyEWcFf7Y2Fj83//9H1fNEUII6QXduUsIIT6GZncixIsxAgbGizN1Xo5m7SRXQ4WfEC9mttqRX9TQbTvN2kmuhs4JCCHEx9ApASFeiGVZtBgsMFv5NYafeAcq/IR4GY3WgJ+OV6Gx1YwdB8sQH6HEzcMiIRQwno5GvAQVfkK8SENzG74/XAmZRIgxaWGQSUX4OU8Dh4PFxBFREFDxJ06gwk+Il2jSt2Pv8Wr4+4kxLTMWMokII1LUaG+34cjZepyraEZaQrCnYxIvQBd3CfESn+0phs3uwMybEyGT/H7ONig+CBEqOQqKdbBQnz9xAhV+QrxA3nktTpboMHxAKEICZF0eYxgGo1PUMFvtOF3a6KGExJtQ4SeE52x2Bz7aXYSIEDkGx/fclaMKlCE+QolzFc2w2x0cJyTehgo/ITx34GQNGprbccfEpKtevE2JDYTF5kBFvaHzjt7L/7PR3wNyEV3cJYTHrDYHvj5YhuToAAxOCMbRs/W97hsRIoe/TIQLVS093tFLd/OSS+iMnxAe25+vQWOrGXdkJXWuV90bhmGQHB2IGp0JTfp2jhISb0SFnxCesljt+OZQGVJiAnvt279ScnTHGhcFF3RuTEa8HRV+QnjqpzwNmg0Wp872L1HKJQhSSHCGRveQq6DCTwgPmS12fPNrOdLigzHIybP9S2LCFCjRtNKYftIrKvyE8NCPxyrRarTgzqykPj83Vq2Aw8GiWmt0QzLSH1DhJ4RnTO1W7PqtAsOTVRgQE9jn56uCZFD4iVFVb3BDOtIfUOEnhGd2Ha6Esd2GuRP7frYPAAKGwaD4YGi0JrAs6+J0pD+gwk8Ij7QaLfjhSCXGpoUhLlx53ccZEBsIs9WOZoPZhelIf0GFnxAe2flrOSw2O3ImJN7QcS51EdXq2lwRi/QzVPgJ4YjNgatOo1DfZMKe49W4eWgkIlX+N9RWsFIGpVyM2kbTDaYm/RHdv00IR8xWG44U1nXZdvk0Ch/vvgChkMGd19m3f6XwEDkqavVwsCwETt4HQHwDnfETwgMFxVrkXdBizs0JCFZKXXLMiBA5LDYHmlqpn590xdkZ/+TJkyGRSCCVdvxQP/PMM8jKyuKqeUJ4y2pz4N8/nkdEiBy3ZcS67LgRIXIAQF2TCapA2TX2Jr6E066ejRs3IiUlhcsmCeG9749UoL6pDU/fMwIioevehMtlIvjLRNA204RtpCvq6iHEg5r0Zuw4WIZRKWoMTVS5/PjqID80NNPIHtIVp2f8zzzzDFiWxejRo/H0008jICDA6eeqVAo3Jrt+avX1j7V2Nz5nA3wvH9toglLRtcvlm0PlAAv88e4RUF8cyaM3WdDWbuv2fKEYnc+/9FEsFnU75uXbY8KVKKvVQyAUQi6XQn2x+8fd+Py95XM2gJt8nBX+rVu3IjIyEhaLBS+99BJWr16NV1991enn63QGOBz8ugtRrVaioUHv6Rg94nM2wDfzmcw26A2/d7vUNZrw2+lazLk5AUKHo7M9o7n76B8AGJGiht7QDqVC1nkcq7XrMS+5tF3p1/ErXqZpxuiUUDTY3T9xG5+/t3zOBrg2n0DA9HrCzFlXT2RkJABAIpHgvvvuw/Hjx7lqmhDecbAsDhfWI1gpxfSb4t3WTkiAFAKGoe4e0gUnZ/wmkwl2ux1KpRIsy2Lnzp1IS0vjomlCeOlCZQua9GYsmpUGm4OFzfx7144r39gKBQKEBEjRQBd4yWU4Kfw6nQ6PP/447HY7HA4HkpOT8fzzz3PRNCG8Y7HaceK8FuHBfhicGNKtW2dEitql7amD/FBU2Qy7nVZbJx04KfyxsbHIzc3loilCeK+wvAlmqx0Zg8KcXlnrRqiDZCgs75ifPyBO4vb2CP/RcE5COGSx2nGmrAmxYQrObqoKDfIDAJTV8PeiJuEWFX5COFRY3gSrzYHhA1w/Zr83/jIR/KRClNW0ctYm4Tcq/IRwxGpz4FxFM6LV/lAFcDeFAsMwUAf5oZQKP7mICj8hHDl+rh7tFjvS+rh4uiuEBvlB29KOVpOF87YJ/1DhJ4QDLMtiX54GgQoJIlXc3D17OfXF6wklGjrrJ1T4CeFESU0rquoNGBQXzMlIniupAmUQMECJpoXztgn/UOEnhAMHT9ZCLBQgMcoz88SIhAJEhfqjlEb2EFDhJ8TtrDYHDhfWYfgAFSQiocdyxEcoUappBcvya84rwj0q/IS4WUGxFsZ2GzIHh3s0R3yEEiazDfVNNG+Pr6PCT4ibHTpdh0B/CVLiuB/Nc7n4iI5p0EtoWKfPo8JPiBuZrXacKtEhIzUMQoFnFzyPCJFDKhailEb2+Dwq/IS40enSRlhsDoxKCfV0FAgETEc/P53x+zwq/IS40YmiBvjLRBgYG+TpKACApMgAlNcZYKOZOn0aFX5CXMzm6FhFq7XNihMXtBicGAKzzeHSefavV2JUAGx2B6oaDJ6OQjyICj8hLma2diyduPNQGUztNsilIhwprIPN4fmz7MTIjvsIqJ/ft1HhJ8RNarRGMAwQGcr9FA29UQXIECAX08geH0eFnxA30WhNUAf5efSmrSsxDIPEyAC6g9fHUeEnxA3aLXboWtsR5YEJ2a4lMSoANVoj2i5b55f4Fir8hLhBrc4IAIgM9fdwkt8xAgZGsw1Rof5gAZytbIbN85cdiAdQ4SfEDTQ6EyQiAacLrlyL2WrHkcI66FraAQC/FGhgttJZvy+iwk+IG9TqTIhQySHw8N26PZFKhFDKxdBe/ANAfA8VfkJcrElvhqHNivBg/vXvXxIaKKPC78Oo8BPiYsXVHYudhIX4eThJ71SBMpjabWgxmD0dhXgAFX5CXKy4ugVikQDBSqmno/QqNLDjj1J5HQ3r9EWcF/4333wTqampKCoq4rppQjhxoaoFYcF+EHhgiUVnhQRIwTBAeS0Vfl/EaeE/ffo08vLyEBUVxWWzhHCm1WRBbaMJ4cH87eYBOpZiDFZKqfD7KM4Kv8ViwerVq/H88897ZLFpQrhQXHWxf5/nhR/ouMBbUaeHg5Zi9DmcFf7XX38dc+bMQWxsLFdNEsK50tpWCAQMQng0fr83oYF+aDPbodEaPR2FcEzERSMnTpzAyZMn8cwzz1z3MVQqhQsTuY5arfR0hF7xORvQP/NpdG2IVisQHNh9KKdYLIJSIbuubVduv/TRmX1725YUw+DgqVrUNrcjfXCkk/9C5/D5e8vnbAA3+Tgp/EeOHEFJSQmys7MBALW1tXjooYfw8ssvY8KECU4dQ6czwMGHCc0vo1Yr0dDAzz5SPmcD+mc+lmVRVNGEYckq6A3dx8hbrbZu253ddvl2pULW+fi19r3aNoZlESCX4PjZOmQMdN0KYXz+3vI5G+DafAIB0+sJMyeF/+GHH8bDDz/c+fXkyZOxefNmpKSkcNE8IZzQtrTD0GZFXDg/351eiWEYJEcH4Hxls6ejEI7ROH5CXKTs4giZuHB+dyVcLik6ELpWc+f8PcQ3OF34d+/eDZvNNRM67dmzh872Sb9TVtMKkZBBFI9m5LyW5OhAAMD5Kjrr9yVOF/7XX38dEyZMwOrVq5Gfn+/OTIR4pbJaPWLDFBAJveeNdHSoP2QSIc5fHIZKfIPTP6Hbt2/H+++/D6lUiscffxxTp07FW2+9haqqKnfmI8QrOFgWZbWtSIgI8HSUPhEIGAyIDkQRnfH7lD6dmgwaNAhLly7FTz/9hOeffx67du3Cbbfdhvvvvx/bt2+HgweLSRPiCfVNbWgz25EQ4T39+5cMjAlEdYMRxnarp6MQjvR5VE9FRQW2b9+O7du3g2EYPPHEE4iMjMTWrVvx/fff480333RHTkJ4rezi4uWJkd51xg8AKbFBAIDzVS0YOcB1wzoJfzld+Ldu3YqvvvoK5eXlmD59Ol555RWMHDmy8/GpU6di/PjxbglJCN+V1ughEQkQGSpHu9W73vkmRgZAKGBwvqqZCr+PcLrw79+/HwsXLkR2djYkEkm3x/38/PDGG2+4NBwh3qKsthVx4UoIBQIA3lX4JWIhEiKVdIHXhzjdxz927FhMnz69W9HfsmVL5+fO3oVLSH9hcwD6NivKa/WIVvvDaLaBZzeYO2VgTBDKalphsdo9HYVwwOnCv2nTph63v/322y4LQ4i3MVtt2H20EhabA3aHA0cK62DzwkEOg+KCYLOzOF9NZ/2+4JpdPYcOHQIA2O12/Prrr2Avm8K1qqoK/v7ec7MKIe5wae1alRfMyNmb1NhgCAUMzpQ2YkhCiKfjEDe7ZuH/61//CqBjPv3ly5d3bmcYBmq1GitWrHBfOkK8gK61HSIhgwD/7te+vIVUIsSA6ECcLmvEPE+HIW53zcK/Z88eAMBzzz2HV155xe2BCPE2upZ2qAJkXr/A0ODEEGzbX4JWo8Wr/4iRa3O6j5+KPiHd2e0ONOrNUAV6bzfPJUMTO7p4zpQ3ejgJcbernvFPnz4d3377LQDglltu6fWMZt++fS4PRog30OhMcDhYry38jICB0dwx+WJokB/kUhEKinXIGBQBkfdMOUT66KqFf82aNZ2fr1+/3u1hCPE2FXUdUzGHemnhN1vtyC9q6PxaHSRDQbEO7RYrFDKxB5MRd7pq4c/IyOj8fOzYsW4PQ4i3qazTQyIWQOHXP4pkZKg/yusMqGtqgyKyf/ybSHdOv5nbsmULCgsLAQB5eXmYNGkSsrOzceLECbeFI4TvKuoM/eLC7iWRqo61gs+VN3k4CXEnpwv/+++/j5iYGADAa6+9hgcffBBLlizB2rVr3RaOED6z2uyo1hq9tn+/J0q5BEq5GGep8PdrThd+vV4PpVIJg8GAc+fOYcGCBZg3bx5KS0vdmY8Q3qqsN3Zc2PXiG7d6Eqnyx/mqFtjs3ncHMnGO04U/MjISx48fx86dO5GRkQGhUAiDwQChUOjOfITwVlltx1TM/emMHwCiQuUwW+00aVs/5vTsnM899xyeeOIJSCQSbNy4EQCwd+9eDBs2zG3hCOGz0ppWKPzE8Jf1eVkLXotU+UMkZFBQrEVafLCn4xA3cPon9pZbbsGBAwe6bJs2bRqmTZvm8lCEeIOyWj3iIpT95sLuJWKRAANjgpB/QYd7Jg/0dBziBn06VdHr9SgtLYXRaOyyfdy4cS4NRQjfmS12aLRGDEtSeTqKWwxJCsHne4tR12hCeIjc03GIizld+L/88kusXr0acrkcMtnvfZoMw2D37t1uCUcIX1XU68GyQFy4Eu0Wm6fjuNzQRBU+31uM/Ata3D42ztNxiIs5Xfg3bNiA119/Hbfccos78xDiFUprOu7YjQtXoKiy2cNpXE8VKEO02h/5xToq/P2Q04Xfbrff0Apbjz76KKqqqiAQCCCXy7Fy5UqkpaVd9/EI8aSy2lYEK6UIVEg9HcVtRiSH4rvDFTC12yDvZxewfZ3Twzn/67/+C2+//TYc17m60Lp167B9+3bk5uZi0aJFXeb2J8TblNXokRCh9HQMt2EEDFLjgmB3sDhW1ACj2QYbDevvN5z+M/7+++9Dq9XivffeQ1BQUJfHnJmdU6n8/ZfEYDD0u5EQxHe0mW2obTRh3JBwT0dxG7PVjoaWNkjFQvyUVw27w4ExaeEQSenMvz9w+rvoitk5//rXv+KXX34By7J47733bvh4hHhCWW1H/35CZICHk7iXgGEQrfZHdYMRDtYLV5AnvXK68Ltids6XXnoJAJCbm4tXXnkF7777rtPPVakUN9y+O6jV/H27z+dsgPfm+/lULQBg9JBImC12KBVd79wVi0XdtvW23dltV26/9NHdbQ2IDUaJphVGsx1yuRRqJ4d28vl7y+dsADf5nC78FosFmzZtwtdff43m5mYcO3YMBw4cQFlZGR544IE+NXrHHXdg1apVaGpqQnCwc3cG6nQGOBz8OutQq5VoaNB7OkaP+JwN8O58py5oERoog6XNApPZBr2hvcvjVmv3bb1td3bb5duVClnn4+5uK0QphoABzpU1YnJ6NBrs9m77XonP31s+ZwNcm08gYHo9YXb64u7atWtRVFSEV199tbN/fuDAgfjoo4+u+Vyj0YiamprOr/fs2YPAwMBu1woI8QalNa39+sLu5SQiIcJD5KisN4Cl7p5+w+kz/h9//BHff/895HI5BIKOvxfh4eGoq6u75nPb2trw5JNPoq2tDQKBAIGBgdi8eTNd4CVep9VkgbalHbemR3s6CmdiwxU4fKYedY1tUETR4iz9gdOFXywWw37F27zGxkanztpDQ0Px6aef9j0dITxToumYkTMpqn9f2L1cbFhH4S8o1iLZh/7d/ZnTXT3Tpk3D0qVLUVlZCQCor6/H6tWrMXPmTLeFI4RvSjStEDAMEiJ8pwD6y8RQBchwskTn6SjERZwu/E899RRiYmIwZ84ctLa2YurUqVCr1XjsscfcmY8QXinVtCBG7Q+pxLfWoYgNV6C8Ro9mg9nTUYgLON3VU1FRgaSkJDzyyCOw2+2YMmUKUlNT3ZmNEF5xsCxKalqROTjC01E4FxumQN55LfIuaDFppO9c3+ivrln4WZbF8uXLkZubi4iICISFhaGurg6bNm1CTk4O1q5dSxdpiU+o1ZnQZrYjqZ/fuNWTIIUEqgAZ8s5T4e8Prln4P/nkExw+fBiffPIJhg8f3rm9oKAAf/7zn/Hxxx/j3nvvdWtIQvigWNOxFGFytO8VfoZhMCxZhQMFNWi32CCT0NQN3uyaffxfffUVVqxY0aXoA8Dw4cOxfPlyfPXVV24LRwifFFe3wk8qhMJfAqPZBqPZBp7dU+hWwweoYLM7cKqk0dNRyA26ZuEvLi7GmDFjenxszJgxKC4udnkoQvioWNOCIIUUx87W40hhHY4U1sF2nbPVeqOkqED4y0Q4cV7r6SjkBl2z8NvtdigUPd/2q1AornuaZkK8yaWlFtVBfp6O4jFCAYMRA0s/OUEAABjCSURBVEJRUKyFnX7vvdo1O+psNht+/fXXXm/XvvKmLkL6o7LaVrAsEBrUfUIzX5I+MBQHT9WiqLIFafHOzbNF+OeahV+lUl110ZSQkBCXBiKEjy7dsRsa6NuFf0hiCERCAU6cb6DC78WuWfj37NnDRQ5CeK1Y0wp1kMznR7PIJCIMSQhG3nkt7s0eSEO5vZTTd+4S4qtYlkWJpgXxPjRNw9Wkp6ihbWlHVYMRNgc6Rzhd+q++0UTLNPKcb5++EOIEXUs7mg0WJPrgjVs9GTEgFAyAE+cbEBIow5HCrjP0KhUyDIoNpGUaeYzO+Am5hnOVzQCAATGBHk7CD4H+EiRFB+BEEQ3r9FZU+Am5hqLKZvjLRIhQObfsYH/FCJjO7pwhiSqU1+mha+2+ehfhP3ovRsg1FFU2Y2BMEAQ+fiHTbLUjv6gBAMCgY3h3/gUtlH60OIu3oTN+Qq6i2WBGXVMbUmJpmdDLBSqkCPCX4DRN3+CVqPATchVFF/v3U+Oo8F8pNkyB4uoWWKx0E6e3ocJPyFWcq2iGVCJEXHjP05b4stgwBewOFtVao6ejkD6iwk/IVZwpb0JqbBCEAvpVuVJokAwKPzEq6wyejkL6iH6aCemFrqUddY0mDE6gaUl6ImAYDE4MQbXWCLsvzU/dD1DhJ6QXZ8o7LlwOTqA5aXozNCkEVpsDdY0mT0chfUCFn5BeFJY1IcBfguhQf09H4a2UuCCIhAwq66m7x5tQ4SekByzL4kx5EwbHB9NEZFchFgkRFeqPynpDr1O3E/7h5AaupqYmPPfcc6ioqIBEIkF8fDxWr15NUzoT3irVtKLVaKH+fSfEhilQUWeArtXs89NWewtOzvgZhsHixYvx3XffYceOHYiNjcWrr77KRdOEXJcjhbUAgGFJVPivJVrtDwZAFXX3eA1OCn9QUBAyMzM7vx45ciQ0Gg0XTRPSZzYHcKigBnHhCojEQp9cWL0vZBIRQoP8UN1Ahd9bcN7H73A48NFHH2Hy5MlcN02IU3StbSiu7lhY/dKi6r62sHpfxYT5Q9dqhqnd5ukoxAmcT9K2Zs0ayOVyPPDAA316nkrFzzsn1WqlpyP0is/ZAP7mO1RYDwBIiQ+BUvF7n7VYLOrydV+2ufr5lz5y0ZYz21LjQ3CiSAud3ozwUAXkcinUIfyczZSvP3eXcJGP08K/bt06lJeXY/PmzRD08U5Inc4AB8/ea6vVSjQ06D0do0d8zgbwO9+xwjr4SUXwEzPQG36fdthqtXX5ui/bXPl8pULW+bi723J2m1gA+MtEuFDZjMGJKphMZjTY+TeHD59/7gDX5hMImF5PmDnr6tmwYQNOnTqFTZs2QSKRcNUsIX1itdlxurQRiVEBNIyzDxiGQUyYAjU6I2x26hLjO04K//nz57F582bU19dj/vz5yMnJwWOPPcZF04T0yanSRpitdiRH02pbfRWjVsBmZ+kirxfgpKtn4MCBOHfuHBdNEXJDjp9rgJ9UhOgwBUwmi6fjeJWIED+IhAzKa1o9HYVcA925S8hFNrsDeRe0GJYUQrNxXgehUIBIlT/KalrpLl6eo59uQi46XdoIY7sNIweqPR3Fa0Wr/aE3WVGjo0nb+IwKPyEXHTpdC4WfGGk0G+d1i1F3TGh3upSWZOQzKvyEAGgz23DivBZj0sIgEtKvxfWSy8RQB/nhVInO01HIVdBPOCEAjp1rgNXmwLghEZ6O4vXiIwNQWtMKQ5vV01FIL6jwEwLgwMkahAX5ITkqwNNRvF5CZABYFjhJZ/28RYWf+DyN1oiiymZMHBlFN225QFiwH5RyMfIvaD0dhfSCCj/xeT/laSAUMJgwLNLTUfoFhmEwJDEEp0oa6S5enqLCT3yaxWrHLydrMDpVjQB/mkrEVYYmqWAy21Bc3eLpKKQHVPiJTzt4uhYmsw23pkd7Okq/knpxLd78C9TPz0dU+InPcrAsvjtcifgIJVJigzwdp1+RSURIjQtGfjH18/MRFX7is/IvaFHXaMKto6JhsthppS0XG56sQo3OhPomuouXb6jwE5/Esix2/lqOkAApbDYHrbTlBiOSVQBA3T08RIWf+KSTJY0orm7FbWNiIRDQEE53CAuWI0btj2NFDZ6OQq5AhZ/4HJZlkftzCUIDZbiJ7tR1q9GpYThf2YwWg9nTUchlqPATn3O8qAFltXrMHp9A8/K4WUaqGiw6XnPCH/RTT3yK1ebAJ3suIFrtj/HD6Gzf3aJC/RGpkuPoOSr8fEKFn/iUH45WQtvSjvmTB9JiKxxgGAajU8NwtqIJLUZa0Ywv6Cef+Axtcxu2/1KKkQNCMSQxxNNxfEbm4HCwLHC4sM7TUchFVPiJT2BZFh9+XwQAuPOWJBqzz6HoUH/EhSvw6+laT0chF1HhJz7h1zN1OFWiw/BkFYqrW2jMPsfGDYlAaY0eNTqjp6MQUOEnPqCxtR1bvy9CYmQABsXTsopcYARM57sqo9mGYckqMEzH8pbE80SeDkCIOzkcLP73m0LYHSwWTEtFWU2rpyP5BLPVjvwrhnCmJYTg54IazLk5kYbRehi9+qRf++ZQGQrLm3DvlIFQB/l5Oo5PmzAsEi0GC03hwAOcFP5169Zh8uTJSE1NRVFRERdNEoJzFU3IPVCKmwaHI2s4LbLiaYMTQxCslGJfXrWno/g8Tgp/dnY2tm7diuhomvOccKPVaMHm7acRFizHgqmptKQiDwgFDG4ZEYXTpY10kdfDOCn8GRkZiIykMy7CDYuNxeavTsHUZsPCGYPgAGjoJk9MSo+GWCTAt79VeDqKT6M+ftLvfPHTBZytaEbGIDU0WiMN3eSRAH8JsoZH4tCpWjS2tns6js/ymlE9KpXC0xF6pFYrPR2hV3zOBrgn3y8FGvxwpBKDE0MwKq3rXDxisQhKhcypbQCc3teZba5+/qWPXLTlqudLpGKwQgGmjkvEvhMafHukEg/NGQqlnNu1jn3x9+JKXlP4dToDHDx7r65WK9HQoPd0jB7xORvgnnzVDQZs+PdxJEQqkT5QBb2h6xml1WpzehuAG3r+ldtc+XylQtb5uLvbup5tSoWsx+0Gk7lziGdSdAD2Hq3EzUMjkBDOXSH2pd8LgYDp9YSZunqIV7M5OvrvG1rasfGLk5CIBVg4czBNwMZzIweEQiBgsONAqaej+CROfjtefPFFTJw4EbW1tVi4cCFmzpzJRbPEB5itNhw+U4s3Ps+HtqUN44dFQCEXezoWuQa5TITBCSE4cV6LM2WNno7jczjp6lmxYgVWrFjBRVPEB+Vf0KGqwYixaWEID5Z7Og5x0tCkENToTNiy8yxWPzQWflKv6Xn2evR+mHi1k8U6FBTrkBwdgNS4IE/HIX0gEgrwwO0paGxtx8e7z3s6jk+hwk+8VnWDAR/uOgtVgBQ3DQ6nm7S8UFJ0IGaMi8fPBTXYd4Lu6OUKFX7ilVoMZvzzswJIxEJMSo+GkCb98lp3ZiVhWJIKW38owqlSmseHC/TbQryO2WrHxi8KoG+z4JGcIfD3o4u53kwgYPDInMGICvXHm1+cxNnyJk9H6veo8BOv4nCweG/HGZTV6PHI7CGI43AMOHEfuUyMP88fidAgP/zj03z8eqauy3z+RrMNNrrx2mXoMjrxGg6WxfvfnsWxogbMzx6I9BQ1jGabp2MRFwmQS7Ds/lF444sCvLP9NEaldKyNfOnazZi0cIho5I9L0Bk/8Qosy2LrD0U4cLIGc25OwO1jYj0dibiBwk+MZ+aPxKhUNY4XaXHodB3sPLtjvz+gP5+E91iWxad7L2Dv8WpMz4xDzoRET0cibiQWCfGH6YNgtdpxsqQReqMFt6RHeTpWv0Jn/ITXbHYH3v/2LL47XInsUTG4e1IyDdv0AQKGQXqKGhOGR6KhpR07D1VAo6U5/F2FCj/hnUvz7+j07djwaT5+LqjBtMw43D15IEwWe5cLftQL0L8lRQVgWmYs7A4HNnySRyN+XIS6egjvmK027DlWiX0nNGg2mDFuSDjCgv1gsli7LeA9IkXtoZTEFRgB0+MF+sv/oIcG+mHGuHj8crIW//g0D3+YnoaRA0MBAFKxCCI6fe0zKvyEV1iWxbFz9fj6YDkAYPKoGESr/T2ciriL2Wrv9scc6P4H3V8mxmN3DcPGT/Pxr6/PIHNIOFJig2ikz3WiV4zwRn2TCR/vvoC8C1qEBsqQNSKS80U6CH/JZWJMyYjF/jwNfj1dB7udxZi0cE/H8kpU+InHaZvbsOtwBX7K00AoZHDHxCQoZCIIBHQRl3QlFgkwaVQ0fs7X4MjZekSr/THnZhrl1VdU+IlHWG0OHDtXjwMFNThZ0giGAW4eFomcCYmQSIQ4Uljn6YiEp4QCBhNHROFAQQ1yfy4FwzCYPT7B07G8ChV+whmLjcWZch2On2tA3gUtDCYrAv0lmJYZh8mjohES0LFGK92NS65FIGAwYXgk1MF+2La/BHa7AzkTEmmor5Oo8BO3crAsiqtbcLiwHkfO1qPVaIFQwCAhKgBj0xSYMyEJATTJGrkOAgGDB25PhVQsxPZfymCzs7jrliQq/k6gwk9cjmVZlGhaceRsR7Fv0pshEgowODEYgf4SxKgVCAmSQ29oh5D68ckNEAgYPDh9EERCAXb+Wg6b3YF7Jg+g4n8NVPjJDbE5OsbdsyyLijoDThQ1IO+8FrrWdoiEDIYmqnD3pGSMHBAKB9Ct776ncdx0UxbpCwHDYMHtKRAJGHx/pBI2uwP33ZYCARX/XlHhJ9fNanMgr1iL3UcrUVVvhMlsA8MAaQkhuCMrEekDQyGX/d6N01PffU/juOmmLOKsy08c5mQlggWw+1gVjO02LJw+CBKx0LMBeYoKP3Gaw8Gist6AcxVNOFvRjMKKJpgtdoiEDKJC/RGjViA2TIGs9GiwDhYsuhZ7OpMnrnbliUNUqBzpA0Nx+EwdanUm/GnuMKgCZR5MyE9U+EkXLMtC32aFrqUdja3t0LW0Q6MzobLegGqtARZrx2oYYcF+GDc4HIMSQqA3mrssfejs3ZiEuBrDMBiWrMKYtHD833dnsfqDI3hkzhAMTgjxdDReocLvQy71x5utdtTpTNC2tKPFaEFjSxsaWto7i73liqWO5FIRotX+yBoehaTIAKTGBXUZeklj7gnfDB8YiqeD0/HejtN49eM8TBwZhbtuGQA69ehAhb+fc7AsNFojzlU042xFEy5UtaDFaOmyj79MBFWgDBEqOdISghGslKGxtQ3+fmL4y8SQigVgGAZj0sLhT/OiEC9gttpRWadH9ugYHC9qwP48DfKKtPjPmYMxPCEIIqFvz+xGv8X9UENzG45d0OG3kxqcrWiGoc0KAAhSSKD0lyA+QolgpRRKuRjjhkXi3BVT3Y5IUffYVUMjcIi3EQkFGJsWjqSoAJwpa8Kbn+VBFSDFpPRo3DwsEkEKqacjegRnhb+0tBTLli1Dc3MzgoKCsG7dOiQkJHDVfL/WarKgqKIZZ8oacbqsEQ3N7QCAYKUUw5NVGBQXjEFxQfDzE3frlpH14QyeRuAQbxUa6Ien74mHzmDFx9+dxRc/leDLn0qQFBWA5OhAxEcoERemQEiADDKJsN/fB8BZ4X/++edx3333IScnB1999RVWrVqFDz/8kKvm+wWzxQ5tSxtqG9tQ12RCRZ0eJZpWaFs6Cr1MIsTAmCBkZ8Rh4qgYSBm2yw8wTYVAfJlAKEBcuBJ/uns46hpNOHG+AYVlTdh7ohrWy65riUUCKOViyCQiyCRCyKQdHxUyMeQyEfwubvOTiOAnFcJPKoLfxX38Lm6XXOwe5StOCr9Op8OZM2ewZcsWAMCsWbOwZs0aNDY2IiTEuavt1zNTY0WdAcWaFrAOFg6wcDjYjq4JFhc/7/iaZTs+t9sdsNlZ2Ows7A4HrHYH7DYHbI6OJQDtjo7HO7axsDtYWO122G0sWLAdN4wwHSMLGHT9KOj4BMylx5mOG08YAAw6/ifo4XEwgNlsh8FshdXa9aJrkEKKockqCBgGqgAZgpVSCAQMRgwIRUy4Ejqdocv+IqGgy7j6vmxz9fP9pCLYbWKPtX+tbZfyear9qz3/8mx8eK2u3OYnFfHmtbqc3cGisKwRBqMZABAbpsSs8YmQihjUN7dDozNCb7TCYLKi2WhGfVMbbHYHbDYHmsw2NOnNMFvtsF0x+KEnDAPIxB1/DKRSIaRiEaQSAWRiEaRiAUQiAQQCBiJGAKGQgUAACAUC+PtL0GaydNQKAGHBcgxOCL5mez25Ws1kWJZ1ey/tqVOnsHTpUnzzzTed22bMmIH169djyJAh7m6eEELIZXz70jYhhPggTgp/ZGQk6urqYLfbAQB2ux319fWIjIzkonlCCCGX4aTwq1QqpKWl4euvvwYAfP3110hLS3O6f58QQojrcNLHDwDFxcVYtmwZWltbERAQgHXr1iEpKYmLpgkhhFyGs8JPCCGEH+jiLiGE+Bgq/IQQ4mOo8BNCiI+hwk8IIT6GCr+T2tra8N///d+47bbbMG3aNOzdu/eq+5vNZsyYMQNz587lVb7CwkLceeedyMnJwcyZM7Fy5UpYLJYe9/VEvh9//BFz587FrFmzMHPmTPzrX//iTba6ujosWLAAo0ePdvv3tbS0FPfccw+mTp2Ke+65B2VlZd32sdvteOGFFzBlyhTcdttt+Oyzz9yaqa/5Dhw4gLlz52Lo0KFYt24dZ9mczbdp0ybMnDkTc+bMwdy5c/Hzzz/zJtsXX3yB2bNnIycnB7Nnz3b9vGYsccobb7zBLl++nGVZli0tLWXHjx/PGgyGXvd/+eWX2b/85S/snXfeyat8bW1trNlsZlmWZe12O/unP/2J/eCDD3iTLy8vj62trWVZlmVbW1vZKVOmsEeOHOFFttbWVvbw4cPsnj173P59XbBgAZubm8uyLMvm5uayCxYs6LbPtm3b2EWLFrF2u53V6XRsVlYWW1lZ6dZcfclXVlbGnj59mv3HP/7B/v3vf+ckV1/y7d+/nzWZTCzLsmxhYSE7evRotq2tjRfZ9Ho963A4Oj+fNGkSW1hY6LIMdMbvpG+//Rbz588HACQkJGDo0KHYv39/j/sePXoUZWVlyMnJ4V0+mUwGiUQCALDZbGhvb4dA4P4fA2fzjRgxAuHh4QAApVKJ5ORkVFdX8yKbUqnEmDFjIJfL3Zrn0qSGs2bNAtAxqeGZM2fQ2NjYZb+dO3di3rx5EAgECAkJwZQpU7Br1y63ZutLvvj4eAwePBgiEbfLfjibLysrC35+fgCA1NRUsCyL5uZmXmRTKBSds3u2t7fDarW6dLZPKvxO0mg0iI6O7vw6MjIStbW13fYzmUxYu3YtXnjhBS7jOZ0P6OiyyMnJQWZmJvz9/fEf//EfvMp3SXFxMfLy8nDTTTfxLps71dTUIDw8HEKhEAAgFAoRFhaGmpqabvtFRUV1fs1Vbmfzecr15MvNzUVcXBwiIiJ4k2337t2YOXMmbr31VixevBipqakuy0ErcF105513QqPR9PjYwYMHnT7OK6+8gvvuuw/h4eE99t1dL1flA4Dw8HB89dVXMJlMePbZZ/HDDz9g5syZvMkHAPX19Xj00UexatWqzncAfMlG+pfDhw/j9ddf5+R6Ul9kZ2cjOzsbGo0Gjz32GCZOnOiy2Q6o8F+0bdu2qz4eFRWF6urqzvmFampqkJmZ2W2/Y8eOYf/+/XjrrbdgNpvR0tKC2bNnY8eOHbzIdzm5XI4ZM2Zgx44dN1z4XZlPp9Nh4cKFWLx4MWbMmHFDuVydjQuXT2ooFAp7ndQwMjISGo0Gw4cPB9D9HYCn83lKX/KdOHECzz77LN566y1OppC5ntcuKioKw4YNw759+1yWkbp6nDRt2jR88sknAICysjKcPHkSWVlZ3fbbsWMH9uzZgz179uAf//gHUlJSbrjouzJfZWVl5ygei8WC3bt3IyUlhTf5mpqasHDhQtx///2YN2+e23P1JRtXnJ3UcNq0afjss8/gcDjQ2NiIH3/8EVOnTuVNPk9xNl9BQQGeeuopbNy4kbN1QZzNVlxc3Pl5Y2MjfvvtN9f+nrrsMnE/ZzQa2ccff5ydMmUKe/vtt7M//PBD52P//Oc/2X//+9/dnvPrr79yNqrH2Xy5ubnsrFmz2NmzZ7MzZ85k//a3v3EyksHZfH//+9/ZYcOGsXPmzOn87/PPP+dFNpvNxmZlZbGZmZnskCFD2KysLHbjxo1uyXThwgX27rvvZm+//Xb27rvvZouLi1mWZdnFixezBQUFnXlWrVrFZmdns9nZ2ezHH3/slizXm+/IkSNsVlYWm56ezo4cOZLNyspi9+/fz5t8c+fOZTMzM7v8rJ09e5YX2V566SV2xowZ7Jw5c9jZs2ezH374oUsz0CRthBDiY6irhxBCfAwVfkII8TFU+AkhxMdQ4SeEEB9DhZ8QQnwMFX5CCPExVPgJIcTHUOEnhBAf8/9eKY6wxlZ2uAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAELCAYAAADKjLEqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df1RUZf4H8PcwzKgohCDQ+CNdSW3KfhAYZdEpUCEdndV0MdJW1N20MjcXk0wBQStWy6KVyLY8eda1XdoEJUOtdM1jW+kpWcPKH2AqAyiIyg+dYeZ+//DLHMaZwQcZ7szA+3UOR3ieO3feXGf4zH3uvc9VSJIkgYiI6Dp83B2AiIi8AwsGEREJYcEgIiIhLBhERCSEBYOIiISwYBARkRAWDHKrtLQ0rFu3ziXrqqioQEREBMxmMwBg5syZyM/Pd8m6AWDu3LnYsmWLy9Ynau3atYiOjsaDDz7Yqc+Tl5eHl19+2Wl/bGws9u/f3+Hn+eSTT/DEE090eD0kP193B6CuKzY2FufOnYNSqYRSqcStt94KvV6PxMRE+Phc/aySmZkpvK6VK1di9OjRTpfp378/vv/+e5dkf/vtt3Hy5EmsWbPG2va3v/3NJetuD4PBgA0bNmD37t0IDg7u1OeaN29ep66fvB8LBnWqvLw8jB49GpcuXcK3336LVatWoaSkBK+++qpLn6e5uRm+vl3v5XzmzBkEBgYKF4uuuh3IM3BIimTh7++PuLg4vPnmm9iyZQt++eUXAEBqairWrl0LAKitrcXTTz+NqKgo3HfffUhKSoLFYsHixYtRUVGBefPmISIiAu+99x5Onz6NESNGID8/H4888gh+//vfW9uam5utz/vrr79i6tSpiIyMxPz581FXVwcA+Oabb/Dwww/bZGwZctm7dy/effddfPbZZ4iIiMCkSZMA2A5xWSwW5Obm4tFHH8UDDzyAF198EZcuXQIAa44tW7bgkUceQXR0NN555x2n2+bSpUt48cUXcf/99+PRRx9Fbm4uLBYL9u/fj9mzZ6O6uhoRERFITU21e2zL77F+/Xo8+OCDeOmllwAAu3fvhl6vR1RUFKZPn46ffvrJ+pj169cjJiYGERERiI+Px9dffw3g6l5VSkqKdbmCggI8+uijDvO3/n9ztD3Xr1+PMWPGICIiAuPHj8euXbsc/u6SJOGVV17BAw88gMjISEycONH62iDPw48iJKu77roLN998Mw4cOIDhw4fb9G3YsAFhYWHWP2CHDh2CQqHA6tWrcfDgQZshqdOnTwMAvvvuO2zfvh0+Pj44d+6c3fMVFBTg/fffx8CBA7FkyRKsXLnSZpjJkYcffhhPP/203ZBUa5988gm2bNmCjRs3IigoCEuWLEFmZiZWr15tXebgwYMoLi5GeXk5pk6dinHjxiE8PNxuXVlZWbh06RI+//xz1NXVYc6cOQgJCcG0adPw3nvvYfHixdi7d6/TvOfOncOFCxewe/duWCwW/Pjjj1i6dCny8vIwcuRIbN26Fc888wyKi4tx+vRpbNq0CR9//DHCwsJw+vRpWCwWu3UeO3YMK1aswPr163H33Xfj9ddfR2VlZZvbrbVBgwZh06ZNCAkJQXFxMRYvXoydO3ciNDTUZrl9+/bhwIED2LFjB/z9/XHixAn4+/sLPw/Ji3sYJLvQ0FBcuHDBrt3X1xdnz55FRUUFVCoVoqKioFAo2lzXggUL4Ofnh549ezrs1+v1GD58OPz8/LBw4UIUFxdbD4p3xLZt2zBr1iwMGjQIvXv3xqJFi7B9+3abvZvnnnsOPXv2xG233YbbbrvN5lN+C7PZjO3bt+PPf/4z+vTpg4EDByI5ORlbt24VzuLj44Pnn38earUaPXv2xL/+9S8kJibi7rvvhlKpxOTJk6FSqfDDDz9AqVTCaDTi+PHjMJlMGDhwIG655Ra7dRYXF+ORRx7BqFGjoFarsXDhQutxJxGPPfYYwsLC4OPjg/Hjx2Pw4MEoKSmxW87X1xcNDQ04ceIEJElCeHi4XVEhz8GCQbKrqqrCTTfdZNc+Z84cDB48GLNnz0ZcXBzWr19/3XXdfPPNbfZrNBrr9/3794fJZML58+fbH/oa1dXVGDBggPXnAQMGoLm5GTU1Nda2fv36Wb/v1asXGhsb7dZz/vx5mEwm9O/f3yZnVVWVcJa+ffuiR48e1p8rKiqwYcMGREVFWb8qKytRXV2NwYMHY+nSpXj77bcxevRovPDCCw6fq7q62mbb+vn5ITAwUDhTQUGBdUgsKioKR48edbjdH3jgATz55JPIzMzE6NGjsXz5ctTX1ws/D8mLBYNkVVJSgqqqKkRGRtr19enTB6mpqfjiiy+Ql5eHDRs2WIennLneHojBYLD5XqVSoW/fvujVqxcuX75s7TObzaitrRVeb2hoKM6cOWP9uaKiAr6+vu0+k6lv375QqVSoqKiwyRkWFia8jmuzajQazJs3DwcOHLB+HTp0CDqdDgAwceJEbN68Gbt374ZCoXA47BYaGmozBNXU1GQ9/gPAbvu1Hg48c+YMli1bhuXLl+Obb77BgQMHMGzYMKf5n3rqKXzyySf49NNPUV5e7paz0UgMCwbJor6+Hrt378aiRYswadIkjBgxwm6Z3bt34+TJk5AkCX369IFSqbQOg/Tr1w+nTp1q9/Nu3boVx44dQ1NTE9566y3Ex8dDqVTiN7/5Da5cuYI9e/bAZDLhnXfegdFotD4uODgYZ86ccTi+DwA6nQ4ffvghTp06hYaGBqxduxaPPfZYu89QUiqVSEhIwNq1a1FfX48zZ85gw4YN1gPtN2LatGn46KOPcOjQIUiShMbGRuzZswf19fU4ceIEvv76axiNRqjVavTo0QNKpdJuHfHx8dizZw8OHDgAo9GInJwcm22h1Wrxn//8B3V1dTh79iw+/PBDa19TUxMUCgWCgoIAAP/+979x9OhRh1lLSkpw6NAhmEwm9OrVC2q12mEe8gw86E2dat68edY//LfeeiuSk5Mxffp0h8uePHkSWVlZqK2tRUBAAJ544glER0cDAP74xz9i5cqVWL16NebPn4/4+Hih59fr9UhNTcWJEydw3333ISMjA8DVs7bS09OxbNkymM1mzJ0712YIJiEhAVu3bkV0dDQGDhxod8He448/jqqqKsyYMQNXrlzBQw89hOXLl9/AFgKWL1+OrKwsjBkzBj169MC0adPw+OOP39C6AODOO+9EVlYWMjMzcfLkSfTs2RP33nsvoqKiYDQa8frrr+P48eNQqVSIiIhweC3MsGHDkJaWhpSUFDQ1NWHWrFk220ev12P//v2IjY3FgAED8Pjjj+ODDz4AANx6662YPXs2pk+fDoVCgd/+9re49957HWZtaGjAK6+8gtOnT0OtVuOhhx7C7Nmzb/h3p86l4A2UiIhIBIekiIhICAsGEREJYcEgIiIhLBhERCSEBYOIiISwYBARkZAufx3G+fMNsFg6fuZwcHAf1NR415QF3pgZ8M7czCwPZu58Pj4K9O3b22Ffly8YFovkkoLRsi5v442ZAe/MzczyYGb34ZAUEREJYcEgIiIhLBhERCSEBYOIiISwYBARkRAWDCIiEsKCQUREQrr8dRhEZKtZAhouN6Ox8iJMRjMAoHdPX/i2fVdaIhYMou6m4XIz3t1SApXKFyZTMwDg6cl34aZe/HNAbeMrhIigUilxoanZrp17HtQaCwYRoemKCe8XHrZr554HtcaD3kREJIQFg4iIhLBgEBGREBYMIiISwoJBRERCWDCIiEgICwYREQlhwSAiIiEsGEREJIQFg4iIhLBgEBGREBYMIiISwoJBRERCZJmG8vz583jxxRfx66+/Qq1WY/DgwcjMzERQUBBiY2OhVqvRo0cPAEBKSgpiYmIAAGVlZUhNTUVdXR0CAwORnZ2NIUOGyBGZiIiuIcsehkKhwNy5c7Fjxw5s27YNgwYNwpo1a6z9OTk5KCwsRGFhobVYAEB6ejqSkpKwY8cOJCUlIS0tTY64RETkgCwFIzAwENHR0daf77nnHlRUVLT5mJqaGpSWlkKn0wEAdDodSktLUVtb26lZiYjIMdnvjGKxWLB582bExsZa21JSUiBJEiIjI7Fo0SIEBATAYDAgLCwMSqUSAKBUKhEaGgqDwYCgoCC5YxMRdXuyF4ysrCz4+flhxowZAIBNmzZBo9HAaDRi1apVyMzMtBmu6qjg4D4uW1dIiL/L1iUXb8wMeGdub8ncWHkRKtXVt37LvwqFwvp9ayq10uN+L0/LI8IbMzsia8HIzs7GyZMnkZeXBx+fq6NhGo0GAKBWq5GUlIT58+db26uqqmA2m6FUKmE2m1FdXW1dXlRNTT0sFqnD2UNC/HH27KUOr0dO3pgZ8M7c3pTZZDTDZGqGSuULk+nqfbwlSbJ+f+2ynvR7edN2buFtmX18FE4/aMt2Wu3atWtx+PBhrFu3Dmq1GgDQ2NiIS5eubkhJkrB9+3ZotVoAQHBwMLRaLYqKigAARUVF0Gq1HI4iInITWfYwjh49iry8PAwZMgTTp08HAAwcOBCpqalYsGABzGYzLBYLwsPDkZ6ebn1cRkYGUlNTkZubi4CAAGRnZ8sRl4iIHJClYAwbNgw///yzw76CggKnjwsPD0d+fn5nxSIionbgld5ERCSEBYOIiISwYBARkRAWDCIiEiL7hXtEdOOaJaDhsu31Er17+sJX4aZA1K2wYBB5kYbLzXh3S4lN29OT78JNvfhWps7HVxkROaVSKXGhiXs0dBULBhE51XTFhPcLD9u0cY+m++JBbyIiEsKCQUREQlgwiIhICAsGEREJYcEgIiIhLBhERCSE58YRdVGOrgoHgI7ff5K6KxYMoi7K0VXhADBHP9INaagr4JAUEREJYcEgIiIhLBhERCSEBYOIiITwoDeRl3M0oyzAs6HI9VgwiLycoxllAZ4NRa7HISkiIhLCPQwiahdnQ2C8sVLXx4JBRO3ibAiMN1bq+jgkRUREQlgwiIhICAsGEREJYcEgIiIhshSM8+fP4w9/+APi4+MxceJEPPfcc6itrQUAlJWVITExEfHx8UhMTER5ebn1cW31ERGRvGQpGAqFAnPnzsWOHTuwbds2DBo0CGvWrAEApKenIykpCTt27EBSUhLS0tKsj2urj4iI5CVLwQgMDER0dLT153vuuQcVFRWoqalBaWkpdDodAECn06G0tBS1tbVt9hERkfxkP2naYrFg8+bNiI2NhcFgQFhYGJRKJQBAqVQiNDQUBoMBkiQ57QsKChJ+vuDgPi7LHhLi77J1ycUbMwPemVuOzI2VF6FS2b5tFQqFXZtoe8u/7VmHs2VVaqUs24CvDfeRvWBkZWXBz88PM2bMQGlpaac/X01NPSyWjk/DFhLij7NnL7kgkXy8MTPgnbldnbmt26uaTLbtkiTZtYm0q1S+1v72rMPZsiajudP/3/ja6Hw+PgqnH7RlLRjZ2dk4efIk8vLy4OPjA41Gg6qqKpjNZiiVSpjNZlRXV0Oj0UCSJKd9RF0db69Knki202rXrl2Lw4cPY926dVCr1QCA4OBgaLVaFBUVAQCKioqg1WoRFBTUZh8REclPlj2Mo0ePIi8vD0OGDMH06dMBAAMHDsS6deuQkZGB1NRU5ObmIiAgANnZ2dbHtdVHRETykqVgDBs2DD///LPDvvDwcOTn57e7j4iI5MWpJYnczNEBbt4tjzwRCwaRmzk6wM2D2+SJOJcUEREJYcEgIiIhLBhERCSEBYOIiISwYBARkRAWDCIiEsKCQUREQlgwiIhICAsGEREJYcEgIiIhLBhERCSEBYOIiISwYBARkRAWDCIiEsKCQUREQlgwiIhICAsGEREJES4Yn332mcP24uJil4UhIiLPJVwwXn75ZYftaWlpLgtDRN5LpVLiQlOzzVczb07epVz3nt6nTp0CAEiSZP2+dZ9are6cZETkVZqumPB+4WGbtqcn34Wbel33zwx5iev+T44dOxYKhQKSJGHs2LE2ff369cOCBQs6LRwREXmO6xaMn376CQAwY8YM/P3vf+/0QERE5JmEj2GwWBARdW/Cg4unTp3Cm2++iSNHjqCxsdGmb8+ePa7ORUREHka4YKSkpGDQoEFYsmQJevXq1ZmZiIjIAwkXjKNHj2Lz5s3w8eG1fkRE3ZHwX/9Ro0ahtLT0hp4kOzsbsbGxGDFiBH755Rdre2xsLBISEqDX66HX6/HVV19Z+8rKypCYmIj4+HgkJiaivLz8hp6biIhcQ3gPY8CAAZgzZw7GjRuHfv362fQtXLiwzcfGxcXhqaeewpNPPmnXl5OTg+HDh9u1p6enIykpCXq9HoWFhUhLS8PGjRtF4xIRkYsJ72E0NTUhNjYWzc3NqKystPm6nqioKGg0GuFQNTU1KC0thU6nAwDodDqUlpaitrZWeB1ERORawnsYr776aqcESElJgSRJiIyMxKJFixAQEACDwYCwsDAolUoAgFKpRGhoKAwGA4KCgjolBxERta1dp9U6M2jQoBt68k2bNkGj0cBoNGLVqlXIzMzEmjVrbmhdzgQH93HZukJC/F22Lrl4Y2bAO3PfaObGyotQqWzfigqFwq7NWXt7lr22veXfzno+lVrp8v/L7vTa8DTCBaP1FCEtFAoFAODIkSM39OQtw1RqtRpJSUmYP3++tb2qqgpmsxlKpRJmsxnV1dXtGtZqUVNTD4ul4zOghYT44+zZSx1ej5y8MTPgnbk7ktlkNMNkarZpkyTJrs1Ze3uWbd2uUvla+zvr+UxGs0v/L7vba8MdfHwUTj9oCxeMlilCWpw9exZ//etfERUVdUOhGhsbYTab4e/vD0mSsH37dmi1WgBAcHAwtFotioqKoNfrUVRUBK1Wy+EoIi/TMoPttXr39IWvwg2BqENueBrJkJAQvPzyy4iPj8fEiRPbXHblypXYuXMnzp07h+TkZAQGBiIvLw8LFiyA2WyGxWJBeHg40tPTrY/JyMhAamoqcnNzERAQgOzs7BuNSuQRmiWg4bKDT+ZuyCIXRzPYApzF1lt16H/sxIkTaGpquu5yy5Ytw7Jly+zaCwoKnD4mPDwc+fn5HYlH5FEaLjfj3S0ldu1z9CPdkIao/YQLRlJSkvWYBXD1NNtjx47h2Wef7ZRgRETkWYQLxrRp02x+7tWrF2677TYMGTLE1ZmIiMgDCReMyZMnd2YOIiLycMJXeptMJuTk5CAuLg533nkn4uLikJOTA6PR2Jn5iIjIQwjvYaxevRolJSVYsWIF+vfvj4qKCuTm5qK+vh5Lly7tzIxEROQBhAtGcXExCgsL0bdvXwDA0KFDcfvtt0Ov17NgEBF1A8JDUq2v8BZpJyKirkW4YCQkJGD+/Pn46quvcPz4cezduxfPPvssEhISOjMfERF5COEhqcWLF+Odd95BZmYmqqurERYWhgkTJljnfyIioq7tunsYBw8exOrVq6FWq7Fw4ULs2rULhw4dws6dO2E0Gm/4LnxERORdrlsw3n33XYwaNcphX3R0NPLy8lweioi6tpZJCVt/NfNwqMe77pDUkSNHEBMT47Bv9OjRPEOKiNrN0aSEnJDQ8113D6O+vh4mk8lhX3NzMxoaGlweioiIPM91C8bQoUOxb98+h3379u3D0KFDXR6KiIg8z3ULxqxZs5Ceno6dO3fCYrEAACwWC3bu3ImMjAwkJyd3ekgiInK/6w4YTpw4EefOncOSJUtgMpkQGBiIuro6qNVqPP/889DpdHLkJCIiNxM6wpScnIxp06bh+++/R11dHQIDAxEREYE+fRzf95WIiLoe4VMS+vTp4/RsKSIi6vqEpwYhIqLujQWDiIiEsGAQEZEQFgwiIhLCgkFEREJYMIiISAgLBhERCWHBICIiISwYREQkhAWDiIiEyFIwsrOzERsbixEjRuCXX36xtpeVlSExMRHx8fFITExEeXm5UB8REclPloIRFxeHTZs2YcCAATbt6enpSEpKwo4dO5CUlIS0tDShPiJP1yzB7hakvAPpjWm9LU9WXuTtXN1IlvshRkVF2bXV1NSgtLQUGzZsAADodDpkZWWhtrYWkiQ57QsKCpIjMlGHNFxuxrtbSmza5uhHuimNd2i5z/e1JADr/39bqlS+MJmaeTtXN3HbFjcYDAgLC4NSqQQAKJVKhIaGwmAwQJIkp30sGERdk6P7fAMstJ6ky5fo4GDX3bMjJMTfZeuSizdmBrwzd+vMjZUXoVLZvr0UCoVdm7P2zlr22vaWfz0hm+iyKpUvVGqlV71GvClrW9xWMDQaDaqqqmA2m6FUKmE2m1FdXQ2NRgNJkpz2tVdNTT0slo4PeIaE+OPs2UsdXo+cvDEz4J25r81sMpphMtkOr0iSZNfmrL2zlm3d3jK84ynZRJZtyWwymr3mNeJtr2cfH4XTD9puO602ODgYWq0WRUVFAICioiJotVoEBQW12UdERO4hyx7GypUrsXPnTpw7dw7JyckIDAzEp59+ioyMDKSmpiI3NxcBAQHIzs62PqatPiIikp8sBWPZsmVYtmyZXXt4eDjy8/MdPqatPiIikh+v9CYiIiEsGEREJIQFg4iIhLBgEBGRkC5/4R5RZ2qWrk4D0lh5ESaj2drOqY6oK2LBIOqAljmjWl8EB3A6C+qaOCRFRERCWDCIiEgICwYREQlhwSAiIiEsGEREJIQFg4iIhLBgEBGREBYMIiISwoJBRERCWDCIiEgICwYREQlhwSAiIiEsGEREJIQFg4iIhLBgEBGREBYMIiISwoJBRERCWDCIiEgIb9FKdI2W+3Rfq3dPX/gq3BCIyEOwYBBdo+U+3dd67ncRaDCZbdokuUIReQAWDCJBTVdMeL/wsE3bHP1IN6Uhkh+PYRARkRCP2MOIjY2FWq1Gjx49AAApKSmIiYlBWVkZUlNTUVdXh8DAQGRnZ2PIkCHuDUtE1E15RMEAgJycHAwfPtymLT09HUlJSdDr9SgsLERaWho2btzopoRERN2bxw5J1dTUoLS0FDqdDgCg0+lQWlqK2tpaNycjIuqePGYPIyUlBZIkITIyEosWLYLBYEBYWBiUSiUAQKlUIjQ0FAaDAUFBQW5OS0TU/XhEwdi0aRM0Gg2MRiNWrVqFzMxMzJo1yyXrDg7u45L1AEBIiL/L1iUXb8wMuDd3Y+VFqFT2bw2FQmHX3rqtdd/1lm3Pel25rLPMnpBNdFmVyhcqtdKrXtvelLUtHlEwNBoNAECtViMpKQnz58/HSy+9hKqqKpjNZiiVSpjNZlRXV1uXFVVTUw+LpeNny4eE+OPs2UsdXo+cvDEz4P7cJqMZJpP9hXuSJNm1t7SpVL42fW0t2571unpZZ5k9IZvIsi2ZTUaz17y23f16bi8fH4XTD9puP4bR2NiIS5eubkxJkrB9+3ZotVoEBwdDq9WiqKgIAFBUVAStVsvhKCKCSqXEhaZmu69mXknZqdy+h1FTU4MFCxbAbDbDYrEgPDwc6enpAICMjAykpqYiNzcXAQEByM7OdnNa6mocTQPCvzmez9FFlADw9OS7cFMvt/9Z67LcvmUHDRqEgoICh33h4eHIz8+XORF1J46mAeHV296rZc+jNc4B5jpuLxhERK7iaM+Dex2u4/ZjGERE5B1YMIiISAj306hbcHaPCx7gJhLHgkHdgrN7XPAAN5E4DkkREZEQFgwiIhLCgkFEREJ4DIOIuiVHJ0LwIr+2sWAQUbfk6EQIXuTXNm4Z8lrOTpXlp0SizsGCQV7L2amy/JRIN8rRXFQAP4S04LuKiOj/cRbctnELUJfj6FMir+gm6jgWDOpyHH1K5BXd3ZezYSZ+iGg/Fgwi6tKcDTPxQ0T78cI9IiISwoJBRERCWDCIiEgICwYREQnhQW9yC2dXafv19MXJyoswGc127Y2XeaosuQcv6LuKBYPcoq0bGm3c/hNMpma7dp4qS+7CC/qu4pAUEREJ6T6lkTodJwMk6tpYMMhlnA0zPfe7CDSYbI9J8PgDkfdhwaBOx6k6iLoGFgyycjSk5OjsJIDDTESA47OnuvJ7gwWji2vPbSgdDSk5OjsJ6H5nhxA54mjvuSu/N7rmb0VWnXUbSk4hTtT9eHzBKCsrQ2pqKurq6hAYGIjs7GwMGTLE3bG8miume+ZxCSLHrn1/Nf7/hahdYajK4wtGeno6kpKSoNfrUVhYiLS0NGzcuNHdsTyOo6GnxsqLDosAp3sm6jzXvr9UKl+YTM3t2rNvz1CynDy6YNTU1KC0tBQbNmwAAOh0OmRlZaG2thZBQUFC6/Dxcd0WduW6XO3KZTP+9fnPNm2+Kl88/mg4+vr3sGlX+frYtTlrd8eygf490GxSemQ2Z8v6qnxtMntqXmeZPSGbyLItmT0hr+g6WjL7Kn2E/4Y4ej8/pbsDV4wWu2X9eiihdOGfprYyKiRJ8tih58OHD2PJkiX49NNPrW3jx4/H6tWrcccdd7gxGRFR98OpQYiISIhHFwyNRoOqqiqYzVevEjabzaiuroZGo3FzMiKi7sejC0ZwcDC0Wi2KiooAAEVFRdBqtcLHL4iIyHU8+hgGABw/fhypqam4ePEiAgICkJ2djaFDh7o7FhFRt+PxBYOIiDyDRw9JERGR52DBICIiISwYREQkhAWDiIiEsGA40dTUhD/96U8YO3YsEhISsHv37jaXv3LlCsaPH48pU6bIlNCeaOYjR45g8uTJ0Ov1mDBhApYvXw6j0Shz2qtEM3/++eeYMmUKdDodJkyYgA8++EDmpLZEc1dVVWHmzJmIjIx0y2ujrKwMiYmJiI+PR2JiIsrLy+2WMZvNWLFiBcaMGYOxY8ciPz9f9pytiWTet28fpkyZgpEjRyI7O1v+kNcQybxu3TpMmDABkyZNwpQpU/DVV1/JH7SjJHLo7bfflpYuXSpJkiSVlZVJo0ePlurr650u/+qrr0ovvfSSNHnyZLki2hHN3NTUJF25ckWSJEkym83Sc889J3344YeyZm0hmvmHH36QKisrJUmSpIsXL0pjxoyRvvvuO1mztiaa++LFi9K3334rffnll255bcycOVMqKCiQJEmSCgoKpJkzZ9ots2XLFmn27NmS2WyWampqpJiYGOnUqVNyR7USyVxeXi79+JUwP6wAAAP8SURBVOOP0htvvCG99tprcke0I5J57969UmNjoyRJknTkyBEpMjJSampqkjVnR3EPw4nPPvsM06dPBwAMGTIEI0eOxN69ex0ue+DAAZSXl0Ov18sZ0Y5o5p49e0KtVgMAmpubcfnyZfj4uOelIJr57rvvRlhYGADA398f4eHhOHPmjKxZWxPN7e/vj1GjRsHPz0/uiNbJO3U6HYCrk3eWlpaitrbWZrnt27dj2rRp8PHxQVBQEMaMGYPi4mLZ8wLimQcPHozbb78dvr7unz9VNHNMTAx69eoFABgxYgQkSUJdXZ3seTuCBcOJiooKDBgwwPqzRqNBZWWl3XKNjY145ZVXsGLFCjnjOSSaGbg6VKLX6xEdHY3evXvjd7/7nVwxbbQnc4vjx4/jhx9+wP3339/Z8Zy6kdxyMxgMCAsLg1J5dUZapVKJ0NBQGAwGu+X69+9v/dmdv4toZk9yI5kLCgpwyy234Oabb5Yrpku4vzy7yeTJk1FRUeGwb//+/cLr+ctf/oKkpCSEhYU5HLd0JVdlBoCwsDAUFhaisbERixcvxq5duzBhwgRXxLThyswAUF1djWeeeQZpaWnWPY7O4OrcRC2+/fZbvPXWW24/Dncjum3B2LJlS5v9/fv3x5kzZ6zzVhkMBkRHR9std/DgQezduxe5ubm4cuUKLly4gIkTJ2Lbtm0em7k1Pz8/jB8/Htu2beuUguHKzDU1NUhOTsbcuXMxfvx4l2dtrTO2tdxaT96pVCqdTt6p0WhQUVGBu+66C4D9HoecRDN7kvZk/v7777F48WLk5uZ65RRHHJJyIiEhAf/85z8BAOXl5fjf//6HmJgYu+W2bduGL7/8El9++SXeeOMNDB8+vFOKhQjRzKdOnbKeFWU0GvHFF19g+PDhsmZtIZr5/PnzSE5OxpNPPolp06bJHdOOaG53Ep28MyEhAfn5+bBYLKitrcXnn3+O+Ph4d0T2yglHRTOXlJTghRdeQE5Ojvfez8fdR909VUNDg7RgwQJpzJgx0rhx46Rdu3ZZ+958803pH//4h91j/vvf/7r1LCnRzAUFBZJOp5MmTpwoTZgwQcrIyHDb2RqimV977TXpzjvvlCZNmmT9+vjjj92SWZLEczc3N0sxMTFSdHS0dMcdd0gxMTFSTk6ObDmPHTsmTZ06VRo3bpw0depU6fjx45IkSdLcuXOlkpISa8a0tDQpLi5OiouLkz766CPZ8jkikvm7776TYmJipIiICOmee+6RYmJipL1793p05ilTpkjR0dE2r+GffvrJbZlvBCcfJCIiIRySIiIiISwYREQkhAWDiIiEsGAQEZEQFgwiIhLCgkFEREJYMIiISAgLBhERCfk/qMqJevygTJ0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -870,8 +865,8 @@ } ], "source": [ - "plt.figure(figsize=(6,4))\n", - "sns.distplot(ytest - yPreds)\n", + "plt.figure(figsize=(6, 4))\n", + "sns.histplot(ytest - yPreds)\n", "plt.title(\"Distribution of residuals\")\n", "plt.show()" ] From 0c8fbc89432b043bf03772ae007c45fea7df72c1 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 21 Jun 2021 22:47:09 +0530 Subject: [PATCH 32/69] added visualization bindings for cpp notebook, pending works in header file --- ...avocado_price_prediction_with_lr_cpp.ipynb | 261 ++++++++++++-- utils/plot.hpp | 330 ++++++++++++++++++ utils/plot.py | 56 +++ 3 files changed, 623 insertions(+), 24 deletions(-) create mode 100644 utils/plot.hpp create mode 100644 utils/plot.py diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb index f3a2bfc5..95409f31 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb @@ -56,6 +56,7 @@ "#define WITHOUT_NUMPY 1\n", "#include \"matplotlibcpp.h\"\n", "#include \"xwidgets/ximage.hpp\"\n", + "#include \"../utils/plot.hpp\"\n", "\n", "namespace plt = matplotlibcpp;" ] @@ -127,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 9, "id": "7619f5f1-7e33-4257-9868-999593810d96", "metadata": {}, "outputs": [ @@ -157,7 +158,147 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 10, + "id": "9c2b6725-f2ea-4e1b-ae0e-2fbc2cf71833", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "405f639f26d74173b4645eb13d64d53c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 405f639f26d74173b4645eb13d64d53c" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scatter(\"avocado.csv\", \"conventional\");\n", + "auto img = xw::image_from_file(\"cscatter_conventional.png\").finalize();\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "aadbc14a-8ff4-4269-a6f5-f25f1a5f1b68", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dfcc56bb0edf4771bf51907f81b0e586", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: dfcc56bb0edf4771bf51907f81b0e586" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scatter(\"avocado.csv\", \"organic\");\n", + "auto img = xw::image_from_file(\"cscatter_organic.png\").finalize();\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "baebdee8-e33c-4e98-80ff-5cbc83c71284", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fd9fb61cc84f40a7abf71c3cf9056bdb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: fd9fb61cc84f40a7abf71c3cf9056bdb" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "barplot(\"avocado.csv\", \"AveragePrice\", \"region\", \"Avg.Price of Avocado by Region\", 8, 10);\n", + "auto img = xw::image_from_file(\"cbarplot_Avg.Price of Avocado by Region.png\").finalize();\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "181dd76f-f9a1-4e87-9c67-069f4386041f", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "73493b2dde3b4ea9902b655a4556c506", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 73493b2dde3b4ea9902b655a4556c506" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "barplot(\"avocado.csv\", \"type\", \"AveragePrice\", \"Avg.Price of Avocado by Type\");\n", + "auto img = xw::image_from_file(\"cbarplot_Avg.Price of Avocado by Type.png\").finalize();\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "8926f7d1-faa5-47c6-aed4-fe7c37035b09", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7e51b7aab0a442a38baf8bb8a6ca00bd", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 7e51b7aab0a442a38baf8bb8a6ca00bd" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "heatmap(\"avocado.csv\",\"coolwarm\", \"Correlation Heatmap\", true);\n", + "auto img = xw::image_from_file(\"cheatmap_Correlation Heatmap.png\").finalize();\n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 15, "id": "e26a5936-d0ee-474a-a733-7b8063b3a672", "metadata": {}, "outputs": [], @@ -168,7 +309,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 16, "id": "a89befd5-ba75-4acc-bf11-fa55b9a91ba1", "metadata": {}, "outputs": [ @@ -178,7 +319,7 @@ "66" ] }, - "execution_count": 53, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -189,7 +330,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 17, "id": "536d598e-9894-4047-96fa-82ac14ded328", "metadata": {}, "outputs": [], @@ -199,7 +340,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 18, "id": "30bba7d3-0c09-4472-bf6f-1150b13535a1", "metadata": {}, "outputs": [], @@ -209,7 +350,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 19, "id": "e9de23c5-4d88-4d25-a157-05bb7650685c", "metadata": {}, "outputs": [ @@ -219,7 +360,7 @@ "{ 64236.620, 1036.7400, 54454.850, 48.160000, 8696.8700, 8603.6200, 93.250000, 0.0000000, 1.0000000, 0.0000000, 2015.0000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000 }" ] }, - "execution_count": 56, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -230,7 +371,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 20, "id": "c39b65dd-aa03-4281-a057-86d4f8b293b6", "metadata": {}, "outputs": [], @@ -243,7 +384,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 21, "id": "b4e567e6-4d54-43cb-b94f-b77776128877", "metadata": {}, "outputs": [], @@ -253,7 +394,7 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": 22, "id": "3f936744-df4a-44d0-ac13-b2614fb06960", "metadata": {}, "outputs": [], @@ -264,7 +405,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 23, "id": "97fdc354-57d0-4e28-91e8-1d707fc24226", "metadata": {}, "outputs": [], @@ -274,7 +415,7 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": 24, "id": "5d4cd76e-3a6b-4f4b-9bde-002acf0d126e", "metadata": {}, "outputs": [], @@ -285,37 +426,99 @@ }, { "cell_type": "code", - "execution_count": 84, - "id": "cd46e5ca-6192-4a63-b662-8278b6ba303b", + "execution_count": 25, + "id": "e25fa64a-e728-43ad-abfb-d8e385a62d73", "metadata": {}, "outputs": [], "source": [ - "std::vector yTestPlot = arma::conv_to>::from(Ytest);\n", - "std::vector yPredsPlot = arma::conv_to>::from(yPreds);\n" + "arma::mat preds;\n", + "preds.insert_rows(0, yTest);\n", + "preds.insert_rows(1, yPreds);" ] }, { "cell_type": "code", - "execution_count": 87, - "id": "212b13a9-77c9-4b71-96fa-46fb66f7f461", + "execution_count": 26, + "id": "020e0c3e-81bc-4bcb-be8d-4febdf8b97ee", + "metadata": {}, + "outputs": [], + "source": [ + "mlpack::data::Save(\"predictions.csv\", preds);" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "71a54770-db87-4b69-abdd-9efba5accccf", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "44fcb4267b534cc19217bcff32a0522d", + "model_id": "913ae034151b4f11b2a2fc57afbb798f", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 44fcb4267b534cc19217bcff32a0522d" + "A Jupyter widget with unique id: 913ae034151b4f11b2a2fc57afbb798f" ] }, - "execution_count": 87, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], + "source": [ + "lmplot(\"predictions.csv\");\n", + "auto img = xw::image_from_file(\"clmplot_predictions.csv.png\").finalize(); \n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "e8d8626e-81b3-498e-851d-59d49c937c01", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c3ce801edb0848039d0975c661290c69", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: c3ce801edb0848039d0975c661290c69" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "histplot(\"predictions.csv\", \"Distribution of residuals\");\n", + "auto img = xw::image_from_file(\"chistplot_Distribution of residuals.png\").finalize(); \n", + "img" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cd46e5ca-6192-4a63-b662-8278b6ba303b", + "metadata": {}, + "outputs": [], + "source": [ + "std::vector yTestPlot = arma::conv_to>::from(Ytest);\n", + "std::vector yPredsPlot = arma::conv_to>::from(yPreds);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "212b13a9-77c9-4b71-96fa-46fb66f7f461", + "metadata": {}, + "outputs": [], "source": [ "// Visualize Predicted datapoints.\n", "plt::figure_size(800, 800);\n", @@ -350,10 +553,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "id": "8b323dc0-61f8-43c1-ae8a-38027c04ff88", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean Absolute Error: 0.204229\n", + "Mean Squared Error: 0.0749513\n", + "Root Mean Squared Error: 0.273772\n" + ] + } + ], "source": [ "// Model evaluation metrics.\n", "\n", diff --git a/utils/plot.hpp b/utils/plot.hpp new file mode 100644 index 00000000..4bb29ac5 --- /dev/null +++ b/utils/plot.hpp @@ -0,0 +1,330 @@ +#ifndef PLOT_HPP +#define PLOT_HPP + +#define PY_SSIZE_T_CLEAN +#include +#include + +int scatter(const std::string fname, const std::string type, const int figWidth = 26, const int figHeight = 7) { + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + //Py_DECREF(pName); + + pFunc = PyObject_GetAttrString(pModule, "cscatter"); + pArgs = PyTuple_New(4); + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pType = PyString_FromString(type.c_str()); + PyTuple_SetItem(pArgs, 1, pType); + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 2, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 3, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); + + /* + if(pModule != NULL) { + + if(pFunc && PyCallable_Check(pFunc)) { + std::cout << "Callable Method Found :)" << std::endl; + */ + + +// /*PyObject* pXdim = PyLong_FromLong(xdim); +// PyTuple_SetItem(pArgs, 1, pXdim); +// PyObject* pYdim = PyLong_FromLong(ydim); +// PyTuple_SetItem(pArgs, 2, pYdim); +// */ + + +// Py_DECREF(pArgs); +// if(pValue != NULL) { +// Py_DECREF(pValue); +// }else{ +// Py_DECREF(pFunc); +// Py_DECREF(pModule); +// PyErr_Print(); +// fprintf(stderr, "Call failed\n"); +// return 1; +// } + /* + }else{ + if(PyErr_Occurred()) + PyErr_Print(); + } + Py_XDECREF(pFunc); + Py_DECREF(pModule); + }else{ + PyErr_Print(); + return 1; + } + */ + return 0; +} + +int barplot(const std::string fname, const std::string x, const std::string y, const std::string figTitle, const int figWidth = 5, const int figHeight = 7) { + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"./\")"); + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + //Py_DECREF(pName); + + pFunc = PyObject_GetAttrString(pModule, "cbarplot"); + pArgs = PyTuple_New(6); + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pX = PyString_FromString(x.c_str()); + PyTuple_SetItem(pArgs, 1, pX); + PyObject* pY = PyString_FromString(y.c_str()); + PyTuple_SetItem(pArgs, 2, pY); + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 3, pFigTitle); + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 4, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 5, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); + + /* + if(pModule != NULL) { + + if(pFunc && PyCallable_Check(pFunc)) { + std::cout << "Callable Method Found :)" << std::endl; + */ + + +// /*PyObject* pXdim = PyLong_FromLong(xdim); +// PyTuple_SetItem(pArgs, 1, pXdim); +// PyObject* pYdim = PyLong_FromLong(ydim); +// PyTuple_SetItem(pArgs, 2, pYdim); +// */ + + +// Py_DECREF(pArgs); +// if(pValue != NULL) { +// Py_DECREF(pValue); +// }else{ +// Py_DECREF(pFunc); +// Py_DECREF(pModule); +// PyErr_Print(); +// fprintf(stderr, "Call failed\n"); +// return 1; +// } + /* + }else{ + if(PyErr_Occurred()) + PyErr_Print(); + } + Py_XDECREF(pFunc); + Py_DECREF(pModule); + }else{ + PyErr_Print(); + return 1; + } + */ + return 0; +} + +int heatmap(const std::string fname, const std::string colorMap, const std::string figTitle, const int annotation = false, const int figWidth = 12, const int figHeight = 6) { + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"./\")"); + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + //Py_DECREF(pName); + + pFunc = PyObject_GetAttrString(pModule, "cheatmap"); + pArgs = PyTuple_New(6); + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pColorMap = PyString_FromString(colorMap.c_str()); + PyTuple_SetItem(pArgs, 1, pColorMap); + PyObject* pAnnotation = PyBool_FromLong(annotation); + PyTuple_SetItem(pArgs, 2, pAnnotation); + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 3, pFigTitle); + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 4, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 5, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); + + /* + if(pModule != NULL) { + + if(pFunc && PyCallable_Check(pFunc)) { + std::cout << "Callable Method Found :)" << std::endl; + */ + + +// /*PyObject* pXdim = PyLong_FromLong(xdim); +// PyTuple_SetItem(pArgs, 1, pXdim); +// PyObject* pYdim = PyLong_FromLong(ydim); +// PyTuple_SetItem(pArgs, 2, pYdim); +// */ + + +// Py_DECREF(pArgs); +// if(pValue != NULL) { +// Py_DECREF(pValue); +// }else{ +// Py_DECREF(pFunc); +// Py_DECREF(pModule); +// PyErr_Print(); +// fprintf(stderr, "Call failed\n"); +// return 1; +// } + /* + }else{ + if(PyErr_Occurred()) + PyErr_Print(); + } + Py_XDECREF(pFunc); + Py_DECREF(pModule); + }else{ + PyErr_Print(); + return 1; + } + */ + return 0; +} + +int lmplot(const std::string fname, const int figWidth = 6, const int figHeight = 7) { + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"./\")"); + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + //Py_DECREF(pName); + + pFunc = PyObject_GetAttrString(pModule, "clmplot"); + pArgs = PyTuple_New(3); + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 1, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 2, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); + + /* + if(pModule != NULL) { + + if(pFunc && PyCallable_Check(pFunc)) { + std::cout << "Callable Method Found :)" << std::endl; + */ + + +// /*PyObject* pXdim = PyLong_FromLong(xdim); +// PyTuple_SetItem(pArgs, 1, pXdim); +// PyObject* pYdim = PyLong_FromLong(ydim); +// PyTuple_SetItem(pArgs, 2, pYdim); +// */ + + +// Py_DECREF(pArgs); +// if(pValue != NULL) { +// Py_DECREF(pValue); +// }else{ +// Py_DECREF(pFunc); +// Py_DECREF(pModule); +// PyErr_Print(); +// fprintf(stderr, "Call failed\n"); +// return 1; +// } + /* + }else{ + if(PyErr_Occurred()) + PyErr_Print(); + } + Py_XDECREF(pFunc); + Py_DECREF(pModule); + }else{ + PyErr_Print(); + return 1; + } + */ + return 0; +} + +int histplot(const std::string fname, const std::string figTitle, const int figWidth = 6, const int figHeight = 4) { + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"./\")"); + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + //Py_DECREF(pName); + + pFunc = PyObject_GetAttrString(pModule, "chistplot"); + pArgs = PyTuple_New(4); + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 1, pFigTitle); + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 2, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 3, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); + + /* + if(pModule != NULL) { + + if(pFunc && PyCallable_Check(pFunc)) { + std::cout << "Callable Method Found :)" << std::endl; + */ + + +// /*PyObject* pXdim = PyLong_FromLong(xdim); +// PyTuple_SetItem(pArgs, 1, pXdim); +// PyObject* pYdim = PyLong_FromLong(ydim); +// PyTuple_SetItem(pArgs, 2, pYdim); +// */ + + +// Py_DECREF(pArgs); +// if(pValue != NULL) { +// Py_DECREF(pValue); +// }else{ +// Py_DECREF(pFunc); +// Py_DECREF(pModule); +// PyErr_Print(); +// fprintf(stderr, "Call failed\n"); +// return 1; +// } + /* + }else{ + if(PyErr_Occurred()) + PyErr_Print(); + } + Py_XDECREF(pFunc); + Py_DECREF(pModule); + }else{ + PyErr_Print(); + return 1; + } + */ + return 0; +} + +#endif + diff --git a/utils/plot.py b/utils/plot.py new file mode 100644 index 00000000..432dcc03 --- /dev/null +++ b/utils/plot.py @@ -0,0 +1,56 @@ +import pandas as pd +import matplotlib.pyplot as plt +import seaborn as sns + + + +def cscatter(filename: str, type_: str, figWidth: int, figHeight: int) -> None: + sns.set(color_codes=True) + df = pd.read_csv(filename, parse_dates=["Date"]) + fig = plt.figure(figsize=(figWidth, figHeight)) + mask = df["type"] == type_ + plt.scatter(df[mask].Date, df[mask].AveragePrice, cmap="plasma", c=df[mask].AveragePrice) + plt.xlabel("Date") + plt.ylabel("Average Price (USD)") + plt.title(f"Average Price of {type_} Avocados Over Time") + plt.savefig(f"cscatter_{type_}.png") + plt.close() + +def cbarplot(filename: str, x: str, y: str, figTitle: str, figWidth: int, figHeight: int) -> None: + sns.set(color_codes=True) + df = pd.read_csv(filename, parse_dates=["Date"]) + fig = plt.figure(figsize=(figWidth, figHeight)) + ax = sns.barplot(x=x, y=y, data=df) + plt.title(figTitle) + plt.savefig(f"cbarplot_{figTitle}.png") + plt.close() + +def cheatmap(filename: str, cmap: str, annotate: bool, figTitle: str, figWidth: int, figHeight: int) -> None: + sns.set(color_codes=True) + df = pd.read_csv(filename, parse_dates=["Date"]) + df = df.drop("Unnamed: 0", axis=1) + fig = plt.figure(figsize=(figWidth, figHeight)) + ax = sns.heatmap(df.corr(), cmap=cmap, annot=annotate) + plt.title(figTitle) + plt.savefig(f"cheatmap_{figTitle}.png") + plt.close() + +def clmplot(filename: str, figWidth: int, figHeight: int) -> None: + sns.set(color_codes=True) + df = pd.read_csv(filename) + df.columns = ["Y_Test", "Y_Preds"] + fig = plt.figure(figsize=(figWidth, figHeight)) + ax = sns.lmplot(x="Y_Test", y="Y_Preds", data=df) + plt.savefig(f"clmplot_{filename}.png") + plt.close() + +def chistplot(filename: str, figTitle: str, figWidth: int, figHeight: int) -> None: + sns.set(color_codes=True) + df = pd.read_csv(filename) + df.columns = ["Y_Test", "Y_Preds"] + fig = plt.figure(figsize=(figWidth, figHeight)) + ax = sns.histplot(df.Y_Test - df.Y_Preds) + plt.title(f"{figTitle}") + plt.savefig(f"chistplot_{figTitle}.png") + plt.close() + \ No newline at end of file From 17c8c9e9a32fc6a86a5e1a325993ce686d523d84 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Tue, 22 Jun 2021 08:45:06 +0530 Subject: [PATCH 33/69] completed c++ notebook --- ...avocado_price_prediction_with_lr_cpp.ipynb | 364 +++++++++++------- .../avocado_price_prediction_with_lr_py.ipynb | 5 +- utils/plot.hpp | 252 +++--------- utils/plot.py | 35 +- 4 files changed, 306 insertions(+), 350 deletions(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb index 95409f31..dc8ad120 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb @@ -34,11 +34,12 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "id": "3d374b30-e54a-4990-b191-aade8144d0a6", "metadata": {}, "outputs": [], "source": [ + "// Import necessary library headers.\n", "#include \n", "#include \n", "#include \n", @@ -48,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "id": "aaa7fa57-80c6-48aa-9d9d-5816c947b74b", "metadata": {}, "outputs": [], @@ -63,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "324c030a-d1ec-41c6-b6ad-92d62c9fbf57", "metadata": {}, "outputs": [], @@ -72,9 +73,17 @@ "using namespace mlpack::data;" ] }, + { + "cell_type": "markdown", + "id": "c89fe0a6-1f1e-4914-95fe-9ee2d95345d7", + "metadata": {}, + "source": [ + "Drop the dataset header using sed, sed is a Unix utility that parses and transforms text." + ] + }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 10, "id": "ce45d9ac-b131-462c-8f2e-e019a0f5f303", "metadata": {}, "outputs": [], @@ -82,9 +91,17 @@ "!cat avocado.csv | sed 1d > avocado_trim.csv" ] }, + { + "cell_type": "markdown", + "id": "feb7c8c7-db3f-4dad-b6b0-23e9a478886f", + "metadata": {}, + "source": [ + "Drop columns 1 and 2 (\"Unamed: 0\", \"Date\") as these are not required and their presence cause issues while loading the data." + ] + }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 11, "id": "6d45544e-9f6d-4fab-93b2-ded5b51aa9dd", "metadata": {}, "outputs": [], @@ -92,9 +109,17 @@ "!cut -d, -f1-2 --complement avocado_trim.csv > avocado_trim2.csv" ] }, + { + "cell_type": "markdown", + "id": "0c08b417-9364-4f23-8532-1b0a05180f70", + "metadata": {}, + "source": [ + "Rename the newly created csv file." + ] + }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 13, "id": "9d79dabe-286d-4278-9d41-d06a4048b7b0", "metadata": {}, "outputs": [], @@ -104,21 +129,33 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "edec6ad1-be42-46b9-8487-d44501db6fc0", + "execution_count": 15, + "id": "4211bf8b-0b98-4edf-9ae2-6159a7ed5bd3", "metadata": {}, "outputs": [], "source": [ "!mv avocado_trim2.csv avocado_trim.csv" ] }, + { + "cell_type": "markdown", + "id": "5ae0df00-f85e-4ddc-9d5d-7716c84a937c", + "metadata": {}, + "source": [ + "### Loading the Data\n", + "Since features 9 (Avocado type) and 11 (region of observation) are strings (categorical), armadillo matrices can contain only numeric information so we have to explicitly define them as categorical in datasetInfo\n", + "this allows mlpack to map numeric values to each of those values, which can then be unmaped to strings." + ] + }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 16, "id": "ae1a3152-76bc-43ce-894b-6554a2f0ad8a", "metadata": {}, "outputs": [], "source": [ + "// Load the dataset into armadillo matrix\n", + "\n", "arma::mat matrix;\n", "mlpack::data::DatasetInfo info;\n", "info.Type(9) = mlpack::data::Datatype::categorical;\n", @@ -128,7 +165,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 17, "id": "7619f5f1-7e33-4257-9868-999593810d96", "metadata": {}, "outputs": [ @@ -156,281 +193,347 @@ "std::cout << matrix.submat(0, 0, matrix.n_rows-1, 5).t() << std::endl;" ] }, + { + "cell_type": "markdown", + "id": "dd8d4634-39dd-45ac-bf9f-2b5b43691167", + "metadata": {}, + "source": [ + "### Exploratory Data Analysis" + ] + }, + { + "cell_type": "markdown", + "id": "ec24e405-4a4c-41ad-a560-2572d36c26f4", + "metadata": {}, + "source": [ + "* In the below visualization we are intersted to see if there is any trends over time for the prices of conventional avocados." + ] + }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 18, "id": "9c2b6725-f2ea-4e1b-ae0e-2fbc2cf71833", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "405f639f26d74173b4645eb13d64d53c", + "model_id": "9eed9fcadd164236af22beefe5f8925b", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 405f639f26d74173b4645eb13d64d53c" + "A Jupyter widget with unique id: 9eed9fcadd164236af22beefe5f8925b" ] }, - "execution_count": 10, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "scatter(\"avocado.csv\", \"conventional\");\n", - "auto img = xw::image_from_file(\"cscatter_conventional.png\").finalize();\n", + "scatter(\"avocado.csv\", \"conventional\", \"convAvgPriceScatter\");\n", + "auto img = xw::image_from_file(\"convAvgPriceScatter.png\").finalize();\n", "img" ] }, + { + "cell_type": "markdown", + "id": "48f79a7b-9a06-48c3-a131-b935eff4972d", + "metadata": {}, + "source": [ + "* In the below visualization we are intersted to see if there is any trends over time for the prices of organic avocados." + ] + }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 19, "id": "aadbc14a-8ff4-4269-a6f5-f25f1a5f1b68", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dfcc56bb0edf4771bf51907f81b0e586", + "model_id": "8dd0f7aa483b4af5ab0d76be70da4e65", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: dfcc56bb0edf4771bf51907f81b0e586" + "A Jupyter widget with unique id: 8dd0f7aa483b4af5ab0d76be70da4e65" ] }, - "execution_count": 11, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "scatter(\"avocado.csv\", \"organic\");\n", - "auto img = xw::image_from_file(\"cscatter_organic.png\").finalize();\n", + "scatter(\"avocado.csv\", \"organic\", \"orgAvgPriceScatter\");\n", + "auto img = xw::image_from_file(\"orgAvgPriceScatter.png\").finalize();\n", "img" ] }, + { + "cell_type": "markdown", + "id": "0e48959e-07f6-4e8c-8211-7c075ab4456f", + "metadata": {}, + "source": [ + "### Observations\n", + "* Looks like every year avocado's are most expensive between August - November\n", + "* There is a steep rise in the price in 2017\n", + "* December - February seems to be the best months to purchase avocado's" + ] + }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 20, "id": "baebdee8-e33c-4e98-80ff-5cbc83c71284", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fd9fb61cc84f40a7abf71c3cf9056bdb", + "model_id": "dad5ac3bf00a46769d78f086e0c6f13b", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: fd9fb61cc84f40a7abf71c3cf9056bdb" + "A Jupyter widget with unique id: dad5ac3bf00a46769d78f086e0c6f13b" ] }, - "execution_count": 12, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "barplot(\"avocado.csv\", \"AveragePrice\", \"region\", \"Avg.Price of Avocado by Region\", 8, 10);\n", - "auto img = xw::image_from_file(\"cbarplot_Avg.Price of Avocado by Region.png\").finalize();\n", + "auto img = xw::image_from_file(\"Avg.Price of Avocado by Region.png\").finalize();\n", "img" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 21, "id": "181dd76f-f9a1-4e87-9c67-069f4386041f", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "73493b2dde3b4ea9902b655a4556c506", + "model_id": "223c4176334b42e1a141b3b79ea4c12e", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 73493b2dde3b4ea9902b655a4556c506" + "A Jupyter widget with unique id: 223c4176334b42e1a141b3b79ea4c12e" ] }, - "execution_count": 13, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "barplot(\"avocado.csv\", \"type\", \"AveragePrice\", \"Avg.Price of Avocado by Type\");\n", - "auto img = xw::image_from_file(\"cbarplot_Avg.Price of Avocado by Type.png\").finalize();\n", + "auto img = xw::image_from_file(\"Avg.Price of Avocado by Type.png\").finalize();\n", "img" ] }, + { + "cell_type": "markdown", + "id": "cd5c4860-07eb-499e-bc8b-8653b69b7784", + "metadata": {}, + "source": [ + "### Correlation\n", + "There is high correlation between:\n", + "* 4046 & total volume \n", + "* 4225 & total volume\n", + "* 4770 & total volume\n", + "* total bags & total volume\n", + "* small bags & total bags\n", + "* We can observe that 4046 avocados are the most sold type in US.\n", + "* Since there is high correlation between Total Bags, Total Volume & Small bags, \n", + " we assume most sales comes from small bags" + ] + }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 22, "id": "8926f7d1-faa5-47c6-aed4-fe7c37035b09", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7e51b7aab0a442a38baf8bb8a6ca00bd", + "model_id": "55379d77f48e47cdbc5b94f0449181a3", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 7e51b7aab0a442a38baf8bb8a6ca00bd" + "A Jupyter widget with unique id: 55379d77f48e47cdbc5b94f0449181a3" ] }, - "execution_count": 14, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "heatmap(\"avocado.csv\",\"coolwarm\", \"Correlation Heatmap\", true);\n", - "auto img = xw::image_from_file(\"cheatmap_Correlation Heatmap.png\").finalize();\n", + "auto img = xw::image_from_file(\"Correlation Heatmap.png\").finalize();\n", "img" ] }, { - "cell_type": "code", - "execution_count": 15, - "id": "e26a5936-d0ee-474a-a733-7b8063b3a672", + "cell_type": "markdown", + "id": "d1ee7b3f-6b80-45db-8df5-87d1a1a953ed", "metadata": {}, - "outputs": [], "source": [ - "arma::mat output;\n", - "data::OneHotEncoding(matrix, output, info);" + "As we can from the heatmap above, all the Features are not correlated with the Average Price column, instead most of them are correlated with each other. " + ] + }, + { + "cell_type": "markdown", + "id": "4f2fb154-f189-4837-8210-fc6949ba840b", + "metadata": {}, + "source": [ + "### Handling Categorical Features\n", + "\n", + "* One hot encoding is used to to perform “binarization” of the category and include it as a feature to train the model.\n", + "* As we can see we have 54 regions and 2 unique types, so it's going to be easy to to transform the type & regions" ] }, { "cell_type": "code", - "execution_count": 16, - "id": "a89befd5-ba75-4acc-bf11-fa55b9a91ba1", + "execution_count": 23, + "id": "e26a5936-d0ee-474a-a733-7b8063b3a672", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "66" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "output.n_rows" + "arma::mat output;\n", + "data::OneHotEncoding(matrix, output, info);" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 24, "id": "536d598e-9894-4047-96fa-82ac14ded328", "metadata": {}, "outputs": [], "source": [ + "// Split the data into features (X) and target (y) variables\n", + "// targets are the last row.\n", + "\n", "arma::Row targets = arma::conv_to>::from(output.row(0));" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 25, "id": "30bba7d3-0c09-4472-bf6f-1150b13535a1", "metadata": {}, "outputs": [], "source": [ + "// Labels are dropped from the originally loaded data to be used as features.\n", + "\n", "output.shed_row(0)" ] }, { - "cell_type": "code", - "execution_count": 19, - "id": "e9de23c5-4d88-4d25-a157-05bb7650685c", + "cell_type": "markdown", + "id": "91e8a860-5c1e-426a-8e21-a84cb5a6432c", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{ 64236.620, 1036.7400, 54454.850, 48.160000, 8696.8700, 8603.6200, 93.250000, 0.0000000, 1.0000000, 0.0000000, 2015.0000, 1.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000 }" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "output.col(0)" + "### Train Test Split\n", + "\n", + "The dataset has to be split into a training set and a test set. Here the dataset has 18249 observations and the testRatio is taken as 20% of the total observations. This indicates the test set should have 20% * 18249 = 3649 observations and training test should have 14600 observations respectively." ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 26, "id": "c39b65dd-aa03-4281-a057-86d4f8b293b6", "metadata": {}, "outputs": [], "source": [ + "// Split the dataset into train and test sets using mlpack.\n", + "\n", "arma::mat Xtrain;\n", "arma::mat Xtest;\n", "arma::Row Ytrain;\n", - "arma::Row Ytest;" + "arma::Row Ytest;\n", + "data::Split(output, targets, Xtrain, Xtest, Ytrain, Ytest, 0.2);" ] }, { "cell_type": "code", - "execution_count": 21, - "id": "b4e567e6-4d54-43cb-b94f-b77776128877", + "execution_count": 28, + "id": "3f936744-df4a-44d0-ac13-b2614fb06960", "metadata": {}, "outputs": [], "source": [ - "data::Split(output, targets, Xtrain, Xtest, Ytrain, Ytest, 0.2);" + "// Convert armadillo Rows into rowvec. (Required by mlpacks' LinearRegression API in this format).\n", + "\n", + "arma::rowvec yTrain = arma::conv_to::from(Ytrain);\n", + "arma::rowvec yTest = arma::conv_to::from(Ytest);" ] }, { - "cell_type": "code", - "execution_count": 22, - "id": "3f936744-df4a-44d0-ac13-b2614fb06960", + "cell_type": "markdown", + "id": "63eb907c-4388-4f43-adf9-44808f384307", "metadata": {}, - "outputs": [], "source": [ - "arma::rowvec yTrain = arma::conv_to::from(Ytrain);\n", - "arma::rowvec yTest = arma::conv_to::from(Ytest);" + "### Training the linear model\n", + "\n", + "Regression analysis is the most widely used method of prediction. Linear regression is used when the dataset has a linear correlation and as the name suggests, multiple linear regression has one independent variable (predictor) and one or more dependent variable(response).\n", + "\n", + "The simple linear regression equation is represented as y = $a + b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3} + ... + b_{n}x_{n}$ where $x_{i}$ is the ith explanatory variable, y is the dependent variable, $b_{i}$ is ith coefficient and a is the intercept\n", + "\n", + "To perform linear regression we'll be using `LinearRegression()` api from mlpack." ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 29, "id": "97fdc354-57d0-4e28-91e8-1d707fc24226", "metadata": {}, "outputs": [], "source": [ + "// Create and Train Linear Regression model.\n", + "\n", "regression::LinearRegression lr(Xtrain, yTrain, 0.5);" ] }, + { + "cell_type": "markdown", + "id": "c06508e0-e76e-4187-98c2-35ee226df3be", + "metadata": {}, + "source": [ + "### Making Predictions on Test set" + ] + }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 30, "id": "5d4cd76e-3a6b-4f4b-9bde-002acf0d126e", "metadata": {}, "outputs": [], "source": [ + "// Make predictions on test data points.\n", + "\n", "arma::rowvec yPreds;\n", "lr.Predict(Xtest, yPreds);" ] }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 31, "id": "e25fa64a-e728-43ad-abfb-d8e385a62d73", "metadata": {}, "outputs": [], "source": [ + "// Save the yTest and yPreds into csv for generating plots\n", "arma::mat preds;\n", "preds.insert_rows(0, yTest);\n", "preds.insert_rows(1, yPreds);" @@ -438,7 +541,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 32, "id": "020e0c3e-81bc-4bcb-be8d-4febdf8b97ee", "metadata": {}, "outputs": [], @@ -446,91 +549,68 @@ "mlpack::data::Save(\"predictions.csv\", preds);" ] }, + { + "cell_type": "markdown", + "id": "747a76d6-bf9c-4546-8527-289b1ad04463", + "metadata": {}, + "source": [ + "### Model Evaluation\n", + "Test data is visualized with `yTest` and `yPreds`, the blue points indicates the data points and the blue line indicates the regression line or best fit line." + ] + }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 33, "id": "71a54770-db87-4b69-abdd-9efba5accccf", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "913ae034151b4f11b2a2fc57afbb798f", + "model_id": "a09e0c89eb054295a1ca9df66c26ce29", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 913ae034151b4f11b2a2fc57afbb798f" + "A Jupyter widget with unique id: a09e0c89eb054295a1ca9df66c26ce29" ] }, - "execution_count": 27, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "lmplot(\"predictions.csv\");\n", - "auto img = xw::image_from_file(\"clmplot_predictions.csv.png\").finalize(); \n", + "lmplot(\"predictions.csv\", \"predsScatter\");\n", + "auto img = xw::image_from_file(\"predsScatter.png\").finalize(); \n", "img" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 34, "id": "e8d8626e-81b3-498e-851d-59d49c937c01", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c3ce801edb0848039d0975c661290c69", + "model_id": "54a491bc4b4549e594bcede5ebd7eada", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: c3ce801edb0848039d0975c661290c69" + "A Jupyter widget with unique id: 54a491bc4b4549e594bcede5ebd7eada" ] }, - "execution_count": 28, + "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "histplot(\"predictions.csv\", \"Distribution of residuals\");\n", - "auto img = xw::image_from_file(\"chistplot_Distribution of residuals.png\").finalize(); \n", - "img" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "cd46e5ca-6192-4a63-b662-8278b6ba303b", - "metadata": {}, - "outputs": [], - "source": [ - "std::vector yTestPlot = arma::conv_to>::from(Ytest);\n", - "std::vector yPredsPlot = arma::conv_to>::from(yPreds);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "212b13a9-77c9-4b71-96fa-46fb66f7f461", - "metadata": {}, - "outputs": [], - "source": [ - "// Visualize Predicted datapoints.\n", - "plt::figure_size(800, 800);\n", - "\n", - "plt::scatter(yTestPlot, yPredsPlot, 12); //{{\"color\", \"blue\"}});\n", - "//plt::plot();\n", - "plt::xlabel(\"Y Test\");\n", - "plt::ylabel(\"Pred\");\n", - "plt::title(\"AveragePrice vs Predicted Average Price\");\n", - "\n", - "plt::save(\"./scatter1.png\");\n", - "auto img = xw::image_from_file(\"scatter1.png\").finalize();\n", + "auto img = xw::image_from_file(\"Distribution of residuals.png\").finalize(); \n", "img" ] }, @@ -553,7 +633,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 35, "id": "8b323dc0-61f8-43c1-ae8a-38027c04ff88", "metadata": {}, "outputs": [ @@ -561,9 +641,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Mean Absolute Error: 0.204229\n", - "Mean Squared Error: 0.0749513\n", - "Root Mean Squared Error: 0.273772\n" + "Mean Absolute Error: 0.198396\n", + "Mean Squared Error: 0.0694186\n", + "Root Mean Squared Error: 0.263474\n" ] } ], @@ -574,6 +654,14 @@ "std::cout << \"Mean Squared Error: \" << arma::mean(arma::pow(yPreds - yTest,2)) << std::endl;\n", "std::cout << \"Root Mean Squared Error: \" << sqrt(arma::mean(arma::pow(yPreds - yTest,2))) << std::endl;" ] + }, + { + "cell_type": "markdown", + "id": "96c00e1d-41cf-4b95-99da-20a9718a43a4", + "metadata": {}, + "source": [ + "From the above metrics, we can notice that our model MAE is ~0.2, which is relatively small compared to our average price of $1.405, from this and the above plot we can conclude our model is a reasonably good fit." + ] } ], "metadata": { diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb index 59f6873b..f2213613 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -652,7 +652,7 @@ "id": "a3b0f6df-b3fa-4102-958b-079ddf4a3354", "metadata": {}, "source": [ - "As we can from the heatmap above, all the Features are not corroleted with the Average Price column, instead most of them are correlated with each other. " + "As we can from the heatmap above, all the Features are not correlated with the Average Price column, instead most of them are correlated with each other. " ] }, { @@ -728,10 +728,9 @@ "id": "d4f17b20-e452-4e54-8a0c-ccdd3423f1fa", "metadata": {}, "source": [ - "\n", "### Train Test Split\n", "\n", - "The dataset has to be split into a training set and a test set. Here the dataset has 18249 observations and the testRatio is taken as 20% of the total observations. This indicates the test set should have 20% * 18249 = 3649 observations and training test should have 14600 observations respectively.\n" + "The dataset has to be split into a training set and a test set. Here the dataset has 18249 observations and the testRatio is taken as 20% of the total observations. This indicates the test set should have 20% * 18249 = 3649 observations and training test should have 14600 observations respectively." ] }, { diff --git a/utils/plot.hpp b/utils/plot.hpp index 4bb29ac5..8d5c286a 100644 --- a/utils/plot.hpp +++ b/utils/plot.hpp @@ -5,66 +5,38 @@ #include #include -int scatter(const std::string fname, const std::string type, const int figWidth = 26, const int figHeight = 7) { +int scatter(const std::string fname, const std::string type,const std::string figTitle, const int figWidth = 26, const int figHeight = 7) { PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; Py_Initialize(); PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); + pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - //Py_DECREF(pName); pFunc = PyObject_GetAttrString(pModule, "cscatter"); - pArgs = PyTuple_New(4); + + pArgs = PyTuple_New(5); + PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pType = PyString_FromString(type.c_str()); PyTuple_SetItem(pArgs, 1, pType); + + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 2, pFigTitle); + PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 2, pFigWidth); + PyTuple_SetItem(pArgs, 3, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 3, pFigHeight); + PyTuple_SetItem(pArgs, 4, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); - - /* - if(pModule != NULL) { - - if(pFunc && PyCallable_Check(pFunc)) { - std::cout << "Callable Method Found :)" << std::endl; - */ - - -// /*PyObject* pXdim = PyLong_FromLong(xdim); -// PyTuple_SetItem(pArgs, 1, pXdim); -// PyObject* pYdim = PyLong_FromLong(ydim); -// PyTuple_SetItem(pArgs, 2, pYdim); -// */ - - -// Py_DECREF(pArgs); -// if(pValue != NULL) { -// Py_DECREF(pValue); -// }else{ -// Py_DECREF(pFunc); -// Py_DECREF(pModule); -// PyErr_Print(); -// fprintf(stderr, "Call failed\n"); -// return 1; -// } - /* - }else{ - if(PyErr_Occurred()) - PyErr_Print(); - } - Py_XDECREF(pFunc); - Py_DECREF(pModule); - }else{ - PyErr_Print(); - return 1; - } - */ + return 0; } @@ -75,63 +47,34 @@ int barplot(const std::string fname, const std::string x, const std::string y, c Py_Initialize(); PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"./\")"); + pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - //Py_DECREF(pName); pFunc = PyObject_GetAttrString(pModule, "cbarplot"); + pArgs = PyTuple_New(6); + PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pX = PyString_FromString(x.c_str()); PyTuple_SetItem(pArgs, 1, pX); + PyObject* pY = PyString_FromString(y.c_str()); PyTuple_SetItem(pArgs, 2, pY); + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 3, pFigTitle); + PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 4, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 5, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); - /* - if(pModule != NULL) { - - if(pFunc && PyCallable_Check(pFunc)) { - std::cout << "Callable Method Found :)" << std::endl; - */ - - -// /*PyObject* pXdim = PyLong_FromLong(xdim); -// PyTuple_SetItem(pArgs, 1, pXdim); -// PyObject* pYdim = PyLong_FromLong(ydim); -// PyTuple_SetItem(pArgs, 2, pYdim); -// */ - - -// Py_DECREF(pArgs); -// if(pValue != NULL) { -// Py_DECREF(pValue); -// }else{ -// Py_DECREF(pFunc); -// Py_DECREF(pModule); -// PyErr_Print(); -// fprintf(stderr, "Call failed\n"); -// return 1; -// } - /* - }else{ - if(PyErr_Occurred()) - PyErr_Print(); - } - Py_XDECREF(pFunc); - Py_DECREF(pModule); - }else{ - PyErr_Print(); - return 1; - } - */ return 0; } @@ -142,124 +85,66 @@ int heatmap(const std::string fname, const std::string colorMap, const std::stri Py_Initialize(); PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"./\")"); + pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - //Py_DECREF(pName); pFunc = PyObject_GetAttrString(pModule, "cheatmap"); + pArgs = PyTuple_New(6); + PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pColorMap = PyString_FromString(colorMap.c_str()); PyTuple_SetItem(pArgs, 1, pColorMap); + PyObject* pAnnotation = PyBool_FromLong(annotation); PyTuple_SetItem(pArgs, 2, pAnnotation); + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 3, pFigTitle); + PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 4, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 5, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); - /* - if(pModule != NULL) { - - if(pFunc && PyCallable_Check(pFunc)) { - std::cout << "Callable Method Found :)" << std::endl; - */ - - -// /*PyObject* pXdim = PyLong_FromLong(xdim); -// PyTuple_SetItem(pArgs, 1, pXdim); -// PyObject* pYdim = PyLong_FromLong(ydim); -// PyTuple_SetItem(pArgs, 2, pYdim); -// */ - - -// Py_DECREF(pArgs); -// if(pValue != NULL) { -// Py_DECREF(pValue); -// }else{ -// Py_DECREF(pFunc); -// Py_DECREF(pModule); -// PyErr_Print(); -// fprintf(stderr, "Call failed\n"); -// return 1; -// } - /* - }else{ - if(PyErr_Occurred()) - PyErr_Print(); - } - Py_XDECREF(pFunc); - Py_DECREF(pModule); - }else{ - PyErr_Print(); - return 1; - } - */ return 0; } -int lmplot(const std::string fname, const int figWidth = 6, const int figHeight = 7) { +int lmplot(const std::string fname, const std::string figTitle, const int figWidth = 6, const int figHeight = 7) { PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; Py_Initialize(); PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"./\")"); + pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - //Py_DECREF(pName); pFunc = PyObject_GetAttrString(pModule, "clmplot"); - pArgs = PyTuple_New(3); + + pArgs = PyTuple_New(4); + PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 1, pFigTitle); + PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 1, pFigWidth); + PyTuple_SetItem(pArgs, 2, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 2, pFigHeight); + PyTuple_SetItem(pArgs, 3, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); - /* - if(pModule != NULL) { - - if(pFunc && PyCallable_Check(pFunc)) { - std::cout << "Callable Method Found :)" << std::endl; - */ - - -// /*PyObject* pXdim = PyLong_FromLong(xdim); -// PyTuple_SetItem(pArgs, 1, pXdim); -// PyObject* pYdim = PyLong_FromLong(ydim); -// PyTuple_SetItem(pArgs, 2, pYdim); -// */ - - -// Py_DECREF(pArgs); -// if(pValue != NULL) { -// Py_DECREF(pValue); -// }else{ -// Py_DECREF(pFunc); -// Py_DECREF(pModule); -// PyErr_Print(); -// fprintf(stderr, "Call failed\n"); -// return 1; -// } - /* - }else{ - if(PyErr_Occurred()) - PyErr_Print(); - } - Py_XDECREF(pFunc); - Py_DECREF(pModule); - }else{ - PyErr_Print(); - return 1; - } - */ return 0; } @@ -270,59 +155,28 @@ int histplot(const std::string fname, const std::string figTitle, const int figW Py_Initialize(); PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"./\")"); + pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - //Py_DECREF(pName); pFunc = PyObject_GetAttrString(pModule, "chistplot"); + pArgs = PyTuple_New(4); + PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 1, pFigTitle); + PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 2, pFigWidth); + PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 3, pFigHeight); + pValue = PyObject_CallObject(pFunc, pArgs); - /* - if(pModule != NULL) { - - if(pFunc && PyCallable_Check(pFunc)) { - std::cout << "Callable Method Found :)" << std::endl; - */ - - -// /*PyObject* pXdim = PyLong_FromLong(xdim); -// PyTuple_SetItem(pArgs, 1, pXdim); -// PyObject* pYdim = PyLong_FromLong(ydim); -// PyTuple_SetItem(pArgs, 2, pYdim); -// */ - - -// Py_DECREF(pArgs); -// if(pValue != NULL) { -// Py_DECREF(pValue); -// }else{ -// Py_DECREF(pFunc); -// Py_DECREF(pModule); -// PyErr_Print(); -// fprintf(stderr, "Call failed\n"); -// return 1; -// } - /* - }else{ - if(PyErr_Occurred()) - PyErr_Print(); - } - Py_XDECREF(pFunc); - Py_DECREF(pModule); - }else{ - PyErr_Print(); - return 1; - } - */ return 0; } diff --git a/utils/plot.py b/utils/plot.py index 432dcc03..0351061e 100644 --- a/utils/plot.py +++ b/utils/plot.py @@ -2,9 +2,11 @@ import matplotlib.pyplot as plt import seaborn as sns - - -def cscatter(filename: str, type_: str, figWidth: int, figHeight: int) -> None: +def cscatter(filename: str, type_: str, figTitle: str, figWidth: int, figHeight: int) -> None: + """ + creates a scatter plot of size figWidth & figHeight, named + figTitle and saves it. + """ sns.set(color_codes=True) df = pd.read_csv(filename, parse_dates=["Date"]) fig = plt.figure(figsize=(figWidth, figHeight)) @@ -13,44 +15,57 @@ def cscatter(filename: str, type_: str, figWidth: int, figHeight: int) -> None: plt.xlabel("Date") plt.ylabel("Average Price (USD)") plt.title(f"Average Price of {type_} Avocados Over Time") - plt.savefig(f"cscatter_{type_}.png") + plt.savefig(f"{figTitle}.png") plt.close() def cbarplot(filename: str, x: str, y: str, figTitle: str, figWidth: int, figHeight: int) -> None: + """ + Creates a bar plot of size figWidth & figHeight, named + figTitle between x & y. + """ sns.set(color_codes=True) df = pd.read_csv(filename, parse_dates=["Date"]) fig = plt.figure(figsize=(figWidth, figHeight)) ax = sns.barplot(x=x, y=y, data=df) plt.title(figTitle) - plt.savefig(f"cbarplot_{figTitle}.png") + plt.savefig(f"{figTitle}.png") plt.close() def cheatmap(filename: str, cmap: str, annotate: bool, figTitle: str, figWidth: int, figHeight: int) -> None: + """ + Creates a heatmap (correlation map) of the dataset and saves it. + """ sns.set(color_codes=True) df = pd.read_csv(filename, parse_dates=["Date"]) df = df.drop("Unnamed: 0", axis=1) fig = plt.figure(figsize=(figWidth, figHeight)) ax = sns.heatmap(df.corr(), cmap=cmap, annot=annotate) plt.title(figTitle) - plt.savefig(f"cheatmap_{figTitle}.png") + plt.savefig(f"{figTitle}.png") plt.close() -def clmplot(filename: str, figWidth: int, figHeight: int) -> None: +def clmplot(filename: str, figTitle: str, figWidth: int, figHeight: int) -> None: + """ + Generates a regression plot on the given dataset and saves it. + """ sns.set(color_codes=True) df = pd.read_csv(filename) df.columns = ["Y_Test", "Y_Preds"] fig = plt.figure(figsize=(figWidth, figHeight)) ax = sns.lmplot(x="Y_Test", y="Y_Preds", data=df) - plt.savefig(f"clmplot_{filename}.png") + plt.savefig(f"{figTitle}.png") plt.close() def chistplot(filename: str, figTitle: str, figWidth: int, figHeight: int) -> None: + """ + Generated a histogram on the given dataset and saves it. + """ sns.set(color_codes=True) df = pd.read_csv(filename) df.columns = ["Y_Test", "Y_Preds"] fig = plt.figure(figsize=(figWidth, figHeight)) ax = sns.histplot(df.Y_Test - df.Y_Preds) plt.title(f"{figTitle}") - plt.savefig(f"chistplot_{figTitle}.png") + plt.savefig(f"{figTitle}.png") plt.close() - \ No newline at end of file + From c8adf4506e58507c58a21538a5123188dcf07a5c Mon Sep 17 00:00:00 2001 From: Anwaar Date: Tue, 22 Jun 2021 13:37:47 +0530 Subject: [PATCH 34/69] cycleTime no longer needed after adding report callback --- mnist_vae_cnn/mnist_vae_cnn.cpp | 5 ----- 1 file changed, 5 deletions(-) diff --git a/mnist_vae_cnn/mnist_vae_cnn.cpp b/mnist_vae_cnn/mnist_vae_cnn.cpp index f95adabd..206451d6 100644 --- a/mnist_vae_cnn/mnist_vae_cnn.cpp +++ b/mnist_vae_cnn/mnist_vae_cnn.cpp @@ -211,8 +211,6 @@ int main() true); const clock_t beginTime = clock(); - clock_t cycleTime = beginTime; - // Cycles for monitoring the progress. for (int i = 0; i < cycles; i++) { @@ -230,9 +228,6 @@ int main() std::cout << "Loss after cycle " << i << " -> " << MeanTestLoss(vaeModel, trainTest, batchSize) << std::endl; - std::cout << "Time taken for cycle -> " << float(clock() - cycleTime) / - CLOCKS_PER_SEC << " seconds" << std::endl; - cycleTime = clock(); } std::cout << "Time taken to train -> " << float(clock() - beginTime) / From 3a4c7d7e1a7789b6036b296f751bfba0ac40eb8a Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Thu, 24 Jun 2021 14:46:47 +0530 Subject: [PATCH 35/69] fixed style issues in plot utility header --- utils/plot.hpp | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/utils/plot.hpp b/utils/plot.hpp index 8d5c286a..565a8afa 100644 --- a/utils/plot.hpp +++ b/utils/plot.hpp @@ -5,7 +5,7 @@ #include #include -int scatter(const std::string fname, const std::string type,const std::string figTitle, const int figWidth = 26, const int figHeight = 7) { +int scatter(const std::string& fname, const std::string& type, const std::string& figTitle, const int figWidth = 26, const int figHeight = 7) { PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; @@ -40,13 +40,13 @@ int scatter(const std::string fname, const std::string type,const std::string fi return 0; } -int barplot(const std::string fname, const std::string x, const std::string y, const std::string figTitle, const int figWidth = 5, const int figHeight = 7) { +int barplot(const std::string& fname, const std::string& x, const std::string& y, const std::string& figTitle, const int figWidth = 5, const int figHeight = 7) { PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; Py_Initialize(); PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"./\")"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); @@ -78,13 +78,13 @@ int barplot(const std::string fname, const std::string x, const std::string y, c return 0; } -int heatmap(const std::string fname, const std::string colorMap, const std::string figTitle, const int annotation = false, const int figWidth = 12, const int figHeight = 6) { +int heatmap(const std::string& fname, const std::string& colorMap, const std::string& figTitle, const int annotation = false, const int figWidth = 12, const int figHeight = 6) { PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; Py_Initialize(); PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"./\")"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); @@ -116,13 +116,13 @@ int heatmap(const std::string fname, const std::string colorMap, const std::stri return 0; } -int lmplot(const std::string fname, const std::string figTitle, const int figWidth = 6, const int figHeight = 7) { +int lmplot(const std::string& fname, const std::string& figTitle, const int figWidth = 6, const int figHeight = 7) { PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; Py_Initialize(); PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"./\")"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); @@ -148,13 +148,13 @@ int lmplot(const std::string fname, const std::string figTitle, const int figWid return 0; } -int histplot(const std::string fname, const std::string figTitle, const int figWidth = 6, const int figHeight = 4) { +int histplot(const std::string& fname, const std::string& figTitle, const int figWidth = 6, const int figHeight = 4) { PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; Py_Initialize(); PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"./\")"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); @@ -181,4 +181,3 @@ int histplot(const std::string fname, const std::string figTitle, const int figW } #endif - From 85165815d20b20c7c2817cd73216c6f4eec78830 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Thu, 24 Jun 2021 15:12:24 +0530 Subject: [PATCH 36/69] fixed styling issues --- utils/plot.hpp | 357 ++++++++++++++++++++++++++----------------------- 1 file changed, 191 insertions(+), 166 deletions(-) diff --git a/utils/plot.hpp b/utils/plot.hpp index 565a8afa..6fd1ff00 100644 --- a/utils/plot.hpp +++ b/utils/plot.hpp @@ -5,179 +5,204 @@ #include #include -int scatter(const std::string& fname, const std::string& type, const std::string& figTitle, const int figWidth = 26, const int figHeight = 7) { - - PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - - Py_Initialize(); - PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"../utils/\")"); - - pName = PyUnicode_DecodeFSDefault("plot"); - pModule = PyImport_Import(pName); - - pFunc = PyObject_GetAttrString(pModule, "cscatter"); - - pArgs = PyTuple_New(5); - - PyObject* pFname = PyString_FromString(fname.c_str()); - PyTuple_SetItem(pArgs, 0, pFname); - - PyObject* pType = PyString_FromString(type.c_str()); - PyTuple_SetItem(pArgs, 1, pType); - - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); - PyTuple_SetItem(pArgs, 2, pFigTitle); - - PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 3, pFigWidth); - - PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 4, pFigHeight); - - pValue = PyObject_CallObject(pFunc, pArgs); - - return 0; +int scatter(const std::string& fname, + const std::string& type, + const std::string& figTitle, + const int figWidth = 26, + const int figHeight = 7) +{ + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + + pFunc = PyObject_GetAttrString(pModule, "cscatter"); + + pArgs = PyTuple_New(5); + + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + + PyObject* pType = PyString_FromString(type.c_str()); + PyTuple_SetItem(pArgs, 1, pType); + + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 2, pFigTitle); + + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 3, pFigWidth); + + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 4, pFigHeight); + + pValue = PyObject_CallObject(pFunc, pArgs); + + return 0; } -int barplot(const std::string& fname, const std::string& x, const std::string& y, const std::string& figTitle, const int figWidth = 5, const int figHeight = 7) { - - PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - - Py_Initialize(); - PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"../utils/\")"); - - pName = PyUnicode_DecodeFSDefault("plot"); - pModule = PyImport_Import(pName); - - pFunc = PyObject_GetAttrString(pModule, "cbarplot"); - - pArgs = PyTuple_New(6); - - PyObject* pFname = PyString_FromString(fname.c_str()); - PyTuple_SetItem(pArgs, 0, pFname); - - PyObject* pX = PyString_FromString(x.c_str()); - PyTuple_SetItem(pArgs, 1, pX); - - PyObject* pY = PyString_FromString(y.c_str()); - PyTuple_SetItem(pArgs, 2, pY); - - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); - PyTuple_SetItem(pArgs, 3, pFigTitle); - - PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 4, pFigWidth); - - PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 5, pFigHeight); - - pValue = PyObject_CallObject(pFunc, pArgs); - - return 0; +int barplot(const std::string& fname, + const std::string& x, + const std::string& y, + const std::string& figTitle, + const int figWidth = 5, + const int figHeight = 7) +{ + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + + pFunc = PyObject_GetAttrString(pModule, "cbarplot"); + + pArgs = PyTuple_New(6); + + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + + PyObject* pX = PyString_FromString(x.c_str()); + PyTuple_SetItem(pArgs, 1, pX); + + PyObject* pY = PyString_FromString(y.c_str()); + PyTuple_SetItem(pArgs, 2, pY); + + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 3, pFigTitle); + + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 4, pFigWidth); + + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 5, pFigHeight); + + pValue = PyObject_CallObject(pFunc, pArgs); + + return 0; } -int heatmap(const std::string& fname, const std::string& colorMap, const std::string& figTitle, const int annotation = false, const int figWidth = 12, const int figHeight = 6) { - - PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - - Py_Initialize(); - PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"../utils/\")"); - - pName = PyUnicode_DecodeFSDefault("plot"); - pModule = PyImport_Import(pName); - - pFunc = PyObject_GetAttrString(pModule, "cheatmap"); - - pArgs = PyTuple_New(6); - - PyObject* pFname = PyString_FromString(fname.c_str()); - PyTuple_SetItem(pArgs, 0, pFname); - - PyObject* pColorMap = PyString_FromString(colorMap.c_str()); - PyTuple_SetItem(pArgs, 1, pColorMap); - - PyObject* pAnnotation = PyBool_FromLong(annotation); - PyTuple_SetItem(pArgs, 2, pAnnotation); - - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); - PyTuple_SetItem(pArgs, 3, pFigTitle); - - PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 4, pFigWidth); - - PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 5, pFigHeight); - - pValue = PyObject_CallObject(pFunc, pArgs); - - return 0; +int heatmap(const std::string& fname, + const std::string& colorMap, + const std::string& figTitle, + const int annotation = false, + const int figWidth = 12, + const int figHeight = 6) +{ + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + + pFunc = PyObject_GetAttrString(pModule, "cheatmap"); + + pArgs = PyTuple_New(6); + + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + + PyObject* pColorMap = PyString_FromString(colorMap.c_str()); + PyTuple_SetItem(pArgs, 1, pColorMap); + + PyObject* pAnnotation = PyBool_FromLong(annotation); + PyTuple_SetItem(pArgs, 2, pAnnotation); + + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 3, pFigTitle); + + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 4, pFigWidth); + + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 5, pFigHeight); + + pValue = PyObject_CallObject(pFunc, pArgs); + + return 0; } -int lmplot(const std::string& fname, const std::string& figTitle, const int figWidth = 6, const int figHeight = 7) { - - PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - - Py_Initialize(); - PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"../utils/\")"); - - pName = PyUnicode_DecodeFSDefault("plot"); - pModule = PyImport_Import(pName); - - pFunc = PyObject_GetAttrString(pModule, "clmplot"); - - pArgs = PyTuple_New(4); - - PyObject* pFname = PyString_FromString(fname.c_str()); - PyTuple_SetItem(pArgs, 0, pFname); - - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); - PyTuple_SetItem(pArgs, 1, pFigTitle); - - PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 2, pFigWidth); - - PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 3, pFigHeight); - - pValue = PyObject_CallObject(pFunc, pArgs); - - return 0; +int lmplot(const std::string& fname, + const std::string& figTitle, + const int figWidth = 6, + const int figHeight = 7) +{ + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + + pFunc = PyObject_GetAttrString(pModule, "clmplot"); + + pArgs = PyTuple_New(4); + + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 1, pFigTitle); + + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 2, pFigWidth); + + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 3, pFigHeight); + + pValue = PyObject_CallObject(pFunc, pArgs); + + return 0; } -int histplot(const std::string& fname, const std::string& figTitle, const int figWidth = 6, const int figHeight = 4) { - - PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - - Py_Initialize(); - PyRun_SimpleString("import sys"); - PyRun_SimpleString("sys.path.append(\"../utils/\")"); - - pName = PyUnicode_DecodeFSDefault("plot"); - pModule = PyImport_Import(pName); - - pFunc = PyObject_GetAttrString(pModule, "chistplot"); - - pArgs = PyTuple_New(4); - - PyObject* pFname = PyString_FromString(fname.c_str()); - PyTuple_SetItem(pArgs, 0, pFname); - - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); - PyTuple_SetItem(pArgs, 1, pFigTitle); - - PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 2, pFigWidth); - - PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 3, pFigHeight); - - pValue = PyObject_CallObject(pFunc, pArgs); - - return 0; +int histplot(const std::string& fname, + const std::string& figTitle, + const int figWidth = 6, + const int figHeight = 4) +{ + + PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + + pName = PyUnicode_DecodeFSDefault("plot"); + pModule = PyImport_Import(pName); + + pFunc = PyObject_GetAttrString(pModule, "chistplot"); + + pArgs = PyTuple_New(4); + + PyObject* pFname = PyString_FromString(fname.c_str()); + PyTuple_SetItem(pArgs, 0, pFname); + + PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + PyTuple_SetItem(pArgs, 1, pFigTitle); + + PyObject* pFigWidth = PyLong_FromLong(figWidth); + PyTuple_SetItem(pArgs, 2, pFigWidth); + + PyObject* pFigHeight = PyLong_FromLong(figHeight); + PyTuple_SetItem(pArgs, 3, pFigHeight); + + pValue = PyObject_CallObject(pFunc, pArgs); + + return 0; } -#endif +#endif \ No newline at end of file From 6ddab261bd88fdb5671ee63c47a0d7628cd19ce0 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Thu, 24 Jun 2021 22:39:25 +0530 Subject: [PATCH 37/69] added remote dataset sources in notebooks --- ...avocado_price_prediction_with_lr_cpp.ipynb | 20 +++++++++++++++++++ .../avocado_price_prediction_with_lr_py.ipynb | 20 +++++++++++++++++++ 2 files changed, 40 insertions(+) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb index dc8ad120..c4ac5d1a 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb @@ -32,6 +32,26 @@ "* After training the model, we will use it to do some predictions, followed by various evaluation metrics to quanitfy how well our model behaves" ] }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ac3caf12-b4f2-4dc3-bf7a-0e855d6f245e", + "metadata": {}, + "outputs": [], + "source": [ + "!wget -q https://mlpack.org/datasets/avocado.csv.gz" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "1bbdb43e-e14e-4c36-aa1e-3312739b9858", + "metadata": {}, + "outputs": [], + "source": [ + "!gzip -d avocado.csv.gz" + ] + }, { "cell_type": "code", "execution_count": 2, diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb index f2213613..dc61b218 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -32,6 +32,26 @@ "* After training the model, we will use it to do some predictions, followed by various evaluation metrics to quanitfy how well our model behaves" ] }, + { + "cell_type": "code", + "execution_count": 1, + "id": "270647b8-70a7-443d-b53c-2d533b88def0", + "metadata": {}, + "outputs": [], + "source": [ + "!wget -q https://mlpack.org/datasets/avocado.csv.gz" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "da970605-0e8f-4767-9177-cf7264a32e48", + "metadata": {}, + "outputs": [], + "source": [ + "!gzip -d avocado.csv.gz" + ] + }, { "cell_type": "code", "execution_count": 1, From 5fd6887e231e22a8d07daece21d45b4e820c4a7b Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Mon, 28 Jun 2021 22:08:36 +0530 Subject: [PATCH 38/69] added additional & default parameters for plotting functions --- ...avocado_price_prediction_with_lr_cpp.ipynb | 110 +++++++++--------- utils/plot.hpp | 60 +++++++--- utils/plot.py | 45 ++++--- 3 files changed, 133 insertions(+), 82 deletions(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb index c4ac5d1a..53c26471 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "ac3caf12-b4f2-4dc3-bf7a-0e855d6f245e", "metadata": {}, "outputs": [], @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "1bbdb43e-e14e-4c36-aa1e-3312739b9858", "metadata": {}, "outputs": [], @@ -103,7 +103,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 5, "id": "ce45d9ac-b131-462c-8f2e-e019a0f5f303", "metadata": {}, "outputs": [], @@ -121,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 6, "id": "6d45544e-9f6d-4fab-93b2-ded5b51aa9dd", "metadata": {}, "outputs": [], @@ -139,7 +139,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 7, "id": "9d79dabe-286d-4278-9d41-d06a4048b7b0", "metadata": {}, "outputs": [], @@ -149,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 8, "id": "4211bf8b-0b98-4edf-9ae2-6159a7ed5bd3", "metadata": {}, "outputs": [], @@ -169,7 +169,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 9, "id": "ae1a3152-76bc-43ce-894b-6554a2f0ad8a", "metadata": {}, "outputs": [], @@ -185,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 10, "id": "7619f5f1-7e33-4257-9868-999593810d96", "metadata": {}, "outputs": [ @@ -231,29 +231,29 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 11, "id": "9c2b6725-f2ea-4e1b-ae0e-2fbc2cf71833", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "9eed9fcadd164236af22beefe5f8925b", + "model_id": "3b2897b830fe4e92882b429ab9e230e3", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 9eed9fcadd164236af22beefe5f8925b" + "A Jupyter widget with unique id: 3b2897b830fe4e92882b429ab9e230e3" ] }, - "execution_count": 18, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "scatter(\"avocado.csv\", \"conventional\", \"convAvgPriceScatter\");\n", - "auto img = xw::image_from_file(\"convAvgPriceScatter.png\").finalize();\n", + "scatter(\"avocado.csv\", \"Date\", \"AveragePrice\", \"Date\", \"type\", \"conventional\", \"AveragePrice\", \"Date\", \"Average Price (USD)\", \"Average Price of Conventional Avocados Over Time\");\n", + "auto img = xw::image_from_file(\"Average Price of Conventional Avocados Over Time.png\").finalize();\n", "img" ] }, @@ -267,29 +267,29 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 12, "id": "aadbc14a-8ff4-4269-a6f5-f25f1a5f1b68", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8dd0f7aa483b4af5ab0d76be70da4e65", + "model_id": "8e823a1e3c2a40b9a87d35cc12fe3b1a", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 8dd0f7aa483b4af5ab0d76be70da4e65" + "A Jupyter widget with unique id: 8e823a1e3c2a40b9a87d35cc12fe3b1a" ] }, - "execution_count": 19, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "scatter(\"avocado.csv\", \"organic\", \"orgAvgPriceScatter\");\n", - "auto img = xw::image_from_file(\"orgAvgPriceScatter.png\").finalize();\n", + "scatter(\"avocado.csv\", \"Date\", \"AveragePrice\", \"Date\", \"type\", \"organic\", \"AveragePrice\", \"Date\", \"Average Price (USD)\", \"Average Price of Organic Avocados Over Time\");\n", + "auto img = xw::image_from_file(\"Average Price of Organic Avocados Over Time.png\").finalize();\n", "img" ] }, @@ -306,56 +306,56 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 13, "id": "baebdee8-e33c-4e98-80ff-5cbc83c71284", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dad5ac3bf00a46769d78f086e0c6f13b", + "model_id": "75ed134b64f048c69511c075036a283f", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: dad5ac3bf00a46769d78f086e0c6f13b" + "A Jupyter widget with unique id: 75ed134b64f048c69511c075036a283f" ] }, - "execution_count": 20, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "barplot(\"avocado.csv\", \"AveragePrice\", \"region\", \"Avg.Price of Avocado by Region\", 8, 10);\n", + "barplot(\"avocado.csv\", \"AveragePrice\", \"region\", \"Date\", \"Avg.Price of Avocado by Region\", 8, 10);\n", "auto img = xw::image_from_file(\"Avg.Price of Avocado by Region.png\").finalize();\n", "img" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 14, "id": "181dd76f-f9a1-4e87-9c67-069f4386041f", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "223c4176334b42e1a141b3b79ea4c12e", + "model_id": "fe46f70d2e5a4535be688c20e681df2b", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 223c4176334b42e1a141b3b79ea4c12e" + "A Jupyter widget with unique id: fe46f70d2e5a4535be688c20e681df2b" ] }, - "execution_count": 21, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "barplot(\"avocado.csv\", \"type\", \"AveragePrice\", \"Avg.Price of Avocado by Type\");\n", + "barplot(\"avocado.csv\", \"type\", \"AveragePrice\", \"Date\", \"Avg.Price of Avocado by Type\");\n", "auto img = xw::image_from_file(\"Avg.Price of Avocado by Type.png\").finalize();\n", "img" ] @@ -379,22 +379,22 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 15, "id": "8926f7d1-faa5-47c6-aed4-fe7c37035b09", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "55379d77f48e47cdbc5b94f0449181a3", + "model_id": "211350146429449f9ddc1b8d90c99520", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 55379d77f48e47cdbc5b94f0449181a3" + "A Jupyter widget with unique id: 211350146429449f9ddc1b8d90c99520" ] }, - "execution_count": 22, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -426,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 16, "id": "e26a5936-d0ee-474a-a733-7b8063b3a672", "metadata": {}, "outputs": [], @@ -437,7 +437,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 17, "id": "536d598e-9894-4047-96fa-82ac14ded328", "metadata": {}, "outputs": [], @@ -450,7 +450,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 18, "id": "30bba7d3-0c09-4472-bf6f-1150b13535a1", "metadata": {}, "outputs": [], @@ -472,7 +472,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 19, "id": "c39b65dd-aa03-4281-a057-86d4f8b293b6", "metadata": {}, "outputs": [], @@ -488,7 +488,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 20, "id": "3f936744-df4a-44d0-ac13-b2614fb06960", "metadata": {}, "outputs": [], @@ -515,7 +515,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 21, "id": "97fdc354-57d0-4e28-91e8-1d707fc24226", "metadata": {}, "outputs": [], @@ -535,7 +535,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 22, "id": "5d4cd76e-3a6b-4f4b-9bde-002acf0d126e", "metadata": {}, "outputs": [], @@ -548,7 +548,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 23, "id": "e25fa64a-e728-43ad-abfb-d8e385a62d73", "metadata": {}, "outputs": [], @@ -561,7 +561,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 24, "id": "020e0c3e-81bc-4bcb-be8d-4febdf8b97ee", "metadata": {}, "outputs": [], @@ -580,22 +580,22 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 25, "id": "71a54770-db87-4b69-abdd-9efba5accccf", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a09e0c89eb054295a1ca9df66c26ce29", + "model_id": "d3ead2cbe58c407bb136fa3fdf7942a3", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: a09e0c89eb054295a1ca9df66c26ce29" + "A Jupyter widget with unique id: d3ead2cbe58c407bb136fa3fdf7942a3" ] }, - "execution_count": 33, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -608,22 +608,22 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 26, "id": "e8d8626e-81b3-498e-851d-59d49c937c01", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "54a491bc4b4549e594bcede5ebd7eada", + "model_id": "792d2da160b54d9c8374fd2c45dbe2a4", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 54a491bc4b4549e594bcede5ebd7eada" + "A Jupyter widget with unique id: 792d2da160b54d9c8374fd2c45dbe2a4" ] }, - "execution_count": 34, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -653,7 +653,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 27, "id": "8b323dc0-61f8-43c1-ae8a-38027c04ff88", "metadata": {}, "outputs": [ @@ -661,9 +661,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Mean Absolute Error: 0.198396\n", - "Mean Squared Error: 0.0694186\n", - "Root Mean Squared Error: 0.263474\n" + "Mean Absolute Error: 0.201418\n", + "Mean Squared Error: 0.0721066\n", + "Root Mean Squared Error: 0.268527\n" ] } ], diff --git a/utils/plot.hpp b/utils/plot.hpp index 6fd1ff00..606de102 100644 --- a/utils/plot.hpp +++ b/utils/plot.hpp @@ -6,8 +6,15 @@ #include int scatter(const std::string& fname, - const std::string& type, - const std::string& figTitle, + const std::string& xCol, + const std::string& yCol, + const std::string& dateCol = "", + const std::string& maskCol = "", + const std::string& type = "", + const std::string& color = "", + const std::string& xLabel = "", + const std::string& yLabel = "", + const std::string& figTitle = "", const int figWidth = 26, const int figHeight = 7) { @@ -23,22 +30,43 @@ int scatter(const std::string& fname, pFunc = PyObject_GetAttrString(pModule, "cscatter"); - pArgs = PyTuple_New(5); + pArgs = PyTuple_New(12); PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); - + + PyObject* pXcol = PyString_FromString(xCol.c_str()); + PyTuple_SetItem(pArgs, 1, pXcol); + + PyObject* pYcol = PyString_FromString(yCol.c_str()); + PyTuple_SetItem(pArgs, 2, pYcol); + + PyObject* pDateCol = PyString_FromString(dateCol.c_str()); + PyTuple_SetItem(pArgs, 3, pDateCol); + + PyObject* pMaskCol = PyString_FromString(maskCol.c_str()); + PyTuple_SetItem(pArgs, 4, pMaskCol); + PyObject* pType = PyString_FromString(type.c_str()); - PyTuple_SetItem(pArgs, 1, pType); + PyTuple_SetItem(pArgs, 5, pType); + + PyObject* pColor = PyString_FromString(color.c_str()); + PyTuple_SetItem(pArgs, 6, pColor); + + PyObject* pXlabel = PyString_FromString(xLabel.c_str()); + PyTuple_SetItem(pArgs, 7, pXlabel); + + PyObject* pYlabel = PyString_FromString(yLabel.c_str()); + PyTuple_SetItem(pArgs, 8, pYlabel); PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); - PyTuple_SetItem(pArgs, 2, pFigTitle); + PyTuple_SetItem(pArgs, 9, pFigTitle); PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 3, pFigWidth); + PyTuple_SetItem(pArgs, 10, pFigWidth); PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 4, pFigHeight); + PyTuple_SetItem(pArgs, 11, pFigHeight); pValue = PyObject_CallObject(pFunc, pArgs); @@ -48,7 +76,8 @@ int scatter(const std::string& fname, int barplot(const std::string& fname, const std::string& x, const std::string& y, - const std::string& figTitle, + const std::string& dateCol = "", + const std::string& figTitle = "", const int figWidth = 5, const int figHeight = 7) { @@ -64,7 +93,7 @@ int barplot(const std::string& fname, pFunc = PyObject_GetAttrString(pModule, "cbarplot"); - pArgs = PyTuple_New(6); + pArgs = PyTuple_New(7); PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); @@ -74,15 +103,18 @@ int barplot(const std::string& fname, PyObject* pY = PyString_FromString(y.c_str()); PyTuple_SetItem(pArgs, 2, pY); + + PyObject* pDateCol = PyString_FromString(dateCol.c_str()); + PyTuple_SetItem(pArgs, 3, pDateCol); PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); - PyTuple_SetItem(pArgs, 3, pFigTitle); + PyTuple_SetItem(pArgs, 4, pFigTitle); PyObject* pFigWidth = PyLong_FromLong(figWidth); - PyTuple_SetItem(pArgs, 4, pFigWidth); + PyTuple_SetItem(pArgs, 5, pFigWidth); PyObject* pFigHeight = PyLong_FromLong(figHeight); - PyTuple_SetItem(pArgs, 5, pFigHeight); + PyTuple_SetItem(pArgs, 6, pFigHeight); pValue = PyObject_CallObject(pFunc, pArgs); @@ -91,7 +123,7 @@ int barplot(const std::string& fname, int heatmap(const std::string& fname, const std::string& colorMap, - const std::string& figTitle, + const std::string& figTitle = "", const int annotation = false, const int figWidth = 12, const int figHeight = 6) diff --git a/utils/plot.py b/utils/plot.py index 0351061e..a89ca878 100644 --- a/utils/plot.py +++ b/utils/plot.py @@ -2,41 +2,60 @@ import matplotlib.pyplot as plt import seaborn as sns -def cscatter(filename: str, type_: str, figTitle: str, figWidth: int, figHeight: int) -> None: +def cscatter(filename: str, xCol: str, yCol: str, + dateCol:str = None, maskCol: str = None, + type_: str = None, color: str = None, + xLabel: str = None, yLabel: str = None, figTitle: str = None, + figWidth: int = 26, figHeight: int = 7) -> None: """ creates a scatter plot of size figWidth & figHeight, named figTitle and saves it. """ sns.set(color_codes=True) - df = pd.read_csv(filename, parse_dates=["Date"]) + if dateCol: + df = pd.read_csv(filename, parse_dates=[dateCol]) + else: + df = pd.read_csv(filename) fig = plt.figure(figsize=(figWidth, figHeight)) - mask = df["type"] == type_ - plt.scatter(df[mask].Date, df[mask].AveragePrice, cmap="plasma", c=df[mask].AveragePrice) - plt.xlabel("Date") - plt.ylabel("Average Price (USD)") - plt.title(f"Average Price of {type_} Avocados Over Time") + if maskCol: + mask = df[maskCol] == type_ + if color: + plt.scatter(df[mask][xCol], df[mask][yCol], cmap="plasma", c=df[mask][color]) + else: + plt.scatter(df[mask][xCol], df[mask][yCol], cmap="plasma") + else: + if color: + plt.scatter(df[xCol], df[yCol], cmap="plasma", c=df[color]) + else: + plt.scatter(df[xCol], df[yCol], cmap="plasma") + plt.xlabel(f"{xLabel}") + plt.ylabel(f"{yLabel}") + plt.title(f"{figTitle}") plt.savefig(f"{figTitle}.png") plt.close() -def cbarplot(filename: str, x: str, y: str, figTitle: str, figWidth: int, figHeight: int) -> None: +def cbarplot(filename: str, x: str, y: str, dateCol: str = None, figTitle: str = None, figWidth: int = 5, figHeight: int = 7) -> None: """ Creates a bar plot of size figWidth & figHeight, named figTitle between x & y. """ sns.set(color_codes=True) - df = pd.read_csv(filename, parse_dates=["Date"]) + if dateCol: + df = pd.read_csv(filename, parse_dates=[dateCol]) + else: + df = pd.read_csv(filename) fig = plt.figure(figsize=(figWidth, figHeight)) ax = sns.barplot(x=x, y=y, data=df) plt.title(figTitle) plt.savefig(f"{figTitle}.png") plt.close() -def cheatmap(filename: str, cmap: str, annotate: bool, figTitle: str, figWidth: int, figHeight: int) -> None: +def cheatmap(filename: str, cmap: str, annotate: bool, figTitle: str, figWidth: int = 12, figHeight: int = 6) -> None: """ Creates a heatmap (correlation map) of the dataset and saves it. """ sns.set(color_codes=True) - df = pd.read_csv(filename, parse_dates=["Date"]) + df = pd.read_csv(filename) df = df.drop("Unnamed: 0", axis=1) fig = plt.figure(figsize=(figWidth, figHeight)) ax = sns.heatmap(df.corr(), cmap=cmap, annot=annotate) @@ -44,7 +63,7 @@ def cheatmap(filename: str, cmap: str, annotate: bool, figTitle: str, figWidth: plt.savefig(f"{figTitle}.png") plt.close() -def clmplot(filename: str, figTitle: str, figWidth: int, figHeight: int) -> None: +def clmplot(filename: str, figTitle: str = None, figWidth: int = 6, figHeight: int = 7) -> None: """ Generates a regression plot on the given dataset and saves it. """ @@ -56,7 +75,7 @@ def clmplot(filename: str, figTitle: str, figWidth: int, figHeight: int) -> None plt.savefig(f"{figTitle}.png") plt.close() -def chistplot(filename: str, figTitle: str, figWidth: int, figHeight: int) -> None: +def chistplot(filename: str, figTitle: str = None, figWidth: int = 6, figHeight: int = 4) -> None: """ Generated a histogram on the given dataset and saves it. """ From 312364a76f12aa8f23820bac7c5be0e9732637b6 Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Wed, 30 Jun 2021 14:30:03 +0530 Subject: [PATCH 39/69] removed unnecessary file --- .../california_housing_price_predicition_with_lr.cpp | 0 1 file changed, 0 insertions(+), 0 deletions(-) delete mode 100644 california_housing_price_predicition_with_linear_regression/california_housing_price_predicition_with_lr.cpp diff --git a/california_housing_price_predicition_with_linear_regression/california_housing_price_predicition_with_lr.cpp b/california_housing_price_predicition_with_linear_regression/california_housing_price_predicition_with_lr.cpp deleted file mode 100644 index e69de29b..00000000 From 9daf2b9c8b34605e473dfa5c283a2bc6f166979c Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Wed, 30 Jun 2021 21:51:32 +0530 Subject: [PATCH 40/69] fixed styling issues in python nb --- .../avocado_price_prediction_with_lr_py.ipynb | 65 +++++++++---------- 1 file changed, 32 insertions(+), 33 deletions(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb index dc61b218..0db93cbc 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -8,28 +8,27 @@ "### Predicting Avocado's Average Price using Linear Regression\n", "\n", "### Objective\n", - "* Our target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...)\n", + "* Our target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...).\n", "\n", "### Dataset\n", "Avocado Prices dataset has the following features:\n", - "\n", - "PLU - Product Lookup Code in Hass avocado board.\n", - "* Date - The date of the observation\n", - "* AveragePrice - observed average price of single avocado\n", - "* Total Volume - Total number of avocado's sold\n", - "* 4046 - Total number of avocado's with PLU 4046 sold\n", - "* 4225 - Total number of avocado's with PLU 4225 sold\n", - "* 4770 - Total number of avocado's with PLU 4770 sold\n", - "* Total Bags = Small Bags + Large Bags + XLarge Bags\n", - "* Type - conventional or organic\n", - "* Year - year of observation\n", - "* Region - city or region of observation\n", + " PLU - Product Lookup Code in Hass avocado board.\n", + "* Date - The date of the observation.\n", + "* AveragePrice - Observed average price of single avocado.\n", + "* Total Volume - Total number of avocado's sold.\n", + "* 4046 - Total number of avocado's with PLU 4046 sold.\n", + "* 4225 - Total number of avocado's with PLU 4225 sold.\n", + "* 4770 - Total number of avocado's with PLU 4770 sold.\n", + "* Total Bags = Small Bags + Large Bags + XLarge Bags.\n", + "* Type - Conventional or organic.\n", + "* Year - Year of observation.\n", + "* Region - City or region of observation.\n", "\n", "### Approach\n", - "* In this example, first we will do EDA on the dataset to find correlation between various features\n", - "* Then we'll be using onehot encoding to encode categorical features\n", - "* Finally we will use LinearRegression API from mlpack to learn the correlation between various features and the target i.e AveragePrice\n", - "* After training the model, we will use it to do some predictions, followed by various evaluation metrics to quanitfy how well our model behaves" + "* In this example, first we will do EDA on the dataset to find correlation between various features.\n", + "* Then we'll be using onehot encoding to encode categorical features.\n", + "* Finally we will use LinearRegression API from mlpack to learn the correlation between various features and the target i.e AveragePrice.\n", + "* After training the model, we will use it to do some predictions, followed by various evaluation metrics to quantify how well our model behaves." ] }, { @@ -468,8 +467,8 @@ "metadata": {}, "outputs": [], "source": [ - "avocadoData['Date'] =pd.to_datetime(avocadoData.Date)\n", - "avocadoData.sort_values(by=['Date'], inplace=True, ascending=True)" + "avocadoData['Date'] = pd.to_datetime(avocadoData.Date)\n", + "avocadoData.sort_values(by = ['Date'], inplace = True, ascending = True)" ] }, { @@ -495,7 +494,7 @@ "id": "518c81eb-3bc0-46a0-9650-b71d3b89a15c", "metadata": {}, "source": [ - "* In the below visualization we are intersted to see if there is any trends over time for the prices of conventional avocados." + "* In the below visualization we are interested to see if there are any trends that occur with the prices of conventional avocados over a period of time." ] }, { @@ -530,7 +529,7 @@ "id": "c362b5b4-5cbf-44cf-b656-4fb4489bf630", "metadata": {}, "source": [ - "* In the below visualization we are intersted to see if there is any trends over time for the prices of organic avocados." + "* In the below visualization we are interested to see if there are any trends that occur with the prices of organic avocados over a period of time." ] }, { @@ -566,9 +565,9 @@ "metadata": {}, "source": [ "### Observations\n", - "* Looks like every year avocado's are most expensive between August - November\n", - "* There is a steep rise in the price in 2017\n", - "* December - February seems to be the best months to purchase avocado's" + "* Looks like every year avocado's are most expensive between August - November.\n", + "* There is a steep rise in the price in 2017.\n", + "* December - February seems to be the best months to purchase avocado's." ] }, { @@ -634,14 +633,14 @@ "source": [ "### Correlation\n", "There is high correlation between:\n", - "* 4046 & total volume \n", - "* 4225 & total volume\n", - "* 4770 & total volume\n", - "* total bags & total volume\n", - "* small bags & total bags\n", + "* 4046 & total volume. \n", + "* 4225 & total volume.\n", + "* 4770 & total volume.\n", + "* Total bags & total volume.\n", + "* Small bags & total bags.\n", "* We can observe that 4046 avocados are the most sold type in US.\n", "* Since there is high correlation between Total Bags, Total Volume & Small bags, \n", - " we assume most sales comes from small bags" + " we assume most sales comes from small bags." ] }, { @@ -677,12 +676,12 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 1, "id": "8a8680eb-d9bd-4844-a114-71795bca5aec", "metadata": {}, "outputs": [], "source": [ - "# Features of interest\n", + "# Features of interest.\n", "\n", "features = [\"4046\", \"4225\", \"4770\", \"Small Bags\", \"Large Bags\", \"XLarge Bags\", \"type\", \"year\", \"region\"]" ] @@ -779,7 +778,7 @@ "\n", "Regression analysis is the most widely used method of prediction. Linear regression is used when the dataset has a linear correlation and as the name suggests, multiple linear regression has one independent variable (predictor) and one or more dependent variable(response).\n", "\n", - "The simple linear regression equation is represented as y = $a + b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3} + ... + b_{n}x_{n}$ where $x_{i}$ is the ith explanatory variable, y is the dependent variable, $b_{i}$ is ith coefficient and a is the intercept\n", + "The simple linear regression equation is represented as y = $a + b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3} + ... + b_{n}x_{n}$ where $x_{i}$ is the ith explanatory variable, y is the dependent variable, $b_{i}$ is ith coefficient and a is the intercept.\n", "\n", "To perform linear regression we'll be using `LinearRegression()` api from mlpack." ] From 4650fee7e6ed9c97dedcf08a8b405e3ef48b59b5 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Wed, 30 Jun 2021 22:50:27 +0530 Subject: [PATCH 41/69] fixed styling issues in C++ nb --- ...avocado_price_prediction_with_lr_cpp.ipynb | 70 ++++++++++--------- 1 file changed, 36 insertions(+), 34 deletions(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb index 53c26471..ddc5ea8b 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb @@ -8,28 +8,27 @@ "### Predicting Avocado's Average Price using Linear Regression\n", "\n", "### Objective\n", - "* Our target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...)\n", + "* Our target is to predict the future price of avocado's depending on various features (Type, Region, Total Bags, ...).\n", "\n", "### Dataset\n", "Avocado Prices dataset has the following features:\n", - "\n", - "PLU - Product Lookup Code in Hass avocado board.\n", - "* Date - The date of the observation\n", - "* AveragePrice - observed average price of single avocado\n", - "* Total Volume - Total number of avocado's sold\n", - "* 4046 - Total number of avocado's with PLU 4046 sold\n", - "* 4225 - Total number of avocado's with PLU 4225 sold\n", - "* 4770 - Total number of avocado's with PLU 4770 sold\n", - "* Total Bags = Small Bags + Large Bags + XLarge Bags\n", - "* Type - conventional or organic\n", - "* Year - year of observation\n", - "* Region - city or region of observation\n", + "* PLU - Product Lookup Code in Hass avocado board.\n", + "* Date - The date of the observation.\n", + "* AveragePrice - Observed average price of single avocado.\n", + "* Total Volume - Total number of avocado's sold.\n", + "* 4046 - Total number of avocado's with PLU 4046 sold.\n", + "* 4225 - Total number of avocado's with PLU 4225 sold.\n", + "* 4770 - Total number of avocado's with PLU 4770 sold.\n", + "* Total Bags = Small Bags + Large Bags + XLarge Bags.\n", + "* Type - Conventional or organic.\n", + "* Year - Year of observation.\n", + "* Region - City or region of observation.\n", "\n", "### Approach\n", - "* In this example, first we will do EDA on the dataset to find correlation between various features\n", - "* Then we'll be using onehot encoding to encode categorical features\n", - "* Finally we will use LinearRegression API from mlpack to learn the correlation between various features and the target i.e AveragePrice\n", - "* After training the model, we will use it to do some predictions, followed by various evaluation metrics to quanitfy how well our model behaves" + "* In this example, first we will do EDA on the dataset to find correlation between various features.\n", + "* Then we'll be using onehot encoding to encode categorical features.\n", + "* Finally we will use LinearRegression API from mlpack to learn the correlation between various features and the target i.e AveragePrice.\n", + "* After training the model, we will use it to do some predictions, followed by various evaluation metrics to quantify how well our model behaves." ] }, { @@ -174,7 +173,7 @@ "metadata": {}, "outputs": [], "source": [ - "// Load the dataset into armadillo matrix\n", + "// Load the dataset into armadillo matrix.\n", "\n", "arma::mat matrix;\n", "mlpack::data::DatasetInfo info;\n", @@ -206,9 +205,12 @@ ], "source": [ "// Printing header for dataset.\n", - "std::cout << std::setw(10) << \"AveragePrice\" << std::setw(14) << \"Total Volume\" << std::setw(9) << \"4046\" << std::setw(13) << \"4225\" << std::setw(13) << \"4770\" \n", - " << std::setw(17) << \"Total Bags\" << std::setw(13) << \"Small Bags\" << std::setw(13) << \"Large Bags\" << std::setw(17) << \"XLarge Bags\" << \n", - " std::setw(10) << \"Type\" << std::setw(10) << \"Year\" << std::setw(15) << \"Region\" << std::endl;\n", + "std::cout << std::setw(10) << \"AveragePrice\" << std::setw(14) \n", + " << \"Total Volume\" << std::setw(9) << \"4046\" << std::setw(13) \n", + " << \"4225\" << std::setw(13) << \"4770\" << std::setw(17) << \"Total Bags\" \n", + " << std::setw(13) << \"Small Bags\" << std::setw(13) << \"Large Bags\" \n", + " << std::setw(17) << \"XLarge Bags\" << std::setw(10) << \"Type\" \n", + " << std::setw(10) << \"Year\" << std::setw(15) << \"Region\" << std::endl;\n", "\n", "std::cout << matrix.submat(0, 0, matrix.n_rows-1, 5).t() << std::endl;" ] @@ -226,7 +228,7 @@ "id": "ec24e405-4a4c-41ad-a560-2572d36c26f4", "metadata": {}, "source": [ - "* In the below visualization we are intersted to see if there is any trends over time for the prices of conventional avocados." + "* In the below visualization we are interested to see if there are any trends that occur with the prices of conventional avocados over a period of time." ] }, { @@ -262,7 +264,7 @@ "id": "48f79a7b-9a06-48c3-a131-b935eff4972d", "metadata": {}, "source": [ - "* In the below visualization we are intersted to see if there is any trends over time for the prices of organic avocados." + "* In the below visualization we are interested to see if there are any trends that occur with the prices of organic avocados over a period of time." ] }, { @@ -299,9 +301,9 @@ "metadata": {}, "source": [ "### Observations\n", - "* Looks like every year avocado's are most expensive between August - November\n", - "* There is a steep rise in the price in 2017\n", - "* December - February seems to be the best months to purchase avocado's" + "* Looks like every year avocado's are most expensive between August - November.\n", + "* There is a steep rise in the price in 2017.\n", + "* December - February seems to be the best months to purchase avocado's." ] }, { @@ -367,14 +369,14 @@ "source": [ "### Correlation\n", "There is high correlation between:\n", - "* 4046 & total volume \n", - "* 4225 & total volume\n", - "* 4770 & total volume\n", - "* total bags & total volume\n", - "* small bags & total bags\n", + "* 4046 & total volume. \n", + "* 4225 & total volume.\n", + "* 4770 & total volume.\n", + "* Total bags & total volume.\n", + "* Small bags & total bags.\n", "* We can observe that 4046 avocados are the most sold type in US.\n", "* Since there is high correlation between Total Bags, Total Volume & Small bags, \n", - " we assume most sales comes from small bags" + " we assume most sales comes from small bags." ] }, { @@ -508,7 +510,7 @@ "\n", "Regression analysis is the most widely used method of prediction. Linear regression is used when the dataset has a linear correlation and as the name suggests, multiple linear regression has one independent variable (predictor) and one or more dependent variable(response).\n", "\n", - "The simple linear regression equation is represented as y = $a + b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3} + ... + b_{n}x_{n}$ where $x_{i}$ is the ith explanatory variable, y is the dependent variable, $b_{i}$ is ith coefficient and a is the intercept\n", + "The simple linear regression equation is represented as y = $a + b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3} + ... + b_{n}x_{n}$ where $x_{i}$ is the ith explanatory variable, y is the dependent variable, $b_{i}$ is ith coefficient and a is the intercept.\n", "\n", "To perform linear regression we'll be using `LinearRegression()` api from mlpack." ] @@ -553,7 +555,7 @@ "metadata": {}, "outputs": [], "source": [ - "// Save the yTest and yPreds into csv for generating plots\n", + "// Save the yTest and yPreds into csv for generating plots.\n", "arma::mat preds;\n", "preds.insert_rows(0, yTest);\n", "preds.insert_rows(1, yPreds);" From c102e97fef8b0940ac2220473815d21131107d28 Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Wed, 30 Jun 2021 22:51:00 +0530 Subject: [PATCH 42/69] added docstrings for functions --- utils/plot.py | 108 ++++++++++++++++++++++++++++++++++++++++++++------ 1 file changed, 95 insertions(+), 13 deletions(-) diff --git a/utils/plot.py b/utils/plot.py index a89ca878..adebb5c0 100644 --- a/utils/plot.py +++ b/utils/plot.py @@ -2,14 +2,38 @@ import matplotlib.pyplot as plt import seaborn as sns -def cscatter(filename: str, xCol: str, yCol: str, - dateCol:str = None, maskCol: str = None, - type_: str = None, color: str = None, - xLabel: str = None, yLabel: str = None, figTitle: str = None, - figWidth: int = 26, figHeight: int = 7) -> None: +def cscatter(filename: str, + xCol: str, + yCol: str, + dateCol:str = None, + maskCol: str = None, + type_: str = None, + color: str = None, + xLabel: str = None, + yLabel: str = None, + figTitle: str = None, + figWidth: int = 26, + figHeight: int = 7) -> None: """ - creates a scatter plot of size figWidth & figHeight, named - figTitle and saves it. + Creates a scatter plot of size figWidth & figHeight, named figTitle and saves it. + + Parameters: + filename (str): Name of the dataset to load. + xCol (str): Name of the feature in dataset to plot against X axis. + yCol (str): Name of the feature in dataset to plot against Y axis. + dateCol (str): Name of the feature containing dates to parse; default to None. + maskCol (str): Name of the feature in dataset to mask; defaults to None. + type_ (str): Name of the feature in dataset to use for masking; defaults to None. + color (str): Name of the feature in dataset to be used for color value in plotting; + defaults to None. + xlabel (str): Label for X axis; defaults to None. + ylabel (str): Label for Y axis; defaults to None. + figTitle (str): Title for the figure to be save; defaults to None. + figWidth (int): Width of the figure; defaults to 26. + figHeight (int): Height of the figure; defaults to 7. + + Returns: + (None): Function does not return anything. """ sns.set(color_codes=True) if dateCol: @@ -34,10 +58,28 @@ def cscatter(filename: str, xCol: str, yCol: str, plt.savefig(f"{figTitle}.png") plt.close() -def cbarplot(filename: str, x: str, y: str, dateCol: str = None, figTitle: str = None, figWidth: int = 5, figHeight: int = 7) -> None: +def cbarplot(filename: str, + x: str, + y: str, + dateCol: str = None, + figTitle: str = None, + figWidth: int = 5, + figHeight: int = 7) -> None: """ - Creates a bar plot of size figWidth & figHeight, named - figTitle between x & y. + Creates a bar plot of size figWidth & figHeight, named figTitle between x & y. + + Parameters: + filename (str): Name of the dataset to load. + x (str): Name of the feature in dataset to plot against X axis. + y (str): Name of the feature in dataset to plot against Y axis. + dateCol (str): name of the feature containing dates to parse; default to None. + maskCol (str): name of the feature in dataset to mask; defaults to None. + figTitle (str): Title for the figure to be save; defaults to None. + figWidth (int): Width of the figure; defaults to 5. + figHeight (int): Height of the figure; defaults to 7. + + Returns: + (None): Function does not return anything. """ sns.set(color_codes=True) if dateCol: @@ -50,9 +92,25 @@ def cbarplot(filename: str, x: str, y: str, dateCol: str = None, figTitle: str = plt.savefig(f"{figTitle}.png") plt.close() -def cheatmap(filename: str, cmap: str, annotate: bool, figTitle: str, figWidth: int = 12, figHeight: int = 6) -> None: +def cheatmap(filename: str, + cmap: str, + annotate: bool, + figTitle: str, + figWidth: int = 12, + figHeight: int = 6) -> None: """ Creates a heatmap (correlation map) of the dataset and saves it. + + Parameters: + filename (str): Name of the dataset to load. + cmap (str): Name of the color map to be used for plotting. + annotate (bool): Indicates whether plot should be annotated with correlation values. + figTitle (str): Title for the figure to be save; defaults to None. + figWidth (int): Width of the figure; defaults to 12. + figHeight (int): Height of the figure; defaults to 6. + + Returns: + (None): Function does not return anything. """ sns.set(color_codes=True) df = pd.read_csv(filename) @@ -63,9 +121,21 @@ def cheatmap(filename: str, cmap: str, annotate: bool, figTitle: str, figWidth: plt.savefig(f"{figTitle}.png") plt.close() -def clmplot(filename: str, figTitle: str = None, figWidth: int = 6, figHeight: int = 7) -> None: +def clmplot(filename: str, + figTitle: str = None, + figWidth: int = 6, + figHeight: int = 7) -> None: """ Generates a regression plot on the given dataset and saves it. + + Parameters: + filename (str): Name of the dataset to load. + figTitle (str): Title for the figure to be save; defaults to None. + figWidth (int): Width of the figure; defaults to 6. + figHeight (int): Height of the figure; defaults to 7. + + Returns: + (None): Function does not return anything. """ sns.set(color_codes=True) df = pd.read_csv(filename) @@ -75,9 +145,21 @@ def clmplot(filename: str, figTitle: str = None, figWidth: int = 6, figHeight: i plt.savefig(f"{figTitle}.png") plt.close() -def chistplot(filename: str, figTitle: str = None, figWidth: int = 6, figHeight: int = 4) -> None: +def chistplot(filename: str, + figTitle: str = None, + figWidth: int = 6, + figHeight: int = 4) -> None: """ Generated a histogram on the given dataset and saves it. + + Parameters: + filename (str): Name of the dataset to load. + figTitle (str): Title for the figure to be save; defaults to None. + figWidth (int): Width of the figure; defaults to 6. + figHeight (int): Height of the figure; defaults to 4. + + Returns: + (None): Function does not return anything. """ sns.set(color_codes=True) df = pd.read_csv(filename) From 840476f60b37b1dacc4611eca64c6cad8bc752cd Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Wed, 30 Jun 2021 22:51:29 +0530 Subject: [PATCH 43/69] added comments & explanation for functions --- utils/plot.hpp | 85 ++++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 82 insertions(+), 3 deletions(-) diff --git a/utils/plot.hpp b/utils/plot.hpp index 606de102..6e4f6ef0 100644 --- a/utils/plot.hpp +++ b/utils/plot.hpp @@ -18,56 +18,79 @@ int scatter(const std::string& fname, const int figWidth = 26, const int figHeight = 7) { - + + // Calls Python function cscatter and generates a scatter plot of Xcol and yCol and saves it, + // so the plot can later be imported in C++ notebook using xwidget. + + // PyObject contains info Python needs to treat a pointer to an object as an object. + // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - + + // Initialize Python Interpreter. Py_Initialize(); + // Import sys module in Interpreter and add current path to python search path. PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "cscatter"); + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(12); + // String object representing the name of the dataset to be loaded. PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + // String object representing the name of the feature to be plotted along X axis. PyObject* pXcol = PyString_FromString(xCol.c_str()); PyTuple_SetItem(pArgs, 1, pXcol); + // String object representing the name of the feature to be plotted along Y axis. PyObject* pYcol = PyString_FromString(yCol.c_str()); PyTuple_SetItem(pArgs, 2, pYcol); + // String object representing the name of the feature to be parsed as TimeStamp. PyObject* pDateCol = PyString_FromString(dateCol.c_str()); PyTuple_SetItem(pArgs, 3, pDateCol); + // String object representing the name of the feature to be used to mask the plot data points. PyObject* pMaskCol = PyString_FromString(maskCol.c_str()); PyTuple_SetItem(pArgs, 4, pMaskCol); + // String object representing the value for masking. PyObject* pType = PyString_FromString(type.c_str()); PyTuple_SetItem(pArgs, 5, pType); + // String object representing the feature name to be used as color value in plot. PyObject* pColor = PyString_FromString(color.c_str()); PyTuple_SetItem(pArgs, 6, pColor); - + + // String object representing the X axis label. PyObject* pXlabel = PyString_FromString(xLabel.c_str()); PyTuple_SetItem(pArgs, 7, pXlabel); + // String object representing the Y axis label. PyObject* pYlabel = PyString_FromString(yLabel.c_str()); PyTuple_SetItem(pArgs, 8, pYlabel); + // String object representing the title of the figure. PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 9, pFigTitle); + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 10, pFigWidth); + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 11, pFigHeight); + // Call the function by passing the reference to function & tuple holding arguments. pValue = PyObject_CallObject(pFunc, pArgs); return 0; @@ -81,41 +104,59 @@ int barplot(const std::string& fname, const int figWidth = 5, const int figHeight = 7) { + + // Calls Python function cbarplot and generates a barplot plot of x and y and saves it, + // so the plot can later be imported in C++ notebook using xwidget. + // PyObject contains info Python needs to treat a pointer to an object as an object. + // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + // Initialize Python Interpreter. Py_Initialize(); + // Import sys module in Interpreter and add current path to python search path. PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "cbarplot"); + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(7); + // String object representing the name of the dataset to be loaded. PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + // String object representing the name of the feature to be plotted along X axis. PyObject* pX = PyString_FromString(x.c_str()); PyTuple_SetItem(pArgs, 1, pX); + // String object representing the name of the feature to be plotted along Y axis. PyObject* pY = PyString_FromString(y.c_str()); PyTuple_SetItem(pArgs, 2, pY); + // String object representing the name of the feature to be parsed as TimeStamp. PyObject* pDateCol = PyString_FromString(dateCol.c_str()); PyTuple_SetItem(pArgs, 3, pDateCol); + // String object representing the title of the figure. PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 4, pFigTitle); + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 5, pFigWidth); + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 6, pFigHeight); + // Call the function by passing the reference to function & tuple holding arguments. pValue = PyObject_CallObject(pFunc, pArgs); return 0; @@ -129,37 +170,51 @@ int heatmap(const std::string& fname, const int figHeight = 6) { + // PyObject contains info Python needs to treat a pointer to an object as an object. + // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + // Initialize Python Interpreter. Py_Initialize(); + // Import sys module in Interpreter and add current path to python search path. PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "cheatmap"); + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(6); + // String object representing the name of the dataset to be loaded. PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + // String object representing the name of color map to be used for plotting. PyObject* pColorMap = PyString_FromString(colorMap.c_str()); PyTuple_SetItem(pArgs, 1, pColorMap); + // Boolean object indicating if correlation values must be annotated in figure. PyObject* pAnnotation = PyBool_FromLong(annotation); PyTuple_SetItem(pArgs, 2, pAnnotation); + // String object representing the title of the figure. PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 3, pFigTitle); + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 4, pFigWidth); + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 5, pFigHeight); + // Call the function by passing the reference to function & tuple holding arguments. pValue = PyObject_CallObject(pFunc, pArgs); return 0; @@ -171,31 +226,43 @@ int lmplot(const std::string& fname, const int figHeight = 7) { + // PyObject contains info Python needs to treat a pointer to an object as an object. + // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + // Initialize Python Interpreter. Py_Initialize(); + // Import sys module in Interpreter and add current path to python search path. PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "clmplot"); + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(4); + // String object representing the name of the dataset to be loaded. PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + // String object representing the title of the figure. PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 1, pFigTitle); + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 2, pFigWidth); + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 3, pFigHeight); + // Call the function by passing the reference to function & tuple holding arguments. pValue = PyObject_CallObject(pFunc, pArgs); return 0; @@ -207,31 +274,43 @@ int histplot(const std::string& fname, const int figHeight = 4) { + // PyObject contains info Python needs to treat a pointer to an object as an object. + // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; + // Initialize Python Interpreter. Py_Initialize(); + // Import sys module in Interpreter and add current path to python search path. PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "chistplot"); + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(4); + // String object representing the name of the dataset to be loaded. PyObject* pFname = PyString_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); + // String object representing the title of the figure. PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 1, pFigTitle); + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 2, pFigWidth); + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 3, pFigHeight); + // Call the function by passing the reference to function & tuple holding arguments. pValue = PyObject_CallObject(pFunc, pArgs); return 0; From 974942d5245f68543d6630a8c847168b5f54266c Mon Sep 17 00:00:00 2001 From: davidportlouis Date: Wed, 30 Jun 2021 22:56:41 +0530 Subject: [PATCH 44/69] fixed minor styling issues in comments --- .../avocado_price_prediction_with_lr_py.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb index 0db93cbc..d76565d5 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -12,7 +12,7 @@ "\n", "### Dataset\n", "Avocado Prices dataset has the following features:\n", - " PLU - Product Lookup Code in Hass avocado board.\n", + "* PLU - Product Lookup Code in Hass avocado board.\n", "* Date - The date of the observation.\n", "* AveragePrice - Observed average price of single avocado.\n", "* Total Volume - Total number of avocado's sold.\n", From 6e4d973e1ec84824c7fa4ee7094c4bac10d9f1a7 Mon Sep 17 00:00:00 2001 From: Ryan Curtin Date: Wed, 30 Jun 2021 18:55:27 -0400 Subject: [PATCH 45/69] Use datasets.mlpack.org as the source for the datasets. --- .../avocado_price_prediction_with_lr_cpp.ipynb | 2 +- .../avocado_price_prediction_with_lr_py.ipynb | 2 +- .../salary-prediction-linear-regression-cpp.ipynb | 2 +- .../salary-prediction-linear-regression-py.ipynb | 2 +- tools/download_data_set.py | 10 +++++----- 5 files changed, 9 insertions(+), 9 deletions(-) diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb index ddc5ea8b..fcacb405 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_cpp.ipynb @@ -38,7 +38,7 @@ "metadata": {}, "outputs": [], "source": [ - "!wget -q https://mlpack.org/datasets/avocado.csv.gz" + "!wget -q https://datasets.mlpack.org/avocado.csv.gz" ] }, { diff --git a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb index d76565d5..7073e24e 100644 --- a/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb +++ b/avocado_price_prediction_with_linear_regression/avocado_price_prediction_with_lr_py.ipynb @@ -38,7 +38,7 @@ "metadata": {}, "outputs": [], "source": [ - "!wget -q https://mlpack.org/datasets/avocado.csv.gz" + "!wget -q https://datasets.mlpack.org/avocado.csv.gz" ] }, { diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb index fd8f62f4..b6534a4a 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-cpp.ipynb @@ -25,7 +25,7 @@ "metadata": {}, "outputs": [], "source": [ - "!wget -q https://mlpack.org/datasets/Salary_Data.csv" + "!wget -q https://datasets.mlpack.org/Salary_Data.csv" ] }, { diff --git a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb index 20a66613..b9f3fcbc 100644 --- a/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb +++ b/salary_prediction_with_linear_regression/salary-prediction-linear-regression-py.ipynb @@ -54,7 +54,7 @@ "outputs": [], "source": [ "# Load the salary dataset.\n", - "data = pd.read_csv(\"https://mlpack.org/datasets/Salary_Data.csv\")" + "data = pd.read_csv(\"https://datasets.mlpack.org/Salary_Data.csv\")" ] }, { diff --git a/tools/download_data_set.py b/tools/download_data_set.py index 01fcb57b..fee7b24e 100755 --- a/tools/download_data_set.py +++ b/tools/download_data_set.py @@ -112,22 +112,22 @@ def mnist_dataset(): def electricity_consumption_dataset(): print("Download the electricty consumption example datasets") - electricity = requests.get("https://www.mlpack.org/datasets/examples/electricity-usage.csv") + electricity = requests.get("https://datasets.mlpack.org/examples/electricity-usage.csv") progress_bar("electricity-usage.csv", electricity) def stock_exchange_dataset(): print("Download the stock exchange example datasets") - stock = requests.get("https://www.mlpack.org/datasets/examples/Google2016-2019.csv") + stock = requests.get("https://datasets.mlpack.org/examples/Google2016-2019.csv") progress_bar("Google2016-2019.csv", stock) def body_fat_dataset(): print("Download the body fat datasets") - bodyFat = requests.get("https://www.mlpack.org/datasets/examples/bodyfat.tsv") + bodyFat = requests.get("https://datasets.mlpack.org/examples/bodyfat.tsv") progress_bar("BodyFat.tsv", bodyFat) def iris_dataset(): print("Downloading iris datasets...") - iris = requests.get("https://www.mlpack.org/datasets/iris.tar.gz") + iris = requests.get("https://datasets.mlpack.org/iris.tar.gz") progress_bar("iris.tar.gz", iris) tar = tarfile.open("iris.tar.gz", "r:gz") tar.extractall() @@ -136,7 +136,7 @@ def iris_dataset(): def salary_dataset(): print("Downloading salary dataset...") - salary = requests.get("http://mlpack.org/datasets/Salary_Data.csv") + salary = requests.get("http://datasets.mlpack.org/Salary_Data.csv") progress_bar("Salary_Data.csv", salary) def all_datasets(): From b0f34e90c337974fcf69a5d86af90060460e99a8 Mon Sep 17 00:00:00 2001 From: Nanubala Gnana Sai <45007169+jonpsy@users.noreply.github.com> Date: Thu, 1 Jul 2021 14:59:07 +0000 Subject: [PATCH 46/69] added front util --- utils/front.hpp | 82 +++++++++++++++++++++++++++++++++++++++++++++++++ utils/front.py | 41 +++++++++++++++++++++++++ 2 files changed, 123 insertions(+) create mode 100644 utils/front.hpp create mode 100644 utils/front.py diff --git a/utils/front.hpp b/utils/front.hpp new file mode 100644 index 00000000..ba4ca5b8 --- /dev/null +++ b/utils/front.hpp @@ -0,0 +1,82 @@ +#ifndef CFRONT_HPP +#define CFRONT_HPP + +#define PY_SSIZE_T_CLEAN +#include +#include + +int Front(const std::string& nsga2DataX, + const std::string& nsga2DataY, + const std::string& moeadDataX, + const std::string& moeadDataY, + const std::string& filePath = "fronts.gif") +{ + PyObject *pName, *pModule, *pFunc; + PyObject *pArgs, *pValue; + int i; + + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + pName = PyUnicode_DecodeFSDefault("front"); + + pModule = PyImport_Import(pName); + Py_DECREF(pName); + + if (pModule != NULL) + { + pFunc = PyObject_GetAttrString(pModule, "cfront"); + + if (pFunc && PyCallable_Check(pFunc)) + { + pArgs = PyTuple_New(11); + + PyObject* pValueNSGA2X = PyUnicode_FromString(nsga2DataX.c_str()); + PyTuple_SetItem(pArgs, 0, pValueNSGA2X); + + PyObject* pValueNSGA2Y = PyUnicode_FromString(nsga2DataY.c_str()); + PyTuple_SetItem(pArgs, 1, pValueNSGA2Y); + + PyObject* pValueMOEADX = PyUnicode_FromString(moeadDataX.c_str()); + PyTuple_SetItem(pArgs, 2, pValueMOEADX); + + PyObject* pValueMOEADY = PyUnicode_FromString(moeadDataY.c_str()); + PyTuple_SetItem(pArgs, 3, pValueMOEADY); + + PyObject* pValueFilePath = PyUnicode_FromString(filePath.c_str()); + PyTuple_SetItem(pArgs, 4, pValueFilePath); + + pValue = PyObject_CallObject(pFunc, pArgs); + Py_DECREF(pArgs); + if (pValue != NULL) + { + Py_DECREF(pValue); + } + else + { + Py_DECREF(pFunc); + Py_DECREF(pModule); + PyErr_Print(); + fprintf(stderr,"Call failed\n"); + return 1; + } + } + else + { + if (PyErr_Occurred()) + PyErr_Print(); + } + + Py_XDECREF(pFunc); + Py_DECREF(pModule); + } + else + { + PyErr_Print(); + return 1; + } + + return 0; +} + +#endif diff --git a/utils/front.py b/utils/front.py new file mode 100644 index 00000000..2ed80617 --- /dev/null +++ b/utils/front.py @@ -0,0 +1,41 @@ +import imageio +import matplotlib.pyplot as plt +import os + +def cfront(nsga2DataX, nsga2DataY, moeadDataX, moeadDataY, filename='fronts.gif'): + nsga2FrontsX, nsga2FrontsY, moeadFrontsX, moeadFrontsY, = [], [], [], [] + + for nsga2FrontX, nsga2FrontY in zip(nsga2DataX.split(';'), nsga2DataY.split(';')): + nsga2FrontsX.append(list(map(float, nsga2FrontX.split(',')))) + nsga2FrontsY.append(list(map(float, nsga2FrontY.split(',')))) + + for moeadFrontX, moeadFrontY in zip(moeadDataX.split(';'), moeadDataY.split(';')): + moeadFrontsX.append(list(map(float, moeadFrontX.split(',')))) + moeadFrontsY.append(list(map(float, moeadFrontY.split(',')))) + + iterations = len(nsga2FrontsX) + count = 0 + + with imageio.get_writer(filename, mode='I', fps=1) as writer: + for i in range(iterations): + _ , axs = plt.subplots(ncols=2, nrows=1, figsize=(15, 8)) + ## The first axes is for NSGA-II + axs[0].scatter(nsga2FrontsX[i], nsga2FrontsY[i], 50, color="blue") + axs[0].title.set_text("NSGA-II") + axs[0].set_xlabel("Volatility") + axs[0].set_ylabel("Returns") + + ## The second axes is for MOEAD + axs[1].scatter(moeadFrontsX[i], moeadFrontsY[i], 50, color="blue") + axs[1].title.set_text("MOEA/D-DE") + axs[1].set_xlabel("Volatility") + axs[1].set_ylabel("Returns") + + plt.savefig('c-' + str(count) + '.png') + plt.close() + + image = imageio.imread('c-' + str(count) + '.png') + writer.append_data(image) + os.remove('c-' + str(count) + '.png') + count += 1 + From d82ea2894fe292b379cfa92dfcb94407c96887dd Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Thu, 1 Jul 2021 22:16:43 +0530 Subject: [PATCH 47/69] added intitial notebook on gans --- ...ng_handwritten_digits_mnist_with_gan.ipynb | 204 ++++++++++++++++++ 1 file changed, 204 insertions(+) create mode 100644 generating_hand_written_digits_mnist_with_gan/generating_handwritten_digits_mnist_with_gan.ipynb diff --git a/generating_hand_written_digits_mnist_with_gan/generating_handwritten_digits_mnist_with_gan.ipynb b/generating_hand_written_digits_mnist_with_gan/generating_handwritten_digits_mnist_with_gan.ipynb new file mode 100644 index 00000000..43ffd5ea --- /dev/null +++ b/generating_hand_written_digits_mnist_with_gan/generating_handwritten_digits_mnist_with_gan.ipynb @@ -0,0 +1,204 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 40, + "id": "fc5b593b", + "metadata": {}, + "outputs": [], + "source": [ + "#include\n", + "#include\n", + "#include\n", + "#include\n", + "#include\n", + "#include" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "17fe0d45", + "metadata": {}, + "outputs": [], + "source": [ + "#include" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "9123d7b0", + "metadata": {}, + "outputs": [], + "source": [ + "using namespace mlpack;\n", + "using namespace mlpack::ann;\n", + "using namespace arma;\n", + "using namespace std;\n", + "using namespace ens;" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "658a16a8", + "metadata": {}, + "outputs": [], + "source": [ + "arma::Row getLabels(arma::mat predOut){\n", + " arma::Row predLabels(predOut.n_cols);\n", + " for( arma::uword i = 0; i < predOut.n_cols; ++i){\n", + " predLabels(i) = predOut.col(i).index_max();\n", + " }\n", + " return predLabels;\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "aac77d56", + "metadata": {}, + "outputs": [], + "source": [ + "constexpr double RATIO = 0.1;\n", + "constexpr int MAX_ITERATIONS = 0;\n", + "constexpr double STEP_SIZE = 1.2e-3;\n", + "constexpr int BATCH_SIZE = 50;" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "ac9cead0", + "metadata": {}, + "outputs": [], + "source": [ + "arma::mat dataset;" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "a69e8c5f", + "metadata": {}, + "outputs": [], + "source": [ + "data::Load(\"/home/viole/swaingotnochill/examples/generating_hand_written_digits_mnist_with_gan/digit-recognizer/train.csv\", dataset, true);" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "77c9f143", + "metadata": {}, + "outputs": [], + "source": [ + "arma::mat train, valid;" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "77410e7c", + "metadata": {}, + "outputs": [], + "source": [ + "data::Split(dataset, train, valid, RATIO);" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "9c703e6a", + "metadata": {}, + "outputs": [], + "source": [ + "const arma::mat trainX = train.submat(1, 0, train.n_rows - 1, train.n_cols - 1);\n", + "const arma::mat validX = valid.submat(1, 0, valid.n_rows - 1, valid.n_cols - 1);" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "73b03f06", + "metadata": {}, + "outputs": [], + "source": [ + "const arma::mat trainY = train.row(0);\n", + "const arma::mat validY = valid.row(0);" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "349ab6bb", + "metadata": {}, + "outputs": [], + "source": [ + "using namespace mlpack::ann;\n", + "FFN, RandomInitialization> model;" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "28399929", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[1minput_line_65:2:16: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'mlpack::ann::Convolution<>'\u001b[0m\n", + " model.Add(new mlpack::ann::Convolution<>(1,6,5,5,1,1,0,0,28,28));\n", + "\u001b[0;1;32m ^ ~~~~~~~~~~~~~~~~~~~~~\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/include/mlpack/methods/ann/layer/layer_types.hpp:172:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor (the implicit copy constructor) not viable: requires\n", + " 1 argument, but 10 were provided\u001b[0m\n", + "class Convolution;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/include/mlpack/methods/ann/layer/layer_types.hpp:172:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor (the implicit move constructor) not viable: requires\n", + " 1 argument, but 10 were provided\u001b[0m\n" + ] + }, + { + "ename": "Interpreter Error", + "evalue": "", + "output_type": "error", + "traceback": [ + "Interpreter Error: " + ] + } + ], + "source": [ + "model.Add(new mlpack::ann::Convolution<>(1,6,5,5,1,1,0,0,28,28));\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58614fcf", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "C++14", + "language": "C++14", + "name": "xcpp14" + }, + "language_info": { + "codemirror_mode": "text/x-c++src", + "file_extension": ".cpp", + "mimetype": "text/x-c++src", + "name": "c++", + "version": "14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 708e27e08c69fa5f7bc39ee95594180117338be1 Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Tue, 6 Jul 2021 09:02:03 +0530 Subject: [PATCH 48/69] removed california housing python notebook --- ...nt-admission-logistic-regression-cpp.ipynb | 644 +++++++++++------- 1 file changed, 379 insertions(+), 265 deletions(-) diff --git a/student_admission_regression_with_logistic_regression/student-admission-logistic-regression-cpp.ipynb b/student_admission_regression_with_logistic_regression/student-admission-logistic-regression-cpp.ipynb index 9dfd3187..85936f21 100644 --- a/student_admission_regression_with_logistic_regression/student-admission-logistic-regression-cpp.ipynb +++ b/student_admission_regression_with_logistic_regression/student-admission-logistic-regression-cpp.ipynb @@ -1,278 +1,392 @@ { - "metadata":{ - "language_info":{ - "codemirror_mode":"text/x-c++src", - "file_extension":".cpp", - "mimetype":"text/x-c++src", - "name":"c++", - "version":"14" - }, - "kernelspec":{ - "name":"xcpp14", - "display_name":"C++14", - "language":"C++14" - } + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "[![Binder](https://mybinder.org/badge_logo.svg)](https://lab.mlpack.org/v2/gh/mlpack/examples/master?urlpath=lab%2Ftree%2Fstudent_admission_regression_with_logistic_regression%2Fstudent-admission-logistic-regression-cpp.ipynb)" + ] }, - "nbformat_minor":4, - "nbformat":4, - "cells":[ - { - "cell_type":"markdown", - "source":"[![Binder](https://mybinder.org/badge_logo.svg)](https://lab.mlpack.org/v2/gh/mlpack/examples/master?urlpath=lab%2Ftree%2Fstudent_admission_regression_with_logistic_regression%2Fstudent-admission-logistic-regression-cpp.ipynb)", - "metadata":{ - - } - }, - { - "cell_type":"code", - "source":"/**\n * @file student-admission-logistic-regression-cpp.ipynb\n *\n * A simple example usage of Logistic Regression (LR)\n * applied to the Student Admission dataset.\n *\n * We will use a Logistic-Regression model to predict whether a student\n * gets admitted into a university (i.e, the output classes are Yes or No),\n * based on their results on past exams.\n *\n * Data from Andrew Ng's Stanford University Machine Learning Course (Coursera).\n */", - "metadata":{ - "trusted":true - }, - "execution_count":null, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"!wget -q https://lab.mlpack.org/data/student-admission.txt", - "metadata":{ - "trusted":true - }, - "execution_count":1, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"#include \n\n#include \n#include ", - "metadata":{ - "trusted":true - }, - "execution_count":2, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"// Header files to create and show the plot.\n#define WITHOUT_NUMPY 1\n#include \"matplotlibcpp.h\"\n#include \"xwidgets/ximage.hpp\"\n\nnamespace plt = matplotlibcpp;", - "metadata":{ - "trusted":true - }, - "execution_count":3, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"using namespace mlpack;", - "metadata":{ - "trusted":true - }, - "execution_count":4, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"using namespace mlpack::regression;", - "metadata":{ - "trusted":true - }, - "execution_count":5, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"// Read the input data.\narma::mat input;\ndata::Load(\"student-admission.txt\", input);", - "metadata":{ - "trusted":true - }, - "execution_count":6, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"// Print the first 10 rows of the input data.\nstd::cout << input.submat(0, 0, input.n_rows - 1 , 10).t() << std::endl;", - "metadata":{ - "trusted":true - }, - "execution_count":7, - "outputs":[ - { - "name":"stdout", - "text":" 34.6237 78.0247 0\n 30.2867 43.8950 0\n 35.8474 72.9022 0\n 60.1826 86.3086 1.0000\n 79.0327 75.3444 1.0000\n 45.0833 56.3164 0\n 61.1067 96.5114 1.0000\n 75.0247 46.5540 1.0000\n 76.0988 87.4206 1.0000\n 84.4328 43.5334 1.0000\n 95.8616 38.2253 0\n\n", - "output_type":"stream" - } - ] - }, - { - "cell_type":"markdown", - "source":"Historical data from previous students: each student has two exams scores associated and the final admission result (1.0=yes, 0.0=no).", - "metadata":{ - - } - }, - { - "cell_type":"code", - "source":"// Plot the input data.\n\n// Get the indices for the labels 0.0 (not admitted).\narma::mat dataset0 = input.cols(arma::find(input.row(2) == 0));\n\n// Get the data to for the indices.\nstd::vector x0 = arma::conv_to>::from(dataset0.row(0));\nstd::vector y0 = arma::conv_to>::from(dataset0.row(1));\n\n// Get the indices for the label 1.0 (admitted).\narma::mat dataset1 = input.cols(arma::find(input.row(2) == 1.0));\n\n// Get the data to for the indices.\nstd::vector x1 = arma::conv_to>::from(dataset1.row(0));\nstd::vector y1 = arma::conv_to>::from(dataset1.row(1));\n\nplt::figure_size(800, 800);\n\n// Set the label for the legend.\nstd::map m0;\nm0.insert(std::pair(\"label\", \"not admitted\"));\nplt::scatter(x0, y0, 4, m0);\n\n// Set the label for the legend.\nstd::map m1;\nm1.insert(std::pair(\"label\", \"admitted\"));\nplt::scatter(x1, y1, 4, m1);\n\nplt::xlabel(\"Exam 1 Score\");\nplt::ylabel(\"Exam 2 Score\");\nplt::title(\"Student admission vs. past two exams\");\nplt::legend();\n\nplt::save(\"./plot.png\");\nauto im = xw::image_from_file(\"plot.png\").finalize();\nim", - "metadata":{ - "trusted":true - }, - "execution_count":8, - "outputs":[ - { - "execution_count":8, - "output_type":"execute_result", - "data":{ - "application/vnd.jupyter.widget-view+json":{ - "model_id":"75e1b93113f44ca2ad0a709098eae2c1", - "version_major":2, - "version_minor":0 - }, - "text/plain":"A Jupyter widget" - }, - "metadata":{ - - } - } - ] - }, - { - "cell_type":"markdown", - "source":"If the score of the first or the second exam was too low, it might be not enough to be admitted. You need a good balance.", - "metadata":{ - - } - }, - { - "cell_type":"markdown", - "source":"This is the logistic function to model our admission:\n$P(y=1) = \\frac{1}{1 + e^{-(\\beta_{0} + \\beta_{1} \\cdot x_{1} + ... + \\beta_{n} \\cdot x_{n}) }}$\n\nwhere y is the admission result (0 or 1) and x are the exams scores.\nSince in our example the admission decision is based on two exams (x1 and x2)\n(two exams) we can set n = 2. The next step is to find the correct beta\nparameters for the model by using our historical data as a training set.", - "metadata":{ - - } - }, - { - "cell_type":"code", - "source":"// Split data into training data X (input) and y (labels) target variable.\n\n// Labels are the last row.\narma::Row labels =\n arma::conv_to>::from(input.row(input.n_rows - 1));\ninput.shed_row(input.n_rows - 1);", - "metadata":{ - "trusted":true - }, - "execution_count":9, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"// Create and train Logistic Regression model.\n//\n// For more information checkout https://mlpack.org/doc/mlpack-git/doxygen/classmlpack_1_1regression_1_1LogisticRegression.html\n// or uncomment the line below.\n// ?LogisticRegression<>\nLogisticRegression<> lr(input, labels, 0.0 /* no regularization */);", - "metadata":{ - "trusted":true - }, - "execution_count":10, - "outputs":[ - - ] - }, - { - "cell_type":"code", - "source":"// Final beta parameters.\nlr.Parameters().print()", - "metadata":{ - "trusted":true - }, - "execution_count":11, - "outputs":[ - { - "name":"stdout", - "text":" -25.1613 0.2062 0.2015\n", - "output_type":"stream" - } - ] - }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "/**\n", + " * @file student-admission-logistic-regression-cpp.ipynb\n", + " *\n", + " * A simple example usage of Logistic Regression (LR)\n", + " * applied to the Student Admission dataset.\n", + " *\n", + " * We will use a Logistic-Regression model to predict whether a student\n", + " * gets admitted into a university (i.e, the output classes are Yes or No),\n", + " * based on their results on past exams.\n", + " *\n", + " * Data from Andrew Ng's Stanford University Machine Learning Course (Coursera).\n", + " */" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "!wget -q https://lab.mlpack.org/data/student-admission.txt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#include \n", + "\n", + "#include \n", + "#include " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "// Header files to create and show the plot.\n", + "#define WITHOUT_NUMPY 1\n", + "#include \"matplotlibcpp.h\"\n", + "#include \"xwidgets/ximage.hpp\"\n", + "\n", + "namespace plt = matplotlibcpp;" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "using namespace mlpack;" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "using namespace mlpack::regression;" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "// Read the input data.\n", + "arma::mat input;\n", + "data::Load(\"student-admission.txt\", input);" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ { - "cell_type":"code", - "source":"// We can use these beta parameters to plot the decision boundary on the training data.\n// We only need two points to plot a line, so we choose two endpoints:\n// the min and the max among the X training data.\nstd::vector xPlot;\nxPlot.push_back(arma::min(input.row(0)) - 2);\nxPlot.push_back(arma::max(input.row(0)) + 2);\n\nstd::vector yPlot;\nyPlot.push_back((-1.0 / lr.Parameters()(2)) * (lr.Parameters()(1) * xPlot[0] + lr.Parameters()(0)));\nyPlot.push_back((-1.0 / lr.Parameters()(2)) * (lr.Parameters()(1) * xPlot[1] + lr.Parameters()(0)));", - "metadata":{ - "trusted":true - }, - "execution_count":12, - "outputs":[ - - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + " 34.6237 78.0247 0\n", + " 30.2867 43.8950 0\n", + " 35.8474 72.9022 0\n", + " 60.1826 86.3086 1.0000\n", + " 79.0327 75.3444 1.0000\n", + " 45.0833 56.3164 0\n", + " 61.1067 96.5114 1.0000\n", + " 75.0247 46.5540 1.0000\n", + " 76.0988 87.4206 1.0000\n", + " 84.4328 43.5334 1.0000\n", + " 95.8616 38.2253 0\n", + "\n" + ] + } + ], + "source": [ + "// Print the first 10 rows of the input data.\n", + "std::cout << input.submat(0, 0, input.n_rows - 1 , 10).t() << std::endl;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Historical data from previous students: each student has two exams scores associated and the final admission result (1.0=yes, 0.0=no)." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ { - "cell_type":"code", - "source":"// Plot the decision boundary.\n\n// Get the indices for the labels 0.0 (not admitted).\narma::mat dataset0 = input.cols(arma::find(labels == 0));\n\n// Get the data to for the indices.\nstd::vector x0 = arma::conv_to>::from(dataset0.row(0));\nstd::vector y0 = arma::conv_to>::from(dataset0.row(1));\n\n// Get the indices for the label 1.0 (admitted).\narma::mat dataset1 = input.cols(arma::find(labels == 1.0));\n\n// Get the data to for the indices.\nstd::vector x1 = arma::conv_to>::from(dataset1.row(0));\nstd::vector y1 = arma::conv_to>::from(dataset1.row(1));\n\nplt::figure_size(800, 800);\nplt::scatter(x0, y0, 4);\nplt::scatter(x1, y1, 4);\n\nplt::plot(xPlot, yPlot);\n\nplt::xlabel(\"Exam 1 Score\");\nplt::ylabel(\"Exam 2 Score\");\nplt::title(\"Student admission vs. past two exams\");\n\nplt::save(\"./decision boundary-plot.png\");\nauto im = xw::image_from_file(\"decision boundary-plot.png\").finalize();\nim", - "metadata":{ - "trusted":true + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "75e1b93113f44ca2ad0a709098eae2c1", + "version_major": 2, + "version_minor": 0 }, - "execution_count":13, - "outputs":[ - { - "execution_count":13, - "output_type":"execute_result", - "data":{ - "application/vnd.jupyter.widget-view+json":{ - "model_id":"06d78d253ec546e780ea8b5d129f0e1f", - "version_major":2, - "version_minor":0 - }, - "text/plain":"A Jupyter widget" - }, - "metadata":{ - - } - } + "text/plain": [ + "A Jupyter widget" ] - }, - { - "cell_type":"markdown", - "source":"The blue line is our decision boundary. When your exams score lie below the line then\nprobably (that is the prediction) you will not be admitted to University.\nIf they lie above, probably you will. As you can see, the boundary is not predicting\nperfectly on the training historical data.", - "metadata":{ - - } - }, + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "// Plot the input data.\n", + "\n", + "// Get the indices for the labels 0.0 (not admitted).\n", + "arma::mat dataset0 = input.cols(arma::find(input.row(2) == 0));\n", + "\n", + "// Get the data to for the indices.\n", + "std::vector x0 = arma::conv_to>::from(dataset0.row(0));\n", + "std::vector y0 = arma::conv_to>::from(dataset0.row(1));\n", + "\n", + "// Get the indices for the label 1.0 (admitted).\n", + "arma::mat dataset1 = input.cols(arma::find(input.row(2) == 1.0));\n", + "\n", + "// Get the data to for the indices.\n", + "std::vector x1 = arma::conv_to>::from(dataset1.row(0));\n", + "std::vector y1 = arma::conv_to>::from(dataset1.row(1));\n", + "\n", + "plt::figure_size(800, 800);\n", + "\n", + "// Set the label for the legend.\n", + "std::map m0;\n", + "m0.insert(std::pair(\"label\", \"not admitted\"));\n", + "plt::scatter(x0, y0, 4, m0);\n", + "\n", + "// Set the label for the legend.\n", + "std::map m1;\n", + "m1.insert(std::pair(\"label\", \"admitted\"));\n", + "plt::scatter(x1, y1, 4, m1);\n", + "\n", + "plt::xlabel(\"Exam 1 Score\");\n", + "plt::ylabel(\"Exam 2 Score\");\n", + "plt::title(\"Student admission vs. past two exams\");\n", + "plt::legend();\n", + "\n", + "plt::save(\"./plot.png\");\n", + "auto im = xw::image_from_file(\"plot.png\").finalize();\n", + "im" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If the score of the first or the second exam was too low, it might be not enough to be admitted. You need a good balance." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is the logistic function to model our admission:\n", + "$P(y=1) = \\frac{1}{1 + e^{-(\\beta_{0} + \\beta_{1} \\cdot x_{1} + ... + \\beta_{n} \\cdot x_{n}) }}$\n", + "\n", + "where y is the admission result (0 or 1) and x are the exams scores.\n", + "Since in our example the admission decision is based on two exams (x1 and x2)\n", + "(two exams) we can set n = 2. The next step is to find the correct beta\n", + "parameters for the model by using our historical data as a training set." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "// Split data into training data X (input) and y (labels) target variable.\n", + "\n", + "// Labels are the last row.\n", + "arma::Row labels =\n", + " arma::conv_to>::from(input.row(input.n_rows - 1));\n", + "input.shed_row(input.n_rows - 1);" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "// Create and train Logistic Regression model.\n", + "//\n", + "// For more information checkout https://mlpack.org/doc/mlpack-git/doxygen/classmlpack_1_1regression_1_1LogisticRegression.html\n", + "// or uncomment the line below.\n", + "// ?LogisticRegression<>\n", + "LogisticRegression<> lr(input, labels, 0.0 /* no regularization */);" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ { - "cell_type":"code", - "source":"// Let's say that my scores are 40 in the first exam and 78 in the second one.\narma::mat scores(\"40.0; 78.0\");\n\narma::mat probabilities;\nlr.Classify(scores, probabilities);", - "metadata":{ - "trusted":true - }, - "execution_count":14, - "outputs":[ - - ] - }, + "name": "stdout", + "output_type": "stream", + "text": [ + " -25.1613 0.2062 0.2015\n" + ] + } + ], + "source": [ + "// Final beta parameters.\n", + "lr.Parameters().print()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "// We can use these beta parameters to plot the decision boundary on the training data.\n", + "// We only need two points to plot a line, so we choose two endpoints:\n", + "// the min and the max among the X training data.\n", + "std::vector xPlot;\n", + "xPlot.push_back(arma::min(input.row(0)) - 2);\n", + "xPlot.push_back(arma::max(input.row(0)) + 2);\n", + "\n", + "std::vector yPlot;\n", + "yPlot.push_back((-1.0 / lr.Parameters()(2)) * (lr.Parameters()(1) * xPlot[0] + lr.Parameters()(0)));\n", + "yPlot.push_back((-1.0 / lr.Parameters()(2)) * (lr.Parameters()(1) * xPlot[1] + lr.Parameters()(0)));" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ { - "cell_type":"code", - "source":"probabilities.print()", - "metadata":{ - "trusted":true + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "06d78d253ec546e780ea8b5d129f0e1f", + "version_major": 2, + "version_minor": 0 }, - "execution_count":15, - "outputs":[ - { - "name":"stdout", - "text":" 0.7680\n 0.2320\n", - "output_type":"stream" - } + "text/plain": [ + "A Jupyter widget" ] - }, + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "// Plot the decision boundary.\n", + "\n", + "// Get the indices for the labels 0.0 (not admitted).\n", + "arma::mat dataset0 = input.cols(arma::find(labels == 0));\n", + "\n", + "// Get the data to for the indices.\n", + "std::vector x0 = arma::conv_to>::from(dataset0.row(0));\n", + "std::vector y0 = arma::conv_to>::from(dataset0.row(1));\n", + "\n", + "// Get the indices for the label 1.0 (admitted).\n", + "arma::mat dataset1 = input.cols(arma::find(labels == 1.0));\n", + "\n", + "// Get the data to for the indices.\n", + "std::vector x1 = arma::conv_to>::from(dataset1.row(0));\n", + "std::vector y1 = arma::conv_to>::from(dataset1.row(1));\n", + "\n", + "plt::figure_size(800, 800);\n", + "plt::scatter(x0, y0, 4);\n", + "plt::scatter(x1, y1, 4);\n", + "\n", + "plt::plot(xPlot, yPlot);\n", + "\n", + "plt::xlabel(\"Exam 1 Score\");\n", + "plt::ylabel(\"Exam 2 Score\");\n", + "plt::title(\"Student admission vs. past two exams\");\n", + "\n", + "plt::save(\"./decision boundary-plot.png\");\n", + "auto im = xw::image_from_file(\"decision boundary-plot.png\").finalize();\n", + "im" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The blue line is our decision boundary. When your exams score lie below the line then\n", + "probably (that is the prediction) you will not be admitted to University.\n", + "If they lie above, probably you will. As you can see, the boundary is not predicting\n", + "perfectly on the training historical data." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "// Let's say that my scores are 40 in the first exam and 78 in the second one.\n", + "arma::mat scores(\"40.0; 78.0\");\n", + "\n", + "arma::mat probabilities;\n", + "lr.Classify(scores, probabilities);" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ { - "cell_type":"markdown", - "source":"Looks like my probability to be admitted at University is only 23%.", - "metadata":{ - - } + "name": "stdout", + "output_type": "stream", + "text": [ + " 0.7680\n", + " 0.2320\n" + ] } - ] + ], + "source": [ + "probabilities.print()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks like my probability to be admitted at University is only 23%." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "C++14", + "language": "C++14", + "name": "xcpp14" + }, + "language_info": { + "codemirror_mode": "text/x-c++src", + "file_extension": ".cpp", + "mimetype": "text/x-c++src", + "name": "c++", + "version": "14" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } From ca593a95ceab3e516d412571cd2331560c708931 Mon Sep 17 00:00:00 2001 From: jonpsy Date: Tue, 6 Jul 2021 12:04:17 +0530 Subject: [PATCH 49/69] => Change fps to 2 => Set title => Use default color --- utils/front.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/utils/front.py b/utils/front.py index 2ed80617..ff2b0ecb 100644 --- a/utils/front.py +++ b/utils/front.py @@ -16,20 +16,21 @@ def cfront(nsga2DataX, nsga2DataY, moeadDataX, moeadDataY, filename='fronts.gif' iterations = len(nsga2FrontsX) count = 0 - with imageio.get_writer(filename, mode='I', fps=1) as writer: + with imageio.get_writer(filename, mode='I', fps=2) as writer: for i in range(iterations): _ , axs = plt.subplots(ncols=2, nrows=1, figsize=(15, 8)) ## The first axes is for NSGA-II - axs[0].scatter(nsga2FrontsX[i], nsga2FrontsY[i], 50, color="blue") + axs[0].scatter(nsga2FrontsX[i], nsga2FrontsY[i], 50) axs[0].title.set_text("NSGA-II") axs[0].set_xlabel("Volatility") axs[0].set_ylabel("Returns") ## The second axes is for MOEAD - axs[1].scatter(moeadFrontsX[i], moeadFrontsY[i], 50, color="blue") + axs[1].scatter(moeadFrontsX[i], moeadFrontsY[i], 50) axs[1].title.set_text("MOEA/D-DE") axs[1].set_xlabel("Volatility") axs[1].set_ylabel("Returns") + plt.suptitle('The Evolution Process via Tracking Pareto Front',fontsize=20) plt.savefig('c-' + str(count) + '.png') plt.close() From 240d6045bbdc5ba2da3146ce12dc990ee842a8df Mon Sep 17 00:00:00 2001 From: jonpsy Date: Tue, 6 Jul 2021 12:04:26 +0530 Subject: [PATCH 50/69] fix numargs --- utils/front.hpp | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/utils/front.hpp b/utils/front.hpp index ba4ca5b8..599307c2 100644 --- a/utils/front.hpp +++ b/utils/front.hpp @@ -29,7 +29,7 @@ int Front(const std::string& nsga2DataX, if (pFunc && PyCallable_Check(pFunc)) { - pArgs = PyTuple_New(11); + pArgs = PyTuple_New(5); PyObject* pValueNSGA2X = PyUnicode_FromString(nsga2DataX.c_str()); PyTuple_SetItem(pArgs, 0, pValueNSGA2X); @@ -79,4 +79,4 @@ int Front(const std::string& nsga2DataX, return 0; } -#endif +#endif \ No newline at end of file From f77410ce42fc661b499cc4de14ef9320c7c385b8 Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Tue, 6 Jul 2021 22:55:53 +0530 Subject: [PATCH 51/69] adding california housing notebook --- .gitignore | 1 + ...ng_prices_predictions_with_lr_python.ipynb | 1240 +++++++++++++++++ .../california.png | Bin 0 -> 10034 bytes ...housing_price_prediction_with_lr_cpp.ipynb | 786 +++++++++++ mnist_cnn/mnist_cnn.cpp | 2 +- utils/heatmap.hpp | 103 ++ utils/heatmap.py | 9 + utils/histogram.hpp | 107 ++ utils/histogram.py | 7 + utils/impute.hpp | 100 ++ utils/impute.py | 17 + utils/pandasscatter.hpp | 280 ++++ utils/pandasscatter.py | 28 + utils/plot.hpp | 154 +- utils/plot.py | 72 +- 15 files changed, 2792 insertions(+), 114 deletions(-) create mode 100644 california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb create mode 100644 california_housing_price_prediction_with_linear_regression/california.png create mode 100644 california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb create mode 100644 utils/heatmap.hpp create mode 100644 utils/heatmap.py create mode 100644 utils/histogram.hpp create mode 100644 utils/histogram.py create mode 100644 utils/impute.hpp create mode 100644 utils/impute.py create mode 100644 utils/pandasscatter.hpp create mode 100644 utils/pandasscatter.py diff --git a/.gitignore b/.gitignore index 86308f8c..61b9dd79 100644 --- a/.gitignore +++ b/.gitignore @@ -11,3 +11,4 @@ cmake-build-* *.a *.so data +utils/__pycache__ \ No newline at end of file diff --git a/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb b/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb new file mode 100644 index 00000000..99f38988 --- /dev/null +++ b/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb @@ -0,0 +1,1240 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7ffef0ff", + "metadata": {}, + "source": [ + "### Predicting California House Prices with Linear Regression\n", + "\n", + "### Objective\n", + "* To predict California Housing Prices using the most simple Linear Regression Model and see how it performs.\n", + "* To understand the modeling workflow using mlpack.\n", + "\n", + "### About the Data\n", + " This dataset is a modified version of the California Housing dataset available from Luís Torgo's page (University of Porto). Luís Torgo obtained it from the StatLib repository (which is closed now). The dataset may also be downloaded from StatLib mirrors.\n", + " \n", + " This dataset is also used in a book HandsOn-ML ( a very good book and highly recommended).[ https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/].\n", + " \n", + " The dataset in this directory is almost identical to the original, with two differences:\n", + "207 values were randomly removed from the totalbedrooms column, so we can discuss what to do with missing data. An additional categorical attribute called oceanproximity was added, indicating (very roughly) whether each block group is near the ocean, near the Bay area, inland or on an island. This allows discussing what to do with categorical data.\n", + "Note that the block groups are called \"districts\" in the Jupyter notebooks, simply because in some contexts the name \"block group\" was confusing.\"\n", + "\n", + "Lets look at the features of the dataset:\n", + "* Longitude : Longitude coordinate of the houses.\n", + "* Latitude : Latitude coordinate of the houses.\n", + "* Housing Median Age : Average life span of houses.\n", + "* Total Rooms : Number of rooms in a location.\n", + "* Total Bedrooms : Number of bedroooms in a location.\n", + "* Population : Population in that location.\n", + "* Median Income : Median Income of households in a location.\n", + "* Median House Value : Median House Value in a location.\n", + "* Ocean Proximity : Closeness to shore. \n", + "\n", + "### Approach\n", + " Here, we will try to recreate the workflow from the book mentioned above. \n", + " * Look at the Big Picture.\n", + " * Get the Data.\n", + " * Discover and Visualize the data to gain insights.\n", + " * Pre-Process the data for the Ml Algorithm.\n", + " * Create new features. \n", + " * Splitting the data.\n", + " * Training the ML model using MLPACK.\n", + " * Residuals, Errors and Conclusion." + ] + }, + { + "cell_type": "markdown", + "id": "3c760992", + "metadata": {}, + "source": [ + "### Big Picture\n", + "\n", + "Suppose you work in a Real State Agency as an analyst or Data Scientist and your Boss wants you to predict the housing prices in a certain location. You are provided with a dataset. So, what will be the first thing to do?\n", + "\n", + "If you are probably jumping right into anaylsing the data and ML Algos, then this is a wrong a step. Its a big \"NO\". \n", + "
The first thing is to ask Questions.
\n", + " \n", + " Questions like : What will be the predictions used for? Will it be fed into some other system or not? And Many More, just to have concrete goals.\n", + " \n", + " So, your boss says that they will be using the data to get the predcitions so that the other team can work on some investment strategies.\n", + " \n", + "So, let's get started." + ] + }, + { + "cell_type": "markdown", + "id": "fc550b59", + "metadata": {}, + "source": [ + "

Importing Libraries

" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "a1441566", + "metadata": {}, + "outputs": [], + "source": [ + "import mlpack\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.image as mpimg\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n" + ] + }, + { + "cell_type": "markdown", + "id": "5c33741e", + "metadata": {}, + "source": [ + "

Get the Data

\n", + "\n", + "Here, we already have the 'CSV' file, so we will simply just download it. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "2a9ceafe", + "metadata": {}, + "outputs": [], + "source": [ + "!wget -q https://matrix.org/_matrix/media/r0/download/matrix.org/WvrgbgzkyIMbvkxLkKKNyMrO/housing.csv" + ] + }, + { + "cell_type": "markdown", + "id": "232b2fd3", + "metadata": {}, + "source": [ + "

Discover and Visualize the Data

" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "4f51f1c1", + "metadata": {}, + "outputs": [], + "source": [ + "dataset = pd.read_csv('housing.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "79251923", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_valueocean_proximity
0-122.2337.8841.0880.0129.0322.0126.08.3252452600.0NEAR BAY
1-122.2237.8621.07099.01106.02401.01138.08.3014358500.0NEAR BAY
2-122.2437.8552.01467.0190.0496.0177.07.2574352100.0NEAR BAY
3-122.2537.8552.01274.0235.0558.0219.05.6431341300.0NEAR BAY
4-122.2537.8552.01627.0280.0565.0259.03.8462342200.0NEAR BAY
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "0 -122.23 37.88 41.0 880.0 129.0 \n", + "1 -122.22 37.86 21.0 7099.0 1106.0 \n", + "2 -122.24 37.85 52.0 1467.0 190.0 \n", + "3 -122.25 37.85 52.0 1274.0 235.0 \n", + "4 -122.25 37.85 52.0 1627.0 280.0 \n", + "\n", + " population households median_income median_house_value ocean_proximity \n", + "0 322.0 126.0 8.3252 452600.0 NEAR BAY \n", + "1 2401.0 1138.0 8.3014 358500.0 NEAR BAY \n", + "2 496.0 177.0 7.2574 352100.0 NEAR BAY \n", + "3 558.0 219.0 5.6431 341300.0 NEAR BAY \n", + "4 565.0 259.0 3.8462 342200.0 NEAR BAY " + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Lets print the first 5 rows of the dataset.\n", + "dataset.head() " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "ae042e5d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_value
count20640.00000020640.00000020640.00000020640.00000020433.00000020640.00000020640.00000020640.00000020640.000000
mean-119.56970435.63186128.6394862635.763081537.8705531425.476744499.5396803.870671206855.816909
std2.0035322.13595212.5855582181.615252421.3850701132.462122382.3297531.899822115395.615874
min-124.35000032.5400001.0000002.0000001.0000003.0000001.0000000.49990014999.000000
25%-121.80000033.93000018.0000001447.750000296.000000787.000000280.0000002.563400119600.000000
50%-118.49000034.26000029.0000002127.000000435.0000001166.000000409.0000003.534800179700.000000
75%-118.01000037.71000037.0000003148.000000647.0000001725.000000605.0000004.743250264725.000000
max-114.31000041.95000052.00000039320.0000006445.00000035682.0000006082.00000015.000100500001.000000
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms \\\n", + "count 20640.000000 20640.000000 20640.000000 20640.000000 \n", + "mean -119.569704 35.631861 28.639486 2635.763081 \n", + "std 2.003532 2.135952 12.585558 2181.615252 \n", + "min -124.350000 32.540000 1.000000 2.000000 \n", + "25% -121.800000 33.930000 18.000000 1447.750000 \n", + "50% -118.490000 34.260000 29.000000 2127.000000 \n", + "75% -118.010000 37.710000 37.000000 3148.000000 \n", + "max -114.310000 41.950000 52.000000 39320.000000 \n", + "\n", + " total_bedrooms population households median_income \\\n", + "count 20433.000000 20640.000000 20640.000000 20640.000000 \n", + "mean 537.870553 1425.476744 499.539680 3.870671 \n", + "std 421.385070 1132.462122 382.329753 1.899822 \n", + "min 1.000000 3.000000 1.000000 0.499900 \n", + "25% 296.000000 787.000000 280.000000 2.563400 \n", + "50% 435.000000 1166.000000 409.000000 3.534800 \n", + "75% 647.000000 1725.000000 605.000000 4.743250 \n", + "max 6445.000000 35682.000000 6082.000000 15.000100 \n", + "\n", + " median_house_value \n", + "count 20640.000000 \n", + "mean 206855.816909 \n", + "std 115395.615874 \n", + "min 14999.000000 \n", + "25% 119600.000000 \n", + "50% 179700.000000 \n", + "75% 264725.000000 \n", + "max 500001.000000 " + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Lets look into some statistics.\n", + "dataset.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "cfcea99e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 20640 entries, 0 to 20639\n", + "Data columns (total 10 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 longitude 20640 non-null float64\n", + " 1 latitude 20640 non-null float64\n", + " 2 housing_median_age 20640 non-null float64\n", + " 3 total_rooms 20640 non-null float64\n", + " 4 total_bedrooms 20433 non-null float64\n", + " 5 population 20640 non-null float64\n", + " 6 households 20640 non-null float64\n", + " 7 median_income 20640 non-null float64\n", + " 8 median_house_value 20640 non-null float64\n", + " 9 ocean_proximity 20640 non-null object \n", + "dtypes: float64(9), object(1)\n", + "memory usage: 1.6+ MB\n" + ] + } + ], + "source": [ + "dataset.info()" + ] + }, + { + "cell_type": "markdown", + "id": "57d17c78", + "metadata": {}, + "source": [ + "If you look closely, \"total_bedrooms\" column has some missing values. Later, we will learn how to deal with these missing values." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "015161cf", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAANeCAYAAACbMC4GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde5ykZX3n/c9XUMQDUUQ6wJAMWcdkgVFcJoSse+iEGCceAtldfHCJQCSZrA9GzE42QLIbTcxkSVbUGCPJRA2wUXGy6kKCRpHYcd2HQ4CgIyBxIrM4MGGiYmQwS2j8PX/cd2vRVPV0T1fXqT/v16teXXXdh7p+Xd111f2r65CqQpIkSZIkSermCcOugCRJkiRJkkaXySNJkiRJkiT1ZPJIkiRJkiRJPZk8kiRJkiRJUk8mjyRJkiRJktSTySNJkiRJkiT1ZPJIIy3JziQ/ssLPsTfJ9/TxfJXkOf06nySp//a3fUnyL5Pc1cd6TCfZ1a/zSdKkGMR1wLzn6+s1waB1XoMk+b0k/2XYddJkOXDYFZCGraqeNnc/yWXArqr6z8OrkSRpVCQpYF1V7QCoqv8FfG/H9p3AT1fVJ4ZTQ0lSP3ReE4y7qvoPw66DJo89jyRJkiRJktSTySONhSQHJXlbkvva29uSHNRum06yK8nmJHuS7E7yUx3HPivJnyT5epK/TPLrST7dsb2SPCfJJuBM4Bfbbqt/0rm9Y//Lkvx6x+P/1D7nfUle3aXeb05yT5L72y6kB6/cb0qStBRJTkpyfZKvte/l70jypHbbp9rdPtO2C/9P5zCzJP8d+C7gT9rtv9htGFrn0IskB7ftyANJ7gC+f96+Ryb5YJK/S3J3ktet9O9AkkbYCUk+m+Tvk3wgyZMBkvxMkh1Jvprk6iRHtuVr28/u3xphk2QmyU+395+T5C/a8305yQc69usc9nVZkt9Nck2SB5PcmOSfdOz7o0nuas/zzvacP71QIEnOSfK/k7y1bXO+mOSft+Vfaq9jzu7Yf8HriH1cg3zreiXJM5P8aduuPNDeXzPv9/Omtm4PJvl4ksP29cIk+eMkf9v+Dj6V5LiObfu6/vq+JNe2r99dSV6xr+fT8Jk80rj4ZeBk4ATg+cBJQOfQsu8EvgM4CjgX+N0kz2y3/S7wULvP2e3tcapqK/Be4Leq6mlV9fJ9VSrJRuAXgBcB64D547J/E3huW+/ntPX7lX2dV5I0MI8CPw8cBvwgcArw/wJU1b9q93l+2y58oPPAqnoVcA/w8nb7by3i+d4A/JP29mI62qQkTwD+BPgMTXtxCvD6JC/e//Akaay9AtgIHAM8DzgnyQ8D/7XddgTwf4ArF3m+NwEfB54JrAF+Z4F9Xwn8arvvDmALQJtY+R/ARcCzgLuAf77I5/8B4LPtce9r6/39NNcJPwm8I8nc8Lme1xGLuAbp9ATgD4HvpvnC4x+Ad8zb598DPwUcDjypPfe+fLR97sOBW2muo+b0vP5K8lTg2jb+w2l+z+/sTD5pNJk80rg4E/i1qtpTVX9H80b+qo7tj7TbH6mqjwB7ge9NcgDwb4E3VNU3quoO4PI+1usVwB9W1eeq6iHgjXMbkgT4GeDnq+qrVfUg8BvAGX18fknSMlTVLVV1Q1XNVtVO4PeBf72CT/kKYEvbLnwJeHvHtu8Hnl1Vv1ZV/1hVXwT+ANsNSavX26vqvqr6Kk1y/QSa64L3VNWtVfUwTRLnB5OsXcT5HqFJohxZVf+3qj69wL4fqqqbqmqWJjFyQlv+EuD2qvpQu+3twN8uMp67q+oPq+pR4APA0TTXMA9X1ceBfwSes4jriJ7XIPNV1Veq6oPttdCDNEmw+e3cH1bVX1fVPwDbOmLtqareU1UPtq/BG4HnJ/mORVx/vQzY2f4eZqvqVuCDwL/b13NquJwwW+PiSJpvFeb8n7ZszlfaN+853wCeBjyb5u/8Sx3bOu/3o163zKvXnGcDTwFuad7/AQhwQB+fX5K0DEmeC7wF2EDznn0gj31f77cjeWw71NlufDdwZJKvdZQdAPyvFayPJI2yzqTMN2jeQ59F09MFgKram+QrND1z7t3H+X6RpvfRTUkeAC6pqvcs8rnnegQ95n28qmr+cOUF3N9x/x/a4+eXzV3DLHQdsdA1yGMkeQrwVpoeXHMjM56e5IA2iQW9Y+11zgNoklCnt3X9ZrvpMOBgFr7++m7gB+a1dQcC/32h59Tw2fNI4+I+mjeaOd/Vlu3L3wGzNN1S5xy9wP7VpewbNG/ec76z4/7ueef7ro77X6ZpAI6rqme0t++YpJUcJGkCXAp8nmZFtUOAX6L5gL5Y89uNh+hoM9oP2M/u2L5Qu/Elmm+ln9Fxe3pVvWQJ9ZGkSfeY64J2GNSzaBJHD7XFXT+7V9XfVtXPVNWRwM/SDJd6Dkuzm45ri7aX0Jreu++XfV1HLNSWzLeZZpXQH2jbubkh2Utp6+b798CpNMPlvgNY23HOfV1/fQn4i3lt3dOq6jXLqI8GwOSRxsX7gf+c5NntOONfAf5oXwe12fQPAW9M8pQk3wectcAh9wPfM6/sNuDfJzmgHV/c2c1zG83Y62PbrP4bOp77mzTDDd6a5HCAJEc5d4UkjZSnA18H9rZtxPwPr93ahYW2/zXw5CQvTfJEmvn5DurYvg24qJ3AdA3wcx3bbgK+nuSCNBNrH5Dk+CSPmVRbkla59wE/leSENAvo/AZwY1XtbKe3uBf4yfY99NU0c8wBkOT0jsmiH6D5AuBRluYaYH2S09JMzH0ej/1yedkWcR3R8xqki6fTJKK+luTQfey7WE8HHga+QpOo+42Ouu/r+utPgecmeVWSJ7a370/yT/tQL60gk0caF78O3Ewzwdx2mq6qv77gEd/2WpqM+N/SdId8P82bXTfvBo5tV0D4n23Z+cDLga/RjLGeK6eqPgq8Dfhzmon0/nze+S5oy29I8nXgEzSZf0nSaPgFmm9QH6T5oP6BedvfCFzetgvdVoP5rzRfbnwtyS9U1d/TTLj9Lr79LXjncIZfpRlecDfNpK3f6qbffuB+Oc1cE3fTfPP8Lpo2TJIEVNV1wH+hmSdnN01yqHNuuJ8B/hNNYuM44P/r2Pb9wI1J9gJXA+dX1d1LfP4v0wzX+q32OY6luU7pdX2xv3peRyziGqTT22iGkn0ZuAH4sz7U7Qqatuxe4I72vJ16Xn+18y79KM1rdl+7z2/y2C9aNIJS1W2UjjS5kvwm8J1V1XXVNUmSJElajHalzF3AmVX1yWHXZxR5/TUZ7HmkiZfk+5I8L42TgHOBDw+7XpIkSZLGT5IXJ3lGO2xubq68+b1vVi2vvyaTySOtBk+nGXf7EM344EuAq4ZaI0mSJEnj6geBv6EZCvZy4LSq+ockv5dkb5fb7w23ukuX5Mwesdy+iMO9/ppADluTJEmSJElST/Y8kiRJkiRJUk8HDrsC+3LYYYfV2rVrV+z8Dz30EE996lNX7PzDZnzjzfjGW6/4brnlli9X1bOHUKVVa6XbklEx6f9TnVZTrGC8k25/4rUtGbx9tSWT/nc7yfEZ23ia5NhgMPEtpS0Z+eTR2rVrufnmm1fs/DMzM0xPT6/Y+YfN+Mab8Y23XvEl+T+Dr83qttJtyaiY9P+pTqspVjDeSbc/8dqWDN6+2pJJ/7ud5PiMbTxNcmwwmPiW0pY4bE2SJEmSJEk9mTySJEmSJElSTyaPJEmSJEmS1JPJI0mSJEmSJPVk8kiSJEmSJEk9mTySJEmSJElSTyaPJEmSJEmS1NM+k0dJjk7yySR3Jrk9yflt+RuT3Jvktvb2ko5jLkqyI8ldSV7cUX5iku3ttrcnycqEJUmSJEmSpH44cBH7zAKbq+rWJE8HbklybbvtrVX15s6dkxwLnAEcBxwJfCLJc6vqUeBSYBNwA/ARYCPw0f6EIkmSJEmSpH7bZ/KoqnYDu9v7Dya5EzhqgUNOBa6sqoeBu5PsAE5KshM4pKquB0hyBXAaJo+0Sq298Jqu5TsvfumAayJpHHV7D9m8fpZzfG+RJEmaSMO8hlxMz6NvSbIWeAFwI/BC4LVJzgJupumd9ABNYumGjsN2tWWPtPfnl3d7nk00PZSYmppiZmZmKdVckr17967o+YfN+EbX5vWzXcs74xnn+BbD+CRJkiRp9C06eZTkacAHgddX1deTXAq8Caj25yXAq4Fu8xjVAuWPL6zaCmwF2LBhQ01PTy+2mks2MzPDSp5/2IxvdPXsHXDm9Lfuj3N8i2F8kiRJkjT6FrXaWpIn0iSO3ltVHwKoqvur6tGq+ibwB8BJ7e67gKM7Dl8D3NeWr+lSLkmacEmenOSmJJ9pF1/41bb80CTXJvlC+/OZHce4+IIkSZI0Ahaz2lqAdwN3VtVbOsqP6NjtJ4DPtfevBs5IclCSY4B1wE3t3EkPJjm5PedZwFV9ikOSNNoeBn64qp4PnABsTHIycCFwXVWtA65rH89ffGEj8M4kB7Tnmlt8YV172zjIQCRJkqTVZjHD1l4IvArYnuS2tuyXgFcmOYFm6NlO4GcBqur2JNuAO2hWajuvXWkN4DXAZcDBNBNlO1m2JK0CVVXA3vbhE9tb0SyyMN2WXw7MABfg4guSJEnSyFjMamufpvt8RR9Z4JgtwJYu5TcDxy+lgpKkydD2HLoFeA7wu1V1Y5KptmcqVbU7yeHt7mO1+MIwdJt0f+rgxU3GPwlW24T0xjvZVlu8kqTxs6TV1iRJ2l9tL9QTkjwD+HCShb5MGKvFF4ah26T7m9fPcsn27k1752T8k2C1TUhvvJNttcUrSRo/i5owW5Kkfqmqr9EMT9sI3D83h177c0+7m4svSJIkSSPC5JEkacUleXbb44gkBwM/AnyeZpGFs9vdzubbCym4+IIkSZI0Ihy2JkkahCOAy9t5j54AbKuqP01yPbAtybnAPcDp4OILkiRJ0igxeSRJWnFV9VngBV3KvwKc0uMYF1+QJEmSRoDD1iRJkiRJktSTySNJkiRJkiT1ZPJIkiRJkiRJPZk8kiRJkiRJUk8mjyRJkiRJktSTySNJkiRJIy/Je5LsSfK5jrL/luTzST6b5MNJntGx7aIkO5LcleTFHeUnJtnebnt7kgw6FkkaNyaPJEmSJI2Dy4CN88quBY6vqucBfw1cBJDkWOAM4Lj2mHcmOaA95lJgE7Cuvc0/pyRpHpNHkiRJkkZeVX0K+Oq8so9X1Wz78AZgTXv/VODKqnq4qu4GdgAnJTkCOKSqrq+qAq4AThtMBJI0vg4cdgUkSZIkqQ9eDXygvX8UTTJpzq627JH2/vzyrpJsoumlxNTUFDMzMz2ffO/evQtuH3eTHJ+xjadJjg26x7d5/WzXfQfxezB5JEmSJGmsJfllYBZ471xRl91qgfKuqmorsBVgw4YNNT093bMOMzMzLLR93E1yfMY2niY5Nuge3zkXXtN1351nTnct7yeTR5IkSZLGVpKzgZcBp7RD0aDpUXR0x25rgPva8jVdyiVJC3DOI0mSJEljKclG4ALgx6vqGx2brgbOSHJQkmNoJsa+qap2Aw8mObldZe0s4KqBV1ySxow9jyRJkiSNvCTvB6aBw5LsAt5As7raQcC1TS6IG6rqP1TV7Um2AXfQDGc7r6oebU/1GpqV2w4GPtreJEkLMHkkSZIkaeRV1Su7FL97gf23AFu6lN8MHN/HqknSxHPYmiRJkiRJknoyeSRJkiRJkqSeTB5JkiRJkiSpJ5NHkiRJkiRJ6snkkSRJkiRJknoyeSRJkiRJkqSeTB5JkiRJkiSpJ5NHkiRJkiRJ6snkkSRJkiRJknoyeSRJkiRJkqSeTB5JkiRJkiSpJ5NHkiRJkiRJ6snkkSRpxSU5Osknk9yZ5PYk57flb0xyb5Lb2ttLOo65KMmOJHcleXFH+YlJtrfb3p4kw4hJkiRJWi0OHHYFJEmrwiywuapuTfJ04JYk17bb3lpVb+7cOcmxwBnAccCRwCeSPLeqHgUuBTYBNwAfATYCHx1QHJIkSdKqY88jSdKKq6rdVXVre/9B4E7gqAUOORW4sqoerqq7gR3ASUmOAA6pquurqoArgNNWuPqSJEnSqrbPnkdJjqb5cP6dwDeBrVX120kOBT4ArAV2Aq+oqgfaYy4CzgUeBV5XVR9ry08ELgMOpvm2+Pz2w78kaZVIshZ4AXAj8ELgtUnOAm6m6Z30AE1i6YaOw3a1ZY+09+eXd3ueTTQ9lJiammJmZqafYQzd5vWzjyubOrh7OTBx8e/du3fiYlqI8U621RavJGn8LGbYWq+hBucA11XVxUkuBC4ELnCogSSplyRPAz4IvL6qvp7kUuBNQLU/LwFeDXSbx6gWKH98YdVWYCvAhg0banp6etn1HyXnXHjN48o2r5/lku3dm/adZ06vcI0Ga2Zmhkl7TRdivJNttcUrSRo/+xy2tsBQg1OBy9vdLufbwwYcaiBJepwkT6RJHL23qj4EUFX3V9WjVfVN4A+Ak9rddwFHdxy+BrivLV/TpVySJEnSClnShNnzhhpMVdVuaBJMSQ5vdxuroQaT3k3Y+EbXYoaWjHN8i2F8q0e7Itq7gTur6i0d5UfMtSXATwCfa+9fDbwvyVtoerGuA26qqkeTPJjkZJq26CzgdwYVhyRJkrQaLTp51GWoQc9du5SN7FCDSe8mbHyjq9uQE3js0JJxjm8xjG9VeSHwKmB7ktvasl8CXpnkBJr2YCfwswBVdXuSbcAdNMOnz2uHPwO8hm/Pn/dRHP4sSZIkrahFJY+6DTUA7p/7xrgdkranLXeogSTpMarq03T/EuEjCxyzBdjSpfxm4Pj+1U6SJEnSQvY551GvoQY0QwrObu+fDVzVUX5GkoOSHMO3hxrsBh5McnJ7zrM6jpEkSZIkSdIIWkzPo15DDS4GtiU5F7gHOB0caiBJkiRJkjRJ9pk8WmCoAcApPY5xqIEkSZKkvknyHuBlwJ6qOr4tOxT4ALCWZu68V1TVA+22i4BzgUeB11XVx9ryE/n2F9ofAc5vV4OWJPWwz2FrkiRJkjQCLgM2ziu7ELiuqtYB17WPSXIscAZwXHvMO5Mc0B5zKc3Kzuva2/xzSpLmMXkkSZIkaeRV1aeAr84rPhW4vL1/OXBaR/mVVfVwVd0N7ABOahf6OaSqrm97G13RcYwkqQeTR5IkSZLG1VS7MA/tz8Pb8qOAL3Xst6stO6q9P79ckrSAxUyYLUmSJEnjpNucrbVAefeTJJtohrgxNTXFzMxMzyfcu3fvgtvH3STHZ2zjaZJjg+7xbV4/23XfQfweTB5JkiRJGlf3Jzmiqna3Q9L2tOW7gKM79lsD3NeWr+lS3lVVbQW2AmzYsKGmp6d7VmRmZoaFto+7SY7P2MbTJMcG3eM758Jruu6788zpruX95LA1SZIkSePqauDs9v7ZwFUd5WckOSjJMTQTY9/UDm17MMnJSQKc1XGMJKkHex5JkiRJGnlJ3g9MA4cl2QW8AbgY2JbkXOAe4HSAqro9yTbgDmAWOK+qHm1P9RqaldsOBj7a3iRJCzB5JEmSJGnkVdUre2w6pcf+W4AtXcpvBo7vY9UkaeI5bE2SJEmSJEk9mTySJEmSJElSTyaPJEmSJEmS1JPJI0mSJEmSJPVk8kiSJEmSJEk9mTySJEmSJElSTyaPJEmSJEmS1NOBw66ANOnWXnjNsKsgSZIkSdJ+s+eRJEmSJEmSejJ5JEmSJEmSpJ4ctiaNmM5hbpvXz3LOhdew8+KXDrFGkiRJkqTVzJ5HkiRJkiRJ6snkkSRJkiRJknoyeSRJkiRJkqSeTB5JkiRJkiSpJ5NHkqQVl+ToJJ9McmeS25Oc35YfmuTaJF9ofz6z45iLkuxIcleSF3eUn5hke7vt7UkyjJgkSZKk1cLkkSRpEGaBzVX1T4GTgfOSHAtcCFxXVeuA69rHtNvOAI4DNgLvTHJAe65LgU3Auva2cZCBSJIkSavNgcOugCRp8lXVbmB3e//BJHcCRwGnAtPtbpcDM8AFbfmVVfUwcHeSHcBJSXYCh1TV9QBJrgBOAz46sGAkSZK0T2svvKZr+c6LXzrgmqgfTB5JkgYqyVrgBcCNwFSbWKKqdic5vN3tKOCGjsN2tWWPtPfnl3d7nk00PZSYmppiZmambzGMgs3rZx9XNnVw93Jg4uLfu3fvxMW0EOOdbKstXknS+DF5JEkamCRPAz4IvL6qvr7AdEXdNtQC5Y8vrNoKbAXYsGFDTU9PL7m+o+ycLt/mbV4/yyXbuzftO8+cXuEaDdbMzAyT9pouxHgn22qLV5I0fpzzSJI0EEmeSJM4em9Vfagtvj/JEe32I4A9bfku4OiOw9cA97Xla7qUS5IkSVohJo8kSSuuXRHt3cCdVfWWjk1XA2e3988GruooPyPJQUmOoZkY+6Z2iNuDSU5uz3lWxzGSJEmSVoDD1iRJg/BC4FXA9iS3tWW/BFwMbEtyLnAPcDpAVd2eZBtwB81KbedV1aPtca8BLgMOppko28myJUmSpBVk8kiStOKq6tN0n68I4JQex2wBtnQpvxk4vn+1kyRJ0nL0WllNk8Nha5IkSZLGWpKfT3J7ks8leX+SJyc5NMm1Sb7Q/nxmx/4XJdmR5K4kLx5m3SVpHJg8kiRJkjS2khwFvA7YUFXHAwcAZwAXAtdV1TrguvYxSY5ttx8HbATemeSAYdRdksbFPpNHSd6TZE+Sz3WUvTHJvUlua28v6djWNYuf5MQk29ttb88C6zNLkiRJ0hIcCByc5EDgKTQrcZ4KXN5uvxw4rb1/KnBlVT1cVXcDO4CTBlxfSRori5nz6DLgHcAV88rfWlVv7iyYl8U/EvhEkue2k5xeCmwCbgA+QpPld5JTSZIkSfutqu5N8maahRf+Afh4VX08yVS7SidVtTvJ4e0hR9Fck8zZ1ZY9TpJNNNcwTE1NMTMz07Mee/fuXXD7uJvk+Ixt+Tavn130vv2qzyS/btA9vl6/50H8HvaZPKqqTyVZu8jzfSuLD9ydZAdwUpKdwCFVdT1AkitoMv8mjyRJkiTtt3Yuo1OBY4CvAX+c5CcXOqRLWXXbsaq2AlsBNmzYUNPT0z1POjMzw0Lbx90kx2dsy3fOEibM3nnmdF+ec5JfN+geX6/fc79+pwtZzmprr01yFnAzsLmqHqB3Fv+R9v788q6WkuFfrtWYrZwk4xDfUrLw800d3Bw/6jHur3F4/ZZj0uOTJGlE/Ahwd1X9HUCSDwH/HLg/yRFtr6MjgD3t/ruAozuOX0MzzE2S1MP+Jo8uBd5Ek6F/E3AJ8Gp6Z/EXnd2HpWX4l2s1ZisnyTjEt5Qs/Hyb189yyfYDB5JJHoZxeP2WY9LjkyRpRNwDnJzkKTTD1k6h+YL7IeBs4OL251Xt/lcD70vyFpqpNtYBNw260pI0TvYreVRV98/dT/IHwJ+2D3tl8Xe19+eXS5IkSdJ+q6obk/wP4FZgFvgrmi+inwZsS3IuTYLp9Hb/25NsA+5o9z+vnaNVktTDfiWP5rp/tg9/Aphbia1rFr+qHk3yYJKTgRuBs4DfWV7VJUmSJAmq6g3AG+YVP0zTC6nb/luALStdLy3P2i49+Hde/NIh1ETSPpNHSd4PTAOHJdlF86Y8neQEmqFnO4GfhX1m8V9Ds3LbwTQTZTtZtiRJkiRJ0ohbzGprr+xS/O4F9u+axa+qm4Hjl1Q7SZLU9ZtXSZIkaVCeMOwKSJIkSZIkaXSZPJIkSZIkSVJPJo8kSZIkSZLUk8kjSZIkSZIk9WTySJIkSZIkST2ZPJIkSZIkSVJPJo8kSZIkSZLUk8kjSZIkSZIk9WTySJIkSZIkST0dOOwKSJIkSZK0GGsvvKZr+c6LXzrgmkiri8mjCTP/zXTz+lmmh1MVSZIkSdIE6ZW80+QzeTSm/KeVJEmSJEmD4JxHkiRJkiRJ6smeR5IkSUPgvB2SJGlc2PNIkiRJkiRJPZk8kiStuCTvSbInyec6yt6Y5N4kt7W3l3RsuyjJjiR3JXlxR/mJSba3296eJIOORZIkSVptTB5JkgbhMmBjl/K3VtUJ7e0jAEmOBc4AjmuPeWeSA9r9LwU2AevaW7dzSpIkSeojk0eSpBVXVZ8CvrrI3U8Frqyqh6vqbmAHcFKSI4BDqur6qirgCuC0lamxJEmSpDlOmC1JGqbXJjkLuBnYXFUPAEcBN3Tss6ste6S9P7+8qySbaHopMTU1xczMTH9rPkCb188uar+pg3vvO87xd7N3796xj2kpr9UkxLsUxitJ0mgxeSRJGpZLgTcB1f68BHg10G0eo1qgvKuq2gpsBdiwYUNNT08vs7rDc06PVbnm27x+lku2d2/ad5453ccaDd/MzAzj/JpC79e122s1CfEuhfFKkjRaHLYmSRqKqrq/qh6tqm8CfwCc1G7aBRzdsesa4L62fE2XckmSJEkryOSRJGko2jmM5vwEMLcS29XAGUkOSnIMzcTYN1XVbuDBJCe3q6ydBVw10EpLkiRJq5DD1iRJKy7J+4Fp4LAku4A3ANNJTqAZerYT+FmAqro9yTbgDmAWOK+qHm1P9RqaldsOBj7a3iRJq1ySZwDvAo6naVdeDdwFfABYS9POvKKdW48kFwHnAo8Cr6uqjw2+1lrt1vYavnzxSwdck+561U+rk8kjSdKKq6pXdil+9wL7bwG2dCm/mebCQJKkTr8N/FlV/bskTwKeAvwScF1VXZzkQuBC4IIkxwJnAMcBRwKfSPLcji8qJEnzOGxNkiRJ0thKcgjwr2i/lKiqf6yqrwGnApe3u10OnNbePxW4sqoerqq7gR18e949SVIX9jySJEmSNM6+B/g74A+TPB+4BTgfmGrny6Oqdic5vN3/KOCGjuN3tWWPk2QTsAlgamqKmZmZnpXYu3fvgtvH3TDi27x+dtH7Lqduw3rtesXXz7osJ7al/P6Xol/xrcb/uUH8zfRi8kiSJEnSODsQ+GfAz1XVjUl+m2aIWi/pUlbddqyqrcBWgA0bNtT09HTPk87MzLDQ9nE3jPjOWcKcOzvPnN7v5xnWa9crvuXEMt9yYlvK738p+hXfavyfG8TfTC8OW5MkSZI0znYBu6rqxvbx/6BJJt0/t7Jn+3NPx/5Hdxy/BlSbEF0AACAASURBVLhvQHWVpLFk8kiSJEnS2KqqvwW+lOR726JTaFbsvBo4uy07G7iqvX81cEaSg5IcA6wDbhpglSVp7DhsTVolRn0pUEmSpGX4OeC97UprXwR+iuaL8m1JzgXuAU4HqKrbk2yjSTDNAue50pokLczkkSRJkqSxVlW3ARu6bDqlx/5bgC0rWikN1Ch/UdqrbtI4MXkkSZIkSdIqZXJLi+GcR5IkSZIkSerJ5JEkSZIkSZJ62uewtSTvAV4G7Kmq49uyQ4EPAGuBncArquqBdttFwLnAo8DrqupjbfmJwGXAwcBHgPOrqvobjjSZRnkMtyRJkiRpsi1mzqPLgHcAV3SUXQhcV1UXJ7mwfXxBkmOBM4DjgCOBTyR5brt6waXAJuAGmuTRRuCj/QpkkjkGVZIkSZI0CfxifDztc9haVX0K+Oq84lOBy9v7lwOndZRfWVUPV9XdwA7gpCRHAIdU1fVtb6MrOo6RJEmSJEnSiNrf1damqmo3QFXtTnJ4W34UTc+iObvaskfa+/PLu0qyiaaXElNTU8zMzOxnNfdt7969K3r+fti8fna/j506mJGPbzlWw+u30PFLib3XeYb5+xuH1285Jj0+SZIkSavD/iaPekmXslqgvKuq2gpsBdiwYUNNT0/3pXLdzMzMsJLn74dzljFsbfP6WV4x4vEtx2p4/S7Z3vvfdOeZ08uux1LO0W/j8Potx6THJ0mSJGl12N/k0f1Jjmh7HR0B7GnLdwFHd+y3BrivLV/TpVwD4JhSSZIkSaPKOV6l0bfPOY96uBo4u71/NnBVR/kZSQ5KcgywDripHeL2YJKTkwQ4q+MYSZIkSZIkjah99jxK8n5gGjgsyS7gDcDFwLYk5wL3AKcDVNXtSbYBdwCzwHntSmsAr6FZue1gmlXWXGlNkiRJkrRiuvVqcgSGtHT7TB5V1St7bDqlx/5bgC1dym8Gjl9S7SRJkiRJkjRU/Z4wW5IkSZIk7Sd7S2kUmTySVjkbJ0mSJEnSQkweSZIkSZLUB6OyctxcPTavn+Wc9r5fEGs5TB5JkiRJkjTCeiWlTAhpUEweSZIkSZJWjfmJmLneOSZipN5MHkmSJEmSNIaWMkxuVIbUaTyZPJIkSRoh3T7cX7bxqUOoiSRJUsPkkSRpxSV5D/AyYE9VHd+WHQp8AFgL7AReUVUPtNsuAs4FHgVeV1Ufa8tPBC4DDgY+ApxfVTXIWCRJ0mRayrxC9uLRavOEYVdAkrQqXAZsnFd2IXBdVa0Drmsfk+RY4AzguPaYdyY5oD3mUmATsK69zT+nJEmSpD4zeSRJWnFV9Sngq/OKTwUub+9fDpzWUX5lVT1cVXcDO4CTkhwBHFJV17e9ja7oOEaSJEnSCnHYmiRpWKaqajdAVe1OcnhbfhRwQ8d+u9qyR9r788u7SrKJppcSU1NTzMzM9K/mA7Z5/eyi9ps6uPe+4xx/N3v37h3JmLbf+/ePK1t/1Hd03XexryuMbrwrxXglSRotJo8kSaMmXcpqgfKuqmorsBVgw4YNNT093ZfKDcM5i5xXYfP6WS7Z3r1p33nmdB9rNHwzMzOM4mva7bXq9btf7OsKzYTZoxjvShnV13elrLZ4V0o7xPlm4N6qetn+zK0nSerOYWuSpGG5vx2KRvtzT1u+Czi6Y781wH1t+Zou5ZIkAZwP3NnxeH/m1pMkdWHPI0nSsFwNnA1c3P68qqP8fUneAhxJMzH2TVX1aJIHk5wM3AicBfzO4KstSRo1SdYALwW2AP+xLT4VmG7vXw7MABfQMbcecHeSHcBJwPUDrPKq5Apl0viy55EkacUleT/Nh/LvTbIrybk0SaMXJfkC8KL2MVV1O7ANuAP4M+C8qnq0PdVrgHfRTKL9N8BHBxqIJGlUvQ34ReCbHWWPmVsP6Jxb70sd+y04h54kyZ5HkqQBqKpX9th0So/9t9B8ezy//Gbg+D5WTZI05pK8DNhTVbckmV7MIV3Kus6ht5TFFyZ94vN+xLeUhQIGaaEFJwB+571XPa5s8/qVrFH/7Cu2UbLUv6/V+D83zIVRTB5JkiRJGmcvBH48yUuAJwOHJPkj2rn12hU9FzO33uMsZfGFSZ/4vB/xLWWhgEFaaMGJcTdWsW1/6HFFOy9+ac/dV+P/XK//oUEsjOKwNUmSJEljq6ouqqo1VbWWZiLsP6+qn+Tbc+vB4+fWOyPJQUmOoZ1bb8DVlqSxMiYpSEmSJElakouBbe08e/cAp0Mzt16Subn1Znns3HqSpC5MHkmSJEmaCFU1Q7OqGlX1FZY4t54kqTuTR5IkSZIkaeSs7TXHzwJzIa3EOeScR5IkSZIkSVqAPY8kSZIkSdKq0qtHUjf2UjJ5JEnSktj1WZIkSauNw9YkSZIkSZLUkz2P9Dh235MkSZIkSXPseSRJkiRJkqSeTB5JkiRJkiSpJ5NHkiRJkiRJ6snkkSRJkiRJknpywmxJkiRJkjQ21l54DZvXz3LOvMWeXNBp5Zg8kiRJkiT11VJWcJY0+kweSZIkSZKksbdSScte511NPZ1MHkljrNub2Gp6A5MkSZIkrbxlTZidZGeS7UluS3JzW3ZokmuTfKH9+cyO/S9KsiPJXUlevNzKS5IkSZIkaWX1Y7W1H6qqE6pqQ/v4QuC6qloHXNc+JsmxwBnAccBG4J1JDujD80uSJEmSJGmFrMSwtVOB6fb+5cAMcEFbfmVVPQzcnWQHcBJw/QrUQZIkaSQ4aawkSRp3y00eFfDxJAX8flVtBaaqajdAVe1Ocni771HADR3H7mrLHifJJmATwNTUFDMzM8usZm979+5d0fP3w+b1s/t97NTBvY/vFfdSnm/Yv7vV/Pr1Mk6v6zi8fssx6fFpvDhHmiRpsbq1GZvXz36rh4Ck1We5yaMXVtV9bYLo2iSfX2DfdCmrbju2SaitABs2bKjp6ellVrO3mZkZVvL8/XDOMr6x3Lx+lku2d3+Zd545vezn63WOQVnNr18v4/S6jsPrtxyTHp8kSVpd/CJCWr2WlTyqqvvan3uSfJhmGNr9SY5oex0dAexpd98FHN1x+BrgvuU8vyRJkhbHZYYlSdL+2u/kUZKnAk+oqgfb+z8K/BpwNXA2cHH786r2kKuB9yV5C3AksA64aRl1lyRJkqSJZ48faTStpv/N5fQ8mgI+nGTuPO+rqj9L8pfAtiTnAvcApwNU1e1JtgF3ALPAeVX16LJqL0mSJEkaGhcFkFaH/U4eVdUXged3Kf8KcEqPY7YAW/b3OSVJkyfJTuBB4FFgtqo2JDkU+ACwFtgJvKKqHmj3vwg4t93/dVX1sSFUW5IkSVo1njDsCkiSBPxQVZ1QVRvaxxcC11XVOuC69jFJjgXOAI4DNgLvTHLAMCosSZIkrRYmjyRJo+hU4PL2/uXAaR3lV1bVw1V1N7CDZrEGSdIqleToJJ9McmeS25Oc35YfmuTaJF9ofz6z45iLkuxIcleSFw+v9pI0Hpa12pokSX1QwMeTFPD7VbUVmKqq3QDt6p2Ht/seBdzQceyutuxxkmwCNgFMTU0xMzPTl8puXj/btbxf51/Kc843dfDi94WVrfNK27t370jWfym//6VYarzb7/37x5VtXt9931H8PY7q67tSVlu8K2AW2FxVtyZ5OnBLkmuBc2h6sV6c5EKaXqwXzOvFeiTwiSTPdT5WSerN5JE0YZy0UGPohVV1X5sgujbJ5xfYN13KqtuObRJqK8CGDRtqenp62RUFOKfXcudn9uf8S3nO+Tavn+WS7Ytv2leyzittZmaGfr2m/bTY12qpLtv41CXFu5R6jOLfwai+vitltcXbb+2XDXNfODyY5E6aLxZOBabb3S4HZoAL6OjFCtydZK4X6/WDrflg+RlR0nKYPNJEWE1LJEqTpqrua3/uSfJhmg/w9yc5ou11dASwp919F3B0x+FrgPsGWmFJ0shKshZ4AXAjA+7FupI9yLr1alzqcy23Z+RSe7eOE2MbT6MaW7/eB7q9pwyjB/wck0fSAnp9Q2NiSuqPJE8FntB+U/xU4EeBXwOuBs4GLm5/XtUecjXwviRvoRlqsA64aeAV10Qa5S8itt/79117E41K/aRRkORpwAeB11fV15NunVWbXbuULbsX60r2IOv6/7/EXoPL7Rm51N6t48TYxtPIxrb9oa7FS22zu72nDKMH/JwR/E1rnJhckbRMU8CH2w/4BwLvq6o/S/KXwLYk5wL3AKcDVNXtSbYBd9DMcXHeJM1R4ZACSdo/SZ5Ikzh6b1V9qC0eu16stgOSRpXJI0nS0FTVF4Hndyn/CnBKj2O2AFtWuGqSpDGR5huIdwN3VtVbOjbZi1WS+sTk0SrmNxuP5e9DkiRpLL0QeBWwPcltbdkv0SSN7MUqaSSM+6gdk0eSJPXgB3BJGn1V9Wm6z2ME9mKVpL4weTRCvEjpr3HP7EqSJEmSNApMHkmSJEnSmPGLZ0mD9IRhV0CSJEmSJEmjy55HUh/5DZAkaZBsdyRJ0iDY80iSJEmSJEk92fNIQ+fE1pIkSZKk1ajX9fDm9bOcM0I9jO15JEmSJEmSpJ5MHkmSJEmSJKknh61pRXTreucwNEmSJEmSxo/JIw2MK8JIWo1GOZnunHP75u9IkiTJ5JEkSVpl/DJDkiRpaUweSZLUByYkJEmSNKmcMFuSJEmSJEk92fNI2g/2MJAkrUbOASVJ0upk8khjZf6H1s3rZznHRI4kjQUTD5IkSePJ5JFWHXsNSdLKm/T3WuOTJEmricmjIfADmUadvQMkTQrbXEmSpOUzeaSR5Qd+SZJWnu2ttLL8H5M0CUweSZKkx1jKhc6o9Ej04kySJGnlmDySJGnATHRoNVvJodHdzj0qCU5JksaZySNJkiQti0kbSZIm26pKHnX7YLN5/SzTg6+KNFFW6qLBibslSctlWyJJ0vJNbPLIIQHScPlhXVodBt3ezj3f5vWznGNbL0mSNBATmzwaNC+UtRqYlJW0EmxDJ5NthiRJk2PgyaMkG4HfBg4A3lVVFw+6DoPkBydJ6r/V1pZIq9VKfo5ynibZlkjS4g00eZTkAOB3gRcBu4C/THJ1Vd0xyHrMt5RvPE0GScvT+T/UOexkKR/YnWNpdRvVtkT9Z5u7uvRqH6SVYFsiSUsz6J5HJwE7quqLAEmuBE4FRvJN2g+t0uD4/6YlGKu2RNL4GEZb5BcUQ2NbIklLkKoa3JMl/w7YWFU/3T5+FfADVfXaefttAja1D78XuGsFq3UY8OUVPP+wGd94M77x1iu+766qZw+6MpNiRNuSUTHp/1OdVlOsYLyTbn/itS1ZhhVqSyb973aS4zO28TTJscFg4lt0WzLonkfpUva47FVVbQW2rnx1IMnNVbVhEM81DMY33oxvvE16fEM0cm3JqFhNf3OrKVYw3km32uIdEX1vSyb9dZzk+IxtPE1ybDB68T1hwM+3Czi64/Ea4L4B10GSNN5sSyRJy2VbIklLMOjk0V8C65Ick+RJwBnA1QOugyRpvNmWSJKWy7ZEkpZgoMPWqmo2yWuBj9Esifmeqrp9kHXoYtKHNBjfeDO+8Tbp8Q3FiLYlo2I1/c2tpljBeCfdaot36FaoLZn013GS4zO28TTJscGIxTfQCbMlSZIkSZI0XgY9bE2SJEmSJEljxOSRJEmSJEmSelo1yaMkpye5Pck3k2zoKH9RkluSbG9//nCXY69O8rnB1nhplhpfkqckuSbJ59vjLh5e7fdtf16/JCe25TuSvD1JtyVZR8IC8T0rySeT7E3yjnnHvLKN77NJ/izJYYOv+eLtZ4xPSrI1yV+3f6v/dvA1X5z9ia9jn5F/j9FoSfLkJDcl+Uz7d/er87b/QpIa9feFxVoo3iQ/l+Sutvy3hlnPfukVb5ITktyQ5LYkNyc5adh17ZckByT5qyR/2j4+NMm1Sb7Q/nzmsOvYT13i/W9tO/fZJB9O8oxh11FLk2Rj+160I8mFw67PciR5T5I9nZ9NJuV/MsnR7eeyO9v31/Pb8rGPb4G2Y+xjmzPJbUWSne213W1Jbm7LRiq+VZM8Aj4H/BvgU/PKvwy8vKrWA2cD/71zY5J/A+wdSA2XZ3/ie3NVfR/wAuCFSX5sIDXdP/sT36XAJmBde9s4gHrur17x/V/gvwC/0FmY5EDgt4EfqqrnAZ8FXjuAei7HkmJs/TKwp6qeCxwL/MWK1nB59ie+cXqP0Wh5GPjhqno+cAKwMcnJ0HwwBl4E3DPE+vVb13iT/BBwKvC8qjoOePMwK9lHvV7f3wJ+tapOAH6lfTwpzgfu7Hh8IXBdVa0DrmsfT5L58V4LHN+26X8NXDSUWmm/JDkA+F3gx2g+r7wyybHDrdWyXMbjPzdPyv/kLLC5qv4pcDJwXvtaTUJ8vdqOSYhtzqS3FT9UVSdU1dwX0SMV36pJHlXVnVV1V5fyv6qq+9qHtwNPTnIQQJKnAf8R+PXB1XT/LDW+qvpGVX2y3ecfgVuBNYOr8dIsNb4kRwCHVNX11cwKfwVw2gCrvCQLxPdQVX2aJgHRKe3tqUkCHALcN//4UbIfMQK8Gviv7X7frKovr3A199v+xDdO7zEaLdWYSzo+sb3NrYDxVuAXOx6PvQXifQ1wcVU93O63Z0hV7KsF4i2a93uA72DE3/cXK8ka4KXAuzqKTwUub+9fzgi34UvVLd6q+nhVzbYPb2CEP5Opq5OAHVX1xfZz9ZU0f8Njqao+BXx1XvFE/E9W1e6qurW9/yBNIuIoJiC+BdqOsY8NVl9b0Rqp+FZN8miR/i3wV3MfQoE3AZcA3xhelfpqfnwAtF2jX06TzRxnnfEdBezq2LarLZsIVfUIzUXTdpqLh2OBdw+1Un3W0WX/TUluTfLHSaaGWqn+m7T3GA1Q23X7NmAPcG1V3Zjkx4F7q+ozQ65e33WLF3gu8C+T3JjkL5J8/3Br2T894n098N+SfImml9Wk9E55G03C85sdZVNVtRuaiz3g8GFUbIV0i7fTq4GPDq466oOjgC91PJ6oz52tifufTLKWZgTGjUxIfD3ajomIjclvKwr4eJqpWDa1ZSMV30Qlj5J8Isnnutz2mflPchzwm8DPto9PAJ5TVR9e4WovWj/j6yg/EHg/8Paq+uLK1Hxx+hxft/mNhvot/HLi63KuJ9Ikj14AHEkzbG3oFxH9jBE4kOab1/9dVf8MuJ4hD0np82s4cu8xGi9V9Wg7fGkNcFKS59EM9fyV4dZsZXSJ93ia94ln0gw9+E/AtrY35tjrEe9rgJ+vqqOBn2cCvjRI8jKa4cm3DLsug7CveJP8Ms2wmvcOtGJarpH73KmFtb2/Pwi8vqq+Puz69EuPtmPsrZK24oXtNc+P0Qyn/FfDrtB8Bw67Av1UVT+yP8e1XeA+DJxVVX/TFv8gcGKSnTS/p8OTzFTVdD/quj/6HN+crcAXqupty63fcvU5vl08tsv3GobcvX9/4+vhhPacfwOQZBsjMMa3zzF+haZHzlxy5Y+Bc/t4/iXrc3wj9x6j8VRVX0syQ9O1+RjgM23+ZA1wa5KTqupvh1jFvuqIdyPNe/2H2uHJNyX5JnAY8HdDrGJfzYv3bJr5HqB5T3xXr+PGyAuBH0/yEuDJwCFJ/gi4P8kRVbW7HYo+EUMS6RFvVf1kkrOBlwGntH/TGh+7gKM7Hg/9c+cKmJj/yfZL2A8C762qD7XFExMfPK7tmITYJr6tmJuKpar2JPkwzXDYkYpvonoe7Y92aMw1wEVV9b/nyqvq0qo6sqrWAv8C+OtxvKjrFV+77ddp5kx4/TDq1g8LvH67gQfTTKga4CzgqiFVcyXcCxyb5Nnt4xfx2Mnjxl77wflPgOm26BTgjqFVqM8m5T1Gw5Hk2XNDO5McDPwIzbDdw6tqbft3tQv4Z5OQOOoR7+eB/wnMrSL6XOBJNAspjLUF4r0P+Nftbj8MfGE4Neyfqrqoqta0f7NnAH9eVT8JXE2TLKP9ORFteK94k2wELgB+vKocyjx+/hJYl+SYJE+ieW2vHnKd+m0i/ifb64J3A3dW1Vs6No19fAu0HWMf26S3FUmemuTpc/eBH6VZjGe04quqVXEDfoLmg/TDwP3Ax9ry/ww8BNzWcTt83rFrgc8NO4Z+xkfzjUjRJBzmyn962HH08/UDNtD80/0N8A4gw45jqfG123bSTFq4t93n2Lb8P7Sv32dpkizPGnYcKxDjd9OsXvZZmjm5vmvYcfQzvo7tI/8e4220bsDzgL9q/zc+B/xKl312AocNu64rGS9NsuiP2rJbaVaZGXp9VzDefwHcAnyGZo6OE4dd1z7HPQ38aXv/We37/hfan4cOu34rHO8Omjlz5j7L/N6w6+dtya/nS2hWyvsb4JeHXZ9lxvJ+YDfwSPu55dxJ+Z9s30erfX+d+397ySTEt0DbMfaxzYtz4toK4Hvatv0zNItA/fIoxpe2UpIkSZIkSdLjrPpha5IkSZIkSerN5JEkSZIkSZJ6MnkkSZIkSZKknkweSZIkSZIkqSeTR5IkSZIkSerJ5JEkSZIkSZJ6MnkkSZIkSZKknkweSZIkSZIkqSeTR5IkSZIkSerJ5JEkSZIkSZJ6MnkkSZIkSZKknkweSZIkSZIkqSeTR5IkSZIkSerJ5JEk/f/s3X24ZXV93/33J6CACgoqpwODGYyYBjBimBKivZNJiHESrNjrqgaLAVISWm+akJZEZ5K2MVdCQ9poU0w0mfgAxgecJFqoSCKip729KyAYIwJyM8qIAyMoPoSxCWXI9/5j/45uzux1HmbOPnvtmffruvZ11v7t9Vvrc9acWWvv716/tSRJkiRJnSweSZIkSZIkqZPFI0mSJEmSJHWyeCRJkiRJkqROFo8kSZIkSZLUyeKRJEmSJEmSOlk8kiRJkiRJUieLR5IkSZIkSepk8UiSJEmSJEmdLB5JkiRJkiSpk8UjSZIkSZIkdbJ4JEmSJEmSpE4WjyRJkiRJktTJ4pEkSZIkSZI6WTySJEmSJElSJ4tHkiRJkiRJ6mTxSJIkSZIkSZ0sHkmSJEmSJKmTxSNJkiRJkiR1sngkSZIkSZKkThaPJEmSJEmS1MnikSRJkiRJkjpZPJIkSZIkSVIni0eSJEmSJE1YktkkP7eXfZ+VZFeSg1Y6lwQWj7QfS3JFkt+adA5JUr8s5fiQZEOSHSu4zkrynJVaniTpwJZke5Ifn3teVfdW1VOq6rFJ5tL+y+KRJmr+Tm+l5pUkTTePD5IkSf1h8UgakuTgSWeQJB1YHGIgSf3TvpjYnOSOJF9P8o4kh7bXfj7JtiRfS3JNkmOG+lWSX0zyhSRfTfKfk3xXe+31Sd41NO+6Nv8en0GSfE+SjyZ5qC3n3Ume1l77E+BZwH9vQ9VeO39ZSY5p2b7Wsv780LJfn2RrkncmeTjJ7UnWj2tbav9g8UgT07HTe1nbeX2jjfn9vq55W/ufJvlykm8m+Z9JTlpmhg1JdiR5XZIvA+9o7QsdEF6Y5JNtnZ9M8sKh12aT/FaS/9Vy/vckT287+79p869r8ybJf0nyYFvWZ5KcvE8bVZL2A304Pgxl+dX2pn17knOG2g9J8rtJ7k3yQJI/THLY0Ou/kmRnkvuT/It5y7wiyVuSfCjJt4AfTfLU9ib+K0m+mOTfDX3Y+K72/IvtmPHOJE9tr819WPjZJF/K4APOv0ryj9px5RtJfn9o3c9J8j/advlqkvftzXaRpAPEOcBLgO8Bngv8uyQ/Bvw28EpgDfBF4Kp5/f4psB74AeAs4F+wfGnrOQb4PuA44PUAVfUzwL3AP2lD1f7TiP7vBXa0/v8M+I9Jzhh6/WUt99OAa4Df32MJ0hCLR5qY+Ts94L8x2Mn9EvBM4EMMPgw8cYEd5HXACcDRwKeAd+9FlH8AHAV8N3DhQgeEJEcB1wKXA08H3ghcm+TpQ8s7G/gZ4FgGB5pPMChKHQXcCfx6m+8ngB9mcCB6GvDTwEN7kV+S9is9Oz48g8H+/DxgS5Lvba/9DoP99ynAc9o8/wEgyUbgl4EXtwyjhtT9c+BS4HDg48CbgKcCzwZ+BDgX+Nk27/nt8aPt9aew55v8H2zr+mng94Bfa+s9CXhlkh9p8/0m8GHgSGBtW68kabTfr6ovVdXXGOyzX8WgoPT2qvpUVT0CbAZ+aO4L4uZ3quprVXUvg33yq5a74qraVlXXV9UjVfUVBp87fmSxfgBJjgP+MfC6qvq7qvo08FYGn1HmfLyqPtSukfQnwPOXm1EHFotH6pOfBq5tO8lHgd8FDgNe2NWhqt5eVQ+3HffrgefPfRu7DH8P/HrbMf8tCx8QzgTurqo/qardVfVe4HPAPxla3juq6vNV9U0GH14+X1UfqardwJ8CL2jzPcrgQ8M/BFJVd1bVzmVml6QDwaSODwD/vh0f/geDLw9emSTAzwP/pn04eBj4jwy+PIDBlw/vqKrPVtW32vrnu7qq/t+q+nsGx4OfBja3zNuBN/CdN/nnAG+sqi9U1S4Gx6Wz8/hhDr/ZPiB8GPgW8N6qerCq7gP+Hx5/7Plu4Jg2/8f3YptI0oHiS0PTX2RwFs8xbRqAtl9+iMGXCAv1W5YkRye5Ksl9Sf4GeBeDLzSW4hhg7vg0nGM445eHpv83cGi8hIcWYPFIfTJ/R/z3DHa8x46aOclBSS5L8vm2Q93eXlrqTnXOV6rq7xbIMXxAeNxrzfwd8QND03874vlT2nI/yuCb4z8AHkiyJckRy8wuSQeCSR0fvt6KP3PmPgA8E3gScGsbFvYN4C9a+1ze+R8c5ht+/RnAE+fNN3xsmX/s+SJwMDAz1LakYw/wWgZDIW5uwwD3ZiiFJB0ojhuafhZwf3t891xjkiczGJFw3yL9YFDcf9LQa/9ggXX/NlDA91fVEcCrGey/59QCfe8Hjkpy+Lwc93XMLy3K4pEmbXinN39HHAY73vtGzAuDU/7PYnBa/lOBdXNd9yHDqBzDB4THoaZxpAAAIABJREFUvdbs9Y64qi6vqlMZDCt4LvAre7McSdoP9eH4cGQ7BsyZ+wDwVQYFmZOq6mnt8dQ2xA5gJ3t+cJhvOPNX+c4ZQcN95n6/+ceeZwG7eXyBaEmq6stV9fNVdQzwL4E3J3nOcpcjSQeIi5KsbZeu+FXgfcB7gJ9NckqSQxiceXpTO2t0zq8kObINH7u49QP4NPDDSZ7VzobdvMC6Dwd2Ad9Icix7fk54gMFQ5j1U1ZeA/wX8dpJDk3w/cAF7N4RbAiweafKGd3pbgTOTnJHkCcAlwCMMdnzz54XBDvURBmcFPYnBjnslLHRA+BDw3CT/PMnBSX4aOBH44HJX0i5m+oPtd/0W8HfAYyv0O0jStOvL8eE3kjwxyf8FvBT403bm0x8D/yXJ0QBJjk3ykqG85yc5McmT+M617kZq15vYClya5PAk3w38WwZDFGBwvad/k+T4JE9pv8/72nDoZUnyiiRr29OvMyhieeyRpNHew+A6cV9oj9+qqhuAfw/8OYMvC76H7wxbnnM1cCuDYtG1wNsAqup6BoWkz7TXF/oM8RsMLrj9zbaM9897/bcZXMD7G0l+eUT/VzH48uR+4AMMLtNx/aK/sdTB4pEm7ds7PQbXDXo1g4t3frU9/ydV9X/mz9t2kO9kcOr+fcAdwI0rEWihA0JVPcTgw8MlDD6UvBZ4aVV9dS9WdQSDDx9fZ/B7PMTgOh6SpH4cH77MYB99P4Nva/9VVX2uvfY6YBtwYxsa9xHgewGq6joGF0j9aJvno0tY1y8w+CLhCwwuoP0e4O3ttbczuJjp/wTuYfBlwy/s5e/0j4CbkuxicHedi6vqnr1cliTt7z5ZVSe2M0zPq6r/DVBVf1hV31NVR1XVS6tqx7x+H6qqZ1fV06vqkvYlAa3vRW15z6mqP66qzH0ZUFUbquqtbfr2qjq13QzilKp6Q1WtHVrO1VX1rLas362q7fOWtaNlO6pl/cOhvq+vqlcPPX9cX2mUVC00VFKSJEmSpANLku3Az1XVR5bZr4ATqmrbWIJJE+KZR5IkSZIkSepk8Uj7vSS/mmTXiMd1k84mSZocjw+SpC5VtW65Zx21fvGsI+2PHLYmSVoV7fTvhxlcnHd3Va1vdy95H4MLOm4HXllVX2/zb2ZwZ5DHgF+sqr9s7acCVwCHMbiI/cXlwUySJEkam94Xj57xjGfUunXrlt3vW9/6Fk9+8pMXn3GV9ClPn7KAeRZjnoX1Kc9Ss9x6661frapnrkKkXmnFo/XDF5hP8p+Ar1XVZUk2AUdW1euSnMjgDlOnAccwuBjxc6vqsSQ3M7jt7Y0MikeXtwsUd9pfjiULmaasYN5xm6a805QV+pP3QD2WTNL+eCzpczbod74+Z4N+5+tzNuh3vpXOtqxjSVX1+nHqqafW3vjYxz62V/3GpU95+pSlyjyLMc/C+pRnqVmAW6oH+9fVfjA4s+gZ89ruAta06TXAXW16M7B5aL6/BH6ozfO5ofZXAX+02Lr3l2PJQqYpa5V5x22a8k5T1qr+5D1QjyWTfOyPx5I+Z6vqd74+Z6vqd74+Z6vqd76VzracY8nBK1SwkiRpMQV8uN2F5I+qagswU1U7AapqZ5Kj27zH8vjbq+9obY+26fnte0hyIXAhwMzMDLOzs8sOvGvXrr3qNwnTlBXMO27TlHeassL05ZUkaSVYPJIkrZYXVdX9rUB0fZLPLTBvRrTVAu17Ng6KU1sA1q9fXxs2bFhmXJidnWVv+k3CNGUF847bNOWdpqwwfXklSVoJ3m1NkrQqqur+9vNB4AMMrmf0QJI1AO3ng232HcBxQ93XAve39rUj2iVJkiSNicUjSdLYJXlyksPnpoGfAD4LXAOc12Y7D7i6TV8DnJ3kkCTHAycAN7chbg8nOT1JgHOH+kiSJEkaA4etSZJWwwzwgUG9h4OB91TVXyT5JLA1yQXAvcArAKrq9iRbgTuA3cBFVfVYW9ZrgCuAw4Dr2kOSJEnSmFg8kiSNXVV9AXj+iPaHgDM6+lwKXDqi/Rbg5JXOKEmSJGk0h61JkiRJkiSpk8UjSZIkSZIkdbJ4JEmSJEmSpE5e8whYt+nake3bLztzlZNIkqaVxxJJ0lJ5zJA0bTzzSJIkSZIkSZ0sHkmSJEmSJKmTxSNJkiRJkiR1sngkSZIkSZKkThaPJEmSJEmS1MnikSRJkiRJkjpZPJIkSZIkSVIni0eSJEmSJEnqZPFIkiRJkiRJnSweSZIkSZIkqZPFI0mSJEmSJHWyeCRJkiRJkqROFo8kSZIkSZLUyeKRJEmSJEmSOlk8kiRJkiRJUieLR5IkSZIkSepk8UiSJEmSJEmdLB5JkiRJkiSpk8UjSZIkSZIkdbJ4JEmSJGkqJPk3SW5P8tkk701yaJKjklyf5O7288ih+Tcn2ZbkriQvGWo/Nclt7bXLk2Qyv5EkTYclFY+SbG87108nuaW1uZOWJEmStCqSHAv8IrC+qk4GDgLOBjYBN1TVCcAN7TlJTmyvnwRsBN6c5KC2uLcAFwIntMfGVfxVJGnqLOfMox+tqlOqan177k5akiRJ0mo6GDgsycHAk4D7gbOAK9vrVwIvb9NnAVdV1SNVdQ+wDTgtyRrgiKr6RFUV8M6hPpKkEQ7eh75nARva9JXALPA6hnbSwD1J5nbS22k7aYAkczvp6/YhgyRJkqQDQFXdl+R3gXuBvwU+XFUfTjJTVTvbPDuTHN26HAvcOLSIHa3t0TY9v30PSS5k8OU3MzMzzM7OLjv3rl279uh3yfN2j5x3b5a/L0Zl65M+5+tzNuh3vj5ng37nm2S2pRaPCvhwkgL+qKq2AGPbSUuSJEnSsHaZjLOA44FvAH+a5NULdRnRVgu079k4+NyzBWD9+vW1YcOG5UQGBgWh+f3O33TtyHm3n7P85e+LUdn6pM/5+pwN+p2vz9mg3/kmmW2pxaMXVdX9rUB0fZLPLTDvPu+kx1Xh77Ialf8+VS/7lAXMsxjzLKxPefqURZKk/dCPA/dU1VcAkrwfeCHwQJI17QvtNcCDbf4dwHFD/dcyGOa2o03Pb5ckdVhS8aiq7m8/H0zyAeA0xriTHleFv8tqVP77VL3sUxYwz2LMs7A+5elTFkmS9kP3AqcneRKDYWtnALcA3wLOAy5rP69u818DvCfJG4FjGFxz9eaqeizJw0lOB24CzgXetKq/iSRNmUUvmJ3kyUkOn5sGfgL4LIOd8Xlttvk76bOTHJLkeL6zk94JPJzk9HaXtXOH+kiSJElSp6q6Cfgz4FPAbQw+y2xhUDR6cZK7gRe351TV7cBW4A7gL4CLquqxtrjXAG9lcBHtz+N1WCVpQUs582gG+MCg3sPBwHuq6i+SfBLYmuQCBt8CvAIGO+kkczvp3ey5k74COIzBDtqdtCRJkqQlqapfB359XvMjDM5CGjX/pcClI9pvAU5e8YCStJ9atHhUVV8Anj+i/SHcSUuSJEmSJO3XFh22JkmSJEmSpAPXUu+2JkmS9sK6ETdl2H7ZmRNIIkmSJO0dzzySJEmSJElSJ4tHkqRVk+SgJH+V5IPt+VFJrk9yd/t55NC8m5NsS3JXkpcMtZ+a5Lb22uXtDp6SJEmSxsTikSRpNV0M3Dn0fBNwQ1WdANzQnpPkROBs4CRgI/DmJAe1Pm8BLgROaI+NqxNdkiRJOjBZPJIkrYoka4EzgbcONZ8FXNmmrwRePtR+VVU9UlX3ANuA05KsAY6oqk9UVQHvHOojSZIkaQy8YLYkabX8HvBa4PChtpmq2glQVTuTHN3ajwVuHJpvR2t7tE3Pb99DkgsZnKHEzMwMs7Ozyw68a9euJfe75Hm7l7zcvcmymOVk7QPzjtc05Z2mrDB9eSVJWgkHVPFo1B1vJEnjl+SlwINVdWuSDUvpMqKtFmjfs7FqC7AFYP369bVhw1JW+3izs7Mstd/5yzjGbD9n+VkWs5ysfWDe8ZqmvNOUFaYvryRJK+GAKh5JkibmRcDLkvwUcChwRJJ3AQ8kWdPOOloDPNjm3wEcN9R/LXB/a187ol2SJEnSmHjNI0nS2FXV5qpaW1XrGFwI+6NV9WrgGuC8Ntt5wNVt+hrg7CSHJDmewYWxb25D3B5Ocnq7y9q5Q30kSZIkjYFnHkmSJukyYGuSC4B7gVcAVNXtSbYCdwC7gYuq6rHW5zXAFcBhwHXtIUmSJGlMLB5JklZVVc0Cs236IeCMjvkuBS4d0X4LcPL4EkqSJEka5rA1SZIkSZIkdbJ4JEmSJEmSpE4WjyRJkiRJktTJ4pEkSZIkSZI6WTySJEmSJElSJ4tHkiRJkiRJ6mTxSJIkSZIkSZ0sHkmSJEmSJKmTxSNJkiRJkiR1sngkSZIkSZKkThaPJEmSJEmS1MnikSRJkiRJkjpZPJIkSZIkSVIni0eSJEmSJEnqZPFIkiRJkiRJnSweSZIkSZIkqZPFI0mSJEmSJHWyeCRJkiRJkqROSy4eJTkoyV8l+WB7flSS65Pc3X4eOTTv5iTbktyV5CVD7acmua29dnmSrOyvI0mSJEmSpJW0nDOPLgbuHHq+Cbihqk4AbmjPSXIicDZwErAReHOSg1qftwAXAie0x8Z9Si9JkiRJkqSxWlLxKMla4EzgrUPNZwFXtukrgZcPtV9VVY9U1T3ANuC0JGuAI6rqE1VVwDuH+kiSJEmSJKmHDl7ifL8HvBY4fKhtpqp2AlTVziRHt/ZjgRuH5tvR2h5t0/Pb95DkQgZnKDEzM8Ps7OwSY37Hrl279uh3yfN2L2sZe7Pe5eSZlD5lAfMsxjwL61OePmWRJEmSpJWyaPEoyUuBB6vq1iQblrDMUdcxqgXa92ys2gJsAVi/fn1t2LCU1T7e7Ows8/udv+naZS1j+znLX+9y8kxKn7KAeRZjnoX1KU+fskiSJEnSSlnKmUcvAl6W5KeAQ4EjkrwLeCDJmnbW0RrgwTb/DuC4of5rgftb+9oR7ZIkSZIkSeqpRa95VFWbq2ptVa1jcCHsj1bVq4FrgPPabOcBV7fpa4CzkxyS5HgGF8a+uQ1xezjJ6e0ua+cO9ZEkSZIkSVIPLfWaR6NcBmxNcgFwL/AKgKq6PclW4A5gN3BRVT3W+rwGuAI4DLiuPSRJkiRJktRTyyoeVdUsMNumHwLO6JjvUuDSEe23ACcvN6QkSZIkJXkagztAn8zg+qn/ArgLeB+wDtgOvLKqvt7m3wxcADwG/GJV/WVrP5XvfKn9IeDidkdoSdIIiw5bkyRJkqSe+K/AX1TVPwSeD9wJbAJuqKoTgBvac5KcyOCyGycBG4E3JzmoLectDO7ufEJ7bFzNX0KSpo3FI0mSJEm9l+QI4IeBtwFU1f+pqm8AZwFXttmuBF7eps8CrqqqR6rqHmAbcFq72c8RVfWJdrbRO4f6SJJG2JdrHkmSJEnSank28BXgHUmeD9wKXAzMtJvz0O4EfXSb/1jgxqH+O1rbo216fvseklzI4AwlZmZmmJ2dXXboXbt27dHvkuftHjnv3ix/X4zK1id9ztfnbNDvfH3OBv3ON8lsFo8kSZIkTYODgR8AfqGqbkryX2lD1DpkRFst0L5nY9UWYAvA+vXra8OGDcsKDIOC0Px+52+6duS8289Z/vL3xahsfdLnfH3OBv3O1+ds0O98k8zmsDVJkiRJ02AHsKOqbmrP/4xBMemBNhSN9vPBofmPG+q/Fri/ta8d0S5J6mDxSJIkSVLvVdWXgS8l+d7WdAZwB3ANcF5rOw+4uk1fA5yd5JAkxzO4MPbNbYjbw0lOTxLg3KE+kqQRHLa2gHUjTifdftmZE0giSZIkCfgF4N1Jngh8AfhZBl+Ib01yAXAv8AqAqro9yVYGBabdwEVV9VhbzmuAK4DDgOvaQ5LUweKRJEmSpKlQVZ8G1o946YyO+S8FLh3Rfgtw8sqmk6T9l8PWJEmSJEmS1MnikSRp7JIcmuTmJH+d5PYkv9Haj0pyfZK7288jh/psTrItyV1JXjLUfmqS29prl7frVUiSJEkaE4tHkqTV8AjwY1X1fOAUYGOS0xncYvmGqjoBuKE9J8mJwNnAScBG4M1JDmrLegtwIYMLn57QXpckSZI0JhaPJEljVwO72tMntEcBZwFXtvYrgZe36bOAq6rqkaq6B9gGnNZuwXxEVX2iqgp451AfSZIkSWPgBbMlSauinTl0K/Ac4A+q6qYkM+2WyVTVziRHt9mPBW4c6r6jtT3apue3j1rfhQzOUGJmZobZ2dllZ961a9eS+13yvN1LXu7eZFnMcrL2gXnHa5ryTlNWmL68kiStBItHkqRV0W6PfEqSpwEfSLLQXW5GXceoFmgftb4twBaA9evX14YNG5YXmEGRZ6n9zt907ZKXu/2c5WdZzHKy9oF5x2ua8k5TVpi+vJIkrQSHrUmSVlVVfQOYZXCtogfaUDTazwfbbDuA44a6rQXub+1rR7RLkiRJGhOLR5KksUvyzHbGEUkOA34c+BxwDXBem+084Oo2fQ1wdpJDkhzP4MLYN7chbg8nOb3dZe3coT6SJEmSxsBha5Kk1bAGuLJd9+i7gK1V9cEknwC2JrkAuBd4BUBV3Z5kK3AHsBu4qA17A3gNcAVwGHBde0iSJEkaE4tHkqSxq6rPAC8Y0f4QcEZHn0uBS0e03wIsdL0kSZIkSSvIYWuSJEmSJEnqZPFIkiRJkiRJnSweSZIkSZIkqZPFI0mSJEmSJHXygtmSJC3Duk3XTjqCJEmStKo880iSJEmSJEmdLB5JkiRJkiSpk8UjSZIkSZIkdbJ4JEmSJEmSpE5eMFuSpFXWddHt7ZeducpJJEmSpMV55pEkSZIkSZI6LVo8SnJokpuT/HWS25P8Rms/Ksn1Se5uP48c6rM5ybYkdyV5yVD7qUlua69dniTj+bUkSZIkSZK0EpZy5tEjwI9V1fOBU4CNSU4HNgE3VNUJwA3tOUlOBM4GTgI2Am9OclBb1luAC4ET2mPjCv4ukiRJkiRJWmGLFo9qYFd7+oT2KOAs4MrWfiXw8jZ9FnBVVT1SVfcA24DTkqwBjqiqT1RVAe8c6iNJkiRJkqQeWtIFs9uZQ7cCzwH+oKpuSjJTVTsBqmpnkqPb7McCNw5139HaHm3T89tHre9CBmcoMTMzw+zs7JJ/oTm7du3ao98lz9u97OXMtzdZuvJMSp+ygHkWY56F9SlPn7JIkiRJ0kpZUvGoqh4DTknyNOADSU5eYPZR1zGqBdpHrW8LsAVg/fr1tWHDhqXEfJzZ2Vnm9zu/4+42y7H9nOVn6cozKX3KAuZZjHkW1qc8fcoiSZIkSStlWXdbq6pvALMMrlX0QBuKRvv5YJttB3DcULe1wP2tfe2IdkmSJEmSJPXUUu629sx2xhFJDgN+HPgccA1wXpvtPODqNn0NcHaSQ5Icz+DC2De3IW4PJzm93WXt3KE+kiRJkiRJ6qGlDFtbA1zZrnv0XcDWqvpgkk8AW5NcANwLvAKgqm5PshW4A9gNXNSGvQG8BrgCOAy4rj0kSZIkSZLUU4sWj6rqM8ALRrQ/BJzR0edS4NIR7bcAC10vSZIkSZIkST2yrGseSZIkSZIk6cBi8UiSJEmSJEmdLB5JkiRJkiSpk8UjSZIkSZIkdVrK3dYkSZIkSWO2btO1I9u3X3bmKieRpMfzzCNJkiRJkiR1sngkSZIkSZKkTg5bkyRJkqQxue2+b3J+x3A0SZoWnnkkSZIkSZKkThaPJEmSJE2NJAcl+askH2zPj0pyfZK7288jh+bdnGRbkruSvGSo/dQkt7XXLk+SSfwukjQtLB5JkiRJmiYXA3cOPd8E3FBVJwA3tOckORE4GzgJ2Ai8OclBrc9bgAuBE9pj4+pEl6TpZPFIkiRJ0lRIshY4E3jrUPNZwJVt+krg5UPtV1XVI1V1D7ANOC3JGuCIqvpEVRXwzqE+kqQRvGC2JEmSpGnxe8BrgcOH2maqaidAVe1McnRrPxa4cWi+Ha3t0TY9v30PSS5kcIYSMzMzzM7OLjvwzGFwyfN2L7vfsL1Z71Ls2rVrbMteCX3O1+ds0O98fc4G/c43yWwWjyRJkiT1XpKXAg9W1a1JNiyly4i2WqB9z8aqLcAWgPXr19eGDUtZ7eO96d1X84bb9u1j1/Zzlr/epZidnWVvfqfV0ud8fc4G/c7X52zQ73yTzGbxSJIkSdI0eBHwsiQ/BRwKHJHkXcADSda0s47WAA+2+XcAxw31Xwvc39rXjmiXJHXwmkeSJEmSeq+qNlfV2qpax+BC2B+tqlcD1wDntdnOA65u09cAZyc5JMnxDC6MfXMb4vZwktPbXdbOHeojSRrB4pEkaeySHJfkY0nuTHJ7kotbu7dXliTtq8uAFye5G3hxe05V3Q5sBe4A/gK4qKoea31ew+Ci29uAzwPXrXZoSZomDluTJK2G3cAlVfWpJIcDtya5Hjifwe2VL0uyicHtlV837/bKxwAfSfLc9qZ/7vbKNwIfYnB7Zd/0S9IBpKpmgdk2/RBwRsd8lwKXjmi/BTh5fAklaf/imUeSpLGrqp1V9ak2/TBwJ4M723h7ZUmSJKnnPPNIkrSqkqwDXgDcRM9vrzzqdqj7ervlhezLrVf7fFvZUcw7XtOUd5qywvTllSRpJVg8kiStmiRPAf4c+KWq+psFLlfUi9srj7od6vmbrl32cpZqX27F3Ofbyo5i3vGaprzTlBWmL68kSSvBYWuSpFWR5AkMCkfvrqr3t+YH2lA0vL2yJEmS1E8WjyRJY9fuiPY24M6qeuPQS95eWZIkSeo5h61JklbDi4CfAW5L8unW9qsMbqe8NckFwL3AK2Bwe+Ukc7dX3s2et1e+AjiMwV3WvNOaJEmSNEYWjyRJY1dVH2f09YrA2ytLkiRJveawNUmSJEmSJHWyeCRJkiRJkqROFo8kSZIkSZLUyeKRJEmSJEmSOi1aPEpyXJKPJbkzye1JLm7tRyW5Psnd7eeRQ302J9mW5K4kLxlqPzXJbe21y9ttliVJkiRJktRTS7nb2m7gkqr6VJLDgVuTXA+cD9xQVZcl2QRsAl6X5ETgbOAk4BjgI0me226x/BbgQuBG4EPARqbsFsvrNl07sn37ZWeuchJJkiRJkqTxW/TMo6raWVWfatMPA3cCxwJnAVe22a4EXt6mzwKuqqpHquoeYBtwWpI1wBFV9YmqKuCdQ30kSZIkSZLUQ0s58+jbkqwDXgDcBMxU1U4YFJiSHN1mO5bBmUVzdrS2R9v0/PZR67mQwRlKzMzMMDs7u5yYAOzatWuPfpc8b/eyl7NUi2UclWdS+pQFzLMY8yysT3n6lEXTybNbJUmS1EdLLh4leQrw58AvVdXfLHC5olEv1ALtezZWbQG2AKxfv742bNiw1JjfNjs7y/x+53e8KV8J28/ZsODro/JMSp+ygHkWY56F9SlPn7JIkiRJ0kpZ0t3WkjyBQeHo3VX1/tb8QBuKRvv5YGvfARw31H0tcH9rXzuiXZIkSZIkST21lLutBXgbcGdVvXHopWuA89r0ecDVQ+1nJzkkyfHACcDNbYjbw0lOb8s8d6iPJEmSJEmSemgpw9ZeBPwMcFuST7e2XwUuA7YmuQC4F3gFQFXdnmQrcAeDO7Vd1O60BvAa4ArgMAZ3WZuqO61JkiRJkiQdaBYtHlXVxxl9vSKAMzr6XApcOqL9FuDk5QSUJEmSJEnS5CzpmkeSJEmSJEk6MFk8kiRJkiRJUieLR5IkSZIkSepk8UiSJEmSJEmdLB5JkiRJkiSpk8UjSZIkSZIkdbJ4JEmSJEmSpE4WjyRJkiRJktTJ4pEkSZIkSZI6WTySJEmSJElSJ4tHkiRJkiRJ6mTxSJIkSZIkSZ0sHkmSJEmSJKmTxSNJkiRJkiR1OnjSAcbltvu+yfmbrp10DEmSJEmSpKnmmUeSJEmSJEnqZPFIkiRJkiRJnSweSZIkSZIkqZPFI0mSJEmSJHWyeCRJkiSp95Icl+RjSe5McnuSi1v7UUmuT3J3+3nkUJ/NSbYluSvJS4baT01yW3vt8iSZxO8kSdPC4pEkSZKkabAbuKSqvg84HbgoyYnAJuCGqjoBuKE9p712NnASsBF4c5KD2rLeAlwInNAeG1fzF5GkaWPxSJIkSVLvVdXOqvpUm34YuBM4FjgLuLLNdiXw8jZ9FnBVVT1SVfcA24DTkqwBjqiqT1RVAe8c6iNJGuHgSQeQJO3/krwdeCnwYFWd3NqOAt4HrAO2A6+sqq+31zYDFwCPAb9YVX/Z2k8FrgAOAz4EXNze+EuSDiBJ1gEvAG4CZqpqJwwKTEmObrMdC9w41G1Ha3u0Tc9vH7WeCxmcocTMzAyzs7PLzjpzGFzyvN3L7jdsb9a7FLt27RrbsldCn/P1ORv0O1+fs0G/800ym8UjSdJquAL4fQbf7s6ZG2ZwWZJN7fnr5g0zOAb4SJLnVtVjfGeYwY0MikcbgetW7beYkHWbrt2jbftlZ04giSRNXpKnAH8O/FJV/c0Clysa9UIt0L5nY9UWYAvA+vXra8OGDcvO+6Z3X80bbtu3j13bz1n+epdidnaWvfmdVkuf8/U5G/Q7X5+zQb/zTTKbw9YkSWNXVf8T+Nq8ZocZSJKWJckTGBSO3l1V72/ND7RjBO3ng619B3DcUPe1wP2tfe2IdklSB4tHkqRJedwwA2B4mMGXhuabG05wLEscZiBJ2v+0O6K9Dbizqt449NI1wHlt+jzg6qH2s5MckuR4BhfGvrkdcx5Ocnpb5rlDfSRJIzhsTZLUN/s8zABW5joVo8aV7+t1K1bK/Fx9Hp8/innHa5ryTlNWmL68+5kXAT8D3Jbk063tV4HLgK1JLgDuBV4BUFW3J9kK3MHgTm0XtSHQAK/hO9fQu44DYAi0JO0Li0eSpEl5IMmadnHTFR9msBLXqRg1rvz8EdcfmoT517/o8/j8Ucw7XtOUd5qywvTl3Z9U1ccZ/UUCwBkdfS6hVHcPAAAgAElEQVQFLh3Rfgtw8sqlk6T9m8WjFTLqYqbgBU0laQFzwwwuY89hBu9J8kYGF8yeG2bwWJKHk5zO4O465wJvWv3YkiRJ0oFl0eKRt1eWJO2rJO8FNgDPSLID+HWmYJjBbfd9szdnGkmSJEmTspQzj67A2ytLkvZBVb2q4yWHGUiSJEk9t+jd1ry9siRJkiRJ0oFrb6959LjbKycZvr3yjUPzzd1G+VGWcXvllbhDzsxh/bgjzlz2Pt2Zo09ZwDyLMc/C+pSnT1kkSdL+Y9T1Vb22qqTVtNIXzF6R2yuvxB1y3vTuq3nDbZO/Hvjc3XD6dGeOPmUB8yzGPAvrU54+ZZEkSZKklbLosLUOD7ShaIzj9sqSJEmSJEnqh70tHs3dXhn2vL3y2UkOSXI837m98k7g4SSnJwmD2ytfPX+hkiRJkiRJ6pdFx3VN6+2VJUmSJEmStO8WLR55e2VJkiRJkqQD194OW5MkSZIkSdIBwOKRJEmSJEmSOlk8kiRJkiRJUieLR5IkSZIkSeq06AWzJUlS/6zbdO3jnl/yvN2cv+latl925oQSSZIkaX/lmUeSJEmSJEnqZPFIkiRJkiRJnSweSZIkSZIkqZPFI0mSJEmSJHWyeCRJkiRJkqRO3m1tzObuhjN3FxzAO+FIkiRJkqSp4ZlHkiRJkiRJ6mTxSJIkSZIkSZ0ctiZJ0n5kbrj0fA6ZliRJ0t7yzCNJkiRJkiR18swjSZIkSZoynmkqaTV55pEkSZIkSZI6eebRBPgtgSRJkiRJmhYWjyRJOgCM+uLCLy0kSZK0FA5bkyRJkiRJUieLR5IkSZIkSepk8UiSJEmSJEmdvOZRj3ghbUnSavK4I0mSpKXwzCNJkiRJkiR18swjSZIkSdpPeFappHGweCRJkh5n1AcPP3RIkiQduCweTQHfxEuSJEmSpEmxeCRJkhblMAhJkqQDl8WjKeWbeElSH3g8kqTpMGp/fcXGJ08giaRptOrFoyQbgf8KHAS8taouW+0M+7OuN/HDLnnebs7fdK1v7CVNLY8l/eeQa0l957FEkpZuVYtHSQ4C/gB4MbAD+GSSa6rqjtXMoQG/LZY0jTyWTK/h487cFxngcUfS6vNYMnDbfd/89r54mPtlSfOt9plHpwHbquoLAEmuAs4CDqiddN8t5eylxXjAkTRGHkv2Mytx3FkOj1GS8FiyID8PSJpvtYtHxwJfGnq+A/jB+TMluRC4sD3dleSuvVjXM4Cv7kW/sfjFHuVZjSz5nWXN3ptt05hnYebpttQs3z3uIPu5A/ZYspA+HWeWYpJ5l3mMmjNV25fpyjtNWaE/eT2W7BuPJYx3X7yX+9r5ervt6Hc26He+PmeDfudb6WxLPpasdvEoI9pqj4aqLcCWfVpRcktVrd+XZaykPuXpUxYwz2LMs7A+5elTlv3cAXssWcg0ZQXzjts05Z2mrDB9edXJYwn9zgb9ztfnbNDvfH3OBv3ON8ls37XK69sBHDf0fC1w/ypnkCRNN48lkqR95bFEkpZhtYtHnwROSHJ8kicCZwPXrHIGSdJ081giSdpXHkskaRlWddhaVe1O8q+Bv2RwS8y3V9XtY1rdPp1eOgZ9ytOnLGCexZhnYX3K06cs+60D/FiykGnKCuYdt2nKO01ZYfryagSPJd/W52zQ73x9zgb9ztfnbNDvfBPLlqo9hvZKkiRJkiRJwOoPW5MkSZIkSdIUsXgkSZIkSZKkTvtd8SjJxiR3JdmWZNOY17U9yW1JPp3kltZ2VJLrk9zdfh45NP/mluuuJC8Zaj+1LWdbksuTjLp16Kj1vz3Jg0k+O9S2YutPckiS97X2m5KsW2aW1ye5r22fTyf5qdXI0uY/LsnHktyZ5PYkF094+3Tlmcg2SnJokpuT/HXL8xuT2j4LZJnY30/rc1CSv0rywUltG01OVvFYskiOse7nVzjr2Pe7K5x37PvBMWQe235pDFkn+h5pL/I+LcmfJflc+xv+oT7n1XSY1LGkb///0qPPLEvMNtH3oPPy9eozzRKz9WL7pUefd5aRrRfbrlNV7TcPBhe7+zzwbOCJwF8DJ45xfduBZ8xr+0/Apja9CfidNn1iy3MIcHzLeVB77Wbgh4AA1wE/ucT1/zDwA8Bnx7F+4P8G/rBNnw28b5lZXg/88oh5x5qlzbMG+IE2fTjw/7X1Tmr7dOWZyDZqfZ/Spp8A3AScPonts0CWif39tPn+LfAe4IOT/L/lY/UfrPKxZJEsY93Pr3DWse93Vzjv2PeDY8g8tv3SGLJuZ4LvkfYi75XAz7XpJwJP63NeH/1/MMFjSd/+/9GjzyxLzPZ6JvgedN46e/WZZonZerH96NHnnWVk68W268y9rwvo06NttL8cer4Z2DzG9W1nzx3zXcCaNr0GuGtUFgZ3dvihNs/nhtpfBfzRMjKs4/E7uxVb/9w8bfpg4Ku0i6wvMUvXH//Ys4xY59XAiye5fTryTHwbAU8CPgX84KS3z7wsE9s2wFrgBuDH+M6HtF787fgY/4NVPpYsIc86xrSfH3PuFd/vjjHrWPaDK5xxrPulMeTdzoTfIy0j6xHAPfP3w33N62M6HkzwWNLH/3/06DPLErK9np58hhmRoVefaTqy9W770aPPO4tk6922G37sb8PWjgW+NPR8R2sblwI+nOTWJBe2tpmq2gnQfh69SLZj2/RKZV7J9X+7T1XtBr4JPH2Zef51ks+0U0LnTglc1SztFL0XMKjoTnz7zMsDE9pGGQx/+DTwIHB9VU1s+3Rkgcn9/fwe8Frg74faJv63o1Wz2seS5Zr0cWZRY9zvrnTOce8HV9K490srrY/vkbo8G/gK8I4MhgW+NcmTe5xX02GSx5Jp+P/X9/dVE/8MM1/fPtMskA16sv369HlnidmgJ9tulP2teDRqHG6NcX0vqqofAH4SuCjJDy8wb1e21cq8N+vf12xvAb4HOAXYCbxhtbMkeQrw58AvVdXfLDTramQakWdi26iqHquqUxh8m31akpMXij7OPB1ZJrJtkrwUeLCqbh31+qgu48yjiZjWf59JH2cGIca7311Rq7AfXBGrtF9aadP0HulgBsNW3lJVLwC+xWAoQ5dJ59V0mOTfwzT9/5uvD++rJv4ZZr6+faZZJFtvtl+fPu8sMVtvtt0o+1vxaAdw3NDztcD941pZVd3ffj4IfAA4DXggyRqA9vPBRbLtaNMrlXkl1//tPkkOBp4KfG2pQarqgfaf4u+BP2awfVYtS5InMNiRvbuq3t+aJ7Z9RuWZ9DZqGb4BzAIbmfDfz3CWCW6bFwEvS7IduAr4sSTvokf/tzR2q3os2QuTPs50WoX97liMcT+4UlZjv7SievoeqcsOYMfQt75/xqCY1Ne8mg4TO5ZMyf+/3r6v6sP782F9+0yzWLa+bb+WqTefdxbK1sdtN2x/Kx59EjghyfFJnsjgwlDXjGNFSZ6c5PC5aeAngM+29Z3XZjuPwdhPWvvZ7arnxwMnADe3U+UeTnJ6uzL6uUN99sZKrn94Wf8M+Gi1QZNLMfefsvmnDLbPqmRp/d8G3FlVbxx6aSLbpyvPpLZRkmcmeVqbPgz4ceBzk9g+XVkmtW2qanNVra2qdQz2IR+tqldPYttoYlbtWLKXJn2cGWmV9rsrmXc19oMrYpX2Syumx++RRqqqLwNfSvK9rekM4I6+5tXUmMixZIr+//X2fdUkP8OMyNKrzzRLydaX7denzztLzdaXbdep9uGCSX18AD/F4Ervnwd+bYzreTaDK57/NXD73LoYjCO8Abi7/TxqqM+vtVx3MXS3AmB9+8P4PPD7sOSLLr+XwelsjzKoLF6wkusHDgX+FNjG4Cruz15mlj8BbgM+w+CPd81qZGnz/2MGp+V9Bvh0e/zUBLdPV56JbCPg+4G/auv9LPAfVvrvd6l5Fsgysb+foeVt4DsXpp3I346PyTxYpWPJEnKMdT+/wlnHvt9d4bxj3w+O6W9iLPulFc448fdIe5H5FOCW9vfw34Aj+5zXx3Q8mMCxpI///+jRZ5YlZpv4e9Ch5fbqM80Ss/Vi+9GjzzvLyNaLbdf1mFuwJEmSJEmStIf9bdiaJEmSJEmSVpDFI0mSJEmSJHWyeCRJkiRJkqROFo8kSZIkSZLUyeKRJEmSJEmSOlk8kiRJkiRJUieLR5IkSZIkSepk8UiSJEmSJEmdLB5JkiRJkiSpk8UjSZIkSZIkdbJ4JEmSJEmSpE4WjyRJkiRJktTJ4pEkSZIkSZI6WTySJEmSJElSJ4tHkiRJkiRJ6mTxSJIkSZIkSZ0sHkmSJEmSJKmTxSNJkiRJkiR1sngkSZIkSZKkThaPJEmSJEmS1MnikSRJkiRJkjpZPJIkSZIkSVIni0eSJEmSJEnqZPFIkiRJkiRJnSweSZIkSZIkqZPFI0mSJEmSJHWyeCRJkiRJkqROFo8kSZIkSZLUyeKRJEmSJEmSOlk8kiRJkiRJUieLR5IkSZIkSepk8UiSJEmSJEmdLB5JkiRJkiSpk8UjSZIkSZIkdbJ4JEmSJEmSpE4WjyRJkiRJktTJ4pF6Icn2JD8+6RwASa5I8lt72Xc2yc91vLYuSSU5eN8SSpIkSZK0eiweSZKkA0KS1yd5V5t+VpJdSQ4a4/r+MMm/H9fyJUl7ZwLHg73+cnpaLPQluvYPngEhSZIOOFV1L/CUMa/jX41z+ZKkfbcaxwNpf+CZR+qTU5J8Jsk3k7wvyaEASX4+ybYkX0tyTZJjWvsew8CGK95JnpPkf7TlfTXJ+4bm+4dJrm/LvCvJK+dlOTLJtUkeTnJTku8Z6vvCJJ9sy/1kkheO+mWSHJTkd9u6vwCcOe/185N8oa3jniTn7OsGlCRJkiRppVk8Up+8EtgIHA98P3B+kh8Dfru9tgb4InDVEpf3m8CHgSOBtcCbAJI8GbgeeA9wNPAq4M1JThrq+yrgN1rfbcClre9RwLXA5cDTgTcC1yZ5+oj1/zzwUuAFwHrgn8290DJcDvxkVR0OvBD49BJ/L0nar7Xr4P1K+0LhW0nelmQmyXWt4P6RJEe2eU9P8r+SfCPJXyfZMLSc49uXCA8nuR54xtBrj/sCIsnPJrmzzfuFJP9yaN4NSXYkuSTJg0l2JvnZJfwe3x6msNgykhyW5A1Jvti+nPh4ksPaay9Lcnv7HWeTfN/ebKvFtpck9c3+cjxo9urL6cy7NmweP+Tu0CTvSvJQ+70/mWSmvfbUtr12JrkvyW9lgaF5SQ5pyzh5qO2ZSf42ydFJjkzywSRfSfL1Nr22Y1nfztixjZeVTf1g8Uh9cnlV3V9VXwP+O3AKcA7w9qr6VFU9AmwGfijJuiUs71Hgu4Fjqurvqurjrf2lwPaqekdV7a6qTwF/zlBxB3h/Vd1cVbuBd7csMDh76O6q+pPW973w/7d3/+F21fWB798ffhpRCgxyDEk6wTbaCaT+4JTSOuM9LVVSoYbnuYONBQlKb55xqGgnXknq0/F67+TedFqsP1rwZtQSKoqpP4aMiIppd719BoigaAjIECViIBIFVA51Iid+7h/re8LOyd4nZ5+cvffa57xfz7OfvdZ3/dif7/611vqu7w++Bfxei9d/PfC+zPxeydP/M2H5z4GzImJeZu7JzB1TyJMkzRX/K/Bq4MVU/7G3An9CdcJ/FHBVRCygKtD/T8ApwDuAT0fEC8o+Pg7cXbb5v4BVk7zeXqrjw4nAm4C/jIhXNC1/IfALwALgCuCvmwtlpmiyffwFcDbVzYRTgHcCP4+IFwOfAN4OvAD4PPDfIuK4pv0e9r0CmML7JUl1NFuOBzNxc3qiVSWWRWXbfwf8tCzbBIwBv0x1M/s1QNs+icq11mdKnONeD/xjZu6leq//hur66hfL6/zVFGJspaPYVA8WHqlOvt80/c9UbY9Pp6ptBEBmjgKPU/1ZH847gQC2lTu2by7p/xL49VKy/qOI+BFVIdULDxMLE+MpvtsmntOB701YbzwfTwO/T/UHv6fchfiVKeRJkuaKD2bmY5n5CPD/AXdm5tfLye1nqU42LwU+n5mfz8yfZ+ZtwF3AayPiF4FfA/40M/dl5leobky0lJm3ZOa3s/KPVDVX/03TKs8A/2dmPpOZnwdGgZd0mKeW+4iIo4A3A2/LzEcyc39m/veS198HbsnM2zLzGapCpnlUhUydvFdM9n51mA9J6qXZcjyYiZvTEz1DVWj0y+XYcXdm/qTUPvpd4O2Z+XQp/PlLYOVh9vdxDi48+oOSRmY+npmfzsx/zsynqAq//pcpxHiQI4hNfWaH2aq7R6kKe4ADzb3+BfAI8HRJfi7wkzJ9oAAoM79P1XSMiPjXwJcj4itUBTr/mJmvPtJ4il8EvtBi3T1UdwGa1zsgM78IfDGqZgn/CfgvHHxgkqS57LGm6Z+2mH8e1f/xxRHRfIJ9LPAPVAX4T5bC+nHf5eD/5QMi4neBd1Pd2T6K6tiyvWmVx8sJ/7jmGwtT1W4fpwLPAb7dYpuJN1F+HhHf4+CbFlN5r2Dy90uS6mq2HA9m4ub0RH9LlY+bIuIk4GPAu6jej2OpblKPr3sUB9/YbuXvgXkR8esl3pdRFdAREc+lKuRZTlV7CuD5EXF0Zu6fQqzjphub+syaR6q7jwNvioiXRcTxwP9NdbdhV2b+gKoQ6dKoOqd+M9Dcdvjipna4TwIJ7Ac+B7w4It4YEceWx69FUx8Sk/h82fYPIuKYiPh9YGnZ50SbqarRLixVWdc2xTYUVR8WJwD7qO5YdPKnK0mqTjT/NjNPanqckJkbqArwTy7/s+N+sdVOyvHl01S1eoYy8ySq//totX4X/BD4nzQdw5pMvIkSVBcKj0zjdSZ7vyRpkA3y8aDdzenx//mnqQqwxjXfLH8mM9+TmUupaqReCFxG9X7sA05tej9OzMzmPl4PkZk/p7qGeQNVraPPlVpGAGuoalj9emaeCLyqpLd6b9rGPN3Y1H8WHqnWMnMr8KdUf+J7qE6sm6s0/m/A/07VlO1M4L83Lfs14M6IGAW2UDUHeKj8Ab6m7OdRqlL1PwOOn0I8j1P9Ka8pr/lO4MLM/GGL1f8L8EXgG8DXqNoQjzuq7ONR4AmqKp///nCvL0k6yMeA34uI88tNhOdE1Znpwsz8LlWThfdExHGlBmq7JgDHUR0DfgCMlbvOr+lJDjhwsv5R4L0RcXrJy2+Ui5jNwAURcV5EHEt17NjHwce7qWr7fs1YZiSpPwb5eHC4m9P3ACvLDe+Jg/D8VkQsK51N/4SqGdv+zNxD1dzumog4MSKOiohfioipNDP7OFWT6UvK9LjnU9X0+lHpp+ndk+zjHuBVEfGLEfELVP3WAnCEsamPbLamWsjMxRPm/4+m6Q8BH2qz3a1Uo7O1WvZOqsKdVsseoGpf3GrZ5RPmG1SjtY3P/xNVp6atth1pmh4D/rg8xv11ed7DNNoIS5KelZnfi4gVwH+m6lR6P7ANeEtZ5Q+oOuV8ArgduAE4qcV+noqIq6gKao6n6gtjS9czcLB3UA2s8FWqpgzfAM7PzAci4lKqEUMXUJ2Q/15m/qzTF5jC+yVJA2mQjweZ+XhEXAi8H7iOqjPt5pvTf0qVpyeBf6Qq0DmlLHsh1XXSQqqWDJ+kKkiDqgbSBuA+qoKf71DdMD9cPHdGxNNUzelubVr0vvLaP6S6AX4NcFGbfdwWEZ8EvlnW/zPgdU2rTCs29VdkZr9jkCRJkiRJUk3ZbE2SJEmSJEltWXgkSZI0TRGxIyJGWzwu6XdskqTeGZTjQUR8qE2cLbsJkcbZbE2SJEmSJElt1b7D7FNPPTUXL17c8XZPP/00J5xwwuFXrBnj7r1Bjd24e2+mYr/77rt/mJkvmIGQNEUTjyV1/h4a2/QYW+fqGhcY21R4LOm9Vtcldfk+dJv5nF3mSj5h7uR1uvns5FhS+8KjxYsXc9ddd3W8XaPRYGRkZOYD6jLj7r1Bjd24e2+mYo+I7x55NOrExGNJnb+HxjY9xta5usYFxjYVHkt6r9V1SV2+D91mPmeXuZJPmDt5nW4+OzmWTKnPo4jYFRHbI+KeiLirpJ0SEbdFxIPl+eSm9ddFxM6IeCAizm9KP7vsZ2dEfCAiopOMSZIkSZIkqbc66TD7tzLzZZk5XObXAlszcwmwtcwTEUuBlcCZwHLg2og4umxzHbAaWFIey488C5IkSZIkSeqWIxltbQWwqUxvAi5qSr8pM/dl5kPATuCciJgPnJiZt2fVS/cNTdtIkiRJkiSphqba51ECX4qIBP7fzNwIDGXmHoDM3BMRp5V1FwB3NG27u6Q9U6Ynph8iIlZT1VBiaGiIRqMxxTCfNTo6Oq3t+s24e29QYzfu3hvk2CVJkiRpuqZaePTKzHy0FBDdFhHfmmTdVv0Y5STphyZWhVMbAYaHh3M6HT8NasdYxt17gxq7cffeIMcuSZIkSdM1pWZrmfloed4LfBY4B3isNEWjPO8tq+8GFjVtvhB4tKQvbJEuSZIkSZKkmjps4VFEnBARzx+fBl4D3AtsAVaV1VYBN5fpLcDKiDg+Is6g6hh7W2ni9lREnFtGWbusaRtJkiRJkiTV0FSarQ0Bn63KezgG+HhmfiEivgpsjogrgIeBiwEyc0dEbAbuA8aAKzNzf9nXW4DrgXnAreUhSZIkSZKkmjps4VFmfgd4aYv0x4Hz2myzHljfIv0u4KzOw5QkDbKI+ChwIbA3M89qSn8r8EdUNxtuycx3lvR1wBXAfuCqzPxiST+bZ29CfB54WxnBU5IkSVKXTLXD7Flt8dpbWqbv2nBBjyORpFnreuCvgBvGEyLit4AVwK9m5r7xUTsjYimwEjgTOB34ckS8uNRivY5qNM47qAqPlmMt1ilpdazzOCdJkjQ42pVdXL/8hK6/9pQ6zJYk6Uhk5leAJyYkvwXYkJn7yjrjAy+sAG7KzH2Z+RCwEzinDM5wYmbeXmob3QBc1JscSJIkSXOXNY8kSf3yYuDfRMR64H8C78jMrwILqGoWjdtd0p4p0xPTW4qI1VS1lBgaGqLRaBxYNjo6etB8nXQrtjXLxg5J6/R15uL7NhPqGltd4wJjkySpbiw8kiT1yzHAycC5wK9RDcLwIiBarJuTpLeUmRuBjQDDw8M5MjJyYFmj0aB5vk6mGlunTa4vb9Vs7ZLDv06z2fC+9UNdY6trXGBsaq1V/3kRcQrwSWAxsAt4fWY+WZbZf54kzRCbrUmS+mU38JmsbAN+Dpxa0hc1rbcQeLSkL2yRLkmaG66n6uuu2Vpga2YuAbaW+Yn95y0Hro2Io8s24/3nLSmPifuUJE1g4ZEkqV/+K/DbABHxYuA44IfAFmBlRBwfEWdQndhvy8w9wFMRcW5EBHAZcHN/Qpck9Vqb/vNWAJvK9Cae7QvP/vMkaQbZbE2S1HUR8QlgBDg1InYD7wY+Cnw0Iu4FfgasKifyOyJiM3AfMAZcWUZag6qT7eupmhrciiOtSdJcN1RuLpCZe8ZH7qQH/efB3OkDy3zOLnMlnzD78tqqD0voTT4tPJIkdV1mvqHNokvbrL8eWN8i/S7grBkMTZI0O3W9/zyYO31gmc/ZZa7kE2ZfXlv1YQlw/fITup5Pm61JkiRJGlSPlaZolOe9Jd3+8yRpBll4JEmSJGlQbQFWlelVPNsXnv3nSdIMstmaJEmSpNpr03/eBmBzRFwBPAxcDJCZ9p8nSTPIwiNJkiRJtTdJ/3nntVnf/vMkaYZYeCRJ0iyyuE1HipIkSdJ02eeRJEmSJEmS2rLmkSRJc1S7Wkq7NlzQ40gkSZJUZxYeSZIkSZIGgjc+pP6w2ZokSZIkSZLasvBIkiRJkiRJbVl4JEmSJEmSpLYsPJIkSZIkSVJbFh5JkiRJkiSpLQuPJEmSJEmS1JaFR5IkSZIkSWrrmH4HIEmSJEnSRIvX3tLvECQV1jySJEmSJElSWxYeSZIkSZIkqS0LjyRJXRcRH42IvRFxb4tl74iIjIhTm9LWRcTOiHggIs5vSj87IraXZR+IiOhVHiRJkqS5ysIjSVIvXA8sn5gYEYuAVwMPN6UtBVYCZ5Ztro2Io8vi64DVwJLyOGSfkiRJkmaWhUeSpK7LzK8AT7RY9JfAO4FsSlsB3JSZ+zLzIWAncE5EzAdOzMzbMzOBG4CLuhy6JEmSNOc52tokWvXuv2vDBX2IRJJmn4h4HfBIZn5jQuuzBcAdTfO7S9ozZXpierv9r6aqpcTQ0BCNRuPAstHR0YPm62Sqsa1ZNta1GFq9/vZHfszQPPjgjTcflL5swS90LY5OzIbPtNfqGhcYmyRJdWPhkSSp5yLiucC7gNe0WtwiLSdJbykzNwIbAYaHh3NkZOTAskajQfN8nUw1tsu7OHzxrksOff3L197CmmVjXLP9mMOu2w+z4TPttbrGBcYmSVLdWHgkSeqHXwLOAMZrHS0EvhYR51DVKFrUtO5C4NGSvrBFuiRJmkETW2CsWTbG5WtvsRWGNIfZ55Ekqecyc3tmnpaZizNzMVXB0Csy8/vAFmBlRBwfEWdQdYy9LTP3AE9FxLlllLXLgJvbvYYkSZKkmWHhkSSp6yLiE8DtwEsiYndEXNFu3czcAWwG7gO+AFyZmfvL4rcAH6bqRPvbwK1dDVySJEmSzdYkSd2XmW84zPLFE+bXA+tbrHcXcNaMBjcAWg3gIEmSJPXKlGseRcTREfH1iPhcmT8lIm6LiAfL88lN666LiJ0R8UBEnN+UfnZEbC/LPhAThteRJEmSJElSvXTSbO1twP1N82uBrZm5BNha5omIpcBK4ExgOXBtRBxdtrmOatjkJeWx/IiilyRJkiRJUldNqdlaRCwELqBqQvAfSvIKYKRMbwIawNUl/abM3Ac8FBE7gXMiYhdwYmbeXvZ5A3AR9lchSRJQNU8bH9FGkiRJqoup9nn0PuCdwPOb0obKyDdk5p6IOK2kLwDuaFpvd0l7pkxPTMlWaxQAACAASURBVD9ERKymqqHE0NAQjUZjimE+a3R0dMrbrVk2NuX9TieWTnQSd50MatwwuLEbd+8NcuySJEmSNF2HLTyKiAuBvZl5d0SMTGGfrfoxyknSD03M3AhsBBgeHs6Rkam87MEajQZT3a6TO7y7Luk8lk50EnedDGrcMLixG3fvDXLskiRJkjRdU6l59ErgdRHxWuA5wIkR8THgsYiYX2odzQf2lvV3A4uatl8IPFrSF7ZIlyRJkiRJUk0dtvAoM9cB6wBKzaN3ZOalEfHnwCpgQ3m+uWyyBfh4RLwXOJ2qY+xtmbk/Ip6KiHOBO4HLgA/OcH4kSZIkSTW0uE2Lj10bLuhxJJI6NdU+j1rZAGyOiCuAh4GLATJzR0RsBu4DxoArM3N/2eYtwPXAPKqOsu0sW5IkSZIkqcY6KjzKzAbVqGpk5uPAeW3WW081MtvE9LuAszoNUpIkSZIkSf1xVL8DkCRJkiRJUn0dSbM1SZIkSeq7iPhj4A+pRnPeDrwJeC7wSWAxsAt4fWY+WdZfB1wB7Aeuyswv9j5qjWvXF1K39m0fS1LnLDySJEmSNLAiYgFwFbA0M39a+l9dCSwFtmbmhohYC6wFro6IpWX5mVQD/Hw5Il7c1E+rOmAn2NLcYLM1SZIkSYPuGGBeRBxDVePoUWAFsKks3wRcVKZXADdl5r7MfAjYCZzT43glaaBY80iSJB2km80HJGmmZeYjEfEXVCNA/xT4UmZ+KSKGMnNPWWdPRJxWNlkA3NG0i90l7RARsRpYDTA0NESj0Tho+ejo6CFpg2T7Iz9umb5m2cHzQ/NgzbKxlnlds2ys5T46WXcmtPscWr1mu3UH/fOcqrmST5h9eW33G+pFPi08kiRJkjSwIuJkqtpEZwA/Av4uIi6dbJMWadlqxczcCGwEGB4ezpGRkYOWNxoNJqYNksuneLNgzbIxrtl+DLsuGZnyPjpZdya0er12r9lu3UH/PKdqruQTZl9e2/2Grl9+QtfzabM1SZIkSYPsd4CHMvMHmfkM8BngN4HHImI+QHneW9bfDSxq2n4hVTM3SVIb1jySJEmSNMgeBs6NiOdSNVs7D7gLeBpYBWwozzeX9bcAH4+I91J1mL0E2NbroDWzbHItdZc1jyRJXRcRH42IvRFxb1Pan0fEtyLimxHx2Yg4qWnZuojYGREPRMT5TelnR8T2suwDEdGq6YEkaQ7JzDuBTwFfA7ZTXeNspCo0enVEPAi8usyTmTuAzcB9wBeAKx1pTZImZ+GRJKkXrgeWT0i7DTgrM38V+B/AOoAJQygvB66NiKPLNtdRdVy6pDwm7lOSNAdl5rsz81cy86zMfGMZSe3xzDwvM5eU5yea1l+fmb+UmS/JzFv7GbskDQILjyRJXZeZXwGemJD2pcwcHzLiDqo+J6DNEMqlv4oTM/P2zEzgBp4ddlmSJElSl1h4JEmqgzcD43d+FwDfa1o2PoTygjI9MV2SJElSF9lhtiSpryLiXcAYcON4UovVcpL0dvtdTdXEjaGhIRqNxoFlo6OjB83XxZplYwzNq57rqFVsdXkf6/qZQn1jq2tcYGySJNWNhUeSpL6JiFXAhcB5pSkatB9CeTfPNm1rTm8pMzdSdZjK8PBwjoyMHFjWaDRonq+Ly9fewpplY1yzvZ6H51ax7bpkpD/BTFDXzxTqG1td4wJjkySpbmy2Jknqi4hYDlwNvC4z/7lp0RZgZUQcHxFnUIZQzsw9wFMRcW4ZZe0ynh12WZIkSVKX1PPWpiRpVomITwAjwKkRsRt4N9XoascDt1VlQdyRmf8uM3dExPgQymMcPITyW6hGbptH1UeSI+RIkiRJXWbhkSSp6zLzDS2SPzLJ+uuB9S3S7wLOmsHQJEmSJB2GzdYkSZIkSZLUloVHkiRJkiRJasvCI0mSJEmSJLVl4ZEkSZIkSZLasvBIkiRJkiRJbTnamiRJkiRpRi1ee0u/Q5A0g6x5JEmSJEmSpLaseSRJkiRJOixrE0lzl4VHkiRJkqQ5o10h2PXLT+hxJNLgsNmaJEmSJEmS2rLwSJIkSZIkSW1ZeCRJkiRJkqS2LDySJEmSJElSW3aYLUmSJEmzRLvOoHdtuKDHkUiaTax5JEmSJEmSpLYsPJIkSZIkSVJbNluTJEmSJKkDNg/UXGPNI0mSJEmSJLV12MKjiHhORGyLiG9ExI6IeE9JPyUibouIB8vzyU3brIuInRHxQESc35R+dkRsL8s+EBHRnWxJkuokIj4aEXsj4t6mNI8jkiRJ0gCYSs2jfcBvZ+ZLgZcByyPiXGAtsDUzlwBbyzwRsRRYCZwJLAeujYijy76uA1YDS8pj+QzmRZJUX9dz6H++xxFJkiRpABy2z6PMTGC0zB5bHgmsAEZK+iagAVxd0m/KzH3AQxGxEzgnInYBJ2bm7QARcQNwEXDrDOVFklRTmfmViFg8IXnOHkfa9ZMgSZIk1dGUOswud3zvBn4Z+OvMvDMihjJzD0Bm7omI08rqC4A7mjbfXdKeKdMT0yVJc1NXjyMRsZqqlhJDQ0M0Go0Dy0ZHRw+a77U1y8baLhuaN/nyfmoVWz/fx2b9/kwnU9fY6hoXGJskSXUzpcKjzNwPvCwiTgI+GxFnTbJ6q/4ncpL0Q3cwyQn/VHVyYO/kJL3bJwuDekIyqHHD4MZu3L03yLEPmCM+jgBk5kZgI8Dw8HCOjIwcWNZoNGie77XLJ6l5tGbZGNdsr+dgqK1i23XJSH+CmaDfn+lk6hpbXeMCY5MkqW46OjvNzB9FRIOqj4nHImJ+uVs8H9hbVtsNLGrabCHwaElf2CK91eu0PeGfqk4O7JOdxE/U7ZPkQT0hGdS4YXBjN+7eG+TYa6prxxH1jkMVS5IkzX5TGW3tBaXGERExD/gd4FvAFmBVWW0VcHOZ3gKsjIjjI+IMqg5Nt5WmCU9FxLlldJzLmraRJM09HkckSZKkATCVmkfzgU2l36OjgM2Z+bmIuB3YHBFXAA8DFwNk5o6I2AzcB4wBV5ZmbwBvoRpxZx5VB6cD18mpJKlzEfEJqs6xT42I3cC7gQ14HJEkSTXnQBfS1EZb+ybw8hbpjwPntdlmPbC+RfpdwGT9JUmSZqHMfEObRR5HJElHrLSU+DDVMSKBNwMPAJ8EFgO7gNdn5pNl/XXAFcB+4KrM/GLvo5akwXHYZmuSJEmSVHPvB76Qmb8CvBS4H1gLbM3MJcDWMk9ELAVWAmdS9eV6bWllIUlqw8IjSZIkSQMrIk4EXgV8BCAzf5aZPwJWAJvKapuAi8r0CuCmzNyXmQ8BO4Fzehu1JA2Weo4FLEmSJElT8yLgB8DfRMRLgbuBtwFDZbAFysiep5X1FwB3NG2/u6QdIiJWA6sBhoaGaDQaBy0fHR09JK3f1iwba5neKs526040NG/q6w6ydp9nJ3mv2/ehlTp+b7tltuW13XexF/m08EiSJM24Vp2L7tpwQR8ikTQHHAO8AnhrZt4ZEe+nNFFrI1qkZasVM3MjsBFgeHg4R0ZGDlreaDSYmNZvl7fp3HnXJSNTXneiNcvGuGb77L90vH75CS0/z6m+T9D6fa6bOn5vu2W25bXdd7Hdd3cmzf5/gCb2ki9JkiTNOruB3Zl5Z5n/FFXh0WMRMb/UOpoP7G1af1HT9guBR3sWrSQNIPs8kiRJkjSwMvP7wPci4iUl6TzgPmALsKqkrQJuLtNbgJURcXxEnAEsAbb1MGRJGjhzqubRTGhXe8mq+JIkSVLfvBW4MSKOA74DvInqRvnmiLgCeBi4GCAzd0TEZqoCpjHgyszc35+wJWkwWHgkSZIkaaBl5j3AcItF57VZfz2wvqtBaU6yzz/NVjZbkyRJkiRJUlsWHkmSJEmSJKktC48kSZIkSZLUloVHkiRJkiRJasvCI0mSJEmSJLXlaGuSJEmSNMu1GgVMkqbKmkeSJEmSJElqy5pHkiRJkjRgrEkkqZeseSRJkiRJkqS2LDySJEmSJElSWxYeSZL6KiL+OCJ2RMS9EfGJiHhORJwSEbdFxIPl+eSm9ddFxM6IeCAizu9n7JIkSdJcYJ9HkqS+iYgFwFXA0sz8aURsBlYCS4GtmbkhItYCa4GrI2JpWX4mcDrw5Yh4cWbu71MW1IF2/XPs2nBBjyORJElSJ6x5JEnqt2OAeRFxDPBc4FFgBbCpLN8EXFSmVwA3Zea+zHwI2Amc0+N4JUmSpDnFmkeSpL7JzEci4i+Ah4GfAl/KzC9FxFBm7inr7ImI08omC4A7mnaxu6QdIiJWA6sBhoaGaDQaB5aNjo4eNN9ra5aNtV02NG/y5f3Urdhm4rPo92c6mbrGVte4wNgkzS7WvNVsYOGRJKlvSl9GK4AzgB8BfxcRl062SYu0bLViZm4ENgIMDw/nyMjIgWWNRoPm+V67fJLhldcsG+Oa7fU8PHcrtl2XjBzxPvr9mU6mrrHVNS4wNkn9sf2RH096jJbmMputSZL66XeAhzLzB5n5DPAZ4DeBxyJiPkB53lvW3w0satp+IVUzN0mSJEldYuGRJKmfHgbOjYjnRkQA5wH3A1uAVWWdVcDNZXoLsDIijo+IM4AlwLYexyxJkiTNKfWsFy9JmhMy886I+BTwNWAM+DpVU7PnAZsj4gqqAqaLy/o7yohs95X1r3SkNUmSJKm7LDySJPVVZr4bePeE5H1UtZBarb8eWN/tuCRJkiRVbLYmSZIkSZKktiw8kiRJkiRJUlsWHkmSJEmSJKktC48kSZIkSZLUlh1mS5IkSZJUY4vX3tIyfdeGC3ocieYqC48kSVJfeUIsSZJUbzZbkyRJkiRJUlsWHkmSJEmSJKktC48kSZIkSZLU1mH7PIqIRcANwAuBnwMbM/P9EXEK8ElgMbALeH1mPlm2WQdcAewHrsrML5b0s4HrgXnA54G3ZWbObJYkSZIkSao3+/zTIJlKh9ljwJrM/FpEPB+4OyJuAy4HtmbmhohYC6wFro6IpcBK4EzgdODLEfHizNwPXAesBu6gKjxaDtw605mSJEmSJGkQtStUkvrpsIVHmbkH2FOmn4qI+4EFwApgpKy2CWgAV5f0mzJzH/BQROwEzomIXcCJmXk7QETcAFyEhUeSpFnME0BJkiQNuqnUPDogIhYDLwfuBIZKwRKZuSciTiurLaCqWTRud0l7pkxPTG/1OqupaigxNDREo9HoJEwARkdHD9luzbKxjvczVdOJsZVWcQ+CQY0bBjd24+69QY5dkiRJkqZryoVHEfE84NPA2zPzJxHRdtUWaTlJ+qGJmRuBjQDDw8M5MjIy1TAPaDQaTNzu8i7e/d11ychh15mKVnEPgkGNGwY3duPuvUGOXZIkSZKma0qjrUXEsVQFRzdm5mdK8mMRMb8snw/sLem7gUVNmy8EHi3pC1ukS5IkSdIRiYijI+LrEfG5Mn9KRNwWEQ+W55Ob1l0XETsj4oGIOL9/UUvSYDhs4VFUVYw+Atyfme9tWrQFWFWmVwE3N6WvjIjjI+IMYAmwrTRxeyoizi37vKxpG0mSJEk6Em8D7m+aX0s1wM8SYGuZZ8IAP8uBayPi6B7HKkkDZSo1j14JvBH47Yi4pzxeC2wAXh0RDwKvLvNk5g5gM3Af8AXgyjLSGsBbgA8DO4FvY2fZkiRJko5QRCwELqC61hi3gmpgH8rzRU3pN2Xmvsx8iOra5JxexSpJg2gqo639E637KwI4r80264H1LdLvAs7qJEBJkiRJOoz3Ae8Ent+U1ukAP4c43EA+/RxMo5uDAU00NK+3r9cvg5jPmRpcaraabXlt9/3sRT47Gm1NkqSZFhEnUd0pPotqIIU3Aw8AnwQWA7uA12fmk2X9dcAVwH7gqsz8Yu+jliTVRURcCOzNzLsjYmQqm7RIm9ZAPv0cTKObgwFNtGbZGNdsn/2XjoOYz+kM3DSXBoGZbXlt97u/fvkJXc/nlDrMliSpi94PfCEzfwV4KVV/FfZTIUmaqlcCr4uIXcBNVN1tfIzOB/iRJLVh4ZEkqW8i4kTgVVQDM5CZP8vMH2E/FZKkKcrMdZm5MDMXU91g+PvMvJQOB/jpcdiSNFAGq06eJGm2eRHwA+BvIuKlwN1Uo+V0tZ+KXrZ/77TvhDr3t9Dr2Dr5jOrcp0FdY6trXGBsmjEbgM0RcQXwMHAxVAP8RMT4AD9jHDzAjySpBQuPJEn9dAzwCuCtmXlnRLyf0kStjRnpp6KX7d877ZOizv0t9Dq2TvpxqHOfBnWNra5xgbFp+jKzATTK9ON0OMCPJKm1ep6dSpLmit3A7sy8s8x/iqrw6LGImF9qHdlPxRy1uEXB264NF/QhEkmSpLnNwqMZ0uoEFzzJlaTJZOb3I+J7EfGSzHyA6g7xfeWxiqrJwcR+Kj4eEe8FTsd+KiRJkqSus/BIktRvbwVujIjjgO8Ab6Ia0MF+KiRJkqQasPBIktRXmXkPMNxikf1USJIkSTVwVL8DkCRJkiRJUn1ZeCRJkiRJkqS2LDySJEmSJElSWxYeSZIkSZIkqS07zJYkSZIkaQAtXntLy/RdGy7ocSSa7ax5JEmSJEmSpLYsPJIkSZIkSVJbNluTJEmSJGkWadWczaZsOhLWPJIkSZIkSVJb1jySJEkDb/sjP+Zy77JKkiR1hTWPJEmSJEmS1JaFR5IkSZIkSWrLwiNJkiRJkiS1ZeGRJEmSJEmS2rLDbEmSJEmSNKMWtxjIAhzMYlBZ80iSJEmSJEltWXgkSZIkSZKktiw8kiT1XUQcHRFfj4jPlflTIuK2iHiwPJ/ctO66iNgZEQ9ExPn9i1qSJEmaGyw8kiTVwduA+5vm1wJbM3MJsLXMExFLgZXAmcBy4NqIOLrHsUqSJElzioVHkqS+ioiFwAXAh5uSVwCbyvQm4KKm9Jsyc19mPgTsBM7pVaySJEnSXORoa5Kkfnsf8E7g+U1pQ5m5ByAz90TEaSV9AXBH03q7S9ohImI1sBpgaGiIRqNxYNno6OhB8920ZtlYR+sPzet8m16pQ2ztPrd2sfXqc55ML79vnahrXGBs0kTtRq2SpF6x8EiS1DcRcSGwNzPvjoiRqWzSIi1brZiZG4GNAMPDwzky8uzuG40GzfPddHmHJ/xrlo1xzfZ6Hp5rEdv2p1smr1lGy9h2XTLS5YAOr5fft07UNS4wNkkaNBZwzn71PDuVJM0VrwReFxGvBZ4DnBgRHwMei4j5pdbRfGBvWX83sKhp+4XAoz2NWJIkaY6ykGjuss8jSVLfZOa6zFyYmYupOsL++8y8FNgCrCqrrQJuLtNbgJURcXxEnAEsAbb1OGxJkiRpTrHmkSSpjjYAmyPiCuBh4GKAzNwREZuB+4Ax4MrM3N+/MCVJkqTZz8IjSVItZGYDaJTpx4Hz2qy3Hljfs8AkSZLmIJuoqdlhm61FxEcjYm9E3NuUdkpE3BYRD5bnk5uWrYuInRHxQESc35R+dkRsL8s+EBGtOj2VJEmSJElSjUyl5tH1wF8BNzSlrQW2ZuaGiFhb5q+OiKVUfVacCZwOfDkiXlyaFFxHNWTyHcDngeXArTOVkbpqVVq7a8MFfYhEktRN3p2TJEmDyHMYTcVhax5l5leAJyYkrwA2lelNwEVN6Tdl5r7MfAjYCZxTRso5MTNvz8ykKoi6CEmSJEmSJNXadPs8GsrMPQBlGOXTSvoCqppF43aXtGfK9MT0liJiNVUtJYaGhmg0Gh0HuPeJH/PBG28+KG3Nso530xWT5Wd0dHRa+e23QY0bBjd24+69QY5dkqTZKiIWUd2cfiHwc2BjZr4/Ik4BPgksBnYBr8/MJ8s264ArgP3AVZn5xT6ELvXUeA2jNcvGuNzaRurQTHeY3aofo5wkvaXM3AhsBBgeHs6RkZGOA/ngjTdzzfZ69ge+65KRtssajQbTyW+/DWrcMLixG3fvDXLskiTNYmPAmsz8WkQ8H7g7Im4DLqfzrjYkSS0cttlaG4+VpmiU570lfTewqGm9hcCjJX1hi3RJkiRJmrbM3JOZXyvTTwH3U7Vy6Kirjd5GLUmDZbpVc7YAq4AN5fnmpvSPR8R7qUrxlwDbMnN/RDwVEecCdwKXAR88osglSZIOw4ErpLklIhYDL6e65ui0q41W+5u0O41eNWlfs2ys668xmaF5/Y+hF8xnb/SyG4jZ1u1Eu8+tF/k8bOFRRHwCGAFOjYjdwLupCo02R8QVwMPAxQCZuSMiNgP3UVUfvbKp+udbqEZum0c1ytqsH2lNkiRJUm9ExPOATwNvz8yfRLTqOaNatUVayy41DtedRq+atPe7f5o1y8Zq2yXITDKfPbL96ZbJ3bi5M9u6nWj3X3D98hO6ns/DfmMy8w1tFp3XZv31wPoW6XcBZ3UUnSRJkiQdRkQcS1VwdGNmfqYkPxYR80uto6l0tSFJamO6fR5JkiRJUt9FVcXoI8D9mfnepkXjXW3AoV1trIyI4yPiDEpXG72KV5IG0eyvkydJktSkVT9IYF9I0gB7JfBGYHtE3FPS/oTpdbUhSWrBwiNJkiRJAysz/4nW/RhBh11tSJJas9maJEmSJEmS2rLwSJIkSZIkSW3ZbE2SJEmSJPVVqz4J7Y+wPqx5JEmSJEmSpLYsPJIkSZIkSVJbNluTJEmSJEm106opG9icrR+seSRJ6puIWBQR/xAR90fEjoh4W0k/JSJui4gHy/PJTdusi4idEfFARJzfv+glSZKkucHCI0lSP40BazLzXwHnAldGxFJgLbA1M5cAW8s8ZdlK4ExgOXBtRBzdl8glSZKkOcJma5KkvsnMPcCeMv1URNwPLABWACNltU1AA7i6pN+UmfuAhyJiJ3AOcHtvI5ckSVLdTGzmtmbZ2IETSh0ZC4/6wHabknSoiFgMvBy4ExgqBUtk5p6IOK2stgC4o2mz3SWt1f5WA6sBhoaGaDQaB5aNjo4eND8T1iwbm5H9DM2buX3NtNke20x/J8Z14/s2E+oaFxibJEl1Y+GRJKnvIuJ5wKeBt2fmTyKi7aot0rLVipm5EdgIMDw8nCMjIweWNRoNmudnwuVtbgx0as2yMa7ZXs/D82yPbdclIzMTzATd+L7NhLrGBcYmSVLd1PMMUJI0Z0TEsVQFRzdm5mdK8mMRMb/UOpoP7C3pu4FFTZsvBB7tXbSSJEnqt3atedQ9dpgtSeqbqKoYfQS4PzPf27RoC7CqTK8Cbm5KXxkRx0fEGcASYFuv4pUkSZLmImseSZL66ZXAG4HtEXFPSfsTYAOwOSKuAB4GLgbIzB0RsRm4j2qktiszc3/vw9Zs1Ooupv0RSpIkWXgkSeqjzPwnWvdjBHBem23WA+u7FtRhWE1akiRpcHRzwKq5dOPJwiNJkqQOOXKqJEmDzWN5Zyw8qpHFa29hzbKxQ0bs8csrSVJ/WNNMkiTJwiNJkiRJkqS2vJlk4ZEkSdKMaXVyef3yE/oQiSRJ0syx8EiSJEmSJAlrGbVzVL8DkCRJkiRJUn1Z80iSJKmLtj/y40MGwwAHxJAkSYPDwiNJkiRJkqQZ0K7Z26DfNLLwaAC0+vIN+hdPkiRJ0sHsa0VSXVl4JEmS1Aez9c6kJEmafSw8kiRJkiRJ6oNBaWlk4dGA8m6lJEmSJEmDoZNmqXVswnpUvwOQJEmSJElSfVnzSJIkqUZ6XX19UKrLS5Kk/rHwSJKkNupYZVjSYLLLAUnSILPwaJbp5ELHkxVJkiRJknQ4Fh5JkiTV3EzUWpm4jzXLxri8zX47rXXnDSlJkmY3C4/mMKtPS5I02OpyLLffJEmSZreeFx5FxHLg/cDRwIczc0OvY9DkPAGUVHceS6TJ2V+XdHj9PJb4G5U0aHpaeBQRRwN/Dbwa2A18NSK2ZOZ9vYxDnev0zqYFUJK6xWOJNBhmoulbN5vPea4yt/XyWGJBkaTZoNc1j84BdmbmdwAi4iZgBeAJ/4AaPxhO1m/CxHX77UhPLDvdh6QZ57FEmoWaj7lTOa843D6ONIZm3iyblTyWSFIHIjN792IR/xZYnpl/WObfCPx6Zv7RhPVWA6vL7EuAB6bxcqcCPzyCcPvFuHtvUGM37t6bqdj/ZWa+YAb2MyfN0LGkzt9DY5seY+tcXeMCY5sKjyVHYAavS+ryfeg28zm7zJV8wtzJ63TzOeVjSa9rHkWLtENKrzJzI7DxiF4o4q7MHD6SffSDcffeoMZu3L03yLHPMkd8LKnzZ2ls02NsnatrXGBs6okZuS6ZK98H8zm7zJV8wtzJay/yeVQ3d97CbmBR0/xC4NEexyBJGmweSyRJR8pjiSR1oNeFR18FlkTEGRFxHLAS2NLjGCRJg81jiSTpSHkskaQO9LTZWmaORcQfAV+kGhLzo5m5o0svd0TN3vrIuHtvUGM37t4b5NhnjRk6ltT5szS26TG2ztU1LjA2ddkMXpfMle+D+Zxd5ko+Ye7ktev57GmH2ZIkSZIkSRosvW62JkmSJEmSpAFi4ZEkSZIkSZLamnWFRxGxPCIeiIidEbG2BvF8NCL2RsS9TWmnRMRtEfFgeT65adm6EvsDEXF+U/rZEbG9LPtARLQaXnQm414UEf8QEfdHxI6IeNsAxf6ciNgWEd8osb9nUGIvr3l0RHw9Ij43YHHvKq95T0TcNSixR8RJEfGpiPhW+b7/xiDEremr23FiXLv/3bqY+N9UF61+w/2OaVxE/HH5LO+NiE9ExHP6GEtH5yM1iO3Py2f6zYj4bEScVJfYmpa9IyIyIk7tR2zqv7oeT5p1+tvv9DwnIo6PiE+W9DsjYnHTNqvKazwYEau6nM+uX7vUIa/Rg+ucOuSz6fW6dl1Ul3xGl6+hZjSfmTlrHlSd3X0beBFwHPANYGmfY3oV8Arg3qa0/wysLdNrgT8r00tLzMcDZ5S8HF2WbQN+AwjgVuB3uxz3fOAVZfr5wP8o8Q1C7AE8r0wfC9wJnDsIsZfX/A/Ax4HPDcr3pbzmLuDUCWm1jx3YBPxhmT4Oxxx1mwAABjRJREFUOGkQ4vYx7c+7dseJptha/u/2O66m+A76b6rLo9VvuN8xlVgWAA8B88r8ZuDyPsYz5fORmsT2GuCYMv1ndYqtpC+i6mj5uxOPfT7mxqPOx5MJcXb1WgT498CHyvRK4JNl+hTgO+X55DJ9chfz2fVrlzrklR5c59Qhn0357dp1UV3ySZevoWYyn7Ot5tE5wM7M/E5m/gy4CVjRz4Ay8yvAExOSV1Cd7FKeL2pKvykz92XmQ8BO4JyImA+cmJm3Z/VJ39C0Tbfi3pOZXyvTTwH3U50ID0LsmZmjZfbY8shBiD0iFgIXAB9uSq593JOodewRcSLVSdVHADLzZ5n5o7rHrSNSu+PEuEn+d/uuzX9T303yG66LY4B5EXEM8Fzg0X4F0uH5SE+1ii0zv5SZY2X2DmBhzwOj7fsG8JfAO6nOLzQ31fZ40qwH1yLN+/oUcF6p8XA+cFtmPpGZTwK3ActnPoeVHl279D2vPbrO6Xs+oSfXRbXIZxu1zOdsKzxaAHyvaX43NTnxnmAoM/dA9UcHnFbS28W/oExPTO+JUrXt5VQl2wMRe6nieA+wl+pHMSixv4/qZPTnTWmDEDdUB64vRcTdEbG6pNU99hcBPwD+plSJ/XBEnDAAcWv6BuI4MeF/tw5a/TfVQbvfcN9l5iPAXwAPA3uAH2fml/ob1SHa/dfVzZup7qLWQkS8DngkM7/R71jUVwNxPGljJs9zDmxTCnx/DPyLSfbVdV28dqlFXntwnVOLfNL966K65LPb11Azls/ZVnjUqo+RQboj1C7+vuUrIp4HfBp4e2b+ZLJVW6T1LfbM3J+ZL6O6U3lORJw1yeq1iD0iLgT2ZubdU92kRVo/vy+vzMxXAL8LXBkRr5pk3brEfgxVVe7rMvPlwNNUVUPbqUvcmr7af1Yd/O/2Kp5O/5t6qdPfcM+U/glWUFUrPx04ISIu7W9Ugyci3gWMATf2OxaAiHgu8C7gP/Y7FvVd7Y8n0zCd85xanRt1+dqlFnntwXVO3/PZo+uivuez6PY11Izlc7YVHu2maoM+biF9rCI+icdK1TLK896S3i7+3RxcXbsn+YqIY6n+fG/MzM+U5IGIfVxpvtCgqoJX99hfCbwuInZRVX3+7Yj42ADEDUBmPlqe9wKfparOXffYdwO7yx0bqKpyvmIA4tb01fo40eZ/t9/a/TfVQbvfcB38DvBQZv4gM58BPgP8Zp9jmqjdf10tlM47LwQuKdXw6+CXqAoEv1F+EwuBr0XEC/salfqh1seTw5jJ85wD25Qmur9A1Uyu5+9PD65dapNX6Op1Th3y2YvrojrksxfXUDOWz9lWePRVYElEnBERx1F1CLWlzzG1sgVYVaZXATc3pa8sPaKfASwBtpWqak9FxLmlfeJlTdt0RXmdjwD3Z+Z7Byz2F0QZlSUi5lGdwH+r7rFn5rrMXJiZi6m+u3+fmZfWPW6AiDghIp4/Pk3V0em9dY89M78PfC8iXlKSzgPuq3vcOiK1PU5M8r/bV5P8N/XdJL/hOngYODcinls+2/Oo+uCok3b/dX0XEcuBq4HXZeY/9zuecZm5PTNPy8zF5Texm6qT3u/3OTT1Xm2PJ1Mwk+c5zfv6t1THiKTqUP41EXFyqYn5mpLWFT26dul7Xnt0ndP3fPbouqjv+ezRNdTM5TO72Dt6Px7Aa6l61/828K4axPMJqr4OnqE6wbiCqo3hVuDB8nxK0/rvKrE/QNNoTcBw+SJ9G/grILoc97+mqrb2TeCe8njtgMT+q8DXS+z3Av+xpNc+9qbXHeHZUQVqHzdVvyPfKI8d47+9AYn9ZcBd5fvyX6lGG6h93D6O6DOv1XGiKa6W/7v9jmtCjAf+m+ryaPUb7ndMTbG9h+qk/l7gb4Hj+xhLR+cjNYhtJ1VfDOO/hQ/VJbYJy3fhaGtz9lHX48mEGLt6LQI8B/i78pvdBryoaZs3l/SdwJu6nM+uX7vUIa/04DqnDvmckOcRunBdVId80oNrqJnM5/gOJUmSJEmSpEPMtmZrkiRJkiRJmkEWHkmSJEmSJKktC48kSZIkSZLUloVHkiRJkiRJasvCI0mSJEmSJLVl4ZEkSZIkSZLasvBIkiRJkiRJbf3/9sDRnVxhvcAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# We are using matplotlib for visualization.\n", + "dataset.hist(bins=50, figsize=(20,15))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "607214a7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEGCAYAAABhMDI9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9WYylZ3rf93vf99vPfk7t3axe2CRnOJzRiDOSRh5ZEmQn0Qb5xo4hw4CDBNCtgcSwI+QiVwEc+MYIEiAQAgQJFETxTSwjia1oRhrJkmakITXkcIY7m+yl9uXs59vfNxffOaerqquqq5psTob9/UCgWV1neet04Xme91n+jzDGUFJSUlJSMkP+qA9QUlJSUvL/L0rHUFJSUlJyjNIxlJSUlJQco3QMJSUlJSXHKB1DSUlJSckxrB/1AS7CwsKCuX79+o/6GCUlJSU/Vrz66qv7xpjFyz7vx8IxXL9+nVdeeeVHfYySkpKSHyuEEHce53llKqmkpKSk5BilYygpKSkpOUbpGEpKSkpKjlE6hpKSkpKSYzxxxyCEUEKI7wkh/q/p1/9CCPG2EOL7Qoj/UwjRfNJnKCkpKSm5OJ/GjeEfA28d+foPgZeMMV8C3gV++1M4w0NobUhzjdY/PiKCP45nLikp+fHjiToGIcRV4NeA/2n2d8aY/9cYk02//A5w9Ume4TQmccbtvRF3DsbcPZwQpfmnfYRLE6U5dw8n3Duc/NicuaSk5MeTJ31j+JfAPwX0Gd//T4F/e9o3hBC/JYR4RQjxyt7e3id2oEmc8dd3u+wNY/phitaa7X50ahT+SUTon9RrbPcjbCWouBa2Emee+XHes7yJlJSUHOWJDbgJIX4d2DXGvCqE+MVTvv9fARnwv532fGPM7wC/A/DVr371Y1ksrQ25MQgDm/0QMPiOhTaGbpjS8G1yY5CI+XOiNC+MrzFIIVhpeHi2utT7fhKvAZAbgzYGSxXPtZQkSlKiLMezFFI+/rk/qTN+msz+PZUQx372kpKST4YnOfn8deA3hBC/CnhAXQjxu8aYfyiE+EfArwN/yzzhTUFRmrPVC0nz4tLSn8RsdUOECKm4NoFj0fBslHhgYI5G6JZSZHlxq1hvBxcyRLMIfLMX4lrysV7j6GvNIvks11hKMopStgYRRoAl5dyYX/bcl3n84xrjT9qIP44jKx1JScnleGKOwRjz20wLy9Mbwz+ZOoVfBv4Z8AvGmMmTen8oDMKdgzHdcYKUgt1hyJ++s0ea5uQGOlWHZxerfOVa65jBOC1Cj7PsoVvFacwMV5Ll7Axi1jsBlrrca5x8LW0KRzOME5Io4yBOubVQo+bZx4z5Zc990cc/7q3ik76NPI7D/nG8EZWU/Kj5Ucwx/PdADfhDIcRrQoj/8Um9UZprdgcxnq2I04w/e3uXN+73udcPCdOM/WFKnBnUCaMiDGhjSKYF3izXSCGO3SpO46jhqnn2tBYQoo250GsczfWfrCt0xzG//+oG/+b7W3zzh7u8uTVkHKVIKdDmSEQsBNn0dvSo97zI4y9b3/i4zzuPB46s+LW1lJz/7J/WGUpKngY+FRE9Y8y3gG9N///Wp/GeR8m05t3dIaM4w1GSTmCDVFgWDKOENNf408fOIsw0K6LRTtXBty1WGt4j0xAnI/DVps/dgwnDMMWx1LmvcTKy7VSd+WtFUcafvbdPpg1rrYCdXsg339oiyjKeaQW0A3eeJllpeGz3I+KsaPxarLlnnvfk42cR9Sdxe/o4t66zOOrILCUf6fiexBlKSp4GfizUVR8XW0mWai67/ZAoyVFWETlaShImmkwKmhUXexqBHo0w/apL1bOIU83Vpo9lPfpyNTNQUZLh2ApLCq62fNaaPraSZzqF01Ike8MYQRHFT/KcQZiQaRjFKak2pJkhSQ25Nhy1cZ6tWG8HjJOM/WHM3jDmQCRnplBmjz8rB39ZY/xxn3cWszrBUs1ldxif6cie5BlKSp4WPtOOQUrBtYUKQkK7H3FrweBbEfvjCDDcWKzxk880cacGMzeGTGtspdDG4FiKNDeYC9qRJNekuWZjEAOwVHO5tlCZv/5ZnB7ZahZqLgejBJ1p0txgK4mSkjQ3WAqWmg7XOhXSfJpO0cy7rw5GCY4l5wbxvFy8lOLMCPoit4qP+7xHFYdP3qaWai62JR9ZTH7cs5eUPO18ph0DFBHxrcUarcDhjXt96tUx3aHHetvnc6sNbi7V5oZilj5SQuDYkpZvI6W8UIQ5i/qrrkV9ySbOcowBR13+pqF1YQArjkWlbRFlLr/8xVW+/cEBu4OQSZLzTKuCIxSbvZCm75Bmmo1hjJ46mTTT+NUijfQ4KZSjxvpRt4qzuMjzHlUcPu02tTuML9zd9bhnLyl5mvnMOwYoIsfFmsfPP+8QZW2EAcuSx9I7Wht2hzGrDY/uJCVOczaTnJfXWxcyJiejft+xGMcXM8azm8a9qYFcqXvcWKzO39ezFNc6Va7WfSZ5zmZ3wiQ1eI4i14Ykz9nqhziWxBbTG8I4oepZOJa6dArlLGP9OHn5824jF+ky+iTqBOedoaSk5GGeCscww7Ik1TNqBTMDVPWK2YbcGOIkx75AbQEeP589N45SEDiKKM05GCVc6zzonDmaEnEFBK7DCys+uTEcjhN2hzF5HuE6hflzbUXgSsZRRmzp+azDRWcwPs4Mx2W4iNH/OHWCcn6hpOTxeKocw2kcnYo+aoB0blDqYmkkePx89qyu0Q9TbCXxHYtBmLDZD7m5cOTWME2JpLkuag1KcDBMEEDFtfhgZ8j2IKJTdYnTHN+2+JkbbaCodVy0d//T7OS5iNE/+bkKYOGcTqsZ5fxCScnj81Q7hpPGoxnY9Cbp3LAv1dx5UfdoyumsKPRx8tlKCDCQpJqaXwysOZZCGB4yxlIKXKlYbfrcP5wwijIqrkXLtxgl2bweMowzRnGGlALfVkVO3i6kMx4VRX+SnTyPeq+LOtOjnVZ7F+i0+jRvPSUln0WeWsdwmvHoTVKuNn2MKArRu9Ni7sxgAY+MQi+azz5qNNeaPtuDiEGY4FiKVmCjzil6e7bieqcCAlwlSfIcnRsWKg6WlGwdTohyzTff3Obrzy9RcYvUWJLqC53/k+jkuWjEfhlnejBKphIj53dalfMLJSUfj6d2g9tZU7RGFFHz7jA+NjG72QvZ6oWfyBTtSQltKQUvr7dYqnu0/MIpPMoYW5bkaitgkuTcOwzJtKEfJ3x/4xAjBEtVB8dS/MX7e+SZRhguPAU8M9bPtAPW28GlUzCXnTiWUpw75wGXm3q+7AR4SUnJcZ5ax3Ce8TjNCGXTzqGLyjGcxVlG07MVNxeqrC9UTjXGp0ljO0riWJLrCxX+wy+sUnVs9qcO7TBK+ehgzPu7I4woHN5l5CQuYqzP4rLSFRfhMsZ+dutJc8M4zkhzU84vlJRcgqc2lTQzHpu9kHGcYSnJWtMvjIfm4Tz7ND+fpPk0NZEj4NJR6HlpDlvJU1MdZ6VlcmMwQOBYuLbhVqfKnf0hWgvaVY8szwlci61uxPV29ROfAj6rhnCROsVlO4Yum+Iq5xdKSh6fp9YxzCLwmer3UbNx0gilmQZRPOf93RE5BlcplmouSa7x5MVTLZct7p5XSD0ZRStL8pPrHf7i/X1EkgOGn73ZBinIMJ/oFPB5NYRHdRI9bsfQZY19Ob9QUvJ4PJWOYRJnbHQn3O+FOJZgrRngKHmsmHm0PfT+4QSlitRKL0zIteHGQgWAzV7IlUdoIR3lspHvo24Ys9fKtCbKcqqe4uZSBa0Nqw2fmmcR5wZHSixLfiJR9MxZKQm2KNJEJwvBZ3USzbSOHrdjqDT2JSVPnqfOMUzijFfuHDJJMu7sDam4Dpv9kC8/08LoQqrblQ8i3yTRbPYjXFsW6Q8NjqUwQK4NG91w3mJ6NPL9pNpaH3XDOOrA0kwziFJuLdX5cG/IMM6JM8NLVxuPFAG8TGonN4YwyZikObkuZMuDaWrrpNE+2Um02QsRgO/YwMfvGCqH2EpKPnmeKsegteHD/RF7o4jNbsirHx4S5ymBsnh/s8+Xry+gpOBKq7hBpLlmZxDhWAJHSbQ0bB9MWK67CGC7H853LxyNmpP8Ym2h5xnCowbvUTcMKQXSCFxbsV5x0Nrw3EqV4STlxkIV3y3+mc9K4VxEr2i2Ac9WshDpGyd4liRwLKIk42Cc8NyJ2vJptx1EjoFPpNZRDrGVlDwZnirHkOaaw2GC0YbX7nX5cH9IL0rRGt7bG1PxLQJXMoxSGr4zdQwxy3WXYZyRa0PNs2n4NuM4I8kMV9t+YZikmKqg6o89XHWawXvUDWN2s9C6OEuWajzHmiu7nlWruNr0zz1vlOa8tztg83CCZSuuNgPWmj6dqsM4zpkk2Xx/xEkV2tNuO5aUl5LOPotyiK2k5MnxVDkGrQ1RltELE96412V3rOffGyYJ3/jhDo5UpFrwt19cohm4HI4TupOEq+2ALNMsVF3WW9M1mtqwO4gQQmCMoek7xfucM1z1qNTHeQZvtjfitOfMdhXcO5ywO5zKftcfFMfPqlUkWp95XjS8fu+QP31nD4PAUYI4ybGkwLMUVceaR//ilKj/rMVBn0THUDnEVlLy5HhqHEOU5mz2Q+53J/zRW3eOOYUZ9w4m5DmMkozDUUIzcOdb2MZRhmMp1poeliWR2iCkwBgQoqg3ZFo/pLmUZDlaF1pMZ6U+jqZqtDYkWY5rXywHf/Q1BWCM4Zm2j2upY+mts2oVjpTzv5dSzNeZKiEI44xXPuri2pJG4BIlGT/cHLDernBtocJmL2T3yO6J0zq0Lrs46KKUS3hKSp4cT4VjmEXhwyjlf/7373N3kJ/6uCiFMEloVT0yo8mNOXML26wr6FqnwiTJOBwn7I8SXHvCQtWlN0kZhDEH44RO1eFud0Kaa6qudewmMIvytwcRUZojBQghqHkWS3VvPoF40uDNnMlWr5DblkIyjlP2BjHXFyvEWY4tHwyWHe1gOprCsazi7+/sjx+6aSS6aOd17ULe27YUaZagjca3FLaSrLf9+Q6J81I5l1kcdBHKJTwlJU+Op8IxFBLaGb//3Q/OdAoAgQfCUtzsVFBCESc5SklWp07hqKDePGLVml6YzlVOXSXpTVLW6h53exOutQMcWxElGRuDmPrSg5tAlKTc707YHUYMopTdQQTGcGOhSpjkvPpRl8Way0rDOxaNz24JSZazM4hZqrl0JwmpzvnBVo+3tvu0fQfLVqx3AtZbAXB2N9RsgvqZdvFzzrqH1moeCzWPUZQxSTLiVFMPbK63q/N6gucUv0JSiTNvNk8q7VMOsZWUPBmeCseQZpo73TGv3B2e+Zi6DS9f6+AoxVrT5+Zibb4+Msk1dw8nD6WAVhreMZXTxZqLYyvGcUZG8Vhnmi6Z/RlnOb5jkeUaI5hvJAuTnHDa/rk7jLjaDliuF6s7lRTzCBseaB65ts12L+RP39ujYitev3fA9+71UQKuNANeWGsQxhmBq1hvVQjc0/+5ZxPUUgi2BxG5NsSpZrHm8osvLPHn7+0zSTPcquLnnl+gPu18umgq5zJpn7L9tKTkR89n3jHMNrMtVlxalbNz2r/8xWV+6cVVhJDc6FTnRvS8YvBJlVPHVvOagsVxY6i1YaFarOBM8gSJYKXucb834WAUU/dtbCkxRjMIU7JcU/WcefpqXhCGB3uptQEp6E0ivn2/xxsbPcIUAguGUc44TWB9gea+ze4g5qW1BoMoe8jBzQz0dj/EtRRKFUXy/WHMtU6FX3tplVGWUbUsPG96Q7hEKueij71s+2nZrlpS8mT4TDuGogspZxynJLnhi9cW+e7tEeGJx91o2izVffqTjE7NZXcUs2rJuR7ReWmQmcrpdj/icPSgprA5iI7td4jTHG0MUaY5GCW0A5vdkaAVOFRdiygtHIiQ4CjIjKEV2EXr6TTCFgbGScZmL8SWxWOHUcoP7vf4s/d7zJJkowyIEjYHCWGcIyQsVT3iNOdzK3VcW5GkOZu9sHBsQDOwuXc4QUyj+9WmT64N4yTjYJSgjWEkclaUmBvfy6RyHvXYy7aflu2qJSVPjs+sY5hFk2ma8/b2kHbgcKXh8eyyz1s7ITmFtKwzfWycZthKcmuhim3Jh7p5kiwv5gSm0enRNIhnK642fT46HM9rCkf3O4yTjNfv9QDDzjBGCcEgTllMc1q+w5efaXIwSkiNpjdOqLo2q3WfbKoOOlsidK874X43RBjQGHSq+esPD3jtwwdO4Sga2BlM0JlhZxhhKcn1Ts5gFM/TRTXPYhzn5LlGCUHDs6j7TlG0nt4aiqKxmtcejkqAXEaiYiZQeHL5EZxehwjTlCjL8SxV7lwoKfkU+Uw6huPRpEWrYvHh/oiKq1hr+OyPEnIMaabR001pYaTpVG2saefMUT2iZmDzg43+XP7hpSuNhwyVERyrKRw1bHcPxxyMYywluHs4YbHqsuC42FKyN0r40tUGrq24ezhhtemz1gywpCDJNGtNHyUE93shQoBry/lUdqPqME4SJmfX09kZwfv7A76w1kKbIqqu+TZKFTeRd7aGXOsE+L7NqoCtfoRSEktKFmsue8N4Lp+dnSMBchHOS/2crEOMo5TtfoQwoFQxFDer+Rwt/p/nsEtKSh6Pz6RjOBpNam0IbJuGZ3O16fP8lTrv7Aw5nKRIwVTHB94/GPNib8J6u4qAuZHR2tCbpFxrB8XcwvTrumefKzU9M2xJmvPO5hDLVjhSYEvJwTihVbEx03N6tuJqKygmq30bOTVucVbMNiRak2lNxbHm3zNAkubkefGPmJ7xWWjg/u6YK/WAr91sE2eQTFNTy3WvuIFMf46qZ7NqYLXp41mFwT4QyXzG4SwJkIukbh6V+jlahwjT4rPrVG200YRRyt3DMVcaPkIKFmsuvqWouIq3t4Zoc7bDLikpuTyfScdw0kgvVBw2eiGpMbx8rcNuL+abb+9gSbBUsUO57tnUHZv73ZAr07kFKUWxHMcY/GlbJgrG8ekpi07VYW8YE04j49WGh60kypIIDDkC3xHs9BNGUcr9zNCsOOS6cA6OVTgyOY3m01yz0Qsx2rA9iFhreCzWXLZ6IWluCGyLTsPnxqLLm3vxmZ/Hzigml7DeqRKlurh5WIpMa9TU2aGKDimlJI6UD+k0JVMJkPVOME8fXSZ1M3PWUh7Zb5HpY8+f1SGiLGd3EPKtd3bpjRLGac7NToWmbzFOcm7vjaYrTQ2BI1mq+zjTNuGTDrukpOTyfCYdw8kuGMtS/MLzi+yPivz+3/+ZdZjOIBhtaFQcHKX4/FqD3MCVpo87HdqabUw7r9Xy5PRxu+IgTBGBa21Yrrvs9CNqruKZdoBvFS2xgWPTrjjsDmPW28FDOwwwzJVJVwVs9iNWGh7LdY+FmoslBC+uNdjrxUzyfT46fPjeYAM1z6ZuSfqTlPVOpWiPTYsUzEtXGvQm6bFaxv1e+JBOU5prbCWxpkb3UZPGWVYMyDmyqEVkmWYcpewMQpSU5FpT92zECeE9KQVJnPMn7+wSpYbAtTBJzusbPeJcs9L0iZKcKy2PcZLTqvh0JylXmj5pmpc1hpKST4DPpGOA410waVbMCthSYgS8sNzg737V8OqdLt1xjKMsvrTewLEUuSkURI8a+5mktT2Vrl48snTmtBRJf5Ii5IMby3LdI0o0aW5wlGK54XO1VSFwLKQU8xvI0TNrbdjohfP8/sk0z2yj3HOLNQ6vxoRpytVGxhsbPQZJcTYX8D0IXBvLsojzHPuUnQx1zyY3hWzH/ele65PpHtcublYXaU89HMX8YKOPNoZMG6quIko1m/0QS0gWqg6DKGOSFDMda03/mFz5/cEE37GQolhlOghTbCU4GEaMopTDMMO3Fdn0c9IU8yFH03/lLERJyePzmXUM8KALZmO6GMZ3bLJcsz9OeOlKi1bg0g1jwlizUHeJp8Ve4CFjn2SadsXhcJwc0/tRUjyoZ0znDHJjWK57HIySIvoXgtWmh+8obCm5152wP4pZ71gPRd6zNI0WDw+QKSWPdehIKbjWqXC/O+H5sMb9boSlBLd3R0zSlDyHhqtYrjtoYdjtx3xhtZhSPhpVz95zljY7q9PnIu2pozDlj9/ZxZaiqG/0xgwmOS+uVLGFwLagGyZc71TIDSjBsVpDbgy2kFQ9GylSHMtiFMf0JymTzKIR2CwoxeE4oR7YxHmO1oVm1WrTu5DkeUlJyfl8ph0DnN3WaFuSZ5dq5KZKnORsD4sOmN1hTKfqPJQPz41hbxTj2+qY3s/Vpo8UgnGU0g1TkrTIm681/GPR/73uZN7iORPmG4bpvLvnpJE9WYzF8GAn9RFsS3JzoUqnavMHb2yzUHNZrPlEScr37uyTZTkf7Q1BQJYZPn+lzlrj9ILxRSaUz2tP1dpwvztBGHBtxdtbAw5GCUmes9GL2BvFeLak5tmFTpMqtJxS/aDWoITAdSy+st7iux8dsjuISDP44tUWrcAhzYvZFG2gais6FZelukfdLWoLdw8n5WxDScnH5DPvGM4zdrMbxf44OWbw94YxSZqzMwjn6qlV1yry5dOJ6JmDMaJQFv3ru12kKLa7LQX2vG5gK8kky4pVmELg2JKWb58qzHcSzy72Sm/2i61nu8OYFSmORcBKCIQUjJOcpYaPaxXdRt/78IBxYkg0iDQn2R1iNPzxm9v81LMLp0pkzJzRZi9kHGdYSp7qjM4iN0Xh3LKnHUyWQCmIw4zDSULDs8kNDMOM27sjfNdi4yDECFiouLSr7vwM2hi+frNDiqbju3x4MOFgHFPxFC2/kPueTYsXgoXZ3KGXsw0lJR+Pz7xjeJQcQ5rrQubaeiBuF6Y5YZqx049BQJQUu5Qrrk0vSllp+FhSPIimLclq3cN11Nz8hNNCKLow6KsNj+4kJU5zNpOcl9db8yU6ZzGT8zh5SzkaActp++b7u0PSXNOdZNhC8/r9LgZwrWJXxF4/xxIjNrpj1roB+8OEl9dbp+oniRN/njzTWakkJQSOUtxoBewOIsK4kO64tlhlfxATOIrnlmq4tuT93RFV18b3LAJb8MPNAT97szNfQSoA21YEymax4dOpeXy4P+JwmJAbwULNQQqB5xx36IJPZjtcScnTzBN3DEIIBbwCbBhjfl0I0Qb+D+A68BHwHxtjuk/yDGflxqOpLMTOIOZwnLDaLAy+1oZRmLPeDojznLe3BvTDlM+t2MSp5u7B5FhLK7oYwkrS/KF0ElaRLql6NoFjTZVe83kh+zwuOt3rW4rAtnhxtc44zrl7MAIh8F2LNDdkebFOsz/OeGd7yPXlOgsVuN+dcGupNv88ZoV0x5IErnXqNrfz8vdHo/1nF6pEjRzfUeyPYlxL8YXVOlXfZhAVsiFL9UKefKQFozhhEKc0pXPmGT6/2iBderBH42hxvvhsNAs1d17bKaW4S0oej0dbp4/PPwbeOvL1fwl80xjzHPDN6ddPHCnFsbTNzAi6lmS9EyAE3D2YkGSa5bpHsRgBepMUJQoj5TsK31Es1hyuHOmkkVJMUz4RcVoY/dWGx+4wPra4R0qBoHAiF4lij6bB4OwWUSOKGYqKZ9OqOtxarXK9E+AIQZblRAlkFCmxMDN8+4N9frjZZ6sXMk6y+es8cEQPjO1sn8PR7ivfUQgMm71w3s47w7MVK3WPpbpHxbURQnJzscrP3uogpGQc5yxVPZqBwzvbQw5GMbvDEGM03XFypAD+8BmkLPZau3axC+K0z6biWKy3A55pB3Ohw5KSksvxRG8MQoirwK8B/w3wn0//+u8Avzj9//8F+Bbwz57kOU7jaDRuKVjvVBiG6Tzvv1R32RsWy3MM0PAVnm0VuXcpH1qzaR9JJ81uJeO4qEE87kKZs9JgUKTAjspD+I5F1bOm8hA+v/m1m/yrv/qI793tgTHUbViq2YyTHKNhEudoodnuhfgLCmsmN3FGPWb2eWUa9k9Ic9c8e37mWfqrGTi0q24xnW2Yr0MFEAYORhF3D8bEWY6Qks8v14mm2+MEECbZfAvdac7wUSnC2Y2qbF0tKbk8TzqV9C+BfwrUjvzdsjFmC8AYsyWEWDrtiUKI3wJ+C2B9ff0TP9hJI6i1wZluJZu1gVpSkOWGdmBjW4pBlJBpw0r9YcOuhECpwhwdVURVQmDbD88OXJSTabDzdkNs9yNSU7zvzz+/RMu3+d3v3OZ7d/tM0pRepGnKQuk1SlJ0LtjsRwgpuNoKjr1OlKQYAWuNB+kybQxb3Qm+beFMP7P9YVxIdRzZbHc0/eU5FqMwJdEaz1IkuebdnQGvfNRld1AI+7Wqinu9Mctdl2vtCsl07gSKbXLXOpVTP7NHtc+WstwlJY/HE3MMQohfB3aNMa8KIX7xss83xvwO8DsAX/3qV80jHn5pHhVxerbiWrtCq+LQHSfEac7+KGGx6rI/TrCmstwXeb2PG7XOZxsesRviqJFMc83uMGJnmNEIbMxEkKTFUFmgwLYsAlti28XWua1eyFqzkJZYqrls9gpx8u1BxGLNRRjojSPe3R5R8y2W6x5rDZ98luaZRugnHe4oStkaRBhRfC9Kcw7DmEQbPMdCG4hiTZ4bkrwYggtcxXU3KJYZIXBO3M6Ofp5nUcpyl5Q8Pk/yxvB14DeEEL8KeEBdCPG7wI4QYnV6W1gFdp/gGc7lvIjzaLRJ8R83FipzSe2TRkZPlVevNv25EZwVbDd74dxQHp3yvSyPKkYfnTHQqWFnVsR1PJRM6E4ErgVGWixWHRCCVmCTa8O9wwm9UUysiwni5ZoPU+G893aGvLtxyJsb+xxGCWsVn5durhRTxqa4VcxSa0cdZJQUTmGt4VHxbMIkY2cQIWXxvgejBCnAV4qlhoNjKcI0YxhncyXbYLoTA12kz6I0Z7cfkRg9V16d1RuO3ghyYx4sNJrWLMrW1ZKSi/HEHIMx5reB3waY3hj+iTHmHwoh/gXwj4B/Pv3z95/UGS7CaQNbJ6PNMMk47Ke0q4UUxkkjc1rKwraLVMud/TG9MEGIom00SXNuLFbPnV84eZaZ47rMiswk13Mxvjgr9k14FrQCl597ocMoypmkKbuDQgZjozfhtXfv88FejGXDf/CFK4Xo2yIAACAASURBVLz87CIV1+Kbb27yr1/bJpk3BCW8ujnmv/iVF3lxtTFf+DNrNT0qhmcEVKY1CNdSxeeApl1xWawmDMKcwFN0qh5rDY/eJMOzJYFjEcYpe2HGlabPVj9iexDx0f6YSZLRqdoMJhnXFyt8Ya35kNprmumHZkekvFjRv6TkaedHMcfwz4F/JYT4z4C7wN/7EZzhXE5G5u5UgjpJczzngYyFMBCnOfe7E2xZdOvMnMpMeG53GFPzrEKKO075weYABHi29VirK89Lf82ciDBwME5YafisNj2+8/4e4zQnsBUvrNR5c2OIqwRxktMIXN7e7PFvXr/PYTR94xB+59sb3Hhnj6/favONN486hYK7/YxXbu+xVPFItAHBvE4BhcP1LIU1nR6fdRe1K8Wa0Tg1uLbFtarLWivgRqfC1VaA6k4Yxzm9cUx3kuJaglfuHmILiWsJ9kcRtpLEqcFSgo8OJjy3WMNzrfmmvNwUarSnzY6UaaSSkkfzqTgGY8y3KLqPMMYcAH/r03jfx+WhwrQxLNVdcsNDKqTDKOGd7RErjUILaaHqztsrj6K14WCUYEmouEX30OOurjxrJmPmRLQxREnGKC62n11r+3QnCVVHoaQgjFLcmse1xSqDScr37+49cApH+PAwQby3y+QMRe/bu2PCPKPuubhKHvt5Zk5qqeayO4znirGOUjy/XOO55RppmpNqw7VOZT7s59sWnpJsZBlLNQcjBFGa0Y0Slqou2sAoKlJNcvrz58aQ5ZpRlPJqNyTOc7rjlC9dbXCl6V9qdqSkpOQpmHx+HE4rJF/rVHCUPKZCqiREqca1JMMoJXAU2/2QxZo37VISLNVduuMEYwxxplmqFxpBUpy/z+C8eoKt5LHnnHQiSZpzdxgTpymOErQqPkJZ5Nqw1YtY7wTUPGv+CnF+dhQdRxpbQnTqljiNjaRTdZBSzKP1JD0uZDfbvjZTjJ1tuXNtVbT/Wg/Sas3A5vv3emz2Q6qexa2FKgMh6I0ztDFFOi431K1ib0Q8Vb7VFLekmmtR920mcc5bWwO+eqONMQYDD0l8l5SUnE7pGM7grML0URVSW0gMsNby2eiGxGlOpgtZ7tnjZw4lzorvrda9BwNv58g1XKaecNKJOLZiqVZoHoVRSpSlSHJsJRBCgi6c0VY/wkKw0rD54e7DVwYHqFRc1pds/urO6Nhe6Y4NL11pUfOKyeYk1aRas1R1OZwUMtlSFtPg24OI650KSh3/mZIsR2szN9hHt+U5lkQJGKc5rcBmFGVEqWah6hGmGa2KQ8WdDrMtVAqn0w2LZUfGsNrwuL0/ZrcXMk41narD/V5YtqyWlFyA0jGcQ7FlzBDlOY6U8+LqzGjPVkoaXRiiTsVBTKdvZ6kUR0mudSrkxrDeLmoOs3TUeYNuj2qnfVRRuurZfPlqgz95a5vbuxMMmoWKx80VnyuNgFbFwZaCqmfx93/mFvuj93h9a3TsDNcXXF680sK3i+6jNzdHDKeD0lEK3/1wnyjVXFuq0vBdOhWH1+72WKg5+K7FbjfCAGlm6FQcAteap5YGYczBODlmsGcS5hXXYrXpszeMGUUZDc/mazc7xNPlQhKQSrJUcXAcC2+6+U4bw52DMbYlSTNNOyi0mBZq1pndZCUlJQ9TOoZz2B9F/PkHu0SJoeYrfuraAp1K0Zk0W+MZ2Gpu4KQsZgCGUcpWv9iCZknJ1VZA4FrYSrI+bb88a6bhqME/T+PpUUXpdmDzJ2/tYElJp+aSGYOREktKri9WeXG1QeBYDONC0vu//btf5tt3t/nzt/fZH8c8t9hgvV3BdxTDOCXD8Na9B45jDLy2GdKL9tgZRXz91hLPLlXphTF3DydMkmJCXCmBqxRv3O+z2vBQ01Wr21oXN4MjBnsmYZ7lGs9WLNdc4sDmersYcNsdxjzTDuhOUpIsZ3ec8PKR4bdOxWEQpkRpXmzSqzpYUs5TV2XLaknJxSgdwxnsDyL+uz96m9fu9NAYfMvirecG/MoX1lBSYluFabnaDnhuqYYRkGaauwdj/uqjQw6GIUIIluo+97shX7vZIXCtc/cZnDWpe1494ayidHcS88H+AGFJnl2ssj2MGYcJSVas+hwlOUoKDkfpdHuc5BeeXeNqvc57O0OavkU3TOmFCWGc0x9GDE7k6DWwe5iwVo95Y6NP4CqUVBwOI0ZpTsMvZLB9W3G15c/VZ7eHRdrKma5PNUCe67l8yNZU9ttWhVO1LDlP350lRphPv/fVG22yTGNZkiguUlWPktcoKSk5TukYTiHLNN96f4e/un1Y7BzWEGUZ335/n+eXKyzVKqx3KvNOo/V2AMC9QcSH+2O+f7/HVj9CGMP6Qkyqc1YOXJ5fqmNNi7AnbwEXndS9aFFaIbCEAtJ5egtjuNL2cZXkcBwzClOutgOs6eTz3cMJjqX4yfUm33h7l3GUcjBOsIH7B4NTP6uEouibMma94/PiSoOdPlQdxUK1kMa+dzBGtoO5Qc6mOk+jKJ1H/3q6tlRKwcz/HPVDD3WK5aaQIDHF4JswYLShP07Ick2ea1IMQkB3lGJP92yfJa9RUlLygNIxnEKU5UV+fNqBFKY5UZYTpZqtfkzD99H6+DQtQJRmvLszKJwCGimLFs5cG5arLlIIFmouh6MEbQptptkk9EUlto8ayKKzqUibnIyCq57NT1xvMnp3n4NxzCTOWW34fH61jlACkRcRvxICJQXPtAKGcUqcZPz57QPSVJNpw/39MduDkPEZLaueBQ3fKcQIhWBrEFNzFZMkY3eYYExOlGlqbjEouDkIMRl0ag7bhxFKCmxLslJz2R5ECMC1JJVTZL9PpstmLcOZ1gwmCW9uDviL23tsHE7Ick3g2qw2PJ5dqrFc92kF9kPyGiUlJQ9TOoZTUEJQ8QuhuH6YEGeGKE1ZrHpEqea97QFXW8Vu6KOpCa0N/UlK1VGMU9BaM0hgtS4YRBm3d4f8P9/fZKXpUfVsWp5DmmmeW67NXyNKsnmK5TxV0TsHY3YHU6G5mkuSazz5oNvGsiS/8PwyCsE72wMyrVlqeKANGMGNhSqb3ZDX7vVYbXhTBVmbjEKzyGjDW5t9BnGCYwmkMBxGx6N4C1htutxcrLNQD3Asm2GYkGqDJaDiCPpRjquKlZvv7gxxrKLGkOYZ97oTqr5bFJ11UXT2HTVfHnTM8WqOSY7MWoa11hyMY77z/j6v3e0yiTLCOGOU5OyOIsZRSmBLjM7ZH0Ws1F2W6mXxuaTkPErHcAqurXhprcHrK3Xe3OyTZBlVx+HFtSbPtAOS1HD3YMJ6p3Js9eWVVkDgFGkgYQwZAkcaLAnjJOXVuz22ehPWxxW+er3DKM0xg4jrC5WieyfXbBwx9tcWTk97OFN9oPW2P3cip6Wd6p7N59YavLBSw7EVoyjlBxtDGoHhXm/MaJKS6CKNIyWEacZgkhHYFjtmQj9KGUc5Sglqrg2kVBxBPbCRSnGjWWW5XWG17pBqgS0hFgJPCd7eHvD+7iajMKdVsVhrBry3O2CnF6MNVHyL650Kv/zFK3QqDu/ujKi4itWp7lLVs+e3ojTTbAzjY7UXJQWZ1vTDFJ1rRkmOEYZJmpFqEEKghOJwEvJH74YoI1CWw5sbA/7eTz3Dz95aLNtWS0rOoHQMpyCl4NZSna/dWODla212BxGOEniuzUrNw1KKmmdxZbq7YbYboebavHS1gWVJ9gcRSa6xlGCh5vEXb2+yPYlJw5S6K/lwf8T1hQretOawM4xxLMFS1SankHuYpT1O1iRmqSvPKf75pDp9WG42jOe5NsLAONEIDLf3J7y92eNwnHKl5XG9VWG54fPRbtHq+cJyja3DCUbnpDn49rQeEIObGl56rkXNc1BCcaXlM06K4bNG1WfNlrx+v8dbWz2yvLhh3D4Y873742NzEMM0I4z6+Jbi1mqNmmtzrROwUnfZ6kesTgXyZu2tJ2svV5s+GEhSjW0rHFH87GGqidOMOMsJI5hM3y+QhrWWYBil/MEbW6zUPF5Ya5Q3h5KSUygdwxnUPJsvPtPkYBKzVPP43r0eiJS9UcqtRQfPnk4S9x/sRuhUHa4tVGlWXMbTNlBLwf/wjQ/47r3RPA2zEx4gKaL+650iyt/ojfjrO126wxipBM+v1GlXHCwl2ZvuJphFyzOHcVbaaeZI4iRnaxAhReHswjglx/D2Vn86bWzojzN+//VNfv5Wh2Fi+MJqja1BxFLT5SeutvnO7X22xg+EkjZz+L1Xd7jWkPzGy9dQStIOHDb7EZ4SNHybre6EfpTh24pEZ/RDODk4nQO9BO52x9hK0qi6eHbhaFYaHst1b67YelrtxQhYa/psDyJ0ornSrtKPcrrjmO44oh8VW+vmSJikGiEhNppBUratlpScRekYzkBKwY3FKk5Xci+b8NPXmygpixbPScp6u/JQJLs/LHYbLwRTA50b3to54LV7/WO5+W4E9/b6vHyzQ2+SsXEw5l+/ep+7+0MGaYojJW/c73M4iFhtV2hWbK62KghgsxeyUvfOTDvNWl4zXUTW7cAmzHThJHoxcZ4XshIZLNU8wtSQZTndSUa75vLOzrAorEvJajMg1w9/NgB3+pr//Tt3+Ac/dY2rCxWavs0Hu0M2bEWUaxSGNDOESf6QU5ihgb1hzI2FKo6StKvFus9bS1X2hvH8M0tzfeoEuO1avLzeKuQzXAslBV+4UuP/fn2DD7aG9CJDbgoHoXOYxAmHk2L1aN2xyrbVkpIzKB3DOXi24morINdmvr5yFolLJU6JZDWdisP37/cBjW0pxiNDAsyy2YbCILqBx/PLNbSBP35vh/vdkDe3xiRZ8f2mH5OmOQt1l7WGT7Pq8rm1OhjBMEpYqHrUl2ziLMcY5hvVZi2vtipWjE5SzWrDQxvDIErZHxedP2musVwHz2hqnsNS00Uh6WuNFJJm4PDd24eE6dmfz36o+ZPbu3w167DaCqgFDhJ4dqHCTjfizuGIYXj28wXgWJJWxcV3JBgYxilJmtMMnLkjSDNNkmniTD80AR64FjcXqqS5JrAtPjwYca1dozeOiU1MmoDUFA5Cg6ss/vbnl7mxXCvTSCUlZ1A6hkdgKznX3znaP+9IeaqWkdaGJM/xLInRhnpDoSgcgiML46SBdtUm0xqdw053zLtbA9IMXBuGKeyFBs0YKQU7wwhjBH/9wTaNistK1efv/PR1OtUi3RJOxevgQdpFG4NjS+LpzupJXCzAudqskGSGt7cHdEcRVc9ioVbsQTAGVmo+yhLkWY5rG2wByTnic91hxHY/BFEopyZ5TsWzuLZYwbUFm90JB/2U3ik3D4dCfjzKcyq5zfYgIs8Nu6OEds3DUoXDtS05L/KfNjEupcCVipWWz93umDTL0CgaFZs9nSIyWHDhlz63xMu3lvjSlSaH44im4xAE9sMHKyl5yikdwyM42j8fpkXdYK3pY1nyoSndRmDzxkafQZgS2xatwMJVNl+6UuUHG6P5ToOOD03P4XCc4tsWOQrbEojMMDgSoY9DOJhEhFHOIDJEGiQTbLq8vz/iH3z9FoFtkWrNSs0rJquPOKuWb7OZ5IRRxtYgYqHiUPdtfvKZFgs1h+4wJUOT5Tl1z2McF05kre7z4cGQauBzte3xzv4pmtxTHNviYJRgENQ9i7pns3sY4ipYrPlEWc4gSuGUm4PvgDdd/ykNLNddXnymQXeccOdwxLOdGoiitvKoxUZaF7pUqw2fW6sNhnFR/xlPcupVi6+ut1hqB/zB6/f5X7/1A5oVnxvLLX7zazd5YbXxmL8dJSWfTUrHcAE8WxV7kPshAtgdxqxMjdQsmM6NYasXYkvJeqfC7iBidxiz4Hv85s9c5y9v7/DR3gQtBM8t1XjxSovAtRhMMv7GC22++dYOYRKT5A8KtRLYG2fo+EF3jabImX/rgwFS3uY/+tIzLNVcXrvf4+X11vEhMCl5eb1FlE2L0JZksx9Sd22SFF6+3qQfZljTaeMbi1U2uxHDOEUJxU9fb1OxJGFyj7sn9TCAugOr9YB21WYSa8Ish0TQjxIOJjEt3ybL9JnpJAPYrsXNhQpKWHRqDo4lSbXh3kFIkmiutAJuLFZPFQ88TTsqN4aqY/OV603CpMpBP6IXpby7O+T3Xtt58OZ7IR/0UsLM8F//2hfLm0NJyRFKx3ABtDbsDmN8W83TRhvdCbk2+I6i4jpEScbGKCFwitz+lVZAbxKz0vD52foCL16p8/7OkFGc8/xyDVtJojQHY2g7Nr/yhSX+3Q+2iPoZngQlIXAkvVBz2qyuAd7e7vE3P7dEs1JjEmds9kNuLlSPaSZpbbjfnWApQeBYBI5iFKZ0qg6+bfHB7gSlwBhBJ3BYbrhkmeZaJ2Cp7jKapPzNz61iCzgYR2wchPSjjCjTrLUCVpuFjPgwjhiMErZSGEYpSaaL21SYc9p9QwA1V7JSdRklhqUKvLc9YmeQoCSF+qsl2RvFXOtUgNO1pJzpgqBZE4AtBctNj9w43Nkb4/su90ch39ucPHSG+72M1z7cYTe8xfXSMZSUzCkdwwU4KVeRacO9wwm5MTQDh4Wqi2MrpCjSKaMkJ4xypJBcbRbKqs8t1bGkZBhlKCkQQrAziPhwb4gWgkkGP//CEj/cGiGFJjOKOI5JdYKNZnJK1J1k8P7OhIozZK3lIwzHNJOiNOf+4YStqeGcTJfiIAQ1R/LDzUL/6HCU4tmKe92I5brD3ihBjGP2hjExhobvst6pMAgTlmoTfNfGsUEKRX+SUvMUUsGbG33GSU6c5uz1U8JzahMecKVV4dnlOlpnvLU1YBTnLNdtOhWfVuDQCBwGYcJHhyNWKh6bg5Cab1NxHshlzArrR3dRrDX9+c6JhWrKn727zVlH0UpgnbOoqKTkaaR0DBfgmD6RFGz3Q1xLolRRYN4fxSzVXJZqLo4laSgJXlGLmMk72Eri2RZGGz44GNMbJfz5B3usNTxaFZdOxWVvGPE3brR4c2vEOM3IlcUXn/GJ04zxveF8FwIUhlUpSZhm3O1OaPo2onF8lmG7H+HakqpXvK+hkKY2AUzSrJC3dizaFZuqa5Hr4nYyjDK2exN6YUa74rBQ89juRVQ8RbvqzSXGozQFY3h2uULVkfzF29vsDjQPx+YnPk+g6kHVVdzvjkgzwyhKaLmFuJ/RGqkEuTaEacq/fzvBtjRRBs8u1fjKtRatikucPfhAjs50+LbFWt1DWZIPd4c0Kg6C8FTn8OUrTRbq/sf47Sgp+exROoYLcLQAncQZSWZY7xSKqnvDmEGYUrEV653KXBDvpHJqbgwLFYfXuhMavkVvnFJxLVzHRgKDOEcDOZKff2EJIeFglDAKU/I8x5aK93cGHIw0UoDvCL52o8NS3admSw4nKT9dcebvmeaaJMupeTYLVZf9Ucw4ymhVig1zt/cSEIIky7GkZHtQSE5MUs0gCfnhRpdBmrJcDXh+pYZjQ8O3SF1FYNvsj2Pe2Tjkw/0R//avQt7uPzzEdhZtD55pBbQDh15YOLaDQUScFwOBBliujbmxMOZwHJEZQSew6dQ83toaEKYpP//cEo5VDBmeNtPh2IW8xt29MUuNgJXaiK3h8RP+xJUK/8nPvYDnWafWLkpKnlZKx3BBZktz0lxjK4klBZaSND2LSZyhRLFI5uTqyKN5cW0M7cAmcC3y3PD2liociyzqDZ4jaPiK3eGExZrLQtVlreEVm8ziDCmaNHyLcZKSZUVH0ChKEcBaS83fN0pzNnshO4OYw3HCatNnqebS8ApJj7uHY77z4SGSYpAtSjW2KqLx3/vLj/jGO4fz6Ppma0LVduiGEUmqkUrSMwl/+NYOr28Mz0zRnIUNaA3bw5jNQVSk3uKUSQq5LjT+tIatfoQUBmOKZT+jRCEmKWsNyTjW3D2Y8JXrbXYGEVXXemimA6DiWKwvVPiF5xeoexavfXTIfpiwGEh+9ctX+dxKC9+1mcQZuye0mEodpZKnmdIxXIJZv/xq05+3r24PY660/Lno21Exu5M7FpKpkyhURC06VZe7h2OiKCPUGU4ieHe7T5gajICbCxU6FY+rTZ9nFqos1jTjLGMFm3cPQ0aThKBVIXAUe+OIPNXoaTHWtSRX2z6b3ZCP9sest4O5hMThJGW17jGIMrb7IVmWc6Xlc+dwMHcKLpACt7sJS5v7fPlam9VmwFsbXf7kBxt8OH68z9AHjJwO+mnDRj9BTYfPhCi6rpiqp46TjE7NZzDJqHiaKMlwrYDluosSgq1eyME4Zb0T4NkS37EYxw+kLqQUXG0F7A5jfunzLl95psX2MGSh5nO1HbBU88gyzWYvxHfUuXswSkqeJkrH8BjMbg9RliNMsfsAHt6hMCtaS1l0MlmWpFN1SHND4Fgs130W6w5vbw5ponjtbg9bFUJwnpK8dX/AT91U9EKJ61hYSiBzze2DkP1BhG9btGoZW90cJHzj3R1+5kYHbQxJbtgdRAhZSHO0p10+syU5tiURU6nrbqrZ6Mfs9ccYil+KFOYqQr1xTJIKtnoT/t0PN9h+TKfgAIEPwrIwRpPrQk5bKBC66MSCwmlkBgSCwFLEjiZMcrLcsNz0Wai6+K5FI3AYxhlbvZBrnQrZdMubOHKNCWayGb2Q5apHLXBYqbs0Ki5aG9LpD2lN3/xR6z/LlFPJ00DpGB4TKQWepVDT9tWTOj5QFK3TTLM3jBBCYIyh6Ttc71Smk8qGD/ZH5HnOdi+kG6Z4liTKNXFqOBhlHLyxxWLF5eWbLaTS/OX7h7QdRdX1SXXGX97u0g4UruvgW4cMopTPr9S4342wZGG8fFuxO4i41i7ed2cQMQgT/vKjAwZRsT9ipR6gpmsysxM/6/v7KVfaPe7sh2yPeGyqbpEm0llGxbFwlEKpjLprM4ozDicayyomxJfqHp2aQ5xprtQDfFdyc6nK/8fem8dImt73fZ/nee+37q4+p3u659qZvbjc5fJYHhKXtA7qsmQguiAlliFElmwHjpIgjoEAiQ0biQ3DQGIICRTbsKxIMSTLcmRJtGQqokRSJJfL3eWe3GuOvo/quqve+3nyx1vd0zPTM9MzO83lLOsDDHq6quutp6u6nt/zu76/x+bKBFk+7c00JLMVj+XdIY1+RCdIqBdsVtvBNeEg3zE5UfVYbwdMlR0agwSNwLNNTlQ8tnvRTd9DuGoMklSNQ05jviMYG4Z3wGFTxQ7q+AAgQOs8TKJ1/r2UgjDKeHOzzxfe2OC1jR5JktIfpuxmeZxdjsTfhhk0o4jXm5v7lyyZKUt1SSeM2OyofJSmZ2JJjedYlB2TTOVzJcJEESQxGvK51Jmi4lq8vNpkEKTYhmSm7BImKQXHYr4Aa9d5BAUHVncDVpvxXb9WE04+H1upXA8JnQvcLU0Wqfk2aMHl3T62YeDZkqJnUbAkhimYKeXVXafrBZphwkLVR5L/LhI4UXXJlGap7mObBnGal+meqhf2R6lu9yI826BkWJQdiyhTLOx1sEtx0/fwelHCuYp7aNhwzJj3EmPD8A7ZCysdFl7Y6ylYGnkIhhAESUYvTPja5V1eWGnS6EUM4r0ZAtyy9n+PXgovb+WNDQKoeAJpGnxzvYtvm8xWHKaLLq4lUBlEGbimxBKCjUFC1TeJlaZSMFlthciORmWCdhDTva4brWyCZRgIKQ5tVLsdFeBHPjLHIzM1LFuw2Y6Yrtg8d7lNO4yJ04zJYj6DYaHioKREIGgNYgJTMllyWW+GpDrfiH3L5CNnNQXbzl9TKbgwW6IXptimQZhkNPoR/TAFAQs1P58Qd12vQ6LyPM6t3sPDRAlbwwTfNm8bchoz5n5mbBjuAVKKQzeHvf4HNTIQ6UjDeqU5YLsTsjuI2B0maFLi+GhG4YbnANoDje1EZBlc3u6x3hpS8ywqBRfHMpirulR8izDJ2O6GvNwN+PrlXd7eDPY3+7KRT3Er2pCGV9eSKHCExhQaH27bo3CQByYtLsxUmSkXCJQiSwyqBQuQzNU8FmVuMPthSqMX4noumcpYbwW0eglzNZfGIKDVj/Hzjjp2uxHtYczPfew0tZJDmim6QYIYld42+hF6lDtxRon4hap3qODhwXDRYe/hwcbGg6KEmdao7PDRq2PGvBcYG4Zj5LBQU71gs9oc4rsGjmkQp4ogVkRHbQK4jhToKyDIS0F3ByGtAcTkFT5TvuB9J8qkWcbLhsl8zeX5K01e2by2lbqbgZnByUkfeiFpX5GQq71OlGy++4EZhNzmpc1b6Ggf4OEZk4+cnqYfK640+kyV8pyAbQhqPjimgSk0lmVhSYmaLLDRChmmiopn0gkSumGCIQXDOCPO8kl0FcukG6Wsd0OiUdNelCgenCux249o9kJKvs1c2cW2DAZRPtTntiG/QzjY2HhQlDCKMwxDHukaY8bcj4wNwzFzfZgiyRRCCCYLDqY0KLkGiXKRRAR36DKYXJsoToCN6/IDO0PNF9/q0Bim1H2blR3Jn7/RPPR6KdAOIuZrPmVriNCKX/rBhxHa5OHZCjM1j+EX3ubt1i2GNIxQWrLViym5BsNUYxmCmm/RCVL6UcqDs2W+udnjrbUuk2UH37awrZh2GNMNUgqOgZQGUZIRxhlFVyIyTSASHMug0Qup+haGFARpwmtrbaJEsTOMGcQqn34nxdWhPpa8acjvZtxg2EeihJYp968xrlIa815kbBi+BRwMU1jkc4w3e0OW6h5FR/LmTp8oscm2uzSPdiAHbqweuhkxsNYc0B/GfOGt5JaPi1NFL8zwfJ/vPj9DzS2QZTpXjZ0o8kOPLfDyWoetXp92EDMcQje9tuvZBBq9GN8O8M0Cs2UX35IULEmUCmpFh3i0oWaZwjYEKsvnXdQKLmEyJEogSTOmijYajdagpaZacJkouLSGCW9u93lzq0d3ELEzSLgwW+KpM5NEqeIbK20+cLLG/IGekrvZwG+VQzpM1G9cpTTmTy0HogAAIABJREFUvcDYMHyLkVKwNFlASNhohtiWyfm5MhcbfWYqHhu7PV5dHzK8i3zDreiEEIa3NgoAP/74HCcmyyAFnmmjtaLgGAyihLVmgBLw0HyF98kqK80hUmje2Ojx5vaQcLTmsoQwgGEY0Q1tLEuyujvkofkyrmUggH6YMFGwceaKRJlmoxWyUPPz5jYFu8OEqi/JNNQxqPsm9ZKDa5iYFpya8rncGLLZC5BaYApJL0h4eb3DJx+Yoh0mzIw26ne6gR+Wf7i+eXFcpTTmvcTYMLwLuJbBuakSRcfkS282MGVekvnk4gTNYcRTu31eXm0TpRkvXxnQuwfPmXJ1vOjN+NTZGhcWprAMSZzlQ0hf3+hhmpITZYcgTZksuhRck6123icxV/VZmvBJ1AYbzZB2Bs3RQKI3GgmuGZApEIZgsx1youaz24/yUto4w7UkBUOiyOW/F2pFJosuX3pzm4VaEUPmeQSt4Mx0kThJ2RkmCASXdwaQCnzXwDIkgyhlGGV0ogjHtLBlnizeaAfYprynG/j1irvjKqUx7yXGhuFdQkrBbNnjiaUaQmuQgrXWEAaS2WqJ83NVmv2YxxcH/PoXV+gfwYOY9mAYQ/8miezoFo+dL8LHz08xU3a51Bgw4Zu8uNanG6QIAbYBnUHERNEhTkdzKFyL+YpHJ0rIkoj2dc+rgJc2A560DM7OlDENQdW38C3JIM4QtqQfKdIsxZCSfpiy2Q0QWnB+psxs1cMUgl6SstoYstoe0g9y8cEgzrBNiHWCaVgUHXhtc4gQipWGy8fOFVjrBCSZYqsbsVj390eF3osN/PrE9GGVTmPG3K8cNgPmniCEcIUQzwghviGEeEUI8fdGtz8uhPiKEOIFIcSzQogPH9cavt3Z0/IxDAOVapSCB2cLeI5Bo5cwTDJmqwV++qML3GqMTMWAhyYkHzpT51MPTd7xm1qzYLrq8OVX1/iNz7/AH718iX/z1Ytc2u5iWQLPNlhthTSDGENIDKFJVcZ0xWW25rKy2+eN9uGWKwPe2u6z1QnpRwmtYYQ0DE5PFemGGUXHYKbi8YHFKpnKX4/pists1cM2DR6aKzMIU0xDjCTOY7b7MYlSCKVp9ULe3Gzy9YsNgjgvVX19vc3/+/walxo9LFNim7muklL6nm3ge4npJNMMopQk07esUlIjFVil7nGMcMyYY+A4PYYI+LTWui+EsIAvCiE+C/x94O9prT8rhPhB4B8DTx/jOr6t2RsbutwckGnNSjtEZRrXloCBIQXTZY/vf3iC33/18GqiTgalGPpRystvdVB3uIZWAq3ViKs+xVXf4nS1jW1b1HyLiu+QTWWU3Hw40cmaz2pryO88t37L6zej3Dg8MFOiN0w4ccphmCgmfItEKQqWgZSCxQmfh2bLOFZejbTSHDJIUqI0w7bz6WyebaGylBcu7fLKWpv1VoQGghRcCzZaTQqOwVTZx3cMHMPgRM1ntRXQCxNs07hnZaa3SkwfZJykHnO/cWyGQWutgT1lHWv0T4/+lUe3V4Bb7yrvcfbkGgq2ScHOZ0CHicpHbGaafhSz08tIENRMaN0ke7zaV6y+1bnn67vUTjFJqbgBn3poljjVCCk4UfVwbIONTovBEcqjUpVR8Q0cx+TNRp8PLU5gm5LGSHuo7Jm4tosxkjMPkwwhBZYUWIbEtwzKvk0YpTx/pcuV1oBGNyPlakVUlOQDjMIsY5D2WWkUmSy5zFRc5mse81Uvn253B0bhdtVMN2tuPPj4cZJ6zP3GkQyDEOI88H8AM1rrR4UQjwF/WWv9D27zOAP4OnAO+BWt9VeFEP818EdCiH9CHsr62E0e+wvALwAsLi4e9fe579hLYnq2yWzZZasbMowTosSiXrBoDSJ2ByHb7fDGxoVvESnQDuGZiw0ypRjGGVXPZneQ8PVLR1PVkwJMIZGASvPpc/M1H8uQNPoRaMF0yWGlFTDhWzSHCQtVD882uTBX5oXLLTSQZBrDlARRduhLEQJOCtLSvLE9oF5xmS65PL5Ywxmd0o9aunovTvrjJPWY+5GjhqP/L+DvkvdQobV+Efip2z1Ia51prR8HFoAPCyEeBX4J+GWt9Ungl4F/cZPH/qrW+oNa6w9OTU0dcZn3HweTmJ5j8shcmbNTJcquSZzlcWm0IEw15rsYfZDATi9lsx1iSMF2N+JU3efCon+kx/eDjFaY4kjoxQlvbHdQWjFRsHDMvPlsuuwyX3HRAqbLDgXXQkrBhZkyTyxWma16zNV8FmoenmMcWmUlyA1ZonLxv4dmS5yuF2gPE5TShEnGcnPISnPIcnNImByeqT940i84JpaRC+3dSY5AKb3/83tyKOMk9Zj7gaOGknyt9TPi2j/mI59dtdZtIcTngc8AfxX426O7fhv450e9znuR67trTdPgY+cmMaTIu36TlGGcsVuPCOOYnXfBZSiZwGi4Tnm0kUdZxu4wwJfOka6hFehUkWpJFCb88UubvLTcZrLokKiI5680KZcFD9RrCCWYKNmERj7H2ZSCczNlposOV1oDtMp4Za1NoxeQXbdPG+Ty3mXXQmPmvQyOOUoQqyOHda7RSRpJb2SZOvJJf2+KXjp6TJIqLFMeWY5jzJh3k6MahoYQ4iz53oAQ4j8DNm71ACHEFJCMjIIHfA/wj8hzCp8EPg98Gnjz7pb+3uFWSUzftlicKGAZklrBwbq4xk0ULe4JHjBZgHJB0uwrMi1w7FzTqeRZ1HyXjU7A240Bv/Glt3n1iNpJnQwMmfLWdpudXghKM4hC/uiFHm93r6bLH5sr8EPvn2ch8Sk6FlKI/TnOrmVwQvtMlT3mJ4oMY003jNGjYUgTvkGiJWXXpGBbPHGyylorYqrkIchlurNM4dmHD1Y6yJ4n1w8TWsOEOM1QOp8DYRm3drSV0lxpDGgH8f4cjopr3VWOY8yYd4OjGoa/Cfwq8KAQYg24BPzsbR4zB/zaKM8ggd/SWv++EKIN/G9CCJM8JPwLd7f09xaHJTGt0awEAQRJRsWz+fTDJ3njiyvHtg7HhIdmXBSCqqVopYI4hcmiyal6AZVpenHMajPkxSMahT0+93qX22kFvrgxoO6u8aFzc/ylh+ewTEGWaUwhSFNFox/x6FyFgm3y6nqHIEnRGpIkY2uQV1PNVwssTfikGnphQrMX4TsWm92QzW7InGB/poIUAqFzo3HQKEuZG6TnllsYQuBYBjXPYrsXsTiqoroZSZYP9Cm55n6Pw04/5vQUd20UxppMY76VHMkwaK0vAt8jhCgAUmt922bcUR7iiUNu/yLw5J0u9DuRPfkMy5RMlR3OzxQZxgl/+OIKy93jec52Cn988erkBQt4fMHnydOTnJz0USl0w5AvvbFzx9c+qoDsZjdltx+zvDugWrAZxhlJptAaGoMYzzaYrXpYhmClHTJTystnC47BV9/exXdMbNMgSFKSDFphQtm3KboWEljvhMzpPAFe9S1W28ENCWalNOzlOmwzN9xCXDNT+qgorWkGARc32kzXfGqFOwsljctdx3yruaVhEEL8Nze5HQCt9T89hjWNOYBrGfujQA0haPZD6kWH5e6t+pjvHQnwxsaQ89MBU2eq9IYZnVDcENvfY86BjXe4tG4YsdLq4y1LnnpgEscy2B1ESClGie+QTQ31osVj82Xmaz6tYa74+shCle1uSHOY4FkGj8wVaQcpzUGMZci8+qviMlf1sKVktR1gSLCEROk84TxdctjuRWSZYrsbcaIiKBzwMG6XOLYMyXTZoTWISaOUr769wxfeaiCAom3y4x9a5Psendvf3G/lDYzLXce8G9zOYyiNvl4APgT83uj7HwH+/LgWNeZargkzCSi4PrcWuLg3CEZJJQ2xAlsaTJcstFZMl2wa0bWjPn0D/tLjc1zc7PPMld5dp8lrvk0nzHh2ucVszWOu7NOL86uVHBND5mElrQWmlLSGCY4pMQ2JY+b/pksZ9ZKLaUiaQcJqKyQdSZ7XCjauaZBpTRCnDJOMTOXT4FxTsq4UnmXg2RZzIvcwZgFTHm0Gg5SCpXoBUwpe2WjxtctNqp5JxXPoBQn//vkVTk37PDpXIx5t9DfzBsblrmPeDW5pGLTWezIWfwx8YC+EJIT4n8krisZ8i9Eaar5BGTimaNLV5xp9dWx4aLHC6ckitmkwVXb4iafO8DvPLvP65pAYKJrwkx9e4OETNR6crTFVbeCbkivbXZ5fGXIn2YgrrZgztoVvmSSJIkwzTCnIlKIXpcxXXaJMsVTzCZKMNFMUnPxPOVWa7V6ekA7TgNmyS5ZppACEIBvJYkRJhlKarV6ILQWubea5gDBhvuxhunmCuehazI2Szq5569zCQVzLYKHmc6XRw5CSsudgGPks62Y/pt2LSKZvXyU11mQa825w1OTzIrms/x4xcOqer2bMbfEtk+miR61q0L1ete4YqDnwo08u8dGlKVwr3zxNIfnQ6TrnpotcbveIQsXipM+JcoGNbkhZmzw4U8F3TJIMVtsRq73syFIdvRQ2WgMeOVFhrRPieyYzJRcwWW0OWc40M2WHtXZAxbNwLGN/w9xoB7iWZLrsst0NubQ7wCSfC90JEiKleH65zUpziBCC1eaARGkMKakXbRbrHimaOMmwR9c1DHlHRmEPy5BMVlwcU9APEkqeRT9IsE2olvIy39t5A4dNARyXu445bo5qGH4deEYI8bvkB8m/AvzrY1vVmJviWAYX5st84Y1NDLIjJ3TvBAH8yIUCjzwwzfc9OM9UwacxiBlEeThnquSwO4gpuxanpkpopRnGGZI8/9QdpkyVXXaHIa9t9bBti6W6waXd+JbPe5DtIXzCs/AcyU4vpObmCWWFpuIZmGa+dUohmC27bPci4jQXs1us+3kJcL1AZxiDgM4wQWnNpZ0+O72YOFNUXYPmIKFedJitOAyjjMvbQ05PFdjqhEwWHVzb4ETFu6uNWErB+ekKP/bESX772WWWm4P9HMP56UpeunqIN3B9lZRrGSxUPcI0Q+Q5cZTSY+Mw5tg4alXSPxwJ4H3X6Ka/prV+/viWNeZmaAEXZss89cAsrZdW6IUQqathn3vyHMDvvT5goHb5ySfOUvQsfMdkEKc0ehG7g5gkUyQpWOaopl+A75gsTvh8o99GCY2JQCmYLNnEsSbwEzbvYALRH77SoGg3MIGJssX7F2qcmimzNYBQKZYmfAxDYJlyf+OUUmCONkylNK5lUvFM1loB7WFMpuFE1UNp2OrHKK1oDiNAMUgyyo7Fpd0BUZxxZXfAYwsVNoDpsrtfnXQnuJbBD79/no+fq9PqR9SKzjVVSdd7A4dVSQFc2R1wuTFgsztkwrM5M13i7HTpSAnsMWPulKNqJS0CDeB3D96mtV4+roWNORxDCEquzcfPTnCp0WOrGyIQSJHPHWiGt7/GUfmTN7v8/P/5J/yzn3+a2bLHbj8eDbzJT7dxqjhR9QBYawekStMOEkxTkmYZj8xW+NPCNgrQIkOaJkWZUC/ZDOOYMITeLexErKAx+n02w4Q3t7eZ9rYxFWgJk1WTH37yDN/30BzNYe6NGIbMR5GOuoyrvkVrECOATGmminkCWAgYBAmGyOdilBzJ9kYPZ1T5tNEJ2OmExKmi7JvUPIdTkwUWaj6+c2fak1IK6iWPesm74b6DzY1Cw2o7uCbnsN4O0KOGua9f3mW7F4HWXGwMSTLFYwu3T2CPGXOnHPUv/A+4eij1gNPA68Ajx7GoMTdHjpRNk1TxfY/O8dkXN8iyDMsy+Pi5GQwh+J1nr9C4R0VLX9/R/LP/9Ar/4w8/fkg8XOUlpKNE6GYnwDENTlRc1tshQar48OkJnr3SJM1SQFEv21iGwEgF0xMWcyLjjcaNAbGCgMEBoyHIS2fXDmSxl4OU1/7wDf7smztMlVyqBYtTE0UemS/z8GQVQwhWR9PbzkwW6QYpYZLmst5pimFIZkouti1JNNimINOSIM54fatLP0y50gx46EQJxzIQArZ7ER9YrB1qHO721L5XdZZk6obXeBClBGnK29tddgcxtYJNmsFuL+LVtQ4PTJXYGcTjctYx95SjhpLed/B7IcQHgL9+LCsac1tcy+CBmRKnJgt8z/kZ3m726Q0TfMdkoxPy/Y+d4M9e32a1e290lT732jZ//VNDwCCMc/0ipfR+dYyUgqmSw1orQAiFlJLHT1aJM8X52RL1gstWJ+Bzr2/jWpJukFBwTcIo4wNLVR6cyvjmZptomM9uMEcC7UHKfsL6Zo5FoOC19Rb1B2YZhoo3tro0hzGLEwXKvr2/0ZpGvqZLuwNqnkVzEDNZdCh6Vp7YVhrXlLy13eeb232avQTTFDgm7PQiagWbMFU4lmK5OeDcVAnTvCqNcS+a0A6rQDINSRYotjsxg0ghRIpvGQiZ95LE6kZjMi5nHfNOuat5DFrr54QQH7rXixlzdKQUONJgrl5gquLx+laXbpAwWXJwTJOnL8zw0lqHS9t93ql92BnCX7y5w9JUmTBR2EIyXXFZmizsn0oLtslCzUMIcEwDpTUIwUzZ46mzk2z3hry62WWjk1cSlT2fjXY+1e3UZIWnKgU8wyCIU1Y7Q1YaA8JmcqQy1yQTDJIMx5IMYo0cxDy/3OKpM5PXbLSWKVms5WGbeslB6dzLubI7xB0N8Hl1vcMwTnFtSZJpEJIozah4DkGUkmX5pD3TkCzU/P0u6aM0oR1ltsMNFUhllyBOmSrbNIKQIEpJFUwXbWbKDrbMjdO4nHXMveSoOYaDHdAS+ABw55oIY44FORpuI4TAswymKx5TRYunH57hG8stXl9v89J6m41bBfRvw29+5Qq+Y/KJ8zM8fKKC0hr7gJiclIK5qsdmJyRIsv1Ts2lK5qoeV5oDpssuzUFE2bOROuN03adetPnI6Qk8x6Tm28xP+Gx2AhqdgC9f2uGLrze4uBsyvEX5lWdBmKRcaSQIoZmYK6MFrLSHnKzmFVV7G+10xWWnF2GPNMxP1Dxe3+gyW3FwTIP5qk9nkJCh6YQJWgksqXEt6IYJ56ZtPMtAAmvNIQsTPkpp4jTDsW4uzndUj+J6QcVsNKvj0w/PUvFtruwOSFPNhbkyc1WPrX40KgQYq7eOuXcc1WMoHfh/Sp5z+J17v5wxd0OmNZYhWaoX9jWFdnoRtiGZr3lUPItYQXfYYnAX9a2egPVuiEbQ6K8RJRlaac5MFXHk1aoYQwoWqh5acM2p2DIlJ2s+HzlVZ7MTgMoTy0XPoOy7TJZtojhlexBwoupxYabCXNUHYfDk4hSv7/QIo5SXVzp8+WLrmp7vhYrBo/M1Lm73aA4TfNtkmGYoIfnYAwJLSmbLLtIQ2DJXNt0hIoxTFLDeHtIcJFS8hKoPJc/mwbkK66MZ0d0g4cNnp6i4Nt0gpdFPECJlkOR6TrvDkGGkiDNFxbOYrXiYI12lvVP7ncpaXNPprvKS3JJr8fRDM/SDmChVeKaJf0Ckb68QYKzeOuZecFTD8KrW+ppOZyHEjzPufv62YC82rbTGsQzmqh5xqgkTRabE/kZ0t/uFN4r5p6lmPQj5/GurZCrjA6cmcCzj0NOwZV31JgwhMAzJRNHhkw9O88ylJk4Knm1Qcg3+8WdfZ7MbkiSahxfK/MSHFpmvehimoOLaPO5UCdKM73lklv8yiXnh0g4buwHnT1WZKRVZ3h3y9mabqZJNwbEZxCnPX2nyiQfqpCrjLy41mC+7eI7FRMEmyRQrnZCdXsRk0Wa+lstyt4YJJcdgu5NxYb4EqohnGszVPExTstuNaAUJlhSs7AYUbMlLqx3qBQcN2IZkeXfIfM3jRPVq78M7kbU4GF7K31+LEzWbnV6EOfLYDhYCjI3CmHvBUQ3D3+VGI3DYbWPeBa6PTQshmKu6OJak5Jp87eKQKEoI7jDXUJN5JVCUQqquqjO9up0Sqm0WakV+7ImTNG5TFXMwOX1mspif4qsegyjh337lChvdgIJtYfmCi1s9/s0zl3n8ZJ2TdZ9X1zukI0mLTz80zeMLkzw6V+fFlTaNQUwcQ6ZBmhZTJRdTSjKVEcQZ/UHEn6x3eXN1hyRTLNaLPLAwwZOLk8xXXVKV5yUmiw7tICGIMqq+zcKET9E1UQoYVSJlCqSE7W6IaRoMopii4yOEpOzZBEmGbUomCjbzVW9/jCi8c1mL68NLwL7Xc30hwK0Y9zqMOSq3U1f9AeAHgXkhxP9+4K4y78r04TE34+DmoZRmrR1QcExmSjBRdCm5FrpztLfMBQwTkjR/k69vjTCAVj/iT1/f5MJsiarn4Nk2kIc98g5ktR9mgjw5PVW02e5H+LbFMMrIFCgp8G2TomuRKY0wUsJYEcYxz1wcECeQaYVvWzy/0ibJ8qaw6bJDK0gATZJkFG2TJNG4viBJNYKMz7/d5MtvbrK+n1vpUTI3+LlPnOb0VImNzpAkhUfmS9imgWsKfMfAs03CJKMdJNhSomG/zHWmkmsvxXGKQGEbkiTN8uE9Ohfau36Qz72QtTgYXgqTXIZ8baSwuzfI6LjnV4/5zuF2HsM68Czwl4GvH7i9Rz6vecy3EXubhxL6mjnSS5MFPrRUZa0TsHuEBrgQbmr2XQkFJ9cN2upEvLbVoexYnKh4lH2H5iAmG1XtnKh612w+QgpsQzJZcmj0IjA0nrknC5ERpgqlNKYpcB2TXiuk6JokERRcgyTVREnG5Z0+S1MF6n6uk1TyLOJE8eW3G2x3U1zT4OHZGi8tbx0wCjm9FP6fv7jET358id1eQmuQcLnZo+pYCAMeni2zUPNZbQW0hwlnJkuUPYuVZt71XXRMhklGvWSTZDBRtIkzTcnOS2sPhpCued1uMaXvTtjLVxQdk/K0RZRmaM01hQA3e8y412HMUbmduuo3gG8IIX5Daz32EO4TrolLp4oJz+ED56Z5Y3fIF97uvKNrCw1xkpEocA3Fn72yQWeY0I81J2oeH39giu86P4Njyms2n4MJ8kxrTk8WGEQpC097/PMvXOaNzS5BlHF6yudjZ6YoeSZVP8YadSJLJFGSstYa8M3NPqXLFtWCydmpEq5p8v6TNU5N+Wy2AipFhwnf5usruxxm4YIUvrHcQSlo9vpcbKTXKERKYKkA7zs3yWTJoeybdMOEqZLDUr1IkmZ0wpTZskNzkKAtmCzYnJwo3PIUftiUvjvl+nyFZ5u3HR40lu4ec6fcLpT0W1rrnwCeF0LcUOuotX7s2FY25h1xvdSC75j81EcW3rFhCDS4ChwrF8x7ab1LnEGQwEo7pD2Ima54fPBUHZWq/c3nYILcGsXZbdPgA0uT/JPpCuvdQT5XWUjiTPHspSY1z6Q5TElSzYCEqaLNVjdiuuSSZIqtVkijHfCJC9OcrZdw3Qpv7/TZ7gYEScZizeWVrRtdpEzB8lab5f7hv6MCLg3g0jca7PZinlicREo4O1UiVRohJYYUlD2bqbJHbxiz1YvxrIjWMLllmOadxvnvJl8xlu4ec6fcLpT0t0dff/i4FzLm3nPwhDpX9ch0nR94pM5nX9k99OcLJgxu4RcWANeEB+c9+oEiA1rDPFdgG7nA35XmgP/4yjqn6z5F19nffPZmKK+3AxDZNUNvigWb84U8R5Gmisu7Az794Awb7ZC1zpAwUkxWbLJM882NPgXXRCnFRidgpdlnrRPxxFKVT16YZbbssrw7ZHcQcn6+zkYn4oWNq21yJjBZ5sijUb90sYsh4NxMieXWgI9WJ3FMSZQonFEvRC/OEEJjGAJDctMwzb2I899NvmIs3T3mTrldKGlj9N+/obX+OwfvE0L8I+Dv3PioMd+OuJbBqYkC/+33PcJfeaLFHzx3mddXehg+nJuZYKbiMwgVr6zt8MJ6cug1BuSJ59laiaiQcXG3TzrqixACLCM3RN1hxnIz4OkL5f3NJ0wytnvR/lS46ZJz6KaoRb6RWdLEc0wWJwpEqeLxhSrbnZDNTkgcZ2z0Ara6ITXPpl6w2e7EfOWtBg/Olzg95XN6qgBaYRsClb3N8rZGApYD4eG/3k155u0ul3cHTBXabLcjPv3INPXCaNSnFPSDlG6UYMoQy5T4lkGSKaS+KhmilGa9HWCIvEx3L+5/N3H+u8lX3Kscx5jvDI5arvq93GgEfuCQ28Z8G2OakoUJH9OQnP3+GsMkJYxTvrq8xatXekxVLWoFH4sON9s7uyk8e6nJYydrnKoXaA1imn1NqsAzBdWizdnJIier3r4k98Hkp2fnG+p2L2LRunH4jSEEAkYDdwxsQ2IZeUx/aarIk0nKZ1/aYKcXYRiSMzNlHMtgGCU0BhHtvsMjC1XQ8Hajx/NXWhhWgQdPGYRxwnorYBDcWQd4CCy3MxrtAa61Q6ozvvvCFNvdCMvSvL0zYL7u4jsmcZKx0QmxDYkYNbrNVvLQ11orwLHyMNRk0UFpfddx/uvzFdeHqA4LWd2LHMeY7wxul2P4JeBvAGeEEC8euKsEfOk4FzbmeDh4ckxSxd/6v5/h/3uzdcPPjXraDi1OWu2k/OffXcHC4tRkiS++vk03TCl4Fk8s1Pjw2QkKnr0fRrqT5KeUgsmSw2orQEqFIQWzFY9M5VLaH1yqs1T1+Q8vr/PWZhdTChxD0IoUQsHOMOLZS00mSjYrzQGemU9z60cpKRLfMklVQnAX6rND4EuX+1ze6fPipS0enp/g0m6AEoKibfD4Yp0HT5TR5GElbzQudE862zLEfvXQZidgquTeEOe/mxzE9SGqqm/RHg0mGpemjrkbbucx/CbwWeB/Af6HA7f3tNbNY1vVmGNFSgEK/sVXXznUKAA39RggNxgnCh4zNZ9H5kt87NwkK80BlmlS9x1O1PxryjbvNPlZsE3max6GYL+BS2v2f36i7PJjjy/whTcavLzWYqUZU3ZNPnpukvYw4a2tPm9t9/PnMw1UonBMiSPBKjoUXBOrH7J1B0ODDrI2gLVBxNfXNlisGNSKDoNY8rW3NimHghobAAAgAElEQVS6kqmSv59glzL/vSHP8+z0IpTWxKlmquRcs/nfTQ7i+lLUOMl4ea3DUt3HM81xaeqYu+J2OYYO0AF+GkAIMU3e/1QUQhTHg3ruXwZhwu8/v3pXj/VlviF99WKTCd/Gs00enc/lMU7WfJzrQkSHJT+nSw6Z1rkWkLzRazixJ8gXXxXku34gzfc+PMMnLtS5tNUj1vk87NXWEMeSlD0D2zApDyNavYj1boZrGZye8BlmmsWkwFazz3Mbdz/ZKAUudzLWO0MKHqxIg1NTXSq+w3JzgCElWmvKroVrGUgBMyWHRCkEgoJ99eN3t70G13tjQgqyUSc0jEtTx9wdR1VX/RHgnwIngG1gCXiN8aCe+5ZBnKJuUq55kL1k8R4S+OSDdV5Y6VH0TJrDBDfO2B3EPLZQphOaVLWN6177p3V9CGt7dHK+2cn4MBmI5ebwmo2zMYhZqHr0yhk7vZBhlLLTixmECY7lMlkwiZXi/FyJgilpBQll1+Tl1S5BnKGUYmmQsNPLuEvnAUWegygJMITilfU+jyzViFIDpVOUhqJrUvEsXt3oko3EBh+dr1yz4d9tr8H13pgeXV/p/Bcal6aOuRuOmnz+B8BTwOe01k8IIT7FyIsYc39SsE3OL9V59eXDS1cBqiacnfWJEsVOL8Q1DD72wBQfPDPFWjsAkUtgZEqx0wl5ZaXFyXoBzzH4/kfmODVZvOZ6eyGstV50pJPxwWTpYdPNojRFi7zbOEoyXlrr4I8MjGsZdKKUc5MFTkz4nKoVuNjos9OPmC57vLLaphNk2LbFdNWkM4wwgDSDYco1DW9HIQqhPmHTDWM22yHtQcpqY4g0BHM1j/cvVFma8BFSoJWmOYjxLGNfDfVuew0O88Yena/QHiYMonenNHWsyXT/c1TDkGitd4UQUgghtdZ/OipXHXOfUnAtfujxRZ653GK9r264/0LdZHaihGdKdvoxi3WLiaLLJy7MEKYKz8xHXcZKs7Lb562dAWemisxWPYI4498/t8xPPLnIZMnDtq96A/fqZHxw47QsyZmpIkKAsVhlsx2wM4hJUsVUyWWh6qNFXgprGZKpsk2Qpgg0Jc8kCFNCA+IUSp7AizUb1yWnHeBW+equgrgRUXTgT1/bxjIkMxUPQ0jieIBnGkydd/MRpVqz1gr2m/z2PKa77TU4rBS17FrvyuY81mR6b3BUw9AWQhSBPwd+QwixzVhE775GSsFT56b4+U+e4/dfWGZnJ0QrmK4L6uUSS5NlDEOw1U0oe5qZssvJWoEk06RK89hChZc3uvT6Ma5lMl/1mCg4bHaG7PQiXlvvsTOIeXC6zPc+OsdsxQPuvgv3dk1aliFxRsbqzFSJ+VpGqjQnKh7bvYg4zWj0YqaKNlGaMVvOb88yzXYvJArzjV+lmvaNdpKCCxUpqfkW272I1iFWIgSIYHm7i+sItMqoFVyCRNIehFzc6eGYJludkJpvU3ItlL7az/BOeg2uL0V9N0pTx5pM7x2Oahh+lPzv/peBnwEqwN8/rkWN+dZQsE0+9eAcTy7VWO9GoBWmMDg7XeCt7SEbnYBUDTg16bNU91mcKBIkGVXPouBaPGkZvLLeZbJi8cXXG1hSs9EKWetElDyT+Uo+Pe0Lb+zwo++f3/cc6kWbRi/KZwi8w5PxHvFoWM12b6Q4WnY4WfPZHoWtHNOi0Y94favHbNlBCUHNtdhOFLHKm/c0HGoUAB6f95itVllpDiE73DBA/iHZCEAEmk7U48Fpg3LBZpBoBHkYSWkwDAEiV2MNkoQwzXBN477uNRhrMr13OJJh0FoPDnz7a8e0ljHfYvaqf6QQWIbJTj9iquRgSJOPn51Eac1qa4gQ0I8y4kwhhODsdAnXMkiqHiXXwjAEE67DH72yyVYvJFWaDyzVKbgWWZjQGQYsN3tMeC7dJNtPjE6VHAq2eVcnY6U0Sab2PY3NTq7EWvYt4iQj02BIQZxlCCSmKZkpu6y2gnzaWcWh2w34cqNLGIPNrUNF7VBy2jGp+jZbXZPbOcwaaAbw2mqbR0/6nJqaZmmikFcMSYFS+Qk7SFI2OyFCg2HI24Zevp3j92NNpvcOt2tw63FtUcr+XYDWWpePZVVjvmW4lsFC1eNyU3F2sohtXa34WZzwOTNdYrMT5gNwtGah6uM7+Z+NIw3mJ3zW2wEV3+ZH33+Cb26XuLjZw7dNoiRlvdFnrRNyZTck1ZofeHSWC3NV0kyx248pTBzVab3KwTh2N4oQqSIzBPOVPNntjhRH28OYF1c6aK1wbJOzdZ8TFY8J36QVpCxMF3DesnCsGKEgusXY08mCQckzyZSD3jx6FLWdwXIrYr05YL3iY0hJnCgSpelFCZudkPmqR9Gzbht6Oa74/b0yNmNNpvcOt+tjKN3q/jHvDfSousi2bgwBuJaRi991AiwtaAxiTFNeO2dh9LXo2XzXA9O4pslzV5q0ByGXm0POT1dYqBfYaIf8p1e3WKwW8DzrrsIMB+PYz11p8RtfuUKUpFimwc98eImnHpgizRRaaV5e7yClZhBpumFEP0h4+vwUbzUGlD2DYeIwV3boRTGGAY6C6JBj0KwNFxZrXJiu8I0rO6zdvJDrxtcWuNLJ+K2/uMREyeF0Pc/dlDwTlWnQ0A3TfFCQZVzzmhzcsIFjid/fa2Mz1mR6b3Dnx7Ux7zluFQJQSrPdi/AsY/++vQ0J8s3KNiW+k3fZhoniex+c4VTdo9mL+A8vbTI34dGPUkqeyWY7ppekWLZxQ5jhKCfXvTh2P0n4zWeuULANpssuUZrym1+7wslpjwnPo+Jb7FyJmCjYVDxBEGdc2R2w3Y8QCk5OFDg9UUQr+HdfX2atHSBlRtGy8Ow8BNXopISj/MNvf2WVpx9MmSw5FFwY3mFf3MoQ/uXnvskvfuZhTpSL7PRizk4VKLoWWmka/YjpkrP/mly/YdeL9j2P3x9Xsvh+zpOMyTk2wyCEcMmrmJzR8/xbrfX/NLrvvwL+Fnmg9g+01v/9ca1jzO25VQjgZv0D2ShPcNh9SkLBtSnZFp4tGUb5bOUs05iGRGpBkulrwgxHPbnuGbFGMyBOFDNlD600k0WXbpDiS8nihE9nGLPbC+gOE1wnf27LMCg5Jv0oZbsXslgvcGaqyM99/AwrzQFCCJJEUy5YLDfa/N6L25RNge84DKOQz72yyc9+9CTuTT41DvDAtEM/Trh8SBb77R78yude56c+chqQnJkqMFVy2OlFdIOEgmWwWC8AN3oHOyNl2nsZv7+fk8XfzrmW9wLH6TFEwKe11n0hhAV8UQjxWcAjr3J6TGsdjWQ2xrzL3CwEcLuE4sH74jTLR3OSP8ayJT/w6Bx/8OI6u33FZNHmv/joKc5M5RHKvdnId3Jy3TNi7TDEkILOIGKm6tEZJLiWZLacezJvbndp9BN2B300UHVNPvbANM1hAgjWWvl4TM8ycC2TWsHFNCQPz5ZQwHY3BiWoF3Pdo4JtsBz3MITgxz9yhn/9F5doHFBptYDzMx4nqgVcG660G4cm59ZaGc9e3Oa7HjrBZjfgzFSJqmsyjFIMIdjuRTfxDhSTJYfdfnzP4vf3a7J43Ctx/BybYdBaa2BPdMHiqmDnLwH/q9Y6Gv3c9nGtYcydcVgI4HYJxb37ukHE7iCmXrRZ74b7Cp+zVZ+f/cgpPNdg2neRlmTjug/1noTDUU6uak9SYrbG3/z0Of7VFy+x3BjgWJKf/64zVEsugyDhueU2pyaLzFQ8ekHCVjcEFALwbYP5qotlSCwpqc3YnJossNUNaQwSTlRdPnKuwh+8aBAnKY7t0A9iPNvEtU0cy+JnnjrFc8u77PZCTkwUmCq4tIcpgyTFSCULBVgZcAMSUNJgsuASJorWIKI5SJiveRTdPAHdGJXcXr9hF2yTwoR5z07K92OyeNwr8a3hWHMMQggD+DpwDvgVrfVXhRDnge8SQvxD8rLv/05r/bVDHvsLwC8ALC4uHucyx9yGWyUUr1Y1DVia8PermtrDhIWqhxZcMyPger2jzU7Iwqhk9nYn1+tPih85M8X7T1RpDEImCy7VkgtArBSZ0viOge8YVH0TrTO2ujFRmpexXpjJvZZMa2zLwLYMfNukFyYs1Hzmaz4/+9SAX//KZTq7Q3xL8otPn8OUJoahmShUMAzBlcYQ3zZI0ozdfshczedExUWrmJXXe4e+nt5oqJEtco+p5lsUXQu46h1M3cI7uJdhnvstWXw/h7/uJ47VMGitM+BxIUQV+F0hxKOj56yRay99CPgtIcSZkYdx8LG/CvwqwAc/+MG7lDgbc6+4VULxZlVNexIUe9zsQ60Ftz253uqkuGcQ9ihYJmXPYqUZYBkQpxrTNDkz5ePbFhJBaxhTL+ajR/cMktIa27yqX/TXPnGWz7xvhq3mkMmyR6wFF7d7DBNFyTGZLLm8tt5nvRWihMYwDKaLDnMVn61exJl6wnorJBylG0zg7LTPQwuTeJbJYr2AFHBld0jRNjHMXATvOLyDW3E/JYvv1/DX/ca3pCpJa90WQnwe+AywCvy7kSF4RgihgElg51uxljH3nqN+WK//ub2chNCHq6nuNbBJKe7opGiakofmyoRxm1QpLFswV3NZrBVpDGLS0TyEmXIeTrqZQZJSMF8rMVcpstwc4kiYKLrUlCLRmqpngdbMVT2SLO+b6EYxc7U61eI0phA45wS7/VxJtuxa/PRTp+iHGa5tYJsSKQRF1+DK7jD3rq5TXt373cbJ1pz7Mfx1P3KcVUlT5OJ7bSGEB3wP8I/I8w6fBj4/CivZQOO41jHm+Dnqh/Xgzx3MSay2g/0EouTGUs3ZiottyH2jIqUgTvJutMNOipnWTBQcPvPILKHKsIVkuZWrwc5XPaI0Q2v2u65vF0rZM0qebe5XEQVBTKYFM1WPld0Bz17ZJc3gueUOQaJ4/8kJzs+V2OnGlOs2tm3w9PkZpssuayogSRVKaVKl6IcZS1M+psy9lvYwoWibaAFC5xLpW90QKQWmlPuvx90YiqOMAP12534Lf92PHKfHMAf82ijPIIHf0lr/vhDCBv6lEOJlcnXjv3p9GGnM/cdRP6zX5yTyk3/GRjtg6Salmnsho9mKy5XG4Bo9pDhTuPLaipQ9z0QagrJtk2aK6ZKD1hAk+eCfueq1nsFRlV1dy2Cm5FD2TJIk48tvb/PMpV1MCa4liBLNF9/Y5qPnJ5kpFKkVIjzb4HStQLlgI6Wg5ltsdEKCkXGrF2xc6+pHsTmIuLw7IFGK9VbAVi/Et0ymKw6zJZcru4P9EN3NqnIO2/DfSyNA76fw1/3IcVYlvQg8ccjtMfCzx/W8Y949jvph3ctJKGCtHaC0JkryckzXMkiVItOaYT/BNCVa5/0UtiGxTcnJCQ/HNK5RJr3dxLilycItT9l7G6nQXJMwv9n1FicKJJlismCTZiAlaKVxTIgUbLVCaq6LZRicrBVYmCxck0x+33wF1zIwhGC1HVwNryUZu/2YkzWP1jClFyUEUULJNdnsBGRKkWZwqu5j3+Q1uJnHtWdwpZAEccoLyy3mqy6hTlneGfDKuuappWlqpXFo5judcefzmGNnT/AO8mS0IQQC2GgHoxOqQGvNTi9iuujwjZUWX3qrwU43AjTnZ0p85tE5zs+W0YA/GokpEVeb7RTXbPo382AOM1x7G2mQpOz2Y+qFfFzpwRP0YdcLw4SZmoVl5LXYvpufwDMFYZZQsiXCNSk65n4yeRCn7PTyMNrepn3Q6CitqRdsjFGuJkk0lxoBb+/0GcQZJyouUyUPy5TYhsSQAt8yrpHROMzjmqu4KK1JFez0Qpr9iGcvN4mSlP/4yjrdYf7+XJgr84tPn+PpB6fvG+9hzL1nbBjGHCthknFxu8daJ8CSkrmqx1K9wGTJYbUVIKXCkILZikeSKS43ery80qY7CAHNMEp5ea2L0Hkl0eJEAceU1yS5k1Sxdsio0KN4MHsbqSFgEGW4pmSYZBRd84aT+MHrPfP2Dv/qS5fphjG2CcMYoiDBMuDh+Sqe6bDcDnl8ocpc1duP5+/242vWv/cce0ZHaFhtB2ilQcDl3T5KKTpRSpZpVtshliHZ7UWcnirmHsYg5oFRMPZmSXrINa3WWkMMAWvtIQrNH7+8zu5AYQBCwlv/P3tvHlz5dd13fu797W9/D/vSDXQ3m93NJimSoiiJkmhZq+1EtrwoEzteUpMpz7hqqjL2pJykPPljHFeNU4kzMx7PuMqVqXKcSSXeorIty5E30bZkURQ3cSebvaHR2PH25bff+eP3AAJooBuNBhpo8fepQpF477fci9fvnPu755zvWWryu89e5ljJ5txEadsnh3shLnEvjPEokzqGlAMjjhVvLTT41qUqsv+kEMbJltCxcoaJsoMmwDQ04ljRdiMurXaZb3rM13u0ei5RBKWcgRJ5Vtoeo0UbL9TWezkM5631ngt7KXh615Amgd+MqdP1k+2eQMXbZj0tNbv8+tPvYJkaAzmLUsYk6PmcOubw6EiRoVKes+NFRnIWJ4dyWP2Vd6QUURSja8l8N2ZWGZpcv89w3mKu3sPUBJoUKCHIGjqVsgmArmkEcUzbDTB1jXLGwI9jZLxzi1BDk+RsnbmrLipOns6KlqTtxWgCpADbBC+Eaieg6nrbzv1eqDq+F8Z41EkdQ8qB4QURb8y3sAyNvJP0Sbiy2mW86BD1t0wWmy5BP3dfimRbZKHR5Xrdpd5vvDzXDTD1KnnbYKXoMDWQI2PpaOL20li3Y82QrtUPuH64Xom9XcptHCtena3TcEPGLYN3lto0ehGehNlVD0u4/N2xCkKBF8bMrbZY7HRxNJ2hfIbrtR5SB1vXKWcMNCk33cMNIpb6ukhZ0+DcaIFMtZ30lxASP4owNMFQzmSyksH3IxZaHla9t56xtF2GGEDbDRkv2WgC2kFIveWia9ALQdcgCCGKwNCgYBjbzv0gq473Y5WfVkbvD6ljSDkw1oT2NE0kDWo0QRgpvDDm0kqb5aaHH0VkTUHRMQkDKGV1giCg4797nSQe0aXe8zF0QbXjk7eN5Ises+0KebcFTxsDy1lLW48xRDHbFtl1/ZB2EGJpknrPY7HpoaKIclZjomDSaLtYOry2WOfrby/xzMUmG9s8nC/Ck+fHeGRqGNe3eGyqvH6PjUbNMRN5jPGKQ80NWG37dP2QsYLDUMFkOO8QBDELLY/xok3WNrbdmlozskEUo4CJcobllsdUJUO7G/DI8TIvXq3R9ZO/cyWn89mHJjg9VrzBkB5k1fF+rfLTyuj9IXUMKQeGrWsM521qHZ+uF+KFMQVbx5AiCYB2At5cqPOty6tEfoDjGDw2XcEyTfKWh5ICoRTdEKSuYUrJYNYiiGKCKMaS2r4UPG0MLJ8eujErCd41XI2ux/Wax+MnSvzF60t0vRDbFJweLqJQ1L0eX3trgWcvN5hr39j557UGvPa381Remucff+oc7zteWn9vO6OWt02+9/wY840esQJTl0yWk/7QbhihBGQ3yWncuDUFG1J4BYzkLSpZg4miwwdOVnjtWo1rqx3QBA+Nl/nsQ+PrzZg2clBVx/u5yk8ro/eH1DGkHBi6LnlsqszLs3W8UEeTgvPjRWodn2onYKnd5YWrVardkMWah8DjpattJko6HQ+ivj6ppYOja4yXHaodn1gle+ZjJQfb0Pal4Olmgeo4VszXeygUbhgznLNpGTo/8sQEv/fNqziGjmkIFhouBdvg1dnmtk5hI9Uu/P4z73B+LM9jU4NIuXN8oJgxKWbMTVXhkVKYUqJLuSsjKGVSt/Dq9QbRmhDhRJGpoRxDOZteEKFLwfGB7LZOYe0aB1F1vJ+r/LQyen9IHUPKgVLKmDx5chA/jjFlokHU6Ab4Ycxq06XT81moecQxWBbEPiw0w039l8MQOp6PbSTVwMdKSbrmxlXlQRY8dfyQ2VoPTcJy22OsbKM1PQayWb7whOSlmTrNXkAla3NmOMMffLt964sCy82A56/WODVcoJy1bmnUtqsKXytSu5URjOOkonqqkkHIJKZS7wYcrxicGMrt2qkeRNXxfq/ybzbGNFtpd6SOIeXA0XWJzrtiepPlDJdXOgRKEEQhQQy2kRg+oRTbLbYXOornry4xWZpipeMzlLeIldrTqvJ2jEPcz+Ax9eQpxdQkK02PoZzJaN5mopzhB983yRvzdTr9La4//vY8cPMnBgA3hJnlDt+8tMJT94+QsXRMTTLWDxavifltHMvWLZftVGy3Y6OsB0AsFZ1uErfImPomscNbsd9O+CBW+duNMc1W2j2pY0i562QsnY+cGkSgUIHPldUFggAwVFITEG5/3uWlRA5j0tC4XusymLMQtymmcrvGYS2APlp0mKm2qXZ6XKv2eGCiiCLZjillTB61h7i62uHqUotjAznmOo1bjsWwNaqux5vzLSbKGU4N5VnaUo9hIgmiGD+I6IURbhjimBaws4rtRsIwxg2j9b9TGMWEsWJmpcNCy2W54TFctJkazO7aSB7Eqvug9Y/SbKXbI3UMKYdCzjH46OlhxssOq72YZy+vIIQkCkL0MOn5upVqo8tMtYsXJXvkeVtfF+DbjajcXozD2jbHOwtN/vOzV7i80kWg8LyYzz06Tr0bULANbEPj1GAOAfzjT5/ml//4ZV5e8Le9JsBQRlJyTIYdh9WOx/VaF0vXyFo6UibSGJdX2qDg7YU2r87VsfRk3E/dP8BEOXfLLZekunmV5aaH0AT3DWfJWybLLY9qx+d4JYOla0m2V10yPZC9pZE8yFX3QW4HptlKt0fqGFIOjYyl88BYiZ/9zFm++MI1un6II+GZKw2+da15w/GXWvBnr8zysbMjPDJdoZQxkULsSlQO9mYcpBTkLMnvPT/DaiegkrMwNMGLcw2GSiafODe2fr4SyTVPjRT53374A/zJK7P84cvXma+HhIANlHKSrG0ShoqcZWBbGkKTKEVfskKx0nQJwpiZapeio/P2YoMwimi6MSKO+dJLAT/w2DhFx1rfcoljRc8L8eOYrKHjRzH/9dV5Lq+0CaLktXon4MOnKpRzBpYuyVpJNpMfxYTR9sV8G7mXV91pttLtkTqGlENFSsHUQI7PPTxJSIyuBKZ5nZVOl6vVkHjL8a8te0RqnkrWwg8V9w/lWW77HK842KZ+U2O1V+PgBhFSSgoZnV6ocENFuxdwealLZzpYP3/j9QeLNl/4wDQfPztCyw+5ttrh0mKbhh/S6IaEkWKwYKEbGjlb51hfaXah0es7OYVCsdL2+/UbGraukTFN/CgiCmMmSw66LnGDiFev1/jWlRpxrKhkLCbKNovNHi03xJCSehgSKsViy2OqnCFQMUEYIYQgiCL8UOL7EZp16zjFvbjqTrOVbo/UMaQcOlIKjg1mWWi4+FFEJZ/h8WODBMESs62trgEWqgFfevYClg7nJop84Nw0J/VEsvtmxmqvxqFkmWQNjYVGD62vgIpSCBWh6+/u7Usp1uUsEBG6lDx4rIKpSbwg4upqB4Si3Q14c7nFattnKGvxwESR+0YKBFHM1ZUuHT+JM+hC4EYhcSzwvBDLMAgjha1rmKaGEskq/tpqh5eu1inZBoYhaXYDXrhapeMGxLHCdjR6bkTHC4n6MQbPj5mvtzE1SbMXoEl4Y6HF2dE8p0cK2z5xbedYIRlD3A9i7NTrYet7h0Hax2H3pI4h5Uiw8UtbcgyWWx7jqw1mW70bjq3HUK8m//+tpQZ/duHb/NPveZhHT1TQpbjpU8BejEMua/L3P3ScX/3zC1yv99Ck5LETFT5+/wiOoa87oY1yFopE82jNwDqWzvRQjoWGi1nQ+VDepuQYZE0dqy/4pwvR3+IxyZgGLc/n6krM8QGH1+eaxEKQtQ3OjxfJmgZCgRslBj/u3wPAMXTqvYChgkMQ96i1XRCC8ZKDrklKWZPBgk3b9XnuSo2CrZNzDKJIcXGpQ8bQOTGUu2mjJS8MCcIYBFyrdfH6fS50Iej6IUJENL2Ysm2iGxooMPod6+6k0dCdslMc426msd4LKbOpY0g5Mqx9aYcLDj/2xHEypqQbzPDqonvT8+bb8P9940104ywPjJcZ76uZ3uo+t8Mjxwb4n79H8tZii5ylUcnYKJU8oWhCbCtnsdTyON43+nBrp6QEDORNOl6EG0ZYus77jpUYKdhcXW2z2PKxdclY0SFn68zUuknHt16AH0Qst3pkDQM/ihnJWwzkLfK2QaPrk7c1hgsZJssOpp44K1PTiPtz0KVEl9ANItwo2iTjvZ2ceRDFzNV7KKVY7frMrnZpeSEtz+Ov31zi0lKLgm1wbrzAU2fGmRrMcHwgSxyrW8aE7rbhvJtprGv3CuMYFIyXnB0LCg+TozeilBSgnLP4rtPDjBVsvvzKLCutgKVOh6vVG7eWAK4u+Sw0fD5yyjiQL7WUieyFqeksNT28QDGct9adUBDF6/vvcaxQQLQloOu6Ie0wJKfrGPb2khOOoZMz9fUitEhBJWtR6UuBuEHESjtJcTX1RK7cMSTX6j3maj1A8cB4gR/94DTDeZvZWpcwjtGlZLzoJD2v+1tBiERiI+q3GI0iBQpsLWkgtJPBlFIgVSJg2OgFeH5IrePx+nyT1+bqLDZ7BBHEfswr1xt4oeInPnSSuC9UuNT0dowJ3e1ag7sZUF+7VxhFLLc9en7IldU2T0wNUMia+3qvOyV1DClHEk0INE1Szlg8Pj3ETLXHYFvnarW27fHLAUDAcsejmEm+ZPvRE3kjtqFxejjPdL8F6cYCtLX997YbUOsG+GFErGCs5GBokisrbb7y2jx+GGPqks+eH2N6MLfp+hu3auK+rPjGGIiBZL7hokmBZUh0KZiptXlrrslg1uTMaI4oUqg4TlqeGhr3Dec3zUfvV4yvxVg+dnqI1+earLQ9hICzo3kmKhlg5xara/IdKGh2fa7Veiy3POYbHVquR6TaQCIAACAASURBVBCCY0riWOEGcHW1x1LH5bQs4PXbmZrGjQFs4pvf8yC4mwH1SCk6XsDbiy0WGl0WGh6aECw1PL7n4TEqWWtf73cnpI4h5UgiZbInvtB0mRjI4AYxpgYDVo1V78bjB0zI2Q5xrGj1jfPW1pa3chS7Wa1KKbDk9tsew3mLF2ZqaEJgGRplx2Cp5TEcKb7y2jwZw2CkoNPqhXzltXl+6oMnsLc8Oaz1xF6TENkY3I5UsrK3+n2yV92Qatfj6koHTdOI272kE5vf4+0Bm0rGoJK11+XJiTdvZ621Mf3oqUSyZG3cW5+A4EaDKaVgtGDz4kyNthegawKFxA8USoBSEiUUKIVjCnQBHS9c/zvF62q772aGHUbW091MYxUKllseKy2PejfCMQwQio7n89K1Gk/dN7zp8z5MUseQcmRJ6hwKvHq9wZnRPGGUpdru8fvfXr7h2MGCRcYWLDe8pDq65JC1Dfww4uJiC9vUEH0jsJ3B38uWwlZHMpAzGS3aOGvbLULQ8UKaQaINNVJIvm55R6fe82iHIfaWr+DNnFMQJmOSIjEwQRijFLR7PpcWa7yy9G5675dfWeWD9w/xg++fZHogtynwaxsafhDf1AmutV/t+eF6f+01g7nmDA1dcmYkR6Prk8lZPHKshB9GXFlu0wtCTE0yUDT51PlRTg8XGC3YZMykxmLbzLA7lFDfC3czjVUJqGRNwljhBhGlbNKPw9ANoljhx/Em6ZjDJHUMKUeWOFY03ZATg1mEFLRcjxe2KXwrG/Cx+4co2zbjJYfr9S7X6h3KGYOVts+lpQ7jFZszI0UMTW5r8G93tbqdI1lpeci+EVszcACO1DA0QasXkneSJwZTl+R0/ZbXXBsrwFLLY6xos9zyaPVCFho9pIh5/lqVmfpmbaZaBN94axnP9/nxj53k7GiJMIy5XksaJc033X6L0e2doB/F+GESQAcYLlhMDWTXjXrclwrRNcnJ4SxeBAXHxNE1HhgrsNRwyWUMzg0XmRrOUu2FZFoeYyW5cz/uQ6o1uFtprJoQ5G2DMyM5Om6EAASCnK1h9WXljwqpY0g5smwVfrtYbXG5euM+0tnxHO8/OYBtanhBxCuzdS4vdlhp9ah7MZEKOVbK8NZYk+99cAJT124w+Le7pbC9I4kZylustv1N6ZyrbsCDE2Veulal3vPWYwxbt5HWrin7UtpSCuIwXtdrWms9WjAjFho9wjjkhat1ZuvbC/Y1Yri81ODCfAtJspW20vI5M5Kj6UZMlh0yUtzgBNccVM7WKWQM2q5Pxw3ouQHLnaRntaVLwjgmjhWa1CgagpKjc3Y0B0JQsgxWux7VdoBlaoyVHHQpNivibuNwD6vW4CDlODbeY6zk4EeJftXFlS4lx6CStXh4snRktpEgdQwpR5itxvrt2dVtj6u2u0iSIrKZapeOG1Hruby11KLnR1imTtbSeXW2STlj8eR9QzcY/Ntdre7kSLKmTrair6dzmrpE1yQnBrMMZUzKBZOCYdzgFOJYEccKL4hYbrkIIVBKUbCNxPiKZN9/sdHjWq1DEEbEYcxys3dDdfhGFlvw/JUVFutusp0mJXlTx4tiah2PiUqGgYyJ3NBidC2WYWgaS80e37y0ylzNRSqF40gsQ8PRBNLQyBsmYwWLOBZEMaxGIcMFi0rBZqBgc3W1Q7afjrnJ0cU7JwfcDSN9UNwq1XZjAsN3hTFKJA2tjpJTgNQxpBxhthprY4dHbakZlDMGbTei1QuIVUy77xCElNiaZLHhMpCFC4tt3nesnGTtSG3dGAdREnwdyCR1ALauYW5QLN36hd84tl6QVBiPFOz144J+qqrev4auSQxTo5yxblBCXYsrRFHMQtNFEwLTkHS9gHrPJ4giNCno+REdP6LeCfAikCi4xf67B7w9X2e1HTFespmsZPn6pWW+++wwPV/h+iFzQcxjx99tMRqEMQt1Fy8Oef5yDUEiWrhU7/I3L63Q8hJRcQ2oODA9mGEg6/CJ86M8PjWAZWgsNNxEDlzBbK277uhKjkkQxlzfoiL7nSB/vdtU27UEBusIzzl1DClHmo1bC597ZIpf+4tZtm4mPXX/EH4Ijx0rg4B6x0cAWUOj54XEusCPIixTkjV1DAFXVtrYAp67vsorFxaY73h4nsfcQkQ7gPvH4O9+7BwfOjZEMWNR3ZLltNY5rpIxeHF2lfmqh9QhaxiYRrL6VgpODGbX+zFvDd6urdDn6j00AYYhMTRBFCmCMGau1uPV63WIIjwVU7IMjg0XyNk65ydyPHepiiYlDnBjfXiCDkhNoxvE1HoBVtPF78dDjg9kmShliKIkkBzHiUO7stLGj0KWGj5LLRdbk3R9n29eXqG+4Y8fAcs9WL7WJW90We559IKIj903DGuZUAJU33+tCQUu3CK+cbv9Mo5CFfG9LDC4HaljSDnyrG0tTA+V+Pnvu59f+fLbdEn+8X7h/aP8vSdOooBsxuCxqQotL+C5K1UsLaZoG7hhhCF1zgwVOTGY5ZXrTV65XuXpNxaZa2+/ETM/B3/1229w38BFnrxviCdODVDJGJRMkzmlmB7IUm17/Lu/eYe/fGOJbhBiaZJTQwUeOV7iWCVD1w/xoojxgo1t6YwVHBZbXa4td8hkDLKGgWVIrlW7OGaSKTTfdKm2XExd5w+eu8gri/56y5+cDpOVOmfHCww4JqWMxcMTZR4cj3nxygrz7Xj92LVnEk1CxtRAKgq2TtuLyFo6l1c6jBQdFpvu+ir+WtOl1nZ59kqV4aKFbSXS5nPVLpdXWizt5H2AMICZpS4vXqliGxoPT5T79xdM9BsJGVLScgPCKF7fXtoa37idArej1HjnTlNtj4qDWyN1DCn3FP/oqdN88twQ37y4wuRAhpNDZWKlCKLkS1XKmPydByc4NZjlz15fout6LDZ9To/lmRrIAoIXrq7y16/PM9e59f3eWfVZal7nD164Ts7Rmaxk+b6HRrHOj/Hb37rK7z8/g+spDEPgonjleo2iBYWMzlzd5dIbTcYLNhlLw7FNnrlcxZaCQsbg0eMVDF2iScFo0aLmhvT8gGrb5+W5ZV5a3NzPoR0mTxeGiHErOe4fzXG+UMAyk6rmb15Z4upqj6abOAZNwGTZ5oGxEiudANvQyZkaJ4dz+BFYa3LfKGZWO6x2PeZqPWodn54fM1ywUAq6YYjr79A9qY8LOCqm7Ub0/Cj5TPrptWtbY2XHwNAkCrYN8t/OqvuordDvpB7iKDm4NVLHkHLPMT1UYrSU7+/vRzcEinVd8uBkhfsGCzSDgNWGh9QE1Y7P5eU2S/Uu7ZvbuU20AsgZiXzEUsPjT16eIwhivvXOKh1X0Y2BaK2VXMg3LizT6rm8stCl1o0wdMgYEqHBRMGmi8Z8s8OlpSbnJ/JkTZ0/fnaFehhS1nTGRgu8NV/fdixNHy4seuhaUkz2wVMGcSQ5NpjhWGWa0ZLJ24stur0IN44pOBaaFByLYoSQDOZMTF0yUrA5VsliaJJGz08aIIUxLS/EC2PankspY6ALwbGBHGVbp/nmKvUd/m4KqGRMpocy5B0DKeBavcto3qLWC2i7Pq1ewONTFaQUmxRo1z67WxXVbeSoSYDvNdX2qDm4NVLHkHJPspu0RtvWsW2dgm2y0HAZzCaSFWOlLJqo7vpeEtD7PZ+jWNEKIhpegBfEiVPYwmwPZi+01n/XImh4yYFh0KXrQxBBqODFue6WsyO4dmMB30Zc4MW5HhY9XnynytgQvP/0MJ86PcHxgTynh0t4UYRQgsG8xWI/rtDoBOQyGo1uyEjRxjK09VqLRi+g4Bg4ho6tS2o9n64foGmCim6QMzUGCk3q1WDbMenASMHi2EAeS5Ncr/fQpcSQgqbrM1vv0egEeEHARDmLISVCS6qgTS1pXyrU7gvc1lbofpgsDDYW4O2VO93O2Uuq7VFzcGukjiHlnmW3aY0bv7BjJYdeGPLCtTrefIv29iUA6xiAISFnGegyqQa2paBo6SzX27sa58ZbLG31A3eA1/+pLcPry0v8h79d4mQJzk8WeOLUKJ+4f5y8bayrdwZhzELLxdQ0FpseYZTUiIwVHWbrPfwgRgrFYtvDlALH1BjO23zj4iqNrkekwBbgbumzbQOljMa1usvXLywyVsrw4VODSKl4fqbGN95Z4Z3FBn4EpiH54NQAn3/8OHlbxw0icv1OclIIShmDejfYtOoG1h2HEqwb/6yl8eZ8i1gphIBzY4VtjftuDP5+befcbqrtzbagDjPukDqGlPcEa19Yw5F86tw4OcvgK6/Os1jr0Ox2URLemAvZKPB9bsjgI6dHeGW2xfV6l7YfM1qwePLUIGfGCuRsYB8N/X5wqQ6X6k3+6NUm/4K3+dAYnBh0GCsVyJYcAh+ElEwPZXF8wXjRJo5jgjDg6lKTbhgzlDFxLB1L17m42KZk67S6HiqKbnAKAKYBiJhGN2Jmuc1Q3qbV83FDxeWlBm8vNEAIsqbADRUvzlQ5O17kA9MV3l5o8/6pEhkrydyqd4MkzVUk2kKdfve7jhey2OwxkLMSPSchqHYCpFDkLY1az+e5K1Vyps5gwcIx9HWnciuDf5jbOTttQW2sMD+MuEPqGFLec2QsnY+fGeUDUwN0/BDH0HCjmL+9uMwLF5fouDHnp/N834NTlByTZtfnwlITL44YcmwmB3MstV2mh3K8Ud3dU8Nh8cw8PDPfY7uEVgeYzMJCB1pb3pvIwlDJptMLWamH1G5SRdcMoBkocgZECJYaLs/HdQZzJq4XE8WQtXV0CW4U0ItiZmttxso2Xri51sMLQ5SAKFZcWGzy4kydVs/jwmKr34ZUMT2QZ7LiMJSzaHkBfzXfxJDJttL0UI5IxZwYzDFX7yGgX2S4s8E/7O2crVtQADPV7qHGHVLHkPKeREpBPmOS70t0F4HPPTTJJ8+MApAx9fVqVMfSGSo6mx7rSxmTn/n0gzxz5Rlq26i93gv0gAs7ZGZd78D1zs0bJG2lHUCj47JoSqSMMYiTALYGXT9EA2LAlIKCbSIRaIJ13SU/jJJeFpHi9fk6X31ziQvzLS6ttvGjmKGsTSlrcK3aJp+RNF0fXUr8MMayDZZbPfyoxbVqD4GgkjOxdG19K20ng383FVZ3YuMW1O0E4Q9sPAd1YSGELYR4VgjxbSHEa0KI/3XL+/9ECKGEEIMHNYaUlNtB1yWFjEkhY94gUSCl2NR/QUrBubEyv/gDDzHpHMZojyZLPXh5rsvTb9T4xuVVkJLTQ0V0CUoITCl5cKLEw8fLTFaynBsvEISKatvj6kqXXhDx+kKdv3pzkSurbXphBCTy3R0vABXT8UK8ICZjJNIecazouUES7NYkliGpdj3qnQBNvitmuJPBX9vOCSJFxwsJInVXxPt2YqOjgp3HfZAc5BODB3xCKdUWQhjA14QQf6KUekYIcQz4NDBzgPdPSTlQNCE4N1nmJ586zW/99QVmtykAGzQg50jmmjH+jW9/x+IBM6s+QbjIw8cHefLsFB03BiGYLGcoOyZFW0dqksmCw6XVNkIqqh2XC4tNZqptwggcWyduSARJIDZCYluSgmOg65Jh06JgG8zVethxTKQgb+toJL2thwv2uqjhzVJID0u8b42tgebDUJndyIE5BqWUAtY2YI3+z1ro6n8Hfh74g4O6f0rKQSNlYuSeODVI0wv5Ly9cZm6DKvhEXvCZhyYZzdvUewFff3uBmVWX+paMTwsYLei0g5DVm1QX32v4wNVGTPedJVRUwdBN8rZEFRVdP+Dl6x4PjOW5UuvwzlKLth/x+rU6z12tsdjqYUgoZSyypk5kCAqmhi0Vj06WeGJ6gKGCzUrL41q9S6PrYxs2k2WHkYINQpCz9HVRw90Y/Lsh3rddptFOGVGH6agONMYghNCA54H7gP9bKfVNIcT3A9eVUt8WN3k0EkL8NPDTAMePHz/IYaak7Bnb0Hh4ssxUJcvHzwzx0swKcysdzkwW+PiZSUxdY7ntIRR86vwIC/UOs3WXbrvHfDOk0e0yXM4xWs7wxrUmc/UOi22P681b5NHeQyz34Om3qgzkLDKWpBvEtIfzlDJJK8vZaoevXVim5/m8Pdeg7oZoEWgaNHoeCMGTpwY4P1bk5GiO+4YK5G0DKQUDWYuTQzneP1lmptah2Q2JVFIfMdbvxw3c1ODfrbTQ7RyA2e8PslOg+bBqGQ7UMSilIuARIUQJ+KIQ4mHgF4DP7OLc3wB+A+Dxxx/fJkkuJeVoIKWgnLN4LDPIQ5MVYHM/6GLGXG+lOZB1ODEY8M5yh+EBn2o7z4mhLBlT577BPB0/Yrba5WsXFnh2ZheaHfcIkQIvDPAjmKt1mRrK0vND3l5sIQDH0Hh9tsdbtXdLq60AiqZiqmLx0PEyD44VOVbJYhvaunS3lAIVQcuPyDsmWctgpGCvO45bsZ9yFDdzMDulxI4V7UMPNG/HXclKUkrVhRBPAz8AnADWnhYmgReEEE8opRbuxlhSUg6Krf2gN76+9iVP9o7h3GieSCnGi866/HIUK67VulSyFscHMuSMa/zlxe2lMe41IgAh8cOIhZbH7GqPibJA10Qi8hdHXF7eXBTiAUs+vHK1zvumKtw/lOPqagddCrwwwtAkE6UMKx0fQxM4ZlILUesG5G3jlmPaz/qFWzmYnVJi4e63M90NB+YYhBBDQNB3Cg7wKeBfKaWGNxxzBXhcKbVyUONISTlK3GrveK2JC8Dj0wN84IUr/Ks/v3III719DJIq6K01EQB+DI1OiKHDWNFmejDD9VqPasdlwLHo+iG9HfYFFlz4nW9eotF2ydg2hoyptQJCFOcmSzw0XmYwnxSz3c6Ke7/qF3bjYHZKiTU0eeiB5u04yCeGMeDf9+MMEvgdpdSXDvB+KSn3BDfbO9741DFZyfL5x6Z5bbHJl17ZvbbTYREAlg7sILTXU2BJKNg6PV8xVnTI2QZRHDNTu/m22UwDfutv53B08ELWM7wKL8zx4x89wY88dhzb0m9rxb1f9Qu7cTA7ZRpBIk2+Vu39HS+7rZR6GXj0FsdMH9T9U1K+Eyg4JuOFPAWqNG99+L5jAEUrSbldbsV0bhETv5k6dxJLkJRsi9GSRdeLqOQsRvIWc7U2l1d6LHV3Did6JE5hI7UAfvNrl8kaGh87M0LWMna94t6vtNDdOpi1p8UgignDmMVGh2vVDoWsRcGyGC3aGMbRaPGZVj6npBxhHEvnqXNJttOz1+5+MPqhYzZKaRhSosmkt8XNJMtvVqvhAHnLJCBivuaiawLVr084OVLiiWmPZy6tsHJ7Bde0A/iz1+YYq2T45JnR2woe70da6O04GD+KeXuhyZ++Ns/Tby6ja8mT04+8P8m8PGy57TWOhntKSUnZFikFj08N8jPffYanTpXI3MX+LRbwoZOjnBrI4wUxjqXhmBL7JnbL7p+37fVsKOd0JksZHhgrkLUMlhsus7UeQ1mLj5wZ4ceenOYzDwwwntv5OlsxAE3TWG35zDa6eEEirbFbtla134y19qdbr7/mYI5VMhyvZLZ1TnGsmK11eXW+zvNXahg6mLrBSsfjv7x4jabnJdlWR4D0iSEl5YhjGxrfdXaUBydKvHRtld/62kX+5sqN4n02cJuL7VvcF8YGDFbaHpou0ZSGJnykAEMlMYWNmEDJEWQdnaVWQGvDAVkJU5UMJwfyhLEiBO4fzlLthbTdADIGj02VWWg4TA8WODdW5I35Bu8stFiu+fRUvy8GNwra5kwAQcd1ubrcRiIwdW09M2i/6hRulXl0q7qDSClcP6TVC+n6AYahE0QxmpSstH3aHf/Qs5HWSB1DSsoRZ82wDeRtPvnABA8fH+Dp1+d5+q2r1Hsxn35ojL/32GlipWh7Ad+eXeEPn3mHP7l4Z27ikWMlPFfy4ZMDNLsBS00X05QM6Rq9IKDjK8IQdB1MAYYhqRQsTg1mmfICvMDH0TWCKBEsHCpkeWyqzOvzTeZrXS6HMRMlhyhWRKGi2g7QpCQIY0xN4/1TA5wbLbDc9lBhnPSMiGIWam08peh6iTGuZCzOjOYwDZOuH2NpEikSue3hvMVSy7vjOoX9SG31/Iillkfb9eh4EQUpEGj4YYSpS6aGc0diGwlSx5CScqTZbpU6UnD44cen+TuPHEMTIulP0DcohYzJaDHDk6fG+AdzVX79y8/z9bm93fv0iEPGMhgrZ/mHHznBV15bIAhjvCim43q8PV+j5yu6PiDAMgXHihlM3WA4n8HUBX6kcMOYsYLNUNFipeNTzpi4QUwYK2o9P2kmZGpomkBFilLGIO8YlDIGKBjImSgFQzmTjh8SBzGvLDZo9QIuLnYYyBpIqZO19CTDqdrBMDQcIzG6WUu/4zqFO01t7XohL83WkQKGC1mODWS4stIhZyrKOZNPnB1hMHt01BhTx5CSckS52So1DGPcMCKn6zcYOSkFxYzJkydHeP9//1muVhv8u794iTfnXOoNmN2l2sbXLizz6MlhRnIWCDg3XkTXYKnu8aVv15ltKIIYNGCoILB0HSUUeUtyajSPrcu+AY3QhEAhCIKQ+0eyXFzuoIRGwU66xNmWzljBRkhBzw1BgKFLLF0jVgovjMnZJuVskuKpNA2F4tSQR6RioigpDqz1QoT0qHUChFAcKzncN1JA15KxdF2flheQNfQbFHRvxp2ktsaxYq7eQxOCUt4hbyfdALuuTylvUXIMJss5DO3ohHxTx5CSckTZaZV6abnFX7y5iB/GmLrks+fHmB7M3XC+lALH0jk7NsAvfuG7mKv3iFF8+0qVX/nT11i4RZJTy40YzBhcb7j9gCsYluRbV1eYa/YQIlHF9IGlpuLsiEADam6E6wdIYdALIhxDT7alwohXVRJfQAjyloal6whAKYWuS+JYYRja+hZQL4gIwpgYlVQ9a5LxksNYyWGh4VJwDFY7PpYhWe34CCF4eaYDQtF2Q5q9gKs1l6dODxGpmDfmW1QaPQxN8uBEkVK/H8etuJPU1kgpEElb0zCKsYyknSpFh9GijaVrm3SdjgKpY0hJOaJst0oN/IivXlgka5qMFHRavZCvvDbPT33wBLa989c5Y+mcHMoRKcV9Q3k+cF+FX/3yK3zxtTo75cGMFG0sXWc8l6zkx/IWX31rkYvzLRq9zb2sFVDremQzBmeLGeaqPXJOktd6ajhPxwvJ2gbffWaY1+eanBzM0PZi8o5GrKBgG/T8aLO6qKERRDGXl9s03QAhBEopgjDm9Eh+Pc30VKR4Z7nFWNGm2QsIo5hrtR62oeGHiiCK+NaVVTQhOFbJUMpauH7Iq9cbfOjEwPqTw62C1HtNbdWEQJeSsmNQ6wX0egG6JnlksoRlakemqG0jqWNISTmibLdKzWZ0gkiRd5Kvbt7Rqfc82mGIfYuv88asmemBAr/4I0/wYx+p8eXXZvj9ry/S2HDseEHjJz58mrxtYhoa86sd/p+/fJM/vbC9dlMINLoKvdrD82OGshbHB/MM5AzavZCljse0qWMZGhMlB8vUEAqUSIKyk/19/41GUkoBESy2PLKmhtnPMFpqeUwPZpPYCoKAGNPQGMhbXFrp0AkiYmKG8g5BGKMJ8MMYTUI3iHHCCNvU6fgebhhhCQjCeD1ILYDBfCL3vd023e2K2238HIuOATaMl5z1znJHkaM7spSUlBtWqb6fZLC0eiF5J3liMHVJTr/9r3LOMXhseogz42V+4JEWz1xe5OL1BmODWZ46Pcq5sTJLLY8XZ1b5p//pJRq3iE20Img1Qq40QgbNDn4Y0qnkYUByXMugaYLlloeUAkHSMc8PIxT9VfU2e+xuELHc8mgbEkPXKDo3znNtRV6xDaJYYWoghEATkhiFHymKWQ1HSyQzVts+ZUcnVoqFpotQMN90Gc1bCClYbCa1FRNlh/GSs2e11Y0cdn+F2yV1DCkpR5yNq1Tb1vns+TG+8to89Z63HmO42TbSra6dtw0emihzdrRIHKtNBV+5XsBv/tVbt3QKW1nx4dvXm5i2hSEFZ0fzGJqk44UM5SxWuz5+1+9nKRnM1LqMFmwMXa4bzjhWVDs+wwWTthsRRDHzdZczY/lNgVopk/4LM9UOxysZDKkxXsmy0vDJWzqaFDx6rIIA3lxoUeu66MJmMG/hGBoKCOOIV+ca+GFExtIpZSy0fsrrflUjH2Z/hdsldQwpKfcY04M5fuqDJ2iHITld37NT2MhOkuHdMGS16+3pmjUP5pZrjGVHabkBby42CENYanoUszqLNQ9TF/SCmNV2mzfnGkxVMji2wXjJQZMCBUwN5FhquoRRjBfGSYe2LRi6ZKLoMFFymKv3WG37DOVD7h/JkTV0cpZOGCsqWQPHlIyWbYQSxCi63YBr1S7Xqy5SCkxdMlqMODGYxQvjXaek3q2GP3eD1DGkpNyD2LZ+y5jCfpC3DQYyJhdW91YsV+2EtHyfP3pxloGCxWDe5uGJEjExDdfHsQyECHn2cpXVjs+pwQynhgoEYcypoRxSCPR+C9Vmz2e55VPt+DR74aZiNU0INE1iaIL7RvJMlkOCSHFyMEeoFPP1HrO1HqYuOVbJIoEXZ+osNbv4Yczzl1coZ3XKGQtTM6l1fNpdH8PUd5WSup8Nf44CqWNISUnZkWLG4ic/epa3v/gS1T34hloP5lseYRhT7YVcXOpwebnDo1Nl4hhKKuZaLaDrhRRtk5xtcq3eQ5eC6cHsetA2iiKW2z7jJZusbdzYAnNDgDcOY6SQHB+w0XWJThLsDaKYvGMghcCPIq5W22RNndV2h5dmG3iBopjRmB7KcaySZaaW5fhgDj+Ksbd5mlpjPxv+HBWOTkVFSkrKkUNKwSceGOWXv/AI+T2c31NwbaVNHAtsQxLEimrbY6XpkTUlFxY6LNRdWl6IbUpMQxKEEW6cBDXWgrZj5STnP9vvzKZrklipTaJz2wnZrYneaSLRT1oTv+v2BcKtqwAADedJREFUAqQQOKbk6bdWabuKoN8i9I35Bo1Wj5NDOXKWnjibm4jyvVtvIncc271G6hhSUlJuim1ofOTkMD/+0fE9nb/ajJittVhqunT9kK7n44URMTA9lGEwazKYtQijmKsrPaptH4kg6htjKQW2rqHLJIspjGL8MNq28nhj4NwNImaqXa5Vu8zWe5QyBkGk6HghQpMUMwavXKuz2nLXIwga4AXgRQo3CJMg+C2M/MZ6E+DItOe8E1LHkJKSckscS+djZycY3oOcTw9Y7CgurLjMrfZoexGXVtqsNF3KGYsTQ3nyjsZy00UKxQdOVjg5lEvqCjY4h1LG4Opql3eW2lxd7VLKGDtu1Wzc3slaOoYmqHcDxgs2o0Wb6XKW940XmK22qQeJKq0H+D5oArp+xBtLDZ67uspqp0ccqx2fGta2sdacThCpm1ZFb5Tu3knG+7BJYwwpKSm3RErB6aE8EwXJUi/e83XaEci2T84xeH2+RbUb8PiJAY6VsxRtkxODOU4M59D7qa1rGUFxrKh3A6YqGYQUqP7vBXt757CdnEjT9ZipdfGiiNlqj9mVFm8ube6L11FQVqCbOr/zzCxCgKlr/P0npjg/UdoxqLzbOoW1IHUYx3h+hNQElq4duYB1+sSQkpKyK4IoYra6d6ewTpxsvxhCsNR0ieIYXdfIOQaib1C3bscE/e0jXZcYmkyqoLfZ4llbgQvFpu0dP4hYbfvEcczFpQ7vLDV55u3rLN3Y1oJuCKv1NlGsKGZMpIQvvzyHFwU3jTfcquHP2lNMGEUst1zeWmzy1nwLARiauGUs426SPjGkpKTsCi+MqG3tzrMHwjhZ0XtRTClrMpCxKGctVtsuXhDR8UNMLRHSi5TC9SIWmy6LTY9a12e06KBLccM+/taU0YKjU237IJJAdjljUO0FxHFMHAsa3vb1GR5wvR5wetTCDWJylknTC+h2A4ycvuu6hq1EStHxAi6vdogiRduLyNuSxZbL1ECW+DZqJg6a9IkhJSVlVziWTmkfLIauga1JMobGeMnB1CXVrku1GzBcsBKjbusstTyurnZ4YaZGrBTHBzIoBTOrXXpBxEDuXWXUrTGFOI55fa6J6q/AR/OJimkcKUxdI4yTHhE70Qyh44dIAV0vQBdgWtodBZWFgtWWTxxBoZ822+j5xLHCD7YPph8WqWNISUnZFRnD4PEzlTu6hiPhWNnh1HCBD5wY5Px4gZJtIJXkfZNFhgoOli55fb6JJsAxEvXRWjfA1CRTA1lKGZ04Viy3PGaqXdwg2pQyGitFrRcgBTi2jmNorHR8Rgs2MWCbgqylcXygvG1f6bwORQuqbRfPD+iFER87PYJjmLuW2t4OJWAgbyJE0rin7Bg4ptavruaOrr3fpFtJKSkpuyJj6nz32VG++kaVvYhknB80mR4p8OFTQ0wPZRFKMlqyGSnYGKZGvl+jIEWSqir6hWumIfH6xl8pRaMXMlVJVF/XiskmS86WmEKMqb8rae2FIZap8djxMnONHsNZm4WWy08oye8/O7O+RVaxoZy1MXWNwbzOp8+OMlp2+OCJIfI7BLp3iyYEWcvg3Giela5PFMUUlclDk8U7vvZ+kzqGlJSUXaHrks8+NMFiy+Xf/vml2zr3k6dLPDxZYbiY4VjFwdQ1vCBmuGCTMXV0Kdf7TsRKJTpJsUJqSR+DOT/C8xMl1oFc4hTg3eZFSrBe+RzGyV79cD+ddWMg27B0Tg4mfSnujwpMD+Z46kyF3/zaFS4stsnZBsV+69GRrM0j0xXuGyrsi0T2xursoayFEjBePJry20LdA9V5jz/+uHruuecOexgpKSlAGMYsNDr89nPv8B+/PkfVv/nxj4zo/ORTZyjYFtMDWbK2gRdGKAVTA9n1YrSNgeNSxqDeDdZ/H85bGLpEKJit9/ryE/3mRZFal59YE7Lb2F/hZqmga/edWW3zxRevcXm5jRQ6941m+akPT3NurLTvK/m7KbYnhHheKfX4bZ+XOoaUlJS9EMeKp9+a42f//UubmvxspCDgV/7BI5wYKjBasFnp+Dsa660GcycDulvBut0a4HVn4kVUOy6hVAw7DpmMsee/zVFhr47h6D3DpKSk3BNIKXjyvlF+/vPn+KU/fIOtdW9Z4Od/4BynRorrDW8ylr6jsd7ar2Cn/gW7LSbbbf+DteOMjPyOcAb7QeoYUlJS9oxtaPzoEyf41JkR/vztazz71jxht8cTD5/gieNjTA5mN7XI3K9mNfdS05t7kXQrKSUlZV/5TmpYc6+TbiWlpKQcCdLV/L1PWuCWkpKSkrKJ1DGkpKSkpGwidQwpKSkpKZtIHUNKSkpKyiZSx5CSkpKSsol7Il1VCLEMXL0LtxoEVu7CfY4S77U5v9fmC++9Ob/X5gs7z3lKKTV0uxe7JxzD3UII8dxecn7vZd5rc36vzRfee3N+r80X9n/O6VZSSkpKSsomUseQkpKSkrKJ1DFs5jcOewCHwHttzu+1+cJ7b87vtfnCPs85jTGkpKSkpGwifWJISUlJSdlE6hhSUlJSUjbxnnQMQogvCCFeE0LEQojHN7z+aSHE80KIV/r//cQ25/6hEOLVuzviO+d25yyEyAgh/lgI8Wb/vF8+vNHfPnv5jIUQ7++//o4Q4leFEPeUROhN5jwghPiqEKIthPi1Lef8aH/OLwsh/qsQYvDuj3zv7HHOphDiN4QQb/f/ff/w3R/53tjLfDccs2vb9Z50DMCrwA8Bf73l9RXgc0qph4CfAv7DxjeFED8EtO/KCPefvcz53yilzgKPAh8RQnzvXRnp/rCX+f468NPA6f7P99yFce4nO83ZBf4F8E82viiE0IH/E/hupdTDwMvA/3gXxrmf3Nac+/wCsKSUuh94APirAx3h/rKX+d627XpP9mNQSr0BsHVBqJR6ccOvrwG2EMJSSnlCiBzwcySG43fu1lj3iz3MuQt8tX+ML4R4AZi8S8O9Y253vkAFKCilvtE/77eAzwN/clcGvA/cZM4d4GtCiPu2nCL6P1khxCpQAN65C0PdN/YwZ4D/FjjbPy7mHqqS3st892K73qtPDLvhh4EXlVJe//d/CfwK0D28IR04W+cMgBCiBHwO+ItDGdXBsXG+E8Dshvdm+699x6KUCoCfAV4B5khWz//voQ7qgOn/Wwb4l0KIF4QQvyuEGDnUQR08t227vmOfGIQQfw6MbvPWLyil/uAW554H/hXwmf7vjwD3KaV+Vggxvc9D3Tf2c84bXteB/wT8qlLq0n6NdT/Y5/luF084crncdzLnba5lkDiGR4FLwP8F/HPgl+50nPvJfs6ZxOZNAl9XSv2cEOLngH8D/MQdDnPf2OfPeE+26zvWMSilPrWX84QQk8AXgZ9USl3sv/xh4P1CiCskf7NhIcTTSqmP78dY94t9nvMavwFcUEr9H3c6vv1mn+c7y+atskmSVfSRYq9z3oFH+te8CCCE+B3gn+3j9feFfZ7zKsnK+Yv9338X+Ef7eP07Zp/nuyfblW4lbaD/mPnHwD9XSn197XWl1K8rpcaVUtPAR4G3j5pT2Cs7zbn/3i8BReB/OoyxHQQ3+YzngZYQ4kP9bKSfBG53NXqvcR14QAixpr75aeCNQxzPgaOSit4/Aj7ef+mTwOuHNqADZs+2Syn1nvsBfpBkhegBi8BX+q//L0AHeGnDz/CWc6eBVw97Dgc9Z5IVsyIxFGuv/3eHPY+D/IyBx0myPi4Cv0ZfGeBe+dlpzv33rgBVksyUWeCB/uv/Q/8zfpnEYA4c9jzuwpynSLJ6XiaJmx0/7Hkc5Hw3vL9r25VKYqSkpKSkbCLdSkpJSUlJ2UTqGFJSUlJSNpE6hpSUlJSUTaSOISUlJSVlE6ljSElJSUnZROoYUt4TCCH2XfxQCPH9Qoh/1v//zwshHtjDNZ7eqJKZknIUSB1DSsoeUUr9oVJqTY788yRaQykp9zypY0h5TyES/rUQ4tV+H4L/pv/6x/ur99/ra/T/x7V+DEKI7+u/9rV+n4Yv9V//h0KIXxNCPAl8P/CvhRAvCSFObXwSEEIM9iUJEEI4Qoj/3O9/8NuAs2FsnxFCfGODuFvu7v51UlISvmO1klJSduCHSDSC3gcMAt8SQqxp2z/6/7d396pRBWEYx/8PggSJnVdgxEbZRgSLsJWXIIRgY2MRe9feGxAEkVzBWgiCWAhCQEliCOJHQEiVWFgoVmrUxvBYzAT3rPnQzcYU+/yqs2dmd84pDi8zc/Z9gTOUHEkLlBoUL4BZoG17XVK3/wdtL0p6CDyyfR/+TIvcYwb4brslqQW8rP1PUP6VfdH2N0k3KKmSbw7jpiP+RQJDjJpJoGt7E/go6SlwHvgCLNt+DyDpNSWFwAawZnu9fr9LyWs/qDZwG8D2iqSVev4CZSlqoQaVo8DzfYwTMbAEhhg1u5Xr7K1DsUl5PgYt7/mT30u1Y31t2+WhEfDE9vSA40UMTfYYYtQ8A6YkHalZRdvA8i79V4GTPbnsp3bo9xU43vP5HXCuHl/qG/8ygKSzQKueX6IsXZ2qbccknf6L+4kYugSGGDUPKFk13wBzQMf2h5062/4BXAMeS5qnZLT8vE3Xe8B1Sa8kTVCKv8xIWqTsZWy5C4zXJaQONSjZ/gRcAbq1bYlafjLif0t21Yg9SBq3vVHfUrpDKVx067CvK+KgZMYQsberdTP6LaVw0ewhX0/EgcqMISIiGjJjiIiIhgSGiIhoSGCIiIiGBIaIiGhIYIiIiIZfuCQN9NFzN64AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Let's plot a scatter plot according to co-ordinates.\n", + "dataset.plot(kind=\"scatter\",\n", + " x=\"longitude\", \n", + " y=\"latitude\", \n", + " alpha = 0.1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "a2e78140", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAGtCAYAAAAlE2HVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9d3hc1bX3/9lnqkajOurFklzkinvF4E43EEzvBEIJkJB2k3BvnjfJTXlzn3t/Se59k5AQCJjmACFgwgWMKcbYGBsb927LsiyrS1YZSVPP/v2xx7Zsq4zkkWyi/XmeeWZmn7332WdGmvnOWmuvJaSUaDQajUaj0Whii3GuF6DRaDQajUbzz4gWWRqNRqPRaDT9gBZZGo1Go9FoNP2AFlkajUaj0Wg0/YAWWRqNRqPRaDT9gBZZGo1Go9FoNP2AFlkajUaj0WgGFCFEqRBiuxBiixBiY6QtVQixUgixP3Kf0qH/40KIA0KIvUKIyzq0T4nMc0AI8T9CCBFpdwghXo60rxdCFHYYc3fkHPuFEHf353VqkaXRaDQajeZcMF9KOVFKOTXy/IfAB1LKEcAHkecIIcYAtwBjgcuBPwghLJExTwAPACMit8sj7fcBx6SUw4HfAP8RmSsV+DEwA5gO/LijmIs1WmRpNBqNRqM5H7gWWBp5vBT4Sof2v0op/VLKQ8ABYLoQIhtIlFKukyqz+nOnjTk+19+AhREr12XASillg5TyGLCSk8Is5lj7a+JYkpaWJgsLC8/1MjQajUajGRA2bdpUJ6VMH6jzXTh2rGz0emMy1+6ysp2Ar0PTk1LKJ0/rJoH3hBAS+FPkeKaUshJASlkphMiI9M0FPuswtjzSFow8Pr39+JgjkblCQogmwNOxvZMxMedLIbIKCwvZuHHjuV6GRqPRaDQDghDi8ECer6aqiv+84oqYzLXkxRd9HVyAXTFbSlkREVIrhRB7uukrOmmT3bT3dUzM+VKILI1Go9FoNP2H3e2mYM6c2Ez24os9dpFSVkTua4QQr6Pio6qFENkRK1Y2UBPpXg7kdxieB1RE2vM6ae84plwIYQWSgIZI+7zTxqzqxdX1Ci2yNBqNRqMZ5AS8XspXrx6Qcwkh4gFDStkSeXwp8O/Am8DdwK8i98sjQ94EXhJC/BrIQQW4b5BShoUQLUKImcB64C7g/3UYczewDrgB+FBKKYUQK4Bfdgh2vxR4vL+uVYssjUaj0WgGOQKw9NgrZmQCr0eyLViBl6SU7wohPgdeEULcB5QBNwJIKXcKIV4BdgEh4BEpZTgy19eBZ4E44J3IDeBp4HkhxAGUBeuWyFwNQoifAZ9H+v27lLKhvy5UiyyNRqPRdEkwGKS8vByfz9dzZ02vcTqd5OXlYbPZzuk67G43+QPkLpRSlgATOmmvBxZ2MeYXwC86ad8IjOuk3UdEpHVy7C/AX7pdZIzQIkuj0Wg0XVJeXk5CQgKFhYVELA+aGCGlpL6+nvLycoqKis7pWoJeLxUD5C4cTOg8WRqNRqPpEp/Ph8fj0QKrHxBC4PF4zhsroSVGN81JtCVLo9FoNN0SrcAKm5IjDW0crm/FFzRx2gwKPPHkp7qwGFqkdcb5Il7tbje5A7i7cLCgRZZGo9FozgopJdvLm1h7sI4WXwibxcBqCEKmZMOhBtxOG7OHeRifn3yul6rpgqDXS5V2F8Yc7S7UaDQazVnxyf463t5Rid1iIS/FRWaiE4/bQWaik9wUF3aLwds7Klm9r/ZcL7VTSktLGTfujNjpM/q89NJLJ55v3LiRb37zm/29tAHFiNFNcxJtydJoNBpNn9l2pJFPD9aRm9y1SzDObiE32cWnB+tIcdm4IO/LZ9E6LrJuu+02AKZOncrUqT0lNf/yYHO7ydbuwpijRZZGo9Fo+kTYlKw9WE+629ljzJXFEKS7naw5UM+YnKRexWiVlpZy+eWXM2PGDDZv3kxxcTHPPfcc69at43vf+x6hUIhp06bxxBNP4HA4KCws5Oabb+ajjz4C4KWXXmL48OHcc889LF68mBtuuAEAt9uN97R6faWlpdx55520trYC8Lvf/Y4LL7yQH/7wh+zevZuJEydy9913M2nSJP7rv/6Lt956i4aGBu69915KSkpwuVw8+eSTjB8/np/85CeUlZVRUlJCWVkZ3/rWt85b61fI66VGuwtjTr9b9oQQFiHEZiHEW5Hn/ymE2COE2CaEeF0I8eX7SaPRaDQajjS04fUFibNHt6cszm7B6wtypKGt1+fau3cvDzzwANu2bSMxMZFf//rX3HPPPbz88sts376dUCjEE088caJ/YmIiGzZs4NFHH+Vb3/pW1OfJyMhg5cqVfPHFF7z88ssnRNGvfvUrLr74YrZs2cK3v/3tU8b8+Mc/ZtKkSWzbto1f/vKX3HXXXSeO7dmzhxUrVrBhwwZ++tOfEgwGe33tA4XeXRh7BsKS9RiwG0iMPF8JPB6piv0fqHT2PxiAdWg0Go0mhhyub8Vq6d1vdavF4HB9G4Vp8b0al5+fz+zZswG44447+NnPfkZRURHFxcUA3H333fz+978/IahuvfXWE/eni6LuCAaDPProo2zZsgWLxcK+fft6HLNmzRpee+01ABYsWEB9fT1NTU0AXHXVVTgcDhwOBxkZGVRXV5OXl9fddOcEm9tNpnYXxpx+FVlCiDzgKlSW1u8ASCnf69DlM1RNofMGrw9KasFhhRGZYAyCKL5QSNLaapKQYGDobdYajSZKfEETay8/M6yGwBcK99zxNHqb6qBj/+OPrVYrpmkCakdkIBA4Y9xvfvMbMjMz2bp1K6Zp4nQ6ezyXlLLL8zscjhNtFouFUCjUq+sYKEJeL3XaXRhz+ltC/Bb4PmB2cfxeTtYZOgUhxANCiI1CiI21tQOzI6XND3/4EF5cC8+shbe3DchpzymtrSZPPNHIf/7nMZ57rplQ6MwPC41Go+kMp80gZPbuMyNkSpzW3juVysrKWLduHQDLli1j0aJFlJaWcuDAAQCef/555s6de6L/yy+/fOJ+1qxZABQWFrJp0yYAli9f3qnrrqmpiezsbAzD4PnnnyccVoIwISGBlpaWTtc2Z84cXoxYb1atWkVaWhqJiYmd9j1fOV67ULsLY0u/WbKEEIuBGinlJiHEvE6O/xuq0GOndkUp5ZPAkwBTp04dkG/+TzbCP56F5DiYNBfWlcDlF0AfPg++NBw8GKSiIkxRkY39+4McPRqioODc1tDSaDRfDgo88Ww41LvauqGwSYHH1etzjR49mqVLl/Lggw8yYsQI/vu//5uZM2dy4403ngh8f+ihh0709/v9zJgxA9M0WbZsGQD3338/1157LdOnT2fhwoXEx5/psnz44Ye5/vrrefXVV5k/f/6JPuPHj8dqtTJhwgTuueceJk2adGLMT37yE7761a8yfvx4XC4XS5cu7fX1nWusbjfp2l0Yc0RnZs6YTCzE/wXuRAkpJyom6+9SyjuEEHcDDwELpZQ9RkBOnTpVbty4sV/W2ZH/83NYuw+SXNDWDgtvge9dDj1ZqauOQW0zFGWAOy62azJNic8HcXH9kxm4tDTIn/7URFycIBSSfOtbKaSmdq8q/X5JaWkYw4CiIgtWa+/W1dwcYuvWVgIByZgxLrKz7WdzCRqNph/ZvXs3o0eP7vRY2JQ8uboEu8WIKvi9PRAmEDZ5YM7QXu8uXLx4MTt27Iiqf2FhIRs3biQtLS3qc5xLOnuNhRCbpJQDliNijMcjX7ziipjMNfnFFwd07ecz/WbJklI+jgpqJ2LJ+l5EYF2OCnSfG43A6i/KqqDRC7np4ElSbTnpkFACJVWQlQ63TO9ZYNU0wR9WQCAMOSnwyGVgiZHlq6FB8uyzIerrJSNHGtxyiwW7PbZCq7DQxp13JnDoUIhx4+w9CiyfT/L00+0cPRpGSigutnLnnc6ohVZLS4g//rGKpqYQVqtg1aomHnggi/x8R8+DNRrNeYXFEMwe5uHtHZXd5skCJchqvT6uuiBbl9g5DznuLtTElnORJ+t3gANYGbHMfCalfKj7IbFl42547SMQBjhs8NB1YLdCrRVEAgxLhCEF8L+r4e4rIa6b7//6FgiFoTANyurBHwJXjP5SP/ggTHMzFBQY7NxpsmuXwcSJsf9wGjPGwZgxJy/SNCU1NWHsdnGG6Nq7N8SRI2GGDlXt+/aFKC0NM3x4dH9Ku3e3c+xYiKIiFUxaWxtkzZpmbr01PUZXo9FoBpLx+ck0tgf59GAd6W5npxat9kCYWq+PC4el9SkRaWFhYdRWLFCWL03vsLjdpGp3YcwZEJElpVwFrIo8Hj4Q5+yOFetgz17w+8Dphk2jYMtO1Y4FhuRBQQ4cqYbPdsD8KV3PVZQBQ9LhSB3MGQ2uPhpkpJR8+qmPHTv8FBfbmTs3jmAQrJF3yDAgHO7/0DTTlLz6aivbtqldN9de62L6dGeH46da94RQbdEipTxlx6ZhEFWwfWNjiMrKAElJFnJyzs7q5fWG8flMUlOt/b6bcvv2Nl57rZFRo5zcdFOK3r2p+VIipew2XGFOcTrJcTbWHqyn4Zgfa4fahaGwidtp46oLsr+Umd77m/4K2ektYa+XJr27MOYMyozvB0ugyQvZHth/BH77G8lneyXBADjdgppqgcMOE4bClv3diyynHR68BAIhZRXrK3v3Blm+3EtGhpV33mklJcVgwQIHpaUhysokQ4YYjBkTm82goRBU1kJ8HKQmH2+TNDebNDWZbN0aoKDASjAIb7/dzrRpjhMfsCNGWPB4DA4dUu7C/HwLBQXRm+5GjIjD6TSoqAhgswlaW8PMmpXQ7ZijR/089VQ1waBJOAzXXedh+vTux3TFrl2tLFtWRzgsGT3axa23pvc6pqw3fPKJl7g4gy1b2lm0KJG0tN79y1VXh3nlFS9paRauvz4+5u5ijaYnnE4n9fX1eDyeboXW+PxkxuYmcaShjcP1rfhCJk6rhQKPi/zU7l2JgxUpJfX19VGliehvtLuwfxiUImtIMjS3wrFWaK+R7NhgEsgUhG0QaJK0tkGcUzC2AOKi+NsX4uwEFkBTUxirVZCYaNDUJGhsNJk4UfCd71jxeiE5mZiIAdOEl/4Be0rAELDkUsn/Lg/w7jtBcnNNCgtCNDWFyM214vNJnE5xyger223w0ENx7N+vAt9HjrTicES/rtRUGw89lM26dc0Eg5JJk9wMHdr9i7x6dTMWiyA720kgYPL228eYNs3dp40Ar7/egMdjxeWysGtXGyUlPoqLY7xboQOzZrl57bVGxo51kpLS+4+wzz7zU1NjUl4eZto0B8OH652fmoElLy+P8vJyepNKJwNUgiAT2mvhPK0LfV7gdDrPi+SkFrebZO0ujDmDUmQtnA3tKwEJG/9uIkwQYUCAGQbDkNRVCkqOwNeuG5g1jRxpJzGxnbKyIHFxgrFj1Y47p1PQ2x85bW2SHTtCBAIwapSFtLSTFrC6Y7D3EBTmQm2D5P5v+ti9vhUzLNm+3cqSJXYEYQ4fDpGSYnDbbe4z5ne7DSZN6rtVLT3dxjXXeKLuL0TsTOpqrpPz9cOGzVOYNMnF+PFxWCx9O9HIkVY2bvTh8VjIyNC/MzUDj81mo6io6FwvQ9PPmF4vLdpdGHMGpci6aCZkZkBFJbz6PAQDYLZCKA5wgD0eXG4YkwcTR3Q+R1sIgiYkxSj7QHKyhW9+M5na2jAejwW3u28ixu+XPP20j4oKicUCH30U5Otfd54QWvFxYLdBbQPsPxim/HAIEMTHG7S1hVi/3sKokVauusrNV75i7VdXWrTMnZvEvn3tlJX5MU1YsqR7t0V3LFniYdmyWurq4IILXD1a0WJBXwUWwKhRdh5/PBmrVWhXoUaj6Vf0z7jYMyhFlhBQPEzdFsw3WL48jC0AIb/AmgCTxwomFMENizovq1PqhWcPKJF1ZS7MzozNulwug4KCs4u7OnLEpLLSpKjIcuL5tm1hFiyIiCwX3HsDrNkITmGyJTGMt1rg84NEuSmbm2HtWgu5uYJIouQuqa012bw5RFKSYMqU/hFl2dl2Hnssh+rqIImJFrKy+q5sR41y8YMf5OH3S5KTLf2Se6yyMkhZmR+Hw2DoUAeJiWf30eVyDYLaThqN5pxicbtJ1O7CmDMoRVZHfvFzgWGxsH+fiZSScWMNiosFl14KWVmdj/msFmwGpDngw6rYiaxYoEThSeFgmhLbaWE8+dlw69VQVWWhZIegNWyl6hjYQyFysiULF7oJhQxqaro/V1ub5M9/9uHzKQtaS4tk0aL+SSyalGQlKSk2f64ulwVX7xNO94hpSt58s4kNG1pPuCEtFsH11yczYUI/nFCj0WhihOn14tXuwpgz6EVWZib8z28FDQ0WEhPBfWYI0hkMiYfNDdAchPEpsVlHICBpa4OkpLPL7F5QYDBqlMHu3SZCgMdjMHFi529zVpaFy5fEU+IzKQbSMgyGxFtobRXYbDB5cvfnam5Wax4yxKCpSXLoUC9yOfwTsnVrG+vWeSkqcpxI1eDzmbz6aiP5+XZSUwf9v5tGozmP0e7C2KM/9QGnE3Jyou8/Kx1SHeALw+iksz9/c7Pkz39Wmd2nTTO47rq+vy0Wi+C22xwcOmQSCinR5XJ1Ldpag1bmzFZZ78urYc4kGJGjdjMm9XBtHo8gO9ugtFRZAefPH9zlcdatayU93XZKLiyn00AIya5dPi66KAoFr9FoNOcAi9uNW7sLY44WWX2gthYaSyAxEWwxyK1XWiqpq5MUFAg+/9zkiitU6oS+YrUKRoyI7jfJ8CGweS8EgxAMwbAhUJDbed/de+DTz8Bmg3lzYEi+4L77lKBzu1XOrMFMW5vsNDjdYjFoaxvcVj6NRnN+Y3q9tGt3YczRIquXVFbCE09AOKyEyZw5sHjx2c2ZlSVwOARlZZKhQw0cA1jGb8poVVLoSDUUF0DAG2Lp0jD5+QZz51pP7Iw7cBCWvggpyeran3oGHn0IMjIEo0f/84qrI0fa+Otfy3E4DG6/PR+Pp+s3Z9QoB59/3kZu7qkWPb/fpLBwcFv5NBrN+c8/7yf5uUOLrF6yfbvanVhQoBJ7fvYZXH75yfI3fSEjQ/CNb1hpaJAMGSLOesdb6WE4eAiSEmH8OLB38/0uBIwvVrdjx0x+/ecA8fGwc2eI5GSYPFlFze/YCe54JbIADpfBocOQkXFWSz3veeedKoJBk5aWEGvW1HPttV37lS+80M2WLe1UVgbJyLASDEqqqoIMG+Zg2DBdAFuj0Zy/6Izv/YMWWb3E7YaAKutHWxvExYElBn+ZHo/A4zn7dAI7dsKLf1XCKhCA7TvgrtujW2N7u7JSJScLWlokLS0nj8XHg99/8nk4DM5+0g0ffliD1SqYM+fcF41OT3dw4EArAKmp3VujUlOtPPRQOh991ML27e04HIKFCxOYPdt9VrmyNBqNpr8x3G7idExWzNEiq5dMmQL79sH+/eBwwB139H/W8N7w4ceQ5oFQ0GTHNj9fbIRpkx2MG9dzrqWsLMHUqVY2bQqRnm7gcFh4/33IzYXpU2HLNsm2HQGkhPHj7IweFfsLN03JunX12GyW80JkXXllFtnZcdjtggkTeg7AS0uzcuONKdx4Y4y2nWo0Gs0AIL1eAjomK+ZokdVLHA64+27wetXj7lxx55Ldu4OEQhKvF7ZtCzFuXM8LNQzBkiV2Lr/cxoYN8Prrgrg4ZeFavFiSnlLP1k2tBIKS1NmJ2O2p+CJWPWeMXgfDEDzyyLB+SRLaFxwOCzNnpp6Tc4fDkmBQ4nTqZKQajab/0Qb32KNFVh8QAhISzvUqOmf+HHjxZQibgqpqiSdFMGpU776kXS7BmrWQn69EpM8HK1aE2LsvwI7dCSQn+fjDHxvxupM4UK38kDNHwZXTYuM6TU4+T5XrAFJZGWTp0iZaWkxmz3ZxxRXx543w1Gg0/3wYCW7ssXIXvqDdhcfRIqsbfD6VbDM19cvz5XbBOHjQDfv222hqsjB+nCoS3VviXUpcHRdZiYmCPQecmKagxevCaxV8tgsmjQYkrN0FqQkwe2zsr+nLSjAIzc0q31hvN0asWNFKOCzJz7eydm0bU6Y4yczU/64ajaZ/kF4v4bXaXRhr9Kd2F7S0SJ54wk9jI1x2mZW5c788L1VRIRQVnt1ekeuug6VLoalJ5cW65x4rTV4LS5838aS0k1rgwmkTlJVDbhakJMCBypMiS0rJjh1hDh6UeDyCGTMsg6rAsdcLTz8NNTUq0e2996pNEtFityuRFgqBlLGxEGo0Gk1XCMCiIxNizpdHOQww1dWSY8fUrr+tW8NdiqyqKh+bNzcxblwi+flnfov6/RKfD5KSvlwCo7AQvvtdaGxU2d/dbvj5TxO55UY/dXUOfvsPB6+8axBnh4xUmDcbRuWfHL9+fZjXXw+RkKB2YZaUmNx556nZ0M8FW7YEKC0NM2GCjaKi/vvz378fqqqgqAgOHYKDB2HcuOjHX355AseONVFbG2bxYjdpafpfVaPR9CNuN9aLYuQufEa7C4+jP7m7ID9fMGyYQVmZyY03dv0yPf98OU1NIT7/vJF/+7fiU7bq19aa/PnPAVpbYcECCwsX2rqcp6+Ypuw34eJ2Q5uEV3eCLwSXFAsuuMDJ7gOwaT2EnOA3oLwODpfDD28+OXbNmjA5OYK4OLW2fftMGhsh9dzEkAOwf3+QZcvacLsFmzYF+Na33Hg8/WMiio9XedSOHVPPo6mJ2ZHUVAuPPHIOXyyNRjO4aPUiP9XuwlijRVYXOByCr33N3qOISU62UV8fwONxnJHKYfduk7Y2yMsTfPRRmAULrDELXjZNyfLlITZuDJObK7j9dnvMrWWmCUs/B38YHBZ4biN8Zx7UHwOLCRlA0AeJKXDhcEjuICQcDhXLFRendsnB2SVsjQXNzeq9zMy0UFoapqVF4vH0z7lGjIAlS1S6j0WLlGVQo9FozlcEOiyhP9Aiqwd6shLdfnsuR474yM11ntE3L89ASjh8WDJunBHT3WH79pmsXx+msFBQWSn54IMQS5bE1lLmC0FjOxREDCpNPmj2wYQxMH0ybN0BRsiPwKQwzUbHP6errrLxzDMBmpok4bCy5CUmnltXYXGxlYwMg8OHwxQXW8nL679PFCFgxgx102g0mvMetxvjwhi5C5/U7sLjaJF1lrhcVkaO7NwXNHSowSOP2GlpkRQVxTaiMBQCISSGYWCzSfx+GdP5AeJsMDIDdlWBMCAtHjLc4LTBH34GP/1VK2+/0YaZJPivX0JBdgLjx6s08EOHGjz2mJ2qKonbLSgsPPcRlQkJBt/4hhuvV5KYKM55fJhGo9GcN7R64TPtLow1WmT1Mzk5/SMuRowwGDbMwqFDJvHxMG9e7N9KIeCWSbCjEgJhGJulBFZDg8mf/9hCQ3mQ4YUW0tMNqqvDvPJK+wmRBZCWZpCWFvNlnRVWqyA5WYsrjUajOYNz/1v4nw4tsrohEIL9VRA2YUQWxJ1HOTIdDsFXv2qjsVESHy9wOvsmHPx+laLB6OKfy26FyfmnttlskJhokJEhcDgMqqth3DgLUkpCIYnVqkWMRqPRfKlwu2FWjNyFf9DuwuNokdUFYRNeWAv7q9Xz7CR4YH7fyseUl4epqTHJy7OQkRG7nwoWy9kVla6qgT+9CDmZ8LVbo6/BmJBgcO+98fz2t2EyM2HqVEFlpcnIkbYBFVhSwvur4bMvICsDblwMyUlnP28gICNB8fpnnUajGSS0emGDdhfGGi2yuqC6CQ7WQFGkRnFpHZTVQ3F2z2O3bWvn44+9pKZaGT3axd/+pgr82WyChx+OIzPz/NjC0doG7T61W1DK3hW6drkM7r3Xzd//3kZtrcm4cTauucbVf4vthH0H4f1PYEguHK2CN9+Du248uzlDIckf/9hGZaXJNdc4mDXrPDJfajQaTX+if1fGHC2yOiEYVplvpVQWLSHUY1sUr1ZVVZC//rURj8fC/v1+Pv00RFZWHJmZaldbWVn4vBFZwwrh4bsg0d21u7Az/H5JdbUkLc3Cww8n9tv6eqKtXa3bZoOkBGhojH5sIGCycmUz1dUhFi5MoKBAxZL5/VBdbWKakooKs59WrtFoNOcZ8W6YESN3IdpdeBwtsk5j82FYtgvaG0DWwPoKyM2FGcOgoIecSqEQfPpZmPKjkJ6uXIOVlSG8XokQJqap2s8nhuT2rn8oJHnqqRBHj4LHAw8/bD2RcHSgGVqgBOLHH0NNNdxwrcrtFY1g/PzzNlav9pKSYuW55+p5/PFsrFZBfLzg9tudlJaGmT1bW7E0Gs0godULn2t3YazRIqsDa9fCb16AkmpoFTB/FpheuGIBXDS+5/HvrIBPPrVx5KiFI+UBJk2Aq692kZ3t4PBhk1GjLBQWWpASysohzgkZ6f1/XbGkqQmOHpUUFhqUlkrq6yEv79ysJSkRLpkNB7bDrMlwcC/s3QujR/c8NhAwMQyBwyFoa1PJXVU6PhgzxsaYMbHPzq/RaDTnLWdX7lbTBVpkRQgE4J13YPIIqA9B5T7YX6lill75BFITIcUNWZ6uY5d27IJhRRYK8z1s2+5n8WKDefMcGIZgypST/dauh7dWqAzoD9wNQ86RSOkLKSkwapTBnj0mhYUGGRnndj2GgIw0yMtRNQJ9vujGzZjh5siRINXVQW66KRm7feCCEaSUMU1Mq9FoNGdNvBumaXdhrNEiK8Lx2B5LGGbmws4dsGc95A2B+ib48TMq6H3WOFh8UedzjBwBGzaCw2Fh2HAXM2Z07ro6chScDhVT1HDsVJEVDkteey3M5MmC4cPPv58VhiG44w4Lzc0WEhI4pVbj6fj98N57UFoKI0fCggWnltYpKfHzj394KSqycdVVCd3O1RUjR0JODpSVqfvi4ujGuVwGd93VTzV1uqGkpI3nn69i1CgXN92UqcWWRqM5P2jzwhfaXRhrtMiKYLXCvEvgp7+FXTugthKwQGUN7HTDJaOVJWvtdlg0TYmkuiaobYSibJXaYfGVkJUFLS0weaIqEtwZCy6GY40qWHvk8IG5vmONUFoOuVnK8nM2GIYgObnnfu++C+vXQ3o6fPihErHz5588/uabXtrbJevW+Rg/3klhYWf7T6kAACAASURBVNcxUJWVEq9XUlAgsNtPCpP4ePj619VrnpBw7usj9sTevW14vSG2bm3h2mvTcTrPPyGt0WgGKXp3Ycw5z7+SBha/hEmTJJ+ulZAgwC2QGdAqYV0AKt6DvCzlLmzywh+WQ5sPRhfA3ZeB3Q4Xzuz5PJkZ8PB9nR+zWAQ33RTbtyUYhD8vU7vv4l3w7a+BuwsBGEsOHYKMDHC5VJD84cOnHi8osLF+fTvx8QbJyZ2Ljbq6MC8tC/DGm4KMDMG8iy3cf7/lFKuX1arcmF8GZs5MoqUlxNChcVpgaTSa8weXG6Zod2Gs0SKrAzlpYT7fEMJvtYFFQpOEdAMyoe4g2LZB+xH4eB2MGwvtfkhyQ1VD9OcIheCNN2D3bpgwAa66qv8rnweC0NQMmelQW6/yY52tyPL7YcPnkJMNw4Z13qe4GFavhrQ0qKuDWbNOPX711QlMmOAkJcXSqciqqQnzgx808/pyCIchKcWKz2/nppsspKae3frPFSkpNm66KetcL0Oj0WhOpc0Lm7W7MNZo42AHdm/zM7HIT5yQkA1koWToFjDXgC8A/hb4YBXEWeGSKcqFeOPc6M+xaxd8/jmkpqrdjPv3936dlVXwzkrYuSe6/vEuuOYSCIdg4ezeuQubvPDS+/DU/8LR2pPtO3fCq3+D515QaRM645JLYNEiSE5WYvJ0kWW1CoYOtZOS0rnK3LUryEerwkgpCIcstLVCZYVJQkL06++JUAh27IRDpbGbU6PRaL50CJQiiMVNcwJtyULt9pJS5YCKs0kSXZL2SgG5QBA4ClhUQtKJ48AaSVS6YLK69YZQSLkbrVZ1Hw73brzfD0+/oFyAH38Kj9wH+VHsTpwxWd16yxtr4WAFxDng2RXw+G0qmD8vDwoKoHhE13mpbDYlsvqKYRiEQpCaYlJXHyYhwcaiBSpz/um0tsGHa5X7dt5MZbWLhg8+UjeLBR78GhQW9H29Go1G86XF5YbJ2l0Yawa9yPJ6wzz77DEqKkL8/ok4mlsBqw+S4yBFgA0oUF/C7npIz4UrL4HUPsYAjR2r8jjt26fchSNH9m58MKjSFKR7oKJapZjoiGnCui9g+15ITYZLL4bks0jK3tIOCXHgciq3aDiS7DMjA7777b7PGw0zZ9q4eE4c69f5ycu1MHeehbvu7Dx/1ZsrYcdetQGh9Ah878Ho3LBNTUoMBoPQ2hrjC9BoNJovC21e2KrdhbFm0IuskpIApaUBnnzaRospITkBDBMcQIuBkQ7WJEhPhDtuhaxEmB1FcHtXOBxw993KgrVxI/z8F8qVNm3qmX3DYaiuVjFN9sjGO7cbrrkCPvoEZk6FoYWnjnnmVXhtBRQXqUupqIZH7lRC4sABJSry8iAzM7r1XjkdXngfmtvgyhnRlRbqDTt2hHn9dRObDW65xUJh4UmzmN0uWPpMPJs2OQGVADU7u3OzWU0deJLBFQdHKlQcWlwUIuuSheo+ORlGRpn+QaPRaP7pOO4u1MSUQS+ysrNtbNvroMUnwQUkmSAsEAACUJwGwQS4IFfFJ2XFKB7IYoHNW1RA+patnYus91bCR6tg/AVwx+0n26dPUbfTOVoFr7yjXJF7D0FRAazfAwtmQ3MtvPWWOq9hwAMPQH7+mXOUlsIHH6ig9YsvhqE58MNbwZTKSnScqip4513lMpw3t3e1D4/j80leecXE41GWpGXLwjz++KkT2e0wa1bPamnhRfDXN6HuGMyeprLpR0NKCtx0Q+/XrtFoNP9UuNwwUbsLY82gFlmhEDS1WGnzO8HqhzhU6vfEOFVewA9TR8D+VqhtVTsMRyareKxY5JC85mr4fCNMn9b58bY2tUavN7r5giEQEsrLVSZ0bwjag3DgKOxep2owOhzKOrZpU+ci6+WXlQXt4EEYMULl/bLboLYOXnhbsm9vCJfbZOVaKzIsSE0wyM3tmxUoHFblbGw2gRDqOvuaDX3cSPiXB5UFK+1LuvNQo9FozhltXtim3YWxZtCKLK8X/vIM7N4HzY120j0hattNsBvqVTEN0tOVSLluohIaNgMqG6CpDZJjkGcqJweuvabr41ddCaNGdi6GOiMrDVIToOSQcg/SDtddCnMnw9GdSrQ5HCqmq6sdepmZsGePSvLpcp1sf/YlWPuJj3VrAjTF2Yi3mSQ5rJi5gg37BMnpkJbYu3QU8fGCRYssvP9+mNpjgosuNggEBA5H9HN0JOksYs80Go1mUKNrF/YLg1Zkfb4Rqmtg2FDYsddKfr6Lfa0mZU12DLsgMwkKhsDIPGW5ireroG/o3jV2uBFe36UsXUvGQH5S39fodKpA+WgJBCEtBS4YDWYYRhTCv92vjl1/PSxdqhKCFhScmU7hOLfcAiUlKrA9MSJaVq2D11aE2fxhkKDfjiyw4k+A1gSJLcvkhTUW9tTA0Gy4c5ESpAC+EOypV6/bSA+4O0noPm+eBU+GwbOvwLZ9grS1qiC3RqPRaAaQODeM1+7CWDNoRZZpKpdaohvycgRev407LoK31sPhBnDlwndvgYmj4OnVcLhOxSXNH628iV3N+cJWsFtAoh7/8OLYuBajIcENYalce6EQLOpQYzEnB/7lX5QVy+XqWig6nWr34/E119TB8pVwuAQC/siFxZuQaMUfMKluFKTlAzZYvx8mDVdFtgNh+Ms2KGtWr7MnDr4+CVydbA50uQRWqxKzUsb6VYkt/iC8sVGl8bhmSuw3Amg0Gs05od0LO7S7MNYM2q+IaVNh2zYoOwJji2HKTPiPp6Bkp6StDRJDsGu7YM54uG4chAxIS4LCbvIvmVJZb5KdSovUtkYfv9XYGKamxmToUCtWa3SqLBSSp/QVAq69DEJSffkvOK2QtdWqdid2uYZmePFNqK6DS2bDxdNUnNcb74WpqkMps7AEp4SQSvDVBnxRAQeOQaoFZpYrkVXhhaMtMDRS47C0CQ43wehOEqEOLYDbroMWL0ydcOqx1Wtg7TooHg7XXn3uaxMebYANB5VlfcZwyOtjjenN+HAhGEkffaMajUYTS7S7sF8YtCIrMRGuvhGWfagsO9IJRw9DQ5kEE0rqJE81GlQ3CtzxkBAP998AW3crt9y44jN3sFktsLgY/rFXPf/K6Oh23Zmm5KmnvFRXh7nyyjjmz+/cVHbggCq4PGIENDSEWb3a5JprDGbOPPmfsWg2FOSCww6FUSQp7cjHG5TAykyDdz9R17hqV4iyBqHMUfFWaEWVG8oQEDQIZgmCDgg71OtyLOJStRtKaIbC4G1R8WC2Lv6BhYAJnbhFa2rg3ZWQlQkbNqrEpxeM6901xZo8D8waoSxZWVEUye6K7QRIwtAiS6PRnB/EuWGcdhfGmkEnsuobVaHkvCz421qw2GDvEdh8AJobJYRUPxkQlOyRvPOh4PrFESvPcig7qoTT5p1w/y1nWqlm5MPYDPXYHeX3pxAqi7lhdJ7N3DQlO3YEePJJyMqys2OHIBQKEw5Ldu0SzOyQt8swYOTQk88Pl8FnG2DyRBgxvPPzB0ywCSUSw2YkK31krr/vEZjZQB0gDEgAmoBmAYWAS2LYBJZ0aBcQjOjDbDdMz4Q/vwnH6iErHg6nwfDp6vixZnVLToDULuLWDENpu2BACbb+rvEYDXYr3DDj7Oe5jQQGyIus0Wg0PdPuhV3aXRhrBpXIqqiBP72iXGBZHmgHDlVCeY36Qh81DWrLQToAYSLaJGYLfLrVYPIoqKmH7EyV/fzwUZXbyd5JMHe04uo4Qgjuv99Nfb1Jbu6ZSuLdd1t4//1WvvgCxo6Nx253094eorXV5NZbu1ceL72sRMqu3fB//vVUoeIz4eV62NcOaTb4ymSoa4SqGrUrMSkB9gQsWNwm4TygVihfZKZQfzleIB1MJ4h2sFihMXT8mmAIMNwGBZPAaYEPN8LEYqhugGXvnlzHzZfCuE4EYFoaXHctfLYeFs47/5KFhsOweh2sWa+ez54Oc2ZF59K0aoml0WjOJ7S7sF8YVCKr5Ij6YizMgbJKuGwe/GgzJMbDjJFQWy9oPAC7DgYJHWvDAMJNBk4jnusvtWAG4X8/AiRMHNu5wAIVAN/ertIgRIvLZeByde5b/OKLdrKzLYwaFaSiop2LLnLS2gp2u8HRo2GmTev6bczJht171I7C012Xa1tgrw8KnVAbhPd88OB1J4+XtYBIAJs0CLebKo+YQGXDD5rglXAEaBIEEgXxBhR3CGz3+dWOwo67Ctv98OpKFd8W51R9XvsARhV2Lk6mTFK3jhzPHZaQEDvrVkMD/P11lfn92msiKTB6YM16WPEh5OWo5+99pO4XXBybNWk0Gs2A4XTDGO0ujDWDSmQNyVb3pUdVqoPpo+G+y2FXqQpQT0mC558UPPpwgM1bgjidksYGgQcLsybEIwTk5ygLVlEXuava2uCZZ6HiKEyYCDdc37ds6B0ZN87J0qX1lJT4+epXPVx/vYWnnw4RCsG4cd2rjFtvgqpqyMw407XZEIL4yNqSLFAfOvW4Nwgj7XAoCLgMZfpqF3DYhEYZ2aJpQqLEOsZK3niDjmFKIwvgg8+hrEq5IYfmQrIbAqGT8WxOBwSPqXiuaCxAbW3wl79AZSUUFcFdd3UtdnvDpi9UAlZTwqSJMGxYz2PWrIfc7JPnz8uBteuVyJJSUl6uyhglJ6tEsH1JsqrRaDQDgs8Lu7W7MNYMLpGVA4/eBg1NSnA57HDjXFjrUSVzZoyBvHQYkhdk7+4wQtjwt4UItkiWL1dlZgpyuz/HwYNQfgQKC2HLZlVyJiPj7NZ99dWJJCYabN3azp13puDxWPj+9+NU/q747r+47XYY0oUgnOiCzW0qyb3PhEtPi41Ks0LpRkhNBfzQFjbAb4IpwCLBtEBAwjGJf7MkaIWcDoWzPcnw9RtgTyk4bDB+hHrNRwyBA4eV0K1rVOIr2jI4hw7B0QooKlSPjxyJThD1xPBh8MkaSEzo3fslAV+7pL5OqhQUQvD++7BihdoB4HAoLTpsGNx6q4HLJairg+3bVaqMrKyzX7tGo9GcNdpd2C8MKpEFkJWubseJc8Ci0+oAzptn4+23g5GAdAslJQ4+/xyam5XlpDuSk5XFqLxcuQt74zLsyIEDIWw2KCiwYrEIFixIYMGCk2naXa6+WUXaA1DTAqnxMCIOHsiAQz5It8IY16l9QwEoiAd3CBJa4bAX2qyACUgjktTKAi4BiSZO04LDf+ocaclw0cRT225aBO99BqUVMGU0XDYr+lxiSUnqs6CiQlkIk84i2WtHiorgX3+orGnRpom4aAa8+obJyjdDVFcHsdlNxo+3s3mdlcZGyMsTzJ2rXJqlpZK33jK56SYLr7yiakRu2gTf+15s1q/RaDRnhdMNo7W7MNYMOpEVDfPnu5g0KUQ4HCYpyY7XayUUUoHYPZGfD/fdp0TWqFF9E1k+n+Tpp1txOODHP07s0s1kmpIDB1rJyXHidvf8Vrb64U8fQ30rxNngwblQmACFXQTqpyTA8FyorII2Hxg2cDgEYSDkRJlowhLaTXCZVLVZ+GSzwaQJnc93HFccfGV+j8vtlLw8uOceZTEcPTq69yQafD6T1laThASDaErRt/kgYIPtpZJDtWGsgRDBAGzc0EZ6upOMDIOGBgvt7QZut0oGu+pjSdEwiccjKC1VJYw0Go3mvMDnhb3aXRhrtMjqhKIig3vuSWLrVondLli4UFBYqFyA0TBs2Nm5sJxOwZIlThwO0W0cz759Xv7nfw5xySXpXHdddo/zHmmAOi8UpkFZPeytgvQuahiCsvJ95xbITIV3VoG7EsZMFWxbK6moDtNiCpX/QRjYAgGG59mobjTw+VWsVW85EolhysmOuCi7oLhY3WLF/v0+li1rIhiUOByCu+5KYciQrgO9AkF45m2oqANpExjpBo6QjVB1ULlefVBfb9LSIrFYbIDg8BHBlh3w/Cswcxp8+9uxE4gajUZz1mh3Yb+gRVYnGAbcfrtgwQJVrLi/vgwDAUl5uSQ/X5yRH2vatJ5VSk6Ok3nzPEyYEF1l5JR45ZaralKbAzO6EVjHyfLAd2+FC0fCM8tVLFtdtUFLWBmwHCIMhok7ySAvDZLcJ2sX9oYNG+H1N8FiqJ19D943MPFKbW0mL73USGKihfh4g+bmMM8/f4zvfz+j05xlACUVUF4LRdlgnyM4sEdQ3yKwYjJ+vIFpGtjtEBdn0t6uhPrRoxK3W8V+7T8Et93Q/9em0Wg0UeN0w0jtLow1WmR1gWGoHWHREA4r8dLbXYQrV4ZZudLksssMrrii929FYqKNm26KcpFAZiLcdxHsrIBCDxRHKWJ271UC6OAe+HCVil8aMcYgP8+k5qiFeBnGHm/H12TBY+vbbsr3P1Q5yJxOqKiEjV/A4it7P09nNByD3z0FTY2w5Cq4sEMMWFllmGYfZGerRScmWigrC9DaapKc3PnPunCk7iVAdrbgscdsbNhiIa4+zPixFiqrJB+vF9Q1Gry7VmAR6gdi3hBBVY04o9yRRqPRnHN8Xtg/sO5CIYQF2AgclVIuFkKkAi+jUl2XAjdJKY9F+j4O3AeEgW9KKVdE2qcAz6KSDL0NPCallEIIB/AcMAWoB26WUpZGxtwN/CiyjJ9LKZf21zUOepFVX6/SAQwdqsrr9JaNG+HNN1Vw8803qzisaElJEcTFCVJSog9i37u3Dilh1Ki+mdeGpqtbb9i6A5ITVT3D55dDSiIMGwIFOQalRwy8NRYuGC3wmbDzkEpxEU2eqY644sDvVyIrGAJnF0W4+8Iv/z9Y+ynYHVB6EBDQaIHKBthdbmFDnRtrfIBhGZKWljBWq0FzMyQlyU7dtblpylp3rEXlWPOFBfMvsrBwtJMXXwywp9xC2Aohn4WDZYKxwyEvV/Dthw3SUlU6ja6org4CkJnZB3OgRqPR9JVz4y58DNgNHHfH/BD4QEr5KyHEDyPPfyCEGAPcAowFcoD3hRDFUsow8ATwAPAZSmRdDryDEmTHpJTDhRC3AP8B3BwRcj8GpqI2iG8SQrx5XMzFmkEtsgIB+NOT0HgMxoyFe+7u3XivF5YvVwHM4TC8/DL86EcnE2RWVYWorQ2Tn2/t1Cpy4YUWJk82cDqjF1kWi1Cb+gaQwiGwebsSTqkp4EyAai+4m5V7r3CIYNtR2CYhPgGW74frR0e/YxBgyVdg6QvQXA45WSpuKRaYJhw+BA6XxOGApBTBm59CuRtaGiHNYXDBOAdHSwPY/UHsdpDSzR/+EGTJEivTp5/5L5KcAPddBa+vVtnrC7PhuoshyW3l3q8Z1P4J5s6F0jKDvQck+UWCtCRISe5eYK1Y0czHH7cAMH9+ApdcEp0bWKPRaM4ahxtGDJy7UAiRB1wF/AL4TqT5WmBe5PFSYBXwg0j7X6WUfuCQEOIAMF0IUQokSinXReZ8DvgKSmRdC/wkMtffgN8J9av5MmCllLIhMmYlSpgt6+vVdsegFlnhsLKeWCzQ3tZ93/37VYHmkSOV1ev4eNNU44VQmciPPy8rC/Lkk02Ypspl9eijySQlnSm0eiOwAIYP9/SqfyyYPkUJrMpqaLfDJ9tVUPyhCvjVwzB6KDz+N0ivgaGp8FkJzC2A9F7srBySD9//DrS2qrQMscrkbhgwerikfJVkaJ4gPj/M7lRBY8ggnAQTUiDRYWP+tckUxJvExwv++7+DtLaqxKddkZcB3+gkrion2yA7E+JcMKoYDpUJ2n2w6BolHrvC7zdZvbqF/HwVcL9qlZc5c9w4HGeZyVaj0Wiiwe+FgzFzF6YJITZ2eP6klPLJ0/r8Fvg+qiLucTKllJUAUspKIcTxn6W5KEvVccojbcHI49Pbj485EpkrJIRoAjwd2zsZE3MGtciKi4N7v6rSAUyc2HW/igp45hmV2HPNGvjmN5X1KikJ5syB1ZG/y8WLT7rJDh4MYBiCIUOsHD4cpKIi3KnIAmhulqxZY3LhhQbJyedfVnDDgAnjYOc+2HMI7AbkpkN2NhihII9+I8Sbqy0EfBZsdgtODxQ/Bvff1TtrlsOhbrHmwQcEhoAWm8n+eW0cC9lZ4LTR2m5w3yR46yC8WmZw3wUG6S544AFBTY1kxIjeCxynA25eDC//r3Kb3rIEbrm652SrVqvA5VKB96DyoFmt59/fgkaj+SdFEE32mmipk1JO7fJUQiwGaqSUm4QQ86KYr7MPQ9lNe1/HxJxBLbJA1fQrKOi+T2OjyruZk6OSSDY1ncxxdNll6vHmzcoK4/OpuKIhQ2wEg+2UlQWx2QQZGV2bZiorYdUqSVGRSmY6EEh50uoWDaVHYPcBuOgC+HQvHK6AhZPCfPMbPj5b7wMZBgTt8fHYRTwvvyC4bF7Pr+1AkJsLP/qRoNYneNEhOFIbwlZpY/4QSHNCQ7sKZHdGXouUFIODZZJPNsCsyer97A2jh8O/fh38AXDHnyk0q6tVbcuCgpPHLBbBXXd5WL68EYCvfCUZi0WLLI1GM0A43DB8wNyFs4FrhBBXAk4gUQjxAlAthMiOWLGygZpI/3KgY+2SPKAi0p7XSXvHMeVCCCuQBDRE2uedNmZVb66uNwx6kRUNRUXqi7qsTCUbHTLk5LHqanjlFbXjbPsOFUh/880wbJidBx5Ioro6RGGhDY+nazVTXAz/8i+WLlNFNDYGeeaZCoSAe+7JITn57IOil70Oh8rgobvA001OqtPxJMBlE6CsAtxSsnVrG8gg6seBhNZjBOMd1NbaeHopzJ8H8y7unUWrP7BaIdtt8LCMh2xw5agF7apVbsF7JsKQSAjUX18L8Lsn2sGERYvs/PTfnL2uO2i3d15TsaYGfv975aa+6SaY0qHaQH6+nUcfPcsaTBqNRtMX/F44NDC7C6WUjwOPA0QsWd+TUt4hhPhP4G7gV5H75ZEhbwIvCSF+jQp8HwFskFKGhRAtQoiZwHrgLuD/dRhzN7AOuAH4MLLrcAXwSyHE8SJwlx5fS3+gRVYUxMXBQw+psjqJiaeWXSkvh807AAOkCTXNEJcFhTkwfoSNoqKeBZEQgvRudvyVlvqorPQDgsOHfTERWbUN0NoO7b7o+hfmQ/FQ2LVPWX1mToH8dEEodLyq9HE7cxBfaxvxCXGkpNp5a4Vyq07uIQv8QOE6TSyNSoPHZkCWWz33ek1WvNNOXLyBww5fbPJz+LCNwsIz/1X2H4IvdsD8WZAR5WbP9na14cI0leVTo9Fozgti6y7sK78CXhFC3AeUATcCSCl3CiFeAXYBIeCRyM5CgK9zMoXDO5EbwNPA85Eg+QbU7kSklA1CiJ8Bn0f6/fvxIPj+QIusKLFaO89C7m2HZi+kpUKDF8qOwMh9sHabKoo8svDsz11UFMeQIXEIoR7Hgq/dBt5WyIwynYPVCvlZKn+V1QJD82HkcIOxY21s2eJHFTQER5zBjGlhWpqb+GJbPCXlLo754I4bYMGsns+z8xCU1cAVM/p+bb3BEJDdIezS55NkpYMzXuD1gsMi8Ho7d9e/sQKOVKgdljdcFd35hgyBW26BlhaYPj0GF6DRaDSxwO6GooFPRiqlXEXEXSelrAcWdtHvF6idiKe3bwTGddLuIyLSOjn2F+AvUS/yLNAiqxuafdDkh9yErhNspqfBhAmACaIZ2rwqd5I/CLWNMDLKc/n9UH+s8x1oSUlWHn00/8wDZ0G8S92ipb4BPvoExo1Ueaz+/hb86LuCN95I5fbb61SgvwXsNkltTS3NzYKj77QwZkIG40a7+eBTmDAKPCndn8dhUzsXzxWpqQajRlnYsiXE7oMq+HzdOgvjzvgXhounw6ebYHInx7pCiO43WWg0Gs05IeCFw7p2Yazpd+OgEMIihNgshHgr8jxVCLFSCLE/ct/D1+65oS0Av98Av18Pa8q67lc8HGZNB+GEWr+KHXxjtRJlowqjP99b78N//RFKDp/10vuFcDiyLUOoYHkzrILnCwqsrFqVyT/+kc78eU4SEgzq68JkZVkxTRt7tjWxdWM7gYAkbPZ8nuF5MC8KEfL/s/fe0XGd573u8+29p8+gDnoHCJAEq1gsUqRIFarZFlWsYkuWrBJbLrEV20pinyTH69y77slNVk7OPblxmhK5ypZkq5rqFEVRoihSLGAnKgmi1wGml13OHx9oFoEkSAKSnLOftfbCYLDbfHsw+zfv+36/9/33TdraprDDC0RRBPfe62PNGi+1tW7Wr/dz9KhCJvPRdVcsge99FWo/BcX9NjY2NpfECTPS6Vhsfs/HkYE94eh6ghOOrvXAWxO/f+pI6hBNyyTYaOLs62ka3Hs3XLMOrloF994EC+rgjmsheAEzBeuqYXYt5H1MswsvlIKgrMM63iPb3ty07qTdgqYJ5sxxYRgeDMODaToYCzkxUoJY3MXLL8LhHQbpc4zjhdLaatHTM/X1dR2GhpiSkavTKbjuOie5RS4OtyqsXHnhDvY2NjY2f3Ao07TY/J4ZTRdeoKPrp4o8L9yzAPqisKL83OsqCiycDbtaoGcIivKkC/iFsHieXD6tCAE33wRXXC4jWblniEGvVyEY9HLVVQ6amw22bTPJzgany0dJqUVpATQ1Qfl5xnKqfOUrKmNjMDw8tQbeL7wA27fLGX3Lp+AmH0mCXgi+Qlh33aWfr42Njc2nGqcfquwG0dPNTNdkXYij62kIIb6G7EdE5ameCR8j84rkMhXqK+GR22FkXAqsLP/MntsngRAQnMRwfjQEG9+BhKEwNmzR0+PB6TQQwqKiPIMQTnw+herq6TuX9nZpEGuacNtt5xdOQky9iXc8AS83QesIqCZs2w3XXDE9521jY2PzqSQdhS67Jmu6mTGRdRGOrqcxYcH/bwDLli37mLv1XRxVJXL5Q8UwLJqbMySTFhUVGgUFU0uu/+pZONaZ4eXf9TPUb6AqCtnZHhxON7PqHXzxbif19YL334/x29/q3HWXh8bGSUykLoDmZpmq9Xhg797zi6xb0TgsqwAAIABJREFUbpH9BM8V9Uql4FfPwzNvQHMMEjHAA9/7e/jBAHzxtks65QvGMCy2bNFpbzdYsEDlM5/RLtivy8bGxmZKfDINov/TM5ORrAt1dLX5BDFNi9/8JkZTUxpVlQ7kX/1qgIqK879FRkOw/d1RhvszGKaCoeuMjiaorXVTWeHi0CHBnDk6Bw9myMlRePvt9DlFVnc/hMJQVnj2GrX582HHDmmF8NnPnv/1adr504pH2uDDJohHIDQO8RQEFAjkwub34fbPnTQY7e2HcATqa6evz+KZ7Nql89praYJBheeey5Cbq9DQYH8K2tjYzABOP1TY6cLpZsZE1kU4uv6nIRKBJ5+UbvB33AHzPsW1VicYHDTYty9NTY2MlgwPG2zenOS++86f91y3Fv79xzoIgSIElgAhdJYtUykrExzvArdbpbxcpbfX5Kqrzl5Fvq8ZnnpFPna54Bt3Q+FEitKyoH8MHIr0m/qzP5OzHgOBs+7urIQmWiXlnTK3VVXllzkzCqIL3NmgjEBJGQSzTqYaR0PwLz+XRq633girZsjvamTEwuMRZGcLQiGT8XET+6umjY3NjJCJQq+dLpxuPgmfrEkdXf+QsazT28bs2wednVBYKAuu/xBElmmeqFuSL0RRwJrKVDyg+QjMmuUhPK6TTIKegbIyJ/PmuUkmpXjJyRF8/et+UikLr1eqlYEkvDwArTGodMP6EnhvN+Rly5q2jj54eifMqgNzHH76LOzcDz4XPLQe7rkRIlFpLZF1AULrUItMC1oW3HUzLJq4PnPr4cZrIDQCI33gUcGhQYEbbv38Sad/0wTTksfVjbMeBpC9LN94Q/a8rKmB666bei/EBQs0PvhA5/hxE59PUFdnCywbG5sZxJ4ZOO18LCJrqo6uf4j0xuBnR8CpwINzIc8NubnyRtzfD3PmnHv7oSFpD3C2xtCWZdHaqhOLWcyZ48DjmZmanKIilfp6B0eOyIbWpmmxerXvvNtlMtDaDrfcmkNOjsWRI2ka56oUFuTx3gcKTic8+q0Tdg8Cr1eef0cY/ngP7B+EWASUNPybHz6fADMOLjfsSkF/GDa/Dru2Q99RQIDbhF+9DDt3QG05eL3wza9ATvbUXuu+Q+BxS6f2PQdOiixVhZuvh8+tgzffhJ07oaJSpiNPLfgP5sMXboX+EFyxdPJjnOCl38Hu3RYup0lbG4yMqZRUQ0kBLDzPe6O8XOHRR90MD1sUFytkZdn1WDY2NjOEww9ldrpwurEd3y+RDwcgZUA4DYdCsLoEGhvhoYdk2rCx8ezbvv4GvDNhXPrFu2H+JBGvpqYMTz4ZI5mEOXM0/viPLyI3NgVUVXDvvX72708Ti1nU1mqUlZ3/7dHXB0cOw9ubFaoq8vne901uul7w/OuCvQfB7QHvRONlw4DXNsPGJnglA92lkB4HPQokYMQDh7pgoSG9xrKLoLEQXt8Pw8chHQaERdovaOkDvwlXrYBjXbK9zVRF1sJG2H9EPr5pErd2RYEbbpDLZCTS8HK7tHmorIR5paf/fSwCo6PQcxy2brWIRlL09hmYJuzpcLHmag3TgmAulE4yezWTgY2bZS/MdVcrk7ZzsrGxsZlWMlHos9OF040tsi6Rhhz4cBBcKlSdUr40+zz9dHQd3n0XKsohFpdiazKR1d6uc/CgdDY/eDDFnXd6KSqambSRwyFYsuTCetr85jewaD6YusHGN0w2vWHwo7/UqGoUXLZCwesXqCq0tWV48XcGW3ZCe76T4ZBCOg16GIgiS42yLNLjgj0GuHRYWSEFT/MBiA0BCVPm6EIWkRJBJCXo7puwlrgAIdLYAI99/aM1WVNFCBkFE4r8eSptXfDTDbDjbajIg442i+5ek9n1CiIjiEcNDFNDOYedRPtR2PSOPL/KCph/DqFuY2NjMy18OhpE/6fDFlmXyNw8eOwyUAUELsCVQFWhsAh6emUN04oVk6+Xm6sSi1n4/YLyco3du3Xq61WysmTN1ydNOg379pps2WwRjSq43YJkxmTfQZWcIpM//7bK/j0ZnngiiVAF7UMWvcd1rDwv+pACDkAxYVyHEWCjhVHpYLemUFsNQyb0DyP7q6eBDOACLIvGJYJrV0NNBZQUQTwu+ypmZ53/vM80Uz1BOAx+/7n9tNwO+NZaiKagNEfWZUVSkO2G1uMTAsyE8SgUlQtaOuFwC8yqMrj3VotlV7goCkLxWZpzB/NlVM40oXCKDbxtbGxsLgmHH0rtdOF0Y4usaSDnIhoaCwH3fxm275CF0Csun3y9qiqV5ctd5OUJwmGLkRHBpk1yRt2f/qn0ifokuf56Gc1Kp8Hvt0gbgoSiIgyLZFLw3jbYtlFH1wWWpZA2QE8YOLINiCmQbYHTgrAFHRZ4gbYMqSwne94W1BWB6gcjhIxieQEdUAU1s2HtSnkex7rgp09LkfXZay5uxp+uwzPPw5oroKH+3OtmeeQST8O/fwADEZhdCGtrYedhaFwG1VmwZJHg9jtd9B9LUFOpcPXVHvznmbAZzIfvf1s+nmqRvI2Njc0lkYnCgJ0unG5skfUxYpoQT4LPI2eb7d0LRUXSSFM7y5Woq1O55RYXTU0ZFi/WmDXLwaFDstj7Yv2ZWlqG2bChlQceWExe3tRVmmFYHD4sC/UbGuRMxCVLYP16+PGPLeJpgVAtFFUgNIE/IBgZgEBAEItBVhYMpSG/FIwiGLWADmDUhEJV2qvPFeACKwo+L1xWA+/uhlEnYCngBzLgqga1EQxLRhG375bnlZ8Hm7ddnMjSNFj/2QtLIR4PQX8EqvOgeRBumAN//hV5rd2/F98q8sSnji2ubGxsPlbsdOGMYIusj4l4An7yEvQOQdAHAy1SRHzwgSyQv/76ybcTQrBmjZM1a07mIh97TEawnBdpmm5ZoOvmBW+3davFSy9ZKAo88IBCY6OMyD32mEIopPPTp0Bg4XIKcgoEf3SvwKnDhoiDSESnu9vAaUFJpcJIsYarH1JOIEdAvYACBZwCYqC4wfTB9v3QUAJGFbR2g+mSr/3zX4RUAIYzUOSE6grYfQDCUVg6STG7ZVlTcku/0PRc0AdOFY6NQo5Hpgydp9iAJZNw+DCUlEBx8dn38/LLOq++avKtb2nMnWt/0tnY2HzMOPxQbKcLpxtbZH1MHD4K3QNQUwYf7ABnFGprIBqF1tazi6zJuNTZZrNnB/mzP5tCV+UziMUsNE3OEozHLeRXH1nD9D//p4N5i01+9xpYQlBQDIW5CksWQDis4nB4sSydz35OsCdfo21IsGEzjJcLEiFFpgrLFBiUcZ+ifEE0BmoUVs4Hnx8UDZTZ4DKgqFTWPk1YbvGZy6S31rFeqK853bssmbR4/PE0igJ/9EdOXK5Lt0IYHYMDzVBXBd9YJdOFlbmyXutUtmyB11+X1+yHPzx7rdcvfmFy4IBCRYVhiywbG5uPn0wUBu104XRji6yPCY9bppDCMfAHwEpBby8kEhcmsD5J1qxRyGRM3G7BwoWnCxVFEXztQZX1n4Wmg7BhI3R0wpx6CFmQXaewbqWT1UthaRJ+1gFjDdC8B0xV4VinRToXXH7IUgUrFgMalIVgThVkDMj3gScmU4VDbbCuBHyn9A7f1w5Nh2HLblh3BVw7MZkgGrXo67MQQo636yJq6M7kVy/K9j9eD/zg61B0FmeNvDwZcQwGTzesPZOHH1Z44w2L228/PQfc2Qm//jXk58M994Dv/NZlNjY2NheO3btwRrBF1sfEnGq4cRU0H4N71stZaQcPQkEBXHbZJ312U8PnE6xff+7/wuIiWJcPddVQWgyvvgu9g1CQB6+8Cw3Vsk3OrdnQ3Aflbsg4YcG1gmODkJgP4+1wtBnm5UJeEI71AxbcsBgeuBleed2iaT98uF8wKxvyq6R43d0MtWWygP29XSdFVjCo8LWvORFCOs9PBy6XdH13Os4tnpYtg9paOVHhXOtdc43G7Hng957+/MaNUpy3tUFLyx/Oe8XGxuYPDM0PhXa6cLqxRdbHhKLA1cvlcoLKyrOv/4dEOAEb98JTv8rQvtOisQH+7m8d+LyCjC4L9LWJvoDGRCnY0BDkO2HpEujsge8+KNvdHOqGTYOwtBHiIVg+F2orLOIJaKyDTW9l+I/HDYZCgryghvMyBXNMAQsOO0EdgnRMNpc2zZPpuepq6cv15tsylXjV6nPXtI2NWfz61yaBANx5p/KRFOOXbob241BeLAvuz8VU0rvPvg57Dsk2Pg/dAdXl8vnaWimwXC4pyG1sbGxmBD0Kw3a6cLqxRdankON9kEpDVenpRdQfJyd7GZ57vbQO/7QZfvpvKdq2WggTWg9ZKIrFz55wsW4l9AxAVz+sWgLFE6VgdZWy8L+zB2bXQl4OrFkBa4CSPNi+VwqLxlqLN1812LVLZ8eOFM3NYRKJCNIwy8+2XSUsuN7DrIWCkmro6YZEOxCHp56Hu289OQtz115442352O+HK84xA7G11aK9XYq0K66QYudU/D5YNPfcY9PdD0c6YF69bKNzNnRdpjmrSqF/SG5zQmRddRXU1cnZpMELL6OzsbGxmRp2unBGsEXWNNEchic6IMsJj9RB8JS6n7Qhoyeuc4z20V6ZFms+Cu3HZESjthweuOXs9g4zxaFD8PTTMsX14IOyHuhsjMSgs9ei820LKwmGkiJpOjiwT4asCvLgew9IIXFq5CiYB3/yAIxHoCh4MuJkmrD+alixUFpdDA9ZtLaavP9+hiNHDHQ9xgmBhZJFciTJh6856OhwkFcCNbNg/eVyzPYfhpXLoKZK7lvPQCQMgSxZS2UYMgVnGLLH5KnjXFcnqKy08Puh9Iy2OVMhlYYnnpW+Xdv3w58/fPbrqGkwvx72t8iIX0P1yb8J8Z8n4mljY/MpRvND0E4XTje2yLpETBPea4O/3A7Hh8AbgGIXPFwna3beOArvdgECVpTA52aBckZ0aOcReHazjFq9/SGU5MPahVJ4DYXOHQWZCV57DbKzIRSSTZLP1sMPIMsNigGGoYASQ2SSmDiYM9vPxo3Q0yO3P9O+IJ2WQsd3Sg1SSxv88mmoLIev3CPTcJYpyGQswmGwrAxgIG3iA2AqUr2G48RGsnFmQ7IXrLqT+zwRiYtGYfNbYCRgxVrZCujV12Q7I5Bpy7vuPLldXp7gO9+5+K91Atl2x7ImHp8nInjXZ2HFYhkhKzyHqLWxsbGZEfQojNrpwunGFlmXyMb98NevwXvvgmUACvx/PTD/u2DE4e1OqM6WN9mtPVDkh8+UnNzesmDDNigNwsAQjI9AewuEhybShZ/AFaqshB075DkXTdLA+FR8LnjsNtj6lGD/VicqGYqKHHzrW05efEnOqnzxRXjkkZPbbNsGGzZAebmMlJ0w3ty1R9oytLXD8AgowgDgkUc0hocNNm40GRhQABVEAhS/NCjVLAwLyrLgC1dC/wAkkpCTJf3JANqOwYeHpdde1kQR+uHDUFoixdyhQ9M7hk4nPPwFGZmcW3t+41hNg1o7YmVjY/NJYacLZwRbZF0Cx8LwoybYZ4C1AGgBwrKh8U9awOeEbOfJJsIBJ3SNny6yDEOm0lIp2L4H+g/AUK/8ed118Mpm+PKt54+EnA1dv/B04/r10tHd44FZs86/fk2BYM9bDnbvVhkZ8bBypSAeFzgc0jLhzILtt9+WfRePH5c2Fifqna64HI53Q04O/NO/JNm0MYbTYfH1r3v5wQ+crFiRy1/9lcHYmA5KAMhAVgBXnkZtDayaD/fdIT8rfvzvEI3Bz34Nt98Mr2yB2fNhZBRGJ4TXZZfBmxsnjr3ywsZoKpQWysXGxsbmU4/qhzw7XTjd2CLrIskY8E97QDih2AkdGlAOdICWDWkLqtwwFpLRKoBoRkayTkXTYF4NvLYDmvbC8HH5vKXDkf3wQQ3cfsPpabWp0t4uzTDvu+/ChJbTCQsXXtixhIClS0+aaAYC8M1vwNjYR4Xa0qXwzjuykPvUSFlVJXxhPfzV/2Px6ssGCDdZrhh//sMo//SvhUQiGldeWcAbbyZIZRRwm/jyFK67RuOm66TZ6yubTW5YBfGEQmUZ9PTBh3vlkp8jneEHR+Xxrr5KGsJmMjAahmdfgroamUoUAoaHoa8f5sz+6AzCcAQiUSgrYcZIpuHNndC0H76yHipn8Fg2Njb/h2NEIWSnC6cbW2RdJKGknFmX44W8ekgdjRFTMiTmZXP5AoHXgrtL4UMT9g0BFjTmw+WT3ChvXgUvHAAjOfGEAMwJZ/XYqT3wTtI7DC+8C8EcWH/F5OuUlcnZaR934fwJSksnLxq//nrZr9Hn+6gxaNMB6OwGoZiMjQnGUwIsnUe+OUbtrBzu+rwDRdHZ8p5CTrlGYYWThfOkuNMUi5/+IkFvG6xZ6WPLNnA44VgPuJ3Q3QfHuuG//5k8lhBQXQ07dsNzL8neijt2y9Rew2z4ya/g+DG4/15YvvT08/zFM9DZBd//JhRdYrQqmoZ4xmJQB79DMJiErW2wsxUGmqG3E8Yt+Nuvnd0x3sbGxuaSsNOFM4Itsi4SlwZ+B6wogLDSx5VL3iOcsdBjddQ5ltKa0Nmrp7h6joPrqp1YQK77o0XvAAior4Kqr8OP/xuk4qB5oaYObr0OumOwqQvK/bJ4Xjfgey9AXxR8x6AwD65a9NHdut1QUzPDA3EKpmmxZ49BX59FXZ1g7lyNdNri179OceyYyZ13Omls1BBicu+o5hbo6pLi0hKqLHJTAENhsDuN4oH+IYXVq72UlFgsWWnRdFShqBDCcdh0AKxcJy0JwVeWwKrLoasPfvUCrFsNoXEYGpWzJZ/fD73jMCsIA22QmyMbQ5smvHoAnrGgxQWKS6Y2z2TebBldzDqL0/u5iCdgw2YpMK9cAX+zE55NwXh+jJSmohx1EgireLpAc0NONXQkIJEGn9042sbGZiZQ/ZBrpwunG1tkXSTZLriqAt48Bq6Kdtr8LnyaA0/eMTraF9FTNMARn0GfEHzRU0w+Zze88jgh4AZRA/d/F3ZvB80Fd62D2svg62/BWEpO719eCMfHoc8CnwmjBuwbg6um+fWFQrBvn4xE1ddPbZuNG3XeesvA74f33pNtYAIBweHDJvn5gk2bMjQ2aoSi4FDB7zn9eL/4lZyRWV4sGAvBeBhIydBNOilIjqbYf0CjvNhC19Mca4br1rjZ1azQ3AuFQcHVyxwMjcMvN4IvAC4hU7uRqKyNy8mCtzphMAm5Xni7DQwBfUNQnJRpQHM2XOYG/1p4owH+xwA86IWaLPCp4FCkmenF0nZc2jqoCngL5Pn0lVpYHp2MpWKaJuGMinsMarMgywcJE2K2yLKxsZkpjCiM2+nC6cYWWZfAuhqozoEXVTduV5ocZ5qImcXqugwf+A1qNSd9pBlDJ+8cIktV4L6V8PNtkN8A11bBbYtgXi38/R7wO0G3ZOuYd47B8TDMLoCafPA6wDUD/ex++Uvo75f1ZI8+ev5ZhgA7dxpUVAicTkEoZLF3r8lttzkoKBAMD1vceKOD3hH4l9fA64Lv3Cx//h4LLBPWroJHv6Hy0AMR2jtMsARCKDjUNAWlFkaVRnuLhlM3WLMc5i+E32yRQklVYTQCTcdkY+lIAnIqQWQgYlhcs87i+VaYnSdwCkG/ARsjEGmEyDEoaoDiUlggYG9Iir60CX++Hy4rkC71D1RC4Vn6H/aMwu6jUBmERVWTr1NeJL3BjgZBzYJ6FbSU4OhBP7GwRWJUxQqDT4GV5ZDjBhRImhd2DW1sbGymjJ0unBFskXWJzMqFKyhnN6BiUaNmszLHSRwvbcQpwEEJ5+jfMkFpDjx2PbzXDb0JKCuHkTQkdFhdAtu6ZcTF4ZaRrJ5huGY+pHRYXHze3V8wJxopJxKyMHwqFBQo9PebFBUJwmGLhQsVXG7B1x5xo2cscnMVjg3IdGcqI9OCANu3wyuvwNgIFBTCF++AaNqJqWnkFVj4PIJk3KKoIM2RuIu5wOUrNDKWxmBc4efvyGjVwQEwkVGy6hLI9kLAA+1DoK9I02SG+XU6Rag/m0CfhyUBhdaEoAMwqsBoMBmLw9EEGEmBKyMQwJguBU6ZGyI6bOiHhyYRUIk0/MdmKUy3toDfDXWTiNO8HPj+g/DUGBQ64NoyODoiMCyNp8YgFJNGrCsqZTPxcQU6PRaff2Ych6XwtUVuHllx/veUjY2NzZRR/ZBtpwunG1tkTQPLKMSLRhyDRnJxoHID+awmBw8qKlPzXxhOwhs94FahNwb3T7RtUYGWo9DdDO4sqJ8LpU6Ymw9zgpOLrJ5B+Pnv5M36vs9DbtaFvaYvf1mm/KqrpZ/VVLj9do0nn8zQ2WlSX69w1VUaj78OXQOC3KTgwE5Y0AhfuUueT8ALHR3w/PPyGCUl0NkJu3ZBU4+FLyCIjstZdp58FZwW0aRFjl9QVarQNQKt/dIdv7oQ3A5YWgtLauBfX4eBMYinobLU5LeJGEcVndCYD0dxjNFujXf3OhjJUqEO2VRRASMDmTC0Z5sscaiUu6A/BY3Z8rrolhRak5HWpXgsy4XjIxBPnX2sVAH35srHc1ZLYeXxZig5YNDc5yZtwMJyOBCD1xKQ2DeGFoiSTvn466YoN8/OpjTX/tppY2MzTRhRiNjpwunGFlnTgAOFRcjGckkD3hqBgaRgll9jWS6cqbFGx+U9PZhzuv+VUwVNgVgGCj1Q6IVcC/75d9DWARnFwFsQJROH2+v9fGnB2W+yW5tkdKdvBA62w+rLLuw1lZbCXXdd2Db5+Qrf+Y4LXbfQNPnCcn3w2mHY8xwMD8ALCmx6C37yE7lNb6+0RzjRcqewUDZEzikS5BerZEyTrn5BIgUjXRbzKi06hhXeOQhlAajxSRF2uBtaumF8DA60QW0BqBpUF4GnwOTfD0Mo5icxqGI5wFGSILTVCYuAIcAJeACHjEQNZCwKnNDggTW58pp2xOT1uvMsbXayvbBuPrx9CBrLoGGKlguaCkpWhE0coXC+QX5JMbOsIL/sVnkjpNFnquTqaVxqBsWAQG6E4WjAFlk2NjbTh50unBFskTWNmBY81QUtMcjSYG9YRj2uPWV22rZ9sOE9eSNftQg+d0oBdZ4bvjoP+mIwJ1eKh/GjMBqH9BjkXzmEVpFBuAWeeXEsihFniZJ5gJeehGARfGndzL7uM9E02Qpn3z4TvcvCNSwYHlBQFIGqwcGD8OMfw8MPy/Y9mcxE+xkBkYic/RdUBaXlPpraY8QVC1ImuJzseM5gx6YkilehrwCccY1Vq1WeeFO292nIhhw/dA3K67F2HnSZKq64E6VXoKQhkfaRiAvICNgHXA4YFgwJ2bXHa6H3KXyYBdt7YZkThAW5Lrh7DlSfw7Ps6nlyuVBa6UVBEFT8HPD0kkhsZ6uxgqjHgyvhIa/IjZsInrJBGtVsGkvtf10bG5tpRPFDwE4XTjf2J/U0Es5AW+zkTdivwbaRkyLLNOHV92ULHVWB9/fBmssgcErheioFLb2ycDvLkj3+xtpBDJlYQYvQoXysmOA3IsaYZVLsV7n3SukDdSovPwfHWiFqwONPwl//APxnGKGOReXPnDOevxgyOjy9GXpH4YtrLba8aXDggEl2toC4iaaBaSgIBJevAJ/P4ic/MbnvPliwQOXgQekB5XBIJ/ihITjYojHuCMACHSLAexPNoQ0nZlShK6ryalwwmLAIOjRy8+F4L8ytg9J8iCbgV5vAvUCwONvD+IBOKG4SUxU0RRCpFnDEgp0WzBOQBbhBSQpcTijPg/YQNCUg6AQ3UL3k0sdqMrLw0s0I7RGD7X0uhkYbMH06WZ5xyvx9/Ci7gMXUEIkbzCt1oKkX2QLAxsbGZjLMKMTsdOF0Y4usacQxYRSpmzLtlzLAc8oIKwr4vRCJyzqiE8sJmnrgqSbZdNmhwtajEB6E5CAQUYg2ZWF2CpQyg0MbA8ybo7B3HNIhePBmaUgaS8Mv90NyFpg50DsIb2yF4v+Av3gULMtCCEEkDv/wvDzud78g66MuhZ5h2H8UvG7Y8A50H7KorZUDUpAvuGyhQVERzKpXqa6Cvj6T119PkUrBd77j5opVCsmkNF99/nkoLIIBA4grkK3BQBpIAXGIZKSxFRq6pXHoCKxYbhGNCRbMlueTNGB/EojA3DC4nArL65z4EnAsAUkHHCqEcINFegDpxyWADJgpBdUJnhjoCfl8wgD1jAkAaR2e2wF9Y3DH5VBxCY2dGyhFQ6Vdj7P9YAk9Ph8BAZd7uqkPu9hklpIVhHUVdjzfxsZmhrDNjqcdW2RNIz4Nri+E1wak6agQcH/F6et8+SZ49i15g773xpNO7aYJrzVDcQC8E1Gp+eXwfKusV0oD6VcnjKUUk6JShYFBwXAIDunQMg8WzoXhOLx1DPbEIB4Ecxh6jsO/P2Xy2gadLDd84xGVa9apuBxgcbK34gmSSXj3XemA/pnPfLRvomXJtjhuN6xYIZ8rzIGyIAyNQ1W+RY+wOFGMFgiAEIJg0KKmWq6fSsloltMpSKXhN29DJAbXL5f7Hx6BWAzwAlHAISYeRCHjkS/Uk0si28SRVIjH4borIXvCHDSiSzHlTsO9PggrUryms+GBQtgag33tYBaCWpvB5U2Q7PRghhw4HZDnhZ3DsLoarDF5+Lvnnz4Ox4agqVM2yX5zPzx01ZTfKh9BQ6WIIob8Ydy5GjUhk1U+hccXljOagN8ehaIpzvK0sbGxuWBUP/jtdOF0Y4usaWZNAdT65E2+0AX5Z/gplRbAt7/40e3SBkRT8uZ+guwAVJVDKgG7Q0BMAS9kKwq1+fB/3w8vvC6tEIonmjCXZ8HgHmh/CawQYIBVBbGwwZ4ugTso6Pt7g7VrFR69XYqgM1ONu3bB66/LdjxlZR+dXRiJSMsFpxOWLZPred3wrfUT9gxJwQebIZWycLkEJSUWQlgIoZJOQzwOlqXywx96WLgQRmMKo2NScA5GZK+zNErBAAAgAElEQVTF//EElFfAkT5gDHAKECZYDsAHpgZCwUpmUFUVISAclUXkPq/0s7o6X26a7YUsEzIWjGYs9qRAQ2CmwXCa+GtDKAmDZMAJhoIjCUJRSJtQUwC3LYQsJ1Sf4VIfDEibhlgKZk3BR+x8+FC40uVg0eoMi4adjHRBSzs0R2QfyqGjMO9zdmsdGxubGcCMQsJOF043tsiaAcovIvXm0iDoh+EoOBV587aAmmpYtxKemwvGMKS8sCgID6+GudVQ/1UZBXM44EAEjnRB9ABYaeSMuVngLIJETJBuF1gu6M6C//qSwWy3RnQ4w9G+DCuXqNx7swshoKBAemT5fDKadSZZWfDQQ1JkndoXUVXl0nxExzB0XnkFysoUCgsVHnxQwe8XtLTIljpr11p0dJi8/z6sWStoqBaMjMGKBVBWBGW18NVF8N9/AiOjAtKqLCqLjMuGhMIFaQGmhulUSeuCnU2QTll43SZzZwmCpYJYQhAIwD058B/9FkNeiHvjxFMpAnkarpwxlug7acvMIi5yIWjBiIWlQIkHDo3D3Gy4NR+6+iE/+2Sz7jw/PHqjFFlF2Rd+zc9EQ3ALfo5H4f/fCP0tUOGDK2+Q6ePKPFtg2djYzCD258u0Y4usTxFVbvh/t8r0XUEWzCmH6xqgoRw6JkSXT4Vv10DWhIH8CZGzJwxP9UO0H0YMmeKz/IAKnj5w5wiSBRYZh4ljVZL3inQ2vOSh6y1wxVVeeFYw3K/zJ1/TaGiAxx6TIsp3Fjf5OXMmf37PngxPPZUkGBSsXg2dnQZXXunkpps0urosGhosamvhmWcMOjosdN3C6xU8dNvptUa15dB6HB6+GZ56XTA4qqIsLsQx5mV8WJMvLGGS5zHxKdDTb1FeCKERk54UjIyaJHIU5swR/PxDuH0xrCqGofQ4w85BAh7BLKfBgBZld2gpMa8PUxWQEmQcMKhbiLTAFYNn2mDT6zDUJuvp/uZRWDLhYRbwyGU6eeMwDOkm7WmF2hxYWQerg314C/NhCsa2NjY2NheM4gePnS6cbmyR9Slh2yF4eiOYo5AXBLcJt86FFbVSMH2zGobSUOmRAisSgw8PyIL1JY3QnZQCrKICtlfD4IRLuSMMahLGDqtYLgt1joU46GJ0VGPkiiSppgDGeIJMr8Xj/6Jx3SqVxkbB5i3Q0gxf+iJUVk79dWzZkqaoSOD3y69Efr/F3r06tbUOfvYzExAUF8vnLUvWX00Wnbn9Gnj5XegehH/5C5hbD629Gs+9noPP1Nm3T8fQNFbWOmhuge1tJofCAk2VszX7wlBfAIUG5Grwu/3w6I0mTyvD5FkuCk2V93WN7mQuSc2HW43jLYkxO9zG4b75ZBQvAbfA54C5AXjrKDiikEnCzsMnRdZMUF+psyE3xM1zs3hkjoucaCf88h/gyhvQr7ieowNy1qlXtSgpFL+v67OxsbG5aKwopOx04XRji6xPCUe6oDgXQkmIjcLySphXcrLovMwjl44ueG477NwPfp8UKKYFixtgVxj6gMbrIbsUwuOQiELvy5DUQKQE84styq/WaW4RJA86IWGgCwd6FA4dtLj97iTb3/OwY4cUQHuaLkxkpdPgdJ6slFdVyGQsOjpkkXtpqaCz0+Tmm1Wyskw8HsHq1R9VWX4v3H2DfDw4Dv/4hjyflkGoK9BYe62GEDDaC4faTZQIXDnH4oo1Aq/TZMMuweiQ4GAUBvuh9gqLN0WSEaeK21BoO+ZlcNgipvjApxCzHOQ5x1hd9x5mtovRnoUIHRZlgV+FqtkQOgLLZsMta+V5dQ/L61N2CbMKJ2NVhYrf9NGgaAQAXEFYuopw2Wz+9oVe3tyls2t/EcKhsqrC4Ln/5iIvZ3rPwcbG5v9A7MnL044tsmYIw4Cj3VIY1FZIsXGCjSPwQRjW5sKVEzfHxXXQ2g0lWVBcA1+9DrLOqO0aj8BPXwCfG1o6oTgo9z0Whsvd8N0qiBjw20GYvxLaWmB3M+huUMLg8cGCIg0XFoNpQWS/Rn/UBJcF+hhYKi3NHp75jc6112i0tcHln7mw171ihYOXX05RUaEgBHR3m1x7rZP6eoX33zfo7ISqKkFlpaCm5qNvv2TS4qc/lb5a99+v4HQKekKyoL66AFYvh6EBqCiCqlLYkIa7HhY0N8PCBnj0YcHhLo3nD0BnHMhAa8ii8OEET1gJFMvBWFxnb7vBWMIDHgV0BbJMRq0c/mHkmwQSDrJVBRewv1POkQy74b574WsTzvlNHfD0u/LxPWthQfWFjdO50BAsVU65+F4f4TW38/m/GmL7Njeu/BjLKreyfWQt7wYFz2w3+foNdjGFjY3NJaD4wW2nC6cbW2TNAJYFv3kN9jbL3xc0wJc+J6MeUR02haDYBa+NwOVZstB9Sb2MZKUyUFU0eQotGpfiLTcbViyCnQdg1WVw+UL592yHXD7bAP/8LhzogGU1UHE9tB4ExQlDDoXkERdZUQtvMk3AqxAZBrLdkHSCLnjqKXh5A6y7FnpGYDQCeYGpvfZZsx1kNgne26Mzq8Rg7VonV13lxOEQPPqoyvg4mAo89TtBaTGsWX66AB0bg6NHrdPc3wuz5NgNjMsU6Jeuh6Ee+O2bcPA43LhaUDtPsGAeDIfhV5th9ULYdwQGBixUt8XzP1VY9COTjOHkqJkhbipYURVMARkgIcAjEAJqUDF1wWAPZPule7+uwNYDkK/DylnQOyJr5yxLGrBerMgKR6Xdh/8stW+JUAjLMPi7V4K8uyMPCgVpn4+mgB81aGDkCt4VCnelIc8u17KxsblYrCik7XThdGOLrBkgHIX9rVBdJn8/2CajUDlZ4FGhwg3HU1DvmbB/mqA0eO79FuZBRQkc65E39x99E1Yt/eh6DQXwF+vgn2PSLmHBGigrkXVcx9MQCkHQMBG6QU2RIKYI2kMuUBWcAYuSYoFlSXH1jxtk3dcP7/ioX9ZkvLVN4M92UOHWuPcOmFN3cqNgUODzw9/+qzRh3XtEipglp/hPFRcL7rtPQVUhO1uw76D0HX1wLRzqgeIcqMqGV9+EeXUQCkPLMSk23ZXwX96H9jFwJ2A0bGEpFpkUdO1ykDlkoheA8Ar0PBXGFAhb0h4ioYDTwpWtsLJSEBuBl2PQacLcHJjnhu1t8IEDDvfCw1fCgS5p/tp4AenUU9F1+F+/AK8Hvv/A5Ov07NhBMpbk5aZb5JslDaiQ0lygCIKGQlkphDK2yLKxsbk0LDsgPu3YImsGcLvA6ZBiSwg5S8/tgoQpZwg+XArDGShwTE24nMDhgIdug85eub+KczQgDmbBY3fBWAS6B6CjE8oK4Lur4Qd/B+mkQuNsF2WlCiMtgtp8ONZtsnIV/MX3FTweCIegJBfqSqZ2niNRCObBwVbwuMWkdUKZDKQzcr1IDBKpk39LEkGgMH++DOvsbIJ//An0jMGffAPWTxifxuLgccLAsDRAvX89KEXwRDd0J6AzDdEQpE0LSwAmYMFYyonWrsCAhqcoSbxaw9Cd0qI/I1AzAq9fgNskMqTiTYIzCWMxaNGksFWBzmEIxSEO6Co8swO+cS14JylAf+LXUFkG6yaJwmsaLJ/POQvXa665hs4hi/FXkBE3BWl836KQP0fl7lUQ9MjIqI2Njc1Fo/jBaacLpxtbZM0ALifcfwu88Jb8/cufh3czsHkMELDcDesDMk10oTidUF8NR+Pw7IC86fcm4Ocfgp6EP10umxgDeFxyKcyV0aj8bPjJM1BfDq1dgtFxlYAP8vOgKAg33aCw/j54ei8c3w16CAqdMPscYu4EOzrghSbwu+CeW6EkTwqpU/lgH+xvg9WfgW27oK4SFk/M0ksS4QBvoKCygBtRDDepJBwflrVk7+yHqxeD4k6S8SZ46PZsPjigUByExjp4bQg6kxDyQ1qDRAloSwwy7YoUJUszGMMatGoINBjI4PHHyZ3XTTSZC14Tp+7BF/ARUU26/ElWLFPYu9VNd0yQ4wMs2NoCtQXw5FZQNKgKwvER6B2b3JC0phKKCs4+bjdeee5xVR0OUKE0GyL5CoMJECmYWwArC2GZDl+okt0GbGxsbC4aK4pl2OnC6cb+aJ4hasrhu1+Rj1tTsHEMqh2yiHpbAqoccNlF+isdS8DjPeBVZfuc91sh1iHrtb4zBKVeuHIihZUiQ48awl0j8KXzGI+qLGiQRfNjYTh+DNQsMEz4wp3w43chmC2jRGMpmFsMWw7AuiWn106dScsgODUIJ8GX/VGBBbDjIBw+Civvgps+8oVJoKCQTmp0jwreeh062mFWIfjrYdEs0FwZPuADkiRxqQvZr5SyexgcPZBxwK4BUOKQUCEZAlFiImpMLA2UoEFmlxvLY6IoFk4neNNpljbspFAdYd/4NShGFaplEAyGWe6Bg+Mm3kSS5eFcjoahOw5lOVBcAodHoMgLjIBuybGJp6Rr/54uqAlCQxFcverirvGpOANwy9XwQhLmCzAE3LRapkrr/RCw/4ttbGwuEUuAac8unHbsj+ePgTEDNAHqROTKI2DIuPj97Y+AW4GgAxKWTL9ZDjBT8ob/5jEpskws3qeFYSJYWFQ6g8yurae5A3ICILBwWvK88vIFL70PWz+EumoY0aFjHF5ogxurzi2wAK6ZA2NxKM6WzuSTcff10DcMc6o/+jc3fsrHb+Q/nnTQ2aexc7vsRZhvwVc/JyNCGWGhY2Bi8na7E58DPA7Y0AZRH0TaITEGesZEjyCL2i0BxQqm5kAETHyBMLk1w/g8UbJyw7i8TgK6Tn5ghFErn4SwaFEtvLlJ8rJDqMU6HTtK2RUqxXAqdPUovBMWlPjBLIYeIJOCLz0pm1u3doBrGLIb4I6r4UuLYFnpxV9rgDdGYMFyWb/WNQxziqB/UNpJLGu4tH3b2NjYAAj8CM1OF043tsj6GCjUpJdV0pQpwoQFFZcw8l4VUoaMiqlAbgDibhCKjCI1jcI/HoL1NRlCnigFZGFh0cMod3zO4p1tgr5BCPotol0WQ30wq15h4yZBcT4c7Yd0IayqAY8GhVMo7C7NgT++5tzr5OWA03t6K55TeXqjhxd3Q1Y+JD3wzGZY/BlwBCZq23CynOXESTDqzeXgIPSPy1mUm9pAjwFhExyAgTzQIsAPItekYulRsnNHCLgixJwe0AwyVoAxrQA/EcZTCRKWIGQaxNRBSlQ3Y8ksdh0pZGxQwJiALNn4Op2BruPgUECLQ2IcMjFI+yCVBakwtA/Ac4ehxA9lk7Qnmip3lkDTMWgbkiL28DD85S0wPCrr2lx2wbuNjc0lYhHFMO104XRji6yPgSonfCELXo1KsfX5AMx2GYRpxiRDgDmoTF65bFlwaADGEnBZGXidsCIbDkXheBIKVRAlEM5AMgVxHZaWQSgFz/YnsGpiHGaUXNwsoASvS3DTVXLfLS2ClgMmKUuwownqS2BoHL79VXixA+rzoS8qe/RdCroO+1vghcMQ9cA3V0BdHmzO6DTpBne4HPz2bYUfvA6pXmAE3Gmo+QyMLIO/2QH/1xrZPDtAFi49iyIXPN4K27dAYggoA8bh98MYQwosD+AGH2Pg0kngJTXuxuNNoAc0+oWDkFVIlqrSl8oinFYpdnTgUC3ipkn/nhLC406ICwggI2MRSKTlsTxeCMdAtaS20zNguuRSXyhPJZKefFxSGUjr52/LE9DA75DvnWhS9rn8YB+8ukVGGB+6TbYhsrGxsbkUTLs56rRji6yPiWUeuZxgnCMM8TYAGcIUMHkFdOsw/GynjOR0huCeJbLI+ZEKGEjLWf06cKzWIG4keafDjcMVJSRiDGcNcgXFRIgSIUOA3NP2Xd1g8e3vCf7Xvyq8sUXgcMib9RX1Fv3JNna2hphVPZt1s87e/bhnEI72wMJ6yDqLGPu7x+HltyGiQNFsMC+Xz2/TdQYMi5eHM/yXLkFqkQpRBcYgGYAWRVCgw2gatnQZrKmN4G3dyM8OF/I3h9bQ3wSJFqDBAsOCJFLppJFhPicwZJITC1E9u5181yCJuJehTAGhUB5OZwZ3RRxfgcWY5WAw7SDXMUi+1Y+edBAayyET1lCTMvOIQIqsE5GyKGTnwoAuD+/2gFeRdQ2lRaA6IeiFyrMM3/PboaUPfnCrnI16LhZWQDgBfeNwZQO8uUWOdzQuG1efEFmRhCzKd6hwzyo5C9PGxsbmvIgAijJd6cJfTNN+/vCxRdYnhEkagYJAxSBx1vVSuvzpcUD0lIiIU5F+Wyfoch0myihz1XF2dRajB+IUBgYYyFQyZDoYFxbdYgifCFKvqfSS5nlGoAAuvymf471OKkrh/rsgo3Uyq/pVPE6NxXOayVLvZbL27KYJT7woIzndA/DFGz96/vE4vPoOFOeDJwoFcdj2KrzQB41XOahZlOHp4TiZYhccUGCxATFFvjMDKbqVCIurLX7RrTBS0UJB115SzTC2dxmJFpf0uDoxLkmgHBgCcoAj4HImSeGkc6SKkeEgi5bvIi8rxL74IixLkAx5MXIV3EoKjxXmJverpHQHXVYFViJFNKPg9WWIKQ50Q8hhcAMOUE2Ykw2+fOgfAZ9TGr7OL4UFhXD/QqjOBe9ZBNTiaijMlp5h50NVYO0pTbnXLIVf/E7W1s2rO/l85zC09UtR3jMKs4rPv28bGxsbiyg6Wz/p0/hPhy2yPiGyaCTDGCYp8llx1vXmFsLVs2AkDtefo8h5jCga42Rn7+fbC1VaLZMXU3CUPbTrdaiaTlAd4/F0KX+suHlT6aWPNAE8eJdG+fXS/83ee0dJdtX3vp99QuWuqq6qzrl7enKe0YwiCkgCEQxCJjpgwMbm4oTvetf2e16+vjgs+zrc64vtx8PGgAwYBAghgiSUR2E0o8k5d5xO1V3dlevUCfv9sVtoJGakQXEkzmets6rr1Nnn7Kqurv7Wb/9+39+z2eoFSqQbBW2NGWxmkbiI84gsIZQ9RLkCmQv0zjNN6G6BM2dVBePyMBw5BK2tsOtunY0rq2gIvKIODmhRiWeD0FyEBpWa4EQ4izCSlPU4j5eu5K6vbmFhLKDWUk2hGjauQ4X0AotbFXDBmohADarDESpzUQ6b67j8midJhPIUnTi65oLUEUg69HE06TFU6icXTpHIzBM0K9QCMRKNNbyKiWXreIslOKEIXNYO0TxMnVVCKBWFjih8YC2sbH72dRiZUNWAA12qgTXA8k61vRT6O+FPPql+B+dG+PuaYHWXqvTsvEABgo+Pj8/58F6Kr5DPC+KLrNcJnSDNXP+ixxk63LL8RQ9jCys5zV40mhAIDFtj1nEImjquBh462TpkOcvd0kLDZR6DLCVW4lL2kvx92eFHlk2T1sVnGpbQb54h7xj8qPJlDpSvZtBdyq816z9xFhcCPvYeyOWVG/35ME34mz+C7z8AmQx0puE731Y9Cl1NVTZm0i4i4IGm43ko81Ah0HQHN2gzUvEYlBHSBZ2v/fky7GkdmlCialaCLWAY6EYt43WhIk4l1BLfNDCnY7kRCp0JFlYniZlFKnoULekiNBsdD1fTcGwdWwtgESJk20SbgtTOGrieTSoIs1KieUrHeQHYfhq8Klw/CJNzsL4d/q/rYdk5AuvUKHzxTvVzUwp++8Mvvjx4MZyv4jMagl+79uWf28fH5+cLQQyDq1+hs33pFTrPGx9fZF3iOB5MW6odzwu1TUkTJ8o6TnKGcU4yJ+p0ezbTtTR1EcCRBmGtxrzn8IBV4cbILBtopJk0FnP8UyXD7TWPovA45epMF7by9YalPGx9hwWvkYHoA/yo2EtpLMgf9moEF//BB0yIxJW2uVDKZKLN5j2/5DA7HeL4hCCzQnLYqpN8r83ZIMyIPOmlFeYKGdxxE6Rq7xAK14h0LFCbNyiGTjK0N4ZdbYLlPJvg3gMckMo8aj0Q8mC0qky+euPQaajlRBcoahTPxtBjLkaDIGEKjIhNyKigiwh2YwBZDdFnnsERISpz/TS3GXQbZY4c0NFCHktNQb4eQxrQqEMkC9csgeYYZEuwvPm5AgtgZFKJzc4WFdEqliF9TuSvVocjY6rydGXXKyPAfHx8fH4WPMrU2f56T+NNhy+yLmEsF740AmMVQMB72+Cy80SMclX47lGYzCYJBlaRWPFDGqI6Md1gZ7EXqemEIhZCeJRKUc5GKpzyXAY4Q4EpdNHChPEIGyIW424Hw/Yg81LnEWuavFkjFhzGtboIGg4jHkzXQ3SHVVg5W4N/OAxrGuEj/T89twoOdzHCvqxN9kSG6SNNnNQdtI11PtGmMyUd5kSBDQPDHC+uIBtswa1AKFAjGKlTy0UJdFqIjjwzJ/fR1J0kW2xReVcAKQFtUomoIBD2YHkAKrqywk82QBqYA0wJVY2EpmGnTcJ6nhXCZq1WY54KQ3oDsdB19JIjIjXOFGK0BlwqDfD2FMycNDGOBmhwYGkv7D4FjgmnJxcrPKvPVhSey4o+eHyPElhLutSUnsHz4PaH4My0Wv1c3gG/duPP1m7plaBSVQUMqQS0vYBDvY+Pz5sX94JflX2EEFcDg1LKLwkhmoCYlHLoxcb5IusS5kQJhsvQH4O6Bz+Ygk2Nz23H43nwxd2wawr2bYeGpi5WRtZjWQESg4KT+fXEjBx6vUbBSlAsJIi1LnAwGqLGDAPaaZAnSWltTLgJuvQxZuxW0rJOSdtG3jWwhINn5qiLU8x6acaETjeq+/W9Q7BrDLov0DuvgsOcZTOR08l5NU7PgZER5Mrwo9OSq9d6uNJGM6B39SkaWuYpTcbx6gZmzCLaVsSKhrAdg3IswoolR8iOt6ilwRKQQzm9RlAWDkVU0nvahJSp7pfUXLRGSW+fze+Fr+fBwDw6FQRHGSTFAi4eoyRw8OjlBi+IQGfBhhXBAKFokN4uwdl7YCQEwxp0xmFJGrYsVb0MrxuA+Wn4153w/pueFVPtzfD7v6wKBNoyz13mK1RgNAv9iy15Tk8p5/joOUUN5zKSV+J76cvMtxoahyf3Qm87bF0HX7kbRifV3H7r/dDpJ8z7+PxcIRFIX2SdFyHEfwc2A8tQa6Em8FXgRXt6+CLrEkbwbERDyvMf88Pj8NgI7M/DdBZMq4X5B9cTbZ5nyuiAzjDjuS6C1SrSFQTMOkHTwfU0DuX6mYg20h8+TVQbYV3Ao+jEsMQg/818iPuCVYRlMl3PENWqBCt5BsJhCNaBDjwJJ3JwWRpiAmYq8I2Tqgn2hwZV25k0QQaqTezIV7GG47jBCkYJzCGT0qDLW6TJdqfMtJ5BFx6hTI1wUxWhgfTUH37dDWEgSTXm8HoXo1gWEEctBRaAQVR1oW4osRXwIKWp5CkLSELPINzYF6czrNGFzR6yLCFClBgRJK5nctrOIqaXcuaJFry8TmApyCWQCEDLCDwwouwRfnUjXH+jSjo/PAZ7xmF8CmrTcGwURirw9svgqqXqd5hoUNvziYYgHoGpeeWD1RiD0AWWC6s2fGE/2C78wWXQ+hL9y6o1+MpdalnywHGIRVV1aE+7irbNLvgiy8fn5w2NKAGueIXO9vlX6DyXDLcCG4A9AFLKCSHEeT7RfxpfZF3CLG2AgahqBi2A29qfG8WqO3D/UVgTh6fmwDbAmdUYq3ezdEmeeDxHPDTCVHMaqhqGYWMadSLBMtqsZGaoi0PWKsQ6j5Zklh53hI2M8u6gIG5EKEoJAYekUyBbzRAI23Q27QWxAolEE4IPLIVDs3B9Nzw4DjlLzfGBcfilpSAQXB/J8MOzNQ4XF0g21JgqhHGGg3x0uUl1IgAVCQOCumfgSY0gFoawkUKjbMcIYtOqFeiLn+X2hveqSFUWpeYagI2opUIHlTRvSAKuRThVoVROYC6z6EwLrglFWNWqUWysMQYYxDmKYBCIOzA+FCHvxKgfS/PEEZ2GCIS2w81JWNULexph6XLVi3KnC/njcNNKeOoUtCZhfA6mPBh1oHAC9o/D3/6KWgK8EKYBH7sRHjmoxNgNay/cwihowLomZW6avECk62JwXXBcFWnLF9X1rtqgljSbUr6xqY/PzyMeZarseL2ncalSl1JKIYQEEEJEL3agL7IuYQIafKwXZi0I6ZB4XoQjX4IDR1Q+jeaC7AF5FmKJPJFgiUilgINBOpAjZ8RJBeaIuXkq43EOn9lAPpuCAhxxV9N87SN4no5lWRw1zlAP3sTKynHuN/uZ85I4ZpgPJkokhckxd5IeBunUo6xpgjVN4LnHaAxMUK53g9ZJKhhCIhlnjnygwJKtQzx0fy8zc424AppW5rE3Zfna9kHOPLaOrg/spNIdRTpQ8SJIR0PTIKZZrGWUt4YnOVy7jXxvEmaAFpSoyi/eSlTmvQc4gnohRLBcoXfgNIVSkoaVJWZb6gRTcQ6LGFF0MiTYQ54pJBNTMGPnSYsMwcYgC91w6qyK1H3tx9DdCL/5fji4ALNDMG7CnuPw/WHILUCnBa4FDTHI5uDEEAR0uKsP/uiDKnr05B6o1eDyDZA+xxe2KQHvv4iiHk3AB1a8/PdVLArvfSs8vEMtFS7rhdWDynsrFLhw2yMfH583LxLw/OXCC3GHEOL/A5JCiN8APg7868UM9D9OL3F0AS0XiFoEApI1HS5PntIIJzTSEhLdEAhBbSHCwMojJBoKTNmthOppOo0xdo5vZmqmF8/V1XKbAaMj/UzUj9NnjeI5Bs6IR7jxxzS0Xsbv1LdR9toZDmcwtThPVlNkNYv7azn+yjlMf3UvXiiMGz/MtW0pEsYJJHE2t97GCWY4xAiudHks45C6dorCAR3TrRMZrHFnQVIp15g+nGL2H69k4O1HCW6qYMQ8TEK8M5LiVj1DjVXsIE+LEyZYM7HCLtR09e79iRM7SmBpi/c1QbGQRp9waeuZoWOZBWHYqdksxaZODI8gzbQS80Y5UKqRdFsJza9CINg4CL0tcO92mJcQLsChCThWUg26vRKsbgPPgbkxGClDaDHyWCxD/bRqJ3RgF56sU7UAACAASURBVPBBuPNeOHRCLdEdPgmf+biqOHw+hQIcOwbr10PgVXRr37xabecSi7x61/Px8bm00YgRegHPxp+Nf3qFznNpIKX8OyHETajklGXAn0op77+Ysb7IeoPi4rEvMsraDxbZZAewpjPcc8agOhmhbe1+XGOYpsYJpOGS1ueoaSFiZp7WvkluL30COxLAng2BI7Adk9PZASbDTfzG6FeJOBWW5k9xJNPHxshGbAwQCY44kmndRboJBrQ7OFrcge6tpbO8C2H2Eog1sqUVPO8ohpZliGmSRNlRCrFtOs78lxqR0yY4YHRYBG600EMS2SApV2Ic+N5liO9BeADeGYEP36qxpAeKOHwrV+HU2TBRU8dKCmxL4lUWW9w8I7QCi7cuSkAKKDhJWiNFrHCZoBtmztE4KGr8Fz3DpFbiHbTQbvex6wjEUqr/Y7UK4TA0RFQ7nV0nYX03PHESDk+qCKMIw0kgPwyVKQg0q7y56XnwZkHMQawRnKwqThgaU3lOpgmjZ6FcheR5RNaJE3DHt5RZa/dFNOb28fHxeSVQy4U7X+9pXLIsiqqLElbn4ousNyizVBglT3ckwhTjpBt2cWvS4cmjbWDU0TyX1vAUdTdAvWbSqk/Qak4xZ2R4+7IfsHP+cibsbjwMGq05musz9LSN4M6bdE+fwA1ofKt6JffPmlyZeoJaTKcoGjhV7yXhZdmiD+NGFvjm6AzvmjpOkxgiHq3i0YPAwRAhIgTJuTW+OdtI4c4YshCCgARD4AyF0Q862Esl5laH8F6BgyDQ7rE5rrFK02mMq+fagMHMRAKCVfrSGiHNwJZQnhAUSxpORKg8LZOfNITGAq3dRgQlTsxktp4iLS10dBbcEN9zs6xPZBlyCvQZy4kFYeQs7D+oEu41Hbp6lMh6y1q4fBAeOwOdDcrj6mQQFk6piJbUwctBuAXWN0HRgmgc4oaKFmkabF4Ljzyl8q4Gui/c53HdOmhuhq6u1+Z95OPj4/MMvoXD+RFCFFHrJaC+zptAWUoZf7Gxvsh6g2KiIwALlxpTLMsepzd3mqsyNU6mbyTbWKAWtNDcHA1mnqCoUiGGIVwuDz+F7ZkU80ksO8DWJU+xsusIbXICb4nOQmuGp53NjNlxxuuS+3Z/jK19+1neeYhOU3LYWs5BVhGvL/Au8X2Sa/PMazFKtV0QOshx/ZNcL1IslWf538NjjFvtOFkVwWJGQEqCLrGzQULdNSJtZXo217glFSTcZLGVCFeKOOFzlklXmSEOOB56yCYQ0rhso82OnUHcSUkpIJA3KHH0TAQLIcGURITkqojO0WqSZKBGgxA0OTFO1cpo5QxHc1FOhuGyJfBn/wKtjRAMgmXBrr2QrUKgAo8sgN4IYQOu7IWZKRj2wGyBSAxCWejOqGOjUdVScUkvfOo31fxvvgZmi7DrqBJvF2p2b5p+BMvHx+e1RxAlzNbXexqXJFLK51QSCiHeC2y5mLG+yHqDkiLMVjo5wRwDXjutue9QCKdJOhk21qbZFmzB8zqJUkATNiFK5GQQDZcZMvQGR3jSrNMfPMlvBr9IIFdjsrGViFZhIZ7gaHWA4nyUqVw7thvioeNXsLXpAVZreU44fRyyV1ERETY2HSDXkKLsRcm7aVaM1WkShyi2fYm/PxTlX37wTmorBCLlImsGZKRSGDbQ5OGMm4hGHTlQxvJqJMMePZiEn/d8f6VH47vjUXqMOrttm7GjElF16dngMH0igKdr6I0acxKcBUB4cNpAJCRP720hnAKtySGkGVRFgFVhnRNzNpdFIoxXYEuTSm6fd6C82JS7UIZkWPUanM6B5oBwYCwHy9thrEHZcQU1COeh3YCQgOVdMDMNRgzyZWhoUK7uR0ehrxMe3QNXrlXnlRK++ziMz8JHb4bERdes+Pj4+LxyeFQo8/TrPY03BFLKu4QQf3Qxx/oi6w3MIGkGSSPFAJXg41DNEpYBvIaNtBRXsMPew7QMkU6cwjMKGOSxPJO6G6BGALtqcspYwZ8U/webmp+mWxtlRrYgaWPWTdMlxpmptWFoNp5jkHPjXC12sE27gpPVZeRlkpOhAVKBOexagMzoFK2jE5jGDH+aX8J//PAmKuUIPA2ssCHvQlmHuoSlNgKP+lyEaFhjyUiKYrHORzsNIobGFBYtBBAoz4qWEPzWEkGuGuQPtgU5fspDt12CJwVvv8lgeq3y6jpyDCZSYNkatZNQuAeOpSXt1wsCgwGmGyCmwUd6E0RNmK2o4oKOOFyzGoYnwQwqF/e+TmiOQzgEURO8JGxYCqez8N5VcMUAfHc3LJyBzX2QiEBDGIw2ZYWQaobhsyoXK2hCewbGpsEz4KGD0JKE1gT803ehVIXBdrjlEvsiefwsTORgVRc0X6AJuI+Pz5sDv7rw/Agh3nfOXQ1lTHoB98rn4ousNwFC6ES7fhsWnuaMXmRPspEzs0EMeyMERtCqK7EaXOaZo1U7S9gu8oXSW4ilCjhugDktxVCwhyOllWS9FJlMkZiex5YBYlqJXDVNsLlCQi/jGGHWafuZLnYQ9Or86dnP8vGBL9GbPkO6nsNOBflBfAv37ryOel1TPQUt4GlT9RlsQbluLui4OYEWEzQ3wGXTIRaGwoy+fZ4HY7OAYAsJLifxnOf69YMwU4a07nFyeoFgSpLpSJAOBdk9ATkJhoTiMWCfBi54QzDlQFzAb1wDRzy4Mw9XN8EVEiphi31hm/fcEuHhRzUODEFFwMpB2HMS1sZgdS9sWgd3PAJhDYwyTOyDnjnoysDKHjW/sWn40G1w7zZIxGBZn9qfr0CyCYaKcPAsfPN2sDW4fCm0NUIxqIxILyXOTMGXH1JNyrcfh8+8G8IXcPb38fF5Y6MRJcplr/c0LlXefc7PDjAMvOdiBvoi682CmYCmGxnmMDZ5MtEipyZWoVUGubUdmimwl0eJc5pAsogbvIP7nSsoEyFjzhI2qhzJrcKbDVDLGCyLFKnodQpGDFGrM9h8gnazTsRoJWm6tCfPUi5EOTM/wJ899lmaEtP8xsCXuSW9h4e9rZScGG7ZUJpfAnVBdKGAFTRxPAN0E4I6KQnvLEFcCuaRHDVKdBHEQ3KA4nNElpRKYF21Ch6bdkmFPNa3g1lwGDsbRB+B6DhEl8BCDuUCrwFTIKpQGoUvHwBzOVypw44aNJkehWAZD0k8qvORd4TZMA63P6zGGCXVmPsT74L5eUgUlV/V5++AG7aq5/b9R1WkKx6HrAs/HgavHQb6ILUY/dl+DHafhrv3Q96BYlX9pe4eg3/7oIpqrep7jd8zL0K+om470jA2C5W6L7J8fN6suJQpsvv1nsYliZTyYy91rC+y3mRsoo8x5uiOZrB6VFu/RhMKaOikyZGhjTFuCs+xwtvNPAlKMsYBaw1OKUgyOE9Q1mjWy5RCdRpajrFeHmaZmKRNM1jPJh6u9FPLmczNh2ESnHKYyVov2zLX8KP8u8g3prFCYSwtrOwUXEBCtRwj4pSwXIHtmjSEYEuDoFUKSiVINwp6gwHOYiGR9BOhZqlIimGoyrxMM3x7HBJXB3h/V4SNacnmrWG+eCdcux52mnD/AgSTEstxEUEJSz0SOYNlq3SOxOBmIGmBYcPeSUFLLEzbmhr9uvJU6GsG04X7n4SWNOTz8L0HlFmnoalAHCgfrGPHQNTg6HGIpaFjDXSl1Fz3jKqehBu7VbQrHgE3AIYLwlXLlHYV1i158aW4Sh0eG4ZECLZ2vTYNpAfboD2leituXgKpSyzS5uPj80oiXrPlQiFECNiG6tVhAN+WUv53IUQK+CbQi4oWfUBKOb845o+BT6D+o/yulPK+xf2bgC+jast/BPzeojt7ELgd2ATMAR+UUg4vjvko8CeL0/kLKeVXLjDPz/ECy4JSyt99sefqi6w3GQkiJFh0lVw0s/SQ7OYALh4e6ynQRC/7SYhjzHgus1aGY/kVFJwYN3f8iBnayJRnaCWBDEeo62X6WYWOzrDbypGxDM58I2O7Y3gVA5olQb3CqNPJ0ubjZI04tYhBsN/FOqBBDDgDXlqjFI+DBlEJ6yOCy5JCRaiy8P7bYKXI8MBMmX1HDb6/O8Tf7IXGOPz1Z6C7F2YMeFsPTFiCX7q6gUYHjk/AggWBWUgkJKlulwW7Tr0maY5k8QIGMbPAwRPL8TZq/GCXun7UgcqYYGUiTMIKs7cfkimIBOC6ZVCYgmkTjtXhyGH44LvhymvhiRFoboMf74PcFLzzWuhuhcdPAC7oi59T0aCa26MHYb4E6TjcsAW2H1CfEoYB12+8uFyn7aPw4Gklrlpi0PcyG0RfDLEwfPoWqNkQ8SNYPj5vajQixNj8Wl3OAm6QUpaEECbwuBDiHuB9wINSyr9eTCz/I+APhRArgQ8Bq4B24AEhxFIppQv8v8AngadQIuvtwD0oQTYvpVwihPgQ8DfABxeF3DMNnyWwWwhx9zNi7nnserlP1BdZPwdIPGpYJGjAQ5KnnRbeT1XsRGpPM2KWyTROs7ZpD4406BNnmHEj1KuSpQsl+lr7yOlZeuliR6GI4USp5RN4JQMCkpQ+g7HMoeDE2Tl/OV5EQ+tzwK0TW+dQGwvhdAk4BcEy9HcIOpKC9hg0GjA8CgP9sGoF1Cs6ux6OcyYPd++DFhdqM/C5r8H//hMI62B70BCE6Vn4z32qWFE2Qd6C6DUuDNcpLhgEbQvXMtCFSzxdYLhWR6uEIAURByplKHkwXoeSAdsLMGXDx9sgmYa9VZgoQUpAUwzuOwb7ipBqha4gBMOwt6x8s1wXIjpIoaJOswWYLoJVg6BQeVdzBeiOQORKcD2IhuEDKy/ud5gMK/EW1CH2KjrBPx9N8wWWj8/PAx4VCux9Ta4lpZRAafGuubhJVJ7TdYv7vwI8Avzh4v5vSCktYEgIcQrYIoQYBuJSyu0AQojbgfeiRNZ7gD9bPNe3gX8SQgjgbcD9Usrc4pj7UcLsP88zz/NGuH4WfJH1JmeeObJM0UySaeYRCFYyiMCgkW7iYj/LvQOURJAIZeqVAMeyayjNNmALgxk3SE9J0tcuKNammaoKuoJRnjydAhvMDovMlhny2SSOF8QN6bjSQDqC0ECd7i7B2hVVElaGqRnYtRP0IjSHod2BQh7WrIIDh+A/74Cb3wlTVXg6B7UGmLagchImp5XA+EQX7M1DZwgefRpSUYiHoasRRnNQb5RUhwQyLpB3ClI3zxJuqlBdiOA0mnDKI9ylUWyEliq0rlLJ532t6vUaqkK+Dg9PQ3MPZMehHoRgBvZNqmulFgOFq/ohOw37TkNnEm59izIk/dNvwOQc9GagnoKiq6JBIQNWtcJ/e8di8n4YepMwdha+9E143ztg9XJ1bteF/7xbCdBf/UXY1AHNUQibkPFtHnx8fF5hJAKPVywPISOEODcK9AUp5RfOPUAIoQO7gSXAP0spdwghWqSUkwBSykkhRPPi4R2oSNUzjC/usxd/fv7+Z8aMLZ7LEULkgfS5+88z5rwIIZpQYm8lyu6axfPe8ELjwBdZb2pqVDnA01iUOU2RIO300k4HbQAUvHHaRkeAYc509qI7LtbeKC1NkzS1z1ApR8mbCayKxdjXEzQPHsG2uqmWimhCNQxMtM4jwh5hKtitAWrFEPWyeg9aVpBYuMAN103xC1oUpxjm/mVw8rTKs1rbCzdvgPFxOHBQGYA2J1Qz7EIeklFAV0txXU1QKEJrA9yy+Gf3kFRJ6KCW0TwJgaLG6aKJiLlYJyIMTQ0SXFOj1BiDHgERCBqgzcPaBehZD8Zis+aCoyJl+SrMV+GGldDYACPzEAgqG4aG50V1Vq2Bngb4hZUQb4CdB6AyAu0mzJ+E+S4IRyAdg2wRZuLKNb5r0Se4ZsHBIZhZUNddqEHUgHIZDh9XLXmOnoLuDujyLRR8fHxeJXQixNn4Sp1uVkr5gmuPi0t964UQSeC7QojVL3D4+dSffIH9L3XMhfgaKlfsncBvAR8Fsi8yBvBF1psaB4cqJaaZZAroYJYZ4kyRp5MU0af2oW9/nKCZxb0K1hw9Rni2itsoOHDZSvZn1pObS3Jyrhmns4OZah+5aUlf7gy9mT72ZyMEwxYyqBFcXSNQr1EciiPrHobr4I4a7HJjdK5wSaUKfOvrIe7cLajNgCyBjIJISBIRwTVLHZy+En8xW6awWkMMJwnEdQZdgxUrPU7kPP65bPPhSJBeXb1tr1sG39gJhRpYNpgR+NY+HSfrqazyFZLa3jC1bWFIASYYmzzW92ukBPx6hyQckWyb0xipQlSHX2mDiPtscvvmHuhvUgnnqRAczyqh9wylOqzsUAIL4MyYqkbc9aQSjSubYOtayJUgk4CD0/Dn98Bbl6go3AM74aGjcMKD7Q+DeR+EAnDbCti6CfILqiWPj4+Pz6uJS4UF9r3m15VSLgghHkEt2U0LIdoWo1htwMziYePAuc3GOoGJxf2d59l/7phxIYQBJIDc4v7rnjfmkReZZlpK+UUhxO9JKR8FHhVCPHoxz+9VE1kvUD2wHvg8KuTmAP9FSul3pXwFmcNlLzVaCNBKO1OMEaWROhIPDwMdm2nEzCPISJnITIn1Dx+i3mPirtPw0IgfqlJvCRGWFeLOLKHIHCIRZtpZQn48xWihjEiZ2PMmAgkmhMJlqAlCoRqG8LCi4Lkauyfhh08blNpsxG0C/bQLOzWcog4xibO6wL63zLJXCJxRHYCqF8DIw34ZZPtwkECPw0igyhNli9sb4qSEwbouiAWVOWgiDN8YgmP32ZDRVCLVTY5y/hwCakDVIZSw0IgSCAj+T8FmdlwwoEneltb5cK/SZmUPruqDx4fU/YAO716hbk9kYTyv2usULRVdWtX67Gvf36UqE4OLxvbJgPK/SrZ4/OspjzlPcOzHGg8eFXjAk0+BFwASoM+pY9MdcGxG5Zn99m0XbsFzKSIlbHsChkbg7TdCa8vrPSMfH5+LQS0X6q/JtRaX3+xFgRUGbkQlpt+NihL99eLt9xaH3A18XQjxD6jE90Fgp5TSFUIUhRCXAzuAXwU+d86YjwLbgV8EHlqsOrwP+CshxOIaBjcDf/wiU7YXbyeFEO9ECbnOFzj+J7yakawLVQ98FvgfUsp7hBDvAP4nz1WVPi8DieSbFCnjYVHjQ2xgEy6nmUKSZhX9tBBngW2MX9VE+JHTmGWPuSWNpPrmCc+XqToGmeYJrio/zP6z63HsYQ43rye6sEBb3IYZjVLkMqK9VYq1CKnSLK4rMNtswpkyTj6ADILR4SBqHkZB4o7oiLJLZmOWhncu4K03qJ8M4SYFweUWblWHiEZwwMKr62jvy1N5NIo7CWQk7mqdqBTMSjgjHVJCvXUHmtXmSfiTbTamXsc+FVYB4QYN4yNFnMkAlDRI6ZSmIjw+A4lGSSCi0dEAMiQ5ugA1B/bZcE8JjCS8axM0o6r54our8L9zNeweh9myqvCrOfC5J9VjV/XA1tXwmU/Av0eU8Pu9T8P3jki+YTnMFASVgARXsM2W6DHwVmtwDAiAW4OCDSs9lWM2k4dSTVk/vFGYy8G996sejPc9CB/9yOs9Ix8fn4tBJ0yC9a/V5dqAryzmZWnAHVLKHwghtgN3CCE+AYwC7weQUh4WQtwBHEEFZz69uNwI8CmetXC4Z3ED+CLwH4tJ8jlUdSJSypwQ4s/hJz2EPvtMEvwL8BdCiATwX1EiLg585mKe6Ksmsl6gekCiJggqfDfx06N9Xg4WkjBi0W1KZw3XsAoX7ZxvKRpNlJtc8u9voekbOQKtdTiwwEP7GohMBsnMlAmERnA/tISHVt9AaNqmooXQpM3D+6/HPm7ScGsOY9DFQ8OQLm5NkFg+y/zhZryajiHqXJ55hJvTD5N/W4JT8T6Oe8sRLvSvG6a4IkqhkqRoNZCttODWdNySRiBmQULS8ME8TknDm9VxRYBSzuGKlgU6ZCcQYrIGR0qqd+C6OLQ3V0Hq6jtHCTiuIcoamifxQhLG6hDSEe0muiOQbYKZIqzQBIEgeMC9JdWDsOzBAQ0+9TyrhGQY3jqoft41Dj88Du2L7+a7jqgKwBsuVxvA1ByEijC3S6Myi/poyUgICtxxYM5T5lsngVMqUT7erMxNK0Llgb2RiEWhKQOzc9Df+3rPxsfH52JxqTLP/tfkWlLKA8CG8+yfA956gTF/CfzlefbvAn4qn0tKWWNRpJ3nsX8H/v1nmPIOKWUeyAPX/wzjXt2crAtUD/w+cJ8Q4u9QCvbKC4z9JMr7gu7u7ldzmm8qBILbiLGNKqsI0o/6L609LwzcwBZCzDMjH6TgHaF41wyFEUiGTVYsTFBZGSZaKhP75rfpbn2Ce9Z9kOMrr0Mb0ig0pXj7b3+X5ZuOkHWbODiyET3jkg7NkGyYZ0ZrIjhTpfPUMXpP7KVn5Dh9A5Jt7VdzRXgHsfY8YVElHizyMNfxpHEdY9M91L0IAaOCEXJABzzwbJ1ovMK757/BBmOCm+0IbXmTca7nC9nrQOi4Ep5agF+9XONrTwgY9wANGsE+FAWrqro7nzUhKbC2usQzJmFLpzMOFQvmdfhfx8GKw1wYah50v4jA2T0BTYsVfwDNMdh1FrYsZg54Htx+DyxUBPqEpqJrQVRroXagFfUVYwRllVcBfRZyR2CyF9639Y0nskIh+PQnoViCTPr1no2Pj8/Pwmu1XPgG5EkhxBAq+f3OC3hqnZdXVWRdoHrgk8BnpJTfEUJ8ABXSu/E8Y78AfAFg8+bNF9WI0UfRjckv88L/nTU0MmyhWjxKsCuFeXqUCREm8NgUMya0VqtoHQYNmof54Dhrf/TPeNec5q6Gz7HuYzsZvayJmxjlU/rnGV/exefzn2DebCZenKPDOkF37ghLTpygLZ9lfrjCsnaH3gcnONvVzPaOLUiholO3xe9idq6ZY9oKtICDXQlCpojQ5WK9h2AgdJol2giZmGDS1KhJkx3TUwTcMzTHVFhpqAJpI0ZL/wQT1TSc0VRRbidwHJg0oU2HBgF5wdkd8KGbYGMLTFnQGYGSA6UF6IlBPAg3nuNwnsWmgkcPz5YXGgLcc96Z7mJQ6hlsB/IlSCdAtzUijcqOgmYPCkANRJeAMZBLIFiB8HHY1AOffhuUa8pvKxPnFSVbhntPw3uWqef5ShMMqs3Hx+eNg06ERvwqm/MhpRwUQmxBLTn+P0KIIyjfrq++2NjXpLrwedUDHwV+b/GhbwH/9lrMwee5PF06xA/lHhKuTeu6W9kasmiePc2KNKSuDHLiyn5EpMLCwQpxr0jk4RrtjzxB54ptxNZFaapW+ED0TkzNIcFR/j7+x/zB2J+x9dC3CbsW8T1nYFeZ5G1tVFv7yefOEBmrw1IXgUQAHgIDhx79DLYXwHMFoUQVYbpQ07FKIWJmgX57iFmtmT5jCs0LMqdVKWkxhDsCsheEEpQVB94abOKr3XVkHKgbUAfaA5ABxjRYkGieS0+vRtJS9ggtfZBzIa5DQMAvxFTC+jN4SL7FLGU8foUmWhet9K/th3/fpcQVQLEO7znHXDQYgE3LYcdh5W1VygIm1IoaiZRaWixlIdYC+SIE2mF5M3zgVyEZg9sfgnV98I5X2IRZAo6nktR9fHx8AByqzHLo9Z7GJctigd5OIcRfAf+AMkt9/UTWC1QPTADXokomb0Blo/i8hniuy1OHH6Te6DKreTQlNTJ9n6L2njwtM/83B6/pofDoNMcetikcL+IJgReN4FzewYZ3HiGnr6M1MMe81khGzCElaEKyfGE/oWaT8M4xJr9ZobHu0VCdY248j5EG1xB07p9iYP0pCo1JmpnBq+lEv53jPcE7KL7lJrqbQwwR40BW4DmSgFknXZnHzoS5a/o6zFIrVzQfZmN8kjtLy5mo1XGFSaMJQwXoXGOw5YeCHVNClQYWUS6mLSgbOkeyPK5zXQv0NsG9o/B0GuIBMD24PABHZxaNQ5vA1EATgkHCzGITwsbCIUCIJWmNX78Mdo4pwbKlCwaet0T23rdAJgV9PfCt78PxY9AbhV9+LyzMw7eHILMSrAo0rFAi656z8Mg03Ho1LMm88r//5ih87DXLb/Xx8XmjIF+j3oVvNIQQceBWVCRrAPgusOVixr6akawLVQ8sAP+46FtRYzHvyue1w7Nt2vYtUHpLCjnvsC54I2d+sIPSqWmSs7DwWJUz3y/j1AURU2dhsI3qQBJT80g3jiOnk2S72ng8fDVXyO00iyyni53EnjpB4aGTzD8yg1NSbXJE1KMtUmPnvUn6fyFKanqBjkeGSPaE8CarxPdW2WS8g8j278L37ib8tmsZeO8t9HYn2ZUDMdNIW1uN4XovjY0FRNDmianVvG/wEJ9q3cVBcQUBHTYl4I5RSAYEl60zOJ2XzM9LXFC1KAEgCdQ0jvRJjL4afXWTBUdnTRRyDkzV4bFJOHwaMg3gpiHTBA063JpMsjx0nCM8AUCcJpazhf6USf8F+gjaDnxnOxwcAQQEUpDuh8FOqGrQ1Az/8utw1yjsG4KSDXkbNmVgvgYPjMLK1vOfG2DnuKp6XP4qCDEfH5+fL3TCpFjzek/jUmU/cBeqEnH7zzLw1awuvFD1wOOortg+rxNGKMSVG26h43sP0bxmDW0D3ewe/RZSD1AduByz4STBRou+LRCIgFYaxzk2zu51y9EfPUFtoANm4O76uzgZXUKXdYaekWG6v/okk4dsNA96E7DpSljAwS5LJk5K9kxsont4Du0fHiXdD7oJh49COPGv9PReQb5qo41OE/nKt7n8d3+bv2zPQJvFk/VOZid1NDuONCEkIgTdSTri15MKB3jas/jHusNoAnJTJrkZgxUdGgcrgoWsp5YMLWAZKvl8TnAkafD1liq2iFKvQSDsMrkAhVENfUYjtBzaw3BjBXaehe8u1Lmqs8wvrmkkGhTkyTLOCXpZdcHX+ZFDsH8YepuVI316C4xNgm1AYRZa22FLBrrD8LezMORArQy5o73VKgAAIABJREFUPKQSMJJXS5Dny5tyPZVX1d7w+ossKSFbh6QJAf+LsI/PGxKHGlkOv97TuFTpX3RMOC9CiM9JKX/nfI/5ju8/p7Rv2UL7lmejnf3vfjfFsyM03Zwg97Uv0/rWeSJNoJc96jHI9zSx5HCZHzX2cbxxHeG4zRrzEL36OH3OMPTB5o/FCD05j1aEZDu4K0H3BHbJw6rVqYSStM3sYagEuafBMJWxSa1eIrHUIiZDRCIpxvJ5tk2eYn93lQ1ahGRgM8szBzlSAC3XxIdansKIXEshtJnP1vbxo7kkC66J9HRCCYG+Ba51LabLzRS2uwhP4mphsIVKurLAmRSMtMHlW2s8UtCplTw8w0H2OlSsODMLGuV58JJw5FEojejsbFzLPauz/M1/vYdEMEqZ/AVf37oNTxyDzrQSWKDsDVYsgfkSNObgw5ep/amQatezKg5PH4DpYdiyVjnYhy7wF6pr8DtbwHwJxUBSSkZGHCoVSWenQTz+8pTR3aPwg7OwsRV+q+/Z5+vj4/PGwvOXC8/LCwmsRa660AO+yPIBoOPKK/FYQZ6/pTpYx5wVFPQAlSt6mF27kqyM40wYeEMhbENnvLgMPaXhTAaZGWli0/K9HL5pJV3mDD3FMdxEjbojKOxyOXHCILtyCVvGD7O5PkwpBUNnVQ/BgA5SuNSd04x77cwEs4TKOaYCcxxDsEdK1mBybexGImNhdEeyrP1mHO0gDzv/xI+L72PWMagdD+LVBFarRaipzmNfiyCH80Skh1UP4k4ZENJgmQEhASUoepJH5wSu7iIs0BY8wtUKeqJOxA6Sy0aZO2Mos1BT4E0LThhpHtnVwqYrD9AsehjiccrMsIS3EiLxk9ezUlfJ5eZ5/sIawjB1jj4L6HBDL/zb41Ctq30jOfjESvXYhWgMv7Tf9X33VXn00RqaJohGBZ/8ZAOZzEsr3bZd+OYuOLEAmguy7/yNwXx8fC5tDMJkftpuyudl4ossn58gaCDLWcwrohTWbaLQmKAgGpGaThMVck0p2lebHKmFWKhGGM0PIGdNgjsloPGDhneQXdnIRxa+wS8cuhfTrjPeFKX6yy6/mDlJ8lQez4ata5RnaL4gQJPEByVjYxazAw5y+hTZy7pYSE1Tl2FcGtkrIcIMp6eXoRWT3LBqDsEPecJaRlGalHfFIAha2sWuB3F3QOWMYM1AnQknjZ3TVEndpAcpqfoYxh3sw0GclIPM6VAxgADlQBhzoYYec0ltzTI33aIaS58ByuBWBHtrHUxXk1SMFJvNPdiiSo3Cc0RWJKDsHGz3p6NN5Ro0Pc+W4ZpuiF0H/2Gqpte/dCVsaH/28XxBJc5PZeH6K+Gqi0q5/GlKJY/HHrPo7jbQdcHZsw5PP21xyy0vzVZeE7AhDaaEj/Q827D7lUZKKFYgHDy/cPXx8Xl52FSZ4cjrPY03Hf7Hlc9PcJGcwmMhsoT5cIKKaKBKgLoXokIEU9iYZpU1xhFGnSV4BUm+0kAzBSZkK4f15TQMzPB3Q7/P/7ruM8SHyizU0mxM7uafOz9NMlVH67YJ7NPY1KBxpuxRm7KQS0Mc2vIutJ4YbmOM+tI0IUpo8gRuqY25WDdFabLx8jGushOEDIElQWpRLMfEK+qYbRayrEFIYh80iTVZ1BeiDAY0jjd61GY1VW1YsAn26lgNLporkGM6zBiwU4DmgaVhh6PYGtRCMeiVKmk+BtQgNuBSrzZz/HaP0VSCDTe+lYFUGavczokaLEkpoREwYetSeOyIysn6yWvswWwRbnles3shYGMHbPyAup/Pqy2ZVPd//CiMTkBzGn74IAz0QmszL4lzl/Nero2DrsHvXg1lSzW8fjXwPPj2Nth/CuJR+Pgt0JR8da7l4/Pzi/CXC186F/x66Yssn59wliNU0amJGHVCWNKg1cvSbY1g2B5TWgsTRjNeSHBb5A5aRZai2UAYm2xfmmi4RLmaRDd1OsamKEVjdKw/g4hbPKZfjhG0CDdYyKUCre6xbiaLZoS4d9mNzLZfhSVN8rrq2dlfP0OLNc1UyESrt1AKNeCFagRCFQQpDPluLjeP801DQlwiPRAhDxkQ6IbLks4Cl60axs5GCWwfZDQFsu7RljYo9EqGR3T0kIVdjMA2oRzXQwJiEgqeEmRNmtpvA2HJwFVVjFM19vzPNKEgRBM6d9ZifPZXmvjrPZCrwsc3wMomGBmHQAWWtMCpaSVGQIms69fAqhdoYjA1BZ//vBIXv/mb0NEBtZry3TJNJYxs+8LjX4hYTOPqq4OLy4UQjWps2fLynEODhtqeoS4lNaABEK9AgtZUDvaehN5WmJiDHUfhXVe87NP6+Picg0GIZla++IE/xwgholLK8nke+scLjfFFlg+gGktPM4yggQlhUvTCbJJ7WJM/zgOzb/3/2Tvv8Dju885/flO2YDt6LwTAXkVRFCmqWZRodVGyZEfFsR3HTS6xz+l3l/LkLokvl8QpF8dREke2VVzULKtQvVBsYqcIkiBBAETv2MX2mfndHz/Q7CRISSYlzed59sHOzM7OOwNg9523fF9+mVtFnbeLkG+MaOEohjFCsWeMRaE9BBoke9O1PFigk6WABdl32JefSfP8Xawsepli7zABe4JkLICVNyiMj+D3ZUnWxHg7uoBnIzfi1XL0UY4jdUCyzzODaRMH8XuSJLAoEirnlsMCwNCWcIVnIQsLBth6UZzR1gDSIwn7MzQtz1Lm9BMRBXimjXKHp5/Nu2vZs88mOUsQDTiEghq5CUl+SMAQynPxSUg70KhBoQBdwpiEnCA0I4Uck/S8GcYbkxRKE3sUXvyF4I8+ARUhyNkQmfRXfvY0tLbB134LLp8NG3ZCTTXMqobSqHKgntsJW9thZgXcchEYk2nF8XFIJpVJY2PKybrmcvjBo9DZDRfNg6qKE3+H6Qz804/gskWw/DT9u6tW+Zk1y0M67VBVZRAKvTd3rxLJBivDNwfTtO/WuKhqgu/PCFIl3l3YyedRTmo8qRoKQudYi+bi4nJqLDL0sed8m3FBIoRYjhJODwK1QogFwBellF8BkFL+4FT7TsnJEkJMB/4FKJNSzhVCzAdukVL+xbs13uXCQOJgY5GknAmZZQmbqE110T9awfaDC/i3jZ+jc32C0DTQroryxsobSBox9NYhyrd1UKqNcdfcl/mPptuIT0SYVb+NeysfRtMc0sJPr1ZBRbqfuuF2Wr31vFnwMWyhk5Mm/kSWdMCHg4bAQSBxpD65rFNsmlSPjZAaOYCRS8GsK0AISjD5klHI92Jj2MuSmAiK8BAMRkl2dZJO5hF+iZ4W1I05GBUa+0dAbtIITXNIjGtkelDyDmWouq15htLTigOjEsYEhB3SbSa9LTpGqcQISfKdEkPTERaMjcNvLlCF7ocL1a+7Ehpqob4GduyAN5+Cz31WOVgAbYPwWgtUF8KGAyriNX8yutXUBLfdppysGTPUuspy+PaXIZOFUPDkHXy6BiUxCJykvEpKGLWUqr2hCerq3vv7qxbG+e/ZQRK9cSJ5D6893sADX+ngf0TCaO8iDVEYhruvgTd3wZx6WHZq1QwXF5dzRCLc2YWn5u+AVcBTAFLK7UKIK6ay41Q/af8N+F3gXycPsEMI8RDgOlkfEjR0ghRiOxqXp9YhvFmi2QQduQa+/epf8eZjCWJzoNMbY1PwZuofeYflYgBvRmKk8pTvbud7L3ydplta+F79vdzd/DBoDn2ilBGKSOSCOBlJLDrCnM3bCETTPGp8mly1CRGBP52i1N/HABWAQ222g5zXh25GuCRnoO9ei99jEnvrGfCXQcNMAK7yjxIWu1ibjDGQnYvP9rEwKlhQuoC3utvobilGdFXQNN0gcVAQzDo4++ASn2C3aRAfBCwbujXwK3kHhiX0OZCQELZhQsMKaFgzNbSsIHeRxAkIogchNQL/9RDctRoapylHK2PDvFnqAdDUCNeuhGkNR663MzmKxzgqjXgYXYfLTtIQPJKEeAo8XhXdOeF3qMHt10E4dOK2t8bgqUGYF4R7K0/c/l7gAH59AscWGL48/kAGx5acrOyrMwVP9as54DeXQ/UZolOz69XDxcXl/cHERxkzz7cZFyxSykPHlT/YU9lvqk5WgZRy43EHsKa4r8sHhBpmM5Z6ioDVR7dZiH80zZLEJsK1fcy8ByZGoHXRdGb901MUNBTQOZSjNJMlGHMYiRl4exzuW/Mwo/+tCtN06BMltDKdtnwjHrK0VzfykrOKm4wnuXvro/x59o/ZUTiPd+pmE7ESHMg2Ezc7sYWJ3+8gtUpmiUqqbBjxCy4d9qEJAbkMAHkS9PAslT6TW70H8Nt+isVcAjpAjKbpi3miGzZ7YdtuqInCpYVwyCep6tHRQhp9lsN4TlP1WBrQATQLmCMgKGBEUxGtlNruZCE7IPDUCHpjcGmLcop++gT8wbfgyS7YNgrfmAHFPnVdS0rgjtuPvdaNZXBJI2xph3k1MKf69L+bPYfgh6+oYFtVEXxh1bFddqk0PPCo6j5cuhBuvfbY/cfykHNg6BxruabCbCJ8w6zlgRkdtHfoNFyb4DdjFejHRbFyDvzgkFLUcCQ8eAh+r+nY4douLi6/XvJk6GXv+TbjQuXQZMpQCiE8wNeBlqnsOFUna0gI0Yj6jEcI8Qmg91wsdblwiVLGPO0qxuVLRLr2Uzg4imnloRQK85AYhcv6djBQpVOwb4QaM4f35iBW0MOa8LWMBguxek2q0i1k8h6GjUIOOE2YVp6xdClZ24cmbP6r9IuMNxVz0zvPUNgzwrLcZtqqFjOLXg4FJNmSBoQZwi8iFBJmPKCx0DuTutYN0DAL6tXdlk0WiYWHEqSwKDDiHN3g1tUPm3ZDXQUk4rBtH1wX1ZGjUNYMew9C/VyNtpRD4nCB++GwS1p5AGI8j5wwMJpyaBUOzoiOtdeL8AuqloLhwNA4NFSp3cp9UOEH31FR99b90DcAFWUqqgUqtXf7xbB68bGpv40bYf9+WLIEmpuPrN92EAI+CPth7yHoGoKGo0budPaoY9RWwYZtcN3l4Pcd2X5NEdT4ofqode81GoKVehHLQ4Uk50hiAgxxoueUsSHrQOlkNO5QGvLSLRB1cTmfSFwx0tPwJVRxexXQBawB7p/KjlP9XLsf+D4wUwjRDRwE7j17O10udMKeBgpkI/bQHoZ25xnuhNJGKKlVhd1Wd5rGehNrXZ6+5QVUhiRtM6czW9+Dk3FIOyECLRlS+wOEYxn6mivpKJ5GVnrxmFmQAq9Is6toPjcHn+JQYTlDiQgNW+N4g34KTIPcgjKMijqiBCkhTA2FBOYugTk3HeOReIkRoJ4UHej4CB8X6v7VSyVUlCuNpaJCyNbAD3XoKYMaE2rmaOzZauNEhJKg9wEmMCyR/R7MpRk8SzI4WYExPY8Wdph4J8BlIYjVQl0h/MbH1KEuK1WPw2zcDD9/UnUG5vLwidvg4kUnsRFob4fHHoNwGPbsgd/9XQhNpv7qS+Gtd+ClVpVqfHgNfGU1DCYgZ0GoAGwBu9uhpkod72h8Osw/SRrx/aBACApO01UYMmBRBDaPqeVLY+B3S0FcXM4rJj4qmHG+zbggkVIOAfecy75TcrKklG3ASiFEANCklIlzOZjLhY8jX0DoS0l2v8y+F/KUTYfMOFCunK2sH3DyvN4NMc1ASC/LxjaQ3w5DE1FMO4vfzpI3vBSX9jA3/Q5bZy7kzcZL6bcrGLJK0aRNWUUnz9+xElPmMNM5UgMJ6kf8zH/boqK4BqPiJO1xx31xC3QquJY8cXT86BwrRVBdBisWwVvblBNy0a3QJ+ChtdBqga3DKNAUgIqlOhmPQzIPGY+ArIRBDTQwZ+awx3XIC+QEmE05xL4CmrwCf4mksRjSaYhGT3Qs3lqv9KwCAZhIquWLT5joqbAsVaDu96vuQvuojP8l09Xg6pEhuKgZ9rfD3zwCOUPJOfT2Q1EIto+BFLC1E+ZVqo68WFilNC8UhIDbK+DiqBKXqXG7BV1czjt5snTTer7NuCARQnwHVYOeBp4DFgC/I6X80Zn2Pa2TJYT41inWAyCl/NuzNdblAkemEXoMO7KMaM3zFNbA6BDk0TECHpKk6X4HBjRwtmaJlsbp/glU1IKVGsMbhO4B0ESaUF8bpT4IkGC4KEK4KEFRdoj+rnK2j1zCzqhF3dwDNAQOkCvUmKjS6K1Nco0zzmlkpI5BoOHh5BIBQsCNK2DlJap+6d+74K0uaB0CWQXChFwWekLg8TuUNOVZrgtaN5mkE4KOdglZkBmB8EukLUB3kFmBbUKmXeKfcHg1AW95JF//uk4+L9i1CyIRmD1bpQUHhpSTlUxC7Wlqr6ZNgyuvVFGsW289IkQKqqh9YSPs2g8798Lm7eAthIvnQCgAhwZhVgPIYegZUcuvvqKGTTfXwX23XFiOliag/txE5l1cXN4n3HThKblOSvl7QojVqHThncArwLtzslB6ggAzgCVMti8CNwOvn5utLhcyQluE47xJ9OKrsAfXM9YzTrBGJ1gUxpLVEB2mfccQhQ05+lqzdLXClVdDLgeOBf1dKpKSSkEypYq+m3fuY2nFRtYVOVSFOvE5M1m3fQW6xyHb5yNzXYAZgXcYT0O4uI3XtF9yK/MIU/auzmUkAePJI7VL91ZBagiemAD9EDhJyEnIVkBlDgyPjteSGBr4AgJPqSC3D7Iv+fHdkkQL2khbkH2xAK1D8OouSTAGn14Oa9YI7rwThodVJCpvQaQQ5s2HXbvVuoUL4IZVp7ZX0+CGG9TjZMysUzMRtx2AvA5RL7T3QUkxBLxQEoDpMZheBxU+2DgG9VXQ2gFDo1BW/K4u53lnJA1DaSj2Q6Eb/XJxeU8x8VHJ9PNtxoWKOfnzBuBhKeXIVIWWT+tkSSn/DEAIsQa46HCaUAjxp8BPz9ValwsXTb8OcBD6y5QtmU9pPoRuT4BuYho15PM9BOp6GG7bh53N4QmB6VEpq3Qc9uyGgS6V6tI9UNcEqz4Os3btZHPDLIyYyaxFu/DXjbJ79yKGu0rJDXtIFoVwdEGvKGem3MtbzmOs0r6EeBfjht9uhb3d8LWb1bJfh+umwV+EYXwQrC0gLZBeMGMa80sEsQIorhKsb4PCahWFcto9pP/VQJQ4yAkNmdKQ6x1axyQiINn9qkDLCmy/JG9LfEiCfsHAiGDZpYJbboHBfpUac6bU9Hty+kehOAqfvhHWb1VK6F+6Sc2BfPhl+MmbsGIOfOMGGIvDRFqJoHoL4OHNUBwGbx52H4TqErjzSjWm5kLBkbBmBN6OQ40P7iiB4OQnVMsQ/NNmkLZEpGF1s2D5dCh4Hwv5XVw+SuTI0sWB823GhcovhBB7UOnCrwghSoDMVHacauF7LZA7ajkH1J+NhS4fDIQw0Y2bwbMU9O9CoO7INqBs6RiJwWcZ72pHC0Xx+geQjkr/9HRBXw8k0+q1Mgf7dkNVOXj2jlNvbye7opL++dWURYepuuxZNg5fwoQRIycNHF0njwcvWXrzL9LjWUmVaD7BRhuLBHHCRNBOI5531TxYPuvYdbOi8H9vgL9eq7rx/IMQLVBDnMPtgqECGMhBUIOLYrBuOowNAv0azpAGdcB2B2dUvZ9MaWRzQDGQlJCXpBFkMuALS57rBmdQkByHEr9D0ZOCb37h3BzHAi9IRynDL1kAmRzccCn83RNw0Qw12mZwXM0RTGZBmpDNwI5u8NdDSw909cCNc6GjH57bCHddfU6mvC+0JOGVUaj1QmsKXhiB1aUwnII/exN2vJ2kfRtYGQ9PxjQ+e53O798DwaPSjlLC2/ugtQvKi5TT6TFPfUwXF5cjOO/ipvbDjJTyD4QQfw3EpZS2ECIJ3DqVfafqZP0Q2CiEeBzV6bkaePCcrHX5YGCWgKccrFEw1DxBKSXGaI7yumq20YGvPILROI1kYBuBQIaJNL8ak3lYCSGXg1dehppGGFu/hcgPPUA1hm3hM9IsK17LC9ZKemUFzf42hOWgZSzGtqd4NPy3fHnB/8JP4TGm7WUX3XRSTzPNHOdFHYXHPPkX7Kenw53TIH4nhDwQH4H/fBQeXwPhCKTLoL4Rsv3grFXSCUTAmgFOAnKtUp2oNnmmIaHO257UIbBB6pJ0oWDrS3nICILXTDCxIsF3EyaBX5Tyuet1HAmbWlTd1sUzwTjJf2MuBy+8Dj39sPJyuO1yeG6D6pS8b5VKMcZTUFU8OR9xHNJZaGlXw6QzBvQehDffgXwMkh7YbykNr80jUJaCpT6lWXW+SdpqZKSpQUiHkUklvs19MDqQo7M1SzYbxrFhYNDhJy8KbrtcY/FRTaUbWuDxtRALws52GB5XETsXF5fTY+KlmqbzbcYFiRDi00c9P3rTGf2gqXYX/i8hxLPA5ZOrPiul3Ho2Rrp8wBACilZD/wOQTYNZjNVyiMxPX8dr+Ln083/AO6PbSM1IcajVoiKzB19oAq8XMuljO+PyeehsAytvEfF7kFJQlB1kwCgnIocpNfoxkFi2xJBZ+nYZpH/UwWAxtM18mNnerxyTNtQxEAiMKfz5jo6qgu9w+Nj1fkNFeh58CdZugOfeUJ14nk5o7oJrr4LH9yrhz3gWRrqV/lWxBft8grhQUSUAIigHS0p13UwgAOyfgEwGYRoE54yQW+/FqpM88FqWQrOAeNJm7TYbf0BHSp1l8060/+3t8Pp6KIzCD38Gf/BVuOS4Ga5XzoOXd4CQUFcGFYUwXAprd8K+LqWX9U4cshYUGvD6AJQKKLsEnkrajDuCW4Ln38uaXqDG/nROBuFvi6ifugY+j4Oua0hLoBsOBur3lT8u/br9IJREIVwA0RBsb4M7LlfOqIuLy6nJkaOTg+fbjAuVJUc99wHXAFt4r5wsIUQtaozu40evk1J2np2dLh8ovNVQ8VVIrIfkTmQugzRqEP4q6lesJF4VQ6Yc9KU3s+vRvyFQvgV/bx5/SGOwxyY3mWCWEvJZ8M3wMDi3kXxSEBVxhq0o/aKUeqOTvGXi1RzSRpCWpqWI2bvJ1JUzaL9OipsIcCRt2cxsqqmjgDMXFL31Fni9sHLlidv6RqGlC17eCZYB4ShkQiooVV8I86fBwmbY1a4iSp+8Hq6/FL72+xpvb7Q5dECgG2A1QLZXwLBQzlZQg0QGMinAh8x7yPX7sLJerI0mO3s9/OFbefo6UljxJMXlgktnFLJsnvcEGy1LpWI9HtVIIE8yo2blImiuUjpc9WWqk3LhdOVctj0JrTkl9unLg+WF/ixYHkjvdRit6COmmdxC6Ylv/GsmasJXq6EnB1HjiFjpkgpoqjbYFLDJBSzsuI6tCebNg4XH3XiXRKBrQDlZYxNQFHYdLBeXqWK73YUnRUr5taOXhRARVIbvjEw1XfhLjmSA/EADsBdwR7V+2DGLofAmKLwJs9KGip1oXi/GtGn4acHxbsNLnsrPXM9I8Gr8o8+QS0xQXTpGrHyYPW9AchT0mX5ib3yciN6NLTXiiQiiwKDHW4ed0phW0IEmJUKAFoOBL11OzvLSJ7bQzy6mHeVkaWgEmJqy5sqVJx+mDFBTDHPr4NUYjOehbxjyDhxKQlWFEvTUNFg2W3XnXb5QSTNcshAaa3Q8HhUp0+bBgy/D4LCEBICE1OH5NR7wGIz8rAQ9JiGjoRsG3RNJ8hmBzyNIDFns3ZLEudWDph1r7MUL4FAP9A7AXbcoh/FoDgfP6o9rxBQCioqUZERXHLKjkPdBMqNGA1UXQHleYO6JcONZpNMOz1x8vxyXoAHTj/tUCnvhjy41CHjCvLEzSy7u8PFZJt/+uI7vuOtx3WIYGIXOSUfrU1e9P3a6uHzY8OCllmnn24wPCingxILhkzDVdOExiQwhxEXAF8/eLpcPMkLX8Sxc+KvlcgYYYh85DAp9MOvez+Jc+w0633iDsa0PEMi/SLBGp3vFYvIXV2DkHPQxi+HicpZvWcd3PvYtJvJhZhfsxMBGFw44DvprXZSLQwxfvoAMJQyTOud//eOdkqMxDfjU5bCvGx5/BrI50Aw1F/offgh/dD/8fI2aC3jPLVA3OTrnM/fCy69CYgLuugOq6sCsgY6rdTrXSQ5showHxjoBhBojmtaw88ozCZdDrDhPT3sG08gjNI3X1sL930pzzydNViw7UkhWUAD33HGi7VLCi2vhjbeVNMPdN0NsMr3WMwKpLPTG1SDp1Uvhibeg24JxAeWoudd1QnB5KMhsC97cCaNxmNkAzfUnv15j4/DAD0Fo8Nv3nXwQ9fuB7cCP34D8mMmyYoMv3gV1JSf3nIN++OJNqinAa7pRLBeXqZIjRwft59uMCxIhxC84EmjSgVnAT6ay7zmNC5NSbhFCLDnzK10+bDjkUVPq8mh0U8HVODhAmhz7aCtbzO5PXEvgtqtZ+Px3Sf/d/2bOyDqM4nL2zFtIMhoi1DOMJ5snJYOYdgZdSDRUiEQiIGdjDk4QPtiDU6Jhhf3YRhaBjvYeT7gLeOHGpbBmPXgGISaUg9LeqyIifaNKWqC9F+ZNTpyIRuH22468x94+EHFAwOzrBItqINfr59+/l8G2MuAUwAQgHLzFGitXwJ98Pci3v5WhrU3HMX2IaJADffDH33H4wT9IGmpO3+XT2QMvr4faCugfguffgE/eCE+/Dev2KudiJAWDaTCzUBWERcXQb8MVc0BLqYHZV82Bh3+p5jgW+GDtVrjvZphzknu0vgF1LDH5/NflZKVz0DcOdSXQMSQYiKvnoJzNxISKOh52qIVQjQEuLi5TR+KmC0/D3xz13AI6pJRdU9lxqjVZRyu/a8BFwOCUzXP5UDBCK32sA3RquAKBD0kanQJskrzEdPaRJCp1BhK9hGjD+/nrkY+/iPXqMIUHXsNbWkQmUEE4Gafc6qFXr0ACGo5SG5ZA+zh0jNH40h7qrimme5WX/4geJJZqo7ovzTz/LALVq8Gcqi78qXlqO6xvgxmzoGNIrCwaAAAgAElEQVQIJrrUF/Tn74Tn1kJxDHxeWL8DLr8IoscV0Fs2PLIZSoNQF4O2QVh1Pax/wcPHrgvz5mtJMtkkCC9NM03uvFvjt+6GabUGTz9dRne3xWd+x6aoUOIx4VAvbN4FDTWntzs/2Xmn66peK52FfT3wZgs0lConyz8GL29TheCmDj0H4PfugFsvPvI+o+OwvwMaqo8sv/3OyZ2saXVw1XL1vOHdX/opE/TBxdNg80GIBaBpMjWaycLDv4D9nSoqeef1J7fbxcXlzHjwUkfD+TbjgkRK+ZoQoowjBfBTnj801bDA0fesFqpG6+dTPYjLBx+HPH2sw0sUB4teNtDA7aT5ORajxCmllWZq5F7WTRTyZjzAb+VjiHARl39iBf6DG0iNwUR5EKssiLEvy/LujbzesIxs1sTrtTDJ44xncbrGaSqyWOiP8+bFy/Bb+/Al9tHibeCBjtu4VW7ky9pfQcU3wXPu36oTGdjUDvXF0FCshDl9OfjMlXDxXOj7CfSPqOJz0zhx6DKA5agBzT5TRVAMHQoi8DtfhVXX+mlr8yGEpGmG4LGXBbYNP3gCvnAXVJcLampM6uvgnT0O0ZCkptYgFhFMTCiV+FONwqmvgtmNsKdNOYHXLof2MfAYR1Jk+RwUaXBJJfg9MD4KTZFj38djAkJ1gJqmctZOJfDp8cCN103t2jqOqiMzTSUl8W5ZvQSunq3kNDyTn1rrtyo1+/oqSGfgJ8/A738BClw1eBeXsyZHloN0nG8zLkiEEHcB/wd4FRXM/0chxO9KKX92pn2n6mTtllIeo/AuhLgTV/X9I4QG6DhY2OQx8GMyDYOvIUmTwE+AjUzYB9mQWcZQwMuT825k0dBm9jfXEiy7ivqxfSzObaBo6xb6M1E+9sKzpK/1sr+6iZyhkdd8CCGo6kwzb+9Bdn1hGXOiLfhkGtOxWJLYxJyKFvwDBmzqhbn/Ak1/Dca5qU1qk/JWzqTAZ0UJXNGs5gECfOI6ePIVmEjBPTcqKYTj8ZmwuBY2tIOhKWdmepmqpVq8CBYvEoDglQ2AhLpK6O6H3QfU7MQHf+Lw5ssZOgcF0UKdL14q2bsDXnlOyU585tNQepLGP8OAe25Vyu4FfuVojeePlTTwegABxR4o8IBjHKnbOszQKJQVwpbdUF4CkRBcc+k5Xc5fISU8tga27FLHv+kqWH6Sed9ngxBK++poRsYhMOlQ+X1gjyhny3WyXFzOHolAuunCU/HHwBIp5QDApOL7i8B75mT9ISc6VCdb5/IhRUOnhqvp5S0M/FSxAgCBD1v6CEmJrkksBHlhYYk8Vpmgo7Qa2a8zP7yDMjlAZryAUidJiZkhb/u46xc/w8oWMBirY6huGs7LQ9giQEFlKYUlabxWBr8ny/h4kNFcEdOzrUTsOGSqoGU9ZH4ECz5z6hbC01DghevmwHPvKM0rOw/lQegZgM27obwY7r4B/t8a+OK/Q7QQ7r0Cbpp/JJoCcMNc0AMgHFhRA4UnUZYoKVSF9WNxVZQtDPibR+Dn/5rl0O40IBka0XjlaY2lS2I0N2kMDsLTz8DnPnOK34mm9LOkhLe3wOgYzKyAvb1qm+PA51dBTyccGISFcyB4lG372uA/f6aiWQGP0gRbtEAJes5rhE09sKAKsjr0J2FFlXIkz0R8Ara+oxoF8nl4af27d7JOxuwm2LhDnWsqDRWlJ6ZzXVxcpoYXD/VHdXG7HIN22MGaZBim5pGe1skSQlyPGohYJYT4h6M2hVFpQ5ePECEqCfGJY9aN2PDAKMRtweLIIg4ZoxSaw6QcmyJtiCG7iMWejdyWewK9zCJQmCJd5iU8lscb17DGS8k7HipavIS6SkjuShC57mY8vmEC1howNewhnaFIEcloiOd9V+NMeFi1p4WrSUL/Hoh3Q6T6iFGHdQ2mwBXTVeTp+c2wox1+8AI4YxANKGfha/8XNh4CGQLy8Oo6hz/8lOS/3ar/Ki33dBdsGlOHnGNznD69Yk4TrF4Jew7CiovAE1L1XPm0DSjpCseRpJMOtmUDGl4fjIzAK2/AgYNQXARLFkFV5bHv3XkIfvaY6sJbdS0sv0YV7xeHoLoYdhyAH78IBwbgwTXw1dVqv3VbVeSqMKoclC17oXUYIkHYsAe8FVAVhecH1GDmxijUTKHY/XAR+ui4qpt6vwZTz2yE+26D7XuU8OgVS06dXnVxcTk9ElRdrMvJeE4I8Tzw8OTyJ4FnprLjmSJZPcDbwC3A5qPWJ4BvnqWRLh9CWrMwakOpAQcnwnwh7GGaZwvfNerp10uooYObhp6l0BzDljo5w8NApIhcIkGoyMBf7MHUJHZ5Hl9VE9aCi8nsO4Sul1LQEkAUJshLk5aSObyY/Rg7exaTTfr5fkhyvb2Wvx95k5JE3xEnK98OEz8AcxYE7pqSs1UeUX5ZxA9DY6pbbUYdbNmjFMNlA1AFeGG0x+Z7v7T51ApBTYn6QOpOQcwj2dci+UWr5KZLBE1Nx35YCQGXLlSPrq4sP3xkjAO7BVVNUfq7ckjLwVcgmDHTIRTS6exUXXX9I0pGoroK5k2HTVvgnrtgIgk7WmD+LKivVvVSuRxEwjD9OCdsJDGZDi2Ctl74x6fVjMOBXogK5WRZNuRsJQhaXgSH+uHqi+FZoNkPV+ShYorDpH1e+MztquMx4Ifr38exNnOa3WJ3F5f3gix5DnDofJtxQSKl/F0hxB3AZagqk+9LKR8/w27AGZwsKeV2YLsQ4sdSSjdy5XICVSaYAgYsuCoAAVHG1fyUh0QhBwhyrfMCsWyCQ8EKXim5irwJHq9N8bQhliU3UWBLzHgDiTmltPg76ZhtYvTXsXx9nGbzk4y2/yv7mqJsZy6bO5eTS3sp8/Rxt/UjZsZbWWdprBp4DW/VRUrAKb9/csDgDgisBk5SrX4SrlsIj61Top6+RtjWAhkbDD8QRP1bZYCYTtzWeLBL474CqA3ATdWSP/vPPDufBr1Ro3e75P77BbW1J3fwHnpoGOHArBKHWdVjFIVjjA8kKa+QVM+M8M0vawwMwN/9M7z8GoyPW2zfmCe+XGPppQb/9YgOOhQXwuPPwf2fga9+SaXM6k7S9bewSUWzuofVOU2koTKmnLJNO9QAaQf45FUQzygHa9lcOGTCcEbVdN1dduL7no7aSvjtT57dPi4uLucXN5J1aqSUP+ccGv7OlC78iZTyLmCrEOKEgR5Syvlne0CXDxfVJvxOEaQcqDIAFmFwNRWZMXp8JUSccVJZHz+tu41MwMCv24QZBwkbQ4uoFx3osXEsHPZSzz7HR19lGa+vrmBe2wR3991Lr28PvfEashkfFZ4eVhf/lOX71xOPhLFCgr7UIeoyg+AvA99SkBkw6kFMzcECqCyCr950ZPmGFfDzV6H3J7BTQwmKmoCt0dwAhhd+2A6fCjj88z8meOLfPGSyGu2bHebMEcydK1myRDB9uqoZammxWbPGorZWkEo5RKM6pYUaPr9DQcSkrCTK4AjsOQAHDkFRCF59AzKZNKnxUcimWPNLm03rvCy/upTyugJCIXBs6B5U44FSWbgsBwuOi+xEg/C12+FAL/zgJfXeh88564GZtVAahdYx+Mr1ahSN3wuDFhTqsPAU3YYuLi4fHrx4aOQM2jEfUYQQtwN/DZSibrkFIKWUZ6wCPVO68BuTP2867atcPtIU6uqh0JD2KmZ0f4+u6hHaPA1EkkmG/EVUa130UkMj+0FIlubfxjucZzBSjBAJxgwP3Vo5DjZjus3mWoPRSCNLffswJiwkMDPQQooA4yKClTWJeUZJMgH6pCeghSBwbn+uwwmlJxUugGAB3LAcOvrBsx1250CTMLsGPnWFet2uNviTn6d59nENXdfw+yWZjGTHDsGaNTq7dsEVV8CqVZJHHskTCgnWrbNZsSLG9u2jmKbgjttj9AzBI0+rqNK86fDjZ8Efhu4Jh4RmQzYF5ACb0ZEcLzxt8bG76tjXY1JSCv/nYagoVnVV3/8l3LYKmhqhRIegfqREzedRwqqHlxNp9bypWomydgzAUAKqJ4U+Swy4IXi6K3b+yWRgYgIKC111dxeXd0OGHK10n28zLlS+A9wspWw52x3PlC7snXz6FSnl7x+9TQjx18Dvn7iXy0cdT3YH00dtMv6DbChaiO5zMHUbGwMNybAs4qb8s5T1DDNWEKYkNcSwLCYZCRK24ox7IlgYJHwG29DxZxbQHNjHdn0xeTyAxhulK1gx8hZ+J83BmgX4PT3UUIDBUXIOTh6S3cqjKKgG7dRV0c9th9dbVPfc3ZfBzCol4vk7d8HqK1RBdUMFvDwMbw2pItErKuFJx0HXBJoh8Hol447ShpoxQ1BUBBs2wMc/Dj4fJJMSIQQzZvi4+eYqxGS9WHU1BAqULENTHTw9Au27IBWTsDXLkR4THciTy+bQ0uNUTyvmtR0qi2n4oKQG7AJ47udQMh0iUSjcAvUO3H0bNDWDHoENHaqAfTwFtSVqsPRICsYyJ8okXMgMDcEDP1A1dM2NcO9vqGt4tnSMgc+Asg/Qubu4vPcIN114avrPxcGCqUs4XMuJDtX1J1nn4oLmraMx8ipG7yG0aBtbZ87BsWFYL6SQQfKOh5CVghz4zSwg8GtpTCtP3jDRpCRNAV6ZptuuJGd7KHPi1EfaGMgWMzu0i0BJip7SOtqshSwrnsEh9pMhSUgmGeYgYVunvGMA/9gIICHcDI33gnaiplYmB2/sgZoiJVD6ym7lZIESKJ3XeOS1N1TA4pjS2Cr1wYJve0kPj7F2rUYiYeDzOjQ0gBCCnh6oqwNdF3z2sx42bLCpqBBMn679ysGSUskcNNfDtBro6AZ/IUTKJIZPYjs6qmLqcH2XBpgcPOAQ9kqkEEgPJL2QHAY9r0RM063gsWH8ANRMh71r4c4gTJQDJiwqhemloGvwp09AfxzqymDPANRN6nKNjqlIUXnZOSlkvO/s2AXJJNTVQOt+6OtTDuvZ8kyrcrBun/Xe2+ji8kHBi0kT5/AP9CFmMk0I8LYQ4lHgCSB7eLuU8rEzvceZarK+DHwFmCaE2HHUphCw9qwtdvlo4JtOZeM32bXXIdv2FlXz1jLqhEnYYZJGgEI5zLgVosgYxZPNY1h5TCNPVaCHNmMaWeEBCVnpI++YTBh+0CIsq9lG90CMlvhCyo0hUl6dxlghLT1VHIob7DLTpMJFlARiTNc6uM6/gUvtWRjShPE96hGbd4K5pgHRAugfh6wFTeWnPjUhoPwoscuZMz185zthHn00RVeXzooVXpYu9bBunfrS93jg3/4tz/BwnuZmwcKFvl85WPE4/Ncjag7gRfPhc3dO6mjZkr/4uwxdGUlHkY4c8KMaegUQQ9N99HR6GLGyBJp9eHwOfZZSeBdAPAckwVMksZZp7I4IEjaEx1UbwMxaWN4IpX44NAINlXD1fCUB8XorXDUDOjvhwUfBtmDFMrjh2vfuz+O9orBQFe/3D4BuQPAcI1H3LZia/peLy4eZLHn20XvmF360uPmo5yng6JkXEnh3ThbwEKqL+y+BPzhqfUJKOTJFI10+guieYq6fBxWZCtpSc8hY3WQTOxmN+Ul6ypB6lP5iB4FDQTqJMW5T19/JO+XD9Oul2FIjnolgZGx006LY04PfK7i1OkybZTPglNBtNPLCAY3YiJfdWoBkVFKiDzDiHaKHAnoLLmNGZoiSPEr908qc3FYNPnslvLlXCZReMXPq59nenieb1fj2t6P4fNpR62H3bujosHj88TyWlUf35Fn7Vp6/+ssQHo9g/dswMAg1lfD2Vlg0H6bVwy9/mafMlHzxExrbDwreeKOQsT7IxyVS+qmo0JnWqDOWlIzmMwwmHZywhuPzQABIAw7kegVslTAuaV8pcAYFIaFSn//QCk1BuDKq7M3bajyQ11DXY8sOJcVQWAbrNl2YTtb8ucrJ6uqGixaqwd3nQnDq/REuLh9aJAKHCzBkfR6RUn52Kq8TQvyhlPIvT7btTDVZ48A48BuTb1QK+ICgECIopew8O5NdPmrovjGafeUY1BEPVhEUQ/iMCEmtDl/cwqSEcU+OVGsJnm0Jxi+JsWfWbIKeBHrOJt9lEPHr5Cs09me8ZIP9OHojup4maufxDAZoDQUZ0zyY5PElc1wa3kDATDIcLGHvoEZJZhCEDqH6U9pZHIbblpxy80nZuTPLQw8lVfF4k8Fv/VboV1GqrVuhshLWrbNJZxzymBg6/OJ5i9tvz7N8mYmuq1mGtg2II0KaIyOSYFCNwLl6oaA6YFBZWcEbb0jGxhwMAzxewViRZGQ4S23DPva8Mh+WSZBCZRfHgK15GBRwpw7l0NklKSrT2JKGz0TgQBICBtw4H57fpVTs775EaWo1NcC2nareacFcZVc8cURo9EJA0+CSi9XDxcXl3eHDZDqVZ36hy8m4ExWMOoEp1WQJIW4G/haoBAaAOqAFmPMeGejyIaWUabSzBYGG3yyliuUM8gKYRQxZcxkd6iXvkfQ4X6ZfbOVAcj6ZtgKSE0E8fWkK7TgjoRLCkXH8Is3+ERNfuJsmu5ZlAz9iPLuMuDGfkUgRMWOY5cG15B2TccJUa4cYDTeBXghll4Ov5D09twMHLAoKNEpKNA4etMjnVXoQ1LzBjg6IRASg4UjQUE7Sv3wvwaaNBnd8IkhPn057J1xzBVRXKkemuVlj1y4br1cyMChpOySIlGqMjmcZGJb4I4JgtY99OyxSQyZ7d0yHYQlNKNFUA2ixocdRM3NKgH6gEJJD0OeDdSmVYtszCN9dAn86TaVCD9deLV4IRYWQTkNjAzzxgup+9HnhN29XOlguLi4fHjLk2UPf+Tbjg8opQ4BTLXz/C+BS4EUp5SIhxNVMRrdcXE5HGc0UECVPlhDFmPiIMI1XDj1Lx3gnYX+EbGIBTmguA81zaN2dJScMoqERYpExCoqSJMaD7Fkzl4bFBwj6MvSlo2hxm4tzGS6r6Kd/PEW3EcVvpDE9Wcq1XuZk9mFiM1E0A6fsU2jvQxh84UIPW7bk6Oy0WLzYi8dz5Bi33goPPQRjYwYL5lscGsgyMGCTz0meezbDti2CeNzhf/7PKEIIMhn490egsxuiEYMrroLduyx27dcoKTP5x3+xkJZBJgvekRz2uE0qoMEoyPhkaKlNwmyhmhHjElK6GqgoNCgAbEGmH8ZMeANVh1RZBw9sga8vhehxelj1k8KmfYNqRmBthaoZW/MmfP6uM18fKeGxx9VooHvvUQX5Li4uFyYqXejOpTpHTtARPcxUnay8lHJYCKEJITQp5SuTEg4uLmckxLERpE0HDNZsvJ6m6iHGxzQmMiXsdeDxiENmhQlZyGk+RsciiLSF6bEY7IzQsmY+wbpxCJnI5jzduQDN43v5cXGan8Xu4z+EQ0nBIEszm0lpIcLSJphdi6V/Ao+Y4kyYs6C+3uRb3wrTPSApLT32wykWg/vvh1xOIx738t//h8OTv8gxOpzB0aCjQ/Lgg0m+8Y0w0ajOO/ugrROm1UJPvyCHyRe/ZLL3z+HlFx3Gxhw0YaH5DVJC4i3SoVSDXao7EwT0SdgCLAFiBrTnoFIDj1CPUcByyFuC0T1ZDEtSmzFoqzQ50AiLT9FY5DHVsOmxBKQyalTOVLBt2LVLKdHH466T5eJyIePDYAan6fpxOR3vOpI1JoQIAq8DPxZCDOAOiHY5BzI5eGYrVBcaOLlyUhLesGFLLMtQWKJrNjiCzIAXu1AjGc9ijlqYQQsrqZOUAWzHILe5gE2zvsRWXy+HSiu5PxzhPoLssVZQKLYitACSJkodA49MwWmcrFQaxiag8hyyiTu6dZ6fnOq5cqHq0jsajweKi3UuWeLlyScSGLrENA2ktEkmHeJxeULBtkQFn4IB2LXLobMzh2NJNHQ0O0O00kvTTJO3eyFfLaBl8iYqacM2XSX0GwG/BDToBLyo/9heSfrfR0lnJGDy8k9tSlY5hAq8RK+HxpNcpnQOEnnYuBEqSuALn1JO18atsL8DSorg8kug4DgnyjDgi19QKceysxzL4+Li8uslg0UL/efbjA8qPz3Vhqk6WbeiNA+/CdwDRIA/f/d2uXzUaOlWnWyeyb+8Ngd6TYf+YgvdAmkJhCmRMZtsn5cRvQhfPIPdZ5DvNcn2+hDLbPK2pH0wRmVZkA2pPNeHLaoxuVS/Eil2gB1XtxZaOYjYaW16+HnY3QZf+xTUn0WtkW3DC1uhqkgtv7QDVsxWkhDHs3q1wQMPeNmyJYdtW3g8MH++l0BAdSTOnQHbdqtoVnEMrlyqOueGBx10bAIhQToHhqPjyRiYPXBJPazNemAkDf2T0ayEBa0GtAO2Di05COlKiDUDPJWGTB4l5mBAk2S4AjaOSr67W1A5BvNicOUcCE46TT99QaUKF8yAzj7YeQB27YFX3lLF+XsOwMFO+PxJxEDL3RtjF5cPDG668OQIIUqA3wbqOcpvklJ+bvLn/z7VvlNysqSUyaMW/+ucrHT5yCMlvLYHogEHmzjg0CYjxL0Ojq264kxNYDsgleYm0qOTnfCRa/Mhwg5yWKAflDiNDn3DGtOqIZ6CMRwloycKEP4vgLUFMMBcrOQbTkNdOcQnlPDo2aBpEPQp5XSBeq6fQm8pFhM89liEP/1Tjfb2PEVFGr/92yFsWyOTkbS3S1YsgrtuEgQKBELAk0+CZoMlNVJZgS4dQl4bT4FASvjqVZDZLWiJ+kglszCRBzLgmJD1oqwy4E0JuoRaCYMJ0B1wBPgNKPEge22mByQdOwTvZCERUSOGVl/s0NZm0boPGhsNQMPvVddq1w6or1YdkYVR6OiCgSGonHSqBgchmz03cdD3AylVbZjHA6HQ+bbGxeXCw4fJLErPtxkXKk+iSllfRE2ynTJnEiNNcPKCrikPR3RxOUwqC4MJh6KirbSynv3ZEjYMr2AoXYQWdpCagTAcNBuQoBkSw84RDY7TRxXkASRycrvjqD9NAQSPHgehxcBzzZTtWnmpepwtQsB9V8NTG9WX+C1LTz8/r7xc5+//PsLQkIPfL3j2OY3nn4fEhI3f56Bpgrlz1YBpj0dn0yadz/2GziOP5dnfmsNv5Kks87HyWoNwCC6ZD9WlgsS4xrjtpf+QDrkMkAOfMzkgW1MOVoeEkSTU+cCrQc6AMQkHLSgQJA7YrH1WommQL9fYGnP4/p/00XYgjcerUVoX4qqbizC9GpfMhZZ3lHipPjkbEXHk3EdG4J+/B9kcfP6z0Djt7K/tueI48PxG2LwXplWqkUh+LzzzDKxdqyJt994L06f/+mxycfkgkMZiF0Pn24wLlYLjRwtOlTPpZLn3fC7vGVkLHCfOgdzrJMYKmL5pH78oWw1RgV6VQ5oOTlZH6g7kBabIM1/bRv30Dg4EGmnZNoeMz4colJASlNfYDGsWsz0G6SGDXw5BzA/zyyH4a9JyqiyCL10/9df7fILqap18XomVVlfD449Lrr5a0NOT5bvfTVFSIohGNQoLI9TWGnzpsz527/Zwyy0wPq6Rzwsuu0xF+wpLBCsrBHu6BFZGMDJoIi1bpQS9jip4l0BPBvyamhKddcCvg5GBhI3Mmjz5V0kwNUjaDHsDxIqSJPon0DTQdJuknuRaAtx/VwGVJfDxK+Hx55WkQzYH82dBabE6RynBnhxEbZ/VPd+7p7ULXt0GtaWw6yCUFcKyWfDWW1BbC4kEvPyy62S5uJwM6c4uPBVPCyFukFI+8//Ze+84qa4zz/t7bqhc1ak6N00DTUYEgQRCKKIsK42sYI8tW5bGHlsO6/FOsD27nvW845n3fWetmZ3dcZCssTWWjSUrWJaVI0ICYSQBTRbQTdORztWVbzj7xylEaqBBTRDcL5/6dHPrnlvn3uqq+tXzPOf3HOvA42in6uFxfOga9O5Ygz3Xz8w/buE3/jtgUAcfWNuD6LV5hN/FTer4cjYVThcN9i4kkuryTrTzYd3uOdiOTiTgEG/IExgymelE+HmHIOyDnANv7YI/XwjRU2yamc+7JBI2sZiBz3fgm5dpwhVL1Qf+NddoDAw4vPNOlnQOdrYJ8tttLliYoaVFGZwuWKBz6aXQ3a2sIX70I9VXcOtaVClWRhAOaejlkoF+AytvYBY7KvjncyEvYSgJQznAgFAJxDQV1bJt9eS4fvC5uEaOvoQBZoCw7pIVfrJ5H6+973DnjS415RqL5kO8DHZ3qLqsWVP3RbLKyuDL9yrxNaFhlNfKgbZhiAch9hGet7yl+kqaBpg6ZHL7UoQ9PZBOQ2Pj8R/fw+NMJYDBDMbWS/AM4hvAd4QQOVROZdTZPE9keZw0gj5IdQxSXJ/GyRoQdlVLviTQr+FYAbUKzpXEzV6u0Z+nzOrHFYJtTMHAplgMYmaKuas0QG5jkIsnafyxGxpK9tVDtQ7C++1w8UlMUx1MT0+Ohx5qI5m0KS42ufvuOkpLD+zfcvnlcNllIIROf79GZ6fgjbdU/VZXAqpr4StfURGh2lqVnvzlL9XYeBwefRTmzFMG75uaXCyfKluNhXXauyAQ0bFNyXBAQFJCNAgtOcCGgAVFIdBsGJaATz0XqRSkXcAF3UeqyACRh/4cTc9Iflom+e/fjVBaqrFjJzRtVnVYjeMP7B1YcwwLCKSEhzfBjkElsL429/hb3Uyug/pKaO2GaAgWzVApws9/HpYvV2Lr0kuP79geHmcyGRya6DvV0zgt+ShZPU9keZw0fAbML0nx+rYy6rV2pvu3sjY9HzlgqlLCJCCgONHD3YHfEou1k3cNNGkzPtxOPlrKtHgPF87bgN5xEdfPCNFYDT9bA4+3KT+nJTOgugR6UkebzYnl5Zf7yOVcxo0L0tGRY/nyfm6++dCldnsd1ktLBXfdFWb1H4fo7LSJRnX+9NMhxo3bt28uB0NDMH68imKZJiQGoadH0tTkYNsuADU1EtNnohkCfwR002VwqOD+XhwFfwQwYViDchMaAjAo1C9UjkgAACAASURBVEVzNT4smHcSMLAHpANagIwI8f4a2LEjwPYWH6+tUAJryzYVDLvrjuO7VrYLzUNQF4G2JAzmjl9kBfzwZ59QlhzRkGoDBGqV4+2jMFD18Dibcb104WERQpQAk1GtBQGQUi4/2jhPZHmcVG749JW8/LVlDFYazCxu4vqSZ3gheQ1Wwg/DLhX2Lm7IvEnc10JWN9HLNAwRoT6VoNc0iFdlmduY4bLZLuVB+Ld306xK27hWCIYMnloNF54DN804tedpWRLDUApK19X/j8Qrr6R59dUsV11pYjmCr389yuRJBy6n9vth6lTYsgXCYRXdSiZVobnfb2H6IZ0RDKVsgjGT4hiESqEzreErCpHPuCq352iqx6GUEBZohsC18krt4O73iHmQFogqkCaO67J1q0EopLG1GWIxCASgqhJ27d43Skr4oEs1nJ5Wo3ohHglTh6vHw0utMLccqj+ib6xhQPw4m0V7eJytBDGYRfxUT+O0RAhxLyplWAesRXXAWQlcfrSxnsjyOKlMmVHD4hnj2fnHIQJbOrl04gssrX2JbrMcV/go8SXQfQHSWoD+cTE0vyTgQtSKUaXN5LaFDtPKGikiQjMZXjT7iE4VMCVF8s0q8o7AykOJCS+vBb8B501R9d6jpZcsG+innCAzKEYcR0ueyy4r5Wc/a6O1NYPfr7FkyeG9urq6bF55Jce4cQa6Lmhttdm5Pc/kSYe+PO+4Q62SGxiAT34SLAvuvx96enX6+m0iEYdw1CRSCvMWQD4H9g44d67OunUp2rMxKNhlcA4wCAFhExwn6dul7bc4WaAq5n0gTSAPuESjIWxb0DgR1qxTAnJwEObP2TfH91rg0ZVq9CXT4fp5R79eF4+Di+r2RfY8PDxOLmls1tN/qqdxuvINVC+NVVLKy4QQ04D/MZqBnsjyOOl85b9dzf3/WkXv2lUw3Ins1cg7GRovKSEXOYeBPduwYjpWVMewbFwnyi53NkvmBplZ7SOCUkxD2JRFBG6vSaTKws27lPh1SjX4/D9DW5dKH02ogfu/CA2jMMaUSF6kDQfJBwxRgo8ajj20Mm5ckG9+s4H+fot43Ec0eviXWiajrBN0XSmMUEgwOOiOuK+uu0jZTyqVw+8vIRgMEQhIJk100XVBVW2A6nEGmRzYecnG9/MMJyy29eksvaKYddskW7YLchmgWSIMm1AogSUMimZpZDZr5LMuVAki5cVkOpM4exwEEr/fR2mpYNmyLN/9bpBP3qDxymt5Uv05YgEDKQMIIdgzBH4Twn7YfQwlHp7A8vA4lQgvXXh4slLKrBACIYRfSrlFCDF1NAM9keVx0imriHDfXy/m7x6tY92ardS4PVRNiKNPmIcwfQxWupjJblzNYsiupj9fT/2SYjLnNPMMGtfRSAw/kwhySX2SjsE8re9EiQd0Zk6XbFsPGzcINAE64Frwz4/Bv3312D7IJUfo+jkKiopMiorMo+5XWakTjQq6uhwCAcHQkMvMmSOPW7dumBde6CUYNVnzoz3MmjWOt1amGB6yMXQY6JFMm2Iwbzq89oZFPplhQo1Bb18eMw1f+3SQh38j6euFvqREL8pSUqrTM+iS1+COu3Os7AwwLIOU+EIEZhWTb80z1Goxsd5kXJ1kwHZ4o8kh4uT5xx/sIZWDB39m892/LuK73y3jvInK2T+Vh6tnw64h+M0mSFtwzURYdJoYlJ6uSCkRnuL0OMkE0ZlN6amexulKmxCiGHgKeEkIMQB0jGagJ7I8Tgl9sTR1nzEQsyfj23Y+ab2IrpTA0MEnF7LH7sDNOZxT7WfxtGKaq5KUE2YPKfrJEsNPFIO7jCpumyPZUC34nczSr0l25ARas48oGjkLhnthYzNs3AkzJx5ZaAkEV1FHE/2UE6CG0Am/FqGQxj33RHn11QzDw5Krrw4wa9bIPgb9Qw4fDEZID0dIJW16dMkO26CmQsMZsHFw8Bku8bhOJOSQc/1s7DVwqyUdxQ7dFlywSIAPdnUJ8u1pqht8bNycItmVIaSbXLy0lPoyP++9BF3tLn15jdx4H+tS/bz7koXraGwbcmkbFAzrYcyoIOe4/PjBYb71rRLiMY2/uF7VZkngH98Gvw7xEDy9HRqKoSoy4umd9TzzzDZWrWrj0kvHc8UVk071dDzOIjI4rGXwVE/jtERKeUvh178TQryGai34/GjGeiLL45QQQScSEMw6P8Bt88MMdAmaeyCZBVOvpShSzaxaQbmZxFnzW4q3ddO04GICoRLi7OtErCOI6IJdZTlCrmS8q/FckUtynkV2tZ9sCtIS6ID/9hAsmAT33aYW2R2OOAEu4xg8CMaAeFzn9tsPVB62A6+sgzXbIWDCFXNgQ28xdkDHzGZZcl6E+nqD91ZZtPYbiJDBxEqN7UmN1rfgggt11vQI0jWC1PI0z72a5/mwxaS5YYrO0SmKa0yYHibQn6TaF6Tbb7DrA4v+1n62Ty9i+QoHtttgmBAV4C+Gc22CO9NsfztHanwQ6TdxpIY0NDLYHxb7gxKzlqMiWGVB5V8lgIzXWn5Eksk8b73VSl1djFdfbeHSSydgGF76xuPkIBFe78KDEELEpJQJIcT+Ib6mws8IHL2IzRNZHqeEBgJ8lnIMBMW6QWUtTKvdf4/Ch8v2Deidm5kuBLW7UwSmnk9whD/bXikpFgLTgKunC36XkGRTqs2K0wDd0+F1E9atVa7fP/jakVvgnA680QSvrYe6uFqpd/+TEDE1briqCPVFCjIZOGeun8E1oLmS9g2CLTkB0uW9JoeML0fqyTTIASCPHILtbxRxYeV4brlFp3M4SkVXkB070mzbNoDp00hepdPzhKnMSScLGAL8EgIONGXI6Dq28BHr82NqEse2MHTJpJkxkmlBcUwJqw39KoK1sAZWtinRNS4GtV4fiREJhUymTy9n8+Ye5s2r9gSWx0klhM4cvGW5B/Er4BPAu6jA/P55EAkc1Y3RE1kep4w4R69XoqQWjAA6LiWljRzuT3aOrvO8bRGVgspJkr+0TJ5YqRbGbWx0KIq4GBmDVIPglXXQ2gUNJzdYNSLDSXjzHUil4by50LCfL9b6Xcrzy2eoW2cvNB40545uSKU16qvgvVfBDbtQY0F3mj3bMpADZD/KpNhFvS/00bTc4IpPj0PXBFbGwOez8PsFsixAz8oKcPf7RlsOpAWkDXAj0NmGJSDRHwYMikqCLL5IMOscP4kkRCPwH1uU55Uj4YJK+LN5ytV9QjH4vC/LI6Jpgs98ZjaJRI7YR7G99/A4DtI4vM/QqZ7GaYWU8hOFnxOO9xieyPI4vSmrh2u+BUgIHf5b1mLdIATski7jhEZZhUHiXMgI2KJZZMog0K9h9uk4LgwkDhRZtg19Q8rTqbTo5Kx0cxx4+DHo2qP8ptZvgvvuhqoKdX/YD/3DqsExQCoL0cCBxwgFwJXKuN0VDvhySli5rurgLAVKXAl103QoimGFwrRucvjLuwz6S2HjuhC53ACJoYAyJDVQdg4BIFq4+YH1OphRyOexkmkQARK2xdBABeGQRmkRJC3oTMOEGFgubByAW7zyolGhaYLi4sDRd/TwGGMknhnpwQghzj3S/VLK9452DE9keZx6rEEYehd85RCbfej9oaKjHkITgnMNk72viIGIEh81xVC9Sad3SGKkNII90BBXNVmWrXrcJdPw8DPQ0aPGnD8TbrzkxKcTh5PQuQfqC2nSXW3Q3rVPZF07Hx58EVr2qCLyymIoOahgvKpSRcCaP4B338zgDOcKfqK6ikYFDQhUg5WE1ABEi8D0M2OSpEQX7NwBtTGIRoOcv7ietcJhOCWRuyRkXFVIpesqmhVDZXHtvDo+JapLtZuifZfFPbf5iYSVtqsMQktCRbIWVp7Y6+jh4fHRCaEzj6O/155l/M/CzwCwAFiH+sY6G3gHWHK0A3giy+PU0/FryLaBtMGIQOijNx0sicGsSbCpGT4/xeSP2yGVgXgpTKiHLz0EW3pgYhDuXABdfVBfpUTWyvUwuR5mnuDoSyiobgODEAyqyFbxfu1Gt6zNs/7JLHv2OCy80OTeG4K8uUmnZL+aJiGgfpxqb/P2K4KWbkCXIHSI+PGFfEjLxhKAbaEHDc6ZaXDJJSGqKnSaW2HVVtU0OVPhI9rlIN9IQGK4EBELQFEQzgmCK2CaA70m6j3HBRI4+Swd25P8589L+au/KkXXBHdPh6ZelRqcXXbouedseLVZCdnLGrwUoofHqSaNy7sMn+ppnFZIKS8DEEIsA74opWwq/H8W8F9HcwxPZHmcepw0aAFwksrUaoy4+RIVrdrSAtOrVAatsgx+9QG8p4NRC90WND8GX71OjdGEMtLsPQkrmX0+uOuT8ORzMJyCG66ESQ3qvqYmm+9/f5hoFKrKBaveyIJlUXdeEe29GtVlaq6uVCv4OnvhS18xePopg22dPoJhk0WzJLEijcpSH119Ia5cUoLUXFZt0CmL6/QOwFXnQ+dm1QdRGND9dgK6Bwsu7xIYhsEQPJaneKqOXSvRqiI4CZe0M4xM20CUXNbhe99LMHdugKuvDhPQINsLzQNQMgUmHmQEu7YLXm1Rv1eGYe4ojGI9PDxOLF668LBM2yuwAKSUG4QQc0cz0BNZHqeemjuh92UI1EF48pgdNhiAu66H7j6lGzYNQE8eNm0Hw4KQDVkD+qPQtgeKoiqalLOgaoToy0chl4d3t0JpGLraJBs2uUybCpcs0fjaPYcWgK1Ykcd1JaapY9tQUqLT3enyJ/UWbRk/TTtVFGtjBoZt+NOJFttWDbFktuTCuTY331pMSBe8tVbQ2a8zZybMmK7aC02sh/Y9MLEO5k6D5CA89DtIOpBLOSD9gI0SWTowCJlK5kyVZE3BuZ8yaW51eXuFIJEuZm9BfS7n8sILGa6+OsyKzfD8+1AUUsak3/wElO4XgSsOgKGpuPvx1Hhv26aif/s30Pbw8Dh+QuicS+zoO56dbBZCPAj8EvXG+Blg82gGeiLL49QTqIW6zx1xF5nPI3e3IsorELGR3wgSefjPLRA24dNT9qWgykvghVbYMgBRn/pwT1tgSMgbUFcJsyfDzoJ/71UXwJTxY3mCygz1gadgw+sOa98Zxs7nicV0vvLlED/4fuAQh2/bdkgmJf39FkJAKKRTXy9w8i53Xg7XnA97BuDNdrA0mBdw2LZSMnGCyZYtFs89lUFK9a30zk/5mTBB5wcPqcjXX3xaMmcKBIPqMfs1mH4ulMaga0+IgZ1JsAWqAMsCHDQdgkUadZrLDVdo/MvDeexsEkiA36cOLF1eWp7l/SaH7iGdWAjiMdjVA4mMElnJpFSNruOCr56nonHVx2Hp8NZbUFx8ckRWNusyOGgTj5sH+IB5eJxJpHBZQ+pUT+N05W7gy6gehgDLgR+NZqAnsjw+FjjPPIX7/ruI0jKMr34TYR5q/9CRgp3DoAvoz0FVway9OwVb+6Ch0KP5C+fCT99XsZoKE37xGVgyXRXAG7qKgI014yqhPADbNqexsxnQdRIJiyefTHHfl3zU1R1YlHTppT5++csU2ayGpglCIZviYpPx49VLtjiiblMKIiOd9lFfb7J7t01VlZ9USqO+XqO312X9OptZM3UuOhdeeynJVVckGBwU3HKLyf33x2ndA/XV6twvvcRk53KXbMJExZkcIMSk2YJzy7K8+XaG/9UVpK9zD7WN0NwRwu7Lg78IfAat3Tn+5wM2d31KZ9VbkEzCzKlQEYUVKxyefdYhHhd88YsGtbHDCxYpYf0HkLfg3Gmq9n5/PvOZk+Nzlk47/OhHe+jrs5kyJcBdd8XRNE9oeZyZuHh/2yNR6Fv4Y+BZKeXWYxnriSyPjwdDQyA0SKdUTm8EkTUxBkvrIKhDxT5TeJzCIrm9TInDl+bBkglw5UQIFQ4VHWUfaCmP3eKhvBhuuwx+dr8DmkAIDYRAw8UewQF9+nQfd9wR4Le/TQPQ2Ghy0UUBxo0z2NMP8eIDRUYopPGlL5VgWZJNmxx+/es8uZwkmYSyMoEQMLU6z90/7qO7OwII/uVfXBKJbm64u5Ll69XlLSo2+dvvxFi1IsXOnZKOPpNQpY/gbJvn3+imqixMV7dFx+4U114TQMYCbF9RAQlVv5VgkEf+rZ+m9+JcfW0ZkYk6wwlY9R68/45Lebmgp0fS0SGZMuXwF3FXJ/zqOfXcBf0wq/HA+0d4+k8IXV0W/f0WDQ0Btm3LkEq5RKNelb7HmUcIjQV4/a5GQghxI/D/Az5gQqEe6/tSyhuPNtYTWR4fC/SbbkW8/y5iUiMiMHKoyafDdSOk+crDqgZoT1L9PpyDoAlLxu0TWKOhsxseeQISSbh+KSw8ooPKocyZDQvO8/HGK1lc1yEUkFx4QYCamkNDMi0tLhdcEGLevACBAEyaZFJRofPKO/Dc28pi4uKDHl/TBH6/YPZsQWenZP16h7lzdS69VJ1ke7vN4KCBilDZgMGyZSl+8lNYvllZRdx9BVw2q5QXJhs8++wQTW0SQml0O0/jFEEmEcDNQXIww2sv5WgfqoCsCwwAg0AIcFj/Vgcd2/bw9b9qpCoeYFszLF6s8cwzDhUVgtraI6vUcFBFFG0bIie+feRhqaoyicdNWlqyTJsWJBz2CoM9zkxSSFaTOdXTOF35HnA+8DqAlHKtEKJhNANPmMgSQgRQeUt/4XF+K6X8XuG+rwFfRb3T/0FK+Vcnah4eZwaitBR96ZXHNdZvwOfnwW83wu4hKAmqlGHZMX54P/msWq1YGYenX4QpE6HkGLpQ+Hzwy58F+eG/wcb1ORaeb/KNr4Xw+Q4UHCtXWjz1VJ583sZxBF/+cpCKChU98Zmga8oB/nDouuC663xcd92B2ydNMigpcejqAvWSlESjOQwdpo4D3YCd3fBBl8b0ihDl5SnunOPj1Z0+du622dJnEhEaEX8fRTE/w8M+VdSGBiTgQ48dH2DQ29PHww/3cN5l47j9WrjgAp05czR8Psg5gmc3KeE7qQwuaFDpyr2Ul8A3PqWClvGS0V/jsSYU0vnKVyoZGnIoKzO8VKHHGY1zklYXCiHGAQ8DVaiVMz+VUv5roUfgb4AGoAW4XUo5UBjzbeAeVA3D16WULxS2zwd+DgSBZ4FvSCmlEMJfeIz5QB9wh5SypTDmc8DfFqbz/0gpf3GUKdtSyqGDa2dHw4mMZOWAy6WUSSGECawQQjyHuhA3AbOllDkhRMUJnIOHB6AE1ZfOUzYOx1vLk7eUeammqZSh4xz7Mcrjgn/8HyFUxGdkXnwxy+rV3WzZkkMInfb2KMuW1WCaggvnStxkmg2rM3Q3GyxdGiUS2adOdpMkQZ5plKAfVF9RU+Nj2bJibrmll4EBjVAoyyOPKNv7zy+Fdc3wxEqIR+EPawURJB2teba8kwfbJVAcxMq6OI6ksjLI4KBBMJynLRVArUJUntEqUmYCLomEZDAN06eqOYRCAtuBX6yBziHlYL9lDwxm4YaZB16HktNkoZPfr1FRcfZEsLq7s4TDOpHIScrJepwWhNE4/wjvS2OMDXxLSvmeECIKvCuEeAn4PPCKlPKfhBB/A/wN8NdCiBnAncBMoAZ4WQgxRUrpoArQvwisQomsa4DnUIJsQErZKIS4E/h/gTsKQu57KHNRWXjsp/eKucOwQQjxaUAXQkwGvg68PZoTPWEiS0opgWThv2bhJlEV+v8kpcwV9ttzoubg4XEwH6VY+oar4JePw8AQXLwQ4mNs87CXHTsG2bjRRtP85PMO77yTYeXKNBdfHGbt2jTP/mGAeNxk164cXV0WX/xi/MPVia/TQQKLCoKUEzzk2JdcEqO/P0YyaeP3a5imuiB+E8aXS5y8S8+QxtQGnfffd3jhhTQWglBFiOpSh9qiIKlUOU1NXfh8NpDA9BlY+QDqC6ZEvdTT+AIGl90QZ+pMKN+vh/2eJLQPwvjCtlgA3tkF101XUTqPU8fbb/fwzDOdRKMG9903mVjME1pnCylc3iF7Uh5LStkJdBZ+HxZCbAZqUQGYSwu7/QKVnvvrwvZlBd3QLITYDpwvhGgBYlLKlQBCiIeBm1Ei6ybg7wrH+i3wv4V6o7waeElK2V8Y8xJKmP36CFP+GvBdVPDoV8ALwN+P5lxPaE2WEEJHda9uBP6PlPIdIcQU4CIhxD8AWeC/Sin/OMLYL6LUKfX19Sdymh5nIDkkO7AoRqNmFH/mtgMvroV1LVARg5sXQdlB1gKTGuDbX1MRrcgoi+SPh5oaiZQ6UroEgxAISLq7Vdhsy5YsJSUGRUU6RUU6u3blyWQkoZASWRdSxRB5Sjmy+VQkcug1WfHqIOkNacY3Bvn8nSWs+x1MnOgjEtHw+yXzZmhs2jRINGowd26ExkawLJPXXnPZsFFjaNBFSonfn6J2nMZ3vjOFxZeEKCtW/SD3ohcigXsXENiu2uZl4k49ra1pNE0wNGQxNGR5IussQiLGMl0YF0Ks2e//P5VS/nSkHQu1TfNQbWoqCwIMKWXnfpmuWlSkai9thW1W4feDt+8ds7twLFsIMQSU7b99hDGHY0bhZhRuNwE3otrrHJETKrIKoby5Qohi4MmCFb0BlACLgPOAR4UQEwuRr/3H/hT4KcCCBQskHh7HwMukeI8cPgT3UkQZR14RtmorLN8IdWXQMQC/fAO+fv2hqwh9PnU7kVx1VYzXX+9nzx4LKSUTJwaYMUOJpspKk6amLCUlOomESzSqit33MvE4zQSllKxbl6GhzmCoO0vID5MnB9i4cZhs1qW4WGfnTgtNk5x3ng/LkvT0OFx7bQlNTSnCIUlZmY/+fjB9Pr73d1X86Z3GIdYLABURmFsH77WBqSvH+ptnnZym3B5H5oorqsjnXWpqgtTWHhoJ9ThzCaOxcITo9/Hw79ArpVxwtP2EEBHgceC/SCkTR6h5GukOeYTtxzvmcDyCaqOzgUJ32NFyUlYXSikHhRCvo0JybcATBVG1WgjhAnGg52TMxePsII3EQOAA+aO+fmB3LxSHVWF5ZbEy0MxZyiH9eBlgiBY6mEgdRYzecfOyy4r4wQ80Hn88ja7r3HhjmBkz1ETGjw9RXm6ze3eGWEznM58pQ9c/ujoRQnDTTUUsX57kppuK0DTBV79aTm+v5LHHhti5M0c0qnHOOWEyGZdEwqW8XKe7W1JdrYrZS4rB0CW6Drffqh0gsPJ5dYtElJi6dTbMqISBNNQWw8QTlHr1ODbicT933TXhVE/D4xSQwmWlquI5KRRqtR8HHpFSPlHY3C2EqC5EsaqBveVEbcD+1sN1QEdhe90I2/cf0yaEMFArc/oL2y89aMzrR5luj5Ty96M/u32cyNWF5YBVEFhB4ApU4VkSuBx4vZA69AG9J2oeHmcnVxKimCwV6FSP4s98QiWsbVGiaiAFNSWqTumjsJmddNCDjcN5zBr1OCEEl18e4/LLD41KLVtmk0yG+Pa3i4nFxCFO8cdDR0eOFSuG8Ps17rmnjFhMXa/du11eeilLV1cGKWFwUGDbkilTfNTW+rjllig7dwqiUZPZswM0NWWxbbjr7mIeekIjk4Obl8KkenjgAejrg298A4qKVHpwVvVHnrqHh8cYIRFI96StLhTAz4DNUsof7nfX08DngH8q/Pzdftt/JYT4IarwfTKwWkrpCCGGhRCLUOnGu4B/O+hYK4FPAq8WVh2+APxACLF33fJVwLePMuXvFdrqvIKqywJgP3F4WE5kJKsa+EWhLksDHpVSPiOE8AEPCSE2AHngcwenCj08PirF6FzJ6Aunzp8MmbyqyZpaA9fP/+jpqwnUYeMwnprjGr91K5SWQnn5vm0332yQSkFR0di8GaZSDg891ImUYFkunZ05/vzPVXnCk0/adHenEELg92sIIenvz7N0aZiLLoqwbl2eN97IYhgm06cXMXFihBkzdPIhk74hZSL6qz/Ad76oIljJ5KHO7R4eHqcHEQSLjlLLOVp+cvRdLgQ+CzQJIdYWtn0HJa4eFULcA7QCtwFIKTcKIR4FNqFWJt5XKEcCtZju5yjngucKN1Ai7j8LRfL9qNWJSCn7hRB/D+ytBf/+3iL4I3A3MI29y6YVEjh1IktKuR5VzHbw9jyquaKHx2mDpsFl56jbWFFNOdWUH33Hw2BZh9pEzJo1ti/ZoSGbbNalvj6AlJLW1hyOIz9MQYZCOj09eSxLIKWLrmu8+KLFvHkuv/51ir6+HB0dNrfdFuW66yKUl2v8eJnA1JXdRVIZ1nPXXco+42CRtXoNvPm2al599dKT0yrHw8PjUJJS8pZrnZTHklKuYOTaKIClhxnzD8A/jLB9DRyaKpBSZimItBHuewh4aLTzBeZIKY/r08FzfPfwGIHtw9CbgzIfTD5CLXk+r4TDiYjQzBp9hvG4icdNyspMmpszuC7MnRv5UGDV1Ul8vjIcpxMpXUDDcWI88KBJbW2WlpY0ra0WkYjG+vUpAgGXO+4o5sbL4ZFnYCgJt12979ocfI2Gh+HpZ6GsFN5YAdOnQMMYN+b28PAYHRKB63jfcg7DKiHEDCnlpmMd6IksD4+DeL0bnusAUwPLhauqYWnVgftICc+9Bm+tgVAQPvsnUD/CIuD1CXixRzlILSqGi0pPL6sCn0/j3nur2bgxhd+vMWuWSrHu3u2wcaPN3Lk+Nm+uA80FTQctRPegwY9+kmLOBYJFE0PUlgkiEUFTU5brrnOprdT5q3uO3uPRMNRKzaGEimAdplsSAKk0rHgPcnm4YO4+3y0pldD1j0GW4+D59vc7tLU5+P2CxkZjTBYYeHicrkQQLNbGZun0sYSIPiYsAT4nhGhG1WQJlB3oqbVw8PD4uJF34OUuGB8GXZNkXYdXujWWlGv494vE7O6AN1dDfQ0kU/DbP8BffPHAY32QhF91QKUPfAL+sAcMAReWcloRjRosWlR0wLamJgu/HxzHBeEHX1Dl+wrs3G3gmy2oiOvUBpQF25RUngAAIABJREFUxMEcraYtGIR77oL1G2BCA1RVjrxfcwv8/f0wkITJU2Djdvjm51Rfw188Dh17YNFc+MTS46uja2mDXz8NmRxcczEsng9tbTYPPjiMZUlcF2bM8PHpT4c9oeVxxpKUkhXWCN3qPUA5IxwXnsjy8NgPF1XNaAuLZjpJixy9MkCrNJnMvnCW46gPdE0H2w+p3KGRkC0pCOsQLrzKqvywLnH6iayRsCzVA7GsTKgTO8gGwzR1SutN+jvy9BoaPWmX+fODxGLHljetrVG3/ensBseFump484/w//0YWtuhrhh2boHJs2BoWImjti4YXwur1sLCuVARP7bzdF145CkVRYtF4JlX1WrIF1/M4PcLamrUk7dpU57mZj+NjZ45p8cZisRLFx4GKeWu4x3riSwPj/0I6DC/FJ7o7Uf3uTj5GDPjw2w2dlJOmOKC39W4wiLi/52EZAji9bDlfbihAj5Vq1KCIR3y+2mTrKtqvE40HR0wnITKCig+hgbW+zNzpsHbb1s0NuqEQgnSWZ/KnwoBtsPk8XluXRJGz9mE0zbjxpksXDg2NviPPKkK5v/8LvjPZyGZB9cPe9LgH4ZzfKqvYV9YiaS+AVVkHzxMulFKyYoVkk2bJPPnCxYs2PdB4jgqglVavK9mLJuHVMrF7xcf9rq0bBhOeougPc5cwkJwoTE2kuDhMTnKmYEnsjw8DuL6WpcdwQ7y6RLiwSGmlWVIIBgm/aHIemHA5fdVLoMDkkxO4mQEWsLkf6Wh34KvTYAFRfDuEDRnVPtkTcDSE2y6+dZKeOZZFWEzdbj7c5KKconfL9COoRhs0iSdhQsNXnstRySSJ50egFwQ0wf+gEsolEe2BLnnS0c3WU0kYf1WVUc1dRQ+l7dep9ocDafBHwBTQlhCJgMyCINp+OUfYMEUqC8BV4MbboZoZOTj7doFzz4rKSuDJ55wGT9eUF6uroVpwpIFsHy12resyGHbpiyxYp3/eERguTrrd2sks37uf1SweLbFsp+Yh0TfPDw+7iQlvJk/JjNzj1HgiSyPs5YMLr3YRNAo2e+l4NMEc+I5DHrw40MW/vlQqaKEI/l+j0W75iBKU4iUJLXHoDlhUj1O8lCfxu11QSpNnS+Ph81JsCVMDkH52NjQjEg2C8+/CHW1Sjx073H52++lGF+boKTE4K67SikvP3q6y7Yl//zPaR5/PEU26yCEoLY2S3GxihplMzatuzW27xxdZOdXz8CuTpV1/Mqdqo7tSEwotCrN5qCuXPLSJpeO3Wr8oos0pk4QbNgGv3kMzp+kUpv59JGPKeU+e4iDy8euvhhmNMJw0uWxZYO8tEPy4gofth5kW7uG1eeCBq4mWbFa4/JbbV5/0qC66tDH8fD42CJBup6R3VjjJWA9zkr66eEh3mUZm3iIPXywX/d5gWAeU8mQY4AE/QxRSwXlKIPgP+ZsBhxJzoawkybdFiIvBf5ZfVixFIPmMPcP95HFJWrA+cWwuORQgWU5sLkP3mqH1sShH/7Him2DK/elvdracnR3OdTX+8lmXZ56anBUx/n2t5P87d8meO89l02bYGjIYXjYwbLy2FaeSMQhEhYEI6NTjIkUREMgXZWKGy0BP0SzLiFUGtdKC1a/7rJtE/g1SGahtFzVU7W0HP4448fDVVcJTBNuukmjouLAiJ4QamXo+FqwLUnO1UiloSimYWWkWq0gAJ8GAna2Cv71gdGfRzrt0NGRI5n0ioo9TmcEOGN08/gQL5LlcdbRz1Ze4gm6KacOF5cJvM5cJrOvqKecEi5lPglSmBiUUoQA2tlDi97C1MoMAX+U3u4yrKhJMJ5EugIcE19esGMgT3tpnkmMXCiUd+DnG6FlSKURHQmXj4MrG47/vCIRmHMOvPs+hIPQ3Q2TJ9mF+3QGBpyjHEHVOP37v+dwHA3TFLiuwLZ9BAJ5DEMSDIBu6kyYEuHaq0dXYHbntfDi27BgFjTWj/58pJS0t0M4DOmUQNNBuoI1b8EVN6p9OjtAFzBp0uGPo9oUCS6//MiPF4lofPKTEZ74fZZZC0zaWnVwbAgAdRpYEvaAprls2Hz0b/xSSpYvH+TVV/txXYmUcMEFxVxzzdj0mzxdyOclPt+Zcz5nKxEBF/vHJu7yyJgc5czAE1keZxUJ+tjJ8zgkSBKnmwEMHCqYcci+YYKE9+tKv5mdbGcXFXoQnxMiGkpTVNuHlTdI6VGiQhJAYEo4mnHyln5oHoIJBecEx4XX22BBFZQcwS/qaPzJTcoOoa8PFi/See3VHK2tAsuS3HjjEVxVC1gWWJaD0NhvqaSPcBj+7M9izJhhEAj7qa3RmTTKPsL1NXDvJ4/9XIQQ1NRAICBonAS7dkMgBGjQ1QP3fBqmVEFtLUz4iD2NpYTVTbB7T4AvfCHApmZ4+hXY2AGZSewrqisH/06Nc0fh/bxpU5Jnn+2lvt6PaWo4juTNNwcoKTFYvPg4VyScRti25De/cdm4UTJrluD22zUMwxNbH1eSLiw/Strd49jxRJbHWcUgneQxqeMDtlHNEFF0XBbRCYzgJlogRYadtFJCEZqhUalbFOnt6MFeymb28buWW8nmNfRAEk1zmBaGuiO8vLpSHOC7patMFAPZjyayDAPOm7/3fz6mTytn9+48ZWUGkycf/cCGIamoMGlvz2FZWsG5wWbPHof/+Hmav/hmjCuu18jkIW+B7wQ7Gtxxh8abb7rk83BJg6CkStA/ADcthSsvGrs2PJt3whMvq+L5jTvgLz8PVy0CGTV4+B2H7CCgCcxSmFui8a37jn7MlSuHKCszME01SV0XVFf7WLFi8ISKLBUBTDI0lMPv1xk/PoZpjn2tTWsrbNgADQ2CDRtg0SKYOHHMH8bjZOJ6Inms8USWx1mFgY8EPgwmcB2r6CeIzgVodONgox/mJTHEMABaoYxxdngjbe4uMujUBFtpidWzuXkWumXyuZnvcWmVzUYiTGchwREaVY+Pwau7VQ2VJlT6UAioCI3t+dbW+qitHV1az3Uljz7qcMV1QZYts8klbYRwkdLCsgXrN+T59neTvNPjpziuM7EK7r5yXw2YbSv39dB+5+Ag0Q/bouxQDj5GPC7413/VeOAByOWUpcK9n4ULLzx0bG+vy65dDpWVGnV1xyYq0lkQGpQVw+5OyFnKyf8zt4GcqGP1QSIDgVL44fVQdPSgIOm0+6HA2othCAYHT1xtVldXikcf3UZXVwpNE0gpCQYNbrhhEnPmHH8fzZGIREDTJN3dAk2TRA6zutPj40FEg4uDR99vNHjpwn14IsvjrKKc8QSI0E05ScZh4qeMSWTIINCQSPrZQYLd+IhSwUxMgoiDhEK9v4ON6TC2q5PojmCv9lPkJiiPdeMzdMr1GBkSbGct53CoIphcAvMr4P0eFcESwM2NEDkJPlqHo6sLmpokF8w3mDmlmF/9Ks2WzWmylo6m67iupKc3T7bfoWGmzrY2WL8d4qXwXpPkoQfztOzKURGX/Pe/9BFZnOMdbYAK/FxHJQGOLHx6e+FnD0EiAZdfDksLNVSVlYJvfUvdHwpB2Qg2GMmky09+kiaVkmga3HdfiOrq0QutGROhcRy0dMDShcqHC+C8atg6CZrjKs55w0SoLDrioT5kzpwoL7zQRzi8bx7d3Rbnnnt024vjYXAwywMPNGGaGg0N+1RgJmOzbNkWTFNjxoyx8xCpqBDcfbfG1q2SqVMPXVDg8fEi6cDy5KmexZmHJ7I8zipM/CzgOt7hRVwcQhSRJMkEpqGh0cNm2lmNi4tNlmE6mMJ1lFKEho6NjYFByCgiHugkKTW2Nc8iHE5RF9qN1gu9iSD9WSgJhUgXImAHowm4bSosqYWhPFSHoegE2juMBimVOaeUEAoKQkGDWMwk32fjuhIdB59p0pMXvLIeerpg7RZY+YFLsmsYWvIwLEAKXl+nU/uTHnwxgwZ/hm0DGe45N0J5yeEf/733IZWCujp47TVYcuG+noTBIIwbd/ixg4OSdFrS0KDT0uLQ2+sek8gKBeHeW/nQfHQvAQPungkDObW4MHYMz9HChTE2b07R3JzB59OwbUk8bnL55SfG8v+dd7qwLIfKygPDocGgQXl5kOefb2batNJj8ks7Go2NGo2NY3Y4j1ONZ5M15ngiy+OsI0KMxVxLG83kyVFGJZWFeqx+tpMjTZIeHPL0yl28YyXpdouoE5Nx/Z1oaBhMp1zrQ4gETlSjZ3cFuuVSYgxRUr6DHPUkSVJNwxHnUh2B6pNwzocjnYYnnoD1G6FbwkCP4P0PJLMmSmbP1onHTVavtkkmbYRhEp4T4oOpBoM9qh1O02YX205Dnx+0EEQcsFIQSJCz8ji6xRapk39VR7bC1+9UKx9HorxcNYBua4d4XHl9jZbKSo3x43VaWx1KS9Xvx8NINV66BvHjSKMEAjr33lvD9u0ZurpUXdyUKWH8Y7SC62DWrOmi4jD55kjEx65dCXp7M4fdx+PsJqLBxWPTtMFLF+6HJ7I8zkqChJnMrEO26/hIsgcHhzTDtEiXtx3o1wUOrVyUi3O7aZLNvs95OYvH9Fq0KS4Vbjdi2MechjR+v6DYD1U0UmxNpctR7XTM09CV7qWXYPNm6HFhZ5tgznQd3ZRUlsFXP2XQ1KTx+OM6W9sk7VUG4Uv8+IQgKeG9vsJB4iHIAJtRhbNWGDcryG7UMXtd8pv9vPGAxvBil6XzNc4/TN/6uXNUfdfAAMyZfWxF7aYp+MIXgvT1uRQVaQQCp0fqyjA0pk0LM23aGH16HYF83j2iNYSmCWzbC1V4jEzSgeWJUz2LMw9PZHl47Ec18+mkiT520EYxm2QN3WYRu3NVZJ0wSW0PNwy/yHmWS0+ggovoJ5R1GRjfi5G3CcsSZoTLOE+/hA2DBj9rV8et8MMXGiBymr3ienpUf8MPOqAoCsmkYN58VWAeDsOiRX4WLfLzww9gdxI2D0CyH/pSQAuQBfKocNxOCUMa4MPtNBj+Pwm0sgz2NhPsHLu2GDz9vOT82SMLASFg9iisEQ6HYQgqK48vgmXbkldeSbJrV57Fi0PMmjVGFcAnkQkTiujsTFJWdujcbdtF0wQlJac4J+1xenN0Kz2PY+Q0e8v38Di1hImzgHtp5k12sgufbdKeqybrhrnHeIjZ+Y0YqXYyoVtx+rt4t9kikchT25Cjvs4iEswQ95+PdA2e6FDiKqBDaxpW9cMVFaf6DA/k3HPhN7+BkAu7BqFhArT3wrUL9+0jJfTmYVJENWnekYG8ACx3X88IF1Volts7SsNpr8LZ3afu1DJYpp9EwodtK6uJ04k1a9K8+mqSeFzn178e5FvfMiktPc0meRSWLKnhwQc3UFTkxzAODAO2tye58MJagsET7Lnh8bElosHFY7Qmw0sX7uPj9S7i4XESCFLMDG5gJ0/RgktQz/GtwP3Mdddjp30IkWPAfptVzRE2vzGb+JIsnWk/WjDD7FwPVb5mMkY/jizFV/isMzXInGbfEjMZSTqdZ/JkyQyfwc01Bq4PxlfCvMn79hMCGoKq8fX5ZdC+DXbZ4FagolkWanlkovATwEmjFFdhuaR0sRNDYEcwjLGpCbIsZfkQHIOgUybjYhgQjWoMDDhksx+xx9EpoLGxhKuuGs9LL+0iEDCIRk1yOYdEIs+UKSUsXXqElQMeZz1JB5YPnepZnHl4IsvD4zDUUEqJyLFYX0VEJHGkTrEcQNM0+mWWkrp+DG0WH7xUyfRPdKJlJb15g6mhtUhfJxNLJH/s9xETAQLCZP5pZPKdy0keeihJe7tLIADpdJZbpwc577yR00nXVMEDzZBywdDBp4MVAPY6BbyPSjUEAceCTA5Io4q1AOEn5guzfvUwT/9e44ZP+BHi+OumtmyBZY8qoXXRErjm6uM+FADz54doasqye7fFwoUhqqs/nm+Nl19ez9SpJaxZ0017e5KKijALFlTS2Fh8SHTLw+MQvJK9Mefj+U7i4XESmMl5oHdwv7ObLCFatHHMMrdCTkfXobO8hrr/YjM+2wkxgyG7iPJ8P88as5git1BZ3c28SJicbXJ9aCo1gRNf/Dxamptt2ttdGhpUDVM2K3nxxdxhRVZ9CO6bBCv7oKUYQtsg1aRBzoV2oBclsoqBaA52piGXBmHgM8FxMvS05bGTBn/9Nw7DiSif+lQETRNsScHKQUjaMCsK58cgfIR3JteFRx+D4iJl8bD8TVXLVVNz/NcjFtP56lfjWJY8Yav/Tha1tVFqa0+MF5fHmUtEh4tHYbI7Grx04T48keXhcRj8BDlXn8Q9RhHPuQlqxBZe9s3hs8YAw3xAh6+WeKaf2W0b8Wfz9EVL2VI5ibjl4nN2E/PFicdMhkkyTAswc0znl8mo1Xi+4zAwdV0QYl9KTNdV8feRqArALbXQsQF2uZASkM5oKl0YQoW5hKvyojIDGKALhJA4jg5Y9PZKhpMuzz+vMWOGSaohwO97oMQEvwYv98H6YfhSnapl24vtqAgaqBox21EWD3tXINpjYKKuaQK///RYlXgm4Lqq7U5lpbp5nN4kbVg+cKpncebhiSwPj6NwqRnnEvtmZO4XaMKGSAn+VCUl+SEatregC5uheJSAk+KyobeIaLWERTemtpWe4lswjAh5xraVyrp18NvfKoF1993KwPNYGD9eJxbTaG+3aWvLsnq1RUmJjs+ncffdUaqqRh6XzkHnINxxCdSVwO9fhmQpKjPo06DfBUOADeiCoB8cS1JogogQLq4jWLXKYsNWiw+iAeoD++wtwkFoyUBTEs4JwWNrYOU20F1oKINLZ8K5E+H6a+HpP6jDzpp57Od/JBwXejMuZriNGFUYnEIb/o8xnZ3w4IMwezbce++pno3HqPDShWOOJ7I8PEaBsJ5FEACtBGQL0eLbWdzzDDljgO3jGhjSohRbSVw3R86EnJYhYsv/y96bR8lZ3ne+n+fdaq+u6n3vltRSa19BCwixicVgY+MVJ96wQ+K5yZ2MJzPJnCTk3MkkMzlJJjeeO5m5JomN42Cba2NjGWzAYNACCKF9bbWkbvW+VXft67s8949XuIWRQCCBkHg/59Q51V1dTz311vJ++7d8f4SzzzMW30wXATL8KxodBNj4hjE9b5fnn4d4HHI52L377YuMUEjhgQfC/O3fzfDYTwwKRR84kt17TPbsKfD97wfP2QGoCLcQXlXgptWwoBWefAFOBaHcC8JQQQthGzrRqE0kojA5CZWKRFFsNE0nGBSk0xZ5253d+Ov+YWEVTuThkV/Azh6IhsAxwSzBeBLSBbhlHcyf7845rK+/cE+tZAr+/iE4dhw2rIEvfOaNY3qyFZjMC9pDxq9mVXq8fRoa4DOfeXOnfo/3D2EVNl2iulEvXTiLJ7I8PC4E6TDbOidQ80O0WkGenLOGg9pcnireyk1TO9ArZcohH12xYdYGTxC0HZbSTYRnsEljMYjBfDTOEyq6QObPh+3b3esdHe9sjWhU8OMtOulkDmQKpMBU/bz8ci2VyrltFvwGrOiA/QPQVg3N9XDfPTAwBh9fDpQE9bU6PT21/OmDE4xNmEhsNM0GjF+ZhMZiKuuu9TOEm/47uwa+ZEM2Da/2wtwGGOqBw89Ldkw4BA3o/4Rg7X9RqH4H02n++C/g5d0QrIKvfxeeeBX+x5/AkrNGw8T8EPMLuMjX6DVSKZsXXiigqoKbbw4SDn8whJumnXuQt8f7k5wF26bf+u883h6eyPLwuBB8H4bSw2BnQKmHUoaJcCsD/mq2pdcxuL+DI2qam2uep2ia5LMqo06EubFqagih0EKZMRQiKLhFyXlSDHEUBYU2lhDgwouV77zTFVqGAZ2d7+wp9Z6QjI2a4EwhlApSKGCbaFqQcjlK8DxOC3ethFIFjo264ihgwO/dDQvOmg/U3B7hzsEAIydzHNyVwec4JMZtTBOCQZUHH6xm1QKdnjE4nINWP6gCJovu2pGKu3YxAz0vSspTDmYBMgV48l8ddn5asHnt24sGHj4Kz2+FigMjWXcIdKkMf/89+MafvD2H+bfDd7+bZXzcwrYhmbT5whcucMK0h8d7jZcuvOR4IsvD40JQOyH4H0DmQFSD+m00O8m0rKXWSlAuBOnraOej1Um67QmKio/psI9sQGG0/FPaxTI6jfvwU49CCBuLHl5C4uDgkCfDSm674DSiqsKCBRf3lBwHwmHIzEhAQaAigdpaB9O0gXO7pwd98LkbYCYHJRPqo7NF6a9RKIE/rHHrnTG6V1cRdUrU6WUURbBhQ4CuLrfO6d56CKiwJw2TaRgYgfl+6NNBUyAx49ZI2ZZEKAJNE1gmDI2c+zlJCaNjbhqxqRH8/tnb+k5BJADTRcgmIKhBLArpnPsY75bISiRs6us1KhVJIuGdxTzen4RV2HSJZpd76cJZPJHl4XGhiLB7AYjfTtvYP7NQV+gx49RVTXJz+y8Z1psZs+vRNItabZLB8Vr2WGHCah/r4yHujLShABYVTMpEqEYiyTGDg436Hn4k580VbLw+wE+mQ5RyaUCiqBorVqg89NAMX/1qnNra8++nOnz+tRvisKQTjp6GoE/wm3cFaDrHuBe/Ch+rhztr4C+3w8IGCOlwYhrmN0BSgdNhAdWC3DjYZUmoAW5Yc+7H/dkzsONlOHlCcuyoxd23K/z5n6v4fLBoESgSCkk3alZQYLAIv3876JorOvv7XYHW2Tlrcjo8bNHTUyEQUFizxsDvf3tq7K67Qjz+eA4hBPfd9yYHzcPjMpKzYNvU5d7F1Ycnsjw83gn+DtSW3+PzxT6s6lHM9HFAkrajxH0z1KgJUoVmduuryZgxMEOMzwyxMjBMqzYXgwAxGkgyhgQa6HxPBRZAICD4+t8FCIdr+dmTGmalwpLFedavNxgYMOnpqbBx4zvbk6rCZ2+BmSyE/BB4i5F5PsVtSlQA03IjY/esgV1HQL8eeg8qJOvcaNNf/ifoan9jxG9iEl58GfyG5MVtBfJ5k3/6pmDhwgD332/Q3gZLlruOE6kM6I3wGx+CL3/Mvf/jj8Orr7ppyoYGeOABSCQsHnooi6qCaUoOHarwla9E0PULT1Vec42fRYsMhIBg8INRj+VxhfI+m0pxNeCJLA+Pd4pRj27U8/mSQ6l0gG0vC2rmDlA1t0DUrGJ3ZjGnBjsxZ0Ikjlezt9hF9a1D/MUmMDTBAtaRZhKBoIrLM9SwoUHhf//PGP+6foYf/GCGzs46HEdiWZJw+OI6IBUFai+w/EgIWBaHrz/remAtbIGbrocNHbBvEfReK4gFYNNyaDuP55JpglCgXAbLsvD5NBzbYWjIBAxME5qaYc1qSExDMAD/8T73vpkM7NnjNhEoihvR6uuD48fLSClIJiXDwxmOHrW54QaDJUv8597EeQiFLk5cZbMOzz5bIpFwWLxYZ8MGA0XxPL08Lh1hDTbVXZq1vHThLJ7I8vC4CCoVePh7CkPDS6jRoxz/ZQs7kxtJTdUh5wkyIR/pQ3Fe60z8m1cW8cjpSbZ8UbBcrSFO05s/wHuArivcf38Xd93VwXe/m2FoyGLdugBLl55bSMyUYG/Cvb66Fqrfnt44J4UyHDwJt3W5UazpLBwahOsWwG0r3Mtb0VAPzY0wMARNzSrjozbLlkg+/GF3g+GwK9xeeNHtfLvnQ7P31TRXXNm2K/ikdH+n64JXX1VIJJIkkwXCYYft26dZsqTl4p/0WQwNu+nK9rbZTsvXui5tW/Ltb+eZnHSIRgVbthSxLMmNN16CA+/hcYacCdsmLvcurj48keXhcRH0DcDgCMzvMKhU5vHkow7TWZNwbZ7y7iBZnwqNwh03I4ASjD4W5T9vPsYftVtc/z4QWa/R0KDzta/VYNsSVT13lCRTgW8cg6Ll2ovumoLfXQJVF+nXmS+7xefNZxosLQsmM29vDV2H+z8Hr+4VXHdtiFDQYsF8QUfH7NfcbTfBujWukDu7ezIYhI98BLZsccXNypVu92YgYGCaNlI62LbE71eIx8/dEHAhOI7k5z832bfPYu5clXvvNTh4SPD4E4CEm2+EG2+AfYfh578Evw9u3+QwPu7Q3u4+rqrCgQOmJ7I8Lj1euvCS44ksD4+LwHFcg06ATBaEVAgaOnVxhZFxwFJdcVU5cwcDcHSS00lG2gIg3j8i6zXOJ7AABnOQNaHzjBg6nXUvK2rOe5cLIhZ0C+lHkxDyQbYE89/EpspxYCQNpgP1QTja6wqnlYvhxo3gHnT9nPeNnscpY+1atzjeNF2jVyGgvV3li1/0s317PaOjST70IYUPfaj2HT/Po0dttm41aWlR2LHDQcoKxYpOOulw8JDNN78lKVcEpqqxdpVg4yaFnzwjkNId6u3zCXI5SUeHK7jGxt1atFgVdL5DvzSPWaR0L+9Wp+n7mbAGmy5R1YKXLpzFE1keHhdBe4t70h4dh9QMFBKAopAaj+LYDgQl+MWsG4IFqA5GoEiN+QxShBH6JZwJ8y6jK7MnInAd241LcELSNbj/BvjFEdfRffNSWHKewzKZhUf2QiLv/pxIQLkf6gwI+KGlCZ7ZClMT0NYEG9ZCzQW2pkd+TYAJIfj85zU2b9YIBoNUV79RgFoOHMlAbw6qDVgTg9h5Inv5vETTYN8+lQMHJM8959DSmqdvUGNwSkOigCPAdtOafYOSj9yt8Jv3BnjyiSJCuCayd93l52gPPPIoINw05123w6YrzPzz9Okijzwyxrp1VWzefJFK/SKZmIDvfAfSadi8GW688bJu5z0nZ8K28cu9i6sPT2R5eFwE4TA88HnY9jK8/CLccj1MJKB5gYLSqpAs2zx1DHjNvaAoiXZNk6sJ0517GilPIcJfAt+qy/gsLpyuKCyNw46Ea+q5Ig7zz1HcLiVULPCdO5h0TmIh+NTaN/8bx3EFVtGEjrj7OzsPWysQNWA4Afc/CEcOgV+B1V1u6u13vwLV8Qvfy9moqjjv2CJHwveG4EgWoprE6kMdAAAgAElEQVQ7G/ulafidOVB/jmxed7eKrivs2SMZH7eprlY5PaAynS0ifVFXkAugCORgMiGZSQg2rDdYslgjn5dUVyv4fIJ/+b4rHsNhN736i1+6glI/65gnEpLnn7epVODGG1VaW99fxfL9/UXGxsocOJC77CLriSfcpommJvjZz1wfuqb3X6D53cVLF15yPJHl4XGRVMfhY3fBLRvh5z+XxOOSNRsU/u4pmIvDs9E01o4oWKAtzOH8tsOIaCakBhCyGUpbrxiRpSoQrgbFhhAw6oO9eVh7VgQoU4Bvb4XTk9BZD1+8EaLncY9/u4xm3AhWx1mCaU6Lm8K8fg7sPg4njrrRRQvoH4WuCdh3EG59FyITpwtwNAtzQ7O/Gy/B1gR86hzCLBZTuOsugx/9SBIMupGyQkFgV3S3bu+1tLJfQrZAUFewrCAgiEYVotHZteRZBqpCvDaCe5ZKRfLNb1oUi24R/8mTFl/7mkY0+v4RWuvWVWEYgrlzL9Eb5CIwTeg9DQeetBjor/CLZ03++98GuPnmD8aA8LAGmy7NJCkvXXgWnsjy8LhIHEfS15dlx44JTp7MIqVk926dSEM9B9Jx4vNL5O+RiIBEoiCFTqOcQrOWIkQe9EvbqfZuMlGBV7KwrMqtRas48MQ0rAzNpg1//Co8eRgmcpA87KbTvnb3pXl80+YNnvhCQG21G9VJBAHFrdUCt3BcEW4X6LvBTOX1cxcBYjoMFM5/n3374I47JFu3OgQCEI07HD8hKAmQr6WV80kUJ4OwBbFIHfBGE9PNN8P3HwN1xvUW23zT66NYmQxks9DW5m5waEiSSMj3lcgKBlWuv/4dhhgvMfMWwD99F/pPmZQtm55TJvffb3L4cPUHYt5kzoRto5d7F1cfnsjy8LgIKhWbxx4b4MCBGaJRndbWIIoiKJVsJvpGiebHWVrs4JWwQHZWUHSboCP5bFYlEI+AVgehey75vixLsn27xfCww9KlCqtWvY283ZtQdtzysteK/Q3FTZlVpFvTD7B/EMo2jGYhb8GP9106kdVcBbrqpgsDOlgSjltw3IFWDa65Ado2weA41Bcg1AhHqyCuQuo4rGuEzujs/i+WamO2Pu01UiYsepMxlJkMtLcr3HuvxrFjJhVToPkMqBIc6QPLhIC0CFbpCNXmurXWOddZscwteB+bgHgMFnS9/vZo1K0xGxtz68A0DWpr3z8C6/1GIAQrVkBiEqambQQKpZJDOu18IEQW4KUL3wU8keXhcRFs2TLEoUNJ5swJI84Kafj9Kh0dIWpyJuFMHx+v6mQqW41jaHSH4PbmRjT/ujcuOLwfen4BwWpYcS+E3Ipt2zQx83mMcBhFe+uP7QsvmDz7rEU8DocP24RCCgsWvHPrgdeoN9y0wpQJMRUmTGj3wdlem0vbYOdpt/i7YsGNCy9sbcuBoxlXmM0Ln7umyafBJ5fD9/e74ua4AsMS2mPwaBIemQL1I8AknC7BVApqTXhuGEYtOJCA+TH47AIIXgLd2RmExRG3JiuiuSJUF3DjmzQgLl8O27dDW5vKilUqSMmCFHzyPoXtrwiOHIfxkTjjw1PctNHHvR89/yiejnb3ci4MQ/DlL2uvq8l6P0Wx3m8s7ILGRmhsNiiUBLpT5K47dJqbPxinybAOm5ovzVpeunCWD8a7x8PjXWByssjevdO0t4deJ7DOxoxpHNhQ4WhwjPW1Wb7ga2Fe1ezZXSIZIUsJi7a8hW/fDyFcC6khOPg4bPgy2dFR9n/725j5PP54nJVf/CLB2je3Eejvd6itFUSjgnzeYWzMuSQiy6/A/Q3weMIVWN0B+Gjt61Nm922AsSycGHdtGP797W+9riPh0UE4mHZFiiLgq13QfNa4Q9uBF6egNwtz5kKNhL403BKGQ2U3knayBFNFKKgSfFBWBDM56N0L++rhhsXg2PDvnoJOFebVwd3LIHyWoCtV4KldcHIYmmvhwxsgGnrDlgF3n59tc7sLT5zpLlz9Jt2FAJs2KQwPOzy7XTI4BjVx+Ns/F3R3C1YsgXQGiiUfNfHW16X/3gm1tYJPfcr7mr8QamvgD/9P+PDtKpPjCg11Btdco7whHXy1kqvAtqHLvYurD+/T5+HxDtm7dxrDUM473iRtqzzcEWHQaKSyQ2dH0WJ7xOQPN82woatAiFZOk2MrgwgEbVjcKh0wgm5VcykNwNEf/hChKFS1t5ObmKBnyxZWf/nLb7q3xYtVtmwxyecllgWdnW8/3WE5sC8JmgIrYrMptnoDfvtN/uMN+eBPPgwlE/z6G2uWzsVMxRUqc0Pu348XYfcM3HNWudrPR2DHJNT4oGDDmIDOmGSECnnHZlqamOE8ISQoIYrpEDKmuhXhKYXiOGyPQSUPZgWam+DwiOs2f/9GmExBsQLbDsCx09BYA8eH3EL+3/nI+Z/Ha8dnRezct5um5NQpEyEEXV0awaDgK19RKBoQ6XU72ObPn128KupePN57qqKw4VpwK/8+IOrqbJzLvYGrD09keXi8QwYG8kQi5w819FYCDMVCGGMZ7ml7hrp4gt7Ty/i/X5hH05wXqFY7SbMUHZUqfCQCZWhaAuNHQQic1Z+mwjSFzBThGlfV+KJRijMzb7m3DRs0wmHB2JhDd7f6K/PKt8OuGfjxsHtdF7D0PCLiXAgBgbfRlKWdcS5wcGu+rF/z3zId2DkFnWFX7FUBJ3IOam2CXlKYoQyYDr6hCGpAJ+AvkKVEarAGieq2QmpQTsNJBVZXw0gZrq12hdb/fgqGpkEVsPUgLG2FNg1a6mBwAoplCJ7HYN003dSlceb5JpMVentzFAoWtbU+du4U9PW5dVUrVhh85jNu5PPz98KBXpjX+ubml2NjFseOmWzc6McwPoAnfo/3hLAOmy6RZZ+XLpzFE1keHu8S04ZKPq+zWB+jITLBeKGR5Z2v8Nyu+QSoI88I87iBftKkKbNAqebpNRugvJQVdhWmvY3c4DeJbj5OuVdFTq6kMGXSdftb598URbBihcaKC5j5dz6cM//VStx03rtJzHCH026dcsVWlQHrf8026de3MEaRFqNElVZiFEHR8lOoClFKB7AHNXRRItyaJNtbBeigChxdkLUgX4GsCjN56B2BmIDOOpjIQAl44ijsH4dlTdAQOr/fV2Ia/ulf3BTjFz4j2bt7kq1bU4RCNj4fpNOSffsMbr89Tm2twaFDJnffLYlEBLEI3LjmrY/Nnj0VnnuuyPz5Om1t3le2x7tDrgLbBi73Lq4+vE+sh8c7pL09xM6dU+eNZiVVDU6opOfEkFKhTplkMtlIc+sglpqgljVE8fExFpCizLfo5ZRSIaMXGN/5z1zbv5P6g31Uwj7St7aQWDDCQuUBWq9Z/548v3W1bipMe4solsRhnFEcbJpoReHComYODlPkKWJioLKmLkxCqqRsWBd9fV2Trrj7eWkKav1QsCCjJVke2UOVUJnM1JMp12JLQbnfhy01SgUDa9oHtgK1gCpBERQUeKkEbQVITrizAENBODEBh0agNg5lEyZSbmSreok75id2jrqsgSFIpV3H+j95sED/CUEo1IBhSK65Js+8eSZHjzq88MI0c++oY6JB5UdjDutygq56gXYBh+rmm/0sXqzT2nrxNXUeHm+Kly685Hgiy8PjHbJ6dQ3bt08gpTxn4XuNaYNUGEnP4cfpTxJzkpz2dfDpkI+5rMLAtUpXEIxR4AQVSlSo+enPEZOv4Ds1wov5tZgTAebLEWKfLxFZOA/Be9NOriuw/gLG9E0zxRH2nflJ0MJ52t3OYpIsL3OaAiYCtytvX15Bp5WYrOUH02AJWH9WbdJdrW6E66VJMG1Jd9tRVJ9CyIImNcFgqY3KtI5d1rHKAjlpgIn7Lafhtqfbbq2Z7cBUGBQTMmmonAYzC81h13A1HoKpNNy6HAoVePYIfPIcbvRzOlx/rgP7HHqPlbHMAMmk+/okUyobbszT3mWzteLjUK2gvcPHQ2mHnw7DNXtUbl0o2HcSskVYMQduWsYbhFcopDB37gfEQsDjshE2YNNbf3QvCC9dOIsnsjw83iENDQFWrqzmwIGZc3YYblTSPJ6txi6rDBntDNEOtuQvN2j8ernSa8JJAWLWacSKGszeEUIUyQmdckGhOlWmxDglNPxc3hEkZ6OgIBBIJOoFCMAZCvySk4QwqDtjsjlUgWLZIelMMJkxUK0o3y46NHUnKWgpgvhpVOqYHzF4ZtCtYerrm4MaPI4esIn7BNX+BLlklGC0wGRPs+tfZQFBZv1/HJC2e3ECMAkoFpxOuS72Z0+d0TW3riwahAODcPfK2TqzVBoe2wJDIzC3E2Ihi3JJkE4LZgpQqdVwpJ+ju/wEihYz8xX8PRa+eSp2QnLAcph4UeUHz8E9a90o2bP73bU3r7w0r8vFYDvQl4TxnJumbQzD3Lgb2fS4OsmVYVv/5d7F1Ycnsjw8LoKPfawd03Q4fDhJNGpQXW0ghGtGOj1V4reVE+wsdnHC1OmMww9vz1MJVigSJnCW1JpLhG5iHCdF6bqlpMQRBq6bx8JXTjISaqV2LaQ6qrDZRYZXaWATVSw4/8akdIuq1EuXYpJIJG7k7WyqqWMV63FwqOGtQ19HGEdHIcBsmnUqr3GgP4IKaFoBo+xj0Cpy/NgEK9vHaI+YQA1hs5spv8at0ee5xtpFoFDgJf9iDBVuq9rC6LwgM041p5Qunjz8Ucr4QYAvUEI4UMoF3Kp827VKUA3wq+BYbi1Yznb9rpI5aKsD/1lquGTOiqxHfwzj49BQB72n4OSgoFJRyQag3OHD1gEE2YRGdkaDuE2uX2VHxH14Jeb2N2DBvijctQGaa2DvqdeLrKkp+MkWmJ6GZcvgts1ctK3DW3F0Cn5yHLLlWVFlSwjpcE83LK1/dx//UlIoOPT0lFi40E8w6CnEN0XimZG+C3giy8PjIjAMlfvum8OpU7Xs2DHBqVNZhBAEAiqbNzexYkU1sTPFRUPM8DInAQjiYzOL8Z8RGn5UHqCTo+SwW1qY4ftMfaIB44ZlrOwRFOp8hGraCdKITZkEu88tskpFGO6Hp34E5SKsvo7yquupFAr4YzH04NufEVfG5jBT9JDEwqGFMCupp5ZZE6vqCxBXABVsRkhRw2yBU7KksncoiqE66JqF4x+FyGGWBWdQhc220Tnk6/z4tRK604Pa6pBRS3RaLdxjHOd30z8iLSpYMsmAEmNXaRWtsUE2zNnBC4c309g2TGPLODiCxFgtw6c6AVdoCQmBOKgmZHMwlIEGHRqqYNmZ1IlpuSnEkM/92bahpw/KBvScgrgPglUqdkhgx3XsjARLhRxnnAAk/mwB3+oS2qIS0xON2OMKuQwoKuw6CDcsdzsqz57xWKnAtx52uxejUdi23XVtv/22M/sy4Uc/gslJ+OQnL80w40MT8MghaAhDTeD1txVM+NeD8JklsOoKGZx8+HCRhx6a4atfreGaay7/fMT3M2EfbOq8NGt56cJZPJHl4XGRqKrCggVVLFhQhWU5OI5E15U3pA8HSBDAIIyPBDmS5GlitqI8jMZaYriTgr/m/rLevSjjv6A8tQuaHBzFRD0TBTOpkLUT5MceJ3b4R2hDk5jbR5hJNRPZ0MLQNx6ldzyEb+4aqtrbWfmlLxHr7ASgnM0yc/Ikqq5Tu3DhOZ3kcxR5NLePZHqcrrzAaJ5D2hnnaSPBnaKJGrUatPN4G5wD50xlrTgrGnZk0o9PhcXBEpXgS8wJ7adFHUZTK0zatdT5hpmStUwqdViOgWqr9Gsd6MFqXnUc2u3ncQL1qKKVigYr/Yd4MnMHbfEhjHCJhuZx8vkwWFDblGBqooGyFXTTiI77D3ww6IqmiA43tEAoxK/ibKMp2DAfdo3DjiGYyMILoxC0oakeDveDEVdwFhuYAwpwxpvLB1igtJpUpAGWxBgvE5NJUq80gADHksxkBft6YW47fPasIdapFGSy0N7m/txQD8ePz4qsoSF3DqLPBy+9BJ/4xBuP9+ioye7dJWxbsmKFn7lzz++rUTThsWPQHAH/Oc4MQd297fHj0F17aRzz320WL/bzW79VzaJFF/4e/aCSK8O2vsu9i6sPT2R5eFxCtDcpWqkhwjBJHBwEghC+C1v08MuEtz+D4DSZVZPI9dfQIG8hNb6NHYnvMl5fojo0zvi6ZpSNjTR8tIHq/lGqd73E4Xl19Fw3Bz0xTuh7z3HgkUdY/PGPs/Q37uPYMz8mNzOJJnValq5l+W/8JuIsw6YjTPF35g4K/iRBf46+HHzke4+zqARmnUK2NUW0+S70uQ+cc9tpG/orDopqM09XCQkFAw0/GhUsDDRMG3pn/AjhYARf5vrYFsAh7/jRKTJPP8kiXw9H8ovp8S1gn7KG2lKGDAp9Tg1xqjnpa0XXSwTJ01VdRWJSoyOaQFEG+Peb/gZfXYlnhu8kQR2oEqkKCLj1b44PtDI0hiDuB1PCcwoIC6psmJOBBfVQ8sETJ6EpDMU8GAsg0QNiEhqaYCgM0RqdYsliKidxisIVWTY4UoOKoLTbwO4x0BpMMATkHahAJQ3lvOD37oL6s2Ylh0KuJ1ixCIGAWwe2ZMns7fX1UFvrirFFi954/AcHTR56KIlhCBQFXnmlxOc+F2Xp0nMLjmMJ14/sXALrNfyaW691eBLWXgFzzcNhlfXrz2PX7/F6vHThu4Insjw83iO6aUBDIU2BDmqIEnjrOwH0H0GN1hHRmwmeyqGsvw/l1C5O7nmQGj1LezrN91Z9miZ9ivbCMKrqkJrfTFn30XVqnMm1VYx+5RXsvmFUy2HPP36D3sNP458XxVnbjOUPMzb0InNSdxCtdgtuJijyP509IAaJYKII8EVLHFlXhf/UBP55JaxiirHqIyjsp0t2EZQh/AKEEDyZs/mrVIlRUUSpKCyOlPiv1XHi6QBmsoVTkVHqawx0S3I6bWDoSa5r2UqmGCLmT7E68CqaYmNLhbSsYkVoP6piMqy1MeFrRK9UmFaC5IXKTv0aNsmT2Izj+KdpCKssDY5wMtlKqthBTW6Ij3X+lCemPs7kWAu646cqCAtDcLIMrX6I6xCPgFoFqgWlHGR0WDgHPtoKf78HOqtc0TM4A2kFnEWQlK5WEkApqSAjBr6yQ7EElHG/YS3FPYFJMLN+TNPvRtEEbvdjHo6OwjN74XO3ui/5zAw8+TOYnIKdr0BnJ6xcCXeeZZEWDsPv/76bVgydQ0c8/3yeYFBQW+t+zYdCDk89lTuvyOpJQOQCDGQjBhyfvjJE1qXEcSCfPyN+r8LyrrAPNs29NGt56cJZPJHl4fEeoaAwn4a3f8cFq+GFxxBSoq29DdCxxg4wHbHRGyVj8SbGRAvz5AC+UpGy0EETVBrC8EqaD21/hO9vc8CSOIATMamEsgyKMMmFc9Adi0Cd5LlAL/dQi4rCq0wyYyeZUOfhSBVNWDTLYTq6TuNLTlMuKkxUzSMYi3PMOsFfVQokc3NZrVRxv7GN/zK9kH4nQv54EFmUTOg6f7ZsiLmH5qKV4zxvaUTXp6lrcEhXBBua9lOnj1Jlp5iv91CUfnJOGEU41Mhp0iJKhzLAXProtRYQkGUqWRiuXoMhJLp1lAphokKlseYBptO7GJVNNPkETr4dnxhA6esknm/id1YLWlvgUA4+q8NYyrV1mBOFIc0dG2QoMF6B+jBkLVdcTdgw6sApHVBAtyCZcv/5V6UbEcuaIBVldiKLw5nrzuzPjgJ5ICugCMEaQUMt7O+De693h2B/+18gk4GVK6CrC0ZG4I7b3Nqss9H18xfCF4sSn29WDRiGIJk8vxGSLS9sBJIiwPyARTwyGXj4OzCZgKYG+OLnXJF7NZErw7aTl3sXVx+eyPLweL/TvRrqW8G2oNYdrzMTjeMbK5Lw1fB0cDPSAVNRkAJU4SCkg1ORmJpAkTaK457fa9rg+t8qMzIwzeSSDYSODOJU+YkuCTEYmGSILJ1UcZIMY2oNhlPABipSZ8juoNMeYTyYR68zMZubOGqZPF6MMCENhDbCP58OcKSqkYwiaMz0s7C2l0gwRbHsJ1OqpdRRpL3cQGgsQtVwDKsxRTBcoUofpVMMEDYyCCEJOkVMNPIihMAmas6Q84eoFjNuVEhVEXmbvA22sZiE/1qKlFkiPkNUzGN5/QSdsXEGU/WM5wsoIsBXF1Vzc6eg4UzU51NnDq/pQMmGkAbbU/DzaXe0jyJgVQQCDgxJGLPcIdTlGJR1cHrdrJ8iQFfB0d1ohxYAUmcWtzjj0TUbzUIBBPiFQK2DqnqIByHgc9caHnad5DvOFN5HI1Cqhr37YN68C3/bLF3q44knsgSDOkLA8LDJhg3nj542huDkjJs2fTPyJiy5ygTGW/HiTphKQHura0D7ym649abLvatLjJcufFfwRJaHx5VA/PV986W569g9uo5UVQB/qIJfnWQmG8bw1RG3MjgVKO6YYNWGMlpRoLT6sCdNOlfbBKslsRqdSL0PPV8kd3srfiWPgUHOKpBLFNFCJdJGFaVyLabUMG0fVeNpIidMjsnF6JEGUkKwy2pmQLRRkn40zcSpKzI8pnPPnH/Fp+colAKIgEOdb4qwViJcjnC6cDNtdGIE5/AJvZFkg8JQLoUvWEGJ2lhCQzgWIVmgqAYwFZ2IWsJOWTgxBWybQgWwbaQQXD+6j6qyROm8lyrdVSEBPoxj/H8srB9mET4CfBKdc6sHXXEvAJti0OKDtOWmERvOpM+KQbALkAiBWQelKARz4B+CmijUBuGoAqFJyAlQIuBkgMKZB1FxVe4ZU9RwIyybCxkLqmtgKgkfXusKrXMhFNeV4+1w3XUBcjmHHTsKSAmrVvm5447zq6MVjfD8aXeE0nlmniOlG8VafYV0F14qpDMb5VPE238trgTCftjUdWnW8tKFs3giy8PjCqQl0s6072b68jl8kQwNZoJkoYH8QYeapEJ23zAfvXcIo8Ng//R8Ig+G0X6ZoCrQQq05Rm5oGr3aZMofQN8xSPD6evRSjPGHH2VyaAqzoY6pm+8hW4yCAmErR1NhguM117J+4pfEdh1gX2kxha5OKo6BholOherwDJ8MfovoqRHKjSHiNQ5xkSEjo+SMZhqEQ6NvK+G67XTLHlIlP4V4EKHFODC0mBXaQcILSwgpKQtX+QgcFBzGszGGw01YWUnJ9KNGBIVSjiWj2zFklo7q9bzm0aoQJ8wDSPII/AgurBVOCOj6tU5/KWF+jdt92G9ClQDbgJqFsCoIUaCrFha3wGQT7N8NgxXIOGBncK0cdMDvrm9UwS3LYV2r26koBdy0EtYtdB+vtRViMdeaoa4OymXIZmHJMqhYYJz51n5ttuT56oMURXDnnWE2bw4hJej6m+cC60OuNcO+ceiIvjF1KCUMpmFZg2tO+kFiwzo41gNDw1BdDWsvYObklUauBNuOX+5dXH14IsvD4wpEReOz7bfz3354jIGNFlP1GTQzwoJ8HZN7p7nupv/FgqUDVHIZFpZzrL99AeqN/xUZ7CKc6Efu/SGLI4MUVy9Apv0E/Lcx70gZa2CCyJw5vNS2EnM4Ct0O8wLHWBg9TpXIolomp9NhJofnocyoRA9Psylzgqb4OKHoDE11UwSiBcy6EPHgNEUngiU1YlqK3Uo3TxsLqXNG+aj8GZNGAEcK0Cu0+fvYUreZvRMr+O2xbxBsKpElhKrYhMkxkYww4pvDS4UbmFZakIZASpCVab4Z7aaxkkKU8nzM2scCcz6YDkYkgiIiF32shYB1VdBjw3wgICDnwJoQ/E6Xa1jaVAP7huH7++DeD8HTx+FoHrIZcHqAIESaXIPTriUWD9wwzeK4A9lqDOmjpW728SZMMG6CxHYoDrr2Ehtugf/nJZBb4d/cDEKDH73kzlb89CZY2Hb+/WvaBRRaneGj3W6k6tAkhHWInQn+pcruAOHFdXDvwndyFK9s4nH4t7/rit1o1PUru+qQeLML3wWuxreKh8cHgu6uKv7wniU8/sQ4U2Y9uuVgSMGmexaw6YZ/B2YMv2YRj30U/DeBOBOiaW6mfvn13IXDrVjkm2wMVIpKLwcdh4KmcZw6lGiJP0r8BdbKCKamkyfEiF3PL5Q7KFfprNy+nzufeZrAPQX2da1hOlhHtz5ELhAkbOVJ2zHyeggbnWGljdNKK8OVJhYr+0kpMXQsfFSoSIW8EqaODPuar+HJwQ+xSduOnwqObdOfamR7ci1PVv0GE7lGUAWabuHYCjXpGRK7qpg3vZtrrYfpH1foK8whXLOeYG0t8+++m9ru7os+1nfGYcaGh9NumVVHAORR+KsBiAv40m2wsg1SRXi0FyoLoDMH6RHIlEGYEJkPyvIix6pm+DenTRamT3Cd3+ArNdchxGyk7WfjkAyAfQvcFYe+Gcl/exRO7RU4Rdj1JMxfDRtXudGlR7fBn9znzjw0TUk67XbABQIXLq5ew1DhvqWwPgU7h93ROgAdMbiuFebEz59KvNrRdTeKdbUS9sOmNxki8Xbw0oWzeCLLw+MKZvHiCAsXhhkfL2Pbkro6A79fBepAv/ZN7ytQ8GP8qlIp2N1N7aJFjPf149TDx0sPE40kOK51kiHGkNVEf2E+FWEQHUuzdturmDeq/GDBbyEUWO/sxG9X0HQTDAVRVhGKwEQjJ0JUTJ2SGkA4CrbQqOBDx0KTNiXhQwCOEOypvRbQKDo+EqU4R4uLOFZZw8x4HGmAZRhUsgbt/gGWzxygvn2MSV8Nex7MUhhJQWSIeRsLKNffy8i3vsHm+z9FbN4y0M6f49q9e5Rdu0ZYubKR6647ExayU1A6AlYCXYnyxfhiNlTFeTlvczKh8dSYTiQIdRacGIGF7bCg1U0p5csQy8HYAZjJAtUwYznEKxkqg1FKqkYqGWdApNiZsvmza3T8Aha0wPwwHMvAiTTsOyTZUzDJngDHp6FW4MSQwuk0yKwb5aprdsXWzIzk4Ycdkkk30kwyvNAAACAASURBVPKbvyno6npjLrFQkBw+7DA9LenqUpg3T6CcpZwU4c4pnBuHVMpCSojHvVPF1U6uBNt6Lvcurj68T46HxxWOogiamy/e0VrVdVZ84QsszGS4LweRY/sIjGRoK43QG/YzEmuHkMCWKs39owRzaZ7vup3pXwSY23QascFCCkFEKSAsh5wMkyOEg4qfIoqwqeDjiLqUJU4PFULMKHE0aaLi0Kd0IhGQLbJ3cgFOfxp5aIaBmmomYw2gCGRJwTY19MY8LQtOMD63idOyk9j2Hu7LF6lWJMdkG3+w8K+ZqusmPK/CouN7eUz5UwKNXyYl2sj7g2APMFyaYKIYR0vX89Kjx+hoCLDlp8eoaU1Qrz5JVfpFFMUPwU5SeoB/nDnO04kVlEydoWQ9tqEzlIgT8Rv8WYegbAvue1Hy6oyDNBz8kxbZER80uJ2FUoNcNoIwAF0hP+2nv6+R0T6du74LS+fCb90D998K+Qpkp+GE6uCLlEgrITBd3WeGJPaEcEf6xNxuQF2Dp55yyGahrU2Qz0u+9z3JH/+xRFVnBVQ+L/nGNywSCYnPJ9i61ebaawXd3W5atLNTYXi4RCymMTZm8YMfJCmVBPPnVyGEQSgkWL1aZf78N9Z4TU1VOHgwS02NzvLlkdcJtzdjcrJCpeLQ2nplurI7jmR42B0T2tJyBYf5vO7CdwVPZHl4ePwKoSj4YzF+NzrCEz0GS589zE/uWcGoVo8tNFcsOAq2FAjTYvBUE5WXHcaMGMuWOsTjSfrMDlpTY9REpikLP9JWqFUTCBxGSq2cDHbwvLiBjdZOfEqFAkF2iHVM0ojulFn6N9+m5uHDCNMiFVaYd/cJ9jbczc6WeykaVQTrE1x/3S9Q/Sqm9KNLm9r+XrRCib6Kj6//7S+Jr5Fcs2A/qYl60k4rf9FYy8aJ/8hzAxvZ0XkbQb3IUn8vq/1jTGTq2ZWG0VSKqD7MQKqf3towxfo5dBQq5ESS/zF0C4f6l1Aq6+StEBWpgyrQ43kq4QIf3hWhmFCYCIPms7GGJJVBwzUbtc5cygpWRUeXFaQOMqNhTQt8RQUnCT0HoXjGbLTGcOcl6kWF+u4y0w0qQmpYjo7IgV+BO6+F5kbX7sG2IZmEyJkStGAQEgmJab5+RviePQ4HD0KxqKJp0Nzs8A//YLJihcTvh2Ixi6LkqKpSCYV8ZLMGr7xi8MMfOmiajWnCoiU2d9yu8Tu/rRAKuaKiULD5x38coVi0KZcl5bLDunUxLoR//ucx8nmbBx/sfJ2v15XC4487vPqqe33zZsGtt155zwHOpAsvPrMOeOnCs/FEloeHxxsIKIJbFB8z/hr0wSTpa+uomAF0o4IqTE51dZOL1lAfmqZUU0u8Pks8miRLGFlWKWd8ZIIRbKHQmBol4s+xSD/CR3yP83ThDp7VbuEh/Ys05gbw20WkZtC97znu6nkMrTJGf75CXEBbzkF+52csjh+mq+V7ZBY3kfj6R6iTCTJ2HWE1iSFM5KIwaRMG25ezetkJvjrwZ7ScGuVgbDnbuu/mlNrFaFsba/yvsmdPjuM1KxmQHSTnvIjh2ITvMHj+haVcd2cvOxpilA2NlK+KUDDD8JF57OldRsaJUKiEsYVwPR8UKOV8iCmH5LCAGQFRcOY5iFdUZBF3Ts+wA63AaXCqNMp+AWWJYguMuIISAiMLRgnGT0KxBCurYVULTCYExSM13PylEyQTNql/7KJDGKxc7EavJqfgxvWukFq5UrBli6RSkWQysGiRwO+fjazs2AX/xx/A6IBCe6sbBdu9W5LJWLS0SK6/3mDHDomq2lRVqRTLAZ58WqGQU2hvFeTzAmHA/gGV9DOS1laHT3/KVXCZjEU+b9PR4WdqqsLgYIl16y7svXbHHXEKBeeKFFi5nGT3bklHh9uI8cILkltukW+YW3olkCvBtqOXexdXH57I8vDweAMG1QRyFZoWL2PO6WlmbqlGN8tUygGCoSLFGj8/vvcT3PTqs+Q/dyPNkRwWBj1iIfOMPkbyLYRLaSo9KZzEBNa8IKG2Aqpi8cng43xk6qcU9qRJnJJIv0Z6W55Oo4SsMmCuykS1oJKQqLY7AnBOcJC62CDjdgvpPo2YmsVc0YBNgH45F3NNHX3XLqIpavOf993NT1s/zNc2/TWJYD1SUTBEiRplkmKjj86G0xwW6ylVQrx0+kY2x5/EWl+Hv6qVJ4+vY3jOHlZHDjIvc4z9UyvZc2odaRGlWA5hlwVkVTdCJQChIPcoMCEgDHSD86oBGWBawmkbVA0MCSkBDRKiCoQVHAFqLShFsOtgvg/KeRgdByUKN1TBJ+6GckVh3GjADlS45nbdnbnowMCwRFWhrdk9oW/YIDAMOH5c0tgo2Lhx9kR/+jT82z+AkycEpgk9pyGkOyRnHKStsmVLmvHxCsuXh9mwIUBjc4Cv/y8Nw29RtgShKgiHJZMpSCeL9PdYPPSQwg0bQzQ1adTW6rS3+xkYKKIogtWro7/+ljovb+dv32/4fBAOC6anwbJcy40rUWABXnfhu4Qnsjw8PN6Agh+94RrsxDMsGJ8mRA6/z2IoW40tBX5fiUR3PY82f576yVEqAT+GUqGEn6wWQK+tICcl4eFRxgPVNB8aZNiopro6B5kKzmgBW1OpmgN6pkDLvBJNEegfkmgONNeAGoKJAVh1AzTeAv0nVPq3TyJu+B55H1TfHMX39Q0oHSZHQsvo+Yff58++80f8B+2v2ZG/E14U5OcbCL+PhN3IhL+RbF0/bd2jmNuCUGMybTYyXmmiXPZxw7KnGWlpwbKDtAYGGEh08eL+m5BBlVLZj1NRYEJxx+EUcL89x4ARATGgDZg6cwAzQL8EU3MF2SkBH8OtedkPlCXUC/LVEJLQ2QyJYUnBV2Eq6PCT3T4sS+HL18CiemiWMaQz64mlKJBL59E0gWgJnfmd4NprBdde687Y6+11xVhjo+SPH7TpOyWwHCAiKMeh7FPAUSHhUCgIXnrJQgjJn/5phJ2vKiiKTTymoAjI5GBuq2RiooxuVmhsULFMyfe/X+RrX4ugaQr339/M8HCJaFSjtvYChiBeBei64EtfUnjmGQddhzvvvPKica/DE1mXHE9keXh4nJPw4s9T6D1Ia2SM646/zO5Va6kqJ8mWYujlPBJBUkaZqJ/L8mqdOVo1q3cfYOLoUcaWFzhd1UBT4xjhQgqCOtZzw6RGiygxsMsVSgmHmnqLhm6HQDMMvQy9x23MnTbKhKQpAs3dYIR8nBQx9j42AWUbJSjQYirTL+So/r/2Ev1/Yyi6RbKui/+U/Ce2Kv8/e+8dH9dZ5n1/71PmTJ/RSBp1ySpucuy4xel24vQ4DUJdWBLKAqEssC8PbQu87PIsu7AP/Xl36QFCDYQQSAiBBDu24+64xF2WJVm9jqbPKff7x5FxQrojxY5zvp/PfDQ6M+c+95wZzfnpuq77d90MhgAEbC7w+tf9lCXzdvLbwZvY2n0e4foMimbhjOkQsdiVW8GK0GNM9FayumEteYLs6F3KQ7uuwe4xqJw/iJQqsgBMCrfxcwnXxV3FjWBpuMJrEPdClQbyCjQ6oEvoUKEZ2CBBFxCVcECCCdkAdJ4naH3bADudInIIhonSoITRVR/Dabhzi9tb7g1LoH3KbX327MAzRk0GBuA733GFFkj27LHZd0QSjUKmqEAItDhYOaBBRcnnCKoOoHDJJRplZQo11RAKui8lX4TKcsjnYWzMwXEEsYigquqpvRB9PoWWluDT5nO2U1sruP129fmfeIYT9sPK9ukZy6vJOoknsjw8PJ4REakkePN/odX8jNs2/4re2XVYfg2/yGELFYlKhTrCnGiRN+uzuSqloGzeQH3ZhZQe7eSJRA3pA34O//kegu215IMt+I8dgokxfBFJ0wooT8LoVtj8CIx0QQEHTYWoA7kiiEnQzjexdozRfqlB18I2hhfPR7aWEVByTN6zk6qxCey4oHt7PX3z5kME8ON+uykBfnH4bfQ3xbm5+tecf3wLA49VM1aYRZfeDCUoxYJoQZN55UcQQiWVjnOwYwGlYgCKKpajoGkmtu2HOtz8ZTduI0NwHd0BxnEbPwNMgJhvo7Ra2Ad9EAaRtfG1FJCWoHZBF0NKPTnHgJJObrfJngerwIINmsOc1R1EF+8hHgqy4dB5ZIoQ88N9T5wUWa5Vx9N54AH356xZbjF8NisRQkEIN71VEiBtt7DeUSFZY9FYrlJbH+KjH3X7+iw6B972FoX//paNVXJQkfh8kro6jbExi1LJJhYTLF/+ylwR6PF0MnlYt+d0z+LsY8ZElhDCD6zD/UrSgLullJ9+0uMfBb4AVEopR2ZqHh4eHqeOiJZjXPk+ll/6Tj7Z+SB3hkfoNBKU9BABXWGZL8q7tNnUEwAjD8EwxugkxUyUXK9FomUJsv9+RvbsxR9QGM4VMUsw53ydoZ0K4wGVjs0F8ikHAgInI3FSYOlQNMEKg3a/QzjmsOcjqxheOgffgT4qHz1Ky0qLzPurGCyrZO1PVtNXnAt18i/9AUG4Tef8Cuv33UD37DY+3vRFIoxx4cPb+UriwxzVm9D0EuFohrgyznCugkOD7YzbQcgJiNlkClGMSIFi1IAq4CCukAviCq1OpkI+uNGsKKCCfksRa48KQQGLJaFgGlNoNJ3TSWL2GL07myCluRbyQ7q7AlEHSgqHdrSi+6E/+wAR3yLGswZ5E+ZXP/971tkJNVNCzLYlui5JRB1SRQU9BE7Gnb8vppAMwJrLy1AFrLlOITgViFIUuOxSwQXnqTz6KPziFw7HjgnmzFFoa1OZNcvhnHNUlix5daQFXzV4Fg7TzkxGsorAaillRrh2xuuFEA9IKTcJIRqAq3D/H/Tw8DjDEYbBink3sVhKuqWDhaRSKJSLJ9Wg+APw2vfC0HG61m7EJyYAiLbOwzYtrHyaQDRIaWyS0ZEw0ghjD1mEK8LIGAhdkNs9Qr5gUyyA6QdRgMYqGFpcSWpFI2X3baV+dJilf6eSKlUQGChRZnSQGw9DpwKLAcMhUTdCXWsXImCStcKMHK+iu7eNDcZFHLdn8ZbG7/PN/bfzEf2r9PjqKWl+isLH7FwHD1prSNsJmBDozQXskooZ0tBUE0tTXNGUxxVEZUCN49ZqlXCFEkAc1CYLa7/m/puZlGihInYlJBpGCNZlUMIOjIqTNg8nTqUPGFWgkOHn20027bKJGhaVtsZlUyv28gXw6U+1ZzhBUxMMDoLPJ3nwEZvNuyRSl1TVQ22FYCIqqKsVXHQ+vONW8KuuuGqof/pYfr/gqqs0rrrK9YOy7efvgejxyiQcgJULp2csL114khkTWVJKyclAuj51O9G7/EvAx4B7Z+r4Hh4e049PCNrEc9SfxBIQSyA37wZckVW1aBHScVCxcXLj+IKDROI+qpoj9BxLky9A9fJ2fHodk8d+i1kawbEsckDS5zqQZy+opjRoEts5RuQTtWRKRX4rbiRo5anv7+aSNY9y7+9fj3xMYc4b9tO0/AgFJ4Cla9g5hXB0EjOts3NwBXPq9vHLmps4f+kWPiU+Q1HVcWyNWC7NIW0OE7lyFN1xhc+IRJttYhdVMBx3RWHV1EpBcIXRuQKOObBXcVOGOSAMMqegzTcpDasQUSgMGwQXZgnHMqiGRdt1B9n//UU4tuY2ISxNjWcBSPyBHD/4/a0MBizkWpPwUcmGu1Q+/akguzpUZjfD21739Lfguuvgq1+F795pM6YJiKsoWPTnbKp88J5bVN7/AY1o2BVqLxRFEc/ajPrVQD4Pfv/TG2efLWRysG7X6Z7F2ceM1mQJIVRgO9AGfENKuVkIcRPQK6Xc9VxLXYUQ7wbeDdDY2DiT0/Tw8Jhmqs49l+F9+wgkEiTa2tAMg/zoKHokgqKq1F9wAYOPP05Y9qJPpKiefTGqYTDnRkHXunVkh4ZQiuPkCmAWQMnayJSJgqSkalg4hM0MUWuSET1Bn6xBtjqItODYziYOHV2AUmPTlDjKrLKjzPEdI6XGKVoKRr7AKt8W2oIdELRRFIPYaJaAXeSYXsAuCAy1SCEUwD7qw395BisXhiGJFjCxwirMEdCDm1cTApoF1AJHgP0SLIG5wYdxcw5HgrXLoCBiiH6V7qoGZlcdpmZFL6UBnY6H5uLEfTAiXIElgQrYvvciOCLheA6KGmMFQWqswL9+NsX8ZTHGhxyWzRdUVysoiqCszP0+ra2F977X4Stft2GRggyAiQ4K9KuStRvgLW+BirLT9/l4pTE2Dl/5Nlx7OVy4/HTPZgbx0oXTzoyKLCmlDSwWQsSBe4QQi4B/BK5+Aft+E/gmwPLly+XzPN3Dw+MMomLuXGKNjUx0dRGpqSHW2Ii/rIzs0BBz1qyh8ZJLmHfzzUjHoWvtWroefRS7WKThggtYcvvtbPr61zn+h9+RzkxydByCvxtA+1/t5IMa+i+Pcfx97TRPHGbYl8QfG0SaUDlrhHQuQuFYBOIQM8Zp9h9m7Eg5B7NzIWkTrC1Svj+FNinotRvQ9T6CV/po6jrEQF0F0cEsUS3FpBYhmMiTKwbI/SGKeoONUmMRSw2TGa/ANhRElYOasikM+5ElgZNVoVbFd14BJy2xtgUobg3iO6eAviCLIxWKgwZHHjmHwJBJXcNxmmd3kowOc3DjOYwcqoSicnLVYq+AfTY4mrtBgi3DHD+eRfdlab7Cx7e+BdmsSkODwj/8g+vAfv/9sH59AcsSSEXgVKqQFeAHeVTQJyX/9Q1YsRAKBVi+HJYt5VUdpTpBqWTj8z09UhsMwDnzoO4F1MS9UgkHYOWi6Rnr+dKFQojvAjcAQ1LKc6a2JYCfAbOAY8AbpJTjU499Engnrgz8eynlg1PblwHfBwLA/cCHpJRSCGEAPwCWAaPAG6WUx6b2uQ34p6mp/JuU8s6X/oqf47W6Wb2ZRwjxadzy0A/iBtTB9UHuA1ZIKQeebd/ly5fLbdu2zfwkPTw8pg0zn6d7/Xp6Nm7ELpUIVVbSvHo1VYue/k3uWBaOZaH53dVq0nEYOXCAuz/yegr5EZoKQ+y/6GLMSh++Hd3EfHnsqiDj57YQvaWBCyc28cni5+ixW+jcMhsnCIHKDMFkCkVKVMVGUSUrBnbxvuLXUY+noeQw2NDMfc3XY8ZUFof2EJcpvt93G0OTNdhDOqneMoq6D3uWimLZ+ESJmmQPvqCJIzXGDlQwLBP4cybx/Bj+cRO7GVJ6gvSBIHLQD1GJMCSyIMAUbqRKkyQqx6ioHKCgBvAp5bRnwjx2r8bwDunWZY0BGdtdCjjlSAECDYuGZoc11/upTTps3Sq46CKVd75T4e67BT/+MQSjef5gqlgVmivYSsAkiBTUCIdEXuXKSwU11TA6BldfBVesfrk+GdDVBdu2QWOjK/LOhBRcd3eGBx7o4a1vbSMUehF51BlCCLFdSvmyxc3Ka5fL6/5ueq6zd332uecuhFiJW070gyeJrP8ExqSUnxdCfAIok1J+XAjRDvwEWIEbL/4jMEdKaQshtgAfAjbhiqyvSikfEEK8D1gkpXyvEOJNwGuklG+cEnLbgOW4f4nbgWUnxNxMMJOrCysBU0o5IYQIAFcC/yGlTD7pOceA5d7qQg+Psw89EKD1qqtoueIKHMtC0fVndcNWNA1FO/l1JBSFyvZ2Lv3wP7Ppl1/FPJjmsrFN9DS0c+Cac+gdKWKUa1xY30vD3ifY2XYu/4/vK3w8/+/U+TtoGO0kPVnGqFHJxUt/T2fpHA4fms/1yu/wORnE1jQSQTLeRXXfKD/Mvo0D/gVc2fZH2huewDrsIzgvS7Y+THY8ylgwgdAk0eA4UtEZc8qokn0EK1MY2TAyKAkH0miHHZwMZOIxfOUligN+GBdIZ6rAHYlSzOP4gkzko/jL06AqJFXBgjkaV37W5n/dKihmVbeKVUhXZLm7gnAN5MsSKn0DEA1K/uZvFG66SWHfPsGRI3DRNUV+LdJY3eWQdWBIcY9dAlmAfqFQ1AT790PnUViyFB59FFatBO1Zrgim6fpv1dW99IhXLgff/75btL9lC5SVQVvbSxtzOqiuDnDFFbUEg69iZ6OXyYxUSrlOCDHrrzbfDFw2df9O4M/Ax6e2/1RKWQQ6hRBHgBVT+iEqpXwMQAjxA1zL3wem9vnM1Fh3A18X7pfPNcBDUsqxqX0eAq7FFXEzwkx+mmqAO6fqshTg51LK387g8Tw8PM5AhKKg+k5tqf+Ca9+IGpXs/4d3sHutTebXe/DZ+wiEDAy9xJ5ZETpva2C2OMZ4axXn6E/wB/91bGycjeJ3iJcGWVA4yhZ1NQiVEVHB/HKHUkBHlBzUpEI+GsCMwPGJOu7ZfStXL/4ts1v2U5wIEglkKRoTxOUYk0YcxxDksn6ixRSFKh21XlJt9UFJUu/00NLWwaFH2sn3BckHqsAvp4xRgQKQFzi2H5A4hsbgSB1awEbXDe7rElxUrrDyrbDuLrBsBxGXWL0qlKQrsHSHecsUWpp8lGpsRlo1Wi9S8fkEsZgrgAbmd3N0bR1GMEtpzI80cNOQEvCD0B309mG0c4fwBxx2HiqjVVZj275nFVkPPQR/eAje+Ea48IJTeiv/gmlCqeTaTGQybsryTMDnU2lri53uaZw2wgFYuXh6xroLKoQQTw6LfXOqBOi5qJJS9gNIKfuFECcCMnW4kaoTHJ/aZk7d/+vtJ/bpmRrLEkKkgPInb3+GfWaEmVxduBtY8jzPmTVTx/fw8HjlI4Qg1G/SedCilAPhgMDGzucIhKF1YJzg9ybILE4Suj1Esm4Qq9XH0vKNvGfDvxMQOTZoN2I5GkVD59vWu2gXT5B4+xCOpdCrNnG/di2qBlqdQ6Y/xIRVRjyeQQ71EpN5JmuqyCgRCqkg/aO1lMw0Rb9Ozh+kMBjAUQQLKvdQ6RvGbxVYdMsOaruP8dsNr4O5EvICDgNHcStKNMVNlITAzusYfp3RtMJEFzzcodC9E0pp3OecB8zWiRZtxIhDQ7vO1/5FRVXgN4MqZQbc0+m23mluhne+1+Z7pk2kY5RCPoDdp2PlFUgBBfAH0zSfe4zqa3sZGK2lwfYxtmACfVaa7+9p4vjDBquWqlx55VPDVRWVEIlAeeKlv6exGFx/PTzyCCxdCnPnvvQx/xrbht//3u0luGLF9I9/NpLJwbod0zbcyDSmOp8p/C2fY/up7jMjvIrjoh4eHmc6Zi7H2q/+D/mMhQ7YEhwJfh8EDOhJg1aQtIeHUH4tMG9XWJHcwBd//Faq0ml23HIJWSJEfJOMhivopo73mN9kaWkHQpdsMpYSrshiFSE/GSZamcav5ShKnVBAkFx/iHq7lx2tlzA8UYVV0DHRmSgk0EomjlSQtqDSHMYyNEYLSaRtEGzMkciNk38sgNwtYOBJ0SwDNy2zB7hSkOsWkAFtDFIduGIsDcxRQFegzmEy4KBkFMwqhcEBePRxsFrALoNjGfhlJ6ysgdYmhVi3TmBZjsD+HGbQh3XM5/ZWVE3Mgo/OniaOb6tFqZUcrNIwkiaHi/CnL0iKnfBfX5csn+fwsQ8p3LDGnfaK8+C8aayduvhi9zZTpNOwbh0kk57IelGc3tWFg0KImqkoVg0wNLX9OG5n0BOcqOU+PnX/r7c/eZ/jQggNiOFWOR7nZEryxD5/nt6X8VQ8keXh4XHGMrR3L5mJSXwaWOZJkRXywVjRbb2DhOweyRWV4/hGJO/Kf5Oy/jSjvmoatT6CTo6wmqI63scAdQzblTzINajSJOob5gJlLcOJOp5QzyE/EaKn1ERSGyZpZaFUpHrXIAuStRRnhxjuTZAdqsFnm8iSRI3YOI5CUfipyE4wVGxkbDDB6PEKUn3l6BOS0phwC9lPFKCXcC9mk8DmqWbT2Sl7rBPO8eW466X6HVBsiCo4cSgEJHfvFDQp0FYF909ASxl0ZmD/QXjffMFrK6pZm/4D6WQQu06n92gQNImaksQDB5HLdHL1NbTWd5CsHybYXWD9d1eR2hR0o24mPDoE6x91uPVmhX//N7dm6kwoTn+hxOPw/vfzFwd7j+cnHISVS6dnrFM0I/0NcBvw+amf9z5p+4+FEP8Ht/B9NrBlqvA9LYS4ANgMvA342l+N9RjwOuDhqVWHDwL/WwhxwsDkauCTpzbdF4Ynsjw8PM5Yxo4cIVxTS77rMKZZxJkK7BetqR58DkgJ6QyMTZoM5asJZkdQNZhMGzSNTdAcOkCfXsVkKE6dfoxCPkgJlYR/gkwhwnipiov0DaT9UQ6q7aSKCeq1XmLJAjWDx6jp6UWdk2D3kjbqWvqYlLVYVhAtEyEQG0f3W9jF5dSOH2Hznna6+iooZX0ULM1NRLRx0qT0RCPpcaac4HFF1aGpxwJTP+NAwXH3t1VollAp6ItCdwS+dh1sS8NiHWqCkLJgIAu7xuDaeoMbEj38pq0eY18BEbOQWZVAaYjGN/Yz0NBMGZ0sbNuHZSqsW3s5qe0xt41QSQLuSZVScPc9NrGwysc+pjBnzsv61r9kPHvFF0cmC+u2vjzHEkL8BDeiVCGEOA58Gldc/VwI8U7cbjCvB5BSPiGE+DmwD/d/kfdP2UMB3MFJC4cHpm4A3wF+OFUkPwa8aWqsMSHEvwInXulnTxTBzxSeyPLw8DhjUVSVyvZ2isODyH27yBTd7aYFiu/kSrdgELK2Rn9Zko0759A2uBlhDPHlf3oNH/vyT7jEt4XfRa7joDOflBLFDPmYsCI4ZhnVvn7SVoxmvYNOXxs+tUS1r5/Y6Aj+jceIXeBjz4FJgsuy9FJHNiixM0WqDYOaYhUtpk1+QvKnvY30D7stdxQhXW+qJG5ZrY6bKhwBtuA2HYtKyDvgU9x+hxO4l4o6QJlSkw5uFKxSQApsDXL1UBEDPetG9oZN2JCGVAkSKbiuXuN11fMIGIe4s7GcdF+c8b4yjHgJsyJKaCLL6to/ovgM9u6fz9CeJOSVKSNUx42yc3QL2AAAIABJREFUyamwlQ2/vtciEND4yleUV52X1sCg+9mKRk73TF4mXr7VhW9+loeueJbnfw743DNs3wac8wzbC0yJtGd47LvAd1/wZF8insjy8PA4Y0kuXMjArl20v+Vv6fxRnu69hylZkpwJ5SEIhkDXIVEJ21ZeTq3dy47J+SRHmlixcIiqg/fz9h/9Fyvfv4260HGKhsFIsJItmeWMZitp0zs4P7eZo9FWDMdEkTaNRicrjmwg/vXtjLW30nNjBKeunsXKDuLOKOFEhkOT7Yz0pjAGckSK/YzXLGQwk8RPECwf6T7hWiqqnGwoFsatAGkHRiWEHehS4CgIzdU3mLjVI7Z0m1Dnp/YtAJWgl0te2+Km7pZVwNYR2JeGiRJU6G7QC6BCXMlbEsuZ8zc9bJg7yoYHdQZHi/QUk+T8ERZXHWTroWXs72wH01VOYSNFwj9Cz2gjMqC468OPOYyOCR54wOa22wXLl72CcoYvgf4ByYZNDuu3CCorFD70bgiHT/esZpZwEFZOU6m617vwJJ7I8vDwOGNJzJ5NqKqKYirF3Pd8BN89P+XooxsxiyapSdCjoDdEmfjbBdTfplKu76EmMZ/tHfPZMhBkxccypJ74ORs63kBtVQpFSCYLMerEAOeX7WCBsoeGLf1Y8zT+rKyikNU4NtjCVwb+ntELq8HWCHQWmaV2MitylFqln7QeZWHDDjqOxOiwZrPIzFKtlNhh+9C0PIV+H7IKNx0YxxVO5RKS0hVcQRu1vUTQyGJcVERkBfnfhShsiOGMKkhHQeYFqBKCuPv0QnWTxSVz4aOzXSVVZsA759vsGFH43bDA0OH6qUXvAgXdchCqZPH5OVYs6+PQsMOXNupEfINMKHG6fteM1aYjIjbRaIpLkuvZ3X0OAS1PTvVDSAXFAVOht0/wjW86fP5fVaqSz/ROnR1YFvzHl0x+9iub/n5BLgfLznV499v8hMNnt8DMZGHd5tM9i7MPT2R5eHicsai6zuLbbmPPj39Mqrub8vMuIbboPCY7D6BnDhBZXkReF0OvkTiRBTSol9DadhPXfu0dpIcGGDr4WW5u7iDUsZHux6vxz1ZZ2XiYYEuOaDFDL0kcW6VY0nn82DLUkspullORPs67f/QR1i57Lxv8l9PTX0+hzCBVHiPspHD8Cok6k/D641z6prl0dNlENYuJgooVcGCW5qbfgoAuoUm6EamAgy9SxDAKqMJBLTrgVwnclEMzdehWaNYKmBMhjhU1Cj6B1ARVAcmVScl/LdUJTqXsdpDiMd8EkVqVT1dXEZQ6wRMdYYr7YeK7zA6ex+ZIDUPFEraqcEllHRvHJZtGLiSbj2A9aOCrKdDafBinX8GSKlIKSDmwy60JE0KiKhIBbNsJa645LR+Fl4Wf3G3x1f82mRyBYgGEprJtp86mTSVuvME43dObeV6mdOGrCU9keXh4nNH443GW33EHkz09pPv6EKpKvKmJQDJCcWQbQ9YucmUBAmo9tbi+AIpiEKtuIpT5IH33fZBbY11Mljbj324ylEiQSkUpWgaxoTR6VYmvb/t7QmRJRoe56qEvsPTO35IA/qTdgZUMMN4Z4Am1HfkWQaMs4WRtzGGVYnUNSXuCQG2I5IEqxrNhnDqBcEBOrSRUZlnM6TtEqJRhojHKaGUCHEkpb2CrGtFoFs3WaH3HMdr2DbDn8VlUFfppKEuQrzAoFmPUWQqfXeqjQnGjKRLJZiYI5Q06Ji32BAtcHnlSKxhhgPBRIaIsyizjv/9coJgOcFGtn+svlByWLeyd9HHwGxG0MYUhpY5zK/cSH21iMFUNQpnKX4LuU4nEHWJl4lnNSl8uOjpKbN5cIJt1WLjQYMkSA8OYnkKxrl740v9YTI6XEJqDInw4po00DO6+x+bGG6blMGcs4RCsnCa7Cy9deBJPZHl4eJzxCCGINTYS+6slY4GKS2ni0mfdT2tbTOLGzzD6rf+D3wqSMjNk7Ayp19cz5NTQZhxlu76U887bhaplmf+9n7Jo4yMoto+xqjZ2xC527QslZAbiOI4gXQgyOeIjV1PBavYwONzMjkySrKkjcMBREJMgHIkUDtfveICLezYgAwr+I3nuPW8NO+csRdEcJCrl6hDBQJGS0AhdlOXdK/cybmWIGLPAamTWaJzJUZX/2QQXt8CaBSAQhCYD/OzPOpbpZ1z4qb8IZp9oYOxrgYp/BmEQSAtIBdFs9wv/lmQVUAWvga/k4H9+DcViA+bcN3LDMpOhH+qkhh1sS0VoIIIO/kaNviw4lsOXvyxJp10T0csuU0gmX5402pYtee65J0MkoqLrcO+9WfbuLXH77VE07aXPobsf/AGwSwpC+0uzSDTNcdsbneVkMrDusdM9i7MPT2R5eHic1YRXXYE+fyFmz2Ok9E4iyTSBvq3Esof55bybGNUS+Pf10faVn7A0vZNQEUZet5D/783/RvFnfshJhOYw++oDjJnlzP3Zz0mOqYTkEroDixmWFZTHJ7li9jjHH8ixPTSfI3oTpg7R3CSZdIQHy26gNXqQhDrCddse4om2BZiagU6BgCjgN4vU+gcZdPx0lCZJCsllB56gyepCa7uOf95ZQXUENhyFq+eBrkK0s4IWx6KxXCBzOo8cfJLIAlDcZtsVUbjtMugfh6WtTz03H3oLfOBNrkO6z+cuobtydYmvfaPEgT4d1ecQj8NllwsO7ZN85064aDkkEnDgAOzbZ/O+96kzLrSKRYf7789RV6fj87nHisVUOjpMjhwxmTfv1No2PZm5zXDeCo0ndpbIpxWE6mD4BT6f5KrL1ecf4JWO5HSbkZ6VeCLLw8PjrMdIJmlL3kyza/mJU+2wbtN9XPjzrUys+y51YwdgqMCe8Qi3hNJ0Hx5mlnmI5G1jOOMqeqNkNFLOkp6tXFTYycHBSzikL2RBOEJZcjlSFJFFk7CylqriAR6b00BnUaVsoJ/E6BHGA/PYlz+H+aG9VDCCr1ii6AQxtQC25SNh9OEIH1ERo9sJkBjqZMAxaBvthOwPubTlw6ztEFw4C9ZOwOYUNNoKUdtHWMITRTDCUCjBA9uhawjmN8AV54Kmwpw69wYwOAZlEfBNZRdV1b2dYN8TJguXKNjlgkREYXREYhVscmMC1S8IBgWKAtXVbtPodescXvc6d4CxMbcXYU3N9JqXjo872Lb8i8D6y/tqCHp7X7rIGhszeWz9JJecA0s+b/DDuxz2HpA4ls3qS1Ved+vZ7+EQDsPKl9iX8gR3/c/0jHM24IksDw+PVw3q1FeeCqxe8RoWRefTST3jnUdJOw51D97D8fE00YFurnnX/8vxm29k6KI5dPgXkLRG+Lud3+Th2ks5VH0ZF/b3ok1WICwFoUchCpFVK4nqOrOiKhmZo2NwOxP5UcK9HYi2Fo4P1WPEs6SLfqRtYRsBes0m7JJGS2yCgKqTzQqOHIsyK+SHsGRkZIR01OLGJToX1sP/PgqDRWhLQm0KHh2FPhV8QfjpFjh0FJIxeHi323po5YKTr39gFL70U1i1BK6/6JnPkSuOnpoey2bcBxTlqSInkYBDh9z7nZ3wne+4UbErr4QrntHx6NQIh926K9uWqOrJOZimpKzspUWZLEvyve8NMjlpIwREInl++fMaHnhgkt/8ZpyPf7wKv//sNwjLZGDdxtM9i7MPT2R5eHi8KhGKQmV7O5Xt7Zi5HKph0LVqFY/d8VqCOiQnx1i+7Wc8dOVtzB3s5rXmbxhRYqzL30CoJU3WN0A8OgfxpGpwraICAKnkCScfpmV1msxCh87tPqLZYTr95dxV8xaENBGqgi5NShhMWhXYhQKOlufIDwX0Jimkx1m6qo+HE9fTMayzYwhay+DN1bAuBY/bEJwLK7PQkQVVwNFuqIpDwAeJsBvR4kkiqywCl54LC5qf/bxcfrmPH91VwCxK+nKSsoigskph9w5Y2sZTDEkLBYhG3fuHD7uPlZfD7t3TL7LOP9/P+vV56up0dB0GB21iMYX5819aFCuTsRkft2lsdFcPdne7vZpuvTXGihV+Zs3yT8MreAXgpQtnBE9keXh4nNGMc4RRnqCShcRomZFj6FNN7ppveQ3J2L+w41/+HS3qoF4Z5c0Dd1MxOIpoVvmteh2GUkCqCplSkbDdge4sAjX+1AF9E6AUiVQsIFI9TKz+fH4xEKFbGWFV4o/MqujimH82u0rL8Sl+4naEtF1LfrKH3FiAurkG5R1RDhpzSM5ewoHjEDNwxZ8PHi9CoOB2wamtgLlRKDfgeAnW7YOyEIxl4LKFT52W4YMbLnnuc7Fokc67/LB+s83WIyrhmIqlCtqaHSojknRaksu5/QGHhwVvfrMbWVqwADZtgpERuOmm6XpnTnLttSHCYYVHH81TKkna2w2uuSZIIHDqUSYpJYcO2ViWQldXESmhrs5HJKKiqoLW1sA0voIzm3AYVj5LdPPFctfL5qd+5uOJLA8PjzMWiUMfG9EI0MvGGRNZTya4/O9Ydt5PyI0M4DeH0B2QCgwVylkrL6O2oo8e6vGbRUaLE1RjPn0QMwJSA2MUHI0H01kK9X28NfkgjUY347KMisAkeknnQG4pGUsQEGUYVTpKbBRfj4pm1NC8rJqWVpX2KigLQHgqaLPADzvyoADnBqFpqt3t/CXgN6BnGFadA+fNPrVzMGeOzpw5Om+XMD7p1m8Vcgrf+IbN3XdbjIyYBIOCf/ong3PPdS8jdXXw0Y+CaUIsdmrHfS40TXDZZUFWrQogJU9LXZ4Kg4MOv/hFCdOMsHq1JB5XWLo0/JSU5KuFTAbWrT/dszj78ESWh4fHGYtAIUoTKY5Sxl8pBttC9hyFYAyRrJq+Y0bqMe74HPa3/4PUpl4KsUlGrypja/JK/LkCGSNMZXoEwzTpN8IkRYi/jqUIOwzDl4M+zp58icmaXuaFO6gJ9eMgGBdlBM0S5phgPBfBQoKicjgoWP3uMm7tidOQ8NPY6KaqmsueOv6cAHxYg9EihJ60Xddg9aIX9jpzDmzLgy5gecD9+bRzISAxJZjCQcGaNbB7dwlFKWCaEstyGBsLU17u7jwVEPwLxaLD8eMmVVUa4fD0rNATQkxbUX0ioXDuuRqqqnH99f5psYJ4xeKlC2cET2R5eHic0dRzKdUsR+NJqZt8BvO7nyJ3ZB1C9RN80xfQlj+7X9aLRW17HeHPNKL3302JSdKpLWSsGCNGOXVjfTSM9dKXqMFKLEFRgs84hrCiYEXpDG6jaOhIA7rNBlr0TnSlxHChjNFiFEUrYWgSFYFIxfiXBj+hmI+9PdC1H5oqoLHyqWNPlODOLhgrgSNhdRKufJHtbn49CXuKrsn3pAPXvIDefG1tKrNnK/T1OTQ3C/r74YtfLKAoOrffrjB79lOF1Je/fJxHHhlgwYIEn/98K/ozKbnTiM8neOtbXz0pweciHIaVz5NKfqHc9cPpGedswBNZHh4eZzQCBf0p8Rqg83EmJjcix8YBG2vLV0lMo8hCCETgfPzNy/E7I+g/+x6+fghW6YzU1DAaqCLha2CeOu9Zhyg4kgdFnmMVBqbh46jWyqhSwUHm0ii7KDk+UARlPkmVonGxAmljH49IQd/uWrp7gujFGI6p8ZZLYcGTfFj/MASTJjQG3V7SDw/B/AjUvQi9MGBDhQoFCcPW8z8/nYaHHha8450h3vEOg0LBpqXFxz//c4m1a03yeYX/+A/lKUJq/fpBisUCW7f2Uyw2o+uvAr+pVyiZDKx79HTP4uzDE1keHh6vPBRBqc6Pf5eDVBxKTaHn3+dUECqoVbRc9x60b/+JwIEg8Q6LUHMjdfMW4eOZ+9mNmpIfGRn6tBLhYT/huklSSgxbUYiISTppZiF7CAZz1AS6aZE6jr6JSmWc4aMTWKZOVdtiSv4KROdC/rin/Ckia6QI0RM+VwIUAdkXIJSezJow/DQFpUm4sPr5n98/AGsfBV0XLGyXfO97aS65xM/VVxvk85Lq6qd7Y73znXV85zudXHttzbSlCz1mkLPf2P5lxxNZHh4erzyalxIdu47xv30EEQhTfuHHZ/RwgbIyzn/9zXQ9XmRWXOILP7s5ZdGB7xVz9Gsm9rBCuFYSkhn0kolp+5jwx6mVvfT767jefBBF1GMGRskSwp9OExjrRZ2sJjRykO7WOjKzdmF2LyFHmCCusmqPwu8H3TqqnA26AlUv0mlgrgE3jMLPH4L7yuEDb+Q5exO2tcKHPwA11SCERiIh+NGPJvnMZ8r5+McNysvF02qabrmllltuqX3OefT1FRkcLFFba1BV9dKd2z1OjXAYVq6cnrHu8poX/gVPZHl4eLzyMAJELvwUwdId4Augipmvq5lXreMP66jPXIIFwJgFP+4p0hOxCGl5mpo68cVL5I/6keMqgaYswrDodWooBvwo8c0ktUOMSR/jKT/7JudQkU9Qp4yR0yMMaCVS0UnalhzkPoKspoVKwlxaASUHdk5AWIO/qYGY/uzzejYm0mCZMJ4G03pukaUortCa+o077ojzzW9OEgopNDefLP2XUnLvvRMsWhSkpeWZI30n6OzM8+1v90+NL3jve2upq3vufTxmhkwG1q073bM4+/BEloeHxysTIVCNxMt2uKgfFlXBwVGoeoYi8ZIDDw857NsO8ddkaS0/QsnQKAz5SdYMUZytcfSJFsbW12ILlc5FOfbXnoNTUEkdSGB16+hGibLmSSpqUrRXDJNMjjFL02gPBhFobKCLW1iAKuDqKvd2Kuw8AFufgFgYblwFzbUQeJGRsIoKjU996unnXwhBZaVGKPTM/lVSwrFjbuRk794shqFQXe3j8OEcf/zjGDffXEE8fgqK0cPjDMQTWR4eHh4vkAsaYGe/u6Lvr22aBkwY6BjGTiWoivUjAhbJ3DjEHeygoHt3I/mtcSxN4FtUxPErjI5XoioWekuOQqwMazJM/niYzGgY37kCNZ5ldlQjgKuARshh46Dy5MgRHEpD3oa2MISfR5909MDP/gDlMegegHwRLlv+ws+B40j27y/R0KARjT5zndXFFz97OnXLFvjVryAQgJUrDbLZFL29RTZvTpFKlejtLfCBDzQQjXqXp5cTL104M3ifYg8PD48XSEMMzquD7X0nDUBPkHEAO4+PIhFtkmRkkFxXGBlUMGSeVr0La0UfDoIeo542o4MVk9swFY27rdeiVIJeU8SXMbkwsploKEPMzFHpLEYoglHyVBF+isAC+PMQ/H7ANSZN+uF9bWA8R415/wjoqhvFioSg4/iLOwdDQzZ33jnBmjVhVq168QsOcjm3v2GpBHPnhhgfj7NlS4qWFj/LlkXo6SkyNFTyRNbLjJsudE73NM46vE+xh4eHxwtECLhpHmRN2DcMTfGTEa2IComaEmViBDkCWrVNbihM3dxetECGWO1xEtER8j6DmlQ9y/fsoY9qfpJ9E63zj/L2xJ3EfCnGZZwnRufSP1ZDuTGBZe/msBXDyZczV6sl54fgk0TUrgmo9kNIg54cjJag9jlK1OqrwLJhNAWZHLS/SBP9qiqVd7+7jNraU7t8XHQR+P1uW5516zJ88YspUqkCFRUWtbUF4nGd6mqvAP7lx3MjnQk8keXh4eHxItBUePNC+O0h2HIcfCokw1CtQaI6TmvlNnRfiaLlJ9o4TqVvgKXxHVQxiILkEK1QNFB0yW/T17G0bQc3JO6jTTmGYyoERJ6mii5+lXoDuWIl93eey5HUPIrAd9QiTcE8d1TrLI2bhPEzO+xj7YjEDmQxAhDVQ+RKgnTpmWvHZtXCbTfCjgNuynDVshf3+oUQtLW9cBGUzkAoeLKxtGHAhRe6BfLvf3+K8fESoZBOf7/DhReWs3p1jFDIs3t4uXHThdNjFuulC0/iiSwPDw+PF4mmwi3z4YJ6N3W4pRcsB+rtMoaccvyRPvJjfsKtKRaoe6mx+tHNEjYKg8EaFpd2s78wH82QJP0DzOUII1RgoaFIh2a6iCVG2TjZzlg+QcKXQdNUNKlyOA+f6h/mCt8wC4KSm2oWkgvm2a4PUGHAdruaX2+MIwvw1kWwvO7p85/X7N5OICVs3gbjKbj0AveCOx08tg1+/SBcvBxuuuapjwkhCIcVTNPBNBV0XaW52T8tAss0Jdu2lQiHBQsXelGxF4KbLnyRZmsez4snsjw8PDxOkeoIrJkLq1vg2AQULJ0ri3O5S++jFE4hdYeIkUHN25hSw5Qao5QTU7cTTGZIFgeQjiCk5BhyBEIFn2ZSwkdR8zOYqcTBz5GchoNCMFBCKDaGrbF3LEYp2AdKF3PL4owhyDmSr2UyHDB8ZAb9pA4o/Fsc6p6ndOpYN9zzO/e+acJN103P+RlPQakII+Pu7wcPWnzuc3lKJnzyEwG+8IVK3v9+k+HhIu96Vznz50+PFcf27SXuvjuPrgs++EGVujovMvb8eOnCmcATWR4eHh4vkYAO86f6Cy4hzvJsK/9qrqPfiZF1gti6iq5YgIMubMb8MWqVPq6O/oFN1gUcKrQw33+INBH8VoE92XOYHI1TsEKgaljCQQ3lUMrS6AIKE37Giwbl6OSQTGIxnxgbnCLjqp/IrBIlHZJOkC1D8Jrm55w+AT/4dCiWIDJNUSyAKy6BWQ3QMOVH+oUvFDja5dCXNnjXh0u8fo1KVU2SpUslN93kR1WnJ10ViQh8PoHfD4HAmdUv8UwlHBasXDk9YtRLF57EE1keHh4e00yt2sg/HvkZv2idR0pGyKlBIkoG1XEoc0bYZC9jza4f4A/XoLWX2GotJ5cL0uT00G9VsU804R/qpmiAg4ODJJLIUCr68AULRP0Q0PzMpwYNlS5yvJVmLLXEfl+BnoCkOQRaBubEnn++1VVwxzsgk4XW5xFkLwbDgPY5J39XVZAOOLbkiV7Btv92oB8oCO78QY4N64McGFbZehCWz4E1F5ys5XoxLFjg4wMfUAkEBInEKQzwKiSTcVi3rnS6p3HW4YksDw8Pj+lGaJSPL2TJ8BY6K2bRna4nk41i+lSSTh8j623+YJ/PxeFO4sokQacDHIXNweWsj15Ewh7BGJ4E28IyDXRdwSrq+PwlFCkwpMKssiK+qa9wW8IOWWSRMHi7Hxy/pD3ox5CQeIEmo7U1M3g+pvjEJ/z8538WKHZLuo4rcHDKcEyDoUGNz32+QM35IeoqYeMTsHQ21FWe2rG8FOGp4KULpxtPZHl4eHhMN0YYUbGK2Pq9tCSPMLb4fKhwmNd3iMTxFPK/H6Z75SJ+t/RyJmrbSMgJJrUoBc0PjkJajZGsydFqdXGor41SSccaiOMP54kZkmTCZEXEBgQ2klEEP3VKvFaoXK5O1TUZMOw47LEdwkIwSyiIv+7g/DLT3Kzxj/8a5g3/ImF/DqTqXoVUoCSZTEGjDoPjoGsQfJEu9B6njpsunB6nfS9deBJPZHl4eHjMAP721yMZ4NC23xCPjNFoH2dUxtl/NI7/PRFyb7qMiCLotsvIEEETDj6KFByDMmecTCRB2oLmRXuwJpKkcz78epEyXXJ1XKVGCCSSIQpcTAy/CNAmdCYt8CvQi80PSyUcJDZwsapxrT4zK+0mJkrcd18va9bUkkg8d+9BnwaV5QJ8CgjpBk+KrgfZhz7oY9ZcONwLs+ug7NmN4z2mGTddWDzd0zjr8ESWh4eHx0ygKESCS4mNfomD3+hif/Us/JmjtI4dJPOJKxkUNpbQaVKPccRuoyQdLBQUxyFuj3PYmYPqg4wdISsUchtDzJ89SaR8lJEK+L3jx0KhXQmyVJRRsHXuHIZxG3QBVsQiERBEhYIjJY/ZFis0jYSY/holKcGyJM4LMAxPjcCiCGRW+Nkpc0x2C0IxwUc/rnHJJTqKAokoqF4p1WnASxdON57I8vDw8JghhsJ+9MurmGMMM3i4h7XlV/Ct1/9fWmuHudhZT14JERWTnKvtREiBZheZMMvxCYv+Yh0DpSQ+tYRiONh1CgePVLGkvo9NqFCwiUsHQ9N5SB/m2EgNRUfQ6IO8A78bU7iyygYdFCEQUmBJYAYyhmVlPt7+9ue3jk+n4Vt3wtZdNtt2OoR0lfvuVdjR7yOdhQc3QVU1/HKjxMzDbVfAghZvdeDLgZsufO4o5AvFSxeexBNZHh4eHjOAY9vs/sn3yJxTRd0FCr964yfpyLeSNCcZz8RxpEplxRA5GUJTLBwHBtM1RIoZRuxy8mGDoJPHQseyVdR6h5rkcWpquwmLDAuUThQcJp0GdplryJkOc6aaFgYUqBMKnaaFVCU5JM2KSvmz1GTt3GmyaZPJa19rUFU1MwXjjiPJFwSdPfDYZpviiEnGsbnhBvi7f1JJlKscH4JDo5L1d1tseVjyf1XBR/5e4T3vU6mvmpFpPSuWJdm1q0Qm4zBnjk5Nzdl9uXTThbnTPY2zjrP7U+Ph4eFxmkh1d2M+uhURDtAxIAi/J8MCYz8A67pWsddYxIKjeyAMOSOE42iE9BJ9Y7X8fvh6gksm0bUSti0QtoY9onFu026q1CGq5CA6edKUE1P6yMn9ZMIm3UKhxpqFsAPUCIWrDZ1x1aZcKKxQNdTnEFk7d5osW6ZNq8gqleCxbRaPPpIll3NQ6gy6IgGKs20oM6AgcAYtvvuFDFfcGsFvKgQjDhsfkNimihDw75+XjKrw93/7VJf6mebuu7M8/ngJXRf86U8F3vveyCn3a3xl4JmRzgRn8yfGw+P/b+/Og+Mu7zuOv797aleryzptCVmyjS0bY/ARAoEIknCEZEIIpKEJaUjbQJOUaVPnIkOSP1pmmhY6oTSdNGn7TwlDmmMYchQSrkThCjY2GBMcfBMLbMuyfKykXa12n/7x+3kkFMnI0q5WWn1eMzv2Pr9jv/v1rn/feZ5nf49I0YTjceKHQ3Cyn/SxLMlcgtxAhFdOrmbwYILXehbzyx1Xs+4dz5MNhrAyx8FwCwf7FkLGSL0epSp8nLrQYXLJIOXBFOWhk6SJcoJKDtoicoRodH2I73zkAAAQK0lEQVTEg4OcWznItn5jZ+hVygfP4701RmcsxET/zTsHg2koi8C115axbl2YVavye0l4egvc/s9ZFjeEWNKe5dFHUxxuC8OBMEQDUAOEwmS6jWNvDJFaXkYMwBnBkCNgkBn27ho/lMlraOPavLmXH//4MB0dtbzwgtHREcXM6O4eZvv2oZIushKJAJ2d+bnjvoYLR5TuJ0ZEpIgSjY287ctf5OH/+Dw1l1UQHBxg98mVZFIhggfSHH1sAayG3ceXcPxoA1WNvRwvr4Uy775R5ckB3tv6EFXWR1PLIZIuRr+LcTS7gN5wI/X0YAToseWsDbTQEohSXwlHsmneX+GoD088l2kwDfc9AfsOwcJauOk9Ac4/f3IzzYeHHXv2pGhoCFNdffpLSHMT5IZzVJRDoszIWJBj/UAoAOcAASAD9ATY1jtMaxJuvsyoboEj+8AwVq/J8YVPwfLFk8381OzaNcjnP/8aR4+mGB6O8sorOdra6onFjKEhrwgpZd5wYbLYYZQcFVkiIgVS9v4NhOuugU3PccGeX7Brwfls6HmSb+y7je66xdy59Ss8VdsJYcOlctQFDnDENUMwwNtizxHNpMkkwgxGIsSzAxiOVKiRxYEyQiykmmYqaSCG4yS9EIClve3c+6zRn4LVrfC+dRAdc/ujbXth9xvQ3gT7D8OmnfCuNZN7T48/foxHHz1OfX2IjRubT7sUTnsLrFwa4pXfZ6iNZVjQHMfiQZ6vcd7V5zXgDw5SjoE9YbZuzVJ3c5CP3A37n/GW+Ln3y2FCBb5SDQ877ruvh0gkxKJFFaRSjra2AL29WXK5LCtWhFm/Pj+TwmcvDRcWgoosEZECqu6IcfJIK1c/+Vt2XfVrvvrNvyaTDPBg4M95pvwiSBvUQjJYRc2xPupCb3AiWEPlwmMM9MVorTpIQ/YQ5hy5sjA1gUqW0MECygkSoo8MDZRxKa0c6oPvPBKmJgELKmDTbsjm4MMXQToDJ1JQWebdk8o5L75Tf54J5x90aopXf3+OWMwIBN5ccIVC8Fc3hTl2zFjeHubKkyF2vW7cfyTH48842O8VWDjgmLHzV45PfTrH2RcFsChs/BgFL7BOvQ8zWLo0xrZtA/T0ZLj55kYuuaSaVMpRWWlFv5FroSUSQTo787NwpYYLR6jIEhEpkGbqaQq00rP+OHdecjsX/vT/cMksA/EmNmfeSa41AgxBeYRcMsLxpnKi6QyxgX4Ov17Dhe3PsdBeJ+iyVMT6CYWjNFsD3URJ4nBkSJFlNRVECdN92CsWKv2pNa118OI+uGAF3LsJUhlvMesb1sKyRbD3ELTWwwXL3xy3c27CouLd766mvb2MhoYwgYDR25vl7ruTXHpplMsv/+NbtL99HZy61LQDFQH4/TLjD5uy7BwCMG/Y0DkYMl58IceatQHaGiBzLC//DG8pGDRuvLGehx7qY926cq64opr2di+J0WhpF1enJJNZurqOFzuMkqMiS0SkQBLEuDTxcVr77uK8zd+k/6UUuRwEyHAw0gL1RuO6XuzkMAeDzQxbGcPRKIHyYbaceDsrsjtpi+4jGHcMhKpYZFHWsQojyxukaSXEWqpYhFfcREJez9UpQ8Ne2w+3QiQI9QnoG4Cfvgx/e5XXuxUNj/RIATzxRIbHHsuwZk2Q66+P/NFwYChknH32yATpeDxAR0eIlpbJzVlKxCGXhXTKiIYhPQQYWMBwWXBDMDAAVRWwvG1qeZ+KpUtj3HprfiZ+z00aLiwEFVkiIgVUbpWsPutrLC+/hh/vH+Jw020sOvIbqhYcpqeujeiCNM3n76V/R4L+3yXIHYuQ6wuRCg3x4spzWZbYC1ZDm+WopoMHGMKAIYLkiNLMSO/RyhZorIJ9PV5xlc7AdW+HB3dAS7W3T1UZvH7CK6zKxqyyk047HnkkQ0uLsXVrlne+07Fw4el7cmIx48Ybyyedj+Xt8MkPw+4Xjd/0wVDG4QCXdeCMihrjH78AZy2amaFCOUVFViHoIywiUmgWJlK7gXhLlt+uf4Luvc9CTxqG4ERPFQuXBalck6Rp7SGy/UFSQ1EqAicI1+XYl1pPnfURjEcYCF6EAU2EcTh2kmaQHDG8XqR4FG65ArbuhYE0LG2CJY2w9wRsPQC15dDbDxtaxw8zEoG2tgB79+aoqTGqqvI/VGYG564w7vi68dnDOZ7fYgwM5gAjWm3cdUeQ9gnik8Lx5mRV5eVcmpM1QkWWiMgMOe+8AL/syrKFlZQffBqGchz/TQ0n2iuINScZyCYg5qit6iGYzRInR096Ld25YZYGQyyPL2CHPxsrhSOCERqzTk48Chd3vPl1P3guVMVgXy+sWQSXnT1+fGbGTTdF6e7O0dAQIB4v3Hyk1asD3Hev8cCDOTY/H+DsFQE+cr2xYoLYpLC8OVlHix1GyVGRJSIyQ9rajA9+KMBj/1nBvsTFlO08RCqwkB3fW0vr1a+yeN0uQmTIDRqZbIIya2Q4MkRtztGYXMI58Rj7ybCbNBGMD1BFeBKLEUbDcNXKycUYjRpLlhRmaZ2xzjrL+JtbZ+a15K04YBIrfMsZUZElIjKDrrwkwO21WW75eZhUoAmOgNsdZP9/raRn6SIWXtVNrHqQeDRAuGaI5qEKKg4307woTgT4IFUMkCNCYFIFlshkJBIhOjtr8nIuDReOUJElIjLDProiTFf3SX62vZ++eIzM0gC53hgDe6vY/b1KyiqHuOUjOdpzIRiKciwLK/zpMoZRjnp/JL+SyWG6uo4UO4ySoyJLRGSGhQLwubULcMMZNu0Y5ve9EdLBAFQ74ukAf3pBGY1Bo/ekN1H84+0Q1//WUlD6dWEh6GsrIlIE59TC1y8O82R7mJ1HwTJw8ULjvBb43XHvx4cNZXBuDVRH3vp8ItPhDRfW5uVcGi4coSJLRKRIWivgYyv+uL1zPt8TU4rCGy48XOwwSo6KLBERkXlPw4WFoCJLRERknvOGC+vzci4NF45QkSUiIjLPJZMZuroOFjuMkqMiS0RERNBwYf6pyBIREZnnEokwnZ1NeTmXhgtHqMgSERGZ55LJIbq6uosdRslRkSUiIiJouDD/VGSJiIjMc95w4aK8nEvDhSNUZImIiMxz3nDhH4odRslRkSUiIjLv6WakhaAiS0REZJ5LJCJ0drbk5VwaLhyhIktERGSe84YLXyt2GCVHRZaIiMg85/VknZWXc6kna4Q554odw1sysx5gf7HjAOqAI8UOYo5TDqdPOZw+5XD6lMPpeav8LXbO5WcxwUkws4fxYsqHI8659+bpXHPanCiyZgsz2+yc21DsOOYy5XD6lMPpUw6nTzmcHuVvfggUOwARERGRUqQiS0RERKQAVGSdme8WO4ASoBxOn3I4fcrh9CmH06P8zQOakyUiIiJSAOrJEhERESkAFVkiIiIiBaAiawJm9idm9rKZ5cxsw6j2K8zseTN7yf/z3eMc+xMz2z6zEc8+Z5pDM4ub2c/NbId/3DeKF33xTeUzaGbr/fZdZnaPmVlxop8dTpPDWjN7wsySZvatMcd81M/hNjN72Mzyde+gOWmKOYyY2XfN7FX/+3z9zEc+e0wlh6P20fVkDlORNbHtwHVA15j2I8AHnHPnAjcB947eaGbXAckZiXD2m0oO73LOdQBrgYvN7OoZiXR2mkr+vg3cApztP+b7DQEnymEK+BrwhdGNZhYC/hV4l3NuDbANuHUG4pzNziiHvtuBw8655cAq4NcFjXD2m0oOdT0pAVpWZwLOuVcAxnYEOOe2jnr6MlBmZlHnXNrMEsBGvIvcD2Yq1tlqCjkcAJ7w9xkysy1AflYsnYPONH/AAqDSOfeMf9z/ANcCD81IwLPQaXLYDzxpZsvGHGL+o9zMeoFKYNcMhDprTSGHAH8BdPj75Zjnd4afSg51PSkN6smanuuBrc65tP/8H4B/AQaKF9KcMzaHAJhZNfAB4LGiRDV3jM5fM3Bg1LYDfptMknMuA3wGeAl4Ha8X5r+LGtQc4393Af7BzLaY2Q/NrLGoQc1Nup6UgHndk2VmjwJN42y63Tn34Fscew7wT8CV/vPzgWXOub8zs7Y8hzpr5TOHo9pDwP3APc65PfmKdTbKc/7Gm39V8vdomU4OxzlXGK/IWgvsAf4N+Apwx3TjnM3ymUO860oL8JRzbqOZbQTuAv5smmHOann+HM7L60kpmtdFlnPu8qkcZ2YtwAPAJ5xzu/3mi4D1ZrYPL68NZvYr59xl+Yh1tspzDk/5LrDTOXf3dOOb7fKcvwO8eXi1Ba83pqRNNYcTON8/524AM/sBcFsezz8r5TmHvXi9Lw/4z38I/GUezz8r5TmH8/J6Uoo0XHiG/K7wnwNfcc49dardOfdt59wi51wbcAnwqr4Q45soh/62O4Aq4HPFiG0uOM1n8A3gpJld6P+q8BPAmfZCzHfdwCozq/efXwG8UsR45hzn3eH6p8BlftN7gN8VLaA5SNeTEuKc02OcB/AhvJ6BNHAI+IXf/lWgH3hh1KNhzLFtwPZiv4diP840h3g9Lw7vonaq/VPFfh9zJX/+tg14v2TaDXwLf1WH+fqYKIf+tn3AUbxfbx0AVvntn/Y/g9vwioXaYr+POZjDxXi/pNuGN6+ytdjvY67lcNR2XU/m8EPL6oiIiIgUgIYLRURERApARZaIiIhIAajIEhERESkAFVkiIiIiBaAiS0RERKQAVGSJlAAzy/sismZ2jZnd5v/9WjNbNYVz/MrMNuQ7NhGRuUBFloiMyzn3E+fcN/yn1+Kt4yciIpOkIkukhJjnTjPbbmYvmdkNfvtlfq/Sj8xsh5nd598VHjN7n9/2pJndY2Y/89s/aWbfMrN3ANcAd5rZC2a2dHQPlZnV+ct/YGYxM/u+mW0zs/8FYqNiu9LMnhm1aHBiZrMjIjKz5vXahSIl6Dq89ffOA+qATWbW5W9bC5yDt57hU8DFZrYZ+A7Q6Zzba2b3jz2hc+5pM/sJ8DPn3I8A/PpsPJ8BBpxza8xsDbDF378O7071lzvn+s3sy8BG4O/z8aZFRGYjFVkipeUS4H7nXBY4ZGa/Bt4GnACec84dADCzF/CW60gCe5xze/3j7wdumcbrdwL3ADjntpnZNr/9Qrzhxqf8Ai0CPDON1xERmfVUZImUlgm7mPDWTTsli/f9P93+pzPMyHSDsjHbxlury4BHnHMfneLriYjMOZqTJVJauoAbzCxoZvV4PUvPnWb/HcASM2vzn98wwX4ngYpRz/cB6/2/f3jM698IYGargTV++7N4w5PL/G1xM1s+ifcjIjJnqcgSKS0PANuAF4HHgS855w5OtLNzbhD4LPCwmT0JHAKOj7Pr94EvmtlWM1sK3AV8xsyexpv7dcq3gYQ/TPgl/ALPOdcDfBK439/2LNAxnTcqIjLbmXPj9eyLyHxhZgnnXNL/teG/Azudc98sdlwiInOderJE5GZ/IvzLQBXerw1FRGSa1JMlIiIiUgDqyRIREREpABVZIiIiIgWgIktERESkAFRkiYiIiBSAiiwRERGRAvh/10unLTiB9dgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Now lets plot according to price.\n", + "dataset.plot(kind=\"scatter\",\n", + " x=\"longitude\", \n", + " y=\"latitude\",\n", + " alpha=0.4,\n", + " s=dataset[\"population\"]/100, \n", + " label=\"population\", \n", + " figsize=(10,7),\n", + " c=\"median_house_value\",\n", + " cmap=plt.get_cmap(\"jet\"),\n", + " colorbar=True,\n", + " sharex=False)\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "343a7b40", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAGvCAYAAACKMaZWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9d5gU15m3fZ+q6jQ558TAkMOQEUEoICEJlKxk5WBL9reWbDnv2t73e9/1evd6v12vvbteey05KNpWsLK8soQEEgihQM5BMIkZJudOVXXO90czMMCkHgaGman7upCgu8Kp6u76nec5TxBKKRwcHBwcHByGF224B+Dg4ODg4ODgCLKDg4ODg8MFgSPIDg4ODg4OFwCOIDs4ODg4OFwAOILs4ODg4OBwAeAIsoODg4ODwwXAeRdkIYQuhNgqhHjj+L//RQixTwixQwjxshAi6XyPycHBwcHBYbgR5zsPWQjxLWAekKCUWi2EuBJ4TyllCSH+L4BS6vt9HSM5JU1l5xWc8bpPCw35eC2pMDQx5Me90Bmr1+1w4TOSv5uBgInP5xruYYx4huM7EO059+4/5PcHQrHRnMOIelRngRAiD1gF/AT4FoBS6u1um2wCbu7vONl5BfzhzfVnvF5W1nji76smtZ/laMc2jX6T1BjnweFw4TGSv5u791QxbWrecA9jxDMc34Fozzlu5vKWaM9xXgUZ+DnwPSC+l/cfAJ7r6Q0hxEPAQwDZufk97lxUlHri72/uP1OUj7UbvLg9gZaQxiXFfpaO8/c74HP9we/eU9Xn+z39ePvbp4vaep39h9xkpNlMmhBGRDmhPBbd5qfgPHQcHBwcouO8CbIQYjVQp5TaLIS4pIf3fwhYwLM97a+Uegx4DGDqzDn9+tmLilJ5cz8U2XtPvPbLDeNpbQuTlRHk6RoXgfoGcuKC/Y79bISpP2YtK+3z/e3rt0W9D0BHh+LVn4VQCqoOwMyLXEyZog96nNHS07gdHIaKc/mbPNcMdELt0DfD8R2I5pz+QPRLqOfTQl4CXCeEuAbwAglCiGeUUncJIe4FVgOXqyFe1O4Sr4oKjT3/mUisRxJsgAnLLYpKE5iSbQ/l6YacgYhvT/j9ilAICgoE5eWK5pbzGysw2HGPVbomMOfLszCS3b4jGee+j266L0nE+DxR73/eBFkp9XfA3wEct5C/c1yMrwK+DyxXSvXvQ46SVzeGuH6xh9pajdwkmxZdUN8omGpDQUr/Yry9XGdHuYvZRSbTC/rfvrayhsz87AGN7ehRgWVBXp5CH2LjNS1NUDpLZ/t2m7Q0wbSp/Z+grg62bgNdg3nzICmKeHcpFR99FGTb9hCxsRpXXhFDTs75XhFxcHA4HctWVLdKQtZwj2R04jEgJ1HD0M8+yOxCeGL+AvAA74jIIucmpdRXz+aATa2wr0yjudHNt26J3KS8PJv0ZElrrUZ2huLOZQFi+5nANLQJnv/IS5xHsb/ay7dS/KTEDY2l+c47OmvXRW7/9Ok2X7zNQhvCJDRNE9x8s8FVVxn4fGAYfX9Zmprg14+BZYGUsGUrfO1vIHaAMYIffRTktTc6yczQaW2z+M1vW3nk4SSSk8+fm9zBweFMqlslCclppCQnIaINJHHoE6UUTc0tVDc3UJBy9s+6YSkMopRap5RaffzvE5RS+Uqp0uN/zkqMO/zw5zUuNu/W2bzPx7PveLEseG+nGy0TJk23mTjN5o9rfOw+3PcNVMf/o2mRv/fkTK+trKG2subEvwdiHZsmfLBeJz9fUlgo2bNbo6Fh6H8oQgji48UJMZZSUVEhKS+XSHnqxRw+DIEg5OZCfj60tkJl5cDPtWVriKxMnbg4jbRUnVBIUVU1Oqfktq3w++VwD8PBYUCELBwxPkcIIUhJThoy78OFYCEPKQ3NgkOHBZ2tglDIxadxinHpBk++4qXNL4hPVsyfapGeJHllvZeJBZ24erkL6QmKGxeE2FFhcOUsi9T4U0VsoO7pYFDxxpsWVVWSxRfpzJsXsVo7OsDtBqEJvN5zv8b72us2n3wSOc+cOYKbvqCf+JF6vSCPe+SljPzxRLEEEhMjqKuTJyxqKcHl6vsBYNuKI0dMbBsKCw283sHPD/1+SWenIjlZ69cbcDaEw4rf/KaTo9U2N97oY95c9zk7l4PDUDFQMbalorI5QHlTgKBp43XpFKb4yE/2oY/Q3O9zzVBOdEadIHe0Qc0xQXqywh+CrVtcrH3dRWWrhssFyalgWYLrl4UIhKGuWSM3vXdrZ954i3njz5z+RLNWvG6dxeYtNhnpgldeMcnJ0bj7LpMXXjTw+wW33WqSkDDoSz6F5laBZUNasjqR5mSaimBQ8emnkoKCyIvbtkmuWKGTmBjZZvJkmDoV9u+P/HvBfCgqGvh5V14Zy29/20p5uYVUiokTXUyY0HvwipSKPz3Xzq5dYTQNsrIMvvylBHy+6EW5rMzkqafaCIcV+fku7r03/qzEvS+amiSVVTYxsYIdO8yoBTkYVDz3nE1zi+L2LxpkZjoPOYfhRynFzqNtbDzcTHvIxq0LdE1gS8UnZS3Ee3QWFyczMy9xuIc6qhl1ghzjgYkZkrqOMBMyNNY8L+iUgnCawAwLAtXQGYYVcwVKgccVvWUajRgDtLYqYmMgNlZQLwSBgKKkRPGtb5pRn7svNu8yeHmNBylh2dww8YbFb3+vE/DbTBgforFRkZQk0LSI9drdAjYMuOvOSGCXpkF6OlHlLeflGTzySBKVlRYej2DCBFeflmpNjc3u3WHGjYuI9pEyk0OHTGbMiD4y8S//04nXJ8jKNjhyxGTfPpPS0uiPMxAyMjQWLnDz+WGLyy6N/hzl5Yq9+yQul+DTz2xWrxp1P0GHEciGQ01sPNxMerybvB4qiQVMm7/srqc1YLGsJLWHI/SNyxvHjOnTsCybyZMn8cTvHicmJmYohg7AE089zebNW/jPf/9Zr9use/8D3G43iy9aBMB/P/Y4Mb4Y7rn7ziEbx9ky6p4G2dmKeG8HJRluNn8sCLSB5lMgNexgRGSCHRqbdxqsvixMWlL0gpyZnx2VKC9ZYrD/QJiKcklRkUZh4eCtt5YWaGyMRECnnva7ePcjN+nJEo8bfvmkhw/fkAT8Cpehs/zSGPJz/HR0KBITBXfeoeH1niqYEUt10EMjJUUnZYCBDV1ir5SKuHxUdBOA7mji5Pr+ua4Eq2mCG27wDXr/7GxBWpqgvR2mTHasY4fhZ0dVKxsPN5Ob5O3VLe1z6eQlefnwcDNJMS5m5Ebn0vP5fGz57GMA7rrnfn792G/45qNfP+uxR8P7739AXFzcCUH+6kMPntfzD4RR1+3J54OHHvKQVdzOxGILlxs8GtACuEB4FIkpEi0Mt1w6+NrXXaI8EPLyNL71TQ8PP+zmgftduN2DexCXlcHPfq7xxJMaP/u5xs6dp76flixpbNWoqIbdOxXBIHg9YEvJp59ohEIac2a7+eajLiZMGN7o56wsndJZHsrLLcrLLQoKXJSUDG49dtWqWEwTysstSia4mDLlwl3XTUgQPPoNgx/8ncH48U4EusPwYkt1wjLub41Y1wQZ8W4+/LwJWw5+5rt06WIOff45AD/7+X8ws3QeM0vn8e//8QsAysrKmTq9lPseeJDSOQu45bY78PsjGbHFJZNpaGgA4LPNm7lsxcozjv/6G29y0ZKLmTt/EVdetYra2lrKysr59eO/4ef/8Z/MmbeQ9Rs+5P/8wz/y03/7OQDbtm1n8dLllM5ZwBduvo3m5mYALluxkr/9ux+xaPEyJk+dyfoNHw76ugfCqBNkiIjy8uUJZEzoJDFeoStw+SV6iyInVrJ8XJi7VwSJjznzSxW24cUKDz/dE8OWxqFzIMTFCbKyzi7g6NXXBHFxivx8RUaG4uWXBbLb8vdNK0NMn2CRmiApSA5gaALTFoAgEJDs3qPzP3/1sX5D/4UJLAuqqiLR1ueCSFpWHA89mMj998XzpQcS8HgGd2/y81189zvJfOfbSdx//+CP0x+WNTTmt2GIczZGB4doqGwO0B6y8bkGNjn0uXTaQzaVzYFBnc+yLN56622mT5/G5i1beOLJp/now/fZuGEdv/nt79m6NVIgZ/+BAzz45QfYtuUTEhLi+dV/PzbgcyxdspiNG95n86ebuPXWm/mXn/6MoqJCvvLgl3n064+w5bOPWbZ0ySn73PfAg/zzP/0j27Z8wozp0/iHf/ynk2O2LTZtXM+//fT/48fdXj8XjDqXdXeuuS6e+mOSje/rtDaHyUrVWLjAorTU4oorwj3us7vV4NMGgyyf5OVKDxMTbOJ6WWeOZh15KPD7T+YFu90QNgVSqhP5y4nxiluvCdHRoaj7XNHW7OJIhUBaNimJgkULDQoLYft2g4uX9b5+bZrw5JOCI2UCQ4f775dRBXgNFE0TFBUNTdUij0fg8Qy9xamUYtt2k7VrQzQ2SlJTNS691EPpLJeTRuIw4ilvCuCOsqCFWxdUNAUoSh34GnAgEGDOvIUALF26hC/dfx///evHueH6a4k9/lC78Ybr2PDhRq5dvYr8/DyWLL4IgDvvuJ3//MUv+fa3Hh3QuaqqjvLFO+/hWM0xwuEwReMK+9y+tbWVltYWll+8DIB77r6L224/ua584w3XAzB3zmzKyssHfM2DYVQLsmHAvQ/ZXHGNpKqqhS/doONy9b1WaQhQCMJSoAnQRO9WUbTBXWfL0qXw5puC2FhFZ6dg8WKF0cMnGBcnePAhONhiYOTpZKS5mJyh8AidY8cEl1/et6u+pgaOlAkKCxUNDbDxI0FR0fktvXmhsHFjmNffCJKRoVFYaNDRIXnuuQD+TsWSJecmcMzB4XwRNO2o05l0TRA0oys53H0NuYu+qiSfPtnt+rdhGMjjbsFgsOfn2De++W0e/cYjXHftata9/wH/8OOfRDXW0/F4Iktguq5jWee2tsKodFl3xzCgoEiRk2dFcn77+e5NTbS4MjtEmkdy17ggMb1MWQYqxpYFGzbovPVXnba2QVxAN5YuUdxxu6S0FG66SbLqmt6/0H7bxaTpBl++W7H4IsGEUsE1V4f54m1BLr+s7+ju+PhIgFdTE7S3CzLSz27cI5VQSLHm3RB5eZGCJwBxcRp5eTpr3g0RCo3NSYrD6MHr0qNeD7alwjtAF3dfLFu2hFdfewO/309nZyevvPo6S5csBqCiopKPNkUE/E/PPX/i9aLCQjZv2QrASy+/0uNxW1tbyc3NAeCpp5858Xp8fDzt7We25U1MTCQ5KfnE+vAzz/6Bi49by+ebUS/IXXRvzdgXugYrsk2+NCFIScLZN5745BON1143WL9e58UXz849KwTMnAnXrlbMn0ef9a91TSFVJLXLtASJCZIlS0xmz7Z63C8YhNDxCWdyMtxztyQ3Fy69VHHxxWNTeBobJZalzgjCc7sFlqVobHSqdTmMbApTfITt6H7fYVtRkDL4TIMu5syezb333MWixRdz0ZLlfOmB+5g9O9KUZsrkyTz19DOUzllAU1MzX/1KJCL673/0A775re+y/NIV6L08AP/X3/+Q226/i+WXriAtLe3E66tXXcMrr75+IqirO7//7WN8/29/QOmcBWzbvoO//+HfnfX1DQYxxM2VzgtTZ85Rf3hzfdT7zcrp6Hebgwd13nvPhdsNK1eGyck586Ebjav63Xd11rxrEJ+giI1RfOPrQ5t73BuWBS+t9bD9gEF6suTua4IkxUfWm7t7CaSEN99y8/GnLhCwfGmYFZeag05BGgkopTh2zCQmRiMxsfdVm6YmyU//rZ2CAv0UF5pSiooKm29/K56UlKGZ0zrdnsYGw3HfD9bZTJ5U0uN7tlQ8vqEct6ENKLArYNqELcmDSwvPWeWusrJyrrvhJnZs++ycHP9csG//QUoy9FO6PY2buby66lhDbjTHGdVryKfz6saICXj94p7X/urqBE8+5SUxUWFa8PsnvHzzUT9nk7++cKFNdbWgtU1w/XXnr7azYcCtV4S44ZIQLgM+/RTeeFMQHw/33qPIyIhst3W7wYeb3BQV2CgF765zk58rmTzpwm5LeTb89a/NfPBBG26Pxpe/lEleXs/fh5QUjQkTDCoqbLKzTz6sjh2TTJhgDJkYOzgMF7omWFyczF9215PXRx4yRMS7rj3MqukZThnNc8SYe6L0JsYADQ2R25GYqEhLVQSDgpaWM29RNDnIcXFw990WD3/NJD//7LwRTU2C19908/yfPew/MLA1HLcr4op+/Q2NzMyIa/q9907+mKprNGJjIpazrke2r60f3V+LzZs7yMl1Y9uKg4f6Tt/4wo0+UlIE5eUWFRWRnOnUVI0v3Hj2LrvhJDXGRaP//HhrHC5sZuYlsqQ4maqWIIFegrUCpk1VS5AlxclRFwWJlqKiwhFlHQ8lY8pCLipK5dWNjb2KclpaxD3d0iIwTfB5FUlJPa8Tnu+Up44OweNP+AgEBG63YvM2nfvvDjF5Yv+WrK6D261ob48IcneLPydb8uGmiOtaKQibkNlHbe/BcvRoiD/+qZ4v3JhGcbF3yI8fDfPmx7NuXStej0bJhL6FNTFR42t/E0dZmU1rqyQxUaOoSEdzLASHEcSJini9sKwklUSfwcbDzTR2mqfUsg7biniPzqrpGedcjEciQ7nsO6YEuT8yMhT33hNk7brja8hXhvt1V5+v1KeKKo32dkFOts3HHysqKxQ6Ov/04/4F2eWCe+5WvP2OYMJ4KB6v8d57GunpklkzLI5WC9a8KxAaXHuNyaQBiHy0BIOS5maLzs7hd4VfeUUSs2bGEhOjkZDQ/09A0wTFxc5PxWFk4jGgqbml3xaMM/MSmZaTcKLbU+h4t6cCp9tTr3T1Q/YM0eNhzD1l+rOSS0psSkqGXzROx9DBltDcBHW1iphYwb59Esuix1zk0ykshAe/rNixU+fZP3hxuyPW8vKLQ4SDLWCHCXYq2lo8CBE75OMfP97H//r7Ajye4XeHCyHIyrpwy2s6OAwlOYka1c0N1Nc3DHifTAAdkBBsgIMD33XM4TEi93goGHOC3MVA14BP53RrONpGE4OleJzNhPE2u3br+AMKFFx/nd1n6lNPbNjgIjVVkRCvsG1Y865OXZ1i554k4mNDHDoShFSdfcc8GDpcOivM/JKhCUa7EMR4uLAsxSuvhtm+3WbSJJ1bbnY75TMdzguGLigYYNMXh+FlzAryYAR0sCI+FBgG3HN7kEOf6zReL/B5bKZPV1GnJ8XEQHMLEA/hMPi8sHt/HP6AjmW70JMEb37qYfYkhS3hzx96iXEHmFY4fF6D810R7Vywb5/Np59ajBunsXu3zYQJFosWOmlHDg4OJxmzgvzhh4J31ujMmSO5drUcdN7t+RQLlwumTD47YbxqZZjf/d5LZVXEWr3zjjDCkDz5tI7XHSQhL4biHInbFbkhCTGS3eXGKYLc2AitrYKUFEVS0lkNZ0RRW6vx/AsegkHBDdeHolrakDLiKtc0gRAKeQGsijh5yA4OFxZjUpClhL+8pZOVpdi0SWPpEklKSk/bKaqrTZKSdOLi9B7d0yPNcsvKkjz6DT8NDRoJCYqkJMWP/1/BNVcGaWhQvHXAwx//4gFbMHeaSdE4ic9zMopwx07B88/rCKHQhOCuu2xKSoa3uEwgoKirg7Q0iI09d27gV15109Ym8Pngj3/y8sMfdA54yWDyZJ0pkzUOHpIUFmiUlo7Jn56Dg0MfjMmngqbBtGmSXTs1cvMU8fE9b/fOO62sXddGaqrBIw9n4fVqJwTYNOHddzVq6+DyyyR556fA0qDp7m7PzM+moEBS3qxRW6dRmGyzeLGLY/WC7/yXl3qpkRgveXezi5XeMA+vjuSrWha89JJORobC64WODsWfX9L42+8Pn7nX0aH49WOS5hZIiIOvfEUjMfHciLKUkRQyXVdIGWWHHLfgnns8hELg8ZxZPN/BwcFhzEXZlJVFIqxvu1Xy9a9bPPhlG1cvnrvq6jAul6C52cbvPzU3d/sOwdp1GkePCp5+xqCnVLTBrjlLCXv3Cj77TJx1P+KuMWTmZ5/4A7D2kItff+Tjqc1eHv/YR9CE3fsNAm2CfLeN1ilIdSmmZ9qkJ0YuzjQjfzzHA9RjYsDfKXq89vPF0aORJhgF+YLWNqioOHfnuv66MLoGbW2CW28JRh1QJ4TA6xWOGDs4OPTImLSQIWLpZGX1vc2qVcm8/0Eb48Z5SUnp5Vadg2fr2rUab7+joeuQlKR4+Gv2oMt39uRSVwpe3xJmQp6BoUF5s0ZFi05RgU1aqqS1SZCUqEiPt5k79WQ1J58Ppk6R7N6rkZykaGwSLFo4+PX3oSA1FVwuRXk5aJoi/Rx2psrJkXz3u/5zdwIHB4cxzZgV5IGQkeHilpt77hI1a6airlZSWwcrLh9aUdq6TZCTo/D5oKIyUmN7MP2Iews4q6uqISdjPO0hiHMrlAKfS5GfLvnXH7Xzuxe87PwoTGOrzc6PbZbNOVnl5+abJekfQPVRmD9PsXTp8HY8SksTfOUhnfIKRV6uRlaWY306ODiMTMaUIHe5q4cClwuuuaZvMRpsjnJxseLTTzViYhXGcSs5GrrO2dd575gd5I/bvNR1aKycFCY/SaKUoiQnTLYW5HM0MjIUzz4L44vhqqsi/lmPB6684sJqO5idLcjOdoTYwcFhZDOmBPl8M9iUqFXXSJISobkZFiwYeGrRQIS4i5xEybeX+1HqZDvG6mr4t59J6usVSUka0ob0dMVHH1knBNlhdNDVWMJJfXJwuHAYU4Lc3TqWEnYdNWhoFxRn2BSlDb3V1yWM0QqzxwOXXdb3eE4PGDtdiNvaBaYFqcl9W9fdXe1ZWXDttRrvvGNRMsGmrV2Qnh4pz3m+kccvXxtzYYfnD0eMHRwuLMaUIHdnzR4X7+5x43XBmj1w/9IgJVnRp+98/jnU1kFRIeTknIOB9kB/Ah8Iwi+e8hEKCR65z09ayqmifPq+3cV98jjYmuyiqkrH7VZUVwquusKktvL8pTbtP+zhjbVJ2FJw1bIWZk4++yppnZ2CtnZBVubwBqE5ODg49MaYEeSyskZm5Zy0kDd97qYgVeLSob5dsK3SGJAg79tn8t57JvHxgvHjPbz+hoZuRIKtv/Y3fUduD1VVr/6OoQlwGWDbA7MwTz/eI99QfPaZpKVVUTxOMGXK+XNXB4Pw7nOx5OZLdA3e3xrHwkV+EuIHn1sVDMITf4wsAdxwPSxaNIQDHiKOldUO9xAcHByGmTEhyD0Fc6XESloDgrQ4RWdQkBzTv8u6sVHyzLNBkpIEDY2K99dDUaGPjIxI/uvRo2cKcncR7i58gxHnge7j8cAj9/mxbYiNIl3KsqC5WZCUBEuWDM+asWkJLBs87og7vatH80CQUrHhwzBHj9osWeymoCDy9Q6HoaMjMkFpaTmHg3dwcHA4C8aEIHcRtuHZfV72V+tkd9pUH9PpSFWUZNksKen/qX/gIDQ2aWRnCeLiFJWVkrY2hW1HimNkZg58LOe6S5Q3ymBy24annnZx6JAgN1fx5S+ZJwqAnE/i4xSL5pised/N0QqNqZMs4mIGZh3v3GnyxhtBEhMFBw9YfO978Xi9goQEuOduqK2FuXPP8QU4ODg4DJIxI8idnfDLJ328tMlLZxjGT7YpiJMsnhZm9bL+xXjrdoOXXndx4JDNoc8tZk63ufoqFyUlgupqmDiRE+UzA4FIWtRA+hQPJ90nBK2tcOhQJN+5rFyjvl6Qlzc8JbiuWBbmw3UuCjIl4Q7B22+7ue66cL/7BYLqeDEVjepqG9NUeL2RBeOSksgfBwcHhwuVC1wyho5/eVwQrNPIy7bZuN5NUpqitUOjZq1G6RSbvH6irDduMsjKFFx/fRzbtltcfrnJyisFug4zZpzc7rNtBq+86SE1RfLg3UGgd1dzX9ZxT/t0WdX97TsQTj9+QgIUFirKyjQyMyVpacNXD9PvF+gaTJ4YifSuOjqwUOuZM1zs2WNRWWmz6hov8fFOiLaDg8PIYUwIclFRKkf2a3y8K8SKBZJDB3XqGwWZ6YrsNJvv/yaO6bkWi6ebLJ/ds7WclanYsl2QlKiTnWMwd65C188U8Y83GyQmKuoadKpqNCaXnBTRcBh27tSYNk3i9fY95t5SpobCxd2T2BsGPHC/SX29IDVV9emuVgqOHNHx+6GgQJKQcKp4V1dLqqpsJk3SSUyMXhSTkhRTp1js3mMgBFyxYmCLyDExGg/cHxv1+c6WbdsDHK0yWb48lrg4J1/bwcFhcIwJQQaYNVdyaI+LV9/XKduj0dkkqPQpahsEsVmK+eMVf/3YTXGOTX7mmUJ79ZUhdB3q6gVXX2mSmdGzRb1wrsUrf/GQkWaTl33qNo2NkR7MmZlqwO7gnqzi0wW1q7nDQNJ5+lq3drkgJ6f/ca1Z4+K9tR40TREXp/jqVwIkH893bm9XPPZ4kGBQkZuj8cgjvv4HdRqaBl+8LcTRoyZeryIjY3jbO/ZFZ6fk+edbCZsKn09w2WW9tA5zcDhOV1GW4cbJQz83dH2+loy+tsWYEWTdDbHZipY9itZGDZLBShLsV4KMbMXWch3ZKQiZEVVbt83Fh7tdLJ5mcmmpSUwM3HBtqN/zzCu1mDrRwu0+cw05O1vxja+b+KLUqO5CfDrlVRrPvOLF64F7bwqckXPcnaEIIjNN+GC9m4ICG12H8gqNPXsMliwxj7+vsEyIiRF0dPZ9rM8+01i7zqCoSHLtausUr4GuR6zvCx2vVzBhgpvycpPCQvdwD8dhBHC2QtjoN4fkGA7nhq7PxhhEVaMxI8guF2goDh42IBGwiCQPG4LmTli/z0WuS9LYDDlp8PZmN1kpkjVb3CyYZBI7QBFtaRE0NWlkZ9sYxpkiGK0Yd6cnMV23yY0Q0Nwq2L7X4PIlPf/QohHj7uU0T0fTIhONcDhyLdIGt+fkJCAlReO229wcOGCzaFHPD43aWsW//Cs8+ycX8UmCqZN10tMVlywfvr7Kg0XXBfffl4xtg2GMrIoj5/Kh7FhfDg7RM2YEufxII3q7G3BDhg71gAlkgbkX/Ps1yqTGk8/6+MnfdlKQISmv1clPt/H2Y/h0Wa62nsvjj+0DaDcAACAASURBVHsxrcg67Fce8p+ztKYuxuXb7PvcABQ5Pbja+8K0Ijm+3ScbR49q/O5JL1On2Nx045keAV2Hm28K8vwLXmwLJoy3mTnj1NqaM2YYzJjR81dLKcW//Uzxpxd02toEpmmz2e+i6ujIErPuCCEu+Ij600mNcQ2JpdUTjvXVO85ExaEvRthjZPA0NQKWpDDfovGIAUUCNGADUC3oiIVJGTbCFpRX6ty/MkBdi0ZGkuy3EX2X6L79jo5UgoICSXm5xtGjOiUlA7f6AgF44TUPNbU6164MMXVS//suW2BSkGvjdtGrIPdkHVfVazz5tg9/CC6ZFeaKuZGHaM0xjYZGjT174Qs39GwpT5tm8/1xnQQCguRkFVW9aduGTz4VIMHtlgT8GvEJkuLiobOOW1sFf13jJi5OseLSMG7Hk+zg4DACGPV5IVIqtm+r59rFLhobQTdN6CTisg4DOpAHUhMU5NokJEhSUyQeN+RnRP4/EGora8jKlIRCgmPHNHQNkpOjs1h37jXYvc/A7Va88Kr3RLBWXwgBRXkyKjEGeHerGyEUeemS97e7aeuMKO/MGRb33BnkgXuDfQaJxcRAamp0YgwRt+748TqgiI0Nk5JqsfKKMCXjz7zYUAj++JqHH/9HLG+976J7jERfta3fXedm+06DtR+42bt/zMw5HRwcRjij/mn13lsdbFof4v88anCkOgWwwAiD5YFcwAdGsiLHkMyabnH3shD5uYMLJpoxw+Y2GaSqSmP6NIvY2Oiig2NjFEoJmpo10lLObIJQUa3x+nseAkHBotIwS+Za/UZW9+YyT4qV7K/U0bVI3Wu3KzJWtxvmzhma9k7hcGTt/vQx/vNPJOGwwcFDMHe25L77JOnpZ+6/ba/B9r0G+VmSdZs8TBwnKS7o35JOTpKYFui6InaAVb4chpaR6rZ2XMoOw8moFmSlFPt2hQm2xHCk2g1xBri8x4O5QIQU8fmKWA3uuSJISAnSsgcnxl3pSbNLs5ldCi+86GHrdoObbwoxp/RMgWtvFzQ1CfLz5Qkrc+okmy9+IUhjk2Deaft8XqHxrX+Kx+dRlE4xef1dD7ExMHuqRUODoLxcJzZWMWmSfUIA+wrkumJuGEsKmtsFK+aE+10nj4ZwGF54wWDvXp3cPMndd5nExZ18Pz0dnnrCIhSKrEn3tv4q7chHFVkyUAw0i+DipSZZmRKvVzGu6MKP1B5tjFRRG6mTCIfRw6gWZCEECSmSZ56NA0OAz4YYA/xAJ3hjoCRZkpVo0xEQGG5w60NjUR0u0wkEBDXVGpSe+p6U8NhvfdTVadxwXZCLFlnHxwtzZvZsnf7pTS8tbRp2rGTHQYP2sMaf31XkpEr++9deQiGBlHDJJWGuWnnmg6W+XvA/b0UqiK1cGSbGCzctOzNoq6ZG4+133BTk2yxfbg6qH/G+fRo7d+mMGyepqBBs2qSzYsWZlm1/tbJLp1ns/dzgcIXOwlnWgKxjiAj4lMkjL2LbwcFhbDNqBbmsrJHrLvKQk5FArBdCXgPMEOguiNMgDDPzw4xLhfI2jY/2aywdZ8JZ6HH3hhH33hXkSLnGzOlnCqxSEVFWMGCrzzAU7e2Czg6NjpCgUwqS6nV27NCxbUFRkcS24cMP3Vx5xZlC+te/ujl0SGd3yGDcOJupUyOC1dEheG+9iyNHBIlJFi+8EUNnQCc9UVJYZFM8LnoLs3uhkq6OTYPB54UHbg0i5cDaSI5kZi0rZfv6bcM9DAcHh2Fk1ApyVYXBT96P4a21LrIzAzTX2ig00AUI8MQo4lMFWXE2yydGLMryRo3P63Sm5529dZWVJcnK6lnMdB0e+lKAxkaNoqKBnWv2RIuXdUlLq4aQMHuuyZdvCaI6I8U6IFIDOjY2Emh1urs6PUOycze4XOqUUpfPv+Jh3Qfw4fsWDYaXGLcg0aUwLZ0D1fqgBHnKFMmUyZJ9+zUML4wvOTu38WgXYwcHBwcYpYIcCkH9gQSSkiR5uRLwsWJqiI2HY7DdkKBJcvJtijJt3MbASk4CdIZhY6ULW8KifIsk7+DN6cRERWLiwIW/o1Mwd7pF2BToAh65I8C0STbhMOw/oHNgv4HXB3fdGQDODOZacblJUaEkLk6RezxorapG4+U1bta/GaK9zYvKc9MuJIFESWqRze/XevnkiJvLSkMs7WbpSwVNAYFbhwTPmffA7YZ77jF55S03m7a4ePolnUfuD5CS7ARYOTg4OPTGqBTkzw81YVrJeL0wc4pN5VGdWZMMMnNM1u5140lWXL7M5Ds3+nnqIx9H6iMmWHaSZHxG7yL53G4vh5p0DAH7Gw0eWRhAO0/1LLIyJVv3uHAZCo/7ZM6x2w133xWiszOM16torKkBzgzk0nWY1C2vORCE3//Zy7EaQVuLAUoDt4RsnXYlOFCv4Um3iI2xeP1jD7lpknFZEkvCn/Z62NtkIICri0MsyT3TLS8EtLZreNwQCGq0d4oLVpDDFmwvN0hPkBSlO0FgDg4Ow8OoE+SyskZuv8LDi+0Wm7dEugXdcl0IEQdb33Nj+CUuA4xORbxX8f9cFuBgrY4QMCnLwtdHtHFZi05+gkQTUNGqEbTgfAWUji+UzCs1sSxBWqpNYje3sxAQF6f6jKref1invFpjcrFNQY6kvVOwdYfBrr0GCBVZ6E1UYEmUDQEJFZ06z27zEqMUK+vDjMuS7Gk02NXgojjJxpTwP4c9TEu1e/QWrLo8xJr1brIzJAXdUsmkhD37dEIhwbQpVr+dr84128sN/rjJS7xX8YPrOvEM4jO1UNShyEYgGLlVx8Y6g420HqmR5Q4XFqNKkMvKGrl+cSR09ws3hCgcb1PfrjF/usmj/xTHji0G9bWRaOq3W9xMyLTwmzoZqZLVF4fwuekzgGhhrsmGisgPb3qGNSAxNk3FM8/a1NcrHrjfIC2t54d1R4ego0OQni7ZskXDtmHBgpMpUZlpkq/cHuBIlc7caVaPY+weVNadw5U6T7zsxe2CDZvh4bv8mLbkrY8NQpYAnw4BICghGVAagViNI50QF5AkSKgJRMYdskDXIuLrOj6GcC9OhfRUxe03nBnJ/cEGF395242mwa49Ovfe2X/Tjp6udajISJTEexX5KTauQXZP/BzFK8LibmWQ4wjyiGSwouqkSzkMFaNKkLvEGOBYs8brOz1IBZ9WGjS3COqPCpACK6DY+omLn+kx3HyDSW2jhpKK1hadymMaS+eFWbnMPGNt+eqSMJPSbGwJ41MGtv7b2gr790nCFlRVqR4FubZW4/HHvfgDgsJCi8OHIwZraqpJSbeAqGklNtO6leLs7IxMHro3rOhJlOsaBZqA3ExJebVGU6vGa7tchNIF1Atw6ZGabTU65AlIAZURyRTzp2igSzwxkXFPSLaJdSk2H9Cpr9eYnGWT6I7OFV1WoZOaooiPUxw+YgDRC/JQUpgm+eH1nRja4APIChHcqAwyHTEes5yr2uDngnNZy9xh8IwaQS4rayTL7eO9T1zEehXxKRLLhoZmjd3lOgU5dsS3qxGJtDahcr/Op7sVpRMttu11RapoZkk++NTNzEn2GeUoNQETBijEXaSmwnXX6TQ3KyZPPvNhvXu3ydPP2JSXK5Yu9bBzp45UJvFxkNJHK8XyCo3fPeXD7YaH7veTnn7qtkEJFWEdl1AUF9jE+BQVNRopiYr8LJv178YiEgUqlkj+lQfwCDhCpOlGMtgZkOqTBBEcCUaUKtmruDg+zGOHfWTHSMyj8Nr7Hm5ZEaK9U/DJboPOgGD6eJviXqLVL1pg8sxzXtraBJdfEo7qfp4r3N1+CZYFtfUaMT5FctLAJhteBBMdMR6zOOLmMBSMCkHuclX/6xNeAkFBIATFBTa1zRp7jhikJkRqPedOtKmp0JBCAhYJXklTs05Tm8aKBSE+2+EibHavDnX2CCFYvLjngzU3S/70XBBd16moCPDpZxrS1sjMtHC5BHofRUoqKnWCIUEwFBGP9PRuAVtK8Hy9j2OmhkSwMNbk63cHaGwRZKZJPB6oRscwBOF0IhOVkIICIJZIe0oNVBBa/BpxsZJk18mxfF5mMC3bJjlBoRRsP2SwclGI377qo7FV4HHDpl0u7l0VZFIPaV2TJtp85+t+TBPS0s5toFdHh8DlUv0WIemiokrj2T976QwIUDBvlsW1K0ND9n1wGJ2MRDEeiWMe7YwKQYbI2m+HX5CSKBFC4DUU1y0IYYVhxjgb245EI3/wqsbHn4QxkGBKjHadr95qM6nIxrYEZUd1rr0sRGZaz9G2HR2CujqNrCybmJizG3MopLBt8PvDpKUrrrhc49DnHlxu6GiPpG/1xqwZFkfKI1HME07rlNSRnktNo0aRR0Zc9p0Gl2SFKcqLXFNFu0Z2us0hXSfcLsBNxDpuVtAIuG2oUug5GkaWRmxAUcDJc6QkSA5V6iQnKDoCghivoqZBp6FVUHg897q5TfDRTlePggyRtK/uWBaUlel4vYq8vKGJdD54SOepZ7zExSm++mDgjHOejmXBH17y4nJBQYpESvhos4uiApvSHgq8ODg4OAwlo0KQTwRyXR7kpTVeYn2KFReZxPgUh44aNHcIdA2+fFOQuTk23zks8YchGILmo5JJhRKvR3Drqr7XMtvaBP/1Kx+dHZF+x1/9iv+U9dtoyczUWLTI4F9/GsTrFVxyicbixYoPPhBMXK7IzOx934QExT13RMZbW1lDKycDnSK9lCJ0SZvezZtqaJAcVHjDio54gQoQ6YDVqaBFRRKNlcSOAaMY8pfLU1y6l841qazTqTim4XXD3VcHMC2B6qajlg1GFGVIX/yzhx07Iie56abQkDS4KC/XME1BczM0NGj95n03NGl0dAoKjk8INA2SEiV79uuUTrcIBKCsTMO2IzXI+xN4BwcHh2gY8YJcVtbIrJyIIM+cZDO9pPNEyUaAr13vp65FIyFGkRSnOJKoCIVsdDyEg4pAu+B3v/Mxf77F/Pl9i0B1tUZHh6CwQFJRoVFfr1FQMHhrTgjBddf6mDXThVKK3NzIxzFu3MAf9D1FVZd4baZ4LfYHI7nCKxPDxHcTx1SXpG6nRmycwltoc/SwjgwQUW9DQEgHW0EnhA8LQtmCcaknxSwuRvHVGwN0BAQ+j8JlRKzL4lybQ0d1dAGGDpfMHVj0qW3Drl0GBQWS1lbBrl3GkAjyvLkWx45pJCYpCgv7X/uP8UXukZTQ0gzt7dAREORlwi9+6WHrVp2MdIWmKwSClSvDLFtqY1nw3loX0obLLjNHRP9lZ81zaBjp93Gkj3+0MeIF+XROj5L1uqEg46Rozp6tSE/XOXZMERcrgXiO1UpefdXDjBl958RmZ0tiYxTlFRopyYr0QRSRME3F5i2KcUWCzMzIrKGwcHAfQ3cxlhJqWjVcuiIjQXFXaoh6y8QlFCnGqQIfCAsyfBIS4dhRnXaPpM0lkEqALYiYujrEC4wkRayuCLQKyDp5DE2DhG7tJQ0D7lkdZF+ZQSgMRTk26QMsBKLrMHWqxc6dBgi47LKhcQ8nJSnuiiKlKiFesXhemCefdbP2bY2A3yIpyaJin0FTs47LgLhYi2nTJJalePNNNznZIWxbsGaNG6UEeXmS6dOdxhYODg7RM+oEuT9SUjQuv9TFvgMmKckaLS2ClmaNGTOtfi2bxETFw18LUFenkZ1tD8pdXVkJTz0lWbZUcPvtvUcKtbRYNDVZFBf3PEM43TJ+faebj4+4EMANpSHmF1lkunqeMCTEKOZPtnix2kNTJ9gIvG6QGgR9x4uEhBUEJGas5Eizi80HdCZP6lto3C6YWTI4Mb31loib2utVFBYOXbUs21bo+sCinzsCgtQcxfZ9Bh2hMF5D0tqi+GC9RV6uID1dUXNMMG1aZALi8ypee8PNtavDJCdH4gEyMoZu7A4XNqPBunTSny4sxpwgA3z1q5I//CEW04Qbrg+zdKlJaqocUA5qQoIiIWHwFlBBAdx3n0ZRYd8i8fwLTezbF+Q7384iJ+fMmUJ3MQ6Z8GmZi4IUSSAMGw65mF/UuzBqGjx4bYCSfIvX33OzY5+LKfkWmze4qKiUNCsdZSpQAp9pMn2CYu8RF0qFB1z3u4tjFTU0NhkITZGa3Pd9SzoeJFdbGd05eqK+Hl55AxoaYMKkRL54m5e0tN4/4LZOwWOv+2hqF3QYGirThe43CTfaBG1Bpx/aD0Pi8TQo24ZtewyCYUFLWOeBOwNkZcgBR3M7ODg4nM6IF+SiolSgI6p9Jk60+d73OgmFBElJKmqRGQhSQkcHJCSc+rphCBbM7/+ECxbEkpZmkJp68iPqrTSmS4e0WEl1s4YpYW5B/1aqzwNXLzQZn2Xz6xehMFvS1KTRFDDoCGt4sZAGJKdAbppFdvqpTThqK2tOOV5XQZLupOdms2FzEVt3GKBg2ZIwV10xsHXlvsqA9kc4rHjyj34MjyIvt53WVslTTwf4+iMxGEbP9/7TfQatnYKiLMnVl5m8+IpOh6Hhc1vMX2DR2KiTkiyxrIgFHAhAfYPGggU2pgn1jRqF+Y51PJZwrEqHoWbECzLAqxtDp1TpGggxMRATc+6iZF99Tefjjw3uutNk+vToH9Sls2IpnRULnBSn3gRK0+C+xUE2HTbwuOCi4r5Fr0s4jdgcXnrZy47NBmtaNVLSJPkTJInJCn+jIE5YSF1RfViy+qIGais7T4yhp7Gc/lp5hcaW7S4K822UgvUb3cwttc4oYtITvZUB7c7mHQbVNRpzZ5jk5Jw8ZkuLor1Dkp+v09YE6ekalRU27e2K5OSeBbnNL/Aerzg2f75NTo7NZ9s0cpVNaali3QcWR2sNQp2CDZ9pBP2QmCDRXOB1K/JzHTEeS4wmN+9ouY7RwKgQ5L4IhyPrfYMpidjRIdjwoUE4JLjoInNAQtJFMCCwLQhFUYjqwIEWCgri8HpP/VgGYimGGquZnRj5e+sx8PaxT9fx3lpj4A8KViwO88QrPpLiYEKRxfhcm4OHNUItgmmTBKaps+tAFjfc4B/4xRDxEsCpHgipBCeTsgbP2+tc/MM/xyElZKfb/PhHnSRkKBraNN7fobOp3sCb5McDBIORdWSfr3fPxPgcm4/3uEiOVxg62IbGHTeZ6E2KTz4TNJk6TSGdtkaDBr9kSrFk5dVhrl0ZJjlJkeSkQI0ZRpMYdzEar2kkMioEuagolVc3Np5hJR86pPP0M16SkyVf/lKQuLjoHpp/+KOHigodwwW79xh881H/gDsT3XSTxfLlNtnZAzunlIr9B1qIj3eRnd2/m7r7+9C3aPe2TWwsmCagICVeMqnYIilBIVVkEqN7FY1+wS6/ju6F6naNnPiBW4L5eZKS8TYHP9dBQelMi/ReCq70RE9u8BOTib96cHskKclgW/DHl72Y+VDTqCM0RdF4wZYym0INfHGSjEwf//1rgy/eZpOVdea5ZhTbXLUgzLtb3SgJJfkWNy4L43GB7tNpkhoXLzXZ9JlAAdNnWoRMjXF9BKCFQoq33gpSXmEzd46LJUucBWYHB4feGRWC3Bs7d+kg4FitxrFjGhMm9B5UFAxGegt3WdK2DeXlOgUFEiGgokKjrU3g9SrCYcWfX7I4eMBmzlyda6420E5rjOx2c4obtT80TXDt6qJTXusuxr2J6kCs5962WTjXpKFJo6xCY/GiMB/s8aDpitRYyb0rQ0wfb/G/Xoul3SuYOdXiiR1evrvIP+COSIYBd98epKJSR9MUBfkDC5wbyNhzM2w2btLRdVg4y+JzdMqDOsItKFEmGak6d1yq4+2EvHGx/OpXboIh2LNXIyvrTBEVAi6ZbTIhqQJLCnxuRYw3cu5x4yDnYKRQS0G+zc69Bg1NGqtvC/Y59vXrQ2z6OExGhsYbbwbJztYpLh7VP7kxgWNJOpwrRsXToXvbxe4smG9x8KBBUaEkr5dGBwBr1rhYt85NUrLi/vsCpKaqSG7sFIsduwx0XZCRZpN0PMJ2+w6bbdstCgs0NnxoM2miRklJzyqlVCQAaLBlNvtbPz4b3G64cVWI2nqN//2bGDJTbLLTJLaAFUtDmCFIjLdp2qLzyQ6dpEmK9pmQEj/wcxgGFI8burzcrvux+powe3YbJCRKPi+yqc3SWB4bpq5T54FpQQJhQVXYxcIknfx8jWtW2ZQdEZTO6ttCzxt35n1Odh8lJXEc5Uc1kpLhptUh7rguSFZG3xOupmZJbKwgNlYDJB0djlt7pDNaXbtO+tOFwagQ5N5c1rm5ku99t+91z/Z2wbp1bnLzJDU1Gh9/7OKaayILv7fcEmLiJJtwCGbOtE/kKSsFmhARa+942m5vfPKJzpt/cfHIw6Go1qCBU6zjcyHIAG3tgsf/4MXfLqhv1mnt0Fi5JMSv/kvnp7900dBkgBC44nWSN8K/tMfyD/+7E9cw/24nTbL5yT92UtYgeDHPpvOYoqnJRX6KTUmaze92+zjcqpOd4WYisHSJYumSnu9/f/d3/KRMvpoX4HCljqErEowqsjL6/zwWLXSze7dFRaVFeppGcbHToWIk4wiWw7lmVAgy9C7K/eF2K7w+aGwUhEKCxETZ7T2QNryzxsOGDxW33RqkqEgyc4bO3r2Sgwcl8+frjB/fux82O1sxfZpNbGzPYiCloqbGIjlZJyam5+NEI8zhMFQc1SnItQdUwrGuQSMYElw0xSIvU1J1TCPfY/LdX+g01PiBNkBgWXEIbyzbdxgcrdYoGsLiHYMlK0uSlQUuqWiMC1HQYZHhVZiWIBiAK/JDLClOorayhuZWndfez8MyBQ/cESIrI3KMgU524mIVMyd3pZOdun1dneDDjS4mTbSZOvWkN6CgwOCbj8bR0iLJytLxep32jA4XLo6VPPyMGkGGwYmyxwP33Rtg40cuMtJNFi48mcNbVyd46WUPhhuCrYKnn/Xyg7/14/UK7r3HjZTqjLXj0ykokH3Wu35nTQdr13aQmWnw8NfScLnO7qH93kYXb6zxcOPKEJcv6z/nNzHheF5tEFK8CiNVIk2oq+/yLOiARIXb6Gj3Udug8avf+rhoocV1V4cGFb0+1MzVjve5Topcy7EOQapXcXGuic8Ab14W//l7nbff8ePxuqmu0vj3/2uj6+KsPA9dYv7yKx4qq3Q2b3bxwx90nlLBLSlJIynpArhJDmeFI1QO54NRJcgQEeXt1b2vK/dEXp7k1lvOrHnc2ibYvtdA6AIlFbYOqS97GZ9nc/k8s9ciE9Fw7JiJ0ASNjTbhsDprQc7NkmSlS3J6CFzqifRUxRevC/LS/3gwdLjrpiBhv0LXFDaKyFck4mqN83YwdapOUaHG2g0uxhdbzJhy7us2dw9oG4iAZsVJHp4fOPHvujqoqrBISvMghEZ1eStbP2knP0+ecjwp4cW/eKht0LjzhiApSX0vMXRFgWdnF3LkiE5Wlhx2V76Dg8PIZdQJcheDEebTUYBmAFIRsgW1YY3mNo21m3XiYxSLZ559E4TVqxJISelkfLHnePDP2TFjss2MydHlCx+t1ggHBGEFNTUaSxaarLxS8OZfFFJKEJK8fJg2NcTeXYqOUAx1LR7k8z7uvSnIvH56BUsJv/+rl0VTTKb10h+5L4Zi/TwnU1JUaNLeIeho9ZKc4SMz/9TJT0enYOtug0BIUFWjk5LU/+ebmZ/Nqpwwc2ZbpKZKjFH7ixrbjBXreKxc54XKqH98dLmxgVOE2bQjebUZsRJfL9/BhHgiHaBciuoWjbZKF163ImQK2v0Dt2Tb2gWBoCCzh+5QqakG165OjO6ihpDmFsEHH7nJy5EoBe+sczOv1OT553R+9CPJlq0m1TVg6DaVFQFa2nSq6oJcuQomjtN5/T0Ps6dY6H3EK2kazJ5gkZ1yduvOgw1uy8iABQsEa95VbNtqkJqmseljjfHjT63akhCvuHFliIZmjYnFA59s6XrEy+IwOhlr7upG/8DK2452huMzP++CLIT4/9l77yi5rutO9zvn3lu3QlfnnNCNHEkAJDJIEKTELGYqkqKVLY1kWbYly543a2atN56ZN7LH82yPn6xAiZIokZQoikliziQSASJndM65q6sr3HDO+6NAoAF0NxogEuX61uoFdHeFW6eqz+/sc/b+bQN4F2jXWt8qhCgEHgXqgCbg41rrwXP5nBm/a044X35in822LouaXJ+vLUuO62ddXqa485Y0v3kmSGO/SWGx5qm3bK690uHKeVOfsH/6WJCuHsl3vpa45Byd3n/dWoPSwNFe0rYt+N73Auw/4PO//tHnnbcdhoYF9dMNDjVKNr0xSmlJhGiRnJIX+NIpdIHq6BDs32+wfr2HEFMzPZkKQghuv01iB0y0tpkzW3H4sAGcaqO2fPEH2/U42cjkfc5XlnyWLOeayYTo39Pi5GIsTC5GhPxNYB/wftuF7wIva63/hxDiu0e//+vz8cRjt7H7rBCG0PQnJUrDRB36Vi7zMHNS2K/Z1JYrDrUY3HaVQ9EZCOuiuR4lRZJw6NISY4D8PM316x1efC2AEPCx69MnJCUVF0kGBy18JfG8OP19Adwk9KRDPPygzf33eTgOU3Ywm4y+Psn+A5Krr87UL0/FBCWdZkodloQQrFypeO0dQUOzyb13Tm7qcbZMJLznanGR5cLy70mAspzI2bzvXR/wOS+oIAshqoFbgL8D/uLoj28Hrjn6/4eA1zhPgjyWe+en2NZpMrfYxzjN0W15kUIALd2ScFBTVXJm56Dr15ybldb5mszXrXa58nIXIU41MLFtSVlpkLJrDba9p9izR5KXa2AHg9TWOsSHTI4cMViw4IMld3W3dnLZZRVcdtnUH2frNpPHH7e58QaHq68+/RgPpwRusSA3pFi16oOf/2f54ycrxieSHY/zy4WOkP838B1grNdTmda6E0Br3SmEKL0QF/LOjtTUs7BLFV+5K0l7r6S2TFFaeOlFuh+USOTUn7kuNLZIAiGB1AbpjSaihAAAIABJREFUdA6BgCIY8igs9NDaICcH8j7gNvz7Z8NKwVNP2Wx7z2TtWofrx7RqHO/8eKBfkEgKevtOnwynNRzoNuhMCObma3z/7BqOnC3j+XJnyZIly1gumCALIW4FerTWW4UQ15zF/b8MfBmgoqrmA13LeGfKp6OmTFFT9uFO3PH9TNejqfLI72x27TV4Y0OcliMuEpPiIgs7aHHv3Q6XXy6pq/NpbPI50gCrVgoCgTMr2xortF1dks1bTKqqFK+/HmDFcm9Ssb/mGpfp0xVVVZNH1Tv3Gfz2VZs3mwP09sGbOwNsfCfA9/9TjGnVF3ZxlUpBaytEo4zb5CLLpUN2uzrLheZCRshrgNuEEDcDQSBXCPELoFsIUXE0Oq4Aesa7s9b6B8APAOZftvSczKIZYY6fi4e6YJxNpnFPj+ZXj3j09EBdneATHzfIzZ1cOB0HDhw2ObB7mJ3vpvA9idYusZhmwfwwnd0W6wocRkZ8nnoq83bYAVi58swEeexryc3VRCKatnZJUaEmdJozd8uCGTMmF+NDjQY/+mWIjXstjqQMUmlBaYXP4Kjgp78K8Z9PY616LskrqeAHPxR0dwvQ8MlPKhYtumBPfwInC01WfLJkufhcsE07rfXfaK2rtdZ1wCeBV7TW9wFPAQ8cvdkDwJMX6poAdnTk8OQ7p5qCTEZLi2TnTpPUOHlB5ztp50y3PpXS/OIXHqMJmDZN0NameeKJ05/TBgIws95jyyYHrQXSyGRf+77D6tU+tTWa558PYNsZT+9MZvbEj7evweB/PRTmnx8OsW1b37i3ycnRfPVPk3zmUym+/KXkMevPD+Ll3T8o8DzI0QqvP5NJPtIhKYso0qnji4ehYcE//TjEv/4sRHz0/FhctrdDd7egIDpEfoFmw4aslealzPtWklmyXCguhTrk/wE8JoT4AtAC3HuhL+BMLDcbGyU/+GEIrWHWTJMvfOH8ZOueK1IpGBjU1NZm1l7l5dDYNLUNhsXzPcIRk4Dl4jiZc9icHM3s2SZCgOsK5s2DL3xeohTMnn38vr1pQVoJym1FPC741e+D5Ec1Pd0j/CE+jYWLRglYGdOQpzdZNHYZrFvgsWS2R2HhmSeIeR5s2GqRSMGaKz1yjnqHz673KS9V7NhuEunTFCYURQWK8qBi+dLjiV0NLQatnQZCQFOrZOHcya9hZESgVCaqn0rZF0Bu7tFFjcxjeBDmzDnjl5nlApPdNchyIbkogqy1fo1MNjVa637guotxHWOZSJS7ExJHQU1O5vy4v1+itaCmxqe5xUBrpjwhnwvONFoMBqGwQNDXrykuEnR3Q33d6S84lYLfPR3k5ps1z/3eZ2REY0rJRz4aIZ2W9PRIrrkmjRDiBCF2FPy6w2bXsEnaFRQGFbeEHZSCnLDGTSneSxj8tw1h4v2C99602LbLJIjmoRLFdz45SigAuTmaNcvcKZU0AWzebvL0Sxn7z75+yWfuyux6FBZo/vIrCW5cl+bhn4cYHgEtBB+/M8W6tccFeXqtT02Fj2nBtNOYfLz4ksVrr2fC9yWLPe66c2qe3iUlcN9nFO9sECycDwvndHByo4osWS51sscbk/P+roqnzjzn6FKIkC9ZmkYkP9wXQmm4oy7NijKPOXN8qip9OjslH7s1PaEYx+OCw0cMojl6wnPOnh7Niy8pciJw/fWSUOj0QnmmW7dSCu67z+RXj3g0N2vq6gR33nn6NoBKwUgcysuDfPJTJoODii/+icsfXrJ5Y4vJlUs9rrvWPbZ97nrguIJfDhTyo85cBmImKiUwHcVvbFgXH2HXXkl3TjGJfBjuE7z2ZoADO00cF5IGuF2Sf34ozJrFHqapiY8KbrvhVPOO8Ug7AkNqbBuSqRPHMRKG5Ut9ZtWP0tMjqapS5OScuEsQjWouu8rDNDSR8MQ7CK2tkldfDRAKeQwNwwsvGTT1hfCl4O7r08ycNnlkPXcuzJ2befzu1im9tCxZsnyIeH+xYp5FGUdWkMdwcpTcl5R4CmwD2kcNwCMa1Xz960l8nwl9i10XfvyTIN09GdORT9yTZsk4DlC/+pWitR1iMdBacccd56dfbmmp4Jt/Zp1RlvX27SY9nZKNmwwqyk3+w1cSOI5FHMnaaz0GhgS9AxID8ANVPPRkkJebA+woMEmUgzMs0HHAlezKMWluCnHv/DQ1s3yqShTbtlkMdQtSQ4ADTgQGQpKuQU1evsI2oas384GeSvvJFUtc+vol8YTgluvGzwkoKNAUFIwvmI39Br/fayPQTCtU1BQcX92m0nCk3WD/LoND+006OqCnRyENQWcfDAmTpZf7vPCWNaEgP/NcgPd2mtx9W5r5p9kOvxhkW+9lyXLxyQrySYx18/rIMlhQYDDqSa6qOB6pCTGxGAPEYpna2Lppir4+waHDxriC3NgEO3eJzPmsDzfeeG4cryZiqmKsFDz3vM1lCz2GBjUvP2/x8vMRwiHJtPmKFVf5VJYrEgMdtPdW8PPHJK0xRUORILVH4AC6C441i/Ig1iv51fYgt5WlyS+A+BA0H5IwfPR2MQFR6C+WDA0JQkG49SMnJtS8n9A2niiHQ3Dvx84sOW8spTmKilwf04CiyIlbTY+8aLNpW4CdGwxWLHTY+J6B61rMrtcEpCISgtioYOkE5iipFLy9KYAd0GzYYh0T5Kxr14eD7EIly4UiK8gTUFdXxEtb+vns6jO/b16epqpS0dScifAWzB/fFaqyUnKkQVNTDXkFgoMHQSmTWbO8cY06YGKv5HONmyrl6VcjvLfdwvUkgYBmKKEY2i+pmzHC/Td18dOfRdm81cWKmOzt0qTaUnihMHpIQhgYVTCi4CUf+iSJK0w2brGoKUxxoNEAU0AOMALYZLo85iu+8YUk+TmavFyN48DIqCA/V2MYZydiXd2S4tN0YsoNaf58/XFP84QDri/IC2lauw0qSn12YBAfNaib73N4j4fraVYsS/ONr0tCYUlF6fhnRsEgfGRdmu27LdadI9e280E2Ss6S5eKSFeTzgGnC5x5I0tScOUOuqhp/ol68WDAwKMiJZLa5X37FprnFYu1ql3vumTjauxCR1afvM3jh5RAaQW6eTzIlcW2B8DVpFeHJF2t59S2P3IhDelQiwhJSGjNf4w4AtoYBDTsVpGUmRXu7ot+WNG8xkI7ICHCKjBhLwIVoBUyrzIzXaAJ++HCI3gHJrHqf++9OHesqNdXkNteFZ54PsG6Ny6zT1Cy/L8atQ5KfbA7h+HDjnDR3rEvzzFs2n/5MiuVzPMoqfRpbIGL51NYIysoAJk/guO4al+uuuXTFOMv4ZBcop5Idj/NHVpDPA+3tktY2SWnJxGIMsP6aTL1vXy8sWwbbt2u6uzUl47RpnArxuMtDD+3n6nWVLFpYNOX7aQ3NzRIpobY289zz5/vcckuKllabREqCBQgwLEEoDN0dJkWFHqFQAF9BZERjFGvSRWRE9pCGgIYqA7o1zJQwIsCBqiJNbNijsVOSigkIkPkkmjBnvU+3IykLKJrbDHoGJHXVikONBr39kvKjUehUzpUhYx7y8TvSpyRxjW32cHLjh61tmbKu8qji1SM2/+mjoyyaeaKByLQquIBl/BeM7GSbJcvFIyvI54C0A7991eZwq8n0Eo9972aG1ffhM59OsXDh+JGZZcE1645/X1PjcM01Lrm5E2f5TiY+WmsSCQ/HOTNB3/aewa9/nen29Nn708ybpzAM+OvvJInFFD/7dRhQhAMwfbbmGw8k2bXV5D1t0tDoMjKiyMtRFM1TxD1JagA8U0K1yPT0imsIC+gFBPQNCYaHJStmubSUGqQk+Fowf4nHiqUe2+ImNxU6FBcqLDNTF5yfq8mLnvq6piLMJ4/nybcd+xgA0wpq2NgsSLgGl1eeGtXGYoKBAUFtrZqw3CkWg5/81GLWTJ+bbz7xuj+I0UmWC0t2Gz/LhSQryJMwVcOQ7QdNdhw0qSlTPPuKTYmpWDDXp79fsHu3OaEgn4yUU2/UMN6kHo0G+Pa3l0zp/mPp68u4bfm+ZmDgeOJXJAL/8PdpamYINm61kEYmcq6tUMy5O43ybSwrQFGxx5rrPV40QoQ3x9imo4xogWsDnUC5hA6IBDXlRYp3D1rMLvVZvcjhlX0Bek1JbpVPZb5GmxAxMmNQWqz56v1Junol1eX+CW0hAV56WdLTDXfcoc6JwOUUVdA3KFlU5uFOayZSXEpequ2E8iTPgx/8uIT+AZObbxziiiXJcR/rD89H+NGPyigu0syp75gwQr/UyYpRlrFkPw/nl6wgnwO0BkHmDDIS1aSHYOhoFFhdPbU62ovJqpUevb0S09QsXnzi4sEw4FtfS9HS5vDKOwHe2hJgxz6DdStdZi/xmXEZLF/kEY1oAvvbsJbXIB2XASHp3CvpiRuIUk1eniY/qrnp9jSNr5pcO9PBtmFepc/wYUFOpSZSrqiM+SyrHhOVSnhhU4CRUcF1KxyuWZ75nePAK69IEklYtkwza5aecuQ53m0cB/7tV2F6BiTLFrncfWMR3a1tcFIimedBODdM0pMUlJiU1YyfsLf+o/DGBs28eYL6OeXHImnfh82bTeJxwerV7gnJe11N3ae99gtJ1jYyS5YLS1aQT8NUouTFsz0OtxocajG588YUxQHN3r0my5e5rFx56ffdzc2F+z4z8cJBSqirVdyZm2Zmnc/l8z0ee95mf6OJIeFAo8lXP5lkViRNfiBFdypMQCuu/IjDng0W8SIJURhpEGx7zmJdrUN7n8QOgKU1371rlCtmeTz4ixCdKYMXOwLcdmPmep59I4DrQWWJ4sUNARbO8igu0AQC8OlP+fT1C+rrM9Hn6bavJxNsxxUMDAvsgKaz58T657GYJnzly0kGBjKdriZi2jR48Men2qru22fw299lHMViI5K77zr7Uq3zwfsiXBS2sl7OWU4hGx2fX7KCfA4I2nDfzWng+OS6fPmlL8RTwXEzCV+Hj0hmTPe5emVmgm5oM6ktz5yhtnRK2hq7qJleweMPW8wo8JmeD/m5im/+lzi/ecFm37BJMgdWznEZ7JXc9dE08YSgrEgxv97npVdNmpoltTU+2/abuDMFHXHJkaSkQGvG28hfuFADmkQC4qOC/LwThXks3a2dFFdWsG+fJBrVVJ/UdjEnorn3phQHGk2uunJyEcrP1+TnT34MkUjC06/a9A8Jbr7aoe4kO059ibXUHiu82Uk3S5aLQ1aQp8CHsU3jueC1gxbfezjIhpcEqlVRmqP4t++nWH+1Yvkil7e2WaBh8VyPgJVRmJJCTUtXpr3g7HrNnBk+//GrCQ63GPzo8SAjg5JoRDO31mPPbkl3k+aXP9E891ya5o40ngpRt8ais8KirEjhFwsOjkiad8D0cp++PknxGLetvn7B938aJpWCj9+R4rIx5hwnR8Rbtxr85vEAtg3f+vMUhYUnquLl83wunze50Gqd+TqdK97G7Rbb95vkRzUPPx3kb/80gRCZM/h77koTjwtWrrx40efYSHjsvyeTFecsWS4cWUGeIj99y+W6K2yqg+qsm0l09Ule22JhB+Da5Q550Q8WJk2UGDTRtqzW0NiYaYgxfbo/6evoikke3Wiz4VcQ65QI26B92ONHP7RYf3Wam9Y6zKnzUQpm1Pj0dWTud+v6NCVFCgGsuPy44Mys9bnv1hQdPZLFcz2ef87k5VcNXnhe09qWwvcHAQcw2PlUEQffLWbmVYJpM31C0zQVIQUKHno0yOc+lWL20Zrirh7JSBxCITh4xDxBkE9GGmRKtww9pWYQJzM4LHjwiRDJNDxwe4qa8omz2YUArTJnxmOfS0pYseLC7Z5MlIST3Y7OkuXSIyvIU2DjoORn/fm8vEPypZlJri7OTKiegs64RAOVOQpznEk+kYKXtgZo6JBs2W1RX6aQQNeA5Kv3jp+hO1Um2pqd8HVsNHny6Yw35803pbn6qokn5LQHA+0Q7zAQIo2fSOGqEL6n8f2MuM+sPVX8QkGOJV69z8iIoG9AMLfeZ+GszH0GBgWHDkF/P/j+KBljjSiIPECS6kuxf1MOA32SSINi2Yo0eVFNlxI0NstjguymIRWDnJBm9XKXeFzw/IsButuHufveKsYadixd4pOfl6lJzs8/88XQkTaD3kFJyNa8u9ukpnzic/dVS1xicUH/kOT6tc4F7Qg2le3nbLZslrMh+7k5v2QFeRJcH17cZfDgHpPONoOGAkHuRxVXF3ukPfjF3iANwxnrqNqo4oGFSYJjRtT34eGXgjR3GwQMTWOHgasE6xa6tHdnegifTaR2tjQ0GuRGM+e+R44YkwpyZZ5i4XSfJwMmTtJFag/DcLj1Vvj7fwjjOIIHPps8ZiQC0Hiwi4EBk7JSF+vo36zjCh59djp9/ZJVyxxuvyUjYrfe4vHYYwHCEc1I3CVjshE+frjqeChPkUoLZhuK7p7MNngiARVHI1PHgSeeCKLSoxRHkhjuEA//PJ/WrjC2XcTPHtZ8+y8SJ2xdz5x5dqYrACHVSTRcR9qBBTMn39oO2nD7Ry5Mhv1Ut5/H3n4qk2p28s2OQZYLS1aQJ2FHk+SJXQZHNktISRICHukIsmKaR66nOTxkUJ+XmeCbhyUbOyyuqT0ucv0xQXOXQVWxYvN2i8FewaH9Fh0NgtuvdU+b2HOyg9RYzqbuds1ql8OHTJSGtafxVLYM+Ou7k1i9mu//UxDtCr74eU19nWDPXkHQhm3vmdTWZkQnr6SCh/81TG+fZO4clwceSNPd2klReTmxmEAITf+AZGBA09wMtbWav/muy6OPaX728wCu64NIgswFYYH0MCxNdb7iK3elyI8oDjcYiEJobTOImh109Jrs68hlaCiP624MUFYTAjNITo4mJ6Lp688ses6Wk8+gFywqYcbsUXw/09LxUuBsBCMrMJMzdkyzY3Wc7OLk/JMV5AkYSMGPWkz2SwmLgEYQvRDrk7zZEIBcqDGPz/ZhSzNwUh9eedTCua1Lsv+ApG2LZHRU8l6rxexyxcvvWFw/SZQKEwtvLCaIRPQxb+ext5+ovKeuTvE3fzOK1mBP7nUCQMCE7349xXe+lukAZZrQ2SkJhzIe0QvHnNdmOlwJKit9Dh0y8f1Mxnk4DPd/MsXuvQZDw5o77jHwHI/iYs2//BP8zXclc2ZH+Zv/axRfRwEfbJ9ASQ5rVvlcNlcxb5bHZXMyCV0dnSZvbzaIjdRysN1k+XKP0VE41GkCDjfd4PDzh4P09EruuD191jsQE41h0M78LhL+cDptZSfV8Tm53CvLqWTH5fyTFeQJeLrRJC0EMws022MCKkCPgF2kcQKaFbk+LcMGjp8xBRlxBDNP6rVblKtZUO/x6Ks22zeZpEcy266pIcHunQZbZ5qTCvJkUfATvwuwdInPokUnJgidzhwjEJja6x+LlMe31isqFN/+q1GUyojt+xQXa1Ys99ix0+Tmm9MnLBRmzfB5+rkAP/+VyaFDimjYo7ExwX/7n4LVqyw6uyxqq01a2m2UOUqwJMAVixW3XeuChEf/YJMfSjASF0SjmuGBEdo6c9i22yQS0tRV+5DILH5qaxXf/U4C34fd+01++0yAglCQsprMtbR3SHp6JYsWeKd0f+rokpnrTrWfdgfibOwvtYath0yeeCHA1Ytdblh7YZOqsmI8OdmxGZ/s5+bCkRXkcXB9GEgJCoOaQc9lfp2gq83FXRRi3WKPYhNuLknTYUteas6EmjdPd1hUfKIgCwEfWe7w9H4bU2vSiIx6K0ikBIUTZFm/vctkT5PJ6gUuC6ePf1b5sVsdoh8wS/tsGa9ns5Rwxx1p7rjjeC32+4KlNby1MYBt+6STisSIBEfw8595vLIxj/vvdvnylyWP/UaR9MOEyk0WL/KOWWVu3+LxD63wxc87PPdqEMvUDCclRXmK5nZJc0eAv/3a6LHEKcOAbTtNfvOUTW6uZmSkBiFaWbe+gAd/HqS3z+DLn0tQEm07dq2JlODBx2dgmvC335xcaE8nxFrDUFrgKEj6AhmADU0mGw5ZNB02aN1rsL3DYtniGIU5H+w9PBOv5eykmiXLpU1WkMfBkBA2NQtsTZ8cYNmVG4j7aUYTddQbi2hJCLYmFTdUeayumryEZdQRzKzxuet+xW9+FMRzBDlFikXzfa5b49AWlzQMSxYVeRQEYXOjyf/9SoSgrdnebvL3fxInPI4AnlxDez7RGhoaBKOjUFOjKSiAkRH4zW8Ergv33KNxR8ePGH0f9h0wyMtVNLUYKAEoF4RJMqEYGshYct57s+aqNYIVK9Ls6lBEcwW+gjd2WQyFLXqCFmZOis/efgQzp5L//SCsXOJx2Txo75SUFSm2tZm0xySVuYpDDQb5eZqiQo3WircbImyqDnOw0KAITXmporj4+PUqBVdenklGs85Ct460GuzYb7JqscuOhMH3G4JssiR+kYM5YCN6DKb3eHSkDMqnKXxL0zogKcyZms/5ByUb5UxMdmyyXCpkBXkcpIDranz+0GQSKmjjcA4YZh65+a00NcyitThFqCDJgIB7dS75GBM+Vl5IIwQsXuuDSHNgv0lhvuKBjyfptSX/8cUc0p6gKuKzrsrhlSMBRoXAd2B7WjGYEoSD5058fR+amgyiUUVp6dQe9+WXJS+9IjEkBIOaP/2Kz+Ejgv0HwTRgy7uCG66vGDdrfNMWkyeeDhIwNDVVPocOKkY9A7xMZnViGOIxRUuLYDjmsn27YtXaNM1DNrsbDIbSgruvdxASHn0tyA0ravCGwbY1Pf2Z5DLLgv0xg12tJjkBeKsRCixF64DEV4ruIUlqVhELDI8FV3tsHrB4dNDmk9E0RXZmDKSE2286+6zoR/5gEx+V9A8JduSabPACxEoclC3RAY2XkPR3WxRqTW5UM5KSDCYkcP4F+WwF549ZpLJnxlkuRbKCPAEz8zWfmuPxsqswoj5lRpwhbFZOT7E1J8lM06ADjx78SQW5MKK5Z2mK374XpGaxYs6SNJ9aniKSr/nvWyIYQpMTgIQj+KftYYTSTK9SzBI+STfJiDf1SXsq55rPPx/gjbcsAiZ85SvJSfs1Q6aZwuuvS6bVZhLI2toE722XzJqpCFgS5UN1lWJPi8EjbwZZO9/hhiXHz0ZTqUyGdW5U8Im7U0yvTPNv34cUEhAo16Moqpi5WNG6RdKXkoQCPt/4dJKN+00ef9MmJwyJNGw6ZJKWmV3/vBJNkVAMjAruuSXN71qD1BUoDAmJ3jjPJouwFmneabWoX+BRVKsJSdg0aNGXkmwbMnl3MMDiYpcFUY/1xS7GBLXCA3HB4KikpsgnMMFfzIIZPq/tF1gzNPkdmtm+R9OgyVCHT7rHhBiIEVhY7bKgQuEoCNuXmH/mOPwxRo9/jK8pyx8HWUGehOKQZkl+DZv7UoTLIUiYZXkGMQw6tEdISMomEeP3uazaZ07ZKE3DBqapqctTvNZmkRPQrCp32dxqkfIEyoWeUYPpUUVVhSLuhlGDjVBcOqXrnUqSUXOLJC9XMzws6O+XpxVkKTMRqONk3LB8P5OhXV8P3/wzhVJQWgpPbTaIJSX7Wi1uWOLS3dpJLFXN0KCgOF+xYIHHVas9GppMissUTlrguQIpHIqnmfzk9TDLlyiG4ia1c5M8vinAmztS7G8z6Ol3sSWUF5vUlx0tM+uVhK6Ag8LjNenRFNNUJkyWRxWHZD6HHINkvcCvgSZfYjvgumkG0oKwqYl7gvaUZEERvNRnEzI0awpPPX7oHJL828tBXF9QX+Lz+XWpcTO3b782TcEVPjs9i/UhB7UPrhwSvNVtsm9EEPQVtRWKWSUK29Z4IXi8x+SZZvjYTMWy6g9QnzUJH1R8/hiFK9vjOMulSlaQT0N9Oo+WkRIKyzWX6yh5WHwMkz58crUkwtTqarqSkp8dDuIrwa11KXydscLItzSJOBhJzZw8j6hlUGX55NmKe+a5TC84VYwb2gxaeySLZngUTrF/8vvcdKPDr38TZN48j1mzTm/hKCXcfbfPY49JfCWorNQsWaJ4anOA/JCiKleRatOsmuWSF9bMrsxE87v2BHnqGZ9g0MVxBM6oR1nxMI8+U0DaFbi+oCDPIxJRHGoDWZSmIjeOwGLz3lEODJaxYEaYadUwOBLic+uSPPSaIp4UKA1awEbPpSEnzqHBMCqUprUlypEmkw7fxJ0GJIESYEBgjmh25FjMCHrkCWhIGizK98i1wNOK5qTBGk7NWN/ZGsLxq6grVjT2GYymBdHQqWMuBFyd57FKe1hFMLM0Mw43xwx+udfG1IKcoGZRrcfrQybvtEiSzQMkvQgPH5Q8drN/Vn+M4wnL+aqjzYpYliznl6wgnwYLg5n9edyuM9nUnoKULykzBfIM7BD70xLXh5CpaYsbrKlweaERtjeYbH7TwncFIqz56Lo0d851uHnO+OeZ/UOCnzwdRCnYcdDkzz55ov3m6bat6+oU3/6rxNQvHFiwQPNXf+WTTEJhISRdwVt7Ahw8KDn4vEFXu8GMOo9HHxmmojDTl3jHnhnUz9TH+v02NUt6hiMUl0P9TIfDhwzi0gKhSA9JLrsyQG+6gGFHUlIY4NBQxr4z6QjyIopoWPPx1Sme325jSPj0VSm+0qE40FuE42hC4VHsucP0/LYAdxaQAHKBoyZgnha0obkuqFhX5NLpSZqSBjFPMOgKrik6tSlFWU0FS3IFm7s1TX2SOeUekUm2mYWAwNHPxLQiRTcjhPOGWanzcYdKqCzw+UVrkFfSAYymOLnladL9UfyIw6ZmxZozeldOFMgLYWbxxyTG2Sg5y6VIVpCnwPvdntqSkl+0Bol7gsKA5v6aJCVjJujYqGDzHhMpYPkCj5zw8d/NK/C4rNgg5kjWV7vkmYrBBsmbO2wcB/IW9xOZFacvanBZrQVjIu+xIusrSIyC7wpGg6euCE7XE/hsiUYzXwBRU3PP8hTf2xCirdFEC9i/3+R54d9WAAAgAElEQVSLX8rlX/4pTlEUPB9CY2qeBVBe5LN8ucnhAwZEJYNx6BuR5Ngh6tt8nt1lUVmgeTlls/RylzcPB9jfbDCz2OOfB8OYElYvcFi3yKU9Kclv1tgDLiNdETwCGHk+7rABnYANJDXEjpaa5WhGeyVNYYOhFkElmgFPUlLh8bEyh+X53glC/D6leZpv3phkOCGoyFdTNhqJkeId0YxlSYqnD3KZ7uHJVsGmxEJSroedY2JLn2hJD7khRaw3AkXw7IHMIN8yZ2TSxz+5McSFFpY/BjH7sF9/lj8+soI8RZ54O83BkgIMAbVhRV9a8Gh7kK9Pz0SoSsFDzwbpHsjM2AdbTb5yZ/JYbWzIhPvmpI/ZZW7cZzIaA5VQ2MLBrkkS688lJ5Rgt0zg9eRSWahOSSKyBLz9hEXSkTxwf3JCP+zJHLvOlIERgeMKygsz2dDPPGvS3CxoPaRJO2AHNNLImHb84uEg995usXaNw1NP2xQWalIpgWlq3nwzQG+PZFgGGchXEAaUwcg2jxd2AXmaQ0rTUCdRvsHhTonhQbdrcNl0B8OAV3cE6OiTLFzs4Q4E0MM2IeGS9mxUwkRHNOwXmTw4S0As8xpkDmhL0qQl6T6DJQGPHAvy0pq1R8+OJxqr3JAmd5xt6slI46G1JqKDbB5M81JfjEMUYJT0U6QkN1w+wPrOMnb3OQQSmpvWFMGR9xd/8OyByUX5YndryopZliznnqwgTxEHwYgnqA1nkm+KAprWpETpTJlUyoHuAUnt0cYHLV0S14PA0Xkr4cCLhwJsa7ewDM1AqyTHVMT2GQSqYKQ/F/e9IE2hMP/YO8pSEWRelcdn16WPCYWnYPshg64eSSIs+D+Ph4mWKL7wiRMtIlt6JC09BlfOPlFgxnaCmqpQdw1I/r9nMklNtyxJ8cLvTMIRxfTpmt17FHW1Dkob1Nb4fPQjLo2Ngh//vIIvfcnl3nth716TaFTT2Sno6TXQNjQ0BqCOzPnuM6PgJ0H6QARfC9p7TB57zmLxUhBSozQoDUETakoVe1tNeqKSywtHqYrYHGo0aTc1OgK9qyC5W0Afma9iIACMCvJCimsL0vz2QJgD0iSoNVZ6GBaeuKKJpwRSaMJTsBediALClBChyUvSOBjljf1LkNM01cHDRHJjzPTKmT3fIneXQ92S4kkfa2yJzslb0xc7Uj25scWHiYs9dlmynExWkKfI7LpCXtyXxq4JUBJQdKUk0yP+sXPkkA0zqnwOtBigYcEM75gYaw2P7AjSMGBQlavwFWzsN0gManDAaQsinrCQBS7kC1rejlK/wOMHGySFfoBbr82cJ/92n82bfRaly332brUIpRW//kOQpQt8ptf4hMMa24ZHXgvS0GWQE9IsnnE8UWmsCE81eh4aFSQdgUCwbYeB72sK8jO/CwQE06a5rFrpUFWV+VlTs4/jwG8fF/zn/+xRUqHIi2p++uMgebmK1mEj0xBRA2lgNA0kwB2BoRiEoripCPFUiHTcZ84sRXmJIhwET8Or/QFSLlzd6+AXCFQEblnpUmP5HEwZ/LLTpq9cEHMFJDM9lBmVKE9jCNjaahM0FIaXRivN8trQ0QvJcKTb4KE3g5gGfPGaJJUFZ5f9bCJZQz1BkeIfWkroV0ECw5obi+Zyteuyz7R4aFearxyNiCdjrGicLCDjCcqFFJrxzrAvdd6/1g/L9Wb590NWkKeIFHD/bJtfHUzjVAWoD/vcU3l8IhcCPn1Din1NmSGdX39cCLvjkiP9BtOOTu6GhCvmeDz5egBhgh4Q6KSJHzWxIpqF1Q6jw4IllQYb3pPcfI2DlNCVkLzZYNGExA1Ad79BfDt85vNhAkKxernHf/+vaa5a6FCYa1JbemL9cioFTz5lo3xYeYU4RZQ9Dx551CYchjvvSCMEzKz0uW6xw2hKkuf5dB8+XuZVXaV4b7uB1sefJ5ojkYbPsuXw6haLFzfaREKatUsdXnwuQFuvhCCZZCutIehCMg4YkDbBNyFkotH0DkgWBRRlxZntYq0z+ipNMBVUhx2Kwj5JX9BpGcRsyWCPQdwDqzJBKJoieTiMm7LJtzRlYcVgEr51ZYKmDpO8ENw4+8TkuQOdmdeXdATNffKsBRlAIjhomFTOT1C4VbBK+vztzASGhHcf95hblYOvMrXTH3Y+LOJ2NguHi31efzIX+vkv9uv990RWkM+AfBNuCse5ba49bsN5OwCLZ59aSpT2OOX2VSWKRXM8lK/Zu8FCCZClMK/A5+5rU8zM6WTLwSquWOgd246ulT6Nv5GMdEkYBFGnMXMULfskgRKTnk0Wt29xuel6j1XzT72OhgaDrVsttIbyIpv11xeceJ1pOHTIxLY1SmU8oU0DbrgyMyH19wtef9UkFtPk5kJJsU9ujiCZlLS3ZzpAXX21z6c/5REMwsPPSkxTk0jBrDk+wUiaHz8VIrdKERuW0CsgKjPlSYQyX8IA38dxJIWFgpG4IDYiyIloLAnXFjr0DWcSrFKmxz5XMCwkaenj+GC6GixNsCyOTHpoK4xZ4OHFTYZ8gfYVPULynWtHybFOPX9fWuexs9XENhVzKj64i9ZHhUl9mcPlN/ns3WHx9iaLwmrFkW6LgbTB3BJNWe6lbxAyVT5MkfJEXGoCfCnwYT6a+DCRFeQzpK6uCCHiZ3Sf8qgiYMBwEmwTghb0jQpWL/CYt9on+QmHAHB42ODz1UnWzvXoa3e4clkKgGFPsGfE4I1XTFKDR7OG60HXCiiUeEkQWqJCih/uCLJnyCfH89nX4DOjVvPFexXhkKCyUlFSkjHzqKg4NSEoEoFvfD2BYXBKW0etoaNDkxN12LXbJDdXMne24p//JUliVNI/IKmsUKTTmkceMSnJ7+GGdUUYEipLFVWlioGYpLxM8fG1aR7+fZDkiIDcfOgZAhkEwwLfAMdEWAbxtKazW9LWLnFSMG+Gy/SZmq5ByY3LHSoCI0RDBTztBRC2h+M65OX7yIIBrvA2c8SfRULko6ImUmkCeJTlSA7ETLYMWKwucBmISUoL1DH/6vJ8xV/fmhh3wXU2lCLIcUwefD3Iy28GqLd8wiWjzKqJErI0+eETxbjcP5T5twb6J6lOm2xivJiT5qVwrj0ZY69rrPBOdiyQ5dRxy47R+SEryGfBk++kuX311DN+AgbMDLv889sRpITpZT4Lqj3uXJjmoGPwnAyQQHDXtDTryk+MbD0FD3aE6HMEm/vMTERnALkgByA3CKXzPbrbJZHVaQ4scmg8ZHDkoQDEDKJh2L3P4ft/lyI/X/OXf5GZ5Xvbx4/+iovHj9befAt+/3vIz9fMnOEyOgof+xjU1kJ7uyI/X1NQoPif37MJhzUHDlZQUdHGJ28qOfYY5UU+UkJdueKOa9Js2m3haUnZmmoObHCIxSxQBjkiTX2hZDQu6fIE0YCitV2SSBq81WAyd5HPk3ttFhdEmLNSkZtIMhDswdSaWXM0LWaCrQNXEg9G8S0DNSpJCejwAsi0Qsfgx3uCPHnApvGAxLbh//12nKrSzPb0uRLj9znca3Jw0KBXS8qF4gvrDZraDlNTX4o2wyfctsuYBcACu+ncXsRJnIuIZ7Is74uZAT4ZWeH94HwY8wY+LGQF+QLw3LsWP38hhOUqZk3zCbjw9ZUJcoJQjqI+7ONrqA1lBKFvUNCbqiYUV+gg9DuCaSHFvOU+TXsN+tISHE0+MLpL0J800dWa2K4gdkrQtThNanYYsd3DGHR5/UWTd24xWLvWZ/tOk82bTa7/aBXdrafv+wuZs+XXXoPq6uP9lPv64I03Ydo0gz/8IYDWsGa1C2SyogFKq0oBfeysurRQ8/nbkry1PcDMGp9//Is4aS14favFhro0TtKgtQuuWwr7dire26PpNQz6owZISDiS4kKP2fkKMznEO/Ec1i7xyY8MYCpBuTb4tR+iXRUwGsjFNhOEKkaZGzvMvo4FeFaIsK2ImpoaQ/Fao0XIgd5hwYFm45ggn2tqCnxSC0dYOEfw16UGoWQTC/b+mrb9FfTf+WUS6YwlaY7ObH5cCD5o2dSlOhlnt1YvHNkxPvdkBfksqKsr4sl3+qccJW/aH6Cm2OdIt0lXt+Tayz0iY+5ac1SIG9skB5oMXtpgYwc0hj/Md79mMjfisXfUJDwLrrzNo7tNkvYFI69D66CBqyRVSZdZ1yXRrqBjn403KkAJhnsDDPfC/Z+z2bszwVNP23gevPRygC9/cWqlT76f8bI2x3xaAgEYjcPmzSalpQrThJ27TO6/L82mTQZz5iiqq0+NtusqFXWVma34l3ZbvLI3QEenpKMPblwOheVQWQ3PviAZHoRlixyWXOExZ5bP2wcsNm8XvPOiprC0iPJFw+zo7qNploXWgt6OEJ3dAWIqjAqauDpAmdXP+hmvQq5kuGMxhidYW+RQaGkOTFMkGwVXXeZw5dEz97QLljF+bfdkTJa1XhDW/Pl8n3hnHyGPzEDOX0QqXcr2RsVTmxSvbIngJa5i+WzNf/kiGWOTS5RLTYwn2nrOcuHILoTODVlBPguamvq5bZU9rinH/lGDw0mDK3M9ygMZoZ1X4zGStCgMKxbWeTxwTfKUbdEDjQY/+V2QWFyw84DFbevTDMfzaDzUxCcXlNDhuLQNSJ6ts7lmjstbOy3eDZpoBAET8sNwRbFmXw/k7Qsw2iTQpg0iAY5Lc6vN3/0/AdZf7fDORosVyzN/QFMpf7JtmDcP9h+A6qqMCUpvH1x9NfT1+rz+ZuaPcNUKl1mz9Cke2WU1Fex5r4cDTVWsWO5RVZVJGnt9f4CaQkV1vuKFfkXaNbhhpcO2JosV13tUzxIoJfjTzzuk4x20OtN5aluQnICmt0NQd2OIn9bn46k0qViC3Yfz6OkMoAotCEnIU3T7Rfyfvq9iJYOUSigL+exrN4ilJLIW/vJjCa6vy4zFC28P8YedeRTnePz5vRaRcfpQj8dUxnA+FlSMuU1tJQ89NsIvnurFkEnmlfWw8eBVvK58fvG8z6rPTO25LwaXQt3z2OvIisDFZ+w29tjvs5wZWUE+C2aXh/mv/2bjK8Ed16ZZPDcjQEOe4BfdQQwB+5Im367JnNfetTbNgjoP04DZVf640dfBZoNICGrKfRraDPYcMfjoKoe580voa++ktqaCgiLNW7bm5S0BYkOCZcs89qAZiUumLVbsPRAi6mvy0hq3SNPToiHgATZ4kkceCfLtb41w3bXHJ7WpOnrdcAM0dxrsO6TJDSvWr4MrlgJ41NUptBZUVCkaWgwqy3yCYyK87tZO9jfU8sJLFrGY4E8eyJRxFUQ0/XGBbcLixQFund3Ilj0R3tiUz5plJtNqoXNAkpev+elb+bQNGRTnKfa3GmAIXtltUHMdhFSAwyYMJASeG4ARkcncdgQEISVCVDpgeHCg3aTe9Mm1NK2DHu81mFxe4FGaq9nTX0FNlaBvWNDal6JAt512XM7GDU1rTeeg5Hv/WoXj2lAMHRXV5FwRJ14aZSNxhjxJvnlut9BPFrOzmTQvhej4Yj9/lonJJn99MLKCfIYcOtzPnt2F5EcVUmoef8lmRo1PNKKRgCE0jpbY4vhkapmwsG7yEpppFT5vbQsAkstne3zm1hQLZ2XEe6xo/oeVCayBEM3tBiFLs+5yh10HTRpSBsODkoGEQo+65GowS2060kEYNiEIBQUu/f2SnByfn7wSRAB/cm1qSoLy3Ns2w8oiUqn4+v1JSsckf82fr+gfFPzrwyFSKUFJkeJPP5XEHiPKy5f7DMcEa9dkFi9KwX2rkzz1nk3aFdy9PM2mrTU09JqUF0pe3yxZusjj+ivTvNtt8npTDpdN82nrsUmOSnwBO14KIj8SY6gO4ia4BSZ0CRgCbA0JCQGNFVFcX+PQ1Wfw9ohkKE9ga1hVLPn9VpP+Xsm18xyWTvd4YXuAvIimokCRF6k45m423hiNJ8aHWwxeeCfAvdenKCk8dct+sLGZxlfe4tXcz+LYASgFbEhFIph5LqSgeFaAF/YNscCIsWB+9Wnfm6nyQSfH7ASb5UzIJn+dOVlBPkOqq4t4b7smEMhk4yof3KM7tLmm5osVKVrSBvPDp29tOJZFs30+Q5LmToPZ03zm1J8o4O9P/JEAfPmGJDsbTGwTHn0hY+Txl9cneHO3xf49JjMXajwhCCZdtiuTJi0IFmjuvcelutrHU9A9mAnTvaP1xmNtNcejpakYP22SGoWejj508sTXt+dIkN6efGrKXZoaLfbt6aei5HhEVlOj+PznMiYcv37KZsN7FrfemOYL61LHtu9fHLXICWsK83yqS3y+8fEkv25K8MaOCHvSYXY1WgzEJb4JaI1KS/bsiRDQLqYGW6ZwpgUgJUHLjIuIKwlFPAa9BPkqB4YNlOszr9ZlOCbRGmoKFRuPBPjLGxMc7DNIuTCYFORF9CnuZqm04EBjkHkzUtRMP1WkB4YELZ0G8YQYV5AjpcVUr1jKxhfD4B1dPJiABarU5t4rUtTVSK6onkVq21b27G07J6KcnRSzXCyywjx1soJ8hoSCYIYStHZlylWunO8RzNHsSWcKd6cHfGqCZ77VKARcNsfnsjkZIdY687PetKBjVDItosi39THhXLWgAqWgs1cyEBPUFCr6mySdHZJwMEBurqY0pPj4nQ49PZKvfTVBuBSODBp0dwvmVPgsneliW5Nvuw6OCjY3maxZr+luNaiv8Vm4qOSE2wzHBTX1gsKdQQYTgupazdwFgqANCWJ0coRE5zD1FXPxfXhnq8XGfRatCUlhiWbx9Iy437zW4efPBIknBJ+4IUVjTy8N1jR0ocGINPFNgcpRMCTBF5Cv8Es1artNcsRGhtOEqlLofAM/JQlIHzMtCUcMiIbZu8dgfoVHZ6vkiR0h8oM+ZUHFs9ttppd4PLbFpqXfICeo+dnbIb57y+gJzT3KaipoapVs3B1k/sIUGcU/kWWLPObPHD2h09dYApEIubPnMfJbSV5YMawkOGDGJFcmXWZYittK08wO+4irFrPjze3nTJT/GLjU65yzTEz2vTs9WUE+C+68OULfgKClZZDr15v8MBai281EnGWW4kt5ScJnaYfY5wge6w7S6UjiPryy3aK90yA3qHnwphjX1B4Xzt72Tm5Zm/n+l0/b1FQoArZHW7cBLgQLFbv2G9x2s8NQQPLgOzZN3QZ9fZLlxS5HOgy+dVdi0nPk3223OdRjIAR86yMJinNOFJpkCv7l0RBKCf7k7iTJlKC6XB07Q+6mmU7RQHFFFUrB7j3m/8/eewfJed53np/neWPn6enJCYMZ5BxIEAIBkhJFBUqUVrIVLNvyueRwXl/d2j57627Ld3ve2rUv2HW+23PtrnXOllfJkihbpCRmipkgCYBIgzQ5T4fp3G94nvujAQIkAYoRBIn5VE3NVPfbb79vz9vP9/1lVvWFjJYlXQOKck1Qpc4407R2tfArX2xjriLpSCrOzAjO1Q0WpMDo0MznJM6HfYycxq8BazV6yaKRNTDMAFWzcU/WufnnfsRymGGuOIDlx4nH0uzMlKnsVsiCSS6XZGMioBhKzs0YHOj36Uhonj5jMtihiLuaUkEQXua+arBf8a++UiN1he5aQnBFMb6AbcINQz5z45J8TVMqCj6+22PHmpBUWbE3fdH70DXYydzY/IooX8LKwv7eZcVafm1WBPlNIAS0ZzTtmRaO+3XmAsnq8xnVY77kaMNkT+SNuayhaRV/bc5lNltBC82PCi2MLRvYNc1cWfC799t87ZYZWpyQAMVZd5ln8/P0NeI41mbCULBlTcj6wZCHH7NACvpWa9asC/naYw6JJFhKs6wEng3FmqDaENiWfpkoXxo3jTqaQAtipsIyXn3MhgGxiCYMoSOjiLwiM7mDARphg9K5dXznuM3jP7HxamUObIU9NwfsWedziklmxALHygUOP9eHUpKopbm9TXO6YJArCDwp8DWIGnjtEh0BahJ1UkJCoVyNGw1wU1W0bXNj7BAjsVbq2TSuW2PKrbNrUPBMySPpNkiOpMmWDEREM7ZsMAG0pRULnqRY12wZDDiTNUjZmh8dsZgpSj69y2NbX3hFMX69nKsZ3PZhnw1dIXOLzalgy55BtiTZt+lib+1Xzmc+/JNDLz33bonztVJitCLK721W/m+XZ0WQ3yInFqOczTZYvbppEguaU4neDA0FY9kqGztijDUkiYqBjEhCNKYBwnUIk910doQcY4F5oYgR5QwNdjjLjIy2MjkrCQJY0+MzMWawZp3m4FmTs6dN8p7A6tfM1CQPT1p8Yq1HKvbqg70gAPOTs3x6ezcbu0I6EorUZWYC2xb8d59vzoQ2L3M1xUgxct8+HnnGZnxKMjttsG9bjIi/xIEtEQBaSTHHIn6pnSCUrG5RTBQld8+2sDwqqM4L/EDjVSSEEmYFdEtoEYj1ioSxTEt/lmRqma62OfoTIdGGTYc9wWRnmnkMfENhGyUiTgUvCUfmNcfnuqAoOWNAytMMeILWVYqKkjx+2mT2AUk+L1melUR8xVdfiPKLB+p8ZWedNa1vvs/1ciCoIPBdQd6VrGoNuXOgRsKF1V3hS5/9Kz0W2w/sAHhTbuy3YwG81hbRa+14VnhrrNxgrQjyW2bQULS1RHlwtMr6fhNHaNY7l1+sf1rilNaQMdpY8ASu0Ghb0BcPcboU0gIfwV+cddlfC+hYVSeCRRSLGj7RtMcXbx9FOT2UluHr/2CTjITE4/DYoxam1PR0a8qu4Mt7argmLyWmXYkLgrCt77Wt/YInUBo6zItTmaC572IN/r97I1RsgZ3W5GYFT1dMhoc1oWpOvuqhg3bdylLc4qShOb1kcGpcct9IG/WKAUWa7UIVIEzYASSAtKZ71QRtHfOk3AK+a+IJkwUdIXQy+L6HF4QYQlHRDRq6iC0cqnMpRkY6aSxJUM3pU4shLNclYqzpDajPC4wQKp5AdUBVSJycQivNN447/Jub33y/692pgLZA8l8WIgy2KcaWDO7Y5GEEcHbSYKgvfM3M9+0rseWXsbKQvz9Y8XqsCPJbpkXA5yyfE60OVCA2k8Xrn+WcPYpAEGkMIbjo6710oa168OyURczW7OppTnX6b7sE31rQzDQkH8x45COCqWkDLxAMJnzWtiqeygm2dgkm3DwukmFSZIjirEsyPzlF79pu+voUo5OSZ49YbN0QMLck+dVP1/jupEvEhLInGEpeMiLyTdTTliqCZ0+YfPuUS6Zb8T98oIrlaP7KMxDA50LF57+a4NEJuzluUUFbUtG9F75V7aFnpMKnNzZdoLnJRZKd3axLB/zRX8c4/pwJq2m+7gI+0AvEgAREdRErWqcqXWq5HqLRGjpRYxZBTlmkTVgopsh7Bt3mWaQwqPmSyUPd1OtmM8vZBQKgDp4S4IAhBNVQEDc0joSaBzoOqZimJ6XJ1SSay7e5nM1L2pMK8zLu/UtpiWhcSzO2JHFMzdyC5Pv3O5SLFW6/sci/+FjyNV//ZkT57V7srpXF81o4hhXeHq73GPOKIL8NtEq4WZ7PAFqVxu45QlWMo1E4upU0Wy77untHHJ6dNAl1cwDFtu6ANlvzG321l7Ksi6FgeX3AWMHgnyYi5IIK2bYlyoZiDd0sU8cniuR8Utn5GPBv/GYX37vH4Q//zKXSEOzeFDDQrrjLneCeg8vsXNfJR9fGgcuL8dS8ZHJe0hWZZvXazlcdu+fB7/xRnJFzBmVbcMP+AHu/Jq9hVjWl6ncfd3g0Y8ANGo4LCGGpTzKTlwz2KX54zKfPmWVbbIGl44f5yvc+z5On2sg/JqAdsGiWBRlAFFgEbgTKEC1XGFp/jhZ3kWohTlknyM+msRfj2N114t1Q0BazgUXSzZHQeVTdILfQigo0sgrKgJeU1QI8oALxVkVdSLwQoglFJAQ3rtnQG7JQlXx6XQN5GTWeXJL8xx9G+exNdfaufW2vQiqq+fVb60xkJf2tiuMjBtVymfbOOBXlAM1Z29UGfO0Jl1AJfuHmOnH3YtjgUhc2vHtx5WuJ63Uhf79xvQrziiC/A5zLmQS2Q0eigebKC3MjaM4bVoHAe8VmF9yhyqhwxDxN0FZjtWcwVY3S3p4laroUw07yOJzGJ6MCbjNsPKF5ZCDJHCW27A340AsWqbjmC3c1iKezRJ172LlJsmnYJGJ9GnBfJcZ+AH9xd4RSFQ7s6Cfqjr9qmxOnDY6fMhnoDlnICjorId/7loMGPn6Hz1Q64C/iEpFVaFvCZtF0OVswQ511mQINz+E7tsOL2SOkR0/TyM5ROd0DjgRTNC3iMtBNUyyHgXNgB1Vsu07Wa6NSjrF52xGIwIvV7YRIGoUIul3gGHVcXeSj9j0EvskUfQQ1n6pnEE/4lGsWQSDAABFtli4nDM0HunwOFWyyFUHSAaHhwKDPnesbfHy9T8q9fJJAR0px564Ga7teX3y5M6noTCrmJ2fZtbGHkfEotZrmgzdcdAtM5QxOzRmgBRNZyabeV+/79Qrz9eASfD+f2/XI9SbMK4L8DmA1dqJRnDxR4WMbNl5xuzs3eDgmJBzF9p7LC3eFBg0ChDzJ7r4Yt9LO3UrylDfNlPKpyAhpM+QfgzQtOBhmlVNUiefrPGeV+ePfv3gR16gRi4XcsDGDxyLzUxP09K571XsaElqTilpD0nKFjOK2tCYRVUwtGGilqeXgZK55OdU9yP9yjcBPovMGGBphh+iygWH7IDVzvsJqz9IRSp63tnBy5EYeuWcHQV6CFjAF3EDTUGwBSsAyIDVexcWrRSicayEyWUN7gptueZJMZIlsox0hQ7Ruegz6zQlMHXKyvImCkyTdkWPJ6Cawo2RSdcK6ScU3MYUmVIJUUrGrJ2RxOiBfsEhEQ2K2YLAl5CNrL4qx1rCQkzi2piXRfMyx4LZNr3+C0su7gGl+43O1V20zkAnZtSogUDDY9vqE/rXc2NfDorbC+4/r4WYSVgT5HUHoKE79AOTg7xcAACAASURBVH1JODrTHEZxuclQLRHNz2xtvOa+OkmyXnexJI7RShoDmK5AOSLxFQRCsuAb+MYU/6wkA2KaeRym0rBDR5idnOG0sPmRiGGJJD/buZqEOYapWjjRmuW+fIE1so2bEgHm+dppKeFXP1MjX5J0ZRRCvDq23Nuj+N9/r8yjz9hs3Rhw5pjB7KwBAvxAoIG+1gY522q2sJT6pT4awlIsaY2oOtzVDn9x71ae+LsuaAiQNK3hBnAIGKBpKbtACqgKqAmoA0sGtXqUQlua2bVdZDJLFHQrMh0gpMIiwBAK37doCAffsCH0SLcZLC4IlAyJ24qG1rgahNZoQ/DgcQuUYFeXT60u+eXdNT63vUH6kvriHz5u8dgLNtKAX/xEnXWr3ljW9StLzK6Ea8PP7Xvta+QCXYOdryqRupwwXw8LG1w/53m98Mo+2e9HVgT5KjA4mKHpe33jmBhsppcxPUhJLOAhsEOTliDPlNdH3XLwfBvDKfOA1+BXnTL70QgiKHI8Y6X43+w+zqFQwI9Lt/LN5GZ+4v0zZ4Iy2prga4Vf4GdLNl/p9TDOu8pdB7qdi50xLtfTefvmkO2ba9R9aO8Iue+HNmc1dH6iwSolMYfyRPKC+uEYumQ0Y8GGwk1XcTNF5sfSiE6PF/+yEzoEdNK8IuvAMd0cEhGhmVFd9aEaQJsLCXHxyi1IqlMxPCxibXWSaIxYgGtWsJREJKNYDc2gOc5Z1tIoD5DoM7D9KvPjFqlUnVjFp6oiWIagwwro8RUf2BBgGzCRl+wf9F8mxkrB44ds+rsUhZLg6RetVwlyGELNE8Rc/aps7DeTQPd6eNn/ZiUT+7qxqq5HrtX/6dxbfP2KIF8l7n6i8TIr2VNw34LN2YrBunjAh9v9lyzUSynUBRPLBjq8kdHU15BOibUxeKIyTLHRgpAhcbNMOYxSaJg8g8865kkTJy6SPB7J4RovktEtlMI2xpXFfTXBjAxwTXCUIuqEPFt0+UgtYDDaFOGiL/jmuMPOdMDuTPCy2uTO/m6qhDxIljM5yfzBHrJ5h7GNPt1bPYppxQkNyegE29ZPcLK2hfp8BKlCYrEyph2Qnc2wavc4DzRy9G8sc/z0tqZlXAbiwEbgBNAHtIUw04C8D7NF2NIB7ef7QHuaYNmkxfRwUzH65TJrpGCzsMlJk6OWQ9Tdz1rmMQPFUilOb6RBYVvIqq6A6qiLmLK5odNrznQ+azKBwbpMSCraHBP5yvprKWGwJ+TMpIHWsH/ny8MN2aLgrx+MkC8LVneF/MKtdZxL1o93Qowvx6WiDBet5etJqK63GOQK721WBPkqMTiY4fAMbO9pWsoPL1o8lrXodBUPL9m4Em5rf7kbpurDnz8f4dyc5PDBKDd/agNV7bBqdYnRYANVZRCRZXK0Mp/vIirqnGi3aNGjBKJIRaeIx1vIeAna5SRH6jtpkKSgnyIvIrTbc+SCdqqiwJJ2yCrBIDYAR7MG943bmFqzO3NRcC6IyTR1Rhoez2ctin6VkbNxKrZi5KjF8HZNNlXDRzDUMU64x2B5MkWjEAUNse5lRFtIYFvkyja33/4gJ09tRjnnregC0CrApmkd+xr6bBhyoRBCTTXT0jWQECRaPT5vraJuwSwercwySJkIAYKQfjbgMcCNEh6SUNaaVdKiq92iZAjmDypG8ibRVk1HTDOQCrENCJXgZ3c2CGowF0i62i56DH7+zjrHz5lEHM2GVwwCefioTakuGOhQnJ4xODZh0mtPvqNC7PuQLwpaks0mMv/8qM1zJyxu2LSHTxzwePHxVwvz9cT1dBOywnuXFUF+l5isG7TamqgBaUszVTO4tOhWa7jnlM33T9tMTUgKWUnx0DaGh09yeqKDXE8vC9UEXqmOQUCoDeJOlVpo82wwwKCcJ2MskpbzDJodLKo0SVFinziNERkHz2SksYoWs0CK07hqLVlnERjGD+HHow4ZqYlqjdIwXpI4BvTEmlnBmf42KhWTas1geSGGZSs6cpKZlOTZomRfqsqIMJkMuzGiAS3DOYSZAy2QIqQaRBAYSFMQ710mMlijIuPNEqQczWYgq85/JIsmRBW0aeiym4MlFpufU6xLcesOwYZoJ6NkqZBDskiKTuICctV5pqIjtLCNmxfbkFMmZ1sc4jFNFWg5rjh4VtLbEvLxPR5OBvozISlX8/yYRXZJ8O0nImjgN79Ypbe16YKOuLB70+UT8ZS+mCV/4feVxPjh2QRnpqL88tY6PfE3N//Y8+GvvhvhxKkqQ4NRPnFLg6eOWPR2Kp48bLF7Y/CStXw9syLKK1wNLsS3A/XGv88rgnyVOTwTZ2wsy5KnybXHaSgoB5Lb272XbXc6a/D0hE3U1SzVBV4Zzhwc5syJAdz9ZaJJhdmyDEWNbdQJtYmbrCAU+HWLx4s72Nh6ko7oEl1ihnXyDL9oS3aqE/xfMorl+LR6eby6TaMm2TdwirTVCjSzrLtiCk9Bf1xx36TFQ7MOEs3Pr63TBrRi8aFyD4cP2zQaDRoS6nkTa87lc50BxqIBrYqKjOIri4isI0VTwLQW+NjEA49+O0s1EaPSHoGx8yefoNmsox8IaVrCddm0nOM0E7xiEN2ouKk3YGMK+jtDlrTDvHDpoBOFwASGyxGma5LckXb+3VMt9CQUqbTi5z9dp8tR/J/nfLRsY6xoYlvT7O2q4geCv3lyiKitOTJqUKgIppYN/uzBKLes9/j4ttdOKPngVo8XT1U4kTXYvDbCpv4rl75NVGwWlSRXE/TE3+DFdJ75rGRiVrJpfZTjJ6ss77KwzObjlqWJnne5v7I8KnOdWsorrPBOcuEaM+UbnzC0IsjvAoODGQY0PHSmyNA6l9VRxbbkyxftM/OSM+ckaE0YEwRRgajB+v1nSK9ZohhP4UTKzMsOIqJO1K2Slkv4px0ef+Z26ipCaWuKO3Y9QJkonWqJtHcPD+tPErfHeUGsAmBJtrGmw6LLrZGnjKcDbGHylc01Sr6g1dX86ZEIHa6i6AlGiwabB5vZwT2+JJlMUMw62JamUIOudIU9qxr8y8eGSfWPk1ubRBJSDqPYKkDKEE9ZRIXHenOCj1jH+bfxz0JaNIU3pNmkI00zK/vCjwBT1Mm0ZakZUbyUxdCWMq0Fm11rNfkWj6NC0YPDCBH6Cemp+zy32Eo1yBOrOdQCeGFaYY0r2ipV9m6scNdHO8gSsGBJflzo4ZkRzeaugGxdELE1Z2Y9FhsxFkuSU/eZHDxhcsu6ZWLuy1uhXmoBtyU1/8uXTaoNQdyt81rfy8+sykM6wlDLm++N3ZpUJGKa8RlJW0eMhBzlVz7bzelxg7WrwpfKsi6wkvC1ElNe4dpkRZDfJaSA29cmQcPYsSzbX1EWNTlrMDVvsFCQuG0a3QPRikJ5gmAR+vvOMK+6SVlFFIJUbpGjI7spNtL4UQeKMPbsWpa3PUOvniFSK/GY2U3ezbLXj1G1CkwYbWwSOXY7PlUlmVcBGdVgt2ViGZCWPmH4MPs7cnxn/AZcY4id7ZLxqUmW+jV5Cgx2HuHYofXMTHUSa60wvKfC3/uaxflOxr+5n22/9CzhbolphYTSwMRmyJR8lBrSTFLXn6eqe6FDNbOlJLB06QdFU5A1BHWX+fFO1n3gBMulDG57GfXBEqOOhSaGiUU7CaapsESWhayHsgXJhUHSMYPbt/ucmTY4fNZmqp7hvkOt/NrP1WjdpHhh3GS+IWEWnpmzKBUEg9kA0zZpk4oXJk20D8WcyfS8ZN0qxen5fp46ZDPQHfKpjsZLIyeh2fAleUlm9uXKmzr7u0lYis70mxdjgFgUfuMLNaYXJN1tinSqE1D0d13ZZXa9d/laEeMVrkVWBPkaYHAww91PZAFeysQ+sLXGqSXNuZzNsaSFvaDoHwpZTlaI2WXWZk6zRp9hwW9HKJiK9bAcT6LNZotKWoCcyancRryoTVU5bD56mj53hpnhm/iSuUQyCHk4EqOIxXNeKwVDc38t4A/nf8Q27wg6AjpTY0dbL2tT92JJiWN/hR948wjhMK18HjO7UW0Ss+pjiBpjeY9px6BUUVSLCZ74+oeIf3eZxOZl7D6b3x0Q/PrmZp3yX4kCnjIYrAsmbIGPgkA2r0qfpsWsaIqyOP9jmpw9up6BDRN0b8ni2wZngWVK9NPKnNasEh3c1kjw9RGLLjdKraChFTIpjSFCzkxKTi4abGoJeXrcZLJgMFYyaPU0w10+5aLB2CmD2ZgEC4ZaQ1QOgllBGIUzowaOCT94yKGrXXHohElLUvGRAy93Zc9PzhIE8KP7k3xgfx8bN7414X0tUglNKvHG93+9W8sX4n0rAr3CtcCKIF8jNGuV4e4nsty0T3G4a5ZdX9R8Urk8N57mn37SSkv/FJ1dIzhGjqQu4IU2w6JMkRjrMiPk2ls5k9+CNjxU0QZXoc5qRgcHuXH5BQSantIUJX8dJNdSsLP00EE1iDNHkogv2Wf8LVPyRVLGLvpLj0B0AyJuE7dttJ7Bo0DZ9Oinhb8rdvH4sXbq30g3m39ohbO+hvkhH6tdYUSayWmVSoramRRbfZ+lMQ9zcxWA1Y0IfzbqUm0YJDOackkQlhWBK5uCbNN0XwuaNxlpwAAVk1REgrJcJBpKlpTBMoIvCYlv1BjQUcwwDstRLENR8IoUlgXRiMZ1NcKA+ZJkqDPk8RGTU4smERPMFs3Rhk32hMD3IeqCCKFaADUviCpNezyktCioDwiqpTJ+3Cf0TKYm6jQbbl+ks7+bahVmFqJMTvlXFOS3uy75je7vSuVR1wMrQrzCtcSKIF9jDA5m+NqZE6xeaxARgjPGIbb3C+IflJwsRtH1GD2DRxCiRtWDTmuOjsgcs7Kbuwb/me/GHGYW+6loC7vqk+ousbX1CJYT0pefxnBCvidu5XuTMQ6knkEly1QNwXxjNW6YxzBLKKvK96en+dj8JO1yCTfeINQZTCxskjjKYKKseKTUTv0fz6ukAwQmjcMxzK05So6m+64K5eMWuIL1a2scmDP44I0XrUi7FEP5gtZUg9aaydptAYtnTbLjBqWISZg8P40pSnPCUw1Ea4BMhNgxSTFsxwp9okITKJs/a9S5LT3FlHb5mDNMa0xzZkJy4kQbtUqDWNwh060IteDWrT6bekL+6YTNjX0+M6HkUGhSOQlSaqQWNJZgsF+xUYQsxAyioWYgrejJzBHFY/OmQSZm4iRbNB+/w+SlVmSXEI3Cv/69KtYV1v1Lu3W9XiG9Uuz6rfDKWctdg68eKPJ+4nIx5JW48grvNiuCfA0y0NrKaClHb6KI7efZNHGU9UGe/fFOxrv3MO8UCQgYTIxi4GOg0RgMGuMcSPyEh/zbma5bfHDzfWztOkYv0+iMxcKePibr/ZyudBFqg4cPfYUbBo6wbfAwq52jHKxv49lwJ8IL+KRxL/GdBRZ1jIj3HDU7xUnj97gTm/2pBP/++SJ1VzYnMtSAgoAOQAmCRQfhS5wb8nzq5oBb+kLmdMjPEyNzySjKDguGlcO8VSMQmnRHHXnWonrOpVrUiP2gHUHo0nRbx0HEFY7S7GuvkW8ksGSNuBHSE0Q56fscX2jjWDbFqOOyd02Df31PgkxS05IMwdAcfMGkgeBkw6S4JLFtjQAOdPucHDOYdg2ctKarrAmysH21z8j9Jh1dCrMKn71rlgMfamaj/2ymwd/+wMUwNJZ9+Z7f0Jw7fSmv7Hr2yt+XE+ZLH7t0u1fyVq3t6yW2fDnhXSmLWuHdZkWQr0GG6m1IDZm4IFmuofwcQbSDoaqiHvgsOwNEdUAgFHHGKRLFpUFOpImaJVrdJZZ1ki+7X2MgO81cug0tJFUrycFwKyWVYCnfRl3FePjsHnZmHqEvUuNIsIlzag2O9Lm16zHysTQlEuTDTjZkQzqMYxTSS3z1BPzlvZ+jcWMItgLXhHbdnC9saLAV4ayFs2zzIj79mZD2iCChX55uvCER8rmeBiNli+0DHk9POninDAb7Azqygqw0iHdAzhTkliQKMBcNol2CM2faMRIwmI7S5oCHwSarxtiSzQ0Rk5mqSdiq2NwdkvMluYKB7Qp0AOm4xnE0pyclLT2KY9Mm41mDjcmASkzSEw2JSGg1FGuTIapTkAsFM7MhhbCNMKxiGHD0nMl83sA0NU++aHHXgWbp2mxW8qODNjdt9Nk48HI39esRzAtW82sJ9BvZ7s3wfo0t/zTBXRHjFd5NVgT5GsTEYE2jk7EnTG7eto9AncOsJ7CEYKP8AEeKJ5jyTdKJdgJ7kJAS0GAx6MIxfAqFNL4Z4XeKf8rWjkOsMkZxdYBPF/NhmlVijFw1g2V6hL7JhNfDp5x7eZKdnPXWU9VRZpw+InYFr27TMzHO4PQMjjzLH/b9HP/3t3+dWhCB+xWsD+Fo+FIMmd0h4YQJwsDOJuibhZTy+ZkdAo0+P3642S1DCNjXFrCvLeDxEZN7Ho1QWFaY85otuzQ9e0PcmCY3LzkRgbIp8KqSpR8b5CMmw3tDllYZZOOCiNT8j6skz9pxFmrNQcfdiZAtgwFLeYlKlSj4BlEh6e9UKC1ocSVeQvPRTQ1OzRt8+eY6902HPPS8BbOC1QMhxQmDm9bP8UCumztuh2JDUCgJMi2azlYFQtPwwbBhOivJJBT/8KDD1x9yeeKYyZ//zsUe5m9EMF+vyF763OvZ93RWEirob1Ov6rH9St6Povx6BXfFUl7h3WBFkK9hPr3P4e7Hh/n0li8R1MZ5PtnG8eU8Rxd3srZnnKWSQSqdYUGWcKlzM0f5z4U7aEQtIrICUrHgtlFvmCzV20mmG6TMLJ62SZt5Zsu9GC0eqUgRbRjski+wVO3GDDV/MPb7/DfDf0t3fIreQoVq3OW/2h/mG4/fhVc773ZeOp8R3SPB1OAJyBmEEZtYStOnNTsXHOoFm0d3LDIufHq0ySeI43DRWj6XN/jLIxGqOgDtUyzUcVZb9KcjHK8ZnKsa+IZATkPwg+akp1ALziyamJ8O+LW9dYpa8PiyxWd6G+RqEtMNCaIhX/i44t5HHJ47bjITGLR1K16ctNjV77NpIKB3KOTZUxYDmZBooOlcUGysh8R6irTFAqTbQiAzfPR2j7EZg8GekFS86Z5OJTU37/Z4bMTiPz3oMv5tg75uxc4Wn5aY5tL1/M1ar28kpvzTtn36lMndzzaz+G/f6nH7T2lwAu8PF/abEdcVMV7h3WBFkK9h7n6iweDqNu4+JhheHeNUrELgBkTqKSZy+0hU83wqLXmBZ4ExWu0GX0nfx7f9EjmdJmpU6HZnOVceJj/eDvFFemywWnPkaKGcjtDbPs6Qs4hhtNNll2izlqhWohwf28b/PP9HbFr3Ar/a/w/cIg7xVGUz+VobYclsllWZwJIkHilQDqIgjGaPaUvS6wXckfcJgWLCY1T49GIyKQLOao9NuC+d59iyJG4WGcokeeLRGvu2KVKnPW7aY+AftKkcFdRb4OSYCcPn33cORBWWDgnusS0qGyW9UcVyUbIn4jMWrTJTrnBbzeej20N6MhEeHE3QEQtpVOHGDR537vU5PWpwaMZielLyH1+M0JEssJBrpRG08LFVPjOLgnha0N6r2NHr89HtzSEUng9fvS/CsUmDI7MGcyWDSiiYbChW7Qj4rc9U2TLUbPbyTk13upTXs//D4ybpuMY2NS+MWq9LkC/wXhXmt8PSXbGWV7harAjyNcyFUqjBwQwNUiydPsYNa2zu6IK8X2d1xMYVsEFv4gzL+MJjq52n0/4qBSIUdYLZoJu5RjdSK5IiT4uoYUWWaOkuU+UUA2KOYeqspYfD+W0o5RJELLo6Z5gZ6eHg4n727zvGscjPcEb1gWui1PnLpgKkIFy2aI3kKdZSBIFBOqq4JRPgALNFSf9mRUlDXSg0GpuXx5IHkoolaZLcBDeVTbryVX7mIyZHDxv4EwV2d6f43kkHoxNErunq1qvBntHsHfI57lhsDX1uSQVI4EfTHu1YpFIxeuIGnRgslhZp1DTffcRBCng61Kzp1MzOS6KOZmq2hufE2LEhwdiM4thJm28uSjbs8in5BkFeUG0IFp82+LVbakgJMUdTCWGxZhAEzXnK9ZrAlPCJfc148muJccUDPxS0RK6cEPZ2sm0g4PsHHTSS27e8vhnLr+S95MZ+u4R0RYxXuFqsCPJ7BFOb9C/0sXeNAw70Os1koSxFHi69gMamP3kb/TyJZpmiVtihx0R1kKniKobaTtBm5BlWZZRwETJClQJbdIohbqFNrWaqFpAptzF1LMnMaApiEtLw49x+WhOLTLlRvJiJmYHgwpjEcaj1xKjVYiAgoRTbowHD0RCloNGAj6wXTONy1AtYU3MZOxHl8TmDW3b7rO5TzCAx2hUVS/CRLzj8yqBCSsFDf1qisxWkWGbDmjSHEgZhJkREGphGQGxNyHwkTdlSTE6FfOOcxlGa5ekWNrohv/yJCuu7FUjYsqmd3aMB9QFBql1TqAu+9bDDLxwY5bDVwroNKcpK8cwRkzNjJnfd0qA1qXlk2uJDaz3iESCumchKxpYkhbJk57BHV0/AqbtNCjlBUJO0REI+tLNpeb6WGGergv/0TJS6D7+4o8769jffNOSVyV1XYu/6gL42RahgoO3NDbKA94Yov91W7YqVvMLVYEWQ3yOMjWVfNk/5ApMskkqmiOMyWZxlKPHbxDmI5AhP0coZsZqBtrNsjB2lopIEvk9HRSATPbhOOxXRYBGD094Es7k1zC7azIy2AALpBUSNMnknRcWKUhM2ukPhyDrGcYeGcX5c4lkw2hSrWjVD6ZC+uCJhasYnDPbu8enr0ZiFOA885PLDEZPnD5l0mopv3Bvhb/5wmZmGpMdt0JYOqAnB8VmT7zxRp9HZQn5c0taq0GsVjfmQmjLojC3jhzaZvimOPuxixeOcaERpCRRuHUqzgjAu+NuRGA/5ii+219kQCzH9JQq1FC/O2GhfYJqaX+nuome/xalFSRhAOSvYtCZgda9CawhDqPuCeESjNQQhfONJl0pNICWYtua2PR7FksA2oDWt2Lem6ap+LYHMViXFOgghmC7KtyTIb4S+zJsX4ku5lpuJvBPiuTJXeYWrwYogv0e40F7zlaKcJMo0S4AmnkwS1QkyfJTDRcnqxAv0xh9GaUUgTKQwKDainKt20rOg2T2QohSfpkUnebYQ0uPWOTWagppAdCn6Vo9RTcVpLDsUggwyHiLbQ2zLJxEL6M9ZVIZMGucE2RlJ2tck6pp2WzE7J9m53aMto6hW4ScnLaZrgieqFoW4wFmGWk0zOmWwPj7N2dQA5VBwwPH52jMu7WmHpFAoC9be1OD+5x2qlokoaEwjJBopYGkflZIsLwnsHqiYEsvTpHxNe1qxayjAN+Abiy7/JlLB6VCMxFMsVCStjmLvsM+3X5SUfMFASzPr2N4Mj95v0TWjCEP42GaPpUDy+CmD2YJkS09ABUEqplFAoSy4a7vHeMNAabhj0KMzpjh6eJH2nk462y8KoOfB1JxBd0fIUDrkttU+pYbght4rT4O6lnllM5F3W5QviOU7KZgrtcorvJOsCPJ7iGZMuVlGU6TEcXESgaRLtxKiWUMXMVwq5OlMlvDrE0yKNKatUEXN2PRa6g0XjeCMjlKYqLA+GWNanKbayFBZXMXScgQUJHqWia6q4E3Z1O0oMhrgBzb4YHXV+ci2ee6M17k57Ob5nMlD4yY3+CEZQ5NMaNatCfj7r7s88LCD1nViEc2TUzY0NKEryJUEkVxIGMKeoTa2qioaeHbUpF4qE29rtqGMuLBcliwHBp5jwg803mqb1J155s51U7PjsACO0siEpisfkOoV7N4SYNnNzptLPkyVBM9Uetg/nOVotpVaCEuBJFLWrG+/WALU36XYti9gVSxg+0DIrs0BD75o8b8+FMMxYNKX5ITEsgRSaIJA8PkP1Pnklosx4zDs5tv3r0JK+P1/VX1p2tN3f+Tw3IsW64cDvvKFOneuf/nIzbfCO1GL/Hq5FhK+rqZIrojxCu8UK4L8HuU0Z6lS5jRLVESCfvrp0ppWwFMV3NPnaM/PMLsrgQwU9SNx1kVGqHe7lLwEeZ1GzNc4981+hgZmmK+bRIMJUtF+Fio2yc482hXE2ooESUllKkPoG2glCE6ZnMn4LH8yj6U91grB8VmDB7IWa9eH3N7lE4vBjbsDglAwPBSSSiuS90UoJkzWd4Xs7ghod0KmZgzYGWCeFy2/sIgd70fpEAHUPbDLgmzDBENATDD3VC9zx3phM7ALWAWtvRrL13wy47FtU8hjoc2SLyiHgvWRAN+XSAF9qYDOdo/ZoqAtrmn4F6qiL5JIa/ZuD9nWHaAUPPCog6xBo6p5cd6id0uIRIMCy9JMFgx2qRApQSl46rhJpE2zYSBgbFliC+iIKxoeKA31xk8pAH4LvN548jvBuxVbfrcs1hVLeYXLcWFgSaDeeHhoRZDfo9hYLDDOPC5JKkCD0+QYIIV7dpL2e58jGszRWDYYWh4lMVPFcAMWN7VwcM0ensnfwIvVjejdLYyEH0HkGvRlp+joKLIwn8E0A0Ik1lofkdfoBYkhFcZyiL9o8eRCinV3hMiCz3/48w5OLxqoGYH+Ns2SqLiiM6H45L4Kc/M1HKsBLRJjOYKtTOppOFYVnJCaakPzczbYQrB/Z5oF7XNoqnlpdrcqvjlus3TKgEENt2iYoekoeAbwwPp0wP6ugJTUbO4IiJqaGyseniHodBT7Uj7VelN4zXiKhKkpeYI9fT7zJclY3qQ70fzy1HwwJQyeH4kYhGCgqcwLJk5bkFLcfEvIxlWKQMFDpyz+/EmXM0sGq6wForEB/vp+h9N1k6WxKO1PhfhScGN7wC/dUGPHppBVve9svPhybTcv9/g7wbshyu+WKK64r1e4HBeuB/O1BqFfgasmyEIIF3iU5hgCE/i21vrfCiF2AP+Z5hiBAPiXWutnrtZxvZc4O7ZEbUEQeQAAIABJREFUqcekCOxmmBlO0YVBEUkJn/VEUVSpq8exWaYRBGw8OEJtjUN9m400TcpLKRbDNNoxaDfmcGJzqFSEcXcV56bjTNcV5qoG3ryD3d4AJYglSyzTjhWvI2OgLUWIwUOjEf5qNEPjgEbUA4zTCvWEiTINZDrE35/lx5vLhBUJk4JwXQXvQYOsDjhedAldg56hCqNVRa6wzJe8Bp393fzs7gYf3OChNTw0b/Pw31hA2KxxXqvgiwoOCagL2FBHdmnO1iQdJvy/ixaVskGP1HwsFXBbp48UELjwM1vr/NNxh6WqYHt3wAeHfGq+4O9ekIznJUI0xfgL2+ok3WYpkm3BTdt87nvQJmIpXEMTj4Kn4fGG5ElX4MyYPDNm8JHNPfzgSZvysoQk4EBRCHoHFctK8OOjDr/+4Rqp5NUpc7rApUL8Rq3niUnJ9+5xGB4M+fgdHq9njblaLuxrQQzf7fdf4f3F1bSQG8CHtNZlIYQFPCaEuBf4d8AfaK3vFULcCfwfwG1X8bjeE4yNZRneZ/F9EeIAeW1wpz5AO2epYNPHKgZowWOUuTUejQ+uJnY0T9VM4G7yiHkVjHpIez/cmnsMeSpkMBzjWOcO7HyF3u4aas6iZO0htXWZShglWckTGhKz3cdprRGWTUJTIxNgBnW86QiN5yMYCY/2ffOYW2uw0aE+HsHY5BHpq+PlLGSXxkgEyJJGZgp4R13cRoNKPIatHYThMZZKwGKzNlYIaDvfDaswDmY5JFiymhndpyT2/iLmVk1tOoIWFo1pycEFQTIV4sRNuuMBZlQxVjZY9gSHA5P7qza2AV++uYY1O40pwTG7cUzNb+6tMV2UNAJBZzzk4LTFI09bxG348LDHp27z6EgrHn3C4ta9Pt2rFH93zubFSYN6VVBuVXDK4DuBxN8q4QjNb5YBFSlQZejrUkgJC0XJYMfbk+n8ZnijseaHHrMpFCSPPSW5cZdPR/vrv5l4p4X5WhPDa+EGYYX3NldNkLXWmgsZSc1cG4vmCHpN054ASNF0SK5wGS4s4/L832naSNP2sm00rVRN8HeYmNkIoQjJzMxz6CeS+XI3PaeKqEgO+dk8jw7dijvboGInCD3ND2Y+QTDlIuLLxDZXCA0TJ2wQVCSpjYssn25DNwRxscwHe3/E+tg5Rn55DZNGH/PVTtJuiY798yzvbiEITeby3YTaJKwJcDRYGtGhiX60DAWwcnUWqjEG0HzAap6d0nCuatDQ0Oso1rd5kHIgq0EJWBb4D0QRqxvoQAIhVDVGuyTerwlNQR4TS0AyFmJIzf1Vm16zaaU+ULX5pHx5rFVK6G9pvv/3jjs8NWnSEdfka/DVgy6/eVONfTsD9u1sZkMfOWOweMqgdNgkCAW0COgX+NMClmjOcm4AzwECGpth+IaQuYIkcZWagPw0Xm+secvGgNNnDPp7FC2pN3fsb7cb+1oVvmvxmN4uLsRFrxXer5/1VY0hCyEMmsvUGuDPtNZPCyF+C/iREOKPaWrNviu89teAXwPo7u2/Skd8bXChBvk7T9bpXZegLDXydJm7A/WqMiiTNG36c4yIRwnio6gfnmZh1qPg9nHHqQmqQzYGAZ333UPHjnG+NfgLTGaGiZwpUc/abPrS8xy4+SGm6WOkuhGz3WOgZZq4LFGOREnM5sicOsvQQ0+xY+Myt+cd/svwr7Cv43E2REaIU6YYSfK13JdIJWLM5/qQyyFRG+xoo3n7FUCgDDKNJW5J/oBf9c+wrWxTUKv59uxneKHkIgXYUvPzXTXkRh+mJaimK1jPWjQWFBgeTJtgKeo3Q6xbE1YEWzMhKUNR0oKvT7oQgZwQVLVg/SVjEl8pSl4AB6dNBtMKKSBuw0RBMrJo0hZrLkhjs5L/er/LQlYSnpGwRTaDMOvP7zQHHAcmAQ/EDHi+YOJmg70bfNZ3X51647eL3TsCNq4LcBwwjJ++/ZV4O0T5apQ1vR1cqzcMb4X32/lcq7zxqPNbQGsdaq13AH3AHiHEFuA3gN/WWvcDvw38xRVe++da6xu01je0tLZdbpP3NXc/0cDQgt0Nh1trLlv62hgczHB4Js7dT7y8DWIvwwzVN9IesUlYNbKLkt6TCzx8KmThqRr+pI+R9XH+8hC3/sG/p//73+GFQzew/ivHSX9pCrVW8bvDf8yfrPstZLmBr0z650+zZ/Y+PnnyL/nM3/wNN913BO+RWbZWj/Mn9/4+B+Yfw5MuBZmhx5jjv0/9P0R1BemEKG3g121AIKUi9CWuVePDrQ9xq/sYrimYlZpZ/wwv5EYZjPisiihsAY8UHO7qLsHHAljSEKEpfiawZELSag5WbhhMvmiyV3j8i54GcRs6XcVCXSIL0GuE3BTx+Wjs4mdVQ5Hs77zsXOErkStKauUyQaVGPKKb1nAZqAMekAbZBfSAGNakU4qk1vzmnVU+sbNBofL2Z1gvVQUPjFoE75AnPBp9a2J8gQsu7GPHp15qKPJ6eS+J3IVkr/cL76dzuda5qoJ8Aa11AXgY+BjwS8B3zj/1LWDPu3FM1zKDg5mXfq70/AVRruHxteA5fqwneWHoDtw7tzG816Y8UuVTu6D34600PjcIn+tjcMjGHF9mzd//I90nn2bg9jEcFfA/hX/CJmOED9jP8vcdX8adXmL9wYcYOv0ciRdPI1c3MD47TKK7C2vWR44pZFRjojAIaeDQahZIiiI6FAipseN1hKFQnsSv2vQ6s8QbFbxYkmWjypIImEl1YagCQi0B4BqaSij4fL+Ls+zDgQa4CrqBrQZskyBkUwynFMmqIpaHo6MGHY7GltDhanQId0U9PhX3iJ6/4uto/l5U+DtRIdnfCYBtwg29AWN5SdkTLFYElqFZ336xcUdfR4hpaByhiYWa1P/P3nuGuXXed9r3czo6ML0XcobksHeKkihRxeqyZcuyvJLtxHLZ2Kn2tYnj7G42yfvuXsm21E3yxolLLHlt2Y4sWZbVu0SKEsXey/Th9AEwqKc97weQYhtSJE1Sko2bH4h5Bjh4DgbA7/z7kES1QS1CneZheZJKw8eKSIwGiDTCV7+cY3adz3M7DL7xTAB5kb3WE3mFLSMaBffcxf58LkIuJkvWLT1JmM+FD5IYlynzi3A5s6yrAUdKmRRCBIAbgb+gFDO+lpJAXw8cuFx7+mXiWCevRP1WdhsHMItFtLhKqHk94Qd+jbkv/Dajd1YzHI8w+GSKvscm8DUV3RBoXpH54jmG/bvo8vYQsArYQkdISUzNMie9HatWJ/hWP0d+kENEPObMOUzGCjAt4uh2gbk79zNdFUWoUMcIft6gdSRJvmqUaMgkGPU5NG3Rk9JRTIcGZxjpwYhfx9iRFjpDSSpDY4Q0n+F8jqAlGLMFV8Zs3kqYrKlXeWWrjjQU6JVQUCAiYJ6EI5L2mMfqWZLOOo/X9uvsCAksC2qFR42Q6ELi+aCecAmqwEnzmQFWhXqIdbSwe1ylKlhK6qoKHVfQmoTkMzdMMOE2sGRHgW//2ELmoHO+x5WrHB5/zGBCVZk138PMSFbe6DIQVfnudpNVrQ6LWt13nUN8vsyt9OisyKOcx3HfizrlEznXhK+yGJf5VeKCBVkIUQuMSSnP1VFWD3znaBxZAR6WUj4uhEgCfy2E0CjZOl+80D39qtPWVsmrP9hF9DaDTMDEmowR1K8mtbUXVwr6klFGvjXCwIDEyWu4RclIRx3u2lZqbtdIjefIxCO8rqxllXwTQ7iM2FVUbd/D9IuHmHpyBHdKUrEYTNPhyHYHtyVI1WyTyq0pVlRvZqI2inYkj/l6PVcMvEmn8gahu25E75xFa0WU1xSH0bROYypFuEWjz61FsRR2DC3kgead3Gc9zevqfUwrPlfHXaRXEs3bVjp09+oMZnz8Y2JcCwigVZBsVwnW5LEUybQUSE9StAXDaNykFvnzjSEsDW7sLGK7Fi1FjfuNMAWRYYSDAFTTQGNrPY04XDd7ZjedlGBU1nFoj8qEVKhtlgRcyRc6C2iW5PqPOPxk1GQyL+geUEkqCrPCLj0pjYFpld9bnTvj36/ggudDyDj/v/35iPGJXM4a5Zk4W2y5LMZlftU4L0E+Wq70XynFfQPAHOCwEOIvgF4p5d+f6bFSyu3AshnWXwVWnM8+ypyZBbNWMfDgM6CozL79Vh7/5rfoqLRJiw7swzlGD+XQ0wLL9fErLZQ6k+ShScIPv0nnn1ZwqGcuP2u7jaQap8Iew3s1hfX/vEb2SBEFSBiweAmkpU9E+Dz3WJzxr6xnzdMv4D3WQ3XHCPk8DA+OU1cXxTqSwjnQh794LssfuIf7a5uQIYtxpZre3DSZXAQrPIVmgF5M0FrRS2skCGqBjJQcyCm4vqR7UiWe8JnOqSQBBihdvnUAEqZSKt+vsihUZEi6grtqbFDhp30m3+0PUGv7tLa6PNsTYVnYwRoPsDSYpi3xFkKULOBhBlksVxEgNGMG8kj/EbZPtvDcDpNEyKeuwqeyxieTV9jnKHSP6Xy5JcdvV+b50W6TAanSl1bpqnKpDfn0phQOTaksrJk5seuhHRajOYWvXZm7YIE9ts9jvJvQvpctN49xoijXtZXCBx+E5K0yZS4252sh/xfgTuBTwPdOWN8EfA04oyCXuTwkVq0l2DYLxTDRY3Hql8xnZPcOjJvvpT30TSZGoG6JD47ELuSxunvoz4bYXl9JbjhLc/0hUoUmeiKtBJQ8iVkO99xl0/sKGA50zQetCzRdkk9JsNNkUya5yQyDO+HQbkBCSBYIj71FYvn1FKcztKkhjMc3MPcLn4YA7JezmJSjKNkMBVsj6ueZbR5mIr0GLRblUXeaZ3JBRooqSrWNlxSs6irQGArw1PMWUvMhqUCKUrFcCvITCs9VGsyp8fhRt0k25jKpejjTPuODOm+HNBb5LsPTGns26fzLYILZ1VfzRx/ZS3ttnixpJhmjkdCMZUEi2sCLrxi0VnvvuL5vutLB8aB/QOVz8/PMDXpoCsR1yfI6h+FRhW27dOa1u0ghsL0zK+2yOpdpW/xC1m5tc/2Mwvpugnvi+W5Oakw5gqsrHKyLkMx1Lpzqwq58H02PKlPmcnG+gvzvgAeklC8JIU50Ve+kZC2XeR9gVte+c7v2zo9Tee2NJJoeYvjNtYTr/w0XgcxJtCqTA7XNKH1BZMrj7fBKzOoAS9lOvT9CzM3gN2pM3dzGisoeFF9CBRQiYO9yGTuiMBmvoL1/jFZtnF4fpANmoPTGcu0C0s1jC8G2kMXI+CDf8Y7QLhTWiQTzrTVU1owip1SWzjapCH2G/uF+vuHs50fj7SRx8XwfXIExG+xxB20yhzEQRE4J7OYwOCpIUfJrJyFnStQ1BdLjKvmkgmG7uHN8sm4Ee4/G9qJKnxZk+GUVAhqTwXq+dDjIX//xN4kHTQSCPGkEyjsiBSXBOnBEQ1FOjkMD6GqpzbaSAa26tLak1mXzoEl/r4ZpSN7apTF/oUdr7GTr+EShXF5/YVOf0mnJzx4dx4pUsxKf5ubTczXP1fo9lFL401dCBEKS8DLJFYnLO4nqgzBruUyZS8X5CnID0HuG45T7Yr8PEYqCHk/gq1OI5t1YjSqyOcRUVxvJ2bMYcxPYExqZQxpKpcHB4TlQozLVXcPmrS43rH+WNxfU8W+Fj/Hpke9Twxj2kM9In8dYMMq8dT4rX32EQBha6mB4EgIm+C7oQZfRqQP0zl0ER3ZiL+tkTKQZxmc7E1xPgJrhlTz6doTKlQVikV0kY9/jqcwXmfJVMltD+GkVLergd2TZ96xFzSEXo8ErzWIueLDTg8UG1AjwJblxhQ37g8i4RBQletojkUmhR3LkK4Nkk2GGkxYEj75ABcHkWIjtPc20zxtiPh77lZcQKHTJG04SZds9S6xWgHOC1i6scbm2TWHXHo30tKCpXnJ3V5HK4PEEMd+H6ayC13OEhrYLcxfbtuSv/vckjoxj6JK333b58pd06uvPbGafzVruHVNJTQkmk4LEivemo9j7edZymTKXkvMV0V3ANUDPKeufoNTwo8z7EsEEYeg0yH5+JZOROFlieEIlJqbJRoJUtgaJFBx8SzA00YhVdImM59l8aAX/Yn4OOcflW7P+Haue3U6lP0nfx5r5bNd3uHL6VQK1Au0lwbrlsGm3YLoIRtTHSej0iQDFYIHi3BgTt1ThuN24ShvTisWrhWk61J24hS4CuonHa/T4jaRFiMzhML6tos12kEJQ2B5C6XagRlJnGBw0LMgLmPKhz4MmAVU+fp+BV23jDeiQVbGFSVYNI4aK6BGXWOc4k6N1cLso5fPnQcFnh+iid7odw7RYYmmoqIijVYHHRDnsGjhey2mvrjzab66x4riAKQI+2mVzRaND/6TK/HqX8Ak9XHJ5+PbDAY6MzqKu2ufXP5EnM3HucdxjFwlHhgW2V0lLS0mA+/qhu9unvv7MvuazdelaXO/yyY4CTQmPubFLI8ieB8NTCuGAJBaauQbs/TZruUyZy8H5CvKfAg8KIZopdRa+RwgxD7gPuP1ib67MxUHiM2GMkBazSEUtsiJCTgZxpMG0DKEKD0vJMD+wlwPFeURklulsmLBfZDDUiBcHrSJH/1grPVfNgyEFMiqjA3X8fUsvjS1DiHsl3pCg81YLd3gCOe2y5Zo1bLvifsJeBtsMEpI5VGWSol8Au4MJK8rSxjy/e2+WVqHhUEuC/XhSQU6rqDUuMivAB29EYAY8ItKkpqCSDHokBTgK6NKhZr7OoAK4Hl6/DiMavAloPuQUpBnA1mHy7VCpLY0JVABTkoZ5OcZ2RTjyUgXDtREeujFBPAQ7R4OYiqSr2qO2uZ7qRtg+4dE9qtJY4aMqJat4cFJhYbNLQ8XpAlYflSipfka7FfZMaixbXYmmwc59Gv1DCu0tPt39Ctv3aKxdcTzB6kROTLw69vOxNSMsAQfbBk0Dx5FEIhcWhC4dU/KlKwsX9PhzwfPgwedM9g9oaKrkszcXaKs7s/CXXdhlfpU4L0GWUv5UCPEJ4I8otVP+L8DbwJ1Symcvwf7KXASy+jBZ1cXBwhZBCgQIyiwtzh4ido4xUc2QXo80MtwTepgKJQVhQUVDkhfV6zAqC2TsBFZRUnlkiELQwliQIRc02cISNOliFQsolRBOJrHqVcZr6/n57HsxNZ9+pR1bWBjSZnXuDZKBOCl7FMcKo6NxSEzRSgyNG6gs6DQFPMbrihRHDbQqF4lAD7g0x3MsvvYg9Yqka9scXh2O4RTATapo1ZLhXhXFKOJMG/AqMAXoAuJ+qbe0AzQoMAr4EKj2uPnDKbb9RGP79gaCQaiuEvw8AutX2jy000RT4Gtrc0R0yUsbdOYlXKqjPi9uKRKKhlEFXNNlc/3Ck8ukTrRAqxrqefCvg4yOKoxO2dx+u42ugecLXBd8rzRV6hgnWq4njlSdyaJNJAR33aXy2KM+ni9ZtVJh/vx3F+SZRH6mZiG1zfXkJRiU4uS/KONphQMDGq21PmNJwaa9Om11xbM+5nJNjypT5r3mvOO+UsqngKcuwV7KXCIyRjfSizKhqAzKKrrYzfLMTvaOdfHXxS9gxQrUGGPURQZQlCJVRorW4jCGKpl2t/NzcQO2YzG/sIt9RgezOg5wRewNaq1hNN8hqcbwRyNU2imyDXUMWo1sCKwkpVWgC5esCKP7LlklyA5rEcuLb5MNVmIAUVTywgEJAouKwiLuiEXJdGTpN13srE40bDPvqgLGnhGCQqLrPo0Lu7mqsIhN+xWmV0BQd4nHIJeSOMmjQx48CREJUx60KJAQYMnS7EQdrI4MWzZqjO8KEIpCha+Q64Unn9S5e12B9phPUPcJG5KRUYXHnzMJWJI/+WqWZY0K6VyBjlYP86iYDqcUfrLZIDmZ5jM3NHJsHIjvQzYr8H1IT5dUbdE8l8O9Drv2a6xa6rK46/TkKceBv/lugAUdLrdcc+b2hStXqCxaqOA4EA6fXTVPdVUfE+KZ6pG7B4b4g4zkh90agazPny8f5Q6jCoULV+aw5WMakuFJhWxBUFdx/m0Zy9ZymV9WyolYHwB6eiYAztg6891wRRHbr2aAGEvZzKxCN96kwY/7P8p/P/B19E0H8C2Q6xJs/dDVOHodxekmAt1TrFGmWK738ooVZiDZxKLOzdzT+AimWsTBZEJW0DrVT/XBAborunjSv41Efoq8YhHI53DDGhKF40n5AomCpmss8iVyuI+g40N1I1ilTKsHNIMeaVDbVsRUbBK+RixTQa55DJkukJY+eipEdNzj+nafPbWQPVikpkUwPAn5QUrWcD0ly3ipDpXANJCSkBJg+UxvMshvMwh2eAh8nFGBZggKSYEh4Msr8++8hrXVPh/+UJFIWKLr8OCDAbJZwec/dYi2zjoAfvCGSaYoUKw4//RUmj/5ZOnjpevw+c/l6etXWLiglPmlaXD37UXuvv3M1qGqQkuDT3XFzHFWxwf9aEK1aQpMc8a7ncRMVvZMaw4+P2wweXx0hPCUz+jeOv5zppoVN6ZoJPbuT3QGQgH43C0FNu3TqI75rJnhQuRMHLOUoWwtl/nl5F0F+Wh50zl135VSXqaqxV8tLlSIjxFwqygYKouKe6nWR6kopjnszuarG/+S4R8fQJkFanWA5+fehbMhx63JV2nvGSc0XCA84vNoxTN8+tf+ls3KQu5t+SGqIhmjggIBtGmPiZ4YCWGw5tCrZOpCvCbX40RUqsYmkWFIyzhFLAJenvnFPWSDldSLCF19B0hO9LLoQApCo/DhTwIQVXy+HhlkQ1blrXQrqm+wLOhx5bJGdiShr1chMNpIzQ2Sn28wSe1SUGyNObZHNKbyRpJSsHJAAVOU3uVTEkZ8GJFg+hAAt1nHmyVQ4hqFJom+GRJJn9SE4PmXdK692sGySq+hqsL6K49bc9dcbZPNCVo76t5ZGxvLUFEZIZtOYYRiwPGuXA0NPg0NJ8dKfR+yRUHIlCgzdJVXFLjnlpkFe1NK4ydjJtfEbW6pOruVeSFNP3wgj0tYzZPMREi0TOAUavBm+CpwfHgjqTFlKyyPuzRaZ08Ga6jyuavKPq/9nEo5tlzml5FzsZA/wXFBrgX+DHgE2HB0bS1wF6V4cpn3IRG7nXr1RRr87YzHo+gFhxanh5psL5tbwSvC3iWrCX1zI3OXukzsKeBOC1p9HTvqUtE9xV/943/mv33tS2iazxhVHGY2PV4bfkDhtZXrmDO5m/t2fJebB57iptBzvF5cy2hdFTKtUROYJK+G0FUfLWwRoZrFVJCxh4h6Gg1qHMaOxy/HeYuMtp+FMbgi2kadXHe03MigrqqdflfhiR6DDa/mUT3BNe0uPZ5A36/QfAUcLEomCkfFWKGUTd0CzBIwX0JagUkB0xIZFuSmgBUK2pWS1F6FBbbNC68aSODG6x2+cThApeHziZbj4njVladbdrfPT/JMXxRpxLlnxdkTowo2fOeFAP1jCs3VPp9ZnydwgoUrJTzzqs6O/TpXLrNZu/zk5zuUV8n5gn05jVs4uyBfSAcuE4UviAqSMZdti6eZGqjgNxYdoZ7q0+775JjBa5M6QRU2pzV+tz1PQr/0c5/LseUyv2y8qyBLKX907LYQ4jHg61LKb5xwl28KITZREuVyp673IYYfoTW7CtN8lHwmRbQ/TWPhCMpil444JJMQTO4hk8wjn9BozKVpvtpCtmrsSs2ju6WTmJtjbX4jo0QYpJG97jw018FzTMbtOoaNZroXd/KV4b+kKTXE8u1bOZRdykS4AUsd5Ei8Da+qCQWLCuIUpKSirp21G15Cy9mw/tZ39psVA5hUIlDJiQHE0REQALYD3/lZAE2VqIEwW3dofKzZw5gGM+ax/y2Nxnaf7JhCYVqURiI6lJK7EKXpUIYDnoII+AjDx88r8IIkVOsTWwM1fT6qBNsW+BKmHYFxSgFyoXC0jnjieOx17bJK1izJArxj8bou9PaqRCI+NTXHRWr/kEbPiEJ7nU/3iMK+IY2l7cdFd3BY4YWNBjVVPj97wWR+p0cscvzxt1Ta1Oo+XeGZ23BejFaYDULnv+sNDDdIsnKEeaGZj7c/o1Fv+QRU6MsrjNsKCf3yzX0uW8tl3k8cG1fp+udfNni+MeTrga/OsP4C8Ffn/exlLhu+XEpELqS+7/toxSzFKdCDUFcH6XFo6BnF7bLQfjyNstZCNgp2Vs7nyLoGTCPL6PYII8Mt5HZapBsjFAImWsEi5cQw1SIKPkNaCxubrmJp/yYmcouZ+9oRVlRl6a0KkxAucl0jETNBBUEaiFAZCyDuW1hKM7aC7+w1ItuZYjcIiMrZJ01jKhQF42MZujqDxMKSsQmPqaQgVuXT06myca9Gq+FhZCVvbxH4cVHquq5Q8sNO+DCooc52MK/PgwoyLyg+GaKoCdosl+6gyu31Ra5b52Co8JW5uZPmlL62UePJ50wyqQwfurGFWz903EIdGzxZCH/wA5Ndu0sdvj7/uTxtbaUPqaVLfAn7elV2HFRpCvvMa3CxjlrJlinRNJhKKZgmGKdYnAldcn3lmS3ji9WXWheCZiEYOct9FkYdnh83MRSJpUhqjcvfUKQsymXeLxzrwa7NFId6F85XkMeBjwN/fsr6x4Gx8372MpeNoL4BqcYQaYMdP8iSnYRoC8y/BtqXQHIHxKwChyZBhAxkZYgu9SBX7nqLnu4GfFdD0V/HGQ0wvLOW5xqv4aWOawkHsnhoSKkS0tL0t9bQ2pBAMaBnvAZjd5KlvXHMoSz6khaU6qqTN2acnolUyVKC1COlT5C6k34XCUmuWmGxZZ+CRPDh24osXO7xvd0mD3dbZH2YlIK6Cp+6xT5ZW5A2BNIS4AGDChgSc12+ZBnbAhHyMNbmsd8K0hV0CSyAj15VSuCC44lTALu2jfLEM+001Puo9UFe2aAyb47PrLaSRXhi0w3Pg917NFpafAYHFXr71HcEubPBY/Vsh//vsQCz6zzKd4E8AAAgAElEQVQGRhQef91g0lEYnlLprHGoafLYMaTS3iJJFRUC7xKbhUs3JOJsQyhurHKoMSRpVzA/7BK9DO7qmSi7sMt80DlfQf5j4FtCiOs4HkO+gtJs489dzI2VubjoajeerGQyN498agOzryjpU8GHQEJBzvJxc3BoCpqGJbUyibcnz2SPSiwwTNQtggqeCwnzIC2yl5WhrTw//xqG/Qb6s81UucMEa216Ay0EZR6/0mekzmEiXcHiF4s0HsuQehcECkFOn7RU21yPEHD3DUVWzndQFNiAzv84GOSxt3TSNQp+LWQ1iNiSaJOkfUGRJkWyabvF5LgglVfAgHeGfSogbQVh+YQrfK5vK3J4i8o3/tbkxhscVq/2ThKhSEUdQoB+9JOjKJJ8/uT9nyjKq1c7bNqkY5qSOZ3H3bhCwJI2j1UdLk3VPq+9qfH6tiALFrrUV/j83U9CrJxrs2PMoGh6vHJAZ0HCpXdIZVGnS9NZmmlcTGYqkzp1XRWwLHZ5e16fjbK1XOaDyvk2BvlXIcQ+4HeAD1MK7O0GrpJSvnEJ9lfmIuHJSnRlmOLsm6lc8DaOKFK0oSZkoukJvGCeLY+k8GIw8naOpw57dFRCRZ2HlvMYzIBdAKFCMFygYvIgK5w83fWNiJgk4U/QvXU2z47eglLnMevafXSFdxKzJzhYM8VEvcEdkQwJwmfd54lf/id+6Z+4rijQ3ni0xjfnsHtUJTNtYkjwrVLWb3+9Rsz0KARVEpZNRdgnpAjSIQU5JXB7NbRZDn5BQTF9ipsscsOC//WPIeZYDk3RKb77HZVQyGDTm23s368xb57H6tU2CpJde1SiEUk4JGluPF0cj+33zjtsrljjEgpJwuGTLcfmGo9oUPLwcwZ9Ayqd7R57D2nEQw5CSOoTPjUZn6mMICZ8HvyphWHApp0aX/1MnsgZ2k5eLM5mbc/UWOT9RNlaLvNB5EIag7wB3H8J9lLmEpJz1mMo3ViRMSo+NJv8yACVhiRUkcAVddhOhgJRws0DjOzx0MYh1AZ2EfIFKBYgnYJ8FkJxaG6C1p5Blg7uxK9S8OMahbjFwN4mzGkYEs1YN9p0RndTABLxA7zED7mdz6MTOOd9nyoKRyYVXtyp89ErilgGtAd9bq+z+d8E8VIS/7BAJkHOkrSFfBrn+MSmFVIaOLok2uaT2q5QfDSIv7aIUu3h9Jq4e3Sc3YLDlZLROCyvTvD2FoPnXhLkcoKmJo8fP2rS2GyxZpXD1KTAMiSf/0yBaPTMwqgoUFs7szWrHh1UNafVwy3CVFrQ2OBT8AQt1R5jUwpzIh4fvrpAwirFnOuqfPqOKCQzglCgtJbKCiIBeVK3r1+Uc3V9n02YpYSUJzCFJHBKQeSecZWetEpTxGNhlYe4CF3AzkbZWi7zQeC8BFkIUXG230spJ3+x7ZS5VPgyzlTh32OxFd3K4LXPIyt9hpJTzG8NEajvpqbzTQa2T6KSJRAARYNiEaYnYdvbMD1VcomoJozOgsZ66Nq+hV01s5C1FktWbyUxd5itO1aTGYshHUlGjWJ4DhkCGP42epSddLLqnPd9qihIStnN8gQNXFTlcs18m5d3Grj7QZkGrV+SqVUIVwsSdYI1VQ6vHdSoqpN4WZ9Mr4LzmgUuEAR10iPfA32HVQgF2SdBs6CoSyhIjuzRSIQl9CvU3eVT0+yTHlN49HGTL38xjzbDJ+ndRC1XEGQLghXzPFprfQ4NqnzlEzlMC/7pyQCjSYVFrS5r57s4DuiG5Pk3dWqbPP7x9QCmJhEZKBYE0aDkgVvyF81SPd/jnCrMvoTHs3F22RYakrvDU8wySrXHr48EeehQFWreJjulsa6xyB0LUlRFL35mdl1baRTpcM9IWZTLvO+5kKSus/nJyo1B3sdIghTkcjz5AqAiFQvbl6BoVC7soi2bZ2B7P8SaEOoQru2j6jDQD9kMFI99X+bg4H7YtR0mX0sR8/fD+gamOmqoiY5z3VVP8drwteREgAmniiZrCNsxsGSezTzCbGU5yilvFYlknAkMDGJEz3gODRU+968/uVlGUIWHbp7me+0mrzdqVKV8ZEYwOqLSOOnRPaHS46oEArBa2jynmvjzJUrRpajr+GHwviPAUwAJefACAs+QkC4tOUIwnoRCFXxnp0U2DUJIWmIOV+1SWLFkZrf12UQ5HJA0Vvn0jiioCnS0eLQ3ePzTU0FqEz4dDZKeEYXDwyrZrKCIoKnV48X9BtdXOxzJKoxOKHx4kc2Bw1le3hHgY1efvS/02bgYCWHHzrlQ3Ui3G6Ar6pP1Ba/KMGubcwxnFB58M8S2TUUG9odx8zobQ1H61lfyZw9kqYwd/3rJF+GZzQb94wqdjR7XLXHeid1fyL6g5MIui3KZ9yvn+/a+7pSfdWAZ8CXgP12UHZW5pEhhkTNWESq+jqM1l9Z8H2//CGHfRgRbCLfHsBYvJ5V9gRpjmqJTKt89EduGZ56BYAy0v91B9Ko4U0DCS6HrDsvr3mQza6i0kijSpUJO4u7KMTp8mJfm/4j1Lfe8M94QYIok29iBJnSukmvQ0d9V0E4kYUh+c2GB31xY+tlx4B8esvjOwxZVUZ9IjU/nQo99ezSc7WDqEq9Cw5zt4+8S5MZLMxSFClIIiFDKehOy5Hf2wY8L0i5sexTUSpfKz02wO+HzW89a/GtcpbPVY9dhlX39GqvmOTTX+qedg5Tw0gadzTt0FnU5fPqmPJv26jgurJjjEjqDN39gTCEcgl19RUaTFi/u0cnEQLEEe4sqViTC5gJEcz7XBByMC3ABXwzr+ti59hzti3JMXo9tZ/e4ip1yGR6SuLaJFJJMVvLzDQafvrlA5QnJYT/ZYLKzW6Mq5vP8VgMp4eaV59/7+kSOJXwdoyzOZd5PnG9S10szLD8rhDgMfB743kXZVZlLSiawHtWfxHL3Uh9XOfhcP3Wv7kE1q7jhK/+JrektjEcG6e1ZQnxsO6F4mlCqJMLuCcm0xSIURiBCHj0aIu+aNDh9HNbbma30sJNFhPwkvueRsy0KP5lgdDDINvV5lrWsJk77O8eyMLGERYAA6rs4WjIZwfS0oL7+dKu0YMM3nw3w4usqL71hksoJ9EHoGnNZdfUQw26c9sYIo0mFzDAsqHaZ3+HySIXBVB6kB+iyNIhiRB5VEglBAdKHndMgfYwGBzVfpLA7SPdcj//1rRCfuqPA95/RMQ3Yecjkjz5zuit7cFjh6ZcNaqt9XnjNpKPV57plJ4vMXVcU+NfnA0xlBIvaXGbVeehC8tzrRQaTCariHvvyGkVfUG/6vDquU2d6zOrweSKvYgqfdYFzd/9ezFKpY8dpMX1WRFzezmgYAj5VU1LosCHRNR/TgIJX6umtSknBVjDUk51v+/o1mqpLYy5rEz77BrRfWJDhdFEuU+b9wsUaLrEVuOYiHavMJUYKg2ToXnRvEMPtRq3ppSer0JaIE29tIzE7RwOrkI7Prv/7j/jRjRihAg0xweiQS+Foi+ZjcVzri7MZra6hc3ovU0Ylup+nm1aWK2+CUNF1hUPaHIp31lLcniIxR3LEf5aY8rl3rOQgQa6UaxBH/x1jJqHYvUelp0flE/ec7p4dTyscHFZ4fb+JrQviCUkhJhASaioTNFXbLF9UZHBcwS7Cl+4tYCmS/ITC7h2SwV4FNSxJzlMoTIlSaZR11EoezoB0gQDuiIGTdrHHgmQPajyaNnn2CZ+BbpuImePKD1nIT5c6jJ14DsfOzHVLtxTl9AhQe53P1z6epWALYiGJEBD0BvnDBxr5fx9zeGSbheMJQp5PToFJT6BLBXuHj7VujIOKzjrOrcTsTK/xhXJM3BUBd1cX+VDCxlQk5lFnyNJal6u6FN7a7FJIF3FTJr6q8qEriizpOPkiornaY2BcpTbuMzGtsKLj4pVWlbOwy7wf+YUFWQgRBn4P6P/Ft1PmsiEEjtaEozXBgqsZvmMuXSsDqLNaMTmMTze6Dm333kjOWsuhf3gGRbrUVhwmGJriwOvgehD6gw4q/mg27e5mBvUW1KTNiNFO2otjqDbV+hRIiY7EXV5Jcski7OIuhmWGdqawOD44Q2HmzjanWnArV7gsXTLzl3NDhc+KDocXKw1SnmB0UqHoCSZ8hcrwEPGKVqQPjZU++YKgud5DV2Buu8ecNh9fgqJKtlWrPF/USW0UUFTA9MB1KKVJaDhJjYnvmwhd4CdV8hUuk2M+mqpQyEgGdxcZH9eprz/5HBrrfe68sciWXRq3XufQ2jRzBrZlgGUcF+va5nqGUxCKQUvcxU5rFHVBoSBws5IWwyc+Kag7HOaGZe9uRV6qBiKnEtVOvuAwVPjdZTaNEZWnDxXIp4p8rEvy8SXuaZnWd19d5IcvmwyMq8xrcrl5xYXHx89EuWa5zPuJ882ynubkpC4BBIEs5VKoDy5CUGiehTa71DWrUU4zLjbhIak2g9Tf8yVWXX8fu558AeXAP6Pnk8y6KUD3kjUUGyPQY+NoFm5UpWZqlJ9XdqB4HovN3aj4COEjJwvomw+SX+DhVqlMqAY23jnZcafGYRUFDGPm+yoKfGS1w7Zum58/a5AfEEgdhjKCZze38LmPF3hho4EvYf1qm6pE6e38hc8WeH2jjqJIrl7rMKkI/rYtSPF+2PG0xvCgpG9EIr2jPbElyJSC1FQQkoqox9h4Ec2zQYFcFr7xbcG1V8E1604+h7UrXdauPP2CYmBY4aU3dcIByfVXOOSmhk6KPQ+nFTQFPrzS4advCIZ8lbSU1EmfCJJ21edW06BJCvqGFVxX0FTnnbEcqrtP4YlnTFYscbhihv1cCGfr6HWMH20y2d6v0apJvnhrgfr4zBcl8bDkC7edfUjHxeBEUYaytVzmveN8LeTf5mRB9im1zHxDSjl10XZV5j3DJ4ciuqnjyqN/6GlctuJWfoT4/XeR6+4i8tQ3OfyvD9LS+wLulxazPz6PEUIs2bGVQ+1zsGWQFu1QaZbDscEQWRclWSCWHsOtr8YhTPESJeWHLcm/vyXP8xsNtKBPhQbZImzcrvOpjxWZzAp8KZAnWGR1tT4f+8hxCywzIWhXPfrCCnd+okjPcypvjCjs2O4APuSVUsmU4tHQIfkPv+kwerjIgw9KEIJAdYiXtxk8vRH+yC5w243e2Uug8vDtf7MQotSvezKl8Nm76+kbU/i3NywmpgWqIUnmBaoJV811EZrNvqTOig4bIw9za3xWdTj86GmTrXtLFxf11T4PfDRPYIYrnxdfMxgaURh+1mTNitMt1F+EM51rwYYd/RqtlT79kwoHh9UzCvLl5EQXdtlaLvNecb5JXd++RPso8x7iiSx+YjvDmFTScnRVoqDi4bGdOK+IklgZap4bmn0i6+bgbt9P9nt7aZt9kOHKFoLjGWrjcZRaG1V4KPhIJKBAzICBFOE3hphX7zD72i4mFrUxJSW1uQJRoxkR7ABxBtP3POgeV/j+Zou6No8DAyqZEYmiCm65tshDT1goSql15UM/s/jDB3Kop1wXTGYF39oYIKBLqhQJUnDH+iIBz2Ri0mZkOIPnWajCYP0NHv/xa0WuvcJBCJPf+S3JX/69xitbTeqqPEbH4JFnLW6+Lnva85xIJico2IKWep+JsSQDwwkmpgXffN4iZJVc7IPjgte26ViaRFfBsuC3bs/ykRNc1D2DClv26LQ1lpptdA8q7DigsXrR6Rbw2pUOI2MKq5c5l6Qxx0xWsqnDnDqXfcMamgJt1cfjxtv2quw6oFGV8Fm30pnxIuJSU7aWy7yXnK/L2gPqpZSjp6xXAqNSynId8gcMiaS3+ARz5xeYxKcgk9TLtRR5DSkU0oR5SSymjgKjRYstOZVqT8O8fR1LmlyM9ACDgwburDApXWfhwV0s7NzFMNU4MklQuICH/9YgYjzL7HCeiokUG8NhBuxDoDg4kxbG7hR/vPCHGE2/DnrrBZ+P68FDmwJ42RS3ro6gKAJ/SnLvFUXuu73In/1TiOqEjxCQzij4PqcJ5VhGwZNQcbQ1Zf+UwoqrPZYs8Fh/jcb+gzptLQ7zFxX42SsBXt2uU13ts6DDo6JCsHix4LlNksnJkms9EgHPO/48M3W1qohJWuo9ugc0JBXcuLZI/7iK4wliwZIFqQEBR7K0xcXUIZeCeadYl64nUBT5jsCqChSLM6vtvE6PP+zMXfBr/W7MVLYmBNx3ZZG+CZdowKf6aJezLbs1fvCERTzis+ugxsCIymc/VrjkHbxmomwtl3mvOF+X9Zk+HialybNlPnD4xKpc9h0KsXi2Sl5MYsq70GjGl3l2jgpkqJ80h3k4ey0TibnUJBbQMXWQTWuuZ8WW51kSLZAaOcJITRXe3iK3bn6Kp5bfhOdLCoqGKkCqBo2pPIurxth03zV0JPaytPgWrq/xSnA9+2uWkO7bR1XwIaj+XVBC7+zwmICdCwVHMDGRoastAsCaBQ7z6jzuXl6y8O+4pshjL5r4Em67uog+Q3y1MuQjgGRe4HpgapJE0CcYh9aW0tvc9+G/fSNI0IKAKXn4KYuvN2cxdIiGJZommMpoLF3qs36Nw+YtGqoCixe5M/brnjhyhF/7aD3dAyqGDu1NHjv6tJPiQ4oofQBboz4VQUlPQTmtrKqp1qOmwqdnqNRsxNAlXbN/sfiwbcOLm3SGRlVWL3aY33HuJVUzibKuwezak4+xc79GIuqTiEkq4pLD/SrZnCB8ift1n41ywleZy805CbIQ4tgMZAn8hhAic8KvVWAdsPci763MZUCgYtmdULOP7QMFrmpc/M4XqAq01PjEeJ6MU8100aSoGPx02W00eYeJJzP8ZNV1zPIO8cmRh7nq7b1MZ4K0/OsuPvvKYQbmdzAwqwlNEYRfHiZxOMV0Y5zZ8V7CuWks06aoqNw/9F0K6UdgVIfpNCzohPZ73tnjsS91OF2cTxW3mqZ6FrYHODyuEDIl0wVBV11JkKSEVQtcuto9bBekAXkHAqeIclVY8pnVBZ7fr6OrcMt8m+ApnnQpwbYFiaiPopQs88PDCn/zf4P88B9skmNZVEODjEdrWCc9bSIlbNmq87nPnlyffKJgzZt1XKjaazziQcmRpELU8in6gjkNHskpQTqpsKDDoa3h+P0zWcEjTxuMjCigSq5Y6rJ6kUNVQpb6SucF8aBkqO8I9eeRYf3yWzrPbzRIRCUP/dTidz6dp7bq4sZ9K2I++3tVEjFJNgemAabx3onxMcrlUWUuJ+dqIf/20f8FpQYgJ17e2kAP8BsXb1tlLifBwgpMp530kSQ1jbWMUBK9HkchLxViRhs5dTeKKGAKmwXaNtyCipop8in3+0TlNJX2BNoyl6qUQM5SsfMO9bunWbLdY2o8TmGPS/zWT3Ck+S0spjACHtPTISbUasbiPs3qAGZmGswa2PM8RJZD1eyT9jlTTHKmiVD3rS7wykGdvnEVrSg4NKDSc0hhw3aD9kaPObMdfu//ROieUAlXSh64rcBXPpQnGjguAFlVIKthQYVLQ+x08VFVuP2aIj99yUQC61fa/ORNi0O7FKZGXfAlbt5hzy6F2liKq68slXTt3aOzb+cYVZXeSXs+EdeFh75v0t2ncfsdRbqnVcbSgtVzHL72UZv+YZUn3jAYzKgcPqLS2VQ61qPPGuzv0Wiu9xkeVzjUp7BvOEChCKuXOrzUZ/DJVQUeG5tNS97j/rnnVkY0Mq4Si0gSMUk6K0hNC2qr3v1x58P6NTYDwyp9QwqGAffdUZjRe/FeU7aWy1xKzkmQpZTtAEKIF4CPlTOqf7kQCDSvkvaGSrYNQR2wp6jynZSFBK4OzqPd6ueV4BBJXIqKih01+Gz6X5gjD2IGbPR4kcKoSSgwjVaoQmlswg4piANTRJasxTJNrGgDiXwjqeI4musyoVeRDxm8FVjB4dpZNMTH+XLPBjr0Ouh94yRBrm2YOcNnJpdowICb5js89JLCdE7lybdU8uOCVV0uG7ap/P7/CTEVViAGUwX4i28Z5Cdc/vyzJXd0xhH8qNckZkge6zeZHfGosk631tYscZk3y8P3IRr2eelBjUSFj6Io+J6PUCAckVgBC9UM4HmCQFhwYMjgked1AhasWe6wZoVzkviMjSvsPaARDMD+PSr333uycB5JKkzlFSoikodfMvmDe3MUHMHhfpW6Kp9sOkVdVYzHX/FZ2JUjaPps2BrluqtsXEuSdwVTxZlrvmdi9WKHPYctMjlBdYVPc/35DYE40cNxpuzrUBC+cG+eTK40RetMZW3vFeW4cpnLwflmWZ/ay7rMLyEb+yvYecRFbYeIIjniatzpDfEn6lv8ubaQHtHMnfIx5ucOElRzFDyTrIiRqo+Q6MkQ7RAY2T5UK4rT3oY+fxajj0Nkfz8BO47XahIKTjDaVcVT5k28OrieTCqOlPBy8Dq+VnyOj08PHE9Y8MZg+tul25HPgnqyeXamnteRgKTolKxZU5ekM4LdvTppBDQCNYAKhSHBkzt0/ottEzBAUySWCiOTgp7XBd9/y+DDtzi0tJxuKccikp4DQ/zzP3gc6Y+Qc8K0LYzStw8M3aOz0+YLX9DZ/HbpbNIF+JP/EcYwJXfeWORnzxj09Ck0N/s8/5pBa5PHx28vsLDLpbtX5YpVp8d/A6bE9QTpHNgu/NcfhnB96MsoVOV8qgMwNKrQMUtBtXR8DSrDPrsqNYYckw/PL7AscO5x5c42j9/9TI7UtEJjrXdB2c+nhhZOXYNSDXk0/N67qc9GOa5c5lLyroIshPgb4OtSyuzR22dESvk7F21nZd4z2toqqZTws6yGH7a5KWSDWEqb/yoFfw1VyhQrClvwVYW3E4vZFFlBxEjh6jpLWncxJ38QXVbhyi4mTYtX9W2ITzZQkV7N7cNxZg0m6PX/jYNaJ2+MXElyvIqAluNO5TFuz/6cjBOhD4fW7ACEmo62qzwqIPLcheTmZTb1CZ+gKVFceGOHTkO9jz4Bnkkp8OICCY3pKPz1Icmvtxeos3zua8rxH/7OJDeqcLhD4VvDBn/w+wUCMwx/mEhXMJHOsXqJwsFDaW75DYP93QaVMUgVotQ22vzBdTm++32Dv/92hGTKw8m5JAfhrrsc3tqmsXG7zvxOj/2HVfYe0rj/k2d2J6+e5+K4RXpGVbb2qtRHfCwDNCF5dbOHImqoqfD47Y/mGZlQKNqCa5fbfEsGcAFdB+s80zmrKyTVFRdnPOJMSW0fJE6NK0M5tlzm4nAuH8tFlKY6Hbtd5leAiIBPGi5Lqo6VxSzAL9xNtOCSDOiE/SyHRQuPxO+gyeqlR8xmBW/TSwOFqE4NYzj0k5XVDDKXfj9COhbnZc3hjokGWuPryfkRpiZq0BSHO2oe5ZrRV8CQRGJputNRWpIHEaEm0Ooh/KnSNrS6cz4HU4dVnccFvGuWhzAlA2mFN9BLbW10UG24bZWND/y4x2BpqsB//LrCxo0WCNi+WbJsmcfGjTrz5nnU1/v0HhzmlTcaGBoUzJ2rIX2YnpZoKlRXwtCESjAq2NGts2GLpL7K56EfBMjlHdLJNOSzHEw6/F23ysorosxeFKJ3SMHzSlbvQ0+bJKcFK+a5rJl/ctMOTYVrlzhU9EoOjKhYR927pgkpX+OedUUURfDEFpOvfiRH7Gim8he9PBO+wizt4s8dvlDOZ6LX+43ykIoyF5t3FeQT3dRll/WvHtuGwvT0TPCRK02K2TmsTj3NpoZG9svZ+K6OY6gIoWNhM0mcRfpOZuV6sHM66UiMnJzmiF5LSoaQwmEk6PPjxQ1cm0sTUvMoeMT1JDEtRa/WwmJ7J56mElKHcc2qd64EOToqcibO9oWeLZQEzDx6oI9cbZPMKjTu89mRU6kMSLrWOSxo8Uk7gj1bNb73z5Kd2wKEQj6OI5mcVHj7bY2nnoHnnpPcdXsvwqhnx06FulrJ5rdNbr4pwMGDLtdea7FokY9UXH7whEnQgu4Blf/5I4tDRxTGFQdyOUpTKzwKBXj9ZQ8lqpK0g4TCPt98yiIUhJZanx++aOJIWNTlEVEk6gnCHDQkrl/K+J6eSjFVTBAI6EQCRVRVksoKklnxjiAnVElCff+I8TGO/e0Gu48Qr6knFHqXB7yPKGdhl7mYnG9jkD8G/qeUMnfKegD4fSnln13MzZV5f9DWVsmjr09wU8cGZg+7hIJbeCx2JwuMfShHe3E5qHhSZUFuH6G+PEcaqmkb72dfZA6q8DE1m7waJCsN7KjLU3Ih6/2nabUOk3bjIAV7I3MxfJvF7l764vOprQhRSxET8+QNeQXwXdBCIP5/9t47uq7rvvf87FNvvwAuOgGisIBNpCiKqqRkyRJFq1qSe4lTbDlu8UteXpzMWzPJS+yZJG9lZuW9NCeOIzuukqJmS7KKY5nqoiiRAnsDCRC9A7edtvf8cUCxF7BApHQ/a91FlFM2Lu853/Pr4oRivG67yTPtFpYBv7GqQHOVpCyh+MqHC3xyohjWDMcVj3bbbBg1sHVY2+rwpvQxjbBeNhqF8XFFKqXIpEbIueUMT9QRt3tRqpbhEUGmQnHDDVFuvPHQuT9xu8PODoPytKRHaTx1IEK/oUFOAA6heW4AHlK6DO/PsmC5zbMbLMYdDTsGtbMDSAl+/rhNW39AfWVA+XpFhaO4+1YHg24Mu5JNB8qosMspuoK2WQETRcFkEXRNkUle2DHZgwwPC/75e1X4Is4VKzzuvM2ddlOQQMKeUZ2WsgBzhlsUlWLLJQ5ysMtbvjD9YSjTbQzyp8A/AUe394lN/a4kyO9RmpszHCgsIeo+xiV9veyveJvuxnp0pRgngU5ApTeK5XkEQiPqFDCkxJYeKEUgDHyp4RChKBUdWjVG9gPMqh7E77UZ9CuZl9qNljbYGiwhKeezNbeZPXIXV6SXMskuAMqGXCJdbwASUnOg+S7Q7WPW63jwTLtFfZlksih4pt3ivhvDQQWGDtXlh4Tq7lkON9VMjQnUwfpjxbHnHXwAACAASURBVP/1ZxPs3l1GoaBRXhaweJFE6WUUC1BTo1i2rJJEWcDgoGDFCnlc8Vh7ncNjz9mM2Br1dZLeeo3s3oMbisNeOrk8bNpp4AaCICKYsGB8yCAaKGJVsGmDwXalMbFd45I5Hvuf1bjltkZyrTZaFu6a7TA7I+kfF/zNL2KM5DUWNvgM5wWJqXKuIOCdtqEXGq+9YYIRo7FW8voGk2uu9Kiqmt7DRF9W44FtNp9c7DCnfOY9AUe33cyUhPl9ycEHslj02PvSqTiTTl3Hu0qWAyPTPnuJi4q8eSXlzc08/IZPOvMz/MYhhoIkk36atD6Gjk8uiFIrhzHGPQylWKxt5VfWBwiUjitsBDDpJ1BKsNdsoC0+zgcbX2f3YCO73STVtsvcpMaiSDU9k1GGxQhvjmxkwiinXg6xrPAcc4M6LD+B3rURJ2vjVVwBHJkspGsQtxWjeUHeFbSc5OYuBKTMQ7+/6SaTeMLj6V8Mo5TOVZePUl5Vw/YdBq0tkkhE0b4ZBnsGue6DGWz7kMJ17Nf45TqL8jLF2hsdFrQGKODpjTp9DxlMJnSKA0nCy0UCFogUI0Mm3rYAo1GnIiXp9zQcX+B5gqymkHlB1IbCMsELGZtey0dOgKFBW13A8hYfQ4OBnEFdleTaKp+xvOBnb9t89YYCmzbrPPzzCImE4nMfL1A9TbE73yQTCseBrv1ZDDtF5AwyueuTks9fWqQ6/u4NqyjFlUucDafbqevg2EUF7BVCHH4160CE0HIu8R5HWDXcew10GpcyNL6Vec5OXDfPcEWacb0BGSTork1gBQVS4+PgaFySb2e/0YjSBQU/St6JERQNtLhDmT5CvR1lecZhS8qkwAKeciRPticIPIMXYwtJZUbJpIbJ2CnaxVr+gA5aC3FwFPG4Tz/HltAYOnxudZHnNlskIoo1l5x+Z1cp4corTK695qDQZpDS58ABnTc3mvz7Dyzebg8wjEpamgv88AcRqqoEuRx87ydRolFFR2e47713OAwMwNvPSD56vcv2eTrrXo0zeEDij2ZRqpxoVGdhm87EpE80AgfyAmxBYJgEaQ3GBfjg1Wiht3sAdjfqVExI5pgBlqF44IDNVRU+amq4FoQPGnJKmx59MkImIxkd03jxNYt7bj/3s4XPhquu8CgUYftWj1tvLZI8A1e7EFCbuLAmR0Eprlzi9DldC/mrhJf5d4H/Dowf9jsX2KeUeuUcr63EBYrEQ8T6aQjmIcxWfGsTiwINTdrko7XEnSJFYxYqIRj7zxRmHrbfsBiZFNhakSBrUs9+Zid6KaoCQxFB1ppHzh1nTOTIDzSwU4syFIujbMl4McPsdCfpaD9dts0L+Rpa5Si4E1B7DTVVx8/UrS+X/Mbq6c3T3bo14KcPSJz8JF/6ShlNTWEDjb4+jU1vG8xuDHjkERgeNTFjUYbaTf7imyP8r79NUnQEng+1KQUChkdDZRwYAFBkKuDaCp+5lTA0HGFiIk57u0YioYhFFZlGaPdyVJd1MzA+L5xMERAa0h7wuoItHiw2cO/QeLHLYnuZZNTTuCLl0z5m8MmGInMrA/aN6Bga3HtVKLyVGUnfgIbnQflxOo+925gmrPmgx5oPRujvOgBcfFnXR1MS5hLT5XQ7dX0PQAjRAbyslPJOsUuJ9zACHVMm8fQx0ASCuegyQNlvkmcudkHiuQV6CpVs2Xopk6qTwtwIk5EUckQj7Y4zWVtJRyFKdcUgRXMMkeqh3kpjO3nqBtfRpa1GWVEsy2VpZCPLxZvYqkBEd+iINcPAKNStgsrLgBN3gJouTz4pSafBjSZ55lnJFz5/ZEerIADDUHiBwJQKTZO8+FqEl18OWLJE47KlPm++bWAaintvCy+TVApkIPB9hWHA2ITg+g8ohoc8RkdNyisV6SqNJ/fqDOyOEMyJwM90uElBjQh9UDsUbCyAHYXrp0xgB3RPsdszuMH0kBL+c9Dka9cWGckJ4rZ6pwf3pz9S5NX1BvE4XLnC462tBl29GgvnBMxrvvAyr99LlBK+Spwu0+3U9euDXwshagHrqN93nqN1lbiAEWhU5q5i0t6JQpJ052HIGL7XhGO9yKtDKRw/R1/vVWSXXMa6UYfiCzpBYJFMTpBM55kcTuHU21Tag0yaSYpeHMdM8oXBxxiIR3h54hJ6tTS68miLbGdCj1OhHPQgoDJZgGX/9bhrO5ua1v6uXqqqqtixSyIlLGg7FBuurZUsW+qzcZNBXZ1iZNxHj3hkJxWTOYPvfNejbZ7kS18qcv01GhEbNF3x6lsGmoDrbwh4YZ1gYFjQN2qy40HY0S7I5wQBHmQsRpWON6roebIxtIq7gMVADugKIGeDJmFYgNKgDPq7dAgk/7YlQiSliKdhZczn2sYjG6iUpRVrbwofENp36PzkiQiJuOK1TSZf+lSBhtpTW82OA/s7dZpmB9jTz1c5bS7GmuRT8V60lofzF7ZdloldgM3QT8F0y55SwP8GPsZRYjxFaR7y+wRDxSgvXnrEz4rjy3h2ezlW7AARkSHILcDQNfqzUfJpHdsokkjmMDUfM+EwvLeat/suo2L2MOVGnpGqcnZP2rTEHP4u8Qj/r/lJnonFiCVyNNDFJcXt6AIMrZM+6w5qxbFts86m0URNYx333qt4+RWBacDVVx+yjjUNPvIRhyuu8PjYx+D5dQF/87caAsWBDocf7wmor9dYtkywdq0gCOCffxyls0dDKZjbFPCNPyry99+LEB/U+MmPTHJZD2EZxKMBEoU3R4P9KnRPI6AH2A+0EgqwH4QteqqMsK4hB4xDLiHIaoKJAY3rylye2mOzsDKgInr8OGzvoEY0oqjJSPZ3a4yMa6clyOteMHnk8Qh33VHklpvPz834VD2v3ytcbNby8cT3Qhe8C/2B4XhMN8v6b4BlwIeBh4HfJuwK/HXg+CZLifcFjgc/e9MgW5hDxm2lCHQLwYYkHFgFCIWXsxhV5XjjBqniOH6gMbEvQz4bo7/eQ8/GWDf7wzj5X1Fdmeb7s222C8HDqolVzpP4IommWSQDjVSwH4wFx13LwZv56Qrz4dslEoIrrzHY3afTOayYVx+8UyakadDcHApXa4vGQw8qtmwuYpkK0BgcVDz6mGTt2nAUYnefRktDuH1Hl45uQD47yU8eqmRkHKSnEREBY0hScwU4OiSLMKIBCnIBvKSFGRuXCNgrod6AbgXzBBTCRCa33WX/Kw4RTfL2coO+RSbdczUqGo7vip7XHPD484KBMZ3aCklj7em5rBsbJU2zA2Y3nt8Y9HtZjC/WIRUXuvgej3djzX1nuf90BflDwCeVUi8IIQJgg1Lqp0KIXuCLwENnuZ4SFyl7+jWGJwX1U/W9nZqgPQK7WgI0Q6ILUK7A6bNRKYEx4COVjp7wKU5ECRp03CGbrcEcnJoKXrcMvqVrLEDjT9TVePySgARCpbDUENopimm7BzT2jzRSXutjmScX58N/nnfg289EGctqSAUfvrLIVW3H9s+OxRSNDTobpypcdB2ExjslUNnhHirSc+ju08hOTFKeDojYJvliGWOjoGSAbik8P6AianJVo+DVgqJvsQW9BXBN8CUMSHhNg4QAU0GvgqwGPQqGJWqHxH0mC2jksNm4R1B5B/z94ihfThVYmjpSbIMAXnrbRLPBKQrKM5JkXNHRpfHzX9rkC4KVyzyuv9JDP8rftaAtYEHb0S0Izi0XcyvN6VCKK5c4HtMV5DJCJxqEz+0ZYDfwCvCdc7iuEhcRSsGGvRplsVCMPaBD1xiocVCGQPcFgQRhS4KYTmEshlOwMEcDgp06gdBxCxbGkoD+UYOlDTGG+gqsq1a0WBpCWFjmveA9BWoU9LmgtZ50TT97weKt7SYV6TwLmoPTmjYEMDiuMZEXNNcETOQF7fuN4wqyYcC3vhmwZ4/Jjp0uhq6YN1/jnnvCS2pWSx2/+dECL71homkRVl3uoWmK3l6BlJJEAvJFHV1JXFexd5vBh25x+I/nbSYWWLDHg5wGyoGsBVkdMGHShYc8WGNCuQ6/muBQPbOCVTpjSY0hF/7mtThVYwFXzvK5fYVD1IbeIY1tHQZL5oRCva9X561tBo8/Y5NKKKIRxdPrbAwdrrvy4nP5XUy8F+PKJc6O6QryHsKIViewDfiEEOJ14B6gNCP5fUrvmGAsL6gvd0GbZFzYuCQpRiQq0BECdEMhpUAzJUFEJxItUOhKogQQkah9OmpJQN4Dx9WI2TZ7R0ahtjw8ibkM9BbAAZEJzdGTcPOVHk21AU2n6Y49SEVSETEVB4Y1HBcun3Pi/Vtb4ZGHdR57PMLYGKy8XNA2HwYGBMUi9PcLrlnukcmEDypvbDAI8qALGM9pmCogYbtUVds0NUjWtLmwD14ZM9ip60iKQIFwAkYcpAbChEkBe4EyF/xCGFdWGiSiEAiMQcnseMDGnSZuWvFmh0E6Lllc6bJ5W8BQv8+saoGuCVAwOCyQMhwlCVBTKWnfob8jyNmsoGO/TlNjQCql3nmgebdwXRga0igrk8Ri7+pSzikla7nEdAX5fmAp8Dzwl8DPCWuUNcI4con3IUMTAoGLjPySYaOb9mABWwYux5nUUBENDIUQICSgFEIo4kEWP2XhjkUQSkBchRXtgUDTFHlLsiiZOtJ9qaVOe01zGgLmnCCGejJ3aDKquG9Ngc2dBmVxxaUtJx/3OGsWfPlLoZt6506dv/uHCBPj4LoBFRUS01TcfrtLRTn84hcmV68MmN2g+NkTEqRHVcZi5UpIpz2uu9pj3asW0aSgbaHO9i1RlBcF1wFLhSmTYip+e0CgjeeR8+KgidDFPRbAHh9RIejcAJueFSQ1g460ZMfzLjtfzzOZ9YhGc/TsT7JkZZTlbT7NsyTrXjv0N+XyguqKQwlhDz9usandpG2+z32/VTzv7uSDgu+48MiLNju7DC6d63HbVS6eB//63Si9vRrxuOK+LxTeeeC5WLlY48olzj3TLXv6/w77+j+FEAuAy4FdwP8J/N25XV6Ji4GCC2h7OGB0Ez9QwNgZkJuVQHQGmHOLBIGJRCAUCFdR4Q5ybdVLTK5Ksal9OcPZDFq5hAAShiRIu1hKcKUm2D4SYcA0aK3wiR8vr/8ccHTMsrpMcWPZ9N21Bw5oKAmFImQnBW1tkgcf9Njwhk8qDZblsXSpxdxWuPcukw9cL2ls9BkbD5jTGmDZEEkqbr3ZYfNenfERi6FecJUJRReMAGwtbNEz4CIndYhZoPsQ0cFwYcyjUDB5+P+RoPuMFjQGK222FCfxCi6aDqblw+4Cf/R7cO1yhVJwSZvPlp0GmgaxqGLNdYc6m8WiYSvSRGxmhO/g/8Xr20027TFoqJS81G7RWh9gedDTo9HUJOns1Ni61WD16veGa73kwi4xXQv5CKbqjjuFEMuAe8/NkkpcbBi6YnJ0O+UJl9o3B/hedCVMgNJ0PD2CSAegC4K8IKVPsiDYgeZLMrEhlixoZ/vgQvoGa9FzigUrcpjDJncmNH70mkXOS8IARA2LO+v3UxPzz7mFdq6Ot3y5z/YdBhUVoYX8+usBQyMBkwWdwl5oqHOZNctkZESjqkpy1VUBpql4+mmLl182MXTFxldNio6g6CksXZGpEIyOCRwi2DUBHoIAPyx5yuVhbAKwIWMiLB1l66F4CxNUBKyAQi4AESMa8dABJxqly7X5/jMuqy7T0TS4cfk+5tdZuL6grtJDFST9XeHfddUyaKk3qa706e9Sp/V+jTsCW1dEzuIO09s9gqnXYhogNIXjCqrKwkEeg4Nhn++Kiguv69jZcvSQipIwv384K0EuUQKgTM8zMqyxQB9k3CpD6YQpfwaoQR1V0MEAw/FZltzMlcYrCGDIr6DgRJkV62K8WM1ny3yqDkRpzAS4Ztg4vaksvOEO5QWvTzby+bbiecvCPdVx9+wp8vAjY7iO4pa1KS5fceTg3vJyxZe/VADA9+HhhwM2bwUldGw7YGgE/uD3C/i+NuXOhsces3htvUl1leTBhyI0twTU1Et2bNWIahJfCmbVwY4Ok2hC4GowbuioqIAyC/bnQbngCFR5FDwfvADisXAmm1uEvAdICokySE5Z2Dt8XngIfn6J4o7bBeU1dezqMckVBS1pn5qj6pIbTp5DdwSv9Bj8vMMmYSnuW1Igc4J66FOxrKVA54Sic0CjsUqysMknFoHf+GyR9naD2U0uixa9N7uMlYZUvD8pCXKJs6a+2sDozJOLWST0LLOtDnbkl8KICOPCI4AnWZFt5/ZLfoXKBQROQCJWYMiai29pNC1/i9pMGZeW17J2qcO3no/TMyTYFgjm1gXUphT7x8I6nPMVwzzZcYtFyQ9/OEo8oZFMaTzy8BiNDRY1NcevdTQMuPVWwY9+Cm+86YMQfOpTGpkMhFnRIXs7dGqqJbYNkahickKjkNfYsAEmJgS6IamrDUPHQoCdhDIDRsdciJiQiEMkAUYEfA0qfKiJwxAwlAUfwstcQXY89KcLHzDp2RPn6adtrr0GHn4ywt79OpYNr24w+cpv5c94ItRr/SaZiGKwIOic1MlETx6HPxFtC6qJ2XuJZ+pIxRXGVBnW/PkB8+e/N4X4cEou7PcfJ09VLVHiNIhGTa6oEOzYkMQaz/OR5OPMSu4DAhhXiFGXBT2vsKb4a6LrxzCdIpGoSXlBsoIOLBHjhsv7uff6Xj58uUOgFE+1Cx7cEOGJDTbf+WWUlzoMmsvCm/BMZPkefY5CQeJ6kmRSJxLRQINc7sTuUtdVrFsnWXV1wGc/rfiH/63xf//ZsdvNmRPQ369RLEJNjSSXh85OQdFRJFIubqAYm/SIpQOiliSTlJhCoKUT4RzoqnJIRsHUoSggaqIljfBByBeE0ykOjoDKQ1CEoBz8MrJZm54eRdGB/Qd0mmdL6mskvg9dPUcWITvTCNNeVesx7AjStmJ28uyE0zIUFalDYvx+5KAwH3Rhl5hZntiRnLFzne74xcdPscnpp7+WeE9y7b2r2PHnT9C/16N6dzd/uOCvmIynGDQzmIUi1ZECetQmL21G6sqwZUBK0whyVSxvquem1jxNWjMSxb+NFhlf4lK1UKe4vorcpM7bnQb//cawKcWZWMgBilE8EuhETqPD69HnSKd1Wlpsdu92EAIyGZ26uhN3AnrqqYBXX5fUVAsMXdHX7aPrOu/MRpziljUuQsDevTqf+JhDWbnk/vsjjIz59A1AxJYIDWJxmDtPEo1DdAwWNvmsf9Uhb5ZBQQsTvpZqkBOkTJegUjLZA8jDz+cDKQQWCAelDAwzTmXGwbZhIiuIRRRBEM4nhnB843+8bvPWfoPFDT6fuNpBP8Vj/FV1PosqAmxdYZ+lD+790ijkVJTiyjPPEzuSNDdngOEZO+fpXi6nWtEw0HGWaylxEVM9p4Y7PrGc557NEO1dj9rj4VYFlKVGmLW0nImxCG6+yNj8DG7EwMr59Or1pOy5fOnaCFXaYgDGCOiPusihJMkGh0h5AX0kzoIyn7d26vzdI1EKRbhxqcfHVzkYp/EJViieZ4R9FIgLnTtVNbFptF0/KAif+XQFmzcX8APFooVRotETK9PmzYqGWQLTFMRi0NkpKRT0Y+pmbRtuWVNkbCygvNxA1wXt7QEDAwZeIJjd5FPboJNXAVdf6fPW6zojewWxJoPf/ozkJ08rRpRCelpYspwNMO08WqVOpFaj2DNlxesSK2Lg5jSUCl3I8ZjGwICkpwc++5ECP30sQt+Axs3Xu8xrDS3b4azgrU6D2ZWSLQcM+sc96stPnUiVss9dRnZJlENK5VHvfU53/OJvne+FlLj4Wfyh5cjZrTzzaAW6P0HK209NUxXMXsnQnB6C3F6k4eC6Oj3ZBhKJBMtvhm2pfmzKSWESQ6M5Bc0Li3QO6DBg0lodYAPf/H6coUGNqKF4c6fJnm6d+1bvQYiTW80ein2iQA0W/biM4E1LkA8e27Y1VhyVyHUiqqoEg0OKqirIZhXRiDjuhKRCQfKd7wzRP+BRW2uy6toaXn1N0d1dJBWH3KSJbUAmIln3tMa+vUXqKwP69ui0NJv87l1Ffvx4hL4BgTcEqcoCtlsgJy1iCy1uXJVj3dYYxqwo1ZUtFPbnmGgHwzBZuNCguUnywx/BH39DctsNk/zul30e/0nAl79i8IXfMUlGoDyu6BzWSEUVZTHJaFEwlNeoiknKIhd3DfDFSKnt5vnliR1JbmubfFfOXUrqKnFOiV5q0dpaTe6XNm5hObnaGvyChnCS9Esdt1Agajtcf42kpjnFYGySLBoF5XML9VgIPiqSrFjq8/zGCN1XBVTUu/zq1xY93ToxU1FwNPR+ybMbLX5nzSyMYvdJ12ShMV/F2SlylGFQyZk1nZ+OlfbhD+t8//s+XV0Ky4JPf0pD14/tv93V5dLX71FZG2PTHolvK15aH2BKiRCKfF5DDwTLlym6uwIMoJCLEjV8GpN5Ghoi3HWLQz4n6O4NGJ8cwUvEOHDAIV4cp7rG58q2NOURQdyF7mgZ6aUeQwMOFTiMFiTP7bGZ+4bOf/1Mkb4xC01Y/OEf52hpUtx8s80XbyzQPaJRXy4ZdjS+symCVAJDU3xhWZH65Huv9OhsyWY9+vryNDYmsO1zHwAvifL547a2yRmNGx9OSZBLnFN2WQVGrRjNX0zym/kUe3o9hicFjp8Eu5Wq8iwLa3QSeow3nX6GVYAuBL5QYe4RkELjUsNi7grJ/V6RQQUdgzpy0MPabaCkwnUEE+OCDdsN1lxxapFcRRmXqiRRNIwZyGWsrhZ8/esGExMQj0MkckiMXS+cGxGzIZY02DlWzvNdEXRNYI5HGYkZaG6AVfRJJDU0A/Z2aMTjPnkrwmBCp1hv8eiwxVU9EisAVQ06gvkJxZzGSXZq42hGlFUfTLHN0Qh6Fet+rdPT5zPpCYpRiyBwEQckUaPAP9hR+svSaFkfoQvyforn1+W4+WZIRRWpWaEL++ltFqYG1XFJX07jtR6Du9vcE70N54yLyW3tugH/9O0tDA8XmdOa5vOfX3hezlPKwj5/3NY2yRanGWAqjjwzFnNJkEucUy5x4gwFeUS7RvkSuLz18JKX6NQLWP84yzs3EZs9mwMrb+YKMscca0sgGFTQpMHyMp9nFgkmdhuoSYECZEHw109GeXSdzTc+k6etKTjhTVsgSM7wx900xVSZU4hS8Hy7yX+2Wyigrc4nl4vQ0AZzhUumwiCVhuB2nwefNsmnbJrqPHZmdcZMyR33wKv/ojEiFPKhCbb4DltMm4bLYjRda9C2IKDCTCN7sgwNZejpl2xsz1Js9egNKhhZ78GkEdYiWzpEy9AuC6CjwL43JHrExLMMBCBMQcPs4jF/U8qSFP2wjMrxIWHNnMt6umM13y2KxYDRUYeyMpsD3VmUUohTTCc7G0rC/N6hJMglzikNvs3qnih3XXOcgOlBfA86N2Om61jS1c2S5VVgHOtGPlisA3DdEp9OT9BjKAo6yNkwvkBjq6WxdwDG/l5w/59OXtCW1I5unac32syuCtA1eGl72LXrpuUeEL5fRQeGxy2qK3Umx2DrSzYTUoCSPP2sh7QmkDsOFncH4EkOvJZg/twGrrgroHPEwusuZ3y8j8HBgMhsjf1BBmd9FGZrYTnUOBBVoPnITVkmNZAkSVoabiwAoajKBFhlCcBFKtgwaDBQ0JhX4XNgMqBjXGdOecC1DTPftvJC/L89nFTK4o7bm9i0aZi77mw+r2J8PEpu7LMnzLCe+fOW6pBLnHOamzM89rJz4g0MExathtwILFh1XDEGWKQrygR0KsGAAd+4zOWuy1zuvcmBuYp4xiMlJX4t7BrWeX1z+Hx5UJTfDZSC9ZsMfvhwhF+9ZOIdplcHhjQiVlhTKwTk84K8e+TNenRUMDbqMKsqYGCbxoQpoE6ClqfQk8fZKXlHjN+pMZ7gredH2DsoqE1K3JxAGAaxmGA4ksTZGANTA2dq80ogLiBngoxC3ziFzj4m9k+gjXtcvlDxuY8rHC+8PbzSZ/DQXps3Bk1+uDvKPQsc/sfqHL+9tMi7Nbf+3Z44dSquuqqWL35xMQsWlM/YOZetvrRUs3wOOFTuFLJv34VX9lSixLll4erwdRJSAu4zJV0KIkC5J3gzoYinFPqAj5MClMIcUugajE0eer48aEXli+FgBPs8DaY4mg3tBv/xhE1ZWtG+Q2cyJ7hzTRhjLU8oioeFW8eyGmXxIxOiEgmFJhSFLCihwPCgoMKC4ABQh2+vga5DKoVKRKjIST63psgGTPbtS7Br9xjZnjggwhGNknCieYTwyveB/ggQRboS6XqMF1zWv5Ckdb7B2utDl/X+rE65paiIKDqzGiOORkXk3e2UdSF7Qt5tSglfZ8dBMd63b5jb2iZZ3DZz5y4JconzR7EHiv0QbwUzfUaHiAlomzIig6giFlXYmmJpTrHlbR3TFURGoTEVMKfxkEg4Ljz0S5ttHQb5ySx33mTxgRVn5l6djjW2c49BWVpRUaZIxBVbdhrvCPKyFp+tB3S2dZlomqIiJalLHynIyQRcvSLH+KTJG7/2cHIuSAXooHSwBdg14GchPwqpSoSls3Shz2B/lLd3GkSjijlzoqRrTZ4dVOzuAfoIzXd3SpxrCF3XKiBU5nh4DikJPIe2Jlh5SRj/X5rxaR8xmPQEaUtRG7swsqpLonxiSnHlM+NwV/W7UfpUEuQS54U5DcCBfwfpgVUJTfeBOLsIia7DjStcHnne5s65Pm29itGsIF6vmF0reWKjyTd+EmNRJuDqeS5b9ho01UpGDY9fvJykvlIyfyrxC04vFjndG359TUD7dp1ETDEwrDH/sKS2Ql5R2OUy2u7SMkfx+7cLfvpCDKnCkcYHSSYkdQ0Bc+cptuyemoOsGZAUROIm+AFFX4fAI5o2WblMcd11FnZMsWW7QcfbOjU1kg1+BNt2YPskTOSmxNiG1jhcakKgYNCFkThgntO/iwAAIABJREFUEQpzjsKky/oXdCY+FSGV0lhSEfDlxQXGHI2mZEDCPDaRa/eIzkBOcGmtP2Nu7JIYnz4la/n0CLOrj00wnSlKglzivKDJPDu7iriigiUN46Gr9SwFGeCKxT5FV/CrDRYVUUV5RDGrWvLmkM4PdkRRUXhhGJ58xebza4oIAYYOlqnoHdZIaweOuIkfT5wPt4ine8O/dqXHRFawZadBW6v/jnUcBPAn/4dg40afaBQ2boA92+D6ez3e3mdRXxkQmXKrewF0DWr87tdcnn0C3todJRLTWd4mKE8rajPQNxzh1g9UMTgm2LbPJJYIXfbLWzz2ibAjmDQVXc/koT8PgQAkuD5siRIxHGLloJbpBONRPN+hUBif2i7GQw+4ZCfyPPGzBABlumI0CyOBIFV9pCAP5gT3vx3BDaA3p3PvgpPkD5SYUUrdvabPvn3DR8SQZ5KSIJc4L3jmLCL1NxN3dvGfvddx49xz81ETAq6/zOPKxR5D4xqOBEcIvvXdNJiKpAeFGPRENbr6NMqSAYmyNIM9kEnJYwT2eKU0p+sKLTgwkdOoKpMUCuC4gnRKceca9x0hPsiuXbBxo2R2E4Cgwhfs75TE8nnuuFry/CaLwXFBv6NxIJvkt1Y47NswycJ6xbK5Be66J0rrrIAf/SxKz6BGy2zFpYsCkgnFm1uhb0Tj1lUOC5oDOvforHvDwzR0JoY8COK8U+RNEaSH3GexuM0nNU+jPA0b98Hml3UgDUiUUrz0kkSpcLzyt5+NMpIVKAWfuLbIsuZD4QFNhNnwSglMbfplUGNjAstSx7QVLXHuKMWVT59zIcZn2likJMglzg9CYzK5hsnkGjKV8NjLYabiScuhTsCuMZ2BgmBltY811fQoYoNrCn6wycYNBHmhEbgCKRTSFcTqJPWVAZ19GkqFlvWi1hMnIh0twodnap9ImP/tqShbdhh0rJe89KIkYgd85B7JX3/TJ35Uh81cTiKVYtcuQbGoSCagqUnQ0SH58F0+Vy70GRzTeHa/yYbOIi2Vio2jkpZmnX37fDa86PPwfp26+iK/fTdUVCj+8aEYpgFf/2Qec+pKVgoiTQp7QJJJKSL1cYp7JjlURBYALjoR7DLBJbbL3A/AS98Na2UVORAuqADXl7y5MaCywWQsJ2iukoxkBVu6jCMEORNTfGF5gZGCxsLK6Y9a/OkDEaqrJHffPT3LuhRDnh6luPLMsMVpprkZRovT79BWEuQSM8LBp85NPYfKCO68NCB44GFULofx8XsRlZXH7Jf34Hs7I+R9gaUXWVkd3vC9AH7cbpO0IWFJ7l1Y5AfbokwqgW3B7y3O84e3Fxga0zB0RWWZ4lTloIdbywe/P1lCV9RWvLFO8NYLRXzXZxLBj36kWHGp4Lc/d+S29fWCykzAli0asbhgeASuuCKgoSFclKFDXUby6XKH1WUDZCqrSSQE+/cHeJ7Gjp0ac+cqenth01vwoQ+FbvhiXvLggwGGAR9aqyE1jd09BgtmT5LORLj0Mnh1vwT/YJq5C5isvtJjVX2B/Qc03DwkxBCxtEPOT4AbgGFgxxRf+W+Kv/tbDSEVb23TERrcsNjF8+DXv9ZxHPjABwJmpyWz0ydO9goCCCRYx4kv33mHQ2QGemIPDAT84ukCqaRg7dpoOEbzfUjJWj4xhyd1vRs9rUuCXGLGOSjOqutNVEcHCA25bQf66mMF2dahKRnQndOPyO7NeYKiL6iaKhta2RBgmwXSEck9CxxW1IcWXF3l9DOCT9fi+uyaIj/5toH0PRAGQhMUCj47d0iOLvGvqxOsXQu9vR66IajMKNJpjeuvO/IS1DWImZJUSvCVL0cZHJR0duk89xxoGtgRyGVDD8FvfijPXXc7vP66he8bZDIO69cLTAPyRY2oD5ev1KkoBry5vsjkpIaLTbpVY2JWwLO/HCEblCGCCaLC49ZPJXnySZNcfxoCk/FJyeZtDv/6Y4OytCA7pBExJWN9grfGNZ551kCb+jNvu+3E3oeiA//ySJShcY3fuqNAc/2R/yd1dWeetT0d6/iRR3P09gUU8orKSp1VqyJnfN6LnZIoH8vZ9q8+WPt90OCwz2D2aEmQS7xrPNmVYW1NDapQQJs397jb6Br8zoIigQTzMA9QzFSYOhQ8iE5ZXUlL8eE29x0xPh2khM7uUFVmz5LvCMzpYOhw3bUuLzwvcFyJEJCMSxYtOP5BvnifQXMTvPWWYtFineuv07Gjgl+8bDJvtmROQ7jugyKTSglSKZ3KStjwBnR2ifCc14UC9vLLPm+8YeD7NqAYHo7xmc+Mc/+Pi/zp/TZy2ORLt+ZRl0d47lmHHR0+eyZ1Fl1aoLPfYeFil8Fhyca3LbzsEBVVAfmh+ZAFGAP6yOcl3/5LjaUrEnzu8xkiEZ11r1msvaYYti+VYJ2ixntsUqNnSCOQgn29+jGCPFPYtsBzFUqB+S41NLmQeD+I8vFEtjnYdtxtmw9+sWfq+zmreGLH6ZU/HT6nevFZ9L0uCXKJd43GRU1sWfj7LK2bRJxECTUB2lHhGEuHjy4q8uPNEWQurOBZUOlzae30YpiPP2Pz2lvh3fmay13uuHl6gxK+9rsem7cYvLjOAyW5/Vb42MeO3e6NDbB+vUZFhcVXv6pIT5Vlb9xh8IOfKa5YavF7nywc9xzpNHzlK4rBwXC/g/tGIgopD75vEtDZu8cnk5Y0NMZwPUlZStE81yaVgu99P0+QDNiytUjaKJI142SHDaJilKExwfrXY6hxQThYeQioIKy5KvL2hnH+1fX5/FdrAY22NsmnPuHherD80pMLbE1GcstVLkNjGpe1TT/GfCpON458z91xXnqpSCKpsWLF9HMZ3ou8l+LKR3fYAkL3854Xj9xwzqp3mn6caD8I92sGtjirWGzvO/UC5qwCTmO7kyCUmpnm8EKICLCOsGmvATyklPrTqd99DfgqYSHkE0qpPzrZsRYtvUz96IkXzvOKS8wU+/YNn1GyF8BQXtCf1bANaCkLe0SfLsUifPN/xWmYcpl29Wj82R/kpm09uS7s3SeIRyWNjccGqnftgn/5jkBKh5ERxdy5Jn/yxxpCwN6d/WzubaStKaCteXrdr/J5yU1rcrz6aorwkspy3xdc/uHvkzy70aRjQKd7WEcBZfkxnMECVtLk2V1JBgccvN0GtRVFOjqGEMSRWOzrqAWGCZO/IHS968AYVtRj4eoWPnaH4BtfzL/jTci78NgWmx2DBlVxyT2XONSlZtYKLiV3nRuOJ8zDeY/Mu9Uj9Qw4OKUJOCTGUyIMx7d4jyfKi+194c+DbSd9UNmy9cAxIg/QsvT6ngN9Q7Oms/aZtJAd4EalVFYIYQIvCiGeIhz/cxewVCnlCCGqZ3BNJS5yKmOKytiZtXG0LChLhQ08UJApVxgnuCJOdsO3LFgw//BRGEeyt0Oxfv0oO3Z6eJ5OIqHxobUJ6iuHaJ1fx9DYJI8+4BCJCO68I0pLy6FFbGaSbhyuo5woR7oJYjGNp5+K8T//5zhPP+ty/XUm3/pmEk2DWy7zeG4j9IzoxG3FwGgEZyDLztclW/YqIjGd1iabeTUJBBPs3y/IlHt0d3t4rkV4uUrC7GwFSHRDZ8klMKsxOMK1/3C7zfZBg1kpyXhR8G/rI/yX1XliM9SutMSxdHYWyecD5s+PoWmnyGY8jPeCG/udOuLDxBhO7noOZyAf2Tbz8JaZM/V+zFiaoQrJTn1rTr0U8CXgL5VSztR2AzO1phIXBs3NGTb1JE4+kOI8oGnwuY8WmNfsM3+Oz298pHDCTOyjM7Cnw8R4kT17A1zXwjA0xscV//xPI9Q01rF3r8/DjxSJRDRcN3QrT0wcsi53iTy7RZ4xju/qTSZ1/vzPU7z2SiV//VdpTPPQJd1c6VOc9JkswJ2rJe3tkvYNHkahyJK5AXPrJjEtSTpdQVW1D/hUV41RV6cTOqsk4UOGi2m5rLm7jJYWjSuXHFqLlLB9wKAxLdE1qIgpCp5gKPf+zGC+EOjudvj2t3v47v19vPLK+LT3v9gHVLxj6U4J8elyW9tkKMT2viPFe+o4x3s/Dk/kOhcZ2TMaQxZC6MAGYC7w90qp14QQ84HVQohvAUXgD5VS64+z733AfQB1sxpncNUlZopwStSJ3dcSxU4UGjAXgXYCi/QgfgBPb7TYtN+gJi25+wqHiuSRIZqqjOKTHz79B4EzmclbXw+ZCg3HCTBNiWUJMFIADAyGJUvRqCAaFUxM+IyNSVKpUNA+qDJM4FPL9MzNYlHx+AOTqH7JNTdEaCzTSaU1Lr9cJ5CKlqqAXA58d5y5cwXz50W4406DZ562+emDLmPjGjKASMRl/kKd22+bzTf+MEDKHJHD/ns0DVIRRdYVJG1FIMPW27EZnJMMF/5IxpnEcSR+oEApHOfMQgeHW8oAmYvIWj483rtl6t+jLd4TcbSoht9P8oS+kOZg23l/SJlRQVZKBcClQogy4BEhxJKpNZQDVwErgQeEEK3qqOC2UuqfgX+GMIY8k+suMXOE1vLx48rtSB4XASi4F51FnLzw/uUdJi9sM2nISLpHdH74QoSv3Xr8xKnpMh1hXrzY4vIVDute8FAIZtVbrLk5jMnVVOv4ftg4xPXANAXl5YesyxQGqTO4TLNZydCwJBYV9Pf63HCdSX2dYONGSSIJtiXYvVty2WU6DQ0aBw5IslkNTbMwjHEaGyAIdIaGTBa2Gfz+1+Rxa4gBPrasyP3rI4wVNAIJa+a7VMZn/hItxZFDWloifPzj1WSzAVesPPNSnvdK283F9r6zntgUCvOJ//6zyaw+nHcly1opNSaEeB5YCxwAHp4S4NeFEJJwYuvgu7G2Ehcu78xqEuCdxv2+a0inLK6wDKgtk3QOarje8ZtTnC6dDOHh00w1OtppdfQqK9P5b1/Pc/U1FfT0CC5foXPjjeHDRGWlwdVXx9m1q0AiLvjkx6Mkk2fv7q2s1Fm7NkJHh8+amyPEYhrf/Iskf/EXBZ79pUtfn0Nzk0Eup8jlFI6jiMVCt3mmQqOnV1JeFlAowBUrJInEkW+45x0qHWqukPz+dQWGchpxS1E7wwldByl17goRQnDZ8rOrqT2c90Jc+WJhxgRZCFEFeFNiHAVuAv6KsOrxRuD5Kfe1RVhzUeJ9zPHc10vRcJVCR7D4NNIfWqp92jttIqZiLK/RkDmxlXc65CiySXQglSJFlCrC+qOjBeBoUejv6mX+knrmLzn2mE8+pfHyyxH+y9dNWlrOjVU5MhLQ0eFSW6OxelUMMRUYX/+Gxs+f9OjuLmKaMDjokEjGaW62+NBai5WXa6xbB1dcEeW5X+YZHlE0NOgsWm7zoydM5jcHXL7Y562NBg89ZPOJjxe55JIwoS4dVaSj7+6M5BLnj4tZlC+mNc+khVwHfG8qjqwBDyilfi6EsIDvCiE2E/b1+9zR7uoSJQAsBNdM4yN71XwfxxNs2m+woN7n1sumV2N8NBEsalU5ReGSVCeehHC01XxQnCcmBNmsoP6wxhgrL1dEo5La2nPzkR8bC/iHfxwhn5dICXfcnuTaa2OMjcGjjwr6+oqYpgAExaJk5w6H734nhWXBhjcVTbMdHMdi7S2hhXXjLZKnX42QTire3mlSlizgFMFzBUXn9LN3Z4qSlXz+eC/VLF+ozJggK6XeBpYf5+cu8JmZWkeJi4dTJXmdCk2DGy7xuOES79QbnwY6GiuZe2hw0kk4Xox5eFgwNCyorz+0XWurorX13D1/HjjgUSgompstcjnJm28VufbaGPk8RGyBUmGnqiAQBAEUi4LRUcX4uOAnP5UUi5LWVo/PftoinYZdnWH/6oq0YjyryOYFV17ps3BhjlTqyHXn87B5m0EyoVgwPzhl7/ASFycXk7W8eFEDW7YeuCjWCjNY9lSixJlwrueSzrTv5XBLraVFsvLy8+vWLSvTUQpGxwIGBwNmN4bP3NXVUF2rkU7HyGahUJC4rkZPb4K/+JZGb59i06YimzYVef5XRR59NI9SitaGgLoqSWevRk2FZO7sUGjT6WOHdTz0uM3DP7P5tx9Gad86/Uk354KSdTwzHF4adbGWR12IlFpnlrjgOViffKaWMsBAUfBAZ4S+okZLPOAjjQ7p45TmdHZr7O/WqauWzD1B56xxTzDoasR0RX3k3UlgOhENDSaf+mSK19cXuGRxhBtvDF3rPT0wPhZQU1NOb28ckGDEGCuk+NFPfcrKBpk1S5KI68ybJ9jfGfDyyy433mjzux8tMDYpSCfVSWPwfX061ZWKoRHB6JjGoW5fx+K44PsQP4czkM+kRrzEmXPQUi5x7igJcokLnoNW8pm6r30J398XxZXQGJN0FXR+2mVz35ziEdvtO6DxLz+OomvgevCZu4ssaTtSVDryGt/rjhAgCBSsLnP5UPWpXeIzabktWRJhyZIjJxk98wwkEjAyIkCvAssIG4ArwURB4xcv6dStjNDSIIlFJYmEYHAwfGAxTaiqOLVr4c5bHR56zKahPmD5JSfuWf3mZp3/eC4CGqy+zGXtqvD929upMzYpmDs7IJU8M1dGIlPHtt06ybh6pyXq4KDi6acDRscUlyzRWL1aQ9dL/vRzQSmufG4pCXKJi4aDMeWrGkemtd+op9MzVEW97TFc8EEEbByP0m0OYhx2X379jQRO3qe20mfE0Xn5FYeq2KFOR0rBvwxVY2suaU0iFTw1YVGdHaLBPLEon28hPpVlqBRsfjvBrPoAz0kA+mG+ewVoTBom0cFxNuiCWCpHbzcsXQj9Xae/jvIofOET4deF8fB19Dqe/XWCf/xhDZYpWbiowC8mFI3pIUYndB74RTkIyKQDfueeQcxp3p1yBY1//2GM0QnB5HiWtdeOs7C5wHfut6esccV/PKgx0Otx/apSRvjZcvjn+kKOKx+MI18MlAS5xEVFc3OGPjIsq8+eeuMpygJI5+PkzBxDxjhZ10DEJhib7bOYQ13fFhd03twRpahLJiI6jYuL1DQe8qkWA9CKceqih9zUE0WNaLVOTeLkN/jzmf17OsdsnhO2uVy23KP3aR8wQQv7bwsCli6zkHVJ4t1FxnMJbrjJZO3t9llbkm9tMdjTqXPXTQ4/ecrmn56MMmZotGZ89u2zWHCpT1W9Ru+EQXmlxawayf5ujXiFSXn6+FaylOHr6L7jb283GBkXNDdICpkYm/fFmT8n+/+z997RcV33ve9n79Omo/fOKkLsIqneJYsqltwky3FN4sTOTbGTe99K8rLufUlu7kpyb17ybvJe7DhxbCcusuOiZkuWRatRJCUWsXeQIAASfTCYeua0/f4Y9i4KpEBpPlxYCwRmDs4ZYPb3/PavfBG6x8wZpXKZylpF7wA81nbm3ns5//zOOH2613QT5quBsiCXec9jafBYe47/0ZdBOjEimuK+zmEOMEEz1VQRBWDmDJ/8jYqnUyFcE9baOl/b6POrrTYfrHcIadBgBYw4gnpTYQelqK/WuHx5ZKVgz16N8aSkpdmns+PSftbdd8F3vguLF0leeGGcoFh11NMyoLqySEMhzx99UqM6FkIIQTQ6NVu6PX0aO/ZoLJkveX2bSTysCIUDjiQ1LFexYJZLbZWie5bP6xsVhw5L5s7wqDjHlnUyKfjmt0wmJgQffMhlxYoTN0LhkCJQpdx0OitpqPWxLAgCQTYHui4YS4LnaWQyEJ+62RlljlLOK78zyoJc5n1BV8LhI/MOYHkJooaHqSmSgKNKuU6l4I8OhHnW0MiZHoELKg/jmuSveiKYQrGy3uVXmmy+PRii35ZoAh5rtKm3Ll/p9gurDF561cTQS7O5P/Yhm5ldLtGoONpPfHEsWACPPAJf/7pPKOQgZRopLXRdoWl5UpMBySFJ++LzN144Lrz0pkHBFtx1vUsidv5r/9C9RR64A9J5SSIeEDIFh/dKFIq69oD9gwZ//12Nhe0eHRU+jc0B99zpci577PUbNCYmJI2NAc8+a7Bs2QnnqVkdPnff6LB6g0lVhU+FnuONN3zGMhF+vtpkIGkwmi1Vf//Nd+Cv/nOW3/uCc06HrzKXRjmvfOmU/xTLXJU8taZ41gKvAopRAqIIak7q6jPRqdR1fD2LiYWLBwiilI6x3hE8ZWtMaB56ooAs+CSHLIpFSXWjx1fGJPfWK2pM+N32AllfEJIK8zI2DjoOvLbGpKMtQNMgmVT8xV/C/LlZIlH43GejR52Zzs/4uOIP/0ixcWMABEQigubmAkrZDA5JlAjYvdckX7iwwG/YrrNqnYmug+MKHlt5fmMOXS99RMIBdyxxeP6JCCOHBY4rqAsr2hoD9h6QPP1slDsXOuzaZdDVHjB37tlTANXVCseBwUFJQ0NwinALAffe4nLvLS5r13o8+ZTLwcMGb+0NIWIGo2MCHAHSx9Ml/8dfxRF6jt//gl3err4MlIX57VPuQy5zVVIq8CqeYtk4SYZviQP8gH6+KbJsPzH9GolkmZqBhiRJjjwO16kuYpSqkV/KaxQ9gS4dZB6yh+KIegdtVoqi5bCHPM84pZ8lBST0s4txuijYMa6xP6XhvcOdbCFKH8HRIHR/j0c2F9DWrqGAp5+xz/t8KEX+d98r+Oa3YNt2jR07Jfm8YmhIkU4rEAGxKMQqNBKVFxZ3TYJSAqV420VXqQGIopC+wskJNq7R2bVNQ0fg+hCNgWEqxsbOvSxdt9Tn8Y873H23y2c+fe7Ja1KWrv3QkEYkpBg9IksnLwBTA02gPMU/fD1MOn3x15DPB3heeZDg2+Fqt3O8kpQj5DJXLSe3Q917U4bXxFMMUk+bKCJo5mWxkPnqRPFOgjB3qHk4eOho6GgoFBNk8fQ0M+uhL1VJargCv0pgNdmInI7UdeS4YnWzw/2mwjqH7ePeCY3v7LbwAoECWmMBn+suELnE+dmGAffe5fDcCyZSQnJC0n3UHi4cEuRyF1b8NWtg2zaFEBIpBUqF8P0Ay/KoqxMEo4KOGRZ33R2iq/3CAn/dtR6ub2MXBTctfnsT0A4e1KisVOR2agihAMXGNTorP+wgBBwZFMRDipkzz10gJyUsWXLhCunrrtNwXMgZGqmcYN9PRKmgvEZBVEAacASOIxgclVRewN2yr8/hmWfTDA56mKbglpsj3H57rNw+dZG821XYxyqtp3uUXhbkMlc9rV1hVueeJWMlGVd1WGYei8NEmAvETnmsRBI6yVt4N4fpYYjWsE61HUKrmyAbRNg11I3tR6nWfBKBQgmF74pzOjD7Afxov0WlpYgapQjqUFry5pDBHW2XPrrztptd2lt9JtMS13F46imHQ30Q+PDoo+ELPv9QnwAChJRIWSp4EsKktRWe+K6BaUlyeZ3GepvIRQzp0HW4Zem5e4zPR3t7gFKC7m6X/Qc1DBOEDodHJF/6fJ55rT4NDQE1Ne8sArWLsG2/QaLO4P/6A5+fr3PpPaizNimgRSsJcwD6LkVVVUBXW8DE8LmPNz7u8a/fmCAckbS3m7iu4hcv5ggCuOeeq78y7PXXNV59TWf27IBHHnaPu3hNNe+2KMP0N5ooC3KZq56CPoqLoln0Ui2bGA6ihKTH/WoUOPfozRQ5ehiiSsSIa4KQbxHVxnCbR8iHovSlrsGMjOEREDcCbtVMzHNIcsYV5FxBTeiEmFRaigNpjTuObp1fyBXqXJQqqwNA0t4WY2gooKpK0NZ24bfvPXcrDEPgOApfSFDgeR6Dg/CVr0i+/GVBc7OPfgUmXT7ysMNLLxkUbI27bnOpb1GMjUsev9/m9hu8KZt9/eNVFlv36Sgl+MCNRT79QJH5nT4f+acEfftBIZAJqJmr+OvfymJeIDresqWAUoqqo1v6hiFobTVY/Xqe226LYl7OQoLLTDIp+NlzBg0Nig0bdK6ZGzB//uXr0X4388pXQz9yWZDLvAeQ5KSJF3Rwn3yDtAoxnJyLqB3GVTMxOPst/xApdCGRCDShWBDbgi2OgPTpiuzlq7nfYUt/PbfKIT4ydz+zqxyStFFN7RnHihmKsA4FD8JH31WTRcF19VO7uNXXa9TXX5x6BgGsWatxw90aq1cVCTwPgY/n+fT2Sv7uH1z2DVrMvStC1FJ89m6b5prL18KVSMBf/WWef/6XMLZdMrd46FcK3HHjmRG350EmU3qO9jZvFg4e0WiuD8gXBH2DGuAyZ7bHRx9xCNKlmwDbEHx4kc0Di07cLJ3rBmk86WOFThVdwxB4XslH+kKCfilksy5vbU7y5hvj2LZPe3uUm26qY+bMqY3INQ2kFBQKAApdvzL58XdDmKe7GEO5qKvMe4CIV4+mQiSp4aB/I+PedVQaS9g34KOOWjN5OORIUiR3/Hk+PvLoW0CIAm3WYSZUgnGvGicZomb/KJWpUSrrd9DWkKQgc+wUW0gzecY56BI+NNNmtCA5lC591EUCVjRe2vbuVLBrl2TtOo3HH1L81hdNZs7QAR80HWFqFB3Fqp8rqiwfBbzw1gll2dOj8d0fG3zvxxqTaYWHYiM51pIld54Z1cdQCl5fo/Otfw+xa/cJRa2vV/z+l/P82q8W+N3fKbDyvjO38wsF+Kevwd/83/CNb5Sqzd8O96xwGBmXFIqCW5aUjh814KHZRcJ10D4vYFm3x8q5F5dKmDnDJJs59ZozGZ/qao1odOqX0GSyyFe+uo/nnx9E0wWVVSb9h/P889f3s2rV1M7rrqhQ/MonijTUBzzwgMucOVd2NnvZpOJUyhFymaseTVk0Z+7ATqxCC3QsvwpXujRFWzAwKJDigFiDr1wQiha1iBq6qKOCXjUCAgSSKiPAVEVk4LFp3QoqtRShwGGwp5I9tRodbQ6ecEmRJEHFGedxbY3PHyzNcyitEdIVMyt8zAtEd5ez3SadKVVCSwlVcQhbOqapUfQFpX8lHB9G0pKxMcmfDYRZu0dn3S+KFHoDNKlRVQWf+esUuTtsYkKwy1N8Mh7HOk9kuL9H45lKm8wbAAAgAElEQVSfhqisDPjuEyH+85fzVFaWbo4ikZLz1bno7YXDh6GzEw72lowxOjsv/rqvX+gxb4aPpimiJ6XZ72hzmVvtU/AEjRH/oovt5s8PsX59gYO9RSoSGsWiwnUVn/1MJVJOfVHXk0/2Y9s+HR3R41+rrbGoqjRYtWqImTPjdHbGznOEt8e8eQHz5r0zr/B3QnmYyAnKglzmPUHEr2ZG+h5GQrvwNJu420C9PZeteZP99ipmziySEWMEeBRFjrSv46s4NVoFY0wSJ0yMGTToOyj6koIXxo9qhGWBUJDHVkWcAHzNxyJ0zvOoDimqQxcXFZ/NM3kqGBiQTE4KJouCoaTER4GvqKsDx9U4dMjFDxThqMaMmwye7g/hJaFaBqw+aFEYKkJKQFTHTRYZJMRX91ok5vtIVzJnQCM3EeZXH7KJRc6+xem6pSg5FlVk0gL3bdS1VVWVbiL6+0uV5hVn3vtckHMNLGmKvv0I0DQln/tcFVu32ezdU6SqSmPp0jCNjVNf/TQ6atNzIEt7+5kVdpomiUR13lw/NqWCPB24ElvY5RxymTJXkIhfRWfupjO+Xlkn2JMcpL5aUSDNETXAM16YUVVJyO7m85E4I3IUn0aafZdXlYO2wCX/Vj2m8Ll+RS9mYpKiFqdONVJHw5Se91QK87p1Ok8/bdGT0hgqSGZ1uOwfhYdudvjE4y7f/4Fk/YYQE2lFustCf8wimZfkmwRv7dQJNB88E5wwOAFELbCzKNvFWW+jNYV4/d+qCNXodDYafPC2s0dWc2b7LLvOZe9ejXvvcairu/jcZGMj/Mbn4dAhmDmzJNDvNpYlWb4swvJlU+gXeRZSKQcpQZyjwi0eN+jvz1/Wc3g3udyV2NO9/aksyGXe84Tcdqz4NsbdPHmh2KG1sVG24QkN3xil4EX43yqElfolW6w8uaAOvfkg3fWHiHgREl4V88wYy9R8Cm6IDVkdU0J33JvySV1nc256OyL94osm9U0BW9IGUU1RlRC0dypqugQLF8K118LhYcXX+sNssE0qdcXEHhjLCIKcKPUhzQJsoF+Aq0EQI/9kFu438J4xyT+lWFWjU2XCAzc7Zy260nV49KPnn+J1Pjo6Sh+XiuMopCzNr76asCyN8926OI5PIn6Z+pKmCVfCpGK6inJZkMu854naCyjKJMn4KnpFA71eOyli9BU6iAZZGsU2enNPM1ebR1yEqSmOcUNxnIIZwQoKJOqruca6haIb5qsHw2Q8iVKKWVGdz3XYTNVsiLMJ74WsFU8nHAG7IJBCYftgGArXg7BZWuY1DZyEhopLOrSAvowkWRQU0wIylLqrckAXsEtAoIHS8HbVk956GPCBANtRDByCg30as7qml5Xhxk2lfm3DgE99MkxX1xXo6ZoiWlrCxKIG+bxHJHLm8jwx4XLP3e/9EZ9XIq88HUW5XGVd5j2PQKcmfzedI/8nUWcGdarAmF3HbH0v/936U36n+Pfk/T24IsuBtQfZsNZg2y6DYnacmooJEuogMZL05DQynqAz4tMVDTiQ1xgpTq+30Mc+auO5gkYjIBQHTGioCri++0Re+1gWdWG1R40M0ORJ3wgAj9LwDIeS/vqAZwBVQBgoIjQHy1LHx3pOF4JA8czTDvX1AsuC556/9Cj93UDTJA892MLQUIFs9kTi3fcVAwN5WlsidHdfQlL9KmTRrYtZdOviKa/Avra7ddoJ8THKEXKZ9w2aCtEYaLyuZjHb3M8XtH+iNThMxC3iaQYpfxNvDM3i4N5K9GZBtKGI7hZ5ILsLr74DU95KoErhsH9UiEw5fRRpfFyxc6fL3LkuD8/RaO8S2K6gJhGcMne6LexjSnAVNEpFowwYsSQ0A71ACNhFaXUIoGR9laU0CLpkxmH4eTJJqK1UR7/+zsjnwfMEicQ7ez2FgGhMkEqVeoRbWq6uLWuA+fMr+cynZ/Cznx2hry9XyicrxaLF1dy/shnLunoi/qngchZ8TbcouSzIZd43CDQqnToqDbjWWEeeCL7SiJOlIKIMCJ8V129j30QTjgwRrvVwghBbVAU3BptojKZojBfYmQ0TxeKeOoca8/IK8sXmj5NJxVf/KcBxQDdg0yaPz31WMnfumRF8WIPHW2y+NxAiJQReaXYGjFMS4L1APxABHAVuHlyP0l62C9LAVBEoePzl/5T8xZ9JLOvShW/TZp2fPGkRBHDLTQ73r7z0UaNCCD7z6RC/+IWDZcF9953pCHY10N1dyTXXVDA8bOO6AVVVJvH3eO74Qkx1wdd0rLouC3KZ9w0CQXN+KQ9paV40ttNhHKJPtWKaPsquIGqk2d16Ha1f9DGDCdJaDfX5EQ6anVRIia1tY3a7QZ1j0EKC28wupiI6nAp27lQUCtDeXjqfiRS89ppi7tyzP35u3Oe/zM6zq1YytinKwX0ahUFR0txROF5ZNN+D3S54k6AEmqFjaB6ZZIpd2y0O7AcpdP7kjw0SCUHKFWzO6ow4kg7LZ0HcI3KegM514amnLRrqA3S9ZDe5ZLFPY+OlD6hoaND41KcuPOd7uiOloKnp6r+OqWQ6zMO+nEyvBFiZMpcZic5Mv5o7Jz7KPvtuDgbL2B76LRbJ+dgiyoReTUNmmGX7N3HzznVUplJsD89j2I9Q6fnUiBgzLYu8OcYEmXf7co6jTgvUpeC81boAMV0xIxTQngiYXeEhFaUVQQeiHM0nB+AVS1+XGpoOritQSjE+XmR42GfLFp9nnnUZLEr+vj/MqqTJ/rzG0+MWXxmIkPbOf9OiFFM2x7rM1KIU7N6tkUxOn1/QVNs5TqcouRwhl3lfMsevoGJbNx9Y0ANiN8RnUpMdpC43zqI9W/B0jWwkSkvyCL+iP01TOEalOEwmtJBUdAVSCHw1dWMGx8YE3/luCLsg+MQnbNrbzzz2+Vqi5s0TvPSy4siRgJFRj54ejxuu19i4MczChZzTwWfvkEYiqviNB4v80FK8ucWgED9acS2BAxKKASAwDTBkgBtAaWcgQAWKbds81qyB/O0muoBGq3TutSj6bcmalM7KWpeD45INB3RyeUF7dcCiTo+auOKhB4o889PSlvX1y10aGqbudc274MscQnOJUTllx32/cPiw5CtfDbN4kcev/uqF7TmvFO+mScXlpCzIZd6nKFoTTwIhEE0ge2ms+W0WDT6BCOkcbm3GliEWF3cSlRbCaGJU6dQUNpIyq9HMVsKMUKAHi3lI3tnAiNWrDZJJSTis+NnPTL74xTMXv/Plk2trBV/4Tck/frXAT5+3mEwlWP264l++7vJnf2rw+V8/f17W0OHx+xy6Oz1e32DQt1tHO6JKLU/CJPAKNDfD6KginwfwMQwN04SiHTA6LuktaLSHThXTOjNga9YgPyj4f56PoFSpBWtejc9LO00+davNiuUe18z18TyoqlIXHS2nM4KfvmhSsOEDtzu0Np+5J9Cf1pC6RlPFpeel3880NAQ89GCRGTOu7Izri+W9toVdFuQy71MCaqpg8wGTxTM1UJJQdh/X2gV+MaODw3oLm4sLcJXFAC00FpIsC+1nUgSE3QnmGotxxVO4+PhqmBgPvKOzqa5RFAoCuwizZl1aoVhNDXzvR3H6+30EEygFjh/lO98VfP7Xz/6c2Y2lHuKiC5YBi64JqKl3qftokbtnOmgSpBD84R9rbNzo4vkKy/IpFjU0TRKyFH4guOVmyYQET4FxkqA6gcB3Ff/vixFqowHShe1rdLYOaMxs8SjmQvz3T+fednW158GX/1uM3ftKs7m/9kSYL/9GnscfOnVy2JxqHyFCcJ5xp2+HgYFS4VxHh0Cbqgb0aYxhwL33Tu+bmXcSLU+3wq6yIJd5n6KRDW6iufZV9vbZOF4l86M72VF/Dft0j+9P3k/PjhnMtnpIUcNkNMFATR2fib2CpcVIED3J8+nEwmxToEieCDEMLr7C9+abXGJRhePA4sWX5hC1br1G38EA/CMgXQg0fCdPELSc8zm1ccXHVhT5yQYLPyjlDFuqAz51s00ifEwkBb/9R9X8638odm/IkU862Gmw7VLf7003m3z6kzpv+A6vpEw6QgFSlFrDRh1Bd9HHdSEUgTXP6ozvg8I4jO3S2b1F59GbbZbPfXvDRVav1fnlKyZmSOGFBJqj+PsfRmhpDrh16YnXbypz02+84fHUUy4IwZLFGo8++v6uep5uvBdMKsqCXOZ9S1bdjRPMRMRtlF/HnkN/w4FAZ0flLCom06isydOxB/m9qv+PmJlGBgEbRCuNlk8rJnH1CD5JTEqlzBlS7BIbUCh0TOarFVhcXJWspsHSpZcmxMdmYI+NS3S9gCN8hNBAkyjfp6P9/GK3uMNjTqPHYEojZCiaq4IzhGxrr8HyFXDLzQYbNnnMiWYYG1UsWmzwoYd1YjHBXYFL1pe8ldFBwZGkpE34xEMKKWB8TJJLCbyCQuglT+FMEtZu1N+2ID/7M4tYWJEsCDITggXzfUK6YsNu4xRBnko2bgqoqZXEYrB5i8+HPqRjGO/9KPlq4nRRvtq2scuCXOZ9jMBRXaVPJYRqF7LYPcBqLcvk2AyitTkWd27koNFKOh3HjDk0xEdIZ4cZDFbTYdRxY3gB8mgkPMIAEkmYGBkmSDFOA5d/QTiWW+5qD2hu0enZpxEELijQNIOG+jw7d2p0d5/77R6xYGbDuUVxTqvPK1tNNE1x3VLBFx8KI0/r0TAlfKyhyD3VDs8dMChkTKwQrJk0aK/yGR7RQAc9DH4B/EAhLehqOXt+cnBI8tpag1we2pt8Viz3icdLUXtlRUDcUkxkBAJF2oYgLJnTfvn8p+fOEfz8hYCxMZg5Q5bFeJpy8hb2hXLL02m7GsqCXKbMcSajHyFWeJkHU73sC2dpr1xLXXSUYbuOpsZBatQYk8kmtrkzKQTN1GtpnKqt3BNbDoBFGBcXA5dAKcwLbFkfq5qeKuvFhQsC/uQPNf70zys4MliEQHH9Coem5oDvPeHz5S9JamourdPxvuUOzbUBtgMLu7wzxPhkKg3FWFqjLeYTNcEPBLVdHg1GgLlAccDSOGKB58Ad97isvPnMHOVESvDP3wqRzwt++ENBclyyeIHOkz+ySSTg8cdsfvRMiEJGYEQgXSF55NYCK28sHWvzFp1Nm3Tq6gLuvsshEoGBAcWPfuwxmYKl1wlW3qe9LfOJO+/UaWyUOA7Mm1fuGJ3uXMik4nKaV1wqZUEuU+YoSobIRFfSRsB/aurjmdwQthtGEwGWVqQ+yPG6voQ+tw5ViNOr15HI7eemWJoICZrowFFFMmKCdmZTSe05f9axbea3ax5xPoSAz3wqIBFO8uSzLlu3ZLhuaR2xmCA5oUinFTU1l3ZsXYMlsy4++pxR6fOL/QZhDewAPrfEwesS/DyiqGwMWOzAPcsdPv1A8ZSxnscYOKxhFwXjY4qJMQfDEGzbrnj1NXjoQbCLkg+sdLAM2NMjueVul//0mI0mYc8ejSeesKiuVhw4oDE+Lvj4Yzbf+jcP3YDaOnj1NZ94XHD7bRc/hlJKwbXXTs3YSqXUOS0Wy0wdF8orTycxhrIglylzBgKJebiTut0+KTNB53VbSVgmI2PL2T3QSSpZxcTeKiZ7YrwVmc3Mz4zy2SWgCZ0ZdJ93IscxIT4WFZ8cHU+FH7IQ8KGPtjJzboYnnoiRnlAc6vOprJA0NFy5qK7Z9Bk5EiJTFDTHfepMRXODz9IuD9cHXXLeKDscVigFVkhhWZC3JTUVHlWVASBJxBWahGhU0dkWcOt877hJRn+/JBSGykpFRYVi/z6diQnIZmEipbNtWxrfz2HnQ9x2a9UVFcZduwJ+8qTCLsCNN8F9H5BIWRbmy8nZqrCn21b1McqCXKbMaQwMCJ58UicSmY3j1fGNf1tCJmOgW1CcZTI5aeJPhCEKTsHg1/6slR//+T7+dlGIWUTPe+zzCe7p37vULW0hBAsXJJgzO86Lzw+TqDFZuEAjEjlz4Q8UrBvR2ZfWaQr73N7k8k69C5SCZzaHuKHdJWTAaEbwwg6Tz91iIwSYF7HqzOj0uX6ZxxsbNLoXSPIZhw8/7LFkSeka2lsDHn24yNadOjev8Fh4kptVc3OAXRBks4LJSUF7h09lJQwO6ezdGzA+ZuP5IYaHbcbGfOrqLn0Z9H2O+0H7PuzaoxEEgnlzvePDWAqFUvvQ5KTiu98LqKkRVFXBK69AbY1i+fKyIF8JTt/Cno6UBblMmdPYsUMSCSuqKiXjPTUc2Scxo0XwfZydBj4WXEMpEjaBIY03f2Hx02vH+JRuUIN5ipheqrAee/ylRs6hkGD5dYqGtnO357w6aPDcgEmNpdiT0hi1JZ+c9c4sCwMFjgfGUaEydbCd8z/ndKSERx4ocssNAqWgIhFgmqeG1EsWeCxZcOY2+rx5Ph96xGb9BoPubp/7VzpEIqVe6QM9giAQ6LrLrNka0eil7RoEATzzrGD9ekF9veJTn1S8tcXghV9aKAXXL3N44D6HF141eXOzQSgENy8uAMHxG6N4XNHXp1i+/JJOocwlMN1bo8qCXKbMaegG+L4AFNmMwJSQCBmEEg6pw2FooeQVrAE2kFDY/TFG/B5yej3H0rRn25a+FI6J+lQVf53M5qROUyQgokOFqdiV0nGDIsY72N3WJNw6x+Gl3SamBq4P9y84/3CJyYLACyCqKd7cahCLKpZ0e9TWnOiFvliEgBtu8LjhhlPF+iMfDshmDA70NtB9jc2jj2pEIpd2ofv3w9q1gvZ2xb79ku9/X2FFNdKTAVu3C779HYvfdMMoXeOuO1wWL/b55ToLAodCASyrtIXe2lq6rkN9klxe0NwUUFkxfSw934tMZ1EuC3KZMqexaGHAvn2SwUHB6BHw0lAUirwdJVwBbvjoOKrSOGdwBYm2CQj2U+3bIJdNuXieazv7XN+/WGqsgAMZnYgekHEFUV3xNgqPz8kH5ru0VQdM5CQt1T6dtWdvbZosCH683aJnrBROp8YEXh9UGlCVyNPcGLB1u0Y6I6mrUXTP9dAvcdWqroYvfcnF88Awzl4Bn3IFPVkNIWBW1CdhnF0c3aP3F5u3WGzerPP884rOLpu9B0McGjQJ0CAoOXz85BnJjp0BDz9c5FMfl/zkSYXjKG66SbBsmeDnqwxeWW0iNTAMxec/bdPSPD1HVZ6NDRvy/Oy5DA8/nGDxonfPnSqbFfzgPywOHdK44XqH++5zz1unMB0pC3KZMqdRW6v4+GMuvb2SgX0un/ywxvCYpGOFT6xN8Y9PSyaL4VKE7AMZH3mLQ5QccvjvmPTupKLt1xkeGL0sUS2cXYAvJYp+sN3hm3s19qQlpoTfnFuYkulWQkB3i0/pBTo7QQDf3hRiLC9pqywNI5mc0NjhGNxoORwc1nj0PyfYt1cnoStuvc7hA7e7fOox+5JFWYhzG23sL1j8fH8EXx3NRkjFZ9qKzIieeQ2zZkFTI7z4os7QsE9dnaCnx2Js0iYwLYgetdvKgSoI+o5INF+xYIFk/nxFEICmCdJpwWtrTNpaAzQNxsYFL75i8tlPnDrL/NAhQU+PpKZGsWBBMK2EZvfuIsMjHnv3Ft9VQV69WufAAY3m5oBXXjOZPTtg1qy3N3Dm3aYsyGXKnIWqKqiqCrDzGWLFGNdf79LvSl7aZXLDw728sKsNtcNERj2iX5ok2dbIuJ/ASswl4o0z1r8ZxLlHVl4OLiXnHDUUlbU+h3M6SoPXCgYt0SInp2v3DWr8cruBqcPKxQ5NVVMTvR1OSw5PanRWn1g053f5+FJw1zyXHzxn0bNHJ5FQFF3Y06PTWBfQ06sxd4oXWi+An6UqqK0OiB5dFTOe4IeHLf7L7DynF0JbFnz0o4rvfk8ghF4qIMsoPEeHSlFKaQBEFORdYhEYnygdRAhxvBAsOCr+xwRW08A7bXe/t1fwz/9ioOtgF+G+cZ+77po+QvPAA3G6ukyuvXZq5oVfKo4jyOYFL63ReWuTz9598D/+XDFv3tVTNFcW5DJlzoFSiq4ukz27D+M4Jm1Ri6hlkO6rx/qYi/ZrRTDBVxY6HjOLSaTZBgxT29wC+uWJji/EyWJ8NpE+ebt7tR1lv9HE3FhJZHcXdNZmAm4/6o40lhb875+HOZTSGM0I1vTo/MNnsoTMd36eBVcgxalbwkJAbVVAOKYIPBCawgtASIEuS0NGisWpX2CTrqAQyONiDBDXFf15ScoVVJtnbl2/uV5n+QqXdWsFkShU1gbs3quXUhnHbmgKKWSQhqKgqjJ+xjEqEooF3R6btxpYlsL14JEHTlXkXbskpglNTQrbhg0btWklyNXVOjff/O5Lyey5Hn/7TxG2b1dkcz6DQ5JtWwXr1gSXPBDnSvPuv4plykxD9u+ZZN2rw0wkiwgBq1cVmNWs0dAc5vaKNvp364wvCNCkQmiKriDLnXaA0MYhdMdlEeNkEiYmoKEBYrFLP87Jgl0csRAjaQiVDhiTimHnxOI1MCHZOqiTKQp60xr7JzT+62Se9rp3HiU3xkvH8IJSXzJAOhAMB5JYPOALHy7w8iqTnA0NkYDGRh/CCrMiOOU5U0FUKwmur+CYiZMXgBQQ0c6eR+7rk8yaqWio99m+HfIFUELgRn16joDvSUwnQ027hh+4LF2Qp1SWfwIh4GOPFJkzy2cyLZjR4dNxmhd2bZ2iUADHgfFxwaxZV09++UqiEFwzz+fI4QCn6OIrSSql2LlTceut7/bZXRxlQS5T5jQ2rx/j5V8cobrGorm11FdshhQdHRoTEy4c3stf3tHOxpEa9miStnjA3TUmMxo/D1KdajGkFIz1gmdDTSeYl5ZjO3AAvvktSRCUhmF84TcV1dXv/FrbrIBtsQRKBSgg4wtazRPRVzSkUAhMXSEAQ0Jl5OIFIVCcsd17jERIcc8ch+d3W8SsgCEh2egZNMZ9vj4eptYMaP0jn55eDTWsGItKEjMV/9obJjEINzc5XN/gEpkC06WoDstjOTbn49SZpesbdQT31TuEztGXPWOGz8aNOi0tkoaGUh9yzwGfu+4r8tp6k5FhSc++CBOjaW64LuCu289+IF2HpYvOPQVt6ZKAsVGftzZrzOhSPPLw5ZvXfTXTWB9QWRFQVaMxnjKRtkNnu2DBgjP/AE8eFjKdpnWVBblMmZMYOpLn1VVHaGqOoJ/W+yOEoLraQFbCa8UD3HH7JH9sVVN3StRz2pt/32rY80rp88pmuOnToBmkevsY33cAqyJB05IFaOeqNDrKq68KIpGSCPf3w7btgttve+ftMTfEXQYdyZqhUhHRtYZNx2SK4XTp+zNbmvjIMpuXdptURR0+scImcf7ZJwCMFgVP9IUYtiWz4x6PthaJnLbaeAEsbPWojQVsH9LZlNW5PVFkQpPsLei8lBaYOkzWCo6EDBhXbFyrE69WXDfHJWWbbB41WNlSJCQVTRUBodNexiCAwaTED6CpOjjrmM5jfPzaGLMnbd6c0BHA3XUeiyrOLX633eqze5fGzl2Sg0Ma1THFxz9aZOXdHivvdDkyLCkWJWErQnWVIBS6tJBe0+D++33uv3/6bFNPR6qrFL/3GwWunWOwfZuksQY+9jFBZeX5X/cLGVBcScqCXKbMSWzbNE4opJ8hxotmlt4qhUDj6YUxeiri/Hyt4HrT5b92alzbfGKx3EqKHSJFm4pwY98mtEQjGBZMDEA2yfhons3f+B6aZeIVbJL7DrDgVz563hGO8QQc6IUqBa4riEanZtvSkPBobZGVVaXrTehhOMkycrh/kN+9q4kPLnLQpaKj5uJ+7ncOhcj5grZIwL6szs+H4cMtJwaOjNmCfzsYZuJoPvi2eofuqI+rBL0ZDR8YDjRS6aPGymEgBv64YHxY8IJtkex26TICXtxhsCTuURNV/PrNheM+zkEAP3zVYvOBksC21QV87r7COfPfUsCySo9llRcXgVZWKn7nd4r87dfDjAYQqYY77yw9V0pobTr2Wk3N/OsyF6a5MeDTHy/Cxy/u8SdP75oOonx1ZLrLlLkCOEWffbsnqao+e49qoOB5Wc+WeBPpzTHYm2fdNp8//KngpZG1jLKVDEW2iCQJDA6IHMONHZAZhswo6BaEYgxt2oIZixJvaqCyq52x3ftwMtnzntu99yiam6C/T7BksWLRwrd/fVtSGn+xM8KThy2Ck4JrISChKxL6mRF3Q1sT40cGmVVf6iW+mJYoN4AxR1JnKYSAGjNgIH/qUvO93hAFD9qiAY3hgFXDJiYe6zybbDzJYGyERN1BWmccpKImiRQuhAU0Hy1LnoSdEzoHJySBCRVxxUResHq/wVha8NZBnZ9uMFm3W6ejPqCjIaBvRLJx76XHIKlUyS3q29/26O8viW0kAg+vdOiao7jtBg9zCrbPy1xZjm1fT4eRmuUIuUyZoxSLAUqB1E5VnfHxLK2VOkWlMRAOUXQ17oi9yrVztiOlz+Ytt7HxYBWNDW9Rryox0JjERQDWnDsJtApkMUvQtZS0NYrfkMfflQWqCVwXISXaBVbyRAK++AVFEKhL7kF9fsgipMEbSZ2bahzqQxe35f12e5sNCR0Rn4GCRrUZMFKU3FF3Ynam7cOwLWk/GuUbEmwRUIiPo+l5cuEsliMpHKzCd0zi8RSy6JNK1qA8DSKADo4NjiaQKEaKkio94NVdOq9vM1DAWEqy45CGbrrMaggwDcjZ576jmEwLhkcl7S0+oRBMTnrs3JlnbMwlUaGzdq1FoaBhWfCv3/D5g98XxOOChbN9urtyF+yNfu45j917FL/1RZ1Q6OppxXk/MF0i5bIglylzFN0ozU0+lzWeIQIOEsXLCrpqDzI8WU91JEksNgx6AoHCRHKvqqOPHCE0XrOyjHV3MtMzmTOxhszONWjhI4TvktjbBikOtXDNhx5AD11cD+c7GQixqMLl1TGL5rBP5VnaeKaSx9uK/GzI5EhBcnutw131J1p5TAlhTZHzSsVUSsEh5eyJ6akAACAASURBVDDfsDFDeWzHIleIUKiJ4oyYuIdNwmaOSPMEuW2V4OsQAV8IUr4gYQuSumBsUkM6iuWdPkUfxvOCMUfyxKYQs+s9uioC5radPQ9r2/DVb4aZSAnmzvJpqx/nxz/JYIV8qqt97ILi5VciXL/Cork5TP9AKWKOx0t/JxczqMQPSoVfZaYnZ3OFutKUBblMmaOEwzrNbREmJxwSFScSjTU1McBGFwo7Z8A+wYb2pdwcWoNbtNhbnMlvd22nWnUToxmBpAaLb4sB1uMwjsfwuqcIHXyNWZv3UChEiN8QY+QDtcypeoi6mgWX9bqO9SDfp1xW1HjEdXXeWdUpJhlggAYaqDvq6Xwxw0ZyuGRwkAhMGSYWVVSZitPvNaSAxzqK/PvBEONFcFFUVA2QqNxJVRBiLNPIcLERYfs4h0J4mkZxqIogbYAloQmQoAQMa5JJJYjYAV5OMKvSJ+vCuh6Tggvd7T4DoxI3EGgJ2DGk0dFwZh7cLpamZsVjimeekQz2WYRCUaQQzJiZZ+mSSWbNEqxdW+SQZSLmhHjOM7h1JGBOrX/c+vF8PPSgzoMPlH2Qy5ybsiCXKXMSS5bX8vR/9BKPG4iT+nW29HgsmqkTK7qkTYu3Jm+gJ3UNLjp2xGSx1Uz9SUbIPoq3KOKgCO/aT2zrauL9h9nlz2Qo20bDq+N0dPSR67Cpu0LXJgRnHXBxOjvELgICxpjgVnUjGtp5DS5sPDYyQr/IIijVYL1VMMGpp86rYU/BZNSVPFp7oqhrdsLny9fkeXPM4EheYVUdQGkWUaHRYCU5lO8kdyhOIDS8ER3Semn6VYRSIbsPKHACgW8JdhsGhQyMFCU7RnWinqIuVrrWzoaAkBGwuMNj9T6Txe0+zadNG6usUDxyf5EXXzIZOVKkWLSYmDDwfcHoqIkwApo7PPpbdd7ojtDZZvHvScmTR+C2jYq7ZjlsOqCTzksWdbrcvdBFP0stV1mMpz/vpvlEuairTJmT6JgRZ96CKo4czhP4Z4rX4/5ByAYQQDpIUDAj/GmbTX301MdqCMIYKBR6ehj9nnps08BwfKIiS8aPYY0VUbrAJnmlLu+iSKgYjnKJEUGetEScbCV5DJeAl8VhDoscNYSoIYzmRSg4Fm5kmCE1geHBa0mDId9mgHGGSeHhk/cErx4x6MsY7N7XzVhWoEmXmoikSoxjFhwsPQ8ZvWTiAaWC5WOfB6BcUEVIu6BCkMqXBph4J9UB2C5UxxWaLFlBbu0/oZRBAC+/bvDXfx9h/VsGYdMnl/FJpw0GhyT9GYPdQZQnNrXy/VcbWXuoicn1YWQgCGVhIC94cZvGb38tzpFxSchUvLTN5MUt06O6K1AwlhcMZSWZyzDh7L3Mu1HkVY6Qy5Q5CSkFd61sIRLR2bxxDIHAtDSa4j6HDrk0GkX+cUU/Lwe1pHSNP1mSobs+TxqNBKdWZz+iavgxSTKLriXI72bnxxeybNVWEiM5zNnVTFzbhhS76RP7qFLzqGPxu3TVp9LNPNrJElVRxAVsD/vJMEGRupNapVxf0DtSwWS2EU94JIqSQd9jmEmWtR+hLexSpSKYxXkE0mRRxXq6/R3U2HneiMzG1HPcWv1N+uaFsN0Qa5zbWLfvZtTRBLqUPsoVKFX6v+9CKl8aL1kMFBLoL0qawgEFp3T+HXWl5K2lK9KFEzcZm7frPPeiSUtzQLYgeHO9SdFxsQOwu0zcCg1MSXZSkd0fA+FTPGTwetxHJgSiIqBvkwa2oCWu88ANLq01AW8dNFi59ETefGxM8MuXTfJ5wXVLXRbMv7zJZC+ATYM6r/aZpIql32KgoLvW47YOl7bE1TPta98+j3hc0Nh45drH3q0ir7IglylzGrouueWuJpasqKVnb5pd20dYdG2CtrYw11wTJRTS+CJ5AhRrGeCXZEAIlqlGuqg6fpzlRGnCJGvVkbE8+qrXcairjRW7NSQw3BkjKhpRBEyI3VSpOehEzjyh5Di8ugrSGVi8FBYueUfX5xLQR57DFDCRdBGlHuu4+GpoVFBx1ueevmXdwyRRTkSDfgBvDVSRyoTRTQ+p2yT1PhLWJClR5Pv7m4m1ZfG1gIR+ELrAkNvpdFNcb41zQ2Yzw2qMfJCmXjbxqnMTN3a+zmS2gp2DC2jp6qO2fhTf1ejdNZNsJlHavvZBF4qm+oDhCUHSFQxmBNUW3DTXJXY0j50vChorT4hRb58Es2R0YWpQUweRuM5QrVGyT/QFjAOuAAvMjI25yEWbU2QyWwUjkvSYRNdg3WaD2xa4eIjjvdAAuRz887+GcR1BKKT4zhMhPvNJm+55JVHOZgXPP28SDis+8AHnnG5UF/379eH7Oy22jxo0RHzaE0f7shX0pjR2juk8fq3NgvrpX2GWTgf8y9cLtLRo/N7vnuW98R6jLMhlypyDaMxg4dIaEtXwwZvO7E3O4nCELLUiQhGfXWKcLlV1ymNaMQADuInl6iYIAYuh4A+iuS+gUJSm8MLJGSRVPAT7XsfbuJ/Ci2txQg3EF7Qy9LXn2JuvhNo2GhZ1c80jD2DGSqOzAt/HTk1ihEMYkbMvXjY+L9i9JItpwnoIPxZlt8qwkAqWqgoQF85inZxLtoWHcdJ5902GOJKzWFplM0QKK76VNusQplYgo6IcLrYwkqkniAnSGOhCsNa4jsFwhqpgDTcXXyFq1SK1VnShuDHyJquSt9NR10u/3Uld4wi5TAxdeHRcc4Ad6xdBSIBV6k/OmYKwLhDFgKVNHjOrT/RO2y4g4Jpmj22jGn1pjddHDF7bblLbEOC64BYEsz4g2bNOoiZlSZSDo7+aGg8ZVuhhl1p/HEsrMrK6DYTAcyGVh/W7dOZ0Bjx+ywn7xKEhjVxO0N52dHa3B9u368cFef0GnfUbDJSCri6f7u4zhTKZDBgfV0QigpaW8/+OXjpksGNUZ0blqceRAuqiCttTfH9niIZo/oxUy3QjHhd87KMW1dVXPrv6bkTJZUEuU+Y89PaO88hZxBjAREMXghwORXwa1EU6PuQyhH72NE2prUx2V5K7ZT61ajGaJ9hir2JHsIuQs4XOyoMkH4wSucWn/qdryR6aZNtWyIpqcnvqGdqwmZ5fvMLizz5O09IFbP/BU0z2DaBpOvMf/zC118w+5cceJsP/8rYwJjOEpcfSHUkWHx6hohgw3mGQDReIzf1NCJ+/zOzkAq9KZTEqbIyj06h2jMWJ6D6+luS6uh/Sru/DV4IAhS58Fhhb2Khdx0i4ngPeLGrtSUaoIqwka5hDp1GLYwUkhE1HRQXjqRz1kUl8/wh3z30BEfLYnl2ELzRM0ynd4MRKxVKuUoQ9RXu1R39Wo9eX9NgaYQmNeZ+IgoeX2vzHvhCHcxLPFazNGQRNYE8KYiGFPkux1YnQNtulpycA+6gQOCA0QTEIY28OUTwUItqWg5iAMcAGLwO1ZsCXPpinOn5C6EKhkv9xEJTa1gq2oOKkKL2hPkDXFIapqK4+UyC3b/f4wQ8cFKW2qRtv1HnoQeOsBWK2B2sGTFrj596SDumgC1h/xODB2c45HzcdEEKwfPkUWItdIle6wKssyGXKnIfOzhqeWjN+/P8ni3MInVtUGzsYow6dhdRf3EH79iOSY0QblxPe2Uuw6E4MGebQ6/8NO7eTjkqfA8va+FF8JYuCvRSMAslP1xJ66zDZz7ewetbdyP+1huq/+yXa6+s4snELdbdfgx9XhGZUoOUNtvzwP7jrT/74+KLdT56/ELso6sMkyKFZip6lRea+sg21pJYK+hjBIC33UE8N+snRuoJf5HW+X1CMSZellsdDEhqALr+SQ2KAuGYgEAxkLIZyGjfNeJnm4CATbiX15iA1+igBGrYyuV97nnVcz4hZxzgVGMrlIFW0IllvLWS+OozDOFZilHoHFoQPUW3mGcmnqa/sp8bKsDO3iOH+FkJhqLZ8qkzFUCDplD4hDW6Y4UJM4OQg60OqWvD7c3LsTukcyUk6EwF9Y5JAQL5NUGgRNNe6DKY1/GGBVzQIV0hcm1J1twHK1477HBfGohRyEY7v7CtQGXh5h8GBIcn/z957h8lV3/f+r+9p0/v2vitpVVZdCBBCNNOxAce4G2wnseMkvk5y48exb2Lnl1xfO+XmOnFNHCe2ExdcARcMuNAFSKDey2q1vc5Onzn1+/vjSCAwRWAQYOalZ57Vas+cOdrZ57z3096fdMx9/HtnWZDJuOzYoZHOSFpbPTZueMKec9kylz/90wq67ttxnkqpJPnu9ywaGgXBoMDzJA9udljcr9Lf/+s11aGciuOB/hzl1sawx9YJnasWWs+4/KOOz0lRPhNRcl2Q69R5Dnp6Mo//fee4HzWDL86NRLiI09i2cCqxJEiJmJ5ADWdQA2k4spmZ0lHKLTrtiUn+Q7+RDdqjRHN5bDTQNcyBZhb99GF6d+3i9n8sIoomHpDPj1E7VKO2rJncki6UcIjouMVKr0ijGgfgZ2IG0x2nqMTIkiIh82S0LOOvS9IWyePORDnUvYRw8DGyXgbT6qJDJtikV7itWORT5SamTRVz0mCzcNnVW+adRwXbdjRyXItQXp+jr9lhqBSgITzG0thOSrUQS6N7aDCmcdBAgis0ciLBgLKHCa+du7ULCBRsTMNgPLwSXTic5YxiESakuKRT19BYGmHEWoDhKeQmEyyLjbP98JvpsCN8eH2JcU2l5kG5CgHH35vcGHOZ15XHZ45HTAU9BNsO6jSFPRwJU6ZguqyQiXpMZRV+lTVQBKhVSdlWcFxQDXAt4Kn21o4CNfx0dsl/BMOSSBJuvi/Iip4yhga3/TjAlq06qioJBCGV8njvTdVfW5/Z2Pj0qeNCQSIljzt7KYpAUyXzOY+n88g2Xd/c5rnQVb/xy3Yh8BpRgT37VI4NqfT2uCx/mrLAc3EmUtevkbeiTp0XjycE+tn9p5+Rjl646q0wPwO9S0A3sFWwPZNAzOGOxBXY0kACqudhC8D1bT0rlkbSnEUr+1qgBaB3g0JeE4ysXIxdA30uS3BFA7drR3mrXElNSPZTZlRpx0FBQZIXKYSEUGcFfaJIPt1CMJFiynP4ekXF8caYnouyMTDDiKUzi0P1QAjhetQ8nXvzTXihGS5NBjhqhcluNQhcNYsbtclEjtEkpmgLjdGkjWO7GjNKBg8FXVok3ByeJmhiEiGBgIos1MgGo2T0PuYDC6hh08fFpI3lrAn/OwviVQZzOjMVG0Mz+MRqwUVdOWIBKDqCmgsJTTJWUVAF6Dp8YTxE3hFYEsKK79WtKTDoKBxxNcYDCmYH5CYF1QqkwpJcTSFtuExbCnoQZO7Ee+YCpzZbSXw9dEC1QAlLjBbobnAJ6FA1BTNTgi1bNbo63ccd1o4NKRw+orFm9ektsIjFBEKAZUkMw4+QHQcS8aevqQaeYXfzU3E8f+/zc0XSvy3s3qvyzZtDRCKSBx8yeNfbq89LlM9UPbkuyHXqvEBu22w+Y335Oele5D9OUO7qZ2JvO7Z0ORztJ+VOUZQhsoE4abuI6wiK4w4drSaJEL5BRhlWXAH9F1c5knOZiWhU7ArW+a3EExZVTLJY6BImUbDREJ6HJQ1q0uBQuZ+tFKl1NHBO+jDT0uFn5jpGSOIpCnY0xw+He+iMl2hQJ7iw5Ze0JsbRFIuCl8ANpZmp9dAw08L4SCNLSLAiqTNsOrQzjqpa1JQAwpOk7SzTahMOOiFZQa1FMAwTxXNxEAjp4eGRtuNUlYuoGDEycqE/dsZZxIJbWNUqAI+QvBKDJ2qfMU0SO3En6z2ldnpjU4278zpBBa5MWwQV6Ghw+O5wmK6gR8iQaE2SMgIx6zc9daUdSjWFkCqpKgJpAFV8AXbxm7tOBqcKCEOyrNOh4Cg0pDwm51QuWWsTD0uOD6oI8WS703AIRscU1pzmhFssJrj+ep0f/MBGCL8WffZ6jf7+pxfk7oSLpviCqz1LH9RMRWFdq/2aSVcfG1KJRj2aGiVT0wrHhtTnHSWfCVGuC3KdOi+Qk/XlU0X5ts3msx7/VE6mvz01yq8iV+IkS+gBhxQm2ckwwolS0Azcw3kadh+k+/0e44fiaFdnsAuCpqYcsahFSAmjxQ2omeiaRxCJIWOUhkap7Rqkk0YeynTjVUFIBa+icM7INgaOjWIp0xxfs4pbFi4ij0FVhDGkiRvSUANVLgncQjo2RU01cA2VZDhLByP0CI+h8gLmk+t4V1uBy1Robglyx+FZgjNVvAYPDN+5yxAuAg9XUVFxKc1oVFvCOJbELGnoQqJJmzcd/DpBr0xo8XsRYV8tApyHRgeeLKGQQqPttN6fxRGXxZEn33TTcUlLxOOgq1IIC8qaAgFYXrTRLMHyBptjZZUWVTB4QGU2rmApAm8KPyES4nExxoWWTo+ehCQUtQlGIByQ3HRJDUWBTNrPapxs5gKo1qCj/fnNAK9do9PRrjI7KwmHobtbeUbHr5AO57ZbPDBi0J14+texXP9xdtvpRem/DfR0u2x+2AA8ymVBT/cLG/l6qUW5Lsh16vwG9PRk2Dl+6uen2Wl9yvNPMle8kJ8+dAB7AxTkNLYw2L8rzLp7hqlZD/OGj1QoiATj3f2c82GXxC8biKbOJTm/i6bdjxAOZZla1Epk+zTaRVcR35/l+H/fS6VUY9q8kkp3IzVdQBAy87MgImxetIqVsw+xcNv3WR27kC2JdRSUOKpwka7kLelvsWbwQbKpMM2tkrheA08wo3VRCGVI9M7S6/yIDrmPLXYYkwBWn85t2WtYv28L/f0HcMMKVRECITAwkR6MVlvYXR0gV8vgCYFICorlLK5TRJc27a6JRCJO/NHoflHer6QuSetF8okEba6HxGVGKnx0YYVG2yOkQdEW3LYvwDkdDvc8YDDiKEzFFaQCmEACEjGPjsUeH359hSuXWtz1qIFpC67ZYBE68ftZe7vH2rUOjz6mY2gSx4WuLpdAs2S2LGiISFwXZgsKkaAkGnrmdHNTk0LTafYMvq7XZrKscmhOpSXiETqRapcS5muCvCl401KTluirxxzkN2XFgMs73lpl8JjKgj6XFQMvfAb7qUso4MVbRCHk6XQAvMJYtnKt/NZP73+5L6NOnRcVx/G44ydTPJIt4q2wCLka4ccMwpbHW3/ns6xethndnMKtdbNv5veZrl3FtRsjUC5iFcaZjk+zGwvLaaQ90Y7y7bspHx9jJJbmUwuuZyqVRO/Msyr0GC2JaTTPwnVUMlMzTE12YjkaouDSpg/TlB4nkCnTFp0lZzYSTFvMOwlC0iGAxfFAN/eyCUMWebv3QzxNQRFgSx1DWByTHWyvrOYPR77MwmVHKRNGCAmux+7hLn4VuobbtLdR9uJIAVJVyDBJX+44KaNCv5HhnRmTJWYvilQen7X+TTE9+LsDNncYTSROeHB2hjxusmsETclAt4OmwVe3hhiaV5j0BA/NGkwVBHpWoscFUUOyOO7S0ldlRfcEi4w86xoaaVRjT3qtLVmN28YDdJQ8BmyHhgaP/SWV79wfRJPwZ1dV2DWqMTipomuSmy4x6Wt5ccw6bBceGdO5f0SnbD/h1NWbdLmkx6Yv9co3BXk18XQbonpXXjg+Ojnb/nzOU4+Q69R5haBpCldf28KKoQT79xSoVT0614XoXxollvg7Zmpb8LwopraMUGuYbjgxkmUAPSceT4xmHWtpIbv7ALloA7Mk6A3t5Xr321jpBBYaZTXCo+4appovJqSUeMO3fsxAajcH3rCMHZkNnGc8RFlKArUarqdha2Fc4VEQgh3qKmYqDSwPjFFVwjhCIykLOICFQdgzyccz3Nz4Nq5UfkbIqVCtaByY6GRr5UIeql1OWQvjBRRU6aJ4LpnxeXofOcYl6k8YkFsYO6YxYi8kkllLoqudRddcRrz9+e1mfioBBX43OkdPNMp9VYOoKmmddPjKthBJXJYf1Xjf1TXes77KXUMGXzwWYnmbQ4+E/Uc01DFJcLXHaK/JgXCJn4zE6Ezn2Wjt56bwalZnnpiZfSBrEDckB8MqSzM23xo0+ObXguRGFIQp2PegwrKzPC5aa5MrC36xQ+f9V/pCWSxCtSpIp+VprXZ8KroK53fZnNthM1NWcCREdEn6WaLwOi8/dUGuU+cVhKIIuvvCdPc91WlLp+Je9GvHP11d+uRo1us3ns30sRGabEkgIPj98U8z3LeSeRqYI8OB6iKybhM1V2fDPQ/SUJnm579/FbvEWrrdQZq8WRw09LBFxTZQXA+pCixp4KKQV2IUSCKExBRBbFlFw6GGQVUJ4EqFiWQrm73zKBIlL5LsVNYy7nZBFQQCJ29g2woLo4dYYe6iadlxho43M/+3JSolEzU5y6LLNEoxndkv/zubPvAOwi09IJ7+1lUq2dxy6yCFgs0br++lre1EZO3mwfZrC0Hp8e50C693LA4UVf5lKsSYqpAMCYInRs5NBHcVDQYtlcasx+C9ClOzKjIDVFQylSy12QSmrpPPJZhWCjwyH+WTax0CUrCs0+XiBotvjQYYzQs+tjvC7nmo5AVEFHRXcmRYY6wgsbJ+t/wVF/j9B9u2q9xyiy/sTU0e73m3SSz21P8pjI8Ljh1TCIUkS5Z4PJ05m6ZAUnMplTySUQWew5u8zgvj1NpyS0/zCz5PXZDr1PktpKcnw55ZCF75PtShOc4KHCc8Ok94tICpRRlUAxSSaVxdRVoqS/buo7YmwMOH1hE/PkfsgnncVgUFl4w3hyEdckoSW+powiFNFqTgsNJH2Q4TEhVyIo4mHDTpclhZiBQKqm0xVWqkWAog9kyjzc9hmgvw3IDvE21ArHeK3tW7GFnUxqCzkPbjd/AmLCzpsctbyL81/gVTjcsJx2pcs/V2vrL2LrSWG7HUGDYeFW+aY1UXx4kz9FCBffvmiUR0bvvxMX733RH07I9QzKOgRUCLMSNtvjZ5jM3lJUznosyKRqSMkSsHeM+JhRBfOBrkW8cCVHSPOdOmOBZCJvDnkRUolhIIQyJ0hep8kPHBALODKtffLFjR5/Dea2r83qU1jpcU8lMBpkIehmVTUaNQBrso0AxJdUphalYhGgTD9H2vb71Vp7nZwzBgZFThvvs0rrnmyQ1YW7cq3HKrhqKC9ASppOS66ywUBRoboVp1qFQ8olGFf/9KhXJZ0tERYNWqMKoiaG/3aG+XPLU3rFBw2X+gRiyqsmRJAOU027CHh20iEUEm8+qTFM/zl38EApBIvPAMwklRzoT9or3jPf8a/avvu1enTp3nRV9Phj/RdjO5U+PCW+7lm5e+jZmGTr+u6AkcoeGiUA5FKf1EJWAJhmUL4bdXEdiM59ppcSfIpOeo1CIEtSopdx5bKNxvnc/XA+/iKudndDJOmShblLUcV3oJuDXWfflrpL6wDVEoUQ0rrL90Dfv6r2d3ahOz8Xb07grLN2xD1yRSumhUaDt4kErJ5ZDawD//zX2kllgs7z9IcTbNscAiPh07wNlb3slnlA9TSMZoj02xIbwPQzSyS7RzeMJjkTGG1jTCg/lpTEWnD4e4Occ2JcD/m307oyPNmKZGzQ1SU4MYmQJKUOMzdphv3hngFzmDmg6y4mJuD0JV+KNmBlAE2zLQXRsUCUUNZ0ZgVCQyBwd2qzhX+N/7sCqRAgJlhabFJQpbdGRZRzoqWk0SDUjetMnEsgW1isA0BZ4HxonMdyQsyeWfLIq1Gtxyi0bNVKhUFRobPHbtgcce01i4yMO2bczaPEbAY2BZmGwWhodj3PydIIahUy4JFvVL3ni9zbtvsh6Pvm1b8p//Oc/0jIPrSq59Q4yNG5+7SbFYdPnSv87T0qLyJx/69YzNKxnPgx/eorNtm4aqwlvfYrJ8+fMX0qerIWvK8/ffrgtynTqvAaIKnFUNsC/WSvh4mXJXBNMMEAhZ2IrO5nM2sf7AZqKrLdSdHovWDFEUYQKySj6fJq3OkZMJEnNZGow5mqJzbFAf5B3yG/yqejGPaGexOzdDOj9NPDrBeY88wOv234UiSxwczZMGMjXI/mAz/e4uetvaqFzRz6HXv4m0VybrNpNQ8wQxKS9upOLCjvNuYMnqUS6M/5DOoaMMxwcYTPWzPXg2I8sX8I59X+Wjxc9xODfA0Y4+1opHKLeXMM+OcFwPkbgkzj16gJoa5fZkmE5znO888jYmp1soyBQ1J4hnCKQQiNkoqm0zu0/FK+hggIi4KEcl7vQJMR4DOvyPsknBimrggO5I1DioQUm4CIYjqU4LbBs2NtocLmhMz+m0HUzS88HD5IeDyG91059x6WyXzGQVFAWuu8wmkZB0dngMDyuEw1AoCF5/zRMNWJ4H//0Dne/cEiIeEWTSHgcPSI4PSxYvdunokIyOws5dkuUDEAgqPPhwlPFxg2hYoiiCWBJ2jugUfqLhCcGH/shPlZdKHjOzDj09BvM5l8OHLTZufO6frUhE4YrLI2QaXn0uI7Ozgu3bNbq7PSoVuPNOneXLn3l08ak8nRD/JtQFuU6d1wBKKU1IU0hlugmWgRCYU0GMkEVUK7Nrwxri5RLLug5jb4oQiVpMyHY65TBCeFhOgFpWQd1VJNyiINo9tIRkgTZMh/st3vbgFykc8yiWNZxpC+WRIt3rVGaagkR6FSpHPOJV319Do4R29BD2vRZ94XNpqM4g48epyTDTNCOuW8Do51pJnBXli7vOZ05v4faBa9nTsIpqNExJmJjRAHeuuYbkndMcb1/K3h2rSCyfxRJR4udVuOvOGzg0Msj6wGMsDu+nZrvcu/N8xrMd5EhgWwaep0BeBQekAU5ega0KFIEFIA0Nd+rELXKHA6rqb5bKA+1AWYWo39EcafGQFUGtCRYKl/ExldFJhcYmyY3dNW7qrWHbsCsYIDIgWH9VHvB9riemFaIRSSblp0tvvNHigQc1cvOCgQGXgYEnIrbv/8jg05+OMDamIYSkudEln/MoFiSTk5LZWYe33KCyelWat73N5bbb8/E0PQAAIABJREFUk5RNHVcRJDIuybDHyJRKULiMD9nccafHtVdDTw/E4wrd3TpDQxZSwuWXnd4In6IILrroxemCP9MEgxJF8UsFxaKfyj9dXoqlE3VBrlPntYCyEKmEaMtN0lQURJQyJVEjP58mEC2jBxweuOICQvNl0pNz9C45iiYchuggmSgyO9VAw4HD5Eoq7BhiQsuQQkP1bORwGeEpGG0KyQkTJsv0XQ2FUQhJj/ZOQSUPhRloScG574NEFzy8J8fsuZ8ikFCIf6CP0rUriAYLHG7rZ/9nP8jf7vwn7nAu4jNXfBJCKkUtilmIIIRDLDxPX2gY0alTLYZRmiS7x9fRpR+nb8kR+t6yl8H7ltDaNUIb40yNNrJ3dBVVNYBjBfBKwJzqzxV7+LXh7Yr/9zQQACr4Xx/zQFPBEjADLMN37/KASUBArluwoMGlaZkHw4JE3EME4f896HdafeDsCk1RyUU8eT2nYUA+WyZk6Jy8HYfDcPllT9SMnRO/C4yOKnzx30JMTqtgSKyAYAQNVAekb6m5f7/ka18XfPpTOvGEwei4Siol8TxBsazS1ebS6lqUBm1cKSjMu3z9vzz+6i8Fqip4900phoZsIhGFjo7fcDHzq4B4HN72VpO77tLp6PB44/X2aT3vxY6MT1IX5Dp1XgMILUx54U3Edn6JtUN7udUqYEYC2I4BJZWgWsF1NfJGA3oiSGOwlbVOA7njB6mIWfYFOmjxijRFR3HUCPKBMYpzJobuQhwqxyxUx2HgKggFJeYQTE9BuebiTHs0J3zv5J7lMF9I8OC/lSnt9o2iK0D+kV10fdbEe885CCHJrVnDnbdeyd/Gv0D1H4KIoKRj1XHWbnqQg7UBhqYXUGsyaGmbh0c1PM+jFEgzWnPJ5OdYI7Zw1eU/oarFmZpu4M5d12Bg40U1XEfArPCdt+bwXbcK+KKcBDLAMKeIrvDFOCYhJ2Ah/mKJfUALvqXmfsFRQ8Ne6dC+rsTh/lm+bQnGbJ2E1MnVFOIBly3HdRQFzu6yMU7cfTMZjVjs1+uNs7OCH/84wJGjKpGw5PBRj8NHBVJKbE1BbwdHBdmgguqi5m1cF1QN1qwBTYdgAFQFPBc0A2wLjhyBUgl6eyERVymXXIpFQTIJgYDC4sUv0A72VcrAgMfAwOmlqV8qIT5JXZDr1HmNUFl0JZ6WZNH0P7Bh38Pcs/QCEAIrohOUJo4UpEM5zg65vIlNLHlsK+4jWbLVKudeHmV0bgFH/nUPdm+aiYWbiA/vJzFzFLds0rIK2lZAbR9MHIGRLTCVd7Esl+A8OCEIJ6AwBaKrQmOLQvkIaKuTGCtSeMeKTH9+kNQblyCCDoWhBB+N/SekdGgFqcPw2EJCW0q87/WfZyLbyY+HrqXaoPt58LKCY0jC6SpN5SlaI1MkAlkenlnElu2bKGRTBKgRTFRBCjAViOHfAUv4QlzEt8Us4wu0i5+edgTKBhtvXoEjKsRA2WPhNanoNQtqAjukQ1gwmquSfcxl9z1tdPeWWLtxH8tCKn3pJm7dneKxYQ1PQr4quGbA9+Nub//1SNRx4KtfC1EzBV1dHjt2CB7dpqNrgnAcsDwcVUG1wBGgJCVtEZtIVOMPPyDo7PQAyQ1vNDk+EmR8UhAP2QQCkGkQmJZE1/39y8kUTzsy9Vrn6VLSvzXbnoQQQeA+/GSQBnxfSvnXp3z9w8A/Ao1SytkzdV116rxmUBRqC85j8oO3cv3x+3HnjrE70UZOxpFqiNZAjYuNMH8kEsTQoJBDCSSIliX5H83gESWdXMThm+8hFt5J2XaZs6F9EcgZheJehaOPuowflCDAkhAQEFL8lOvUJHRcLjDvtgl0xfC+dBnTLa3oqkugN4i+Z4yMa1MSYXb+ahX06RDBv1t4QLvgYHgVn538AH/Q/DXe7n2D/JYUkapgZ3wNunCRuoaecQgHqkxX2pia7GSukAKpYIV0QloZRXfx2gWkBAyeOH8aOHji+1Q88Qj5r6tcaCOSLhQ1WAp61URd6BDQivRcdJSD31uGXdTBU/D2RSjN+23Le/eEGdwboXjZTt644hfMlt5CMiRxPMhWnr0Dd2REIZ/3xRh8o5CmRok5LdGFh2KqiLJET4IuYEW3xzm9MRAq1137RLR3wXk2a1fa/OwOle9+z+D4sEIqIens0IjFLNau9bjhTQqGUZ9PfjbOxC5kOLMRsglcIqUsCSF04AEhxM+klA8LITqBy/ATRXXq1HmJMbo3cQMb2ECVcVdnbqJEe1WSthVi5/m3henWfppKRdRomoldY8QWNFMab0GNxKnYFaT0cCyLfC6MdyhEqhCiUiwQSLm4moczU6WSlVjCj/jcGJgPSvQGnUMfuwwvYNB99xb6lldZ0FyjsjLCw+F13PKxd8Ji3b87hfzrVR0LVXNxyhqTRxfzeeUP+Xj60zT1TnH2w9v5pPEJRrx2RNilJTGFYylMFZopqAkwVHA9tKRNxQuhx0zMZs1PVwugGT8y7vJg4sSeYxM/dNBBu9DC3a35I0+tkkC6hKNqdK0aJLFoHk9RoKZAECgq/rlUwIPqRJjBqQhT1jD9MZvbRkNk4h6v67d4PkQiMJeF7i5/G9VIVFApCdoiHmevt7h4wEEVgnPXW7S1PrkxKRqFN9/gct21VWZm/FG3VEoSjQqebqfymWZqZOLlvoRn5EwJ8UnOmCBL3zT75AJZ/cTj5BT2Z4CPALedqeupU+e1jo5GjxvzDTfTwcf//aTTFyyApgVsTA/jHfgBAJHmBlILFqAIF4Mas0dHcKou8bSC7bmYiRihFoMyjXjTB7FkHsuVCB0iRYg1w+jF7djJCPGvPEznWYJlC2o8VDkPLe+wkDGWbNzNgfvXwkowzBoLV+ynuWsUFMhbCUZGe5idaeVgbAm/5FL+svkTfPXgO/irwKfIL45gYZBxsmALZouNUFFRZiTa2SZuwUBEbRASYsKvH4P/cYUAW/ozxwAWEAYlBLLbxZ3wIC1Qqy6iX5JqyBJKVUmtmmXqV52+WbR8SqRZhriS5ZO3nM1+xWCF56AcUaksFVQDcPS4Sk+HRzTyZEOKzk6PdEoyOKiwa6/CAwc1KkWJbno0RzwGWmuce77k0ottli9yScWf29DCMKC9HZ647b5yaO78zSxRXwomh6bO+Gue0RqyEEIFHsNvi/iClPIRIcS1wJiUcuczrRQ78dz3A+8HaG3vPBOXW6fO82ZoaO5p7Sxf6LlO5cU67+lw6msdGa9yYNjm7E6ItjYjOpdQnZqgiiB89hJUXaXakKE6M45ZGSa6bCNtnX1MOndhbtmMVykghW/jKD0wuxNYozX0qSrqOZ1M2JIDYhlRtUAmF6Vn+RAHplfCg3DWRx7EaKtSqYTwgiqlcgQ8ScAxOTi3hAV9e7i3/WLcSzbzx/wLRT1MyioSKlr8SF6PdBUU1cWzNLSUgxKE6mwYLWLjhDToFTCsQBxAwBqgE3gUP18XBeeghrGpijOuIac1CqkUjYxjhgJERZH+K/dSORChOJX255VL+JrnAEE4ONPP7IEmNGly7DEXY9Tix99S+d3fUxnNBrhko8UNVz25qUjT4D3vqfLnHwnz8/t0WCjQml08qTAVUViZtPi9t5iPp7RfzZwpMR48rtLc6BI5jXr5SzHSdDqcUUGWUrrAaiFEErhFCLES+Evg8tN47peBL4O/7eklvdA6dZ4npwrxiyXKPT0Zhoae2Ld82+Ynv8bJY15qgi1tNC/o4rFtM2iJFOlV63CrFaTnYc9n6X77e3DNGnZunpkH78Gzbax8jtiiJSgBg7l9+xGzhymZUKhAYLSC2mrjqgr2vAMp6C4NIVEoNwfYm1sO3S5iXmXzDzdCe4BAa5W++CH6kscIGofJOhkMr8gic4jl2j6a1WmcoILmOjTPzGFrCqrmoDguoVSZcmOM2h1R9HeW0VosgjNVyqUUbqNASTr+vmNLA0/xG7zOA1a5MAnOYQOt3yZ0eRV7TMPOq8xmmylvj7DRfQA95rH4Hfs49M0lFOw0SNWPrkNAA8wca4ctDnZBgAxStQXDQxW+/22b/pUqh/d47GwTqKpCS4tHQ4N/e0unJYGgjRLVYYGCnVeRUoEE3Ltb8A//Av/3/1QIBp/5vavjMzMn+LdvhLhsk8mlFzz7aNNL3Un9bLwsXdZSypwQ4h7gOqAXOBkddwDbhBBnSyknX45rq1Pn+XBqFHuqeEKJneOnZ6zwbOLa05Phts3+ef1z+1WfVW1PvM5tm80nPffJIm4+47lPF6EodFz3ZtzvfgOnOIc1V8azbaTn0vy6K4l09z5+bGL5KvL792BOTxDu7CXat4jsYw+z+58+jTn+KMcLNvr3R1HOXk05GsD62nGGP7SEUPc8ZVNnRmsinsrRqEYpFGOYU1EIuzSoE7QrxzmyYxEFK0a0v4hT6GTV4BGUmsZ4qZnghhId6izxUoF5PUmLmOBYcAFBUcVu1XHnVKr74qhNFm6zSk/LIXLZDK6ro8Yd7DmF2nQEz9ZwLB2jy0RbbVPZFaZ2IIJatlFbXfQQONM65ZkGHp3exMrF22mMZMm88xEO7V3G5H09VLMnRqWKAo4CsxKkBkIBCY4XY+hYnoYGF7nQ47Of07EsjfXrXT70P0ymphS++rUg9z9gYVc9lJqCzCh+1F0Cb06wZ7/KF78SRBeCjg6PC863yGRe27FKNmuRSuk8NduaSUlufFOVjtbTyyi8HGIMZ3AfshCiEbBPiHEIuAv4eynlT045Zgg467m6rOv7kOu82nhq+vkJ4fZ5qqg+9blPPf50ebpfCk69lucj1G6tRvHIQaoTY2iRKPHFSwlkGk/7uQ/8r7ejqMfoLhzhCH2Url2KeOQ4omRhBwyc31/HsmU5FpSO8If258mZDRzfsQgl4hFoLBKKVpGKixrx8AoB/jr7v+m39hM4kMXKhBhqW8qD/efQoM+wTB5kUO/mOwfeiRbyKI7GqM5GKbdGQJUYnk2yYY5IrIhigD2sc2Syn6BeI17KEh4zCS4sMx7oxp1XKO9O+uloHb/j258qAhWE5pFMzeEFVVJRjUsTgnv/I8jhu3W/0asCVGz/eOXk/VagCZOBlXD1FS61sqRc1rjhBpu+Xo/PfyHMzp0aZqTCZjUOceH3X9WAaUnUlHTjsLhTcs46m3JZIRCQfOiPK0TOkGnW3r0qe/dqDAw4DAy8/PuVCwWbb988xjVXN9PREXpB59h5/44XTYxfyD7kMynIK4Gv4/9YKcB3pZR/+5RjhqgLcp3fUk5HWJ8pon22574YUfCZoDi6n6HvfRS5ZSu97QWqnWn2tSyhpIXpaqmyrnWcXDzCsY4+gjWLj9f+N5VtYdpyUwwaPUTW5Fm9eCt7SmvJHW7iB+YNuPtLyP0WmnQpvbGdfzA+zmCgg772A6xveJQdU+vwKjqOoyBUhZyZZFJrQxMW0WCZXC2N4Zp0OMd49NAGvLhCgzZNi5yifDBGsSVK0UpS3hoDIXwhNgEHNLeME4igJBzaVw8jVYUOLc5FjUGW91T5H9ekmM8q/vEFD+QpG5sUQSxYY2CVyuJ+l+a0w3vf47J4seRf/zVIvqAwaJe5uRynWDCgJCAr/HPVQHMlqgLrIjbpICxd4qDq8ObfMVmz2nn6NwCYnhYkk/Lx5RUvlKkphc9+LkQ4LKlUBH/yoQpNTS9/dD45WaOp6fS3VJ3Ki52qfiGCfCa7rHfht0w82zE9Z+Zq6tQ585yafn4hz905/sTnp9ape3pOLzX+chPrWEro0v9Fx+QNjByH3KNZ9MpmElWYj6vcfXEj7deFWZHfwdFl/SxyDnNP+XUMhxdCyOLs4EFSdoV5L4Wr6Jh6EK2jBnsc7KSOlpbMe1GKdoxdx87BMqMs79xJdiaJUlGZrTYSVcq0ilHcqE6xFiVqlQhoVaZ6W2ntGsOxFRrMWRYFDmKng+zbOkDBifld2Yq/LpIo4IJTCIDt4rka4+MdGBGHiKFx7wzUxoJc9u4ad98coGYJ3HaP6lEFafu6bkRtLrxCENUFocXQvkKhtcePMjs7PQ5vdxhcUqBybwJVmril4BORuQ6OJhABh2xfjo6uInsngzSW4ljPMk116JDKv/9HiHVrbd721tNfoPB0mKbfoJdISMolf0vVK6F7u6Xl1V1Qrzt11anzCuHZ0tZP5ZUeDT8ToZk8ux+qMjcNwvI1DiCFS/qeScRokYOv7yTelKclPIE1EKSxZYJNYz9jIw+zWb8ITIFlqPxf98/56IJPobxPxQvq/KJ8MZMNrSiqRC9Wmcy2sLxnN8GMReeeR+lf0cBEso3CXIbZ+Qb0ooNQBLmuME5Vx6oGiEez9LceIl4pEl8xTuvSUX5yx3VUYvETkS6wE984RNP85q0EuDUDEdIZL0mmjgm0JBzcojGTU2Deg7OhYaUgarswI+haq/B3H6wwYSncOR5kQsCtRwU3LTO54gqL8LIqjzwcIbV+ivx9TciIjVc0fOcwSxJtyLPo2gPoDR6mqxNZ4DFjqlitzdz60whhQ3DRhc6TIuFgUBIMSuKnMSL1XHR0eGzaZLFtm86mTRYdHS9+t/fEhMLQkMJZZznov/222kBdkOvUOaOcjHRPpqBPTTe/WiLdF4r0POZu/W+mxk10z18laEvQFYgYYJmQHCrTd88x5gOdlC6LsqZnC/9y6ztoHpnhR3/0XlRRI6BbzEcD3Kedz9HaV1iqHGDaSbMjuQJNeHgFnUi4hCNqeChIVcERAbr3HKK8Os6o00e5EEcKhaIVwbE0zHII6QjSdp6ANCmKOLnpZpKxIvGBKurDDu6YAjuFb6lZxe+itvEF+mowpUDOC4yqxwOPGchj+MsoOhTQFWajkllVENQE5/bWmBxXufuwDu0SxZAMljRGyzYdEY/+Xol1v0pq7Qz2rhDFySTkJKRA0yxU1Wb6YCPxhQXGSg2QMNDTNn/yEPALDW1C44Y9Cr97o/1413ZXl8cn/qr8ooibosBVV9lcddXpLWN4IfziFzoPPWzQ3Fyhr++lrVG/nJ3Vp1IX5Dp1XgZOCvNvuwifSmV0mOzRITQpkRJcCVJCPAQ5C0o2jJSgGDJZtXUSZSN8fO6vaD0+w3y4g4hVwHQMmkMTWNEA82qGQdnHIH3oSpUmd5yFTYMcCvUzN9+EHrIpuDGCXhW9NUDkZ6MsbYxQW5TmqAL5iQS1WhN6uYIWtnFcHU9VSNhFZu0M0aSLXUviFWJE85L8IfzulxB+t3MVvyNmHtgC7hwgoeYovh/2PP6iimbgGP6Gh4SCqXkcnNf5zgMQEtDc47K5qLMg6fHFAyHOb7K4sjPEWR0VDseGkWmNaj6MldbBdXDzAiduMm01kN3WQHJVjkh4FveIwZ4vduEcCIANj94Pn/wHj098pMyH/riGYfCqijQvvdRmUb9LV9fL3zB2pqgLcp06dc4IhYN7cbQguq5h1hzf2ApwPDAlmBYgYWQEFi+tUi2EaDlyhEAIpksZXmfezRZrPWN6N+mGKWKlPGUrjCsgE56nMJ1kcW0Pqfg8D7ibMEs6FTtMxpwl0ArhLUfoiTkcbV1LoqlISAsyNxXAK8cIB4qoQRNVaaCtnKGp5HLr3pWMjzWSm48hpfBrxzZ+mlo98THH43VdMhKOCf+uauCLdyN+l7UKVDVok8g+haGEx6o4fOyCCrcXApwfd0gFJJ6EB2YMVmdcPrJ+jk/Zw0xnWogV8sxNhhGWpEd/AOttGcpRh+6OafpajyGPw8+/cSXOIQNK0o/ikZRM+IuPR5maVPjzP6vR0vLqMRJpbfVoPc0xpd+UVZtWs/P+HezdN/qyRsl1Qa5Tp84Zwa1WWXzWQkaLI9hDo8gT91rb8/04FHFiMkhAoaowGF7AVClKujjH0GMV1MU9/MVF/8hXxY3cH7iQXChDRp1FM1xm7SSKCo4aZKF5iH2BAaZLLbjotMVG6dhyCMWyUclhySKe2sxkIISr23SEPJJOmkbXY4mnsvNYB9uGJCPTIaSjYDqqf4Fd+C5e88AYfjq6CKTwPbGjJ5q+LPxNUin8z8v4gp0AFgsoQCktmEwq9LR55GYEcUMy7wi2lzXKlmDGVFiSCvDOWpXy+iMUxuLMhyxUT9LXNcJoJkN86jivW7yZQ1o/Ox5bQ/lozLf9dKXfceX6Vp7SkfzH13R0Ff7mbyqvqij5tcazrxypU6dOnReJUGs7I7UEC659A/FU5PGbT7kG4RAYAX8RQks77G9fRa8xyH+NXcnR/dDTOcjN/9TJl29+F9fmfsbHJv6R11duY1H0EFVXI1vM0B08xjJrL7YbJChqKJpDn3qYvsGDZP75fhrOSzDRkqSlcJgmplgY2U9SncQsTdOTzbHw6EGOzU9yeNSjUIwSkAo4ErKKv3WqFd/0dyVwCbABWAos9fwUtgdK5ER06gDt+EKcxA99VE78xgFCl6zu9FOxq9IOYxWFx0oaWVuhKAWDpkKAZs4OXsJn1jby4RtnuGLtBF0tBcbbFjOVbyHZ6LEiuJfKZJjJvW2+EYkDulr1C/QIfw4ayGUV7rhL47FtL/8yiTNFrQY/usPgrnt03NPIeq/atPqlv6jnoB4h16lT54wQXzJAKv1LirEUjTd+CPubX6I4m0O6kMtCcwvoKZXsilbcT/RwlthCrsvjx3evYv15ec4Z+QV3dvw1X0j8AfFInqPmQnZOr0aTkpWRvbwu+HM27nmI7/d3MFttYKG2n7af7+TAniQPXvUfbLxgK3ZQJ9jssVTs5oBczuK2PQwe6OGnUwEWT0/T357HtGMIoaDUwlQndViAL6wKfkQcB1qAbunn2xVg3IP7BB74W6JOprU1fEMRC79DugDGEo+FLQ4fXFQF4PJ2CyFgaExBFZKBpEdjwE8fhOjAIk3PooN89CNjzEwF+NK2IHM1j97m45iDBoem+v2dFiGIh3Isa9jN9qG1mIoBA4p/bRNw8KDC1/47wNo1ld94DvmVjG3Do9sVfnW/xu59Gh2dgsULXLo7X/np+rog16lT54ygx+K0v+FNjN76XYSm0f7+vyD38L0Ud29BMQu4a0IoV7TReG0rIlllsbOUxmsvZqbjYapj97Dg/Ucp7L6LX01finVuhEX9BzknuQ1dtUg6OSbMDLYTIuskyY6lmc23sz2yifiSLNdsvZnbG67FiDkskgcptEZpUcYwgyrLerYxc0+ezNJVbGgV3DMEmiHJz0pkM77AxvAj30YJTfLEPLKDojmEAyVCq0y4SGA9EsT8aRK1qtDieEwMKVQQ0CcgBc15h3M6yvz1Oou2E6JoKx4rOkp8rrXG7nyAsJCsS5ww93CmCDrjKEGJrdqk2hz6Z+NMjuQpVWPsmV1O9fYo+rIaHIYN2kMUi1FU4YCtwbD0a8oILEth+w6VO35pcO1Vz2/946sFy4I//ViAO36uMT2tY5mC1maLP3ufi19XeGZeroUSp1IX5Dp16pwx4v1L6XvvB5jf/iilo4dInnMBXe/5AA1tI4TLPybXDba6EMtdRqS6ASE7aVrTiVx5HcZ9/5MNK47SG/8llWGDzD3zRFeUKJyVZNZN0TQvsGMG/33H72IFoxh6hfMOf5+rv/z3NAUMvskHkGWFqU0trLp8B0sCexFCYJkaZHQi7UnS6RptEYvcfBARcKHPeHxrExEJbSdmeEMeesQkFKwhEAhLomgQvahKW5tJ7ZdBkmWb5qU6pbRGthqgJjU6Qi6/1+iy5kQquYbHD0WePC5RTeUt6QShUyuJxdsIWEc4S30XW6Xg8KTCBiWFSGtsyw8gGlTMuTDcoxE2THrbB7l7+0V4nuqvgpw5GRUKdB3aOlz2HNB+awX5G9/X+O4PVWpFj2rZRtEUpmYCfOnfq3zy/3vmCHnbjtFXwGbouiDXqVPnDBNsbKb18muAa5707zX3XWhiCAyPYCmJ7jY//jWhGsjOP6TxM39OWs9CZYzqCoNcKYhyvEY5HMAVIfZ7C1mzbBtNsQlWb/ke675zG9aswXTTWXjjBgjB8Z8tYNmFezim9hKRRbIHBdX2HtaWdrFgoIWuZIlszWC+KYSqgOuAUpG4vR5LJg/QUJ6l0BplJNOGRGBXDVwRIxHOE3QV+lcf5/Xrd3B0optMJUsttpTDlUbkSCMXJ10uOMVEo4hHXnpo2RCHqx7DKY/F4VMEOXQOqBka1T5qWzNMHdGZkPBnl1UINzlYLOcv7hPcvSWI5xrs99bQ3z3EyHwXOOrjziu6JkikXBoaBK1NL98YUbUqefQxl717PeJxOPccjb6+F6eVaXxa4evf0ynnJYphoRkBHNPFCCg88piB51Wf0VJTLfpuzfU55Dp16tQBUHU0FqE9Q/DmLBwg92f/TPX7n6MsU9jzZUxLUok305udZKrB4r9iN5GWUzRv3UzvF36KOi9wG9PcvOzDvmflCaQH49Um2g9NUWlewetGHmN5YJCCeTXt6SyPjoZRdRUxK9ECIFXJ1Qdu54LDD+CENaJDRR6eOZvb11+FovvjSiltjmikQlYoHFYaWNpTpCQterQC58oEfV0VfrE3wN//Ksyl/RaX9NukUCkMRrh7R5ioEHzHCPDBi6qkIyci8eAq/wFkoh6ehIAuiQUlTcLfIvFfH6/y5R9KHj2gsbhrJX/wO1W+fjN84fMeY8OAIjGSkmi3QlZAd5fJN75pMDUl6Oz0OH+jQ9vJyP8lxLIkX/2qxeiYJJ0WZLOS3btN3vxmnbVrfnMpKpYFqbRECLCqAYQUKKpEUT0SMRfx/O2tzzh1Qa5Tp86rBmXhEsJ//s841n6c2DRRewhlZCf3hRYwFOigec920v/6CzaWHsIpQOqCDr797g8zVFiC8hMb6Sq0n32cyWAri7ffQ/9ffpXLL12HNJdxxznvZraQBNtmY3WEhvk5tjauomTrBKtVKCrsbVxNPJrFUCusO7SdLQPrycYzBBSLoDAJ2hatwUmOe0EiXo4UOuuP7KOLEXJtFzPMhkPfAAAgAElEQVQ4FyYdkmwf1bmk30ZD4B1IcUnCI6kLRuYEByZUzlv46wsiNi216WzwiAY9mv7/9u47Po7zPPD4752ysx2LsigEQALsvcsUKVGVFiVbsmg5smRZkYtkJz47tpNzfJc4vtxdkrvzxbnEiXOOFefsO7nEjh2ZsSzJRVahSFEUu9hJkCDRiQ5snZ2Z9/5YQARJsAAECYB8v5/PfiTMzsy++xLYZ5933nmfgjMB1OeDzzyaOWvfj3wwQ1dLhj2nLNr7dfyaZO1a6O7W+G9fDXLnKptIRHL4iM7ePQZPPpmltvbqTno6cMClsUlSUzOYEQvCYckLzzssXqRjGFcWMadXudy/Xmf3W4L2JomTA9MPgYDHA/fa55VknIhUQFYUZVIRpkmBuZgCD9DBnZIh8+x3KN2+jdzel7H0LMfaw5RPDaD/poWFvo2k3+8n+EAaWRWiOxIj0x7gkZ6fkFwqOZK7j5bgHGqC85jmZYjGC+jf+TJTvFZqp05jjxcj3dGNaOjlmDmDqBZnZvggniHw5Ww0RyB1Hz4hKTHakZhEiFDn+llxuo4TaExt2UtBuo9ba59gb7PBe+Zn+VGbRYet4fdBNqNj65IOV0MzoKtf8Np+E9sR3Do/x5QiD02D6WX54eacA+msIBoaPrM9cCA/29g1DGZUe6TTcOIEJNoFmi+f9fv9+fWte3vhuZ+bfObTWYTIF47IZsWYrHk9VEOjJHBOVUS/X9DeLunrg6Ki0Z87l5Ps2ZtlVnman/+zyf99RueFXxok+h3WrxN86NEra/u1ogKyoiiTmu7zM+vBj1I+fxVtr8zBSSWwdu6k8MTLtNpQ+/2Xie5spuW9d3Kk6mY8w+TxQ88wLdPG1+/+YwqbYyw+cQQtXUa/FQQgtHYVXibL0qIAS8hwonkPDd2N+BJddM9fTsPpaqL+LjpkFDsp8fxBjtszcC2ojiYJ6jq27dGUDDHdMiBSTndHB7H5ko9MzRAKSH5Qb5B1BRsWZNi+18cLnT78UdiaNnn91z4SWYGuwcFGnc89kCY2JPhu3GSxt87gDx9LEQkOHzhlfnL1O3JZsLMC03fW6D0FBZJTJzWSSUinBd/6VoBEUnDvvVnW3nrhUo4jVRoXZM8pMpXL5ctIXmkN543/lmD79iymCcGgxp/+SYz3P5ji6ad7eeLxCD7fpesjj/f1Y1ABWVGU64Du9xNbtIyChUuRuRxoGkeffA/i7S34gHmNh5nfIYn0GdzZ/wpVdjM/8B6lLVdNYe1xtOpp9OsG0aICALRgEC0YRCIhtpey208QnJnj+PYwVu40J/Vinp72SbKahqZJLGljS4tOu5Lq7Ckw0pz4keDQgQpSegdrb23hGf1DtByxCPkk/2FNkvfHs+xP6ezQTaavcljZIPDp0JTSsFIwNZ4fQj7VrnG6RyMWOjMZa1aVg6ZBwDd8MJ4/H155FQKdDo2nDQK6x/JlsPkUlEYlBeEzx7kuHG12eHFHlmMHfew87BIrcnl9k29MA/KCBTq/edmhtdWjtDQfnFtaJO9ep2NZVzacvGePTU2NgaYJGhoc2tpcVq7wUfjFGLW1F16abKIUlRikArKiKNeMq/VjG02YThmGVzjm5xdCIAZWvZj/jz8k9xcr6Nx9msgSk/L5bazc9r/xLYBmWcGm9O1UTWugKxeiwqlH91WQX3x6CD1FVj9KMDID//xuSqbX8ErrfE4mezFzOebKw/SGSzntVhIzBYUiRFeunGjHKXqOhymfayAOmBzwVWPE5yD7QRcSAawqcNiU9eFKeDNlck+lTUdSY36Zw7N1Ft0JgTFwL05h+Ozru0tmuSyZdeHZ0kVF8Lu/A6+9nmXTPrA1A3wwrdajLJSf4CQl7D2eI5cNs3qtZNYsi0hIcOKIgZODpNEzhv8yEA4LPvGUj1/+0uHgIY9QCN73gMHNN1/ZDUeJBMRLDBobHQIBgaZBUZGGaQrmzr30CigTJRiDCsiKooyhwbKSwFmlJQf1B1/D1bvRvACx/g2Iq3j3p+srpGLNOmq8XyHiHQQCvQDIfnjFfzvBYIa0L4BlZ8kkuvEPPH8Wz8SywiCTaLqkqdHjsOyldkodD9Q8i6V5tAUq2e2upsudikgFcLxizJiGa/QR6hJYwXIKphfyeK1NXbdLVdTFHHjblabLnrSJJSSLog7xonzmWnBXhufe8pFzBI/fniVeMPLruSUl8NAGeGhDlt6EjeuCjuSZZ3y8+KJBQwM4muS97/dYfXv+mPIpkg8/lSOVFJRVhNi45cy/51goKdF47DEfUsoxmWTlefDNp6GlJcL8eWkCQY9b1viJxS79e7Vn0+5RB+PO1KXLTjreyCfJqYCsKMqYqakpfudD/Exg7nwnKAtpgJQIDC61ctJY6Lzty5Q2N5LedZREQxeiWnJ84Wxeab+dkqJWTstypnWfwtE03Mj5s4qE9CHbb4ZQPXYuwM9Dgor4Xu4u/CUhkeC4nE6UJDXZQ7zdsQRbCqpNSUeZYMVH/Ny5x2RBjcXcuT6EkCyvOHsI+AMFWZYFHAp1Sdw4E3SrSzw+dV/m3OYMy5OQkRC8yO28Q4eo778/x/adHlZ7ls52F0334/cHz+wbg4JYfv+h/55jaSxnPFsWBAMa99wTouoy4+tYrMpVHLx4lQ5DG/n91SogK4oypgZrPUM+YwZYMiUBwE/fXAhWB1PLZiCGrEjlP7adyFu/wC6opO/uR5GWf0za4gSqaf/w1wnf8g2y3XX0xLtoKywn2x6gF0Hl6RYC6Swnq+ZQa1YPew6Ri0HPUnaLVvylTZQE2nCEgdBB0yTdmTAHuuYghI1haPR6GtmeCF+fGaJs1oUztbaGFlwJ/eFqDmR0Kv0eK2IOxgg+x1MefKc3QJOjsdJy2BDJXvB+27aGFgDspIZPi5BJeVSWSPpOJdj0L4LlSz2mTbUxzokKHX2SP/oPOW6+yeDmVaNfxKOsumLUx16IpsEnP5EvJBGNXnr/ibA85sWogKwoylVzZrg6H5A3rCogX4eQd4K21XaYoue/hJNowtIFYZGk/75Pj1kbcr7pdM/+CiZNcGQL3qu/IRmNYoc13LCgOTSF0sLFBAlf8BxSQm+4h7Thp8co4KRXQ8ZtJRRIccKpwRE6BYZLQIc7pInhuGhkONkR5uc7LZIZjZXTc9w+P8dg4lRWXcHPWn1sbvERMTy2dWs0ZXI8NCV7wXacqy5n0JDTmGZ6bM8a3BayKdaHH94eDIgFGfiT/yR5/gUXgceKFSH++9c0vv3PIe5YD48/xTsrWnme5H9+4zCdHQm27A7x6aJyPnjX2HxZGis+H5dVLONKhqivFVV+UVGUq2owS77Qdl/HCdKl/WgdDlpHBrxtV6EVGjmqofK9tDWswtrrJ7ItjHO4kGDfPGZShXGB69lJV/LPUrI/EiMVCnLKmMpRYxZbfGs47M4kqvXhYVLp87hXMyj01yNjb/JCZhffOvI2XcFmjGCSF/f62HLkTA5ke/Bml0lN0CVuSWqCLjt6DNIjWNkypnkIAY2ORkiThMTFrzUnk/DVrwX51SsBnnpSZ8lSjZkzBQ/dq1MUdTi0P0XvkLlcmiYIBD2yGYlhuMycVczGLdl35gdMNvsPNI53Ey5KZciKolxV+Sw5cd72B9dYbNzSyZzCqciaCoyTfbgRi9SyW69aW4xQmNoHH2brlh6iXg9WYSn+wikcrEuyZMb5+3c58AMLGgwH0RClfHYfOb+PVr2MAtGNz41Rk6pnZvAwrqlx2khQ6ttHmd1Jrr6dKhkkF1lAoqqSmDmbA40l3Do3fx1ZI38V3ZX5Jac9mf95JFlStenxVEGG3U0GJbaLGbv4/roO0aikICLp7ZV897s2gYDgox+xeF83VFQICs45x+f/eCZ7dnQzb2EUXRfvjHps3HLmi9ZYX2O+UamArCjKVTdcRjU48WvjljJmT/8i2RmbcILVeOENXCLRuyIl8QihaUVEgvlFKQCKi8M09kBnZ4IlM/KTdTwJP8zACdPBaTYIlaRxbZ1Ifx9px09PqAC/nuVU0XRuT2yjMLCfLl+WLorRkjaBvj5S6QKiiRZSgRl0VB2mOKGTxCCEiaHB+rIsz7Va6AJcKVhfmsUa4cTzoqzHrhcN0lmT0PoMK+Zd+N5hvx8++6n0wE8aDz9s8rd/Z3Oi3uX3PjP4VSDJxi1ZqqqKMAxBYbGPO+4pO+9cg4HZdSXffyHJ4UPd/M4jYaZMufhkJ+XCVEBWlEmkvr7zrNuIJovh2ryn+cz7sSkGVgFc1WAMEDBhftzlcKdO/JxVroqLw+ypSzC71mRjm84hzcMyXaZPqSda1kOu1Yds1ymq6UHzHPoIkw0azI0eIKj1IKUPN5HlZK6CfiNCRbCbeq+aRp+NV5DGnVbP88LibllJERa3FjtM8Us6bUGhKZkZHnklJtOQBCyJ40LQP7LOm1vbwad+p4QZM87Oyx9cY/G5LzdTM1PnrneXX/Qc27b0sW1TH5Zf8I//2MNnP1tEYeFEKGZ4tiVrl6pJXYqiXLnB+3uXTLGAxLD3+E5G49X+BXHJ26eHf66oOMxPTuTYsRfMdVlqi+swog6JzhAlsU70GS4nW6poe74Ku8+PNT9N44xajJxD5/44uWY/ZjhLYU2CkliC5ZUNlBT1UawLpmoBskh20s468hOMpodcpo9i6ciefsEvt/roTwruWWVTVeZRXjLye1/XrRs+o/3sR0PE4xov7zv/S6DjQNMpQaxIcrIuQ3HcIBDU2bEjydatSe66K4xlTcwpSvsPNE7YyV0qICvKJDB4Pyhw1j2+kGBP84VnByvDKw1JqqKS00lxXpac8CCZzpHpCFEdaSBQkCLkJNF8Hkaxw/5jc+n4eSVZ3Ye1MoOMStpaK5CaDpWSHBbp7hB9bxWSru7Gdfwstt5mRiyADwNwSQkHzklmcx6cSOqYmqQm6F20XKCU8Mzzfjp7NIJ+ybOvWHz6g+kLHzCMY8dcsv1QNvzdXsyYkQ8PD66x3pkRP+iN1zR2bNUJRyRzFgTY8WYv6VSWuiMZfvVrQUNjjqeeLLpg/eHxMtGzZBWQFWWSGG4yTX67Csijcc90hx8fNOhKQ9GQ2gM2YHgpdMNPCR2EAgmsphxp/OQaDWbm6pl+VyP9fSEafZXEzF4WGm8Tlx1s1m7lePUM7HKLQF+KZUVbmRJrxUpqFBbMwhOSHmzmy7OXDfUkfP+UxaH+/IIpd5dmWVd24dWgsja0dWpMLc9nxL0JQUePxpT45WXIti35f89kKS/RWLBspD2XL1IhJeRswdKVYfx+wY43e1m5qoCs6XLqZI5UyiMcnnhD1xOZCsiKMslM9mHqiSLsgw1zHH52xKA1kc+UdQ0sAWaBn7L5dWj9HgE9S7o/gN/IEK7tpz8RoXhKB/4FCSrSVSzeewB/Iss3vE8SnJ5iQ9WPKQu10y1j9DZHOZ0oZXmwlYz7NlljKTO9AhaJs1cF68sJjiYMakMeOQ/e6PRdNCBbPqgq82ho0whYEiGgrOjyh6t9PsFTT1qk+4ZZLnQY585dWHOHS2m5pKRU8tpLaTb+MEky6bJodoaCYoNZs3wEL7Z02DiZ6Pciq4CsKMoNK+aHD8xz2NakcaBDx/Ug5peUBCy0OQ34Y31kbQtfSZqCRD9zAvuYufgkPmHTJuMc6BWU+9v5lvM4M8vrWF/5IkvNt/FJG124bK5axZt1a8kkK+jpEezuWMh3bZNCK8t9RTYbCiGgQ9CAiCFpTgvSmsOc4MWrLAkBj9+X4dWdJr0JwepFOcqKR3b9eOpUnbaGy9t38Ba1waAcCMCiZR79vR7f/6d+erqzOK5kv+vjS1+KMmeONeGGqycDFZAVRbmhBU24o8ZjVZXH8S6NXW0asaxJt4yjhW28hMSscJiTPcgi8yDRXC9IQb01jYW5g7Qly0mKApZG97JS20VKBumTBRjSZq35BvvDi3nDWci/1k+hUAdbs6lPa+xvNvlFupP1Vc0s1Ur4WE0p30skyQb6sAKC+kQpP9wTojzk8tii7DsFKQaFg5L33mqftc22oblVoyzuEbh0CeDLcvykxgsvW9x2s86iKWfPWdANSTrlEQ1JPC+fEcfjJqZ55cE4k5EkElBSMjaBfSJfOx6kArKiKAoQMGBBqceCUg8podur5McF++gN2aTdABXBVgLZNI5j4ErBSX8Nd4tXaS+KU5Jtx8AmKvrokCX51T30fNlDN2xwsrESgY+Tnk7YkBT4XLpcwRtJCyMRpj7axsf9YUoCvUxD54Tr8MetGofbTcpOm8yIe9xaeekKQ9/7sZ/Dx3Sqpnj8u4+nGUV9g/Ns22Ny8KiBrksWzXU5criT1oYY/oBg5WrBugd0XvqpQNNdPvSIRTx+5S9q25J/+KZHW5vkfQ9orF498Ya/rwYVkBVFUc4hBBTpUR7pu4Xvy9foMw1s3cDTBYYJrmfgCAPbpzEl0szq8GZOZGrpl2GqtVN0iyKispfmTAVt3VWkchHQdFJAn5B0aTamDo7noz0RoCTaxwuil/kyyNsiyUHXx+kyj14nhagP8EKzjzlFDvHAhe8zlhIamjSiEUlbu4bjXN4az5dyx805dAHvWpb/QrD9xQAvv2bTaxs88UGHP/vDEE9+MEgw4DF/vjYmQ9WZDLS3S6QUNLdc5RvTJ5Ab42uHoijKKBSIOF+o38gqbSs9xMjoATTTI+JLE/dOs9u3mPiBgyxufIvp4RP8NPFe+uwoZdk2RJ9kV/tsZFcSx9PICoGnSyLlXVgFaQKFCXTdQJcBllGMB+SAx2U5EREjInWsiEdteQ7EeXdJnUcI+NBDWSrLPR7ZkBmTYAxQXurx8ANZplXlr1Hv2g1FcY00Pr79Q5OV94VZ92CE3/qgxb/+az6ktHZpHGnUsS+d1A8rGhU88ojG2lvh7rvGJkwtWbt0TM5zNakMWVGUMTNYMOK6mQkuTIIdpdxR9DrdxRGSWphmr5z+/hhYHg0N5YQ7y1hhNOHvkpwuLKMuW0OdWcPW4puIFbRTfPwY6chdaANrVmuaxLFNAgGPgC6ojgiCmFhIjoo0t8oC3mtIXg7bLPZpLHI15oY9Si+SHQ+aNcNl1ozLX+1rNCUR16+X/OQnHpZrU2f54agHGY0j7SGe+JhNvDrDrw4EcF2YP83ht989ukIUixdpLF40qkMv6HLuQy6vOX+Z0GtFBWRFUcbUuTNyJ7uctwRt9zGyS33sii6lOxnD9Ge5/8gvKPsJ7HVLOVa7HmtKMTGtl16zgMZAJQkRIUmQQG0H4Uw/vX2FCFcj3R0iGEuip3xELIeZoTMBq8nT+a6UbBAaqzWw/GBMHWWaeZX8+z+QrL3d48m/8sPrLmR08AFCkkmbPP9iDqMappZ5HG4w8LzsmFzLHiuXCsrFwfFbi1sFZEVRxszgimLDre40WfXP2IA4tIvKX2xhenUjfbEw0d4+NgduItW8F+szy9DmR9gTWEpYJJBoGNjoXg5H9+EvsZhJIx39GTo6S8ilLISE6niSxfEUVXp+KLgLh4AMU0e+NlY5+WuxGQl7XEESmKVJqscouLU1tJyXITuOh2Fc+gX8xTq2JsDhvBJVyxd6HLclje0aty2yJ1QwHnSx4evxvFdZBWRFUcbUmWU+s9dFluz6i5DzPs2WA4doKp1L0ImQ1nXCL+wn+GAl7rumoQFhr5+kDBEUGZCSnOenzD3NaX8ZnZ6BEe9gaVEvvU06oUiaWNrHainQgE4cTAQfE34EYHmCLikIaZLvOhqnZD4JfcUTPKF7zLwKC2D19OT45jeb+cAH4sycGbzovlOKXJbMdTm5S2D3SEgJcARz5tg89D4PV6bI2IJYeHJOyBqv9a5VQFYUZczV1BSzZEqCwUIYkz0wZzJR5i5OEP3Bc/T2mJSkc5QXpul99G5OewmSRpgaTlLv1ZCWfiwgYvdSoPVzMj2VhBFGSklbl0VmU4yFtU3Y8Q52VTn0eD5KhcXdhCkQOtv6TX7eYyEAXfdIF9jM8eUDW7eEzZ5gpj72gS4U0lm9Oko8funZYMcO6yy0XEofhtYWh456jeXLJR/7uINhgC4hkQE7Bz5VjfGyqYCsKMpVsXFLdkjN48l9TTkZgy6mU/YRG+9UjOe1+3hl9ocpK07ykPcvhL0EntBYob2FRRY3p9Mkp6E7OdpEOWk3gCFzGBGJO0dyIhkiWnucTW4Mw/HR4ll4Ppd+N8uW7jBVPg9TgyNZjcM9FnNKM0B+pvXVGgE2TY3bbiu85H5NzRrf/7GfbXt09h/QqCgUfOPv07y0P8D3fm3ysJvhaIfO3lMGBZbk0+9JE76MCWmKuu1JUZSraLBM5INrrHdmYE9Gzc/9Mye6gvSe1vnx+/6Q3bf9FmXxXryERkdrnIpcM1baRjiCZDZEQ8c0Ip39HOufg236sPQsHho5DPQil4rZTQTDvcw2dvKg9X1uD/wTaW8PW10HXYA58Mk83fTQHI06T9DgQQq47QLZcV8ffPvbsOWNq9sXWVtw7KTOjl2C5GmXY/vhscd8JJMCT0pO9wi2HTL4xdOC//oJk2UrI7y6RSc5smJUY6K+3mPfPo/u7snxhUBlyIqiXBVDq1OdKRk5+YawPcchvfF5gtEQLTsMzHUZpvlOUeZvZfPJNdT3TSfU04+X8kFAIIVGyJflrZbV7MwuJ7aoE81wMD2XXFZH65AsWfQ2Mb2T6dQjhI8+r5Bp5na6ZRW9fpte3SLqFNPratzlc7nL9Mh4UK1Jyi+QRjU1wfYd0NUNa1aP4fv34MARwbatORIJiTVVozUkcWskpHXo1mlvd3jxmSw33WGRnCY4thl2v2ECGsePwsMfivCF/2rz2UdT+K1LvuSYePU1lxdf9NA0iWUJPvkJg/Lyib2+tgrIiqJcVUNnXgPvBObJUsdZ6Dq+dAj9xGnSpsT2fMSMHjYfv4PW1nKKOrp5ZevvU7P6OGkRRvihI1COnbQASWdDHL+RQfNc0r0hSn1t+PUkWfykCJKSERxhEkSn1GojGvU4YUsCOUERJTxakqVMk5ccz5w1C556EsrLx/b9b95h8p/+0qSySFBSkmPbJsnxKNBugqZBBJA6R49orLs7y469Psy0C1LDb0mytiDRo9GfEtg5gd+6etlqV1eWX/26j9qaEC++qFNdrWEYGq2tkjffdHnwwYuHvMHbodQsa0VRrls1NcXsaT6/jN9kIIRg9u99kbf+97+jYH0AvTfNkexiMqYFLQ71z83EW27QT4z21gqi8S5swwILcASG57Lav4XZwSMUTO+iwa5E5iDphdlnLCFEAqSOj2pqiBL3m0wxsxQHelmrBfFfJBC3dWv8areJLuDdy2yWLbv8YJfLSTxPXnKpS5/pkU5JimdKolGB40Eyo+fH1ReSjyLtArZp/OygyQdv8Vj/PpefPeeRzmgIAQ88kOXJB9NEr+Ks62xW8pW/7OCF5/tZu9bhZL2P0tIIhiFwXDAvMrls6H3J41meUQVkRVGumckWjAcZaxagTf049kvPsergCxytXYlpO7y35wXiXjev71zL8Xg1CA1fzqYw0Uq3vxwErBabmRGswwmACEpm+evoIYqjl1KKwKSAElGBRhEOSTplCr+uUZuKcbDdwNBhVrmD/5zJz44L33nJj+0IpISWbp3f35BCXMaobGOjw9f+3mZqbS+f/EQBlnXhg1YsdJleJTlw0GD53Cz+khCl0qMlJsEU0A24HmhwulOjoNZh4Z0eD/8vm8Mv6dx1c46vfD59We26Ej/dmGD7dklhYQghdCoqPZqaPPwBQSwKa9Zc+l6x8a6VrAKyoijKJbjCoaA2h1YWZuGx/fxm/km++MyfMnfvW7yofZidchFe/2wogh4RpbC7j2KjlR6tkJraE5xuiVMzqw49m0NzXYwCSViEWUI5FgF0TFrIsUhOoRxJV4ePZ16KknMFEigvMPnE3WmCQ66/ZnPQlxJMjXtIoLFdI+dc3m1GzS05EglobnLo7XUpLb1wKNA0uPt26OmGO242qDgl6Ujm+FaD4HSXAfs86AKkwN6r87d/HqDc55KzdW56WPK5+7JXPRgDNDQ4zJ7l49Ahm6PHcrz3PSE+9KiPTAbicYHff34jxnuI+lwqICuKolxC0A0R0qMceXAxOzrfzd0HNzJ181t0aoU876xnb/xmsB0wwMkFSc3OYLRICpJd2N0GBXo7VVojQV8Ky7LR9DAVMkhSBAliYA+UjijFpASDH+0IELSgMJRfxetkh8b24yYLpzrsbjKQwNJKhyU1DrtO5D/G3zXLuex7fhcttLj1Fp0Zs0PE4zqeJ/n1S5JpU2HOnLPHyDUNnvxQZvAnli7JsGO/gX2Hxj/9PXR3aeCRX7HLgc4Tgi//eYRPPJkm1ygwMxJCV/5vcCl33RWgu8dlzhyTO+70c/97IoTDZ97LhZbLnCjBGFRAVhRFuaSAF6DWfg+R1F/Smj2Jm+xHeOD6AxzWl0KNS6gsQU4K7MIgyc4CCDuYhS6vtt/Jk8ufxmfaSMsgp0OtyHC7rOJNCS0ih4FgnQxTOvCR3JsSRPxnrrdaBrT1CjZvCZDK5TO9rfUmv3tLmuUzHYSA2rIzRSU8D44fz5dfnDp1mPcT0Fh3p0FZdQCAZFKyaZOkcz7MmXPxvtB16OjS8HISw8tXmZKD16E1CQ70dgra2zXKSr2rtjDIq5sOnrft1lvz7QkEYMeus5+7ZQIF3gtRAVlRFOUyhL0qCqwvM7fhH9j/9mEy0sKf6SAT0KFCI774NBWRJt58YxVewgJpkeuF5lwle6Yt5ebpWwnoJhHho5Yp7MNPu3CplD7WYREaMo16fqXDm8dMppV4OC6kbIHug35bUFOYz5rru3Tqu3RWVDvntfX1zYLnnxcIAU/8tse8eZd4b2HB5z+nEbz4ipnvuGlxjq07DHx+8PsgbQ8E5nzTCFoeH1ifYd50j1h05BO5hgu2l+Pc9t8yPw7A5tCgkKsAAAtNSURBVAPtozrftaYCsqIoymVyRQnurD9h9/YEr69Kcd/pD7NQvk2bPgfH8yErPcrvb8PXZ9NzKIqd8lNY3k3v3DA5GSHo+Ck0c5yUKzglHErRqBMePmlzH/53XufepTaZnODtUwaaBvcvzxArkLzVfCbd9KTEvMA8paYmCAYlmQy0nRbMm3fpoFhcfPkXeuNFkj/9fIpkm8cz3wuQ7RJ4rswvJWZK1q5pwecep+4o1B297NO+YzCQ3mhUQFYURRmhWXMivHIqyt/o/5fm+hOwSNBZV0zVrOP5mcdxiBSlsXyd+O00TijIvr71+LQMZTGPjCilCA0LQTEaDcKDITHTMuGRNVkeelcWXctfx7UdmFniUteRj8K1RR5zS8/PjgHuuF3S1iYoK4NlS0eWoY4kO71trcGphipe31xMT4+PQBg++lg3f/GFfkxz/IPqYGY8WQK8CsiKoigjNGuu5PUtgkOtlZDuhGSW9KthDhUvoPaWOnplIaYvQUT0YvpdAqkAGRHG83xE0lGqgiZbsAGdbjyWyuE/is0hm30GfOSmDKe6dSQwtdAdNkMeDKjLlud/3r33wu/jUH3PedtGGrzeszpJe0eajK1RFnexfBNjmcrNB9onTSAepAKyoijKCAWC8MEPe+zeqPGWsQx/dy8Zr4SeZ8s4sCfEvIf3EYglcZMGmUyEwmIN3UhT3F1AqShiadAFCfW43ITJas6e+XQ5WWrjBbZf6yAkBJTGPfJTrZUroQKyoijKKJQUwu896PHvy1K09xRDEjgG2X1h9hy7ifDyXmJLu5hSlqMspzO7L0Zfd4iioiwGAmdTHYPzfkdaD2KyZX7K5VEBWVEUZZQWxOB9UzVecVvoxIc9z0eqPYRM6/QfKsJ5I8QDDzbiD3rUuSn8op/6/iYahAqqyvlUQFYURRklTcAHai1yTogdB3M09pgYaBCWlLk2DzySJFoUQwJzTYfHK3sp8alArAxPBWRFUZQrUBGUfHxejlqRoPwWB8OTvKskTW1BjrqUj6QrKDQ9agM2hqpAf83cMj9+1v3Hk2FEQkg5MWbEjYQQoh04eRVOXQJ0XIXz3ghU342e6rsro/pv9FTfjd6l+m6alHJE3wImZUC+WoQQ26WUK8e7HZOR6rvRU313ZVT/jZ7qu9G7Gn2nBlAURVEUZQJQAVlRFEVRJgAVkM/29Hg3YBJTfTd6qu+ujOq/0VN9N3pj3nfqGrKiKIqiTAAqQ1YURVGUCUAFZEVRFEWZAG7IgCyEeFgIsV8I4QkhVg7Z/m4hxA4hxNsD/71rmGP/TQix79q2eOIYad8JIYJCiJ8LIQ4NHPc/xq/14280v3tCiBUD248JIf5WCHH5hWuvIxfpu2IhxMtCiIQQ4uvnHPOhgb7bK4R4UQhRcu1bPv5G2Xc+IcTTQogjA3+/H7j2LR9/o+m7IfuMKF7ckAEZ2Ac8BLx2zvYO4AEp5SLgI8AzQ58UQjwEJK5JCyeu0fTdV6WUc4FlwC1CiPuuSUsnptH03zeATwKzBh73XoN2TkQX6rsM8GXgC0M3CiEM4GvAnVLKxcBe4DPXoJ0T0Yj6bsCXgNNSytnAfODVq9rCiWs0fTeqeHFDLp0ppTwIcG6iIaXcNeTH/YBfCGFJKbNCiDDwB+Q/GH90rdo60Yyi71LAywP72EKInfBOkZsbzkj7DygColLKNwaO+3/ABuCFa9LgCeQifZcEXhdCzDznEDHwCAkhOoEocOwaNHXCGUXfAXwcmDuwn8cNuqLXaPputPHiRs2QL8cHgF1SyuzAz38G/BWQGr8mTRrn9h0AQogY8ADw0ri0avIY2n+VnF36tnFgm3IJUsoc8CngbaCZfJb3T+PaqEli4G8V4M+EEDuFEP8ihCgb10ZNLqOKF9dthiyE+DVQPsxTX5JSbrzEsQuArwD3DPy8FJgppfx9IUTNGDd1whnLvhuy3QB+APytlPL4WLV1Ihrj/hvuevF1e6/ilfTdMOcyyQfkZcBx4O+APwL+/ErbORGNZd+Rjw1VwGYp5R8IIf4A+Crw21fYzAlpjH/vRh0vrtuALKVcN5rjhBBVwLPAE1LKuoHNq4EVQoh68n1WKoR4RUp5x1i0daIZ474b9DRwVEr5N1favolujPuvkbOH+KvIZ3vXpdH23QUsHThnHYAQ4kfAfxzD808oY9x3neSzu2cHfv4X4MkxPP+EMsZ9N+p4oYashxgYpvk58EdSys2D26WU35BSTpFS1gC3Akeu12A8Whfqu4Hn/hwoAD4/Hm2bDC7yu9cC9Ashbh6YXf0EMNJs50bVBMwXQgxW3Hk3cHAc2zNpyPyKUT8D7hjYdDdwYNwaNIlcUbyQUt5wD+D95DOPLNAG/GJg+58ASWD3kEfpOcfWAPvG+z1Mlr4jn9FJ8h+Eg9ufGu/3MVn6b+C5leRnetYBX2dghb0b7XGhvht4rh7oIj+rtRGYP7D9dwd+9/aSDzDF4/0+JlHfTSM/s3gv+XkfU8f7fUyWvhvy/IjihVo6U1EURVEmADVkrSiKoigTgArIiqIoijIBqICsKIqiKBOACsiKoiiKMgGogKwoiqIoE4AKyIpygxNCfEcI8dxVOvdKIYS8EVa4U5Qrdd2u1KUok4EQ4jtAiZTy/nFsxucYskSnEOIV8vdO3qiVkRRlXKiArCg3OCll73i3QVEUNWStKBOWEGKqEOJZIUT/wONfB9a7Hnz+Pwsh9gkhHhVC1A3s81MhRMmQfQwhxF8LIboHHn8thPjGQBY8uM87Q9YDGfvtwKcHhpqlEKJGCHHHwP8PPXfNwLahRdvvHShmnxFCbAJmD/O+1gghXhVCpIQQTQPtiY5x9ynKpKMCsqJMQAPrVv8UKAPuAu4EpgA/FWcXZq0BHiG/vN895Csb/cWQ578AfBR4CriZ/N/8Yxd56c8BbwDfBioGHg2X2ebqgTb/inxhh78D/uc5+ywCfgn8G7CEfOH3pcD/uZzXUJTrmRqyVpSJaR35gDVDSlkPIIR4DDhGfqH/Xw/sZwAfHRx2FkI8DXxsyHk+B3xFSvmTgec/D6y/0ItKKXuFEDaQklK2Dm4/tzj7BXwKOAV8VubX5D0khJhNvjbsoD8Efiil/Ksh5/4UsEsIUSqlPH05L6Qo1yOVISvKxDQPaB4MxgAyX0e6GZg/ZL+T51wDbiZf1AMhRAH5Gq/bhpxDAm9dxTZvlWcvkP/GOfusAB4XQiQGH8BgdasZV6ldijIpqAxZUSYmQb5K1nCGbs8N89y5X7THooKMN6Rdg8xz9rmcNFoDvgX89TDPNY2iXYpy3VAZsqJMTAeAyqH37wohppO/jnxZdWkHMudW4F1DziGAmy5xqA3o52xrH/hvxZBtS4dp86pzrnHffM4+O4EFUspjwzzSl2iXolzXVEBWlPEXFUIsHfogf614D/A9IcSKgZnM3yMf0H4zgnN/DfiiEOL9Qog5wF+RD6oXy5rrgXcNzKIuEUJoA+1pAP6zEGK2EOIe8jWch/oH8pPM/kYIMUcI8Vvk6xEP9ZWBc/+DEGKZEGKmEOJ+IcQ3R/CeFOW6pAKyooy/tcCucx5/CWwgn5m+ArxMPtvdIEdWxPyrwDPkZ01vHdj2LJC5xDE2+Yy3nXxh+hzwKDCd/BeF/wL88dCDpJSnyM+avndgn98H/uM5++wFbiMfuF8d2O+/ky/8rig3NDGyv21FUSY7IcROYLOU8vfGuy2KopyhJnUpynVMCDGN/G1Or5L/e/8k+dupPjme7VIU5XwqICvK9c0DniA/BK6RH4a+T0q5fVxbpSjKedSQtaIoiqJMAGpSl6IoiqJMACogK4qiKMoEoAKyoiiKokwAKiAriqIoygSgArKiKIqiTAD/H7xQ8e/I8V+aAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Lets plot this on top of a piece of california map.\n", + "california_img=mpimg.imread('california.png') #path to california image.\n", + "ax = dataset.plot(kind=\"scatter\",\n", + " x=\"longitude\",\n", + " y=\"latitude\", \n", + " figsize=(10,7),\n", + " s=dataset['population']/100, \n", + " label=\"Population\",\n", + " c=\"median_house_value\", \n", + " cmap=plt.get_cmap(\"jet\"),\n", + " colorbar=False, alpha=0.4)\n", + "plt.imshow(california_img, extent=[-124.55, -113.80, 32.45, 42.05], \n", + " alpha=0.5,\n", + " cmap=plt.get_cmap(\"jet\"))\n", + "plt.ylabel(\"Latitude\", fontsize=14)\n", + "plt.xlabel(\"Longitude\", fontsize=14)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "6859d178", + "metadata": {}, + "source": [ + "

Let's deal with Missing Values

" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "cd7b0f63", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
longitudelatitudehousing_median_agetotal_roomstotal_bedroomspopulationhouseholdsmedian_incomemedian_house_valueocean_proximity
290-122.1637.7747.01256.0NaN570.0218.04.3750161900.0NEAR BAY
341-122.1737.7538.0992.0NaN732.0259.01.619685100.0NEAR BAY
538-122.2837.7829.05154.0NaN3741.01273.02.5762173400.0NEAR BAY
563-122.2437.7545.0891.0NaN384.0146.04.9489247100.0NEAR BAY
696-122.1037.6941.0746.0NaN387.0161.03.9063178400.0NEAR BAY
\n", + "
" + ], + "text/plain": [ + " longitude latitude housing_median_age total_rooms total_bedrooms \\\n", + "290 -122.16 37.77 47.0 1256.0 NaN \n", + "341 -122.17 37.75 38.0 992.0 NaN \n", + "538 -122.28 37.78 29.0 5154.0 NaN \n", + "563 -122.24 37.75 45.0 891.0 NaN \n", + "696 -122.10 37.69 41.0 746.0 NaN \n", + "\n", + " population households median_income median_house_value ocean_proximity \n", + "290 570.0 218.0 4.3750 161900.0 NEAR BAY \n", + "341 732.0 259.0 1.6196 85100.0 NEAR BAY \n", + "538 3741.0 1273.0 2.5762 173400.0 NEAR BAY \n", + "563 384.0 146.0 4.9489 247100.0 NEAR BAY \n", + "696 387.0 161.0 3.9063 178400.0 NEAR BAY " + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Lets print whichever column has missing values.\n", + "sample_incomplete_rows = dataset[dataset.isnull().any(axis=1)].head()\n", + "sample_incomplete_rows" + ] + }, + { + "cell_type": "markdown", + "id": "296cfb38", + "metadata": {}, + "source": [ + "It can be clearly seen that only total_bedrooms has missing values. Let's fill these missing values using median of the column.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "2c182111", + "metadata": {}, + "outputs": [], + "source": [ + "median = dataset[\"total_bedrooms\"].median() # Here, we used median() method to fill missing values with median of column.\n", + "dataset[\"total_bedrooms\"].fillna(median, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "bc5c802e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 20640 entries, 0 to 20639\n", + "Data columns (total 10 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 longitude 20640 non-null float64\n", + " 1 latitude 20640 non-null float64\n", + " 2 housing_median_age 20640 non-null float64\n", + " 3 total_rooms 20640 non-null float64\n", + " 4 total_bedrooms 20640 non-null float64\n", + " 5 population 20640 non-null float64\n", + " 6 households 20640 non-null float64\n", + " 7 median_income 20640 non-null float64\n", + " 8 median_house_value 20640 non-null float64\n", + " 9 ocean_proximity 20640 non-null object \n", + "dtypes: float64(9), object(1)\n", + "memory usage: 1.6+ MB\n" + ] + } + ], + "source": [ + "dataset.info()" + ] + }, + { + "cell_type": "markdown", + "id": "5a7562d4", + "metadata": {}, + "source": [ + "It can be clearly seen now that we have filled all the missing values.\n", + "
\n", + " NOTE: \n", + " 1. We can also impute here using mean.\n", + " 2. For categorical data, use mode." + ] + }, + { + "cell_type": "markdown", + "id": "5241d10d", + "metadata": {}, + "source": [ + "

Let's deal with Categorical Values

\n", + "We will use One hot encoding for this. It will create seperate columns of all categorical features and use :
\n", + "'1' : If a row has that feature.
\n", + "'0' : If a row doesn't have that feature." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "c25339f1", + "metadata": {}, + "outputs": [], + "source": [ + "def one_hot_encoding(data, dimensions, drop= False):\n", + " for dim in dimensions:\n", + " if(type(data.iloc[:,dim].values[0]) == str):\n", + " uniq = data.iloc[:,dim].unique()\n", + " for val in uniq:\n", + " data[f\"{data.columns[dim]}_{val}\"] = data.iloc[:,dim].apply(lambda x: 1 if x == val else 0)\n", + " \n", + " if drop:\n", + " data.drop(data.columns[dimensions], axis=1, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "b38ebafa", + "metadata": {}, + "outputs": [], + "source": [ + "one_hot_encoding(data=dataset, dimensions=[9],drop=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "33f33aad", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 20640 entries, 0 to 20639\n", + "Data columns (total 14 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 longitude 20640 non-null float64\n", + " 1 latitude 20640 non-null float64\n", + " 2 housing_median_age 20640 non-null float64\n", + " 3 total_rooms 20640 non-null float64\n", + " 4 total_bedrooms 20640 non-null float64\n", + " 5 population 20640 non-null float64\n", + " 6 households 20640 non-null float64\n", + " 7 median_income 20640 non-null float64\n", + " 8 median_house_value 20640 non-null float64\n", + " 9 ocean_proximity_NEAR BAY 20640 non-null int64 \n", + " 10 ocean_proximity_<1H OCEAN 20640 non-null int64 \n", + " 11 ocean_proximity_INLAND 20640 non-null int64 \n", + " 12 ocean_proximity_NEAR OCEAN 20640 non-null int64 \n", + " 13 ocean_proximity_ISLAND 20640 non-null int64 \n", + "dtypes: float64(9), int64(5)\n", + "memory usage: 2.2 MB\n" + ] + } + ], + "source": [ + "dataset.info()" + ] + }, + { + "cell_type": "markdown", + "id": "f7cd5c17", + "metadata": {}, + "source": [ + " As discussed, it created four different features according to categorical values.
\n", + "

Note :

\n", + " Make sure to remove original Categorical Column as our algorithm works with numeical values." + ] + }, + { + "cell_type": "markdown", + "id": "1a614e50", + "metadata": {}, + "source": [ + "

Let's create some more features

\n", + "\n", + "If you study the dataset, the rooms and bedrooms data corresponds to the whole location. Since we are trying to predict house price, let's create some features for it.\n", + "* Rooms per Household : To get an approximate no. of rooms each house has.\n", + "* Bedrooms per Room : To get an approximate no. of bedrooms among total rooms.\n", + "* Population per household : To get an approximate no. of residents in a house." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "3c3adf00", + "metadata": {}, + "outputs": [], + "source": [ + "dataset[\"rooms_per_household\"] = dataset[\"total_rooms\"]/dataset[\"households\"]\n", + "dataset[\"bedrooms_per_room\"] = dataset[\"total_bedrooms\"]/dataset[\"total_rooms\"]\n", + "dataset[\"population_per_household\"]=dataset[\"population\"]/dataset[\"households\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "4130bd66", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAALSCAYAAAAGKiZeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdd1gU18LH8e/swtJ7BzWCLXaKGnsBe0xiclPVxBqNXewa0zVqiqnW9GJMuze5afaaGDtiL2BBkd7bsnXeP3YFlgUEISL3PZ/n8RF2zsz8mDPtzJmZlWRZRhAEQRAEQRAEQRAaMkV9BxAEQRAEQRAEQRCE2hKNW0EQBEEQBEEQBKHBE41bQRAEQRAEQRAEocETjVtBEARBEARBEAShwRONW0EQBEEQBEEQBKHBE41bQRAEQRAEQRAEocETjVtBEARBEARBEAShRiRJ+lSSpDRJkk5XMlySJOl9SZLiJUk6KUlSeJlhgyVJumAetrCuMonGrSAIgiAIgiAIglBTnwODqxg+BGhh/jcRWAsgSZISWG0e3gZ4SpKkNnURSDRuBUEQBEEQBEEQhBqRZXkfkFVFkYeAL2WTg4C7JEkBQBcgXpbly7Isa4FvzWVrTTRuBUEQBEEQBEEQhLoWBFwv83ui+bPKPq81m7qYiCD8U3QZl+X6zlARh8Be9R2hSt969a3vCJVqqiys7whVUtkY6jtCpWxt795sxRrb+o5QpVyNqr4jVEqLsr4jVOlze019R6jUmq459R2hUgf3+NV3hCr5qtT1HaFSxfq7+/S02Hj3brM+jndvveap7eo7QpV6pPwo1XeG6riT58Yqn2aTMN1OfNMGWZY31GASFS1TuYrPa+3u3nsIgiAIgiAIgiAId5y5IVuTxmx5iUDjMr83ApIAVSWf15po3AqCIAiCIAiCIDQExrv3Lq4K/AJMkyTpW+A+IFeW5WRJktKBFpIkBQM3gCeBEXUxQ9G4FQRBEARBEARBEGpEkqRNQF/AW5KkROAlwBZAluV1wB/AUCAeKALGmofpJUmaBmwFlMCnsiyfqYtMonErCIIgCIIgCIIg1Igsy0/dYrgMTK1k2B+YGr91SjRuBUEQBEEQBEEQGgLZWN8J7mriq4AEQRAEQRAEQRCEBk/03AqCIAiCIAiCIDQERtFzWxXRcysIgiAIgiAIgiA0eKLnVhAEQRAEQRAEoQGQxTO3VRI9t4IgCIIgCIIgCEKDJ3puhf95S15fxb79h/H0cOfnr9fVS4Z3Vr3KkMGRFKnVjB8fzfHY01Zl+vXtwcqVL6BS2RITc4pnJ87BYDDw1FMPM2/uFAAKC4qYOn0RJ0+erdN8HV97hoCojujVWo7OWk/OqatWZZqNHUCLZwfjHOzPL20noc0qAMCleQCd3pmEe/umnFnxPRfX1e6t7q59w2jyygRQKsjYtJ2U1f+xKtP41Qm4RUZgVGu4Gv0+Racvlw5UKGjzx1toUzKJH7MMgMDZT+I9YgD6zDwAbqz8mtxdx2qczblPOEEvPgtKBVnfbSd97Y9WZQJfmohLP1O2xLnvoT5zyRTL1YlGK6Zj3+oekGUS579HUcwF7Fs3JWjZVBSO9ugS07g26y2MBeoaZ6uKU68I/JZMQlIqyPl+K5kbfrAYrgppRMCKaOzbNid91RdkfWK9zGvLpU8YjV5+FkmpIPPb7aSu+bdVmaBXnsXNvOwS5ryH2lyvbfZvwFioRjYYwWDkwrA5APhHP4nXUwPRZ+YCkPzG1+Ttrnm9AjRfNhavqHAMag3nZ6ym4NQVqzL2TXxps34WNu7OFJy6wrmpHyDr9Dg2D6TVe1NxaR/MleWbuL7215Jxuh5Zjb6wGAxGZL2BY4MW3la+VstG4xMVhkGt4fSMteRXsI06NPGhw/qZ2Lg7kX/qKqemfoisM5QMdw0N4b4/lnJy4nuk/nYIABtXR9qumoTzvY2QZTgTvY7co3G3lRHgmZfHE9ovAq1aw7q5H3C17LZZzuhXJtDnsUjGtRkBwLBJw+n+UG8AlDZKgpoHMSlsDIW5Bbedpyybjp1xGDMNFEq0u35H899NlsM79cDh8bEgy8gGA+ovPsRw4TSSlw+OUxehcPcEo4xm529oN1uvv7ej9bLReEeFYVRrODVjLXmV1GvH9TOxdXci79RVTprr1bN7G8K+mIv6WhoAqb8f5tIq07Zr4+pIO3O9IsPp6HXk1KBeXfuatleUCjI3Vby9NnrlWVwjI5DVGq7OLt1eAVAouPf3t9GlZHJp7NKSj33G3I/PmPuR9Qbydh3lxutfVCuPe79Qgl8dB0oFad/s5MaHP1mVCX5tHO5R4RjVWuJnfUCheRuubFzHNvfQbOUkFE72aK6nEzf1XQxl9r2qIG/C9r7L9be+J2ndL9XKeVOLZWPxMtfr2RlrKtmf+NB2/Sxs3Z3JP3WFs1M/QNYZ8PtXT+6Z9hAAhsJiLsz/mIKzCQA0nnQ/ASMiAZnCc9c5N3MNRo2u2rmce4cT+NKzoFCQ/d120tdZH8MCXpqIS98IjMWmY1ix+RjmNe4hPJ8YCLJM8YWrJM57D1mrw3VoD/xmjsCueSMuDZ+D+lR8jZaVe79QQl4bC0oFqRt3cuPDn63KBC8dh0dUGEa1lriZH1rUbUXjNn3xaTwGdELW6Sm+mkLcrNUY8oqwa+xD2L53UV9KAqDgWByXFmyoUd67gnjmtkqi5/Z/hCRJdXP0t5zmg5IkLTT/PFySpDa3MY09kiR1qutsNTF86ADWrVp664L/kCGDI2nRPJh72/Rk8uQFrP5wuVUZSZL49JN3GTlqCqFhUVy7lsgzTz8GwNUr14mMepTwiAEse/1d1q1ZWaf5/CM74hLiz5buc4iZ9wnhK8ZWWC7zyEX2Pb6cwuvpFp9rswuJXfIlF9f9XvswCgVNlk7i4tOvcqbfdDwf6oV9i0YWRdwiI7APDuB0z8kkLFhDk+XPWQz3Gz8MdXyi1aRTP/qFs4OiOTso+rYatigUBL36HFfGvMzFAVNxf7A3ds0bWxRx6RuBKjiQC30ncWPxaoKWTS4ZFvjSsxTsjeFi1GTihsyg2Jyx0YoZpKz8grjB08ndegCfiY/UPNstcvu/PIXrE17k0pDncB3WB1W53IacfFJfW0fWx3Vzwl5RhsZLJ3Fp9Cuci5qGx4O9sG9hmcG1XwT2TQM42/s5ri1cTeMyyw4g7oklXBgSXdKwvSn9419Mnw+Jvu2GrWdUGA7BARzqOp2Lc9fT8o1nKywXsmQkiet/43C3GehzCswnmaDLKSD++U8tGrVlnXjkZY5Gzbvthq13VChOwQH81XUWZ+d+RJs3JlRYrsWSESSs/5393aLR5RQQZM4HgEKi5QsjyNh9wmKce5eOJmN3LPt7zuFA5HwKL964rYwAof3C8Q8OZHafKXy8aC3jlk6qtGxw+2Y4ujpZfPbb+p9ZPHQ2i4fO5ruVX3Hu0Nk6a9giKXAYN5PC5QvJnz0GVY8oFEH3WBTRnzpG/vwJ5C94lqJ1b+A4aZ5pgMFA8VdryZ89hvwlU7Ab+JDVuLfDOyoUx+AA/uw6i9NV1GvLJSO4uv53/jTXa6My9Zp96Dx/Ry3k76iFJQ1bgNbmev2r5xz2R86noCb1at5e4595hXOR0/B4qOLt1S44gLO9niNhwWqavG65vfqOH0Zx/HWLz5y7tcdt4H2cGziDc/2nk7reuhFTWZ6Q15/l7MhlxPaZhffwnji0tDwuuEeGYx8SwPHu07g0by0hKybectzmb08h4fWvORE5m6zNhwic8pDFNINfGUv2ruPVy1iGV1QYjsH+HOw6g/NzN9CqknpttmQU19f/zsFuM9HnFBJorld1Qhoxw1/mcL95XFn1b1q9bfpbVP4eNJowhKODFnK4z1xQKPAd3r36wRQKAs3HsLiBU3Gr5Bhm1zSQi/0mcWPRaoKWmurVxs8T7zEPEP9gNHGDp4FSidsDpgtRmgsJJEx+ncLDZ2q6qEz1s3wCZ0Ys43jvaHwetq5bj6gwHEICiOk2nfi562i2cuItx83Ze5LjfaOJjZyD+nIyjWaUHleLE1I50X8eJ/rPa5gNW+GWRONWqJQsy7/IsrzC/OtwoMaN27tBp9D2uLm61Nv8H3hgEF9tNF0dPXQ4Bjd3N/z9fS3KeHl5oNFoiIszXfnesWMfjzw8FIADB4+Sk2PqmTp4KIagoIA6zRc4OIKEH/4EICsmHltXR+x93a3K5ZxOoCgxw+pzTWYe2ScuW/QQ3S6n0BZoriajvZaKrNOT9d+/cB94n0UZ94FdyPxxDwCFMRexcXXC1tcDANsAL9yiOpHxzfZaZynPMbQF2oRktNdN2XJ+3YdruWyuA7uS859dABQdv4DSxQkbHw8Uzg44d2lH1nfbAJB1eox5hQDYhQRReMjUk1/wVyxuQ2pwslINDh1aok1IQnc9BXR68n7fh0tUN4syhqxcik/FIetrX4cVcQxtgeZqSkm9Zv/6J24Du1iUcRvYhax/7wag6PhFlK5O2Jjr9Z/mPbgzqT/sBSDvWBw2rk6oKtgGPHq2I/3XgwCkfL8X7yGdAdBl5JEfewlZp/9H8vkM7kTSD/sAyD0Wj42rY4X5PHu2JfVXU49s0vf78B1Sel2xyYTBpP52GG1GXslnSmcHPLq15sZG03KXdQb0eUW3nTNiQBf+NNdh/PGLOLo64V5BHUoKBSOeH82m5V9WOq1uD/Xi7//+edtZylM2vxdjahLGtGQw6NH+vQvbzj0sC2mKSzPa2QMyAHJOFoYr5l7PYjXGG9dQeHrXOpNfuXq1dXXEroJ69SpXr35Dqr5efLNeE2+zXp3Kb6+/1Gx7tfX3wjWyExmbLPfDPk8PJnXNv5G1pu3k5h0Xt+Ic1hz11RQ05jwZ//0Lz0GdLcp4Du5MunkbLoiJMx8X3Ksc175ZIHkHTHdB5ew7gdf9XctMrwvFCamoL1g20KvDe3AnUsz1WvX+pG3J/iT5+z0l+5O8oxfR5xaWjG8f4FUyjqRUoLBXISkVKB1VaFOyq53LsaPpGKYzH8Nyf92H6wDLY5jLgK5km49h6tgLpnr1MW/D5nmb/rdDn5YFgOZSItrLt3dRzCWsOcVXUtBcS0PW6Un/eb913Q7qTNr3e4CbdeuIra97lePm7D0BBlPvZv6xi9iVWYb/E2TjnfvXAInG7f8YyeRNSZJOS5J0SpKkJ8yf9zX3ov4oSdJ5SZI2SpIkmYcNNX/2lyRJ70uS9Jv58zGSJH0oSVJ34EHgTUmSYiVJala2R1aSJG9Jkq6af3aQJOlbSZJOSpL0HeBQJttASZIOSJIUI0nSD5IkOd/ZpVM/ggL9SbyeVPL7jcRkggL9LcpkZGRha2tLRHgHAB555H4aNQ60mta4sU+yZevuOs3n4O9JUVJmye/q5CwcAu5Mo6I8VYAn2uTSBrQ2JRNVgKdFGVt/T7RJZcokZ2LrbyrT+OXxJC77AmTZatq+Y+6nzfZ3afrWNJRuTlbDb8XWzwtdmfnqkjOx9fOyKmORLSUTW38vVE380Wfm0uitWbT4/V0arZiO5GAHQPHFhJITDLehPbANqP1Jc1k2/l7oyyxTXUoGNn539kCv8veyrrPyy87fy6LudSkZ2Pqby8jQ/OtXaPX723iNGGgxnvfoody79T2avDn9tuoVwC7AE82N0m1Ak5yJXfn1ztMFfV6R6dZoQJNkXaYiMtDhuyVEbFtJwNP9byuffYAnxWXyFSdnYX+LfMVJpWXs/D3wHdKZ619YNjYc7/FFm5lH2/cm03XHctqsmojS0e62MgJ4+HuRVWZfkpWSiYef9TIaNHooMduPkJNW8Ym5yl5Fxz5hHN584LazlKfw9MaYmVbyuzEzHYWH9bZm27knLqu+wGnhcorWvmE9HR8/lMHN0cefq3UmuwBP1OXqtaL1TleuXsuWcY9oQfddK4n4ZiHOrUy9Vjfrtf17k+m+Yzlta1ivtuW2V11yZum2aGa9TWegMpdp9PIE0+3GRsv9sF1IIM5d2tDqlzdp8cMyHDs2r1YeO39PtDfKziurZF6leTzRlMmjSc5EFeBV5bhF56/hYW4MeT3QHbtA0/qgcLAjaOpwrr/9fbXyWeUN8KT4hmWWW+9PrOseIGBEJJnm3mNtSjbX1v5K95i19Di5AX1eEVl7T1Y7l42/FzqLfax1vdr6lStjrnt9ahYZH/1Eq/2f0vrQlxjzCyn4s+a92uWpAqyP5+WXgyrAC01S2f1zFnYBXtUaF8DvqUiyd8WU/G7fxJeO29+k3U+v4Hpf61r/DcLdRzRu//c8AoQCHYH+mBqkN7v6woBZmHpgQ4AekiTZA+uBIbIs9wR8yk9QluW/gV+AebIsh8qyfKmK+U8GimRZ7gAsAyLA1AAGlgD9ZVkOB44Cs2v7xzYE5msIFuQKGl8jR03h7bde5sD+3ygoKERfrhetb5/ujB37FIsWv17HAa0/qijfnVHRsipfpKLA4BbVCX1GLkWnrFfPtC83c6rHc5wdGI0uLZvGL1R863XV0SpcUOXKVDCeLCMplTi0a0bm138Qd/8sjOpifCc/CkDi/Pfxevp+mv/6Dgpnh3+g968auf9plSyXWxYyl7n4r4VcuH82l555FZ9nhuLUxXQTScZXmznb6znOD56FLi2boCXj6ixgdda76izG48OWcGzAAk6OWEbQ2EG4da2bkymrbbSK7bjVa6OJW/qNVWNDslHi0j6YxC+2c7D/IgxFGppOf8h6QtVU0SZSfiG5+3pw3/3d2fp55Y8xhPfvzMWj5+vuluTKw1l9ojvyF/mzR1P41gvYP1FufbKzx3H2q6i/WA3q2+/hrlI19ykAuSevsDdiGn9HLiDhky2EfW66ZV+yUeLaPphrX2znb3O9BtekXquzvVZyXHON6oQ+Mwd1BfthyUaJ0s2ZCw/O48ayzwleM7+aeW69D6voOIssVznupdlrCBg7mA5b30DpZI/R3KPceN4TJG34DWNRsfW41Qt8y7wVL2PLX917tCVwRD/iX9sIgI2bEz6DO3Og81T2d5yE0tEev3/1qkGsapyLVLIfUbg64TrgPi70nsC5rqORHO1xH963+vP+BzJVZ9xGMx9B1htI/7fpLhBtajZHI57jxIB5XHnpC1qumYnS2cFqOnc9o+HO/WuAxAul/vf0BDbJsmwAUiVJ2gt0BvKAw7IsJwJIkhQLNAUKgMuyLN9828EmYGIt5t8beB9AluWTkiTdvKzYFVOjer/5IKQCKrwsL0nSxJsZ1ry9lAnPPFWLOPVj8nOjGT9+JABHj8Za9MIGNQogKTnVapyDh47RN9L0XMiA/r1p0SKkZFj79q1Zv+5Nhj34NFlZ1b8NqTLNxgwgeGQ/ALJOXMYx0Iub10UdAjwpTsmp9TxuhzY5E1WZnkuVvxe6lCyLMrrkTFSBZcoEeKFLzcLj/m64D+yMW2QECjtbFC6OBL8/iysz3kWfUXr7W/o322nx+fM1zqZLycC2zHxtA7zQpZXLlmLKdvO0V+VvygYyupQM1LEXAcj5Y39J41ZzKZErz7xoKh8ciGs/y1uyakufkoFNmWVq6+9dcjvZnaKtqM6sll0GqgBvCs2/2/p7m5cd6G/+n5lLztaDOIW2pPDwWYt6zdy0jZDPllQ7U+DYQQSOMvWk5sXGYxdU2oNhF+CFtvx6l5mHjasjklKBbDBiF2hdpsK/PdW0veoy8sj44zCuYc3JPXjrXr/GYwcSNCrSnO8S9mXy2Qd4oil3O6IuM98in31gaRm30BA6rJsJgK2XCz79QzEaDOQejUOTlEVujOkFMKm/HiJ4+oO3zFbWgGeG0O/JAQBcPhmPZ2BpTk9/L7LL9c42bReC3z3+vLN3LQAqBztW7V3D7D5TSsp0e6Anf/9Sd7ckg7mn1qv0cRCFlw/G7MxKyxvOnUThF4jk4oqcnwdKJU5zXkX31w50h28/W5OxA2lkrtfc2Es4BHlxc29bWb3aVlKvZV9+lLEzFsWK8dh6ulCclFmrei2/j7UN8CrZFm/SJmegCizdXlUBpu3VY2h33AZ0wbVfBAo7FUoXR5q+F83Vme+gTc4kx9wbXxQbB7IRG09X9Fl5VEWTnIkqqOz+wxNtuTya5EzsAr3JN/9+cxuWbG0qHVcdf4OzT74GgH1IAB79IwBwCW+B17Bu3PPC09i4OiEbjRg1OlI+21xpxqCxgwgcFQVAfuwl7IO8yeVCSZZbba92gZ5oyuxPnNo0ofWqScQ+tRx9tukij0fv9qivpaHLNP2V6b8fwq1zS1L/Xb31UZ+cYXFn0M0eWYtcKZmWZQJMZZx7hqK9norBXFd5W//GMbw1OT/vqda8K6NNsj42lL/VWpuUiV2gV5m69USbkoXC1qbKcX0e74PHgAjOPPZKyWeyVo9ea1qehScvU5yQikOzQApOVNVnIzQ0ouf2f09F1wNv0pT52YDp4kZV5auip3T9sS83rKL+DAnYbu75DZVluY0sy+MrmrAsyxtkWe4ky3KnhtiwBVi77gs6dR5Ip84D+eWXrTw90tSQua9LOHm5eaSkpFmN4+NjOilUqVTMmzuVDRu+AqBx40B++O4jxoydWfJMbm1d+nw7OwYsZseAxSRtPso9j5mu/nqGN0eXr6Y4rX4at4Un4rAPDkDV2BfJ1gbPh3qSs/2wRZmcbYfxerQvAE7hLTHkF6JLy+bGiq852XkCp7pN5PLUt8nff5IrM94FKHkmF8Bj8H2oL1yrcbaiE3GomgZi28gPydYG9wd6k1cuW972Q7g/YjpxdQxrhSG/CH16Nvr0HHRJGdiFBAHg0qMjmjjTs1xKLzfTyJKE37QnyNxY+QnU7VCfuliSG1sbXO/vTf7Og3U6j1spOhGHXZl69XigF7nlll3u9sN4/st0wcUxzFSv+rRsFA52KJxMV9YVDna49ApDfcH05tCyz+S6DepKcQ3qNemzrRyNmsfRqHlkbD6C32N9AHCNaIE+vwhtBdtA9v4z+Dxgei7P//E+ZGw5UuU8FI52KJ3sS3726NuRwvPVe4bv+mfbOBi1kINRC0nbfJTAx0wvb3GLaF5pvqz9Z/F7wHSLe+DjvUnfchSAPzvP4M/O0/mz83RSfz3EuQWfkr75KNr0XIqTMnFsZrq5x6tXuxq/UGr7l5tLXgJ1dNshepnrsHlYS9T5RVa3HsfuOsaUzuOY2XMSM3tOQqvWWDRsHVwcad21Lce2Wa4ftWW4dB6FfxAKH39Q2qDqHonu6N8WZRR+pRchlcEtkGxsTA1bwPG5+RhvJKD53fJN4zV17bNtJS+AKl+vuvwiNNWo11Rzvap83ErKuIU1A4WELisfbXou6qRMnG6zXgtPxGHXtMz2+mD1t9eklV9xust4znSfyJWpb5G//yRXZ75jGmfrIVx6mB69sQsORLK1vWXDFqAgNh6H4ADszHm8H+pJ1tajFmWytx7Bx7wNO4ebtmFdWk6V49p6uZpGliQazXqU1C9N70Q4PfwFYrpMJqbLZJI/+o0b7/+nyoYtwI3PtnIkaj5HouaTvvkw/uZ6dY1ogaGS7TWnzP4k4PG+ZJjr1S7Ii/afzuXM1A9RX04uKa+5kYFreAsUDioAPHq1pyiu+vVadDIOuzLHMLcHepO3w7Je83ccwsN8DHMILT2G6ZLScQy7F8nedHu7c/eOaC7V/Hnk8vJj43EICcCuial+fIb3IGub5X41a9tRfB/va5pvmbqtalz3fqE0mjacc6NXYlRrS6Zl4+UKCtOpq10TX+yD/SlOsO5suOuJZ26rJHpu//fsAyZJkvQF4ImpJ3UecG8l5c8DIZIkNZVl+SrwRCXl8oGyb2W6iumW48PAo+XmPxLYLUlSO6CD+fODwGpJkprLshwvSZIj0EiW5Ys1/PtqbN5LKzhy/CQ5OXlEDR/FlPFP868HBv3Tsy3xx+adDB4cyYVz+ylSq5kwofRu7F//+yUTn5tHcnIqc2dPZuj9/VEoFKxf/yW79+wHYMnz0Xh5efDBB6bbkfV6PV27Da2zfCk7Y/GPCmXwgVUY1FqORq8vGdbj63kcm/MRxak5NB8/iJZThmHv68aAnStI2RnLsbkfY+fjRtSWpdi6OCAbjTR/dgjb+sxHfztfZ2Mwcu2Fj2i58SVQKMn8bgfFF6/jM8pUX+lfbyV31zHcIiNo99c6jMUars5+/5aTbfT8aBzaBoMso72eRsLCtbeVLenFdYR8+QooFWR/vwNN3DU8Rw4GIGvjFvJ3H8WlXyda7d1g+iqgee+VjH7j5fU0fncOkq0N2uupJM41NbzdH+yN99P3A5C79QDZP+yoebZb5E55ZS2NP11q+iqgH7ehjb+G+1OmdShn0x8ovT0I/uk9FM6OYDTiOWY4l4dMqruvJDIYSXxhA82+etn0VUDf7aT44nW8RpmWXebXW8jbdQzXfp1o8+c601cBzf0AABsfd0I2LDJNx0ZJ9s/7yN9retYraPFoHNoEgwzaxDSuLVpzW/GydsTgFRXGfYc+wKDWcmHm6pJh7Tcu4sLsdWhTs7m89GvarI8meOFT5J+6QvI3phevqHzcidi2AqWLAxhlGk28n8O9orH1cqHdZ6Y37kpKJak//UXW7tga58vYcRzvqFB6HnoPg1rDmZmlX2kWtnEBZ2dvQJOaTdzSb+iwfgbNFz5B3qmrJH5z6+fzzy/+jPZrpqFQ2aBOSOP0zNv/urTYXccI7RfBO/vWolFrWG+uQ4D5ny9hw/zVlT5ne1PnQfdxal8sGrWmynI1ZjSi/vR9nBa/AQoF2j2bMSZeRdX/AQC0O37F9r7eqHoPAoMeWauh8N1XAVC2aoeq90AMCZdwWfkRAOpNH6OPPVSrSOnmeu1trtdTZZZ9xMYFnDbX64Wl39Bx/QxaLHyC/DL16v9AVxqP7o9sMGIs1nJiUum+8Nziz+hgrteihDSLad+Swcj1FzbQ/GvL7dXbvL1mmLdXt8hOtP3LvL3O+aDqaQKZ3+3gnrem03rH+8haPVej3612nsuLP6bNpheQlApSv92F+uJ1/J4xPX+f+uU2snfG4B4VTviB1RjUGuKjV1c5LoD3w73wH2PeB/1xiLRvd1V/GVX1d+44jldUON0OvY9BreXczNL9UoeNCzk/ez3a1M08OrMAACAASURBVGzil26k3fpZhCx8koJTV0gy70+C5zyKrYczrVaa3rIs6w0cHbSIvJh40n87SOftK5ENBgpOXeXGVzU4XhiMJL20juAvXzF9FdAP5mPYCPMx7JvSY1jLPRuQ1RoS55uOYerYi+Ru3k/z394FvQH12ctkbdoCmF6kGPjyJJSebtzz6YsUn73C1dEvVTvT5cUf03bTEtNXNW3ahfpCIv7muk35chvZO2LwiAon/OCHGNUa4metqXJcgJDXx6NQ2dL2uxeA0q/8cevamibzn0TWG5ANRi7N34A+p86/bESoZ1L9PVsn1CVJkgpkWXY2vyTqDWAIph7UpbIsfydJUl9grizLw8zlPwSOyrL8uSRJDwBvAhmYGqt+siyPlCRpDNBJluVpkiT1AD7C1Pv7KGALfI/ptuZdwChZlptKkuQAfIbpFuRYoDkwQ5blo5IkRQIrgZtvtlgiy3KVXx6ny7h8V66gDoE1eM6lHnzr1be+I1SqqbLw1oXqkcrm7n3GxNb27s1WrLGt7whVytWo6jtCpbQo6ztClT63r+OGZh1a07V+7jKpjoN7/Oo7QpV8VXX7fdp1qVh/d/e9FBvv3m3Wx/Hurdc89e2/sO5O6JHy4+3ezXhHaS8fvmPnxqqQLg1imZR1d+89hGqTZdnZ/L+Mqad2Xrnhe4A9ZX6fVmbwblmW7zU3jFdjetkTsix/Dnxu/nk/1l8F1KHMz0vM5dTAk5Vk3IXp+V9BEARBEARBEIQ6JZ65FQCeNb9g6gzghuntyYIgCIIgCIIgCA2G6LkVkGX5HeCd+s4hCIIgCIIgCELl5Ab6oqc7RfTcCoIgCIIgCIIgCA2e6LkVBEEQBEEQBEFoCIyi57YqoudWEARBEARBEARBaPBEz60gCIIgCIIgCEJDIJ65rZLouRUEQRAEQRAEQRAaPNFzKwiCIAiCIAiC0BAYDfWd4K4mem4FQRAEQRAEQRCEBk/03AqCIAiCIAiCIDQE4pnbKonGrXBXcwjsVd8RKqRO+rO+I1TpSPt59R2hUrk6u/qOUCWNTqrvCJUq0ijrO0KlHO7yryYw3r3VSq7i7q1XgLWRGfUdoVKzdnvWd4RKvTs4vb4jVOmnHQH1HaFSTY2a+o5QpUC3gvqOUKmzee71HaFSfmjrO4Lw/4Bo3AqCIAiCIAiCIDQEd/nF5PomnrkVBEEQBEEQBEEQGjzRcysIgiAIgiAIgtAQiGduqyR6bgVBEARBEARBEIQGT/TcCoIgCIIgCIIgNATimdsqiZ5bQRAEQRAEQRAEocETjVtBEARBEARBEAShwRO3JQuCIAiCIAiCIDQAsmyo7wh3NdFzKwiCIAiCIAiCIDR4oudWEARBEARBEAShIRBfBVQl0XMrCIIgCIIgCIIgNHii51b4n/HOqlcZMjiSIrWa8eOjOR572qpMv749WLnyBVQqW2JiTvHsxDkYDAaeeuph5s2dAkBhQRFTpy/i5MmzdyT3ktdXsW//YTw93Pn563X/+Pzc+4US/Oo4UCpI+2YnNz78yapM8GvjcI8Kx6jWEj/rAwpPXQGg2aopeA7ohC4jl9h+0SXlvYZ1o/HcJ3BoEcTJoQspPHGpVhlbLhuDV1QYBrWGczPWkm+ef1n2TXxot34mtu7O5J+6wpmpHyLrDHgP7kTIgsfBKCPrDVx84QtyD18AwMbVkdarJuF0b2OQ4Wz0WvKOxtUoW5tlo/ExZzs5Yy15p65alXFo4kPY+pnYujuRe+oqJ8zZADy7t6HNa88g2SjRZuVz6OFXS7K1XzUJl3sbgQwno9eRU8Ns5XV87RkCojqiV2s5Oms9ORVkbTZ2AC2eHYxzsD+/tJ2ENqsAAJfmAXR6ZxLu7ZtyZsX3XFz3R62ygGnZ+UaFYlBrOVHlspuByrzsYqeuRtYZCJkyjMB/9QBAYaPEuUUQ29tMRJdTSId3J+E7IAxtRh77+syvdc62S0fjZ84ZO3MtuZXkjFg3o6SOj08z5bRxcSBs9VQcgrxR2Ci5tPY3rn+7t9aZyur02tMERYaiV2s4EL2BrArytRw7gNYTBuMS7McP7Z5DY67Xm7w6hjDot5f567kPuPb7kTrJZdOuM/YjpoBCgW7fZjR/fGs5PKw79g+PAdmIbDBQvGkthjjzftrBCcexc1A0agqyjPrTtzBcOlcnucoa8dI4OvQLR6vW8sncD0g4Y71vuWnky+Pp+Vg/JrcdBUCrrm2ZsWEBGYlpABzbcohf3v+hTnLZtO+M/cippmW39w80v1ew7P41FoxGZKOB4o1rSpady1sbkYuLSoYVvjylTjKV1eXVp2lkXuf+it5A1umrVmXuHTOANhMG4xrsx6Z2z6HJLl3n/Lu1pssro5BslGiy8tny6LJaZ2q+bCxeUeEY1BrOz1hNQYXHCV/arJ+FjbszBaeucG7qB8g6PY7NA2n13lRc2gdzZfkmrq/9FQCHZoG03VB6bLO/x5erb3xH4obb2/859YrA9/lJSEoFOT9sJWuD5fqiCmlEwPJo7No2J2PVF2R9+p+SYf6vz8K5XxcMmTlcGVZ3ddph6TP4m/dvx2auq/C44NjEhy7rpqNydybn1BWOTFuDrDNg6+ZExDsTcWrqh0GjIyZ6PXnnEwFoNmEwTUf1Q5Ikrny9i0sfbalWHvd+oYS8NhaUClI37uTGhz9blQleOg6PqDCMai1xMz8sOSepbNymLz6Nx4BOyDo9xVdTiJu1GkNeUcn0VEHehO97h2tv/UDS2l9qugjrn/gqoCqJntv/RyRJKrjFcHdJkqaU+T1QkqQfzT+HSpI09Dbm+bIkSXNrnrZmhgyOpEXzYO5t05PJkxew+sPlFWXh00/eZeSoKYSGRXHtWiLPPP0YAFevXCcy6lHCIwaw7PV3Wbdm5T8ducTwoQNYt2rpnZmZQkHI689yduQyYvvMwnt4TxxaNrIo4h4Zjn1IAMe7T+PSvLWErJhYMiz9+z2cHfGa1WSLLlzj/Pg3yDtY+wsCXlGhOAT7c6DrTM7P/YhWb4yvsFzzJSO5vv4PDnSbhS6nkMARkQBk7zvF4X7zORy1gHPR62i9alLJOC2XjiFz9wkO9pzNoch5FF28UaNsPlGhOAYHsLfrLE7P/Yh2b0yosNy9S0ZwZf3v7O0WjT6ngMbmbDaujrRdMY6jz7zJn33mcfzZd0vGabN0NOm7Y9nXcw5/Rs6noIbZyvOP7IhLiD9bus8hZt4nhK8YW2G5zCMX2ff4cgqvp1t8rs0uJHbJl1xc93utctzkExWKU7A/e7pGc2ruR7SrpF5Ny+4P9nSbjS6nkMYj+gFwec1v/BW1iL+iFnF+2bdkHjiHLqcQgMRv93L4yRV1ktM3KhTnEH92dYvmxNyPaL+y4pxtlozg8vo/2N3dlLOJOWfTsQMpuHiDfVEL+fuRV2nz0igkW2WdZAMIjOyIS7A//+0xh0PzP6HL8jEVlks/cpEdTyynoFy9AkgKibDnnyB5z8k6y4WkwP7p6RS+s5iC58dje18/FIFNLIroz8ZQ8OJECl56DvWnb+EwdnbJMIeRU9GdPkLB4nEUvDgJQ9K1ustm1qFvOH7BASzsO43PF6/l6WUTKy3btH0zHF2drD6/eOQcLw2dy0tD59ZZwxZJgf0zMyh8exEFi8Zh2zUSReA9FkX0Z2MoWPIsBS9OQv3JWziMm2MxvHDFHApenPSPNGyDIjviGuzPf3rO4cCCT+hWyTqXduQi2560XudUro50fX0MO8es4r+RC9kz6YNaZ/KMCsMhOIBDXadzce56Wr7xbIXlQpaMJHH9bxzuNgN9TgEB5n2xLqeA+Oc/LWnU3qS+lMTRqHmmfwMWYFRrSf/j8O2FVCjwe2kKic++yOWhz+E6rA+qZo0tihhy8klduo6sT/5tNXruf3ZwffwLtzfvSviZ92/bus0mZu7HhK4cV2G5dkueIn79ZrZ1n402p5Cm5v1bq5kPkXMmgZ2RCzk6fS0dXnsGANd7G9F0VD/2DHmBnZELCRgQjlOw/60DKRSELJ/AmRHLON47Gp+Hrc9JPKLCcAgJIKbbdOLnrqPZyom3HDdn70mO940mNnIO6svJNJrxiMU0g18ZQ/au2JosOqEBEY1boSx3oOTIKMtykizLj5p/DQVq3Li9Ux54YBBfbfwRgEOHY3Bzd8Pf39eijJeXBxqNhri4ywDs2LGPRx42/UkHDh4lJycXgIOHYggKCrhj2TuFtsfN1eWOzMs5rDnqqylorqUi6/Rk/PcvPAd1tijjObgz6T+YepoKYuKwcXXC1tcdgLyDZ9FnW18jUcfdoPhSUp1k9BncmZQf9pnmd8w0f5V5/mV59GxL2q8HAUj+fi8+Q0x/h6FIU1JG4WgHsulnpbMD7t1ak7RxFwCyzoC+zJXc6vAb3Ikb5mw5x+KxcXXEroJsXj3bkvLrIQASv9+H35BOAAQ+0oPUPw5TfCMTAG1GHgA2zg54dmtN4sbdt52tvMDBEST88CcAWTHx2Lo6Yl9B1pzTCRQlZlh9rsnMI/vE5ZIe59ryGxzBDXOenGOmPBUtO+9yy87fvOzKCny4O0k//V3ye9bB8+hyqrx2V23+gyK4/r05Z0wVOXu0Jfm3MjkHm3PKpvoEUDrZo8spQNbX3VX2xoMiuPLjXwBkxFxC5eaEQwX5sk8nUFhBvQK0GjeQa38codi8/tUFZUgrjGlJyOnJYNCjO7wH27AeloU0xSU/Snb2IJs3TntHbFq2R7dvs+l3gx7UhXWW7aawgZ35+z+mfdvl43E4ujjh5mO97CSFgscXP8P3y7+s8wwVUYbcizH1RumyO7Qb2/DuloXKLjuVPSU7tjugyaAILpnXufQq1rmsMwkUVLDOBT/cnYTNRyhMMu33ijNrv955D+5Mqvk4VfVxoh3p5uNEyvd78TYfJ3QZeeTHXkLW6Sudh0evdqbjZSXb0a3Yd2iJNiEJ3fUU0OnJ+30fzv27WZQxZOVSfCoO9Nb7WfXR0xhz829r3pUJHBTBNfP+LbuK44JPj7bcMO/frn3/J4Hm/ZtryyDS/zwDQEF8Eo6NfbDzdsWlRRDZx+IxqLXIBiMZB84RONR6312eS1hziq+koLmWhqzTk/7zfutzkkGdSft+j2meMXHYuDpi6+te5bg5e0+AwbTfzT92EbsAr9LpDe6M5loqRReu12TR3V1k45371wCJxu3/Q5IkOUuStFOSpBhJkk5JkvSQedAKoJkkSbGSJL0pSVJTSZJOS5KkAl4FnjAPe6J8j6y5XFPzz89LknRBkqQdQKsyZZpJkrRFkqRjkiT9KUnSvXX1NwUF+pN4vbRxdSMxmaBAy6uGGRlZ2NraEhHeAYBHHrmfRo0DraY1buyTbNm6u66i3VXs/D3R3ig9UGuTs1D5e1mUUfl7okkqLaNJzkQVYFnmH80Y4FHS+Ls5f7sAT4sytp4u6POKkM0HL01SlkUZnyGd6frXKkK/XsjZ6LUAONzjizYzj9bvTabLjhXcu2qSqfFbA/YBnhbZipOzsK8gm65MtuKk0jJOzQKwdXPivv+8SI9trxP0WC+LbB3em0yPHctpv2oiyhpmK8/B35OipNKs6uQsHAI8ajXN2rAP8ERdrWVXWGbZZVqVUTio8OnXkRTzidc/kbO43HIrn0FVLqc6uTTnlU+34twikAEn1tB39xucfuHL0kZcHXDw9yhpJAAUJmXh4F/9enXw96DxkE7EfbmzzjIBSB7eyFlpJb8bs9KRPKz3GzbhPXB+/VMcZy1D/elbACh8AjDm5+Iwfh7OL68z9eiq7Os0H4C7nydZZfZt2SmZePhbZ+w/egixO46Qm55jNax5eCte2fw20Z8/T2CLxlbDb4dp2ZX2dpqWnbdVOZuIHjgv/wzH2ctQf/xWmSEyTvPewPmVtdj2vb9OMpXlWH6dS87CsQbrnFuIPyo3Jwb/8DzDNr9Gs0d71jqTXYAnmhofJ6zLVMX34R6k/bT/tjPa+nmhTyld3/QpGdj63bljaUXsAzxQJ2WV/G7av1nWZcX7N1OZ3DPXCBxqakB6hDXDsZE3DoFe5J2/jlfXe1F5OKN0UOEXFYpj4K3/VlWAJ9qksuck1nWkCvBCk1S2rrOwC/Cq1rgAfk9Fkr0rBjBd8A6aNpxrb9XRXRfCXUk0bv9/KgYelmU5HOgHvC1JkgQsBC7Jshwqy/K8m4VlWdYCLwLfmYd9V9mEJUmKAJ4EwoBHgLKX4DYA02VZjgDmAmvq6g8yxbckV3BCOXLUFN5+62UO7P+NgoJC9OWulvbt052xY59i0eLX6yra3aWC5VT+xLuiZVmXJ+e3Vo35V1CkbJn0zUc42HM2J8e8RbMFT5hGsVHi0j6YG19s53D/hRiLimk6/aEKJlQz5dezihbfzWySUolrxxCOjlrJ4SeX03z2IziFBKCwUeLaPpiEL7azv/8i9EUaQmqbrcLFeCfr0ZJUQaDqLLvyZfwGhpN95ELJLcl1rjrrfxV17NuvA3mnE9jecQp7oxbS/vUxJT25dROvdttnp1dGcXzZt8jGul4XKspl/ZE+Zj8Fi8dR9MFL2D9sulVeUipR3tMC7e5fKXj5OWRNMXb3P1nH+ap3nHD39aDT0G7s+Nz6GcuE05eZ2+M5Xhoyh52fb2bGhgV1FKyCzyqoU/2x/RQsGkvR+y9i/68xJZ8XLJ1JwUvPUfjWIuyiHkLZqn3d5CrJV7t1TlIq8O4QzI5n3mL7iJV0nDUc15Bq3LJa9VRvHanC+q7m1G1t8B7YibRfD9xGtsrnf2ePpdYq3n+UL1TBiObcFz74BZW7E5E7XqfZuIHknr6KrDeQH5fExQ9/ped3i+jxzQJyzyRgrKA3uoJAFczq1vtbWZarNW6jmY8g6w2k/9vUW91k3hMkbfgNY1Gx1bgNitFw5/41QOKFUv8/ScDrkiT1BoxAEOBXR9PuBfwky3IRgCRJv5j/dwa6Az+U2blW2DUlSdJEYCKApHRDobB+7glg8nOjGT9+JABHj8Za9MIGNQogKTnVapyDh47RN9L07MWA/r1p0SKkZFj79q1Zv+5Nhj34NFlZ2dX/ixsQTXImqqDSHgFVgCfa1CyrMnaB3ty8GcouwAttimWZutZo7EACR0UBkBd7CfsgL3LLzF+TYlkfusx8bFwdkZQKZIMRu0BPqzIAOQfP4dDUD1tPFzRJmWiSMsmLiQcg7ddD3FONBuQ9YwfSeJTpOa0cc7ab7AOs56vNzMe2TDb7QE+KzWWKkzPRZeVjKNJgKNKQdfA8Lm2bkHXwPMVJWeSas6X8eohm0x+sxpKz1GzMAIJHmp6NyjpxGcdAL25e73YI8KQ4xbon6p90z9gBJcsuN/YyDkFe3FxalS87pzLLzrruA4db3pJcF5qOHUCTkTfr+DL2ZXocTMut6pwOAV4lZRo/2Zf4D/4LQNHVVIqupePcIpCc47f/krWWY/rT3FyvmbGXcQr04mY/n1OgJ+rU6terV8dgeq6dBoCdpwtBUR0xGowkbjl22/kA5Ox0JM/SR0EUnj7IOZmVljdcPIXCNwDJ2RVjVjpydjqGy+cB0B3Zh939T9Uqz02RTw+mz1P9AbhyIh7PwNL9n4e/Fznl9n9N2gbj19SflXtXA6BysGPFng9Z2HcaxQXqknIn98Tw9NJncfZwoSC7dreOylkZSJ4+Jb/fctldOIXCNxDJ2RW5IK+krJyfg+7YXyhD7sVw4VStMt07uj8tzetchnmdu8kpwJOiGqxzRcnZ3Mg6iV6tQa/WkHLwPB5tmpB3OaVGmQLHDiJwlKku82LjsSuzL67oOKXLzCt3nKj+scwzKpT8U1fQpefeunAldCkZ2PiXrm82/t7o0v7ZY2lFQsYOoKm5LrNjL+MQWNq7Wf39m6m+9QVqjs1aX1J20JH3KLxm2hslbNpDwqY9ALRd9ATq5MrX4ZJ5JWWiCix7TuKFtnyepEzsAr3KnJN4ok3JQmFrU+W4Po/3wWNABGcee6XkM+ewFngN60rTF57GxtUJ2WjEqNGS8mn1Xn4lNAyi5/b/p5GADxAhy3IokArU9B4wPZbrT9nxK7o0qQByzD2/N/+1rmjCsixvkGW5kyzLnSpr2AKsXfcFnToPpFPngfzyy1aeHml6PPi+LuHk5eaRkpJmNY6Pj+lgqFKpmDd3Khs2fAVA48aB/PDdR4wZO7Pkmdz/RQWx8TgEB2DX2Nd0ZfqhnmRtPWpRJnvrEXwe6wOAc3gL9PlF6NL+2UZR4mfbOBy1gMNRC0jffAT/x3oD4Bphmr+2gvln7z+L7wNdAQh4vA/pW0x/h0PT0us0Lu2DkWxt0GXlo03PRZOUiWMz0/PUHr3aUXgx8ZbZEj7bxl9RC/kraiGpm48SZM7mHtEcfX4RmgqyZe4/i/8D9wHQ6PHepJqzpW45ikfXe5GUChQOKtzDm1MQdwNtei7FSZk4mbN592p3Wy+UuvT5dnYMWMyOAYtJ2nyUe8y3PXuGN0eXr6b4H67H8hI+217yEijTsjPlqXrZnSm37EobXTYupmeTU2vZECvv6mfb2dd/Efv6LyJly1EaP27OGd4cXSU5M/4+Q8Cw0pwpW02Z1Dcy8O7VDgCVtxtOzQIoSrDeF9XExc938MeA5/ljwPMkbjlGsPm2Tu/wZmjzilDXoF5/7jqbn++L5uf7orn222EOL/q81g1bAMOVCyh9g5C8/UFpg22XvuiOW16EUPiWXoBU3NMcbGxNjbO8bIxZ6Sj8TS+DsWkTjjEpodaZAHZ9taXkBVAx2w7T/RHTvi0krAXq/CKrW49P7o5hVucJzOs5mXk9J6NVa1jY13QxwLXM87nBHZsjSVKtG7YAhivnUfqVWXb39bvFsmtRsuxQ2YO9+c4AlT027TphTLxa60znv9jBLwOf55eBz3Nt67GSW4l9bmOdu7b1GL73tUJSKlDaq/AJa0ZuXM3f0ZD02daSlz1lbD6Cn/k4VfVx4gw+5uOE/+N9yNhSvTeD+z3ck7Sf/qpxxrKKT11E1TQQ20Z+YGuD6/29Kdh5sFbTvB2XP9vOrv6L2dV/MclbjtLEvH/zqOK4kP73WYLM+7cmj/ci2XyeYOvqWPKCvKYj+5Fx8Dx680UfO29XAByCvAgc2pnrP9261zs/Nh6HkADsmpjOSXyG9yBrm2UdZW07iu/jfQHLc5KqxnXvF0qjacM5N3olRrW2ZFqnh7/Asc5TONZ5Ckkf/U7i+z81zIateOa2SqLn9v8nNyBNlmWdJEn9gJuvZcwHKnuzUflhV4FhAJIkhQPB5s/3AZ9LkrQC0/r1ALBeluU8SZKuSJL0mCzLP5hvg+4gy/KJuviD/ti8k8GDI7lwbj9FajUTJpS+hfPX/37JxOfmkZycytzZkxl6f38UCgXr13/J7j2m52mWPB+Nl5cHH3xguh1Zr9fTtdudeX/WvJdWcOT4SXJy8ogaPoop45/mXw8M+mdmZjByefHHtNn0ApJSQeq3u1BfvI7fMwMBSP1yG9k7Y3CPCif8wGoMag3x0atLRm+xJhq37m2x8XQh4tgGrr/1HWmbduI5pAvBSydg6+VK668WU3jmKueesn6rcnVk7jiOd1QY3Q69h1Gt5ezMtSXDOm5cyLnZ69GmZhO/dCPt1s8kZOET5J+6StI3phdF+Q67D//HeiPrDRiLtZyeWPpG4guLP6PtmulIKhuKE9Ispl0d6TuO4xsVSp9D72FUazg5s/SrmzptXMCp2RvQpGZzfuk3hK2fQcuFT5B36iqJ35ie4S6MSyJ9Vyw9d78Bssz1jbsoMH+NwpnFnxG6ZhqSyoaihDSLad+OlJ2x+EeFMvjAKgxqLUejS6+29/h6HsfmfERxag7Nxw+i5ZRh2Pu6MWDnClJ2xnJs7sfY+bgRtWUpti4OyEYjzZ8dwrY+80tOZGoqbcdxfKJC6XvoXdPXKM0szdN543xOzv4ITWo255ZuInz9dFotfJy8U1e5/k3p8+/+QzuTsfekxUvDAELXTcere2tUni5EHv+QuDd/5Po3e247p29UKJEHTTljy/RSdNk4nxM3c75mynnvwsfJPV2a8+Kqnwh77zn67F4JksS5pZvQZtXdS2Fu7IwlMKojD/39Nnq1lgPRG0qG9ftqLgfnfow6NYdW4wfSZvIwHHzduH/HcpJ2neDg3I/rLIcVoxH1xg9wmrPC9HU2f27BmJSAqu8wALR7fsOmUy9U3QeAQY+s1VK0tvQt8eqvP8Rh4iIkG1uM6ckUffJmnUc8uTuGDv3CWbl3NVq1hk/mle7boj97ns8WrCEnrfK7djoP6Ua/UYMwGAzoirWsm/5O3QQzGlF/9QFO81aWfI2S8UYCqn7mZbf7N2w69UbVcwDo9cg6LUWrTftXyc0DpxnmnimlEt2BnehP1c1XO92UuDOWoMiOPLL/bQxqLX/NLl3n+n85l/3zTOtc63EDaTdlGA4+bjy0YzmJu07w97yPyY1P4sbukzy0Yzmy0Ujcpj3kXLj1hcWqZO2IwSsqjPsOfYBBreXCzNK6bL9xERdmr0Obms3lpV/TZn00wQufIv/UFZLNxwmVjzsR21agdHEAo0yjifdzuFc0hgI1CgcVHr07cGHuhspmXz0GI6mvrqXxJ0tBqSD3x21o46/h/qTp3CLn2z9QenvQ9D/voXB2BKMRjzHDuTJkEsZCNYGr5uPYpQNKD1ea7fuSjPe/JvfHbbWKlLIjFr+oUAYefAeDWmPRC9t943xiZm+gODWH069tosv66bRZ+Bg5pxO4+s0eAFxaBNHpg8nIBiN5FxOJmf1Ryfj3fTwLlaczRp2B2EWfocutxqMj5nOStpuWmL6ecNMu1BcS8Tefk6R8uY3sHTF4RIUTfvBDjGoN8bPWVDkuQMjr41GobGn7nelt0wXH4ri0oJb1KTQYUn0+gyXcWZIkFciy7CxJkjfwK2ALxAI9gCGyLF+VJOkboAOwGVgN/CbLcjtJkjyBHcjMgwAAIABJREFUreZxlgO/AP8FfIEjQM8y03geeAZIABKBs7IsvyVJUjCwFggwT+dbWZZfrSqzjSrorlxB1Ul/1neEKh1pP+/WheqJ2nh3X1PTVPjA0d2hSFF3XylT1xzu8u/dM9691UruXVyvAA8Mqtnto3fSrN1u9R2hUu/2ubN3StTUTzvu3LcC1FRTvebWheqRv9s/9Mx/HTibZ/3247uFH9pbF6pHPVJ+vIuPFKWKD353x86N7bs+0SCWSVl391mmUKdkWXY2/58BdKukzIhyH7Uzf56F5cuhAAZWMo1lgNU3tMuyfAUYXLPUgiAIgiAIgiAItyYat//H3n3HN1X9fxx/naSbDjroYpY9ZQ8BtVCZoiJ+VRwoKCCKgz3dyFJxo4C4B+Leg6WgONhQ9l7de7dpkvP7I6G7hS7a/vw8Hw8eNLnn3vvOucm5OTl3CCGEEEIIIURdUEfPhb1c5IJSQgghhBBCCCHqPOncCiGEEEIIIYSo8+SwZCGEEEIIIYSoC2r5BRxrmozcCiGEEEIIIYSo82TkVgghhBBCCCHqAhm5LZOM3AohhBBCCCGEqPNk5FYIIYQQQggh6gCtLTUdoVaTkVshhBBCCCGEEHWejNwKIYQQQgghRF0g59yWSTq3olb71De0piOUaHunmTUdoUw9w5+v6Qilmt1jXk1HKJNbLT6gxUnXdILSWWtxvQF0MNV0gtL1cE+s6QhlMp3PrekIpXrYYq7pCKV657egmo5Qpit1Zk1HKJ2xpgOUbVuGT01HKFU/v7iajlCqmAT3mo4g/gOkcyuEEEIIIYQQdYGWkduy1O6f2oUQQgghhBBCiEsgI7dCCCGEEEIIURfIObdlkpFbIYQQQgghhBDlppQaqpQ6opQ6rpSaU8L0mUqpPfZ/+5VSFqWUj33aaaVUuH3ajqrIIyO3QgghhBBCCFEX1KJzbpVSRmA5MAg4D2xXSn2ntT54oYzW+nngeXv564GpWuuCV1IcoLWOr6pMMnIrhBBCCCGEEKK8egHHtdYntdYm4FPgxjLK3w6sqc5A0rkVQgghhBBCiLrAar1s/5RSE5VSOwr8m1gkTUPgXIHH5+3PFaOUcgOGAl8WeFoD65RSO0tYdoXIYclCCCGEEEIIIQrRWq8CVpVRRJU0Wyllrwe2FjkkuZ/WOlIp5Q+sV0od1lpvqWBcQEZuhRBCCCGEEEKU33mgcYHHjYDIUsqOpsghyVrrSPv/scDX2A5zrhTp3AohhBBCCCFEXaCtl+/fxW0HWimlQpRSTtg6sN8VLaSU8gKuAb4t8Fw9pZTHhb+BwcD+ylaPHJYshBBCCCGEEKJctNZmpdRDwK+AEXhHa31AKTXJPn2FvehNwDqtdUaB2QOAr5VSYOuTfqK1/qWymaRzK/7f6LzgboLCOmPOMrFjykqSw08XK9Ni3CBaTRiKe0gg33W4H1NiOgAeLYPo8dL91O/UjANLPuPoip8qlaX+gC6EPHMvGA3EfrKRiNe/LlYmZMG91A/rhjXLxPEpr5ERfsqW8cUH8RnUg9z4FPYMmJpX3nfElTSecRuurRqyb/gcMvaeqFTGS/HYohfZsnUbPt71+eajFRefoRrc9OQ9tBvQFVNWDmtmvEnEgdPFyty29H4aX9EcgLhT0ayZ8QamzBwAWvRpz8gn7sboYCQjKY3ltz1TZdmue/JuWg/oQm6WiS9nrCCqhGw3LZ1A8BXNUSjiT0Xx1YwVmDJz6HxjP66adD0ApsxsvnvsHaIPna2ybEUNeepuWg3oTG6WiW9nrCR6f/Gs1z83gaBOISilSDgVzbfTV5Brr8fqNKxAtm9mrCSqhGw3PDeB4ALZvpm+Im8bV7UuBdqS7WW0Ja3tbcm3BdqSJqP60maybbuaM7LZNeddUg5W3Xatd1V3/OffjzIaSP78VxJXfV5oulPzRgQtnopzh5bEv/g+ie98lTctcNEU3Af0wpKQzKkRD1ZZpgsce/TC/cGHUQYDWT//SNbaTwpNdx54LW633QGAzsoi7dUXsZy0tWOqnjse02ZibBYCQNoLSzEfOlCpPJ6hXWn01AQwGkhYs56YN74sVqbR0xPwHNgdnZXD6WmvkLX/ZP5Eg4G2Py4jNzqBE+OeBSBo6mh87xiMOSEFgMilH5H6285K5bwg9OkxhAzoQm5WDuumryK2hM/B0FceIOCK5ljNZqL3nGTj3Hewmi150wOuaM7ob5/ip8mvceyn7RXO4hXalWYL7kUZDMSu2UBkCfuwpgvuw3tgNyxZOZyY+jqZ4SdxCvalxSuP4OTvjbZaif1oPdFv/whAk8fvxntQD6wmMzlnYjgx9TUsqZmXNR9A8xcn432tbR+7b+CUvPKtVkzHpUUwAA6e9TCnZhA+aHqF8hXU85kxNBzYBUtWDlunriKxhO3aZuwg2o0fimdIAGs7TiInydaeBFzZjgHvTCX9XBwAZ3/azr6Xv6l0pgtc+/XAb84klNFI6pc/k/z2Z4WmO4Y0xn/BNJzbtyTh1fdJee+LwgswGGi09jXMsQlET36i0nmq47tT41mj8RnSC6xWchNSOPbo6+TGJFU6a42y1p5bAQForX8Cfiry3Ioij98D3ivy3Emgc1XnkcOSxf8LgQM749E8kF/6TmfXzLfptmRcieUSth9ly62LybDvKC4wJWWw57EPOLrix8qHMRhovmgCB+9cyJ5rpuA3sj+urRsVKlJ/YDdcmgexu+9DnJj5Js2X5F8gLu6z3zl4x4Jii808cpbD9z1H6j8Hi02rLiOHD2LFi89etvUV1S60C34hQSwKncLn897ifwvHl1jumwUf8MKw2bwwbDZJkfH0v2cIAC6ebty84F7eHv88zw2eyfsPvlxl2VqHdsE3JJCXQqfxzbzV3LDw3hLL/bTgI5YPm8vrw+aQEplAn3sGA5B4LpbVty3g9WFz+O21r7lxccmvrSq0HNAZ35BAXr9mOj/MfZvrni358/HrMx+xatg8Vg6dS2pkPL3sWatTqwGd8QkJ5NVrpvP9RbKtGDaPN4fOJaUaswUO7Ix780B+7judnRdpSzaX0JZknI3j91ELWB82l0Mvf0P35++runAGAwFPPsj5CU9wcvgkPEdcg1OLxoWKWJLTiHl2BYlvF+/IpXy1gXP3PV51eYpk83h4CinzZpE4/h5cBoRhbNK0cLboKJKnP0LS/feS+fEHeEyZkTfN/cGHMe3YRtJ9d5N0/71Yzp6pdJ7Gz97P8buf5tDAh/C+8SpcWhWuK88B3XEOCeLgVZM4M3s5TRY9UGi6/30jyD5+jqJiV3/H4aFTOTx0apV1bJsN6Ez9ZoG8e/V0Nsx5m4ELx5ZY7vA3f/H+gJl8OGguDi5OdBwdmjdNGRT9597Gmc37KhfGYCBk0QQO3/kse0MfxffGq3BtVXwf5hoSxJ5+kzk1awXNF9v2Ydps5cwz77P3mkfYP2IOAWOH5c2bsmUvewdMIfzaaWSfjKThwzdf9nwAcWt/49CdxfexxyYtI3zQdMIHTSfhx39I/OmfiuUroOHAzniGBPJN/+n8Pfttei8eW2K5uO1HWT96cV4ntqDYbUf4YfB8fhg8v0o7thgMNHhsMlEPPMbZGybgPnwAjs2bFCpiTUklfsmbJL9XvD0B8LprJKaTxT8jFc1THd+dIt/4lr1h09g7aAaJ63fSeNotVZNX1Fr/7zu3SqlmSqlKH79dxvL/qq5lV1bB166U6qGUerWmM1WX4KHdOfP5HwAk7jqOo6cbLv71i5VL3n+GzPPF7xOdk5BK0t6T6FxLsWnl5d61JVmno8k5G4PONRP/7Z/4DOlZqIzP0J7Efb4ZgPRdx3DwrIejPW/qPwcx23+1LSjrWATZJ0o7R7969OjSCS9Pj8u6zoI6Du7Bjq9sF807s/s4rh5ueDQovl1z0rPy/nZ0ccq7Tl+3G/oR/ss2kiMTAEhPSK2ybO0Gd2fPV7b33Pndx3HxcMP9ItkcXJzQ9mzndh0jOzXD/vdxvAJ9qixbUW0GdWfvl7asEbuP4+zphnsJnw9TwazOTmhd2gUPqyfb+d3HcSklW85lyla0LXEqZ1uSsOMYuSm20aiEncdwC6q67epyRWtMZyLJPRcNuWZSf9yC+7VXFipjSUwhO/wYmIu3ZVk79mNNSauyPAU5tGmHJTICa3QUmM1k/74Jp779C5UxHzyATre1bbmHDmBo0AAA5eaGY6fOZP9s/3HRbEZnFG8Dy6Nel1bknI7GZG+Hk777A6/Bha9T4jW4F4lf/gZA5u6jGD3r4eDvDYBjoC+eA3sQv2Z9pXJcqhaDu3Poyz8BiN59AmfPetQr4X13+re9eX9H7zmBe4H3V5dxgzn+83YyK9nOuXdtSfbpqLx9WMK3f+I9pHDdeQ/pRdwXvwOQvusoRq96OPp7kxublDdCas3IJuv4eZyCfAFI2bwXLLYRp7SdR/Oev5z5ANL+PYglqezPge8NfUn45s8K5Suo8ZDunPjCtpz4XSdw8qqHawnbNfHAGTJKaE+qk3OnNuSejcR8PhrMZtJ//p16A4u3Jzn7j6LN5mLzGwP8cLu6F2lf/lwlearru5OlwL7D6OZc+nV865LLeCuguuj/fee2ummt+9Z0hkuhtd6htX6kpnNUF9dAHzLtHRiArKhEXIO8aySLc6APpoj8nZQpKhGnwMI7cadAH3Ii88vkRCVUeEf//5lngE9exxQgOTqx1E7g6Ocn8fT2FQS0COaP92ynbPg3D8LVqx4PfvoEU79fRI9RV1VZNo8Ab1Ii869mnxqdiGdgye+5Uc/fz5ztb9KgRRD/vPdrsendbwvl6O97S5izirIG+pBaoB7TohPxCCg56w3PT2TajjfwaxnMtvfWVVumCzyLZEuNTsSzlGw3Pj+RGdWcrWhbklmJtiTk9lCiNlXddnUM8MUcnd9umKPjcQyoHe2Gwc8PS1xs3mNrfBxGP79Sy7sMvQ7T9n9t8wYFY01JxmPmHOq/uRr3aTPBxaVSeRwDfTEVaGNzoxJwLNYOFy5jiorPa6sbPTWeiEXvg7X4N+EG9wyn3bpXaPLCwxi96lUq5wXugd6kReW/79KjE3EvpT0BMDgYaTeqf94obb0Ab1oO6cG+jzZWOoutXvKzmKIScCryI41ToE/huotMwKlI2+zcqAH1OoaQvutosXX43z6Q5E27ajRfaTx6tyc3LpnsU1EVyleQW6B3sfbErYztWpIG3VsyYv1Cwj6ciVfrEm8fWiEO/r6Yo/NHis0x8Tj4l/6ZLcpv9iQSXlxdZT80Vud3pyZz7qD7jpU0GHU1Z5//tEryitrrv9K5NSql3lJKHVBKrVNKuSqluiil/lFK7VNKfa2U8gZQSv2ulOph/9tPKXXa/ncHpdQ2pdQe+zyt7M+n2/8Ptc/7hVLqsFLqY2U/Q1opNdz+3J9KqVeVUj+UFlQp9ZRS6n17ztNKqVFKqeeUUuFKqV+UUo72ct2VUpvtNz3+VSkVVOD5vUqpv4HJBZYbemG9SqleSqm/lFK77f+3sT8/Vin1lX09x5RSz5VVqUqpN+03dD6glHq6wPMlvl77VdHeUUptt6/7xvJtxrLCFH/qcow6lUiVGKZIkYuXESVXZWn19OnMFTzV+wFijkfQ5Xrbr88Go5HGnZqzetxSVt29mEEPj6JBSFAVZStpG5Zc9quZK1na+0HijkfS6frCv4yHXNme7reF8uuSNSXPXAXKU4/fzVzFS70mE3c8gg7X96m2THnK8dn9duYqlvWaTHw1Ziv5o1n+z2aDvu0JuSOU8IVV+EWqNrcb5fg8OHbuisuw68h4a6VtVqMRh1atyPr+W5IfGI/Ozs47N7fieUp4rmhdlZBZa41nWA/MCclkhRe/rkHchz9zoP8kDg2Zgjk2iYaPl3w6QlUELut9N3DhWCK2HSZi2xEAQp+6iz8Wf4ouoTNeBVGKb8uLvBcNbi60Wj2L00+8U2jkDCD4kZvRZivxX1XwVpZVkK8sfiP7V8mobWk5ytOeJIaf5steU/hh0HwOv7uOAe9MvfhMlch2qXXkdk1vLInJmA4ev6x5Kvrd6eyST9jZ437ivtpC0LhhFU1Ye9SuqyXXOv+VC0q1Am7XWk9QSn0G3AzMAh7WWm9WSj0DPAlMKWMZk4BXtNYf2y91bSyhTFegA7b7O20F+imldgArgau11qeUUpfyDbYFMABoD/wN3Ky1nqWU+hq4Tin1I/AacKPWOk4pdRuwELgXeLfA63q+lOUftucxK6WuBRbZ6wSgi/115ABHlFKvaa1LO6FivtY6USllBDYqpa4AjpbxeucDm7TW9yql6gPblFIbilw5DaXURGAiwETPXgxya1lyJY0dRMidAwBI3HsSt2BfLvw+6hrkQ3Z0cimxq1dOVAJODfN//XQK8sEUk1isjHOwHxcOjHIO8sUUXbjMf1W/MYPpc/tAAM7tPUH94PxfZesH+pBSxoUgtFWz54e/CZ14Pds/30xydAIZSWmYsnIwZeVwctthgts1Ia6Cv8j3HjOIHrfb3nMRe0/iFZw/EuAZ6EPqRbKF//A3/SeOYJf9sKqAto25ackE3h+7lKzkyh2GWVSPuwfRbbQta+S+k3gWqEePQB/SYkv/fGir5uD3/3Dl/SPY+3ml7qVeop53D6K7PVtEkWyel5Bt//f/0O/+Eeypomwtxg6ieSltiVsF2hKvdo3psWw8f9z5HKYSDpOrqNzoeBwC89sWh0A/cmNrR7thjYvD2MA/77HBrwGWhOKHWRpDmuMxbSYp82ah02yHz1ri4rDGxWE+fAgA05bNuI6uXOc2NyoBp+D8unIM8iW3SDtsiorHKdiPCzsgpyA/cmMS8R7eF69BvfAc0B2DsxNGDzeavTKV04++hDk+JW/++E/W0eK9xyqcsfPd19LR3p7E7DuJR4ERKPdAHzJiSn7f9ZlyE64+HmyY807ecwGdQhj++kMAuPp4EDKgM1azlRPryn9OsCkqAacCn0mnEvZPpiL16xTsi8ne/ikHI61XzyT+qy0k/fxvofn8bgnF+9oeHLrtyXLnqqp8ZTIa8B7eh/1DZ1Y4X5t7rqWVvT1J2GNrTy5wC/Ihq5TtWpLcAj8MRGzaS+9FY3H2ds+74FRlmGPicQhskPfYIcAPc1xCGXPkc+nannqhfXC7qifK2QlDPTf8l8widk6ZYyJluhzfneK//pN2H87j3AtrK5xT1H7/lZHbU1rrPfa/d2LrPNbXWm+2P/c+cPVFlvE3ME8pNRtoqrXOKqHMNq31ea21FdgDNAPaAie11qfsZS6lc/uz1joXCMfWib5wWexw+zLbAB2B9UqpPcBjQCP7PaQKvq4PS1m+F/C5/Xzcl7B1yC/YqLVO0VpnAweBpiUtwO5WpdQuYLd9Ge0v8noHA3PsmX8HXIDCVy8AtNartNY9tNY9SuvYApx4bz0bBs1jw6B5RP68g6a32A459enWkty0LLLL+IJcndL3HMc1JAjnxv4oRwf8buxP4q87CpVJ+nU7DW65BgD3bq0wp2WSW0N5a5utH65j2fA5LBs+h/B1O+gxyvbRbNq1JdlpmaTFFa8nv6YBeX+3D+tOrP3c5P3rdhDSsy0GowFHFyeadGlJzPGICmf798P1LB8+j+XD53Fw3Q662A9zbtS1JTlpWaSXkM2nQLa2Yd2It2fzCvbljhVT+XzqGySciq5wptLs+GA9q4bPY9XweRxZt4PON9uyNryQtYT3m3eBrK2v7UZCNZ3jvf2D9awYPo8Vw+dxuEC2RmVkK1iPba7Nr8eqcOK99awfNI/1g+YRUcm2xLWhL33fnsK2h98k/WTVbtfs8KM4NQvGsVEAODrged3VpG+s/EVvqoL5yGGMDRthCAwEBwdcQgdi+ntroTKGBv54PbmA1KULsUScz3teJyXaOseNbBd8cuzaDcuZ05XKk7H3GM7NgnCyt8PeN1xFyvpthcqkrN+Gz822Tohb19ZY0jIwxyYRufRD9ve6jwN9J3Jq8gukbd3H6UdfAsg7Jxeg/tA+ZB2p+JWw936wgY+HzefjYfM58etO2t1sO0c5sGsLTGmZZJTwvus4OpSmV3fip4eWFxqxeqf/NN7pN5V3+k3l2E/b2PTYexXq2IJtH+ZSYB/me2N/ktYVvvJy0rrtNPhfKADu3VpjSc0kN9bWeWy+bDJZxyKIXvV9oXm8QrsSPPkmjoxdjDXLVKFsVZGvLF5XdSb7eASmqEvr5JXkyPsb8i4AdfbXnbT4n227+nVrQW5qJlnlaE9cGnjl/e3bpTnKoKqkYwuQs/8Ijk0a4tAwABwccB8WSsZvl9aeJL78LmeuvYuzQ+4hZuZisrbtrVTHFqrvu5NLgaO1vAf3IKsS3wFqDTnntkz/lZHbgveLsADFz+bPZya/05930o/W+hOl1L/AdcCvSqnxWutNF1mPAyUfQHNJebXWVqVUrs4/hsVaYJkHtNaFjm+0j4ZeyjElC4DftNY3KaWaYetolvUailFKhQAzgJ5a6ySl1HvY6qus16uwjUIfuYSM5RK9cQ+BYV0Y+veLWLJM7Ji6Mm9av49msnP6W2THJNPyviG0fnAELv5eDNq4hOiNe9g5YzXODbwI++VZHD1c0VYrLScMY901szCnl/QbxkVYrJyct5r2ax5HGQ3EfLqJrKPnCLjbdnXXmA/WkbRxF/XDutHt7+VYsnI4PnV53uyt3piKV98OOPh40H3nKs69sJbYNRvxGdaLkGfH4+jrSbsP55Fx4DSHbi9+ZcCqNPPJJWzfvY/k5FTCRt7Fg/eN4ebrh1TrOgs69Ntu2g3owrzNr5CblcOamflXlp/w7mzWzl5FWlwyty97EBd3V1CKyENn+OKxtwGIPRHJkc17mPHLc2ir5t+1m4g+er601ZXL0d/20HpAF6ZtfglTVg5fzcx/z415dxbfzF5FelwKNy+bhLO7K0opog+d5bvHbKMtAx4ZhZu3BzfYrw5sNVt584aKjwKV5dimPbQc0IWHtrxIbpaJ72bkZ739vZl8P+st0uNSGPniJJzcXVEKYg6d5cf571ZLnqLZWg3owiP2bN8WyHbnezP5rkA2Z3u26GrMFr1xD0FhXRhmb0u2F2hL+n80kx0F2pI29rZk8MYlRNnbkvZTb8LJ24Nui+3b1WJh49AqukKxxUrMM2/S+O1nwWgg5Yt1mI6fpf7o4QAkf/oTRj9vmn31CgZ3N7Ba8R47klPD7seakUXwi7Nw63UFRm9PWmz5gPhXPyLliyo6d9lqIf31l/Fa/ALKYCD715+wnDmNy4gbAMj+4TvcxtyD8vTC4xHboZXaYiF58v0ApC1/BY+5j6EcHLFERZL2wpLK5bFYOff4Klp+9BTKaCBh7Uayj57D766hAMR/9Aupm3biNbAHHf5cgTUrhzPTX7voYhvOuwe3DiGgIed8LGfnvFG5nHanNu2h2YDOjPtjGeYsE+tmrMqbNvK9GayfvZqMmGTCFo0jNSKe0d88BcDxX7bz7ytVeAVdAIuV0/NX0/aTJ1BGA7GfbiTr6Dn8x9j2YbEfriN5407qh3Wjy19vYLXfagfAo1dbGtwSSsbB03RavwyAc4s/JnnTLkIWjkc5O9JurW3UNn3nUU7NWVlyhmrKB9Dyjal4XtkRBx8Puu54i/PLPiVuje1cZb8b+xH/zR8VrrqiIjbuoeHAzty01bZd/5qWv10HfjCDv2euJismmbb3DqbDgyNwbeDF9RsWE7FpL3/PXE3T63rR5u4wrBYLluxctjy4vIy1lZPFSvyi5QStXIQyGkj9eh25J87geet1AKR+9iNGX28arX0Ng7sb2qqpf9dIzt44EZ1RsVs4XSxPdXx3ajr/LlxbBKOtmpzzcZycXYH3nKhTVI2dl3iZ2DtvP2itO9ofzwDcsd1M+CGt9R9KqacAL631VKXUamCn1vpNpdQUYIrWuplSqjm2EWCtlHoZOK21flkpla61dldKhQIztNYj7Ot5HdgBrMV2qO5VWuvTSqmP7esaUUrep4B0rfUL9sfpWmv3gtOAV7GNqo7RWv9tPw+3tf2myfuAB7XWfyqllgLXaa07FsxnP7z5I631l/ZljrW/xrFAD631Q/b1/QC8oLX+vYScnYEPsB3C3ADYB8wu6/UqpRYBntgOm9ZKqa5a691lbb8vgu6slW/QYLJrOkKZeoaXdkR6zZvdY15NRyiTWy0+oMVJV+S3ssujtv++26HiA0XVrpNH7b7nom/TjIsXqiHnDpf1W3XN2qxq7krzl+JKczV0UP4jjiq3mo5Qqn7exW8nVFvEJLjXdIQy9Y36svbuZAvI+va5y/bd2PXGWXWiTgqqvd/iqt89wPP2zmAX4Bn78y8ADyjbLX4KXjbuNmC//ZDattg6dhdlP3z5QeAXpdSfQAyQUvZcF12mCfgfsFQptRfbIdAXrto8Dlhuv6BUacOOzwGLlVJbKfnc4UvJsBfb4cgHgHewnWN8sde7AHAE9tkPia7eYUchhBBCCCHEf8b/+5Hb2kAp5a61TrdfPXk5cExr/VJN56ouVfl6ZeS2YmTktuJk5LZiZOS24mTktuJk5LbiZOS24mTktmJk5LZqZH295PKN3N40p07USUG191vc/y8T7CO+B7BdzOn/+wH//7XXK4QQQgghhKhh/5ULStUo+6hloZFLpdQ44NEiRbdqrSdTy9gvpOVc5OkxWuvwksqX9HqFEEIIIYQQlVRH7z97uUjntoZord/Fdk/aWk9r3bumMwghhBBCCCFEWeSwZCGEEEIIIYQQdZ6M3AohhBBCCCFEXWCVw5LLIiO3QgghhBBCCCHqPBm5FUIIIYQQQoi6QEZuyyQjt0IIIYQQQggh6jwZuRVCCCGEEEKIukDrmk5Qq0nnVtRqzYwZNR2hRCm5RW/7W7vM7jGvpiOUaumORTUdoUw6Nb6mI5TKmhpb0xFKpTz8ajpCmeLvqr2fiawUx5qOUKbwfQE1HaGaA7qqAAAgAElEQVRUjqr2Hp7X15BZ0xHKlGM11nSEOquvT1xNRyjVpuQGNR2hVC2sppqOIP4DpHMrhBBCCCGEEHWBnHNbJjnnVgghhBBCCCFEnScjt0IIIYQQQghRF8jIbZlk5FYIIYQQQgghRJ0nI7dCCCGEEEIIURdoGbkti4zcCiGEEEIIIYSo82TkVgghhBBCCCHqAjnntkwyciuEEEIIIYQQos6TkVshhBBCCCGEqAu0rukEtZqM3AohhBBCCCGEqPNk5FYIIYQQQggh6gI557ZM0rkVdZZnaFeaPD0ejAbi16wnevlXxco0fmY8XgO7Y83K4fTUV8ncfzJ/osFA+59ewBSdwPGxCwEInjYavzsGYU5IBSBi6UekbNpZoXytF47FN6wrlqwcDj3yJmnhp4qVcWnSgI4rH8Wxvjtp4ac4MPl1dK4Fv6E9aD77VrBqtNnC0cffJ2XbEQAcPN1o9+L91GvbGDQcnPomqTuOVSjjBTc9eQ/tBnTFlJXDmhlvEnHgdLEyty29n8ZXNAcg7lQ0a2a8gSkzB4AWfdoz8om7MToYyUhKY/ltz1Qqz6V4bNGLbNm6DR/v+nzz0YpqX19Rf+7Yx9IVH2KxWhk1NJTxt15faHpKWgZPvPQW56JicXZy5Jmp42nVrDE5JhNjZy7ElJuLxWJlUP+eTB5zc5Xn27rnMEvf+war1cpNA3tz38iwQtPTMrOY99onRMcnYbZauWdEKCMH9AIgNSOLp1d+xvFzUSgUTz9wG51bN6uybH/u2MfSlR9jtVoZNeQa7rt1RKHpqWkZPPHy6ry6e3rKeFo1a0R0XALzl60iPikFg1LcPHQAd40cXGW5SuLcpydeUx5CGQ1kfPcT6R+uKTTddXAYHmNGA2DNyib5uZcwHz9Z0qKqhFv/HvjNnQRGI6lf/Ezy6s8KTXcMaUzAwmk4t29Jwivvk/zuFwAoJ0cafrAM5eQIDkYy1v1B4usfVkmmVgvH4RvWFWtWDgcfeYP0Utq6Diun5LV1Bye/hs61EHBzf5o+dCMAloxsjsxaTfrBMxicHen27dMoJweU0UjcD/9w6vnPy52t+bP34hPWFWuWiSOPvk5GCdmcm/jTdsVUHOu7kx5+kiMPvYbONZc6v3J2pPM3z6CcHFEORuJ/+Juzz39WbLkX4xXalaYL7kUZDMSu2UDU618XK9N0wX3UH9gNa1YOJ6a+Tmb4SZyCfWnxyiM4+nujrVZiP1pPzNs/5s0TcO9wAsYNQ5stJG/cyblnL307t3h2HD5h3bBk5XD00eWlbEt/2q7I35YF66u0+YPHDyforjBQiuiPNhDx1k8AhDwxBt9B3bHmmsk+HcORKcuxpGZetmyuLYJpt3Jq/vxN/Tnz3Nq8fMH3DSV43DC0xULihl2cWvDRJdcl1M7Pa1FXPjOGxgO7YM7KYfPUVSTsP12sTPuxg+g4fihezQL4oNMkcpLSAXDycuOaZRPxaOqPJSeXLdPfIunI+UrlqY72BODK7a9jychGW6xos4UdQ+ZWKqeovaRzK+omg4Emz97P0TueJDcqgXY/Pk/yum1kH8tvVL0GdsclJIj9/R+gXrfWNFk8icPXz8qbHnDfCLKOn8fo7lpo0TFvfUfMym8rFc83rAuuIYH83edRPLu3os1z97Fj2GPFyrV87E7OrfyJmG/+os1z4wm+YyAR768naUs4237ZAYB7+yZ0XDWFf/pPA6D1s2NJ+G0v4eNfQjkaMbo6Vypru9Au+IUEsSh0Ck27tuR/C8fzysjiWb9Z8AE56VkA3PDYGPrfM4RNb36Hi6cbNy+4l1X3LCY5MgF3X89K5blUI4cP4o6bb2Deghcuy/oKslisLFz+PqsWzSbQz4fRjz7BgN7daNG0YV6Z1Wu/o22LJrzyxBROnotk0fL3Wb1kLk6Ojry9ZC5uri7kms3cM2MB/Xt0pnO7llWXz2pl0TtfsXL+/QT4enHH3JcJ7dGBFo0C88qs/XUrzRsF8Nrs+0hMTefGKUu47qpuODo48Nx739CvcxuWTbuHXLOZrJzcqstmsbLojQ9YtXAWAX4+3D7lKUL7dKVFk/y6e+uz72nTvAkvP/4op85FsvCND1m9eDZGo5Hp42+nfctmZGRmMfqRJ7myW4dC81Ypg4H60x8l/tGZWGLj8H/nTbL/+Avz6TP5rycqmrgHp6LT0nHu0wvvOdOJGz+52vI0eGwyEePnYo6Jp/Ha18j47R9yT5zNK2JNSSVu0ZvUC+tbaFZtyiXi3lnozGxwMNLooxfJ2LKdnH2HKxXJN6wrbiGB/NPnEXtbN56dw+YXK9fisbs4t/JHYr/5izbPTchr67LOxLJr5FOYUzLwGdiFNssmsnPYfKw5uewe9TSWzByUg5Fu3z9DwqY9pO689B/yvMO64to8iB1XPoxHt1a0XDqRvcOLf6ENeewuIlf+QNy3W2m5dCKBdwwk6v11pc6vc3LZd/PTWDOzUQ5GrvjuWZI27iZtVzl+ZDQYaLZoAodHP40pKoEOPz1H8q/bySq0D+uGS0gQe/tNxr1ba0IWT+TAiDlos5Uzz7xPZvhJDPVc6PjLC6Ru2UvWsfN49u2I95CehIdNRZvMOPh6lbu+tue93gnsGT6vhPq6k4iVPxD37V+0XDqhWH0Vnd+tbWOC7gpj97C5WE1mOq2ZT8KGXWSfiiZ5815OLfwYLFZCHruTJo/cxKlnP75s2bJORLLr2pl526TPnpXE/7zNVv/9OuA7pCc7B05Hm8w4+pVz31YLP69FNR7YGa+QQD7rPx3/bi3ov3gs317/VLFyMduPcnbDbkZ8Xviz3eXhG0k4cIb141/Gq0UQ/RaO5afRiyucp7rakwt2j3qa3MS0CucTdYOcc1tLKaXqK6UevEiZZkqpOy5hWc2UUvurLl3Nq9elFTmnozCdjUHnmkn89k/qD+5dqEz9wb1I+OJ3ADJ2HcXBsx6O/t4AOAb54hXWg/hP1ldLvgZDexL9+RYAUncew8GzHk7+9YuV8+7fgdjv/wEg6rPNNBjWEwCLfUQUwODmDPZrBxjdXal/ZTsiP94EgM61YC7lV+5L1XFwD3Z8Zct6ZvdxXD3c8GhQPOuFji2Ao4tTXqZuN/Qj/JdtJEcmAJBuH/Wubj26dMLL0+OyrKuo8KMnaBIcQOMgfxwdHRh2TR9++6fwCP+JsxH07twBgOaNg4mIiSc+KQWlFG6uLgCYzRbMZgtKVW2+/cfP0jjAl0YBvjg6ODC0b1d+336gUBmFIjMrB601mdk5eLm7YTQYSM/MZuehk9w00PZ5cnRwwLOea0mrqVi2oydpEhxAI3vdDb26N7/9vatQmZNnI+ndxVZ3IY2DiYyJIyEphQY+9WnfshkA9dxcCWkSTGx8UpVlK8qpfVvM5yOwREaB2Uzmhk24XF34S6gp/AA6zTaKYTpwEKN/g2rL49KpDblnIzGfj4ZcM+k//477wCsLlbEkppCz/yiYzcXm15nZACgHB3AwkvchrgS/oT0uua2Ly2vrfsfP3tal7jiKOSUjb36XIN/812JvB5WjEYODsdwXUfEd0pPYz34HIG3XMRw83XAsIVv9fh2J++FvAGI++x3fob0uOr/1Ql3mZStXNNy7tiT7dBQ5BfZh3kN6FSrjPaQX8fZ9WPquoxi9bPuw3NgkMsNtRwdYM7LJPn4eR3u9+d89hMjXv0abbNvfnJByyZn8hvQk5rPNBV5vydvSVl+2bRnz2WZ8h/Ysc363Vg1J3XkMa5YJLFZS/j6I33Dba03avA8stkMsU3cew7nA9r8c2QryvqojWaejyTkfD0DwPYM599o3eXWZG1++fVtt/LwW1XRwd4598ScAsbtO4ORZD9cS6jXhwBnS7fVSkHerhkT8adu3pJyIwqORH67l/RGggOpsT/5fsVov3786SDq3tVd9oMzOLdAMuGjntjyUUnViNN8pyAdTVH5Da4pOwCnIp1AZx0AfTJEFykQl4BhoK9P4qfs4v/D9Er8s+Y+9jvbrX6bZCw9h9KpXoXzOQd5kRyTkPc6JSsC5aD4fD8ypmWj7jj0nMrFQmQbDetLnzxfp8tEcDk59EwDXpv6YElJp98oD9NqwhLYv3m/r/FaCZ4BPXscUIDk6Ea9AnxLLjn5+Ek9vX0FAi2D+eO8XAPybB+HqVY8HP32Cqd8voseoqyqVpy6IjU8isEF+HQX4+RCTULiT1aZ5Ezb8ZRt9Dz9ygqjYeGLiEwHb6OX/Js/nmtsn06drR65oW3WjtgCxiSkE+uZ/IfD39SImqfCX3NFD+3EyIoZrJz3N/2a8wKyxIzEYDJyPTcDbsx5PvPkpt85exlMr1pKZnVN0FRUWk5BEgF/huostUnetQxqzcWvBukvIq7sLImLiOHziDJ3atqiybEUZGvhhiY3Ne2yJjcfYoPTOa73rh5P997/VlscY4EtudFzeY3N0PEZ/v0tfgMFA46/eIOTPtWT9tZucfUcqnck5yIfsiPx2tiJt3QVBdwwkYdPuAnkVPTc+R/8Dq0ncHE7qruPlyuYU5EtOgbbNFJVYrPPk4OOBOTUjr4OVE5W/LylzfoOBrhuep8/+t0naso+03eU7NcQp0BdToWUn4FikTpwCfcgpuA+LTMCpSNvs1KgBbh1DyNh1FACXFsF49G5Hhx+W0O7LBdTrfOlti1OQT6HXW7AuLnCwb8sL9WUqsL1Lmz/j8Dm8+rTDwdsdg6sTPmHdcA4u/r4NvH0AiQW3/2XIVlCDkf2I+2Zr3mPX5sF49WlHl58WccXXT+PepXxtTW38vBZVL9Cb9AL1khGVSL1A70ueP+HgWULsHcsGXZrj3siPeiV8ti9VtbYnQJe18+mxbgnBY8KKlRf/f0jntvZaArRQSu1RSj1v/7dfKRWulLqtQJmr7GWm2kdo/1BK7bL/61vG8vMopcYqpT5XSn0PrFM2xdZXxvOhSqnNSqnPlFJHlVJLlFJ3KqW22cu1sJe7xT7vXqXUlspVT/GhrmL91JKGwzR4hfXAHJ9CZviJYpNjP/iZ8H6TODh4KrmxSTR+fFyV5SsWsKTRugJl4n7ezj/9p7Fv7Au0mG3b5MrBiEenECLeX8+2a+dgzcym2cM3VjCjPcZFchT06cwVPNX7AWKOR9Dletsv0AajkcadmrN63FJW3b2YQQ+PokFIUKUy1Xa6hF/QVZENet8t15OansH/Js/nk+/W07ZFUxyMtibXaDTwxfKFbPjwFfYfPcmx0+eqNl8Jm6/oZv5r7xHaNmvIhhVP8tlz01n8ztekZ2ZjsVg5fCqCWwb15bOl03F1ceadbzdVazhV5E14360jSE3P4JaHHmfNdxto26IpRqMxb3pmVjbTFr7GrIl34u5WdaPKJQQr/lwpnw2nbl1wu34Yqcvfurx5yjOaY7VybtSDnB5wJ86d2uDUsmlVhCoh0qW0dYUf1u/XgeA7BnB8QYFDUq2a7WGz+KvLJDy7tbBdZ6A8yS6hbSv63itYpsz5rVZ2XzuTf7vej0fXlriVM9ul1ElJAXSB/AY3F1qvnsWZJ97BYj+yRhmNOHi5c2DEHM4ueJ+WK6eXI1PJ+8zCRcooU8q0rGMRnH/9WzqtfZxOn8wn/cBptNlSqFjjR0ehzVZiv/zjsmbLm9fRAd/BPYj77u/85xwMOHjVY8/weZx65kPar5pWcrbS1MrPaxHlaONKsnf59zh51WPUrwvpMG4wCfvPYDVXZrSv+tqTnSMeZ/ugOey9YxENxw2hfp92lchZw7T18v2rg+rEKN1/1Bygo9a6i1LqZmAS0BnwA7bbO4dzgBla6xEASik3YJDWOlsp1QpYA/S4xPVdCVyhtU60r69LCevrW8rz2J9rByQCJ4HVWuteSqlHgYeBKcATwBCtdYRSqvhxJnZKqYnARIC59Tszql6zYmVMUQk4BeX/AuoU6EtudOGRndyoBJwK/DrsFORLbkwi3tddSf3BPfEa2B2DsyMGDzdCXp3CqUdexhyfP7oV98l6Wr1X/FyP0jQaN5jgu2y/BqbuOYFLQ18uLM05yJec6MKjU7kJaTh4uqGMBrTFinOwT7EyAMn/HMK1WQCOPh7kRCaQE5mQN4IR+/2/NK1A57bfmMH0uX0gAOf2nqB+cP5oRv1AH1JiSj/UU1s1e374m9CJ17P9880kRyeQkZSGKSsHU1YOJ7cdJrhdE+JORZU7V10R4OdDdFz++y0mPhF/38Jvafd6rjw7bSJg+0I6dOw0Ggb4Fyrj6V6Pnle0ZeuOfbRqVs4vx2Xl8/UiOiE573FsQgr+3oXPvfv29+3ce+NAlFI0CfSjob8PpyJjCfKrT4CvF1e0sn2RGtT7iirt3Ab4+RQahY2JT6SBT5G6c3NlwbQJgK3uho2bQcNA24hprtnMtIWvcV1oX67td6nNW8VYY+Mw+udvM6O/H5b44ofmObRojvfcGSRMm4M1tfoOy7dEx+MYmD9y7BDohyU2oYw5SmZNyyBr+17cruqJ6fiZi89QRMNxQ/LaurQ9J3Bp6EcKtlGlS2/r8t8D9do3od2L97Pn9sWY7ReqKcicmknS1oP4DOhCxuGyfwgKGjeUwDvzszkXaNucggqv15YtFQfPemA0gMWKc5AvJnv+nMiEi85vSc0k5a8DeA/oSuZFshVkikrAqdCyi+/DTFEJOAf7caFGnIJ9ybW3zcrBSKvVM4n/agtJP/9baJ7En2yHa2bsOQ5WjYOPJ+bEkt+XQeOGEHTntQCk7Tle6PXa6qKk+nLLqy+nIN+8OjEVqa+C80ev2UT0Gls70mzu7eRE5b9vA269Bt9B3dl3y9M1kg3AZ2AX0sNPkVvgO0BOZCLxP9nqNm33cbTViqOvJ7mXeOpNbfm8FtX+nmtpe8cAAOL2nsQ92JcY+7R6QT5kxCSXPnMRuelZbJm+Ku/x6L9fIu1cXBlzFHe52hOT/bOTG59K/E/b8ejakuR/DpUrq6gbZOS2bugPrNFaW7TWMcBmoGcJ5RyBt5RS4cDnQPtyrGO91vpC61Da+srKsV1rHaW1zgFOAOvsz4djO3waYCvwnlJqApA/DFOE1nqV1rqH1rpHSR1bgIy9x3AJCcKpsT/K0QGfG/uTvH5boTLJ67bh+79QAOp1a40lLYPc2CQilnzEvp7jCb9yIicnLyNt6z5OPfIyQN45uQDeQ3uTdeQsl+r8u+vYFjabbWGzift5O4G3XA2AZ/dWmNMyMcUW32EkbT2I//V9AAi69Rri7BeRcm0WkFfGo1MIytGB3MQ0THEp5EQm4NbCNjLqfVVHMo6W/8qEWz9cx7Lhc1g2fA7h63bQY5Qta9OuLclOyyQtrnhWv6b5mdqHdSf2RCQA+9ftIKRnWwxGA44uTjTp0pKY4xHlzlSXdGzdnDOR0ZyPjiU318zPm/8htE+3QmVS0zPItV+l88tffqd7pza413MlMTmV1HTbOUHZOSb+2X2AkMbBVZqvQ4vGnI2O53xsArlmM7/8tZtrenQoVCbQrz7/7rcdSpmQnMbpyFga+fvgV9+TAN/6nI60HY777/5jNG8UUGwdFc7WOoQzkTGcj44jN9fML1v+JbRP10JlCtXdr5vp1rE17m6uaK158uW3CWkczN2jhlZZptKYDh3GoXFDjEGB4OCA27UDyf7j70JljAH++C55mqRnFmM+V7mrhF5M9v4jODZtiEPDAHB0wH1YKBm//XNJ8xq8vTB42E6zUM5OuF3ZDdPJih0xEPHur2wPm8X2sFnE/bytUFtnKaWtS956gAZ5bV0o8fa2zrmhL53emcGBya+TdTL/BzFHXw9bRwUwuDjic3UnMi+hXYl69xd2XzuT3dfOJOGXbfjfGgqARzdbttySsv11gAYjbEeiBNwaSsKv2wFIWLejxPkdfT0x5mVzov5VV5BVzjYvfc9xXEKCcC6wD0tat71wrnXb8bPvw9y7tcaSmklurO0LesiyyWQdiyB61feF5kn65V88+3cCwKV5EMrJodSOLUDUu7+y69qZ7Lp2Jgm/bCfg1mvyXm9p+y1bfdm2ZcCt1xSqr9Lmv3AxJueGfvgN703c17bDf70HdKHRQyM5cM9S2zm5NZANoMFN/Yn95s9Cy0r4ZRv17XXp2jwIg6PDJXdsofZ8Xos6+P4Gvhoyn6+GzOf0Lztp9b/+APh3a4EpLZOsEuq1NE6ebhgcbV/n2twRSvS/h8ktcH2OS3E52hODmzPGei55f/uEXkHG4Uv/flfbaKu+bP/qIhm5rRsu9XIzU4EYbKOoBiC7HOvIuIT1lZWj4El51gKPrdjfZ1rrSUqp3sB1wB6lVBetdfl/xgSwWDn7+Fu0/vhJMBhJWLuB7KPnaHDXEADiPvqVlE078RrYnY5/rsCancPpaa9edLGN5t+Da4cQ0BrTuVjOzHmzQvESNuzGL6wrV/77CtYsEwcfzV9O54/ncGjaSkwxSRx/9mM6rnyU5nNuIy38NJGf2H7Z9h/Rm8BbrkabLVizTeyf+HLe/EfmvUuHNx5GOTmQfSa20LIr4tBvu2k3oAvzNr9CblYOa2bm31ZnwruzWTt7FWlxydy+7EFc3F1BKSIPneGLx94GIPZEJEc272HGL8+hrZp/124iugId7vKa+eQStu/eR3JyKmEj7+LB+8Zw8/VDqn29AA5GI/MeuJtJjz2PxWLlpsFX07JpIz77cSMAt14Xxslzkcx/YSUGg4EWTRry9JTxAMQlJfPYC6uwWK1obWXwVb25pnfXslZXoXxz7x3FA4tWYbVqRob2omXjQD5b/5ct36C+TBw1iMff/JSbZzyP1jDlzhF4e7oDMGfcTcx97WNyzRYa+fvwzAOjqzTbvAfG8MBjz2OxWhmZV3e29/6t1w3k1Lko5i9bZa+7YJ5+9D4Adh88xg+b/qJVs0bc8tDjADxyz/+4qmfnKstXiMVK8rLX8Ht5KRiMZPzwM+ZTp3G7yXbbp8yvv8fj3jEYPD3xmvGofR4Lcfc+UG154hYuJ/itRSiDgdSv12E6fgbP264DIHXtjxj9vGn82WsY3N3QVk39MSM5c/1EHBr4ELB4BhgMYDCQ/ssWMjdX/vzghA278Q3rxpX/vooly8ShR9/Im3bFx3M4XKitm0LzOaNJDz+V19aFTP8fjt7utFlq+3xcuEWHU4A37V+djDIawKCI/fZvEtbvKjFDaZI27MInrBs9/nkda1YOR6fkZ+vw8TyOTXsTU0wSpxd8SNuVU2k6ZzTp+08T/cnGMud39PemzasP5WWL/+4vEteX85ZxFiun56+mzSdPoIwG4j7dSNbRc/iPsd3aKvbDdSRv3En9sG50/usNrFk5nJz6OgDuvdrS4JZQMg+epuP6ZQCcW/wxKZt2EffpJpq/OJlOm15G55o5+ejF93sXJG7YhU9YV3r+85rt1kdTludN6/jxXI5OW4EpJolTCz6i7cqpNJtzO+n7TxFt35Zlzd9+9QwcfDzQuWaOz12dd9Gflovuw+DkQKe1ts9z6s6jHJ9d/ND+6sxmcHXC++orODZzVaF1Rq/5jdYvPUD335dhNZk58shyyqUWfl6LOrdpD40Hdua2P5dhzjaxeVp+HQz5YAZ/zFxNZkwyHe4dzBUPjMCtgRc3r1/Mud/28sfM1dRvGUzoK5PQFitJxyLYMqNyp2VUW3vSwItO784AbIfux3z9J4m/7a1UVlF7KV3Oqw+Ky0Mp5Qvs0lo3VUqNAu4HhgM+wA6gN9AQeFFrfY19npeA81rrZUqpccA7WmullGoG/KC17ljKusYCPbTWD9kfl7a+vqU835bCh0f/bn+8QykVemGaUqqF1vqEvcxuYJzWek9Z9bCj0cha+QZNya3cRZyq24+uVXz53Sq0dMeimo5QJp1a/LDT2sKaGnvxQjVEeZTjQik1IP6u4rcNqS2yUhxrOkKZziZc+u1kLjdHVXvPCXMy1N5sADnWUg+gEhcR7HN57gpQEb+lVt8V2yurRa7p4oVq0MCYz2rvl6cCMlc8etm+G7tNeqVO1ElBMnJbS2mtE5RSW+238PkZ2AfsxXba/CytdbRSKgEwK6X2Au8BbwBfKqVuAX6j8GhseXyN7Rzcousr7fm2l7jc5+3nAitgo305QgghhBBCCFFp0rmtxbTWRW/zM7PI9Fyg6PXMryjw91x7udNAiaO29unvYescX3is7esqur7Snv8d+L3A49CSpmmtR5WWQQghhBBCCHERdfQqxpeLXFBKCCGEEEIIIUSdJyO3/yFKqSHA0iJPn9Ja31QTeYQQQgghhBDlUEevYny5SOf2P0Rr/Svwa03nEEIIIYQQQoiqJp1bIYQQQgghhKgLrHLObVnknFshhBBCCCGEEHWejNwKIYQQQgghRF0gI7dlkpFbIYQQQgghhBB1nnRuhRBCCCGEEELUeXJYshBCCCGEEELUBVpuBVQW6dyKWs3JwVLTEUqUk6tqOkKZ3GrxQRk6Nb6mI5RJefrVdIRSqcyUmo5QKoObV01HKNOJU741HaFU7o6mmo5QJgO194uUo6H2nntmstbedhjAWIu3a+3dqjYxiR41HaFUvV1q734iPte1piOI/wDp3AohhBBCCCFEXSAXlCpT7f5ZUQghhBBCCCGEuAQyciuEEEIIIYQQdYG19p5SUBvIyK0QQgghhBBCiDpPRm6FEEIIIYQQoi7Qcs5tWWTkVgghhBBCCCFEnScjt0IIIYQQQghRF8g5t2WSkVshhBBCCCGEEHWejNwKIYQQQgghRB2g5T63ZZKRWyGEEEIIIYQQ5aaUGqqUOqKUOq6UmlPC9FClVIpSao/93xOXOm9FyMitEEIIIYQQQtQFteicW6WUEVgODALOA9uVUt9prQ8WKfqH1npEBectF+ncijrL/ZpuNHxiAhgNJK5dT9ybXxQrE/zkRDwGdMealcP5Ga+QdeAEAAbPejRa8jAubZqC1pyf9QqZu47g0q4ZDRdOxuDmQu75WM5OeQFrelaF8hnyf54AACAASURBVLVfeA8Nwrpiycph3yNvkhp+ulgZ1yYN6LryURzr1yMl/DR7J7+OzrUA4NO3Pe0X3I1yMGJKTOPfm54BwMHTjU4v3o9H20agYd/UFSTvOFahjBdc9+TdtB7QhdwsE1/OWEHUgeJZb1o6geArmqNQxJ+K4qsZKzBl5tD5xn5cNel6AEyZ2Xz32DtEHzpbqTwX/LljH0tXfIjFamXU0FDG33p9oekpaRk88dJbnIuKxdnJkWemjqdVs8bkmEyMnbkQU24uFouVQf17MnnMzVWS6VI9tuhFtmzdho93fb75aMVlXTfAn7sPsvSdL7BarYwK68t9owYXmp6WkcXcV94nOj4Ji8XCPTeGMXLglZyKiGHWi+/klTsfk8CDo69jzIgBVZft310seX01FouVm68bxPg7C2+blLR0Hl/6Gucio3F2cmLBrIdo1bwpp85GMOPp5/OzRcXw0LjbGXPLDRXK0eLZcfiEdcOSlcPRR5eTHn6qWBmXJv60XTEFx/rupIWf4shDr6FzzaXO79oimHYrp+bP39SfM8+tJeKtnwAIvm8oweOGoS0WEjfs4tSCjy6a0zO0K42esrV1CWvWE/PGl8XKNHp6Ap4Du6Ozcjg97RX+j737Do+q2Bs4/p3ddFI3PSGBhFCkCKFJb5FqQ1DsBQuIKEWKgKggRbCgXkAI9ntBFHulIyhcKaEGaQFCSU82Cem7m93z/nGWJJtOCCX3nc/z5IHsmdnzy5wzs2fOzJktPHq2dKNGQ6vf3sWUoufM6PkAON/SlJA3x6Ft5ITxYhrxE5bUua0rK2LBaLytZXJiQtVl2jp6EnaeruTFxnN8vFqmfiN7EfrCcADM+UWcmv4R+cfO1zkWj36RNJ33FEKjIW3tFpKW/VAhTZN5T+M1QI33zORlFMSq5Ra+ZDxet3fGlHGJIwMmlaR3adOUsEXPoXGyRyk2Ez9zFfmHTl9RXOHzn0IXFYml0MjJicvIr6SMHEP9aLVyMvaeruTFnrU576rKr3V3ocWScbi0DAVF4dTkD8ndf4qw1x5DN7AziqmYwnMpnJq0HHNOAQCe/TsQPm80aDWkrtlK4rIfK8QSNv8pvKz7iyuzv6ry2nm60jJ6Mo4hfhgupnFizBLMl/JxDPEl8s/3KTyTBEDe/jjOvLwKAGFvR/jCp/Ho0QbFonBu0Zfof9tzXcoNAI2GyI2LMaRkcuyxNwFoMv1BvId0QbFYMGXkcGriMoypWZUe02tRjt53dSd06iicmwdzZOhM8g6r1y/CTkvEknE0aheG0GpJ+2YHiUsrntuVqet1k2N4MKHLppekcQgJIPW9NWR8+jOBM0fjdntXFKMJ44UULk77AEtOfq3iqUzzBaPxjorEUmjg2IQPq2hDfGkTXdouHxu/FMVkxn9kL5q8cA+gtiEnp39MnrUNCRl7B4EPDwAU8o9f5PjED7EYTHWOUyrRFTitKMpZACHEV8A9QG06qFeTt0pyWrLUMGk0BL/xHPFPzuHUwPF43t0Hx4gQmyRu/TrhEBbEyX5jSZy1nOAF40q2Bb3+LHk7DnAqahxxQydQdDoBgMaLJpCy+AvihrzIpY1/4ztmRJ3C843qgEtYIDu6TeLo1I9o+9YzlaZrNfth4qN/Y0f3yRRn5xHy8ABA7cC2WfQUMY+/zV99p3Hw2fdL8rSe/wTpfxziz15T+GvAdPJOJdYpxsta9OuAd1gA7/V7iR9nfczdC56qNN3v81azfOhMlg2dwaUkPd2eUDtLmRfT+PiBeSwbOoM/lv7APW9W/rdeKbPZwoLlX/DhvGn8FL2Y9dv/5sx527/1469/plWzUL5fsZAFU8eyeKXaUXCwt+eTRTP57sOFfLN8Prv2H+Hw8Su7AL1aw4cNZOWS+dd1n5eZzRYWfrSOFa88z4/vz2b9zv2cuZhsk+arDX/SLCSAb5fM5JM3JvLOFz9gMhUTFuzPN+/O5Jt3Z/LVWy/j5GhPVNf29RibmfkfRLNi8Wv8/MVSft/2F2fOXbRJ89Hqb2kVEcYPn37AwpkTWbTsYwDCQoP57pP3+e6T91m36l2cHB2J6t2tTnF4RUXiHB7Ivu4vEjc1mojFz1aaLmz2IyRG/8q+HhMozs4jwFpHq8pfeCaJA7dPU38GvYyl0EjG+r0AePRsg/fgLuwfMIX9fV8iYcXPNQeq0RAyfyynH5/L8QEv4HVPb5ya27Z17v074RgWyLHez3H+5eWELhxns93v6TspOm1bxqFvv0DSon9zfOBEsjfuxv+5e2tVbtXRRUXiHBbInm4vcmpqNC3eqrxMw2c/QkL0r+ztrpZpoLVMi86ncWj468T0n8r5Jd/S8t2xdQ9GoyFs4bOceGQ+h/tNxPue3jg3b2yTxHNAR5zDAjnUczzx01cS/uaYkm3pX//B8UfmVXjb0NmPk7jka2IHTiHh7a9oMvvxKwrr8nkT0/1F4qauJGLxmErThc1+lKToX4np8SLF2fkVzrvK8jeb/xSZ2w6xv/dEDkRNpSBO/VzL2nGE/f0mc2DAFArPJhMyYURJGYW/+Qz/PLyAg30m43tvL5xb2JbR5f0d6P4ip6eupNnl/VWTN/jF4WT/FcuBHi+S/VcsjV8sPbeKzqdy+PZpHL59WknHFqDxpBGYMi5xoOcEDvaZxKW/j1Uax7UoN4DgZ4eVlNdlCR/+xIEBUzh4+zQyN+8n9KX7K93ntSrHghMXOPHU2+TsPm7zXt53dUc42HOo/xQOD55OwOMDcQzxrTy2cnHW9brJcDaRuGET1Z87J2MpMnBp498A5O48xKlB44kbOgFDfCJ+z99XcyxV8I6KxCUsgN3dJnBi6ipaVnHt1Gz2o1yM/o3d3SdSnJ1PkPU4F55P48DwOeztP434Jd/R8l21nB0CvGj8zFBiBs9gb9+poNHgN7xHneO84RTL9fupWTBQ9gMmwfpaed2FEIeFEOuFEG2uMO8VkZ3beiSE8BRCPF9DmqZCiIdr8V5NhRBHq9n+pBBiWV3irI/8N5pLh+YYzydjvJiKYiom+5c/cR90m00a90HdyP5+GwAFB0+idWuEna8XGldnXLu2JfPrTQAopuKSu4yO4cHk71GLPW/nITyG1q3x8x/SmcRv/gQge/9p7NxdcPTzrJDOu1cbUn5R704nrPsT/6GdAQga0ZPU3/dSlKgHwJiRA4CdqzO67reQsOYPa+xmiq134OvqlkGdOPT9X2oMB0/j5OaCq2/FWA1lRnXsnBxQrLNiLh6Io8hafhcPnMYjQHdV8VwWe+oMoUH+hAT6YW9vx9C+3fhj936bNGcuJHJbe7WNDA8JIjE1g4ysSwghcHF2AqC42ExxsRkh6iWsWuvcoR0e7m7Xd6dWR0+fIzTAh8YBPtjb2zGkV0f+2HfEJo0QkF9oQFEUCooMeLi6oNXafiTsiT1JiL8vQX71c0wBYk/EERocSEhQAPb29gwd0Ittu2xHaM6cv0i3jrcCEN6kMYkpaWRkZtuk2X3gCCHBAQQF+NUpDp/BXUhdtwOA3ANx2Lk3wqGSOurZsy3pv+4GIHXdDryHdKl1fq/ebSk8l4IhIQOAoCcGcXHpjyhGdSTJZK3X1WnUoTmGcykYL6htXdbPf+ExqKtNGo9BXcn8Tm0TCg6eQuveCDs/LwDsA7xxH9CZjLWbbfI4hQeTt/sfAHL+PIxnHdu6snyGdCH1G7VMcvZXXaZevdqS/otapinrduAzVC3TnJhTFF/KL8nvGOhd51hcIyMoOpeMwVpu+p924jXYtty8Bncl/dvtAOQdOIXWoxH21nLL3XMMc1ZuxTdWFLRuLoA6UmpMzbyiuLwHdyFtnbpP9bxxwb7K807tPKSu2473kK7V5te6OuPR7RZSv9yqhmkqLhmdzd5xGMzqRWru/lMl5eoWGUFRfAqGC2kopmLSf9yFbnAXmzh0ZfaXV2Z/1eUtG2Pauu0ldaY6/g8OIOHy6KOiUJxpW/bXqtwAHAJ16G7vRMqarTbvZS7zmadxcQQqnwp6rcqxMC6xZJTbhqKgdXEErQaNkwOKsRhzbs2zLq7muqks157tMZ5PxpSYrv49fx0sOb8KDp7EPsCnxliq4jOkMynWa6fq25A2JW1I8rrtVbYhTmXaEGEtL6HVoHVxwJhS+Si8ZEsIMUYIEVPmp/ydpcqurspXlgNAE0VR2gNLgctTG2qT94rJzm398gSq7dwCTYEaO7c3ihCiQUxVt/f3xpSUUfK7KVmPvb93hTTGMmmMKXrsA7xxCA2gWH+Jxu9Movlv79N40YsIZ0cAik6dx32g2th7DOuJfWDdGmmnQF1JxxSgKDkTp0DbDoK9zg1TTgGK9UOhKKk0TaNmgdh7NOK271+j56aFBN/fGwDnJn4Y9Tnc+sE4em55k3ZLxqgfclfBzd+LS0mlF2g5KZm4B3hVmnbE22OZsW8Fvs0C2f35xgrbOz3Qj1PbD19VPJelZWQR4FtaZv4+OlL1th9GLcND2fLfGABiT54hOS2D1Az1bzGbLdw3/hX6PjSebpFtubVVRL3E1RCkZl7C36f0GPrrvEjTX7JJ89DQvsQnpBD1zCuMfGkhLz91HxqN7UfChl37GdqrU73GlpaeSYBvab3y9/UmLd22g9CyWVO2/KVeuMQeP0VySjqp6Rk2adZv28mwAb3rHIdDoA5DUmkdNSTrcShXR+10burNI2sdNSbrcbSmqU1+3+E9Sf9xV8nvzuFBeHS7hQ6/L+TWH+bi2qFZjXHaB9i2Y6ZktR2z+VvKpTEmZ+BgTdN4zjMkLvyiwjNahScvlHSSve7sgUNQ3S9IL3MM1GFItC0Tx0raveIy7Z4hqWIagMCHB5C57WCdY1HLpDQWYyXHxyFAZ1tuSXocarg5d+61Twl99XEiY1bR5NUnuLBwzZXFFehtc94YkzMrdOLV8y6/5Lwre25Vld+piT8mfQ4tPhhP5Oa3af7uc9YOmS3/hwaQue2A9b3K/f2VHK/y+zNY91ddXntfT0xp6s0oU1o29j4eJemcQv1ov/lt2v4wF/fbbgHUmwQAodMfpP2mt2j50RSbPNey3ACazRtN/Lz/UHLHtowmMx6i6/6V+I3szfm3vq6wXX3va1OOVdH/uhtzgYGuRz6i8/6VJK74meLsvGrzwNVdN5XleVdvsn/+s9J96O4fSO72/ZVuqw3HQB1FiaX7r10bklllG6K3tiHGlCwurPiFHgdW0PPIKopzCsjccaRCHqkiRVFWKYrSuczPqnJJEoCyUwAaAzZ3ZRRFyVEUJc/6/98BeyGET23y1oXs3NavRUAz60pgb1t/jgohYoUQD5RJ09uaZrJ1hPYvIcQB68+V3D4PEUJssK4y9vrlF4UQjwoh9lr3EW19YBshxGghxCkhxA6gZ5n0nwshlggh/gAWCyF0QogfhRBHhBC7hRC3WtNV9focIcQXQohNQohzQogRQoi3rH/3BiGEvTXdIiHEMWv+d66moCsdhiv/wVTp/SAFodXi3LYZ+tW/E3fHJCyFRfiNU6fRJEz/F96P3UHEL++hcXUueVanPijl4qt0JNGaRmi1uLcPJ+bRxex98E0iXhpBo/BANHZa3NuFcf6Lzey6fSbFBQbCX7znquISlZZl5Wm/nxbN4tueJ/10Eu3u6m6zLax7azo90I+Ni9ZeVTylIVQMQpQ7qE/ffxc5efncN/4Vvvx5M62aNcHOOvqo1Wr4dvkCtvznA46eOktcuamv/9MquUgrf5h3HTpOy7DGbP14Ad+8M5OFH39DXkHp3X+TqZjt+2IZ1COyfkOr7LiWi+2Zh0eSk5vHyKcnseb732jVPBytVlsmNhPbd+1lUL+e1Fktzvtq60YN+YW9Hd6DOpP+89+lr9lpsPNoxKFhs4h/4z+0XvVSLeKs5LUKbV3FRIqi4B7VmWJ9NoWxZypsPz/1X/g+MYxWv72LppEziqk+nj2rLI7ySWpO49mzDQEPD+BMLZ5HvoJQKrZrtfkcKcf/iSGcf/0zDnYew7k5n9FsSU33s2veZfl9Vn7eKdXmF3ZaXNuFk/z5Jg4OnIa5wEDIC7ZTzUMmjkApNpP+3V9VBlP+c6qyclQUpXZ5yzGmZhHT6TkOD5xG/Otf0OLDiWhdnRF2WhyDfcjdd4LDg6aTG3OSsNdtp3tfq3LTDeyEMeMSeUfOVpIAzi9ay95Oz5H23V8EPjWk8j/sOpeja2QEmC3saz+G/V2fJ/i5u3AMrcUMlqu4birZbG+H++23cen3XRWS+Y0fhWI2k/3j9ppjqTrIOsZo+6tnzzYEPdyf0/PUm092Ho3wHdKFv7uMZ1f7sWhdnPAfWfebozecRbl+PzXbBzQXQoQJIRyABwGbZ26EEAHCWkGFEF1R+5/62uStiwYxSteAzADaKorSQQgxEngOaA/4oK4A9qc1zdTLK4YJIVyAgYqiFAkhmgNrgc613F9XoC1QYH3/34B84AGgp6IoJiHEh8AjQojNwFygE3AJ+AMoe1u8BXC7oihmIcRS4KCiKMOFEAOAfwMdrPkrex2gGdAfaA38DYxUFGW6EOIH4A7r334v0EpRFEUIUXGeiZV1ysMYgFd17bjPrUmFNKaUDOzLjDTYB3pjSsssl0aPQ5APlyftOgR4Y0rNBBRMKRkUHjoFQPbvu0o6t4YzCcQ/rq5Q7hAWhHv/mqdTXdZk9CBCHlWf+8g+dAan4NK7nU6BOgzlpsAY9bnYu7sgtBoUswWnIB1F1jRFyXpMmbmYCwyYCwxk7j6BW5tQMnefoCgpk0sH1OdHU37ZQ7MXr3wxndseG0jnh9QFghIPn8UjqPSup3uAjpwqFs0AUCwKsb/+Ta8xd3LAOgXRv1UI9y56li+eXExhLe4g14a/j46UMiN6qRmZ+HnbnjaujZyZ/5I6Q0ZRFIY8+RLB/rYf8u6ujehyayt2xRyheVPb54v+V/l7e5KaUXoMUzOz8NXZjoT8tG03T907ECEEoYG+BPt5E5+YSrvmTQF1QapbwkPw9nSv39h8vUkpMwqbmq7H18f2rrtrIxfmz5gAqMd18INjaBzoX7L9rz0HuKVFOD66KpuRSgWOHkzgI7cDkHvoNI5BpXXUMdAbY0q5NkSfg527C2g1YLaooy/WNMYkfbX5dQM6kBcbjymjdMTckJRJxu/qFOzcg6dRLBbsvd0hx3ZU2iaGZL3NqKp94OV2rJQxOQOHIB8uL+HiEOiDKTUTr2E98BjYFff+ndA4OqB1c6HpB5M5N/E9DGcSOf3IHDX2sCA8omr7sWMraPRggh5VyzTn0Gkcg2tXppfbPccg2zSNWofScslzHHloIcVZdW9LjMl6HMocH4dKYjGWK1uHIO8qFwy6zPf+fpx/9RMAMn/5L+Hv1Ny5DRw9hIBHogDIPXTG5rxxCNSVnFOXqWXUqOS8U8tRjctQ7rwrya+oo1y5B9XFBTN+3U3Ii8NL0vmN6otuYCdi759b+vcnlfv7y+ynbBrHIG8uTxJ2DNRhTMlEY29XZV5Tejb2furorb2fZ0kdUIzFFBvVY5p/5CxF51NxbhZE3uEzmAuK0P+uPpue8cvftH446rqUm8+d3fAe1AVdVEc0jvZoXV1ouWwCJ1/4l817p//wF21Wz+LC2+so71qVY1V8R/Qm64+DKMVmTBk55Ow7iWuHZhgupFWb7+qum1Ru/TpRePQMxRm2j4l4jRyAW1QXzj48u9oYKhM8ejBBj5YeZ6dgHy5xElDbkPLXTiZ9brk2xPZcaNQ6lFuWjOXQQ2+WtCFefdpReCENk149Aum/7cGjSwtSL9/okepMUZRiIcQLwEZAC3yqKMo/QojnrNtXAvcB44QQxUAh8KCi3sWpNO/VxiRHbq+dXsBaRVHMiqKkAjuAynpK9sBHQohY4BvUzmFtbVYURa8oSiHwvXWfUagd2H1CiEPW38OB24DtiqKkK4piBMrPr/lGURRzmdj/A6AoyjbAWwjhUc3rAOsVRTEBsagn6Abr67GoU7FzgCLgYyHECKDKB0XLToGorGMLUHA4DoemQdg39kfY2+F5Vx9yNu+1SZOzeQ+eI9TOpktkS8y5BRSnZ1Gcno0pKQPHcPWZdbee7THEqaN6Wm/rnyME/i88gH7N+qrCrOD8Z5vYGTWDnVEzSF0fQ/D9fQDw7BRBcW4BhrTsCnn0u44RcJc6DbrxqD6kblCn2KZuiMGrWyv1GRFnBzw7RpAXl4gx/RJFSXoaNQsEwKd32zotKLXnP5tZPmwWy4fN4timGDqMUO9gNo6MwJBbSF56xVh1TUo7F62iOpJhfRbII8ibh1dO5pvJH6KPT7niWKrStkU455NSSEhJw2QqZv2O3fTr1tEmTU5ePibr6Pp3G7bTqV1LXBs5k5mdQ06eeqlfZDCy++A/hIUE1VtsN7s2EU04n5xOQmoGJlMxG3YeoF/nW23SBPh4sSdWvYDQZ+dwPimVxv6lFz7rd8bU+5RkgLYtm3MhIZmE5FRMJhPrt+2kfw/bZyFzcvMwWUcSv/ttM53at8G1kUvJ9t+3/sWwqD5XvO/kzzaWLPak37AP/1F9AXDr2Jzi3AKMldTR7P/+g++d6qJV/qP6ot+4DwD9pphq8/ve24u0H3favJd+w148e7UDwDk8EI29HSZ99c/d5h+Ow7FpIA4hfgh7O7zu7s2lcm3dpc170Y1Ub1a5RLbAnJtPcVoWSYv/w9GuT/NPjzHEj3+H3F1HODfxPQDsyrR1ARNGkbF6A3WR9NlGYqKmERM1jYz1+/C/Xy0T905Vl2nWrn/wvUst04BRfcnYoJapY7APbT+dxvHxSyk8m1wh35XIO3Qap7BAHK3l5n1PL7I27bONY9M+fO/rB4BrxxaYcwowpVXfsTClZuHeXX3O371XO4ria44z+bMNHLx9Ggdvn4Z+w178Rqn7dOvYHHNuQckU3rLU806dHeM/qp/NeVdZflN6NoZEPc7N1HbOs3c7Ck6pCyR59e9AyAvDOfbEYiyFxpJ95B46jXN4II6hahn5Du9JZrkyyiyzP1freW5Ky642b9k8fmVit/N2B+ujD46hfjiFBVB0PtWaZz8ePdrYxH49yu3cwi/Z23Es+7o8z4nn3id719GSjq1TWEDJ+3oP7kLh6co/a69VOVbFkJiBR6+2gPossFun5hTG1TyT82qumy7zvLsP2b/ssMnj2rcjvs+N5Nwz81CKDDXGUV7iZxvZFzWdfVHTSV+/lwDrtZN7J/U4Vdoul2lDAkf1I8N67eQY7E27T6fyz/hlNm2IITED947N0Tg7AODVux0FcVe3GOcNZbFcv59aUBTld0VRWiiK0kxRlAXW11ZaO7YoirJMUZQ2iqK0VxSlm6Io/60u79WSI7fXTm2Xr5kMpKKO8GpQO4C1VX6+gGLd7xeKosy0CUaI4ZWkL6vsuu1VTfqobjKIAUBRFIsQwqSUzquxAHbWOztdUTvbDwIvAAOqiad6ZgtJr60k/N9zQasha90WDHEX0D2iThvKXLOB3D9icOvfmZY7VqlL2k/7oCR74pxoQt6fgrC3w3gxlYSp6mrEnnf3weexOwC4tPFvsr7ZUqfw0rccxC+qA333fICl0MCRiaVfBdN5zcvEvrQKQ2oWJ+Z/SWT0BFrMeICc2HMkfKkuCpMfl0T6tkP0+uMtUBQurtlG3gn1QuWfWZ/R4cMXEA52FJxPs3nvujj1xyFa9O/ASzvew1ho4Ptp0SXbHvtsOj++vIq89EuMfPc5HF2dEUKQcvwCP89Wvy6m/4QRuHi5cff80QBYii2suPvK796WZ6fVMmvc4zw3+23MZgv3DupDRJPGrPtNXfRj1B1RnL2YxCvvRKPRaGgWGszcSerKiulZ2cx+ZxVmiwVFsTCo9230va1+p9fWZNrri9h38AjZ2TlEDX+U559+jJF3Db4u+7bTapn1zCjGzVuO2aIwfEA3IkIDWbdRvUs9anBvxt4/hFeXrWbE5AUoCkx69B683F0BKDQY+fvwCV4d+1D9x2anZdbEZxk7bS5mi5l7h95ORFgoX/+kdq4euGcIZy8kMGvhB2g1GsKbhvDG9BdK8hcWGfh7/2FenzKuql3USuaWA+iiIumye6n61SCTlpdsa7tmJqdeWokxNYv4eatpFT2ZpjMeIu9oPClfbqsxv8bZAa8+txI3zfbRpJS1f9DivXF02v4uFmMxJycsp0ZmCxdfXUXE6jkIrQb911spOnURn0fVti5j9QZytu3HY0Bn2uxciaXQwPkpS2t8W697euP7xDAAstfvRv/11hpy1CxzywG8oyK5bc9SzIVGTk4s/fvarZnJSWuZnp2/mtbRkwmb8RC5sfEkW8u06ZT7sPNypYV15Wml2Mz+wTPqFozZwrlXPqbVl68htBrSvtpK4amL+D2mrvKe9p9NZG/dj2dURzr890Ms1q8Cuiziw8m4d2+Lnc6NyJiPSHj3K9LXbuXstA9p8sbTCK0WxWAkftqKKwora8sBdFEd6bx7GZZCA6cmfViyrc2aWcS9tAJjahbn5v2HVtGTaTLjQfKOniPFulBUdfnPvPIJLT+ciMbejsLzqcRZz8lmC59G42BP269fBSB3fxynX14FZgtnZ31Mm7WzQashbe02Ck8mEPC4WkYp/95E1pYDeEV1pKN1f6cv76+KvAAJS3+g5aop+D8chSExg5PPvguAR7dbCJ3+IEqxGcVs4cz0VSXPip6f/x+aL51A2LzRmPQ5nJpkWzeuZblVJeyVR3GOCAKLQlFCOqenl3/UkGrL4mrLUTe0K+ELnsbe251bVs8k/+g5jj00n+RPN9D8g/FE7ngPBKR99QcFx2vxlVlXed0knBxx7dWBhFm2xyZ47liEgz3hq9XVxQsOniTxlZrLtzL6LQfxjupI9z3/wlxo5PjE0ve5dc0MTrwUjTE1i9Pz19A2ehLhMx4kLzaeJGsbEjblPuy9XGm5WL0WUIrNxAyeSc6B06T/upsumxejmM3k7YME2wAAIABJREFUxZ4j8T91u76Tbn6iprn9Uu0JIbyBA4qiNLGOTo4FhgE6IAZ19DQYWKIoSl9rnveABEVR3hVCjEYdkhdCiKbAr4qitK1iX08CC1GnJRcCe4CnUEdEf0KdlpwmhNABboAR2A10RB1F3QYcVhTlBSHE59Z9fWt9738B6YqizBNC9APeUxQlsprX5wB5iqK8Y82fpyiKq/X/c4A8YCXgUiam04qi1LgE65Gmd92UJ2hCYaMbHUK1/ut8807KeG3bpJoT3UDC/eoX1rlWLCkVn528WWi8G9ec6Ab6O/K1Gx1ClVztjTUnuoFyjA43OoQqOWnNNSe6QUyWm7cdhpt76l7txotunJu57Nycrnz09HrJKHS+0SFUa0Dquuv8vQp1k//ag9ft2rjRG181iDIpS47c1iNFUfRCiF3Wr/BZDxwBDqOObk5XFCVFCKFHnWN+GPgc+BD4TghxP+pzsFfyzdc7UacJRwBfKooSAyCEmA1sEkJoABMwXlGU3daO5t9AMuqy3NpK3xXmAJ8JIY6gdpafqOH12nADfhJCOKGOAE++grySJEmSJEmSJEnVkiO30k1NjtzWjRy5rTs5cls3cuS27uTIbd3Jkdu6u5mjkyO3dSdHbuuuwYzcvjrq+o3czmsYZVLWzVw/JUmSJEmSJEmSJKlW5LTkm5wQYjCwuNzL8Yqi3FtZekmSJEmSJEmS/kfV7vtn/9+SndubnKIoG1G//0mSJEmSJEmSJEmqguzcSpIkSZIkSZIkNQBKLb9/9v8r+cytJEmSJEmSJEmS1ODJkVtJkiRJkiRJkqSGQD5zWy05citJkiRJkiRJkiQ1eHLkVpIkSZIkSZIkqSGQI7fVkiO3kiRJkiRJkiRJUoMnR26lm5q9vflGh1CpAoP2RodQLYeb+KaeJSftRodQLVFw6UaHUCVNQLMbHUKVLJlJNzqEamm5eStFttHxRodQraKb+D64zqHoRodQpcxCpxsdQrVMiBsdQpXsxM1bXwGylZv38lkYbt6y83EuvNEhSP8P3Ly1U5IkSZIkSZIkSSqlyK8Cqs7NeztWkiRJkiRJkiRJkmpJjtxKkiRJkiRJkiQ1BHJBqWrJkVtJkiRJkiRJkiSpwZMjt5IkSZIkSZIkSQ2AIkduqyVHbiVJkiRJkiRJkqQGT47cSpIkSZIkSZIkNQRy5LZacuRWkiRJkiRJkiRJavDkyK0kSZIkSZIkSVJDYJHfc1sdOXIrSZIkSZIkSZIkNXhy5FaSJEmSJEmSJKkhkM/cVkt2bqX/OY16d8J/9liEVkP2uo3oV31js90hvDGBiybj1CaC9CVfkPnJ99c8pvbzHicwqj3FhUZiJkWTHXuuQppmowfS/NkhuIYF8HObsRgz8wBwiwik83tj8WzXlH8WrePUyt+vaayD5zxO8/7tMRUa+WlqNClHK8Z611vPEtguDCEE+vgUfpqyElOBod5j2XXoBIs//xGLxcK9A27j6eFRNttzCwqZtfRLUjKyKLZYeOLOfgzv3xWAnPxC5kav4/TFZASCueMeoH2LpvUW286Dx1j86bdYLBZGRPXg6RGDbGPLL2TmB1+QkpGF2WzmiXuiGD6gO/GJqUxf8mlJuoRUPc8/eAeP3dm/3mKryeyFS/hz1150Xp78uHrlddvvZTv3x7L4o7VYLAojBvbm6fuH2WzPycvntQ8+42JKOo729syd+CTNmzQG4LUPPmXHviPoPNz4Yfm8Osfg2b8D4fNGg1ZD6pqtJC77sUKasPlP4RUViaXQSNzEZeTHxtcqb9C4uwl7/XH2tB5NcWYuwk5LxJJxNGoXhtBqSftmB4lLf7iieJsvGI13VCSWQgPHJnxInjWWspxCfWkTPQl7T1dyY+M5Nn4pismM/8heNHnhHgDM+UWcnP4xecfOA9B93zLM+UUoZgtKsZmYwTOvKC6A1guewDcqEnOhgSMTVpBTSfvmHOpLZPRE7D0bcSn2HIfHL0MxmQHQ9WhN63mPI+y0GDNz2XPvGwC0e38sfgM7YszI4a++0644Lte+HQl+7VnQasj8ejPpK76tkCbo9TG49e+EpdBAwtQPKPznDI7hwYQum16SxiEkgNT31pDx6c/4T3oI3YODKc68BEDKW/8md/v+K47tsogFo/GO6oi50MCJCcurOK5+tI6ehJ2nK3mx8RwfvxTFVIzfyF6EvjAcUI/rqekfkW89ri3fH4f3wE6YMi6xr++UOsV2rc45ADSCLpsWYUjJ5Miji+sUX1nN5o9GZy3HUxOrLsdWK0tjPfmCWo7OEUG0fH88ru3COLdoLQkrfrnqeFoveAK/qA6YC40crrZOTMDBWicOjV+OYjIT/vydBI3sCYDGTotr82A2tx6D1sWRDsuex9HXE8WicGH1Vs59tOGq4vTs34GwN54CrYa0L7eSuKxiuxQ27yk8ozpiKTRyetLSknaw2ZLn0Q3sjCnjEof6T76qOCpzLeqv9P+DnJYs2RBCNBVCHK1FmofL/N5ZCPGvax9dLWg0BMx5novPvMaZoc/hfmdfHCJCbJKYs3NJnbeSzI+/uy4hBQxoj1t4ABt6TOHAtE/ouGh0pen0+07x56g3yb+YbvO6MSufQ7P/zamVv13zWCP6t8c7LIBlfafw68xPuGN+5bFufGM1q4bOInrITHKSMuj6xKBK010Ns8XCwk+/58OZz/LDkuls2HWQMwkpNmm+3riL8Mb+fPP2VD55/Xne/c/PmIqLAXjr8x/p2b4lP703g2/enkJYsH/9xWa2sPCjdax45Xl+fH8263fu58zFZJs0X234k2YhAXy7ZCafvDGRd774AZOpmLBgf755dybfvDuTr956GSdHe6K6tq+32Gpj+LCBrFwy/7ru8zKz2cLClWtYMWcyPy6fx/o/93DmQpJNmo/W/UbL8BC+WzqXBZOfZvGqtSXb7o7qyYo5V3khpdEQ/uYz/PPwAg72mYzvvb1wbtHYJolXVCTO4YEc6P4ip6eupNniMbXK6xDkjWefWylKKK3H3nd1RzjYc6j/FA4Pnk7A4wNxDPGtdbjeUZG4hAWwu9sETkxdRcu3nqk0XbPZj3Ix+jd2d59IcXY+QQ8PAKDwfBoHhs9hb/9pxC/5jpbvjrHJd3DEXPZFTa9Tx9Y3qgMuYYHs6DaJo1M/om0VsbWa/TDx0b+xo/tkirPzCLHGZufuQptFTxHz+Nv81XcaB599vyRPwlc72Pfgm1ccEwAaDcFvPEf8k3M4NXA8nnf3wbHcZ4Fbv044hAVxst9YEmctJ3jBOAAMZxOJGzZR/blzMpYiA5c2/l2SL/2Tn0q2X03HVhcViXNYIHu6vcipqdG0eOvZStOFz36EhOhf2dt9AsXZeQRay67ofBqHhr9OTP+pnF/yLS3fHVuSJ+Wr7Rx5cEGdY7vW51zIs8PIj0usc3xlXa6r+7q/SNzUaCIWV16OYbMfITH6V/b1UMsxwBprcXYep2d/Wi+dWlDrRKOwALZ3m0zs1I9o+9bTlaZT68TvbO/+EqbsfEIeVm9wnv3wV3ZGzWRn1ExOLPgK/d/HMWXnoxRbOPb6anb0nsquYa/SZPQgXFsE1z1QjYbwhc9y7JEFHOo7CZ/hFdtBzwEdcQoP5GCPFzgzbQXhi0qPY/q67Rx7uO43GGuK7VrV3/8JFuX6/TRAsnMr1UVToKRzqyhKjKIoE25cOKWcb22B8XwSpospYCom57c/cYvqbpPGnHmJotg4lGLzdYkpaEgnzn/zFwCZB05j7+6Ck59nhXTZR89TkJBR4XWDPoesw2dLRjmupZYDO3H4OzXWxIOncXR3wbWSWI15hSX/t3N0QFHqvwE8evoCIf7eNPb3xt7OjiE9Itm+7x+bNAJBQaEBRVEoKDLg4eqCVqMhr6CI/cfPcu+A2wCwt7PDvZFzPcZ2jtAAHxoH+GBvb8eQXh35Y98R29gE5JePTWvb5O6JPUmIvy9Bfrp6i602Ondoh4e723Xd52VH484SGuhH4wBftez6dOWPPQdt0py9mMRtt7YGICwkkKQ0PfosdaSsc9uWeLg1uqoY3CIjKIpPwXAhDcVUTPqPu9AN7mKTRje4C2nrtgOQdyAOO3cX7P08a8wb9saTnJv3HyhbJxQFrYsjaDVonBxQjMWYcwupLZ8hnUn55k8AcvbHYefeCIdK6qVXrzak/7IbgOR12/EZqsaVE3OK4kv5JfmdAr1rve+a+A/pTKI1tuz9p7Fzd8Gxkti8e7Uh5Zc9ACSs+xP/oZ0BCBrRk9Tf91KUqAfAmJFTkidr9wlM2fl1isulQ3OM55MxXkxFMRWT/cufuA+6zSaN+6BuZH+/DYCCgyfRujXCztfLJo1rz/YYzydjSrS96VgffIZ0IfWbHUBNx7VtyXFNWbejyuPqWOa4Xtp9nOLsvKuI7dqdc46BOrwHdiR5zdY6x2cT6+AupK5TyzH3QNWxevZsS/qvaqyp63bgPUSN1ZSRQ96hMyjWG6NXy39IJxKtn/nZ+9XP/MrqhE+5OhFgrRNlBd3bg6Qf/guAIS27ZATYnF9EXlwiTgF1/+xwjYyg8FwKhgtqHcn4aWfFdnBIF9Kt52ietWztrX9Lzu5jFGfV/RyrTkOov9LNS3ZuGxjrqOkJIcQXQogjQohvhRAuQogoIcRBIUSsEOJTIYSjNf05IcRiIcRe60+E9fXPhRD3lXnfCi2UdV9/CSEOWH96WDctAnoLIQ4JISYLIfoJIX615tEJIX60xrZbCHGr9fU51ri2CyHOCiGuSWfYLsCb4uTSDqIpJQM7//q7kKsL5wAdBUn6kt8LkzNxDvSqJseN4xagI6dMrLkpmbj5Vx7r3W+P4aWYD/GJCGLv55vqPZa0zEsEeJdeEPh5e5Bq7eBc9uCQnpxNTOX25+Zy39R3mP7kcDQaDQlperzcG/Haiq8Y9fK7zFn5NQVF9TdtOjXzEv4+peXir/MiTW8b20ND+xKfkELUM68w8qWFvPzUfWg0tk3uhl37GdqrU73F1RCk6rPx9ym9IPP39iJNn22TpkVYCFv/VkfEYk+dJTlNT6o+q95icAjUYUwqbSeMyXocA3Xl0nhjKFMXDMmZOAZ6V5tXN6gzxuRMCspOvwT0v+7GXGCg65GP6Lx/JYkrfr6ijodjoI6ixNJ9GiqJ117nRnFOAYpZXUXTkJRZIQ1A4MMD0G+zvZnQ4etX6LxpEUGPRVVIXxOnQF1JxxSgKDkTp0piM5WJrSipNE2jZoHYezTitu9fo+emhQTf3/uKY6iMvb83pjLHyZSsx77cZ4G9v7ftsUzRYx9gm8bzrt5k//ynzWs+T9xB8/X/ovFbE9C61/1Gi2OgDkNi2XOsNse1YhpQj2tmueN6Na7lOdd83pOceWM1Sj2NCjkE6srVVT0O5eKws8aKNdbK6nx9cQrUUVirOpFfpk7oK6TRODvg2789Kb/uqbAP5xAfPNo2JfvA6TrH6Rigw5hYti3LxKHc+e8QoMOQZHseONTjzbGqXMv6+79AUZTr9tMQyc5tw9QSWKUoyq1ADvAS8DnwgKIo7VCfpR5XJn2OoihdgWXA+9ReGjBQUZSOwAPA5anHM4C/FEXpoCjKe+XyzAUOWmObBfy7zLZWwGCgK/C6EML+CmKpJVHxpRtdOSsN6eZsMEQlsVZVfj9PW8V7XceTfjqRNnd1q/dYKttt+fD+e/gkrZoGs2Xl66x7awpvfvoDeQVFmM0WTsQncv/AHqxbPAVnJ0c+/WnbNQ2ufNntOnSclmGN2frxAr55ZyYLP/6GvILS0TqTqZjt+2IZ1COy/uJqCGpRdk/fN4ycvALunzCHtb9spVV4KFqttv5iqOREr1Anq6q3VeTVODvQeNJILrz1dYXtrpERYLawr/0Y9nd9nuDn7sIx1O9KAq4smBqTUC6JZ882BD3cn9Pz1pS8tv/OV9k3cAaHH15I8OjBeHa75Qriqlz5sqyuXRFaLe7tw4l5dDF7H3yTiJdG0Cg88KpjqHSntSqz0jTC3g7322/j0u+7Sl7Tr17PiT5jiBs2EVNaFoGzK59yWssgawyx8vPN9nfPnm0IeHgAZ+atvopYao6tPs4574EdMWZcIvdIxWdi66zSY10+Sc1p6i2cSo9rzXWifBr/QR3J2neywuwFrYsjnT6ZzLFX/01xXu1ngFQMtOZjXHm5XYfrl2tUf6X/H+SCUg3TRUVRLtfW1cCrQLyiKKesr30BjKe0I7u2zL/lO6PVsQeWCSE6AGagRS3y9AJGAiiKsk0I4S2E8LBu+01RFANgEEKkAf5AQvk3EEKMAcYAzPFtwyiP0FoHXJySgV2gT+kfEOBDcVpmrfPXl2ZPDiTsEfX5mczDZ3EJ8ubyfVznQB1FKdlVZ77OOj8+kI4PqrEmHTmLe1DpnU+3AB25aVXHqlgUjv2ym+5j7+TwN/V7d9Tf24OUMiN6afpL+Hl52KT5afs+nrpnAEIIQgN8CPbTEZ+URqCPJ/7eHtzavAkAA2+7tV47t/7enqRmlI4kpmZm4asrF9u23Tx170A1tkBfgv28iU9MpV3zpoC6INUt4SF4e7rXW1wNgb+PF6kZpXUyVZ+Fr852yp6rizPzJj0FqBd8Q595mWB/H+qLMUmPQ1Dp+zkEemNMyaqQxjHIm1zr746BOowpmWjs7SrN69QkAMdQPzpse8ea3psOm97i8NCZ+I7oTdYfB1GKzZgycsjZdxLXDs0wXEirMsbg0YMJelQdSc09dAanYB8ucbLkvQ3l4jXpc7Fzd0FoNShmC45BOgwppeXcqHUotywZy6GH3rSZSmhMVd/HlJFDxu/7cIuMIHv38WrLr8noQYQ8qj6vmH3oDE7BpW2GU6CuQmxGfS72ZWJzCtJRZE1TlKzHlJmLucCAucBA5u4TuLUJJf+s7TPsV8qUkoF9meNkH+iNqdxngSlFPQ8KrL87BHhjSi1N49avE4VHz1CcUdoOlf1/5lcbCfvktSuKK2j0YIIevR2AnEOncQwuO13XG2NKuRj1OeWOq22aRq1DabnkOY48tPCqp4hej3POo2tLfAZ3xjsqEo2TA3auzrRe/iLHxi+9olgDRw8m8JHbrbGexjGoduWIVgNmizozI6X+rg2ajB5YUicuHTqLc7A3l0ur6jrRqEydqFi+QcNLpyRfJuy0dPp0Monf7SLl931XFbMhWY9DcNm2TIcxNbNCGscgnzLtYMWyvRauVf2V/n+QI7cN05XeNlMq+X8x1uMv1FtzDpXkmwykAu2BzlWkKa+6e7ll54WaqeLmiqIoqxRF6awoSucr6dgCFMaewqFpEPaN/cHeDvc7+pC7dfcVvUd9OPP5ZrYMnMWWgbNIWh9DE+tUO13HCEy5hRRV02G83mL+vZlVw2axatgsTm6Kof1INdbgyAgMuYXkVRKrV5PSxZla3N4R/ZmkCmmuVptmIVxIySAhTY+puJgN/z1I385tbNIE+Hiy52gcAPrsXM4lpdHYT4ePpzv+3p6cS1I7D3uOxhHeuP4WlGoT0YTzyekkpGZgMhWzYecB+nW+tVxsXuyJPWmNLYfzSak0LtNBW78z5v/dlGSANs3DOJ+USkJKulp2f+6lX9cONmly8gowmdTn377b9Ccd27TA1aX+npnOPXQa5/BAHEP9EPZ2+A7vSeYm2wvFzE0x+I3qB4Brx+YU5xZgSsuuMm/BiQvsa/s0+7s8z/4uz2NI1nNo0HRM6dkYEjPw6NUWAI2LI26dmlMYV32dSfxsI/uiprMvajrp6/cScH8fANw7NcecW4CxknqZvesffK2zKAJH9SNjQwwAjsHetPt0Kv+MX0ZhmU6jxsURbSOnkv/r+t1K/okLNZbf+c82sTNqBjujZpC6PoZga2yenSIozi3AUEls+l3HCLhLfWau8ag+pFpjS90Qg1e3VgitBo2zA54dI8irh4WGCg7HlXwWCHs7PO/qQ87mvTZpcjbvwXOE2iFxiWyJObeA4vTSDobn3X3I/mWHTZ6yz/R5DO5O0SnbKeg1SfpsIzFR04iJmkbG+n34398XUI9rcRXHNavMcQ0Y1ZeMDeq56hjsQ9tPp3F8/FKb41pX1+OcO7tgLf+NHMffXV7gn7Hvk7Xr6BV3bAGSP9vIgdunceD2aeg37MN/lFqObh2rLsfs//6D751qrP6j+qLfeHWdw7LOf7a5ZBEotU6on6PV14l/ytWJ0sXJ7Nyc0XW/xeY1gFvfG0NeXBLx0Vf/rQl5h07jHBaIY4jalvnc04vMjTE2abI27sPXeo6WbQevtWtVf/9nyAWlqiVHbhumUCFEd0VR/gYeArYAY4UQEYqinAYeA8rW6AdQn5N9ALi8ZNw5oBOwDrgHdZS2PA8gQVEUixDiCeDyvMBcoKrVaP4EHgHmCSH6ARmKouRUOrXlWjBbSJm7gpBP56tfBfTtJoynL+D5kPpVI9lrf0fr40XYDx+gcXUBiwXdk8M5O3QslquZ3lONlK2HCIjqwJC/l2AuNBIzObpkW8/V09g/5SOKUrOJeHowLZ6/Eyc/DwZuXUTK1kPsn/oxjr4eRG2Yj72bM4rFQsSzQ9nUd/rVTUeqQty2Q0T078ALfy7BVGjk56mlsT70+TR+mf4ReemXGL7kORxcnRECUo9f4LdXPqv3WOy0WmY+NYJxC1dhsSgM79eViJAA1m1W72SPGtiDMSMG8uqKrxg59W0UBSY9cide7q4AzBh9LzOXrsFUbKaxn443xj1Yr7HNemYU4+Ytx2xRGD6gGxGhgazbqC4iMmpwb8beP4RXl61mxOQFamyP3lMSW6HByN+HT/Dq2IfqLaYrMe31Rew7eITs7Byihj/K808/xsi7Bl+Xfdtptcx67hHGvf4eZouF4bf3IqJJMOvWbwdg1NB+xCck8cqST9BoNDQLDWLuhCdL8k9/O5qY2JNk5+Rx+5NTef7hexgx6Aqf0zRbODvrY9qsna1+BcbabRSeTCDgcXXV75R/byJrywG8ojrScfcyLIUGTk/6sNq81Un+dAPNPxhP5I73QEDaV39QcLz2nSL9loN4R3Wk+55/YS40cnzihyXbbl0zgxMvRWNMzeL0/DW0jZ5E+IwHyYuNJ+lLdbZC2JT7sPdypeVidcXby1/54+DrQbvPpgLq9ODUH3aS+cfhWscFkL7lIH5RHei75wMshQaOTCz9aqnOa14m9qVVGFKzODH/SyKjJ9BixgPkxJ4j4cs/AMiPSyJ92yF6/fEWKAoX12wj74Ranh1WvoiuR2scdG70P7icuLe/LclXI7OFpNdWEv7vuaDVkLVuC4a4C+geGQJA5poN5P4Rg1v/zrTcsUr9KpFpH5RkF06OuPbqQMKs5TZvGzhzNE6tw0BRMCWkVdh+JTK3HMA7KpLb9izFXGjk5MTS92q3ZiYnX1qJMTWLs/NX0zp6MmEzHiI3Np5k63FtOuU+7LxcaWFdHVgpNrN/8AwAblk5Ec8ebbDXudH94Eri315Hype1n71yrc65ayFzywF0UZF02b0US6GRk5NKy7HtmpmcspZj/LzVtIqeTNMZD5F3NL6kPOx9Pem4cRFaN2ewKAQ/ewcxfSZjruNnbNqWg/hGdaDfnvfVr8eaWPo52mXNdI689BGG1CyOz19Lx+gXaTljFDmx57hY5twOGNaFjB1HMJf5ij2vri1pPKoPOccu0Guruor4yYVfk771UJ3ivNyWtV77KkKrIfWrbRSeuoi/tR1M/fcmsrYewDOqIx3/Xo650MDpyaVl2/zDyXj0aIOdzo1O+1dx8Z2vSVtbP4uEXav6K/3/IG7WZ/+kygkhmgK/o3YiewBxqJ3Z7sA7qDcs9gHjFEUxCCHOAZ8Bw1BHah9SFOW0EMIf+Mn62lbgRUVRXK3v/6uiKG2FEM2B74AC4I8yaeyBDYAP6rO+B4GpiqLcKYTQWfcXZs03RlGUI0KIOUCeoijvWP+Oo8CdiqKcq+7vPd582E15gv6Td3MuCHXZsdqMsd8g03+6MR262hJ2jjc6hCppAprd6BCqZMms/9H7+hTT50qWG7i+DMrNPYmq6Cae5NXYuW6rKV8PmYVONzqEalkqnWh1c7ATN+VHf4lc5eYdG/LSGG90CFVydbx5YwO49dwvN2+lKCPn6YHXrYK4f7K5QZRJWTdv7ZSqY1EU5blyr20FqlqZZrmiKHPLvqAoSipQdhWgmdbXzwFtrf+PA26tJI0JKL+s5nbrtkzUkWAbiqLMKfd72ypilSRJkiRJkiRJumKycytJkiRJkiRJktQA1NfXaP2vkp3bBqbsyGot0ze9ZsFIkiRJkiRJkiTdJGTnVpIkSZIkSZIkqSGQI7fVunlXiZAkSZIkSZIkSZKkWpIjt5IkSZIkSZIkSQ2B5UYHcHOTI7eSJEmSJEmSJElSgydHbiVJkiRJkiRJkhoAuVpy9eTIrSRJkiRJkiRJktTgyZFbSZIkSZIkSZKkhkCO3FZLjtxKkiRJkiRJkiRJDZ4cuZVuakUG+xsdQqWcLTf3UnWWm/i+lXDzudEhVEvj4nGjQ6iSJTPpRodQJY0u6EaHUC0hbt473TrHohsdQrVyDI43OoQqGYu1NzqEKplu4nYYwEWYb3QIVTIjbnQI1bLcxOHZa27e65OMQucbHcL/hpv3EN8Ubu6WV5IkSZIkSZIkSZJqQXZuJUmSJEmSJEmSpAZPTkuWJEmSJEmSJElqAORXAVVPjtxKkiRJkiRJkiRJDZ4cuZUkSZIkSZIkSWoI5IJS1ZIjt5IkSZIkSZIkSVKDJ0duJUmSJEmSJEmSGgD5zG315MitJEmSJEmSJEmS1ODJkVtJkiRJkiRJkqSGQD5zWy05citJkiRJkiRJkiQ1eHLkVpIkSZIkSZIkqQFQ5MhttWTnVmqw3PpG0njOswitBv1Xm0n98LsKaYLnPotH/05YCg2cn/IBhUfPAtB61yos+YUoZguYLZy8cwoAAZMfxPuhQRTrLwGQ/NZqcv7zDZolAAAgAElEQVTYX6f4Wi94Ar+oDpgLjRyesIKc2HMV0jiH+hIZPQEHz0Zcij3HofHLUUxmwp+/k6CRPQHQ2GlxbR7M5tZjMGXnc+v7Y/EbGIkxI4c/+06vU2zVGTrncZr3b4+p0MiPU6NJPlox7rvfepagdmEIIdDHp/DjlJUYCwz1HsvOmCMsjl6DxWJhxOC+PD3qTpvtObn5vPb+x1xMTsPRwZ65k56hedPGpKTreeXdVWRkXUIjBCOH9OfR4YPqN7Y9B1i07GPMZgsj7xjIM4+MtNl+KTePVxcv5WJSCo4ODsyb/gLNw5sQfyGRqXPfLkmXkJzKC6Mf4rH7767f+PbHsvijtVgsCiMG9ubp+4fZbM/Jy+e1Dz7jYko6jvb2zJ34JM2bNAbgtQ8+Zce+I+g83Phh+bx6jas2Zi9cwp+79qLz8uTH1Suv+f48+3cg7I2nQKsh7cutJC77oUKasHlP4RnVEUuhkdOTlpIfGw9AsyXPoxvYGVPGJQ71n1ySPmT6g+gGdwWLBZP+EnETl2FKzapTfG59OxL8+jMIrRb9V5tIW1FJWzfnWdz7d8ZSaODC1PdL2jqteyNCFr+AU4smgMKFaf+i4MBJAHyevAOfx+9AMVvI2RZD8puf1ym+sprNH40uqiPmQgOnJi4nz1pOZTmF+tFq5STsPV3JjY3n5AtLUUzFOEcE0fL98bi2C+PcorUkrPjlqmJx7xdJ6NxnQKshY+1mUpZ/XyFNyBvP4DFA/Yw4N/lfFFjLDQCNhta/v4MxRc/pJxcA0Hj2E3jc3gXFVIzhfArnXlqKOSe/zjG2XPAkPlGRmAsN/DNhBbmVlpcvt0ZPxN7TlZzYeI6OX4ZiMuM7pDPNXh4FFgWl2MzJV78ge696bEOeHUrjR6MASFyzjQurfq8xFs/+HQifNxq0GlLXbCVx2Y8V0oTNfwqvqEgshUbiJi4rqQdV5fW+qzuhU0fh3DyYI0Nnknf4DAC+I3oT9Hxpm9eodRMOD5xO/j/nqozvas6t6vIHPTOMwEejQAhSVm8h8SO1rHzu6kaTqaNwaR7MwaEzyTt8tsL+qtLm/9g77/CoivZ/37Ob3ivJhpoQivSEIk0EQldfu68iFkSxgDRBQVFRwd4QQUBfKwhiV6SDgKL0DtJ7eu/Jtvn9cTbJbrIJgQRDvr+5rytXds955sxn50w5M8/MnJkPEGZr//eO/4jsStr/zvPH4Wpr//eM1dp/F19PYuaOwbNhCDoXPSc/Ws75pZsA6Pjeo4QNjKE4LYdNfS+9/ffrG0OTl0chdDpSl6xzWiaavDyqtEycnjiHgoOnEO6utP5+Fjp3F4ReT8Zvf5PwzlKHcOGP3kzjFx5kT7v7MWfmXrK2ElrMGklwXAzWwmIOj5tXyX0Ope2Csvt8eMwcpMlC2O29aTr2ZgAs+UUcffoT8g6fxau5gbYLy+pnz6YNOPXmMi5Uo1wo6h9qWvJVjhCimRDiYB3Em3eJ9jOEEJOdHL8y+nU6Gs98lJMPvMQ/cWMJ/M91eLRo7GDi168zHs0MHO7zGOemzqXxrMcdzh//73SODp1Y2rEtIfWTX7TjQydedsc2NK4T3pHhbOw+kQOTP6bdm6Oc2rWePpzTC1awscckTFn5NB7eD4BT85bzZ9w0/oybxpFZS0n/+x9MWdoD1IWlm9h+9+uXpetitOjXkaDIcD64/il+nfY/bpg50qnd6pcXMX/os3w0ZBrZCWl0e6B2O44AFouVV+d9yUcvP8VP819j5aatnDwX72Dz8bJfaRXVhO/nzWLWU6N5Y8FiAPR6PU89fA8/L3idRe++wDfL11UIWzNtFmbOXsBHb7zAL1/MYcWGPzh55ryjtkXf0To6kh8/nc2r08bz+oefABDZpCHf/+99vv/f+yxb+A4e7u7EXde91rRp+qy8On8xH82YyE9zX2Hl5m2cPJfgqG/Zb7SKasz3c15i1sRRvLFwSem5/8T14qMZE8tf9l/jlmEDmf/uzH8nMp2OqFcf4fC9s9h7/QRCbumNZ8tGDiYB/WPxiDKwp+dYTk75iKjXR5eeS122kcPDKw4AJMz7mX1xk9g3cDIZa3fReNKdl62v0SuPcuqBlzgyYAyB/+mDe7m6zrdfZ9wjI/jn+kc5P20ujWaW1XUNX3yEnE27ORL3BEeHjKf4xAUAfHq0x3/gtRwdMo6jA8eSurBih/5SCYyLwTPKwI4eT3J88gKi33jEqV3k9HuJX7CcHT3HYc7KI3x4fwDMWXmcmP5pjTu1AOh0NJn5KMfue5lD/Z4k6Obr8GjheF/9+3fGI9LAwd6Pc/aZeTR57TGH82GjbqTQll4l5Gzex6G4cRweOIGiUwmEj3Uc1LoUQuI64RUZzpbu4/ln8sdcU0k70WL6vZxdsIItPSZgzsqnoS29MjYfYGu/p9ka9wyHJs6nzbuPAuDdujGNRsSxbcizbO3/NCEDY/GKDK9ajE5H1GsPc2j4LPb0mUjorRXLQcn93d3jSU5Mnk/zN0ZfNGzBkXMceegtcrb+43Ct1B/+YN+AKewbMIXjY+dQfD61yo5tTfNWZeG9WjfGMCKOPUOnsav/ZIIGdsbDllb5R85z+KG3yS6n/WI0iOuET1Q4G3pMZN/kj2n/hvP72mb6cE4tWMHvPbX2v4mt/W82chB5x+LZHDeVv257mTYvjkC46gE4/80mtt1zme2/TkfTWaM5PuIVDvYbR/AtvZ2UiVjcIyM40PsJzjzzEU1f0/KULDZx9K4XODRwEocGTcK/bwzesS1Lw7lFBOPXpyPFF1IuT5uN4LgYvCLD2dp9HEcmL6TVmw87tWs+fQTnF/zG1h7jMWflE2G7z4VnU9h9ywy295vC6Xe/p9U7Wh4tOJnIjrintb+Bz2ApNJK2YnuNtNYp1n/xrx6iOreKeolXpxYUn0nCeC4ZaTKT+esf+A/q5mDjP6gbGd//DkDBnmPo/bxxaRD4r+gLG9KZ+G//ACBr1wlc/bxwbxBQwS6kd1uSft0GwIVlmwkf2qWCTcStPUn48a/S7xlbj2DKuqSxh2rTamBn9n2v6b6w5wQefl74ONFdnFdY+tnF3Q0pa39b+oPHTtEkIoxGhga4urowpM+1/P73bgebU+cSuLZTWwAiG0eQkJxKemY2oUEBtIluBoC3lyeRTSJISbs8r5kzDhw5TpOGBhpHhOPq6srQ/r3ZsGWbg83Js+fpHtsBgKimjYhPSiEtI8vBZuvu/TRuGE5EeINa0wZw8Pgpmhga0Cg81JZ23fh92x4Hm1PnE7i2QxsAIhsbSEhJJz1Tm7HQpV0r/H29a1XTpdClU3v8/Xz/lbh8YqIpPJNEsa0uSfv5T4IGd3WwCRrSldRvNc9J3u7juPh542orFzlbD2POrFgeLXZlRO/lDpdZRLS6LhHjebu6buC1Djb+A6+1q+uOltZ1Oh9PvK9tS8bStQBIk7nUyxg8YijJ875HGjWvVslslZoQMrgrycu0dMq1pZObk/ojoFc7UpdvBSB52SaCh2jpbUrLIW/vSaTZXGMt3iXpZruvGT//ScAgx3QLGNSN9O82ApC/+5jtvmpthKshGP+4LqR9vdYhTM7mvWCx2sIcxc0QfNkaQ4d0JfHbzQBk76o8vYJ6tyXlVy29EpZtInSoll4Wu9kyei93Sqph7xYNyd51HGuhEWmxkvnXYUKHdatwXXt8Y6IpOp1E8bkUpMlM6k9bKpaDwV1JWbYRKCkHXrg2CKgybOHxeApPJpSPzoGQW3uT+uOfVdvUMG9VFt6rRUNybGmFxUr234cJsaVVdbQ7I3xwZ84vs7X/u6to/3u1JXG5Xfs/xNb+S3Dx8QRA7+2BKSsPadbyXMbWIxgvs/33jtHKRLFdmQgc7JgvAgZ3I/07rS7J330MvX9ZmbAWFAEgXPRaZ9uu3W884yHOz/rysuu5EkKGdCHJViZyqigTgb3bkmorE4nLNhJiKxM5O49hzs4vDe/hpHwGXdeewjNJFF1Iq5lYxVWL6tzWD/RCiI+FEIeEEGuEEJ5CiE5CiK1CiP1CiB+FEIEAQoiNQoguts8hQogzts9thRDbhRB7bWFa2I6PsDu+QAihL4lUCDFLCLHPFk+Y7VhTIcR62zXWCyGalBcrhOhsC/c3MMbuuFMNl4NbeDDGhLKKyZiYjmuYYyXmGh6MMbHMxpSUhmu4zUZC9KKXaPXbOwQPd/Q6hjwwjNarZ9PkrSfR+1/eA76HIYjC+PTS70WJGXgYghz1BfliysnXpkYDRQnpFWx0nm6E9utI0nLHjtOVwi88iJyEMt05SRn4hTkfELj5rdFM3jmPkOgItn++pta1JKdnEhZSlh5hIUGkpDt2UFtGNmb9lp0AHDh6ksSUdJLTMhxs4pNTOXLyLO1bN681bSmpGYSHhpRpCw0mJdUx3lbNm7HuD63xPfDPMRKTUklOdWxMV274k2H9r6s1XSUkp2c5pl1wICnpjh3rlpGNWf+3NjPhwLFTWtql194AQH3BPTwIY7x9XZKBW7hjXeIWHkSxXX1TnJherU5Nk6nD6bxzAaG39eHcW0svau8M1/BgTPb1WKJdPWZvk5BaZpOk1YfuTcIxp2fT5O3xtFzxPo3fGIvO0x0Aj8gIfLq1ocVPbxH9zat4doi+LH32uBmCKLarP7R0cqzTXIJ8MecUlHYQjYnpuJezqQ3cDEEO9b8xqaIW1/Cgiu1IuGbTeMYoLsz6wuEBvjwh/x1A9u+7Kz1/MdwNgRQ5tBMV2wBXW3qVtROObUno0K70/PNdYhZN5fDEjwDN4xjQvTWugT7oPN0IGRCDR8Oq86uboWJalL8vbobgcvc3A3dDcLXCVkXIzT1J+6nqzm1N81Zl4fOPnMe/+zW42NIqKC4W94gQaoKHIYgiu7gKnbT/buXa/0K7e3/609X4tIhg4L559P39TQ4+/2WV+bC6uDnN7+XrumCMdtpNdmUCnY62a96l0/7Pydm8j/w9xwEIGNgVU2IGhYfP1FijuyGIonjHurZ8XipfJooTMpzmN8Pw/qRv2FPheINbe5H845Yaa61LpPXf+6uPqM5t/aAFMFdK2RbIAm4HvgSekVJ2AA4AL17kGo8Bs6WUnYAuwAUhxDXAf4FetuMW4F6bvTewVUrZEdgMlMwB+hD40hbvYuADJ3F9BoyTUva4mIZq/XpnCCfHKlT+ToxsNsdun8rRGyZx8v6XCb1/GN7dNA9W2lcrOXzdYxwZMgFTSiYNpz90mfIqxl3euymcynO0CRsUS+aOo6VTkq841dBUws9TFvJOtzGknYin7U21O63WFnGFQ6Jcoo2660Zy8vK5c+zzLPllHa2bN0WvLx2foaCwiEmz5vD06Hvx8fKsPWlOhqfL38+Hh99OTm4et4+awOIffqN1iygHbSaTiY1btjOob69a01Um8OL6Rt0xjJy8Au4cN4Mlv66ndVQTB33/3+C8IJYzubiNM869/jW7ujxK6g+bMYwcerkCLx53ZfWhXo9Xu+akLVrJsWETsBYU0eCJO7TzLnr0/j4cv2UKCa9+RrN5z1ymPnsdzrSWN7m4Te3grA4ub+Jci39cF8xp2RQcOFnp1Q1P3oG0WMj4YVMta7z4vbW3SV25g796T2Lvg2/T/Jn/ApB/PJ4zH/5C7LLpxC55lrxDZ5Fmy0Wk1EBLdcJWgk9MC6yFxRQcOV+1YU3zViXnCo/Hc+HDn2n/zfO0//o58g6duXhaXYzq1BdVPMM06NeBnINnWdvxCTbFTaX9qw+WenLrUhdWK4cGTWJfl4fxjmmBZ6sm6DzcMIy7g/i3lzgJeFkiL1Oj49eAXm2JGN6PE68sdgzqqidkUOfSmRCK/5uoDaXqB6ellHttn3cBzYEAKWVJq/oF8O1FrvE38JwQohHwg5TyuBAiDugM7LA1Cp5AyYIJI7DcLs6Bts89gNtsn78C3rSPRAjhX07bV0DJU10FDc6ECiFGA6MBngvswO0+zSrYGBPTcbMbXXUzBGNKcfScmZLScDOEUNItdA0PwZSs2ZhL/qdnk7V6K96dWpK//TDmtLKpeelL1hD12XRnEp3SdORAGo/Q1n1k7z2FZ8NgSvxgHoYgipMcvWLG9Fxc/bwReh3SYsUjIriCTcQtjlOSrwRd7x9I57u1tT7x+0/hF1E2kusXHkRuSlZlQZFWycFft9Lr0RvZa5tKVFuEhQQ5eGGT0zIIDXKcnuTj5ckrk7RxFyklQ0dOpmF4KAAms5lJs+ZwQ9+eDOhVcbp3jbSFBpNk54VNTk0nNMRx5NjH24uZU8eVaht892gaGcJKz/+xbTfXtIwiJKjilKsa6wsJdEy79EznaTfhoVJ9Qx9+hoZhNfNY1EeKE9Nxa2hflwRhTM6oYOMeEULJFinuhmCMSY42VZH2459c89WznH/7m0vWZ0pKw9VQps/VUFaPldokpuMaEQpoawNdw231oZSYEtMo2HsMgKwVf9HgidtLw2Sv+huAgn3HwWpFH+SHJSPnkvQZRg7GcO8AAHL3nsDdrv5wlk6m9Bxc/LxArwOLVfMGXkJaVhdjYjpudunmFh6MqbwWZ+1IcgaBN/QgYFBX/Pt3Rufuis7Xi8gPJnB63PsABN/RD/8BXTj23xcuWVejkYNKN3rK3nvSwaPqYajYBpjSc3Hx87JrJyq2JQBZW//Bq1mYNiMoI5eEr38n4Wttemn0s3dTlFB1GhsTKqaFsXyblZCOe0SwXTkIwpiUgc7V5aJhKyP0ll6kVeJFq828VaLdWfikJRtIWrIBgGbT7qE4MZ1LpdnIgTS5V2v/s/aewsMuLk9DEEUXaf89DcGlNo3v7suJOT8DUHAmmYJzqfi0iCBrT+WDLdXB6XNTubpEsynT7moIrrARniWngNy/DuLfN4bsTXtwbxJG27XvlV6zzep3OHzD05hTK392sKfhyMFE2MpE7t6TeDQMIRttYzT3apQJ94gghzrEu00Trnn3Ufbe81qFJSPBcTHkHTiNKbXmyzDqlKvMoyqEGALMBvTAJ1LK18udvxcoGUHNAx6XUu6znTsD5KI52MxSyho/sCnPbf3AfhtaC1DV07CZsvvqUXJQSvk18B+gEFgthOiPNv71hZSyk+2vlZRyhi2ISZYNvVqofCDEmbvU6ZBtJRqc2S2UUnaRUnZx1rEF7WHMPdKAW+MGCFcXAm+6juy1jpsDZK/dTtDtWqfNK6Ylltx8zCmZ6Dzd0Xlro6A6T3d8r4uh8OhZAIc1uf6Du1N09FwlP7siZz9bW7oJVPLKnTS8U5tuGtA5GnNuAcVOOonpWw4RfpO2DqzRXX1IXlW2gZWLrydBPa5xOHYl2PHlWuYPe5b5w57lyJqddLxd090oJpri3ELynOgOalrWSWs1IJa0y1iXdDHatozkbEIyF5JSMZnMrNq8jb7dYxxscvLyMdl2wvx+9SZi27XEx8sTKSUvvv8/IhtHcP9tQ2pdW7tWLTh3IZELicmYTCZWbviTfj0d1y7l5OZhMpk0bb+tpXPHtvh4e5WeX7H+D4bF9al1bQBtW5RPu+307dbJUV9eQVnardlMbNuWterdri/k7T2BZ6QBd1tdEnJzbzJW73SwyVy9g9A7rwfAJ7YF5twCTFUM+gB4RBpKPwcO6kLhicvb0Eyr6yJwaxxWWtflrHVcppCzzr6ua4UltwBzSibm1CyMiWm4RzUEwLdXR4qPax6y7DVb8emprQl3j4xAuLpccscWIPGz1eweMIXdA6aQvmoHYXdp6eRrSyejk3TK+usQoTdqsz3C7rqe9NU7Ljnei5G/7zgedm1E0M29ySrXRmSt2U7wHX0B8I7V2ghTSibxry9if9eHOdBjNKfGvEPulv2lHVu/vjGEP3EbJ0a+irXIeMm6Lny2hq1xz7A17hlSV+7AcKdWB/h3rjy9MrccpoFtdkzEXdeTukrLn57Nyuph3/aRCFcXTBla19M1xA8Aj4bBNBjWjaSLTMPM3XsCzygD7k209Aq9pRcZaxzvS8aanTS4qy/gWA6qE9YpQhB8Uw9SK5mSXJt5K33NzkrDl6SVe8MQQoZdS+plTFk989laNg+YxuYB00hatZPGd9na/9hoTJW0/2l/HcJwY1n7n7Raa+sL49MIua4dAG4h/ng3N1BwtmYbNQHk73V8bgq6uTeZ5e5T1podBN+h1SXesS2x5BRgSsnEJcgPvZ/WfgkPN/yu60jhyXgKj5xjb8cH2d/9UfZ3fxRjYjqHBz9V7Y4tQPxnq0s3e0pduZ1wW5nw69wCS2X3ecshQm1lwnBXX9JsZcK9YTDtP53MoTEfUngqsUK4sP8DU5KvNmzLGeeiObLaAPcIIdqUMzsNXG+b9fkKsLDc+X62fkiteCKU57Z+kg1kCiGuk1L+AdwHlHhKz6B5Y7cDd5QEEEJEAaeklB/YPncA1gA/CyHek1KmCCGCAF8p5dkq4v4LuBvNI3sv4NAqSSmzhBDZQojeUso/KZvmXJmGDZeVAhYrF55fSPOvZmivAvpmPUXHzhM8QuvIpC9aRc6GXfj160KbP+ZrrwKaPAcAl9AAohZO067joifzp83kbtLWZTR89gE820SCBOOFFM5Nm3dZ8lLW7SE0rhN9t72PpbCY/eMXlJ7ruvhp9k/6mOLkTP6ZuYTYBU/Saupd5Bw4w3nbSDtA+LCupG3a77BpCECn+U8S3PMa3IJ86b/nQ46/9R3nv954WTrLc3zDXlr068S4ze9iKjTy8+Qy3fd+PoVfnv6YvNRsbnn3Mdx9PBECkv45x2/PfVYr8dvjotfz7OP38fj0t7BYrdwyqA/RTRux7Dcty9x1Q39On0/kuXcWotPpaN4kgpfGa7tS7jl8nOUb/qJFs0bcOfZ5AMY9cAfXde1YO9pc9Dw7/hEenfISFquFW4cOIDqyCd/8vAqA/948hFPnLvDsq7PR63RENWvMy0+PLQ1fWFTM37v28eJTj1cWRc306fU8+9i9PP7ie1raDehNdNOGLFu5EYC7hvbl9IUEnnv3f2VpN+7B0vBPv7WAnQeOkpWTx4AHJ/PE8Ju5bVDtrw2ujCkvvs6OPfvJysoh7pYRPDHqPm6/afCVicxi5dSzn9BmyfMIvY7kpRsoPHaesPu1tfjJX64hc/1uAuJiif17LpbCYk5MnFsavMW8ifj3bItLkC+ddy3k/NvfkLJkPU2fG4Fn8wikVVJ8IZVTzyyoTMFF9V14YQFRX2p1XcaydRQdP0/wvba6bvEqcjbsxLdfZ67ZvMD2KqCy1SLxLy6k6exJCFdXjOeSODd5NgAZy9bR+K1xtFqjvSrl3FOzLzMBy8hYt5uguBi6bp2DtdDI0Qll6dRu8TSOTZqPMTmT068sovWCiTSbeg95B0+T9LVWpl1DA4hd/Tp6X0+wSho+cgM7+0x02Jyr2lisnHv+Y1oufhF0etK/WUfRsfOEjtDyUeqi1WRv2IV//860+3M+1qJizkxytsrGkSYzR6Nzc6XlkpcAyNt9lHPTLu91VWnr9hASF0OvbbOxFBo5PP6j0nMxi6dyeNICipMzOT5zMe0XjCd66n/JPXCGeFt6hd14LYY7+yDNFixFRg6Mfr80fMf/TcI10BdptnBk2qelm+xUiq0ctF0yXXsl1pINFB69QLitHCR9uYbMdbsJjIslduuHWAuLOTFhXpVhAYKGdiNq1ihcg/24ZtE08g+e4fA92k7ofj3aYExMp/jcxTtuNc1bVYVv88lkXIJ8kSYzJ6Z9UppWwUO7ET3rIVyD/Wi3aBp5B89w8J5ZF9Wasm4PDeI60X+r1v7vnVBW9rstfpp9Je3/K1r733rqXWQfLGv/j737IzGzH+P6398AIfhn5hKMtkGL2I/K2v8Buz/k6FvfcX7JxotqArQyMf1jWn39Iuh0pNmem0Lvs5WJr1aTvV4rE+23fKS9CmiS9tzkGhZI5PvjEDod6HRk/rqF7HU7q4rtskhft4fguFh6bPsAS6GRf8aXPYN1WDyVI5MWYEzO5MTMxbRbMIGoqXeTd+A0Cbb7HPnUHbgG+tDqDW2XZWm2sHOw9ryn83QjqE8Hjkwu369S1JBuwAkp5SkAIcRS4GbgcImBlNJ+CuJWwHGb7lpGXIldThW1hxCiGbBcStnO9n0y4AP8BMwHvIBTwEgpZaYQojWwDM3tvwEYIaVsJoSYBowATEASMFxKmSGE+C8wDc3bawLGSCm3CiHypJQ+tjjvAG6UUj5o0/MpEAKk2uI9J4SYAeRJKd8WQnS22RQAq4E7pJTtKtNQ1e/f0+TmqzKDJhR7XdyoDtnhcfVOypi24cm6llAlOi//upZQKdbcS58u92+hC4qoawlVsqP9lLqWUClebqa6llAlOcXudS2hUrxcrt60yzRdvekG4CVquLb0CmJxurDy6iH7KvYNheuL6lpCpeSaXetaQpX0T152dWc8G6kDr//Xno1D126qMk1sfYQhUsqHbd/vA66VUo6txH4y0NrO/jSQiTbrc4GUssajD1dv6VQAIKU8A7Sz+/623ekKu/hIKY+geURLmG47/hrwmhP7b4AKC8FKOra2z98B39npqTCd2G46M1LKXYC9i2xGVRoUCoVCoVAoFArF1YX9Pjg2FpbrgFZji6/Sa/UDRgG97Q73klImCCEaAGuFEEeklDXaxEV1bhUKhUKhUCgUCoWiHvBvvqLH1pGtypt6AWhs970RUGEjFiFEB+ATYKiUsnQampQywfY/RQjxI9o05xp1bq/euYsKhUKhUCgUCoVCobha2QG0EEJECiHc0Pbl+cXeQAjRBPgBuE9KeczuuLcQwrfkMzAIOFhTQcpzq1AoFAqFQqFQKBT1gH/Tc3sxpJRmIcRYtD129MCnUspDQojHbOfnAy8AwcA826tHS175Ewb8aDvmAnwtpVxVU02qc6tQKBQKhUKhUCgUiktGSrkCWFHu2Hy7zw8DDzsJdwrHPXpqBdW5VSgUCoVCoVAoFIr6gJM1s/4AACAASURBVKwXmzrXGWrNrUKhUCgUCoVCoVAo6j3Kc6tQKBQKhUKhUCgU9YCrac3t1Yjy3CoUCoVCoVAoFAqFot6jPLcKhUKhUCgUCoVCUQ+QVrXmtiqU51ahUCgUCoVCoVAoFPUe5blVXNVkF7vVtQSnXO2DZm2Nda2gctJGPFvXEqrk5OngupZQKXpkXUuoFCGuXm0AXQ+8VdcSKsW8eWldS6iSIxO21bWESgkKya9rCZXyR5pPXUuokp5mU11LqBSLVV/XEqrkun5JdS2hUkZs8aprCZUyXe3yWyuoNbdVozy3CoVCoVAoFAqFQqGo9yjPrUKhUCgUCoVCoVDUA6TygFeJ8twqFAqFQqFQKBQKhaLeozq3CoVCoVAoFAqFQqGo96hpyQqFQqFQKBQKhUJRD1AbSlWN8twqFAqFQqFQKBQKhaLeozy3CoVCoVAoFAqFQlEPkFf7+yjrGOW5VSgUCoVCoVAoFApFvUd5bhUKhUKhUCgUCoWiHiBlXSu4ulGeW4VCoVAoFAqFQqFQ1HuU51ahUCgUCoVCoVAo6gFqzW3VqM6tol4TPWskwXGxWAqLOTJuLnkHTlew8WjSgDYLJuAS4EPegdP8M2YO0mTGKzqCVrPH4Ns+ktOvLeH8R7+Whum+Yy7m/CKwWJFmC7sGT62RzrYzHyAsrhOWQiN7x39E9oEzFWw8m4TSef44XAO8yT5whj1j5yJNFlx8PYmZOwbPhiHoXPSc/Gg555duqpGe8nR65X4McR0xFxrZMWEBWU70NR85kJaPDMEnMpyf2z6KMSMPgCa39aTVmJsAMOcXsXvqZ2QfPler+gDcu3fFf8JYhF5H/i8ryPtqicN5z0Fx+N53NwDWwiKy3nwP84lTtRJ385kjCbLls2PjK89nredPwDXAh9wDpzk6VstnlYX3bB7BNQsmloVv2oCzb35D/McrAIgYNYSIkUORFgsZ63Zz+pVFFeIM6NeJqFdGgl5H8uL1xH/4UwWbyJkPERgXg7XQyPHxH5Jv036xsBGP/4fIF+9nW5uRmDNyES56ot99HO/2kQi9npRvNxE/58dqp2FAv05EvvwQ6HWkfL2e+A8rho185SEC4mKxFho5MWFOqdbm7z5B0MAumNKy2duvLM0aP303QYO7gdWKKT2b4+M/xJScWW1Nl8P0V99l85btBAUG8NOi+Vc0LmdsORrPm8u3Y7VKbu3agof6tq9gs+NUEm8t347ZYiXQ24P/jR4CwOIth/lhx3GklNzWtSUjerepsR7f62NoNOMRhF5H+tK1JM/7voJNw5cewb9fZ6yFxZx9ajaFB7Vy2WbLQqz5hUiLFSxWjt74VGmYkAdvIPSBG5AWCzkbdpLw6hc11urRsytBk58AvY68H1eS8/lSh/MuzRoTMmMKbq2jyZr7GTlffasdb9qI0Nenl9k1NJA1/wtyv/6hxprs6fvSfUT264SpsJg1Ty0k5eCZCjZDZj9OWIcorGYzSXtPsX7ap1jNltLzYR2iuPvnGawYM4fjK3Zcthb/vjE0feUhhE5HypJ1JDopr01fGUVA/1ishcWcnPghBQdO4RYRTPPZ43BtEIi0WklZtJbk//0GQPT8p/BoHgGAi5835px8Dg58qsJ1K+NK1MMAEQ8PwzAiDoQgadG60jo48oX7CB7YGavJTNGZZI5OmIslp+CS0tGlY1c87x8LOj3G33+j+BfHdsulcy887xoJVom0Wij88kMsRw+Cqys+L8xGuLqBXo9p2yaKvvv8kuKuLqNfepQu/bpQXFjM+0+9x8mDJyvYTHhnIu2ubUdBrvb733vqPU4fPkX77u2Z/snzJJ9PBuCvVX+xdPaSCuGri3/fGJrZ5buESvJdYH/tPpbkO4Cod8cQOEBrJ/b3n1Bq79WmGZGvP4re24PiCymcGPM+lrzCy9aouPpRnVtFvSUoLgbPSAPbuj+JX+cWtHzzEXYPfbaCXdT0e7mwYDkpP/1FyzcfwTC8PwlfrMGUlceJ5z4lZGg3p9ffd9sMTBm5NdbZIK4TPlHhbOgxkYDYaNq/MYo/hz1fwa7N9OGcWrCChJ//pv0bo2gyvB9nv1hHs5GDyDsWz47738Yt2Jd+f77Lhe//RJosTmK7dML7d8QnKpyVPZ8iKDaa2NdHsuGGFyvYpe84xqa1e+j7w3SH4/nnUtl42yuYsgsI79+Rzm+Nchq+Ruh0BDw1nrTxU7CkpNLg048o+uMvzGfOlppYEpNIfWIiMjcP9+7dCJz6FKkPj6lx1IFxMXhGGdjR40l8Y1sQ/cYj7B1WMZ9FTr+X+AXLSf35L6LfeITw4f1J/GJNpeELTyawe8CU0t/Xfe8C0lZuB8C/V1uCB3dlV/+nkEYzriF+TtMk6rWHOXTXyxgTM+i46nUy1uyk8NiFCtp393gSn9gWNH9jNPuHTbtoWLeIYAL6dKDoQmrptYJv6oFwc2Vvv6fQeboRs/l90n76k+LzqRWkOdX66iMc+u/LGBPT6bDyDTLW7HDQGtA/Fo8oA3t6jsUntgVRr4/mwA3TAEhdtpGkz1bS4oNxDpdNmPcz59/UOijho4bReNKdnHpm4cX11IBbhg1k+O3/4dlX3r6i8TjDYrXy2i9bmT9qEGF+Xtw79zeuv6YxzcMCSm1yCo289vNW5o4cgCHAhwzbQ9yJpEx+2HGcRU/cgKtex5jP1nFd60Y0dZa3qotOR+OZj3Li3hcxJabT6te3yV67naLj50tN/Pp1xqOZgcN9HsMrpiWNZz3OsZunlJ4//t/pWDId61mfHu0JGHQtRwaPQxrNuAT7X75GO61BzzxJyhPPYE5OxbBoLoWb/sJ0umwgzpqdS8abc/Hq19MhqPnsBRLveaz0Oo1WLaXg9z9rrsmOZv06EtAsnM/6PEV4THP6z3qQpTfPqGB35Ke/WDX+IwCGzhlDu7v7sn/RegCETtB72n85u2l/zcTodDR79RGO3P0SxsR02q54k6zVOyg8XlZe/fvH4hFpYF+vMfjEtiTytdEcunEq0mzl7MtfUHDgFDpvD9qtepuczfsoPH6BE4+9Uxq+yQsPYsnNr7akK1UPe7VujGFEHHuGTsNqNNN+yXOkr9tN0ekksjbt4/SsxWCxEjn9XpqMu5XTMxdXPx2FDs+R48l/dQrW9FR8Z83HtOsvrPFl7Zb54C5yd23Rkr1JFN7jXiR38gNgMpE3cxIUF4Fej8+MOej3bsNy4p/qx18NuvTrQkSzCEb3eYRWMa14YtYYnrp5klPbz179lC0rtlQ4fmjHIV4e+VLNxeh0RL76CP/Y8l27FW+SWS7fBfSPxTPSwF5bvot6bTQHb9ScD6nf/E7SZyuJnu3YTkS9/QRnX/6c3K2HCb27P4bHb+HCW5ffAb8aUJ7bqlFrbq9ChBAbhRBdbJ9XCCECLhbmEq79mBDi/tq6Xl0SMqQryd9qHsycXcdx8fPGrUHFpArs3Y7UX7cCkLRsEyFDuwJgSsshd+/J0lHdK0X44M6cX/YHAFm7T+Dq54W7E50hvdqSuHwbABeWbSZ8SBfthAQXH08A9N4emLLykObae4N3xJDOnP1W05ex+wRufl54ONGXdfAsBRfSKhxP33kcU7Y2mpu+6zhehqBa01aCW5vWmC/EY0lIBLOZgnUb8Ojj+ABqPHAImat5k42HDqNvEForcYcM7kryMi2f5e6uPJ8F9GpH6nItnyUv20TwkK7VDh94XTsKzyRRbEvfiAcGcX7OT0ijljdNaTkV4vONiabodBLF51KQJjOpP20haHBXB5ugwV1JWbYRgLzdx3Hx88K1QcBFw0a+/CBnXvnKcdcKKdF7uYNeh87DDWk0Y8mt3ui3T0y09vvOJSNNZtJ+/rOi1iFdSbWV5zxbOrna0iln62HMmXkVrms/+q73cod/YZONLp3a4+/ne+UjcsLB82k0DvajUZAvri56BneMZOM/5x1sVu49Rf+2TTAE+AAQZKs7TqVm06FxKJ5uLrjodXSODGPDoZrNsPDq1ILiM0kYbfc189c/8B/kOFjoP6gbGd//DkDBnmPo/bxxaRBY5XVD7htC8rzvS/O/OT27RjoB3Nq1wnwhAXO8Vofkr96IZ99eDjbWzCyMh48izZUPHHp0i8F0IQFLYkqNNdnTfFBn/vle6zAn7TmJu5833k7qmTO/7yv9nLT3JD529W2nkYM4sXIHBekV64tLwScmmqIziaXlNePnPwkc7HhfAwd3I+27jQDk7T6G3t8b1waBmFIySz1p1vwiik5cwNUQXCGOoP/0JO2n6g8QXKl62KtFQ3J2HcdaaASLley/DxMyTPutmZv2g0Vra3N2Hcfdye+oCn10a6xJCVhTEsFixvj3Bly7OOY5iotKPwp3DxwqsZJzehfQ669I/XbtoO5s+H4DAEf3HMXbz5vAi5TPK0X5fJdeSb5LdZLvAHK3Ha4wUAbg0TyC3K2HAcjevI+gG7pf2R+iqHNU5/YqR0o5TEqZVYvXmy+l/LK2rleXuBuCKI5PL/1enJiOe7mOlWuQL+acAm3aG1CcUNHGGRLo8M10Oq95A8N9A2qk08MQRFFCmc7CxAw8ymlwC/LFlJNfqrMwMb3U5vSnq/FpEcHAffPo+/ubHHz+y1rdKs8zPIgCO30FiRl4Gi6vcYu8py+JG/Zd3PAS0YWGYEkpe5i0pKShD6288+p90zCK/t5WK3G7GYIoTnDMZ27l7p+LLZ+VPAgZ7fJidcKH3tKL1J/KRsQ9oyLw734NnVa8SocfX8KnU3OnuowJZYMNRif5380QXC7uDNwNwVWGDRrUBWNiBgWHzzpcK335ViwFxXTb/zFdds0n/qNfMGdV7HA6wz08CGO8fXwZuIU7Pii6hQdRbKdJS6eLP0w2mTqczjsXEHpbH869tfSi9vWZlJwCwv29S7+H+XmRku3o/TqblkNOoZFRC1dxz5xf+XW3NsUwOiyAXaeTycovotBo5s+j8SRnV99z5gy38OAK+cg1zPGeuYYHY0wsszElpeFacu8lRC96iVa/vUPw8EGlNu6REXh3a0PLn98ietksvDpE10gngEtoCOYk+zokFX2DS+usAHgP7kfB6t9rrKc8PuGB5CaWldW8pAx8wiuvh3Uueq65rXepl9Y7LJDowV1Kvbg1QbuvZVqMiem4lq9bypVXY0I6buHlbBqF4tUukvzdxxyO+17bBlNqFsWnE6uv6QrVw/lHzuPf/RpcAn3QeboRFBeLe0RIhfjD7+lHxoY91dYLoAsMwZpelues6anoAite27VLb3zf/gLvp1+jYMGbZSeEDt/XPsZ/wY+YD+zCcrJ2vbYAweHBpCWWzb5JT0ojONx5ubhvyv3MWf0hD7/wCC5uZRM/W8e2Zs6qOcz44iWatGxy2Vqc5bvy99gtvFzb5STflafw6DkCbYOpQTf2dHp/6xtS/nt/9RHVua0lhBDNhBBHhBCfCCEOCiEWCyEGCCG2CCGOCyG6CSG8hRCfCiF2CCH2CCFutoX1FEIsFULsF0J8A3jaXfeMECLE9vknIcQuIcQhIcRoO5s8IcQsIcQ+IcRWIURYFTpnCCEm2z5vFEK8IYTYLoQ4JoS4znZcL4R4WwhxwKbpSdvxOJvuA7bf4W6n8VUhxN9CiJ1CiFghxGohxEkhxGN2cU+x/fb9QohamMNScVpGhYIoqmHjhD03TmfXwGfYP3wWDUcOxr/7NZep0bmGCiKczTCx2TTo14Gcg2dZ2/EJNsVNpf2rD5Z6cmsD5/IuvUYL7dmGyOF9OTDrCnQwqpOGNtxiO+F101By5n58BeMub1KFzUXCC1cXggd1IfWXv8uOuehw8fdm77BnOf3yV7RZ6GSamNO8ffF8JaWsNKzO041GE27n3JvfVDjvExMNFis7Oo5mV7cnaPjYTbg3aVAxAmdU4/45T8OL58Nzr3/Nri6PkvrDZgwjh1ZPTz3FWWqUTzeL1co/8el8+GAc8x4ayMIN+zibmk1UgwBGXt+Oxz5dy5jP1tLSEIheV8OpbVXUW1Ua2WyO3T6VozdM4uT9LxN6/zC8u2lrgIWLHr2/D8dunkLCrM9pNu/pmumEapXji+LigmefHuSvrd09DzSqUZ7t6D/rQeK3HyF++1EA+s4YwR+vLUVaa+Fp1Ol9LW9TtV6dlwctP3masy98WmF9Y/AtvUm/BK9tZfHVRj1ceDyeCx/+TPtvnqf918+Rd+hMBc994/G3Ic1WUr7/o+aanWQ6084/yZ38APnvPI/HnQ/ZmVrJnfYIOWPuRN+8NbpGzS4t/upIrM5zFPDFG5/zWL9HmXjTBHwDfLjj8TsBOHHwBA/1GMmTQ55k+ee/Mv3j6RUDV19MRaqR7y7WTpycNJewB4fSbtVb6H08sRqv7Gw9Rd2j1tzWLtHAncBoYAcwHOgN/Ad4FjgMbJBSPmSbarxdCLEOeBQokFJ2EEJ0AHZXcv2HpJQZQghPYIcQ4nspZTrgDWyVUj4nhHgTeASYWU3NLlLKbkKIYcCLwACb/kggRkppFkIECSE8gM+BOCnlMSHEl8DjwPu265yXUvYQQrxns+sFeACHgPlCiEFAC6AbWhX2ixCij5Ryc3lBto77aIBJvrHc5BlVei5i5GAiRmie1Jy9J3BvWDbC6G4IxpiU4XAtU3oOLn5eCL0OabHiHlHRxhlG26Y0prQc0lZsxy8mmuyt1R81bTZyIE3u7Q9A1t5TeESU6fQ0BFGU5LjpjTE9F1c/71KdnobgUpvGd/flxJyfASg4k0zBuVR8WkSQtafipg/VpfmDA4m6tx8AGftO4RURTMl4qZchiKKkS5ss4H9NY7q88zB/3PsmRifTR2uKNSUVfYOyjpS+QQiWtIpTpF2aRxE4bTLpk6Zizbn8qXmGkYMx3Kvls9y9J3CPqF4+Q68Di1XzmNpsjAnpVYYP6t+JvAOnMaWVTb0sTsggbYXmec7dcwJpteIa7IfVbnqmMSEdN7sRaDdDMMby+coWd8lELXdDEMakDHSuLk7DejQNx71JAzpteLtUa6c1b7Jv6DRCb7uOzN/3IM0WTGk55Ow4ik+n5hSfu/j0zOLEdNwa2scXhDE5o4KNe0SIndbqldUS0n78k2u+epbzb1fsmP9fIczPiyQ7b2tyTgGhfl6ONv7eBHh74OnmiqebK50jwzialEnTUH9u7dqCW7u2AOCD1bsJKxf2UjEmVsyDppRyZSMpDTdDCCWqXcNDMNnuvbnkf3o2Wau34t2pJfnbD2NKTCd7pTbYU7DvOEgrLkF+mDMuv0ybU1JxCbevQ0KxpKZXEaIinr26YTxyHGtG7Uym6nj/ANrdo9XDyftP4Ws3U8EnPIj8ZOfxdJ9wK55Bvqyb+mnpsbD2kQz7cKymM8iXyH4dsZqtnFyz65J1afe1TIubIRhTubJotJXXktreLSK4dDM34aKnxSdTSPthM5kry82g0esIGtadg0OmcDH+rXo4ackGkpZoU3ObTbuHYjsPethd1xM8sDP777z08XhrRiq64LI8pwsOxZpZeZ6zHNmPLiwC4euHzC3L67IgH/M/e3Ht2I3iC2cuWUd5brj/Bgbfo20yd3z/MUIMZbOggsNDyEiuqDEzRbu3ZqOZdcvWceujtwFQaDdwsfP3nTw+8wn8Av3Iybz0suos35W/xxXqnIjg0ue1yig6Ec+Re14GwCPKQGBc50vWdrWh1txWjfLc1i6npZQHpJRWtE7deqkNZR4AmgGDgKlCiL3ARrTOXxOgD7AIQEq5H6hsN4hxQoh9wFagMVpnEcAILLd93mWLq7qUbPdoH24AMF9KabZpygBa2X5fyfyiL2y6S/jF9v8AsE1KmSulTAWKbB35Qba/PWid99Z2+h2QUi6UUnaRUnax79gCJHy2mp1xU9gZN4W0lTsIu/N6APw6t8CcW4AxpeLDQOaWQ4TepK2xCL/retJWVb2DpM7LHb23R+nnwL4dyT9yvsow5Tnz2Vo2D5jG5gHTSFq1k8Z3XQdAQGw0ptwCip3oTPvrEIYbrwWg0V19SFqtPZQUxqcRcl07ANxC/PFubqDgbM3We538fC1rBz7L2oHPEr9yJ03v1PQFxUZjyi2kyIm+yvBsGEzP/01g+5MfkXcqqUa6KsP4zxFcGjdEbwgHFxe8BvSn6I+/HWz0YQ0Ifv0lMl9+DfP5C5VcqXokfraa3QOmsHvAFNJX7SDsLi2f+cZWns+y/jpE6I1aPgu763rSV2v5LH3NzirDh97am5RyXoz0VdsJ6K3tgusZZUDn6oKp3Dq63L0n8Iwy4N6kAcLVhdBbepGxxjFvZ6zZSYO7+gLgY4vblJJVadiCI+fY0W4Uu7o+wa6uT1CcmM7eQU9rUwjj0/DvreVDnZc7vp1bUHg8oVrpmbf3BJ6RBtwba/GF3NybjNU7HWwyV+8g1Fae7bVWhUekofRz4KAuFJ6Ir5ae+krbRiGcS8shPiMXk9nC6n2nuf6aRg42fds0Zs+ZZMwWK4VGMwfOpxEVqm3IVLK5VGJWHhsOnWVop8ga6SnYdxz3SANutvsaeNN1ZK/d7mCTvXY7QbdrHTivmJZYcvMxp2Si83RH563NQNF5uuN7XQyFR7Wp8FlrtuHTswOgTVEWrq416tgCGA8dxaVxQ1witDrEe3BfCjf9dUnX8B7Sj/xanJK878t1LB76HIuHPsfJ1bu45vbeAITHNMeYW0C+k/zf7u6+NO3TnhVj5zp4rD7tPYlPe03k014TOb5iOxumf35ZHVvQyquHXXkNurk3meXqlqw1Owi5oy8APrEtseQUYLJ1gCLfGUPh8XiSFv5a/tL4X9eRwhPxGBMvPrDwb9XDJRv2uTcMIWTYtaT+qC0RCezXiUZjb+HQA29oa3IvEcvJI+jCG6ILDQe9C249+mPa5ZjndGERpZ/1zVogXFyQuTkIX3+El20Jgqsbru06Y0monbcQ/Pblb4wb+iTjhj7J36u30v92bSC+VUwrCnLzSzuy9tivw+0+uDtnbWU1ILTseMuOLRE6cVkdW6iY74Kd5LvMNTsIrSTfVUbphnRC0HD8nSR/tfqy9CnqD8pzW7sU23222n23oqW1BbhdSnnUPpBtKk2V8yqEEH3ROp09pJQFQoiNaJ1jAJMsmw9k4dLua4lG+3DCiZ6LDRPZ/9by6eBiC/+alHLBJWirkox1uwmOi+HabXOwFBo5On5u6bn2i6dxdNJ8jMmZnJq5iDYLJhI59R5yD5wm8WtthNYtNIDOa15H7+sJVkmj0Tew/bqJuAb70u4zbVRZ6PUk//gnGb/vvWydKev20CCuE/23vo+lsJi9E8qSoNvip9k36WOKkzP555UlxC54ktZT7yL74BnOf609RB1790diZj/G9b+/AULwz8wlGGthF+cSktbvxRDXiaF/v4ul0MiOiWX6ei+aws6nPqYoOYvoUYNp9cSNeDTwZ9D610lcv5ddkz+hzcRbcQv0Jfa1kQBYLRbWD6m4G3SNsFjJemcOIe+/ATo9+ctXYj59Bq9btVcQFfz4K74P3YfOzw//yeNtYSykPvR4jaPOWLeboLgYum6dg7XQyNEJZfms3eJpHLPls9OvLKL1gok0m3oPeQdPk2TLZ1WF13m6EdinA8enOO7wm7Tkd1q+9zidN76D1Wjm6Li5VMBi5dSzn9B2yXTt9TpLNlB49ALh92trF5O+XEPmut0ExsUSu/VDrIXFnJgwr8qwVZH46SpazB5DzKb3QEDK0t8p+OdslWHKa22z5HmEXkfy0g0UHjtPmE1r8pdryFy/m4C4WGL/noulsJgTE8t+c4t5E/Hv2RaXIF8671rI+be/IWXJepo+NwLP5hFIq6T4Qiqnnqm16qVSprz4Ojv27CcrK4e4W0bwxKj7uP2mwVc8XgAXvY6p/7mWxz9dh1VaublLC6LDAvl2m9ak3HltK6IaBNCzZUPu+uAXhBDc2qUF0ba1m08t3kh2QTEuOh3T/tMdP0/3mgmyWLnw/EKafzVDexXQN+spOnae4BGaVyh90SpyNuzCr18X2vwxX3sV0OQ52m8JDSBq4bSSH0bmT5vJ3aStacz4Zh1N3nqS1ms/QBrNnJ30vtPoL1VrxhtzaDD3ddDpyPtlFaZTZ/G5/UYA8r5fji44EMOieei8vUBKfIffRsIdo5D5BQgPdzyu7Uz6rFrQ4oTTG/bSrF9HRv7xDuZCI2sml9UJt3w+mbXPfEJ+chZxr44kJz6Nu3+aAcCJVTvYNrviK8BqhMXKmec+odXXLyD0OlKXrqfw2Hka3KeV15Sv1pC1fhcBcbF0/Gse1sJiTk38EACfbq0JvbMvBYfP0G6ttjvy+dcWk71Bm5AWfHMv0n+6xOm9XNl6uM0nk3EJ8kWazJyY9glm2+yI6FdHoXNzof03WnuWs+sYJ565hOUuViuFn3+A97Q3QafDuHEl1gtncBugtVvGdb/i2q0Pbn0Gg9mMNBaT/4HmYRSBwXg9PhWh04HQYdy6EfOerZecbhdj54YddOnXhY//+ER7FdDk90rPzfh8Bh888wEZyRlMnj0F/2B/hIBTh04z91ntfvce1ouh9w3DarZQXGTkzbFvVhbVxbHlu9a2fJdSRb7rZMt3J235DiB63kT8erTDJciXmJ0fc+GdpaQuWU/ILb0Je1BbspKxciupSzdcvsarBCmV57YqxOWsrVNURAjRDFgupWxn+/657ft3JefQvJt+wJNSSimEiJFS7hFCTALaSCkfFkK0A/YC3aWUO4UQZ4AuaNN8H5ZS3iSEaG2zGSKl3CiEyJNS+tjivQO4UUr5YCU6ZwB5Usq3bR3kybZ4QoCdUspmtnWyA4C7S6YlAwXAMaC/lPKE7fftkVLOLtEopUwTQjxo+zzWFl+J/ljgFbRpzXlCiIZonfIqXZAbw+68KjNorri6x4WKxNU7KaNns+pvIlIXnDx96ZvM/Fvo/43tgC8TIa5ebQBdD7xV1xIqxbz56t4I68iEHvvrTAAAIABJREFU2tmc7UoQFFKzTbGuJD+khde1hCrpab60d7b+mxRb9XUtoUo69Ku4LOZqYcSWmi03uJJMN9dwQO0K0z3hh3rRazzZbvC/1uA2P7i6XqSJPVfvE/D/TV4BXIH9QoiDtu8AHwE+Qoj9wNPAdidhVwEuNptX0KYmXyk+Ac7ZdO4Dhkspi4CRwLdCiANoHtn51b2glHIN8DXwty38d0DdvE9DoVAoFAqFQqFQ/J/j6nY/1SOklGeAdnbfH6zk3KNOwhYCd1dy3WZ2X51uBVritbV9/g6t41iZzhl2n/vafU7DtubWttZ2ku3PPux6IKYqjVLKz9E2lHJ2bjYwuzJtCoVCoVAoFAqFonKkta4VXN0oz61CoVAoFAqFQqFQKOo9ynP7fxQhxHNoryWy51sp5ay60KNQKBQKhUKhUChqhlVtKFUlqnP7fxRbJ1Z1ZBUKhUKhUCgUCsX/F6jOrUKhUCgUCoVCoVDUA9SrgKpGrblVKBQKhUKhUCgUCkW9R3luFQqFQqFQKBQKhaIeIK3Kc1sVynOrUCgUCoVCoVAoFIp6j/LcKhQKhUKhUCgUCkU9QMq6VnB1ozy3CoVCoVAoFAqFQqGo9yjPreKqxoi+riU4JVt3deoqoYtPRl1LqJTCbNe6llAlPq7GupZQKVlG97qWUClB7kV1LaFKzJuX1rWESnHpc3ddS6iSwKDf61pCpXiHmupaQqVsT8+rawlV8p+gwrqWUClpGd51LaFKMg9fvY/PcQTWtYRKKbBcve1rfUKtua0a5blVKBQKhUKhUCgUCkW95+odelIoFAqFQqFQKBQKRSlW9Z7bKlGeW4VCoVAoFAqFQqFQ1HuU51ahUCgUCoVCoVAo6gFSeW6rRHluFQqFQqFQKBQKhUJR71GdW4VCoVAoFAqFQqFQ1HvUtGSFQqFQKBQKhUKhqAdIWdcKrm6U51ahUCgUCoVCoVAoFPUe5blVKBQKhUKhUCgUinqAehVQ1SjPrUKhUCgUCoVCoVAo6j3Kc6tQKBQKhUKhUCgU9QD1KqCqUZ1bRb2m1awHCI2LwVJYzMFxH5F74EwFG88moXRYMB6XAG9yD5zhwJgPkSZL6Xm/TlFcu2Im+0fPJnn5NgBc/Lxo++6j+LRuhJRwaOJ8sncev2ydXV65j4b9O2EuLObviQvJcKKz5ciBXPPwEHwjw/i23WMUZ+Q5nA/uGMXg5TP487E5nPttx2Vrscf7us40eO5RhF5H1reryVj4rcN5t6hGGF6biHvbaNLe/YKMT38oPRf+6gR8+nXDkp7F6RufqBU95fHq3YWQaY+BXk/OdyvJ+mSZw3nXyMaEzZqEe5to0md/QdZn3wEg3Fxp+OU7CDdXcNGTv+YPMj78qsZ6/PrG0GjGI6DXkb5kLcnzvq9g0+ilR/Dr3xlZWMyZSbMpPHiq7KROR+vf3sGUlM7JkTMB8LymGY1fexy9twfG8ymcHvcu1rzCy9bYYtZIguNisBYWc3jcPPIOnK5g49EklLYLJuAa4EPugdMcHjMHabIQdntvmo69GQBLfhFHn/6EvMNnAeix40Ms+UVIixVptrBz8LRL0uV7fSwNX3wYodeTvnQNKR9VTLuGMx7Br18XrIXFnJv8fmna6f28afzGWDxaNgUk56Z8QMHuowCEPHgDIfffgLRYydmwk8TXPr8kXeXZcjSeN5dvx2qV/D/2zjs+iuL94++5u/RGeqGGLkUIhCoKIXT1K3ZEVEAEFelFEFQUAXsDRPj6A1SwF1SUKgI2IPQmEDqkkd6Ty93N74+9JJdKGpD4nffrlVdud5/Z/eyzOzM7+8zM3t2lBaP7tC9hE3E2ljfW78FktuDp4sj/jR0EwNo/j/NdRCRSSu7p0pIRvdpUS0tlmbvwbXb+uQcvz3qsW/PhdT02gFPPULxmPg06HRnfbyB11ZdFtts1aYj3S9NxuKk5yUtWkfbJNwXbdG4ueL8wFfvmTZASEue9Se7hf2pUn11oV1yenIDQ68jZ8DPZX31WZLtDWD+cHhgOgMzJJmPx25jPngFAuLjiOmUG+ibBICHj7dcw/XOsRvU9Nm8MHcM6Y8zOZdn09zlvW3YUY+RLT9D7/r6MavMQAE5uzox/dwo+QT7oDXrWr1jHjq+31Ygup1tC8Zn1JEKvJ+3bDaT8X8ly2G++tRx+/2NSV39TdAc6HQ2+XIzpSiKx41+oEU0efUJoPH80QqfjyudbiVnyfQmbxvMfp17fTliyczkzZQlZR85iH+RNs/cmYufnibRYuLJmC3H/9zMADWY8hOfALkgpMSWkcmbyYvLikqul06lnKF7PPo3Q6Uj/fgOpK0vmCZ+XtTyRtLhonmjwy6fIrGyk2QJmM9HDx1dLS1n0eekRgsM6kpedy+ZpK7hy9HwJm0HvPYX/zU2xmEzEHjzLr7NXYjGZadq/Ez2n34e0SKTZzPaX1hAdcapaeq5VHQaATtBl86vkxiZxeMRr1dKpqL2oxq2izuIT3hGX4ED+6D4Zj87NafP6GHYPnlvCrsXc4VxY/jOx6/7mptcfp/7wvlz+eIu2USdo+fxwEn47VCRN61ceI+G3gxwa8w7CTo/eyaHKOoP6dsAtOIAfbpmGT6dmdF00ko13zCthFx9xiqgtB+j/7ZwS24ROEDLnQWK2H66yjhLodPi/+DSXRs0hLzaBJt++S8avuzCeuVRgYk5JJ+6VD3Ht16NE8tTvtpK85ieCXp9Wc5qK6fOdO56oMbMxxSXQ8MvFZP62i7wzFwtMLKlpxC9chkt4zyJJpTGPqNEzkVk5YNDTYM3bZO6MIPfwiWrpafjKOCKHv0heTCKt1r9J6pY95EQW+ss9rDMOwYEcv/VJnENa0mjhU5z8z4yC7X6P30HO6UvoXZ0L1jV64xmiXllFxq5jeD8Yjv+TdxPzZtGH7oriHR6Cc3AAu7pPxL1zC1q9PoZ9g0veT83mjuDS8p+5su4vWr3+BEHD+xL18RayL1xh/9B5mFIz8erbkVZvjS2S/sA9L5GXlF55YTodDeaP48zDL5AXm0jLH98idesecm185xbWGYfgIP7pPQ7nkFY0eOUpIodqvqv/4hOk7djP+adeQ9gZ0Fnzo2uP9nj078bJQRORRhMGb4/Ka7PBbLGw6MddfPj4APzdnXl46c/0vqkhzfzrFdikZRtZ9MMulo7qR2A9V5KsLyJOxybzXUQka56+HTu9jvGrtnJr6wY09nGvlqbKMHRIf4bf+x+em//mdTtmATodXrMnEPfks5jiEghau4SsHX+Td7Ywv5pT00l6fSnOYbeUSO4182my/9pL/Iz5YCi8xjWpz3X8ZFJnT8OSEE+9xcsx7voT88XCB19zXAypMyYiMzKwC+2G66TppE56CgCXpyZg3LuH3FdeBIMB4eBYo/I6hnUmIDiQKb2fonlISx5/5UmeHzqzVNum7Zvh7O5SZN2AR4cQFXmJNx9fgJuXO2//tpQ/1u3EnGeqnjBrORz9xGxMsQk0yC+HzxYthxNeXYZL356l7sJjxFCMZy+hsyn3qqupycInODHsJYwxibT95XVSNkWQHXm58Jh9O+EYHMihW8bj2qklwYvGcuyOWUiThQsvf0zWkbPoXBxpt/FN0nYeIjvyMjHL1nH5jc8B8H98CPWnPMD5WcurpdP7uQnEjrPmic+WkLW9WJ5ISyfxtaW4lJInAGLGTMeSklZ1DVehSVgH6jUJYNVt0wgIaUbfBSP54q55JexOrPuLjZOWATB48XjaDevD4TW/cunPY6zZsh8An9YNuf2DCXzct/T7tiJc6zqs4RNDyIyMwuDmVGWNtQE1W3L5qDG3lUAIsV0IEWr9/YsQot7V0lRi36uFEPfV1P6uJ0KIkUKIJdf7uL6DQon+eicAqftOY3B3xt6v5CXx6tWWuJ+0iGz0VzvxGxxasK3RmEHErd+DMaGw8tC7OuHZ4yai1v4GgMwzY0rLqrLOhgM7c+6bPwBI2H8Gew8XnErRmXz0ApmXE0rdR6vRA7j4SwQ5CTVXyTne3BLjhWjyLsVCnom0n3eWaMSak1LJORIJJnOJ9Nl7j2JJrUJDp6L62rci72I0psuavowN23HtW1Jf7tFTYCr5ACezcgAQBgMY9ED1agOXji3IPR+L8WIcMs9E8o+/4zGgaxEbjwFdSfpWu2+yDpxC7+6Cwc8TALsAb9z7hpLw+Zai59m0Phm7tAhQ2s5D1Btc+gNiRfAZFEqsNU+k7YvE4O5Sap7w7NWW+J92ARDz1XZ8BnfR0uw9hSk1syC9Y6B3lbXY4tyxBbnnYzBesvrup9/x6N+tiI1H/242vjtZ4DudqxMu3dqS9IXmN5lnwpymafQeMZi4D75FGrXrb0pMrZbOo5cSaOjtTgMvN+wMegZ2CGb7P5eK2Gw4eJa+bRsRWM8VAC9X7SHpbHwqNzf0xcnegEGvo3OwP9uOXSxxjGtJaMf2eLi7Xddj5uPQrhWmS9GYomLBZCJz03ac+xS9ly3JKRiPlcyvwsUZh07tyfh+g7bCZMKSnlmj+gytbsIcHYUlNgZMJnK3b8O+R68iNqbjx5AZWo8Z04lj6Hx8NX3Ozti170Duxp8L9MnMoj1rqkvn/l35/dvtAJw+cApndxfqWcsOW4ROx/A5I/ls0cdFN0iJk/VedHRxJCMlA0sp5XZlcbAth01aOexSRjksSymH9f4+ON/WlfRvN1RbSz6uIc3JOR9DrrUsTvrhDzwHFi2LPQd2JeGb7QBk7D+F3sMFOz9P8q4kk3VEi4hbMnPIOX0ZO2s5Z7bpMaN3cqx2C8KhXSvybPPExlLyRJKWJ0rz3fWg2YDO/POt9nwSe+AMDu4uuJRSZ5y3CQDEHjyDa6AXAHlZuQXr7ZwdkNX02bWswxwCvfDu34mYtb9WS6Oi9qMat1VESjlESplyo3X8L+MY6EVOVGLBck5MEo7WAjcfOy83TGlZWrceICe60MYhwBO/wV249HHRxoZzYz+MiWm0fe8pum9dRJu3x6J3rnoUwSnAk8zoQp2Z0Uk4BZR8aCkvfcPBoUR+UrMFsp2/N6bYwsa0KTYBO/+aaczUBHp/b/Ji4wuWTbEJ6P18Kr4DnY6G331A8B9fkv3XAXIPn6yWHrsAb4zRhf7Ki0nELqCov+yL2RhjErC32jSYN4aohR+DpWjln33yYkEj2fOOntgHVeIci+EQ6EVOVOHxc2MScbhKnsiNTiphAxA4vC+J2w4UWdfxyzmEbn6VoEfCK6XLLsCbvBhb3yWU8J1dgDd50YXXOy82ETt/bxwaBWBKTKXRm5No+cu7NHztmYKonmNwEK5d29Bi3Rs0/3IhTjc3r5Su4lxJyyLAozAi5u/uzJXUoo2sCwlppGUbeXzFRh5a/BM/7de6rTb3r8e+c3GkZOaQbTTxx8ko4lJrtoFWm9H7+WCyza9xFc+vdg0CsSSn4vPyDAK/WIb3C1MRjjUbGdV5+2CJv1KwbEmIR+dTtj7HQbeTF6G9FNUFBGFJTcF12izqLf0I18kzoIYjt14BXiTalB1JsYl4+ZfMlwMfG8K+LXtIuVK0u+ymj38mqHkDPohYyeub3uOTlz6qdkMDwODnXeK6GipRDvs8+ySJb9eMlny0crawTjXGJGJXrAyzD/Ai17Ysjk7EPqCYTQNfnNsFk7m/sBttg2eH03HvCrzvuY3Lb3xRLZ16Px/MNr4zX0nA4F+Z8l0S8OGrBH2+FLd7h1RLS1m4BniSHlPoy4zYJFzLeT7RGfTcdE8vLuwo7EXWbGAoj217naGrp7Nlxn+rpeda1mEt5o/kzMtrkJa6H/a0SHHd/uoi//rGrRCiiRDihBDiIyHEUSHEWiFEPyHEn0KISCFEVyGEixBipRAiQghxQAhxlzWtkxDiCyHEYSHEl4CTzX7PCyF8rL/XCSH2CSGOCSHG2thkCCEWCCEOCSF2CSH8ryL3NiHEX0KIs/lRXKHxhlX7ESHEg9b1fYQQ622OtUQIMdL6+1UhxHGr7jet63yFEN9azzFCCFFqHxghhM56bvVs1p0WQvgLIe4UQuy2+mhraedTPAIthMiw+T3DeuzDQoiXruKLKlGiAi0lX+bbtJr/GJGvfFaisSEMetzaB3P54y3s6jcbc1YuTSbcVWVNQpQqosLpQ18awYEFX9R8gVxNXdec0vRVJvpqsXDpnqc5H/YwDu1bYd+8cTX1lCan+P1W0khKiXt4KKbEFLKPnCmx/cL09/F9bAitf34LnYsTMi+vZkVWIE8Ud2u9W9oSNDyM0/PXFqzbd8fzRPSfxaHhC6k/aiD1ut90HXRJ0OtxbteMhDUbODVkMpasHPyethYxBj16D1cih84geuEqmnzwbCU0lXK40pQXu6Zmi4V/ohJZMjKcD0b3Z8W2Q1yIT6WpXz1G9W7Hkyu3MH7VFloGeqLX1c0HgypRnfJEr8e+dQvSvvqJmGFPIXNy8Bj94HXQV7qpXYcQHAbeTub/aV1ShV6PoXkLctb/QMr4McicHJwfHF7D8korO4oue/p50u32nmxa/XMJ25t7h3Dh2Dme7jKaWYOnMPLlsQWR3GoKK7mugtfVuXc3zEkpGI+frr6OIppKWVdcUhllcT46Z0dafjSTCy+sLBKxvfzaZxwMHUvidzvxHz24mjrL13A1Yh6bQvSwp4kdPwe3B/+DY6eS4/+rT+U09l0wkqg9J4jaU/iy+MymvXzcdyY/jnmHntOr2wHx2tRh3v07YUxIJf1wyfG7in8f/ytjbpsD9wNjgQhgONAL+A/wHHAc2CalHG1t1O0RQmwFxgFZUsqbhRA3A/vL2P9oKWWSEMIJiBBCfCulTARcgF1SyjlCiNeBJ4BXytEZaNXVGvgR+Aa4B+gIdAB8rPvfWdYOhBBewN1AaymltGmkvge8I6X8QwjRCNgElHg6lVJahBA/WPexSgjRDTgvpYwTQvwBdLfudwwwE6jQgEshxACgBdAVrWj6UQhxm5SyxLlYXxCMBZjkFsoQp2YF2xqOGkD9EX0BSDt4Bsf6hdEfx0AvcmOLvs3OS0zH4O6M0OuQZguOQYU2Hh2bcvOHkwCw83bDt19HLGYzqXsjyY1OInW/ViHH/bSb4An/qchpFtByZD+aPxwGQOLBs7gEeZP//tYlyIvsuIoH/b07BNNr2TMAOHi5UT+8Axazhcsb91VKU3HyYhMwBBS+RTYE+JB3Jala+6xJzLEJ2AX4FiwbAnwwX0ksJ0XpWNIzyY44hPOtXTCevnD1BGWQF5NYJKpqF+hNXlxRfxljErAP8iE/Xmcf6ENeXBKeQ3ri0b8r7mGd0TnYo3dzpsl7Uzg/6R1yz0Rx+uF5ADgEB+ERHkplqD9qIEEjtEhq+sEzONb3IRXtwcMh0PuqecIhyIvc2MLzcGnTiJveHsfBhxZhSi7semm0TqySl5BGwi8RuIU0J2VXxSb8yYtNwC7Q1nc+JXyXF5OIXZAvoO3TLsBbux+lJC8mgayDWnQl5Ze/8Hv63oI0qRv/BiDrUCRYLOi93DEnVa37vr+7M7E20da4tCx83YuOE/T3cKGeiyNO9nY42dvROdifk7HJNPb14O4uLbi7SwsA3t+0H3/3GhpjWAcwx8VjsM2v/j6Y4yuWX81x8ZivxGM8qo2Jz9yyE4/Rw2pUnyUhHp2vX8GyzscXS2LJYSD64Ka4Tp5B6tyZyHTtPjInxGOJj8d0Urs3c//YgfMD1W/c9n90MH2HDQDg7OFIvG3KF68Ab5KLlcdN2jUloHEg7+7QJguzd3LgnR3LmNL7KfrcH84PH2gT/sVdiCX+UhxBzRpw5lDVJ0IEa6S22HU1VfC6Ooa0waVPd5xv7YJwsEfn4ozfqzO5Muv1amkyxiRiH1RY99sHepMXW7wsTsQhyIf8Esw+yLtgcihh0NPioxkkfLeT5A27Sz1Gwve/0+rTOUS9+WWp2yuCOS4evY3v9H6Vq8Py848lKYWsbX9i364VOfuPVFlPPh0e7Ue7h7Tnk7jDZ3Gz6brrGuBFZhnPJ90n342TlxtbZ60sdXvUnpN4NPLD0dOVnOSKd9u/HnWYR9dW+AwMxTs8BJ2jPQZXJ9osncDx8YsrrLM2oWZLLp9/feTWyjkp5REppQU4BvwqtVdTR4AmwABglhDiILAdcAQaAbcBawCklIeBsmbzmSiEOATsAhqiNeIAjEB+dHWf9VjlsU5KaZFSHgfyo6K9gM+llGYpZRywA+hSzj7SgBzgIyHEPUD+YNF+wBLrOf4IuAshyhqc9SWQ/9p8mHUZoAGwSQhxBJgBtL3K+dgywPp3AO0lQWsK/VQEKeUKKWWolDLUtmELcGnVZnaFz2JX+CyubNhL0P23AeDRuTmm9CyMV0oWykl/Hsf/Tm18X9ADtxG/cS8Av3eZyO9dJvB7lwnE/bSbf55dSfyGvRjjU8mJTsS5WSAA3re2I/NUVCVOFU6t3sov/efwS/85XN64j+D7tLFdPp2aYUzLIrsUnWWxrvtU1nWbwrpuU7i4fg97Zq+udsMWIOfIKeybBGHXwB/sDLjffhsZv+6q9n5ripyjJ7FrXB9DfU2f6+A+ZP5WMX06Tw90blr3UuFgj3OPThjPXrpKqvLJPBSJQ5NA7Bv6IewMeP7nVlK37Clik7plD173ag8NziEtMadnYrqSTPRrn3K06+Mc6zmWc+PfJP3Pw5yf9A5A4SRIQhAw8QES1myslK6oVZuICJ9JRPhM4jfsIcCaJ9w7t8BcRp5I+fMYvnd2ByDwgT4kWPOEQ31v2q+czrHxS8g+G1Ngr3N2QO/iWPDbq8/NZJ6o+HjSrEOROAQHYd/QX/PdnbeStqXoQ2XaVlvftcKcnoXpSjKm+BSMMQk4NK0PgNstHQomokrdvAvXnjdr2oODEHaGKjdsAdo28OFiQhpRSenkmcxsOnSO3jc1KGLTp01DDpyPw2S2kG00ceRSAk19tWuYP7lUTEoG245dYHDH4CprqWvkHjuJoVF9DEEBYDDgMrAPWTv+rlBac2Iypth4DI01Xzt1CyHvbNVfRJWG6eQJ9PUboPPX9Dn06Ytx159FbHS+fri/MJ/0NxZgiSqcnEgmJ2FJiEffoCEA9h07Ybp4vtqatnyygdlDpjB7yBT2bt7Nrff2AaB5SEuy0jNLdD0+sG0fT3UZxcReY5nYayzG7Fym9NYmvEqIiqfdLVpe8PDxILBpfa5cjK22xtyjJ7FrZC2HDZUrh5PeXcWFfiO4OPAx4mYsInvPoWo3bAEyDp7GMTgQB2tZ7HVXL5I3F/2CQMrmCHzu6wOAa6eWmNOyyLP6M/it8WRHRhG74qciaRyCAwt+ew7sQs7pytX7xck9lu87a54YVPE8IZwcEc5OBb+denQm7/T5aunJ59AnW1k7eA5rB8/hzKZ93HSv9nwSENIMY3oWmaXUGe2G9aHxbe355ZmlRSKpHo0LO/D5tWuC3t5QqYYtXJ867OyCz/kr5Cn+7vIMx8a9S/KfR+tsw1Zxdf5XIre5Nr8tNssWNB+YgXullEUG5Vm7CZXbh0QI0Qet4dhDSpklhNiO1jgGyJOF/TvMXN3ftjpFsf/FMVH05YQjgJTSJIToCoSjNUyfAfpabXtIKSvyjZG/geZCCF9gKIXR5sXA21LKH63nPa88XUJzoL3NeSySUlZj6sGiJGw9gE94R3rtfg9zdi7HJhV++iJk7bMcn7qC3LhkIl/5jJuXT6T5rAdJO3Key5/9dtV9n3huFe0/eAadvYHsC1c4Oqnqn9WI+vUgQeEduOuvtzBlG/l7yoqCbWGfTmfX9I/Ijkuh1eMDaPPUHTj5eXD71kVEbzvErukfVfm4V8VsIe7lZTT8v1dAryP1m80YT1+k3jBtbE/KF7+g9/GkyXfvabNcWix4jhzKucHjsGRmE/T2TJy73oze051mOz8h4f01pH6zuUb1xS9YStB/FyJ0OtK+34zx9AXcH7wdgLQvf0bv40nDrxajc3VGWiT1HhnKhTvHYvD1wn/RdNDptM+SbNxJ1o7S39BXRs+l51fQfM08hF5H4pe/knPqEj4jtM/AJKzZSNq2fXj0DaXtHx9iyc7lwrSrV56ed92K72NWn2/YReKXVR9bnbj1AN7hneix+33M2Ub+mfRBwbab187ixNTlGOOSOf3KWtotn0zTWcPIOHKO6M+0T4YET7sPO09XWr02BqDgkz/2vh60XzUd0Lpoxn3/B0nFZhgvF7OFyy8sp+knmu+SvtpKTuQlvB/WfJe4diNp2/biFtaZm3Yut34K6P2C5FEvrqDxe1MRdnYYL8Zycfp7ACR9tZWGb0yk1ebFyDwTF6e9V2XfARj0Omb9pxtPrdyKRVq4K7QFzf09+Xq3VjXc360VTf3q0bNlfR54/0eEENwd2oLm1jFq09ZuJzUrF4NOx+z/dMe9pmf8vQozXnyViAOHSUlJI3zoCJ5+/BHuvXPg9Tm42ULSq0vwX7ZIy3M/bCLvzAXc7rsDgPRv1qP39iTws6XoXJxBStwfvoeoe8YgM7NIem0pvgtnI+wMmKJiSHihhmd8tpjJWPouHgvfBJ2OnM2/YL5wHsfbtV45OT//iPPDjyHcPHB9ZgoA0mwmdcI4ADKWvofrs3MRBjvMsdFkvPVqjco7sG0fHcM68+7OD8nNzmW5zf0/c/Xz/HfmEpKvlP1Zmu/f/4on35rEa5veQwj4/NVPSE+ugQn/zBYSFi4lcPlChF4rh/POXMD9AWs5/NXP6L09afClTTk8YigX7xqLzKz6RIxX03R+zke0+uwFhF5H/Be/kn3qEn6PaFHwK59uJuXXfdQL70SHvz7Akp3L2SnanJeuXVvje38fso6fp92WtwC4tGgtqdv20+i5ETg2qw8WC7lR8Zx7tpqPK2YLiYuWEGDNE+nrrHnifmue+FrLE0Gfa3lCWiQeI+7h8t1j0Ndzx++deYAWac745Tey/9pbPT2lcG7bQZqEdWDU79qSlhK2AAAgAElEQVTzyebphc8nQ1dPZ8uzH5EZl0L4wlGkRSUwbJ2m6fTGCHa/t44WQ7rQ5t5emPPMmHKM/Dy+enOLXqs67N9GXR0Le70QNTnIvzYihGgCrJdStrMur7Yuf5O/DWskE5hg7XIbIqU8IISYCrSRUo4RQrQDDqJ1y90rhDgPhAK3AGOklHcKIVpbbQZJKbcLITKklK7W494H3CGlHFmGzgJd1uUMKaWrNfo6DhgCeAF7gW6AHfA70AqtYXsQeAmtK7OzlPKKtYvyaSmllxDiM+CAlPIN6/47SikPluO3N4AAwFtKOcS67oD1XPcJIVYBwVLKPtaxvqFSymeEEHMBNynls0KIocD3mkvFAGA+EC6lzBBC1Edr/F8pVYCVzf7DauUNekVfu98LhbrWnu7FxTEYqj+D57UkLb1mJ4qpSVKM17exVBm8HHNutIRyafVO9xstoUwMt9VsF9yaJqrfuBstoUxc/Y03WkKZTDhR8YkDbwSvuFX9e9rXmoQkl6sb3UD8fK/dlwKqy7rkq03vcuPokFt78ytA37iv6kSrcXfQPdft2bhb9Hd1wie21O4n9OvHfOBd4LA12ngeuANYhjbu9DBa43FPKWk3Ak9abU6idU2uSb4HegCH0KLIM6WUsQBCiK/QukpHonX3BXADfhBCOKJFS6dY108Ellp1GoCdwJPlHPdLtPHJI23WzQO+FkJEoZ1naX3u/ms9/h7gV9CGH0opNwshbgL+tkbEM4ARQLmNW4VCoVAoFAqFQqFRK6M+tYh/feRWUbdRkduqoSK3VUdFbquGitxWHRW5rToqclt1VOS26qjIbdVQkduaYdd1jNx2V5FbhUKhUCgUCoVCoVBcC9SY2/L5X5ktudYghJgjhDhY7G/ODdIyqhQtS2+EFoVCoVAoFAqFQlG3EEIMEkKcFEKcFkLMKmW7EEK8b91+WAjRqaJpq4KK3F5npJQLgAU3WgeAlHIVsOpG61AoFAqFQqFQKBR1CyGEHlgK9AcuAxFCiB+tnzXNZzDa5z9boE2KuwzoVsG0lUY1bhUKhUKhUCgUCoWiDiBrV7fkrmhfZjkLIIT4ArgLsG2g3gV8Yv086i4hRD0hRCDQpAJpK43qlqxQKBQKhUKhUCgUiiIIIcYKIfba/I0tZlIfuGSzfNm6riI2FUlbaVTkVqFQKBQKhUKhUCjqAJbreCwp5QpgRTkmpYWRi8/mXJZNRdJWGtW4VSgUCoVCoVAoFApFZbkMNLRZbgBEV9DGvgJpK43qlqxQKBQKhUKhUCgUdQCJuG5/FSACaCGECBZC2APDgB+L2fwIPGqdNbk7kCqljKlg2kqjIrcKhUKhUCgUCoVCoagUUkqTEOIZYBOgB1ZKKY8JIZ60bv8Q+AUYApwGsoBR5aWtriahTVylUNROhje+u1beoMv6pt9oCeVivJx3oyWUyZHD/jdaQrnoqj/c45qRhf5GSygTV2G+0RLKxc3eeKMllImnV9aNllAu9bcuv9ESymR+6PM3WkKZeFhq1YymJQgw3WgFZdPIknOjJZRLnqy9HR8dxPUckVk58mrXLL8l6BP3de0WaGW7//3X7UGlrvjEltqbOxUKhUKhUCgUCoVCoaggqluyQqFQKBQKhUKhUNQBLBUbC/s/i4rcKhQKhUKhUCgUCoWizqMitwqFQqFQKBQKhUJRB6jgLMb/s6jIrUKhUCgUCoVCoVAo6jwqcqtQKBQKhUKhUCgUdYDaOx927UBFbhUKhUKhUCgUCoVCUedRkVuFQqFQKBQKhUKhqAOoMbfloyK3CoVCoVAoFAqFQqGo86jGrUKhUCgUCoVCoVAo6jyqW7JCoVAoFAqFQqFQ1AHUhFLloxq3in8Nj857nI5hnTFm5/Lh9MWcP3q2TNvHXhpD7/v7MrrNcADuGDeUnnfdBoDeoKd+8/qMCxlJZmpGtXUZ2nXBcfjToNORt3MDub98UXR7SE8c7x4J0oI0m8n5fBnmyKPaRicXnEdNQ9egCUhJ9so3MZ/5p9qa8rEL7Yrr0xMQOh3ZG34m+8vPimx36NsP5wc1H8nsbNLffxvz2TMACBdX3KbOQN8kGID0N1/D9M+xGtHVYsEovMNDsGTncnziB2QcOVfCxrGRL22XT8aunivpR85xfPxiZJ4Z/3t70fiZuwAwZ+ZwcuZHZBy/gM7Bjk4/vISwNyD0euLX7+LcG19XS2fzBaPwDu+EOTuXExOXlqHTjzbLJ2Oo50rGkXP8M34xMs+E3729aPTM0AKdp2b+l8zjF6qlB6DNgsfwDQ/BnJ3L4YnLSDtyvoSNUyNfQpZPwq6eC6lHznNo/BJknhkAr55taDP/UYRBjzEpnd13vwxA+3fH4de/E8aENH7vPaPaOpu9Mgovq+9OTSrbd60/LLzGJ5/RfOfUPIhW747HtX0w51/9nMvLfqqWFrfeITSY9wRCryPxiy3EffBtCZv6Lz2BR1hnLNm5XJj2HtnW8qXNnyuwZGYjzRYwWzh5x7SCND4jb8f3sduRZjNp2/YSvfDjaukEcOoZitdMrTzJ+H4Dqau+LLLdrklDvF+ajsNNzUlesoq0T74p2KZzc8H7hanYN2+ClJA4701yD9dceXI15i58m51/7sHLsx7r1nx43Y5ry5AXH6VFWAfyso18P305McfOl7C567UnqH9zMCBIPBfL99M/xJiVi0+zQO5+YxyBbZvw65tf8ed/f6lRbWEvPUJwWEdM2blsnLaCK0dLahvy3lP439wUi8lE7MGzbJm9EovJXLDd/+amDP9hHuvHLybyl4ga09Z5/iPU76tp+3vKCpJLKVdajupP6zGDcAv255t2T5KbVLT+9OrQlIHr5/HHk4u59HPltTV9ZTRe4SFYso2cnLSEzFLKDIdGfrT+cAp29VzJOHK2oMwoL32XiA8wZ2h5WJotHBz4LACNpj9AwMPh5CWmAXB+0Wck/3qg0rqrU5/5DAql6bMPIi0SaTIT+fxqUvecrLSGfOqFdaTp/FGg1xG39leilqwrYRP8ymg8rX6KtPFTWWmbvPAInv1DkXkmcs7HEjl5Kea0rCprrE696tw8iFbvjcetfTDnFn3OJZu6oXvEUkyZOWC2IE1m9g2cVWWNitqN6pas+FfQMawTAcFBTO39NB/NXsboV8aVaRvcvhnO7i5F1q1fvo7nhkzluSFT+fK1T/ln9/EaadgidDg+MoHMd54jY87j2HULQxfUqIiJ6fh+Ml4YS8aLT5K98k2cRk0t2Ob08HjyjkaQ8dxoMl4Yhzn6YvU15aPT4TZhMqnPzSRpzGM4hoWjb9S4iIk5NoaUaRNJHjearLWf4DZ5esE216cnYNy7h+THHyV53GjMF6vfMAPwDg/BOTiAXd0ncmL6Clq9PqZUu2ZzR3Bp+c/s6jEJU0omQcP7ApB94Qr7h85jT9gMzr39La3eGguAJTePA/e8RETfmUSEz8Srb0fcO7eosk6v8BCcggPZ3X0Cp6Yvp+XrT5Rq13Tuw1xevp49PSZiSskg0Koz58IVDg59kb1h07nw9je0eqvse7ai+IZ3xDk4kB3dJ3N0+n9pV4bvWs8dzrnlP7OjxxRMKRk0tGoyuDvT9tXR7H30DX7vPYMDT7xbkObyFzuIGLao2hoBPMNDcGoaSESPCUROX07z10r3XfDch4lavp6InprvAqw6TSkZnJ67stqNWgB0Ohq+Mo4zj73EP+HP4PmfW3Fs0bCIiXtYZxybBHL8tie5OGspDRc8VWR75INzOTl4SpGGrWuP9tQb0I0TAydyot8Eriwv+RBZFa1esycQN/45ou4Zg8ugMOyaFi1PzKnpJL2+lFSbRm0+XjOfJvuvvUTd/TjRD4wj71wNlicVYOiQ/nz49ivX9Zi2tOjTAe/gAN7rM40fn/s/7lwwqlS7jfPX8MHg5/hg8GxSoxPo9tgAALJTMvl53if8+d+fa1xbcFgHPJsEsPK2aWyZ9X/0WzCyVLt/1v3FqrAZfNx/NgZHe9oP61OwTegEt81+kPM7DteotqC+HXAPDuDHW6axe+b/0XVR6driI07x64OLyLgUX2Kb0AlC5jxIzPaqacsvM/b2mEDk9A9p/trYUu2C544gevl69vacgCkls6DMuFr6w/fO40C/GQUN23yiVvzMgX4zONBvRpUattWtz5J3HmFP2Awiwmfyz5RltH77yUprKECno+miMRwbvoADt03B9+5eOLVsUMQk30/7e0zg9PQPaZbvp3LSpuw4zIE+UzjYdxrZZ2NoMPGeKkusbr2al5LB6TkrizRqbTl0zzz2hs+o8w1by3X8q4uoxm0NIIR4WQjRrxL2QUKIb6y/OwohhlTxuPOEEFlCCD+bdRk2v81CiIM2f7NstvkKIfKEEOOK7fO8EOKIEOKwEGKHEKJoa6ek3UHr/7uKbb9bCCGFEK2ty45CiBNCiPY2NjOFEDXy+r5z/678/u1vAJw+cApndxfq+XmW1K3TMXzOY3y+6JMy99Xjrlv564ffa0IW+qatsFyJRsbHgNlE3p7t2IXcUtQoN6dQn4MjSKktODpjaNmevJ0btGWzCbIza0QXgKHVTZijo7DExoDJRM72bdj37FXExnT8GDJDu6Xy/jmGztdX0+nsjF37DuRssD7kmUzIzBp4GQD4DAol9uudAKTti8Tg7oK9X70Sdp692hL/0y4AYr7ajs/gLlqavacwpWYWpHcM9C5IY87K1fTb6dEZ9IW+rpLOLsR9vaMCOtsV6Iz9akeZOh1sdFYV/0GhRFl9l7LvNAZ3ZxxK0eTdqy2xP+0G4PJXO/EfHApA0D23EPfLHnKiEgEwJqQVpEnedYK8lJq5/3wGdiHuK8136fvL9l29W9oRv17zXdxXO/AepPkuLyGNjINnkCZTtbU4d2xB7vlYjBfjkHkmkn/6HY8BXYvYeAzoSpK1fMk6cAq9uwuGUsqXIuf4yCDiPvgWadQ0mhJTq63VoV0rTJeiMUXFgslE5qbtOPfpWcTGkpyC8dgpKOYb4eKMQ6f2ZHxvLU9MJizpNVeeVITQju3xcHe7rse0pfWAzhz8TivbLx84jaObM66+Je+73Izsgt8GR3uktZzITEwj+vDZIpHSmqLZgM4c//YPAGIOnMHB3QWXUvLEud8OFfyOOXgG10CvguWQUQOI3BBBVmJaiXTVocHAzpz9RtOWuP8M9h4uOJaiLfnoBTIvJ5S6j5ajB3DplwhyEqqmzXtgF658tR3ILzOcsSuzzPgbgLivtuM9qGul0tc01a3P8ussAL2zQ7XqLLeQ5uSciyX34hVknon4dX/iNbBLERsvGz9l2PipvLQpOw6BWWsGpe87Va26rLr1al5CGukHzxRE6xX/m6jGbTGEEJXuqi2lfEFKubUS9tFSyvusix2BKjVurSQA08rYli2l7Gjz96rNtvuBXcBDpaQLk1LeDGwH5pZz7DApZUfgPuD9YtseAv4AhgFIKXOAycAHQqM+MA6YXe7ZVRDPAG+SohMLlpNiE/H09yphN/CxIezfEkHKleRS92PvaE+H3iHs2fB3TchCePogk64ULFuS4hGeJQt+Q6dbcF24EufJC8he+SYAOt9ALOmpOD0+A9d5H2oRXXvHGtEFoPPxwRxvoy0hHr2PT5n2joNuxxihNYh0gUFYUlNwmzGLess+wnXqDHCsGW0OgV7kRBU+IOXGJOIQWPRa2nm5YUrL0rqCArnRSSVsAAKH9yVxm83bdp2gy6+v0+vYRyTtOELa/tPV0pkbVXjPVUxnSZt8nUnbKh8VKI5joFdBwxQgJyYJx1I05dloyokutHFpFoidhwvdvnuBWzYvpP79t1ZbU2nYB3qRG13Ud/bFdBqsvst/aDKW4t8a0RLgjTG68H4zxiRi5180j9oFeGOMKbTJi03ALsBqI6H5mpdo9fNbeA8fUGDjEByES9c2tPzhDZp/tQDnm5tXW6vezwdTbGFUzBSXgN6v7Dxb5BwaBGJJTsXn5RkEfrEM7xemImooz9YV3P29SLW579Jik3APKP0lxdA3xjIz4gN8mwWxe/Xma67NNcCT9JhCbemxSbiWoQ1AZ9DT5p5eBVFaV39Pmg8M5dCaX2tcm3OAJ1k2fsuKTsK5HG3FcQrwpOHgUCI/qbo2+0DvImWGMSapRCNKKzMyC8oM23Kl3PRS0v6L5+m46TUCRhSNUwSNHkSnbW/R4p2nMXgU7fFVEWqiPvMZ3IVuf7xDhzWz+WfKskpryMc+0KtEWVdcS3E/5Vr9VJG0AP4P9SV52/4qa6zJerU4Erj5y7l03vwagY9UOB5VK5GI6/ZXF7nmjVshxFQhxFHr32Sb9Y9ao4OHhBCfWtf5CiG+FUJEWP9usa7vKoT4SwhxwPq/lXX9SCHEd0KIjUKISCHE61fRkiGEeEsIsV8I8asQwte6frsQYqEQYgcwSQjR2Lr9sPV/I6vdD0KIR62/xwkh1lp/rxZC3Gf9fd66r7+FEHuFEJ2EEJuEEGeEEE9abZpY/WEPvAw8aI2APmg9j3xdOiHEaSFEeU8vK63pK/vU9xBao7iBtaFZGn8DZW2zxR0oaC0KIVyBW4DHsTZuAaSUG4EY4FHgHWCelLL0VmYlEaXlv2JvOOv5edLt9p5sWl12l7JO/bpwau+JmumSrCkrRVfJVab9f5Lx3GiyFr+I491aVzmh16Nv3ALjbz+RMe9JZG4ODrcPK5m4ytIqpg3ArkMIjoNvJ/O/ywu0GVq0IPunH0h5agwyJ6dgbG4NCCtFl7yqSXHt9W5pS9DwME7PX1u40iKJCJ/JXx2fxL1TM1xaF+1+Wl2dJV6ql+Lj4jb1bmlLwPC+nJm/phpaykYWO2B5eUXo9bh3aMreEa+xZ9gimk+9B5emgTUvqgL3nqjE/Vk9LaWsK3khy7Q5de8sTt4+lTOPvozvo0Nw6dpGS2HQo/dw5dRdM4hesJomH8ysAa0VyBtloddj37oFaV/9RMywp5A5OXiMfrD6muoQpbuvdP+tm7GCN7qNJ/50FO3u7H6NlYEotTwp+9qGLxjJ5T0niLKOv+wzbwS/L/oCabkGmaQ69x3Q+aURHFhQPW0VqeNLLzPkVdMfunMuBwbM5NjDCwgcNQj37jcBELN6ExHdnmF/+HSMcckEz3usKsqvqvtq9VnChgh295rCkZFv0PTZauTZUuujq2uRUlYobYNJ9yBNZuK/rU7Pt5qpV0vjwB1z2df/WQ4PX0D9UQPxsF5nxb+PazqhlBCiMzAK6IZ2x+62NiCNwBzgFillgk3D7D3gHSnlH9YG5SbgJuAEcJuU0mTt/rsQuNeapiMQAuQCJ4UQi6WUl8qQ5ALsl1JOE0K8ALwIPGPdVk9K2duq+yfgEynlx0KI0WhRyaHAWOBPIcQ5tIZhWTXeJSllDyHEO8BqtIaeI3AMKOiGK6U0WnWESimfsR67NfAw8C7QDzgkpSy9n49GBloDd5L1fGxxEkIctFleJKX8UgjREAiQUu4RQnwFPAi8Xcq+BwHlDRT7TWi1SVPgAZv1Q4GNUspTQogkIUQnKWX+q7zJwB4gUkr5aWk7FUKMRfM1Xbw60ty1SakH7//oYMKG9Qfg7OHTeAUVvsX1CvAmuVh0tkm7pvg3DuCdHdqbT3snB97e8QFTez9dYNPjzl789WPNdEkGkMnxCK+CXuPovHyRKYll2ptPHUHnF4hwdceSFI9Mjsd89gQAeRE7cbi9tEB71bDEx6P3tdHm44s5seStpg9uitvUGaQ+NxOZrnUpM8fHY4mPx3RCm4zGuHMHTsOq3ritP2ogQSPCAUg/eAbH+j6koj20OQR6kxtb9FrmJaZjcHdG6HVIswWHIC9yY5MKtru0acRNb4/j4EOLMCWXfFFhSssi+c/jeIV1JPNEWcVFSYJGDSTI+mY/7eBpHOoX3nMOgd4YbTRoOtOK6Sxq49KmEa3efpLDDy0sVWdFaDxqAA1HaOONUg6ewdFGk2OgVwnfGRPTsbPR5BjkRY7VJicmkbykdMxZuZizcknadQK3to3IPBtTJW22BI4aSODDmu/SD57GIahivkOvA7NFiygUs6kJjDGJ2AcVvj+0D/Qm70oxLbEJ2Af6kN+J1y7Ah7w4zcaU/z8xlZRNu3Dp2JLMPcfJi0kk1doDJOtQJEgLBi93TElV7zJqjovHEOBbsGzw98EcX3Z5Ujyt+Uo8xqNaeZK5ZSceo2vwZVktpesj/en8UBgAUYfO4mFz37kHeJEel1JmWmmRHF2/i1vG3sEBa9fSmqTjo/1ob9UWe/gsbjaRSLcALzLL0NZj8t04e7nxw6yVBesC2gdz+xLtccbJy42mYR2QJgunN++rkraWI/vR7GFNW9LBszjb+M05yIuscvxWHO8OwfRapmlz8HKjfngHpNnC5Y3lawscNYiAhwvrBdsywz7Qq0R5oJUZLgVlhlauaGVbbnRimemNcZpNXkIaiRv24BbSgrRd/5CXUDiUIHbtVtp+WrGOZjVdn+WTsusfnJoEaL1vktIrpMUWY3TJss5YvH6w+il/7w6BXhhjk9DZGcpN6/tAbzz7d+bY/S9VWldN16tlYXudE37Zg3tIc1J3Xb8J9WoSS90MqF43rnXkthfwvZQyU0qZAXwH3Ar0Bb7Jb7RJKfPvyn7AEmuD7EfAXQjhBngAXwshjqJF/NraHONXKWWqtdvrcaDUMaJWLED+1JJrrPrysZ1ysgeQP23sp/l2Uso44AXgN2Caje7i/Gj9fwTYLaVMl1LGAzlCiKsN8liJFtkEGA2suoo9aI3vx4QQ7sXWF++WnH+Ow4CvrL+/oGTX5N+EEFfQrsdnlE2YlLId0B7turla1z9k3W+J/Uspo4FtQJl9a6SUK6SUoVLK0LIatgBbPtlQMAnU3s27ufVerSJuHtKS7PSsEl2PD27bx9NdRjOp1zgm9RqHMTu3SMPWyc2Zm7q3Zd/mPeWccuUwnzuJ3q8+wicA9AbsuvYh78BfRWx0fkGFvxs3B4MdMiMNmZaMJSkeXYA2aYOhTScs0TUzaROA6eQJ9PUboAsIAIMBxz59Mf79Z1Ftvn54vDiftNcWYI66XLBeJidpjeMGWuTTLqQT5gvnq6wlatUmIsK1iZ7iN+wh4H5t5mr3zi0wp2dhvFLyQSrlz2P4WiMqgQ/0IWHjXgAc6nvTfuV0jo1fQrZNo8zO201rLAE6Rzu8bmtP1umoSumMXrWJveEz2Bs+g4QNEfjf37tAp6kMnck2OgMe6E3CxgirTh/arZzBP+MXF9FZWS6s2swf4bP4I3wWcRv2Ut/qu3qdm2NKzyK3FE2Jfx4n4M5uADR44DbirL6L27gXz+6tEXodOid76nVqTkZk5XxUFjGrNrG/3wz295tB4sYI/B/QfOfWqWzfpfx1DN87NN/5P9CbxE01N/trPlmHInEIDsS+oR/CzoDnnbeSuqVoGZC6ZQ9e1vLFOaQl5vRMTFeS0Tk5oHNxAkDn5IDbrSFkn9TyaMrm3bj2vBnQuigLO7tqNWwBco+dxNCoPoYgLc+6DOxD1o6KDaEwJyZjio3H0FgrT5y6hZB3tubKk9rKnk+3sGzIcywb8hwnNu+l4z1aV/sGIc3JSc8mI77kfefV2L/gd6vwTiScib4m2g5+spVPB8/h08FzOL1pH23u1R5JAkOakZueRWYpeaL9sD40ua09Pz+ztEi46qNeU/nolil8dMsUTv2yh61zV1e5YQtwavVWNvSfw4b+c7i0cR9N79O0eXdqhjEti5xStJXFD92n8kO3KfzQbQoX1+9hz+zVV23YAsSs2lgwmVPixj34PdAH0MoMc3oWeWWWGT0A8H+gT0GZkbh5b6npdc4O6F207vk6Zwc8e3cg64Q20ZrtmFzvwd3IquCL0Jqsz5yaFN6Lru2D0dkZqtSwBe2lolPTQBwaaWWd79BbSNpctExNsvGTq7VszruSUm7aemEdafDMUP557DUs2cZK66rJerUsSlznPh0q9WJbUbe41p8CKuvdgqD0DmY6oIeUMruIsRCLgd+klHcLIZqgjQXNJ9fmt5nKnZOthvJm1rC1aw8kAkFl2NpqshTTZ7maPinlJSFEnBCiL1rE++Hy7K1pUoQQnwFPX83WykOAvxAif99BQogWUspI63IYmj9Wo3WbnlpyF0WOf0YIEQe0EUKcQXt50U4IIQE9IIUQM2VhH5Yan4Tt4LZ9dAzrzDs7l5Gbncvy6YsLts1cPZcVM5eWOc42ny4Du3Fk50Fys3PLtasUFgvZaxfjMu1V7VNAv2/EEn0B+z53AGDcvh5D6K3Y9+wPZhPSaCRrWeFsotlrluA0djbCYIclPoas/3ujBrWZyVjyLh6L3kTodORs+gXzhfM43vEfAHLW/4jzI48h3D1wmzgFAGk2kzJem4Msfel7uM2eizDYYY6JJv3NV8s8VGVI3HoA7/BO9Nj9PuZsI/9M+qBg281rZ3Fi6nKMccmcfmUt7ZZPpumsYWQcOUf0Z9sACJ52H3aerrR6TZuVUprM7B04G3t/T9q8Px6h14FOcOWHv0ncUvWxQUlb9+MdHkK33YsxZxs5OWlpwbb2a2dzcuqHGOOSOfvKGtosn0LwrIdIP3KOGKvOJtPuw+DpSkvrTME18WmC+K0H8AvvSO/d72HJzuXwpML52kLXPsuRqSvIjUvmxCufEbJ8Ii1nPUjakfNc/kybLCkzMpr4bQfp9dvrICWX1m4j44T2UqPjhxPw6tkGey83wg4sJfKNbwrSVZakrfvxCg+hy67F2mc5Jhf6rt3a2Zyy+u7c/DW0Xj6FJrMeIuPoOWKtvrPzrUenTa+id3MCi6T+E7ez97YpmDOyyzpk2ZgtXH5+Bc0+nad9CujLX8k5dQnvEYMASFyzkbRt+3APC6XN7x9qnwKyli8G33o0XWGN5hj0JK/bSfoObex00pdbafTGBFpveR9pNHFh6rulHr6yWpNeXYL/skXap4B+2ETemT8a0fcAACAASURBVAu43aeVJ+nfrEfv7UngZ0vRuTiDlLg/fA9R94xBZmaR9NpSfBfORtgZMEXFkPDCm9XXVAlmvPgqEQcOk5KSRvjQETz9+CPce+fA63b8U78dpEVYRybveFv7FNCM5QXbRqyawQ/P/peM+FTueetJHFydQEDsPxdZP1d7x+zq68G4H1/BwdUJKS10Hz2YJf1nFpmAqqqc23aQpmEdePz3t8jLNrJp+oqCbXevns7mZz8iMy6FfgtHkRaVwEPr5gEQuTGCXe/VwEzc5RD960Hqh3fgP3+9hTnbyN9TCrX1+XQ6u6d/RHZcCq0eH0Cbp+7A0c+DIVsXEb3tELunf1QjGpK37scrvBOhu5Zgyc7l1OTCeqHt2ueInLoMY1wy5+d/SuvlU2g8axgZR88T+9mv5aa39/HgplXakAFh0BP/3e8k/6Z1eAt+/hFc2zUBCTmXrhBpc79UlOrWZ753dCfg/tuQJjOWHCNHx75TJf8BYLZw9rmPaPv5XNDruPL5NrJPXibgUW2ugNhPNpO8dT+e4Z3oZPXT6Xw/l5EWoOnCx9HZ29H2y+cByNgXyZlnV5Qq4WpUt161961H582FdUODsbez59Yp2Hm70W6V9gk7odcT9/0fJP12sFQNdQFLHR0Le70Q5Y3pqPbOheiE1kDqjrVbMvAIWrfk79EasolCCC8pZZK1gXZASvmGNX1HKeVBIcT3wBop5bdCiHnASCllEyHESIp26V0PvCml3F6GHgk8JKX8QggxF/CXUk4QQmwHpksp91rtfgS+llJ+aj3GXdaGdVdgBdoEUDuAAVLKc0KI1cB6KeU3QojzVk0Jpeg7D4QCrlb7dkKIe4H/SCkfs9F5L7AY+FRKWXRe+qLnMw/IkFK+aR2XGwEESikdrdszpJSuxdK0An6UUrayWfcSYJJSzi+mPxAt+tyyeJS6mJ0fcBSt4T8U6CSlHGdjuwOYK6X83bpc4K+yzi2f4Y3vvnY3aDVY1rdqb06vF8bLeTdaQpkcOex/daMbiO6aDOysGbLQ32gJZeIqan4G2ZrEzb7yEYXrhadX1b8JeT2ov7XyD/XXi/mhz99oCWXiUcv7DgbU4gllG1lyrm50A8mTtXc+VgdRez/gkidrd57oE/d17RZo5YeA4dftQeWu2M/qhE9suaa50zrOcjXaGMvdwEdSygNSymPAAmCHEOIQheM9JwKh1omcjgP5H/R6HVgkhPgTqvV0lwm0FULsQ4suvlyG3URglBDiMFpjfJIQwgH4LzDa2rV2GrBSlDqDQaX4DS3ieVAIkT9TwI9oDeCKdEkGwNrF+3vAwWa1kyj6KaBX0aK23xdL/i2lzJospYwBPgfGl6Xd2oX8N2CWtdt2WfuvqdmGFAqFQqFQKBSK/0nkdfyri1zTyG1to7RIZm1ECBGKNrHWtfkORx1CRW6rhorcVh0Vua0aKnJbdVTktuqoyG3VUZHbqqMit1VDRW5rhnXXMXI7tA5Gbq/1mFtFJRFCzAKeogJjbRUKhUKhUCgUCsX/DrX39UXt4F/ZuBVC7KZo91yAR+pC1FZK+SpQZGYeIcQc4P5ipl9LKRdcN2EKhUKhUCgUCoVCUYv5VzZupZTdbrSGmsTaiFUNWYVCoVAoFAqF4n8YS7Wn+/l3U3sHDSgUCoVCoVAoFAqFQlFBVONWoVAoFAqFQqFQKBR1nn9lt2SFQqFQKBQKhUKh+LdRe7/pUDtQkVuFQqFQKBQKhUKhUNR5VORWoVAoFAqFQqFQKOoA6lNA5aMitwqFQqFQKBQKhUKhqPOoyK2iVvNB95QbLaFUJv/mdaMllMsEs+lGSygTO1G73zna6WqvPi/7nBstoUyMJv2NllAuXj6ZN1pCmbj45t1oCeUyP/T5Gy2hTJ7fO/9GSyiT/h3H3mgJ5dLN3vdGSyiThjm1+1MnKaL2Pj43dci40RLKJD3X/kZL+Fdgqd3Z44ajIrcKhUKhUCgUCoVCoajz1N5XTwqFQqFQKBQKhUKhKMCCCt2Wh4rcKhQKhUKhUCgUCoWizqMitwqFQqFQKBQKhUJRB1DfuS0fFblVKBQKhUKhUCgUCkWdR0VuFQqFQqFQKBQKhaIOoGZLLh8VuVUoFAqFQqFQKBQKRZ1HRW4Viv9n77zjoyj+//+cS6+kN2roCAgJTYqSQrd+LFhQiiig1ACRImIBFERRBKSoFCkqdkR6VUBq6DWU0FJI7+XK/P7YS3JJLiGN9v3t8/G4x+3tvGfndTO7894pO6uioqKioqKioqLyAGC41wLuc9SRWxUVFRUVFRUVFRUVFZUHHnXkVkVFRUVFRUVFRUVF5QFAXS25bNSRWxUVFRUVFRUVFRUVFZUHHnXkVuX/BJat2mE3cARoLMjb8Te5f/5QNLxtZ+z6DgIpkXo92Svmoz9/CuHuif3wSWhc3MAgyd2+nryNv1a7vlfef52HgwPJy87ju/HzuHr6Sqm2/T4YTJcXgnmr+asANHmkOaOWTCDhxi0Ajmw6wLqvfq60FuegAGp98CZYaEj8YStxX5f8v7U+fBPnkDbI7Fyixs4l+9TlwkCNhqZ/f442NpFLg6YD4Bv2Eu6v9ECXmApA9KxVpO08UmmN9ae/jltoAIbsPM6Pnk/myZL5ZVPHi6aLwrBycSTj5GXOj5iH1OpKjS9srGj1x0cIayuEpQUJ6//j2uy1FdJVIyiAetNeR2g03PphG9Hzfy9hU3faYFxDAtFn53IpbD5ZJ5W8qz9nOK7d2qJNSOVEyJgCe/vm9fCfOQyNrRVSp+fKpCVkHrtYIV0Ajl0DqTlVKdekn7YSv/CXEjZ+7w/BKbgNhuxcboyfS/bpS9jUr0md+e8U2FjX9iHui9UkLF2H95iXcXupJ7okpVxjP/2e9F2VK1fnoADqfPgGWGhI+GErsQt+K2FT+6M3qBGi6IsK+4qsYufdQxs+Iy82kYsDZwBQa8oAanRrh9TqyL0aS9TYeejTMiulLx/bTu1wG/82WGjI+H0jact/LBJuWa82Hh+EY920ISkLlpG2UrkWLevWwnPmlEK7mr6kLFpB+pqS/7MqWLVtj8OwkQgLDTkb/yZ77Zoi4TbB3bDr+woAMiebjHlz0F++BIBwcMQxLByLev4gIWPOLHRnT1ervj7v96dRcCu02Xn8Pn4xMaejStg8PetNaj7sDwgSr8Ty+/hF5GXl4tHAl//NHopv83ps/2wte7/ZUK3aymLKx3P4Z+9B3Fxd+GPVoruWrikjPxrOIyHtycnOZWbYp0SeMl8PDH5nEEFPdMWg1/Pnyr/4bekf1GlQmwlzwmnUoiHffbqMnxZX3keY46n3B9AkuDXa7DzWjl9ItJlyfX7WEGo+XB+BIOFKDGvHLyQvK7cgvNbD9Rn++zTWjJjLyY0Hq6ypwfRBuIUqde2F0QvIMOMnbOt40XTRGKxcHEk/eaXAT9g19KPJl8NxbOlP1MwfuLHwr6IRNRoCN88kNzaJ06/NrLLWfB6e3h+f0Nbos/M4MnoRKSejStjUf70HDd/shaO/D+sfGkpeUnq1pe/UNZCa77+BsLAg8cct3FpY0v/X/OBNnIPbYsjO5dr4Lwv8v4WzA7VnjcC2cV1Aci38K7IizuMz5mXcXu6BPt//z15JegX9/53w+QCNvngbt+5t0CakEhE0tsjx/Ab3xndQL6TeQNK2I0RNW1UhzSr3L2rjVuXBR2iwe300mTPCMSTG4/TJIrSH92G4ebXARHfyCOmH9wKgqVMfhzHvkz52AOj15KxciP5KJNja4fTJYnQnDheJW1UeDgrE29+XiUEjqB/QiNdmDGH6M5PM2tZr2QB7Z4cS+y8cOsvcwZ9UXYxGQ+3pQ4l85X20MYk0Wf8ZqVsPkhN5vcDEObgNNv6+nHl0GPYBjanz8Vucfyq8INxr8BPkXLyOhaN9kUPf+nYdtxb/UWWJrqEB2NX35XDHkTgFNqLhrCEc71Myv/ynvEr04vXE/7mXhrOG4PNKCDErtpQaX+ZqOfHchxiychCWFjy8bjrJ24+SHhFZPmEaDf4fv8nZlz4kLyaRFhs+JXnzIbIjbxSYuIQEYufvy7HOw3EMbEz9T4Zw6omJAMT/tJPYZRtpOHdUkcPWmdKfm3N+ImXnUVxCAqk7pT9nnp9asUzTaKj50TCuvPoe2thEGq6bQ9rWA+ReLCxXp6A2WPv7cT5oKPYBTag54y0uPjOe3Ms3iewzuuA4zQ4sJ3XzfwXx4r/7k4RvSjbiK6qvzvShXDCed83+nk3KloPkmORdjZA22Pr7cqrLWzgENqbOJ8M492Rho9t78BNkX7yBhaNdwb60f45z45OVoDdQc3J/fEY8x82Pv6+STrcJI7n19gR0cfH4rlpA9u59aK9cKzAxpKaT9OkC7IM7FYmqu3qDmJeHFRyn1qYfydq5p/JaStHnOHwMqZPGYUiIx2XeYvL270V/rbC+0sfFkBo+CpmRgVXbDjiOHk/q6LcAcHhrJHmHD5I7/X2wtETY2FarvEZBrXD392Fu0DhqBTTkyRmDWPLM+yXsNk1bRW5GNgC9pvSjw4Ae/LvwL7JTMvn7g+9p1qNNteoqD8/06c4rzz3F5Gmf3fW0ATqEtKeWf036dRnAQ4HNCPtkNG8/ObKEXa++PfHy86J/10FIKXFxdwEgLSWdr6YuoEvPTiXiVJUmQa3x8PdhdlAYdQIa8r8Zg1nwzHsl7P6atrKgXJ+Y8iqdBvRk18J1AAiNoPfEV7jwz/Fq0ZRfzx8qqOff5FifySXs/Kf04+bi9cT/uY+Gs94s8BO6lAwuTlmKR6/2Zo9f880+ZEXexMLJzmx4ZfAObY1jfR+2dByLa2BDWs96nV19Stb1iQfPE7s1gkd/K5nHVUKjoda0oVzqNxVtbCKN131O6raD5Jr4f6fgNtj4+3G2q+Inak1/i8hnFP9f8/03SdsdQdRbsxBWlmjsbArixX/3J/FLKuf/75TPB4j7aSfRSzfSZF7Ra6lG5+a49WxHRMg4ZJ4OKw/nSmm/V6ivAiobdVpyGQghPhJCdKuAvZ8Q4hfjdmshRJ87pMtdCLFTCJEhhJhfLCxKCOFh8jtICLG+lON0EUIcFEKcM36GFAvvL4Q4JYQ4LYQ4I4QYb9y/XAhxRQhxzPjZVyzen0KI/4rt+0AIkSWE8DLZl1H5XCjEomFTDHHRGG7FgF5H3r4dWLXrXNQoN6dQi40t+U8syJQkpWELkJON4eY1NG4eVCcBPdqx77fdAFw+Gom9kwM1PF1K2AmNhr6T+7P2kyrcnN8Gh9aNyI2KJe9aHFKrI3ndv9ToUdS51+jRnqRfdwKQdfQCFs4OWHq5AmDl445zSFsSfth6xzS692zHrbW7AEiPiMTS2R4rr5L55dK5BfHrldMsbu0u3I03KWXFN2Qp54GwskBjaVGhB1ccAxqSExVDrjHvEv/cg2vPonnn2rM98b8oaWdEXMCihgNWxrxLP3AGfbKZHngpsXBSOgosnO3Ji0sqvygj9q0bkXc1hrzriraUv/7BuUeHIjbOPR4h5bcdAGQdPY+FkwOWnq5F/2PnVuRdjUF7M77CGspCOe9iCs67pD/34FJMn0uP9iQa8y4z4gKWzoV5Z+XrTo3QtiSsKXrepf1zDPQGY5zzWPu6V0mndYsm6G5Eo7sZAzodmZt3YRdUtC4xJKeQd+Y8Uqcv9Ti27QPQ3ohGH3OrSnqKY9mkGfromxhiFX25u3Zg3bFLERvdmdPIDKVq1Z07jcbDEwBhb49Vy1bkbvrbaKhDZlZLFVxA0x5tOPbbvwDcOHoRWyd7HM3UdfkNIABLW2ukVC7EzMQ0ok9cxlBG3t4p2rZuSQ1np7uebj6de3Ri8y/K+X0m4iyOzo64ebmVsHu6/5N8/+XKgjxLSUwp+D5//Dz6O5B3zXu04YixXK8dvYidkz1OFShXgM4De3Fq4wEyEtOqRZNHz3bErVX8qlLPO2Bdqp/YD0Dc2t2492oHgDYhjYxjl5A6XYk41r5uuHULJHb19mrRmo9fzzZcW6vkY3LERayc7bE1ozn11FWyridUa9qg+IncqEI/kfzXv9ToXrQertG9g4n/P1/g/zWOdjh0aE7Sj8o5KrW6Ks+SyedO+vy0/WfRpZSs53wH9OTGvN+ReUr5axOq57xUuT/4/6ZxK4So8Ci1lHKqlHJbBeyjpZTPG3+2Bqq1cSuEyPd0OcB7wPgqHMsHWAMMk1I2BboAQ4UQjxvDewNjgB5SyuZAIJBqcohwKWVr46eTyXFdjLYuQgj/YskmAOMqq7k0NG4eGBILbyINifFoXEs2UK3adcFpzgocJn5C1sJPSx7H0xsL/4boLp6tVn0u3m4kRRc6quTYRFx9St6EdxvQm2PbDpEan1IirGFgEz7c+Dlhy9/Fr1HtSmux8nEnz0SLNiYRq2JarIvZ5MUkYG20qfXBG9z8eAUYSrYKPQf0odmWudT5bCQWNUqOPpcXa193cqMTTdJPwqZYo8XSzQldWmZBwyY3JhFrX7fbx9doCNg2m0dOfUfyPydIP1rOUVvy88X0uIVpFtq4Fc276ESsfUreoJoSNXUpdd7rT8DhJdR9bwDXPl5dbk35WHm7oy1ert7uJWyKaIstWfYuTz5Kyrp/iuzzGPA4jTZ+Ra1PR2FhZlZBebD2dSMvpmjaxfPOqnjexSRiZcy72h8M5saMFSBL743weLEbqTsjKqUvH0tPD3SxhXWJ/lY8Fl4VbzA79Awma/POKmkxh8bdA0O8SV2XEI/Go/TOONtej6M9dECJ6+OHITUFx3ETcVnwLY5jwqGaR26dvd1INblG0mKTcPZxNWv7zOwhvHPoazwb+HFg+ZZq1fEg4unjQXx0YadSfEw8nj4ly9avrh/BTwax+O8FzFr5MTX9a95xbcXLNTU2CedS6rUXZg9lyqFFeDXwY9/yzcb4rjTv2Y79q8t9O3VbrH3ditTzuWbqY8VPZBX4ibyYRGx8y66PARpMG8SVaauQsnpfuGLr60p2dGHnZXZMEra+5q+PO4GVjzvaGFM/kVDCB1j5uKM1OQ+1sYovsanjgy4xlTqfjabxhi+pPWtEkZFbz/6P02TTV9SeXXE/cUd9finY1ffF+ZFmtNrwCQ///iGOrRtUSPO9xnAXPw8ilW7cCiHGGkf1Tgkhxpjs7y+EOCGEOC6EWGnc5ymE+FUIccj46Wzc314IsU8IcdT43cS4f6AQ4jchxCYhRKQQomRLpKiWDCHE50KICCHEdiGEp3H/LiHEx0KI3cBoIURdY/gJ43cdo92fQoj+xu2hQojVxu3lQojnjdtRxmP9J4Q4LIQIFEJsFkJcEkIMM9rUM+aHNfAR8KJxZPNF4//I16URQlw0HWEt47/ZCiH6CSF2Al8BSCkzpZR7UBq5lWU4sFxKGWE8ZgLwDjDRGD4JGC+ljDaG50gpvynHcZ8D/gJ+BF4qFrYUJU9u710qgjA3P6PkTbD20B7Sxw4g87P3sH3x9aKBNrbYj/2I7BULIDurmuWV1CeL3aS7eLnStk9Hti0v+YzZ1VOXGd95GO/3Hsf25RsZtWRCFcSY2Ve8wVCKXufQtugSU8g+ealEePzKjZzuMoyzPcegu5VMzfdeL2FTbonl0GguT/NtyoxvMHC0WzgHAobiFNAQ+6YV6Cgoz2lWhq7S8B7Qi6vvL+No2yFEfbCMBnPeLr+miqR7m3wVVpY4d+tA6oa9BfsSV23k3GNDiOwzGu2tZHynDK64tlISL5EtZv8D1Ahtiy4hlSwz510+viOfR+r1JBlnSFSaUjRUCEtL7B7rSObWKmoxRwX0WbUKwKbn42R+t1iJamGBZcNG5Kz/k5ThbyBzcrB/8ZU7L6+U8/+P8CXM7jCc+Is3afHkI9Wq44GkHH4CwNrairzcPIY+Ppz1azYw4bNK93FXSVtp9drP4YuZ0eEtbl2MptWTHQF4cmp/Ns5cgzTTKVq9moqbVPx6duseiDYhlYwTl8s2rASV0VPNCsykX04/YWGBfYsGJKzayIU+YzBk5eD1tjKWk7BqI2ceG8r53qPR3krC772K+Yk76vNLS9PSAssajhzvM4nLH62k2ZKxZdqrPFhU6plbIUQbYBDQAeVSOGBsQOYB7wKdpZQJJo2YucAXUso9xgblZqAZcA54TEqpM07//RilcQTKyGcAkAucF0LMk1IWPhhQFAcgQko5TggxFXgfGGEMc5FSdjXq/gv4Xkq5QgjxOkpj8RlgCLBXCHEFZWSxNE97XUrZUQjxBbAc6AzYAqeBghUopJR5Rh1tpZQjjGk3BfoBXwLdgOPGBmVpedwKeAPoDWxCaWiW9wn9nUKI/LlJjij5XJzmwIpi+w4b9wO0AMpKb7YQIn/1lNNSyn7G7ZeBD4E44BfA9EHRDJQG7miUMjKLcXr0EIAv2jRmYAO/MmQYR2rdC2Y7o3H3xJCcWKq9/uwJNN5+CCdnZHoaWFjgMO4jtHu2oT34b5lplZeQ13rR9WVlRvuV4xdx8yvsx3D1cSel2NTTOs398a7nw6zdCwCwtrNh5q75TAwaQY7JVK8TuyJ4bfqbOLo6kWFuiutt0MYkYm2ixcrXHW0xLXkxCVj7eZA/4cja1wNtXBKufTpRo3t7nIPboLGxxsLJnnpzw4ga/QW6hMJB/YQ1W2iwfAoVwXdQL3z6hQKQfuwSNn6Fva7Wvm7kxhbVqE1Mw9LZASw0oDdg4+tOXmwyALnRibeNr0/LInXfaVyDA8g6V1q1UpS8mESsixzXnbzY4nlXNH+t/dzJi0su87ieLwRx9b3vAEj6ax/1P6t441Ybm4BV8XK9VSzPYhVt+V031j5Fy94pqA3Zpy6hSyicOWC6nfTjZvy/q+CzwEaUUW6TfPFxR1u8TIvnnfHcdH28Iy492lEjpA0aGys0Tvb4fzWGK6O+BMD9+WBqdGvLhRcrp80U3a14LH0K6xILL0/08aXXJeaw69yevHORGJJKzsCoKoaEeDSeJnWdhyeGxJJuxMK/Po5jwkmd8o5SxwH6hHgM8fHoziszU3L37Ma+b9Ubt+1f606bl4MBuHn8MjVMrhFnHzfS40rPB2mQnFq/n85DnuDoz/+Uavd/lWcGPMUTrygTvM4dv4Cnn2dBmKevJwlxJc+9+Jh4/tmg+Kl/N+5hwufhJWyqg46vdaf9yyEA3ChWrjV83Egro16TBsnx9f/RdcgTHP55N7Uers/L85S1BhxcnWga1Bq93sCZLYcrpMl3UE98+yl+Nf3YxSL1vI2Z+ljxE/YFfsLa172ELyiOc7umuPdoi1togOLnHO1oMn8k50fMq5DWfOoP6k69fsr1kXzsMnZ+hX37dr5u5MSW7R+qE21sAla+pn7Co4T/18YkYuXnCSj1hJWP0ZdIiTYmgaxjFwBI2bAPr7eV2/UifuKHLfgvvf2zwnfb5xcnNzqRxA3KrJaMoxeRBomV+4Pz3O2DOqJ6t6jsyG0X4HfjCGIG8BvwKBAC/JLfaJNS5p9d3YD5QohjwDrAWQjhBNQAfhZCnAK+oLBhBbBdSpkqpcwBzgB1y9BjAH4ybq8y6svnJ5PtjihTcQFW5ttJKeOAqcBOYJyJ7uKsM36fBA5IKdOllPFAjnE6blksBfobt18HlpVmKIQYCxwALgDNpZQjKtCwBQjOnzKM0kA2mwzm+wzL249oOi25n1G3N9AQ2COlvADohBAtisX7ChgghCi1FpFSLpFStpVStr1dwxZAf+kcGp+aaDx9wMIS604haA8XeQwYjXfhcSz8GyEsLQtu+uyHvYPh5lVy/66+1SV3rNzE+33G836f8URsOUinZ7sCUD+gEdnpWSWmHp/YGcGYdm8Q3uUtwru8RV52LhODlP4ZZ5Nnm/xbNUQIUamGLUDm8Uhs6vliXdsLYWWJ61OPkrq16KqVqVsP4vac4oztAxqjT89EdyuZ6FkrOdV+MKc7DeHK8M9I33uCqNFfABQ8kwvg0usRss9foyLELNvE0W7hHO0WTuKmg3j1DQLAKbAR+vQstLdK3iCn7DuN5xPKyIB33yASNx8CIHHLYbPxrdydsXBWnm3V2Frj8ujDZF+8WW6NGccuYuvvi40x79yf7kLylkNFbJK3HMLzeSVtx8DG6NOy0N4q++ZFG5eMc0el6nPu0pKcKzHl1pRP1vFIrOv5YVXLG2FlicuTj5FWrFzTth7A5VnlZtU+oAn69Cx08YXaXJ56jJS/io42mj6TW6NnR3IuVG6htczjkdj6F553bk93IaWYvpQtB3E35p1DoHLeaW8lc3PmKk60e4OTHYdwefjnpO89UdCwdQ4KwOftZ7k46GMMOXmV0mZK3unzWNauiaWfD1ha4tAziOzd+24f0QSHXsFk3oEpyQC68+ewqFkLjbeizyYohLz9e4vYaDy9cJ46jfTZMzDcLFywSyYnYUiIx6KWMlvBunUgumtRVdZ0cOVWFvaZzMI+kzm35TCtn30UgFoBDclJzybDzGMWbnW9C7abhAaScCm6yjoeRP5YsY43eg7jjZ7D2LNpLz2f7w7AQ4HNyEzPJOlWyVuRPZv3EdA5AIDWHVtx4/KNEjbVwX8rtzK3zyTm9pnE6S2HaWMs1zoBDclJzyLdTLm6m5TrQ6GBxBvLddajo5nVZRSzuozi5MYD/PHe0go3bAFilm0mols4Ed3CSdx0CO++il91CmyELj2LvFL9hDJe4d23a4GfKI2oj9dwIHAYB9sN5+ywL0jZe6rSDVuAy8u2sqPbZHZ0m0zMpsPU6avko2tgQ7Tp2eSY0XynyDoeiY2/H9a1FT/h+uSjpG09UMQmbZup/zf6iVvJ6OJTyItJwKa+Mg3eqXOrgoWoTP1/jZ6PkHP+9n7ibvj8skjcdAiXLsrtqV19XzRWlmir6XlwlXtPZVdLLm2drtIaTBqgo5Qyu4ixEPOAnVLK/wkh6gG7TIJzTbb1FdRqqqGsJ95N7VoCiUBZral8TYZiQRT27QAAIABJREFU+gy30yelvC6EiBNChKCMePcrw3wVYAUMBYKFEMuAjVLKkisfVJ7TQFsKG+wAbVA6EvLD2wA7KnDMFwFX4IpxCokzytTkgmE8KWWKEGINUIm5l6VgMJC99CscJn8KGg15uzZiuBGFdbcnAcjb9hdWHR7D+rGeoNch83LJ/PIjACyatMD6sR7or17CaZYy6zr7h2/RHTtQanIV5cTOCB4ODmTW7gXkZefyXfiCgrCwZe+ybMLXpJTRAGrXuyPBr/ZEr9ejzclj0cgvKi9Gb+D6e0touOoDhIWGxJ+2k3PhOh6v9gIgYdUm0nYcoUZIW5rvWYQhO5er427v2GtOHoB9c+X1Irk3bnFt4teVlpi8LQK30EDa7p+PITuXC2MKj9V89WQixy4kLy6ZqGkrabo4jLoTXyLjVBSxa7aXGd/Ky5UmX41AWGhAI0hYt4+krRXoM9IbiHr3W5qumYqw0HDrx+1kX7iO12s9ALi1cgsp24/gEhpI631fYzC+Ciifhl+H4dyxBZZuTgQc/oYbn/9I/A/buRz+NXU/GoywsEDm5nElfGHFM01vIHrqIup//yFYaEheu43cyGu49VPKNWn1JtJ3HsYpuC1Ndi9RXgUUPrcgurC1wbFLa25MXlDksL6TBmH7kL/Sa3/jVonwiui79t43NF79PmgsSPxpGzkXruP5ak8A4ldtJnXHEWqEtKHFnkUYcnKJGvvVbQ9bZ/oQNNZWNP7hQwAyIs5zbVIVXuOiN5A0ax5eC2aCRkPGuk1oL1/F8bknlOP/uh6Nuyu+q75G42APUuL0yrNEPz8YmZmFsLXBtkMbEmd8WXkNZWHQk7HgS2p8/BloNORs2YD+ahS2jz8FQM7f67DvNwDhVAPHEWEASL2e1JFDFf0L5uI4YQrC0gp9bDQZn1ffK04ALuw8RqPg1ozZPUd5FVD44oKwV5eF8+eEb8iIT+XZz4dh42gHAmLPXmP9FKWv19GzBkPXTcfG0Q4pDTzyem/md3+nyEJFd4rw92dy6OgJUlLSCH3mVd4e/BrPPdnzjqebz/4dB+gQ0p7Ve74nNyeXWWNnF4TN/H4Gs8PnkBiXyJoFP/DuvMm88OZzZGdmMzv8cwDcPF1ZvOFr7B3tkQbJ8288y4DgwWRlVP0xm3M7j9IkuDXv7P6SvOxcfjYp10HL3uGXCd+QEZ9C38/fwsbRDiEEMWev8vuUpVVOuzSStkXgFhpAu/3zlNe/jCmsm1qsnsSFsYvIi0vmyrRVNF0cRr2JL5Nx6gqxa5RbGitPFwI3z1RWQzZIar75OIcfC0N/B8+12G3H8A5tTY/9X6DPzuXImMJ87LT6HSLGLiEnLoUGg3vSePgT2Hi5ELpjJnHbjxExrjxPhd0GvYEbUxdT/3vF/yet3UZO5HXcjX4icfUm0nYcxim4Dc3+WWx8FVBhPXzz/SXUnTsWYWVF3rVYro1XfIjfpIHYPaT4/7wbcVyfXDH/f6d8PkCThWNw6dQcSzcn2kcs5ursn4j7YQdxP+yg8RdvE7hrDjJPx/lR80voup+R6mrJZSJKex6mzEhCBKJMy30E47Rk4DWUacm/ozRkE4UQblLKJGNj5qiUcrYxfmsp5TEhxO/AKinlr0KID4CBUsp6QoiBFJ3Sux74TEq5qxQ9EnhZSvmjcaqst5RypBBiF8p03sNGu3XAz1LKlcY0njY2rNsDS1AWgNqNsojSFSHEcmC9lPIXIUSUUVOCGX1RKA1FR6N9CyHEc8BTUsoBJjqfA+YBK6WU5XpwUgjxGDAYZWR8vpRyjklYER2mWvJHz4UQQcY8eKLYcX1Ryu0pY1m4o0x//khK+ZdQVnr+CHhCShkrhLABhkopvzLNl2LH/A8YK6X8z/jbH9gqpWxoLN8MKeVnxmeNDwG+UsoyVzRJeTH4rj6RUl7CDlTvY8PVzUh9dfaDVC+ZWqt7LaFMrDT374Qfe2vtvZZQKnk6i3stoUw8vap3ZeDqxMHz/i1XgK/O17rXEkrlvcPT7rWEUuneesjtje4hHSw9b290j3g85/71YQAJ3L9+rL7N/VvXpeda32sJZfJo7C8PRLNxUe1X79q98bDrqx6IPDGlUtOSjYsQLQcOojSQvpVSHpVSngZmALuFEMeB/IbYKKCtcSGnM4DxZYB8CnwihNgLVOXOKBNoLoQ4gjI1+qNS7EYBg4QQJ1Aa46ONjbZvgNeNiyeNA5YKs0+vV4idwEP5C0oZ961DaQCXOiW5OFLKf4wN5NbAifz9xkbsHGCgEOKGEOKhioiTUsYArwLfCCHOAfuApVLKv4zhG4AFwDYhxGmU529NR6dni8JXAR0TQjQG6gD7TdK4AqQJIYqsNW9seP8O2KCioqKioqKioqKiUi7U1ZLLplIjt/cbQogMKaXjvdZxO4QQbVEW1nr0Xmt5UFBHbiuHOnJbedSR28qhjtxWHnXktvKoI7eVRx25rTzqyG3lUEduq4ev7+LI7dsP4MhtZZ+5VakgQoiJwFuU/aytioqKioqKioqKioqKWe7fLvj7gweqcSuEOEDJqayvPQijtlLKmUCR1TuEEO8CLxQz/VlKOeOuCVNRUVFRUVFRUVFRUfk/wAPVuJVSdri91YODsRGrNmRVVFRUVFRUVFRUVG7Lffm83n1EZd9zq6KioqKioqKioqKioqJy3/BAjdyqqKioqKioqKioqKj8/4rhgVvi6e6ijtyqqKioqKioqKioqKioPPCojVsVFRUVFRUVFRUVFRWVBx61cauioqKioqKioqKiovIAYLiLn6oghHATQmwVQkQav13N2NQWQuwUQpwVQpwWQow2CftACHFTCHHM+OlTnnTVxq2KioqKioqKioqKiopKdTIR2C6lbARsN/4ujg4YJ6VsBjwCDBdCPGQS/oWUsrXxs6E8iaoLSqnc1+zf5X2vJZjly17x91pCmSzd6XuvJZRKJ03WvZZQJnmG+7fPLynb9l5LKBXtfd5X+m/C/fs69IOJGfdaQpm0lffv6iXdWw+51xJKZeuxJfdaQpl80WbqvZZQBrp7LaBMArzv33uA43Ge91pCqfhocu61hP8TVHVE9S7yNBBk3F4B7AImmBpIKWOAGON2uhDiLFATOFPZRO/vuxEVFRUVFRUVFRUVFRWVBw1vY+M1vxHrVZaxEKIeEAAcMNk9QghxQgix1Ny0ZnOojVsVFRUVFRUVFRUVFZUHAHkXP0KIIUKIwyafItNlhBDbhBCnzHyersh/EkI4Ar8CY6SUacbdC4EGQGuU0d3Py3MsdVqyioqKioqKioqKioqKShGklEuAUp+xkFJ2Ky1MCBEnhPCVUsYIIXyBW6XYWaE0bFdLKX8zOXacic03wPryaFZHblVUVFRUVFRUVFRUVB4ADOLufarIOmCAcXsA8GdxAyGEAL4Dzkop5xQLM11A5n/AqfIkqjZuVVRUVFRUVFRUVFRUVKqTmUB3IUQk0N34GyGEnxAif+XjzsBrQIiZV/58KoQ4KYQ4AQQDYeVJVJ2WrKKioqKioqKioqKi8gDwoKyWLKVMBELN7I8G+hi39wBmx4illK9VJl115FZFRUVFRUVFRUVFRUXlgUcduVVRUVFRUVFRUVFRUXkAkPdawH2OOnKroqKioqKioqKioqKi8sCjjtyqqKioqKioqKioqKg8ABjUsdsyUUduVVRUVFRUVFRUVFRUVB541JFblQeaZjMG4BEagCE7l5OjFpJ2MqqEjV0dT1otHo2ViwNpJ6M4MXw+UqvHrdNDBKwYT/Y15Z3ScX8f5NIc5d3Rls72tJgzFMemtUDCqbBFpByOrJRGy5btsO03HDQatLs3kPv3j0XDAzph+9wgMBiQBj05q79GH6m8ysvps9XInKyCsMwP3q6UhtsR9OFr+Ae3Rpudy5ZxS7h1KqqETa+5b+H9cH0MOh2xxy6zfdJSDDp9Qbj3w/V56c8P2DB8HpEbDlVaS42gAOpOex2h0XDrh23EzP+9hE3daYNxCQnEkJ3LpbD5ZJ28jLWfOw3mjsLKyxVpMHBr1Vbivvu7UN/rffAe1Bup05Oy/QjXp68st6b601/HLTQAQ3Ye50fPJ/PklRI2NnW8aLooDCsXRzJOXub8iHlIra7M+BbO9jSe8xb2TeqAlFwI+5r0Ixfwn/oabt3bIrU6sqNiuTBmAfq0rHJpbThjEO6hgeizczk3agEZZrTa1vHiocVjsHRxJOPkFc4OV7R6PdeFOiOeAUCfmcOFd74h88xVAJp8+Rbu3dugTUjlUNdx5c47U5rMGIhHaAD67FxOj1pIulltnjy8eDRWLo6knbzCKeP16tmrLQ0m9AWDROr0nH9vBSkHzwNQ+83e1HpVWZDx5uodXFuyocRxK8L9dD2YY8AHb9A6uA152bksHP8VUacul2o78MM36fpCCIMeehkAOyd7hn8ZhoefBxaWFqxf8ge7f95RbdqCjXmny85lUyl516dY3m01k3ev/PkB6+9A3o38aDiPhLQnJzuXmWGfEnnqolm7we8MIuiJrhj0ev5c+Re/Lf2DOg1qM2FOOI1aNOS7T5fx0+Kfq1VbaUz5eA7/7D2Im6sLf6xadFfSLE7oB69R33hNbBy/hDgz5frE3LfwaVkfvU5HzPHLbDEp19qPNCNk6qtYWFmQnZTODy/OqLKmBtMH4Was6y6MLr2ua7poDFYujqSfvFJQL9s19KPJl8NxbOlP1MwfuLHwr4I4jb94CzdjXXckqHJ1XT52ndriNuFthEZD+u8bSV36U5Fwq3q18fhoPDbNGpI0bxlp3/9SEFZrw0pkVjZSbwC9nuhXhldJSz4tp/fHO7Q1+uw8IkYvItXMfZN9HU/aLhqJtYsjKSevcGTE10itHqsaDgR8MQSHet4YcrVEhC0m/dwNAHocmos2Ixv0Bgx6A7t7TqmwthpBAdQz8f/Rpfh/1xCl3PP9P0D9OcNx7dYWbUIqJ0LGFNjXGvciXq90Q5uUBsD1T1aTsiOiwtruJx6U1ZLvFerIrcoDi0doa+z9ffn3kTGcGv8ND336hlm7xlNeIWrx3/zbMQxtSga1XgkpCEs+cI59oRPZFzqxoGEL0Gz6ABJ2HmNPl3HsDXmHjAs3KydSaLDtP4rMzyeRMel1rB4JQeNXt4iJ7kwEGVPeJGPqULK/+wy714s608yZ48iYOvSONWzrBbfCpZ4Pyx4bx7aJ3xEyY6BZu3N/7GNFcDgru0/C0taaFi8FFYQJjaDLpBe5uvtE1cRoNNT7+E3O95vOiaDRuD/9KHaNahUxqRESiK2/L8c7D+fKO4vw/2QIAFJn4OpHKzjRdRSnn5iI98DeBXGdO7XAtWc7ToaGcTJ4DDEL15VbkmtoAHb1fTnccSSR4xfRcNYQs3b+U14levF6DncaiS4lEx/jeVZW/AbTXydpxzGOPDqaiNDxZEUqNwnJu09wJCiMiJBxZF+OofaoZ8ul1S00ADt/Xw48MpIL4xfT+NM3zdrVn9KPG4vXc7DjKHQpGfgateZcvcWxZ97ncPB4rs75hSafDy2IE/vjLk68VPkbUuV69WHvI6M5O/4bmn062Kxdoyn9uLp4A3s7jkGXkklNo7akf06yP/gd9odO4HTYIh6ao2hzaFqbWq+GcqDXZPaHvINH90Ds/X0qrfO+uh7M0Dq4DT7+voR1fYtvJn3N4OnDSrWt37IB9s4ORfb16N+Hm5HXmdg7jI9enMKrUwZhYVU9/dz+wa1wrefD0sfGsXXid3QrJe/O/rGPZcHhrDDmXctieffYpBeJugN51yGkPbX8a9KvywA+n/AFYZ+MNmvXq29PvPy86N91EAOCB7Pjz10ApKWk89XUBXetUZvPM326s2jO9Luapin1g1vh6u/DN13HsXnSd3SfPtCs3Zk/9vFtSDjLekzCysaah43lauNsT/fpA/ntjTks7T6RP9+eV2VN+fXqoY4jiRy/mIazzNd1/lP6cXPxeg51Uuq6/HpZl5LBxSlLizRq84n7aRenXq564xuNBvfJI4l7ezI3/vcGDr2Csapfp4iJPi2dxFkLSF3xi9lDxLwxnugXh1Vbw9Y7tDWO9X3Y1nEsx8Z/S6tZr5u1az7lZS4t3si2TmPRpmRS95VgABqPfprU01fZGTKRIyMX8vC0/kXi7X1uBju7Ta5UwxaNBv+P3+Rcv+kcL8X/u4QEYufvyzGj/6//SaE/jf9pJ2f7TTN76Jhv1nOy+zhOdh/3wDdsVW6P2ri9BwghPhJCdKuAvZ8Q4hfjdmuTlxtXNN0PhBDjjdvLhRA3hRA2xt8eQogo43Y9IcSpUo5hKYRIEEJ8Umz/LiHEYZPfbYUQu4zbQUKIVCHEUSHEeSHEP0KIJyrzH0zx7tWW6J//ASD1yEWsnO2x8XIpYefepTlxfx0AIHrtP3j3blvmcS0c7XDt2Iwbq3cCILV6dOUcNStxrPpNMcTdRMbHgF6H9sBOrAI7FTXKzSnYFNa23O118Br0aMPZX/cAEHv0EjbODjiYyceonccLtmOPXcLR163gd+tBPbi48RBZiWlV0uIY0JCcqBhyr8UhtTqS/tyDa8/2RWxce7Yn4ZddAGREXMCihgNWXq5obyUX9OAaMnPIuXgDK193ALz69yR6/u/IPGUkVZeYWm5N7j3bcWutkl56RCSWzvZYmckfl84tiF//HwBxa3fh3qt9mfEtHO2o8Ugz4tZsB0BqdQWjsym7j4Ne6ZtNP3IBG+P/uB0evdoR9/NuANKORGLp7IC1Ga2uXVoQ/9d+AGLX7sajdzslzuEL6FIzC+Kbppu6/yy6lIxy6TCHZ692xBRcr6Vrc+vSnFtGbdFrd+Np1KbPyi2wsbC3QRovE4dGNUk9EokhOw+pN5C87wyefdqXOG55uZ+uB3O06d6ef3/dBcDFoxewd3bAxcu1hJ3QaHjl3YGs+WRF0QApsXO0A8DWwZaMlIwio6ZVoUGPNpwx5l1MGXl3xSTvYorlXcCgHkTeobzr3KMTm3/ZCsCZiLM4Ojvi5uVWwu7p/k/y/ZcrkcaTLCUxpeD7/PHz6Kspv8pL29YtqeHsdFfTNKVh9zacNilX21LK9bJpuR6/hJOxXJs93YkLmw6RHp0IUC1l69GzHXFrlbpOqVfN1ydKvazUJ3Frd+PeS6lPtAlpZBy7hNTpSsRJ3X8WbRXqunxsWjRBez0a3c1Y0OnI3LQL+6Ci/t+QlELe6QtmddwJfHq24drafwFIjij9vsmjc3Oi1yv3TdfW/otvL+W+yalxTeL/PQ1AxsVo7Gt7YuPhXC3aivv/xFL8f7wZ/w+QfuAM+uT0atGi8mCjNm6riBCiwl3eUsqpUsptFbCPllI+b/zZGuOLj6sBPWC+2650egDngb5CiOIvXfYSQvQuJd6/UsoAKWUTYBQwXwhR4sXOFcHG143sm4kFv3NikrDxLXqjYuXmhDYtS5nWA+REF7VxadOITjtm0WbNRBybKD2E9nW9yEtMo+Xct+i07ROazxmChb1NpTQKVw9kUnzBb0NSPMLVo4SdZZvOOH6yDPuxM8j+9jOTEIlD+Kc4frgQq6DHK6Xhdjj6uJIeU5iPGbFJOPqUvFnOR2NpQbNnuxSMSjl4u9KwZ1tOrNpeZS3WPu7kRRdqyYtJxKpYmVr7uJEbnVBoE52ItU8xm1qe2LfwJzPiAgC2Dfxw6tCM5utn0uzXaTi0alh+Tb7u5BbRlFSisWnp5oQuLbOgQZobk4i1UXdp8W3reqNNTKPx3OEEbJ1No8+HoTFznnm/HEJSOXuabXzdyDW5JnJjEs1eEzqTayI3uqQNgO8rISTtOFqudMunzZWcItdrIra30ZYTnVTExrN3OzrtmUPAqomcCVsIQOa567g80hQrV0c0dtZ4dAvAtmb5OgPMcT9dD+Zw83Ej0eT8T4pNxM27ZPn1HNCHI1sPknIrucj+zSv+xq9hLb4+tJRPN8/l+w+/LWjEVZXieZdejrx76NkuBaO0jsa8O36H8s7Tx4P46ML6OD4mHk+fkvWxX10/gp8MYvHfC5i18mNq+te8I3oeFJx8XEmLLlquTt5ll2vzZ7twZZdSrm7+PtjWcOClH9+l//ppNH+2S5U1Wfu6FalXTevcfCyN9Ul+vZxnpj68k1h4eaCPLTzf9LcSsPQueb6VjsRn0Uz8fliA03PVc9tn5+tKdnRSwe+cmCTsfIuWpbWbE9q0zMJ6OCaxwCb19DX8+igdBC4BDbCr5YGtn1LfSinp9ONEgjbPoO6rIVQUc/6/eJla+7iRdxv/bw6fQb1puW0O9ecMx6KGw23t73fkXfw8iNyXjVshxFghxCnjZ4xxX38hxAkhxHEhxErjPk8hxK9CiEPGT2fj/vZCiH3GkcJ9Qogmxv0DhRC/CSE2CSEihRCf3kZHhhDicyFEhBBiuxDC07h/lxDiYyHEbmC0EKKuMfyE8buO0e5PIUR/4/ZQIcRq4/ZyIcTzxu0o47H+E0IcFkIECiE2CyEuCSGGGW3qGfPCGvgIeFEIcUwI8aLxf+Tr0gghLgohylt7fgmEVbCB/jIwF7gGPFIsbDZw27koUspjKP9jRAXSLR/Fb9KKN79NbFJPXGF3mxHsC5nA1e82EbBcmQ4sLC1wbunPtRVb2ddtEvqsXPxHPl05PWWkb4ruyF4yJg0i66up2D43sGB/xvTRZLw/jMzPJmET+jQWTVpWTkcFRZZ1sxsyYyA3D57jpvF5x6APXuXfT35EGqqhGjSbX8Vtytarsbel8bfvcHXqUvQZ2UoUCwssazhy+omJXJu2goaLy/8clZnkSpRhyX6eQpvS4gtLCxxb1idm+RaOdg9Hn5VL7RH/K2JWe/SzSJ2e+F//La/a20ktJf+K/nbp3ByfV0K4NG1VOdOtrLbbX6+mNvEbD7Gvy1iODfyMBhNeBCAz8iZR89cRuHYKgT9MJuP0VWSVRtbuo+vBnLpylJ+rlysdHu/E5uV/l7B9uGsAV09f4e12rzOxdxgDPxpSMJJbZW0VzLvQGQO5cRfz7nZ1Rz7W1lbk5eYx9PHhrF+zgQmfjb8zeh4Uyplv+XSfPpDrB85x45BSrhpLDT4t/Pl10Gf8/NosOo16BtcqPDpQmqbivsJ8vVy1ZCtEBfOtODEDwoh+6W1ih7+L04tPYRtYDf6/HPVHWfVw5Lx1WLk4ELztYxq83oPUU1EF9e2/T37Arh7vsq/fLOoP6o77I00rqM3MvnL4L3P3VKbErdjE0Y5vc7L7OLRxydR9f2DFdKk8cNx3C0oJIdoAg4AOKKf6ASHEIeBdoLOUMkEIkd9NMxf4Qkq5x9ig3Aw0A84Bj0kpdcbpvx8DzxnjtAYCgFzgvBBinpTyeilyHIAIKeU4IcRU4H0KG2QuUsquRs1/Ad9LKVcIIV4HvgKeAYYAe4UQV4BxlGwM5nNdStlRCPEFsBzoDNgCp4GC1SOklHlGHW2llCOMaTcF+qE0VLsBx6WUCZSPa8Ae4DWg5IMnxRBC2AGhwFDABaWh+5+JyX/A/4QQwcDt5oZEAOGlpDMEJe8Y6dSWPnYNCsLqDOpBLWOPYOqxS9jVdCfFGGbr60ZubNFRCm1iOlbO9ggLDVJvwNav0Ca/4QOQsP0YmpmDsXJzIic6kdzoJFIjlIVG4v46gP/Ip27zd8wjkxIQbp4FvzVunsiUxFLt9edPovHyQzg6IzPSCmxlegraI3uwqN8U/fmTldJiSqv+3WjxsvIMTdyJyziZjEQ6+riRGZdiNt4jY/6HnZsT2yYuLdjn3dKfPvOVy8LOzQn/4FYYdAYubTlSYV15MYlY+xVqsfZ1RxubVMLGxs+D/Elj1n7uaOOUMhWWFjT6NpyE3/4heeOBInGSNihT0zKPXQSDxNLNGV2S+elxvoN64dNPmViQfuwSNkU0uZFbTJM2MQ1LZwew0IDegI2vO3nG8yw3OtF8fKmMNqQfVRYqS1i/n9ojnymw8+rbFbfubTj5wodl5pnfoJ74vao85ZB27CI2JqOWig5zWguvCRu/ojYOD9WhyZxhnHj5Y3TJVZuaV2tQj4KFnlKPXSoyomrr6272erUs5Xo1JWX/WezreSszM5LSiV6zk+g1ymMEDSe/RE50Uok4ZXG/Xg/5dO/fm5CXegBw+UQk7n6F/ZduPu4k3yr6f+u1qI9PXV++3K24D2s7G77YvZCwrm8R9EIof36trC8QdzWW+Otx+DWoxaXjlVswr3X/brQ05l1ssbxzKiPvOo75H/ZuTvxpknc+Lf153CTv6ge3QuoMXKxC3j0z4CmeeEUZ9Tp3/AKefoX1saevJwlxJevj+Jh4/tmgdCj9u3EPEz4366r+TxPQvxsPv1RYrs5+7uSvPOHk40bGLfPl2mm0Uq6/Tyos1/SYZLKTTqDNzkWbncv1g+fwalaH5CuxFdLkO6gnvv2Uui792MUi9WpZdV1+vWzt616i7r6T6OPisfApPN8svDzQ3yrd/5eIH6/YGpJSyNqxF+sWTciJqLj/9x/UnXr9lLJMPnYZO7/CkU5bXzdyitWxeYnpWDk7FNbDvu7kxCrlrcvI5uiYxQW2PQ7NJeuaMjqdY7zW8xLSiNl4GNeABiTuP1duneb8f/EyVWwK6z9rP3fy4kr6CFO0CYWPId1avZUm379bbk33K+qCUmVzP47cdgF+l1JmSikzgN+AtsAv+Y02KWX+2d4NZXrrMWAd4CyEcAJqAD8bnxv9AmhucvztUspUKWUOcAYourpPUQxA/tJ2q4za8jFd8q4jsMa4vTLfTkoZB0wFdgLjTHQXJ391m5PAASllupQyHsgRQpR8GKIoS4H8J/pfB5bdxr44H6M0MstzLjwB7JRSZgG/ojRkLYrZTKcco7eY76MDQEq5RErZVkrZ1rRhC3Bt2ZaCBaBubTyM3wuPAVCjTUO06VnkmnG4SXvP4P1kBwD8+j5G3Cbl0WBrzxoFNjUCGoBGoE1KJy8+lezoRBwa+AIJwogoAAAgAElEQVTg/mgLMiu5oJT+yjksvGsiPHzAwhKrDsFoj+4rYqPx8ivcrtsILK2QGWlgbQu2xhEVa1ssW7TFcCOqUjqKc/z7bazu/S6re7/Lpc1HaPaccmr7BDQgLz2LTDP52OKlIOo+1pINIxYU6Sld2mUsSzuHsbRzGJEbDrJjyvJK38hnHLuIrb8vNrW9EFaWuD3dheQtRVdLTdlyCI/ngwBwDGyMPi0LrXHqpf/nw8mOvEnskqJ9NcmbDuDcRen1tq3vi7C2LLVhCxCzbBNHu4VztFs4iZsO4tVXSc8psBH69Cy0ZvInZd9pPJ/oCIB33yASNyu6E7ccNhtfG59C7s1E7Boo5e/yaEuyLigLSrkGt6b2iGc4M2AWhuy8MvMsetlmDoeGczg0nISNh/B+oSsAzm0aoUvPIs+M1uS9p/F8Uulr8+nblYRNilabmh60WBrO2eHzyL4cU2a65eHGsi3sD53A/tAJxG88hG/B9VqWtjN4GbX59e1KvPF6tavnXWDj1NIfYWWJNknpQ7MyPvNlW9Mdrz7tif19b4V03q/XQz5bv9/IpD5hTOoTxuEtB3j0uSAAGgY0Jis9s8TU46M7jvBWu0GM6jKEUV2GkJedS1jXtwBIuBlPi84PA1DDowa+9Wty61rFGhmmHPt+Gyt7v8vK3u9ycfMRHjLmnW9AA3JLybuWLwVR77GW/F0s777tMpZvO4fxbecwLmw4yLYpy6vUsAX4Y8U63ug5jDd6DmPPpr30fL47AA8FNiMzPZOkWyXd8p7N+wjoHABA646tuHH5RpU0PIgc/X4bK/q8y4o+7xK55QjNy1GuD78UhH/Xlvw1smi5Rm49Qq32TRAWGixtrfFt3YDEi9EV1hSzbDMR3cKJ6BZO4qZDePdV6jqnwNLrE6VeVuoT775dC+rlu0Hu6fNY1amJZU0fsLTEoVcQWbv/u31EQNjZIuztCrbtOrZBezGqUjquLNvKzm6T2dltMjGbDlOn76MAuAY2RJeebfa+KWHfGfyeUO6b6vR9lNjNSj1s5WyPsFJu++r2CyZh/zl0GdlY2Ntg6WALKGsieHZtSdq50saNzFPc/7ub8f/JWw7hWYr/Lw0rkzUJXHt3IOv8tQrpUnnwuO9Gbil9YoK5eQcaoKOUMtt0pxBiHkoj7H9CiHrALpPgXJNtPRXLA1MNmeW0awkkAn6l2JpqMhTTZ7idPinldSFEnBAiBGW0u19Z9mbiXzR2DvQth/nLQOf8hacAdyAYKHh+WEq5QwgxjdJHqfMJAM5WRGtx4rcdxSO0NY8dmIs+O5eTowtfkdBm9QROjV1Cblwy56evodXiUTSa+CLpJ6O4YRzh8XnyEWoP6IbUGzDk5HF86FcF8c9OXsbDX49AY21J1tVbRY5dIQwGslfOwyF8lvIqoH82Yrh5FetgZT2tvJ3rsWz7GNZduoNOh9TmkbVAWe1P1HDFYZRx1M7CAu1/29GdrH7HfGXHMeoFt2LQv5+jy85jy/glBWHPLB/P1gnfkhmXQujHg0i7mcBLf3wAwMVNhzgw94/qFaM3EPXutzRZMxVhoSH+x+1kX7iO12vKqNWtlVtI2X4El9BAWu37GkN2LpfD5gPg2L4pni8EkXUmihZbPweUJf9Td0QQ/+MO6s8ZTssdXyK1Oi6P/qpUCcVJ3haBW2ggbffPx5Cdy4UxXxeENV89mcixC8mLSyZq2kqaLg6j7sSXyDgVRaxxoaiy4l969zuafD0ajZUl2VfjiByzAIAGHw9GY21Fi5/eAyD9SCQXJyzhdiRti8A9NIAOB+ahz87j/OgFBWEtV0/i/NhF5MUlc3n6Kh5aHIb/xJdJP3mFmDXKq2DqjXseS1dHGhtXHpU6PUd6TgSg2aLRuHRqjpWbEx2PLuLK7LXErin/K2QSth3FIzSAzgfmos/O48zohQVhAasncmbsYnLjkomcvpqWi0fT0Hi93jSm4f1EB3xfeAyp06PPyePkkC8L4rf6bixWrk5InZ5zk5YWLIpVGe6r68EMR3ccoXVwG778ZxG52bksHl94Lr+z/D2+eWc+yWXc7P3+1VqGfT6aWZvnIgT8MPN70qtpEZYrO45RP7gVg//9HG12HptN8u5/y8ezxZh33Yx597Ix7yI3HWL/Xci7/TsO0CGkPav3fE9uTi6zxs4uCJv5/Qxmh88hMS6RNQt+4N15k3nhzefIzsxmdrhSn7h5urJ4w9fYO9ojDZLn33iWAcGDycqo3IKD5SX8/ZkcOnqClJQ0Qp95lbcHv8ZzT/a8o2mactlYrm/+o1wTG03K9bnl49n8zrdk3Eqhx4xBpN5MoN/vHwBKue776g+SLkZzZfcJBm3+BGkwcOLHXSRcqFqHQdK2CNxCA2i3f57yirUxhXVdi9WTuGCs665MW0XTxWHUm/gyGaeuFNRZVp4uBG6eiYWTHRgkNd98nMOPhaHPyKbpwtHUMNZ1HSIWcXX2WmJ/qMTrsvQGEj+Zj8/CT/4fe+cdH0W1/uHnbDolIQ2SUEOvQkIRBBQITa4F6xUVBeyFKiBe1KsiYMNysQBybSDYsaAIAoKK0jsIhBJaeiMEQtqe3x8zSTbJ7mYTCEnu73347CfLzHlnvvvOnDbvOWfAYuHstyvJPXKcurcZ9f/ZL5fjFuhP2NJ3sNQ27im/u2/m1E3341bPl/pvGH5U7m5k/vQrWX9udXIy10hYvZMGUV0YtPEN8rKyi0Vhe346lZ2TFnAhIZ19M5bSff5Y2k27jTN7j3N8yToA6rRqSNe5j6DzrZw9dIodk94HwCvIjys/nFio99Q3G0j8tZwrnpv1f1uz/k90Uv93Mev/I2b9D9Dy3Yn49uqIe0BdIra+z6k5n5G0dA1Nnh5J7Q7haK3JPpXEsalV8zqtS4nVYXhIAFCXaiGJS4VSKhJjaG5PzGHJGMNgP8ToyKYopQK01qlKqSXADq31q6ZtF631TqXUMmCx1vprpdRzwCitdTOl1CiKD+ldDrymtV7nQIsGRmitP1NKPQ000FqPNVcBnqy13mqm+x74Umu9yDzHjWbHugewAGMBqPXAYK31MaXUR8ByrfVXZkexmzncuqS+GIyodR0zfUel1C3ADVrre2103gLMBRZprZ904tvngEyt9WslNHQAfgQw/dSs4Hw2tr7AYaCx1jrb3DYa6KO1vs/WJ8pYzXkecFRr3U8p1c/cd51pdwXwHXC/1trpyiE/N7ijet2gJr2GJpWdqAr54NfQqpbgkKvyKrcheLHkWKvjgBaDfF19a7TcajkQqIi9Xh5VLcEhm9XFr8xamXTTdapagkN+sFY86lzZ/LKz7AdSVckbXZ+tagkO6ZmdXXaiKqRxA/vDsqsDuxKCy05URYRYLpSdqArpGftN9a1kbXi22V2XrW38QsynNcIntlS71ojWejtG53YzRsd2odZ6AzATWK+U2gW8biYfB3QzF3LaDxS88O8VYLZSagNQcthseTgHdFBKbQMGYCyCZI9xwGil1G6M+avjlfGKnfeBMVrrWIw5tx8ouysclItfgfYFC0qZ277H6ACXd0gyAFrrfRhzYG1po5Q6VfDBeMCwtqBja/IdcIP5W22P9xNQsvfX11zg6yDwDjCurI6tIAiCIAiCIAhFWNGX7VMTqXaR2+qEUipT62r8yNpEKdUNY2GtvlWt5VIjkduKIZHbiiOR24ohkduKI5HbiiOR24ojkduKI5HbiiGR20vD083uvGxt4xdjltQIn9hSHefcCuVAKTUNeIRyzrUVBEEQBEEQBKFmUS2jPtUI6dwCSqlNgFeJzSNrQtRWa/0S8JLtNqXUdOC2Ekm/1FrPvGzCBEEQBEEQBEEQLiPSuQW01ldWtYZLidmJlY6sIAiCIAiCIPwPIe+5dU71niQlCIIgCIIgCIIgCC4gkVtBEARBEARBEIQaQE1dxfhyIZFbQRAEQRAEQRAEocYjkVtBEARBEARBEIQagMRtnSORW0EQBEEQBEEQBKHGI51bQRAEQRAEQRAEocYjw5KFak19z6yqlmCXZatDq1qCU3rp81UtwSHZVreqluAUt2o84CcXVdUSHFJL5Ve1BKdclZdb1RIcckNA9SznCtiYWn1f+X6lZ3BVS3DIG12frWoJTpm47YWqluCQjR2nVrUEpxyND6hqCQ5p6F59y5ML+dW7/q8pyKuAnCORW0EQBEEQBEEQBKHGI5FbQRAEQRAEQRCEGoC8Csg5ErkVBEEQBEEQBEEQajwSuRUEQRAEQRAEQagBSNzWORK5FQRBEARBEARBEGo8ErkVBEEQBEEQBEGoAchqyc6RyK0gCIIgCIIgCIJQ45HIrSAIgiAIgiAIQg1Ay6xbp0jkVhAEQRAEQRAEQajxSORWEARBEARBEAShBiBzbp0jkVtBEARBEARBEAShxiORW6HG4tsvgkbPPQBuFlKW/kLCu1+XStPo+QfwHdAVnZVNzKS3yNp7tGinxULbH+eQG5/CkdEvFm4OHvUPgkf9A52XT8barZye9fFFa+3xwkgaDehCXlY2f0xcQOremFJp2o4aRPv7h+Ib3oClHR8mOy2zcF9Ir3b0eP5ulLsb2aln+fnWmRXW4tcvgmYzxqAsFhKXrib27WWl0jSdcR/+AyLJz8rmyMS3Ob/nKJ5hgbR4axye9f3RViuJi38h/r8/AtDkmXvwH9QNa04e2ccTODJxLvkZ58ulq8WLowmIMs55aPw7ZO45ViqNd5P6tJ03AY96dTi75xgHH5+Lzs1zah92/zBC744CpYhfvJrT7/8EQPizIwkc1BVrbh4XYhI4OOGdQs31+neh+YzR4GYh4dM1nH7721Jawl8cg39UBNasHKLHv80583yObN3r1aHN/Il4Na5P9slEDjz4OvlnzuHVOJiI394k60gsAJnbojny5AIAlIc7zWfdh99VHdBWzZHZn5H04yanfmw1czSBURFYs7LZP+5dB34MpsP8Ij/uf2wuOjefBrf0oenjNwKQf+4CB6cuJHP/8SJDi6L7qpfIjk9l990vO9VRWX4MvL4XTSbfjk+rhuy+9ikydx0BIPjmvoQ9ekPhcWu3b8quQVM5ty+mTJ1+/SJoapMn4hzkiXoDIrHayRMeNnkiwcwTLec9gXeLMADcfWuTl3GOvYOeKFNLWfj07kbQtIdRbm5kfL2C9P9+UWy/R3hj6s+YhFf7lqT852POfPRV8QNYLDT6fC55iSnEP/bsRespSdcZI2lolnV/TVxA2p6YUmlajx5E2/uHUje8AV91fJjs1Mxi+wM6N2fI8uf44+G5nPxxyyXVd8O/76VN/y7kZuXwxeT3iLVzf9z68oM0vKI5CkXysTi+mPweOeezC/c3uqI5jy2bwZLH32LPis2XTFvUcyNp3r8LuVnZrJi8gAQ79cR1bz1CSKfm5OflEbfrKKue+gBrXj4AjXu2Y8Czd+Pm4UZW6lmW/rPi9UR5eHrW6/y2YTMB/vX4dvG8y3JOgOYvjiHALDsO2pQdtng1qU/beRPxqFeHzD1Hi9UZjuzdfGvR+vVHqNWmCWjNoYnvcnbboXJpaz1zFIFREeRnZfP3uPc466Ac7jh/fGE5vO+xt9G5+QQN7UbzJ28Hq0bn5XPomY85s/kgAFdtmUv+uQvofCs6L58tQ/5VLl2+/SJo8sJ9KIuFpKWriX/nm1JpmrxwH34DumLNyubYxLmc33sU5eVB269nYvFyR7m5kfrjX8TO+ayYXchDN9L42VHs6HgPeWlny6Wrsq4lABYLEStfJjs+lf0jZxc7ZsNHbqD5v+/hr/ajyUstn+aqxCpzbp0ikVuhZmKx0PjFhzh8z/P8PeBx/G/si3erxsWS+Pbvild4KPv7PszxJ9+hyaxHiu2vf991XDh8sti2Or064Tf4Sv4ePI6/B44lYX7pxnh5aTigM77hIXzT5wn+evK/9Jo9ym66xC2HWHXHbDJPJhXb7ulbi56zRrFm1Ot8N2Aa6x6aW3ExFgvhsx7gwF0vsqvfeAJv7ItPq0bFktQbEIlPeCg7ez/GsanzaD77QQB0npXjL3zMrmvGsfe6aTQYdW2h7ZnfdrGr/wT2DJzEhaOxNBx7S7lk+UdF4NM8lC29xhI9eT4tX37Abrrwp+/i9PzlbLlqHHnpmYTcOcCpfa22jQm9O4od1z7FtgGTCRjUFe/wEADS1+9ia79JbB8wmayjsTQZd1Ohj5rPvp99d85kx9UTCb6pDz6ti/uo4Hzbe43l8OR5tHj5wTJtG44dTvrve9h+1VjSf99Do7E3FR7vwvEEdg2cwq6BUwo7tgCNJtxMbvIZtvcex46rJ5D+136nfgyMiqBWeAgbe47jwOQFtHnlfrvpWjx9Nyfn/8jGXuPJSz9HmOnHrOOJbB/+HJv7T+HY61/TZs6DxewaPzCMc9GnnWoopJL8eP7ACQ6MeZWMjX8XO1bSN78X+jD68blkn0xyqWOLxUKzWQ9w8K4X2e0gT/gNiMQ7PJRdZp4IL5Endl8zjn0l8sThh+ewd9AT7B30BKk/biTtp42u+a0MrcFPP0bcI09z4oYHqDOsPx7NmxRLYj2TQfJL75H+UemHfQB+dw8n5+hJu/suljCzrPu+9xNsmvpfejgo65K2HGLNP0uXdQDKooiY/k/i1u2+5Pra9OtCUHgIr/abyDf/ep+bZt5nN90PMxbx1rXTePPaJ0mPTeaqe4cU03fttDs59NuuS6qtef/O+IeH8P41T7Dyqf8y6MVRdtPt//ZPFg6YwoeDn8LDy5Mr7ugHgJdvLQa9OIpv7n+dDwZN47tHL6KeKCfDhw1i3usvlp3wElJQdmztNZboyfNo+fKDdtOFP303sfOXs/WqseSlnytVZ9izb/HiGFLX7mRb3/Fsj5rM+ehT5dIWGNUFn/AQ/uo5ngOT36fNK/bvs5ZP38XJ+T/xV68J5NqUw2m/7WFz/6lsjnqSvyfOo93rDxWz237zC2yOerLcHVssFprOfJDou2ewt/84Aof3wdtOWecVHsaePo8S8+R7NJ1tnFtn53Lw9mfZN2gS+wZPwq9fBLUjWxfaeYYF4nt1Z7JPJZZPE5V7LQEaPjDM7jX0DAvE/+oruHCqdDkk1GykcwsopV5QSg0sR/owpdRX5vcuSqlhFTzvc0qp80qp+jbbMm2+5yuldtp8ptnsC1ZK5SqlHipxzBil1B6l1G6l1HqlVFMH5/ZTSn2ilDpifj5RSvnZ7G+tlPpJKXVYKfW3UuoLpVQDpVQ/pdSZEroG2tjdpJTSSqm2NtuamdvG2mx7Wyk1qiJ+A6jdpRXZMfHknEhA5+aR9v3v+A3uUSyN3+AepH79KwDndxzCzbc27vX9AfAICcR3QDeSl/5SzCZ45FAS3v0anWM8DcxLOVNRiYU0GdKVI1/9AUDS9iN4+tXGp369UulS9x0n81Ryqe3hN13F8RVbOBebAsCFlIwKa6kT0ZILMXFkm35L+e4P/IcU95v/kB4kfbUOgMzth3Dzq41HfX9yE9M4v8eIfFvPXSDr8Ck8QwMBOLN+F+Qbs0DObjtUuN1VgoZ0J+GL9Yb99mjcfWvjacdH9Xp3JGm50UlI+GI9gUO7O7Wv1aohGduisWblQL6VM3/tJ2iY8XvT1u8u1JyxLRovU3PdiJZcOBZP9olEdG4eSd9uIGBI92I6AoZ0J/GLAh9F4+5bC4/69ZzaBtrYJH6xrlC7MxrcMYBTc80ootbklvFkOWhoN+K//K3wNznyo3+fDiT9YPgx7ot1BF1raMnYeoi8M+cK7b1trqNXaACBgyKJ+3RNmbqh8vyYFX26MMrt0A839SFp2R8u6SyZJ1Id5IlkF/LEhcOn8LBz7wfccBXJ37qmxxlendqQeyKWvFPxkJdH5op11B7Qq1ia/NQzZO89hM7LK2Xv1iCIWlf34OzXKy5aiz0aDenKUbOsSzHLOm8791/a3uOcs1PWAbQeM5iTP23hQnLFyzlHdBjclW3f/A7AiR2H8albi7rBpfVlZ2YVfnf39kTroihJ71FD2btiE5kXUQ7bo+Wgruz72vBd3I4jePvWprYd3x39tahTHbfrCHVDAwBod+NVHPp5C2fNeuL8JdbnjG5dOuHnW/eynQ+Kl6dnbcqOkhh1xl8AJHyxjsChPZzau9Xxwa9nOxKWGOWczs0r9yik4KHdXS6HEwvL4fUEm+Vwvs0oAUstLy5VkK52RCuyyyjr6g3pQcpXRrvpnE1ZB2A9fwEA5e6G8nADm3zR+LkxnJz5SYW0Vta1BPAMDSBgYFfi7dRbLV4YxbEZi4r9jpqCvoyfmsj/XOdWKVXuodZa62e11qvLkT5Wa32r+d8uQIU6tybJgKOxalla6y42n5ds9t0GbARG2LHrr7W+AlgHPO3g2P8FjmqtW2itWwDHgIUASilv4EfgPa11S611O+A9INi0/b2ELlvfjQD+AO4ocb5EYLxSytOBnnLhERJITmxR4yg3LgWPkOKNSs8SaXLikvE00zR67n5juLG1eNb1ah5GnR7tafP9q7T6cia1Ore8aK21QvwLO6YA5+JSqRXi77K9X/MQPP1qM/TL6Vy3YgYtbu1TYS2GT4q05MSl4Gk2jorSBBT3W2wKniHF03g1CqZ2x3Ayt5ceqlV/xADS124vn67QALJtdGXb0eUeUJe8jPOFHdKcuBS8zDSO7M8dOIlfz3a4+9fB4uNJQFQkXmFBpc4fMqI/qWt3FB6r+H1TdJ4ivYElzpeKV2igU1uP4HrkJqYDkJuYjkdQ4bMkvJvUp/Mvr9Jx2fP4XtkOMIbGATSZegedV71Cm/efwCO4yMYeXqEBXDhddP5sO9o9TD9q04/Zsaml0gCE3jmAFNMnAK1mjOLIC4vRVtequ8ryoysE3eh6Z9JenvCwkyeyy8gTno2CqdUxnHMl8kTdK9uTm5RO9rE4l/U7wr1+IHnxRVGGvIRk3OuXvp8dEfTkw6S8vrBYZ+1SUivEn/M2vjwfW76yzifEn8bXdiP6E9ceoJQX3wYBnLHRdyY+Fd8Q+/fVba8+xNNb5lG/RRh/frTStPenw5DubPzU5eaCy9QN8SfDRtvZ+FTqNnDsO4u7Gx1u7sMxM8IdEB6Ct19t7vhsOvcsn0GHmyteT9QESpYdOWbZYYtRZ5wrrDNs6xVH9t5NG5CbkkHrtx4j4pdXaTXnYaODWQ68Qv25cLp4fVTecjj42u70/ON1uiyexv6J7xWz7fL5dLqvmk3YyKhy6SpVtztsNxVpN9pWpi6LhQ6rXqfL7o/I+G0X53ZEA1BvUHdy41LJ2h9TLj2F56ykawnQYsZoux3YgMHdyI5L5ZzttBvhf4YyO7dKqUlKqb3mZ4LN9nvM6OAupdQic1uwUuprpdQW89Pb3N5DKfWnUmqH+beNuX2UUuobpdTPSqlopdQrZWjJVErNUUptV0qtUUoFm9vXKaVmKaXWY3Sgmpr7d5t/m5jpvlNK3WN+f0gp9an5/SOl1K3m9xjzWH8ppbYqpSKVUivN6ObDZppmpj88gReAf5oRzH+av6NAl8WMfDprfXxg2rvecjMYgdEpbqSUauggzV9AqX1KqZZAV2CGzeYXgG5KqRbAncBfWusfCnZqrX/VWu91JkgpVQfoDdxH6c5tErAGuNfZMVxG2dlWssGmSifSWuMb1Y28lHSy9hwpfVh3N9z86nDwhimcnvkR4e9OvQRa7YgtR+NSuVkIuiKc1fe8xi93vkznCcPxbR5SQS12tpWUUoZeSy1vWi2cSsyzH5BvE+EACBt3CzrPSvI3v5VTl71zlkziJI2DfVnRpzn19nd0+vwZOi2ZTua+GLQ5P62AxuNvRudZSfz6d4fHKtUZsOsi7ZptCXIS0tja9WF2DZrCsX9/TOt3x+NWxwfl7oZXwyDObjnArsFTObv1IK3+PdLpsRwIKzNJSV/X692BsDv7c3jGpwAEDookJ/kMZ3eXngflWMrl9WMBdSJaYc3K5vwBF4feVjBP6BJ5ovXCqRy3kycCh/ch5RJEbR3pcLUsqXXNleSnppOz//Cl0WKPiyzruj5/NztmfubyA5RyUw59X06Zz8wrHyHxcCydrzei49c/ew8rXlpSOfrKec8PenEUJzcd4NQWYy6mxd1CSMdwvh79Gl+OfJmrxg3HP7yC9UQNwN6lLHkt7dcZ2qm9cnejTqfmxH20ih2DppB/PpvGj99kJ7FTdWVqK6sNk7RiCxv7TGL3qNdo8eQ/C7dvve5Ztgyaxs47Z9No9BDq9WxXDlkXqctqZd/gSezqdj+1I1rh06YJFm9PQsfdyunXlrquwwVZl+JaBgzqSk7yGTJ3Hy22y+LjSeMJt3D8lc8rqFio7jiNciqlugKjgSsxbvlNZgcyB5gO9NZaJ9t0zN4C3tBa/2F2KFcC7YADwNVa6zxzCOssoGBSXhcgAsgGDiql5mqtHbVKagPbtdZPKKWeBf4NPG7uq6e1vsbU/QPwidb6Y6XUGOA/wHDgQWCDUuoYRsewp4PznNRa91JKvQF8hNFh8wb2AYWrJWitc0wd3bTWj5vnbgvcBbwJDAR2aa3tj78yyMTo4I43f48tPkqpnTb/n621/lwp1RgI0VpvVkp9AfwTeN3OsYcC9iaNtgd2aq0LW/la63zzXB2AjsA2J5r7ltB1i9b6CIaPf9ZaH1JKpSqlIrXWtiG8l4AVSqkPnBwbpdSDGNeK6fWu4OY6zUqlyY1LwdMmAucRGkhuQmqxNDlxyXiGBXHO/L9naBC5Can4D7sKv0E98O3fFYuXJ251a9HsrYnEjH+DnLgU0lcYw17O74wGbcU9wJe81PIN8Wp770Ba39UfgOSdR6kdVvQUsnZoAOcT0l0+1vm4NE6n7iYvK5u8rGziNx7Av30TMo7Gl0sTmJFaGy2eoYHkxJf0W3HfeoYFkpOQBhid/9YLp5D8zW+krSi+sFHQbf3wH9iNv/9Z8ja2T+joIYTeZYxoP7vzMF5htmkoptwAACAASURBVENgS+vKTcnA3bcWuFkg32o8rTXT5MSmOLSPX7qW+KVrAWj21Aiy44qe8Da4/RoCB3Vl923PF/3+2BK/PzSQnPi04j4yz1cwSNgrNICc+FQsHu4ObXOT0vGob0RvPerXIzfZGPKuc/LIyzFmI5zbfZQLxxPwaRFG5q4j5J+/QMpPxoI1yT/8RbsRpZ/UNxw9hLC7o0w/HsG7YRBnOFjoh+wS2nNTzuLuWwvlZkHnW/EKCyj0I0Dt9k1o9/pD7BwxmzxzUTO/Hm0IGtKNwKgILN6euNfxof07Y9n/mON5fZXlx7IIHt6b5GUbXEoL9vNErp084RUWRMGcEc+wQHJt8kQrB3kCNwsBw3qyd+gUl/U4Iy8hGfeQ4ML/uzcIIi8pxYlFEd4R7andrye1+nZHeXliqV2L+i9NJXGa02fKZdJ61EBamGVd6s6j1LLxZa2w8pV1gZ3D6fOeUaV7BdSlYVRndL6VUz87q46c02vkIHqMMObmndp1FD8bfX4hAWQkOL6vtFWza/lfXPPgdWz9cj2NrmjOiLnjAKjtX5e2/bqQn29l/6qtFdIWcc9ArrjD8F387qP4hgVSMKO9bkgAmYn2fXfV+JuoFVCXZU8VVaVn49LISt1NblY2uVnZnNx8gPrtmpB2rPz1RHUldPRQQu4qKuu8iuXb4uUYFNQZtQvrDC+bciS7RJ1RaK+NqOBZMyqZvHwjjccOL1Nbo9GDC8vhjJ1H8G4YSMGkJtfL4dL3YvrGv/Fp1gCPgLrkpp4trItzkzNI+mkzvhEtSC+x/oAjStXtdttNxctDo21VXFd+xnnO/rkXv34RnFm/A68mDejwyxuFx2y/cg77/zGVvCTHef9yXMug63oSOLg7AVGRWLw8cKtTizZvj+Pk29/i3aQ+kWtfA4zrE7HqFXZe+1TZTqwmyIJSzikrctsHWKa1Pqe1zgS+AfoCA4CvCjptWuuCu3Ag8LbZ8fke8FVK1QX8gC+VUnuBNzA6UAWs0Vqf0VpfAPYDdueImliBgkcti019Bdg+gukFLDG/LypIp7VOAJ4FfgWesNFdku/Nv3uATVrrs1rrJOCCUqr0RIDifADcY34fA3xYRnowOt/3KqV8S2wvOSy54DfeARQskfkZpYcm/6qUSsS4HksojcL+UHpH20tSclhyQQh0hKnHri6t9TFgM0Zk2CFa6wVa625a6272OrYA53ZF49UsFM/G9VEe7vjf0JczvxRftfLML5sJuMVoONSKaE3+2XPkJaYR+/Ii9va4j31XPcixx17j7IbdxIw3CuYzKzdRt/cVAHiFh6E8PMrdsQU48PFqvh88ne8HT+fEym2FQ4mDI1uQk3GeLAeNFnucWLmN+le2QblZcPP2JDiiBWeinc85dETmzsN4h4fiZfot8MY+pK0qvhpp2qotBN/aD4A6ka3JzzhPbqJRiTSf8xhZ0aeJX/BDMRu/fhGEPXYTB0fNNua3ukDchyvZPnAK2wdOIeXnLTS4/RoA6ka2Iu/seXLs+Cj9z30EX2c8k2pw+zWkrDS0p6za6tDeI8jIVl4NgwgadiVJZsfHv38XGj0+nH33vlxM89mdh/FpHopXE8NHwcN7k1rCR6mrtlL/9gIfGefLTUx3amtrU//2foXa3QN9wWIUxV5N6uMdHsKF4wmmzTb8rjKKy3p9O3H+UOlFMU5/uJItUVPZEjWVpBWbCbntagB8u7Yi35EfN+wj+HrDj6G39yP5562mjwLp9MFk9j32NllHi4bRHp25lD8jHuGv7o+z76E3Sduw12nHtjL96BSlCLy+F0nliJSWzBMBdvJE+qotBDnIE+EO8gSAX9/OZB0+TU6cax3QssjeexCPJg1xb9gA3N2pc20/zv3q2kJVqW9+yPGBd3NiyL0kTJlN1uZdF92xBTj00WpWDJrOikHTOfnzNpqbZV2gWdZdKEdZ913PSXx35US+u3IiJ5ZvZvNTH11Uxxbgr0W/8Nawp3hr2FPsW7WVrjf3BaBJREsunD3PWTsN8MCmDQq/t4+KJMmc4/1y3/G83GccL/cZx54Vm/j2mQ8q3LEF2PHJaj4eNp2Ph00netU2Otxi+C40ogXZZ89zzo7vrrijH+HXdOKHse8Ui25F/7KNRj2MesLd25PQLi1IOVyxeqK6Evfhz+wYOIUdA6eQ8vPmwrKjbqRR1uU6rDOMyHsDm3I3xabssbXPTUon+3QKPuZK547K3ZKc+nAVm6OeZHPUkySt2FKsHHZUn6Vt2E/9wnL4GpLMctinWdH9V7dTOMrDndzUs1hqeeFW2xsw5uIG9LuCTFdHqADndkbjFV7UbnJU1gXearSbatuUde4BvoVTZZS3J759O5N15DRZB06ws/Modvd8iN09HyInLoX9Q55w2rGFy3MtY2YtYXPkQ2zp/igHHn6T9A17Ofj4fzh/4ASbOt7Hlu6PsqX7o2THpbBj8FRyy9As1BzKmp9qL9hfsN1eJ8gC9NJaFxuXpZSaC/yqtb5JKdUMYy5oAdk23/Nd0GSLrYZzDlMVT9cJSAHCnKQv0GQtoc9alj6t9UmlVIJSagBGxPsuZ+lNm3Sl1BLg0bLSmowAGiilCo4dppRqpbWONv/fH8MfH2EMN55Uwn4fEKGUsmitrWAMoQY6A38D9YFrXNSCaR+I8dCjo1JKA26AVkqVHNc7C/gKKOe41RLkWzn5zAJaLn4O5WYh5fM1XDh0kqC7hwKQvPhnMtZuw29ANzr8MQ9rVjbHnyh79ciUz1fT9LWxtFv9H3ROHjET37womQCn1uyk4YDO3LxhDvlZOfwxqWg13IGfTGbDlIVkJaTTbsxgOj56HT7Bfty4ejan1u7izykLOXM4ltO/7ubG1bPRVivRS9eRfrB8qzcWkm8lZvpC2i55FuVmIfGzNWQdOkn9kYMBSFy0ivQ126gXFUmXP98tfO0JQN0ebQm+rR/n9sfQ6Zc5AJyc/Snpa7cTPvN+lJcH7T43oraZ2w5xbNp8l2Wlrt5OQFQE3TfONZbyn/BO4b6Onz7FoUnzyElI49iMxbSdP5Fm00aQufcY8UvWlmnffuFk3APqonPzOPzUwsIFk1rOug+LpzudPn8GgIxthzj85PuQb+XovxbSYenT4GYhcelasg6eIuQew0fxn6wibfV2/KMiidz4NtasbA5PeLfQv/ZsAU7NXUabBU/Q4M4osk8nc/ABw4d+PdvRZOod6Lx8dL6VI1MXkJduxAiPv7iIVnPHET5jNLkpGewb/65TP6as3kFgVCS9Nv2H/Kwc/rZJf8Wn0zgwaT45CWkcfvFTOs6fQPNpd5C55xixph/Dn7gVD/86tHnZWGVZ5+WzdUgFn2ZXkh8Dru1B85n34RHoS7vFT3Fubwz7Rxgrtfr2ak9OXArZJ8qxYqeZJ9qYeSLJSZ7obOaJo2aeqGPmifP7Y+hokyfOmHPOA2/sTcq3v1fMfw60Js96h9D5s1BuFjKWrSL3yHF8b/8HABlf/IhboD+NPp+LpU4ttFVT7+7hnLjxQfS58i2KUxFi1+ykYVRnbvjTKOv+mlhU1vVbNJlNk42yrs19g2n/yHV41/dj2OrZxK7dxabJCytd34Ffd9Cmfxemrn+TnKxsvpxSVEaN/nAqXz35PplJ6dw+5xG86viglCLu7+Mse9rpYKNLwtG1O2nevzMP/DaHvKwcVkwu8t0tH01m5dSFZCamM3jmaM6cTuauZc8BEP3zFv78z7ekHo7l2PrdjF5p1BO7P1tHsgudskvBlH+/xJYdu0lPzyBq+N08et9Ibrl+SNmGF0Ha6u0EREXSzSw7Dk0oKus6fPovoie9R05CGjEzFtF2/kSaTruDzL0xxJsLRTmzPzL9v7R5dzwWD3eyjicQbVOfuELK6h0ERUXQa9NbWLNy2D++aM5s50+n8Xexcng8zaf9k7N7YgrL4frXXUnIbVej8/KxXshh74NGO8Qz2I8rPpwMGNOVEpZtIPXXcqzanW/lxNPv02bJv8FiIdlsNwWPNK5V0qKVnFmzDb8BXem04T3jVUCTjHaTRwN/wt8ch7JYwGIh7YcNnFld8Qc7tlTmtfxfxVrVAqo5ytmcDqVUJEYHqSfmsGRgJMaw5GUYHdkUpVSA1jrV7KDt0Fq/atp30VrvVEotAxZrrb9WSj0HjNJaNzNXy7Ud0rsceE1rvc6BHg2M0Fp/ppR6GmigtR6rlFoHTNZabzXTfQ98qbVeZJ7jRrNj3QNYgLEA1HpgsNb6mFLqI2C51vorpVSMqSnZjr4YoBtQx0zfUSl1C3CD1vpeG523AHOBRVrrJ5349zkgU2v9mjkvdwsQqrX2Nvdnaq3rlLBpA3yvtW5js+15IE9rPaOE/lCM6HPrklFqpdQ3GEOTXzD//yzQWWt9i1LKx7Qbr7X+0dw/FDgNBJq+vq7E8R4CIrXWD9lsW4+xoNXJAn+Z27/AuKee1Vp/5Mg/ANsb31gtx17stl7elSHLS1td+Q3ZipJjdatqCU5xq8bDfbJ19V0D0EtV7+rW3VJ99QUFOHs2W/VsTA0uO1EVsdszv+xEVUSgrt5l3cRtL1S1BIds7HgJ1ruoRHKq8bX1dXdt9FRVcCG/+voNoG/8V46CetWKB5rddtkaKu/HfFkjfGKL05aSOV/yI4yhpJuAhVrrHVrrfcBMYL1SahdF8z3HYSxKtFsptR942Nz+CjBbKbUBI6JXUc4BHZRS2zCihI5K5nHAaKXUbozO+HillBfwPjBGax2LMef2A2V3lnq5+BVoX7CglLnte4wOsCtDkgEwh3gvA2yX5fNRxV+58xJG1HZZCfOvsbNqstY6DlgKPGbnlPcBrc0Fr44Arc1tmJH364Cx5gJZ+4FRGCsegznn1uZzqxNd9oYgzwQa2dkuCIIgCIIgCIID9GX8VxNxGrmtbtiLZFZHlFLdMBbW6lvVWmo6ErmtGBK5rTgSua0YErmtOBK5rTgSua04ErmtOBK5rRgSub003N/s1svWUFkYUzN8Yku53wkrOEcpNQ14BBfm2gqCIAiCIAiCILhK9X1UWz2olp1bpdQmig/PBRhZE6K2WuuXMF55U4hSajpwW4mkX2qtZ142YYIgCIIgCIIgCP/DVMvOrdb6yqrWcCkxO7HSkRUEQRAEQRAEocLU1Lmwl4vqO4FLEARBEARBEARBEFykWkZuBUEQBEEQBEEQhOLInFvnSORWEARBEARBEARBqPFI5FYQBEEQBEEQBKEGYK1Br3GtCiRyKwiCIAiCIAiCINR4JHIrCIIgCIIgCIJQA5C4rXOkcytUay7kVc9btJk1u6olOMetqgXUXKrzQg3uqvpWafmoqpbglHxr9c0Uyam1q1qCU5pYL1S1BIc0vlCd77u8qhbglI0dp1a1BIf03PtKVUtwyuZq7LtcqwzKFP5/IzlAEARBEARBEARBqPFUz7CYIAiCIAiCIAiCUAyrDEx2ikRuBUEQBEEQBEEQhBqPRG4FQRAEQRAEQRBqAFoit06RyK0gCIIgCIIgCIJwyVBKBSilflFKRZt//R2ki1FK7VFK7VRKbS2vfUmkcysIgiAIgiAIglADsF7Gz0UyDVijtW4FrDH/74j+WusuWutuFbQvRDq3giAIgiAIgiAIwqXkRuBj8/vHwPDLYS+dW0EQBEEQBEEQhBqAFX3ZPkqpB5VSW20+D5ZDagOtdRyA+be+g3QaWKWU2lbi+K7aF0MWlBIEQRAEQRAEQRCKobVeACxwtF8ptRoIsbNrejlO01trHauUqg/8opQ6oLX+rZxSC5HOrSAIgiAIgiAIQg2gOq2WrLUe6GifUipBKRWqtY5TSoUCiQ6OEWv+TVRKLQN6AL8BLtmXRIYlC4IgCIIgCIIgCJeS74F7ze/3At+VTKCUqq2UqlvwHRgM7HXV3h4SuRVqDPX6dyH8hTHgZiFxyRpOv72sVJrwGWOoFxWJNSuHwxPmcm7PMae2tdo3pcXLD2Gp7U32ySSiH3uT/MyswuN5NgwiYv2bnHztC2LnfV8uvS1njiYwKpL8rGwOjHuHTFOLLd5N6tN+/gTc69Uhc88x/n5sLjo3j1otw2jz1mPU7RTOsdlLOfneDwD4tAijw4KJRfZN6xPzyuecWvCTy7r8+kXQbMYYlMVC4tLVxNrxY9MZ9+E/wNB+ZOLbnN9zFIDmrz+G/8Bu5CafYfeACYXpW817Au8WYQC4+9YmL+McewY94bImgBYvjibA9Neh8Y791XbeBDzq1eHsnmMcfNzwlyN7nxZhtJtf3F/HX/mc0+8b/gq7byhho69F5+eTuno7x2Ystqut+YtjCIiKwJqVw8HxbxfeV7Z4NalP23kT8ahXh8w9R4tpc2pvsRCx8mWy41PZP3I2AE2n3kHg0O5oq5Xc5AwOjX+bnIS0cvnzYn3q0zKMNm8+Rp1O4cS8tJRT5j14OTU4sw+7fxihd0eBUsQvXl14TYOu70nTybdTq1VDdlz7FJm7jlYbbeHPjiRwUFesuXlciEng4IR3yM84X6YP/fpF0NQmz8Y5yLP1BkRitcmznmGBtHhrHB71/dFWK4mLfyHhvz8C0GjKCPyHdEdrTV7yGY5MmEtuOe6xysoT3be8S35mFjrfis63snPIkwA0mXw7IXdFkZuSAUDM7CWkrdlRps5KzQMWC5ErXyI7PpV9I19y2XeXQ1/rNx4hYFBXcpPPsK1f+criAirrGrv51qL1649Qq00T0JpDE9/l7LZDFdJYFk/Pep3fNmwmwL8e3y6eVynnAKON0XzGaHCzkPDpGk6//W2pNOEvjsHf9Ee0jT8c2QZe34smk2/Hp1VDdl/7FJm7jhQ7nmfDICJ/e4MTr31J7HuutU8uph3V4vVHCRhk1P87+08sZRf28A00+/e9bO4wirzUsy7psUdl3Xet3ni0ME9s7zepwvqqA5dgFePLxUvAF0qp+4ATwG0ASqkwYKHWehjQAFimlAKjX7pEa/2zM/uykMitUDOwWGg+6wH23zWTnddMIGh4H3xaNyqWpN6ASLybh7Ljqsc5MuU9mr/0YJm2Lec8yvFZi9k1YBKpKzYR9uiNxY4Z/vxo0taW3YAqSUBUBD7hoWzqOZZDk+fT+pUH7KZr/vRdnJq/nM29xpGXnknonQMAyE3P5PD0Dwo7tQVkHYlla9QU4zPoSaxZOST9tNl1YRYL4bMe4MBdL7Kr33gCb+yLT6vSfvQJD2Vn78c4NnUezWcXze1P+vxX/r5rRqnDRj88hz2DnmDPoCdI+XEjqT9tdF0T4B8VgU/zULb0Gkv05Pm0fNm+v8KfvovT85ez5SrDXyGmvxzZZx2JZfvAKcZnsOGv5BWGv/x6dyBwSHe2DXiCbddM4pSDxkHBsbf2Gkv05Hm0fNn+WgrhT99N7PzlbL1qLHnp50ppc2Tf8IFhnI8+VWzbqXe/Y/uAJ9gxcAqpv2yjySSXynO7uivq07z0TA4//UGFO7WXQoMj+1ptGxN6dxQ7rn2KbQMmEzCoK97hxpSfcwdOsn/Ma5zZ+He105a+fhdb+01i+4DJZB2Npcm4m8p2osVCs1kPcPCuF9ntIM/6DYjEOzyUXWaeDTfzrM6zcvyFj9l9zTj2XTeNBqOuLbSNe+9b9gycxN5BT5C2eisNJ95etpYSvqusPLH7lufYMXBKYce2gNMLfmTHwCnsGDjFpY5tZecBI++eLlNHVehL+Hwde0fMvGhtlXGNW7w4htS1O9nWdzzboyaXKv8uJcOHDWLe6y9W2vEBo40x+3723TmTHVdPJPim0u2TAn9s7zWWw5Pn0eLlB8u0PX/gBAfGvEqGg7Is/PlRpK3dWT6dFW1HAUlfrGP/naXrfwDPsED8rulM9qkk1/XYoTLvu4TPf2XviEq+F4RiaK1TtNZRWutW5t9Uc3us2bFFa31Ua93Z/HTQWs8sy74spHNbRSilXlBKORynbid9mFLqK/N7F6XUsAqe9zml1GTze0+l1Cbzpcl/K6WeM7ePUkq97cA+QimllVJDSmzXSqk5Nv+fbHO855RSp83zRCulvlFKtS+P7joRLcmKiSf7RAI6N4/k7/4gYEj3YmkChnYn6cv1AGRuj8bdtzYe9es5tfVuEUbGX/sBSP9tF4H/6GlzvB5cOJ5A1sGT5ZEKQNDQ7iSYWjK2GVo869crlc6/T0eSfjA6gvFfrCfoWkNXbnIGZ3ceKXwSaQ//vh2N33Uq2WVddSJaciEmrtAXKd/9gf+QHsWPO6QHSV+tAyBz+yHc/GrjUd94b/bZTfvJT3P+RDbwhqtI+fYPlzUBBA3pTsIXhr/Obnfsr3q9O5K03PBXwhfrCRza3WX7kv4Ku3cwJ+d+i84xfJybnGH/9wzpTuIX62yOXQsPh9r+MrWtI3BojzLtPUMDCBjYlfhP1xQ7lu3oAUstL6jA/JqL9WlucgaZO4+g8xzfg5WtwZF9rVYNydgWjTUrB/KtnPlrP0HDDH9nRZ8m60hstdSWtn435BvP3DO2ReMVGlimzpJ5NtVBnk22k2dzE9MKR11Yz13gwuFTeJjntL3H3Hy8Qbt+j1VmnriUVGYeMPJuZKm8W130ndn4N7npmRXWVlnX2K2OD34925GwxPCbzs1zafRCRenWpRN+vnUr7fgAdSNacuFYPNknEtG5eSR9u6F0+8TGH5k2/nBm66wsCxjanewTCZwvR/vkYtpRABkb95OXZv+eCn9+NMdnfIIuRzlij8osWzI2/k3eReSJ6oTW+rJ9aiLSub0EKKXKPbxba/2s1np1OdLHaq1vNf/bBahQ57YEHwMPaq27AB2BL1ywGQH8Yf61JRu4WSkV5MDuDfPlzK2Az4G1SqlgV4V6hQSQc7qoE5cTl4pnSPGGoWdIANmxRWmy41LwDA10anv+wAn8zcI98Pqr8Aoz5Ft8vGj42HBOznHFJXb0hgaQfTqlmBav0IBiaTwC6pKXcR5tNnazY0uncUb9m3qTuGxDuXR5hgSSE1ukKycuBc8S5/QMCSDHxo85sSl4hrimq+6V7clNSufCsbjy6QoNIDu2uL9K6nI3/VXQOcix8akr9sHDe5P0bZG/fJqH4dezHV1+msUVy56nTpcWDrQFFjt2TlxqqU6Joe1coTbb8zuzbzFjNMdmLLLbsWg6bQQ9ts2j/i19Of7K53a1OeNifXopqKzreu7ASfx6tsPdvw4WH08CoiIL825N0RYyoj+pLowKsZdnPezk2ewy8qxno2BqdQzn3Pai4Z+NnryTLlsXEHjz1Zx69bMytRQeqxLzBFrT6bNn6LLyZULuLv78N2zMUCLXzqHVG4/i7lfbBZ2VlweMvLsYrSs+QLA65FHH2irnGns3bUBuSgat33qMiF9epdWch80HeDUXz9ASdaada1TSH9mmP1yxLYmllhcNHx/Oide+LJfOi2lHOcN/cDey41M5v/94ufTYo1LLFuH/DdW2c6uUmqSU2mt+Jpjb7lFK7VZK7VJKLTK3BSulvlZKbTE/vc3tPZRSfyqldph/25jbR5mRw5/NKOIrZejIVErNUUptV0qtKeiQKaXWKaVmKaXWA+OVUk3N/bvNv03MdN8ppe4xvz+klPrU/P6RUupW83uMeay/zHdIRSqlViqljiilHjbTNDN94Qm8APzTjIT+0/wdBbosSqnDTjqZttQHCt4fla+13l+GLxRwKzAKGKyU8rbZnYexVHjpiRgl0Fp/DqwC7nRBY8HJ7R2opD77aZzYHpn0LqGjh3LFyldwq+2N1YziNZ7yT2IXLMd6/oLLEksILkuuXV2uPiRTHu4EDe5G4g9/Xays0kFBF3ztiKDhfcodtXV8zpJJnKQpw155uBM4uBtJ3xf5S7lbcPerzc5h/+LYC4tov8D+HBx7h3b53nNiHzCoKznJZ8jcbX9O6PGXlrK568Mkfv07oWOG2k3jlIv16aWgkq5rVvRpTr39HZ0+f4ZOS6aTuS8GnZdfY7Q1Hn8zOs9K4te/u6DTzjaXypKiRJZa3rReOJXjz35QLGJ76uUl7Oz2ICnf/EaDMdeWrcXx6S5JngDYdf3T7Bg8lX13zSR09FB8e7YDIO6jlWy58nG2R00mJyGN8OfutXMQF4RegjwQMCiSXCd512WqQx51QGVdY+XuRp1OzYn7aBU7Bk0h/3w2jR93YXh+daaM/GekKW2mHbRPyoqWNalo++Ri2lEOsPh40mj8LZx8xfWHY86ozLLlf4nL+Z7bmki1XFBKKdUVGA1ciVEkbFJKbcF4Z1JvrXWyUqrg0dZbGFHBP8wO5UqgHXAAuFprnWcO/50F3GLadAEiMKKNB5VSc7XWjsZ21Aa2a62fUEo9C/wbeNzcV09rfY2p+QfgE631x0qpMcB/gOHAg8AGpdQx4AmgZ6kzGJzUWvdSSr0BfAT0BryBfUDhKgha6xxTRzet9ePmudsCdwFvAgOBXVprV8aqvmH+/nXAz8DHWmtnpWVv4JjW+ohpMwz4xmb/O8Dush4YmGwH2trboYwXOD8IMNU3ghtrhRtP5hoW9dc9QwPISSg+9D47LgWvsCAKBs16hQaSE5+K8nB3aJt1+DT77zDmkHg3D8V/YFcA6ka2IvC6XjR9ZiTuvrXRVivW7FziP1zh8AeFjR5CmBlpyNh5GK+GRU8LC7TYkpuSgbtvLZSbBZ1vxSusdBpHBER14eyeY+QmnXEpfQE5cSl4hhXp8rSjy0hj46+wQNcWM3Kz4D+sJ3uHTnFJS+joIYTeZfjr7M7DeIW55i/cLJBvNZ7QmmlyYlOc2gcM6ELmnmPkJhf5Kzs2leSfNhnn33EYbbXiEehLXsoZQkcPJeSuKFPbkWLH9gwNKDxvcW21C7UZ508zz5Ni1z7oup4EDu5OQFQkFi8P3OrUos3b4zj4+H+KHTtp2e90WPwvTrxa9iiCS+nTinK5rmv80rXEL10LQLOnRpAdl0JZVAdtDW6/hsBBXdl92/Nl6gX7eTbXTp71Cguig0qeLQAAIABJREFUYMCdZ1hg4eJQyt2NVgunkPzNb6St2GT3HMnLfqfNoumcfs3xCIHLkSeAwrImNzmDlBWbqRvRioyNfxfLu/GfrqbDoqcc6Kz8PODbvS2Bg7sREBWBxcsTtzo+tHl7LAcfn+vU7nLpqyiX5Rpro64+uyMagOTlG2k8dnil/J7LRU5siTrTxg+2abzCAm3aJwHkxKdi8XAv07YkdSJaEXhdT5oVa5/kEP/Bz07tLqYd5QjvpiF4N2lA5zVzCtN3XvUqu6+dRm5SulM9BVyuskX4/0N1jdz2AZZprc9prTMxOlDdgK8KOm02k4oHAm8rpXZiLBntq4wlpf2AL5VSezE6cR1sjr9Ga33G7MjtB5o60WLFGEYLsNjUVoBtS6AXsMT8vqggndY6AXgW+BV4wslk6ILVbPYAm7TWZ7XWScAFpVRZk5E+AO4xv48BPiwjPaa2FzD8WhBFdV4yGkORCx7PfUaJocla6wzgE2CcC6e393yt4DgLtNbdtNbdbqwVDkDmzsP4hIfi1bi+EbW8sQ+pK7cWs0tbuYXg264BoE5kK/LOnic3Md2prUegr6lG0WjCrSR8sgqAvcOfYXuPR9je4xHi3l/O6f9847RjCxD74crCxZ6SV2yhganFt6uhJSexdEGftmEfwdcbzztCbr+G5J+3lOk4gAY39SFxWfkjpJk7D+Nt44vAG/uQtqr4OdNWbSH41n4A1IlsTX7GeXITy+7c+vXtzIXDp8lxoZMBEPfhysLFnlJ+3kKD2w1/1Y107K/0P/cRfJ3hrwa3X0PKSkN7yqqtTu2Db+pDYomIcsrPm6nXpxMAPs1DsXi4F67EGvfhz4UL16T8vJn6t/crPHa+eV/Z19bL1NavmDZ79jGzlrA58iG2dH+UAw+/SfqGvYUd24IFiMCYQ5R12LVFay6lTyvK5bquHkFG3vVqGETQsCtJcmGIflVr8+/fhUaPD2ffvS8bc3JdoGSeDbCTZ9NXbSHIQZ4Nn/MYWdGniV9QfNEhr/DQwu/+Q7pzoYx77HLkCUstL9xqGwOCLLW88L+mM+cPnAAoNu8u8NorOX/A/vPoy5EHYmYtYVPkw2zu/hh/P/yGmXfL7theLn0V5XJc49ykdLJPp+Bjrq5fr28nzh+qvAWlLgdndx7Gp3koXk2MPBo8vDepJfJoqo0/bNsnrtiWZO/wZ9jW/VG2dX+U2Pd/5NR/lpXZsYWLa0c54vyBE2zpNKawvZQdl8KuwVNc7tjC5bnvhP9fVMvILY4HYtmLj1uAXlrrLNuNSqm5wK9a65uUUs2AdTa7s22+51M+P9hqOOdiuk5AChDmJH2BJmsJfday9GmtTyrjRckDMKLddzlLX8L2CPCeUup9IEkpZXdyglLKDSPyfYNSajrGNQpUStXVWtuuMPQmRlS2rA52BLC1jDRF5Fs5+q+FtF/6DMrNQsJna8k6dJIG9wwGIOGTVaSt2U69qEgi/3qH/KxsDk98x6ktQNBNfQkZZQz5TPlpE4mfrXVZkjNSV28nMCqCKzfNJT8rh4Pj3ync1+nTpzg4aR45CWkcfXEx7edPJHzaCM7uOUbcEuP8nsH16LrqJdzq+oBV0+jBf7C570TyM7Ow+Hjif/UVHJy8oPzC8q3ETF9I2yXPotwsJH62hqxDJ6k/0vBj4qJVpK/ZRr2oSLr8+W7ha0UKaPnuRHx7dcQ9oC4RW9/n1JzPSFpqLAwSdGNvkr91YZilA38FREXQfeNcY/n+CUX+6vjpUxwy/XVsxmLazp9Is2kjyNx7jHjTX87sC/wVPaW4v+KX/krrNx6h67o5WHPyODjuHeyRtno7AVGRdNv4NtasbA5NeLdwX4dP/0X0pPfISUgjZsYi2s6fSNNpd5C5N4Z4c8EUZ/aOCJ9+Nz4tw8CquXAqicNTy3+tL9anHsH1iFxZdA82fOAfbL16YrFhrZWtwZl9+4WTcQ+oi87N4/BTC8k7YxTHgdf2oOXMMXgE+tJx8VNk7o2xu2psVWhrOes+LJ7udPr8GQAyth3i8JPvO3eimWfbmHk2yUme7Wzm2aNmnq3Toy3Bt/Xj/P4YOv5iRFZOzv6UM2u30+Rfd+PdoiFYrWSfTuLYk/NduKIGlZUnPIP8aPfhVMCIOCd98ztpvxqrwYY/M5I6HZuBhgsnE4meUrbe6pAHqkpf2/fG43dVBzwC6nLl9nkcf/WLwtEErlCZ5d6R6f+lzbvjsXi4k3U8gegJ9sveS8GUf7/Elh27SU/PIGr43Tx630huuX5I2YblwWxjdFj6tPGKnaVryTp4ihCzfRL/ySrSVm/HPyqSSNMfhwv84cAWIODaHjSfeR8egb60W/wU5/bGsP9iVvu9mHYU0Ordifhd1QH3gLp03baAk699TuLSii+oZo/KvO/avDeBeqb+Htvnc/zVz0koR56oTtSgVwFVCao6roSllIrEGJrbE3NYMvAQRoepl9Y6RSkVoLVOVUotAXZorV81bbtorXcqpZYBi7XWX5ur9o7SWjdTSo2i+JDe5cBrWut1DrRoYITW+jOl1NNAA631WHNY7mSt9VYz3ffAl1rrReY5bjQ71j0w5qIOA9YDg7XWx5RSHwHLtdZfKaViTE3JdvTFYERX65jpOyqlbgFu0Frfa6PzFmAusEhrXfz9CcV/z3NAptb6NaXUP4CftNZaKdUO+B3jfVMjbTWYdkOASVrrITbbPgZWm785U2tdx9z+CnAH8IHW+jnbc9pofQfoZEanHfJn6C3V7wYFcqzVddCDgbdbOecfXkZyrG5VLcEpqhrPMdGOBzwINRgvS/XNr1C9yzvJExWnOpd1Pfe6Mrup6tjccWpVS3CI0WytnuTr6p1f+8Z/Vb0Fmlzf5LrLdpF/OLG8RvjElmpZY2mtt2N0bjdjdGwXaq03ADOB9UqpXcDrZvJxQDdzIaf9wMPm9leA2UqpDcDFtKbPAR2UUtuAARiLOdljHDBaKbUbo3M4XinlBbwPjNFax2LMuf1A2Z0NXy5+BdoXLChlbvseowPs0pBkk5EYc253YgylvktrXdDKGqWUOlXwAaYAJd/2/TX2F4WaA5Rc0GqiqTcauBsYUFbHVhAEQRAEQRCEIvRl/FcTqZaR2+qEbUSyOqOU6oaxsFbfqtZyKZHIbcWQyG3Fqc7RDIlS/W8ikduKI3mi4lTnsk4itxVHIrcVp6ZEbq9r8o/LdpGXn/ixRvjEluo651YoB0qpacAjlGOurSAIgiAIgiAINYua+oqey4V0bk2UUpuAkm8SH1kTorZa65eAl2y3mYs+3VYi6Zda69IrqwiCIAiCIAiCINRwpHNrorW+sqo1XErMTqx0ZAVBEARBEAThfwSZUuqc6juRRhAEQRAEQRAEQRBcRCK3giAIgiAIgiAINQB5z61zJHIrCIIgCIIgCIIg1HgkcisIgiAIgiAIglADqKnvn71cSORWEARBEARBEARBqPFI5FYQBEEQBEEQBKEGIO+5dY50boVqzQWrW1VLsEuYX2ZVS3DK5nMBVS3BIVcFJFW1BKckpNatagkOSdfVt8i2qqpW4Jy+/eOrWoJD0vZX3+sKcCzev6olOCRdVV/fRTSo3mXd0fjqW09s7ji1qiU4pcfeV6pagkOmdvtXVUtwyM0X8qpagvD/gOpbKwiCIAiCIAiCIAiFyHtunSNzbgVBEATh/9i77/goir+B45+5S++VNGoA6ULoTSSErih2xQZKUVAp0lQUFQGxIQJS9LGgiF1/dnpRBKmhBUJvaaTXy+XKPH/cJbkkl5CEAInOm1deJHuzu9/bKXuzM7unKIqiKEqdp0ZuFUVRFEVRFEVR6gB1z23F1MitoiiKoiiKoiiKUuepzq2iKIqiKIqiKIpS56lpyYqiKIqiKIqiKHWAVNOSK6RGbhVFURRFURRFUZQ6T43cKoqiKIqiKIqi1AFm9VVAFVIjt4qiKIqiKIqiKEqdp0ZuFUVRFEVRFEVR6gA1blsxNXKrKIqiKIqiKIqi1Hlq5Fap05rPHYV/VARmnZ6YZ94n59CZMmlcGgbSZsUkHH08yD50hpgJi5EGE0F39abRU7cDYMrNJ3b6h+TEnAOgwbhbCBnRD5DkHr3A0YnvY9YbqhWj+02dqPfCOIRWQ8Y3a0lb+U2J153C6xMyfzLObZqR8s6npH30fdFrwfMm4RHZFVNqBmduHV+t/VdGl1cfJqxfB0w6PdsnryTt8NkyaVqMHECr0YPxahLEV22fQJ+eA0BQj1ZEfjSZnAvJAJz/bTcH3/2xRuJy692ZgOeeAK2WrG9/J+PDr0u87tikAUFzp+Dcuhmpiz4l4+NvARBOjoStehvh5AgOWnLX/Unaks+qFYNPZAfC54wCrYak1RuJW1L2vTV57TF8oyIw6wo4MXEJudZyWN66/sN60HDqvbg2D+PgkOfIOXDKEreDlmbvPIl7uyYIrZZL32wlbvEPVYq39dxHqRfVAZOugAPPLCPr0NkyaVwbBhKx4hmcfNzJPHSW6AlLkQYT4eNvJfSuXgBoHLR4NA9jfeuxaN2c6bBkPM6BPkiz5PznGzn7wR9VigugzWuPEmSNLXriMjLLia3T8mdwtMa2/ylLbA6erkQsnYBrWAAaBy2nlv3ChS+3AtB+4TiCBkSgT8lia9/pVY7LlkP7Lrg+8hRotBRs/hX9T2tKvt6pF673jgKzRJpN6FYtwRR7GBwd8XhpEcLRCbRaDP9sJf/bT64oFntce3bGb8Z4hEZD9g+/k/nRVyVed2zcgIBXp+Lcqhlpiz8ma9W3Ra/V/+0zZJ4OaTKDyUT8iAk1Ht+VtMkBgzsTPuM+pFkijSZOvPgJmbtiazzGQje+9gjB1vK4d+JyMuyUx/DHBtJszGA8mgTzS+txFKRlX5VYamO+3jB3JP5REZh0eo4+s4zscvKy7YqJRXl5ZMISm7y811JPjCaOv/hpUV723L0YU24+0mRGGk3sHvT8ZWO5lu1wIaewADpuW8j5t74hftlPVT5+lTFr3jts274LP18ffvx8+VXZx+XcMftRWkVGYNDpWTN1GRePnC2T5r4F42hwYzgCSD6TyBdT36cgT0/k2FvpNLw3ABqtlqBmYbzYcQx5mblViiH8tcfws+ZdrE3e2XJuWI+Wyyfj6ONBzqHTxD61GGkwXn59jYaItQvQJ6YR8/B8ANxbN6LZG2PRuruQfyGZ2PGLMOXoqhTz9WRWY7cVUiO3Sp3lHxWBW5NgdnZ/hmNTV9LijdF20zWd9RAXVvzKzh4TMWbkEjqiHwC6c5fYN/xldkVO48w739Hi7bEAOAX7Un/0EPYMmsmum6eCRkO94T2rF6RGQ9Ds8Vwc8xKnhz6B160349S0QYkkpoxskl5bTtr/fVdm9czvN3Dh8Rert+9KCuvXHq8mwfzY+1l2zPg/us0faTdd8u7jrL9/flEn1talXbH8MvAFfhn4Qo11bNFoCJw1gfhxszg/bAyeQyNxbNqwRBJzZhbJ85aR/nHJYycLDMQ9Np0Ldz7JhTufxK13Z5xvbFmtGMLnj+bIiLns7zOZwDt643pD/RJJfKMicA0PYV+Ppzk5dTlNF4y97Lp5x85z7LE3ydp5tMS2/If1QDg5Eh35LAcGTSf4kQE4NwisdLiBUR1wbxLMlu6TOTT1A9q+8bjddC1njeDMit/Y0mMKhoxcGoyIBOD0+7/wV9Rz/BX1HMfmfknqjqMYMnKRRjMxsz9n601T2T70RRqNGojHDWGVjgugXlQHPMKD2dRjMgemfkC7BfZjaz1rBKdX/MbmnpbYGlpjazxqIDnH49gWNZO/73yV1rMfQjhqAbjw1Vb+eeD1KsVjl9DgOmoiuQtmkj11JE49o9CENSqRxHh4L9kzRpP93BjyVryB25hplhcMBnJem0L2zNFkzxyNQ/uuaJu1uvKYbGk0+D//NEnjn+fiHaNxHxyJY3jJOmHKyiZ1wVIyP/3W7iYSRk8l/r4nrkrH9krb5PRth9gVOY3dUdM5OnkZLd95osZjLBRkLY/rekxh39QP6bDgMbvpUnfF8te988i10+7VmFqYr/5RHXBtEsyO7hM5NvUDWpTTljSb9SAXVvzGjh6TMJTJy+nsiprB0cnLafXOuBLr7bvzVXZFzahUx/Zat8OFmrwykvRN0ZeP7woMHzqA5e+8dlX3UZFWfTsQ2CSEeX0n8fXzH3D3XPt19sc5q3hryAzeHDKD9PgUbnp0EACbV/7CW0Nn8tbQmfz6xhpO/RNT5Y5tYd7t6fE0J6Yup1lh3pXSZNZDxK/4hT09n8aYkUuwtaxdbv2wMUPJO3GxxLLm7zzJ2bmr2Rf5LKm/76L++NurFLNSu6nObR0khPhECHH3ddjvy0KIqVVcJ6ec5Vf8HgIGdybxm20AZO09gYOXO071fMqk8+3dhuSfdwKQ8PUWAoZ0sayz5zhGayOctfcELiH+xfFpNWhcnBBaDVo3JwoS06sVo8uNN1BwLh7DhUQwGMn6dRse/XuUSGNKyyT/0Akwmsqsr9tzGHPm1RkpKNRgUCdOffsXACn7TuHk7Y6rneOYduQcuRdTrmostlzatcBwPh7jRcuxy/l9Cx79yh47/eHjYDSWWV/m5QMgHBzAQUt17lLxjGhG/plE9OcvIQ1Gkn/cjt+gLiXS+A3qwqWvtwCQs+8EDl5uONbzqXBd3Yk4dKfiy+5QSrRuzmAtf7LAiCm78leTgwZ3Iu6bPwHI2HsSRy83nO3kZUDvNiT+/A8AF7/eRvCQzmXShN7Rk/gf/gZAfymjaATYlJtPzok4XIL9Kh0XQPCgTlz42hrbvgpi69WGhF9sYhtsjU2Cg4crAFp3FwwZOUijGYC0nccoyLDb1FSJtllLzInxmC8lgMlIwY5NOHbuVTKRPr/oV+HsQolyVfia1gG02hq/Mcq5bQsMF+IxxiWC0UjuH1tw61vywps5LYOCI8eRdurE1XalbbIpT1+URuvmDFfxiaChgzpx3loe063l0cVOrJmHz5F34eq2e7UxXwMHd6l0Xl4qysutBNrJS42b8xXVhWveDgN+g7ugP59EXuyF6gdeCZ07tMPby/Oq7qMibQd2Zvf3lnw+t/8krp5ueAWWzWe9zaimo4uT3aoZcVsv9v30d5Vj8LfJu2ybvCvNp1dbkn/ZAUDS11vwH9z1sus7hfjh178Tias3ltiWa9NQMnfEAJC+9QABt3arctzXkxl5zX7qon9151ZY1Nn3KIRQ08Yr4BziR35c8YcOfUIqziElP3A7+nlizMqzTNcC9PFpZdIAhIzoR+qm/QAUJKZzftnP9Ny3jF4HV2LMyiNt68FqxegY5I8xsThGY2IKjkH+Faxx7bkF+5IXn1r0d15CGm7BvlXaRmCnZty6fi5Rn03Du4ojeuXRBvljSCweLTEmpqCtF1D5DWg0NPj+fZr89RW6v/ejP1j16Y1OIX4UxBfnX4GdMuYU4o/e5vjpE9JwDvGv1Lqlpf6yE1Oenq4HP6Dz3uXELfsJYxU6bS4hfujiimPJT0jDxU6dMGTlFtWJ/PjUMmk0rk4ERrYn0drJtOXaIADvto3J2Hey0nEVxpZvc5x0dmJzKhWbLqE4tjMfrcWjeSgDDrxP381vcPjFVTXe+dH4BmBOvVT0tzk1GY1v2TLn2Lk3nm99ivv0+eSteKP4BaHBc/4HeK/4AeOhvZhO2R8Rqi5tvQBMNnXCdCkFh6Aq1AkkwctfJ3TNUjzvGlqjsUHNtMkBQ7rQ7a+FtP/8OY5OXlbjMRZyCfFFF59W9LelPFat3asptTFfnUN8yY+zbdeqnpeBQ7rQ/a936PD5TGJK5WWHr16gy7r5hD4cddlYrnU7rHFzJuyp4Zx/65sK0/0beAf5kWFz3DIS0/Au58Ll/W8+wau7l1OvaSh/flLythRHFyda3tyeg7+XPWdcTum8K7DmnS0HP0+MWblQWNYSUnGy5mNF6zedM4ozcz4rc67IO3ah6CJH4LAeOIVWpb4ptV2d7fiVRwjRWAhxVAjxPrAPeFgIcUgIcVgIscAm3QPlLM8RQiwQQuwVQmwQQnQVQmwRQpwWQtxmTdNGCLFLCBEthDgohGheQSzHhBCfWtN9K4Rws77WSQix1bqftUKIEOvyLUKIeUKIrcDECt5qHyHE39a47rauK4QQb1rf0yEhxH3W5X2FEL/YxLVECDHS+vvrQogYa3xvWZcFCiG+E0Lstv7YDl20tjkez9hsc4p1v4eFEJPsHAth3W+MEOJXoF55b0wIMVYIsUcIsecX3ekKDoEou6j0h107SUpfiPLp1YbQEZGcnLMaAAdvdwIHd2FHlwlsbz8OrZsLQXfdVEEcFYVYiRivNzsxyirEmHboLN91ncQvA17g2MfriPxo8lWLq0qX/81mLtw5nrORD+LcrgVOzRpdfp1KxFDm2NjNYlmt4+oR0QxMZna3H8veruMJe2IYzg3LrSplw7UTTOl92i+SJdMEDexI+u5YDBklp5dp3Zzp9H+TiXlxFcaq3p9UmbpgN8staepF3kjW4XOsbz+erVEzaTdvZNFIbo2pZJkz7PmL7KmPkvv2i7jcYzOdVZrJfm4MWRPuQdu0JZr6ja96fFWpqwmPTib+/vEkTngBz/tuw6Vju5qMjppok1N+380/vSdzaOSbhM+4r0ajKxGG3fJ41XZXsVqZr1dWXwGSf9/Nzt5TODjyLZra5OWeW19i94CZRI+YT/1Rg/Dpfpnp+9e4HW447T7iV/6COS+/wnT/BpU5HxT6ctpyZnd7kqSTcUQMKzmLqk3/TpzdE1vlKcnlxVC6rNmvr7LC9f0GdKIgJZOcg2U/Rx6fvJTQUYPpsHYBWg9XZMG1n+lyJaSU1+ynLvq3jgy2AEYBrwE7gU5AOrBOCDEc2AUsKL1cSvkj4A5skVLOEEL8YN3GAKA18CnwE/AEsEhKuVoI4QRoLxPL41LK7UKIj4DxQohFwGLgdillsrUTOhco/JTkI6W8+TLvMQToDbS0xvQtcCfQAWgPBAC7hRDbytuAEMIPuANoKaWUQojCeSCLgIVSyr+EEA2BtUDh2aclEAl4ArFCiGXAjViOdzcsp5h/hBBbpZT7bXZ3h/VYtAOCgBjgI3txSSlXAisBNgXdW6JmhY0aROhDliu92dGncAkLIBPLiJxziD/6UtOHDanZOHi5IbQapMmMc6gf+sTiq/XurRvS6p1xRD8wH6P1AUm+fdqhO38JQ6plOnDyr//g3eUGkr77s7xDWS5DYgoOwcVXBB2CAzBcSqtgjWujxaP9af6g5V7G1OjTuIUWXyV1C/FDl5RR6W0ZbDo5cZsO0G3eSJx9PYoeOFVdpsQUHIOL7zd1CA7AdCm1gjXsM2fnott9ALebulBw8lyV1i2ITy1xRdcpxL/MFPWC+FScQ/0pnDzuHOJHQWIaGkeHy65bWuCdN5G+eT/SaMKQkkXW7lg8OjRFf/5Sues0GjWABg9Z7j3KjD6Na5g/hXtxCfErUycKUrNx9HIvqhMuoWXrTejw4inJhYSDlk4fTSbuu+0k/ra7wvdRqPGoATR80BJbRvRpXGzKmWuIH/mXic01xL8oTYP7+3Jy8f8AyDubRN75ZDyah5Kxv+RDYK6EOS0ZjX/xxQSNfyDm9PLLnOnYQTRBoQhPL2R2VtFymZeL8Wg0ju27or94tsbiMyUlo7WpE9p6VasTpmRLWnNaBnmbtuPUtgX5+w5dUUw13SYXyth5FNfGwZaZBjX0EKfwUQNobG330qNP4xpaPEJlrzxeK7UlX+uPGliUl1nRp3AJ8yfT+lrl87LsMbTkZVBRXhYkWdIYUrJI/m0XXhFNySjnvle49u2wR0Rz/G/tTuMXH8bByx1pNmPWF5D4UdUfolcb9Xp4ID0esLTL5w+cwsemXfYJ9iMrqfzjI82S6F92EDl2GLu+2Vq0PGJYjypNSQ4ZNZjgB4vbDWebGJxCyrYJhtQsHLzcQasBkxlnm3zUW/O+9PoBt3bHf2AX/KI6onF2ROvhRoslzxD71HvoTsZz+P45ALiGh+DXv2OlY1dqv3/dyK3VOSnlTqALlo5qspTSCKwG+lSwHKAAKGzBDgFbpZQG6++Nrct3AM8LIWYAjaSUFQ1hXJBSbrf+/jmWDmkLoC2wXggRDcwCbJ+OUPIxifb9KKU0SyljsHQWsW57jZTSJKVMArZa32t5soB84EMhxJ1AnnV5f2CJNbafAC8hROFNIb9KKfVSyhTgknXfvYEfpJS5Usoc4Hug9FBnH5vY4oFNlXiPZcR9vJbdUdPZHTWd5N93EXyPJdu8OjXHlJ1HwaWynbKM7UcIHNYdgJB7+5Lyxx4AnMP8affRVI5MWILudEJRen1cCl4dm6NxdQLA96Z25J2Iq0645B86jlPjUBzrB4GjA1639CFn485qbasmxX66oegBUOfX7qXp3ZanHQZ0bIohKw+dneNYHpdA76Lf/TuEIzTiiju2APmHY3FsFIZDmOXYeQzpS+7myh07ja83Gk93AISzE249OlJwuur3TmVHn8Q1PATnhvUQjg4EDu9F2rqSHbu0dXuod29fADw6NseYnYfhUkal1i1NH5eCd++2lvfg5oxnp+boTti/J6zQuY/XFz0EKun3PYTdY6l6Pp2aYczOQ28nL1O3HyF4mOUeo/r39iHpj71Frzl4uuLXo1WJZQA3LhxLzol4zqz4rcJ4bJ39eD3b+j/Htv7PkfjHHhrca42tYzMM5cSW8vcRQm4tji1xrSUOXVwKATdZjo1TgDfuTUPIO1d+p786TKeOoQkOQxMYDFoHnHr0w7C35Ac2TVBo0e/axs0RDg7I7CyEpzfCzVLmcHTCsW0nTPHnazQ+/ZFYHBuG4RAWDA4OuA/uS97WHZVaV7i6INxci3537dEJw8mzVxxTTbbJro2DitJ4tGuCxtGhxjq2AKc/Xs+m/s+zqf/zJPyxh4bW8ujbsRmGbB35VWj3alLX3GNEAAAgAElEQVRtydeLH69jV9QMdkXNIPn33SXy0lhOXqZvj6FeUV7eTLKdvPRs1wRhzUuNmzNadxfA0sb59b2RnGMVt83Xuh0+PPxF9nYZz94u44n/4FcuvvfDv6ZjC7D9s3VFD4E6vG4PXe605HOjiGbosvPISi6bzwGNivOzTVQnLtncq+zi6UrTbq05vH5PpWNI+PgP9vefxv7+00j9Y1dR3nl2tLQbBnvtxt9HCLzVMmIcdG9fUtda8jHVJu9t1z877wt2dRzH7i7jOfbEu2RsP0zsU+8B4BjgZdmoEDSYfDcJq9ZXOvbaQN1zW7F/68ht4bwIe5MVKloOYJDF4/BmQA8gpTQX3gMrpfxCCPEPcAuwVggxWkpZXmetdMmQ1v0fkVL2sJPeNv6K6G1+F6X+L81IyQsZLgBSSqMQoisQBdwPPAX0s6btUbrTbp0WYrtfE5YyVNHxtFWjtSR1w378ozrS45/3MOkKODrx/aLXblw9k2NTVlCQlM7J11bTdsUkwmfeT86hM8R/YcmqJs/ejaOvBy0WWJ4OKI0m9gx6jqx9J0n+ZSdd1i9AmkzkHDpL3GcbqhekyUzSq8to8H+vgVZD5rfrKDh5Hp/7LfdFZXz5G9oAXxp/vwiNhxuYzfiOHM6ZIeMw5+oIfWc6bl1vROvrRdNtq0h573Myv113ZQeulLiN0YT1a88d29/GqCvg7ykri17rt2oqO6Z9iC4pg5aPDaTN+FtxDfRm2Ib5xG06wI5pH9Lolq60eCQKs8mEKd/AtvFLayYwk5nkuUsJ/WAeQqMh64d1FJw8h9d9twCQ9dWvaAN8afD1YjQebkizxOfh4ZwbNhaHQD+C5luedI1GQ84f28jbWvV7gTCZOf38h7RZMwu0Gi6t2YQu9iLBjwwEIHHVOtI37MM3qiMddy7BrNNzctL7Fa4L4DekK+FzH8fR34tWnz9H7uGzxDzwGgkf/UHzRROI2LoQBFz6cjN5Rys/2nxpw34CozrQ9593Men0HJy4oui1Lqunc3DKB+iT0jn62ho6rniaFjPvJevQWS58sbkoXfDQLqRsPVjigTC+XVtQ/94+ZMWcp/dGy1cpxM77iuSNlX+S6KUN+6kX1YF+Oy2xRU8qjq3r6ukcKIxtjiW2ljPvJfNwcWzH3/mBiEVPcPPmBSAER19bU/S1LB2XPY1/z1Y4+XnSf98SYt/8lgtrtlQ6tiJmM7pP3sP9uTdAo6Fgy++YL57Fqf8wAAo2/Ixj1z449RkERiOyQE/ue68CIHz9cXtyJkKjAaGhYOcWjPtr+EKWyUzq/CUEL5sPGg3ZP67FcOocnvfcCkD2N7+g9fcldM1SNO6WOuH90J1cvGM0Wh8v6i182RKrg5ac3zaj+7vyH0Yr40rb5MBbuxN8Tx+k0YQ5v4DDYxfWaHy2EjdEExTVgYE7F2LS6dlrUx57rp7OvikryU/KoOnjg7hhwq041/MhatPrJG2MZt+zH9RsMLUwX1M37CcgKoIe/yzCrCsgZmLxPbPtV8/kaIm8nEj4zPvIPnS2KC/r3dqtVF6+C4BToDc3fmx5LqXQakj6YTtpmw9c9vhcy3b4Wpo2+3V27z9IRkYWUcMfYvzjD3PXsEHXbP8xm/fTKrIDL2xdRIFOz5fTir+OaMzHM/hqxkqykzMY8fZ4nD1cEUIQf/Qc38z6v6J07QZ1JfbPgxTo9PZ2cVnpG/bhF9WRzta8Oz6puN1os/p5TkxZRkFSOmfnfEbLFZNpNPN+cg6fJfGLjZddvzyBw3sTMmowAKm//UPSmmqNtyi1lKir86nLI4RoDPwipWxrvY/VdlryWizTgXfZWy6l/J8QIkdK6WHd1stAjpSy8F7UHCmlhxAiHDhjncr7LnBWSvluObGcAXpKKXcIIT4AjlljiAEeti53BG6QUh4RQmwBpkopyz07CSE+sb7Hb0vFdScwDhgK+AF7sEwVdgT+xDJi7AJEA69gmcrsJqW8ZJ2ifFJK6SeE+ALYL6V807r9DlLKaDvH4zBwq3VfnwDdsU5Ltr63/eXEVs/6/scUvofylJ6WXFuEel/5yOTVtCu3ak+yvZZ6el/Fr9SoAUlp1+/JlZeTIR2vdwjlMlf2Etd1clNk4vUOoVzpMbX7OvOZxOvzoKXKyKjFz12MCKrdbd3pxNp7nnARZb89oDbpeviNyye6TqZ3rsTXK10nd+bX7ntbb0r8tpafySy6hPa5Zp+Nd8dvqxPHxFbtPSvUACllghDiOWAzlk7Xb1LK/wGUt7yS7gMeEkIYgETg1QrSHgUeFUKsAE4Ay6SUBdaHQL0nhPDGkg/vAkeq9g7L+AHoARzAMko6XUqZCCCE+Bo4aI2h8F5YT+B/QggXLMeh8ElAzwBLhRAHrbFtw3KfsV1Syn3WDvcu66IPS91vWxhbPyzTu49jmTKtKIqiKIqiKIpSI/51I7e1ie0o8nUOpc5SI7fVo0Zuq0+N3FaPGrmtPjVyW31q5Lb61Mht9amR2+pRI7c1Q43cVqz2nhUURVEURVEURVGUImpgsmKqc1sDhBD+wEY7L0VdyaitEOIF4J5Si7+RUs6t7jYVRVEURVEURVH+jVTntgZIKVOxfL9sTW93Lpbvv1UURVEURVEU5T+urn5Fz7Xyb/2eW0VRFEVRFEVRFOU/RI3cKoqiKIqiKIqi1AHqntuKqZFbRVEURVEURVEUpc5TI7eKoiiKoiiKoih1gLrntmJq5FZRFEVRFEVRFEWp89TIraIoiqIoiqIoSh0g1chthVTnVqnVAt101zsEu2KyfK53CBXqFZB8vUMo16aMwOsdQoW6uWRe7xDKJfS194TmqDFf7xAq9NB2t+sdQrmi8L3eIVSoq8i/3iGUK9w553qHUK4DSbW7rQtzqJ3nVwCDuXZPLJze+fnrHUK53tgz73qHUK5dbadf7xCU/wDVuVUURVEURVEURakDzOppyRWq3ZfGFEVRFEVRFEVRFKUS1MitoiiKoiiKoihKHaDuua2YGrlVFEVRFEVRFEVR6jw1cqsoiqIoiqIoilIHqHtuK6ZGbhVFURRFURRFUZQ6T3VuFUVRFEVRFEVRlDpPTUtWFEVRFEVRFEWpA9QDpSqmRm4VRVEURVEURVGUOk+N3CqKoiiKoiiKotQB6oFSFVMjt4qiKIqiKIqiKEqNEUL4CSHWCyFOWP/3tZOmhRAi2uYnSwgxyfray0KIOJvXhlZmv2rkVqmzPPp0JHT2GNBoSP9qPcnLvy2TJmT2WDz7dsKcr+fi1EXkHzkFgP9jt+N330CQkvzYs1yctghZYMBraC+CJo7AuVl9Tg1/Ft2hk9WO78bXHiE4qgMmXQF7Jy4n49DZMmncGgbSdfnTOPl4kHHoDLufeh9pMOHo7U6nhWNxbxyESW9g3+QVZB27CEDT0YNp/FAkQgjOfL6JUx/8Ue0YXXt1JmDmEwitlqzvfifj/74u8bpjkwbUmzMF59bNSH3vUzI/KXWMNRrqf7UY46VUEie8VO04KtLj1Ydp0K8DRp2erZNXknr4bJk0rUcOoO3owXg3DmJVuyfQp+cA4OTtxs1vj8WzUT1MegPbnv2A9NiL1Y7F4+aOhL00BrQa0r5aT/KysmUudPZYPCM7YdZZypzuyCmcw8NouGR6URqnBsEkLVxNykc/EfLcKDz7d0UWGCg4n8iFaYswZ+VWO8ZCPpEdaPLqY6DVcOmLjcQt+aFMmiZzHsMnqiNmXQEnJy0m99AZAJq+Mx6/AZ0xpGQSHTn5imMB8OobQcNXH0doNCSv2UDi0u/LpGn46uN497McuzOTF5N3+DTC2ZGW381F4+yA0GpJ+3UH8W9/WWK94HG30+Clkexv+wjG9OwrjnXsK+PoHNkZvU7Pu88u5NThU2XSTHp7Mm27tSUvOw+Ahc8u5EzMadp1b8esD18k6UISAH//8TdfLlpzxTHZ6vvKwzSJ7IBBp2fdsyu5ZKdODF70JEE3hmM2GkmMPs3G5z7CbDQRPqAjPafejTRLpMnEllc+J3738WrH4hPZgfA5o0CrIWn1RuKW/FgmTZPXHsM3KgKzroATE5cUlbPy1m380sP4DuiMNBjJP5vIiUlLMWXlVTk2z5s7EjZ7NEKrJfXLdVxa9l2ZNGEvj8ErsjNmnZ7zU99Fd/g0AFovdxoseAqXGxoBkvPT3iNvXyzBkx7A74GBmFIzAYh/8zOyN++tcmyF2r32CEHW88S+icvJLOc80dnmPLHX5jwRYT1PmK3niWzreWLg7kUYcnRgMmM2mdk6aFaV4qrt9fVqtm+hT9xG49mPsqvNSIxpV96e3DH7UVpFRmDQ6VkzdRkXj5wtk+a+BeNocGM4Akg+k8gXU9+nIE9P5Nhb6TS8NwAarZagZmG82HEMeZlXfo64nFnz3mHb9l34+frw4+fLr9p+rnUb4taqEU3fHIuDpxvSbObA4JlIveGqvb+roQ7dczsT2CilfF0IMdP69wzbBFLKWKADgBBCC8QBthV6oZTyrarsVI3cKnWTRkPoq09wZuTLnBg4Ae/b+uDcrEGJJJ59O+HcOJTjkeOIe24pYa89CYBDkB8BI4dx8rbJnBj8FGi1eA/rA4A+9hznnpxH7q4jVxReUFQHPMKDWddjCvumfkiHBY/ZTdd21gOcXPE763pOoSAjl8YjIgFoMfF2Mo6cY2O/mex5ehk3znkEAK+W9Wn8UCRbhrzIxn4zCRnQEfcmwdULUqMhcNYEEp6cxfnbxuAxNBLH8IYlkpgzs0h5fRkZn5T9UAjg/dBwCk5fqN7+K6FBv/Z4Nwnm697P8teM/6P3/JF20yXtPs5v988n+0JyieUdnr6d1CPn+H7A82yZuJwerzxc/WA0GsKsZe74gAn4lFPmnJqEEtt3HHHPLyVsrqXM6U/HcWLoRMvPrZMx5+vJXLsDgOy/ojk+cAInhjyD/kwc9cbfXf0YbWINnzeGmAfnEn3zJAKG98b1hvolkvj064hLeAj7ez7FqWnLCH99bNFryV9vIWbEnCuPwyaeRnPHcuKhORyOfAb/4b1xaV4yHu9+HXFuEsqh3uM5O2MZjeaPA0DqDcTe+xJHBkzhyMApePeNwL3jDUXrOYX649WnPfqLl2ok1M6RnQltHMrYPmNYMnMx4+dOKDftx/M+4pkhT/PMkKc5E3O6aPmR3UeKltd0x7ZxZHt8GgfzcZ9n2TDz/+g3d6TddMd+/JtPI6fx2YDncHBxou39fQG4sP0Inw96ntVDXmDd1A8YsGB09YPRaAifP5ojI+ayv89kAu8oW858oyJwDQ9hX4+nOTl1OU0XjL3suhlbD7K/72Si+z2L7nQC9Z+5s1qx1Z8zjtOPvsKx/hPwva0Pzs1L1dfITjg3CeXozeO48NxS6lvPEQBhs8eQtXUfx6LGEzt4IvqTxRfFkv/vf8QOnUTs0ElX1LEtPE9s6DGF6Kkf0r6c80SbWQ9wasXvbOg5BUNGLo2s54kbJt5O5pFzbO43k70254lC2++ay+b+z1e5Y1vr6+tVbN+cQv3xvrk9+ovJdl+vqlZ9OxDYJIR5fSfx9fMfcPdc+/XtxzmreGvIDN4cMoP0+BRuenQQAJtX/sJbQ2fy1tCZ/PrGGk79E3NNOrYAw4cOYPk7r13dnVzrNkSr4Yalz3Bq+kr23zyZw3fORhpMV/c9/rfdDnxq/f1TYPhl0kcBp6SU565kp/+pzq0QorEQ4vC1XlepeW7tm1NwLgHDhSSkwUjmz9vwGtCtRBrPAd1J/34TALroWLRe7jgEWmdEaDVoXJys/ztjvJQGgP7URQpOx11xfKGDOnH+6z8BSN93EkcvN1zq+ZRJF9irDXG//APA+a//JHRwZwC8bggj+U9LBzvnZDxuDQJxDvDCs3kY6XtPYtIVIE1mUnYcJXRo52rF6NyuBYbz8RgvJoLRSM7vW3Dv16NEGlNaJvrDx5FGY5n1tUEBuPXpSvZ3v1dr/5XRaGAnTnz7FwCX9p3CycsdVzvHMfXIOXIuppRZ7ts8jLi/LMcx81QCnvUDcA3wqlYsbh0sZa7AWuYyft6G18CSZc5rYHcyrGUub38sWk+bMmfl0au9pezGWT485fy5H0zmonUcgwOqFV+JfUQ0Q3c2Ef15S6wp//sLv0FdSqTxG9yF5G+2WmLYdwIHL3ccrcc2a2cMRuvod01wj2iO/mxCUTxp//sL30FdS6TxGdSV1G83A5C77zhab3cc61mOnTkvHwDhoEU4asHmfqMGLz/GhbmrqKkL2d0GdmfTd5Y8jN0fi7uXO771ysykum6aDuzE0e8sdSJx/ymcvdxxt1Mnzm4+UPR7YvQpPEL8ADDk6YuWO7o5I6/g3i3PiGbkn0lEf/4S0mAk+cftZcvZoC5c+noLUFjO3HCs51PhuhlbDxTViey9x3EO8a9ybG4dLGWusL6m//wn3qXOEd4DupH2naXM5e23niPq+aLxcMW9WxvSvlwPgDQYMdXAbIrSgu2cJ5zt5GVArzbE25wnQqznCc9yzhNXqrbX16vZvjV5ZRTn5qy6onphq+3Azuz+fhsA5/afxNXTDa/Asnmsz9EV/e7o4oS93Ufc1ot9P/1dI3FVRucO7fD28ryq+7jWbYhv3/bkxpwjL8bSdzKm54DZfFXf49VglvKa/VyhICllAoD1/3qXSX8/UPqK8FNCiINCiI/sTWu25z/Vub0ahBB1fmq3dRrAFae5lhyC/TEkFHdmDImpOAaX/ADkGFQqTYIljTEpjZQPfqDF9o9o9c8qzNm5lg5GDXIJ8UUXn1b0ty4hDZeQknXSyc8TQ1Yu0toA6xJSi9JkHjlP6FBLI+0b0RS3+gG4hvqTdewC/t1b4uTrgdbViaCoDriFVv2DH4BDPX+MicVXp41JKTjUq3zHKmDGE6S+82GNfQiwxz3Yl5z41KK/cxPScA+ufEcjNeY8TYZYjmNgh3A86gfgbv2QX1WOQf4Y4kuVp6CyZa7AJk2BnXLpM+wmMn7aZncffvcMIHtL9UeCCjkH+1EQZxNHQhpOpeJwCvZDbxOrPiEVp2p0IirDKdiv5HFJKHtcnIL9KbDJa0t9teaVRkObde/Q4eAnZG07QO7+EwD4DOiCISENXczZGovVP9iflITiepGamIJ/sP3j8vC0R1i8dgmjXxqDg1PxqaBlx5Ys/mMxL3/6Cg1vaGh33eryCPYlO6H4OOUkpuFRQZ3QOGhpdWdvzm09WLSs6aDOPLrpDYZ/MpX10z6odixOIWXz1blU/XIK8Udvk6/6hDScQ/wrtS5A0AP9SN+0r8qxOZY+RySklD1HBPtjiC/Oa0OipU47NwzGmJpJw7cmcsNv79JgwVNoXJ2L0gU+cgst/niPBm8+g9bLvcqxFXItdZ7IT0jD9TLnifyE1KI0tucJn4imuNYPwMV6PpBS0vPLmfRdO5dGD/WrUly1vb5erfbNd2Bn9IlpRR2fmuAd5EeGzXHKSEzDO9j+Oej+N5/g1d3Lqdc0lD8/KXm7kaOLEy1vbs/B3/+psdhqg2vdhriEh4KUtF4zi/br3iBswu01/Zb+dYQQY4UQe2x+xpZ6fYMQ4rCdnyodXCGEE3Ab8I3N4mVAUyzTlhOAtyuzrf9i59ZBCPGp9SrAt0IINyFEJyHEViHEXiHEWiFECIB1+QEhxA6gaG6aEGKkEOIbIcTPwDph8aY1Mw8JIe6zpitveV/r/r4WQhwXQrwuhHhQCLHLmq6pNd091nUPCCHsfxoujud/Qog/hBCxQojZNq89ZN1utBBiRWEnVQiRI4R4VQjxD9CjnO2eFUK8JIT4C7hHCNFBCLHTeux+KLyCUsHyLUKIhUKIbUKIo0KILkKI7603lpc718W2In2bXc5JRogyi8p0ssomQUqJxssdrwHdiO0zmqPdH0W4ueAzvG954VSLsBNfmSvVdpIUXq6NXfwTTj7u9Nswj6aPDSTz8Fmk0UT2iXiOL/mZ3l89R68vZpB55BxmYzWn1NiNsXIdVbebu2FKy6Agpvr3JFfKFcQIcGDpzzh5u3Pn2rm0GTWQ1MPnMBureZW2MrFUkKcAwtEBr/7dyPxte5lk9SbcizSZyPhxS/XiKxHH5WO1X0av0oWKKz12ZjNHBk7hQOfRuEc0x7VFQzQuToQ8czdxb9XstF9hJxB7h+XTBZ/wROQ4Jg+bhKePB3c/eQ8AJw+f5LEeo3h68NP88snPzPqgilNCKxFh2fjKz7d+c0cSt+sYcbtii5adWruHT/tN56fRC+k59QqmwV9BO1yZdetPvBNpNJH83Z/VCc7eji+bBClBq8WtbVNSPv+d40MnYc7LL7pdIOXz34npM47YIRMxXEoj9MXHqxFb4f4rUdbKO37AicU/4ejjTmSp8wTAn8NeZsvAF/j7wQWEjxqAf/eWVxRXraqvV6F907g6UX/iXVx448ty01SH/TDsx/HltOXM7vYkSSfjiBhW8mNZm/6dOLsn9ppNSb5mrnEbIhy0eHVryfEJizh0+yz8hnTFu3e76sd/nchr+U/KlVLKzjY/K0vEImV/KWVbOz//A5Js+lQhQEX3IwwB9kkpk2y2nSSlNEkpzcAHQNdy17ZR50cdq6EF8LiUcrsQ4iMsndY7gNullMnWDuhc4DHgY+BpKeVWIcSbpbbTA7hRSpkmhLgLy1WF9kAAsNvaGe1ZznKsy1oBacBp4EMpZVchxETgaWAS8BIwSEoZJ4QoO4+lpK5AWyDPup9fgVzgPqCXlNIghHgfeBBYBbgDh6WUl3sKUL6UsjeAEOKgzfF4FZhtjXNVOcsBCqSUfazv639AJ+t7PiWEWCilTC29Q2vFWQlwqMkwu2cBY0IKjiHFo4yFI7K2DImpJdOEWNJ49O5AwYUkTGlZAGSt/Ru3jq2uuFMRPmoAjR+03AuVHn0a19DiK4iuIX7kJ6aXSF+Qmo2jlztCq0GazLiG+JOfmGF5fzk69k5aUZR20O5F5J63jDCcW7OFc2sssbZ57j50CWUOYaUYk1JwCA4s+tshKABjcuW25RLRGve+3XG7qQvC2QmNuxv1Xp/OpZlvVCsWW60f7U9L6z1lyQdO4xHqT2FL5x7iR25SRqW3ZcjRse3Z4nb4/h0Ly9yXW+ltJabgGFqyPBkulS1zTqEBFD76xinYH4NNufTs2wnd4VMYU0q+B9+7+uEZ1YXTI2qmI6RPSMUprDhWpxA/CkrVD31CKs6hARQ+LsU5xJ+CxJJpakpBguW4FMdT8rgUpykeWXEM8ceQVLLOmLLyyP77MN59I8jcuh/nhkG0Wb+waJut175NzC3TMSZXvowA3PLILQx6YDAAJw4eJyCkuF74BweQllS2XqRfssRmLDCy4esN3DHOck+XzmZ64Z7Ne3jytfF4+XqRlZ5VpZhstX+kP20fsNSJpIOn8bQZgfIILr9OdJ90B65+nmyY+ZHd1+N2xeLdsB4uvh7kV2MaekF82XwtKN3OxafiHOpvU878KEhMQ+PoUOG6gffejO+AThy555UqxwXW+lqi/Q8oU+YMCak4hgYCRy1pgq11WkoMCSnkRVsetJXx29/UG38XQIm6m7ZmHU0+erFKcTWp4DzhUonzhEup88R+m/PEwN2LyLOeJ/KtZaIgJYuE3/fgG9GU1J3HKhVjba+vV6N9c2kUjEvDINpvfLsofft1b3JwyEwMVYyv18MD6fGAZbT8/IFT+NgcJ59gP7JKHSdb0iyJ/mUHkWOHscs6rRogYliPazol+Vq51m1IQXwqmTtiih4Ulr5xPx43NiHzr0NX4d0pwE/Ao8Dr1v//V0HaByg1JVkIEVI4rRlLX61St4f+F0duL0gpC4dNPgcGYekUrhdCRAOzgPpCCG/AR0pZ2Lp8Vmo766WUhS1lb2CN9epCErAV6FLBcoDdUsoEKaUeOAWssy4/BDS2/r4d+EQIMQa43LTg9VLKVCmlDvjeuu8oLJ3J3db3FgWEW9ObAPtPCSrpKwA7x+NToE95y23W/8nmfR2xec+ngZJP96iCvIMncG4cimP9IISjA97D+pC1YVeJNNkb/sH3TssJxrVDC0zZeRiT0zHEJ+MW0RLhYplm5tGzPfpTV/5QpNMfr2dT/+fZ1P95Ev7YQ8N7bwLAt2MzDNk68i+VPUEm/x1D2K2W+8Aa3nsTCWv3AODo5Wa5Vwlo/GAkKTuPYbR+aC68p8o1zJ/QoV248MOOasWrPxyLY8MwHMKCwMEBjyF9yd28s1Lrpr37Mef6P8T5QY+SNG0+ul0HaqRjCxDz6Qa+H/QC3w96gbN/7KX53ZYnRdbr2JSC7Dx0do5jeZy83NBYj2OLEX1J/OeY5Qmi1ZB34ARONmXOZ1gfstaXLHNZ6//Bx1rm3CKKy1whn9v6kPHz1hLreNzckcAn7uLs6DnIfD01ISf6JK5NQnBuUA/h6EDA7b1Js5atQulrdxN4z82WGDo2x5idh6EKx7YqcqNP4NwkBCdrPH639yZ93e4SaTLW7cb/bsuHfveON2DKysNwKR0HPy+0Xm4ACBcnvG5qj+5UHLpj54luP5KD3cdxsPs4ChJSiRn0bJU/KAP8uurXogdA7Vi7k353WfKwRUQL8rJzizqytmzvw+0+qDvnYi2zTHxs7rG+of0NCI24oo4twIFVG1g95AVWD3mBU2v30uouS50IjrDUiVw7+db2/r406tOO355aWmLEyrtRUNHv9do2RuvkUK2OLUB29Elcw0NwbmjJ18DhvUgrla9p6/ZQ796+QMlyVtG6PpEdqP/UcI4+ugCzrqBaseUdOIFzk1CcGljqq++wm8haX3JKZ9aGXfjdZSlzRfX1UjrG5AwKElJwDg8DwLNXe/QnLOcIB5t89x7UnfzYqk1hPfPxejb3f57Nds4Txmwdejt5mfJ3DKE254lEO+eJRjbnCa2bMw7uLgBo3ZwJvLkdWccqf46r7fX1arRvecfOs7vdY+zr+iT7uj6JPiGVAwOnVbljC8uC90IAACAASURBVLD9s3VFD4E6vG4PXe60fCRqFNEMXXYeWXa2GWBTL9tEdeLSqfiiv108XWnarTWH1+8ps15dd63bkPQt0bi3aoTG1fLMFe8erck7Xv1vULhepDRfs58r9DowQAhxAhhg/RshRKgQ4rfCREIIN+vrpR/L/oZ1RutBIBKo1Nc3/BdHbkuPBGZj6XSVmANiHSmtaI6e7dwQexN0KloOYPsp1mzztxlrvkgpnxBCdANuAaKFEB3sjXRalY5VWvf/qZTyOTvp86WUlZnPeqVzYGzfV+n3XP3yZzITP3s5TVa9YvkqoG82oD9xHr8RltGXtC/+IHvzHjwjO3PDlpVInZ6L0xcBoIs+Tubv22n2y7tgNKGLOU3aGsv9LV4DuxP68ji0ft40+ugl8mPOcPbR2eWGUZ7EDdEERXVg4M6FmHT6EqOwPVdPZ9+UleQnZXB4zhq6rnia1jPvIePwOc5+sQUAz+ZhdF78JNJkJuv4RfZNKb4vrtuHk3Dy88BsMBH93McYqjtNyWQmZd5SQlbMQ2g1ZP2wDsOpc3jdewsAWV//itbfl/pfLUbj4YY0S3weGs7528cic6v+tRzVcWFTNA36tee+v97GmF/A1inFo7CDVk3lz2kfkpeUQZvHBnLjk7fiFujNXevnc2HzAf6c9iE+zULpu+gJpMlM+ok4tk2t/v2FmMzEv7Sc8FWvgFZD+tfWMvegtcytLi5zLbautHwV0LRFRasLF2c8enfg4vNLS2w27JVxCCdHwj+3PL0zb38scS+8X/04rbGefv5DWq95EaHVkPTlJnTHLxD0yEAAklatI33jPnyiOtJxx1JMOj0nJxfH1fz9yXj3bIODnyed9q7kwltfcWnNxiuK5/ysD2jxxWzQaEj5aiP5xy8Q+LDliaDJn60lc+NevPt1ot32ZZavFpmyGADHIF+avPsMQqOx1PWft5O54ep9yNuzaTedIzvzwZ8fWr4KaOrCotde/uRl3pvxHmlJaUxdNA1vf2+EgNNHzrD0+SUA9B7aiyEPD8VsNKHPL+CNp2rmok+hM5uiaRzZnlF/vo1RV8C6qcV1YvgnU1k/40NykzKImjeKrLgU7v/xZQBO/rGbfxb9SPOhXWh9V29MBhPG/AJ+nbCk+sFYy1mbNbMsX8myZhO62IsEW8tZ4qp1pG/Yh29URzruXIJZp+fkpPcrXBcgfN7jaJwcafOVZVQ0Z+8JTs1YaTeEimK7+NIKwle9jNBqSPt6A/knLuBvra+pq/8ga9MePCM70WrbCutXAb1XtHrc7JU0WjQF4ehIwflEzk+11OXQ50bi2roJSCi4mMSF56tfV5Os54kBOxdi1OlLjMJ2Xz2daOt54sicNXRZ8TStZt5D5uFznPtiCwAezcPoZD1PZB+/yH7recI5wJtuH1s+AwoHLRe/386lzQdL777CY1er62tta98qELN5P60iO/DC1kUU6PR8Oa34K3XGfDyDr2asJDs5gxFvj8fZwxUhBPFHz/HNrP8rStduUFdi/zxIga5mLn5W1rTZr7N7/0EyMrKIGv4Q4x9/mLuGDarZnVzjNsSUmUv8ip9p/8cCpJSkb9xH+oaq39OvVI61zxJlZ3k8MNTm7zygzE3xUspqfcWFuJoPg6lthBCNgTNATynlDiHEB8BJYAzwsHWZI3CDlPKI9UrBeCnlX0KIBcAtUsq2QoiRQGcp5VPW7d4JjMOSUX7AHqAblmnJ9pa3BKZKKW+1rr/F+vceIUTfwteEEE2llKesafYDo6SU0Xbe10hgHpYRaB3wD5Zp1XlYpgD0klJeEkL4AZ5SynNCiBwppcdljtdZ6/tMsf59AHhKSvmnEOJlwFtKObmC5XbfV+n3XFEM5U1Lvt5O6K7uEwSvVPuA6k1VvhY2ZQRePtF11M0h83qHUK4cvdP1DqFcjpra/cTJV7TVGwG8FqKoPU9jtqdrQf71DqFc7s61N1/P6is8xV53YdrqzWK5Fgzm2j2x8Btnx+sdQrne2DPveodQrl1tp18+0XXUK/Hbigalao1G/jdes8/G51IP1oljYuu/OHJ7FHhUCLECOAEsBtYC71mn2DoA7wJHgFHAR0KIPGua8vyA5R7cA1hGTKdLKROFEOUtr+yTHd4UQjTHMgK70bqd8vyFZep0M+CLwk6jEGIWlodeaQADlnuMq/sowEeB5dbpA6exHJ+KliuKoiiKoiiKolwT/6mR23+r0iPJ/yZq5LZ61Mht9amR2+pRI7fVp0Zuq0+N3FafGrmtPjVyWz1q5LZmNPRrd80+G59PO1Qnjomt2t16KIqiKIqiKIqiKEol/BenJddZQohBwIJSi89IKe8APrmC7f4ANCm1eIaUsqKp2IqiKIqiKIqiKLWG6tzWIdbOZo13OK2dY0VRFEVRFEVRajFzhV/moqhpyYqiKIqiKIqiKEqdp0ZuFUVRFEVRFEVR6gD1MOCKqZFbRVEURVEURVEUpc5TI7eKoiiKoiiKoih1gFmN3FZIjdwqiqIoiqIoiqIodZ4auVUURVEURVEURakDpHpacoWEuilZqc22B9+tCmg1CFF7D1u+WXu9Q6izAlx11zuEcqXoXK93CBVy0xqvdwjlyjPV7uvMmlr8QUpbi9s6R435eodQIYNZTd77N6rNudr18BvXO4QKOQaEi+sdQ2UE+7S6Zg1fYsbROnFMbNXuM6qiKIqiKIqiKIoCqKclX05tvsCjKIqiKIqiKIqiKJWiRm4VRVEURVEURVHqAHMtvlWkNlAjt4qiKIqiKIqiKEqdp0ZuFUVRFEVRFEVR6gB1z23F1MitoiiKoiiKoiiKUuepkVtFURRFURRFUZQ6wKxGbiukRm4VRVEURVEURVGUOk91bhVFURRFURRFUZQ6T01LVhRFURRFURRFqQPUA6UqpkZuFUVRFEVRFEVRlDpPjdwqdYZPZAfC54wCrYak1RuJW/JjmTRNXnsM36gIzLoCTkxcQu6hMxWu2/ilh/Ed0BlpMJJ/NpETk5ZiysrDuUEgEdveRXcqHoCcvSc4NWNlrYmvkFNYAB23LeT8W98Qv+ynSh/HJq8+BloNl77YSNySH8rGOecxfKI6YtYVcHLS4qI4m74zHr8BnTGkZBIdObkofYPp9+M3qCuYzRhSMzkxcQmGpPRKxWNP87mj8I+KwKzTE/PM++RY92/LpWEgbVZMwtHHg+xDZ4iZsBhpMBF0V28aPXU7AKbcfGKnf0hOzDkAeuxegik3H2kyI40m9gx6rtbE1mDcLYSM6AdIco9e4OjE9zHrDVWOr5DHzR0Je2kMaDWkfbWe5GXflkkTOnssnpGdMOv0XJy6CN2RUziHh9FwyfSiNE4NgklauJqUjypXvipyNY6dW9MQ2qwsLouujepx+o2vubjyt0rH5d03gsZzHkNoNFxas4F4O3Wi0ZzH8e3XEZNOz6nJS8g7dBqA8Hcm4NvfUicO9ptUlN6tdWOavD4OrbsL+ouXODnhXUw5ukrHVNrVKncAaARd1r2OPjGNgw8tqHJszeaOwj/KcmyOPbO0nNjq0XrFJBx8PMg5dIajExYjDUbcmoXSYtEEPNs14cz8NVxY9nPROt13L8WYmw/W+rp30MxKxRP+2mP4WdvZWJt21pZzw3q0XD4ZRx8Pcg6dJvYpSzwVrd984Xj8BnTCkJLJvr5TSmwv9PEhhIwajDSZSduwl7NzPr9snFej3NV/9j7qjeiPIS0LgAvzV5OxaV+ljltF791WdY4dABoNEWsXoE9MI+bh+SW2GfbkbYTPfoQdrUdhTMu+rrFWlM/XIx7A7rFzb92IZm+MRevuQv6FZGLHL7LbxlzrzyZurRrR9M2xOHi6Ic1mDgyeibyCc5k9s+a9w7btu/Dz9eHHz5fX6LbrAjNq5LYiauRWqRs0GsLnj+bIiLns7zOZwDt643pD/RJJfKMicA0PYV+Ppzk5dTlNF4y97LoZWw+yv+9kovs9i+50AvWfubNoe/nnkjjQfxoH+k+7bMf2esQH0OSVkaRviq7acZw3hpgH5xJ98yQChpeN06dfR1zCQ9jf8ylOTVtG+Otji15L/noLMSPmlNls/Pv/40DUFA4MmEra+r00mHJP5WMqxT8qArcmwezs/gzHpq6kxRuj7aZrOushLqz4lZ09JmLMyCV0RD8AdOcusW/4y+yKnMaZd76jxdtjS6y3/85X2B01vVod26sVm1OwL/VHD2HPoJnsunkqaDTUG96zyvEV0WgIe/UJzox8meMDJuBzWx+cmzUokcSzb6f/Z+/M4+2azv///mQOMsiAhKpQQ00RxFCpeS4tamiUov2plhpSQ7W0lKJKlZpKhxiqimpatGZCzYkMxEzMIiIyyTx8fn+sfe4999xzh4Tcte79rndeeZ1z9t7n7s9ZZ+999vOsZ6DTgP68suMxvP+zK1n9vB8CMH/i+7y294nh/z7DWDJvPjPufXLZtRQsr7Gb88YkRu1yWvi/209YPHcBH//3meYLa9eOAecfzcvf/hXjdzyR3t/4Kl3XrX9OdB3Qj3HbHcebp/2BtS8oOydueZiXvl3/nFj74mN55/wbeW6XYXxy99P0++F+zddUwfI+J75w9N7Mfu39ZdLWa5dBdB3Qj6e3OZ5XT7mG9X5zdNXt1j7z27x3zV08s+0JLJr+aeHIgYXTP+X1M/5Sx6gtZ/wBZzN6l1ObbdiWrrOjtz2e1075A1+68PtVtxtw5mF8cM1djP7K8SyaPpvVCj2NvX/yLQ8zYeiv6v2tHtttRK89BjNm55MZs8Mw3m+Oo3E5HXcAk/54F8/vdjLP73byUhm2y3PsAFY/em/mvPZevb/XqX9vVt5+U+a9NyUJrQ19z7H0QPWxW/eSH/LWeTcxZqeTmXr3M6xx7Dfq77Cl703at2O9K0/gjdOuZewOw5hwwFl44eKlGsvmsN/eu/GHS5buO8r836HNGreS1pI0oRnbHFr2ektJv1/+6j4bkq6TdGCE/Z4t6ZSlfM+nDSxfqs/QbdCXmPfmh8x/5yO8cBFT/vU4vfYYXGebXnsM5qNbRwLw6ZjX6NB9BTqu0rPR905/ZDwsXgLArGdfpXO/3kvz8aLq67XnYOa/M5k5r7zbbJ0rDfoSc9/6kPnvTMYLF/Hxvx+rr3PPwUy57ZEynSvScZWeAMx86kUWTav/lZZ7i9uv0JnP4lTss+eWfHjbo2F/z4b9dyr2X87KQzZiyp1PATDp1pH02St8jpmjX2XRjNk17++yjN9pS2tT+3a069IJtW9H+xU6seDDZZ/5XmGzdVnw9iQWvBu+5+l3Pkr33beus0333bdh+j8fAmDO2Fdo321FOvRduc42K203kAVvT2Lh+82/6WyIlvhee311E+a+9SHz3vu42bpWGvQl5r01qeacmPrvx1h5j63qatpjK6b8YyQAn455lfY9VqTjKmGsZj39Ioun1Z9p6rJOf2Y99SIAMx4dT6+vbdNsTZUsz7Hr3K8XvXfbnEk3PbiM2gYzubheNK5t4xptH976SI22hR/PZNa4N2pmrz4rvcuus7PKrrOV9NxuY6bcFZw2k28dSe89t2ry/TOfeolF0+tf//odsQfvXT4CL1hU85maYnkdd5+F5Tl2nfr1oteuW/BhleNsnXOO5M1zb4SlyCOM8T3H0tPQ2HVdpz8zngzXmGmPjKfPPnWv8dDy9yYr7ziQ2S++zZwiMmTRtE9hyZLmD2Qz2XKzTejRvdvn/ndbC7Zb7H9rpM0at81kLaDGuLU92vYJ8eTURVIOGy/o1K8XCz6ovWFdMGkqnfv1qtimN/M/mFrzev6kT+jcr3ez3guw6tCdmVbm5e6y5ioMvP8iNh7xS7pv/eWk9LVboTOr/2g/3rn4tkZ1VdJ5tV4seL98X5/QabW6RkKn1Xoxv0zP/ElT6dQMA3HN0w9li9HX0PeA7Xnnor8vla46Gvv1Yt77dfdfOR4de3Vj0cw5uPhxnf/BJ1XHrN+hOzP1obF1lm12yxlsed+v6X/4LsloW/DhNN65+k6+MuZqtnvuWhbNnMMnjzy31PpqNKzam4Vl3+HCSVPpuGrvetvUOe4+nErHimOh575fZfodjy6zjnKW9/cKsMr+2zF5xONLpavTar1ZUHZeLpg0lU6V5+5qFefoB1PptFp9XeXMfeUdVi5uBHvt8xU69++zVLrKWZ5jt+65R/LGOX/FS5btJqZzv17Mf7/8utYcbdWvcZUY2PSWM9nivgvpd/iuzdJTeZ1dUFxny+nQqxuLZs6uuTmfX/adN+f9lXRdux/dt/kyA/97AZuO+CUrbbZO0zqX03EHsNpRe7HJA5ew9iXH0b7Hik1uX7O/5Th265x7VFUDttfuWzJ/0ifMLg+Tj6x1WYgxdnNefrfG2Oy777Z0qnKNael7ky5r9webDW8+k4H3/YbVj6sym5zJLGeiGbfFrOnLkq6X9Jykf0haQdIuksZKel7SXyR1LrZ/S9KFkp4p/n+pWF5nBrDaTGGxr/9JGlP8L8X7/Rr4qqRxkoZJ2lHSXcV7ekn6V6HtKUmbFsvPLnSNlDRRUoPGcEOfsVi3haRHJD0r6V5J/YrlIyWdL+kR4MRGhnB7SU8UGg4s3itJF0maUIzfIcXyms9VvL5C0pHF819LerHQd3GxrK+k2yWNKv5vV7bfDat9dkk/LvY7QdJJVFBou6LY13+AVRoZt+9LGi1p9L/nTCwtrLddPY9S/U3CNs147xonHoAXLWbK7f8DYMHkaYze4geM3+1U3jzreta76kTar9S1Icktrm/NUw/hg2vvYsmceQ1raqbOyh9MNWObarzz67/x7JbHMOWfj9LvqL2WTlddBU3vv8omlbPFPbfbiP6H7sTr595Us+zZfX7OqN1OZ/yh57P6UXvQc5vGnRYtpa1DjxXpu+dgnhx8HI8PPIb2K3Rh1W9+dSm1lWtYVp2126hjB7rvujUz/rt0xmIjopZRU92X1b5XAHVsT5/dt+CjYnbws8iqF3mwDOfEGz++klWP3IuN77mI9it1ZcmCzzIzuXzGrvdum7Pg4xnMeq5+buBn0VZvaKpe45r+y2P3OZNnd/sJzx16HqsftQc9mnG+VvuqluYa15z319tnh/Z06LES4/f+KRPPuZEvX9uMPM3ldNxNvv4exm57LM/vdjILJ0/ji2cd2bSWRnb3eYxdr922YMHHM/j0uYl1VrXr2okvnPRN3v7NLc3WuLy1ListPXYArw67kv5H7clm915I+5W61kQONCVsed6bqEN7um+9Aa8edxnPf+NMeu21FT2GbFLlw2U+C0vsFvvfGok9M7g+8D3bj0v6C/Bj4BhgF9uvSroB+CFwabH9TNtbSfpOsWyfZu7nI2A32/MkrQvcDGwJnA6cYnsfCEZg2Xt+CYy1vZ+knYEbgM2KdRsAOwHdgFckXW27oWz5ys94rKTLgMuBb9ieUhih5wHfLd7T0/YOTXymfsCQQssdwD+AAwqNA4E+wChJDU67SOoF7A9sYNuSSjE0lwG/s/2YpDWBe4HSXUW9zw5sChwFbE24TD4t6RHb5VMr+xdjsQmwKvAi8JdqumxfC1wL8PhqBxoKj3WZV7JTv971wjYXfDCVzv17UwrU6tyvFws+/IR2HTs0+t6+B+/AyrttwQsH/bJWw4JFLFoQ/CSzn5vIvLcn03Wd/nw6/o2qY9nS+lYatC6999mGtX5+OB26r4iXLGHJ/AV8+Jd7quorMX/SVDqtXr6vXiyY/Em9bTr371OmszcLPqy7TWN8POIxvnzjz3j34ubfsKx+1B70PyzMpM4a9wZdVu/DDF6p2f/8irFcOHUWHbqvgNq3w4uX0Ll/L+aXaVxxwzX58iXHMG7oBXXCqBcURa4WfjyTj/87im6DvsT0p16Krm3l7Tdh7jsfsXBqGPUp/3maHoPXY3Jxw7C0LPzwYzqWHVMd+/Vm4UefVGwTjtlSebJOq/VmYdmx0G3HLZg74Q0WfTx9mTRAy32vEPJSP33+TRZOmbFUGhdMmkqn/rUzLJ2qHO9hm7Lzpn/vmmOpIea9/j4vDz0HgC5r92PlXbZYKl0tMXY9tlqfPntsSe9dBtGuSyc6rNSVDa88nhePu7xRbf2P2oP+h4WZ1JnjXqfz6uVhzvXHb+HUmRXamndNqXu+PkP3QV9iRpXztd9Re7Lat2vHqnOd77PuONTqWRHat4PFSwrNYV/zi+t0Y++vZP4HU5n636cB+HTs63iJ6di7O0xr+NxZXsfdwo9rj/+Pbrqf9W84o9HtW2Ls+uyzDb13H0yvXTanXeeOtF9pBda/4gTeveJfdFlzFTZ/6GIgHDuD7vsN4/b6KQun1B+72N9zSmP3yo9+z9zXP2DCt0Ledde1+9Fr183raWzpe5MFH0xlxpMv1hQFm/bgWFbadAAzHnu+6QHNZD4nYoclv2u7NC3wV2AX4E3brxbLrge2L9v+5rLHbZdiPx2BP0p6HrgN2LAZ7xkC3Ahg+yGgt6Qexbr/2J5v+2OC4bxqI3+n8jMOIRh5GwP3SxoHnAmUZ/g3xyr4l+0ltl8s2/8Q4Gbbi21PBh4BBjf4F2AmMA/4k6QDoOY+d1fgikLbHUB3SaXkhmqffQgwwvZs258C/wQqp522L9P2AfBQMz5jDbPGvU7XtfvRec1VUMcO9N1vOz65b1SdbT65bzSrHLwjACttvi6LZs1h4UfTG31vz502Y40f7cdLR1zIkrkLav5Wh97doV04PTqvuQpdBqzGvLcnJ6Nvwn4/59nBx/Ls4GP54I//4b3fj2jSsAX4dNzrdB3Qj85fCPvq840hfHLv6DrbTLt3FH0P2qGezsboMqBfzfOVd9+Sua8vXXGa94ffW1MUaMrdz7DaQeG0777FuiyeNYcFVfY//fEX6LtvyGPsd/COfHxP+BydV+/NJn85hReOu4K5EyfVbN9uhc60X7FLzfNeO27K7JffSULb/Pc/pvvm69KuaycAVv7qJsxZxgI/AHPGv0antfrTcY1VUccO9Nx3e2beX7fI0sz7n6bnAaGYyQqD1mfxrDksmlJ749Lz69sz/c5HllkDtMzYlVh1GUKSIZwTXcrOid7fGMK0inN32n2j6HvgjgCstPl6LJ45h4UfNW5kdOhd/FxIrH7iQUy+8d6l0tUSYzfxvJt5YtAPeXLwj3jhmEuZ9viEJg1bgA+G38voXU5l9C6n8vHdo1i1uF503yJcL6ppm1ambbWDd+Dje0bV26acyvN15R0HMvvl6vUFJg2/h7G7nsrYXU9l6j3P1Fxnu20exqra9Wv6Ey/Qd59wG7HqwTsy9d6gZ2rZdbqx95cz9Z5R9ByyMRCMjHYdO7BwauN5t8vruCvl5AKsvNfWzHml8WtcS4zdW+f/jWc2P4ZRg4/l5R9cyvTHJ/DKj37PnJff4emNv8eowccyavCxzJ80lbG7n1bVsG0prUtDzLED6Nine/ijEl8YdiCTbri/3v5a+t5k2shxrPjlL4bfsvbt6LHthsx5tX4Rscxnwy34rzUSe+Z2aUfNVZ4vojDSFWI+OlV53zBgMmFGsx3BoGuKxoKG5pctW0zj41j5GV387RdsN2Sgz26GvnINqnispGaMCroA2F4kaSuCU+FbwI+AnYttt7Vdp6Z8EVJT7bM3tN9Klv0sWbyEiT/7ExvdfGZoYXPzQ8x95T1W+87uAHx4w31Me2AMK++yOZs/dQVL5s7n9ZOuavS9AGuf/z3aderIRrf8HKht+dNjmy+z5mnfwosW48VLeOO0axsvMNHC+j7rOG54889R+3ZM/vtDzH31XVYtdE6+4T6mPTiGnrtszuZPXsniufN5fdiVNW9f96ph9PjKRnTo1Y0tnr2Wdy++hY9ufpAvnnEYXdfpj5eY+e9NYeJPrllmiVMfGEvvXTZn26d/z+K5C3jpxKtq1m160+m8/ONrWDB5Gq//6iY2vuYk1j79W3z6/Jt88LfgLxlw8oF0XHkl1r8wVJQttfzp1LcHmwwP9dDUvj2TRzzGJw+PT0LbzDGvM+Wupxh8/4V48WI+ff4t3r/xgWUeQxYv4YNf/IG1b/gltG/HtFsfYP5r79Dr23sC8MlN9zDr4dF022lL1n/k2tAK6NTLat6uLp1ZachmvPezKxvaw1KzvMYOQnhjr+035eVTluHcWLyEt874Exv87ReofTs++vuDzH31XVY5PJwTH914H9MffJaeu2zOZk9cxZKiJUuJL101jO7bbkyHXt0YNPqPvPfbvzPl5gfps98QVj0yhOd/cvdTTPn7Uvnz6rA8x+6z8skDY+i9yyC2fvpyFs9dwCsn1h4zm9z0U1758R9YMHkaE3/1Vza8ZhgDTh/KrOffZFKhrVPfnmxx369p360rLDFrfP9rPPPVYXTs3Y2Nh58KlJ+vTVeGn/bAGHrtsjlbFtfZV0+qHauNbvoZr/34ahZMnsZb597IBtcM44unf4tPJ7zFh397sMn3r3/1SfQsrn9bjbmGty+6hck3P8Tkmx9ivd8dy+YjL8ELFvHKCVfU01WP5XTcrXnm4ay40QDscC1+87Tmt0lZnmP3eRPje46lpyH67jeEfkeFa/rU/z5dXWML35ssnjGbD665k4H3XIhtpj04hmkPNL9id3M59axfM2rsc0yfPpNd9juMY793ON/cd4/PfT+Z1oliVcKStBbwJvAV209K+iPwFiEseWfbr0u6jhAafJmkt4A/2P61pMOAQ2zvK+lMoJvtn0jajzCDqOLv32V7Y0m/A96z/VtJRwF/KbbZArikFAJchCWfYnsfharJU2yfWyz/ne1Bks4GPrVdyk+dAOxj+61mfsaXCSHJLwKHF8s7AuvZfkHSyELD6Mq/V/Z3rys+2z+K15/aXqmYfT0G2BvoBYwmhAp3BP5HmDHuAowjhF3/A1jB9kdFiPLrtntJ+lsx7hcVf38z2+Ma+uzFvq4DtqEISy4+29gGtK1SfP6jS5+hIUphgiPO/AAAIABJREFUyZmlQ0p32OYtaR9bQqulT9dl75O6vPl4biM56QmwQvvPpxrv8mDO4th+5sZpl7D3vn3C17qO7T7/KrGfJwuXxA7eyywPUv5Wt5rwm9gSGqVjn7WbO1kTla5dv9hiF765c99uFWNSTuxf1JeAIyRdA7xGKKD0FHCbQqXgUUC527GzpKcJ5+7QYtkfgX9LegZ4kOqznlcBt0s6CHi4bJvngEWSxhOMs/Ic0bOB4ZKeI4TrHvE5fcarbS8oikD9vgh17kDIIX5hGfdRYgQhXHs8YZb0NNsfAki6lfB5X6P2c3YjjF0XglE6rFh+AnBl8dk7AI8CP2hop7bHFAZ3Ke7xTxX5tiVtOwPPA68SQqYzmUwmk8lkMplM5nMh9sztXbY3bub2bwFbFrmerYKl/YyZ+uSZ22Ujz9y2TfLM7bKTZ26XnTxzu2zkmdtMDFL+VvPM7edDly5rttiFb968d1rFmJST8jmQyWQymUwmk8lkMplMs4jmLi5yVJs9o2l7reUm5jMiqTchJLqSXT7LrK2kM4CDKhbfZvu8Zf2bmUwmk8lkMplMpnXSWqsYtxRpx0K1EmxPpbYH7uf5d88j9L/NZDKZTCaTyWQymUwj5LDkTCaTyWQymUwmk8m0evLMbSaTyWQymUwmk8m0AmIVA24t5JnbTCaTyWQymUwmk8m0evLMbSaTyWQymUwmk8m0AvLMbePkmdtMJpPJZDKZTCaTybR68sxtJpPJZDKZTCaTybQC8rxt4yhPbWf+ryDp+7avja2jIVLWl7UtOynrS1kbpK0va1t2UtaXsjZIW1/WtuykrC9ry7Q2clhy5v8S348toAlS1pe1LTsp60tZG6StL2tbdlLWl7I2SFtf1rbspKwva8u0KrJxm8lkMplMJpPJZDKZVk82bjOZTCaTyWQymUwm0+rJxm3m/xKp52WkrC9rW3ZS1peyNkhbX9a27KSsL2VtkLa+rG3ZSVlf1pZpVeSCUplMJpPJZDKZTCaTafXkmdtMJpPJZDKZTCaTybR6snGbyWQymUwmk8lkMplWTzZuM5lMJpPJZDKZTCbT6ukQW0Amk8lkMpm2h6SrgNNtz4ytJfP5Iek7ja23fUNLaclkMplKsnGbadNIWgE4GVjT9tGS1gXWt31XZGkASFoPuBpY1fbGkjYFvm77V5GlASCpK2HsXomtpSEkrQx8wfZzsbUASPoN8CtgLnAPMBA4yfZfoworQ1J7YFXKfgNsvxNPUUDSOsB7tudL2hHYFLjB9vS4ymqRNARY1/ZwSX2BlWy/GVtXicT0vQU8K+ks23+LpKFBJM0CSlU1VTyacF50sh31HknSTsDxwPrFopeAK2yPjCYqMLjKMgH7AqsD0Y1bSb2BQ4ENikUvATfbnhpPVUDSAY2tt/3PltLSGKXfVur+ToyJp6j1jF0mLrlacqZNI+kW4FngO4Xx2BV40vZmkaUBIOkR4FTgGtuDimUTbG8cVxlI2he4mHCTN0DSZsA5tr8eWRqSRgJfJ/zojgOmAI/Y/nFMXQCSxtneTNL+wH7AMOBh2wMjSwNA0vHAWcBkYEmx2LY3jacqIGkcsCWwFnAvcAfBGbV3TF0lJJ1F0Le+7fUk9Qdus71dZGlAmvokrQ5cAvQhOPJKx1xyN6KSugHHAscAI2yfHFHL14ArgHOAMQTjcXPgTOBHtv8bS1s5kgR8G/gJ8CJwXmxHo6QvAw8RriFjCWM3CNgN2Nn2yxHlIWl48XQV4CsErQA7ASNtN2rAtQSSzgWOBN6g1gFk2ztHE0XrGLtMfPLMbaats47tQyQNBbA9t/gxToUVbD9TIWlRLDEVnA1sBYwEsD1O0lrx5NShh+2Zkv4fMNz2WZKSmLkFOhaPexNmCj5J65DjRILxE30GowpLbC8qHAOX2r5c0tjYosrYn3CTPAbA9geFQZQKyemz/b6k/wDnEWb2ahwqQBLGraSewEnAd4C/AYMTOD9OBfazPb5s2ThJo4HLgajGraQOBOPnZOBp4MCEInzOBU60fWv5QknfJByH34yiqsD2UYWeu4ANbU8qXvcDroyprYyDCfdPC2ILKaeVjF0mMtm4zbR1FhSztYaasMf5cSXV4eNCU0nfgcCkuJJqWGR7RmKGWYkOxY/ZwcAZscVUcKeklwlhyccWoaHzImsq511gRmwRDbCwcEQdQTCEoNZZkAILbFtS6XxdMbagCpLSJ2kjwmztB8BWpRvRVJDUh2CcHQL8BRhkO5VzY7UKwxYA289JWjWGoBKSjiM4yR4E9rT9dkw9VdjE9oGVC23fLun8GIIaYK2Kc2IysF4sMRVMAHoCH8UW0gApj10mMtm4zbR1ziLkPX5B0k3AdgRvcyocB1wLbCDpfeBN4LC4kmqYIOlQoH2Rq3wC8ERkTSXOIYScPWZ7lKS1gdciawLA9umSLgRm2l4saTbwjdi6ypgIjCxm02ocPbYviSephqOAHxBCG9+UNABIJlcZuFXSNUBPSUcD3wX+GFlTOanp+wdhBu2+iBoa421CSsNwYA7wvXJnXuRzYvYyrmsJLicYPUMIzrzScpFGikPKY1fOSEn3AjcTHNzfAh6OK6mGC4CxkiZQ93cielpSQcpjl4lMzrnNtHmKwhLbEH54n7L9cWRJ9ShmWNrZnhVbS4miGNcZwO6EsbsXONd2SrOQyVEUa/oaIW+0vBBHCsZjKS+zHrZ/2dJaWiOSdqPsnLB9f2RJdUhJn6TOtutFykjaDjjU9nERZJXrOJvafMJKbPucFpRTB0nTgUerrQKG2F65hSXVCpC+2Nj62DO5kt4j5HnXW0Uo7veFFpbUIEWBpK8WLx+1PSKmnhKSXgCuAZ6nbp78I9FEVZDq2GXik43bTJtE0uaNrU+g4l+jhY9SMYRSpZjRO576BmR0r7Kk/xLCkCtvCpIyHotcTNv+NAEtz9OwkUECM0F1kNSdusfdJxHltAqKgnSHElIJ3gT+afvyuKoaRtJg26Mi7n+HxtanZGSUSMhpUdWBVyK1a3GKSHrEdqPHYCaTKjksOdNW+W3x2IVQPXQ8wWu7KaH4xZBIukqUirysT2ircEfxel+qe+tbHEl3Ut/gmAGMJlR3jjmD+y/gz8CdlBmQibBGasZYOZI2Bm4EehWvPyZUE38hoqx9isfSTfGNxeO3CeGiSSDpGEJI/FzCcSfCObJ2TF0lKlrbdCLkK8+23T2SnvUI4YJDganALQSn+k4x9DSFpA2p1TuD8NsRhRSN12pUc1rEVZS+8VpxntZZRXA4RjlfK3hW0gWEe5PysOTYEwOtYewykckzt5k2jaS/E/L3ni9ebwycYvvIqMIKJN0HfLMUjlzMpt1me8+4ykDSZUBfQk4LhKIrHwJdge62D4+o7WnbW8faf2MU+bYPpppnKOkJ4AzbDxevdwTOt/2VqMKClscr29ZUWxYLSa8B26aY2lANSfsRCjn9LNL+lwD/A75n+/Vi2UTbSTgDoCbEdmjxfxHwRWBL229F1vUwjYdM79KSesppwGlxiu1Gw5VbCkm/aGS1bZ/bYmJaKcXxV0n0VkCZTHPIM7eZts4GJcMWwPaEwtOcCmsC5aX2FxBCbVNgkO3ty17fKelR29sX+TgxuawIPbuPhLzKBU8BIyS1AxaSnkd5xZJhC2B7ZOyqumWsKGmI7ccAJH0FSEUbhJ6PycwkN4Xtf0k6PaKEb1IUepF0D/B3wvmQBIWjpwdB14G2X5P0ZmzDtuCUKsu2AU4jfgXblwlOi33LnBbD4kqqQ7WiUSsC3wN6E1oFJYGkgdTNG02ipV2q0RXlpDp2mfhk4zbT1nlJ0p8IFVdNqET8UlxJdbgReEbSCIK+/YEb4kqqoa+kNW2/AyBpTaBPsS5277tNgMOBnanbNzMFr/JvgW2B551maMxEST+nNvT3MEI4YQp8D/iLpB7F6+mEir+p8FPgCUlPU9epckI8SbUUBVZKtCOE1UY7BosCLyMK58l+wDBgVUlXAyMSiG6YAqwBrEqIUnmNiONVju1nS8+L/NufA52BH9i+O5qwQNJOC9ultKRSNNSJhErsf6c2ZSk6kk4EjqY2lPsmSdemkIteXIPPAkoO7keAc1JplZXy2GXik8OSM20aSV2AH1J7gX4UuDqlir9F8aty7+PYmHpKSNob+ANhtkrAAOBYYCRwtO1LI2p7GdjUiTWYByjaE+xlO7VcYAAkrQz8kpB3LsI5cbbtaVGFlVEUbFIqN1IlJD0DPEb9YmHXRxNVhqThZS8XAW8Bf7Qde6avBkm9gIOAQ1IIcSxu4r9JCLH9EqG35x62n4kqDJC0B8GonUdIr0mq1UmZ02IowbF4PWk4LUrH2Y8JefvXA5eldI0DkPQcIc1hdvF6ReDJFGo2SLqd0Ou2dG07HBho+4CG39VypDx2mfhk4zaTiUgxG1qP0mxpbCR1BjYgGEEvp+IUkHQLcHxKN+0lJF1HKDB0N+n1kU2S1lI9XNITKeQmt1aK9mIbAm/bnhJbTyWSViHUFhgKfCFmyxhJowizyRcBT1auTyQFo4aUnBaSLgIOIPSQvzKFivDVKKrEDy79rhbO+FG2N4mrDCSNs71ZU8tikfLYZeKTw5IzbRpJb1IlzCyhgib/oVZfV8Ls6CvARtEU1WVdQkXnLsCmkrCdQtj0qsDLxQ1gag3m3yz+dyr+J4GkS22f1EAV7Nhj163pTZLgYUnfJ1TpLj/uorYCknQ5jbdSihI2LenrwO+BT4AzgSuBycBakn6Syox3icJZdjlwuaR1I8uZDXwKHEiYWS4P+42agiFpZ9sPFc8H2H6zOAeuKaqvx+Zkwvl5JnCGVDN0qdU/GA48XaQlQZgF/3NEPeXMrah/sB2hSnwqpDx2mcjkmdtMm0ZS77KXXQie5V62G6umGI0iRPkY28ckoOUsYEfCTMt/gb2Ax2wfGFMXNNwDMqX2GUqojyyApC1sP9saxi5VCmdZJY7tLJN0RGPrYxmRksYTrrk9gIcJqQQTixnSB2PPskh6zPaQ4vmN5RXgJY2x3Wi/9FhI6mh7YcT914xN5TilPG4pImkLYDuKFJGE0pI2I4Qk9yBo+wQ4IqWiTamOXSY+eeY206axPbVi0aWSHgOSNG5tj5E0OLaOggOBgcBY20dJWhX4U2RNQDDECj2lsXomlRBlpdlHtrxAzWa2LytfVxTniG7cSlqDMHO2HWF26jHgRNvvRRVWYHtAbA3VSG0GtIwltl+F4BiwPRHCDKmkRXGlAXUrcVdGyyRTIAlAYfpxJ0JP2X0J0SvR5DTwvNrrJCjLDz7U9tdi6yljHDCJ4n68vIhjTGyPAwYW9Q+wPTOypGokOXaZ+GTjNtOmKWZCS5SqhyYTAlmRa9gO2JxQwTMF5tpeImlR8QP3ESGXNDqSDibkoo0k3ExdLulU2/+IKixwLfBj1+0j+0cglVzNI4DLKpYdWWVZDIYDfyPM9kGo5Dwc2C2aojIkdaRugbqRwDUxZ9HKkdQX+Akh2qJLaXnEHMh2RQGzdsCS4nnJ+GkXSVM5jYWuJRHWJmlrgkG7P8FhdhxwalRRdcemcpySGDcASZ2AvQnjtydwO6FIYhJIOp5QkXgysJgibBqIXhSpslqypNSqJSc7dpn4ZOM209YpL/u/iJALeXAkLdUoN7QXEXJwb4+kpZLRknoSDLNnCflf0SuIFpxBKCbxEdTc1D8ApGDcJtlHVtJQwk3eAEl3lK3qBlRGOMSir+3yir/XSTopmpr6XA10BK4qXh9eLPt/0RTV5SbgFuBrwA8IjoyYzrIehGtHyaAtL4KUghHUU9L+BEO7p2pbKYmgPRqSziP8Vr0D3AycA4xOZJZ+7eIaorLnUFtVPyqSdiMUBduDEA5/I7CV7aOiCqvPicD6VSLMUuAvhGrJpfulwwmOxiSqJZP22GUik3NuM20aSWuXQuHKlg2wnURfT0kH2b6tqWWxkbQW0L0830bSRrFCbSU9X56vJ6kdMD52Dl+hZQThJr68j+yWtveLpwokfZFw43kBcHrZqlnAc7ajh4lKegC4jnAzD+EG9Sjbu0QTVYak8bYHNrUsFpKetb2FpOdKLTEkPWK7ap71/3VUt3VSPWIaQ5KmEIoLXgrcZXuepImx87uh4ZoHJWLn70taAvwPOLL0W5/K2JUj6WFgtxSuvZW0gmrJyY5dJj555jbT1vkHIdS3ctkWEbRU46dApSFbbVlUbL9VZfGN1B/bluIehX6yJSPoEELRqxT4LqGP7D+p7SMbfcbA9tvA28C2sbU0wneBK4DfEWb2niiWpcJiSevYfgOC84wQEpcKpfDoSZK+BnwArBFRT9IkOJNXzmrA7gQHz6XFzXxXSR0SuKF/kRBl8WL5QkkbEdJXYrMF8C3gAUkTgb8D7eNKqqUsHWkiMFLSf0ivbVyS1ZJbydhlIpON20ybRNIGhAIhPcpCzQC6U5aLFgtJexFygVaX9PuyVd0J4cmtgWiFQ2yfWnyvQwod19oe0cTbWgTb04ATijzlJalUSy4haRtC0aYvE1oVtQdmp9AeoygGkkI7p4Y4ldAOaCLhuPsiCTguyvhVkSt3MuE77g4MiyspXYob5Rm2/1yx/Higve1L4ygD24sJvbLvVujhuQ+wAvC+pAdtHxpLG+HYurrK8jUIKSMxtVFUzR0L/KQwyoYCnSTdDYywfW1MfdSmI71T/E+qbVzBD4AbiusJwDRCmkNsWsPYZSKTw5IzbRJJ3yBURvw6UJ5fOAv4u+0noggrkDQQ2IyQR1VeuXkW8HBhICVN7JYPRbXkrQgzfClVS94EuIGiWjLwMaGFwoR4qmqRNJowq3EbocDad4Av2T4jqjBqcqePBtaizPlqO5nZW0mdCb2fBbxse34Tb2kxJPW1nUpBuuSRNAHY3PaCiuWdgVGl0O6UKJxmR9v+bZMbLz8NL9iu2otd0gTbG7e0pqYoUld2A062vXtsPeVIWtH27Ng6ShRjdaDtWxOvlpzc2GXSIBu3mTaNpG1tPxlbR0MkEmK2TMQ0bqtUS/4qkES1ZElPAGdUVEs+33YS1ZIljba9ZUVe5hMp6CvG7n+EIkQ14b62kyiyJuk44Cbb04vXKwNDbV/V+DtbBkmvEYrm3QL8M1UnWVGo7jjb50XWUSd3v7nrYiPpHdtrRtz/q7bXa2DdK7bXb2lNzSX22JUjaVvgz8BKttcsnN7H2D42sjQkPWp7+6a3jEPKY5eJTw5LzrRJJJ1m+zfAoUWV2DrYPiGCrBok3Wr7YGCspHoephRnDKqwoOlNlhu5WvKyM6dokTFO0m8IfQJT0beC7Z/EFtEIR9u+svTC9jRJR1NbPTkqtteVtBVhZv4MSS8SIlX+GkOPpC8APwf6A/8itHk6l1B59eZG3tpiSFrV9uTKZbH0NJPYvWRfk7S37Tp1Dop0m4kNvCdTn0sJFZ3vALA9XlIqBuX9kk4hOMpqZkZtfxJPUh1SHrtMZLJxm2mrvFQ8jo6qomFOLB73iaqiCSStTsgrLA8RfbR43CaWLqBdRRjyVNLomwkwUdLPqVstOYnq3AWHE/Jsf0TIx/wC8M2oimq5q9pNc0K0kyQXIU+S2pNYvpftZ4BnJJ0PXAJcD0Qxbgnh+Y8Q2pvtCTwFvABsavvDSJrKuQj4j6STqW1TtAXwG+DiaKqaJnbI3TDCuXowIcoCQorDtiT+m5Yatt+V6vgqUilQV0oFOa5smUmk1z0kPXaZyGTjNtMmsX1n8ZhCT8B62J5UPD22cqZK0oVA9NmrQschhMqYpR8NE6r/xqa1VEuGRKollyiqJkOofPnLmFpKSJpFOLYE/EzSAkJkgACnUOyq4F7gVkl/IOj9AXBPXEm1FPlx+xNmbtcBRhDy0mPRy/bZxfN7JU0mRFwkkads+4ai5c45QClPdAJwlu274ykLYdFUN2IFRJ1Ztv1qUVvgUGrH7RFCWOi8eMoCki6n4bHr2cJyGuNdSV8BXETTnECtYz4qthvtVyxpN9v3t5SeKiQ7dpn45JzbTJtG0p3U/5GbQZjRvSb2D3G1vNXyXMiYSHqFMMOSxI1oJRXVkh9NoVpyMZP3a9unxtZSSSM3y0CrCYWPSlFo5RhgF8Jxdx/wp6KybXQkvUkI/701hVoDksYDO1IbRvtw+euEQhyTQ6EvdYOUOamiIWkAoSuBgZdc0VM+FpIareqbitNbUh/gMmBXaq8nJ9qeGlVYM0igoGSrHbvM8icbt5k2jaTLgL7UneH7EOgKdLd9eCRdPwSOJYT4vFG2qhvwuO3DYugqp2ibcFCCrWzaA/fa3jW2lmpIesj2zrF1VNJKbpYFfBsYYPvcImezXxFqm2mC8pDpBtZfbvv4FtTzFrCE6jmith09xLHIEz2dWiPtReDChEPjo1NECPyJEMI9jpASMpAQovy9FCvrFsXfpjd2fmSaj6SxtgfF1pHJVCOHJWfaOoMqKv7dWaoCKOmFaKpCYZW7gQsIN1YlZiU0mzGHUHToQeo2SY9ajMv2YklzJPWwPSOmlgYYK+kOQqud8kIc/2z4LcufFIzXZnAVwRjamVB46FPgSmBwTFElFHpmnk1tHnopbDq6kQZBSBObbNciQgpsr9WS+1taimJgxwCnUVufYUvg15LWcMR+qMUsfPn3qbLXtr1Oy6uq4fcEJ8C3bC+BGsfUz4ErCO3FoiHpF4TohZeLtk53E1rvLZJ0qO0HYuorURT0+xUhReQegoPgpFgF4JaSqE6CVj52meVMNm4zbZ2+kta0/Q6ApDWBPsW6aNV+C6NsBqG5PJJWAboAK0laqaQ3MndQt0dwSswDnpd0P3UNyKiGd0EvQoGr8tlbU5uDG5Wy/FYIxZA6ArMTyWvd2vbmksZCTTXilAo2/ZlQTKdOq6JM85G0DiEneKjj90MdBgypcCg+VMzmPgZEM24JRnY57YCDgVOAsS0vpw7b2T6yfEHhWDmnaEcVm0MIzjGAIwiOgb7AeoQCa0kYt8Dutk+TtD/wHnAQIXQ/G2hNk8cu0yDZuM20dU4GHpP0BuEHbgBwbNGaJXrejaR9CRVN+wMfEWaEXiKEyEUllbykBvhP8T85bCdTPKoatruVv5a0H3GLDpWzsAg7L1Uj7kuYyU2FGbELDbVGJPUjGByHApsSIlbqtWiLgKpFytieWlGFtcUp5Q4Wed6HA6cSQoC/ZvvFmNqI34qoKRaURTHsQWiHtRh4SVJK970di8e9gZttfxL7uIOaY24b2080stlbLSSnIZIcu0wapHSSZzKfO7b/K2ldYAPCD/LLZUWkLo2nrIZfAdsAD9geJGkn0rjpoxi3C4ANCbPKAKQQgtmU4S3pdtst2t6mkQqdQDKzyvWw/S9Jpze9ZYvwe0KF31UknQccCJwZV1IdHpZ0EWEWvjxUf0zDb0mKFr37K8J+hwJrALcC/w/4t+0kqnQDMyUNtD2+fKGkgcCsSJpKGjoSKq8PI8wif8P2G42/q8V4vAj9Pbc8FL5ogfZUPFk1zJe0MTAZ2Ikw211ihTiSqnKnpJcJobXHFs686NWmbS+R9FtCa6eGtjmgBSVVI8mxy6RBLiiVafMU5eLXom6v1huiCSpD0mjbWxZVRQcVPyrP2I4+kybpMeAs4HfAvoR2NrJ9VlRhzSBGsYuyCp3bERwCtxSvDwKetT2sJfU0RFFlukQ7QvjjDrYbvJFpSSRtQG014gdtJ9PeQdLDVRY7tQJikla0PbvK8iNtX9eCOhYATwIn2x5dLJuYgoMMQNIQ4CZgOCHU3IT87iOAw2w/FlHbe8AighO2XppKzBz+oqDUn4HNCbPJBgYRwqW/F7sWgqRtgOsIociX2j63WL43cLjtJBzIUFPoamZRS2IFQqHL6D2gJf0SeA74Z6pFuFIdu0x8snGbadNIupHQ73EcZb1aU5lFk/QAsB9hhrQPITR5sO2vRBUGSHrW9haSnre9SbHsf7a/GltbU8RsU1AYQLvbXli87gjcZ3unGHoqkTS87OUiQnjZH21/FEdRLUU+5nu250vakRDCeoPt6XGVtQ4KR96fgJVsr1nMQB5j+9hIevoQnDtDCb1ZbwWOtP2FGHqqIWlV4DhCKoiAF4ArY98kS7qOhiNBbPu7LSinKsX5uiHFuCU0s9wqkFS18FYKzveiNsOKhPumuSTWczzlscvEJxu3mTaNpJeADRP2PK5ICKUptUDpAdzkBHq1SXoc+CrwD+Ah4H1CD9f1owprBpGN21eAbUu5fIV3+anWMG6xkTSOMJO8FqEC5p3A+rb3jqzrMNt/lfTjauttX9LSmqoh6WlCKPcdpcgFSRMSKNyEpDUoCkkRQkNH2P5ZXFWZtkhD52mJhM7Xy8tediFErIyxfWAkSa2GPHaZxsg5t5m2zgRgNWBSbCHVqAgdTK2A00mEm9ATCJUndyaE67UGYlaW+DWhHVAphHUHQvuYJJC0NnAZIdfbhLDRYbYnRhUWWGJ7URE6fZnty0uVkyOzYvHYrdGtEsD2uxWFVZKo6mz7PeBi4GJJ6xMKTGUaoLUYaImS/HkK4Iqe05J6ADdGklOHorVTsj3HUx67THyycZtp6/QBXpT0DHULwHw9nqR67VjqrCKR0B/bo4qnnxLybVsTP4m1Y9vDJd0NbF0sOj12iGMFfyP0jt2/eP0t4GZq9cZkoaShhD6Z+xbLOjayfYtg+5risdFCSJJ+avuCllFVlXeL0GQXLZROIFRfj4Kk02z/pnh+kO3bAGy/IqlL4+/+P0+rMNBSpLkFyxI4XyuZA6wbW0RB0j3Hq5DS2GUik8OSM20aSTtUW277kZbW0lqQdKntkyTdSRUDPKZjQNLzNO4U2LSFJdUXUuvxXtv2OQq9lVdLxeMt6WnbW1cse8r2NrE0lenYEPgB8KTtmyUNAA6x/evI0ppFzHD4Yv99CLPyuxLOifuAE2OlOZSPR+XYxB6rtkJKBpqknsBxts+LraU5xD4GK35j2wOMfvJAAAAgAElEQVRfBm61Hb16fWlsyoszShpve2BsbZD22GXik2duM20a248UBUNK3sZnUiickzil0J6Lo6qozj6xBTSDco/3OYSWIreTjsf74aL1z98JNweHAP+R1AvAVfp+thQO/TtPKHv9JiHMu7UQtdGi7Y8JjpVUUAPPq71ucRpy4JWIHeHTTA4iFCRsMYoQ1Z8T+rP/ixANci6hH+/NLanlMxL7GCz/jV0EvF2E76dA6j3HUx67TGSycZtp00g6GLgIGEn4Ibtc0qm2/xFVWMLYfrZ4TG522/bbsTU0g61LHm8A29OKENFUKOU6HlOx/LuEG5lobVokvUn1aIEkWsc0g6ihUJJ+Q+idPZdQkGsgcJLtv0aS5AaeV3sdg9INsoA/EvrwtjZiGGg3AI8QnHZ7EnrbvgBsmlgKRlNEPQarON9fi6mnglLP8VWVYM/xxMcuE5ls3GbaOmcQWut8BDXexwcIFYAzVWgk9BeAREJ/twEuJ4QidSKEJc1OIVeZxD3etgfE1tAIW5Y970KYleoVScuyEHsmaHfbp0naH3iPMH4PA7GM24GSZhLGpWvxnOJ19JzbcgeepE9TdOg1gxgGWi/bZxfP75U0mfA7O7+R96RI1PM1Zee77ZskPUuoQgywn9PqOZ7s2GXik43bTFunXUUY8lSgXSwxrYRS6O9xxWMpTPnbhKINKXAFoRDSbQSD6DvAl6IqqiVpj3fRd/eHwPbFopHANaW+vDGpkht6qaTHgF/E0LMM3BZ5/6XiW3sDN9v+pKJycotiu320nS89KcwkLwtRvuCixVlp3x8CKxSt7aKmNpQjqVcTWmKfr6k731cgOI4NdI2spZLUxy4TkWzcZto690i6l9o8oEOA/0bUkzyl0F9J29nermzV6UXv23PiKKuL7dcltbe9GBgu6YnYmiB9jzdwNcEIuqp4fXixLHpIpqTy4i7tCI6LZKrGFjdQRxP68Nb8ftr+bvF4fhxlNdwp6WVCWPKxhd55kTUlSynPvKB9hcGWhJGWqIHWA3iWuob1mOIxampDBU8XvbOHA3dX9rtP4HxN1vku6ReEyI/bCd/zcEm32f5VXGU1JDt2mfjkasmZNo+kbwLbES7Qj9oeEVlSq6C4KfiR7ceK118BrrK9WVxlIOlRQkXYPxFmDSYBRyZUyXFzYAjhRu9x22OaeEuLUa3iZSpVMMt6A0MoEvIWcLHtV+IoqkvhQPkf4ca+pn+s7dujiaqgMNBm2l4saQWge6w8yLKWZ+VGkAmOgU62ozrYy3K8q81+OoVcb0mvAQ0aaJmGKSrX70qoJ7AVcAtwne1XoworkHQRsCl1ne/P2Y7Wyq6EpJeAQbbnFa+7AmNsfzmuskDKY5eJTzZuM5lMVSRtAfyF4KU3MAP4bgqGmqQvApMJ+bbDCBqvtP1GVGFU9XjvByTj8ZY0BjioNFaS1gb+kduyNI2kcSk4dxpC0neqLbd9Q0trqYakbsCxhGJmI2yfHFlS8qRuoJWQtA4hVWSo7Y1j66lE0k6E3PMVgfGE/uNPxlWVrvO96NU+1Pb04nVP4K+2k+lYkOrYZeKTjdtMm6RsxqDeKoJHPoXCQ60CSd0J14oZsbWUkHSi7cuaWhaDVuDx3oUwCzSxWLQWcJTthxt8UwshqQdwFrX5wI8A56Ry7En6FfCE7SRTGyRdXvayCyE0foztAyNJAmpujE8i5Mb/DfhdrN67zUXSBrZfjq2jnNQMNEn9CDNmhxJm0S4A/mn7+ViaypHUGziMkHoxGfgzcAewGcHhmHJxvahI+hehEvH9hHup3YDHgI8AbJ/Q8Lszmbhk4zaTyVSlKLN/PtDf9l6SNgS2tf3nyNJqGsxXLKtpNh+T1D3ekroAJ1ObE3w/wdiInpsp6XZgAnB9sehwYKDtA+KpqqVwmq0IzAcWkrizrHAW3BirX6ukPoRj7RBCFMjlqTgqmkLSO7bXTEBHcgaapKOBocAawK3F/3+nZixKepVQEHF4ZQ9UST+xfWEcZTUaDgAuBFYhXEuSuZ5IOqKx9bavb2z98iblscvEJxu3mUymKoWRNhw4w/ZASR2AsbY3iahpKGGWYAgh97FEd2CR7V2jCKNm1szAmlTxeNv+Vixt5Ui6FZgJ3FQsGgqsbPugeKoC1cJ+Uw8FTpmiMvZzsaIGJM0GphCuI7Mq19u+pMVFlSHp9w2tAo5I4UY5RQNN0gLgSeBk26OLZRNTyFEuR9LBtm+tWHaQ7dhVkgGQ9Dqwb2IFB5uFpNttfzPi/lvt2GWWP7laciaTaYg+tm+V9FMA24skLW7qTcuZJwjFo/oAvy1bPgt4LoqiWkYXj88SWgGVGNnyUhpl/YriUQ9LGh9NTV3mShpSVsRsO0Ll32QoCjatS1mfVtuPxlNUi6Q7qU3HaE/oA31rw+9Y7lxErZ5kql6XcRRhZrlaf9ahLaylIc5syECLOPPYn1BX4JIiwudWattQpcTp1D/+f0r8FkAlJrdi4yy2I6M1j11mOZON20wm0xCzi5A4A0jahlBUKhpFm6K3gW2Lm6rBxaqXbC+Kp6z5YVqxPd7AWEnb2H6q0LM18HhEPeX8ELi+CKcFmAY0Gh7Xkkj6f8CJhHDMccA2hBmsnWPqKuPisueLgLcrZ/taEttnN2c7ST+1fcFyllONUcAE2/XaiEk6u+XlVCU5A832x4T2YVdLWoNQSOqjot7ACNs/i6UNQNJehF7Pq1fMzncnnBdRKUJqAUZLugX4F2UOFtv/jCJs6YgS9tlGxi6znMlhyZlMpipFO5vLgY0JeZB9gQNtx54hRdJBhBv5kYQQwq8Cp9pOvoF77Nzg4gZ0feCdYtGawEvAEkLO0qYRtXUGDgTWAXoSnCm2nURvZUnPExwqT9neTNIGwC9tHxJZWg0VTp9nXLcXZJJUy6Fvof32AubZntPS+26KMgPtYEKF5BLdgQ1tbxVFWCNIWh84JPb5KmkgISf5HOAXZatmAQ/bnhZFWIGk4Y2stou+2SkT8Zxt9WOXWf7kmdtMJlMV22Mk7UAwhAS8YnthZFklzgQGl27cJfUFHgCSN26J5PEuY8/I+2+MfwPTgTHA+5G1VGOe7XmSkNTZ9svFDX0SSDqYEAo8knDOXi6pNTh9qvWZXe7Y/iTGfpvJB4RUh68TUh1KzCK0P4uGpNNs/6Z4XpPDavuVomBdVGyPB8ZLuil2RE81bB/VnO0iRjQ0h1jnbFsYu8xyJs/cZjKZqkhqD3yN0CqmxhEWuwgMhBm08sJWktoB42MWu2ousTzerQFJE5xgj8wSkkYQ8jRPIoQiTwM62t47qrCCInd6t0qnT0WOdXLEPCeKHOrLbH+nbNlJhEJcD8XQVI6kDqkZaOXfV+V3l8L1TdKttg8uIi3q3eTGjE5ZGlIYy0LHysAXyqO2JO1u+76IshollbHLxCHP3GYymYa4E5gHPE8IWU2JuyXdC9xcvD4ESLL3aBWieLxbCU9I2sSJ9MmsxPb+xdOzJT0M9ADuiSipknYVYchTgXaxxCwF0c4J29MkrSFpkO2xhVPvR4Sw1miUDDRCjnxqBpoaeF7tdQxOLB6TaL/2GYg2lpJGEqIGOhDqC0yR9IjtHwOkbNgWpHAcZiKRjdtMJtMQayTs4TZwDaElkIBrCcV9WgM/iS0gNcpmWDoAR0maSCgSUupdGPU4lNTd9swiR7NEyQBfCUglvPWeFJ0+kno1EQIcu3rtnwgz8mOBvQituz6NKylpA80NPK/2usWxPal4fBvC+UvrvN+NOZY9imve/yO0oTpLUvR6G0tB9OMwE48clpzJZKoi6ULgwRQ9tNVCjiQ9F7kYUtUQOBIx0FJG0hcbW1+6SY2FpLts7yPpTcJ3XD4r4JT6e0r6JrAdQeOjtkc08ZbljqTXCLM/w4G7ndiNR1HI7HlgI4Jj4NJSO6pUqDTQYuYLFy3hZhOOsa5AqSCXgC62k2gLJOkYQlGpudRem5M6XxsjZvHB4vdsd+B6Qq/7UbF/Y5eG2IUbM3FpjZ6sTCbTMjwFjCjyWRdSa6R1jyVI0g+BY4G1K7zI3YjfzibFGZZWQWzjtSls71M8DoitpSls3w7cHltHBesBuwLfJRS5ugW4zvarcWUFbM+XdA/wfWC9lAzbhgw0IvYZtd0+1r6XklOAjYrWRUlRhL+fYPt3jWwWM6LhHOBeQhTDKElrA69F1FNDKxi7TGTyzG0mk6lKERq6H/B8KjMtRf/TlYELCP0fS8xKvPJpphVTtMVqENtjWkpLYxQ9IC8EViE4o6I7pCqRtBPwV2BFYDxwuu0n46oCSZsCTwO/sH1RbD0lilnvbVM00FKncFgckGKrJwh5rbZ3jK2jNZLHLtMY2bjNZDJVKXL39rKdWjGppJG0DaE/8JeBTkB7YHZKBkZm6SiKRwF0AbYkGGUCNgWetj0klrZyJL0O7Gv7pdhaypHUGzgMOByYDPwZuINQtOm2VGbEJQ0DbkzJkEzRQJM0iyrh+YRowE62k4gKlDSIEAr/NCGHHwDbJ0QTVYak8whF6W4hhHkDaTjLJA0Ajqd+t4Svx9JUTspjl4lPEhegTCaTJJOAkZLupu6NQfRWQIlzBfAtQljUlsB3gC9FVZT5TNjeCUDS34Hvl6o5S9qYEPqYCpNTM2wLngRuBPaz/V7Z8tGS/hBJUz0aCnOM3DPzp4Qq4skYaLa7lb+W1I2QLnIMED3Hu4xrgIdIs+I/wFeKx3PKlpnQZiw2/yI4oe4kj12mlZFnbjOZTFUknVVtue1ftrSW1oSk0ba3LC++IekJ219p6r2ZtJE0zvZmTS1raYpwZIAdgNUIN6blhtA/Y+gqIelg27dWLDvIdqvIi4vch/cZ4DEqDDTb18fQU46knoSez98B/gb8zvbUuKpqydfdZUfS07a3jq0jk1kWsnGbyWSWCUmX2z4+to7UkPQooXjOn4APCTPgR9oeGFVY5jMj6WZCCNxfCbMEhwEr2R4aWdfwRlbb9ndbTEwVGqhuHs1gXFoiV61NzkCT1Ac4mdBq6i/A5bZnxFVVnyJ09W3C7GO5syeJ+gySVgXOB/rb3kvShoT86j9HloakQ4F1gfuoO3ZJhP2mPHaZ+GTjNpPJLBOt6ea0JSna2kwm5NsOI+QFXWn7jajCMp8ZSV2AHwLbF4seBa62PS+equbT0uG1kvYC9gYOJuTGlegObGh7q5bS8lmIPHObnIEmaTYwhZDPOqtyfSqpK0XrrkqSaQVUpPwMJ7TaGSipAzDW9iaRpSHpAkKO/BvURgzYdhJhvymPXSY+Oec2k8lkPl/2s30ZMA/4JYCkE4HLoqrKfGZszytyRP9r+5XYepaBgwiVxluKD4DRwNeBZ8uWzyI4floLanqT5cahxeNPy5ZFbQUEXERtW6JujW0Yk1QKlTVCH9u3SvopgO1FRQ/hFNgfWNv2gthCGiDlsctEJhu3mUwm8/lyBPUN2SOrLMu0MiR9nXBj3wkYIGkz4JxUKog2gxY10myPB8ZLusn2opbc99IgqVcTM6HRcoNTNNBsn92c7WIV4pK0s+2HynLR6xA7B72M2UUlcUNNpf1UwrvHAz2Bj2ILaYCUxy4TmWzcZjKZZSXmbEZySBpKmGUZIOmOslXdgWSKrGQ+E2cBWwEjAWyPk7RWRD1LS4vmIUm61fbBwFhJ9fZdKriWAE9LGkcIc7y7sq+37fNbWlArMtAao6UjBUrsQKiSvG+VdQZSGbsfE1pirSPpcaAvcGBcSTWsCrwsaRR1w+FTceSlPHaZyGTjNpPJLCt5JrIuTxCKR/UBflu2fBbwXBRFmc+bRbZnSK3Wr9PSwk8sHvdp4f0uLesRisB9F7hc0i3AdbZfjaiptRhojRHlRLF9VvF4VIz9NxfbYyTtAKxPGKtX7P/f3r1H2VnVaR7/PonQKHJTtMfGwQvD4IASaC4GOiIXbWyXKIqgNCAD3YoXTGyUaS+tIDStqAhMXCrdCzBcxEZsHBkdRSEIIUAPEEIgtuOIjWDrzGAjIggt4Zk/9ntyTlVOpRJN1d4n9XzWqlV5d1Wt+q2Tqjrn9+69n+3fVC6rZ+hpCa1o/LGLyhIoFRFDSbqKNWd6HqLsoTtvVEJ0auiSHPfqLv/RdqtLu2I9SDofuAZ4P3AYMB/YxPbbqxa2jiR9sMYs5MD335KBm+qtpNYOknQAJQ17c8rSzPfbvqluVaOpduigpIuBE3tJzl3Y3wW2D6pV06AuoO6dwDzKc+0NwOdbeW5t+Xms9ccu6kpzGxFDSTqXstTnsm7oTZSjbZ4KbGn7mFq1tUzS4cCnKEtXBbwMONn2FTXrit+dpKcBHwL+uBv6FnC67ccn/qrpI+lZwFuB5zO2iax9FNAJwGnAr+nfMGsptfaZlGOdjqEknZ9PWfK4G/DlmvteW2/Q1qbmEUrd9z+BElx2ErAdcDLwXttX1appkKTLKSt7LumGjgS2sX14vaoKSUdQ8gWuo8HnsZYfu6gvy5IjYiK7295v4PoqSdfb3k/S3dWqat9fAXv17nJ3Dcd3gCZeFMTvZOfu7Snd2+soScCt7B39b5QZjO8ALSWHvg/YxfYDtQuZwE3AxZSk8/sHxm/t0rFrWkLZEzymQatbUtFyEBeA7fO656rFwAOU57Sf1axpnJ3GnX++WNLyatWM9SHafh5r+bGLytLcRsREniVpe9s/BpC0PWU/KUCrxwO0YNa45Vs/B2bVKiY2qEspjdpd9M9+bMnTbP9l7SKG+CHwaO0i1uKvbF8+OCDpcNtftn1mraKg+QatuSCuQZKOAT4MvIVyA+obko7rUrxbsEzSXNs3A0h6KXBj5Zp6Wn8ea/mxi8qyLDkihpL0auDzlBemAl5A2eNyHfBW2+fUq65dkj4BzGHscu47G206Yj1IWmJ7Xu06JiLpr4Gltr9Ru5ZBknanNEC3MDZ5dX61ogYM2xtae7/oQB29Bu0USoN2MNBEg6aSrNYL4tobaCGIazVJXwXeNjD7uDclL6LaUulBkr5HCUT6cTe0PfA9yo0z10wTl/RJys9bk89jLT92UV+a24iYkKTfA15EaW7/KWENk5N0JuVF/DzK43Y9MLeVFwXx25N0EGVv1zWMbdKaSK6V9DAlCOlx4DeUnz/b3rJyXf9IWV67goEZb9uLqhUFSPoT4NXAEZTGrGdLYGfbe1cpbEDrDVrPqARxSdrUdhMrj7r902vzS9sPTksxQ3THUK1+HrN9Za1axmv9sYu60txGxIQk7cua4TQXVStoBEwwC3Rn7iSPPkmXUG723E2/SXPtwKbWSVpqe9/adYwnaQ4lNOo04CMDH3oYWNzqi+NWGrSWg7gAJD0XWEhp0J6k3GBZMG5fdbNqrx7o0pL3poTANZWWPJnaj13UlT23ETFUl9K5A3AH/XAaA2luh5D0Dsqy7RdKGjzXdguyF2hjMcf2S2oXsTaStgF2BDbrjdm+vl5FQAl7eRtwFWNnvKseBdQt7V0u6VLbT9SsZSITNWhACw1ay0FcUJbCfxHoJege3Y29slpF66fagdpD0pIXSmomLXkdjOxh5PG7y8xtRAzV7WnZeXxISAwnaStgG+BjlHNQex6u/SI+NgxJfwecbXtl7VqGkfTnlMbnuZSbUnOBm2wfWLmuHw0Zrn4UkKTLbR8haQVrnulNC6stJH2b0qBd3A0dDRxlu3qDJumIiYK4atU0SNIdtnebbKxVNWcfu+ThV45PSx6XUNyszNzObJm5jYiJ3AX8O+CntQsZBd05lA9R9mTGxmkecGzXrD1Of09r9SaoswDYC7jZ9gGSXgR8tHJN1F6euhYLuvevqVrF2j3L9oUD11+Q9J5q1Yz1fuDycWMfoPIRQAMekHQ0/VCkIympvzG51tOSIyaU5jYiJrItsLILgxlcSvjaeiVFVPWq2gVM4jHbj0lC0u/Z/idJO9UqRtKBtq/tgmnWUDuIy/ZPu/f3AkjakvZeFzXXoA0EcW0n6b8OfGhLoKXl3ccDnwHOpszML+3GRkXNpbXflPQtxqYlN5XCPoksS57BWvsjHhHtOLV2AREt6TVBDbtf0tbAV4FvS3oQ+JeK9bwcuBY4ZMjHDLSSMn0CJVTq1/SXJxuoumy602KD9i/ArcBrgdsGxh8G/qJKReNImg0c1vLNWEk7APfbflzS/pSjdy6y/YvuUw6qVZvtk8elJf9tS2nJsPr/+PcZG3jZOxqo2mMX9WXPbURExEZG0suBrYBvtpCs2zJJPwD2sf1A7VoGdS/e59s+u3Ytw0h6SqtBXACSrrO9f+06JiLpDmBPyokE36IkTe9k+9WV65oNfMv2K2rWsTaS3k05+/n/MDa5vpUtIlFRZm4jYgxJS2zP687MHLz71cSZmRExlqQtbf9S0jMGhld0758OVA0065LXT+z2pffOqLzAdiuzKz8EHq1dxHi2V0l6HWXWthm9IC5gmaQmg7g6N0r6DOUM40d6g7Zvr1fSGE/afkLS64FzbC+UtKx2Ud3P3aOStur9zjZoAeVGQPZQxxrS3EbEGLbnde+3qF1LRKyTL1JCkW6j3JAa3G/WwvLaJcAtkk4CtgNOBt5bt6QxPgAslXQLY/MF5tcrabUWG7RRCOIC6J2tfNrAmIGq6eEDfiPpSOBY+kv3N6lYz6DHgBVdWvfgz10LvxMA91ECHCPWkGXJETHUOuwHiohYJ5LmAYuBB4Ddbf+sckmrdaF5Syiz3b0ljtheVK2ojqTFQ4Zd+3inQeODuHL02bqRtDPwdspxXZdJegHwJtsfr1wako4dNt7C7wSApPOBnYCvM/aG1KerFRXNSHMbEUO1uh8oIsaStNbzHGsvw5R0DPBhyh65XYGDgeNsL69ZV4+kpbb3nfwzY9BEQVy1zy/ukfRMys/cPEp9S4DTspR19Ek6Zdi47epHn0V9aW4jYqjeIeiSTqYcMbJQ0jLbu9euLSL6Bmb3NqPckFpOWZq8K3BLb6tBLZK+Crytd26mpL2B81r5WyLpDOBe4CrGzgJVn4FsuUFrNYirp1tSez1wSTd0FLB/K0FJkl4DnA48jzLzXT3XQtIKxmZtjNHQfmoAJG1Becx+VbuWaEea24gYqtt/dg7wIeAQ2z+SdJftF1cuLSKGkPQl4AzbK7rrFwPvs/2fqxY2hKRNW0lxlvSjIcNNzEC23KBJ+ibwBtvNhXEBSLrN9h7jxm61vWetmgZJ+t/AG4AVbuTFeBf2BvCu7v3F3fujgEdtn7bmV02/7m/bxUAvRO8B4C22765XVbQizW1EDNXyfqCIWJOkO2zvNtnYdJP0XGAhZfbxScrs4wLb99esaxS03KBJ2h24EGgxiAtJn6Kcx3t5N/RGYBfbQ5e0TrduxcVBtp+c9JOnmaQbbf/RZGO1SFoKfMj24u56f+Bvsr0gIM1tRETERkHSZZRk00soSwuPBp5u+8jKdX2bkujcmwU6GjjK9ivrVQWSDrR9raQ3DPu47X+Y7prGa7lBazmIC6A7zm5zYFU3NJt+8m/1Y+0k7UVZlvxdGgtF6jI3TrS9pLveF/hs7RtlPZKW254z2VjMTGluI2KobqnesDMMqy/Vi4g1SdoMeAewXzd0PfA524/Vq6rpGeWP2j5F0oVDPmzbx097UeO03KCNehCXpF1qLmOVdDXwK9a8OVA9FEnSHsAFwFaU1wEPAcfXDqfrkXQlcDtjb5jtafvQelVFK9LcRsRQXZBJz2bA4cAzbH+kUkkRMQlJTwW2t/392rX0SPoO8AXgsm7oSEpa8kHVitpI1GzQWg7iWhe90MSK37+J5eVr0x3zJNtNnSkraRvgo5StDqLcyDvV9oNVC4smpLmNiHUmaUnt5NWIGE7Sa4FPApvafoGk3SjJuq+tXNf2wGeAfSizQEspe27vrVlXj6SLKUswH+qunwdcMArNd80GreUgrnVRO/1f0seBa21fXauGiUj6feBvgD+w/SddBsc+ts+vXFrEpJ4y+adExEw07uzMWZQjRraoVE5ETO4UYG/gOgDbd0h6fsV6kDQbOKx2gz2JJcAtkk4CtgNOBt5bt6R1plrf2PYLan3vDaT27M67gP8i6d+A33Rj1fcCd75ACQv7UHf9v4C/B6o2t5LOsf0eSVcxfNtUy39nYpqkuY2IiZw18O8ngH8GjqhTSkSsgydsPyRV63fWYHuVpNcBZ9euZSK2z5N0N7CYcqTI7rZ/VrmsdTXtDdooBHGNAtst3yze1vblkj4AYPsJSasm+6Jp0Ntj+6mqVUTT0txGxFC2D6hdQ0Ssl7sk/SkwW9KOwHzKEuDabpT0GcrMTy8MiYbCaY4BPgy8BdgV+Iak42wvr1tZs14OXAscMuRjBkalua1+znK3laAXAHed7f9es54Bj3S5GwaQNJcSKlWV7du6f+5m+9zBj0laQEmejhkue24jYihJW1GWOfaeeL9L2b9X/QkuItYk6WmUZYR/3A19Czjd9uMTf9XU687zHM+2D5z2YoaQ9FXgbbb/b3e9N3Bezf2Y60rSzbbn1q6jVZK2A57HwGSO7evrVdTX7bndC7i0GzoSuM32++tVVXTbkhYCuwB3A88C3mj7zqqFdYbtNa+9hzrakeY2IoaS9BXgLqB3ZuExwBzbQ5eiRURdkvakNLfPp/9i3rZ3rVbUiJK0qe3qM3vQboPWehCXpDOBNwEr6R+l5Fb2ZUq6kzID+WR3PRtY1sLva3es2InAwcDDwE3AwgaOFTsS+FNKSvINAx/aAlhl+xVVCoumZFlyRExkB9uHDVx/tDvYPSLadCnwPspNqScn+dxp0y1vPIXygtSUAKfTbP+8amEdSc+lzFLNozxuS4AFwP0164KJGzTK0Se1tR7EdSiwU+2VC5PYGugdnbRVzULGuQj4JSUxGcqs8sWUIwFrWgr8FNiWsbkgDwNNzCpHfWluI2Iiv5Y0z/YSAEl/BPy6ck0RMbH/Z/uq2kUM8SVKM9a7WXYUZf9tK7MsFwJfpM9Tx+wAAA0cSURBVP/C/ehu7JXVKuprtkEbgSCue4BNGDiDtzEfA5Z1y/ZF2QL0gbolrbaT7TkD14slVd+D3h0fdi/lWLGIobIsOSKG6s7IXET/bvKDwLGt7LmJiLEkHUSZYbmGgRf0tdNrJd1me49xY7fa3rNWTYMk3WF7t8nGapD0P4DDbf+qdi3jDQRxnUIJ4joYaCaIq9taM4c1fx/mVytqHEnPoey7FXBLKzcHJH0B+Lztm7vrl1Ke/99ZtbBOF3C1EPhPwKbAbOCRRo5RisoycxsRE/ke8AlgB8rSqYcoswhpbiPadBzwIspsVW9ZcgvptYslvRm4vLt+I/D1ivWM94Cko4HLuusjgSaWTAOPAndIarFBOwyY1wVxXSbpSsr5qK2E+nyte2vZXvRDG58Eqq68kLSC8jdjE+Atkn7cXT+PsjS+FZ8B3gx8GdiTknT+H6pWFM3IzG1EDCXpm8AvgNvp7/XC9lkTflFEVCNphe2X1K5jPEkPA5vT/zsym/6RQK492yJpe8qL5X0oL+SXAgu6JZBVSTp22LjtRcPGa2spiKt1E6Ql32q72tLkLhRsQi38TkB/5YekO3sBXJKW2t63dm1RX2ZuI2Iiz7X9qtpFRMQ6u1nSzrZbmmHB9hZr+7ikXWzfPV31jPves4HDWknQHa/VJhbaDuIC6M56/hiwM7BZb9z2C6sVNdarGZuWvAhYRsV9t600r+vgUUmbUlY1fIISMrV55ZqiEbNqFxARzVoqqblZoIiY0DzKi73vS7pT0oruuJHWXVzrG9teBbyu1vefjKQdJV0haaWke3pvtevqXEhZ9vscSlryVd1YKy4EPgc8ARxASQCu9rM2ga0H/t1SWnLrjqGsADmRsgrk39MPrIsZLsuSI2KMgT03TwF2pCROPk4JvMiZmRGNmmhJYeuzMZKW2a62T1PSGZTG4u/pL5fG9u21auqRtIQS2HQ2cAhlX7Vsn1K1MNoO4oJ+kNngcn1JN9h+WQO1idKgnU5Jm16dlmz7SzVrixh1WZYcEeO9pnYBEbH+Wm9i16L2XfbePr3TBsYMHFihlvGeavsaSer+f0+VdAOl4a2t5SAugMckzQJ+IOlE4CfAsyvXBJS7xJIWAHPppyX/ZStpya0auPk+VG6+B6S5jYhxRvgFckTEerN9QO0a1qLZBg04nhLEdTb9IK7jq1Y01nuApwHzKTOkBwBDA7oquZmSbdF6onNLcvM9JpVlyREREVGNpJttz634/Z9JmQmdR2nSlgCn2a4+CylpL8qxbFtTGrQtgU/2zh+tWNdsYL7ts2vWsS4kbW77kck/c3pJWgn8R+BeynL4bP2J2ADS3EZERMSUkrQd5azM1SvGbF9fr6I+Sd8Grgcu6YaOAva3/Yp6VY3VYoMm6Trb+9euYyKS9gHOB55ue3tJc4ATbL+zcmnA6O6Rb0F3vFivgdmUci7vI7WPFYs2pLmNiIiIKSPpTOBNwEr6Z926leN3esFD48Zutb1nrZoG6mi2QWs5iAtA0i3AG4Gv9QLLJN1l+8V1K4sNTdKhwN62P1i7lqgve24jIiJiKh0K7GT78dqFTGCxpDcDl3fXbwS+XrGeQecAB1OO3MH2ckn71S1ptZaDuACwfV8JJl5t1USfG6PL9lclvb92HdGGNLcRERExle6hLBtstbk9ATiJ/hmos4FHJJ1EmWGuutSx1Qat8SAugPsk7QtY0qaUYKnvVa4pNgBJbxi4nAXsSf3U9WhEmtuIiIiYSo8Cd0i6hoEG1/b8eiX12d5ibR+XtIvtu6ernnGabdBaDuLqvB04F9gOuB+4GnhX1YpiQzlk4N9PAP8MvK5OKdGa7LmNiIiIKSNp6PErthdNdy2/DUm32/7DSt97W0qD9gpKmu7VwIIWGshRCOKKiJknzW1ERETEBCQt6wUSRV/LQVwAkhZRbgT8orveBjjLdktn8cZvQdILKTd95lJWDdwE/IXte6oWFk2YVbuAiIiI2HhJ2lHSFZJWSrqn91a7rvVQbRZA0iJJWw9cbyPpglr1jLNY0pslzerejqCdIC6AXXuNLYDtB4HcpNg4fJESAPcc4A+ALwOXVa0ompHmNiIiIqbShcDnKHvjDgAuoh/eFGvXcoN2AqXJeLx7+xJwkqSHJf2yamXFrG62FgBJzyBZMxsL2b7Y9hPd2yUkUCo6+SWPiIiIqfRU29dIku17gVMl3UAJIxoF/1bxe8+StE3X1DbVoDUexAVwFnCTpC9314cDZ1SsJzacxd3RP1+iNLVvAr7e/X5g+19rFhd1Zc9tRERETBlJNwIvA64ArgV+Anzc9k5VCxsgaTvgeQw0jravr1dRIektwAcpyy6ha9BsNz/zXTOIa6CGfSnHxDwJ3Gb7ppr1xIYh6Udr+bBtv3DaionmpLmNiIiIKSNpL8rxNVsDpwNbAp+0fXPVwjqSzqTM/Kykf4asbb+2XlV9o9qg1Q7ikrQA+HPgHyhJ04cCf2d7Ya2aImLqpbmNiIiIKSdpc9uP1K5jPEnfp+xtfXzST55mo9yg1Z65lXQnsE/vZ07S5sBNtnetVVNsGJI2Ad4B7NcNXQecZ/s31YqKZiRQKiIiIqaMpH0kraTM3iJpjqTPVi5r0D3AJrWLmMCfAXNtn2L7I8A+wFsr1zQqRH8mnu7fqlRLbFifA/YAPtu97dGNRbQRShAREREbrXOAg4GvAdheLmm/tX/JtHoUuEPSNZTUXwBsz69X0mqj3KDVDOKCktJ9i6Qru+tDgfMr1hMbzl625wxcXytpebVqoilpbiMiImJK2b5PGtOTrZrocyv4WvfWoqYbtLUFcdmeW6uu7vt/WtJ1wDzKDYHjbC+rWVNsMKsk7WD7hwCSXkhbf1OiojS3ERERMZXu60KRLGlTYD7dEuUW2F5Uu4aJtNygTRTEBVRPme6xfTtwe+06YoM7mXIc0D3d9fOB4+qVEy1JoFRERERMGUnbAucCr6A0aFcDC2z/vGphHUk7Ah8DdgY2643nOJG1azmIKzZukjYD3gsc1A19Gzjb9mP1qopWZOY2IiIipoztB4CjatexFhcCpwBnAwdQZoBGZV9rTb0grjS3Md0uAn5JOVoM4EjgYso50DHDZeY2IiIipoykRZSZ2l9019sAZ9k+vm5lhaTbbO8haYXtl3RjN9h+We3aWibpK8AcoMUgrtiISVo+LlBq6FjMTJm5jYiIiKm0a6+xBbD9oKTdaxY0zmOSZgE/kHQi8BPg2ZVrGgUtB3HFxm2ZpLm2bwaQ9FLgxso1RSMycxsRERFTpjuiY3/bD3bXzwC+25slrU3SXpSAq60pyxy3BD7Ze+EcEW2R9D1gJ+DH3dD2lN/hJwHb3rVWbVFfZm4jIiJiKp0FLJV0RXd9OHBGxXrGsP0/ASTZdhJX11GCuKKiV9UuINqVmduIiIiYUpJ2Bg7sLq+1vbJmPYMk7UM5O/bptreXNAc4wfY7K5fWNElL6AdxHUIXxGX7lKqFRcSMNqt2AREREbHR24R+AvEmNQsZ4hzgYODnALaXA/tVrWg0PNX2NZSG9l7bp9K/gRERUUWa24iIiJgykhYAlwLbUoKaLpH07rpVjWX7vnFDq6oUMlrGBHFJej0J4oqIyrLnNiIiIqbSnwEvtf0IgKQzgZuAhVWr6rtP0r6AJW0KzKeE08TavQd4GuXxOp1yRvCxVSuKiBkvzW1ERERMJTF2JnQV/SXKLXg7cC6wHXA/cDXwrqoVjYAEcUVEi9LcRkRExFS6ELhF0pXd9aGUAKcm2H4AOKp2HaNmMIgLSBBXRDQhe24jIiJiytj+NCVJ91+BB4HjbJ9Tt6o+SYskbT1wvY2kC2rWNCISxBURzcnMbUREREwp27cDt9euYwK72v5F78L2g5J2r1nQqLB9nzRmhXmCuCKiqszcRkRExEw2S9I2vQtJzyA3/9fFmCAuSe8jQVwRUVn+eEdERMRMdhawVNIV3fXhwBkV6xkVCeKKiObIdu0aIiIiIqqRtDNwYHd5re2VNeuJiIjfTpYlR0RExEy3Cf3jiTapWcioSBBXRLQozW1ERETMWJIWAJcC2wLPBi6R9O66VY2ENYK4gARxRURVWZYcERERM5akO4F9bD/SXW8O3GR717qVtU3ScmD/rqntBXF91/ZL6lYWETNZAqUiIiJiJhNjj7BZRX+JckwsQVwR0Zw0txERETGTXQjcIunK7vpQ4PyK9YwE2xdJupV+ENcbEsQVEbWluY2IiIgZy/anJV0HzKPM2B5ne1ndqkZGL4jLJIgrIhqQPbcRERERsV66IK63Al+hNLivB/7W9sKqhUXEjJbmNiIiIiLWS4K4IqJFOQooIiIiItZXgrgiojnZcxsRERER6ytBXBHRnCxLjoiIiIj1JukP6QdxXZ8groioLc1tREREREREjLzsuY2IiIiIiIiRl+Y2IiIiIiIiRl6a24iIiIiIiBh5aW4jIiIiIiJi5KW5jYiIiIiIiJH3/wELFcHg7sfIWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "plt.figure(figsize=(15,10))\n", + "sns.heatmap(dataset.corr(),annot=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "493fde97", + "metadata": {}, + "source": [ + "

It is important to check what kind of correlation the features has, especially during feature engineering.

" + ] + }, + { + "cell_type": "markdown", + "id": "7b506260", + "metadata": {}, + "source": [ + "

Let's prepare the data for Training

" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "7816ee97", + "metadata": {}, + "outputs": [], + "source": [ + "#This function will split the data into requirement ratio and shuffle so that we can as get random data.\n", + "def splitTrainTest(data, testRatio):\n", + " shuffledIndices = np.random.permutation(len(data))\n", + " testSetSize = int(len(data)*testRatio)\n", + " testIndices = shuffledIndices[:testSetSize]\n", + " trainIndices = shuffledIndices[testSetSize:]\n", + " return data.iloc[trainIndices], data.iloc[testIndices]\n", + "\n", + "trainSet, testSet = splitTrainTest(dataset, 0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "18738ea5", + "metadata": {}, + "outputs": [], + "source": [ + "trainLabels= trainSet[\"median_house_value\"]\n", + "trainSet = trainSet.drop(\"median_house_value\", axis = 1)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "0e289618", + "metadata": {}, + "outputs": [], + "source": [ + "testLabels = testSet[\"median_house_value\"]\n", + "testSet = testSet.drop(\"median_house_value\", axis = 1)" + ] + }, + { + "cell_type": "markdown", + "id": "3deafa5e", + "metadata": {}, + "source": [ + "

Model Training

\n", + "At this point, now we have our data processed and are ready to create a model for predcition." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "cb5381fa", + "metadata": {}, + "outputs": [], + "source": [ + "output = mlpack.linear_regression(training=trainSet, training_responses=trainLabels, verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "670501f9", + "metadata": {}, + "outputs": [], + "source": [ + "model = output[\"output_model\"]" + ] + }, + { + "cell_type": "markdown", + "id": "34596fba", + "metadata": {}, + "source": [ + " Our Model is Trained, now lets make predictions on the test_set" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "a860072b", + "metadata": {}, + "outputs": [], + "source": [ + "predictions = mlpack.linear_regression(input_model=model, test=testSet)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "15a9ef75", + "metadata": {}, + "outputs": [], + "source": [ + "yPreds = predictions[\"output_predictions\"].reshape(-1,1).squeeze()" + ] + }, + { + "cell_type": "markdown", + "id": "1c5f2eaa", + "metadata": {}, + "source": [ + " Let's see the residuals now" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "b3a19cd7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEXCAYAAAC6baP3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deZxcVZn/8c/XkBAlJBBJYhNCOiDKqmFo4oIzg4KCDBpRkSgyQRlRiaKC+mNxYUaZQUHcQBEQQWULIhKREQFBdEAhrE1oIxEChLRJ2AwgkO35/XFPJ7eL6u66nb7dt7u/79erXn3r3O2pSqWeOufce44iAjMzs0a9ZKADMDOzwcWJw8zMCnHiMDOzQpw4zMysECcOMzMrxInDzMwKceKw0kg6S9IX++hY20p6RtKI9PxGSf/RF8dOx/tfSbP76ngFzvtVSY9J+ls/nvOfJS3sZv35kr7aB+dplhSSNtnYY1m1OHFYr0haLOk5SU9LekrSzZI+Jmn9ZyoiPhYRX2nwWPt2t01EPBwRYyJibR/EfpKkn9Yc/+0RccHGHrtgHFOAY4GdI+IVddbvLWldSphPS1oo6UMbe96I+H1EvHpjj2PDlxOHbYx3RMTmwFTgFOD/AT/s65MM4V+sU4HHI2J5N9ssjYgxwFjgM8A5kvylbwPKicM2WkT8PSLmAYcAsyXtCp2bPCRtJemqVDt5QtLvJb1E0k+AbYFfpl/Wn881cRwh6WHgt100e2wv6VZJf5d0paTx6Vx7S1qSj7GjViNpf+AE4JB0vrvT+vVNXymuL0h6SNJyST+WNC6t64hjtqSHUzPTiV29N5LGpf1XpON9IR1/X+BaYOsUx/k9vMcREVcDTwCvyR1/R0nXpvd0oaT35dYdIOm+VFt5VNJn670/knaXdEfa7lJgdG7d4ZL+UPOaQtIr0/K/SbpT0kpJj0g6qZv34nBJD6TzPCjp0O5es1WXE4f1mYi4FVgC/HOd1cemdROASWRf3hERhwEPk9VexkTE13P7/CuwE7BfF6f8d+DDwNbAGuA7DcT4a+C/gUvT+V5bZ7PD0+PNwHbAGOCMmm3eBLwa2Af4kqSdujjld4Fx6Tj/mmL+UERcB7ydVKOIiMO7izslm3cCWwGLUtlmZMnnImAi8H7ge5J2Sbv9EPhoqhXuCvy2znFHAb8AfgKMBy4D3tNdLDWeTa9pC+DfgI9Leled82xG9u/z9hTPG4G7CpzHKsSJw/raUrIvoFqrgSZgakSsTu3sPQ2UdlJEPBsRz3Wx/icRcW9EPAt8EXhfR+f5RjoUOD0iHoiIZ4DjgVk1tZ3/jIjnIuJu4G7gRQkoxXIIcHxEPB0Ri4FvAIcViGVrSU8BzwFXAMdExJ1p3YHA4oj4UUSsiYg7gMuB96b1q4GdJY2NiCfT+lqvB0YC30r/Lj8Dbms0uIi4MSJaI2JdRNwDXEyWIOtZB+wq6aUR0R4RCxo9j1WLE4f1tclkzSm1TiX7pfyb1FxxXAPHeqTA+ofIvgC3aijK7m2djpc/9iZkNaUO+aug/kFWK6m1FTCqzrEmF4hlaURsQdbH8R3gLbl1U4HXpea/p1KCORTo6Gh/D3AA8JCk30l6Q53jbw08WpPEH6qzXV2SXifphtQU93fgY9T5N0jJ/ZC0vl3SryTt2Oh5rFqcOKzPSNqT7EvxD7Xr0i/uYyNiO+AdwDGS9ulY3cUhe6qRTMktb0v2C/sxsuaTl+XiGkHWRNbocZeSfSnnj70GWNbDfrUeSzHVHuvRgschIl4gu/hgt1xT0CPA7yJii9xjTER8PO1zW0TMJGvG+gUwt86h24HJklQTY4fa97L26q+LgHnAlIgYB5wFiDoi4pqIeCtZzfPPwDmNvHarHicO22iSxko6ELgE+GlEtNbZ5kBJr0xfUCuBtekB2Rfydr049Qcl7SzpZcB/AT9Ll+v+BRidOm5HAl8ANs3ttwxoVu7S4RoXA5+RNE3SGDb0iawpElyKZS5wsqTNJU0FjgF+2v2eXR5vFVlT15dS0VXAqyQdJmlkeuwpaSdJoyQdKmlcRKxmw3te6xaypHi0pE0kvRuYkVt/N7CLpOmSRgMn1ey/OfBERDwvaQbwgXqxS5ok6Z2pr+MF4Jku4rFBwInDNsYvJT1N9sv3ROB0oKv7DHYAriP7wrgF+F5E3JjW/Q/whdTc8tkC5/8JcD5Zs9Fo4GjIrvICjgLOJft1/yxZx3yHy9LfxyXVa/c/Lx37JuBB4HngkwXiyvtkOv8DZDWxi9Lxe+s8YFtJ74iIp4G3AbPIakl/A77GhiR5GLBY0kqyJqIP1h4sJaN3k10M8CRZc9LPc+v/QpaUrwPu58W1yaOA/0qfgy9Rv1YD2XfNsSnOJ8j6QY4q8LqtQuSJnMzMrAjXOMzMrBAnDjMzK8SJw8zMCnHiMDOzQgb14HFbbbVVNDc3D3QYZmaDyu233/5YREzoecv6Sksc6Zrvm8guDdyE7Br7LysbiO5SoBlYDLwvIp5M+xwPHEF2fffREXFNd+dobm5m/vz5Zb0EM7MhSVLDowPUU2ZT1QvAW9IgctOB/SW9HjgOuD4idgCuT8+RtDPZ9ei7APuTDdbWF+MOmZlZHyotcaRhoJ9JT0emRwAzgY4Jcy4AOoZPmAlcEhEvRMSDZOMa5e9gNTOzCii1c1zSCEl3AcuBayPiT8CkiGgHSH8nps0n03nQuiXUGQxO0pGS5kuav2LFijLDNzOzOkpNHBGxNiKmA9sAM5Qm+OlCvYHRXnRbe0ScHREtEdEyYUKv+3bMzKyX+uVy3Ih4CriRrO9imaQmgPS3Y9rMJXQe7XQbsnFtzMysQkpLHJImSNoiLb8U2JdsKOV5wOy02WzgyrQ8j2yynE0lTSMbFO/WsuIzM7PeKfM+jibggnRl1EuAuRFxlaRbgLmSjiCbMvRggIhYIGkucB/ZMM9z0rDUZmZWIYN6dNyWlpbwfRxmZsVIuj0iWnq7/6C+c9ys1qpVq2ht7TyP1G677caoUaMGKCKzoceJw4aU1tZW5pw5j7FNzQA8teSvHP3WNnbaaaf12ziRmG0cJw4b1GprGG1tbWw+aSrjp+4IwMr2xZx2dSsT21avf37mHNhjjz0GIFqzocGJwwa12hpGe+vNjNt+eqdtxkzadn0iMbON58Rhg97YpuZONQwzK5cThw0r69auoa2trVOZ+zzMinHisGHlmeVLOO3q593nYbYRnDhs2HGfh9nG8dSxZmZWiBOHmZkV4sRhZmaFOHGYmVkhThxmZlaIE4eZmRXixGFmZoU4cZiZWSFOHGZmVogTh5mZFeLEYWZmhThxmJlZIU4cZmZWiBOHmZkV4sRhZmaFeD4OG9ZqZwRcvTqb4GnkyJHryzxDoFlnThw2rNXOCNjeejMjxoxn4rQNc5h7hkCzzpw4bNjLzwi4sn0xm4yb6BkCzbrhPg4zMyuktMQhaYqkGyS1SVog6VOp/CRJj0q6Kz0OyO1zvKRFkhZK2q+s2MzMrPfKbKpaAxwbEXdI2hy4XdK1ad03I+K0/MaSdgZmAbsAWwPXSXpVRKwtMUYzMyuotBpHRLRHxB1p+WmgDZjczS4zgUsi4oWIeBBYBMwoKz4zM+udfunjkNQM7A78KRV9QtI9ks6TtGUqmww8ktttCXUSjaQjJc2XNH/FihUlRm1mZvWUnjgkjQEuBz4dESuB7wPbA9OBduAbHZvW2T1eVBBxdkS0RETLhAkTSorazMy6UmrikDSSLGlcGBE/B4iIZRGxNiLWAeewoTlqCTAlt/s2wNIy4zMzs+LKvKpKwA+Btog4PVfelNvsIODetDwPmCVpU0nTgB2AW8uKz8zMeqfMq6r2Ag4DWiXdlcpOAN4vaTpZM9Ri4KMAEbFA0lzgPrIrsub4iiozs+opLXFExB+o329xdTf7nAycXFZMZma28XznuJmZFeLEYWZmhThxmJlZIR4d16wbtfN1gOfnMHPiMOtG7Xwdnp/DzInDrEf5+TrMzH0cZmZWkBOHmZkV4sRhZmaFOHGYmVkhThxmZlaIE4eZmRXixGFmZoU4cZiZWSFOHGZmVojvHLdBZdWqVbS2tq5/3tbWRqx70dT0ZlYiJw4bVFpbW5lz5jzGNjUD0N56M+O2nz6wQZkNM04cNuiMbWpeP3bUyvbFAxqL2XDkPg4zMyvEicPMzApxU5VZAZ7YycyJw6wQT+xk5sRhVpgndrLhzn0cZmZWiBOHmZkV4sRhZmaFlJY4JE2RdIOkNkkLJH0qlY+XdK2k+9PfLXP7HC9pkaSFkvYrKzYzM+u9Mmsca4BjI2In4PXAHEk7A8cB10fEDsD16Tlp3SxgF2B/4HuSRpQYn5mZ9UJpiSMi2iPijrT8NNAGTAZmAhekzS4A3pWWZwKXRMQLEfEgsAiYUVZ8ZmbWO/3SxyGpGdgd+BMwKSLaIUsuwMS02WTgkdxuS1KZmZlVSOmJQ9IY4HLg0xGxsrtN65S9aLxsSUdKmi9p/ooVK/oqTDMza1CpiUPSSLKkcWFE/DwVL5PUlNY3ActT+RJgSm73bYCltceMiLMjoiUiWiZMmFBe8GZmVleZV1UJ+CHQFhGn51bNA2an5dnAlbnyWZI2lTQN2AG4taz4zMysd8occmQv4DCgVdJdqewE4BRgrqQjgIeBgwEiYoGkucB9ZFdkzYmItSXGZ2ZmvVBa4oiIP1C/3wJgny72ORk4uayYzMxs4/nOcTMzK8SJw8zMCnHiMDOzQpw4zMysECcOMzMrxInDzMwKceIwM7NCnDjMzKwQJw4zMyvEicPMzApx4jAzs0KcOMzMrBAnDjMzK8SJw8zMCnHiMDOzQpw4zMyskIYSh6S9GikzM7Ohr9Eax3cbLDMzsyGu26ljJb0BeCMwQdIxuVVjgRFlBmZmZtXU05zjo4AxabvNc+UrgfeWFZSZmVVXt4kjIn4H/E7S+RHxUD/FZGZmFdZTjaPDppLOBprz+0TEW8oIyszMqqvRxHEZcBZwLrC2vHDMzKzqGk0cayLi+6VGYmZmg0Kjl+P+UtJRkpokje94lBqZmZlVUqM1jtnp7+dyZQFs17fhmHW2atUqWltb1z9va2sj1sUARmRmDSWOiJhWdiBm9bS2tjLnzHmMbWoGoL31ZsZtP31ggzIb5hpKHJL+vV55RPy4m33OAw4ElkfErqnsJOAjwIq02QkRcXVadzxwBFnn+9ERcU2Dr8GGuLFNzYyfuiMAK9sXD2gstdatXUNbW1unst12241Ro0YNUERm5Wu0qWrP3PJoYB/gDqDLxAGcD5xRZ5tvRsRp+QJJOwOzgF2ArYHrJL0qInwFl1XaM8uXcNrVzzOxbTWQJbYz58Aee+wxsIGZlajRpqpP5p9LGgf8pId9bpLU3GAcM4FLIuIF4EFJi4AZwC0N7m82YMZM2nZ9jchsOOjtsOr/AHbo5b6fkHSPpPMkbZnKJgOP5LZZkspeRNKRkuZLmr9ixYp6m5iZWYkaHVb9l5LmpcevgIXAlb043/eB7YHpQDvwjY5T1Nm27qUzEXF2RLRERMuECRN6EYKZmW2MRvs48n0Sa4CHImJJ0ZNFxLKOZUnnAFelp0uAKblNtwGWFj2+mZmVr6EaRxrs8M9kI+RuCazqzckkNeWeHgTcm5bnAbMkbSppGlkz2K29OYeZmZWr0ctx3wecCtxI1qz0XUmfi4ifdbPPxcDewFaSlgBfBvaWNJ2sGWox8FGAiFggaS5wH1mNZo6vqDIzq6ZGm6pOBPaMiOUAkiYA1wFdJo6IeH+d4h92s/3JwMkNxmNmZgOk0auqXtKRNJLHC+xrZmZDSKM1jl9Luga4OD0/BLi6nJDMzKzKeppz/JXApIj4nKR3A28i6+O4BbiwH+IzM7OK6am56VvA0wAR8fOIOCYiPkNW2/hW2cGZmVn19JQ4miPintrCiJhPNo2smZkNMz0ljtHdrHtpXwZiZmaDQ0+d47dJ+khEnJMvlHQEcHt5YZkNTh5m3YaDnhLHp4ErJB3KhkTRAowiu/PbrE8N9hn/PMy6DQfdJo40ttQbJb0Z2DUV/yoiflt6ZDYsDYUZ/zzMug11jc7HcQNwQ8mxmAHVnvHPzHz3t5mZFeTEYWZmhThxmJlZIU4cZmZWiBOHmZkV4sRhZmaFOHGYmVkhThxmZlaIE4eZmRXS6AyAZtYLHvTQhiInDrMSedBDG4qcOMxK5kEPbahxH4eZmRXixGFmZoU4cZiZWSFOHGZmVkhpiUPSeZKWS7o3VzZe0rWS7k9/t8ytO17SIkkLJe1XVlxmZrZxyqxxnA/sX1N2HHB9ROwAXJ+eI2lnYBawS9rne5JGlBibmZn1UmmJIyJuAp6oKZ4JXJCWLwDelSu/JCJeiIgHgUXAjLJiMzOz3uvv+zgmRUQ7QES0S5qYyicDf8xttySVmQ1pq1atorW1tVOZ7yy3qqvKDYCqUxZ1N5SOBI4E2HbbbcuMyfpB7RdnW1sbsa7uP/2Q1Nraypwz5zG2qRnwneU2OPR34lgmqSnVNpqA5al8CTAlt902wNJ6B4iIs4GzAVpaWobPN8wQVfvF2d56M+O2nz6wQfWzsU3NvrPcBpX+vhx3HjA7Lc8GrsyVz5K0qaRpwA7Arf0cmw2Qji/O8VN3ZLOtth7ocMysB6XVOCRdDOwNbCVpCfBl4BRgrqQjgIeBgwEiYoGkucB9wBpgTkSsLSs2MzPrvdISR0S8v4tV+3Sx/cnAyWXFY1YFtcOsD7c+HRsaqtI5bjYs1A6zPhz7dGzwc+Iw62f5YdZXti8e0FjMesNjVZmZWSFOHGZmVogTh5mZFeI+DutXw/1OcbOhwInD+pXvFDcb/Jw4rN/lh9jwVUWd1d7nAR700KrHicOsQmrv8/Cgh1ZFThxmFZO/z8OsinxVlZmZFeLEYWZmhThxmJlZIU4cZmZWiBOHmZkV4sRhZmaFOHGYmVkhThxmZlaIE4eZmRXixGFmZoV4yBGzCqsd9NADHloVOHGYVVh+0EMPeGhV4cRhVnEe9NCqxn0cZmZWiGscVipPFWs29DhxWKk8VazZ0OPEYaXzVLFmQ8uAJA5Ji4GngbXAmohokTQeuBRoBhYD74uIJwciPjMz69pAdo6/OSKmR0RLen4ccH1E7ABcn56bmVnFVOmqqpnABWn5AuBdAxiLmZl1YaASRwC/kXS7pCNT2aSIaAdIfyfW21HSkZLmS5q/YsWKfgrXzMw6DFTn+F4RsVTSROBaSX9udMeIOBs4G6ClpcXXddqwUTv8CHgIEhsYA5I4ImJp+rtc0hXADGCZpKaIaJfUBCwfiNjMqio//AjgIUhswPR7U5WkzSRt3rEMvA24F5gHzE6bzQau7O/YzKquY/iR8VN3XH9vjFl/G4gaxyTgCkkd578oIn4t6TZgrqQjgIeBgwcgNrNBw01XNlD6PXFExAPAa+uUPw7s09/xmA1WbrqygeI7x80GMY+cawOhSvdxmJnZIODEYWZmhbipymyIqh3SHtx5bn3DicP6XP4Ly/NvDJzaIe3deW59xYnD+lz+C8vzbwys/JD2Zn3FicM2Wr1Z/jafNJXxU3f0/BtmQ5ATh200z/I3OLkPxHrLicP6hGf5q77aO83b2to44/r7Gbt1M/DiPhAnFuuKE4fZMFF7p3lHzbCrPhB3rltXnDjMhpH8neaN1AzduW71+AZAMzMrxInDzMwKceIwM7NC3MdhNkTUu2qqyF37G7u/DR9OHGZDRFdXTZW1vy/XHb6cOMyGkKJXTRXZv+h9IDZ0OXGYWUN6ug/EU9kOH04cVli9sancFj48dFcj8VS2w4cTh/WoXqLIN1F4bCrrkE8stTWQ1auzhDJy5Mj1Za6RDE5OHNajrgYx9NhU1p16TVsjxoxn4rQNnxvXSAYnJw5riAcxtN6obdraZNzELocw8VVag4cTh5lVQm3N9qklf+Xot7ax0047rd/GiaQanDjMrDJqa7anXd3qzvYKcuIYBoo2AfiqKauKfFOXVYcTxzBQdF4Fz+hn/aHoECdF7xNxn0l5nDiGoO7mAO/N9u4MtzIUHeKkdvvaPpDay319Z3t5Kpc4JO0PfBsYAZwbEacMcEiVV/Q+i56GjnANw/pL0SFSarfP94HUXu7b3Z3ttUlmY59DubWZqtWeKpU4JI0AzgTeCiwBbpM0LyLu6+tz1f5D9Oc/Ql9/CIreZ9HT0BGuYdhg0d3lvt197uslmY15XvQKsJ6+A3r6MTjQtadKJQ5gBrAoIh4AkHQJMBPo88TR2trKYV/8DpuNfwXPPvE3TvjAWzv9o5epra2N/77oWjYb/wqAjT5/bbsvwDPLHuaJl70sO/5jSxnx/POdn48ZX2z7Xj7vy2MN9+dVimXQPq/53PeV555cxknnP8CWr8i+7Hv6P93Td0Dt+sceXMC4qbswtpToi1NEda6WkfReYP+I+I/0/DDgdRHxidw2RwJHpqevBhb2wam3Ah7rg+P0F8dbLsdbLsdbrkbinRoRE3p7gqrVOFSnrFNmi4izgbP79KTS/Iho6ctjlsnxlsvxlsvxlqs/4q3a1LFLgCm559sASwcoFjMzq6NqieM2YAdJ0ySNAmYB8wY4JjMzy6lUU1VErJH0CeAasstxz4uIBf1w6j5t+uoHjrdcjrdcjrdcpcdbqc5xMzOrvqo1VZmZWcU5cZiZWSFDJnFI+oqkeyTdJek3krbOrTte0iJJCyXtlyvfQ1JrWvcdSUrlm0q6NJX/SVJzbp/Zku5Pj9m58mlp2/vTvt3eBi7pVEl/TjFfIWmLisd7sKQFktZJaqlZV7l4e0vS/ul1LJJ0XBnnyJ3rPEnLJd2bKxsv6dr0Oq+VtGVuXenvczexTpF0g6S29Dn4VMXjHS3pVkl3p3j/s8rx5vYbIelOSVdVOt6IGBIPYGxu+WjgrLS8M3A3sCkwDfgrMCKtuxV4A9n9I/8LvD2VH5XbfxZwaVoeDzyQ/m6ZlrdM6+YCs9LyWcDHe4j3bcAmaflrwNcqHu9OZDdc3gi05MorGW8vP0MjUvzbAaPS69q5xM/svwD/BNybK/s6cFxaPq6/PxfdxNoE/FNa3hz4S4qpqvEKGJOWRwJ/Al5f1XhzcR8DXARcVenPQ1n/KQbyARwPfD+3fHxu3TXpTW0C/pwrfz/wg/w2aXkTsrswld8mrftBKlPapiMRvAG4pkC8BwEXDoZ4eXHiqHS8BT83nY5b+9pK+qw20zlxLASa0nITsLC/3ueCcV9JNqZc5eMFXgbcAbyuyvGS3bd2PfAWNiSOSsY7ZJqqACSdLOkR4FDgS6l4MvBIbrMlqWxyWq4t77RPRKwB/g68vJtjvRx4Km1be6xGfJjsl8FgiTdvsMXbna7O358mRUQ7QPo7sYfY+vJ9bkhq4tid7Fd8ZeNNzT53AcuBayOi0vEC3wI+D6zLlVUy3kGVOCRdJ+neOo+ZABFxYkRMAS4EOsa36moYk+6GNym6T93ynuJNr+lEYE2KufLx1jFg8XYTU2/113l6oz/e556DkMYAlwOfjoiV3W3ai3P3abwRsTYippP9kp8hadduNh/QeCUdCCyPiNu72y6/Sy/O3WfxVuoGwJ5ExL4NbnoR8Cvgy3Q9jMmStFxbTm6fJZI2AcYBT6TyvWv2uZGsyreFpE1SJt8GWBoR+9GN1Al1ILBPpDpilePtwoDF24tYe1KFIW+WSWqKiHZJTWS/lruLrS/f525JGkmWNC6MiJ9XPd4OEfGUpBuB/Ssc717AOyUdAIwGxkr6aWXjLdKuWeUHsENu+ZPAz9LyLnTuRHqADZ1It5F1mHV0Ih2QyufQuRNpbloeDzxI1oG0ZVoen9ZdRufO26N6iHd/suHiJ9SUVzLeXHw30rmPo9LxFvwMbZLin8aGzvFdSv7cNtO5j+NUOneGfr0/3+du4hTwY+BbNeVVjXcCsEVafinwe7IfaZWMtyb2vdnQx1HJeAf8C78P/wNeDtwL3AP8EpicW3ci2VUHC0lXGKTylrTPX4Ez2HAn/WiyL6pFZFcobJfb58OpfBHwoVz5dmnbRWnfTXuIdxFZu+Jd6XFWxeM9iOyXyQvAMjp3Ilcu3o34HB1AdsXQX4ETS/7MXgy0A6vTe3sEWZvz9cD96e/43Palv8/dxPomsuaLe3Kf2QMqHO9rgDtTvPcCX0rllYy3Jva92ZA4KhmvhxwxM7NCBlXnuJmZDTwnDjMzK8SJw8zMCnHiMDOzQpw4zMysECcOMzMrxInDhiRJNyoN/y7pauWGre+DY58v6b19dbz+JOlwSWcMdBw2uA2qIUfMeiMiDhjoGMyGEtc4rDIkNSub3OrcNLjihZL2lfR/aYKZGZI2UzYB0m1pwpuZad+XSrpE2cRYl5INM9Fx3MWStkrLv5B0u7LJfY7MbfNMGl35bkl/lDSph3D/RdLNkh7oqH0oc2qKvVXSIal8746JedLzMyQdnpZPkXRfivu0VDZB0uXpNd4maa8u3q+XpNeWnwRskaRJkt6RJuu5Mw1e+aLXU1tzkvRMbvlz6dz3KE2CZNbBicOq5pXAt8mGjNgR+ADZcBefBU4gG2bhtxGxJ/Bm4FRJmwEfB/4REa8BTgb26OL4H46IPciGZTha0stT+WbAHyPitcBNwEd6iLMpxXUgcEoqezcwHXgtsG+KramrA0gaTzaUyy4p7q+mVd8Gvple43uAc+vtHxHryObFOCgd73XA4ohYBvwBeH1E7A5cQjZcd0MkvQ3YAZiRXs8ekv6l0f1t6HNTlVXNgxHRCiBpAXB9RISkVrIBAbchG0X0s2n70cC2ZLPpfQcgIu6RdE8Xxz9a0kFpeQrZF+TjwCqgo1ZwO9kkRd35Rfrivi/3a/5NwMURsZZsVNPfAXsCXQ0/vhJ4HjhX0q9y598X2FlaP9r1WEmbR8TTdY5xKdncMz8izeqWyrcBLk2JaxTZwHWNelt63JmejyF7n24qcAwbwpw4rGpeyC2vyz1fR/Z5XQu8JyIW5ndKX7I9zXmwN9mX8hsi4h9pqO3RafXq2DBw21p6/r+Rj1M1f2utoXPtfjRkk+lImgHsQ/al/wmy2d9ekmJ8rocYAG4BXilpAvAuNtRavgucHhHz0us+qbu4lL2BHfO4C/ifiCSWNuYAAAFfSURBVPhBA+e3YchNVTbYXAN8Mn3RIWn3VH4T2cyPKJuw5zV19h0HPJmSxo5kQ0/3pZuAQ5TNPDeBrBZ0K/AQWQ1iU0njyBJFx6RI4yLiauDTZM1CAL9hw0RkSJpOF1KyuwI4HWiLiMfTqnHAo2l5dhe7L2ZDk95Msrm5IXuPP5ziQ9JkSRNfvLsNV65x2GDzFbIpNu9JyWMxWT/D94EfpSaqu8i+sGv9GvhY2mYh8Mc+ju0Ksnmf7yar/Xw+Iv4GIGku2RDf97OhCWhz4EpJo8l+5X8mlR8NnJni3IQsIX2sm/NeSjYHw+G5spOAyyQ9SvY6p9XZ75x0/lvJhux+FiAifiNpJ+CWlJ+fAT7IhkmEbJjzsOpmZlaIm6rMzKwQN1WZdUHSicDBNcWXRcTJAxDLh4BP1RT/X0TM6e9YzNxUZWZmhbipyszMCnHiMDOzQpw4zMysECcOMzMr5P8DrJW2pG1cRfsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize= (6,4))\n", + "sns.histplot(testLabels - yPreds)\n", + "plt.title(\"Distribution of Residuals\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "1fc06194", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAFtCAYAAADI9OsfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9e5QcV33v+917V1VXP6ZnNJoZaSR7bCQvIzk5AoOJbGISbC8bgR0BwcsONicEkxiSmxsCC4TjBJOYdQgSYeWai2PCw6wVsDknCIOFxZHt2Hjd49fELEEGWZaFRxajx2je0+967/vHrqrp50z3aHq6W9qftQya6u7q6te3fvXbv9/3RzjnHBKJRCLpKGirD0AikUgkjSPFWyKRSDoQKd4SiUTSgUjxlkgkkg5EirdEIpF0IFK8JRKJpANRWn0A5yozM1l4nqjCXLMmhrm5fIuP6OyRr6O9kK+jvTib19Hf39XwY2TkvQooCmv1IawI8nW0F/J1tBer/TqkeEskEkkHIsVbIpFIOhAp3hKJRNKBSPGWSCSSDkSKt0QikXQgUrwlEomkA5HiLZFIJB2IFG+JRCLpQKR4SyQSSQci2+MlEonkLBgZncaB4THMZi30JjTs2D6EbZv7mv68UrwlEolkmYyMTuOhJ4+CMYquqIL5nIWHnjwKAE0XcJk2kUgkkmVyYHgMjFFEVAZCCCIqA2MUB4bHmv7cMvKWSCSSZTKdMpAtWDAsL9ymaxSO4y3yqJVBirdEIpEsE8O0S4QbAAzLg0Ltpj+3TJtIJBLJMskabkPbVxIp3hKJRNKBSPGWSCSSDkSKt0QikXQgUrwlEomkA5HiLZFIJMtEZdUltNb2lUSKt0QikSyTdWv0hravJFK8JRKJZJlcOJBoaPtKIpt0JBKJZJn81+gsKAE4AM4BQgDib282UrwlEolkmRiWA0YJCBH/cc7BOYdhOU1/bpk2kUgkkmWiawo8XrrN42J7s5HiLZFIJMvkhrddAA4O1+Pg3BP/D44b3nZB059bpk0kEolkmey8ehMA4ImXTsKwXegqww1vuyDc3kykeEskEslZsPPqTdh59Sb093dhaiqzas8r0yYSiUTSgUjxlkgkkg5EirdEIpF0IFK8JRKJpAOR4i2RSCQdiBRviUQi6UCkeEskEkkHIsVbIpFIOpC2Em/TNPH5z38eN9xwA/7gD/4An/vc5wAAr7/+Om699Va8613vwq233orjx4+Hj1nt2yQSiaQdaCvx/vKXv4xIJILHH38cP/nJT/CJT3wCAPD5z38et912Gx5//HHcdtttuOeee8LHrPZtEolEUszI6DT2PHwQH/0fT2LPwwcxMjq9Ks/bNuKdy+Xw4x//GJ/4xCdACAEA9PX1YWZmBocPH8ZNN90EALjppptw+PBhzM7OrvptEolEUszI6DQeevIo5nMWuqIK5nMWHnry6KoIeNt4m5w4cQI9PT342te+huHhYcTjcXziE5+ArutYt24dGGMAAMYYBgYGMD4+Ds75qt7W29vbgndGIpG0KweGx5Ar2ChYbjiMIaoxHBgew7bNfU197rYRb8dxcOLECVx22WX47Gc/i//6r//Cxz/+cdx3332tPrRlsXZt6Rik/v6uFh3JyiJfR3shX0drGZvIIG+64d+cA3nTxdhEpumvqW3Ee8OGDVAUJUxXvOlNb8KaNWug6zomJibgui4YY3BdF5OTkxgcHATnfFVva4SZmSw836V9td3GmoV8He2FfB2tp1Ak3OXbG3lNyxH6tsl59/b2Yvv27XjuuecAiIqPmZkZXHzxxdi6dSsee+wxAMBjjz2GrVu3ore3F2vXrl3V2yQSiaQY3uD2lYRwzlfjeerixIkTuPvuuzE/Pw9FUfDXf/3X+P3f/32Mjo7irrvuQjqdRjKZxO7du7FpkzA7X+3b6kVG3u2LfB3tRSe/jju+9HTN2x6869q697OcyLutxPtcQop3+yJfR3vRya+jleLdNmkTiUQikdSPFG+JRCLpQKR4SyQSSQcixVsikUiWCWlw+0oixVsikUiWSW8y0tD2lUSKt0QikSyTd2yr3rxXa/tKIsVbIpFIlsmRsXnEIgy+lx4IAWIRhiNj801/7rZpj5dIJJJO49R0DqbjgVECSgg8zmE6Hk5N55r+3FK8JRKJZJm4LofrBn2OvGR7s5HiLZFIzmtGRqdxYHgM0ykDfd06dmwfqrBzrXUf23Gq7rPW9pVEirdEIjlvCYYpMEYR0xeGKQAIBXyx+7geQTUbKrG9ucgFS4lEct5yYHgMjFFEVAZCCCIqA2MUB4bH6rqPV8Maqtb2lUSKt0QiOW+ZThnQlFIZ1BSK6ZRR130oqR5h19q+kkjxlkgk5y193TosxyvZZjke+rr1uu6jawsSWizXxdubhRRviURy3rJj+xBc14Npu+Ccw7RduK6HHduH6rrP0Lou6JqYdxskSnSNYWhd88e6yQVLiURy3hIsSi5WbbLYfY6Pp3H05DwYJWAUcD3AclxsGepp+rFL8ZZIJOc12zb3LTnpvdZ9jozNQ2UUpu3B9TMrEZXiyNg8djbjYIuQaROJRCJZJmMTGZi2UO0g523aHsYmmj8ZSIq3RCKRLBPDKhJusiDgwfZmItMmEolEskyCem4e/k/p9mYiI2+JRCJZJrGIAgKUuAoSf3uzkeItkUgky+SGt10AECAItDkHQPztTUaKt0QikSyTiweT0FVaEnnrKsXFg8mmP7fMeUskEskyOTA8hu4uHQMqg6pQ2I5o5jkwPLZk+eHZIiNviUQiWSb1eKM0Cxl5SyQSyTLp69YxNpFBwXLBuUibRFepPV5G3hKJRLJM1iQ05E23ZMEyb7pYk9Ca/txSvCUSiWSZHPz1dEPbVxIp3hKJRLJMgtb4erevJFK8JRKJpAOR4i2RSCQdiBRviUQi6UCkeEskEkkHIsVbIpFIOhAp3hKJRNKBSPGWSCSSDkS2x0skEkkNRkansfdnr2FizgDAsa43hpvfubnpplP1ICNviUQiqcLI6DQe3P8KxmcL4ODwODA+k8ODPz2CkdHmd1AuhRRviUQiqcKB4TEYlgtCAEoIGCUghMIwHRwYHmv14UnxlkgkkmpMpwy4Hg+HCgMAJYDreati+boUUrwlEomkCn3dOhglxXOF4XGAUYq+br1lxxUgxVsikUiqsGP7EHSNgXMxDd71ODj3oEcU7Ng+1OrDk+ItkUgk1di2uQ933LgVg71REBBQAgyujeOO92xpi2oTWSookUgkNdi2ua8thLoaMvKWSCSSDkRG3pJVY2R0GgeGxzCdMtDXrWPH9qG2jWok5xbN+O61utZbirdkVRgZncZDTx4FYxQxXcF8zsJDTx4FACngkoZpRIyb8d0L9kkIwvmVxSRj6rL22whSvCWrwoHhMTBGEVEZACCiMpj+dine5yYjo9PY+8woJmbzAAjWrdFx8zWXrEjE24gYHxgeg+NyZPImHNeDwiiiEeWsvnvB97macAOA7bjL2m8jyJy3ZFWYThnQlNKvm6bQtmh2kKw8I6PTePCnRzA+k4PHAQ6O8dkCHtz/ylmnG4oDAUIIIioDY7Rm1+Pp6RzSOROOy0EJgeNypHMmTk/nln0M1b7PxRSs5s+wlJG3ZFXo69Yxn7PCyBsALMdri2YHycpzYHgMhumAEArqtyh64DAs96yvtqZTBmJ6qXQtFgg4Lgf8Uj/A75LkxN9enaXSMsH3uZXIyFuyKuzYPgTX9WDaLjjnMG0Xruu1RbODZOURreVeKJgAQAC4Hj/rq62+bh2WUxrZLhYIMEYAIhptOOfwOAeIv70KQVpmPmeBEODY6TS+uncE93zrxfCqIfg+txIp3pJVYdvmPtx+/aXoiWvIGw564hpuv/5Sme8+R9E1Bs8Tomq7nhBOAIySs77aajQQ2NgXR1dUBWNUtLcziq6oio198ar3D9IynscxlzHhcYBSgsl5Aw89eRQjo9Ph97mVyLSJZNVo54YHycoxMjqNtB+1ci7+E/lmIBY9+9by4DtUb7XJju1DeOjJo9AjCjSFwnK8RcU+SMtMzhUQpFs4F1cNQW69Hb7LUrwlEsmKcmB4DLGoiojGMJ+1YPspDoVR3HHj1hURvUbEs1GxD/LZjuuBEpFa4QAUhbbVIrsUb8k5RasagWQD0gJB5EpUhpgu6p0558gbTsvek0bEPojUKSHCEpYI8U7G1LZaZJfiLTlnaFUjkGxAKqXTK4uCz2zvM6M4PZ0DoxTJuMiZt9MiuxRvyTlDqxqBZANSKUHkagJ15ZhXi0aujoJIvfgxPXGtra6opHhLzhkarf/t9OdtVxrNMa8Gy706aoeFyVpI8ZacM7Tqcr3T0wSrRSvXBc7Fq6O2rPP+2te+hje+8Y04elScGV9//XXceuuteNe73oVbb70Vx48fD++72rdJ2pdWNQK1awPSyOg09jx8ELseeB57Hj64ai54xU0uQZT74P5X8K/7Xsax02nMZUwcO51ekVb5ejkX7RnaTrxffvll/PKXv8SGDRvCbZ///Odx22234fHHH8dtt92Ge+65p2W3SdqXVjUCtWMDUjUBDRpMVmr/tU4M1bxHcoaNgunC46Le2+McOcPB3p+9tiLHsxSNdmV2Am2VNrEsC/feey/+6Z/+CR/+8IcBADMzMzh8+DC+853vAABuuukmfOELX8Ds7Cw456t6W29v72q/JZIGaVWOst1yo2ebJlgsxbFU/rjaGkDQSR7UTRMIr5OJudWJfNt1EfVsaCvxvu+++7Bz505ceOGF4bbx8XGsW7cOjIkvIWMMAwMDGB8fB+d8VW+T4i3pFM5mEXUpcV7qxFBtDaAanAOE1DaHWknacRH1bGkb8f7FL36BX/3qV/j0pz/d6kNZEdauTZT83d/f1aIjWVnk62gvar2Owf4E5tIF6EUCalgOBvsTS772p/aOIKIx6JqQB01lMCwHT/3iNK678g2YzVroiiogZMHYSWEEc1kL/f1duPWGLfjXR0bgep4QdtuFwgg8T/ibiFZzD5wDisbw81cmcMXWdWf/ZizBdf1duO7KNzRl37rGoCoUmbwdbmv2d6xtxPull17CsWPHcN111wEAzpw5g49+9KP4m7/5G0xMTMB1XTDG4LouJicnMTg4CM75qt7WCDMzWXieiCr6+7swNZVZ8fdstZGvo71Y7HVcd/kGPPTkUTguL0kTXHf5hiVf+/hUFjFdCdvaAZHuGJ/KYmoqg96EVhFZm7aLNQkNU1MZXNQXwx9dd0lJlHvTVRfh6V+cRs6w4fpWrJQAUY3hXx8ZQeq6sx/SUIt9zx7DEy+dhGE50DUFN7ztAuy8etOy9lWcTurv1hHXFcSjqn+CogAWxLuR79hyhL5txPvOO+/EnXfeGf597bXX4utf/zouvfRSfP/738djjz2G9773vXjsscewdevWMIWxdevWVb1NIukEziZNsFTpY3n+OJ2zkDMc5As29jx8MHye8ue6eDCJb+w7DIO7UBWKZExFTFfhet6yc/FbhnpwZGy+5mvc9+wx7Hv+OAgIGCUwbRf7nj8OANh59aaS/ekaQ8Gwkc47ADjW9cZw8zs3l+T6H9z/CixHXFHM5yx4HL6BFUCqO8w2DcJ5rUE+raVYvEdHR3HXXXchnU4jmUxi9+7d2LRJnDlX+7Z6kZF3+yJfRynlgrgmoeHnr07D42JkWExXoTBSUkETPObUdA6G6SIRU9Hle3+4rlez2mbXA88L35OylEsqa2HPn799yeMMcvHBSSOdtxCLiKsEYSRFccUb+zCXtTCdMjCbNgFwPyoWuB5HRGW4c+dl4f5c18P0vOHb1gJiSZUjHtVwx3u2YNvmPtz7nWGkC054vKZdWr0S0xXkDSf8+8G7rq37M1hO5N224t3pSPFuX+TrEAQzJk9P56AwiohGkTccuJ6IIhVGhQ0qJbjxyqGSVEMg3qOn0iAE6OmKIBoRF/Km7aInrmHXbW+pcv8UCCHoTmihaZXreUjoasn9q7Hn4YMlVwRnZvOwbRfc9+imBHBcDx4HehIaknENYxNZAOIEEToEcg7X47j0wp5wfxOzeZiWCw7x2lXf+5sS4MKBBHqTERw9mUImb4e/62IIgHVrYzgzkw///naTxbtt0iYSiWTlWKqbMYhiU1kLhBA4rgcrXxRJciFyfd06KCU4MjaPnWWPFcMNOMCB2bSB3qSOqO+ZXVzVUnz/nq4IZtMiIuacQ1EYDNMBuIjKF0vvlFfQOI4QagALo9b8v+ezFgrWwhBgMfJMOAQSALqmlOzPcT0EkiyqYICErkBhFGdm8zh+JgO3TLRFvboY1JCIqiXDiFcjIpbiLZGcY9Qq9Ts+nsaRsXmcms4hVxB53UBwysVG/E2QzlkYWBPFdMqoGj0rCvXHgYn7RiNKRfNL+fR2SoXop7I21q0RjTyOx5f0HCnPxSsKhWu5Ya7ZK0siVBtT5p9r8KbNvZjLWuH+FEbhui6IL8S6RpHK2jDt2nMqI5oiTlYqRcF0MJMqLP7BrDBSvCWSNqReH5Bq96tWh50yHex/YQzxqIK86VQIXTUc14PrApm8jbiulETbBMBsxkREITD9qNZxgZNTWXCPQyEIx4Wdns4hZ9j+MGIiomPOEdUVJGIaQG0wSsNjrdVMVL5QGtUYTMsV2WnOKwYKLzZgePiVKWzf2o+ZtAETwJouDXnTBSUEmbyFdK7ysVGNwXRcRCMq4roChRLM5yzMZRy0IvksxVsiaQNKqh5UinTBQUxXFo1Gf/7KRNUI27BcrOmKlOxftKZ7KPhiF4woWwoOIJUzQcGhagoiKoOqMCGM3EPB5GH6AABclyMZU+Fw4MH9ryAZ15DJ22ISDVuY4h5Mb59OGehOaCVCW6uZqLyCZn1vDFuHevDzo9MVKY1yVEpgF93H4xzDRyZx9W+vR85wcGIqh1zBrhD8IB2jKhSJuIqLk0nMpArI5S1cuK4Lp/0cdyuQ4i2RtJDyRcNkXMXkvJi8rmsL3iDVotFHnnmtaqej6zphOVuA7XpQGYXjiInujJJFI9MAVaGI6wrSeQeDMc1/HgrTssNUS3mFXLYgap1zhgOjLO/MKBeVJv70dl1jODmZg+t5/uvXQIuGFFe7sihf2Nw+Oo29P3sNp6bzNXPNgXAT/3/iugI9ouDgr6dhO8JMLEBhBF0xFbqmgBCRfqGUIlewkcpZ4AD+bOdvYdvmPtzxpaeXfA+bhRRviaRFlC8aepxjLmuBe0LgghwyUD0anZjNQ1crnfIURoTLIRZ8PBgliOkq8qYjxIgQMIqSiLU4gg7+3tAXB+ccuYIdlgFmDQeULviVlAe9HgfSeRuMin9HNAbLrwpxPUBVCLjnIW84yPlCTymB7XiYSRUQj2r4o2svaciD23Q89HRFMJcxa77flBKR7mAU2YKNbGHh/VQZxeWX9uGq316P/c8fR95yoVACw3JQMF3kTRMUBBv6VOzYvrkt2uqleEsky6RaVAjU3xgT5KY9LsrxAHE57wFh2VtANQe8db0xTM3lK5ppNvTFw9x3cBxXbh3A4/85BtMK9ikUNxFVkC04IBDRuFfU/aj5+7UcD+t6YzBtV5xoAIBQEHiglNRMWbgeoGsUup+bDu7luJ6oZimOk/0TFqMUKkXFwihRWc0rkL3PjCKVtUQuviwdpDDRnKNHFHDOkc3bFSebHduHcMUbBxCPKogoDFds6cf/Hj4Bw3TgeRyef6w3vv2isFwy+OxbiRRviWQZVIsKH/zpEYBzxKJqzUixWPBTWQvdCRUKo3BckTsmgF+mJ8SUc17TAe8P33kJ/mXvL6s65ZV3OO579hgMu7L6ghCCqy4bCPPGzBdjjwuRTecsKIzgj669FABw/yO/AuccqkIRUUubUqqhawzZgl0i8tVy7R4HGAEiGsVc1oKqKSULowAQ09WqZYinp3O+8BN4RaeEiMaQ0BkKlodUtnrVyHVv3YB3Xr4R0YiCaIRBZRT/9esZ/wQlroYUf3E0KJcs/uxbiRRviaQGi1V8VKvomPVFZU1SD7cVR4rlgp/OWZjLWEhEFTiuA4+L6FtVRLSa9P3Ba0XwV2xdh9uvv7SuSP+Jl05WLT7O5G2cmMzixiuH8PNXp/yBu8LLxOUif33jlUPh8asKg2k7sGy3IoKtRt5wwrppxkjoa1IN1+PI5MXJYHq+EIo8ISINE9Mrp7cfGB7zm4k82P6+YxEGTWXImw5m0tVFO6oxXP+2C/Cu7ReJtQUEDTzAVMpAMq6hO7GQzeechyeN8s++VUjxlkiqsDzPalHvXExxpFj+o+/pimAmVUDBFNUhqawFx+VYvzaKm6+pz6ipXh9xw6odIU/OG3ju0BkYfmrD8wAX4krAdjgeffY4njp4CrmCHdZJ10sQbTNGEVEo0kWue4tBCQEn4vGUAJx74YSiLUM92PPwwfDqhTHA8QgSvtNhrmAjb7ol+4tGGJLxCOK6AlURzULve8cmVC63Lu3tUu2zbwVtN0lHImkHqk2DYYyGec5qk1kYpWHuOqD8R188iisaUdCb1MG5aJYZWBPFhrUxGLYwalrJEWG6ptSuxHA8zKQMUdJXmoYGIMQ6UyVXXA/CR4RifW8MpuOh3kxDsA4gUkdCzHviGn73t9fjuUNnwglBlBFoqoKoxpDN20jnrPCEEVEp4hGGjX0xXDDQhcG1MSSiKjyPY/RkCtWEG1h6rF21z74VtP70IZG0IUsNM6g2mUWPKID/Yw+25Qs2FEqw64HnkTccGJYDx+VwXFEaF40o2LyxO9xfo9PNF6M47RONiDRCNQKP7XpYTi9K3nQxdibT0GODskLPj/Rt18Ox02mMnkrD5RxxXQF0BQRAOleZGqEEiOsqLhpMwHI4uMdDYTdtF7rGwui9PN20lCNj8WffSqR4SyRVqGcifESh/hgvYR96x3u2AEBJsw2KWr8LpoNswQnrrG3Hg+WY+P03DZZE+gXTQTpnwXZcfGPfYdy587KqAv7zVybwv544UteoMsvxQKlIiZTDisr+VhrhzVcq+pQSRDWG3BKLncXHRIl4/6MRhigTJ6JMlRQMARCLCodDAuCSDd145penQydCyxEliuB80Zb8xdJR2zb34fh4WqwjtJC6xfvFF1/Exo0bceGFF2JychJf+cpXQCnFpz71KfT39zfzGCWSVaHc2znv1yCXV3IEwmg7olTOdjkm5go4Pp7Gzqs3hT/6PQ8fhMMRngCCS22PA57L/QYYNfSjDgR+Nm1AdCISGLZbNQIfGZ3G/3zqNYCgqgB998ARzGatcLFQVykICEhpgR6A+qPu5VC86+64iqwhTKgc10NPQkMqay0ZkWsqhaYwcHDkDQcF7lbcR2EEiZiGqKagYDmY8VNUvzo2W7GoqxCUfC7Lme/53KEzSCa0mlczq0Hd4v0P//AP+Pa3vw0A2L17NwAgEongc5/7HL7+9a835+gkkhVmZHQaT+0dwfhUtiRarRapghAoBBUVH3sePgjb8ZAp2KI+mgCex7H/hTFcPJgMBaA49VIwnZLJNAQi15wr2Dg1ncPGvjjmc5afAiBhw4yqiDLCf/nRIV9kRZQPAIpCQk8Qz+NIZS3c/8ghJOMqZjILqQTOgYJVO7ReTi57OaRy4mRICGA5HP09KjJ5q2bUrzAKPcLgOF7YtRkQRPS6xpBMaCAQC5UT2Vxo5Wp4Hk5P5yqi6MBTHADyho103objeJiZN0I/lmLKq46yfht9Jt/axEnd4j0xMYENGzbAcRw8++yzePrpp6GqKt7xjnc08/gkkhUjEOiIxiqi1WqlfwCQiGm4t6wdezploGAKj5DAI5oRVEyEKU69pHNWKDgo+n/b5YApRoiNnkrD9pWMUQCEQFcp5jOm8Jn2H3dyKhf6R1u2g7mMGZ4YKFmoi24GBMLNzz6bBTvfRrVW5UkQaZuWi2yV+1AiyjFVhcKyPRAOTM7nKyxZuSe8xctz27pKcWYmH3p/UyLq3QlB1br88rWIiVnhZxKcOFtF3c+eSCQwPT2Nl156CZs3b0Y8HgcAOE7rLhskkkYIBFp4VpRWkJRXggC1DZL6unXYrldSq+BxESkW37+4asF2XBT/1osfa7seXjw8CU2l4XbXE7XFedOtEPzg32dm8piaK5QIqcebmwYhlMA5y0oLsUDKkclZJTn4aIQhrithpG2XheSaStGb1DHQGwsXhn9v23qs6YpUvOagpNG0vbAyZT5n4cH9r2A2Y8H1FrzAPd+7vKcrUlJRBKBiLWIuY4p98+CVtI66I+8PfehDuPnmm2HbNu6++24AwMGDBxseDyaRtIrFKkjqWaAM2LF9CKOnD8HzuEiZcFHaxj2IcV5FcxwBIQAz8wXfv8SrWivNgYoFPM8DvGorjGWPW02qTZFpFIKFVI2mUqiMwuUcBbMyl00JoEcUMewAQK5gI50T1q26xnDxYBI7r96Ev/zn/w+G5YSVM0GbPCGoaKRyOQel1K/LFzC/8qe4GQdY+M7kDRuzGbPkpFuPsVczaWgM2uuvvw7GGIaGhsK/LcvCG9/4xqYdYKcix6C1B8X5yrzhQFMp+nqiYbQajOwqLtUrXqCsNYtx37PHsP+FMXjcAyHEbyYhWNOlQVFYxWOLTai8Kt7T5xuMEkQ0Jib4VGnbZ5SgK6YhHlVg2y7msxZsxwNjBBv7EwDEZ6cQkdp69cS8Xw8uroCC9n5KgAvXLYwYOzGRCa+SXM8LI3ZKgL6eqEhRcWDzxmToDyM8u83Q0Mt2vJI0Vi2aPcOyoVLBN7zhDQAWooGLLrqo4SeUSFaL8nyl63GkciYYI4jraoUXCFC/qdTOqzfh4sFkaKCkMloylzFlOvjGvsOI6Uq4r9uvvxTfPXCkZDHxfENTKRRGYVhuVV+UaIQhEVVBKUXesDE+kwcBF3M1gZJBwo7jYjJtYoCLKyjbH4vmuB40lYGDgJWNdA/ElooFi/AkygF/Eo44AQfrIUFTkO144VUWoaKZnq/WSm8N6hbvl19+Gffeey9effVVmKZYEOFcOIG98sorTTtAiWS5lC9CJuPCj9qwPBBUeobUqu2t5XES/Fc+ET1v2MgUxKBay3ExnTJwZGweiagCz1va42OlSMZUmI7nz3rkTc2FL4WuiRrtV7IAACAASURBVM/AsNyKSJsQIBFVEdNVcO4hb7gldq0Ld1z4DAEgnbPF4GSVoTshZmMSP6ru6YqE9dzFTVOcQ9S7+6ZXQY17MMS4+ARsAjgyNo/br78U39h3GKbtQFUokvEITMsJq2daRd3ifdddd+Gaa67BF7/4Reh6ZR5QImk3quW4u2IqTNvDP955ZV37WGoeZJCOcVwP3QkxvSadt8E9IZbF6ZFsYXUX9w3Lxfq1MViOh1TGWLRcsBkQItryXdcrGcoQoCkUXTEN0QhFtiBmQIp2eoaehIZ00aT2wBvcdjzomnBadFwPa/01Cct24bqiht31XDiOhzvesyVspjEsB7omroIcV0wUchyR8lKY+JxIWZQerIds29yHO3deVpJWE7X4raVu8T516hQ++clPVrxAiaRdqbUIOeDXSddDefTuuh7mMiZ+/OxxKEysirkcyJtCQIJ8evEV9VK50WZAfVOnvOHAMO1VFW5GCVSVwrY9FKo0scT00gXIgsWhUArXP+EF2ykhoExExOt7Y0hlTZiWC+ZP2lGo6F5NZU3Ml1m+zmYMDL98Bq+dTiOZ0NCn6KFdAQjBmq4IHMfFXMYCwKEwAsf1Suxnixesy9NqrssrhlesNnWL9/XXX49nn31W1nVLOoZq/iOu6+EP33lJzceM+CO1grZ3j4vhtBGVhRUHQcqjfNExb7o4MZkN7UWB1gg34OdmwaGrFNOpyqi3GaiqGDBsWi7cssoRSgm6/NSIYTmYz5iwHA8KI+jviWJyvuDPtgQcx/MXgDkIJUjGRBojsMjd8+dvB1C6CFyMSIsTDL8yhYHeaEXtvuIP8ZxIifr5YNRb1k91TacMkLQJRgmu3DoQ7rc4rfaxLz8DDh4Or2gFdYu3aZr4y7/8S7z1rW9FX19pXnDPnj0rfmASSaNUy01X87sGUNG4AQB7f/YaTk4HDRgAIKpIZtOmGEuWt2v40C3AOUAZAF+7WrqkxRG+nmYSUSk4R9WqkYjK0BVXwfwZkBNz+ZJyQ8/jmEkb4XQeSj0EBXAeB5IRRYxvM2zRSs95SSnm8fE0fvzs8ZLnDOq2AbGoWXzlpSkUcxlTeHhT0UHLufAtj6gLfiuaIsbGPXfoTEnXbMC6NTrGZwsr8O4tn7rF+5JLLsEll9SOWCSSVhJEYaJt2QoXCQFxGT+4NhaK9L8+MhJ6gkzMFfD//vBXcD0xQivA9QCFLcx1nJpvIMfZBlWAzY74CUTliONymFUWIOO6gnhUg+N6yOZtGP7UekorT38Los9L9sG5qH3nKCBvuAA4epN6ybrDc4fOVIw+K/73XEbMBw0WIcXVFwdjFKpC/fI/wOMEBdMBowSKItI0gChHrOZ5cvM1l+DB/a/U7U/eDBqq85bUj6zzXl32PHwQE3MFpHJW1UYSQoCumIZkVAGo8AQJTKAarbluVSqkHWCUgDEK23ErqlcURpGIiqnsBVMMFy5+b3sSGtI5K8wTB5PcaylQ4OdtOx5URSwYG5br12+LdvZoREEmb1edo6kpxB/tRsOFW9f1YFoueroi4vP3G28IhFUBYwS9XZFQ7DnnmMuY2NgXr6g2Ghmdxv/zg5Ga71Vb1Xm/+OKLePTRRzE5OYmBgQHs3LkTV111VcNPKpEsNmJsOYiqD7t27S0HDNNBwXCwtjuCiXRh2f4c56Nwq751gO14cL3SfLauMXTFNRCIhcZUrtRnhFECTaXQIwoyeQuKP8+SEOENU+vkSSnB+rUxnJzMIhphoQMhIYDLud/+Xr1mPsifR1SKgulhbCLrd2VSAATpnBVWBwUNQAAqziTpnAXDdEta7M/WZ32lqNvb5Ac/+AE++clPor+/H9dffz0GBgbw6U9/Gv/+7//ezOOTnIMEKY7yH8TZTI7RVQrT9moKK4e4ZLZdD2dmly/c5xuqQsPot/g9owToiqtYvzaGmK4inbUwOVcQaY7iShsC/N8f+G/42M7fQk9cExUkhEBhwselWsRMiLB4DYYvU0qQytkLHi9V7AXKURgFOEfeFD7mjIlI3bRdeJxjPmth7EwGcxkTju9TIyp0RIrsxEQGqayJnOEgEVNrTlRqJXVH3t/61rfwne98B1u2bAm3vfvd78Zf/dVf4ZZbbmnKwUnOTYLyO8/jmJwrhJfBe58ZXdKOs1qEPjI6jXQTa6hbXRK22gTOgY7rVZzkVIWiK6aKAb+Gg8m5Qk2/E0rFNJviJqiR0eklc8XF9fFnZpa34Gq7Ra3vlIJzDup3VAY15xwLz1PstwL/3+mcJa4q/GqXgFqGZatN3eI9Pz+PzZs3l2zbtGkTUqnUih+U5NxmOmWAEGAuYyIYOuC4Hk5O5fDXX/0/2NAXDxcX6xkNdmB4TMwzJKio9y2mfGGrXs4X4aYUYITCriLa0YiCZFyD53FkCzZm06W2s+XvrRgAwbCxL175RA30itRz4qz2uRb/7boeGCXwOK+5r2AzKfpbtOITWI5Xl2HZalN32uQtb3kLvvSlL6FQEOUx+Xwee/bsweWXX960g5Ocm/R1635tbjB0YOFHlSnYOHoyhft/dAjfe+LookOAAwI71yCHWQu5NF8dhYmFQc9DiQ0rpQTJuIbBtXFEVIaZlIGp+ULVxpvy95YAMGwXW4Z6SrYHJ9p6qefEWaWApWIfHucVKZryc0ixcAMipSOsDKoPI17JAdHLoaFJOp/61KdwxRVXoLu7G6lUCpdffjm+8pWvNPP4JC2mOG0x2J/AdZdvOOuBuKemc7D8SeIcpQtWnAMKRdgs0d+jA2V1uqemc2Gdtq5SZPIW5jIGVIVVe9oSzrcUyGIoTCwcli8YaipFMq6BUYpswcbEbG7p6BeBZ4j4DEWTEPDESycrpgutZJO2yJsvfb9q96F+mUlwW/lLJATY6F8FVusVCK4CW0Xd4j0wMIDvfe97GB8fx9TUFAYGBrB+/fpmHpukxZT7esylC8teaS/e15quCPKGLQyBSGU0RAjxJ9OI0V6EiOoAy/HC/Oqx02noGsNcxoTncRCKuhYhz3fhJhCLd2KCPS/ZHtMVdMU1WLaHTN6GWcWPpBbBnlixUx8H8qaD+390CFdc2oe5rG+tukIfAvU7JVHFdKueck6PizvVKll0XI4tQz1VDcv2PHwQjLV2ks6i4h24BgILNrDr1q3DunXrSrbRFo8DkjSHcl8PXWVwXF73oNbF9rW2O4qZVAGMUhBCYNpCKJh/Dez5EbjtepiaK1T8EC3HE5UIRHhfEHDA99WWVBKM+iqPtBkj6Ipq0CNiAXJqrrDs99D1AEIqH2s7Hl44PIlYhC3ZoVovhCx8R7g/Vrn4sItPJvBLEilBSUNRINZXXTaAE5NZnJkrhO8NpULU97/wGxwZm69YKK9merbaLPrsb33rW3Hw4EEAwGWXXVZhSiUtYc9tFps8c7b7ikYU0S2XMRHRGCzbDet+xY+QoyseQTpnYrEeGo8DFMIcioKD0doCfj4215Qs1BWFlsJGVQtbw+ezKzP3crF1hXyVSTn1Uv7ZBc/jeaKKRFEYIgotqWIJ1lO4B7g1PvlEVMFc1oJhe9jQFwchpGRqjsd5OD4tGddgWC76unXoqvDKaSWLivf+/fvDfz/11FNNPxhJe1HuypczHMzMF8A5KkZ9NbovQETMmzd2Y9dtb8E39x3Ci4cnYTkeCAFiEUW49tUhua7rt7YTCs5r/6DOJ+EOTmLFJzJCgHhURUJXYdhuyeDidqdm/b5f8x1RKEzHC78twRUcgWjoqUW24GD0VArr1kTDqpIFDxsSttDnDCe02J3PWaFXeCtZNN8xODgY/vvAgQPYuHFjxX9PPPFE0w9S0nxGRqex5+GD2PXA89jz8EGMjE6XDNDNGzYmZ/NwPY7uhNpwY03xvqqt2r92Oo2erggiKgUlwu/ikg3Jui7hORBOUDmfsybF3iHF75vCiBjcuyYGcGByLo/5Jgi3Qol/wj07yvdQPhiaYKHjkwOIRxTkTEf4lFACTaGIR1UwSuo6YRNCkC44yBdsmLbw+Q4GDCfjwlec+FF8UPUU05WSwRCtoO5k9f333191+wMPPLBiByNpDbU6HgHg9usvRU9cw3zG9EUggnhUa7jTbNvmvnBfecNBT1zD7ddfCgD4xr7DmE0bKJgOuhMRrO2OwgPHC4cnm/aazyUCnw+O0gHBusawrjeKZDyCnGFjYjYvbE+bcIIjBFiTrJzivpz9ML/7MhDxYOoN/G39a6LY0BfHmq4IVIWGpleAeB9iuoJcQSxw13MuEdNzhBgHXaCMihNeNKKEYl48gk3zn7eVLJlxf+GFFwCIxckXX3wRxT5WJ0+eRDxepQhf0lGULyZGVAbT377rtreEo766E1rJYlej+e9g1T4oGfz6o4dgWkUt7Y6HKT8tI1kaSgk8j8MresMoAeJRDTGdoWC6mEk1brzVKAQiLRbTVcxnrYYWPKvlshVG4PGFiiPGKFzXDR+ga0wMH2YEN145hP0v/Aac83BEWTpnhXte6liSsWD8mhhcce9Ht4fBDKWiRV+koLySSDto1Gllp+WS4v23f/u3AISf99133x1uJ4Sgr68Pf/d3f9e8o5OsCvUsTPZ168gaNlhRZVE6Z8GyPXziq/8HriumkQTdkbVy4cEPI284MMqmu8hKkfoIatWLo2yVESQTGqjvmz05Z63aSZBjobO1OLgL5kMG9CS0ig7Y8kNUGMG63hgmZvPCTVBloT1rKmvCsj3kjdL5o0fG5jExJ5qHpucLFW3utUjGVKxJ+mPUFpmaM9CjI11wQjEvHlwd2A63giXF++mnnwYA7Nq1Sw5dOEepNS6suAV4x/Yh/M+nXoNDxDDXdM5COm8hqinImw7AAdPmmJhbvBb8wPAYHJdXnRwuqU1Q6BU0wATEIgqSCRWm5SGTs1tWAWE7YoSY5/HQG8XzOCIaRVdUgWV7/igza9E8tOtynJrMhhUyEYJQMFWF4k/evaXkezUyOo2pubw/zmxpCBGBSURliEXVCjEOKK/tXmkXzJWg7kLFj3zkIxgfHy9ZxBwfH0cqlSoxq5J0Hju2D+HB/a9gNmX4/scEusbwR9cuDN/YtrkP3d0x/K8njmA6ZcCyPXTHI8ibTrhQFhja93RFKmrBgy//0RPzdbnCSQSBb0dxFE0pEb7ZmvDNnpwzappDrSqcg4Cgu0srSTGYtou+7ih23fYW3POtF3HKn+5TfsRxXUHOcOB4HAoVV/d508WpqRwGe6P4o+svrfhOPfTkUWQKzpKds9Sfe6lrop79QzdUTlhaTIyrNeq0mrrF+zOf+UzF4qRt2/jMZz6Dn/zkJyt+YJLmU9yunjccf4WIAyBVzYOu2LoOF/WJS9hdDzyPmK4gnbNCbwlKRMVHecqluLtSVVjYkCOpTTXRFjldDYQAuYKDdK61Y7jKUZiw5c36tdZdMbUiqjVsD2u7I8gUHJj+QqPwfyJh4OB5HJyQ0KbV8zhOz+Sx92evAShNazBGFx63SG6fUYJoRPFPJHpbinGj1C3ep0+fxoUXXliybWhoCKdOnVrxg5I0n2JBDcZQEQC93dHwS75YJ2WQalH8OtjAUlNhtCLlsvdnryHlL2RVG4MlWaBctAkA3Xf0My0XqawFpx4zjxZg2aJOOhphyBZsuK5XsQbS163jzGypzasHQGPCgpb4ZSYLlSbi/xklmJw3SlJywVpN+B1cxDXSdjycnMwgHtVKrig7mbpLBdevX4+XX365ZNvLL7+MgYGBGo+QtDPFFSaOP8cvmDACLF1JEtRtRzUGDrHYyLmHaEQpibRGRqdxeiYPj3NQUrqgJamEF4lVd0JDX48OSvza7KzZtsINBPX2HBm/ySUZU7HrtrcAQNhDMDUvRtU5oTEZ4Hni+0YJCV9/sfdKUDYYVJ4E5al93Tosx0MypgbXi4viekDBsLD3mdGSfoZOpe7I+0/+5E/wF3/xF/jTP/1TDA0NYWxsDA8++CA+/vGPN/P4JE2iuMIkiFyCtAewtGdxMLn7iZdOwnW5P2KKYd2aaCjcQX6TA4te0p6vVOsd1VSK7ngEjuuJkWId0gEZwP2TtMdFqmPfs8fw3KEzoblZMFxBVG4AqiIqOAqmi3W9UcykDRTK2uiDk4KiMDiOi9FTaex64HmRvy7YiEVVrEloSC+yYBtM5rFdYHKuEHZKtstIs+VQt3jfcsst6Orqwt69e3HmzBmsX78en/3sZ7Fjx45mHp+kSRRXmCRjKmZ9tzeFkZLux1qMjE7juUNnkPSjw/Lc5oP7X/Enf0vKCUQ7eG+CxpJYRIVhOZhJ178AqSkEtsPb6n0mfgStMIInXjqJZEILK5lcj4dNMOt6RY+IwghSWQv3fnQ77vnWixi38xUWrq4HxBWKuYwFRgliuiKEmhAoBHBAsGlDMvz+3f/Ir2D7tglBq3ywT9vxYFiuSA8CyzJaawcassV697vfjXe/+93NOhbJKrJj+xAeevIoTAiTqC5H+DdEVIaeuLbk6vtijT0ARNcbWf70mnOZYse7rpgGxoC84WJqvv4FSLE+oaO/W8erJ+bbpnzH9bjv1crRnYhgJmWgT1m4giNEpERcy8XYmQwURpBMRNDvX+UZtoeN/QkUTCccDBykQ0RHI0dPlx62qQNAIqbhXj89E7B5YzeOnU6HJmfljUqzaQO9SVF9cjaNNrWcd1ZjZWdR8f7xj3+M973vfQCAvXv31rzfzTffvLJHJWk65Y0I63tjDdWuBqb6E/4AV4VRaArFzLwB1zu/PUaWQlMpkjGRGskW7GXlsSkFVEaxY/sQXl2hRpHA1ZEvMi5sKTgX3djJuAbGKHRNCQ2fhIf7wo45ANvlmE0ZeMd/E7MBgivCmC46H/OGLWrDOQfnPGxZD6i1NrNj+xAe/OkR5ApWRRTPfMOzdM4CpZG6R5pVq/VuJUu6Cgbi/eijj1a9DyFEineHUi7gQdRcj4DrGsP4TA6AsBx1XBeG5YJRv+Zb5rhLKE6N5E0Hs+nCWZ3gKKH42B9uw0V9sRW7uuFcOPDR0Jp3eTslhCCTt+Bx4Ia3XYDnDp2BCSCds0uqaMIrEEZwZGweO7EguqLnwAOjFHpEwR3v2YIDw2OYz5U249Ram9m2uQ93vGcL9j4zipNTOQALk3PE83PYVZpzalE+mCTIl9d0O1xyj2fPouL9zW9+M/z3d7/73aYfjGR1qfWFBOoQcM79iKb0a+p64ochEYjUiOo3nDgNpUZqQQngegvh5Ia+OE5N5Vb0XSc18gHlLe/lqH5nJaMUyaiCnVdvwsWDSRwYHsOkXyKoMDF0GhALnBwojZ7DkwYp+bs41acptGpnZDFBLfeehw+G6zt5w0Y6b8N2POiqgtvLGn9qEdaUu5642nS8MJfeKhYVb8+r73JOTtLpTBbLW5d/oUdGp/HU3hGMT2WFIU+6dp5QSrd4LxMxFbYjRoqtpG+L5y8GPvLMa/jkzdtw8zs348GfHgnLPM+GoEmm1k+6YtxYUdRPqfC2EfdbsEAoFtGFPLS/P/85g+j5wPCYqB5JLkTTQc9BUHbYaJt6+fpOIML1CjcQnFw45rLWQvNQixdzFhXvatNzqiEn6XQmxeWCBdNBOmfBdlzMzBcwMjodfrH3PXsM+18YE+Va/tBa0+qsErbVIBgioUdE2/pMEx3nHJdj7EwawEKK4LuPv4qZ9PIm4giLA3/yjL//ahQLr6pQ9CQ0ZPxIViny3bYcD7rGwkHRfd06tgz14PRMXuShOQmFPxpRwuh5KZO05XRGlqcHl+NN0tet49jptC/cwVUD0MpQZVHxLp6e88wzz+Dxxx/Hxz72MWzYsAGnT5/GN7/5Tdxwww1NP0jJylG86JI3HNHOrjLMpg0IP2SR67z/R4cQ1RiScQ2nZ3IgvleyZXsw7ZUZmXWuoDCCRFQDIKLNnLE6NqGZvI1dDzwfitGX/+J3w4lEjUiKwsTnXu9whjVdYjyd53HMZkzoKoMFLhq2fKOnYNKM4/EwJffcoTO49vIN+PmrU5iYzQMgWN+r46Pv2xbaLtRjkrYczrYdfsf2IXx174gIZkMfldrvch0x71lDeJ0tb9dffz1++MMfIplMhttSqRQ+8IEP4D/+4z+adoCdysxMNqzV7e/vwtRUpsVHVJrj1hSKTN5GKmeWGNkHl/eyvG9pIhpDXFdg+2WWq20ORQlwwUACmbyNdC6oyAAoI9BVhlwN50ZGiT/lXVQF9SQ0ZPMWAu1eagH0ovVdJVdqEVXBDW+7AEfG5sPINpu34HCUiHBg6RrTlZLot/j3Uf4dDfLajaQ4msU93x7G5FzBvwIVPjOTc9XXMBgl+Oaua+red39/V8PHU3eddyaTQaFQKBFvwzCQybRelCT1UZ7jDpzf5jMmAA7ImuwloQSI6So0laJguphdZppiJVAUivGZfEXE7LocOVc47XEU5aQJQCiB4gs3oxTb39iHuayFozkLCiUgtDICL167DMacRSMKohElzG3vvHoTdhY9JjAuC8gbNjIFG+AcfT16yeL4dUXCtRIpjmZx8zs3V5xYarEa3vR1i/f73/9+fOQjH8GHP/xhrF+/HmfOnMF3v/tdvP/972/m8UlWkGr5xK6YGi50BQ0UkkoURpHw/Z9zhoNswV76QU3GdXlFtF8stOX56e64ilTWRldMqxDF4oqMk5NZiCk04rHFz9AVK53bWCulUZ7+SOdtgAOqwsIGm2Bx/Lor31Dy2HZ1/Kt2Ygna/VtBQ5awQ0ND+OlPf4rJyUn09/fj9ttvxy233NLM45OsAEGeO5W1kM5Z6OmKhI0OluNBYcRvFKGQtSKl6BpDVBfDBFI5s62uTKg/Ib6YWodnOx4cl2PzxmRYtVFMcUWG4jv8USou/4VfiSh5pFTYJyxVqhfsL22J4dWm71zZpS2kURodo9cOlJ9Y7vjS0y07lrrFm1KKD37wg/jgBz/YlAOZm5vDrl27MDY2Bk3TcNFFF+Hee+9Fb28vXn/9ddx1112Yn59HT08Pdu/ejYsvvhgAVv22TqHYq9swXTBGYPuhVJCnY0xcVweeJquxyNIJBKkRhVEULAdzLUyNlKMpNMxVN3ommc9aSOhKSSVRQHFUmSvY8DyOREwt8eQOBkbXk9IIjMv2vzgG1xMeIwRAtmBDUxmiEWVFFiJbDatyAg22N5u6Fyw55/jBD36A/fv3Y3Z2Fj/5yU/w0ksvYWpqCu95z3vO+kDm5+fx6quvYvv27QCA3bt3I5VK4Ytf/CL++I//GB/4wAfw3ve+F48++ih++MMf4t/+7d8AYNVvq5dWLlgWL/rMpU1YtlszIiNAWP7HfV/NdoouVxPFb1YK8rjtOFOTUQIOjpjGYLuiS7DWYdLAG7zo72RcQ85wENXYovNGv7nvEIZfmfKtfAkuvSAJEFJTtKu1jgcdkUFzzGzGBPwa9TVJPTwhXHflG9piQX85/Onup6u+/5QA3/rstXXvZzkLlnV319x3333Yu3cvbrnlFoyPjwMQHt/f+ta3Gn7SavT09ITCDQBvfvObcfr0aczMzODw4cO46aabAAA33XQTDh8+jNnZ2VW/rVMoXpi0XW/RRAghoiXa46WLWwDCZoRzHV1j6E5oUBXhd7HSTTUrCSHAzrdfjD/9g9/Cmi4dA70x9HVHqn5OHi9No1BKkPGjatN2w0XDck/rfc8ew/CRSRAiBhtzznHkRAonp0Qu/NjpNL66dwT3fHsYI6PTYbAwMVdAJm/h1yfncf8jh3D8TBqaX/sd01X0dkWgMArb8dAT19qiguRs0TVFLAQHbfdE/GZ0rSHPv2VR9zP86Ec/wo9+9CP09vbi7//+7wEAF1xwAU6cOLHiB+V5Hr7//e/j2muvxfj4ONatWwfGRK6MMYaBgQGMj4+Dc76qt/X29q74a20GwcJkwVy6fC2Y2lJcmRBc4moqw7reGH5zpjOjosUgBIjrKhgVczdT2bPvTmwmwWW4pjDsvHoTAJTMFNU1BYQAedOpeuVE/ZmQ4DzMldfqqH3ipZMgIAuX/kScBbIFBwV/dBkhBJP+sOmIQuG4HJm8BYCAUTGazLE40jkL3YkIACHgjFH0xLWqefdO5E2be/HC4cnw7+BK502bm68VdYu367qIx0Xra9B1mcvlEIvFVvygvvCFLyAWi+FDH/oQDh8+vOL7Xw3Wrk2U/L2cy6LlMtifwFy6gLnM0rna8soETaWIRxTMZS0Ylus3U5w7KIwgpi9UjbTF4N4lIESkdDj3YNhu+F3q7+/CFVvXAQA++j+exFyqUHXFkgDojmmY9ye3E8KhKhSqQqEwgrmsVfL9NGw3HAAMlA0/BvFH2YlqlIjGMDFbAKOi0SfoPmR0oUU+EVPFicJ2AQ7cesOWit/Dav4+lsvPX5nAI8+8honZPNb1xvCH77wEWctDIqYgX3AQuOHGogqyltf011S3eP/e7/0e/vEf/xF33303APHB3HfffbjmmvoL0eth9+7d+M1vfoOvf/3roJRicHAQExMTcF0XjDG4rovJyUkMDg6Cc76qtzVCK3Pe112+AQ89ebTujrliLNuDZVtFf58bw4J1jSGiMZiWuyIeIKsFQXB1JMRSV1n4XSr+XmlU2KuWE1xRpfMLpY2ci5JQYYlKsCahlXw/dV9oGRX7K23aEWsjgb8K9W+0HVE3HiyheZxDVRgiKkVCV0ty4Rf1xUqer12a2BajeB1JVymm5vL4l72/hGG56O3SsTZJoCoiJcQ5x/hUtqHX1NSc9913343JyUm89a1vRSaTweWXX47Tp0/j05/+dMNPWot//ud/xqFDh3D//fdD00Q96dq1a7F161Y89thjAIDHHnsMW7duRW9v76rf1s6MjE6HcwIPDI/hd397/YrstwMC05qI1IgY3ut5HCn/aqKTCN5+1+Pg4LjhbRcAEJ/33Q88F85iLBS9ruL0N6UEmkL9yFhsY1TcZz5jVi31u+FtF4CD+4vYC4lzsVi60BqewQW1UgAAIABJREFUjGuwHA/remOghIb3D/xRohGxKLrrtrdgz5+/Hbtue0vH5riL15GCOnVhcMUrmnVWq4qmrmoTzjlOnjyJwcFBpFIpnDp1CoODg+jv71+xA/n1r3+Nm266CRdffDF0XbzwCy64APfffz9GR0dx1113IZ1OI5lMYvfu3di0SeT9Vvu2emlm5D0yOo3vPXEUMykDHIBC/SaMLr2k/nY+Y4XlgbUmfpyLdGJqpJyIysAoQlGOaqIFfefVm8IoMKIxUEJgOR4mZ/PQNYqC6fmpkQURj0dVrOmKCFta3xLV8QVnsDcKw/YqKkj2PXsMT7x0EoblQNcUvGlzL05MZnF6Jg+FUXQntBJ3vuGXz4SeKoFBV0yvz3K1EyLvoGO02KiPc475jImIJoQ8rivIGc6y2vmXE3nXXSr45je/GQcPHpT2r3XSqHhXK7Wq9uGPjE7jG/sOI29W+lYkYwtWmqbtYnI2X1FBci4TURl0TVzyd1qEXU5XTMXGGqV8QTdkIqqGqbHxaTFwoKcrgnTOEk02hGBgTRSJqFph9pTOWcgWbKzt1qt6iNT6PtaaJhOk6QqmC9sVXtc3XjkULq4uRieId3EHaoBpu+HIwAPDY5jLWliTWHqEYDWa6m2ydetWvP7669i8eXPDTyJZnEaGIhwYHkPBF+4gBgi0OVOwoUeU0DAoCDjP5ag7iPIYIyiYLlIdlM+uxdouDV/+v66ueXs1m4PuhIaZlBHmXMWQA4Ir3tiPiweTFUMMsnkb8ahSMaDgG/sOh9NvHJcjb9iYyxgYPZXGjVcJMa52MhHfXRXd/jq9abvhdJxzgcUGQQRdl6t9EqpbvH/nd34Hf/Znf4b3v//9WL9+fcnlgxyDdnY0MhRh2k+VVCu/5hyhtWtxtM0RmMc36QW0AEYJ4roKj3vIm25HpkaqEdUo/vuOLYveJ/AN0YqiQMYoepM6UjkLrsehMoZohOG5Q2dw8WASt19/KfY+M+pH6ASu50FVaNg8QwAwApi2g/0vjiGiUv/qZaH0b/+LY7h4MFn1O7mYB/e5QDsaZtUt3gcPHsTGjRvxn//5nyXb5QzLs6eRL39ftx7mumsJOOeVXXce9832O3yGgqb6Q21tF+l850fZxWgKxdruaCgItVIXQRRoWE6Y83ZdD7pKoXTrFZf2B4bHsGWoBxNzBbhcNN54/omeUhoOGPC4WDuxHA+5ggPGaNj8Q3274GoBRbM8uNuNWoZZwec0m7XQu8y0yXJYUrwLhQIeeOABxONxXHbZZfj4xz8eVoJIVoZGvvw7tg9hbCIrmjFq7E+MlvI77Iru1KnCTQBEdQUqo6GP9LkGAbB+bSwcHVZPKu2pX5wOx9Lt2D6E7z1xtGoQcHo6h9FTaXicg/nzLzkA7ol/B2IuKkgiSGUtmJ5b0rXJIabV15rU3shsyXOJ4s+pK9rgHNizZEnxvvfee3Ho0CG84x3vwBNPPIFUKoXPfe5zTT2o841GvvzbNvfhzp2XlVSbaArFe64cwpGxecznLEzM5CtaozsRRkXVSDChJu9VHy5wLsAhFhHX94qmt6VSads291V4gvR1j1UNAhyXw+OiDhtYuGIjDP5tomknGRduk5btwrJduB5f6LyFKP2rNak9OOZ2SSmsFtVKCGulPFeaJatNrr76ajzyyCNhi/jtt9+Op59unQ1ip9CsapOl9vHg/ldKGjI6EU2hiEYU2I6LguV2TLVMLYe5Rh7/B2+/CEfG5nH0xDxUhSEZVxHTVb+F34TteLj0wh7s2D5UId61ptAYViDGC141nHO4HNjQG4XpeBWPuWRDEj8/Ou3nzymiEQZVoXWVwDX6Xe6EapNaFJcQFjfp5A0He/787XXvpynVJvl8HgMDAwCAwcFBZLPZhp9EsjSNGtDX+oEk4xpypgO3A4cqxCIKFIXCtDuzakS0sZOSgRaECI8Y0YUoYtha+u55HM8dOgPGROu643qYzQhXyJwhPEtUhYWX5t3dsXD2I1A7Aj4wPBaaRnmchIvXjBLcfM0lVR+zbXMfti8joGikcupcoJX5/iXF23VdvPjii2Hbq+M4JX8DwFVXXdW8I5RUUOsHcnw8jYnZgj+xhC6rPX61oZQgrisAAQqGU7V+vVNY0xXxq31EhCt6Iji64xp0jYXR2Me+/Aw4eOgDAoh2ctfl4SV4d0Lsi3PR2k79rptkXA0vzR955jV88uZtJcdQKwh46Mmj6IppyBu2XwNOceOVC2Jc/phGoufyodaaSv101+KVU+cCpUMsxKCK1cr3Lynea9euDf1MAGHdWvw3IaRkyryk+VTLh6ZMB/tfGBMt0Fw4M7YzqkIRiyhwXE+Y/3fehUKIcGCkmM+YYJSCEPFiRIRLfA+RSBiNrVujY3y2AA88rMHnfKGVHRAzInuTOlJZE6bNoSg0TKEAIrU0WadpWGlETuoS43qj5/L7zmUMmI5IIRQf67lUNlhM8Xt7Nk06y2FJ8Zb57dZRK/qpVlqYMxzYrgdKSVvXPEcjCiIqhWl7HZEaqac+vium4o4bt4bVHgXTwWzGhMeFONtlC9A3X3MJHtz/CgzLheP7rXMORFSKTN4OB0NHIwooJUhnLSQTWsWl+UBv/Y6ejaTlGuk7KL+vqjDYjod03g7F+1wsGyym7Zt0JKvLYtFPeZ6tYDphioQSoN1i7mCsGKMEedMJO0TbnWBxLzjZ1CIQ2+BzCUQr6FrU1VKPj22b+3DHjVux92ev4fRMHqrvFWI7Yk4mgJLxY0HHY3k10h++85KKY1mJhe9G+g7K75uMa5hJFcKFu/OhbLBVdd7SqKRNqeVidmB4DDu2D8F1PZi2G5rjAKK2u50mwAQGRvGoirzpIJWzOiIPH8D9Rb0/f99v17wPAeB4HA89eRRbhnqQL9gYn85hNm2CexwJXcGdOy+rOjMyEdMw0BvDYF/cby2PIBnTYFou8oYTTpvZefUm3H79peiJayXbAy/vgOCEL04gSs1JOUvR163X7ZRXft9oREEyHoGuspJjPRfz3UDpe15c593oe74cZOTdpiwW/ZRXFXAOdMUU5E0XvA3EW9dYWC+czlkdU+pXDofIQx8fT9f0hyF0obb350cmF+ZhBT2wi0x1nk4ZIASYyJhwXA8Ko+iKicHH5WVm9aQ9Gkl3LEYjfQfV7qswgg9XOWGdi7SyzluKd5uyVAlS8Y/5nm8PY3w239LyQEKAmK5AVRgKplPXFJ9OgHOOR587XrPhSfUXGDWFYnw6j7U9OtZ0RcLbg/b0aj9kXWMYn8mBEApKRInhbNrA4Nr4so51pTxGGmm6afcGnXJr28BWd6Vopa+LFO82pd7oZ2R0GjNpo2XCzRhBws/x5gwbuUJn5LPrxXIWf1+TsYVFOYCH1SIBi/6QeeBQw4uuTgiWe6mykjXHjSxwNtqjsFrse/YY9j1/PJzHadou9j1/HABWTMBbWectc95tyrbNfVXznNVW+1sh3Jr6/7d379FRVeffwL/7nDP33DMQghb1jUvNr7yxFCoIr61AxZSfJthlhMYiXUXt0lbR2lasrVqpr0KXS1prL65S7aq0urQ/rQWkouBbK6uKlRaoFxZRDJIbuSdzn3P2+8eZGWZyv+ec5PtZyxbmJJmzQ/LMnr2f59kK8rPNtc2uYBQdgWhGccpUklz5UHoc0S5grvEmc3uLCrzDOlUlHDOQn20eamBIszNgfrYT4QE2RwfScy9kInOOrejlA5+YabNSIpZoAwCZeHyMTOb3nDNvCxvKjKa5Iwx9gnK6k8HK7VYRCuu2WhoZbk/z9JTL5EQ4PQVTCLMTX1tXJHVoAoBhNWhKztpmFZxu9JZs8D8SVl/CmGihaDyzNXKi308oOnbvDi2d503W5s91ozMQhZHoFDcWegY6RRHI8pipfoFQDK0d9lkaMTNwzD/n+hzoCPTd96XnmAfKlVcE4M/zQFEE8nxOfK/6sxnXhxo8x6Mbn1WXMKYy5nnTiJQvnIPf7nof0fjYFbwkw5ZDU5DldUBPVEFaKQ1xqBShIC/HPC7M43akys0Bs5zZXAs1AAFoiQN2ey5Dpb8AqKpAQbbZfU9K2Ws9e7hrxUBmsL9gTh52v1mLp14+Ou1nzqPV39aBXbOfemLwtrmyEj+WzZttZkSM4IdS9LE/5nap8LkdCEd1tHdFbP3D7nGpmJHnwQVz8vB+bTvicQNnFbuhx81ue8FwHFkeBXFdIq4bcKgKDEOHU1MT/bXNI8L0xJmYBdmuMa0cTA/2062p03hzqErqAO6ej08FDN42d6imGW8caTBPOhlGkE0G7WRgVoR5yrjLoSIQjqNlivSi6ArF0NgWQktnOLXhm/729rafvY5AOAYhzF/oSFSHhLn2HIrE4XWb/UQ6uiOp02XGq3JwrPK0yZTsIZPo6ZVqQ1CUP7aZIKywpBFJ/sI7NLXPY9HSpV9PBm1NFcjPdiHHZ1b2NXeEbVO+PhRSAt2hWKo6tSczQ8b81Y7rMmPdu6UjhGA4hkhMh0NT8N8Xzxk0+2c0mjvCw0s1pAFdvfRc+Nxa6og3RZgdLJNtcMfCoZpm/HbX+/iwrhMt7SF8WNeJ3+56nxWWNLhkkYCaWK/tS2qWnfaYy6Eg2+dENGagM3Fo7VQVjxv9BkFVFUAcfaY5qorZKbDkjNzUbGo8T0OfLmdBTpRkD5nxzL557rUaBEJRCKFAUwV0AwiEonjutRpWWNLA/LlufHKqG4Fw5mxZJP4nfWlEAPB6NHjdDgQTSyN2Xs8eKgng5KluuBwaDtU0Y3naqSVn+H1oaA2ioztqFrQn3mI7HCqK8j0IhuO9sknGy3Q+C3K8jHf2TWNrEIBINDETUISELkXi8fHF4G1D6Z3j3E4V3WlVjckWponzZM3HFIEcrxOqCgTDOk61hSblvieVEHA6lF4n0CQDpkNToBvSfJcCs3KyMxBFNGbge7/cPyGZH8zTtiOR6t+eeiQ5cxpnDN420zMjIXmSerKoJH31w6EpyPU5oRsS3aGYrTr6jSWB01kikZiecQJNMjA+91oN6poDUBXz0AOzJ3UUuT7XhGZ+ME/bXtIP1lBgVnNKCcwqYHk89ZDaoFQVBMLxVPBOLyrxuFTMzPfA49LQ2hVBW1dkSgXuARr19WIeRyYGPIGmrMSP+9cvxK1Xl2Fmnhsd3TF0dEdTh8r2bMlLlJS5KSrHZVO0P5x520xjWxBSAk3BWEbAVgSQ5XHC7TJT/U61h6bserYiBPRBBjcjz42uxGEIWloGx2An0ETiBgrz3ObSkgRaO8MoyHHD49IyNj3H4tADsr/0TVGWx1MvUkq8X9uOV94+gbauzEpKTRXI8bmgKEB3MIbOoPWPFhutoWTGeFwa4rpENB6Bx6lm5Gb3dQINkJlnrWkK4nEdug6cagvBlehRXpTvGXUxDQP/1MLyeOolEtPx5ruNeOXtE/jkVCD1uCKA3Cxn6rzArqC9TqgZKx6nglDUHHdqJUWY69vBcBxF+R584cJivF/bnhEoF5QW9flLlt6b2e1Q0JGoqgTMcyij8Qi+cGHxqIppWEVJY4XB24JaO8PYe/Ak/t/BkxkpgGcVZeHzF56BglwX/vavOvy7psXShw2PN90w89WlNJdDFCHgdiqYkefJmM0ONTc7Pc86EjOgpOXHa5oCj1NNvRCMtAE/qyhprDB4W0hNXQf++tYJvPNBUyprRFUEykoKsWz+mTjvU3lwamaweus/DdM6cAOJlEjDQF6WC4oioKoKnJoy4tlsep51LK5DSRQ+JTNVko2oRlNMM5knrwwHl3asj8HbIuqaA3jw9++YDeMBZHscWPTpInxh3hkoyvdAVcxNt+Q+3ZvvnZqsW7UMs5+LQGtnBEWF3lHPZtPzrFvaQxBCIDfL2asR1WiKaexQRcmlHXtg8LYIn1tDsd8Lh6bg4k8XYdGnZyHL44DoJ9nfmKqpJEOkqeb3JVlUM1Y9QZKbT+kBrGcjqtEU09ihipJLO/bA4G0RuVkubFq/ELohoShmyO751jXZ1tRqb7Eng5QSBsx3Ii6HGQTHcjY7WIAeaTGNHaoo7bK0M90xeFuMmjgnsedb14bWII5+0o5cnwvZXgfcIRXhtGwIKxru0WPDoRuAgAQEkO11IRgyD1gYy9nseFU7Wr2K0g5LO8QKS8tKf+sqhEAoqkNAoDsUQ1NbCPE+msxbzVgHbiF6V1f6c91mEY4Q0ATGrV3rdMKDjO2BM2+L6vnWNR43AEjE4hJ9n8I49fW1zJ8sXQeALK8T909QB8CpzA5LO8TgbVk937pqmoKIxZdJJkOyfN3tVG25JmvVlDyrL+0Ql00sq+dbV49THfyTphlVFQCE2brVhmuyyX2N9kA0IyVvIk5hIfvjzNuier51nVXgRXv31O5bYlY2mu8uNFX0ebpNUiLtHQISsSFuUE7WWYP9YUoejQaDt4X1fOt608OvIRKz/kblcCjCXLcuLvAgHDMQ7dAhhNk5UED2uekpYBYxhWMGYnEDboeGJXNnYfebtXjq5aMZyw/JgH2yOYBwREeW14GCHJclCk+YkkejweBtI8meG3bkc2vQVIGOQOZ2q6qYB/tW/J//BQD43i/3o7kjjOgAjbaEMA8VzvG5oHkFlsydhTeONPSqCDxe35l6PBozYEiJrmAUbpdmiVkuU/JoNBi8LaqvjazZfh8CJzugD7CcYCWKIqApArohUZjrhhACToeKzmAM8UQjqW9+eW4qeB6qaUY0pqeOcuvJ5VTh0hRE4uaMOxLVsa7iv/pdfnj5wCfIyXLC5VAR1xONpiDQ3hXBzHzPpM9y7VBtSdbF4G1B/fWWWDJ3Fj6obZ/s2+tFVUWfLygi0brWpZ2ugPS6HanjyDRFZCx1dIdi8HoccDlPB3hVEYjrBs6cmQWRluQtpUQwHEdZiR9PvXy0z+WHcDQOv2bOYjVNgZ4I4Mn2uZM9y2VKHo0Gg7cF9TeTfL+2fdwqFkejv3cCui5x7WXnAUCvGWYwHAekRNyQqReoptYgCnPdqQAPmEG6vjkwYPl7+vJDMBxDZzB5XqeZiZKb5UKO14HWrgh0Q8KhKZYpPGFKHo0Ug7cFTaWNrPTAlD7D1AQQl8h4gdJUBR3d0VTgBswgXVTgRSSm97u8kFx+6IjE0RWKwayal/C4tdTJQjk+J7LjBgLhONxODXm+yc82IRoNBm8LGmgjq6UjPGGzby2xHDLQ8wnRd+VjTz1nmN/75f5eL1A5PgdaOyOIxPSMIL1mmTl7H6hJFAA8/uK7gJRwaCpyfE54XBocgSgiUR3BcByzCrwoXzgHyxedM6HHVRGNBwZvCxpoI6u5IzwhM3BVMXuTDBa4B/oAZYBT3vt6gdI0FbMLvcjyOgcM0n0pK/HD69bgz3NnrI1nex1QFYEtNy0eYCR9s2r1IxHA4G1JA21kfXUF8PM/HcJ4H1mpG4DXpSBs6DDM5n1QFDPARqJmLrYAMNBtzPb7+r3W3wvUmh4NpQ7VNGPLH94ZUgAdy9Q7HkhAVsfgbVEDbWTJcW22as66dQMIRXT489xo7QwDEJiR50Y4qiMW15HrcyEYNjcG+zuNbcH5M/p9jqFkWgw3gI5l6h2rH8nqGLxtZvebteO+5p0MxhJAJKqjuNAHSImYAURjBrwuDaFIHJGY0atFa5LXZR7WO9Dhv4NlWgw3gI5l6t1U2jSmqYnB22aaO8JwqAoixvh1GEzfgDQrGZ24eum5WL7oHFz7w10IhGMQQhlwszIY0fHBiXZs+cM7ww6gybXmoyfaE5uPp1MHBwugY5V6x+pHsjp2FbQZf64bHtfoOwym/8MPsK8IKYFPTgWw9dlDqPzun9EVikFKczNSHWhHEgAkht0pL73TnkNTENcNtHZFEAybZfUTFUB5IAFZHYO3zZQvnAOHpqQO4B2JHK8Dt1aVIcfrgFNT+l36ADJX1g3DDOaGNINoz65/ApkvBEIxD0pQVQW736wd0r2lL5XkZrlSGS2dgdiEBtCyEj+uvew85PmcPJ2HLInLJjaTDB7P7TuGupYgDGluMAoxcAvVJE0VmO33oazEj6//d2nq64xUcutUEYDTcfpcTVURcCROdB/OWnH6WrPHpaEgx42O7ghicX3CC2tY/UhWxpm3DZWV+HH/9YtQseRsKEJAN/ovUe8prktcMCcv9XWyvE7MLPDC5VShDvOnQQhAVZXE2ZICedkuc6atCAhhVjUCw1vq8Oe6e3UUlNLsPkhEp3HmbVOHapqx952TUBTA0AdPHBQwZ91ZXmcqC+RQTTNqTnbAkBKKEJA4nSY4FFKaXzM/241I1JwZB0IxGIZEltcBt1Md9lJHerqfrhupNMX8bOeUzLVmIRCNFIO3TT237xgC4Xif69VmQY3ZijW5fFFU4AVgNnpq7ginNgaFEImlDzN1RFEVSGmkCnMGelFwO9VU35HZfje+lzj8dzQBKT3dr+ZkR+r+2ruj0FQFHpc2ZXKtWQhEo8Hg3Y+PPvoIGzduRHt7O/Ly8rB582acffbZk31bKY1t4dSJMz1DrASgpypnZGr5Aji9hJHcGMzNcqK1KwIBCSEEDGlG7TyfM5XL3Z9sr6PPmfVo14qTn3/bz15HIBwDhAJFmEs+nYEI9KG+NbA4FgLRaHAhsR/33nsvqqur8de//hXV1dW45557JvuWepBDagjldKhQFNEr3a25IwynpsDrdqAg2wU1seBt6BI5Xidys1yJmXvfX7cwxwUpMa5ZGOYGrEj1SDH/f2gbs3aQ/DdIx0IgGirOvPvQ0tKCd999F0888QQA4IorrsCmTZvQ2tqKgoKCSb47U1GBF/UtARiy/zw/IQCHpkITQDAcz1jC8OfWpopQ0g9IaGkPpWbqmqogrksowlxG0VQBRQjMzHPj/usXjfsYVVUAccCQaQ0BRPLUePtjIRCNBoN3H+rr61FUVARVNX+pVFXFzJkzUV9fP+TgXViYlfH3GTOyx/Qe11f+b/zsmYMIhuOI9yi2FMJc83YmqhPzczz4vzctwdvvNeJ/XjuGP7x6DF6XhnAkbp7SHjfQ1hVBTJdwagoC4Rjys93Iz3HjVFsIQhFwqwr8eW7E4xLrV5WN+Xj6cvbsXNSd6kIwHEcsbsChmWvDs2dkj/r5J+L+B7N6xQX49f8cgm4YifNJzZ3n1SsuGPL9WWEcY4HjGD4G73HS0tINI7HuPGNG9pj3jz7L78W68vOx+81a1DUHEIrqiOsGNEWkGldlex1QhED9qW68+o+PUptjbod5RJghgVAohrbEZmBhjgtxXaKtKwJdN9fKs70OdAdjcGgK8nM8WD5vNs7yeyekH/byebOxfc9R5Ga5MhpNLZ83e1TPPx7/HiNxlt+LNcvP7bW5O9Tvr1XGMVocx8iCPoN3H4qLi9HY2Ahd16GqKnRdR1NTE4qLiyf71jKkbwweqmnG4y++i0gsDoemIMfngselIRLTMzYo0zfHAKCzO2rmeTsyS+6TBxgU5Xuwrvx8lJX4J/yXbDqc8chCIBopBu8+FBYWorS0FDt27EBlZSV27NiB0tJSy6x396WsxI8bK/4rNbt29jincSiH9CaN5gCDscbgRtQ3Bu9+3Hfffdi4cSN+8YtfICcnB5s3b57sWxrUQDPV9A3KpGjcgNupDXi4LxFZE4N3P0pKSvDss89O9m0MW38z1f4OKljxuTPxxpGGMTnAgIgmDoO3jYxV5WLPzz+7OGdKrysTTUUM3jYxFqXU/c3Kua5MZD+ssLSJ9GwRIYbfJ5uIphYGb5tgKTURpWPwtom++lwzK4Ro+mLwtgmeqUhE6bhhaRPTodqQiIaOwdtGmBVCRElcNiEisiEGbyIiG2LwJiKyIQZvIiIbYvAmIrIhBm8iIhtiqiDRFDCajpNkTwzeRDY3Fh0nyX64bEJkc+w4OT0xeBPZHDtOTk8M3kQ2x46T0xODN5HNsePk9MQNSyKbY8fJ6YnBewpgmhix4+T0w+Btc0wTI5qeuOZtc0wTI5qeGLxtjmliRNMTg7fNMU2MaHpi8LY5pokRTU/csLQ5pokRTU8M3lMA08SIph8umxAR2RCDNxGRDTF4ExHZEIM3EZENMXgTEdkQgzcRkQ0xeBMR2RCDNxGRDTF4ExHZEIM3EZENMXgTEdkQgzcRkQ0xeBMR2RCDNxGRDTF4ExHZEIM3EZENMXgTEdkQT9IhSzlU08wj3YiGgMGbLONQTTO27zkKVVXgdWtoD0Sxfc9RAGAAJ+qByyZkGbvfrIWqKnA5VAgh4HKoUFUFu9+snexbI7IcBm+yjOaOMJxa5o+kU1PQ3BGepDsisi4Gb7IMf64b0biR8Vg0bsCf656kOyKyLgZvsozyhXOg6wYiMR1SSkRiOnTdQPnCOZN9a0SWww1LsozkpiSzTYgGx+BNllJW4mewJhoCLpsQEdkQgzcRkQ0xeBMR2RCDNxGRDTF4ExHZkCWC949+9COUl5ejoqICa9asweHDh1PXQqEQbrvtNlx22WUoLy/Hvn37Ju0aEZFVWCJV8POf/zy+//3vw+FwYN++fbj99tvxyiuvAAC2bdsGn8+HPXv24Pjx47j22mvx8ssvw+fzTfg1IiKrsMTMe+nSpXA4HACAz3zmM2hoaIBhmGXSL730EtasWQMAOPvsszF37lz87W9/m5RrRERWYYmZd7rt27fj0ksvhaKYryt1dXU444wzUteLi4vR0NAwKdeGo7AwK+PvM2ZkD/trWBHHYS0ch7VM5DgmJHhfddVVqKur6/Pa/v37oaoqAGDnzp34y1/+gu3bt0/EbRER2daEBO/nn39+0I/Zs2cPHnnkETz55JPw+0+XR8+ePRsnT55EQUEBAKC+vh4LFy6clGtERFZhiTXvffv24cEHH8S2bdtw5plnZlwrLy/HM888AwA4fvw4Dh8+jEsuuWRSrhERWYWQUsrJvolFixbB4XCkZrsA8OSTTyI/Px/BYBAbN27Ee++9B0VR8N09B8hYAAAIm0lEQVTvfhdf/OIXAWDCrxERWYUlgjcREQ2PJZZNiIhoeBi8iYhsiMGbiMiGGLyJiGyIwZuIyIYYvMfRRx99hNWrV+Pyyy/H6tWrcfz48Ql9/s2bN2PZsmU4//zzcfTo0SHd10RfG4q2tjbccMMNuPzyy3HllVfiW9/6FlpbW205lptvvhkVFRVYtWoVqqur8d5779lyHADw85//PONny45jWLZsGcrLy1FZWYnKykq8/vrr9hmLpHGzdu1a+cILL0gppXzhhRfk2rVrJ/T5Dxw4IOvq6uTSpUvlBx98MKT7muhrQ9HW1ib/8Y9/pP7+0EMPybvuusuWY+ns7Ez9ec+ePXLVqlW2HMeRI0fk+vXr5aWXXpr62bLbGKSUvX43Jut+RzIWBu9x0tzcLOfPny/j8biUUsp4PC7nz58vW1paJvxe0n9AB7qvib42Urt375br1q2z/Vief/55edVVV9luHJFIRF5zzTWytrY29bNltzEk9RW87TIWy3UVnCrq6+tRVFSUarqlqipmzpyJ+vr6jEpSK92XlHJCr43k+2AYBv74xz9i2bJlth3L3XffjTfeeANSSvzmN7+x3Th++tOfoqKiAp/61KdSj9ltDOm+853vQEqJ+fPn49vf/rZtxsI1b7KVTZs2wev14qtf/epk38qIPfDAA3jttddw++23Y8uWLZN9O8Ny8OBBHD58GNXV1ZN9K2Ni+/btePHFF/GnP/0JUkrcf//9k31LQ8aZ9zgpLi5GY2MjdF2HqqrQdR1NTU0oLi627H1JKSf02nBt3rwZH3/8MX71q19BURRbjwUAVq1ahXvuuQezZs2yzTgOHDiADz/8EMuXLwcANDQ0YP369bjrrrtsM4Z0yY93Op2orq7GTTfdZJuxcOY9TgoLC1FaWoodO3YAAHbs2IHS0tJJXTIZ7L4m+tpwPPLIIzhy5Agee+wxOJ1OW44lEAigvr4+9fe9e/ciNzfXVuO48cYb8fe//x179+7F3r17MWvWLGzbtg0rV660zRiSgsEgurq6AABSSuzatQulpaX2+fcYdEWfRuzYsWPy6quvlitWrJBXX321rKmpmdDn37Rpk7zkkktkaWmpXLx4sVy5cuWg9zXR14bi6NGj8rzzzpMrVqyQFRUVsqKiQt588822G8upU6dkVVWVvOKKK2RFRYVcu3atPHLkiO3GkS59w89uY6itrZWVlZXyiiuukCtXrpS33HKLbGxstM1Y2FWQiMiGuGxCRGRDDN5ERDbE4E1EZEMM3kRENsTgTURkQwzeRBayZMkSvP322xP+uWQ/DN40bcybNy/13wUXXICysrLU31988cURf91rrrkGf/7zn1N/j0QiOP/889HQ0DAWt03UJ5bH07Rx8ODB1J+XLVuGH//4x1i8ePEk3hHRyHHmTZSg6zoee+wxLF++HAsXLsQdd9yBzs5OAGYp9e23346LLroICxYsQFVVFTo6OvDQQw/h8OHD+MEPfoB58+bhoYceGvA5ampqsHbtWlx00UVYtGgR7rzzTnR3d2d8zMGDB1FeXo6LLroIP/zhDxGNRlPX9uzZgyuvvBILFixAdXU1jh071ufz/POf/8SqVavw2c9+FkuWLMHDDz88yu8OWc6w6kmJpoilS5fKN954I+OxX//61/IrX/mKbGhokOFwWN55551y48aNUkopn3zySXnLLbfIUCgkY7GY/Pe//y0DgYCUUsqqqqpUI30ppQyHw/K8886T9fX1vZ732LFjcv/+/TISicimpiZZVVUlf/KTn6SuL168WFZWVsqGhgbZ0tIiv/zlL8vHHntMSinlwYMH5ZIlS+Thw4dlPB6XTz/9tFyxYoWMxWKpzz1w4ICUUsrKykq5a9cuKaWUXV1d8l//+tdYfevIIjjzJkp4+umncccdd6CoqAgulwvf/OY3sWvXLkgpoWkaWltbUVtbC03TUFZWBq/XO+znKCkpwcUXXwyn04kZM2Zg3bp1OHDgQMbHXHfddSgqKkJBQQG+8Y1vYOfOnQCAZ555Btdeey3mzp0LVVWxevVqRKNR/Oc//+n1PJqm4fjx42hra0NWVhYuvPDCkX1TyLK45k0Es6tcQ0MDbrzxRgghUo8bhoG2tjZUVVWhubkZt956K4LBIFatWoUNGzakGugPVWNjIx544AEcPHgQgUAAUkrMmDEj42PSW4HOnj0bTU1NAICTJ0/ipZdewrZt21LXY7EYGhsbez3P5s2b8eijj6K8vBxz5szBrbfeiksuuWRY90rWxuBNBEAIgaKiIjz66KOYO3dunx+zYcMGbNiwASdOnMD69etx7rnnoqKiIiPYD2bLli3wer3YsWMHcnNzsXPnTmzdujXjY9LbxtbX12PmzJkAzKB+6aWX4utf//qgz1NSUoKtW7dC13Xs3LkTt9xyC956661UO12yPy6bECWsWbMGDz/8cCp4trS0YO/evQCA/fv349ixYzAMAz6fD6qqpmbdhYWFOHHiRK+vF41GEYlEUv8ZhoFAIACv14usrCzU1dXhiSee6PV5v//979HU1ITW1lY8/vjj+NKXvgTATEl86qmncPjwYUgpEQgE8OqrryIUCvX6Gi+88ALa2tqgqiqys7MhhICi8Nd9KuHMmyjh+uuvhxAC69atw6lTp+D3+1FZWYlly5ahsbER9913H5qamuDz+XDllVemgurXvvY13H333fjd736HqqoqbNiwAQBw2WWXZXz9LVu2YMOGDdi4cSMWLFiAc845B+Xl5Xj22WczPm7lypW47rrr0NLSghUrVuCGG24AAMyfPx9333037r33Xnz88cfweDz43Oc+hyVLlvQay759+/Dggw8iGo3izDPPxNatW6Fp/HWfStjPm4jIhvg+iojIhhi8iYhsiMGbiMiGGLyJiGyIwZuIyIYYvImIbIjBm4jIhhi8iYhsiMGbiMiG/j8dHxZ+s1n0dgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = pd.DataFrame({'TestLabels':testLabels , 'Predictions':yPreds}, columns=['TestLabels','Predictions'])\n", + "sns.set_theme(color_codes=True)\n", + "sns.lmplot(x='TestLabels', y='Predictions', data=data)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a10af570", + "metadata": {}, + "source": [ + "## Evaluation Metrics for Regression model\n", + "\n", + "In the Previous cell we have visualized our model performance by plotting the best fit line. Now we will use various evaluation metrics to understand how well our model has performed.\n", + "\n", + "* Mean Absolute Error (MAE) is the sum of absolute differences between actual and predicted values, without considering the direction.\n", + "$$ MAE = \\frac{\\sum_{i=1}^n\\lvert y_{i} - \\hat{y_{i}}\\rvert} {n} $$\n", + "* Mean Squared Error (MSE) is calculated as the mean or average of the squared differences between predicted and expected target values in a dataset, a lower value is better.\n", + "$$ MSE = \\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2 $$\n", + "* Root Mean Squared Error (RMSE), Square root of MSE yields root mean square error (RMSE) it indicates the spread of the residual errors. It is always positive, and a lower value indicates better performance.\n", + "$$ RMSE = \\sqrt{\\frac {1}{n} \\sum_{i=1}^n (y_{i} - \\hat{y_{i}})^2} $$" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "749f2a47", + "metadata": {}, + "outputs": [], + "source": [ + "def MAE(y_true, y_pred):\n", + " return np.mean(np.abs(y_pred-y_true))\n", + "\n", + "def MSE(y_true, y_pred):\n", + " return np.mean(np.power(y_pred- y_true, 2))\n", + "\n", + "def RMSE(y_true, y_pred):\n", + " return np.sqrt( np.mean(np.power(y_pred- y_true, 2)))" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "161e7ee1", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "---- Evaluation Metrics ----\n", + "Mean Absoulte Error: 50639.27\n", + "Mean Squared Error: 4878809544.62\n", + "Root Mean Squared Error: 69848.48\n" + ] + } + ], + "source": [ + "print(\"---- Evaluation Metrics ----\")\n", + "print(f\"Mean Absoulte Error: {MAE(testLabels, yPreds):.2f}\")\n", + "print(f\"Mean Squared Error: {MSE(testLabels, yPreds):.2f}\")\n", + "print(f\"Root Mean Squared Error: {RMSE(testLabels, yPreds):.2f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "98bd24d3", + "metadata": {}, + "source": [ + "We can clearly see that the MAE is 49674, when compared with the median house value doesn't seems to be a good fit. \n", + "\n", + "Thus we can conclude that, the simple Linear Regression models is not being able to catch all the features.\n", + "So, maybe its time for you to try other algorithms. \n", + "
NOTE :
In the entire ML workflow, you never know exactly which model will perfrom the best. So, usually you try a lot of different algorithms to see which fits the model." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/california_housing_price_prediction_with_linear_regression/california.png b/california_housing_price_prediction_with_linear_regression/california.png new file mode 100644 index 0000000000000000000000000000000000000000..0103e3babc1a2dd196d0b4a3aaacfd771df7c243 GIT binary patch literal 10034 zcmZ{Kc|26_7ynRHQxOJHc4N#)vKB?QVeVMx8VXq=+aM)N_AT2GW5#3);i{P_AzLYH zp{RVS8Ea^hrBGzwe)IkP_xt1b$9+BLeV%*nx%b@XInQ~{dD3mI%@4yR;V>BNFn}`! zVKCnRUFCcCa5)Q}YL47yuaA+H5e!zFeQ@hC9~aAd;y^1HEK&&ui@ybfZE#uf(=b@* zDHv?l9R}0Ohrz_J-EAhE<90~fS`xAMx@X)|Uafp${nu7{FaG-W`p4bfw*>_S@$vDy zySscBA7ydx)E$!(d86fT>DHvoj`mdF3f-*vfcAr2Ibla8%1l9M~@Z|)ws*%F#tpXbJQ^-B4;GpgSH;HO9HXE$mU~Orke)Rxvpz z*qF{9ps@iwZuVa*jpz%4b`v?o#@Fm7ROkxD2IRp>B+M#eb3UTXZ9oLm&dvgdjb5ob z9dZLS!?|gXt~x;9mNx~=NiI<2b+8M-oAn-=L7~yi(1h78VB0kdTMXgAtf?+yrt6_pt`iR2HXKXJeE?O7ZyukdfL5%Zs6JaPtj-*JHV(f?Z`d&w^3c$a303dVs1zrDXF91!iP^+-V=# z@jN1rqekt_2x#`5ob;y|3Lg2~Tsu0wfQO6Gy&r4*`E%SgAK^I)Ye;GI zqqD6kM8}Oxq;J0gPl}>eW!!L~+E49dAT^KsGb}HwGdb2GNeJ(`JJ9d=-+^DO{zQl} zJ2lD!?!*yZP5TywwNf)wGlWz{5E6nlm$ipggyYM(ogL-Cl?(UEh2s` zyXyk1hV3RLnU`(V&f}C{P&ooLbo2yE+GW8QjOW*bvoV=&9}y+ySg;0{fjr ziu&}4oo@xiuO|4}SaqE418eXUdi8xfbY$u*Pz;IDFs`={r_|z11jA&Jff23x=<7a8 zPEn+@;Kh7i0C2WLq172((47T|NnF+b8GYt)%{}+N<@o!lGb;x^58dzwM5Uo0TmuwC zrcktS@tigM+ckwOYY?D-hY1v^&p-65@$jIMyr1%M>SOWH)vY%T(5pH0A-0|6PlweD zNaWl*_k^D1YGr7iH#&UB-W7x`lQ!l3y#6pTJi=qzN|T8(2pwpVqf{^u(Q z)28wlibTQO?Doc?ZvKTw@4ADSopBJL#SpX;M4 z+)TNiEE-2t!R0I+Dpcc_4;69SZwTK%>#v1+4USXNtP|7cgS+GOjIZhLE6BBc9+L5*Heh9tj`tP@#7kWb$oqm@nc3T+PTdb}cY$(}socYvWeH*eVKJJ@xm^mBz%}-BH;UR9DN{ z!qYNuqHb#>J2-AS3n%0bTdz86dE@Z%=S4HwJJ-n7Z{?a~q}OLVu{x_Ymt?{>d#OwO5*r#HSruW^-gibAx-C*BW3 z4;*6tnLmBPY@d@v+&u^{WAag9vM6QZuFah}{+YmMQpR=%oo22)#&}5b2HK2G+$LIG zs=$ru+_o!|kE|(i``&uP?h&&|fis&H^#StuO<*dOZ%!N#eDgr zp38GB6j)cg1EtkoF=AEPL-4eu&Up7o^xQ^ol@{&E+dnlak|Ei~aJqmoi$CadJc0+l zBRR`|9()`1#(s~u5IUpIVs_qweEjt{%?l~0$^hQuXfMvf*r4Qk2yS?HF`4-K-D=8y z==an6NTa0gbMJII2{_RV9B1e-DL@T|^+)D=zffd0hm2Zn$Tggc(q|T}a?+qegHjZp z)sbP<8@qQgx$!JNb6x1CWzD~4bjL<0`gp068Tr`NYzw&hh+g#xbT96m!|UJZ0ulkZ z+?WJCtu#7=&S4DU)p4~^sg}wnrP(>TR`}DF9<~ACk0?RxJEr=X>-Pe{$S7w;%==k3 zK*x<0<_EULjYx^4V*x7b@-Jy79=Hm<0RAzD}Y*y^0Ob!VEd5%DC&`ZY1f5r#Xm%6ajUHzp0KXKIx{Aj)B%v=?7aLHaD&jVmm8@BQ zpJS_o4cJ5P>Y$TS%&Q-Nhr!!m~z{&StVan9JZVit+l^z%G`X2nnS)9eWPFFEfqZ|ER)f z?2Z$=N!fOu=a|9pT-@Z=)`@>jWm&yR6vCSg@p)LVyE4QewaS){ebW z^s?%)1U?8&`OofSpe2~0cMW1pM6F2x?liz5g_snvueF|V1R2@~OTxqc9<;x8{|<$< zyvq`BaO4$y6Z`Ee@TWPG9jO1nrr&n*dyL2Gr;h?nPrFY}oZC1x(L*tII{Z*7NZH^; z3$E<2@@N&J=4jc#otsA?%(vlvB90pv{-&EpR(&Ik|8_q1~}Gwq)$o zpYbIR7v`EXoXp|J%E8`NhhLeNV4HngO`B$-;&F6#^`e9YcYQC`?zD5RuYY`Q@!YO! zmjY7I{tOyt_qzxZ0!P*?4;*3?m5=1*o*}MBlvc?3z8SW)%b4yq6swv4Z6VG%y#7KI z?Z;S*T+x1ClzyE0$t&66hG9XuFvV$yH7@!&W@NgBhy(vjCy??N&G~k(y-mAUE}Vi% z%>984g}401;{D306u1gzxJd}2NQ7%n-z#5KsKm1NL#AcDNx8=woCAio7=lbE!C8KE z01WeJGrcuSo<98ZY0BVkXCV>ZEP~SB7y9dhLfqAK_&KsHkpNi|I(}&&bQZptu&T~x z^xle>J#YfU6G3JFw-Ivp>V5YXF%c!?H3Ju-JXnV9O2tswU*fVVy(PUjpF9aq35GU) z(HL(hUf7rz{fW_H_AR)xtb>~ZDo8Y$sp#)7Ll7J*Zypui{?24f7NU~(rr`9S6?t6^Q6c_4dTB0c_W-~rE-J!03gY;$)kVzQW85}}nc$zFOY2?h zYOOYROd^S*gK-@(ZzWKlQ!r>IKr{wBu-H`09fUS?DvM7<<8mi4(BNbwLE_qqA~sgR z0{&~;FT;Z#b$HTSQ~MWhdHI0iUKBPNQ-XLhmTGqQ07w?+=z)ojlBvn^)uamn zU@^ngg!sG5lfwGj{FCp2hYCiW`KPKs6oOwAP&|lrEmnDkD=nweMrun>$aX14Bsk{& z;Hf`M2SZK@$v`zc+<9#*$-{@wrO-Anao#0fWW>qYoS*CVVU0rPFOfm)S<@Vi!^35Rz zb7L;$QTAuh1ax@Ea9DUeR)jdhdh2(7=|=iM{jC&A;)7fvu0i2OWY?0bG>^PjnVJUq z8#U-j1&aLYxglse%Z=Hix~7669C#5_>Qx%dbv}o@YM`|73 z!OEGTsn3Wn)w~$;hfEG z@#xoyICsBjUI6VtJe{5{g!77UF@9&(_f5FJ32Lu9s_RM&|KrIEH7EP@s%MRsY3F!u zyfZW}Gzt|TetMp106yDBbpHsJ#QC(tAm3fh-*9=BJJg(#D2GWd*gC(FkZ7npt)oU5 z`;erC(;d4^VITS4=ZEOc8ia{YmXwuclRvUIT8H_o7oWI zmql0?EmXJvEUAA9lu{9wmu39`M4Nd8SBaiY&=$anXI&zUUA{42`m47UYHvD=Ui=Rf zRby4Hm|w-t&Yrn)I!4ylAP0(nxT4ZWn0thC7$X5H zqm59kTB^2@i9ay``oiRY#yGUAkgFgp+N!T~l$pB2h|2u;lYWJjtpP(<6GhrXXUN^B zs->K*SWjmkF6n^g&~&tc*R)`7n#tCkBTqpxlKeJ0L~+Uo zACk^H{ze$)^9Ka2I<(CQd_yu%#F;|<-{C=@I&nr!<~c3Ct1&i3Y-QGGT5i!QLR2)m zd8zG4k#v{>{dS?Tunla!!m4bM+Btq`GN8q(gk3p3%0D>usU|)Ve#g(YmI@BEWib+e zM+{{X2l`lnk>2oAQVRB`KcC`ViTy|*MvMKb$GL0>z3`#6V1JIxmlOyW{fE}|?!jV1 z&w%~zJFk~oN2i<~!T4LYA&4EVcB$X9z*PfsG97FTw=;xlBvJ}#>|1cT-VBUBnD=e{ zci-bcT1Nx?6Jonnr?S`t_qQBRA&wq=+x$l2f{`-XN4_THSA5-B58?qTX`k@pm>V6E zy49liUMbsBo7_mROs-EtQ+s9l!;HWBR!R-N1ax1%S{lDnp@Aoh*pnghW7?&QPPJih zUDpSjZf%FGboajL-mAd60^DYFryi?m82fV~=1r(B3n;iZTS&4zRgTYN53SnW*1308 zg7h{l%W_Jufxg#TZrdP-A&jg%{FAd$Q+@T!(^pB7m83Q%`Y-X8^g;3`d2N9U9R=w# zLPu*Du6NH^fJ8q^v!r=j-ejE1N%s_icXfzpdM>-L$4wFn{;qrs^#pzwp`1A~7S1=G z;gD0^l7*e+rIxRZbvE0ErepYr#{$GUcZHFhOApfcsGU!O*tbVB!~cGP_7jl!*$zr) zfa-^vE()bx<#;+fSrI!a`~!*2p{h;W+#=Fw&?$h!Sa?I#0n72Z>FAyej1j0Q9Uf!sBCo9Uk`F>SWeeL=Av2<&`vHX^kB_3fuKNViZ28C-EI157ol-Xw z4u#m25}1hJj&JN zD;eVlb|0))2jANra!0Sd{U4@;4^4gUX^~&}aNf=np2f(rhWm;a_&mym^B-qb&aX{; z#r=&LD`efvFY+M(O*>sk`qw*W))S{C8@41BSf+sJ+QeOZzGay0;qcQKmKJdMxvbH_ zLrbLl`~^XIj(LIU7%wpKI!_h?jZVo$vXW>Xr2nYj1~x3h$M56Gu0`%8_CtKLVWvcY z=CMaqp8QwKqT8GczDdXCD-rih%v<#S;?o9borkJ!$L$9{uc(%avtJ?k!cHUneFE)Y z1-Y9}E|1Wap>7_`wRpR~-kAIh=yagiyIo-v_HZ9z_$u+`?be!!%NZCe@Wx%Dxov22o)iY_YHomqq!_ZT3OZsVO0$dZ&9>T(brl+_RZlqAO@ z0-<R!Z1j;&()SuJ^Z3x^nh~aIX&E~Xc zytdS=MQ?~j(ncE-zu;&#tuYIDjvJaLDR2K+LQ|`=L+El-n)cUuY_GLxBU7UZP38K7Hx3-W{#~CQbFne@NaYevP+{r#t*J{^{E;&w8EC zLMFHM@x&IHxP$G&j=qz{GqIq41l!A$^YN+XV6m#6Geu+fkF7#T$tKuv$p!>!%kk}- z-QIf8o|mt8?wvp`U@jVxh3w%F{Pn$$l|CU6IdW7 zMLBvZYVs%RQq87i`^TV*2NCpr%$$Ra9qKK0|)c^n*KoT;#XBxZY3BR_eMc|5+7-_jTiG~y${SQZXJ1nf(PzqShFbm zVLk*M@Y!q9yDov*4?sd2cqh!?5=47`kzvNFDmGZ%`b%MUBgwMkGBrBloPlbVgAA*qAiauOrBFj|~D z`zi1GGmq1Xl^Ga4^xN%Og8emrKNMKVeT+f%v7E$BO_OWj(AB`=+-uX}A36&hiGP91 zbGJU|mE;~`Yk+kOv51MDCJHx4avMR?DL)9PIydR0lZ2T5VpKNY&7z!>d-eWK4M0i+ zRr$~Z7Vwyz<)2+h?R3lm(08eB#(~HMWV|IlsA3-qYqsnT-BHC#W0A;Zb=n4D^4Eu( zYclNpUua9I3fgISv)PIm_37!@iMW{Gc=Fi87Imf(@i;U4T>rz?t=~Wlal)XwgCOb( zWqL>D^JOVwN{Hhmrlduq9D3ugIoUG`9Lp2~Sj$f)ShF81ButmTPl-Xw1a+FzC~ejh z>(8U$p|PG;ike$;)W84 z$JhmFu~o4GA7+MeYp#Jf^31l-%DmAm8slIm!t@CtjV*X8fc1zOG<2h|`q4aQ?JBwz+g5G5FC~GNM#&s^`D) z-_NWL|92Rt&M;HRd!*_La!v-M+?9!wG`C;&X&Q(;2!`bG+n6*6avjh4FTXZvq?%Wm zu0K_>n;pKIHlWZ-jKSAV%wpX2a*Y->CFXq@VzxOqkm64D*PsmO&nt>z<>ER-oSx@+ zaBpX3t~0Og6pi83%M+`+HJP*1!EyPN-EZo7rb z>PpJ7NEbj$h?OugUzyHXl$Yncho0glQ&Zv_|CwDPqR@3;%Jl$%Pz?P}T%X9GI#KV0 zE9W!9l)AJ(ndCSv>8CMPl)BO|d|amyhO$?*feUfQp<9{|0q7{_eXi-ub@^;?M-kUi zzCoC?B4^I}Q4+Z|6NC__WixX0NGf*OKOEdqSzlG+BhP9BRZ^@(s;l`Qg9ZB5CM|Jm zL6J|aebJC?wNT`eNt#2HgL-n7g|o% z`FVi55oz^r@RbR>305)6Z&#Q=q^OMM=Q&yeOb6nJpPRB^uePQTchRpjWi|a55Ts;0 zi)Q`96NlRApBtpK8q+)#AcVULT%C14SYOt^=aLc7#jvvj$?|lKkv+2x%v7S zUl>&qSQgZCA9BBm`~{GdyZ&glvoj`vUZj1}?dzdbZi?uc_%CiT7eN(VmIAz%aLv4d z^Gir>aSJW6End>1h>kt^aHT0m0nF)naAkN2lwA(p55~TH#Vwf1XA4A87I6hlhna5X zvdH&EC|3QW=q{xFYg|F8d=6P}B3u#7+C*C5O)p!3jf^lpBq`#)aj%$tGo(1*ghpF% zNA-(*?x_CSg|PR45R1BSrjj(eZEG>eiY!XM+T6aaqvTcp$p%z2#J6Ae2RQ)#;@8N!@w$^P>jb zLUTofoes;*j}oaQR23HEke?Q{EWUPl$bd02x;o-b`8#>M%qtr)Vd`7iS8DAH zZM;r&s3!Bv^MEgHT>~(-65H8hzV!#0m=Rn_KB7%3P!JUA;nuXjsV)6B>MAM{$~8{A zd;@gjyuhgGG9d54f=WbYZmnNPoVDYfeiad?qjS_O^Ne1n+G_>4gmO@fc^Lm{ zJEnLzux4KNN>YH{n{y+t|2^$oH7uVM3e0^7sd!6fZ38YPtpgdT{)__Rr;`sNOWs#Y zTsvq+`qb_7s%0+augh6O1=xjAlXH)qlHD%1zmE0!vnoi|NA(+EfC6)nThiq;$%$%D z#o~x{fb+5sw~}rkaD&u~soM?2&JJd9Jz>n$>JEC!9Ea-P9Bp@wSLTMO9R%7vt}5kq=f`aW5;{yecV-#ksv ziw2y3B~!R0l}a3aZJOuy63?45(4vzVZQrBFVZn^LCe?ND`cGw!F)>o?54g+zAGdJ& zS56lMGAnW-W%JJ2a&B{tjii5vUIosVu>Yu9mUahNN~IIc_xNL8W9|E`?|yicWkqUX zkhYy)j|y1Ke!R_dDJR2&5E@wh@JHi!YIFTgqN`8_9>99t`Ul}$E^vf0SV--z=L*!` z;2DQ~KVsED8e@O^8*1m-uw#@$c~LBeqZ65Mei&L!MRFiKE6~?%@bdzev{i9D2T`KQ z^`2~(H&iF*Tl1&^B1{aY2q^cEAHsZq1Ui!sbV!K}bg zYN081;@WiWt$UF4+j~<7X;eN8lF2?E5ppvKd~p92-q*5r9Hj!|ChjI)S4B^#(oz+W#{@(vT*c)+h<`{f z7)vDnI6)uBiZS-ejpY%4N0*Fax$YOu+$@Hi_=UMq%gMl+))L4RnU^-J7%F!G@~=Dt zgdTa!d$$abdaTc>TDr2WHl@0%6k4ORfo;5+5N;3za{l7?1OVdjd-CuY?ZkooecLqxA!sQ^r(??pj=Bei?wIoWW1O? zvAf=od%P>uk<OvuAO1a{w z(91z_fZ4qQH=UamYkh@E_&PgM%^v}yLyFCAjs?LXr zH$32;7ej_%FNR#X9O9+t8SKSvU>c{?byQDjtE#ILHBRYipVB*}p>j$?@6@R$o}Q%t eM<6ihil2AH|6kyx!RP>200v;KO&=S(C;lJxAG?|W literal 0 HcmV?d00001 diff --git a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb new file mode 100644 index 00000000..2dcf9f56 --- /dev/null +++ b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb @@ -0,0 +1,786 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "048dbd39", + "metadata": {}, + "source": [ + "### Predicting California House Prices with Linear Regression\n", + "\n", + "### Objective\n", + "* To predict California Housing Prices using the most simple Linear Regression Model and see how it performs.\n", + "* To understand the modeling workflow using mlpack.\n", + "\n", + "### About the Data\n", + " This dataset is a modified version of the California Housing dataset available from Luís Torgo's page (University of Porto). Luís Torgo obtained it from the StatLib repository (which is closed now). The dataset may also be downloaded from StatLib mirrors.\n", + " \n", + " This dataset is also used in a book HandsOn-ML (a very good book and highly recommended)[ https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/].\n", + " \n", + " The dataset in this directory is almost identical to the original, with two differences:\n", + "207 values were randomly removed from the totalbedrooms column, so we can discuss what to do with missing data. An additional categorical attribute called oceanproximity was added, indicating (very roughly) whether each block group is near the ocean, near the Bay area, inland or on an island. This allows discussing what to do with categorical data.\n", + "Note that the block groups are called \"districts\" in the Jupyter notebooks, simply because in some contexts the name \"block group\" was confusing.\"\n", + "\n", + "Lets look at the features of the dataset:\n", + "* Longitude : Longitude coordinate of the houses.\n", + "* Latitude : Latitude coordinate of the houses.\n", + "* Housing Median Age : Average lifespan of houses.\n", + "* Total Rooms : Number of rooms in a location.\n", + "* Total Bedrooms : Number of bedroooms in a location.\n", + "* Population : Population in that location.\n", + "* Median Income : Median Income of households in a location.\n", + "* Median House Value : Median House Value in a location.\n", + "* Ocean Proximity : Closeness to shore. \n", + "\n", + "### Approach\n", + " Here, we will try to recreate the workflow from the book mentioned above. \n", + " * Look at the Big Picture.\n", + " * Get the Data.\n", + " * Discover and Visualize the data to gain insights.\n", + " * Pre-Process the data for the Ml Algorithm.\n", + " * Create new features. \n", + " * Splitting the data.\n", + " * Training the ML model using MLPACK.\n", + " * Residuals, Errors and Conclusion.\n" + ] + }, + { + "cell_type": "markdown", + "id": "1929f17d", + "metadata": {}, + "source": [ + "### Big Picture\n", + "\n", + "Suppose you work in a Real State Agency as an analyst or Data Scientist and your Boss wants you to predict the housing prices in a certain location. You are provided with a dataset. So, what will be the first thing to do?\n", + "\n", + "If you are probably jumping right into anaylsing the data and ML Algos, then this is a wrong a step. Its a big \"NO\". \n", + "
The first thing is to ask Questions.
\n", + " \n", + " Questions like : What will be the predictions used for? Will it be fed into some other system or not? And Many More, just to have concrete goals.\n", + " \n", + " So, your boss says that they will be using the data to get the predcitions so that the other team can work on some investment strategies.\n", + " \n", + "So, let's get started." + ] + }, + { + "cell_type": "markdown", + "id": "2a8513db", + "metadata": {}, + "source": [ + "

Importing Header Files

" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4d4ec4de", + "metadata": {}, + "outputs": [], + "source": [ + "#include \n", + "#include \n", + "#include \n", + "#include \n", + "\n", + "#include \"matplotlibcpp.h\"\n", + "#define WITHOUT_NUMPY 1\n", + "#include \"xwidgets/ximage.hpp\"\n", + "\n", + "/* CPython Scripts for Plots\" */\n", + "\n", + "#include \"../utils/histogram.hpp\"\n", + "#include \"../utils/impute.hpp\"\n", + "#include \"../utils/pandasscatter.hpp\"\n", + "#include \"../utils/heatmap.hpp\"\n", + "#include \"../utils/plot.hpp\"\n", + "\n", + "namespace plt = matplotlibcpp;\n", + "using namespace mlpack;\n", + "using namespace mlpack::data;\n" + ] + }, + { + "cell_type": "markdown", + "id": "2d5992b1", + "metadata": {}, + "source": [ + "

Let's download the dataset.

" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "401c6664", + "metadata": {}, + "outputs": [], + "source": [ + "!wget -q https://matrix.org/_matrix/media/r0/download/matrix.org/WvrgbgzkyIMbvkxLkKKNyMrO/housing.csv" + ] + }, + { + "cell_type": "markdown", + "id": "75b146bd", + "metadata": {}, + "source": [ + "### Loading the Data\n", + "Now, we need to load the dataset as armadillo matrix for further operations. Our dataset has a total of 9 features: 8 numerical and 1 categorical(ocean proximity). We need to map the categorical feature as armadillo operates on numeric values." + ] + }, + { + "cell_type": "markdown", + "id": "08e417d5", + "metadata": {}, + "source": [ + "But, there's one thing which we need to do before loading the dataset as armadillo matrix, that is, to deal with any missing values. Since 207 values were removed from the original dataset from \"total_bedrooms_column\", we need to fill them using either \"mean\" or \"median\" of that feature( for numerical) and \"mode\"( for categorical\")." + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "7e4a6750", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "// The imputing functions follows this:\n", + "// Impute(inputFile, outputFile, kind);\n", + "// Here, inputFile is our raw file, outputFile is our new file with the imputations, \n", + "// and kind refers to imputation method.\n", + "\n", + "Impute(\"housing.csv\", \"housing_imputed.csv\", \"median\");" + ] + }, + { + "cell_type": "markdown", + "id": "ddba48dd", + "metadata": {}, + "source": [ + "Let's drop the headers using sed. Sed is a unix utility which is used to parse and transform text." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "4d95bf63", + "metadata": {}, + "outputs": [], + "source": [ + "!sed 1d housing_imputed.csv > housing_without_header.csv\n", + "\n", + "// Here, we used sed to delete the first row which is indicated by \"1d\" and created a new file with name\n", + "// housing_without_header.csv" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "d2e2c3f4", + "metadata": {}, + "outputs": [], + "source": [ + "arma::mat dataset;\n", + "data::DatasetInfo info;\n", + "info.Type(9) = mlpack::data::Datatype::categorical;\n", + "data::Load(\"housing_without_header.csv\", dataset, info);" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "choice-victor", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " -1.2223e+02 -1.2222e+02 -1.2224e+02 -1.2225e+02 -1.2225e+02 -1.2225e+02\n", + " 3.7880e+01 3.7860e+01 3.7850e+01 3.7850e+01 3.7850e+01 3.7850e+01\n", + " 4.1000e+01 2.1000e+01 5.2000e+01 5.2000e+01 5.2000e+01 5.2000e+01\n", + " 8.8000e+02 7.0990e+03 1.4670e+03 1.2740e+03 1.6270e+03 9.1900e+02\n", + " 1.2900e+02 1.1060e+03 1.9000e+02 2.3500e+02 2.8000e+02 2.1300e+02\n", + " 3.2200e+02 2.4010e+03 4.9600e+02 5.5800e+02 5.6500e+02 4.1300e+02\n", + " 1.2600e+02 1.1380e+03 1.7700e+02 2.1900e+02 2.5900e+02 1.9300e+02\n", + " 8.3252e+00 8.3014e+00 7.2574e+00 5.6431e+00 3.8462e+00 4.0368e+00\n", + " 4.5260e+05 3.5850e+05 3.5210e+05 3.4130e+05 3.4220e+05 2.6970e+05\n", + " 0 0 0 0 0 0\n", + "\n" + ] + } + ], + "source": [ + "// Print the first 6 rows of the input data.\n", + "std::cout << dataset.submat(0, 0, dataset.n_rows - 1 , 5)<< std::endl;" + ] + }, + { + "cell_type": "markdown", + "id": "a43f7359", + "metadata": {}, + "source": [ + "Did you notice something? Yes, the last row looks like it is entirely filled with '0'. Let's check our dataset to see what it corresponds to.\n", + "It corresponds to Ocean Proximity which is a categorical value, but here it is zero.\n", + "Why? It's because the load function loads numerical values only. This is exactly why we mapped Ocean proximity earlier.\n", + "So, let's deal with this." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "d6969aa9", + "metadata": {}, + "outputs": [], + "source": [ + "#include\n", + "arma::mat encoded_dataset; \n", + "data::OneHotEncoding(dataset, encoded_dataset, info);" + ] + }, + { + "cell_type": "markdown", + "id": "0f534207", + "metadata": {}, + "source": [ + "Here, we chose our pre-built encoding method \"One Hot Encoding\" to deal with the categorical values." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "8bad850e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "encoded_dataset.n_rows" + ] + }, + { + "cell_type": "markdown", + "id": "f078a9e5", + "metadata": {}, + "source": [ + "

Visualization

" + ] + }, + { + "cell_type": "markdown", + "id": "b5ba850f", + "metadata": {}, + "source": [ + "Let's plot a histogram. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a7b59588", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "5c0dd57a133c4ecca91802380f610915", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 5c0dd57a133c4ecca91802380f610915" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "//Hist(inputFile, bins, width, height, outputFile);\n", + "Hist(\"housing.csv\", 50, 20, 15, \"histogram.png\");\n", + "auto im = xw::image_from_file(\"histogram.png\").finalize();\n", + "im" + ] + }, + { + "cell_type": "markdown", + "id": "ddcc2d3e", + "metadata": {}, + "source": [ + "Let's plot a scatter plot with longitude and latitude as x and y coordinates respectively." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "54c2a0ca", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f938371980f045b4b47b190bdc1dd973", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: f938371980f045b4b47b190bdc1dd973" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "//PandasScatter(inputFile, x, y, outputFile);\n", + "PandasScatter(\"housing.csv\", \"longitude\", \"latitude\", \"output.png\");\n", + "auto im = xw::image_from_file(\"output.png\").finalize();\n", + "im" + ] + }, + { + "cell_type": "markdown", + "id": "5781bc1e", + "metadata": {}, + "source": [ + "Let's add some colour to the scatter plot." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "3fef937e", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8177cbf69b104cfeb24cbea0475693ae", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 8177cbf69b104cfeb24cbea0475693ae" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "//PandasScatterColor(inputFile, x, y, label, c, outputFile)\n", + "PandasScatterColor(\"housing.csv\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output1.png\");\n", + "auto im = xw::image_from_file(\"output1.png\").finalize();\n", + "im" + ] + }, + { + "cell_type": "markdown", + "id": "431f719d", + "metadata": {}, + "source": [ + "Let's take it a step further and plot this on top of California map." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5d22bf50", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "10408985977f4b25b0332df8a43f7081", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 10408985977f4b25b0332df8a43f7081" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "//PandasScatterMap(inputFile, imgFile, x, y, label, c, outputFile);\n", + "PandasScatterMap(\"housing.csv\",\"california.png\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output2.png\");\n", + "auto im = xw::image_from_file(\"output2.png\").finalize();\n", + "im" + ] + }, + { + "cell_type": "markdown", + "id": "36f8cbf3", + "metadata": {}, + "source": [ + "

Correlation

" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "9c60a67f", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "98d1a64dbd0947d78f0f8e276debab93", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 98d1a64dbd0947d78f0f8e276debab93" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "HeatMap(\"housing.csv\", \"heatmap.png\");\n", + "auto im = xw::image_from_file(\"heatmap.png\").finalize();\n", + "im" + ] + }, + { + "cell_type": "markdown", + "id": "7d6af59e", + "metadata": {}, + "source": [ + "

Train-Test Split

\n", + "The dataset needs to be splitted into training and testing set for tarining." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "chubby-water", + "metadata": {}, + "outputs": [], + "source": [ + "// Labels are median_house_value which is row 8\n", + "arma::rowvec labels =\n", + " arma::conv_to::from(encoded_dataset.row(8));\n", + "encoded_dataset.shed_row(8);" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "vital-lebanon", + "metadata": {}, + "outputs": [], + "source": [ + "arma::mat trainSet, testSet;\n", + "arma::rowvec trainLabels, testLabels;" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "ruled-refrigerator", + "metadata": {}, + "outputs": [], + "source": [ + "// Split dataset randomly into training set and test set.\n", + "data::Split(encoded_dataset, labels, trainSet, testSet, trainLabels, testLabels,\n", + " 0.2 /* Percentage of dataset to use for test set. */);" + ] + }, + { + "cell_type": "markdown", + "id": "57755813", + "metadata": {}, + "source": [ + "### Training the linear model\n", + "\n", + "Regression analysis is the most widely used method of prediction. Linear regression is used when the dataset has a linear correlation and as the name suggests, multiple linear regression has one independent variable (predictor) and one or more dependent variable(response).\n", + "\n", + "The simple linear regression equation is represented as y = $a + b_{1}x_{1} + b_{2}x_{2} + b_{3}x_{3} + ... + b_{n}x_{n}$ where $x_{i}$ is the ith explanatory variable, y is the dependent variable, $b_{i}$ is ith coefficient and a is the intercept.\n", + "\n", + "To perform linear regression we'll be using `LinearRegression()` api from mlpack." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "chemical-inside", + "metadata": {}, + "outputs": [], + "source": [ + "using namespace mlpack::regression;\n", + "LinearRegression lr(trainSet, trainLabels, 0.5);\n", + "// The above line creates and train the model." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "sensitive-sociology", + "metadata": {}, + "outputs": [], + "source": [ + "// Let's create a output vector for storing the results.\n", + "arma::rowvec output; \n", + "lr.Predict(testSet, output);" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "empty-senator", + "metadata": {}, + "outputs": [], + "source": [ + "lr.ComputeError(trainSet, trainLabels);" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "circular-donna", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "4.74874e+09" + ] + } + ], + "source": [ + "std::cout<NOTE : In the entire ML workflow, you never know exactly which model will perfrom the best. So, usually you try a lot of different algorithms to see which fits the model." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "C++14", + "language": "C++14", + "name": "xcpp14" + }, + "language_info": { + "codemirror_mode": "text/x-c++src", + "file_extension": ".cpp", + "mimetype": "text/x-c++src", + "name": "c++", + "version": "14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/mnist_cnn/mnist_cnn.cpp b/mnist_cnn/mnist_cnn.cpp index e141a265..c4094b5a 100644 --- a/mnist_cnn/mnist_cnn.cpp +++ b/mnist_cnn/mnist_cnn.cpp @@ -177,7 +177,7 @@ int main() ens::ProgressBar(), // Stop the training using Early Stop at min loss. ens::EarlyStopAtMinLoss( - [&](const arma::mat& /* param */) + [&](const arma::mat& /* param */) { double validationLoss = model.Evaluate(validX, validY); std::cout << "Validation loss: " << validationLoss diff --git a/utils/heatmap.hpp b/utils/heatmap.hpp new file mode 100644 index 00000000..ff842de7 --- /dev/null +++ b/utils/heatmap.hpp @@ -0,0 +1,103 @@ +// Inside the C++ notebook we can use: +// HeatMap("filename.csv",width, height,"heatmap.png") + +#ifndef CHEATMAP_HPP +#define CHEATMAP_HPP + +#define PY_SSIZE_T_CLEAN +#include +#include + +// Here, we will use the same argument as used in python script heatmap.py +// since this is what passed from the C++ notebook to python script + +int HeatMap(const std::string& inFile, + const std::string& outFile = "histogram.png", + const int width = 15, + const int height = 10) +{ + // Calls python function cpandahist and plots the heatmap + + PyObject *pName, *pModule, *pFunc; + PyObject *pArgs, *pValue; + + // This has to be adapted if you run this on your local system, + // so whenever you call the python script it can find the correct + // module -> PYTHONPATH, on lab.mlpack.org we put all the utility + // functions in the utils folder so we add that path + // to the Python search path. + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + + // Name of python script without extension + pName = PyUnicode_DecodeFSDefault("heatmap"); + + pModule = PyImport_Import(pName); + Py_DECREF(pName); + + if( pModule != NULL) + { + // The Python function from the histogram.py script + // we like to call - cheatmap + pFunc = PyObject_GetAttrString(pModule, "cheatmap"); + + if(pFunc && PyCallable_Check(pFunc)) + { + // The number of arguments we pass to the python script. + // inFile, outFile, width, height + // for the function above it's 4 + pArgs = PyTuple_New(4); + + // Now we have to encode the argument to the correct type + // We can use PyLong_FromLong for width and height as they are integers + // As for rest, we can use PyString_FromString + + PyObject* pValueinFile = PyUnicode_FromString(inFile.c_str()); + //Here we just set the index of the argument. + PyTuple_SetItem(pArgs, 0, pValueinFile); + + PyObject* pValueoutFile = PyUnicode_FromString(outFile.c_str()); + PyTuple_SetItem(pArgs, 1, pValueoutFile); + + PyObject* pValuewidth = PyLong_FromLong(width); + PyTuple_SetItem(pArgs, 2, pValuewidth); + + PyObject* pValueheight = PyLong_FromLong(height); + PyTuple_SetItem(pArgs, 3, pValueheight); + + + // The rest of the c++ part can remain same. + + pValue = PyObject_CallObject(pFunc, pArgs); + // We call the object with function name and arguments provided in c++ notebook + Py_DECREF(pArgs); + + if( pValue != NULL) + { + Py_DECREF(pValue); + } + else{ + Py_DECREF(pFunc); + Py_DECREF(pModule); + PyErr_Print(); + fprintf(stderr,"Call failed.\n"); + return 1; + } + } + else{ + if( PyErr_Occurred()) + PyErr_Print(); + } + + Py_XDECREF(pFunc); + Py_DECREF(pModule); + } + else{ + PyErr_Print(); + return -1; + } + return 0; + } + +#endif diff --git a/utils/heatmap.py b/utils/heatmap.py new file mode 100644 index 00000000..e0a87bdb --- /dev/null +++ b/utils/heatmap.py @@ -0,0 +1,9 @@ +import pandas as pd +import seaborn as sns +import matplotlib.pyplot as plt + +def cheatmap(inFile, outFile='heatmap.png', width=15, height=10): + plt.figure(figsize=(width,height)) + dataset = pd.read_csv(inFile) + sns.heatmap(dataset.corr(), annot=True) + plt.savefig(outFile) \ No newline at end of file diff --git a/utils/histogram.hpp b/utils/histogram.hpp new file mode 100644 index 00000000..fc7ebff3 --- /dev/null +++ b/utils/histogram.hpp @@ -0,0 +1,107 @@ +// Inside the C++ notebook we can use: +// Hist("filename.csv", "bins", "histogram.png") + +#ifndef CHISTOGRAM_HPP +#define CHISTOGRAM_HPP + +#define PY_SSIZE_T_CLEAN +#include +#include + +// Here, we will use the same argument as used in python script histogram.py +// since this is what passed from the C++ notebook to python script + +int Hist(const std::string& inFile, + const int bins, + const int width = 20, + const int height = 15, + const std::string& outFile = "histogram.png") + +{ + // Calls python function cpandahist and plots the histogram + + PyObject *pName, *pModule, *pFunc; + PyObject *pArgs, *pValue; + + // This has to be adapted if you run this on your local system, + // so whenever you call the python script it can find the correct + // module -> PYTHONPATH, on lab.mlpack.org we put all the utility + // functions in the utils folder so we add that path + // to the Python search path. + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + + // Name of python script without extension + pName = PyUnicode_DecodeFSDefault("histogram"); + + pModule = PyImport_Import(pName); + Py_DECREF(pName); + + if( pModule != NULL) + { + // The Python function from the histogram.py script + // we like to call - cpandashist + pFunc = PyObject_GetAttrString(pModule, "cpandashist"); + + if(pFunc && PyCallable_Check(pFunc)) + { + // The number of arguments we pass to the python script. + // inFile, outFile, kind + // for the function above it's 5 + pArgs = PyTuple_New(5); + + // Now we have to encode the argument to the correct type + // We can use PyLong_FromLong for bins, width and height as they are integers + // As for rest, we can use PyString_FromString + + PyObject* pValueinFile = PyUnicode_FromString(inFile.c_str()); + //Here we just set the index of the argument. + PyTuple_SetItem(pArgs, 0, pValueinFile); + + PyObject* pValuebins = PyLong_FromLong(bins); + PyTuple_SetItem(pArgs, 1, pValuebins); + + PyObject* pValuewidth = PyLong_FromLong(width); + PyTuple_SetItem(pArgs, 2, pValuewidth); + + PyObject* pValueheight = PyLong_FromLong(height); + PyTuple_SetItem(pArgs, 3, pValueheight); + + PyObject* pValueoutFile = PyUnicode_FromString(outFile.c_str()); + PyTuple_SetItem(pArgs, 4, pValueoutFile); + + // The rest of the c++ part can remain same. + + pValue = PyObject_CallObject(pFunc, pArgs); + // We call the object with function name and arguments provided in c++ notebook + Py_DECREF(pArgs); + + if( pValue != NULL) + { + Py_DECREF(pValue); + } + else{ + Py_DECREF(pFunc); + Py_DECREF(pModule); + PyErr_Print(); + fprintf(stderr,"Call failed.\n"); + return 1; + } + } + else{ + if( PyErr_Occurred()) + PyErr_Print(); + } + + Py_XDECREF(pFunc); + Py_DECREF(pModule); + } + else{ + PyErr_Print(); + return -1; + } + return 0; + } + +#endif diff --git a/utils/histogram.py b/utils/histogram.py new file mode 100644 index 00000000..46d39500 --- /dev/null +++ b/utils/histogram.py @@ -0,0 +1,7 @@ +import pandas as pd +import matplotlib.pyplot as plt + +def cpandashist(inFile, bins, width=20,height=15, outFile = 'histogram.png'): + dataset = pd.read_csv(inFile) + dataset.hist(bins = 50, figsize=(20,15)) + plt.savefig(outFile) diff --git a/utils/impute.hpp b/utils/impute.hpp new file mode 100644 index 00000000..5f8a534c --- /dev/null +++ b/utils/impute.hpp @@ -0,0 +1,100 @@ +// Inside the C++ notebook we can use: +// Impute("filename.csv", "output.csv", "imputationMethod") +// imputationMethod can be "mean", "median", "method" depending upon missing values + +#ifndef CIMPUTE_HPP +#define CIMPUTE_HPP + +#define PY_SSIZE_T_CLEAN +#include +#include + +// Here, we will use the same argument as used in python script impute.py +// since this is what passed from the C++ notebook to python script + +int Impute(const std::string& inFile, + const std::string& outFile, + const std::string& kind) +{ + // Calls python function Imputer and fills the missing values using + // the specified imputation policy and saves the dataset as .csv + + PyObject *pName, *pModule, *pFunc; + PyObject *pArgs, *pValue; + + // This has to be adapted if you run this on your local system, + // so whenever you call the python script it can find the correct + // module -> PYTHONPATH, on lab.mlpack.org we put all the utility + // functions in the utils folder so we add that path + // to the Python search path. + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + + // Name of python script without extension + pName = PyUnicode_DecodeFSDefault("impute"); + + pModule = PyImport_Import(pName); + Py_DECREF(pName); + + if( pModule != NULL) + { + // The Python function from the impute.py script + // we like to call - cimputer + pFunc = PyObject_GetAttrString(pModule, "cimputer"); + + if(pFunc && PyCallable_Check(pFunc)) + { + // The number of arguments we pass to the python script. + // inFile, outFile, kind + // for the function above it's 3 + pArgs = PyTuple_New(3); + + // Now we have to encode the argument to the correct type + // besides width , height everything else is a string. + // So we can use PyUnicode_FromString. + + PyObject* pValueinFile = PyUnicode_FromString(inFile.c_str()); + //Here we just set the index of the argument. + PyTuple_SetItem(pArgs, 0, pValueinFile); + + PyObject* pValueoutFile = PyUnicode_FromString(outFile.c_str()); + PyTuple_SetItem(pArgs, 1, pValueoutFile); + + PyObject* pValuekind = PyUnicode_FromString(kind.c_str()); + PyTuple_SetItem(pArgs, 2, pValuekind); + + // The rest of the c++ part can remain same. + + pValue = PyObject_CallObject(pFunc, pArgs); + // We call the object with function name and arguments provided in c++ notebook + Py_DECREF(pArgs); + + if( pValue != NULL) + { + Py_DECREF(pValue); + } + else{ + Py_DECREF(pFunc); + Py_DECREF(pModule); + PyErr_Print(); + fprintf(stderr,"Call failed.\n"); + return 1; + } + } + else{ + if( PyErr_Occurred()) + PyErr_Print(); + } + + Py_XDECREF(pFunc); + Py_DECREF(pModule); + } + else{ + PyErr_Print(); + return -1; + } + return 0; + } + +#endif diff --git a/utils/impute.py b/utils/impute.py new file mode 100644 index 00000000..5d4569a7 --- /dev/null +++ b/utils/impute.py @@ -0,0 +1,17 @@ +import pandas as pd +import numpy as np + +def cimputer(inFile, outFile, kind): + dataset = pd.read_csv(inFile) + df = dataset.copy(deep=True) + for feature in df.columns: + if df[feature].dtype == "float": + if kind == "mean": + df[feature] = df[feature].fillna(df[feature].mean()) + elif kind == "median": + df[feature] = df[feature].fillna(df[feature].median()) + elif kind == "mode": + df[feature] = df[feature].fillna(df[feature].mode()[0]) + elif df[feature].dtype == "object": + df[feature] = df[feature].fillna(df[feature].mode()[0]) + df.to_csv(outFile, encoding='utf-8', index=False) diff --git a/utils/pandasscatter.hpp b/utils/pandasscatter.hpp new file mode 100644 index 00000000..8359e06e --- /dev/null +++ b/utils/pandasscatter.hpp @@ -0,0 +1,280 @@ +// Inside the C++ notebook we can use: +// PandasScatter("housing.csv", "longitude", "latitude", "output.png"); +// auto im = xw::image_from_file("output.png").finalize(); +// im + +#ifndef C_PANDAS_SCATTER_C_PANDAS_SCATTER_HPP +#define C_PANDAS_SCATTER_C_PANDAS_SCATTER_HPP + +#define PY_SSIZE_T_CLEAN +#include +#include + +// Here we use the same arguments as we used in the python script, +// since this is what is passed from the C++ notebook to call the python script. +int PandasScatter(const std::string& inFile, + const std::string& x, + const std::string& y, + const std::string& outFile = "output.png", + const int width = 10, + const int height = 10) +{ + PyObject *pName, *pModule, *pFunc; + PyObject *pArgs, *pValue; + int i; + + // This has to be adapted if you run this on your local system, + // so whenever you call the python script it can find the correct + // module -> PYTHONPATH, on lab.mlpack.org we put all the utility + // functions for plotting uinto the utils folder so we add that path + // to the Python search path. + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + // Name of the python script without the extension. + pName = PyUnicode_DecodeFSDefault("pandasscatter"); + + pModule = PyImport_Import(pName); + Py_DECREF(pName); + + if (pModule != NULL) + { + // The Python function from the pandasscatter.py script + // we like to call - cpandasscatter + pFunc = PyObject_GetAttrString(pModule, "cpandasscatter"); + + if (pFunc && PyCallable_Check(pFunc)) + { + // The number of arguments we pass to the python script. + // inFile, x, y, outFile='output.png', height=10, width=10 + // for the example above it's 6 + pArgs = PyTuple_New(6); + + // Now we have to encode the argument to the correct type + // besides width, height everything else is a string. + // So we can use PyUnicode_FromString. + // If the data is an int we can use PyLong_FromLong, + // see the lines below for an example. + PyObject* pValueinFile = PyUnicode_FromString(inFile.c_str()); + // Here we just set the index of the argument. + PyTuple_SetItem(pArgs, 0, pValueinFile); + + PyObject* pValueX = PyUnicode_FromString(x.c_str()); + PyTuple_SetItem(pArgs, 1, pValueX); + + PyObject* pValueY = PyUnicode_FromString(y.c_str()); + PyTuple_SetItem(pArgs, 2, pValueY); + + PyObject* pValueoutFile = PyUnicode_FromString(outFile.c_str()); + PyTuple_SetItem(pArgs, 3, pValueoutFile); + + PyObject* pValueWidth = PyLong_FromLong(width); + PyTuple_SetItem(pArgs, 4, pValueWidth); + + PyObject* pValueHeight = PyLong_FromLong(height); + PyTuple_SetItem(pArgs, 5, pValueHeight); + + // The rest of the c++ part can stay the same. + + pValue = PyObject_CallObject(pFunc, pArgs); + Py_DECREF(pArgs); + if (pValue != NULL) + { + Py_DECREF(pValue); + } + else + { + Py_DECREF(pFunc); + Py_DECREF(pModule); + PyErr_Print(); + fprintf(stderr,"Call failed.\n"); + return 1; + } + } + else + { + if (PyErr_Occurred()) + PyErr_Print(); + } + + Py_XDECREF(pFunc); + Py_DECREF(pModule); + } + else + { + PyErr_Print(); + return 1; + } + + return 0; +} +int PandasScatterColor(const std::string& inFile, + const std::string& x, + const std::string& y, + const std::string& label, + const std::string& c, + const std::string& outFile, + const int width = 10, + const int height= 10) +{ + PyObject *pName, *pModule, *pFunc; + PyObject *pArgs, *pValue; + int i; + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + pName = PyUnicode_DecodeFSDefault("pandasscatter"); + + pModule = PyImport_Import(pName); + Py_DECREF(pName); + + if(pModule != NULL){ + pFunc = PyObject_GetAttrString(pModule, "cpandasscattercolor"); + if( pFunc && PyCallable_Check(pFunc)) + { + pArgs = PyTuple_New(8); + + PyObject* pValueinFile = PyUnicode_FromString(inFile.c_str()); + PyTuple_SetItem(pArgs, 0, pValueinFile); + + PyObject* pValueX = PyUnicode_FromString(x.c_str()); + PyTuple_SetItem(pArgs, 1, pValueX); + + PyObject* pValueY = PyUnicode_FromString(y.c_str()); + PyTuple_SetItem(pArgs, 2, pValueY); + + PyObject* pValueLabel = PyUnicode_FromString(label.c_str()); + PyTuple_SetItem(pArgs, 3, pValueLabel); + + PyObject* pValueC = PyUnicode_FromString(c.c_str()); + PyTuple_SetItem(pArgs, 4, pValueC); + + PyObject* pValueoutFile = PyUnicode_FromString(outFile.c_str()); + PyTuple_SetItem(pArgs, 5, pValueoutFile); + + PyObject* pValueWidth = PyLong_FromLong(width); + PyTuple_SetItem(pArgs, 6, pValueWidth); + + PyObject* pValueHeight = PyLong_FromLong(height); + PyTuple_SetItem(pArgs, 7, pValueHeight); + + pValue = PyObject_CallObject(pFunc, pArgs); + Py_DECREF(pArgs); + if (pValue != NULL) + { + Py_DECREF(pValue); + } + else + { + Py_DECREF(pFunc); + Py_DECREF(pModule); + PyErr_Print(); + fprintf(stderr,"Call Failed.\n"); + return 1; + } + + } + else + { + if(PyErr_Occurred()) + PyErr_Print(); + } + + Py_XDECREF(pFunc); + Py_DECREF(pModule); + } + else + { + PyErr_Print(); + return -1; + } + return 0; +} +int PandasScatterMap(const std::string& inFile, + const std::string& imgFile, + const std::string& x, + const std::string& y, + const std::string& label, + const std::string& c, + const std::string& outFile, + const int width = 10, + const int height= 10) +{ + PyObject *pName, *pModule, *pFunc; + PyObject *pArgs, *pValue; + int i; + Py_Initialize(); + PyRun_SimpleString("import sys"); + PyRun_SimpleString("sys.path.append(\"../utils/\")"); + pName = PyUnicode_DecodeFSDefault("pandasscatter"); + + pModule = PyImport_Import(pName); + Py_DECREF(pName); + + if(pModule != NULL){ + pFunc = PyObject_GetAttrString(pModule, "cpandasscattermap"); + if( pFunc && PyCallable_Check(pFunc)) + { + pArgs = PyTuple_New(9); + + PyObject* pValueinFile = PyUnicode_FromString(inFile.c_str()); + PyTuple_SetItem(pArgs, 0, pValueinFile); + + PyObject* pValueimgFile = PyUnicode_FromString(imgFile.c_str()); + PyTuple_SetItem(pArgs, 1, pValueimgFile); + + + PyObject* pValueX = PyUnicode_FromString(x.c_str()); + PyTuple_SetItem(pArgs, 2, pValueX); + + PyObject* pValueY = PyUnicode_FromString(y.c_str()); + PyTuple_SetItem(pArgs, 3, pValueY); + + PyObject* pValueLabel = PyUnicode_FromString(label.c_str()); + PyTuple_SetItem(pArgs, 4, pValueLabel); + + PyObject* pValueC = PyUnicode_FromString(c.c_str()); + PyTuple_SetItem(pArgs, 5, pValueC); + + PyObject* pValueoutFile = PyUnicode_FromString(outFile.c_str()); + PyTuple_SetItem(pArgs, 6, pValueoutFile); + + PyObject* pValueWidth = PyLong_FromLong(width); + PyTuple_SetItem(pArgs, 7, pValueWidth); + + PyObject* pValueHeight = PyLong_FromLong(height); + PyTuple_SetItem(pArgs, 8, pValueHeight); + + pValue = PyObject_CallObject(pFunc, pArgs); + Py_DECREF(pArgs); + if (pValue != NULL) + { + Py_DECREF(pValue); + } + else + { + Py_DECREF(pFunc); + Py_DECREF(pModule); + PyErr_Print(); + fprintf(stderr,"Call Failed.\n"); + return 1; + } + + } + else + { + if(PyErr_Occurred()) + PyErr_Print(); + } + + Py_XDECREF(pFunc); + Py_DECREF(pModule); + } + else + { + PyErr_Print(); + return -1; + } + return 0; +} +#endif diff --git a/utils/pandasscatter.py b/utils/pandasscatter.py new file mode 100644 index 00000000..b056981c --- /dev/null +++ b/utils/pandasscatter.py @@ -0,0 +1,28 @@ +from matplotlib import figure +import pandas as pd +import matplotlib.pyplot as plt +from matplotlib.pyplot import figure + +def cpandasscatter(inFile, x, y, outFile= 'output.png', height=10, width=10): + dataset = pd.read_csv(inFile) + fig = dataset.plot(kind="scatter", x=x, y=y, alpha=0.1, figsize=(width, height)) + fig.figure.savefig(outFile) + +def cpandasscattercolor(inFile, x, y, label, c, outFile= 'output1.png', height= 10, width = 10): + dataset = pd.read_csv(inFile) + fig = dataset.plot(kind="scatter", x=x, y=y, alpha=0.4,s=dataset["population"]/100, + label=label, c=c, cmap=plt.get_cmap("jet"), colorbar=True, + sharex = False) + fig.figure.savefig(outFile) + +def cpandasscattermap(inFile, imgFile, x, y, label, c, outFile="output2.png", height=10, width = 7): + figure(figsize=(10,7)) + im = plt.imread(imgFile) + dataset = pd.read_csv(inFile) + implot = plt.imshow(im, extent=[-124.55, -113.80, 32.45, 42.05], alpha=0.5, + cmap=plt.get_cmap("jet")) + plt.scatter(x=dataset[x], y=dataset[y], s=dataset["population"]/100, label=label, c=dataset[c], cmap=plt.get_cmap("jet"), alpha= 0.5) + plt.colorbar() + plt.ylabel("Latitude", fontsize=14) + plt.xlabel("Longitude", fontsize=14) + plt.savefig(outFile) \ No newline at end of file diff --git a/utils/plot.hpp b/utils/plot.hpp index 6e4f6ef0..871fe6fb 100644 --- a/utils/plot.hpp +++ b/utils/plot.hpp @@ -18,14 +18,14 @@ int scatter(const std::string& fname, const int figWidth = 26, const int figHeight = 7) { - + // Calls Python function cscatter and generates a scatter plot of Xcol and yCol and saves it, // so the plot can later be imported in C++ notebook using xwidget. - + // PyObject contains info Python needs to treat a pointer to an object as an object. // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - + // Initialize Python Interpreter. Py_Initialize(); // Import sys module in Interpreter and add current path to python search path. @@ -43,43 +43,43 @@ int scatter(const std::string& fname, pArgs = PyTuple_New(12); // String object representing the name of the dataset to be loaded. - PyObject* pFname = PyString_FromString(fname.c_str()); + PyObject* pFname = PyUnicode_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); - + // String object representing the name of the feature to be plotted along X axis. - PyObject* pXcol = PyString_FromString(xCol.c_str()); + PyObject* pXcol = PyUnicode_FromString(xCol.c_str()); PyTuple_SetItem(pArgs, 1, pXcol); - + // String object representing the name of the feature to be plotted along Y axis. - PyObject* pYcol = PyString_FromString(yCol.c_str()); + PyObject* pYcol = PyUnicode_FromString(yCol.c_str()); PyTuple_SetItem(pArgs, 2, pYcol); - + // String object representing the name of the feature to be parsed as TimeStamp. - PyObject* pDateCol = PyString_FromString(dateCol.c_str()); + PyObject* pDateCol = PyUnicode_FromString(dateCol.c_str()); PyTuple_SetItem(pArgs, 3, pDateCol); - + // String object representing the name of the feature to be used to mask the plot data points. - PyObject* pMaskCol = PyString_FromString(maskCol.c_str()); - PyTuple_SetItem(pArgs, 4, pMaskCol); - + PyObject* pMaskCol = PyUnicode_FromString(maskCol.c_str()); + PyTuple_SetItem(pArgs, 4, pMaskCol); + // String object representing the value for masking. - PyObject* pType = PyString_FromString(type.c_str()); + PyObject* pType = PyUnicode_FromString(type.c_str()); PyTuple_SetItem(pArgs, 5, pType); - + // String object representing the feature name to be used as color value in plot. - PyObject* pColor = PyString_FromString(color.c_str()); + PyObject* pColor = PyUnicode_FromString(color.c_str()); PyTuple_SetItem(pArgs, 6, pColor); - + // String object representing the X axis label. - PyObject* pXlabel = PyString_FromString(xLabel.c_str()); + PyObject* pXlabel = PyUnicode_FromString(xLabel.c_str()); PyTuple_SetItem(pArgs, 7, pXlabel); - + // String object representing the Y axis label. - PyObject* pYlabel = PyString_FromString(yLabel.c_str()); + PyObject* pYlabel = PyUnicode_FromString(yLabel.c_str()); PyTuple_SetItem(pArgs, 8, pYlabel); - // String object representing the title of the figure. - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + // String object representing the title of the figure. + PyObject* pFigTitle = PyUnicode_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 9, pFigTitle); // Integer object representing the width of the figure. @@ -104,9 +104,9 @@ int barplot(const std::string& fname, const int figWidth = 5, const int figHeight = 7) { - + // Calls Python function cbarplot and generates a barplot plot of x and y and saves it, - // so the plot can later be imported in C++ notebook using xwidget. + // so the plot can later be imported in C++ notebook using xwidget. // PyObject contains info Python needs to treat a pointer to an object as an object. // It contains object's reference count and pointer to corresponding object type. @@ -118,41 +118,41 @@ int barplot(const std::string& fname, PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); - // Import the Python module. + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - // Get the reference to Python Function to call. + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "cbarplot"); - // Create a tuple object to hold the arguments for function call. + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(7); - // String object representing the name of the dataset to be loaded. - PyObject* pFname = PyString_FromString(fname.c_str()); + // String object representing the name of the dataset to be loaded. + PyObject* pFname = PyUnicode_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); // String object representing the name of the feature to be plotted along X axis. - PyObject* pX = PyString_FromString(x.c_str()); + PyObject* pX = PyUnicode_FromString(x.c_str()); PyTuple_SetItem(pArgs, 1, pX); // String object representing the name of the feature to be plotted along Y axis. - PyObject* pY = PyString_FromString(y.c_str()); + PyObject* pY = PyUnicode_FromString(y.c_str()); PyTuple_SetItem(pArgs, 2, pY); - + // String object representing the name of the feature to be parsed as TimeStamp. - PyObject* pDateCol = PyString_FromString(dateCol.c_str()); + PyObject* pDateCol = PyUnicode_FromString(dateCol.c_str()); PyTuple_SetItem(pArgs, 3, pDateCol); - // String object representing the title of the figure. - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + // String object representing the title of the figure. + PyObject* pFigTitle = PyUnicode_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 4, pFigTitle); - // Integer object representing the width of the figure. + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 5, pFigWidth); - // Integer object representing the height of the figure. + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 6, pFigHeight); @@ -171,50 +171,50 @@ int heatmap(const std::string& fname, { // PyObject contains info Python needs to treat a pointer to an object as an object. - // It contains object's reference count and pointer to corresponding object type. + // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - // Initialize Python Interpreter. + // Initialize Python Interpreter. Py_Initialize(); - // Import sys module in Interpreter and add current path to python search path. + // Import sys module in Interpreter and add current path to python search path. PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); - // Import the Python module. + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - // Get the reference to Python Function to call. + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "cheatmap"); - // Create a tuple object to hold the arguments for function call. + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(6); - // String object representing the name of the dataset to be loaded. - PyObject* pFname = PyString_FromString(fname.c_str()); + // String object representing the name of the dataset to be loaded. + PyObject* pFname = PyUnicode_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); // String object representing the name of color map to be used for plotting. - PyObject* pColorMap = PyString_FromString(colorMap.c_str()); + PyObject* pColorMap = PyUnicode_FromString(colorMap.c_str()); PyTuple_SetItem(pArgs, 1, pColorMap); - // Boolean object indicating if correlation values must be annotated in figure. + // Boolean object indicating if correlation values must be annotated in figure. PyObject* pAnnotation = PyBool_FromLong(annotation); PyTuple_SetItem(pArgs, 2, pAnnotation); - // String object representing the title of the figure. - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + // String object representing the title of the figure. + PyObject* pFigTitle = PyUnicode_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 3, pFigTitle); - // Integer object representing the width of the figure. + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 4, pFigWidth); - // Integer object representing the height of the figure. + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 5, pFigHeight); - // Call the function by passing the reference to function & tuple holding arguments. + // Call the function by passing the reference to function & tuple holding arguments. pValue = PyObject_CallObject(pFunc, pArgs); return 0; @@ -227,42 +227,42 @@ int lmplot(const std::string& fname, { // PyObject contains info Python needs to treat a pointer to an object as an object. - // It contains object's reference count and pointer to corresponding object type. + // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - // Initialize Python Interpreter. + // Initialize Python Interpreter. Py_Initialize(); // Import sys module in Interpreter and add current path to python search path. PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); - // Import the Python module. + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - // Get the reference to Python Function to call. + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "clmplot"); - // Create a tuple object to hold the arguments for function call. + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(4); - // String object representing the name of the dataset to be loaded. - PyObject* pFname = PyString_FromString(fname.c_str()); + // String object representing the name of the dataset to be loaded. + PyObject* pFname = PyUnicode_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); - // String object representing the title of the figure. - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + // String object representing the title of the figure. + PyObject* pFigTitle = PyUnicode_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 1, pFigTitle); - // Integer object representing the width of the figure. + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 2, pFigWidth); - // Integer object representing the height of the figure. + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 3, pFigHeight); - // Call the function by passing the reference to function & tuple holding arguments. + // Call the function by passing the reference to function & tuple holding arguments. pValue = PyObject_CallObject(pFunc, pArgs); return 0; @@ -275,42 +275,42 @@ int histplot(const std::string& fname, { // PyObject contains info Python needs to treat a pointer to an object as an object. - // It contains object's reference count and pointer to corresponding object type. + // It contains object's reference count and pointer to corresponding object type. PyObject *pName, *pModule, *pFunc, *pArgs, *pValue; - // Initialize Python Interpreter. + // Initialize Python Interpreter. Py_Initialize(); // Import sys module in Interpreter and add current path to python search path. PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); - // Import the Python module. + // Import the Python module. pName = PyUnicode_DecodeFSDefault("plot"); pModule = PyImport_Import(pName); - // Get the reference to Python Function to call. + // Get the reference to Python Function to call. pFunc = PyObject_GetAttrString(pModule, "chistplot"); - // Create a tuple object to hold the arguments for function call. + // Create a tuple object to hold the arguments for function call. pArgs = PyTuple_New(4); - // String object representing the name of the dataset to be loaded. - PyObject* pFname = PyString_FromString(fname.c_str()); + // String object representing the name of the dataset to be loaded. + PyObject* pFname = PyUnicode_FromString(fname.c_str()); PyTuple_SetItem(pArgs, 0, pFname); - // String object representing the title of the figure. - PyObject* pFigTitle = PyString_FromString(figTitle.c_str()); + // String object representing the title of the figure. + PyObject* pFigTitle = PyUnicode_FromString(figTitle.c_str()); PyTuple_SetItem(pArgs, 1, pFigTitle); - // Integer object representing the width of the figure. + // Integer object representing the width of the figure. PyObject* pFigWidth = PyLong_FromLong(figWidth); PyTuple_SetItem(pArgs, 2, pFigWidth); - // Integer object representing the height of the figure. + // Integer object representing the height of the figure. PyObject* pFigHeight = PyLong_FromLong(figHeight); PyTuple_SetItem(pArgs, 3, pFigHeight); - // Call the function by passing the reference to function & tuple holding arguments. + // Call the function by passing the reference to function & tuple holding arguments. pValue = PyObject_CallObject(pFunc, pArgs); return 0; diff --git a/utils/plot.py b/utils/plot.py index adebb5c0..19bf87ca 100644 --- a/utils/plot.py +++ b/utils/plot.py @@ -2,21 +2,21 @@ import matplotlib.pyplot as plt import seaborn as sns -def cscatter(filename: str, - xCol: str, +def cscatter(filename: str, + xCol: str, yCol: str, - dateCol:str = None, - maskCol: str = None, - type_: str = None, + dateCol:str = None, + maskCol: str = None, + type_: str = None, color: str = None, - xLabel: str = None, - yLabel: str = None, - figTitle: str = None, - figWidth: int = 26, + xLabel: str = None, + yLabel: str = None, + figTitle: str = None, + figWidth: int = 26, figHeight: int = 7) -> None: """ Creates a scatter plot of size figWidth & figHeight, named figTitle and saves it. - + Parameters: filename (str): Name of the dataset to load. xCol (str): Name of the feature in dataset to plot against X axis. @@ -31,7 +31,7 @@ def cscatter(filename: str, figTitle (str): Title for the figure to be save; defaults to None. figWidth (int): Width of the figure; defaults to 26. figHeight (int): Height of the figure; defaults to 7. - + Returns: (None): Function does not return anything. """ @@ -58,16 +58,16 @@ def cscatter(filename: str, plt.savefig(f"{figTitle}.png") plt.close() -def cbarplot(filename: str, - x: str, - y: str, - dateCol: str = None, - figTitle: str = None, - figWidth: int = 5, +def cbarplot(filename: str, + x: str, + y: str, + dateCol: str = None, + figTitle: str = None, + figWidth: int = 5, figHeight: int = 7) -> None: """ Creates a bar plot of size figWidth & figHeight, named figTitle between x & y. - + Parameters: filename (str): Name of the dataset to load. x (str): Name of the feature in dataset to plot against X axis. @@ -91,16 +91,16 @@ def cbarplot(filename: str, plt.title(figTitle) plt.savefig(f"{figTitle}.png") plt.close() - -def cheatmap(filename: str, - cmap: str, - annotate: bool, - figTitle: str, - figWidth: int = 12, + +def cheatmap(filename: str, + cmap: str, + annotate: bool, + figTitle: str, + figWidth: int = 12, figHeight: int = 6) -> None: """ Creates a heatmap (correlation map) of the dataset and saves it. - + Parameters: filename (str): Name of the dataset to load. cmap (str): Name of the color map to be used for plotting. @@ -120,14 +120,14 @@ def cheatmap(filename: str, plt.title(figTitle) plt.savefig(f"{figTitle}.png") plt.close() - -def clmplot(filename: str, - figTitle: str = None, - figWidth: int = 6, + +def clmplot(filename: str, + figTitle: str = None, + figWidth: int = 6, figHeight: int = 7) -> None: """ Generates a regression plot on the given dataset and saves it. - + Parameters: filename (str): Name of the dataset to load. figTitle (str): Title for the figure to be save; defaults to None. @@ -144,14 +144,14 @@ def clmplot(filename: str, ax = sns.lmplot(x="Y_Test", y="Y_Preds", data=df) plt.savefig(f"{figTitle}.png") plt.close() - -def chistplot(filename: str, - figTitle: str = None, - figWidth: int = 6, + +def chistplot(filename: str, + figTitle: str = None, + figWidth: int = 6, figHeight: int = 4) -> None: """ Generated a histogram on the given dataset and saves it. - + Parameters: filename (str): Name of the dataset to load. figTitle (str): Title for the figure to be save; defaults to None. @@ -169,4 +169,4 @@ def chistplot(filename: str, plt.title(f"{figTitle}") plt.savefig(f"{figTitle}.png") plt.close() - + From ff862f556c607bc3a274cb2b1cda5e1ea9e6cfe1 Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Wed, 7 Jul 2021 15:14:44 +0530 Subject: [PATCH 52/69] fixed style issues --- ...ng_handwritten_digits_mnist_with_gan.ipynb | 204 ------------------ utils/heatmap.hpp | 34 +-- utils/histogram.hpp | 29 +-- utils/impute.hpp | 36 ++-- utils/pandasscatter.hpp | 32 +-- utils/pandasscatter.py | 10 +- 6 files changed, 74 insertions(+), 271 deletions(-) delete mode 100644 generating_hand_written_digits_mnist_with_gan/generating_handwritten_digits_mnist_with_gan.ipynb diff --git a/generating_hand_written_digits_mnist_with_gan/generating_handwritten_digits_mnist_with_gan.ipynb b/generating_hand_written_digits_mnist_with_gan/generating_handwritten_digits_mnist_with_gan.ipynb deleted file mode 100644 index 43ffd5ea..00000000 --- a/generating_hand_written_digits_mnist_with_gan/generating_handwritten_digits_mnist_with_gan.ipynb +++ /dev/null @@ -1,204 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 40, - "id": "fc5b593b", - "metadata": {}, - "outputs": [], - "source": [ - "#include\n", - "#include\n", - "#include\n", - "#include\n", - "#include\n", - "#include" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "id": "17fe0d45", - "metadata": {}, - "outputs": [], - "source": [ - "#include" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "id": "9123d7b0", - "metadata": {}, - "outputs": [], - "source": [ - "using namespace mlpack;\n", - "using namespace mlpack::ann;\n", - "using namespace arma;\n", - "using namespace std;\n", - "using namespace ens;" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "id": "658a16a8", - "metadata": {}, - "outputs": [], - "source": [ - "arma::Row getLabels(arma::mat predOut){\n", - " arma::Row predLabels(predOut.n_cols);\n", - " for( arma::uword i = 0; i < predOut.n_cols; ++i){\n", - " predLabels(i) = predOut.col(i).index_max();\n", - " }\n", - " return predLabels;\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "aac77d56", - "metadata": {}, - "outputs": [], - "source": [ - "constexpr double RATIO = 0.1;\n", - "constexpr int MAX_ITERATIONS = 0;\n", - "constexpr double STEP_SIZE = 1.2e-3;\n", - "constexpr int BATCH_SIZE = 50;" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "id": "ac9cead0", - "metadata": {}, - "outputs": [], - "source": [ - "arma::mat dataset;" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "id": "a69e8c5f", - "metadata": {}, - "outputs": [], - "source": [ - "data::Load(\"/home/viole/swaingotnochill/examples/generating_hand_written_digits_mnist_with_gan/digit-recognizer/train.csv\", dataset, true);" - ] - }, - { - "cell_type": "code", - "execution_count": 47, - "id": "77c9f143", - "metadata": {}, - "outputs": [], - "source": [ - "arma::mat train, valid;" - ] - }, - { - "cell_type": "code", - "execution_count": 48, - "id": "77410e7c", - "metadata": {}, - "outputs": [], - "source": [ - "data::Split(dataset, train, valid, RATIO);" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "id": "9c703e6a", - "metadata": {}, - "outputs": [], - "source": [ - "const arma::mat trainX = train.submat(1, 0, train.n_rows - 1, train.n_cols - 1);\n", - "const arma::mat validX = valid.submat(1, 0, valid.n_rows - 1, valid.n_cols - 1);" - ] - }, - { - "cell_type": "code", - "execution_count": 50, - "id": "73b03f06", - "metadata": {}, - "outputs": [], - "source": [ - "const arma::mat trainY = train.row(0);\n", - "const arma::mat validY = valid.row(0);" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "id": "349ab6bb", - "metadata": {}, - "outputs": [], - "source": [ - "using namespace mlpack::ann;\n", - "FFN, RandomInitialization> model;" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "id": "28399929", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[1minput_line_65:2:16: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'mlpack::ann::Convolution<>'\u001b[0m\n", - " model.Add(new mlpack::ann::Convolution<>(1,6,5,5,1,1,0,0,28,28));\n", - "\u001b[0;1;32m ^ ~~~~~~~~~~~~~~~~~~~~~\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/include/mlpack/methods/ann/layer/layer_types.hpp:172:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor (the implicit copy constructor) not viable: requires\n", - " 1 argument, but 10 were provided\u001b[0m\n", - "class Convolution;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/include/mlpack/methods/ann/layer/layer_types.hpp:172:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor (the implicit move constructor) not viable: requires\n", - " 1 argument, but 10 were provided\u001b[0m\n" - ] - }, - { - "ename": "Interpreter Error", - "evalue": "", - "output_type": "error", - "traceback": [ - "Interpreter Error: " - ] - } - ], - "source": [ - "model.Add(new mlpack::ann::Convolution<>(1,6,5,5,1,1,0,0,28,28));\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "58614fcf", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "C++14", - "language": "C++14", - "name": "xcpp14" - }, - "language_info": { - "codemirror_mode": "text/x-c++src", - "file_extension": ".cpp", - "mimetype": "text/x-c++src", - "name": "c++", - "version": "14" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/utils/heatmap.hpp b/utils/heatmap.hpp index ff842de7..e9a5e60b 100644 --- a/utils/heatmap.hpp +++ b/utils/heatmap.hpp @@ -9,7 +9,7 @@ #include // Here, we will use the same argument as used in python script heatmap.py -// since this is what passed from the C++ notebook to python script +// since this is what passed from the C++ notebook to python script. int HeatMap(const std::string& inFile, const std::string& outFile = "histogram.png", @@ -21,11 +21,11 @@ int HeatMap(const std::string& inFile, PyObject *pName, *pModule, *pFunc; PyObject *pArgs, *pValue; - // This has to be adapted if you run this on your local system, - // so whenever you call the python script it can find the correct - // module -> PYTHONPATH, on lab.mlpack.org we put all the utility - // functions in the utils folder so we add that path - // to the Python search path. + // This has to be adapted if you run this on your local system, + // so whenever you call the python script it can find the correct + // module -> PYTHONPATH, on lab.mlpack.org we put all the utility + // functions in the utils folder so we add that path + // to the Python search path. Py_Initialize(); PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); @@ -36,7 +36,7 @@ int HeatMap(const std::string& inFile, pModule = PyImport_Import(pName); Py_DECREF(pName); - if( pModule != NULL) + if (pModule != NULL) { // The Python function from the histogram.py script // we like to call - cheatmap @@ -51,7 +51,7 @@ int HeatMap(const std::string& inFile, // Now we have to encode the argument to the correct type // We can use PyLong_FromLong for width and height as they are integers - // As for rest, we can use PyString_FromString + // As for rest, we can use PyString_FromString. PyObject* pValueinFile = PyUnicode_FromString(inFile.c_str()); //Here we just set the index of the argument. @@ -66,18 +66,18 @@ int HeatMap(const std::string& inFile, PyObject* pValueheight = PyLong_FromLong(height); PyTuple_SetItem(pArgs, 3, pValueheight); - // The rest of the c++ part can remain same. - + pValue = PyObject_CallObject(pFunc, pArgs); - // We call the object with function name and arguments provided in c++ notebook + // We call the object with function name and arguments provided in c++ notebook. Py_DECREF(pArgs); - if( pValue != NULL) + if (pValue != NULL) { Py_DECREF(pValue); } - else{ + else + { Py_DECREF(pFunc); Py_DECREF(pModule); PyErr_Print(); @@ -85,15 +85,17 @@ int HeatMap(const std::string& inFile, return 1; } } - else{ - if( PyErr_Occurred()) + else + { + if (PyErr_Occurred()) PyErr_Print(); } Py_XDECREF(pFunc); Py_DECREF(pModule); } - else{ + else + { PyErr_Print(); return -1; } diff --git a/utils/histogram.hpp b/utils/histogram.hpp index fc7ebff3..5a5fa33c 100644 --- a/utils/histogram.hpp +++ b/utils/histogram.hpp @@ -23,11 +23,11 @@ int Hist(const std::string& inFile, PyObject *pName, *pModule, *pFunc; PyObject *pArgs, *pValue; - // This has to be adapted if you run this on your local system, - // so whenever you call the python script it can find the correct - // module -> PYTHONPATH, on lab.mlpack.org we put all the utility - // functions in the utils folder so we add that path - // to the Python search path. + // This has to be adapted if you run this on your local system, + // so whenever you call the python script it can find the correct + // module -> PYTHONPATH, on lab.mlpack.org we put all the utility + // functions in the utils folder so we add that path + // to the Python search path. Py_Initialize(); PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); @@ -38,13 +38,13 @@ int Hist(const std::string& inFile, pModule = PyImport_Import(pName); Py_DECREF(pName); - if( pModule != NULL) + if (pModule != NULL) { // The Python function from the histogram.py script // we like to call - cpandashist pFunc = PyObject_GetAttrString(pModule, "cpandashist"); - if(pFunc && PyCallable_Check(pFunc)) + if (pFunc && PyCallable_Check(pFunc)) { // The number of arguments we pass to the python script. // inFile, outFile, kind @@ -74,14 +74,15 @@ int Hist(const std::string& inFile, // The rest of the c++ part can remain same. pValue = PyObject_CallObject(pFunc, pArgs); - // We call the object with function name and arguments provided in c++ notebook + // We call the object with function name and arguments provided in c++ notebook. Py_DECREF(pArgs); - if( pValue != NULL) + if (pValue != NULL) { Py_DECREF(pValue); } - else{ + else + { Py_DECREF(pFunc); Py_DECREF(pModule); PyErr_Print(); @@ -89,15 +90,17 @@ int Hist(const std::string& inFile, return 1; } } - else{ - if( PyErr_Occurred()) + else + { + if (PyErr_Occurred()) PyErr_Print(); } Py_XDECREF(pFunc); Py_DECREF(pModule); } - else{ + else + { PyErr_Print(); return -1; } diff --git a/utils/impute.hpp b/utils/impute.hpp index 5f8a534c..244a78fc 100644 --- a/utils/impute.hpp +++ b/utils/impute.hpp @@ -1,6 +1,6 @@ // Inside the C++ notebook we can use: // Impute("filename.csv", "output.csv", "imputationMethod") -// imputationMethod can be "mean", "median", "method" depending upon missing values +// imputationMethod can be "mean", "median", "method" depending upon missing values. #ifndef CIMPUTE_HPP #define CIMPUTE_HPP @@ -10,34 +10,33 @@ #include // Here, we will use the same argument as used in python script impute.py -// since this is what passed from the C++ notebook to python script +// since this is what passed from the C++ notebook to python script. int Impute(const std::string& inFile, const std::string& outFile, const std::string& kind) { // Calls python function Imputer and fills the missing values using - // the specified imputation policy and saves the dataset as .csv - + // the specified imputation policy and saves the dataset as .csv. PyObject *pName, *pModule, *pFunc; PyObject *pArgs, *pValue; - // This has to be adapted if you run this on your local system, - // so whenever you call the python script it can find the correct - // module -> PYTHONPATH, on lab.mlpack.org we put all the utility - // functions in the utils folder so we add that path - // to the Python search path. + // This has to be adapted if you run this on your local system, + // so whenever you call the python script it can find the correct + // module -> PYTHONPATH, on lab.mlpack.org we put all the utility + // functions in the utils folder so we add that path + // to the Python search path. Py_Initialize(); PyRun_SimpleString("import sys"); PyRun_SimpleString("sys.path.append(\"../utils/\")"); - // Name of python script without extension + // Name of python script without extension. pName = PyUnicode_DecodeFSDefault("impute"); pModule = PyImport_Import(pName); Py_DECREF(pName); - if( pModule != NULL) + if (pModule != NULL) { // The Python function from the impute.py script // we like to call - cimputer @@ -67,14 +66,15 @@ int Impute(const std::string& inFile, // The rest of the c++ part can remain same. pValue = PyObject_CallObject(pFunc, pArgs); - // We call the object with function name and arguments provided in c++ notebook + // We call the object with function name and arguments provided in c++ notebook. Py_DECREF(pArgs); - if( pValue != NULL) + if (pValue != NULL) { Py_DECREF(pValue); } - else{ + else + { Py_DECREF(pFunc); Py_DECREF(pModule); PyErr_Print(); @@ -82,15 +82,17 @@ int Impute(const std::string& inFile, return 1; } } - else{ - if( PyErr_Occurred()) + else + { + if (PyErr_Occurred()) PyErr_Print(); } Py_XDECREF(pFunc); Py_DECREF(pModule); } - else{ + else + { PyErr_Print(); return -1; } diff --git a/utils/pandasscatter.hpp b/utils/pandasscatter.hpp index 8359e06e..ded0c721 100644 --- a/utils/pandasscatter.hpp +++ b/utils/pandasscatter.hpp @@ -128,7 +128,8 @@ int PandasScatterColor(const std::string& inFile, pModule = PyImport_Import(pName); Py_DECREF(pName); - if(pModule != NULL){ + if (pModule != NULL) + { pFunc = PyObject_GetAttrString(pModule, "cpandasscattercolor"); if( pFunc && PyCallable_Check(pFunc)) { @@ -172,11 +173,10 @@ int PandasScatterColor(const std::string& inFile, fprintf(stderr,"Call Failed.\n"); return 1; } - } else { - if(PyErr_Occurred()) + if (PyErr_Occurred()) PyErr_Print(); } @@ -191,14 +191,14 @@ int PandasScatterColor(const std::string& inFile, return 0; } int PandasScatterMap(const std::string& inFile, - const std::string& imgFile, - const std::string& x, - const std::string& y, - const std::string& label, - const std::string& c, - const std::string& outFile, - const int width = 10, - const int height= 10) + const std::string& imgFile, + const std::string& x, + const std::string& y, + const std::string& label, + const std::string& c, + const std::string& outFile, + const int width = 10, + const int height= 10) { PyObject *pName, *pModule, *pFunc; PyObject *pArgs, *pValue; @@ -211,9 +211,10 @@ int PandasScatterMap(const std::string& inFile, pModule = PyImport_Import(pName); Py_DECREF(pName); - if(pModule != NULL){ + if (pModule != NULL) + { pFunc = PyObject_GetAttrString(pModule, "cpandasscattermap"); - if( pFunc && PyCallable_Check(pFunc)) + if(pFunc && PyCallable_Check(pFunc)) { pArgs = PyTuple_New(9); @@ -223,7 +224,6 @@ int PandasScatterMap(const std::string& inFile, PyObject* pValueimgFile = PyUnicode_FromString(imgFile.c_str()); PyTuple_SetItem(pArgs, 1, pValueimgFile); - PyObject* pValueX = PyUnicode_FromString(x.c_str()); PyTuple_SetItem(pArgs, 2, pValueX); @@ -233,7 +233,7 @@ int PandasScatterMap(const std::string& inFile, PyObject* pValueLabel = PyUnicode_FromString(label.c_str()); PyTuple_SetItem(pArgs, 4, pValueLabel); - PyObject* pValueC = PyUnicode_FromString(c.c_str()); + PyObject* pValueC = PyUnicode_FromString(c.c_str()); PyTuple_SetItem(pArgs, 5, pValueC); PyObject* pValueoutFile = PyUnicode_FromString(outFile.c_str()); @@ -263,7 +263,7 @@ int PandasScatterMap(const std::string& inFile, } else { - if(PyErr_Occurred()) + if (PyErr_Occurred()) PyErr_Print(); } diff --git a/utils/pandasscatter.py b/utils/pandasscatter.py index b056981c..787178f3 100644 --- a/utils/pandasscatter.py +++ b/utils/pandasscatter.py @@ -3,19 +3,19 @@ import matplotlib.pyplot as plt from matplotlib.pyplot import figure -def cpandasscatter(inFile, x, y, outFile= 'output.png', height=10, width=10): +def cpandasscatter(inFile, x, y, outFile='output.png', height=10, width=10): dataset = pd.read_csv(inFile) fig = dataset.plot(kind="scatter", x=x, y=y, alpha=0.1, figsize=(width, height)) fig.figure.savefig(outFile) -def cpandasscattercolor(inFile, x, y, label, c, outFile= 'output1.png', height= 10, width = 10): +def cpandasscattercolor(inFile, x, y, label, c, outFile='output1.png', height=10, width=10): dataset = pd.read_csv(inFile) fig = dataset.plot(kind="scatter", x=x, y=y, alpha=0.4,s=dataset["population"]/100, - label=label, c=c, cmap=plt.get_cmap("jet"), colorbar=True, - sharex = False) + label=label, c=c, cmap=plt.get_cmap("jet"), colorbar=True, + sharex = False) fig.figure.savefig(outFile) -def cpandasscattermap(inFile, imgFile, x, y, label, c, outFile="output2.png", height=10, width = 7): +def cpandasscattermap(inFile, imgFile, x, y, label, c, outFile="output2.png", height=10, width=7): figure(figsize=(10,7)) im = plt.imread(imgFile) dataset = pd.read_csv(inFile) From 510229e166d5c1b75d1e36bd6b10c2ec733a68da Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Wed, 7 Jul 2021 15:28:19 +0530 Subject: [PATCH 53/69] fixed some more style issues in python notebook --- ...using_prices_predictions_with_lr_python.ipynb | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb b/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb index 99f38988..e13e6fcc 100644 --- a/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb +++ b/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb @@ -609,7 +609,7 @@ ], "source": [ "# Lets plot this on top of a piece of california map.\n", - "california_img=mpimg.imread('california.png') #path to california image.\n", + "california_img = mpimg.imread('california.png') #path to california image.\n", "ax = dataset.plot(kind=\"scatter\",\n", " x=\"longitude\",\n", " y=\"latitude\", \n", @@ -776,7 +776,11 @@ "id": "296cfb38", "metadata": {}, "source": [ - "It can be clearly seen that only total_bedrooms has missing values. Let's fill these missing values using median of the column.\n" + "It can be clearly seen that only total_bedrooms has missing values. Let's fill these missing values using median of the column.\n", + "
\n", + " NOTE: \n", + " 1. We can also impute here using mean.\n", + " 2. For categorical data, use mode." ] }, { @@ -829,11 +833,7 @@ "id": "5a7562d4", "metadata": {}, "source": [ - "It can be clearly seen now that we have filled all the missing values.\n", - "
\n", - " NOTE: \n", - " 1. We can also impute here using mean.\n", - " 2. For categorical data, use mode." + "It can be clearly seen now that we have filled all the missing values." ] }, { @@ -945,7 +945,7 @@ "source": [ "dataset[\"rooms_per_household\"] = dataset[\"total_rooms\"]/dataset[\"households\"]\n", "dataset[\"bedrooms_per_room\"] = dataset[\"total_bedrooms\"]/dataset[\"total_rooms\"]\n", - "dataset[\"population_per_household\"]=dataset[\"population\"]/dataset[\"households\"]" + "dataset[\"population_per_household\"] = dataset[\"population\"]/dataset[\"households\"]" ] }, { From 3c04b8850e35dfd230b06eb859f8b597b90b0750 Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Wed, 7 Jul 2021 18:23:57 +0530 Subject: [PATCH 54/69] fixed some style issues in cpp notebook --- ..._housing_price_prediction_with_lr_cpp.ipynb | 18 ++++++++++++++---- 1 file changed, 14 insertions(+), 4 deletions(-) diff --git a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb index 2dcf9f56..edb84b7d 100644 --- a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb +++ b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb @@ -272,7 +272,16 @@ } ], "source": [ - "encoded_dataset.n_rows" + "encoded_dataset.n_rows\n", + "// The above code prints the number of rows(features + labels) in current dataset." + ] + }, + { + "cell_type": "markdown", + "id": "89a8df9c", + "metadata": {}, + "source": [ + "You can notice the number of rows changed from 10 to 14, siginifying one hot encoding." ] }, { @@ -314,7 +323,7 @@ } ], "source": [ - "//Hist(inputFile, bins, width, height, outputFile);\n", + "// Hist(inputFile, bins, width, height, outputFile);\n", "Hist(\"housing.csv\", 50, 20, 15, \"histogram.png\");\n", "auto im = xw::image_from_file(\"histogram.png\").finalize();\n", "im" @@ -351,7 +360,7 @@ } ], "source": [ - "//PandasScatter(inputFile, x, y, outputFile);\n", + "// PandasScatter(inputFile, x, y, outputFile);\n", "PandasScatter(\"housing.csv\", \"longitude\", \"latitude\", \"output.png\");\n", "auto im = xw::image_from_file(\"output.png\").finalize();\n", "im" @@ -388,7 +397,7 @@ } ], "source": [ - "//PandasScatterColor(inputFile, x, y, label, c, outputFile)\n", + "// PandasScatterColor(inputFile, x, y, label, c, outputFile);\n", "PandasScatterColor(\"housing.csv\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output1.png\");\n", "auto im = xw::image_from_file(\"output1.png\").finalize();\n", "im" @@ -462,6 +471,7 @@ } ], "source": [ + "// HeatMap(inputFile, outputFile);\n", "HeatMap(\"housing.csv\", \"heatmap.png\");\n", "auto im = xw::image_from_file(\"heatmap.png\").finalize();\n", "im" From 069beb5f5ef6894b73f9c2b906113b6c84a7bacd Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Wed, 7 Jul 2021 18:27:42 +0530 Subject: [PATCH 55/69] cpp notebook markdown --- .../california_housing_price_prediction_with_lr_cpp.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb index edb84b7d..96e12a1d 100644 --- a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb +++ b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb @@ -281,7 +281,7 @@ "id": "89a8df9c", "metadata": {}, "source": [ - "You can notice the number of rows changed from 10 to 14, siginifying one hot encoding." + "You can notice the number of rows changed from 10 to 14, siginifying one hot encoding in this case." ] }, { From 1f3e412f89bdcfe1bf77910ef39ce1e7bf5433b1 Mon Sep 17 00:00:00 2001 From: jonpsy Date: Sat, 26 Jun 2021 00:57:03 +0530 Subject: [PATCH 56/69] Write MOEAD notebook --- .../portfolio-optimization-moead-cpp.ipynb | 187 +++++++++++++----- 1 file changed, 136 insertions(+), 51 deletions(-) rename portfolio_optimization_nsga2/portfolio-optimization-nsga2-cpp.ipynb => portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb (65%) diff --git a/portfolio_optimization_nsga2/portfolio-optimization-nsga2-cpp.ipynb b/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb similarity index 65% rename from portfolio_optimization_nsga2/portfolio-optimization-nsga2-cpp.ipynb rename to portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb index 073f8f6a..07a3dc1a 100644 --- a/portfolio_optimization_nsga2/portfolio-optimization-nsga2-cpp.ipynb +++ b/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb @@ -2,15 +2,15 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "/**\n", - " * @file portfolio-optimization-nsga2-cpp.ipynb\n", + " * @file portfolio-optimization-moead-cpp.ipynb\n", " *\n", - " * A simple practical application of Non Dominated Sorting Genetic Algorithm-2\n", - " * (NSGA2) in portfolio optimization. This example allows user to freely choose \n", + " * A simple practical application of MultiObjective Decomposition Evolutionary Algorithm\n", + " * - Differential Variant (MOEA/D-DE) in portfolio optimization. This example allows user to freely choose \n", " * multiple stocks of their choice, which upon request, generates csv automagically \n", " * via a helper function.\n", " *\n", @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -49,7 +49,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -58,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +81,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +91,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -123,7 +123,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -136,7 +136,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -163,7 +163,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -237,15 +237,18 @@ "const double lowerBound = 0;\n", "const double upperBound = 1;\n", "\n", - "ens::NSGA2 opt(20, // population size: The number of candidates in the population.\n", - " 300, // max generations: The maximum number of generations allowed.\n", - " 0.5, // crossover probability: The probability that the elites reproduce.\n", - " 0.5, // mutation probability: The probability of mutation among the elite.\n", - " 1e-3, // mutation strength: The strength of the mutation.\n", - " 1e-6, // epsilon: The minimum difference required to distinguish between two solutions.\n", - " lowerBound, // lowerBound: Lower bound of the coordinates of the initial population\n", - " upperBound // upperBound: Upper bound of the coordinates of the initial population\n", - " );\n", + "DefaultMOEAD opt(150, // Population size.\n", + " 300, // Max generations.\n", + " 1.0, // Crossover probability.\n", + " 0.9, // Probability of sampling from neighbor.\n", + " 20, // Neighborhood size.\n", + " 20, // Perturbation index.\n", + " 0.5, // Differential weight.\n", + " 2, // Max childrens to replace parents.\n", + " 1E-10, // epsilon.\n", + " lowerBound, // Lower bound.\n", + " upperBound // Upper bound.\n", + " );\n", "\n", "arma::mat coords = pf.GetInitialPoint();\n", "auto objectives = pf.GetObjectives();" @@ -262,49 +265,98 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The NSGA2 is a genetic algorithm which works by assigning fitness to each population member based on its collective performance on all the objectives. A member \"dominates\" another if it's assigned fitness is better than other, this results in an \"elite\" population. The elite population reproduce among themselves to produce superior off-springs. This process is done iteratively to arrive at an optimal set of solution known as the \"Pareto Front\". \n", + "MOEA/D-DE (Multi Objective Evolutionary Algorithm based on Decomposition - Differential Evolution) is a multi\n", + "objective optimization algorithm which works via Decomposition. Unlike traditional dominance based algorithm like NSGA-II, the concept of dominance is non-existant here. Instead a set of \"Reference Directions\" are generated which explitly allows us to control the distribution of the final Pareto Front. With the help of Decomposition functions, a scalar optimization problem is framed which \"pulls\" the population towards the true Pareto Front. MOEA/D-DE is much faster than NSGA-II and produces high quality Pareto Front in very few iterations.\n", "\n", - "The dominance relation is as follows:\n", - "\n", - "$$x_1\\ \\preceq_{D}\\ x_2$$ if $x_1$ is better than or equivalent to $x_2$ in all the specified objectives.\n", - "\n", - "where $\\preceq_{D}$ is the dominance symbol. " + "MOEAD offers a plethora of Decomposition Functions and Reference Direction generators via templates. For our case, we've utilized the trusty ```DefaultMOEAD```. Read the class documentation for other options." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Begin Optimization! (This will take a fair amount of time)" + "We would like to track the optimization process over the generations. For that let's create a container to store the current Pareto Front." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ - "opt.Optimize(objectives, coords);" + "std::vector paretoFrontArray{};" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Let's collect the results and inspect our first set of solution." + "This data structure would then be passed on to the \"QueryFront\" Callback which will track the evolution for us." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Begin Optimization! (This will take a fair amount of time)." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], + "source": [ + "opt.Optimize(objectives, coords, QueryFront(2, paretoFrontArray));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's collect the results and inspect our first set of solution." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 3.2988e-05\n", + " -2.6566e-05\n", + "\n" + ] + } + ], "source": [ "arma::cube paretoFront = opt.ParetoFront();\n", "\n", "std::cout << paretoFront.slice(0) << std::endl;" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create an array to store the X and Y coordinates of all the Pareto Fronts." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "size_t numQuery = 300 / 2; // maxGeneration / queryRate.\n", + "\n", + "std::vector> frontArrayX(numQuery);\n", + "std::vector> frontArrayY(numQuery);" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -314,26 +366,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ - "size_t populationSize = paretoFront.n_slices;\n", + "void FillFront(std::vector& frontX,\n", + " std::vector& frontY,\n", + " arma::cube& paretoFront)\n", + "{\n", + " size_t numPoints = paretoFront.n_slices;\n", "\n", - "//! Store the X, Y coordinates of the Pareto Front.\n", - "std::vector frontX(populationSize, 0.);\n", - "std::vector frontY(populationSize, 0.);\n", + " //! Store the X, Y coordinates of the Pareto Front.\n", + " frontX.resize(numPoints);\n", + " frontY.resize(numPoints);\n", "\n", - "for (size_t idx = 0; idx < populationSize; ++idx)\n", - "{\n", + " for (size_t idx = 0; idx < numPoints; ++idx)\n", + " {\n", "\n", - " frontX[idx] = paretoFront.slice(idx)(0);\n", - " // Append negative again to restore the original \n", - " // maximization objective.\n", - " frontY[idx] = -paretoFront.slice(idx)(1);\n", + " frontX[idx] = paretoFront.slice(idx)(0);\n", + " // Append negative again to restore the original \n", + " // maximization objective.\n", + " frontY[idx] = -paretoFront.slice(idx)(1);\n", + " }\n", "}" ] }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "for (size_t idx = 0; idx < numQuery; ++idx)\n", + " FillFront(frontArrayX[idx], frontArrayY[idx], paretoFrontArray[idx]);" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -358,21 +425,39 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "375542fef09e461298ed0c9ebf36a78e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 375542fef09e461298ed0c9ebf36a78e" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "plt::figure_size(800, 800);\n", - "plt::scatter(frontX, frontY, 50);\n", "\n", - "plt::xlabel(\"Returns\");\n", - "plt::ylabel(\"Volatility\");\n", + "for (size_t idx = 0; idx < numQuery; ++idx)\n", + " plt::scatter(frontArrayX[idx], frontArrayY[idx], 50, {{\"c\", \"r\"}});\n", + "\n", + "plt::xlabel(\"Volatility\");\n", + "plt::ylabel(\"Returns\");\n", "\n", "plt::title(\"The Pareto Front\");\n", "plt::legend();\n", "\n", "plt::save(\"./plot.png\");\n", - "auto im = xw::image_from_file(\"plot.png\").finalize();\n", + "auto im = xw::image_from_file(\"plot.png\");\n", "im" ] }, From 5e26558260398614abc3417661a627cd13d98f9a Mon Sep 17 00:00:00 2001 From: jonpsy Date: Sat, 26 Jun 2021 00:58:43 +0530 Subject: [PATCH 57/69] finalize --- .../portfolio-optimization-moead-cpp.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb b/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb index 07a3dc1a..da71c678 100644 --- a/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb +++ b/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb @@ -457,7 +457,7 @@ "plt::legend();\n", "\n", "plt::save(\"./plot.png\");\n", - "auto im = xw::image_from_file(\"plot.png\");\n", + "auto im = xw::image_from_file(\"plot.png\").finalize();\n", "im" ] }, @@ -492,4 +492,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file From 519d25027feb923e096bc53b537aa1704e0fefe6 Mon Sep 17 00:00:00 2001 From: jonpsy Date: Sat, 26 Jun 2021 19:06:38 +0530 Subject: [PATCH 58/69] Improve docs and picture render. --- .../portfolio-optimization-moead-cpp.ipynb | 496 +----------------- 1 file changed, 1 insertion(+), 495 deletions(-) diff --git a/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb b/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb index da71c678..d605e6c0 100644 --- a/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb +++ b/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb @@ -1,495 +1 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "/**\n", - " * @file portfolio-optimization-moead-cpp.ipynb\n", - " *\n", - " * A simple practical application of MultiObjective Decomposition Evolutionary Algorithm\n", - " * - Differential Variant (MOEA/D-DE) in portfolio optimization. This example allows user to freely choose \n", - " * multiple stocks of their choice, which upon request, generates csv automagically \n", - " * via a helper function.\n", - " *\n", - " * The algorithm will try and optimize the trade-off between the returns and\n", - " * volatility of the requested stocks.\n", - " *\n", - " * Data from Pandas Datareader library (https://pandas-datareader.readthedocs.io/en/latest/).\n", - " */" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "#include \n", - "\n", - "#include \n", - "#include \"../utils/portfolio.hpp\"" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "// Header files to create and show the plot.\n", - "#define WITHOUT_NUMPY 1\n", - "#include \"matplotlibcpp.h\"\n", - "#include \"xwidgets/ximage.hpp\"\n", - "\n", - "namespace plt = matplotlibcpp;" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "using namespace ens;" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "using namespace ens::test;" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. Set the Model Parameters" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this section, we will select the parameters for the optimizer. Parameters include name of the stocks, starting date, ending date and Finance API Source." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "//! Declare user specified data.\n", - "std::string stocks, startDate, endDate, dataSource;" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "stocks = \"AAPL,NKE,GOOGL,AMZN\";\n", - "\n", - "//! Uncomment to set custom stocks.\n", - "// std::cout << \"Type the name of symbol of the stocks via comma separated values (no spaces)\" << std::endl;\n", - "// std::cin >> stocks;" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We're setting the data source to Yahoo Finance API by default. For custom data-source, refer pandas-datareader documentation to get the exhaustive list of available API sources." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "dataSource = \"yahoo\";\n", - "\n", - "//! Uncomment to set custom data-source.\n", - "//std::cin >> dataSource;" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [], - "source": [ - "startDate = \"01/01/2015\";\n", - "\n", - "//! Uncomment to set custom start-date.\n", - "// std::cout << \"Starting Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n", - "// std::cin >> startDate;" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "endDate = \"31/12/2019\";\n", - "\n", - "//! Uncomment to set custom end-date.\n", - "// std::cout << \"End Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n", - "// std::cin >> endDate;" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Loading the Dataset" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this section, we will create a helper class which will generate the CSV file for us based on the parameters provided in previous section. This class would also define the objective functions in question, namely: Return and Volatility. Ideally, we would want to maximize the returns and reduce the volatility. Since our implementation of algorithm works on minimization of all objectives, we have appended negative sign to the returns objective which converts it into a minimization problem." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "class PortfolioFunction\n", - "{\n", - " public:\n", - " PortfolioFunction(const std::string& stocks,\n", - " const std::string& dataSource,\n", - " const std::string& startDate,\n", - " const std::string& endDate)\n", - " {\n", - " //! Generate the requested csv file.\n", - " Portfolio(stocks, dataSource, startDate, endDate,\"portfolio.csv\");\n", - " returns.load(\"portfolio.csv\", arma::csv_ascii);\n", - " returns.shed_col(0);\n", - "\n", - " assets = returns.n_cols;\n", - " }\n", - "\n", - " //! Get the starting point.\n", - " arma::mat GetInitialPoint()\n", - " {\n", - " return arma::Col(assets, 1, arma::fill::zeros);\n", - " }\n", - " \n", - " struct VolatilityObjective\n", - " {\n", - " VolatilityObjective(const arma::mat& returns) : returns(returns) {}\n", - "\n", - " double Evaluate(const arma::mat& coords)\n", - " {\n", - " const double portfolioVolatility = arma::as_scalar(arma::sqrt(\n", - " coords.t() * arma::cov(returns) * 252 * coords));\n", - " return portfolioVolatility;\n", - " }\n", - "\n", - " arma::mat returns;\n", - " };\n", - "\n", - " struct ReturnsObjective\n", - " {\n", - " ReturnsObjective(const arma::mat& returns) : returns(returns) {}\n", - "\n", - " double Evaluate(const arma::mat& coords)\n", - " {\n", - " const double portfolioReturns = arma::accu(arma::mean(returns) %\n", - " coords.t()) * 252;\n", - " \n", - " //! Negative sign appended to convert to minimization problem.\n", - " return -portfolioReturns;\n", - " }\n", - "\n", - " arma::mat returns;\n", - " };\n", - "\n", - "\n", - " //! Get objective functions.\n", - " std::tuple GetObjectives()\n", - " {\n", - " return std::make_tuple(VolatilityObjective(returns), ReturnsObjective(returns));\n", - " }\n", - "\n", - " arma::mat returns;\n", - " size_t assets;\n", - "};\n", - "\n", - "\n", - "//! The constructor will generate the csv file.\n", - "PortfolioFunction pf(stocks, dataSource, startDate, endDate);\n", - "\n", - "const double lowerBound = 0;\n", - "const double upperBound = 1;\n", - "\n", - "DefaultMOEAD opt(150, // Population size.\n", - " 300, // Max generations.\n", - " 1.0, // Crossover probability.\n", - " 0.9, // Probability of sampling from neighbor.\n", - " 20, // Neighborhood size.\n", - " 20, // Perturbation index.\n", - " 0.5, // Differential weight.\n", - " 2, // Max childrens to replace parents.\n", - " 1E-10, // epsilon.\n", - " lowerBound, // Lower bound.\n", - " upperBound // Upper bound.\n", - " );\n", - "\n", - "arma::mat coords = pf.GetInitialPoint();\n", - "auto objectives = pf.GetObjectives();" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. Optimization " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "MOEA/D-DE (Multi Objective Evolutionary Algorithm based on Decomposition - Differential Evolution) is a multi\n", - "objective optimization algorithm which works via Decomposition. Unlike traditional dominance based algorithm like NSGA-II, the concept of dominance is non-existant here. Instead a set of \"Reference Directions\" are generated which explitly allows us to control the distribution of the final Pareto Front. With the help of Decomposition functions, a scalar optimization problem is framed which \"pulls\" the population towards the true Pareto Front. MOEA/D-DE is much faster than NSGA-II and produces high quality Pareto Front in very few iterations.\n", - "\n", - "MOEAD offers a plethora of Decomposition Functions and Reference Direction generators via templates. For our case, we've utilized the trusty ```DefaultMOEAD```. Read the class documentation for other options." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We would like to track the optimization process over the generations. For that let's create a container to store the current Pareto Front." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "std::vector paretoFrontArray{};" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This data structure would then be passed on to the \"QueryFront\" Callback which will track the evolution for us." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Begin Optimization! (This will take a fair amount of time)." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "opt.Optimize(objectives, coords, QueryFront(2, paretoFrontArray));" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's collect the results and inspect our first set of solution." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 3.2988e-05\n", - " -2.6566e-05\n", - "\n" - ] - } - ], - "source": [ - "arma::cube paretoFront = opt.ParetoFront();\n", - "\n", - "std::cout << paretoFront.slice(0) << std::endl;" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's create an array to store the X and Y coordinates of all the Pareto Fronts." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "size_t numQuery = 300 / 2; // maxGeneration / queryRate.\n", - "\n", - "std::vector> frontArrayX(numQuery);\n", - "std::vector> frontArrayY(numQuery);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Convert to neccessary data structure." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [], - "source": [ - "void FillFront(std::vector& frontX,\n", - " std::vector& frontY,\n", - " arma::cube& paretoFront)\n", - "{\n", - " size_t numPoints = paretoFront.n_slices;\n", - "\n", - " //! Store the X, Y coordinates of the Pareto Front.\n", - " frontX.resize(numPoints);\n", - " frontY.resize(numPoints);\n", - "\n", - " for (size_t idx = 0; idx < numPoints; ++idx)\n", - " {\n", - "\n", - " frontX[idx] = paretoFront.slice(idx)(0);\n", - " // Append negative again to restore the original \n", - " // maximization objective.\n", - " frontY[idx] = -paretoFront.slice(idx)(1);\n", - " }\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "for (size_t idx = 0; idx < numQuery; ++idx)\n", - " FillFront(frontArrayX[idx], frontArrayY[idx], paretoFrontArray[idx]);" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 4. Plotting" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As said before, we desire higher returns and lower volatility. The Pareto Front generated gives an optimal set of solutions such that, higher volatility is traded-off with higher returns and vice-versa. Hence, all the solutions are \"optimal\". Based on user's preference, he/she can choose their solution from the generated front.\n", - "\n", - "The Axis Labels are as follows:\n", - "\n", - "X-Axis: Volatility\n", - "\n", - "Y-Axis: Returns\n", - "\n", - "We expect an increase in volatility with increase in returns." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "375542fef09e461298ed0c9ebf36a78e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "A Jupyter widget with unique id: 375542fef09e461298ed0c9ebf36a78e" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "plt::figure_size(800, 800);\n", - "\n", - "for (size_t idx = 0; idx < numQuery; ++idx)\n", - " plt::scatter(frontArrayX[idx], frontArrayY[idx], 50, {{\"c\", \"r\"}});\n", - "\n", - "plt::xlabel(\"Volatility\");\n", - "plt::ylabel(\"Returns\");\n", - "\n", - "plt::title(\"The Pareto Front\");\n", - "plt::legend();\n", - "\n", - "plt::save(\"./plot.png\");\n", - "auto im = xw::image_from_file(\"plot.png\").finalize();\n", - "im" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 5. Final Thoughts" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In this notebook, we've seen how a MultiObjective Optimization algorithm can help in investing in stocks. We specified our stocks and witnessed our algorithm optimize the returns vs volatility trade-off in live. Feel free to play around by selecting various stocks, start-date, end-date and see how the outcomes plays off. " - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "C++14", - "language": "C++14", - "name": "xcpp14" - }, - "language_info": { - "codemirror_mode": "text/x-c++src", - "file_extension": ".cpp", - "mimetype": "text/x-c++src", - "name": "c++", - "version": "14" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} \ No newline at end of file +{"cells":[{"metadata":{"trusted":true},"cell_type":"code","source":"/**\n * @file portfolio-optimization-moead-cpp.ipynb\n *\n * A simple practical application of MultiObjective Decomposition Evolutionary Algorithm\n * - Differential Variant (MOEA/D-DE) in portfolio optimization. This example allows user to freely choose \n * multiple stocks of their choice, which upon request, generates csv automagically \n * via a helper function.\n *\n * The algorithm will try and optimize the trade-off between the returns and\n * volatility of the requested stocks.\n *\n * Data from Pandas Datareader library (https://pandas-datareader.readthedocs.io/en/latest/).\n */","execution_count":1,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"#include \n\n#include \n#include \"../utils/portfolio.hpp\"","execution_count":2,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"// Header files to create and show the plot.\n#define WITHOUT_NUMPY 1\n#include \"matplotlibcpp.h\"\n#include \"xwidgets/ximage.hpp\"\n\nnamespace plt = matplotlibcpp;","execution_count":3,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"using namespace ens;","execution_count":4,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"using namespace ens::test;","execution_count":5,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### 1. Set the Model Parameters"},{"metadata":{},"cell_type":"markdown","source":"In this section, we will select the parameters for the optimizer. Parameters include name of the stocks, starting date, ending date and Finance API Source."},{"metadata":{"trusted":true},"cell_type":"code","source":"//! Declare user specified data.\nstd::string stocks, startDate, endDate, dataSource;","execution_count":6,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"stocks = \"AAPL,NKE,GOOGL,AMZN\";\n\n//! Uncomment to set custom stocks.\n// std::cout << \"Type the name of symbol of the stocks via comma separated values (no spaces)\" << std::endl;\n// std::cin >> stocks;","execution_count":7,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"We're setting the data source to Yahoo Finance API by default. For custom data-source, refer pandas-datareader documentation to get the exhaustive list of available API sources."},{"metadata":{"trusted":true},"cell_type":"code","source":"dataSource = \"yahoo\";\n\n//! Uncomment to set custom data-source.\n//std::cin >> dataSource;","execution_count":8,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"startDate = \"01/01/2015\";\n\n//! Uncomment to set custom start-date.\n// std::cout << \"Starting Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n// std::cin >> startDate;","execution_count":9,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"endDate = \"31/12/2019\";\n\n//! Uncomment to set custom end-date.\n// std::cout << \"End Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n// std::cin >> endDate;","execution_count":10,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### 2. Loading the Dataset"},{"metadata":{},"cell_type":"markdown","source":"In this section, we will create a helper class which will generate the CSV file for us based on the parameters provided in previous section. This class would also define the objective functions in question, namely: Return and Volatility. Ideally, we would want to maximize the returns and reduce the volatility. Since our implementation of algorithm works on minimization of all objectives, we have appended negative sign to the returns objective which converts it into a minimization problem."},{"metadata":{"trusted":true},"cell_type":"code","source":"class PortfolioFunction\n{\n public:\n PortfolioFunction(const std::string& stocks,\n const std::string& dataSource,\n const std::string& startDate,\n const std::string& endDate)\n {\n //! Generate the requested csv file.\n Portfolio(stocks, dataSource, startDate, endDate,\"portfolio.csv\");\n returns.load(\"portfolio.csv\", arma::csv_ascii);\n returns.shed_col(0);\n\n assets = returns.n_cols;\n }\n\n //! Get the starting point.\n arma::mat GetInitialPoint()\n {\n return arma::Col(assets, 1, arma::fill::zeros);\n }\n \n struct VolatilityObjective\n {\n VolatilityObjective(const arma::mat& returns) : returns(returns) {}\n\n double Evaluate(const arma::mat& coords)\n {\n const double portfolioVolatility = arma::as_scalar(arma::sqrt(\n coords.t() * arma::cov(returns) * 252 * coords));\n return portfolioVolatility;\n }\n\n arma::mat returns;\n };\n\n struct ReturnsObjective\n {\n ReturnsObjective(const arma::mat& returns) : returns(returns) {}\n\n double Evaluate(const arma::mat& coords)\n {\n const double portfolioReturns = arma::accu(arma::mean(returns) %\n coords.t()) * 252;\n \n //! Negative sign appended to convert to minimization problem.\n return -portfolioReturns;\n }\n\n arma::mat returns;\n };\n\n\n //! Get objective functions.\n std::tuple GetObjectives()\n {\n return std::make_tuple(VolatilityObjective(returns), ReturnsObjective(returns));\n }\n\n arma::mat returns;\n size_t assets;\n};\n\n\n//! The constructor will generate the csv file.\nPortfolioFunction pf(stocks, dataSource, startDate, endDate);\n\nconst double lowerBound = 0;\nconst double upperBound = 1;\n\nDefaultMOEAD opt(150, // Population size.\n 300, // Max generations.\n 1.0, // Crossover probability.\n 0.9, // Probability of sampling from neighbor.\n 20, // Neighborhood size.\n 20, // Perturbation index.\n 0.5, // Differential weight.\n 2, // Max childrens to replace parents.\n 1E-10, // epsilon.\n lowerBound, // Lower bound.\n upperBound // Upper bound.\n );\n\narma::mat coords = pf.GetInitialPoint();\nauto objectives = pf.GetObjectives();","execution_count":11,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### 3. Optimization "},{"metadata":{},"cell_type":"markdown","source":"MOEA/D-DE (Multi-Objective Evolutionary Algorithm based on Decomposition - Differential Evolution) is a multi-objective optimization algorithm that works via Decomposition. Unlike traditional algorithms like NSGA-II, the concept of dominance is non-existent here. Instead, a set of \"Reference Directions\" are generated which explicitly allows the user to control the distribution of the final Pareto Front. With the help of Decomposition functions, a scalar optimization problem is framed which has a \"pulling\" effect on the population towards the true Pareto Front. \nMOEA/D-DE is not just faster than NSGA-II but also produces high-quality Pareto Front in very few iterations.\n\nMOEAD offers a plethora of Decomposition Functions and Reference Direction generators via templates. For our case, we've utilized the trusty ```DefaultMOEAD```. Read the class documentation for other options."},{"metadata":{},"cell_type":"markdown","source":"We would like to track the optimization process over the generations. For that let's create a container to store the current Pareto Front."},{"metadata":{"trusted":true},"cell_type":"code","source":"std::vector paretoFrontArray{};","execution_count":12,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"This data structure would then be passed on to the \"QueryFront\" Callback which will track the evolution for us."},{"metadata":{},"cell_type":"markdown","source":"Begin Optimization! (This will take a fair amount of time)."},{"metadata":{"trusted":true},"cell_type":"code","source":"opt.Optimize(objectives, coords, QueryFront(2, paretoFrontArray));","execution_count":13,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"Let's collect the results and inspect our first set of solution."},{"metadata":{"trusted":true},"cell_type":"code","source":"arma::cube paretoFront = opt.ParetoFront();\n\nstd::cout << paretoFront.slice(0) << std::endl;","execution_count":14,"outputs":[{"name":"stdout","output_type":"stream","text":" 9.9965e-06\n -1.2723e-05\n\n"}]},{"metadata":{},"cell_type":"markdown","source":"Let's create an array to store the X and Y coordinates of all the Pareto Fronts."},{"metadata":{"trusted":true},"cell_type":"code","source":"size_t numQuery = 300 / 2; // maxGeneration / queryRate.\n\nstd::vector> frontArrayX(numQuery);\nstd::vector> frontArrayY(numQuery);","execution_count":15,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"Convert to neccessary data structure."},{"metadata":{"trusted":true},"cell_type":"code","source":"void FillFront(std::vector& frontX,\n std::vector& frontY,\n arma::cube& paretoFront)\n{\n size_t numPoints = paretoFront.n_slices;\n\n //! Store the X, Y coordinates of the Pareto Front.\n frontX.resize(numPoints);\n frontY.resize(numPoints);\n\n for (size_t idx = 0; idx < numPoints; ++idx)\n {\n\n frontX[idx] = paretoFront.slice(idx)(0);\n // Append negative again to restore the original \n // maximization objective.\n frontY[idx] = -paretoFront.slice(idx)(1);\n }\n}","execution_count":16,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"for (size_t idx = 0; idx < numQuery; ++idx)\n FillFront(frontArrayX[idx], frontArrayY[idx], paretoFrontArray[idx]);","execution_count":17,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### 4. Plotting"},{"metadata":{},"cell_type":"markdown","source":"As said before, we desire higher returns and lower volatility. The Pareto Front generated gives an optimal set of solutions such that, higher volatility is traded-off with higher returns and vice-versa. Hence, all the solutions are \"optimal\". Based on user's preference, he/she can choose their solution from the generated front.\n\nThe Axis Labels are as follows:\n\nX-Axis: Volatility\n\nY-Axis: Returns\n\nWe expect an increase in volatility with increase in returns."},{"metadata":{"trusted":true},"cell_type":"code","source":"plt::figure_size(800, 800);\n\nfor (size_t idx = 0; idx < numQuery; ++idx)\n plt::scatter(frontArrayX[idx], frontArrayY[idx], 50);\n\nplt::xlabel(\"Volatility\");\nplt::ylabel(\"Returns\");\n\nplt::title(\"The Pareto Front\");\nplt::legend();\n\nplt::save(\"./plot.png\");\nauto im = xw::image_from_file(\"plot.png\").finalize();\nim","execution_count":85,"outputs":[{"output_type":"execute_result","execution_count":85,"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"837e59900bb54a27b3418ebbe1a35d95","version_major":2,"version_minor":0},"text/plain":"A Jupyter widget with unique id: 837e59900bb54a27b3418ebbe1a35d95"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### 5. Final Thoughts"},{"metadata":{},"cell_type":"markdown","source":"In this notebook, we've seen how a MultiObjective Optimization algorithm can help in investing in stocks. We specified our stocks and witnessed our algorithm optimize the returns vs volatility trade-off in live. Feel free to play around by selecting various stocks, start-date, end-date and see how the outcomes plays off. "}],"metadata":{"kernelspec":{"name":"xcpp14","display_name":"C++14","language":"C++14"},"language_info":{"codemirror_mode":"text/x-c++src","file_extension":".cpp","mimetype":"text/x-c++src","name":"c++","version":"14"}},"nbformat":4,"nbformat_minor":5} \ No newline at end of file From 4e61f764a7f7a479be7d9ed941bd9854a42d8552 Mon Sep 17 00:00:00 2001 From: Nanubala Gnana Sai <45007169+jonpsy@users.noreply.github.com> Date: Wed, 30 Jun 2021 17:44:01 +0000 Subject: [PATCH 59/69] Fix lag. Use both MOEAD and NSGA-II. --- .../portfolio-optimization-cpp.ipynb | 531 ++++++++++++++++++ 1 file changed, 531 insertions(+) create mode 100644 portfolio_optimization/portfolio-optimization-cpp.ipynb diff --git a/portfolio_optimization/portfolio-optimization-cpp.ipynb b/portfolio_optimization/portfolio-optimization-cpp.ipynb new file mode 100644 index 00000000..685c24da --- /dev/null +++ b/portfolio_optimization/portfolio-optimization-cpp.ipynb @@ -0,0 +1,531 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "/**\n", + " * @file portfolio-optimization-moead-cpp.ipynb\n", + " *\n", + " * A simple practical application of MultiObjective Decomposition Evolutionary Algorithm\n", + " * - Differential Variant (MOEA/D-DE) in portfolio optimization. This example allows user to freely choose \n", + " * multiple stocks of their choice, which upon request, generates csv automagically \n", + " * via a helper function.\n", + " *\n", + " * The algorithm will try and optimize the trade-off between the returns and\n", + " * volatility of the requested stocks.\n", + " *\n", + " * Data from Pandas Datareader library (https://pandas-datareader.readthedocs.io/en/latest/).\n", + " */" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "#include \n", + "\n", + "#include \n", + "#include \"../utils/portfolio.hpp\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "// Header files to create and show the plot.\n", + "#define WITHOUT_NUMPY 1\n", + "#include \"matplotlibcpp.h\"\n", + "#include \"xwidgets/ximage.hpp\"\n", + "\n", + "namespace plt = matplotlibcpp;" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "using namespace ens;" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "using namespace ens::test;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Set the Model Parameters" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we will select the parameters for the optimizer. Parameters include name of the stocks, starting date, ending date and Finance API Source." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "//! Declare user specified data.\n", + "std::string stocks, startDate, endDate, dataSource;" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "stocks = \"AAPL,NKE,GOOGL,AMZN\";\n", + "\n", + "//! Uncomment to set custom stocks.\n", + "// std::cout << \"Type the name of symbol of the stocks via comma separated values (no spaces)\" << std::endl;\n", + "// std::cin >> stocks;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're setting the data source to Yahoo Finance API by default. For custom data-source, refer pandas-datareader documentation to get the exhaustive list of available API sources." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "dataSource = \"yahoo\";\n", + "\n", + "//! Uncomment to set custom data-source.\n", + "//std::cin >> dataSource;" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "startDate = \"01/01/2015\";\n", + "\n", + "//! Uncomment to set custom start-date.\n", + "// std::cout << \"Starting Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n", + "// std::cin >> startDate;" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "endDate = \"31/12/2019\";\n", + "\n", + "//! Uncomment to set custom end-date.\n", + "// std::cout << \"End Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n", + "// std::cin >> endDate;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. Loading the Dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, we will create a helper class which will generate the CSV file for us based on the parameters provided in previous section. This class would also define the objective functions in question, namely: Return and Volatility. Ideally, we would want to maximize the returns and reduce the volatility. Since our implementation of algorithm works on minimization of all objectives, we have appended negative sign to the returns objective which converts it into a minimization problem." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "class PortfolioFunction\n", + "{\n", + " public:\n", + " PortfolioFunction(const std::string& stocks,\n", + " const std::string& dataSource,\n", + " const std::string& startDate,\n", + " const std::string& endDate)\n", + " {\n", + " //! Generate the requested csv file.\n", + " Portfolio(stocks, dataSource, startDate, endDate,\"portfolio.csv\");\n", + " returns.load(\"portfolio.csv\", arma::csv_ascii);\n", + " returns.shed_col(0);\n", + "\n", + " assets = returns.n_cols;\n", + " }\n", + "\n", + " //! Get the starting point.\n", + " arma::mat GetInitialPoint()\n", + " {\n", + " return arma::Col(assets, 1, arma::fill::zeros);\n", + " }\n", + " \n", + " struct VolatilityObjective\n", + " {\n", + " VolatilityObjective(arma::mat&& cov) : cov(cov) {}\n", + "\n", + " double Evaluate(const arma::mat& coords)\n", + " {\n", + " const double portfolioVolatility = arma::as_scalar(arma::sqrt(\n", + " coords.t() * cov * 252 * coords));\n", + " return portfolioVolatility;\n", + " }\n", + "\n", + " arma::mat cov;\n", + " };\n", + "\n", + " struct ReturnsObjective\n", + " {\n", + " ReturnsObjective(arma::mat&& mean) : mean(mean) {}\n", + "\n", + " double Evaluate(const arma::mat& coords)\n", + " {\n", + " const double portfolioReturns = arma::accu(mean % coords.t()) * 252;\n", + " \n", + " //! Negative sign appended to convert to minimization problem.\n", + " return -portfolioReturns;\n", + " }\n", + "\n", + " arma::mat mean;\n", + " };\n", + "\n", + "\n", + " //! Get objective functions.\n", + " std::tuple GetObjectives()\n", + " {\n", + " return std::make_tuple(VolatilityObjective(arma::cov(returns)), \n", + " ReturnsObjective(arma::mean(returns)));\n", + " }\n", + "\n", + " arma::mat returns;\n", + " size_t assets;\n", + "};\n", + "\n", + "\n", + "//! The constructor will generate the csv file.\n", + "PortfolioFunction pf(stocks, dataSource, startDate, endDate);\n", + "\n", + "const double lowerBound = 0;\n", + "const double upperBound = 1;\n", + "\n", + "DefaultMOEAD moead(150, // Population size.\n", + " 300, // Max generations.\n", + " 1.0, // Crossover probability.\n", + " 0.9, // Probability of sampling from neighbor.\n", + " 20, // Neighborhood size.\n", + " 20, // Perturbation index.\n", + " 0.5, // Differential weight.\n", + " 2, // Max childrens to replace parents.\n", + " 1E-10, // epsilon.\n", + " lowerBound, // Lower bound.\n", + " upperBound // Upper bound.\n", + " );\n", + "\n", + "NSGA2 nsga2(150, // population size: The number of candidates in the population.\n", + " 300, // max generations: The maximum number of generations allowed.\n", + " 0.5, // crossover probability: The probability that the elites reproduce.\n", + " 0.5, // mutation probability: The probability of mutation among the elite.\n", + " 1e-3, // mutation strength: The strength of the mutation.\n", + " 1e-6, // epsilon: The minimum difference required to distinguish between two solutions.\n", + " lowerBound, // lowerBound: Lower bound of the coordinates of the initial population\n", + " upperBound // upperBound: Upper bound of the coordinates of the initial population\n", + " );\n", + "\n", + "arma::mat nsga2Coords = pf.GetInitialPoint();\n", + "arma::mat moeadCoords(nsga2Coords);\n", + "auto objectives = pf.GetObjectives();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 3. Optimization " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are plethora of algorithms to solve this family of problems often known as Multi Objective Problem (MOP). Multi Objective Evolutionary Algorithms (MOEA) are a set of algorithms which employs the concept of evolution to optimize these kind of problems. Notably, two algorithms are often used for this task:\n", + "\n", + "a) NSGA-II: Non Dominated Sorting Algorithm - II.\n", + "\n", + "b) MOEA/D-DE: Multi-Objective Evolutionary Algorithm via Decompostion - Differential Variant." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### a) NSGA-II\n", + "\n", + "NSGA-II is a classic go-to algorithm for MOPs. Each member of the population is assigned a fitness value and segragated into various fronts based on their fitness. This segragation mechanism is done using \"Non Dominated Sorting\" principle. It uses dominance relation to sort the population into various fronts and members ranked accordingly. The best Front is the one with the lowest rank." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### b) MOEA/D - DE\n", + "\n", + "MOEA/D-DE utilizes the concept of decomposition to tackle MOP. Unlike traditional algorithms like NSGA-II, it doens't rely on dominance relation. Instead, a set of \"Reference Directions\" are instantiated to frame it into a scalar optimization problem. The fitness value is assigned to the members in accordance to their performance in this framed optimization function. With the aid of Genetic Operators, offsprings replace the parent solutions if its fitness is superior.\n", + "\n", + "MOEAD offers a plethora of Decomposition Functions and Reference Direction generators via templates. For our case, we've used the trusty ```DefaultMOEAD```. Read the class documentation for other options." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We would like to track the optimization process over the generations. For that let's create a container to store the current Pareto Front." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "std::vector nsga2Fronts{};\n", + "std::vector moeadFronts{};" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This data structure would then be passed on to the \"QueryFront\" Callback which will track the evolution for us." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Begin Optimization! (This will take a fair amount of time)." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "nsga2.Optimize(objectives, nsga2Coords, QueryFront(2, nsga2Fronts));" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "moead.Optimize(objectives, moeadCoords, QueryFront(2, moeadFronts));" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create an array to store the X and Y coordinates of all the Pareto Fronts." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "size_t numQuery = 300 / 2; // maxGeneration / queryRate.\n", + "\n", + "std::vector> nsga2FrontArrayX(numQuery);\n", + "std::vector> nsga2FrontArrayY(numQuery);\n", + "std::vector> moeadFrontArrayX(numQuery);\n", + "std::vector> moeadFrontArrayY(numQuery);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Convert to neccessary data structure." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "void FillFront(std::vector& frontX,\n", + " std::vector& frontY,\n", + " arma::cube& paretoFront)\n", + "{\n", + " size_t numPoints = paretoFront.n_slices;\n", + "\n", + " //! Store the X, Y coordinates of the Pareto Front.\n", + " frontX.resize(numPoints);\n", + " frontY.resize(numPoints);\n", + "\n", + " for (size_t idx = 0; idx < numPoints; ++idx)\n", + " {\n", + "\n", + " frontX[idx] = paretoFront.slice(idx)(0);\n", + " // Append negative again to restore the original \n", + " // maximization objective.\n", + " frontY[idx] = -paretoFront.slice(idx)(1);\n", + " }\n", + "}" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "for (size_t idx = 0; idx < numQuery; ++idx)\n", + "{\n", + " FillFront(nsga2FrontArrayX[idx], nsga2FrontArrayY[idx], nsga2Fronts[idx]);\n", + " FillFront(moeadFrontArrayX[idx], moeadFrontArrayY[idx], moeadFronts[idx]);\n", + "}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 4. Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As said before, we desire higher returns and lower volatility. The Pareto Front generated gives an optimal set of solutions such that, higher volatility is traded-off with higher returns and vice-versa. Hence, all the solutions are \"optimal\". Based on user's preference, he/she can choose their solution from the generated front.\n", + "\n", + "The Axis Labels are as follows:\n", + "\n", + "X-Axis: Volatility\n", + "\n", + "Y-Axis: Returns\n", + "\n", + "We expect an increase in volatility with increase in returns." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "768c3158a3524ef09e9fc4bcf64ba9db", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "A Jupyter widget with unique id: 768c3158a3524ef09e9fc4bcf64ba9db" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt::figure_size(1500, 700);\n", + "plt::suptitle(\"Pareto Front Evolution of NSGA-II and MOEAD\");\n", + "plt::subplot(1, 2, 1);\n", + "\n", + "for (size_t idx = 0; idx < numQuery; ++idx)\n", + " plt::scatter(nsga2FrontArrayX[idx], nsga2FrontArrayY[idx], 50);\n", + "\n", + "plt::xlabel(\"Volatility\");\n", + "plt::ylabel(\"Returns\");\n", + "plt::title(\"NSGA-II\");\n", + "\n", + "plt::subplot(1, 2, 2);\n", + "for (size_t idx = 0; idx < numQuery; ++idx)\n", + " plt::scatter(moeadFrontArrayX[idx], moeadFrontArrayY[idx], 50);\n", + "\n", + "plt::xlabel(\"Volatility\");\n", + "plt::ylabel(\"Returns\");\n", + "plt::title(\"MOEA/D-DE\");\n", + "\n", + "\n", + "plt::save(\"./plot.png\");\n", + "auto im = xw::image_from_file(\"plot.png\").finalize();\n", + "im" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 5. Final Thoughts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, we've seen how a MultiObjective Optimization algorithm can help in investing in stocks. We specified our stocks and witnessed our algorithm optimize the returns vs volatility trade-off in action. From the evolution process depicted above, it can be deduced that:\n", + "\n", + "a) The Pareto Front of MOEA/D-DE is uniformly distributed along the search space and continuous in nature. Whereas NSGA-II's Front is disconnected and the highly crowded in select areas.\n", + "\n", + "b) The Pareto Front of MOEA/D-DE covers a larger expanse of the objective space compared to NSGA-II.\n", + "\n", + "c) In terms of speed, MOEA/D-DE is much faster compared to NSGA-II.\n", + "\n", + "Feel free to play around by selecting various stocks, start-date, end-date and see how the outcomes plays off. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "C++14", + "language": "C++14", + "name": "xcpp14" + }, + "language_info": { + "codemirror_mode": "text/x-c++src", + "file_extension": ".cpp", + "mimetype": "text/x-c++src", + "name": "c++", + "version": "14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file From 0c4cbc3ffa0bf1017424a9d3cb006680cf341788 Mon Sep 17 00:00:00 2001 From: Nanubala Gnana Sai <45007169+jonpsy@users.noreply.github.com> Date: Thu, 1 Jul 2021 06:50:24 +0530 Subject: [PATCH 60/69] Update portfolio_optimization/portfolio-optimization-cpp.ipynb Co-authored-by: Marcus Edel --- portfolio_optimization/portfolio-optimization-cpp.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/portfolio_optimization/portfolio-optimization-cpp.ipynb b/portfolio_optimization/portfolio-optimization-cpp.ipynb index 685c24da..f9045ae5 100644 --- a/portfolio_optimization/portfolio-optimization-cpp.ipynb +++ b/portfolio_optimization/portfolio-optimization-cpp.ipynb @@ -175,7 +175,7 @@ " const std::string& startDate,\n", " const std::string& endDate)\n", " {\n", - " //! Generate the requested csv file.\n", + " //! Generate the requested csv file.\n", " Portfolio(stocks, dataSource, startDate, endDate,\"portfolio.csv\");\n", " returns.load(\"portfolio.csv\", arma::csv_ascii);\n", " returns.shed_col(0);\n", @@ -528,4 +528,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} From 7c5e7527ab0e1ee30d37b37f09fe48060f34a018 Mon Sep 17 00:00:00 2001 From: Nanubala Gnana Sai <45007169+jonpsy@users.noreply.github.com> Date: Thu, 1 Jul 2021 06:50:54 +0530 Subject: [PATCH 61/69] Delete portfolio-optimization-moead-cpp.ipynb No need of this one. --- .../portfolio-optimization-moead-cpp.ipynb | 1 - 1 file changed, 1 deletion(-) delete mode 100644 portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb diff --git a/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb b/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb deleted file mode 100644 index d605e6c0..00000000 --- a/portfolio_optimization_moead/portfolio-optimization-moead-cpp.ipynb +++ /dev/null @@ -1 +0,0 @@ -{"cells":[{"metadata":{"trusted":true},"cell_type":"code","source":"/**\n * @file portfolio-optimization-moead-cpp.ipynb\n *\n * A simple practical application of MultiObjective Decomposition Evolutionary Algorithm\n * - Differential Variant (MOEA/D-DE) in portfolio optimization. This example allows user to freely choose \n * multiple stocks of their choice, which upon request, generates csv automagically \n * via a helper function.\n *\n * The algorithm will try and optimize the trade-off between the returns and\n * volatility of the requested stocks.\n *\n * Data from Pandas Datareader library (https://pandas-datareader.readthedocs.io/en/latest/).\n */","execution_count":1,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"#include \n\n#include \n#include \"../utils/portfolio.hpp\"","execution_count":2,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"// Header files to create and show the plot.\n#define WITHOUT_NUMPY 1\n#include \"matplotlibcpp.h\"\n#include \"xwidgets/ximage.hpp\"\n\nnamespace plt = matplotlibcpp;","execution_count":3,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"using namespace ens;","execution_count":4,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"using namespace ens::test;","execution_count":5,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### 1. Set the Model Parameters"},{"metadata":{},"cell_type":"markdown","source":"In this section, we will select the parameters for the optimizer. Parameters include name of the stocks, starting date, ending date and Finance API Source."},{"metadata":{"trusted":true},"cell_type":"code","source":"//! Declare user specified data.\nstd::string stocks, startDate, endDate, dataSource;","execution_count":6,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"stocks = \"AAPL,NKE,GOOGL,AMZN\";\n\n//! Uncomment to set custom stocks.\n// std::cout << \"Type the name of symbol of the stocks via comma separated values (no spaces)\" << std::endl;\n// std::cin >> stocks;","execution_count":7,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"We're setting the data source to Yahoo Finance API by default. For custom data-source, refer pandas-datareader documentation to get the exhaustive list of available API sources."},{"metadata":{"trusted":true},"cell_type":"code","source":"dataSource = \"yahoo\";\n\n//! Uncomment to set custom data-source.\n//std::cin >> dataSource;","execution_count":8,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"startDate = \"01/01/2015\";\n\n//! Uncomment to set custom start-date.\n// std::cout << \"Starting Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n// std::cin >> startDate;","execution_count":9,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"endDate = \"31/12/2019\";\n\n//! Uncomment to set custom end-date.\n// std::cout << \"End Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n// std::cin >> endDate;","execution_count":10,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### 2. Loading the Dataset"},{"metadata":{},"cell_type":"markdown","source":"In this section, we will create a helper class which will generate the CSV file for us based on the parameters provided in previous section. This class would also define the objective functions in question, namely: Return and Volatility. Ideally, we would want to maximize the returns and reduce the volatility. Since our implementation of algorithm works on minimization of all objectives, we have appended negative sign to the returns objective which converts it into a minimization problem."},{"metadata":{"trusted":true},"cell_type":"code","source":"class PortfolioFunction\n{\n public:\n PortfolioFunction(const std::string& stocks,\n const std::string& dataSource,\n const std::string& startDate,\n const std::string& endDate)\n {\n //! Generate the requested csv file.\n Portfolio(stocks, dataSource, startDate, endDate,\"portfolio.csv\");\n returns.load(\"portfolio.csv\", arma::csv_ascii);\n returns.shed_col(0);\n\n assets = returns.n_cols;\n }\n\n //! Get the starting point.\n arma::mat GetInitialPoint()\n {\n return arma::Col(assets, 1, arma::fill::zeros);\n }\n \n struct VolatilityObjective\n {\n VolatilityObjective(const arma::mat& returns) : returns(returns) {}\n\n double Evaluate(const arma::mat& coords)\n {\n const double portfolioVolatility = arma::as_scalar(arma::sqrt(\n coords.t() * arma::cov(returns) * 252 * coords));\n return portfolioVolatility;\n }\n\n arma::mat returns;\n };\n\n struct ReturnsObjective\n {\n ReturnsObjective(const arma::mat& returns) : returns(returns) {}\n\n double Evaluate(const arma::mat& coords)\n {\n const double portfolioReturns = arma::accu(arma::mean(returns) %\n coords.t()) * 252;\n \n //! Negative sign appended to convert to minimization problem.\n return -portfolioReturns;\n }\n\n arma::mat returns;\n };\n\n\n //! Get objective functions.\n std::tuple GetObjectives()\n {\n return std::make_tuple(VolatilityObjective(returns), ReturnsObjective(returns));\n }\n\n arma::mat returns;\n size_t assets;\n};\n\n\n//! The constructor will generate the csv file.\nPortfolioFunction pf(stocks, dataSource, startDate, endDate);\n\nconst double lowerBound = 0;\nconst double upperBound = 1;\n\nDefaultMOEAD opt(150, // Population size.\n 300, // Max generations.\n 1.0, // Crossover probability.\n 0.9, // Probability of sampling from neighbor.\n 20, // Neighborhood size.\n 20, // Perturbation index.\n 0.5, // Differential weight.\n 2, // Max childrens to replace parents.\n 1E-10, // epsilon.\n lowerBound, // Lower bound.\n upperBound // Upper bound.\n );\n\narma::mat coords = pf.GetInitialPoint();\nauto objectives = pf.GetObjectives();","execution_count":11,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### 3. Optimization "},{"metadata":{},"cell_type":"markdown","source":"MOEA/D-DE (Multi-Objective Evolutionary Algorithm based on Decomposition - Differential Evolution) is a multi-objective optimization algorithm that works via Decomposition. Unlike traditional algorithms like NSGA-II, the concept of dominance is non-existent here. Instead, a set of \"Reference Directions\" are generated which explicitly allows the user to control the distribution of the final Pareto Front. With the help of Decomposition functions, a scalar optimization problem is framed which has a \"pulling\" effect on the population towards the true Pareto Front. \nMOEA/D-DE is not just faster than NSGA-II but also produces high-quality Pareto Front in very few iterations.\n\nMOEAD offers a plethora of Decomposition Functions and Reference Direction generators via templates. For our case, we've utilized the trusty ```DefaultMOEAD```. Read the class documentation for other options."},{"metadata":{},"cell_type":"markdown","source":"We would like to track the optimization process over the generations. For that let's create a container to store the current Pareto Front."},{"metadata":{"trusted":true},"cell_type":"code","source":"std::vector paretoFrontArray{};","execution_count":12,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"This data structure would then be passed on to the \"QueryFront\" Callback which will track the evolution for us."},{"metadata":{},"cell_type":"markdown","source":"Begin Optimization! (This will take a fair amount of time)."},{"metadata":{"trusted":true},"cell_type":"code","source":"opt.Optimize(objectives, coords, QueryFront(2, paretoFrontArray));","execution_count":13,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"Let's collect the results and inspect our first set of solution."},{"metadata":{"trusted":true},"cell_type":"code","source":"arma::cube paretoFront = opt.ParetoFront();\n\nstd::cout << paretoFront.slice(0) << std::endl;","execution_count":14,"outputs":[{"name":"stdout","output_type":"stream","text":" 9.9965e-06\n -1.2723e-05\n\n"}]},{"metadata":{},"cell_type":"markdown","source":"Let's create an array to store the X and Y coordinates of all the Pareto Fronts."},{"metadata":{"trusted":true},"cell_type":"code","source":"size_t numQuery = 300 / 2; // maxGeneration / queryRate.\n\nstd::vector> frontArrayX(numQuery);\nstd::vector> frontArrayY(numQuery);","execution_count":15,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"Convert to neccessary data structure."},{"metadata":{"trusted":true},"cell_type":"code","source":"void FillFront(std::vector& frontX,\n std::vector& frontY,\n arma::cube& paretoFront)\n{\n size_t numPoints = paretoFront.n_slices;\n\n //! Store the X, Y coordinates of the Pareto Front.\n frontX.resize(numPoints);\n frontY.resize(numPoints);\n\n for (size_t idx = 0; idx < numPoints; ++idx)\n {\n\n frontX[idx] = paretoFront.slice(idx)(0);\n // Append negative again to restore the original \n // maximization objective.\n frontY[idx] = -paretoFront.slice(idx)(1);\n }\n}","execution_count":16,"outputs":[]},{"metadata":{"trusted":true},"cell_type":"code","source":"for (size_t idx = 0; idx < numQuery; ++idx)\n FillFront(frontArrayX[idx], frontArrayY[idx], paretoFrontArray[idx]);","execution_count":17,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"### 4. Plotting"},{"metadata":{},"cell_type":"markdown","source":"As said before, we desire higher returns and lower volatility. The Pareto Front generated gives an optimal set of solutions such that, higher volatility is traded-off with higher returns and vice-versa. Hence, all the solutions are \"optimal\". Based on user's preference, he/she can choose their solution from the generated front.\n\nThe Axis Labels are as follows:\n\nX-Axis: Volatility\n\nY-Axis: Returns\n\nWe expect an increase in volatility with increase in returns."},{"metadata":{"trusted":true},"cell_type":"code","source":"plt::figure_size(800, 800);\n\nfor (size_t idx = 0; idx < numQuery; ++idx)\n plt::scatter(frontArrayX[idx], frontArrayY[idx], 50);\n\nplt::xlabel(\"Volatility\");\nplt::ylabel(\"Returns\");\n\nplt::title(\"The Pareto Front\");\nplt::legend();\n\nplt::save(\"./plot.png\");\nauto im = xw::image_from_file(\"plot.png\").finalize();\nim","execution_count":85,"outputs":[{"output_type":"execute_result","execution_count":85,"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"837e59900bb54a27b3418ebbe1a35d95","version_major":2,"version_minor":0},"text/plain":"A Jupyter widget with unique id: 837e59900bb54a27b3418ebbe1a35d95"},"metadata":{}}]},{"metadata":{},"cell_type":"markdown","source":"### 5. Final Thoughts"},{"metadata":{},"cell_type":"markdown","source":"In this notebook, we've seen how a MultiObjective Optimization algorithm can help in investing in stocks. We specified our stocks and witnessed our algorithm optimize the returns vs volatility trade-off in live. Feel free to play around by selecting various stocks, start-date, end-date and see how the outcomes plays off. "}],"metadata":{"kernelspec":{"name":"xcpp14","display_name":"C++14","language":"C++14"},"language_info":{"codemirror_mode":"text/x-c++src","file_extension":".cpp","mimetype":"text/x-c++src","name":"c++","version":"14"}},"nbformat":4,"nbformat_minor":5} \ No newline at end of file From dffaaa229300ec9ee9cbdd985c2e8db2cba1d546 Mon Sep 17 00:00:00 2001 From: jonpsy Date: Tue, 6 Jul 2021 12:10:37 +0530 Subject: [PATCH 62/69] Use the gif util. Working 100% --- .../portfolio-optimization-cpp.ipynb | 210 ++++++++++++------ 1 file changed, 139 insertions(+), 71 deletions(-) diff --git a/portfolio_optimization/portfolio-optimization-cpp.ipynb b/portfolio_optimization/portfolio-optimization-cpp.ipynb index f9045ae5..8dace072 100644 --- a/portfolio_optimization/portfolio-optimization-cpp.ipynb +++ b/portfolio_optimization/portfolio-optimization-cpp.ipynb @@ -30,7 +30,9 @@ "#include \n", "\n", "#include \n", - "#include \"../utils/portfolio.hpp\"" + "#include \"../utils/portfolio.hpp\"\n", + "#include \"../utils/front.hpp\"\n", + "#include " ] }, { @@ -65,6 +67,42 @@ "using namespace ens::test;" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Download backup data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--2021-07-06 12:00:05-- http://lab.mlpack.org/data/portfolio.csv\n", + "Resolving lab.mlpack.org (lab.mlpack.org)... 95.216.240.218\n", + "Connecting to lab.mlpack.org (lab.mlpack.org)|95.216.240.218|:80... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 119324 (117K) [application/octet-stream]\n", + "Saving to: ‘portfolio.csv.2’\n", + "\n", + " 0K .......... .......... .......... .......... .......... 42% 326M 0s\n", + " 50K .......... .......... .......... .......... .......... 85% 523M 0s\n", + " 100K .......... ...... 100% 467M=0s\n", + "\n", + "2021-07-06 12:00:05 (410 MB/s) - ‘portfolio.csv.2’ saved [119324/119324]\n", + "\n" + ] + } + ], + "source": [ + "!wget http://lab.mlpack.org/data/portfolio.csv" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -81,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +149,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -123,30 +161,75 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ - "startDate = \"01/01/2015\";\n", + "startDate = \"03/08/2018\";\n", "\n", "//! Uncomment to set custom start-date.\n", "// std::cout << \"Starting Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n", "// std::cin >> startDate;" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get the current date." + ] + }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "time_t current_time;\n", + "struct tm *timeinfo;\n", + "time(¤t_time);\n", + "\n", + "timeinfo = localtime(¤t_time);" + ] + }, + { + "cell_type": "code", + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ - "endDate = \"31/12/2019\";\n", + "size_t day = timeinfo->tm_mday;\n", + "size_t month = timeinfo->tm_mon + 1;\n", + "size_t year = timeinfo->tm_year + 1900" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "std::stringstream dateToday;\n", + "dateToday << day << \"/\" << month << \"/\" << year;\n", + "\n", + "endDate = dateToday.str();\n", "\n", "//! Uncomment to set custom end-date.\n", "// std::cout << \"End Date (YYYY/MM/DD or DD/MM/YYYY)\" << std::endl;\n", "// std::cin >> endDate;" ] }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "//! Uncomment to generate the csv file\n", + "//! if(Portfolio(stocks, dataSource, startDate, endDate,\"portfolio.csv\"))\n", + "//! std::cout << \"Data query failed! Using backup csv.\" << std::endl;" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -163,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -175,8 +258,6 @@ " const std::string& startDate,\n", " const std::string& endDate)\n", " {\n", - " //! Generate the requested csv file.\n", - " Portfolio(stocks, dataSource, startDate, endDate,\"portfolio.csv\");\n", " returns.load(\"portfolio.csv\", arma::csv_ascii);\n", " returns.shed_col(0);\n", "\n", @@ -238,7 +319,7 @@ "const double upperBound = 1;\n", "\n", "DefaultMOEAD moead(150, // Population size.\n", - " 300, // Max generations.\n", + " 30, // Max generations.\n", " 1.0, // Crossover probability.\n", " 0.9, // Probability of sampling from neighbor.\n", " 20, // Neighborhood size.\n", @@ -251,7 +332,7 @@ " );\n", "\n", "NSGA2 nsga2(150, // population size: The number of candidates in the population.\n", - " 300, // max generations: The maximum number of generations allowed.\n", + " 30, // max generations: The maximum number of generations allowed.\n", " 0.5, // crossover probability: The probability that the elites reproduce.\n", " 0.5, // mutation probability: The probability of mutation among the elite.\n", " 1e-3, // mutation strength: The strength of the mutation.\n", @@ -312,7 +393,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -336,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -345,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -361,16 +442,11 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ - "size_t numQuery = 300 / 2; // maxGeneration / queryRate.\n", - "\n", - "std::vector> nsga2FrontArrayX(numQuery);\n", - "std::vector> nsga2FrontArrayY(numQuery);\n", - "std::vector> moeadFrontArrayX(numQuery);\n", - "std::vector> moeadFrontArrayY(numQuery);" + "std::stringstream nsga2FrontsX, nsga2FrontsY, moeadFrontsX, moeadFrontsY;" ] }, { @@ -382,42 +458,52 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ - "void FillFront(std::vector& frontX,\n", - " std::vector& frontY,\n", - " arma::cube& paretoFront)\n", + "void FillFront(std::stringstream& frontX,\n", + " std::stringstream& frontY,\n", + " std::vector& frontList)\n", "{\n", - " size_t numPoints = paretoFront.n_slices;\n", - "\n", - " //! Store the X, Y coordinates of the Pareto Front.\n", - " frontX.resize(numPoints);\n", - " frontY.resize(numPoints);\n", - "\n", - " for (size_t idx = 0; idx < numPoints; ++idx)\n", + " size_t numFronts = frontList.size();\n", + " \n", + " for (size_t frontIdx = 0; frontIdx < numFronts; ++frontIdx)\n", " {\n", - "\n", - " frontX[idx] = paretoFront.slice(idx)(0);\n", - " // Append negative again to restore the original \n", - " // maximization objective.\n", - " frontY[idx] = -paretoFront.slice(idx)(1);\n", + " size_t numPoints = frontList[frontIdx].n_slices;\n", + " const arma::cube& front = frontList[frontIdx];\n", + " for (size_t pointIdx = 0; pointIdx < numPoints; ++pointIdx)\n", + " {\n", + " if (pointIdx == numPoints - 1)\n", + " {\n", + " frontX << front.slice(pointIdx)(0);\n", + " frontY << -front.slice(pointIdx)(1);\n", + " }\n", + " else\n", + " {\n", + " frontX << front.slice(pointIdx)(0) << \",\";\n", + " // Append negative again to restore the original \n", + " // maximization objective.\n", + " frontY << -front.slice(pointIdx)(1) << \",\";\n", + " }\n", + " }\n", + " \n", + " if (frontIdx == numFronts - 1) break; \n", + " \n", + " frontX << \";\";\n", + " frontY << \";\"; \n", " }\n", "}" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ - "for (size_t idx = 0; idx < numQuery; ++idx)\n", - "{\n", - " FillFront(nsga2FrontArrayX[idx], nsga2FrontArrayY[idx], nsga2Fronts[idx]);\n", - " FillFront(moeadFrontArrayX[idx], moeadFrontArrayY[idx], moeadFronts[idx]);\n", - "}" + "FillFront(nsga2FrontsX, nsga2FrontsY, nsga2Fronts);\n", + "FillFront(moeadFrontsX, moeadFrontsY, moeadFronts);" ] }, { @@ -444,48 +530,30 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "768c3158a3524ef09e9fc4bcf64ba9db", + "model_id": "ebff7484ce8d4a20ad9df79112f4f5eb", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget with unique id: 768c3158a3524ef09e9fc4bcf64ba9db" + "A Jupyter widget with unique id: ebff7484ce8d4a20ad9df79112f4f5eb" ] }, - "execution_count": 24, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "plt::figure_size(1500, 700);\n", - "plt::suptitle(\"Pareto Front Evolution of NSGA-II and MOEAD\");\n", - "plt::subplot(1, 2, 1);\n", - "\n", - "for (size_t idx = 0; idx < numQuery; ++idx)\n", - " plt::scatter(nsga2FrontArrayX[idx], nsga2FrontArrayY[idx], 50);\n", - "\n", - "plt::xlabel(\"Volatility\");\n", - "plt::ylabel(\"Returns\");\n", - "plt::title(\"NSGA-II\");\n", - "\n", - "plt::subplot(1, 2, 2);\n", - "for (size_t idx = 0; idx < numQuery; ++idx)\n", - " plt::scatter(moeadFrontArrayX[idx], moeadFrontArrayY[idx], 50);\n", - "\n", - "plt::xlabel(\"Volatility\");\n", - "plt::ylabel(\"Returns\");\n", - "plt::title(\"MOEA/D-DE\");\n", - "\n", + "//! A util to plot the evolution process gif.\n", + "Front(nsga2FrontsX.str(), nsga2FrontsY.str(), moeadFrontsX.str(), moeadFrontsY.str());\n", "\n", - "plt::save(\"./plot.png\");\n", - "auto im = xw::image_from_file(\"plot.png\").finalize();\n", + "auto im = xw::image_from_file(\"fronts.gif\").finalize();\n", "im" ] }, @@ -528,4 +596,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file From 84ecf9b28572095a8180b9cc6dc54cd8cb340b27 Mon Sep 17 00:00:00 2001 From: jonpsy Date: Tue, 6 Jul 2021 12:15:43 +0530 Subject: [PATCH 63/69] Dont show output --- .../portfolio-optimization-cpp.ipynb | 88 ++++++------------- 1 file changed, 26 insertions(+), 62 deletions(-) diff --git a/portfolio_optimization/portfolio-optimization-cpp.ipynb b/portfolio_optimization/portfolio-optimization-cpp.ipynb index 8dace072..10a8f8eb 100644 --- a/portfolio_optimization/portfolio-optimization-cpp.ipynb +++ b/portfolio_optimization/portfolio-optimization-cpp.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -23,7 +23,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -37,7 +37,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -51,7 +51,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -60,7 +60,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -76,29 +76,9 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "--2021-07-06 12:00:05-- http://lab.mlpack.org/data/portfolio.csv\n", - "Resolving lab.mlpack.org (lab.mlpack.org)... 95.216.240.218\n", - "Connecting to lab.mlpack.org (lab.mlpack.org)|95.216.240.218|:80... connected.\n", - "HTTP request sent, awaiting response... 200 OK\n", - "Length: 119324 (117K) [application/octet-stream]\n", - "Saving to: ‘portfolio.csv.2’\n", - "\n", - " 0K .......... .......... .......... .......... .......... 42% 326M 0s\n", - " 50K .......... .......... .......... .......... .......... 85% 523M 0s\n", - " 100K .......... ...... 100% 467M=0s\n", - "\n", - "2021-07-06 12:00:05 (410 MB/s) - ‘portfolio.csv.2’ saved [119324/119324]\n", - "\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "!wget http://lab.mlpack.org/data/portfolio.csv" ] @@ -119,7 +99,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -129,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -149,7 +129,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -161,7 +141,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -181,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -194,7 +174,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -205,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -221,7 +201,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -246,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -393,7 +373,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -417,7 +397,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -426,7 +406,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -442,7 +422,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -458,7 +438,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -498,7 +478,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -530,25 +510,9 @@ }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ebff7484ce8d4a20ad9df79112f4f5eb", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "A Jupyter widget with unique id: ebff7484ce8d4a20ad9df79112f4f5eb" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "//! A util to plot the evolution process gif.\n", "Front(nsga2FrontsX.str(), nsga2FrontsY.str(), moeadFrontsX.str(), moeadFrontsY.str());\n", From 94343963889a87384926d83545ee4433fe08414d Mon Sep 17 00:00:00 2001 From: Nanubala Gnana Sai <45007169+jonpsy@users.noreply.github.com> Date: Wed, 7 Jul 2021 08:28:20 +0530 Subject: [PATCH 64/69] Update portfolio_optimization/portfolio-optimization-cpp.ipynb Co-authored-by: Marcus Edel --- portfolio_optimization/portfolio-optimization-cpp.ipynb | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/portfolio_optimization/portfolio-optimization-cpp.ipynb b/portfolio_optimization/portfolio-optimization-cpp.ipynb index 10a8f8eb..94015f16 100644 --- a/portfolio_optimization/portfolio-optimization-cpp.ipynb +++ b/portfolio_optimization/portfolio-optimization-cpp.ipynb @@ -205,7 +205,7 @@ "metadata": {}, "outputs": [], "source": [ - "//! Uncomment to generate the csv file\n", + "//! Uncomment to generate the csv file.\n", "//! if(Portfolio(stocks, dataSource, startDate, endDate,\"portfolio.csv\"))\n", "//! std::cout << \"Data query failed! Using backup csv.\" << std::endl;" ] @@ -560,4 +560,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +} From ee376904d1cd968a97761f98720df7f38d72caf0 Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Sat, 10 Jul 2021 06:16:39 +0530 Subject: [PATCH 65/69] mnist cnn style fix --- ...housing_price_prediction_with_lr_cpp.ipynb | 1312 ++++++++++++++++- mnist_cnn/mnist_cnn.cpp | 2 +- 2 files changed, 1297 insertions(+), 17 deletions(-) diff --git a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb index 96e12a1d..fb8ec1e8 100644 --- a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb +++ b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb @@ -72,21 +72,1282 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 3, "id": "4d4ec4de", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "In file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:30:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/fstream:84:7: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mstatic_assert failed \"pos_type must be fpos\"\u001b[0m\n", + " static_assert(is_same >' requested here\u001b[0m\n", + " extern template class basic_filebuf;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:30:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/fstream:84:7: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mstatic_assert failed \"pos_type must be fpos\"\u001b[0m\n", + " static_assert(is_same >' requested here\u001b[0m\n", + " extern template class basic_filebuf;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:113:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/arma_version.hpp:42:24: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream ss;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:134:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/arma_rng.hpp:128:21: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ifstream' (aka\n", + " 'basic_ifstream')\u001b[0m\n", + " std::ifstream f(\"/dev/urandom\", std::ifstream::binary);\n", + "\u001b[0;1;32m ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:200:24: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mreference to overloaded function could not be resolved; did you mean to call it?\u001b[0m\n", + " get_cerr_stream() << std::endl;\n", + "\u001b[0;1;32m ^~~~~~~~~\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:590:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mpossible target for call\u001b[0m\n", + " endl(basic_ostream<_CharT, _Traits>& __os)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/system_error:217:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'const std::error_code' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, const error_code& __e)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:117:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::basic_ostream >::__ios_type\n", + " &(*)(std::basic_ostream >::__ios_type &)'\n", + " (aka 'basic_ios > &(*)(basic_ios > &)') for 1st argument\u001b[0m\n", + " operator<<(__ios_type& (*__pf)(__ios_type&))\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:127:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::ios_base\n", + " &(*)(std::ios_base &)' for 1st argument\u001b[0m\n", + " operator<<(ios_base& (*__pf) (ios_base&))\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:166:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long' for 1st\n", + " argument\u001b[0m\n", + " operator<<(long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:170:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'unsigned long'\n", + " for 1st argument\u001b[0m\n", + " operator<<(unsigned long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:178:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'short' for 1st\n", + " argument\u001b[0m\n", + " operator<<(short __n);\n", + "\u001b[0;1;32m ^\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:189:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'int' for 1st\n", + " argument\u001b[0m\n", + " operator<<(int __n);\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:201:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long long' for\n", + " 1st argument\u001b[0m\n", + " operator<<(long long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:220:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'double' for 1st\n", + " argument\u001b[0m\n", + " operator<<(double __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:224:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'float' for 1st\n", + " argument\u001b[0m\n", + " operator<<(float __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:232:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long double' for\n", + " 1st argument\u001b[0m\n", + " operator<<(long double __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:270:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::basic_ostream >::__streambuf_type *'\n", + " (aka 'basic_streambuf > *') for 1st argument\u001b[0m\n", + " operator<<(__streambuf_type* __sb);\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:497:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", + " viable: no overload of 'endl' matching 'char' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, _CharT __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:502:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'char' for 2nd\n", + " argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:508:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'char' for 2nd\n", + " argument\u001b[0m\n", + " operator<<(basic_ostream& __out, char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:514:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'signed char' for\n", + " 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, signed char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:519:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'unsigned char'\n", + " for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, unsigned char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:539:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", + " viable: no overload of 'endl' matching 'const char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:556:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const char *' for\n", + " 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:569:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'const signed char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const signed char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:574:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'const unsigned char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const unsigned char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/ostream.tcc:321:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const char *' for\n", + " 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, const char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _Tp = std::basic_ostream] not viable: no overload\n", + " of 'endl' matching 'const valarray >' for 2nd\n", + " argument\u001b[0m\n", + "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1165:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Tp& __t, const valarray<_Tp>& __v) \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:79:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::_Resetiosflags' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Resetiosflags __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:109:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::_Setiosflags' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setiosflags __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:143:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::_Setbase'\n", + " for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setbase __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:178:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", + " viable: no overload of 'endl' matching '_Setfill' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setfill<_CharT> __f)\n", + "\u001b[0;1;32m ^\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:208:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::_Setprecision' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setprecision __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:238:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::_Setw' for\n", + " 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setw __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:363:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", + " viable: no overload of 'endl' matching '_Put_time' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_time<_CharT> __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:998:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const\n", + " std::bernoulli_distribution' for 2nd argument\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/basic_string.h:6284:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Alloc'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:682:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", + " operator<<(_Ostream&& __os, const _Tp& __x)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/shared_ptr.h:66:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", + " operator<<(std::basic_ostream<_Ch, _Tr>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Dom'\u001b[0m\n", + " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:367:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const typename _Dom::value_type& __t, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Dom'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:393:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:311:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_MoneyT'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_money<_MoneyT> __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/complex:528:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:1269:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", + " '_RandomNumberEngine'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:156:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:632:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:702:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", + " '_RandomNumberEngine'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:831:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", + " '_RandomNumberEngine'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:877:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:936:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1080:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1195:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1400:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1667:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1731:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1898:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1963:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2036:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2123:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2200:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2275:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2444:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2522:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2598:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2734:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2944:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:3160:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:341:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom1, typename _Dom1::value_type>& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:354:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom, typename _Dom::value_type>& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:380:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", + "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1144:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \\\n", + "\u001b[0;1;32m ^\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1155:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray<_Tp>& __v, const _Tp& __t) \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:267:24: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mreference to overloaded function could not be resolved; did you mean to call it?\u001b[0m\n", + " get_cerr_stream() << std::endl;\n", + "\u001b[0;1;32m ^~~~~~~~~\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:590:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mpossible target for call\u001b[0m\n", + " endl(basic_ostream<_CharT, _Traits>& __os)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/system_error:217:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'const std::error_code' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, const error_code& __e)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:117:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::basic_ostream >::__ios_type\n", + " &(*)(std::basic_ostream >::__ios_type &)'\n", + " (aka 'basic_ios > &(*)(basic_ios > &)') for 1st argument\u001b[0m\n", + " operator<<(__ios_type& (*__pf)(__ios_type&))\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:127:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::ios_base\n", + " &(*)(std::ios_base &)' for 1st argument\u001b[0m\n", + " operator<<(ios_base& (*__pf) (ios_base&))\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:166:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long' for 1st\n", + " argument\u001b[0m\n", + " operator<<(long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:170:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'unsigned long'\n", + " for 1st argument\u001b[0m\n", + " operator<<(unsigned long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:178:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'short' for 1st\n", + " argument\u001b[0m\n", + " operator<<(short __n);\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:189:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'int' for 1st\n", + " argument\u001b[0m\n", + " operator<<(int __n);\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:201:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long long' for\n", + " 1st argument\u001b[0m\n", + " operator<<(long long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:220:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'double' for 1st\n", + " argument\u001b[0m\n", + " operator<<(double __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:224:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'float' for 1st\n", + " argument\u001b[0m\n", + " operator<<(float __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:232:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long double' for\n", + " 1st argument\u001b[0m\n", + " operator<<(long double __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:270:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::basic_ostream >::__streambuf_type *'\n", + " (aka 'basic_streambuf > *') for 1st argument\u001b[0m\n", + " operator<<(__streambuf_type* __sb);\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:497:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", + " viable: no overload of 'endl' matching 'char' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, _CharT __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:502:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'char' for 2nd\n", + " argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:508:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'char' for 2nd\n", + " argument\u001b[0m\n", + " operator<<(basic_ostream& __out, char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:514:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'signed char' for\n", + " 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, signed char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:519:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'unsigned char'\n", + " for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, unsigned char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:539:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", + " viable: no overload of 'endl' matching 'const char *' for 2nd argument\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " operator<<(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:556:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const char *' for\n", + " 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:569:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'const signed char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const signed char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:574:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'const unsigned char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const unsigned char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/ostream.tcc:321:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const char *' for\n", + " 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, const char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _Tp = std::basic_ostream] not viable: no overload\n", + " of 'endl' matching 'const valarray >' for 2nd\n", + " argument\u001b[0m\n", + "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1165:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Tp& __t, const valarray<_Tp>& __v) \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:79:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::_Resetiosflags' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Resetiosflags __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:109:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::_Setiosflags' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setiosflags __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:143:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::_Setbase'\n", + " for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setbase __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:178:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", + " viable: no overload of 'endl' matching '_Setfill' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setfill<_CharT> __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:208:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", + " 'std::_Setprecision' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setprecision __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:238:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::_Setw' for\n", + " 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setw __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:363:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", + " viable: no overload of 'endl' matching '_Put_time' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_time<_CharT> __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:998:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const\n", + " std::bernoulli_distribution' for 2nd argument\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/basic_string.h:6284:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Alloc'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:682:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", + " operator<<(_Ostream&& __os, const _Tp& __x)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/shared_ptr.h:66:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", + " operator<<(std::basic_ostream<_Ch, _Tr>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Dom'\u001b[0m\n", + " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:367:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const typename _Dom::value_type& __t, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Dom'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:393:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:311:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_MoneyT'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_money<_MoneyT> __f)\n", + "\u001b[0;1;32m ^\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/complex:528:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:1269:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", + " '_RandomNumberEngine'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:156:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:632:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:702:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", + " '_RandomNumberEngine'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:831:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", + " '_RandomNumberEngine'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:877:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:936:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1080:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1195:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1400:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1667:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1731:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1898:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1963:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2036:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2123:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2200:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2275:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2444:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2522:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2598:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2734:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2944:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:3160:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:341:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom1, typename _Dom1::value_type>& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:354:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom, typename _Dom::value_type>& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:380:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", + "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1144:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1155:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray<_Tp>& __v, const _Tp& __t) \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:301:36: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1minvalid operands to binary expression ('basic_ostream >' and 'const void *')\u001b[0m\n", + " get_cerr_stream() << \" [this = \" << this_ptr << ']' << std::endl;\n", + "\u001b[0;1;32m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/system_error:217:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'const std::error_code' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, const error_code& __e)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:117:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'std::basic_ostream\n", + " >::__ios_type &(*)(std::basic_ostream\n", + " >::__ios_type &)' (aka 'basic_ios >\n", + " &(*)(basic_ios > &)') for 1st argument\u001b[0m\n", + " operator<<(__ios_type& (*__pf)(__ios_type&))\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:127:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'std::ios_base &(*)(std::ios_base &)' for 1st argument\u001b[0m\n", + " operator<<(ios_base& (*__pf) (ios_base&))\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:166:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'long' for 1st argument\u001b[0m\n", + " operator<<(long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:170:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'unsigned long' for 1st argument\u001b[0m\n", + " operator<<(unsigned long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:178:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'short' for 1st argument\u001b[0m\n", + " operator<<(short __n);\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:189:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'int' for 1st argument\u001b[0m\n", + " operator<<(int __n);\n", + "\u001b[0;1;32m ^\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:201:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'long long' for 1st argument\u001b[0m\n", + " operator<<(long long __n)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:220:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'double' for 1st argument\u001b[0m\n", + " operator<<(double __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:224:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'float' for 1st argument\u001b[0m\n", + " operator<<(float __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:232:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'long double' for 1st argument\u001b[0m\n", + " operator<<(long double __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:270:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'std::basic_ostream\n", + " >::__streambuf_type *' (aka 'basic_streambuf\n", + " > *') for 1st argument\u001b[0m\n", + " operator<<(__streambuf_type* __sb);\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:502:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'char' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:508:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'char' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:514:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'signed char' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, signed char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:519:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'unsigned char' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, unsigned char __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:556:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'const char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:569:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'const signed char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const signed char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:574:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'const unsigned char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream& __out, const unsigned char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/ostream.tcc:321:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'const char *' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, const char* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:79:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'std::_Resetiosflags' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Resetiosflags __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:109:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'std::_Setiosflags' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setiosflags __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:143:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'std::_Setbase' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setbase __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:208:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'std::_Setprecision' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setprecision __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:238:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'std::_Setw' for 2nd argument\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setw __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:998:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", + " 'const void *' to 'const std::bernoulli_distribution' for 2nd argument\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:497:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: deduced conflicting types for parameter '_CharT'\n", + " ('char' vs. 'const void *')\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, _CharT __c)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:539:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: deduced conflicting types for parameter '_CharT'\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " ('char' vs. 'void')\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/basic_string.h:6284:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'basic_string' against 'const void *'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/shared_ptr.h:66:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '__shared_ptr' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_Ch, _Tr>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:341:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom1, typename _Dom1::value_type>& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:354:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom, typename _Dom::value_type>& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'const void *'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:367:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const typename _Dom::value_type& __t, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:380:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'const void *'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:393:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray& __v, \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", + "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", + "\u001b[0;1;32m^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1144:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1155:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const valarray<_Tp>& __v, const _Tp& __t) \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray'\n", + " against 'const void *'\u001b[0m\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1165:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", + " operator _Op(const _Tp& __t, const valarray<_Tp>& __v) \\\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:178:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Setfill'\n", + " against 'const void *'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setfill<_CharT> __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:311:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Put_money'\n", + " against 'const void *'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_money<_MoneyT> __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:363:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Put_time'\n", + " against 'const void *'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_time<_CharT> __f)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'mersenne_twister_engine' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'mersenne_twister_engine' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/complex:528:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'complex'\n", + " against 'const void *'\u001b[0m\n", + " operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'mersenne_twister_engine' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:1269:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'independent_bits_engine'\n", + " against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:156:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'linear_congruential_engine' against\n", + " 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:632:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'subtract_with_carry_engine' against\n", + " 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:702:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'discard_block_engine' against\n", + " 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:831:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'shuffle_order_engine' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:877:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'uniform_int_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:936:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'uniform_real_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1080:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'geometric_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1195:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'negative_binomial_distribution' against\n", + " 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1400:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'poisson_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1667:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'binomial_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1731:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'exponential_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1898:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'normal_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1963:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'lognormal_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2036:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'chi_squared_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2123:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'cauchy_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2200:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'fisher_f_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2275:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'student_t_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2444:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'gamma_distribution' against 'const void *'\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:682:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: requirement\n", + " '__and_<__not_ &> >,\n", + " __is_convertible_to_basic_ostream &>,\n", + " __is_insertable<__rvalue_ostream_type &>, const void\n", + " *const &> >::value' was not satisfied [with _Ostream =\n", + " std::basic_ostream &, _Tp = const void *]\u001b[0m\n", + " operator<<(_Ostream&& __os, const _Tp& __x)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2522:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'weibull_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2598:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'extreme_value_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2734:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'discrete_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2944:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'piecewise_constant_distribution' against\n", + " 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:3160:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", + " 'piecewise_linear_distribution' against 'const void *'\u001b[0m\n", + " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:435:22: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:450:22: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:466:22: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:882:26: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:898:28: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:910:28: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:924:28: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:955:28: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:972:30: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:985:30: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:1000:30: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream tmp;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0mIn file included from input_line_9:2:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", + "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:400:\n", + "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/arma_ostream_meat.hpp:386:22: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", + " 'basic_ostringstream')\u001b[0m\n", + " std::ostringstream ss;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", + " basic_ostringstream(const basic_ostringstream&) = delete;\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(basic_ostringstream&& __rhs)\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", + " arguments were provided\u001b[0m\n", + " basic_ostringstream(const __string_type& __str,\n", + "\u001b[0;1;32m ^\n", + "\u001b[0m\u001b[0;1;31mfatal error: \u001b[0mtoo many errors emitted, stopping now [-ferror-limit=]\u001b[0m\n" + ] + }, + { + "ename": "Interpreter Error", + "evalue": "", + "output_type": "error", + "traceback": [ + "Interpreter Error: " + ] + } + ], "source": [ "#include \n", "#include \n", "#include \n", - "#include \n", - "\n", - "#include \"matplotlibcpp.h\"\n", + "#include " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8a0ace0c", + "metadata": {}, + "outputs": [], + "source": [ "#define WITHOUT_NUMPY 1\n", + "#include \"matplotlibcpp.h\"\n", "#include \"xwidgets/ximage.hpp\"\n", "\n", - "/* CPython Scripts for Plots\" */\n", + "/* CPython Api Scripts for Plots */\n", "\n", "#include \"../utils/histogram.hpp\"\n", "#include \"../utils/impute.hpp\"\n", @@ -94,9 +1355,18 @@ "#include \"../utils/heatmap.hpp\"\n", "#include \"../utils/plot.hpp\"\n", "\n", - "namespace plt = matplotlibcpp;\n", + "namespace plt = matplotlibcpp;" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "79e6d53d", + "metadata": {}, + "outputs": [], + "source": [ "using namespace mlpack;\n", - "using namespace mlpack::data;\n" + "using namespace mlpack::data;" ] }, { @@ -109,12 +1379,22 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 11, "id": "401c6664", "metadata": {}, "outputs": [], "source": [ - "!wget -q https://matrix.org/_matrix/media/r0/download/matrix.org/WvrgbgzkyIMbvkxLkKKNyMrO/housing.csv" + "!wget -q https://mlpack.org/datasets/cal_housing.tar.gz" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "d20a6640", + "metadata": {}, + "outputs": [], + "source": [ + "!tar -xf cal_housing.tar.gz" ] }, { @@ -157,7 +1437,7 @@ "// Here, inputFile is our raw file, outputFile is our new file with the imputations, \n", "// and kind refers to imputation method.\n", "\n", - "Impute(\"housing.csv\", \"housing_imputed.csv\", \"median\");" + "Impute(\"cal_housing.csv\", \"housing_imputed.csv\", \"median\");" ] }, { @@ -324,7 +1604,7 @@ ], "source": [ "// Hist(inputFile, bins, width, height, outputFile);\n", - "Hist(\"housing.csv\", 50, 20, 15, \"histogram.png\");\n", + "Hist(\"cal_housing.csv\", 50, 20, 15, \"histogram.png\");\n", "auto im = xw::image_from_file(\"histogram.png\").finalize();\n", "im" ] @@ -361,7 +1641,7 @@ ], "source": [ "// PandasScatter(inputFile, x, y, outputFile);\n", - "PandasScatter(\"housing.csv\", \"longitude\", \"latitude\", \"output.png\");\n", + "PandasScatter(\"cal_housing.csv\", \"longitude\", \"latitude\", \"output.png\");\n", "auto im = xw::image_from_file(\"output.png\").finalize();\n", "im" ] @@ -398,7 +1678,7 @@ ], "source": [ "// PandasScatterColor(inputFile, x, y, label, c, outputFile);\n", - "PandasScatterColor(\"housing.csv\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output1.png\");\n", + "PandasScatterColor(\"cal_housing.csv\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output1.png\");\n", "auto im = xw::image_from_file(\"output1.png\").finalize();\n", "im" ] @@ -435,7 +1715,7 @@ ], "source": [ "//PandasScatterMap(inputFile, imgFile, x, y, label, c, outputFile);\n", - "PandasScatterMap(\"housing.csv\",\"california.png\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output2.png\");\n", + "PandasScatterMap(\"cal_housing.csv\",\"california.png\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output2.png\");\n", "auto im = xw::image_from_file(\"output2.png\").finalize();\n", "im" ] @@ -472,7 +1752,7 @@ ], "source": [ "// HeatMap(inputFile, outputFile);\n", - "HeatMap(\"housing.csv\", \"heatmap.png\");\n", + "HeatMap(\"cal_housing.csv\", \"heatmap.png\");\n", "auto im = xw::image_from_file(\"heatmap.png\").finalize();\n", "im" ] diff --git a/mnist_cnn/mnist_cnn.cpp b/mnist_cnn/mnist_cnn.cpp index c4094b5a..e141a265 100644 --- a/mnist_cnn/mnist_cnn.cpp +++ b/mnist_cnn/mnist_cnn.cpp @@ -177,7 +177,7 @@ int main() ens::ProgressBar(), // Stop the training using Early Stop at min loss. ens::EarlyStopAtMinLoss( - [&](const arma::mat& /* param */) + [&](const arma::mat& /* param */) { double validationLoss = model.Evaluate(validX, validY); std::cout << "Validation loss: " << validationLoss From 1a5e9cd619c746084f1f8140d37adb0fb09dc68e Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Sat, 10 Jul 2021 06:19:58 +0530 Subject: [PATCH 66/69] restore cpp notebook to previous version --- ...housing_price_prediction_with_lr_cpp.ipynb | 1287 +---------------- 1 file changed, 12 insertions(+), 1275 deletions(-) diff --git a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb index fb8ec1e8..1a34fcde 100644 --- a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb +++ b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb @@ -72,1263 +72,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 1, "id": "4d4ec4de", "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "In file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:30:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/fstream:84:7: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mstatic_assert failed \"pos_type must be fpos\"\u001b[0m\n", - " static_assert(is_same >' requested here\u001b[0m\n", - " extern template class basic_filebuf;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:30:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/fstream:84:7: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mstatic_assert failed \"pos_type must be fpos\"\u001b[0m\n", - " static_assert(is_same >' requested here\u001b[0m\n", - " extern template class basic_filebuf;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:113:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/arma_version.hpp:42:24: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream ss;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:134:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/arma_rng.hpp:128:21: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ifstream' (aka\n", - " 'basic_ifstream')\u001b[0m\n", - " std::ifstream f(\"/dev/urandom\", std::ifstream::binary);\n", - "\u001b[0;1;32m ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:200:24: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mreference to overloaded function could not be resolved; did you mean to call it?\u001b[0m\n", - " get_cerr_stream() << std::endl;\n", - "\u001b[0;1;32m ^~~~~~~~~\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:590:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mpossible target for call\u001b[0m\n", - " endl(basic_ostream<_CharT, _Traits>& __os)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/system_error:217:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'const std::error_code' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, const error_code& __e)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:117:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::basic_ostream >::__ios_type\n", - " &(*)(std::basic_ostream >::__ios_type &)'\n", - " (aka 'basic_ios > &(*)(basic_ios > &)') for 1st argument\u001b[0m\n", - " operator<<(__ios_type& (*__pf)(__ios_type&))\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:127:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::ios_base\n", - " &(*)(std::ios_base &)' for 1st argument\u001b[0m\n", - " operator<<(ios_base& (*__pf) (ios_base&))\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:166:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long' for 1st\n", - " argument\u001b[0m\n", - " operator<<(long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:170:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'unsigned long'\n", - " for 1st argument\u001b[0m\n", - " operator<<(unsigned long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:178:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'short' for 1st\n", - " argument\u001b[0m\n", - " operator<<(short __n);\n", - "\u001b[0;1;32m ^\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:189:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'int' for 1st\n", - " argument\u001b[0m\n", - " operator<<(int __n);\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:201:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long long' for\n", - " 1st argument\u001b[0m\n", - " operator<<(long long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:220:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'double' for 1st\n", - " argument\u001b[0m\n", - " operator<<(double __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:224:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'float' for 1st\n", - " argument\u001b[0m\n", - " operator<<(float __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:232:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long double' for\n", - " 1st argument\u001b[0m\n", - " operator<<(long double __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:270:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::basic_ostream >::__streambuf_type *'\n", - " (aka 'basic_streambuf > *') for 1st argument\u001b[0m\n", - " operator<<(__streambuf_type* __sb);\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:497:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", - " viable: no overload of 'endl' matching 'char' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, _CharT __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:502:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'char' for 2nd\n", - " argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:508:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'char' for 2nd\n", - " argument\u001b[0m\n", - " operator<<(basic_ostream& __out, char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:514:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'signed char' for\n", - " 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, signed char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:519:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'unsigned char'\n", - " for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, unsigned char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:539:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", - " viable: no overload of 'endl' matching 'const char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:556:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const char *' for\n", - " 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:569:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'const signed char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const signed char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:574:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'const unsigned char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const unsigned char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/ostream.tcc:321:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const char *' for\n", - " 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, const char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _Tp = std::basic_ostream] not viable: no overload\n", - " of 'endl' matching 'const valarray >' for 2nd\n", - " argument\u001b[0m\n", - "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1165:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Tp& __t, const valarray<_Tp>& __v) \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:79:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::_Resetiosflags' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Resetiosflags __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:109:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::_Setiosflags' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setiosflags __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:143:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::_Setbase'\n", - " for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setbase __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:178:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", - " viable: no overload of 'endl' matching '_Setfill' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setfill<_CharT> __f)\n", - "\u001b[0;1;32m ^\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:208:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::_Setprecision' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setprecision __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:238:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::_Setw' for\n", - " 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setw __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:363:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", - " viable: no overload of 'endl' matching '_Put_time' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_time<_CharT> __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:998:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const\n", - " std::bernoulli_distribution' for 2nd argument\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/basic_string.h:6284:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Alloc'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:682:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", - " operator<<(_Ostream&& __os, const _Tp& __x)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/shared_ptr.h:66:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", - " operator<<(std::basic_ostream<_Ch, _Tr>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Dom'\u001b[0m\n", - " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:367:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const typename _Dom::value_type& __t, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Dom'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:393:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:311:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_MoneyT'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_money<_MoneyT> __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/complex:528:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:1269:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", - " '_RandomNumberEngine'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:156:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:632:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:702:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", - " '_RandomNumberEngine'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:831:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", - " '_RandomNumberEngine'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:877:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:936:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1080:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1195:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1400:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1667:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1731:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1898:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1963:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2036:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2123:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2200:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2275:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2444:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2522:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2598:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2734:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2944:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:3160:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:341:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom1, typename _Dom1::value_type>& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:354:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom, typename _Dom::value_type>& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:380:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", - "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1144:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \\\n", - "\u001b[0;1;32m ^\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1155:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray<_Tp>& __v, const _Tp& __t) \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:267:24: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mreference to overloaded function could not be resolved; did you mean to call it?\u001b[0m\n", - " get_cerr_stream() << std::endl;\n", - "\u001b[0;1;32m ^~~~~~~~~\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:590:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mpossible target for call\u001b[0m\n", - " endl(basic_ostream<_CharT, _Traits>& __os)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/system_error:217:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'const std::error_code' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, const error_code& __e)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:117:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::basic_ostream >::__ios_type\n", - " &(*)(std::basic_ostream >::__ios_type &)'\n", - " (aka 'basic_ios > &(*)(basic_ios > &)') for 1st argument\u001b[0m\n", - " operator<<(__ios_type& (*__pf)(__ios_type&))\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:127:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::ios_base\n", - " &(*)(std::ios_base &)' for 1st argument\u001b[0m\n", - " operator<<(ios_base& (*__pf) (ios_base&))\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:166:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long' for 1st\n", - " argument\u001b[0m\n", - " operator<<(long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:170:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'unsigned long'\n", - " for 1st argument\u001b[0m\n", - " operator<<(unsigned long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:178:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'short' for 1st\n", - " argument\u001b[0m\n", - " operator<<(short __n);\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:189:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'int' for 1st\n", - " argument\u001b[0m\n", - " operator<<(int __n);\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:201:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long long' for\n", - " 1st argument\u001b[0m\n", - " operator<<(long long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:220:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'double' for 1st\n", - " argument\u001b[0m\n", - " operator<<(double __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:224:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'float' for 1st\n", - " argument\u001b[0m\n", - " operator<<(float __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:232:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'long double' for\n", - " 1st argument\u001b[0m\n", - " operator<<(long double __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:270:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::basic_ostream >::__streambuf_type *'\n", - " (aka 'basic_streambuf > *') for 1st argument\u001b[0m\n", - " operator<<(__streambuf_type* __sb);\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:497:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", - " viable: no overload of 'endl' matching 'char' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, _CharT __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:502:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'char' for 2nd\n", - " argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:508:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'char' for 2nd\n", - " argument\u001b[0m\n", - " operator<<(basic_ostream& __out, char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:514:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'signed char' for\n", - " 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, signed char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:519:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'unsigned char'\n", - " for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, unsigned char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:539:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", - " viable: no overload of 'endl' matching 'const char *' for 2nd argument\u001b[0m\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " operator<<(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:556:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const char *' for\n", - " 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:569:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'const signed char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const signed char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:574:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'const unsigned char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const unsigned char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/ostream.tcc:321:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const char *' for\n", - " 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, const char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _Tp = std::basic_ostream] not viable: no overload\n", - " of 'endl' matching 'const valarray >' for 2nd\n", - " argument\u001b[0m\n", - "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1165:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Tp& __t, const valarray<_Tp>& __v) \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:79:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::_Resetiosflags' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Resetiosflags __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:109:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::_Setiosflags' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setiosflags __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:143:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::_Setbase'\n", - " for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setbase __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:178:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", - " viable: no overload of 'endl' matching '_Setfill' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setfill<_CharT> __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:208:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching\n", - " 'std::_Setprecision' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setprecision __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:238:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'std::_Setw' for\n", - " 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setw __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:363:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function [with _CharT = char, _Traits = std::char_traits] not\n", - " viable: no overload of 'endl' matching '_Put_time' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_time<_CharT> __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:998:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: no overload of 'endl' matching 'const\n", - " std::bernoulli_distribution' for 2nd argument\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/basic_string.h:6284:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Alloc'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:682:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", - " operator<<(_Ostream&& __os, const _Tp& __x)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/shared_ptr.h:66:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", - " operator<<(std::basic_ostream<_Ch, _Tr>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Dom'\u001b[0m\n", - " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:367:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const typename _Dom::value_type& __t, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Dom'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:393:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:311:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_MoneyT'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_money<_MoneyT> __f)\n", - "\u001b[0;1;32m ^\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/complex:528:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_Tp'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType1'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:1269:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", - " '_RandomNumberEngine'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:156:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:632:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_UIntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:702:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", - " '_RandomNumberEngine'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:831:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument\n", - " '_RandomNumberEngine'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:877:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:936:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1080:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1195:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1400:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1667:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1731:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1898:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1963:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2036:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2123:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2200:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2275:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2444:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2522:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2598:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2734:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_IntType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2944:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:3160:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: couldn't infer template argument '_RealType'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:341:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom1, typename _Dom1::value_type>& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:354:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom, typename _Dom::value_type>& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:380:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", - "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1144:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1155:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray<_Tp>& __v, const _Tp& __t) \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:301:36: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1minvalid operands to binary expression ('basic_ostream >' and 'const void *')\u001b[0m\n", - " get_cerr_stream() << \" [this = \" << this_ptr << ']' << std::endl;\n", - "\u001b[0;1;32m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/system_error:217:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'const std::error_code' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, const error_code& __e)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:117:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'std::basic_ostream\n", - " >::__ios_type &(*)(std::basic_ostream\n", - " >::__ios_type &)' (aka 'basic_ios >\n", - " &(*)(basic_ios > &)') for 1st argument\u001b[0m\n", - " operator<<(__ios_type& (*__pf)(__ios_type&))\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:127:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'std::ios_base &(*)(std::ios_base &)' for 1st argument\u001b[0m\n", - " operator<<(ios_base& (*__pf) (ios_base&))\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:166:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'long' for 1st argument\u001b[0m\n", - " operator<<(long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:170:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'unsigned long' for 1st argument\u001b[0m\n", - " operator<<(unsigned long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:178:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'short' for 1st argument\u001b[0m\n", - " operator<<(short __n);\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:189:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'int' for 1st argument\u001b[0m\n", - " operator<<(int __n);\n", - "\u001b[0;1;32m ^\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:201:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'long long' for 1st argument\u001b[0m\n", - " operator<<(long long __n)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:220:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'double' for 1st argument\u001b[0m\n", - " operator<<(double __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:224:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'float' for 1st argument\u001b[0m\n", - " operator<<(float __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:232:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'long double' for 1st argument\u001b[0m\n", - " operator<<(long double __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:270:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'std::basic_ostream\n", - " >::__streambuf_type *' (aka 'basic_streambuf\n", - " > *') for 1st argument\u001b[0m\n", - " operator<<(__streambuf_type* __sb);\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:502:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'char' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:508:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'char' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:514:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'signed char' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, signed char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:519:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'unsigned char' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, unsigned char __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:556:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'const char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:569:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'const signed char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const signed char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:574:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'const unsigned char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream& __out, const unsigned char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/ostream.tcc:321:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'const char *' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, const char* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:79:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'std::_Resetiosflags' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Resetiosflags __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:109:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'std::_Setiosflags' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setiosflags __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:143:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'std::_Setbase' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setbase __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:208:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'std::_Setprecision' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setprecision __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:238:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'std::_Setw' for 2nd argument\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setw __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:998:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate function not viable: cannot convert argument of incomplete type\n", - " 'const void *' to 'const std::bernoulli_distribution' for 2nd argument\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:497:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: deduced conflicting types for parameter '_CharT'\n", - " ('char' vs. 'const void *')\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, _CharT __c)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:539:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: deduced conflicting types for parameter '_CharT'\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " ('char' vs. 'void')\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __out, const _CharT* __s)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/basic_string.h:6284:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'basic_string' against 'const void *'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/shared_ptr.h:66:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '__shared_ptr' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_Ch, _Tr>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - " _DEFINE_EXPR_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:341:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom1, typename _Dom1::value_type>& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:354:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom, typename _Dom::value_type>& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'const void *'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:367:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const typename _Dom::value_type& __t, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:380:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Expr<_Dom,typename _Dom::value_type>& __e, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:410:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Expr' against 'const void *'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/valarray_after.h:393:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_EXPR_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray& __v, \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", - "_DEFINE_BINARY_OPERATOR(<<, __shift_left)\n", - "\u001b[0;1;32m^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1144:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray<_Tp>& __v, const valarray<_Tp>& __w) \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray' against 'basic_ostream'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1155:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const valarray<_Tp>& __v, const _Tp& __t) \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1180:1: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'valarray'\n", - " against 'const void *'\u001b[0m\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/valarray:1165:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mexpanded from macro '_DEFINE_BINARY_OPERATOR'\u001b[0m\n", - " operator _Op(const _Tp& __t, const valarray<_Tp>& __v) \\\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:178:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Setfill'\n", - " against 'const void *'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Setfill<_CharT> __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:311:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Put_money'\n", - " against 'const void *'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_money<_MoneyT> __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/iomanip:363:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match '_Put_time'\n", - " against 'const void *'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, _Put_time<_CharT> __f)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'mersenne_twister_engine' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'mersenne_twister_engine' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/complex:528:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match 'complex'\n", - " against 'const void *'\u001b[0m\n", - " operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:580:2: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'mersenne_twister_engine' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.h:1269:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'independent_bits_engine'\n", - " against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:156:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'linear_congruential_engine' against\n", - " 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:632:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'subtract_with_carry_engine' against\n", - " 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:702:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'discard_block_engine' against\n", - " 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:831:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'shuffle_order_engine' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:877:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'uniform_int_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:936:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'uniform_real_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1080:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'geometric_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1195:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'negative_binomial_distribution' against\n", - " 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1400:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'poisson_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1667:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'binomial_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1731:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'exponential_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1898:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'normal_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:1963:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'lognormal_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2036:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'chi_squared_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2123:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'cauchy_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2200:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'fisher_f_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2275:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'student_t_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2444:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'gamma_distribution' against 'const void *'\u001b[0m\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/ostream:682:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: requirement\n", - " '__and_<__not_ &> >,\n", - " __is_convertible_to_basic_ostream &>,\n", - " __is_insertable<__rvalue_ostream_type &>, const void\n", - " *const &> >::value' was not satisfied [with _Ostream =\n", - " std::basic_ostream &, _Tp = const void *]\u001b[0m\n", - " operator<<(_Ostream&& __os, const _Tp& __x)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2522:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'weibull_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2598:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'extreme_value_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2734:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'discrete_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:2944:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'piecewise_constant_distribution' against\n", - " 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/bits/random.tcc:3160:5: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate template ignored: could not match\n", - " 'piecewise_linear_distribution' against 'const void *'\u001b[0m\n", - " operator<<(std::basic_ostream<_CharT, _Traits>& __os,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:435:22: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:450:22: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:466:22: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:882:26: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:898:28: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:910:28: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:924:28: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:955:28: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:972:30: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:985:30: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:371:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/debug.hpp:1000:30: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream tmp;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0mIn file included from input_line_9:2:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core.hpp:67:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/prereqs.hpp:120:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/mlpack/core/arma_extend/arma_extend.hpp:50:\n", - "In file included from /home/viole/anaconda3/envs/notebook/include/armadillo:400:\n", - "\u001b[1m/home/viole/anaconda3/envs/notebook/include/armadillo_bits/arma_ostream_meat.hpp:386:22: \u001b[0m\u001b[0;1;31merror: \u001b[0m\u001b[1mno matching constructor for initialization of 'std::ostringstream' (aka\n", - " 'basic_ostringstream')\u001b[0m\n", - " std::ostringstream ss;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:593:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires 1 argument, but 0 were provided\u001b[0m\n", - " basic_ostringstream(const basic_ostringstream&) = delete;\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:595:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires single argument '__rhs', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(basic_ostringstream&& __rhs)\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[1m/home/viole/anaconda3/envs/notebook/bin/../lib/gcc/x86_64-conda-linux-gnu/7.5.0/../../../../x86_64-conda-linux-gnu/include/c++/7.5.0/sstream:578:7: \u001b[0m\u001b[0;1;30mnote: \u001b[0mcandidate constructor not viable: requires at least argument '__str', but no\n", - " arguments were provided\u001b[0m\n", - " basic_ostringstream(const __string_type& __str,\n", - "\u001b[0;1;32m ^\n", - "\u001b[0m\u001b[0;1;31mfatal error: \u001b[0mtoo many errors emitted, stopping now [-ferror-limit=]\u001b[0m\n" - ] - }, - { - "ename": "Interpreter Error", - "evalue": "", - "output_type": "error", - "traceback": [ - "Interpreter Error: " - ] - } - ], + "outputs": [], "source": [ "#include \n", "#include \n", @@ -1338,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "8a0ace0c", "metadata": {}, "outputs": [], @@ -1360,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "79e6d53d", "metadata": {}, "outputs": [], @@ -1379,22 +126,12 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 4, "id": "401c6664", "metadata": {}, "outputs": [], "source": [ - "!wget -q https://mlpack.org/datasets/cal_housing.tar.gz" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "d20a6640", - "metadata": {}, - "outputs": [], - "source": [ - "!tar -xf cal_housing.tar.gz" + "!wget -q https://matrix.org/_matrix/media/r0/download/matrix.org/WvrgbgzkyIMbvkxLkKKNyMrO/housing.csv" ] }, { @@ -1437,7 +174,7 @@ "// Here, inputFile is our raw file, outputFile is our new file with the imputations, \n", "// and kind refers to imputation method.\n", "\n", - "Impute(\"cal_housing.csv\", \"housing_imputed.csv\", \"median\");" + "Impute(\"housing.csv\", \"housing_imputed.csv\", \"median\");" ] }, { @@ -1604,7 +341,7 @@ ], "source": [ "// Hist(inputFile, bins, width, height, outputFile);\n", - "Hist(\"cal_housing.csv\", 50, 20, 15, \"histogram.png\");\n", + "Hist(\"housing.csv\", 50, 20, 15, \"histogram.png\");\n", "auto im = xw::image_from_file(\"histogram.png\").finalize();\n", "im" ] @@ -1641,7 +378,7 @@ ], "source": [ "// PandasScatter(inputFile, x, y, outputFile);\n", - "PandasScatter(\"cal_housing.csv\", \"longitude\", \"latitude\", \"output.png\");\n", + "PandasScatter(\"housing.csv\", \"longitude\", \"latitude\", \"output.png\");\n", "auto im = xw::image_from_file(\"output.png\").finalize();\n", "im" ] @@ -1678,7 +415,7 @@ ], "source": [ "// PandasScatterColor(inputFile, x, y, label, c, outputFile);\n", - "PandasScatterColor(\"cal_housing.csv\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output1.png\");\n", + "PandasScatterColor(\"housing.csv\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output1.png\");\n", "auto im = xw::image_from_file(\"output1.png\").finalize();\n", "im" ] @@ -1715,7 +452,7 @@ ], "source": [ "//PandasScatterMap(inputFile, imgFile, x, y, label, c, outputFile);\n", - "PandasScatterMap(\"cal_housing.csv\",\"california.png\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output2.png\");\n", + "PandasScatterMap(\"housing.csv\",\"california.png\",\"longitude\",\"latitude\",\"Population\",\"median_house_value\",\"output2.png\");\n", "auto im = xw::image_from_file(\"output2.png\").finalize();\n", "im" ] @@ -1752,7 +489,7 @@ ], "source": [ "// HeatMap(inputFile, outputFile);\n", - "HeatMap(\"cal_housing.csv\", \"heatmap.png\");\n", + "HeatMap(\"housing.csv\", \"heatmap.png\");\n", "auto im = xw::image_from_file(\"heatmap.png\").finalize();\n", "im" ] From 0444c61ff9404f16744d25fcd2a4eb6e3b540f27 Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Sat, 10 Jul 2021 06:27:13 +0530 Subject: [PATCH 67/69] outputs for student admission notebook --- ...nt-admission-logistic-regression-cpp.ipynb | 44 +++++++++---------- 1 file changed, 22 insertions(+), 22 deletions(-) diff --git a/student_admission_regression_with_logistic_regression/student-admission-logistic-regression-cpp.ipynb b/student_admission_regression_with_logistic_regression/student-admission-logistic-regression-cpp.ipynb index 85936f21..6ee3ad4b 100644 --- a/student_admission_regression_with_logistic_regression/student-admission-logistic-regression-cpp.ipynb +++ b/student_admission_regression_with_logistic_regression/student-admission-logistic-regression-cpp.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -29,7 +29,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -38,7 +38,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -64,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -73,7 +73,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -82,7 +82,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -93,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -129,21 +129,21 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "75e1b93113f44ca2ad0a709098eae2c1", + "model_id": "54466081d1d04875824c960df742de13", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget" + "A Jupyter widget with unique id: 54466081d1d04875824c960df742de13" ] }, - "execution_count": 8, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -209,7 +209,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -223,7 +223,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -237,7 +237,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -255,7 +255,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -273,21 +273,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "06d78d253ec546e780ea8b5d129f0e1f", + "model_id": "e023c9b879234163b1f5498cc8154920", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "A Jupyter widget" + "A Jupyter widget with unique id: e023c9b879234163b1f5498cc8154920" ] }, - "execution_count": 13, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -336,7 +336,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -349,7 +349,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [ { From 9bf52d3128afd1f535bab6e09f7898c7adc10e3e Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Sat, 10 Jul 2021 19:31:15 +0530 Subject: [PATCH 68/69] use of dataset.mlpack.org --- .../California_housing_prices_predictions_with_lr_python.ipynb | 2 +- .../california_housing_price_prediction_with_lr_cpp.ipynb | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb b/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb index e13e6fcc..a6d6ace3 100644 --- a/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb +++ b/california_housing_price_prediction_with_linear_regression/California_housing_prices_predictions_with_lr_python.ipynb @@ -102,7 +102,7 @@ "metadata": {}, "outputs": [], "source": [ - "!wget -q https://matrix.org/_matrix/media/r0/download/matrix.org/WvrgbgzkyIMbvkxLkKKNyMrO/housing.csv" + "!wget -q https://datasets.mlpack.org/examples/housing.csv" ] }, { diff --git a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb index 1a34fcde..265cfa9d 100644 --- a/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb +++ b/california_housing_price_prediction_with_linear_regression/california_housing_price_prediction_with_lr_cpp.ipynb @@ -131,7 +131,7 @@ "metadata": {}, "outputs": [], "source": [ - "!wget -q https://matrix.org/_matrix/media/r0/download/matrix.org/WvrgbgzkyIMbvkxLkKKNyMrO/housing.csv" + "!wget -q https://datasets.mlpack.org/examples/housing.csv" ] }, { From 8ff8b7535e954caddf2c5daccb452c5997b26dcb Mon Sep 17 00:00:00 2001 From: Roshan Swain Date: Tue, 13 Jul 2021 18:14:48 +0530 Subject: [PATCH 69/69] added pycache to gitignore --- .gitignore | 1 + 1 file changed, 1 insertion(+) diff --git a/.gitignore b/.gitignore index 86308f8c..61b9dd79 100644 --- a/.gitignore +++ b/.gitignore @@ -11,3 +11,4 @@ cmake-build-* *.a *.so data +utils/__pycache__ \ No newline at end of file