-
Notifications
You must be signed in to change notification settings - Fork 55
/
train.py
315 lines (285 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import argparse
import collections
import json
import os
import pickle
import re
import shutil
from pathlib import Path
import torch
from cloudpathlib import CloudPath
from training.distributed import world_info_from_env
from training.main import main
from scale_configs import available_scales, get_scale_config
def prepare_filename(filename):
filename = str(filename)
if filename.startswith("s3://"):
return f"pipe:aws s3 cp {filename} -"
return filename
def split_filename(pattern, filename):
filename = str(filename)
pattern_match = pattern.search(filename)
pos = pattern_match.start()
return filename[:pos], filename[pos:]
def get_input_shards(data_dir, weights):
# Handle multiple directories
if "::" in str(data_dir):
split_data_dir = str(data_dir).split("::")
data_dirs = [path_or_cloudpath(subdir) for subdir in split_data_dir]
if weights is None:
split_weights = [None for _ in split_data_dir]
else:
split_weights = weights.split("::")
assert len(split_weights) == len(split_data_dir)
input_strs_and_weights = [
get_input_shards(subdir, weight)
for (subdir, weight) in zip(data_dirs, split_weights)
]
input_strs, input_weights = zip(*input_strs_and_weights)
input_strs = "::".join(input_strs)
if weights is not None:
weights = "::".join(input_weights)
return input_strs, weights
# Handle raw shards
if data_dir.suffix == ".tar":
return prepare_filename(data_dir), weights
# Handle folders
files_or_subdirs = list(data_dir.iterdir())
data_str_components = []
prefix_map = collections.defaultdict(list)
pattern = re.compile("\d+$") # Sequence of digits at the end of the string
count_tars = 0
for file_or_subdir in files_or_subdirs:
if file_or_subdir.suffix == ".tar":
shard = file_or_subdir.with_suffix("")
prefix, suffix = split_filename(pattern, shard)
prefix_map[prefix].append(suffix)
count_tars += 1
elif file_or_subdir.is_dir():
# If the folder is generated by the resharder, the metadata file contains how many shards there are.
metadata_file = file_or_subdir / "meta.json"
if metadata_file.exists():
with open(metadata_file, "r") as f:
metadata = json.load(f)
shard_count = metadata["output_shard_count"]
shard_format = metadata["output_shard_format"]
first_shard = shard_format.format(0).replace(".tar", "")
last_shard = shard_format.format(shard_count - 1).replace(".tar", "")
filename = f"{{{first_shard}..{last_shard}}}.tar"
subfolder_str = prepare_filename(file_or_subdir / filename)
data_str_components.append(subfolder_str)
else:
sub_data_strs, _ = get_input_shards(file_or_subdir, weights)
data_str_components.extend(sub_data_strs.split("::"))
for prefix in sorted(list(prefix_map.keys())):
last_tar = max([int(suffix) for suffix in prefix_map[prefix]])
number_of_zeros = len(prefix_map[prefix][0])
filename = f"{{{0:0{number_of_zeros}d}..{last_tar:0{number_of_zeros}d}}}.tar"
filename = prepare_filename(prefix + filename)
data_str_components.append(filename)
data_str = "::".join(data_str_components)
if weights is not None:
weights = "::".join([weights for _ in data_str_components])
return data_str, weights
def path_or_cloudpath(s):
if re.match(r"^\w+://", s):
return CloudPath(s)
return Path(s)
def save_training_artifacts(args, config, checkpoint):
training_artifacts = {
"scale": args.scale,
"checkpoint": checkpoint,
"scale_config": config,
"data_dir": args.data_dir,
}
artifacts_fname = checkpoint.parent.parent / "info.pkl"
pickle.dump(training_artifacts, open(artifacts_fname, "wb"))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--scale",
type=str,
required=True,
choices=available_scales(),
help="Competition scale.",
)
parser.add_argument(
"--data_dir",
type=path_or_cloudpath,
required=True,
help='Path to directory where the data is stored. Multiple paths can be used, separated by "::".',
)
parser.add_argument(
"--data_weights",
type=str,
default=None,
help=(
"When using multiple data sources with webdataset and sampling with replacement, which weight to use for sampling the different data sources. "
"Similar to --data-dir, this should be a string with as many numbers as there are data sources, separated by `::` (e.g. 1::2::0.5) "
"By default, datapoints are sampled uniformly regardless of the dataset sizes."
),
)
parser.add_argument(
"--output_dir",
type=path_or_cloudpath,
required=True,
help="Path to directory where outputs will be stored.",
)
parser.add_argument(
"--exp_name", type=str, default=None, help="Name of the experiment for logging."
)
parser.add_argument(
"--use_cached_shards",
help="If true, re-use the re-sharded data if possible.",
action="store_true",
default=False,
)
parser.add_argument(
"--wandb_project_name",
type=str,
default="datanet",
help="Name of the project if logging with wandb.",
)
parser.add_argument(
"--workers", type=int, default=4, help="Number of workers for open_clip."
)
parser.add_argument(
"--precision",
type=str,
choices=["amp", "amp_bf16", "amp_bfloat16", "bf16", "fp16", "fp32"],
default="amp",
help="Floating point precision.",
)
parser.add_argument(
"--num_checkpoints",
type=int,
default=5,
help="Number of times we save checkpoints during training.",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed.")
parser.add_argument(
"--report_to_wandb",
default=False,
action="store_true",
help="If True, report to wandb.",
)
parser.add_argument(
"--accum_freq",
type=int,
default=1,
help="Update the model every --acum-freq steps.",
)
parser.add_argument(
"--log_every_n_steps",
type=int,
default=100,
help="Log every n steps to tensorboard/console/wandb.",
)
parser.add_argument(
"--resume",
default="latest",
type=str,
help="Path to checkpoint to resume from (default: latest checkpoint in the training directory).",
)
parser.add_argument(
"--imagenet_val",
type=str,
default=None,
help="Optional path to imagenet val set for conducting zero shot evaluation.",
)
parser.add_argument(
"--blur_field",
type=str,
default=None,
help="Name of the field in the webdataset json files with bounding boxes to blur.",
)
parser.add_argument("--grad_clip_norm", type=float, default=None)
parser.add_argument("--save_frequency", type=int, default=0)
args = parser.parse_args()
data_dir = args.data_dir
_, rank, world_size = world_info_from_env()
if rank == 0:
print("Running training on scale", args.scale)
print(f"World size is {world_size}.")
config = get_scale_config(args.scale)
learning_rate = config["learning_rate"]
global_batch_size = config["batch_size"]
warmup = config["warmup"]
model = config["model"]
beta2 = config["beta2"]
train_num_samples = config["train_num_samples"]
train_data, weights = get_input_shards(data_dir, args.data_weights)
exp_name = args.exp_name if args.exp_name else f"{args.scale}_scale"
log_dir = args.output_dir
per_gpu_batch_size = global_batch_size // (world_size * args.accum_freq)
main_args = [
"--save-frequency",
f"{args.save_frequency}",
"--ddp-static-graph",
"--local-loss",
"--gather-with-grad",
"--grad-checkpointing",
"--train-data",
f"{train_data}",
"--train-num-samples",
f"{train_num_samples // args.num_checkpoints}",
"--warmup",
f"{warmup}",
"--dataset-type",
"webdataset",
"--precision",
f"{args.precision}",
"--workers",
f"{args.workers}",
"--model",
f"{model}",
"--batch-size",
f"{per_gpu_batch_size}",
"--epochs",
f"{args.num_checkpoints}",
"--lr",
f"{learning_rate}",
"--logs",
f"{log_dir}",
"--name",
f"{exp_name}",
"--seed",
f"{args.seed}",
"--accum-freq",
f"{args.accum_freq}",
"--log-every-n-steps",
f"{args.log_every_n_steps}",
"--save-most-recent",
"--resume",
f"{args.resume}",
]
main_args.append("--dataset-resampled")
if args.report_to_wandb:
main_args.extend(
[
"--report-to",
"wandb",
"--wandb-project-name",
f"{args.wandb_project_name}",
]
)
if args.imagenet_val is not None:
main_args.extend(["--imagenet-val", args.imagenet_val])
if args.blur_field is not None:
main_args.extend(["--blur-field", args.blur_field])
if beta2 is not None:
main_args.extend(["--beta2", f"{beta2}"])
if weights is not None:
main_args.extend(["--train-data-upsampling-factors", weights])
if args.grad_clip_norm is not None:
main_args.extend(["--grad-clip-norm", f"{args.grad_clip_norm}"])
success = main(main_args)
if rank == 0:
if success == -1:
print("Error running training. Exiting.")
final_checkpoint = log_dir / exp_name / "checkpoints" / f"epoch_latest.pt"
assert (
final_checkpoint.exists()
), f"Did not find the checkpoint at {final_checkpoint}"
save_training_artifacts(args, config, final_checkpoint)
print("Done training.")