diff --git a/image_segmentation/pytorch/mlcube/README.md b/image_segmentation/pytorch/mlcube/README.md new file mode 100644 index 000000000..ab483036a --- /dev/null +++ b/image_segmentation/pytorch/mlcube/README.md @@ -0,0 +1,56 @@ +# MLCube for 3D Unet + +MLCube™ GitHub [repository](https://github.com/mlcommons/mlcube). MLCube™ [wiki](https://mlcommons.github.io/mlcube/). + +## Project setup + +An important requirement is that you must have Docker installed. + +```bash +# Create Python environment and install MLCube Docker runner +virtualenv -p python3 ./env && source ./env/bin/activate && pip install mlcube-docker +# Fetch the implementation from GitHub +git clone https://github.com/mlcommons/training && cd ./training/image_segmentation/pytorch/mlcube +``` + +Inside the mlcube directory run the following command to check implemented tasks. + +```shell +mlcube describe +``` + +### MLCube tasks + +Download dataset. + +```shell +mlcube run --task=download_data -Pdocker.build_strategy=always +``` + +Process dataset. + +```shell +mlcube run --task=process_data -Pdocker.build_strategy=always +``` + +Train SSD. + +```shell +mlcube run --task=train -Pdocker.build_strategy=always +``` + +### Execute the complete pipeline + +You can execute the complete pipeline with one single command. + +```shell +mlcube run --task=download_data,process_data,train -Pdocker.build_strategy=always +``` + +## Run a quick demo + +You can run a quick demo that first downloads a tiny dataset and then executes a short training workload. + +```shell +mlcube run --task=download_demo,demo -Pdocker.build_strategy=always +```