diff --git a/HISTORY.md b/HISTORY.md index 4813230f7..16b720f94 100644 --- a/HISTORY.md +++ b/HISTORY.md @@ -3,6 +3,9 @@ * Make a few tests more robust ([#228](https://github.com/mlpack/ensmallen/pull/228)). + * Add Nelder-Mead optimizer + ([#231](https://github.com/mlpack/ensmallen/pull/231)). + ### ensmallen 2.14.2: "No Direction Home" ###### 2020-08-31 * Fix implementation of fonesca fleming problem function f1 and f2 diff --git a/doc/optimizers.md b/doc/optimizers.md index a99151421..0b874e386 100644 --- a/doc/optimizers.md +++ b/doc/optimizers.md @@ -1246,7 +1246,7 @@ can be paired with the `Lookahead` optimizer. | `BaseOptimizerType` | **`baseOptimizer`** | Optimizer for the forward step. | Adam | | `double` | **`stepSize`** | Step size for each iteration. | `0.5` | | `size_t` | **`k`** | The synchronization period. | `5` | -| `size_t` | **`max_iterations`** | Maximum number of iterations allowed (0 means no limit). | `100000` | +| `size_t` | **`maxIterations`** | Maximum number of iterations allowed (0 means no limit). | `100000` | | `double` | **`tolerance`** | Maximum absolute tolerance to terminate algorithm. | `1e-5` | | `DecayPolicyType` | **`decayPolicy`** | Instantiated decay policy used to adjust the step size. | `DecayPolicyType()` | | `bool` | **`exactObjective`** | Calculate the exact objective (Default: estimate the final objective obtained on the last pass over the data). | `false` | @@ -1278,6 +1278,61 @@ optimizer.Optimize(f, coordinates); * [Lookahead Optimizer: k steps forward, 1 step back](https://arxiv.org/abs/1907.08610) * [Differentiable separable functions](#differentiable-separable-functions) +## Nelder-Mead + +*An optimizer for [arbitrary functions](#arbitrary-functions).* + +The Nelder-Mead (NM) method (also called downhill simplex method is a heuristic +(search method for minimizing an objective function given in an N-dimensional +space. The key concept of the method is the simplex, an N dimensional polytope +that is a convex hull of a set of N + 1 linearly independent points. The method +is an iterative process which transforms an initial simplex iteratively into a +different one following a path in the space along which the function values are +progressively reduced. + +#### Constructors + + * `NelderMead()` + * `NelderMead(`_`maxIterations, tolerance, simplexer`_`)` + * `NelderMead(`_`alpha, beta, gamma, delta, maxIterations, tolerance, simplexer`_`)` + +#### Attributes + +| **type** | **name** | **description** | **default** | +|----------|----------|-----------------|-------------| +| `double` | **`alpha`** | The reflection parameter. | `` | +| `double` | **`beta`** | The expansion parameter. | `` | +| `double` | **`gamma`** | The contraction parameter. | `` | +| `double` | **`delta`** | The shrink step parameter. | `` | +| `size_t` | **`maxIterations`** | Maximum number of iterations allowed (0 means no limit). | `100000` | +| `double` | **`tolerance`** | The final value of the objective function for termination. If set to negative value, tolerance is not considered. | `1e-15` | +| `SimplexerType` | **`simplexer`** | The simplex policy used to construct the initial simplex. | `AffineSimplexer` | + +Attributes of the optimizer may also be changed via the member methods +`Alpha()`, `Beta()`, `Gamma()`, `Delta()`, `MaxIterations()`, +`Tolerance()` and `Simplexer()`. + +#### Examples: + +<details open> +<summary>Click to collapse/expand example code. +</summary> + +```c++ +RosenbrockFunction f; +arma::mat coordinates = f.GetInitialPoint(); + +NelderMead optimizer; +optimizer.Optimize(f, coordinates); +``` + +</details> + +#### See also: + + * [Nelder-Mead in Wikipedia](https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method) + * [Arbitrary functions](#arbitrary-functions) + ## LRSDP (low-rank SDP solver) *An optimizer for [semidefinite programs](#semidefinite-programs).* diff --git a/include/ensmallen.hpp b/include/ensmallen.hpp index 018e0f2a7..cfdfd1eb3 100644 --- a/include/ensmallen.hpp +++ b/include/ensmallen.hpp @@ -103,6 +103,7 @@ #include "ensmallen_bits/parallel_sgd/parallel_sgd.hpp" #include "ensmallen_bits/pso/pso.hpp" #include "ensmallen_bits/rmsprop/rmsprop.hpp" +#include "ensmallen_bits/nelder_mead/nelder_mead.hpp" #include "ensmallen_bits/sa/sa.hpp" #include "ensmallen_bits/sarah/sarah.hpp" diff --git a/include/ensmallen_bits/nelder_mead/affine_simplexer.hpp b/include/ensmallen_bits/nelder_mead/affine_simplexer.hpp new file mode 100644 index 000000000..a53b247c2 --- /dev/null +++ b/include/ensmallen_bits/nelder_mead/affine_simplexer.hpp @@ -0,0 +1,60 @@ +/** + * @file affine_simplexer.hpp + * @author Marcus Edel + * + * Definition of a simple affine simplex to ensure that the representation of + * points in the affine hull is unique. + * + * ensmallen is free software; you may redistribute it and/or modify it under + * the terms of the 3-clause BSD license. You should have received a copy of + * the 3-clause BSD license along with ensmallen. If not, see + * http://www.opensource.org/licenses/BSD-3-Clause for more information. + */ +#ifndef ENSMALLEN_NELDER_MEAD_AFFINE_SIMPLEXER_HPP +#define ENSMALLEN_NELDER_MEAD_AFFINE_SIMPLEXER_HPP + +namespace ens { + +/* + * Definition of the affine simplexer. + */ +class AffineSimplexer +{ + public: + /** + * Affine simplexer, a simplex is represented by an (n + 1)-dimensional vector + * of n-dimensional vectors. It is used together with the initial vector to + * create the initial simplex. To construct the ith vertex, the simplexer + * multiplies entry i in the initial vector with a constant. + * + * @param simplex Constructed simplex. + * @param iterate Intial starting point. + * @param function Function to optimize. + */ + template<typename FunctionType, typename MatType> + void Simplex(MatType& simplex, + const MatType& iterate, + FunctionType& /* function */) + { + // Convenience typedefs. + typedef typename MatType::elem_type ElemType; + + // Construct the initial simplex. + // Large initial simplex is used. + const ElemType scalingFactor = std::min(std::max( + arma::as_scalar(arma::max( + arma::abs(iterate))), (ElemType) 1.0), (ElemType) 10.0); + + simplex = arma::eye<MatType>(iterate.n_rows, iterate.n_rows + 1); + simplex.col(iterate.n_rows) = (1.0 - + std::sqrt((ElemType) (iterate.n_rows + 1))) / + (ElemType) iterate.n_rows * arma::ones<MatType>(iterate.n_rows, 1); + + simplex *= scalingFactor; + simplex.each_col() += iterate; + } +}; + +} // namespace ens + +#endif diff --git a/include/ensmallen_bits/nelder_mead/nelder_mead.hpp b/include/ensmallen_bits/nelder_mead/nelder_mead.hpp new file mode 100644 index 000000000..00dee1c87 --- /dev/null +++ b/include/ensmallen_bits/nelder_mead/nelder_mead.hpp @@ -0,0 +1,234 @@ +/** + * @file nelder_mead.hpp + * @author Marcus Edel + * + * Definition of an Nelder-Mead with adaptive parameters proposed by F. Gao and + * L. Han in "Implementing the Nelder-Mead simplex algorithm with adaptive + * parameters". + * + * ensmallen is free software; you may redistribute it and/or modify it under + * the terms of the 3-clause BSD license. You should have received a copy of + * the 3-clause BSD license along with ensmallen. If not, see + * http://www.opensource.org/licenses/BSD-3-Clause for more information. + */ +#ifndef ENSMALLEN_NELDER_MEAD_HPP +#define ENSMALLEN_NELDER_MEAD_HPP + +#include "affine_simplexer.hpp" + +namespace ens { + +/** + * Nelder-Mead is a direct search method. It keeps track of the function value + * at a number of points in the search space and iteratively generates a + * sequence of simplices to approximate an optimal point. + * + * For more information, please refer to: + * + * @code + * @article{Nelder1965ASM, + * author = {J. Nelder and R. Mead}, + * title = {A Simplex Method for Function Minimization}, + * year = {1965}, + * journal = {Comput. J.}, + * volume = {7}, + * pages = {308-313} + * } + * @endcode + * + * @code + * @article{Fuchang2012, + * author = {Gao, Fuchang and Han, Lixing}, + * title = {Implementing the Nelder-Mead Simplex Algorithm with Adaptive + * Parameters}, + * year = {2012}, + * publisher = {Kluwer Academic Publishers}, + * volume = {51}, + * number = {1}, + * journal = {Comput. Optim. Appl.}, + * month = jan, + * pages = {259–277} + * } + * @endcode + * + * NelderMead can optimize arbitrary functions. For more details, see the + * documentation on function types included with this distribution or on the + * ensmallen website. + * + * @tparam SimplexerType Simplex policy used by Nelder Mead to construct the + * initial simplex. + */ +template<typename SimplexerType = AffineSimplexer> +class NelderMeadType +{ + public: + /** + * Construct the NelderMead optimizer with the default adaptive parameters + * scheme as used in "Implementing the Nelder-Mead simplex algorithm with + * adaptive parameters" by F. Gao and L. Han (2010). These are based on the + * dimensionality of the problem, and are given by + * + * alpha = 1 + * beta = 1 + 2 / n + * gamma = 0.75 - 0.5 / n + * delta = 1 - 1 / n + * + * where n is the dimensionality of the problem. + * + * The defaults here are not necessarily good for the given problem, so it is + * suggested that the values used be tailored to the task at hand. The + * maximum number of iterations refers to the maximum number of points that + * are processed (i.e., one iteration equals one point; one iteration does not + * equal one pass over the dataset). + * + * @param maxIterations Maximum number of iterations allowed (0 means no + * limit). + * @param tolerance Maximum absolute tolerance to terminate algorithm. + * @param simplexer The simplex policy used to construct the initial simplex. + */ + NelderMeadType(const size_t maxIterations = 100000, + const double tolerance = 1e-15, + const SimplexerType& simplexer = SimplexerType()); + /** + * Construct the NelderMead optimizer with the given parameters. The defaults + * here are not necessarily good for the given problem, so it is suggested + * that the values used be tailored to the task at hand. The maximum number + * of iterations refers to the maximum number of points that are processed + * (i.e., one iteration equals one point; one iteration does not equal one + * pass over the dataset). + * + * @param alpha The reflection parameter. + * @param beta The expansion parameter. + * @param gamma The contraction parameter. + * @param delta The shrink step parameter. + * @param maxIterations Maximum number of iterations allowed (0 means no + * limit). + * @param tolerance Maximum absolute tolerance to terminate algorithm. + * @param simplexer The simplex policy used to construct the initial simplex. + */ + NelderMeadType(const double alpha, + const double beta, + const double gamma, + const double delta, + const size_t maxIterations = 100000, + const double tolerance = 1e-15, + const SimplexerType& simplexer = SimplexerType()); + + /** + * Optimize the given function using NelderMead. The given starting point will + * be modified to store the finishing point of the algorithm, and the final + * objective value is returned. + * + * @tparam ArbitraryFunctionType Type of the function to be optimized. + * @tparam MatType Type of matrix to optimize. + * @tparam CallbackTypes Types of callback functions. + * @param function Function to optimize. + * @param iterate Starting point (will be modified). + * @param callbacks Callback functions. + * @return Objective value of the final point. + */ + template<typename ArbitraryFunctionType, + typename MatType, + typename... CallbackTypes> + typename MatType::elem_type Optimize(ArbitraryFunctionType& function, + MatType& iterate, + CallbackTypes&&... callbacks); + + //! Get the reflection parameter. + double Alpha() const { return alpha; } + //! Modify the reflection parameter. + double& Alpha() { return alpha; } + + //! Get the expansion parameter. + double Beta() const { return beta; } + //! Modify the expansion parameter. + double& Beta() { return beta; } + + //! Get the contraction parameter. + double Gamma() const { return gamma; } + //! Modify the contraction parameter. + double& Gamma() { return gamma; } + + //! Get the shrink step parameter. + double Delta() const { return delta; } + //! Modify the shrink step parameter. + double& Delta() { return delta; } + + //! Get the maximum number of iterations (0 indicates no limit). + size_t MaxIterations() const { return maxIterations; } + //! Modify the maximum number of iterations (0 indicates no limit). + size_t& MaxIterations() { return maxIterations; } + + //! Get the tolerance for termination. + double Tolerance() const { return tolerance; } + //! Modify the tolerance for termination. + double& Tolerance() { return tolerance; } + + //! Get the simplexer policy. + const SimplexerType& Simplexer() const { return simplexer; } + //! Modify the simplexer policy. + SimplexerType& Simplexer() { return simplexer; } + + private: + /** + * Helper function to shift the given order based on the given function + * objective. + * + * @param order The current order of the function objectives. + * @param fx The current function values. + * @param value Function value to be inserted into the current order. + * @return Position of the given objective in the given order. + */ + size_t ShiftOrder(arma::uvec& order, + const arma::rowvec& fx, + const double value) + { + // Figure out at which index we have to put the new value. + size_t i = 0; + for (; i < fx.n_elem; ++i) + if (fx(order(i)) > value) break; + + // Shift every value after 'i' by one to the right. + const size_t tmp = order(fx.n_elem - 1); + for (size_t d = fx.n_elem - 1; d > i; --d) + order(d) = order(d - 1); + order(i) = tmp; + + return i; + } + + //! The reflection parameter. + double alpha; + + //! The expansion parameter. + double beta; + + //! The contraction parameter. + double gamma; + + //! The shrink step parameter. + double delta; + + //! The maximum number of allowed iterations. + size_t maxIterations; + + //! The tolerance for termination. + double tolerance; + + //! Locally stored simplexer. + SimplexerType simplexer; + + //! Whether to use the default adaptive parameters from the "Implementing the + //! Nelder-Mead simplex algorithmwith adaptive parameters" paper. + bool adaptiveDefault; +}; + +// Convenience typedef. +using NelderMead = NelderMeadType<AffineSimplexer>; + +} // namespace ens + +// Include implementation. +#include "nelder_mead_impl.hpp" + +#endif diff --git a/include/ensmallen_bits/nelder_mead/nelder_mead_impl.hpp b/include/ensmallen_bits/nelder_mead/nelder_mead_impl.hpp new file mode 100644 index 000000000..5f18d55fb --- /dev/null +++ b/include/ensmallen_bits/nelder_mead/nelder_mead_impl.hpp @@ -0,0 +1,241 @@ +/** + * @file nelder_mead_impl.hpp + * @author Marcus Edel + * + * Implementation of an incremental Quasi-Newton with local superlinear + * convergence rate as proposed by A. Mokhtari et al. in "IQN: An Incremental + * Quasi-Newton Method with Local Superlinear Convergence Rate". + * + * ensmallen is free software; you may redistribute it and/or modify it under + * the terms of the 3-clause BSD license. You should have received a copy of + * the 3-clause BSD license along with ensmallen. If not, see + * http://www.opensource.org/licenses/BSD-3-Clause for more information. + */ +#ifndef ENSMALLEN_NELDER_MEAD_IMPL_HPP +#define ENSMALLEN_NELDER_MEAD_IMPL_HPP + +// In case it hasn't been included yet. +#include "nelder_mead.hpp" + +#include <ensmallen_bits/function.hpp> + +namespace ens { + +template<typename SimplexerType> +inline NelderMeadType<SimplexerType>::NelderMeadType( + const size_t maxIterations, + const double tolerance, + const SimplexerType& simplexer) : + alpha(0), + beta(0), + gamma(0), + delta(0), + maxIterations(maxIterations), + tolerance(tolerance), + simplexer(simplexer), + adaptiveDefault(true) +{ /* Nothing to do. */ } + +template<typename SimplexerType> +inline NelderMeadType<SimplexerType>::NelderMeadType( + const double alpha, + const double beta, + const double gamma, + const double delta, + const size_t maxIterations, + const double tolerance, + const SimplexerType& simplexer) : + alpha(alpha), + beta(beta), + gamma(gamma), + delta(delta), + maxIterations(maxIterations), + tolerance(tolerance), + simplexer(simplexer), + adaptiveDefault(false) +{ /* Nothing to do. */ } + +//! Optimize the function. +template<typename SimplexerType> +template<typename ArbitraryFunctionType, + typename MatType, + typename... CallbackTypes> +typename MatType::elem_type NelderMeadType<SimplexerType>::Optimize( + ArbitraryFunctionType& function, + MatType& iterate, + CallbackTypes&&... callbacks) +{ + // Convenience typedefs. + typedef typename MatType::elem_type ElemType; + typedef typename MatTypeTraits<MatType>::BaseMatType BaseMatType; + + // Make sure that we have the methods that we need. Long name... + traits::CheckArbitraryFunctionTypeAPI<ArbitraryFunctionType, + BaseMatType>(); + RequireDenseFloatingPointType<BaseMatType>(); + + // Controls early termination of the optimization process. + bool terminate = false; + + // Controls the shrink step. + bool shrink = false; + + // Problem dimensionality. + const size_t dim = iterate.n_rows; + + // Use default adaptive parameters scheme as used in "Implementing the + // Nelder-Mead simplex algorithm with adaptive parameters" by F. Gao and L. + // Han (2010). + if (adaptiveDefault) + { + alpha = 1; + beta = 1.0 + 2.0 / (double) dim; + gamma = 0.75 - 0.5 / (double) dim; + delta = 1.0 - 1.0 / (double) dim; + } + + // Construct the initial simplex. + MatType simplex; + simplexer.Simplex(simplex, iterate, function); + + arma::rowvec fx(dim + 1); + for (size_t i = 0; i < dim + 1; ++i) + { + fx(i) = function.Evaluate(simplex.col(i)); + Callback::Evaluate(*this, function, simplex.col(i), fx(i), callbacks...); + } + + // Get the indices that correspond to the ordering of the function values + // at the vertices. order(0) is the index in the simplex of the vertex + // with the lowest function value, and order(dim) is the index in the + // simplex of the vertex with the highest function value. + arma::uvec order = arma::sort_index(fx); + + terminate |= Callback::BeginOptimization(*this, function, iterate, + callbacks...); + for (size_t i = 1; i != maxIterations && !terminate; ++i) + { + const MatType M = arma::mean(simplex.cols(order.subvec(0, dim - 1)), 1); + const MatType xref = (1.0 + alpha) * M - alpha * simplex.col(order(dim)); + const ElemType fref = function.Evaluate(xref); + Callback::Evaluate(*this, function, xref, fref, callbacks...); + + if (fref < fx(order(0))) + { + // Compute expansion. + const MatType xexp = (1.0 + alpha * beta) * M - alpha * beta * + simplex.col(order(dim)); + const ElemType fexp = function.Evaluate(xexp); + Callback::Evaluate(*this, function, xexp, fexp, callbacks...); + + // Shift values by one to the right and swap the last with the first. + const size_t fLowest = order(dim); + for (size_t d = dim; d > 0; --d) + order(d) = order(d - 1); + order(0) = fLowest; + + if (fexp < fref) + { + simplex.col(order(0)) = xexp; + fx(order(0)) = fexp; + } + else + { + simplex.col(order(0)) = xref; + fx(order(0)) = fref; + } + } + else if (fref < fx(order(dim - 1))) + { + // Accept reflection point. + const size_t s = ShiftOrder(order, fx, fref); + simplex.col(order(s)) = xref; + fx(order(s)) = fref; + } + else + { + if (fref < fx(order(dim))) + { + // Outside contraction. + const MatType xoc = (1.0 + alpha * gamma) * M - alpha * gamma * + simplex.col(order(dim)); + const ElemType foc = function.Evaluate(xoc); + Callback::Evaluate(*this, function, xoc, foc, callbacks...); + + if (foc <= fref) + { + const size_t s = ShiftOrder(order, fx, fref); + simplex.col(order(s)) = xoc; + fx(order(s)) = foc; + } + else + { + shrink = true; + } + } + else + { + // Inside contraction. + const MatType xic = (1.0 - gamma) * M + gamma * + simplex.col(order(dim)); + const ElemType fic = function.Evaluate(xic); + Callback::Evaluate(*this, function, xic, fic, callbacks...); + + if (fic < fx(order(dim))) + { + const size_t s = ShiftOrder(order, fx, fic); + simplex.col(order(s)) = xic; + fx(order(s)) = fic; + } + else + { + shrink = true; + } + } + } + + if (shrink) + { + for (size_t d = 1; d < dim; ++d) + { + simplex.col(order(d)) = simplex.col(order(0)) + delta * + (simplex.col(order(d)) - simplex.col(order(0))); + fx(order(d)) = function.Evaluate(simplex.col(order(d))); + + Callback::Evaluate(*this, function, simplex.col(order(d)), + fx(order(d)), callbacks...); + } + + // Sorting can be slow, however there is overwhelming evidence that shrink + // transformations almost never happen in practice. See "Efficient + // Implementation of the Nelder–Mead Search Algorithm" by S. Singer and S. + // Singer. + order = arma::sort_index(fx); + fx = fx.cols(order); + simplex = simplex.cols(order); + + shrink = false; + } + + // Check for termination criteria. + if (std::abs(fx(order(dim)) - fx(order(0))) < tolerance) + { + Info << "NelderMead: minimized within tolerance " << tolerance << "; " + << "terminating optimization." << std::endl; + break; + } + } + + // Set the best candidate. + iterate = simplex.col(0); + + const ElemType objective = function.Evaluate(iterate); + Callback::Evaluate(*this, function, iterate, objective, callbacks...); + + Callback::EndOptimization(*this, function, iterate, callbacks...); + return objective; +} + +} // namespace ens + +#endif diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 6b55d4a4a..5770cb645 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -24,6 +24,7 @@ set(ENSMALLEN_TESTS_SOURCES lookahead_test.cpp lrsdp_test.cpp momentum_sgd_test.cpp + nelder_mead_test.cpp nesterov_momentum_sgd_test.cpp nsga2_test.cpp parallel_sgd_test.cpp @@ -59,4 +60,4 @@ add_custom_command(TARGET ensmallen_tests enable_testing() add_test(NAME ensmallen_tests COMMAND ensmallen_tests -WORKING_DIRECTORY ${CMAKE_BINARY_DIR}) \ No newline at end of file +WORKING_DIRECTORY ${CMAKE_BINARY_DIR}) diff --git a/tests/nelder_mead_test.cpp b/tests/nelder_mead_test.cpp new file mode 100644 index 000000000..643d8e691 --- /dev/null +++ b/tests/nelder_mead_test.cpp @@ -0,0 +1,87 @@ +/** + * @file nelder_mead_test.cpp + * @author Marcus Edel + * + * ensmallen is free software; you may redistribute it and/or modify it under + * the terms of the 3-clause BSD license. You should have received a copy of + * the 3-clause BSD license along with ensmallen. If not, see + * http://www.opensource.org/licenses/BSD-3-Clause for more information. + */ + +#include <ensmallen.hpp> +#include "catch.hpp" + +using namespace ens; +using namespace ens::test; + +/** + * Tests the Nelder-Mead optimizer using the Rosenbrock Function. + */ +TEST_CASE("NMRosenbrockFunctionTest", "[NelderMeadTest]") +{ + RosenbrockFunction f; + NelderMead nm(300, 1e-15); + + arma::mat coords = f.GetInitialPoint(); + nm.Optimize(f, coords); + + double finalValue = f.Evaluate(coords); + + REQUIRE(finalValue == Approx(0.0).margin(1e-5)); + REQUIRE(coords(0) == Approx(1.0).epsilon(1e-7)); + REQUIRE(coords(1) == Approx(1.0).epsilon(1e-7)); +} + +/** + * Test the Nelder-Mead optimizer using an arma::fmat with the Rosenbrock + * function. + */ +TEST_CASE("NMRosenbrockFunctionFloatTest", "[NelderMeadTest]") +{ + RosenbrockFunction f; + NelderMead nm(300, 1e-15); + + arma::fmat coords = f.GetInitialPoint<arma::fvec>(); + nm.Optimize(f, coords); + + float finalValue = f.Evaluate(coords); + + REQUIRE(finalValue == Approx(0.0f).margin(1e-3)); + REQUIRE(coords(0) == Approx(1.0f).epsilon(1e-4)); + REQUIRE(coords(1) == Approx(1.0f).epsilon(1e-4)); +} + +/** + * Tests the Nelder–Mead optimizer using the Colville Function. + */ +TEST_CASE("NMColvilleFunctionTest", "[NelderMeadTest]") +{ + ColvilleFunction f; + NelderMead nm(500, 1e-15); + + arma::mat coords = f.GetInitialPoint(); + nm.Optimize(f, coords); + + REQUIRE(coords(0) == Approx(1.0).epsilon(1e-7)); + REQUIRE(coords(1) == Approx(1.0).epsilon(1e-7)); +} + +/** + * Tests the Nelder–Mead optimizer using the Wood Function. + */ +TEST_CASE("NMWoodFunctionTest", "[NelderMeadTest]") +{ + WoodFunction f; + NelderMead nm(800, 1e-15); + + arma::mat coords = f.GetInitialPoint(); + nm.Optimize(f, coords); + + double finalValue = f.Evaluate(coords); + + REQUIRE(finalValue == Approx(0.0).margin(1e-5)); + REQUIRE(coords(0) == Approx(1.0).epsilon(1e-7)); + REQUIRE(coords(1) == Approx(1.0).epsilon(1e-7)); + REQUIRE(coords(2) == Approx(1.0).epsilon(1e-7)); + REQUIRE(coords(3) == Approx(1.0).epsilon(1e-7)); +}