-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_neuralppo.py
443 lines (383 loc) · 18.4 KB
/
train_neuralppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import os
import random
import time
from dataclasses import dataclass
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import tyro
from torch.utils.tensorboard import SummaryWriter
# added
from agents.blender_agent import NsfrActorCritic
from cleanrl.cleanrl.ppo_atari import AgentListEnvs
from blendrl.env_vectorized import VectorizedNudgeBaseEnv
from nudge.utils import save_hyperparams
import os
import sys
import time
from pathlib import Path
import pickle
import random
import numpy as np
from rtpt import RTPT
from nudge.utils import load_model_train
# Log in to your W&B account
import wandb
OUT_PATH = Path("out_neuralppo/")
IN_PATH = Path("in/")
torch.set_num_threads(1)
@dataclass
class Args:
exp_name: str = os.path.basename(__file__)[: -len(".py")]
"""the name of this experiment"""
seed: int = 0
"""seed of the experiment"""
torch_deterministic: bool = True
"""if toggled, `torch.backends.cudnn.deterministic=False`"""
cuda: bool = True
"""if toggled, cuda will be enabled by default"""
track: bool = False
"""if toggled, this experiment will be tracked with Weights and Biases"""
wandb_project_name: str = "NeuralPPO"
"""the wandb's project name"""
wandb_entity: str = None
"""the entity (team) of wandb's project"""
capture_video: bool = False
"""whether to capture videos of the agent performances (check out `videos` folder)"""
# Algorithm specific arguments
env_id: str = "Seaquest-v4"
"""the id of the environment"""
total_timesteps: int = 60000000
"""total timesteps of the experiments"""
num_envs: int = 20
"""the number of parallel game environments"""
num_steps: int = 128
"""the number of steps to run in each environment per policy rollout"""
anneal_lr: bool = True
"""Toggle learning rate annealing for policy and value networks"""
gamma: float = 0.99
"""the discount factor gamma"""
gae_lambda: float = 0.95
"""the lambda for the general advantage estimation"""
num_minibatches: int = 4
"""the number of mini-batches"""
update_epochs: int = 4
"""the K epochs to update the policy"""
norm_adv: bool = True
"""Toggles advantages normalization"""
clip_coef: float = 0.1
"""the surrogate clipping coefficient"""
clip_vloss: bool = True
"""Toggles whether or not to use a clipped loss for the value function, as per the paper."""
ent_coef: float = 0.01
"""coefficient of the entropy"""
vf_coef: float = 0.5
"""coefficient of the value function"""
max_grad_norm: float = 0.5
"""the maximum norm for the gradient clipping"""
target_kl: float = None
"""the target KL divergence threshold"""
# to be filled in runtime
batch_size: int = 0
"""the batch size (computed in runtime)"""
minibatch_size: int = 0
"""the mini-batch size (computed in runtime)"""
num_iterations: int = 0
"""the number of iterations (computed in runtime)"""
# added
env_name: str = "seaquest"
"""the name of the environment"""
algorithm: str = "blender"
"""the algorithm used in the agent"""
blender_mode: str = "logic"
"""the mode for the blend"""
blend_function: str = "softmax"
"""the function to blend the neural and logic agents: softmax or gumbel_softmax"""
actor_mode: str = "hybrid"
"""the mode for the agent"""
rules: str = "default"
"""the ruleset used in the agent"""
save_steps: int = 5000000
"""the number of steps to save models"""
pretrained: bool = False
"""to use pretrained neural agent"""
joint_training: bool = False
"""jointly train neural actor and logic actor and blender"""
learning_rate: float = 2.5e-4
"""the learning rate of the optimizer (neural)"""
logic_learning_rate: float = 2.5e-4
"""the learning rate of the optimizer (logic)"""
blender_learning_rate: float = 2.5e-4
"""the learning rate of the optimizer (blender)"""
blend_ent_coef: float = 0.01
"""coefficient of the blend entropy"""
recover: bool = False
"""recover the training from the last checkpoint"""
reasoner: str = "nsfr"
"""the reasoner used in the agent; nsfr or neumann"""
def main():
args = tyro.cli(Args)
# rtpt = RTPT(name_initials='HS', experiment_name='NeuralPPO', max_iterations=args.total_timesteps)
rtpt = RTPT(name_initials='HS', experiment_name='NeuralPPO', max_iterations=int(args.total_timesteps / args.save_steps))
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.num_minibatches)
args.num_iterations = args.total_timesteps // args.batch_size
# model_description = "actor_{}_blend_{}".format(args.actor_mode, args.blend_function)
model_description = ""
learning_description = f"lr_{args.learning_rate}_gamma_{args.gamma}_numenvs_{args.num_envs}_steps_{args.num_steps}"
run_name = f"{args.env_name}_{model_description}_{learning_description}_{args.seed}"
if args.track:
wandb.init(
project=args.wandb_project_name + "_" + args.env_name,
entity=args.wandb_entity,
sync_tensorboard=True,
config=vars(args),
name = run_name,
monitor_gym=True,
save_code=True,
)
# for logging and model saving
experiment_dir = OUT_PATH / "runs" / run_name # / now.strftime("%y-%m-%d-%H-%M")
checkpoint_dir = experiment_dir / "checkpoints"
writer_base_dir = OUT_PATH / "tensorboard" # Path("tensorboard")
writer_dir = writer_base_dir / run_name
image_dir = experiment_dir / "images"
os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs(image_dir, exist_ok=True)
os.makedirs(writer_dir, exist_ok=True)
# os.makedirs("tensorboard", exist_ok=True)
# writer = SummaryWriter(f"runs/{run_name}")
writer = SummaryWriter(writer_dir)
writer.add_text(
"hyperparameters",
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
)
# TRY NOT TO MODIFY: seeding
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
envs = VectorizedNudgeBaseEnv.from_name(args.env_name, n_envs=args.num_envs, mode=args.algorithm, seed=args.seed)#$, **env_kwargs)
agent = AgentListEnvs(envs).to(device)
if args.recover:
# load saved agent with the most recent step
agent, most_recent_step = load_model_train(experiment_dir, n_envs=args.num_envs, device=device)
# load training logs
with open(checkpoint_dir / "training_log.pkl", "rb") as f:
episodic_returns, episodic_lengths, value_losses, policy_losses, entropies, blend_entropies = pickle.load(f)
else:
episodic_returns = []
episodic_lengths = []
value_losses = []
policy_losses = []
entropies = []
blend_entropies = []
# rewards actually used to train modes
episodic_game_rewards= torch.zeros((args.num_envs)).to(device)
# if args.track:
# wandb.watch([agent.logic_actor, agent.logic_critic, agent.visual_neural_actor, agent.blender]) #, log="all")
rtpt.start()
optimizer = optim.Adam(
[
{"params": agent.parameters(), "lr": args.learning_rate},
],
eps = 1e-5
)
# ALGO Logic: Storage setup
observation_space = (4, 84, 84)
# logic_observation_space = (84, 51, 4)
logic_observation_space = (envs.n_objects, 4)
# logic_observation_space = (84, 43, 4)
action_space = ()
obs = torch.zeros((args.num_steps, args.num_envs) + observation_space).to(device)
logic_obs = torch.zeros((args.num_steps, args.num_envs) + logic_observation_space).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + action_space).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
save_step_bar = 0 # args.save_steps
if args.recover:
global_step = most_recent_step
save_step_bar = most_recent_step
start_time = time.time()
next_logic_obs, next_obs = envs.reset()#(seed=seed)
# 1 env
next_logic_obs = next_logic_obs.to(device)
next_obs = torch.Tensor(next_obs).to(device)
next_done = torch.zeros(args.num_envs).to(device)
# # (1, 4, 84, 84)
# for i in range(4):
# image = wandb.Image(next_obs_array[0][0], caption=f"State at global_step={global_step}_{i}")
# wandb.log({"state_image": image})
for iteration in range(1, args.num_iterations + 1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (iteration - 1.0) / args.num_iterations
lrnow = frac * args.learning_rate
optimizer.param_groups[0]["lr"] = lrnow
for step in range(0, args.num_steps):
global_step += args.num_envs
obs[step] = next_obs
# print(logic_obs.shape)
# print(next_logic_obs.shape)
logic_obs[step] = next_logic_obs
dones[step] = next_done
# ALGO LOGIC: action logic
with torch.no_grad():
# next_obs: (1, 4, 84, 84)
# next_logic_obs: (1, 84, 51, 4)
action, logprob, _, value = agent.get_action_and_value(next_obs)
values[step] = value.flatten()
actions[step] = action
logprobs[step] = logprob
# TRY NOT TO MODIFY: execute the game and log data.
(next_logic_obs, next_obs), reward, terminations, truncations, infos = envs.step(action.cpu().numpy())
next_logic_obs = next_logic_obs.float()
terminations = np.array(terminations)
truncations = np.array(truncations)
next_done = np.logical_or(terminations, truncations)
rewards[step] = torch.tensor(reward).to(device).view(-1)
next_obs, next_logic_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(next_logic_obs).to(device), torch.Tensor(next_done).to(device)
episodic_game_rewards += torch.tensor(reward).to(device).view(-1)
# print("episodic game reward: ", episodic_game_rewards.detach().cpu().numpy())
# for r in reward:
# if r > 0.5:
# print("Reward:", reward)
# Plot image
# next_obs_array = next_obs.detach().cpu().numpy()
# max_rgb = np.max(next_obs_array)
# # (1, 4, 84, 84)
# for i in range(4):
# image = wandb.Image(next_obs_array[0][i], caption=f"State at global_step={global_step}_{i}")
# wandb.log({"state_image": image})
for k, info_ in enumerate(infos):
if "final_info" in info_: # or next_done.any():
info = info_['final_info']
# final_info = info['final_info']
if "episode" in info:
# print(f"global_step={global_step}, episodic_return={info['episode']['r']}, episodic_length={info['episode']['l']}")
print(f"env={k}, global_step={global_step}, episodic_game_reward={np.round(episodic_game_rewards[k].detach().cpu().numpy(), 2)}, episodic_return={info['episode']['r']}, episodic_length={info['episode']['l']}")
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
episodic_returns.append(info["episode"]["r"])
episodic_lengths.append(info["episode"]["l"])
# save the game reward and reset
writer.add_scalar("charts/episodic_game_reward", episodic_game_rewards[k], global_step)
episodic_game_rewards[k] = 0
print("Environment {} has been reset".format(k))
# Save the model
if global_step > save_step_bar:
rtpt.step()
checkpoint_path = checkpoint_dir / f"step_{save_step_bar}.pth"
torch.save(agent.state_dict(), checkpoint_path)
print("Agent has been saved to {}".format(checkpoint_path))
# save hyper params
save_hyperparams(args=args, #signature(main),
#local_scope=locals(),
save_path=experiment_dir / "config.yaml",
print_summary=True)
# save training data
training_log = (episodic_returns, episodic_lengths, value_losses, policy_losses, entropies, blend_entropies)
with open(checkpoint_dir / "training_log.pkl", "wb") as f:
pickle.dump(training_log, f)
# increase the updated bar
save_step_bar += args.save_steps
# bootstrap value if not done
with torch.no_grad():
next_value = agent.get_value(next_obs).reshape(1, -1)
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones[t + 1]
nextvalues = values[t + 1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
# flatten the batch
b_obs = obs.reshape((-1,) + observation_space)
b_logic_obs = logic_obs.reshape((-1,) + logic_observation_space)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,) + action_space)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
# Optimizing the policy and value network
b_inds = np.arange(args.batch_size)
clipfracs = []
for epoch in range(args.update_epochs):
np.random.shuffle(b_inds)
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
mb_inds = b_inds[start:end]
# print(b_obs[mb_inds])
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions.long()[mb_inds])
logratio = newlogprob - b_logprobs[mb_inds]
ratio = logratio.exp()
with torch.no_grad():
# calculate approx_kl http://joschu.net/blog/kl-approx.html
old_approx_kl = (-logratio).mean()
approx_kl = ((ratio - 1) - logratio).mean()
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
mb_advantages = b_advantages[mb_inds]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
# Value loss
newvalue = newvalue.view(-1)
if args.clip_vloss:
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
v_clipped = b_values[mb_inds] + torch.clamp(
newvalue - b_values[mb_inds],
-args.clip_coef,
args.clip_coef,
)
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
entropy_loss = entropy.mean()
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
if args.target_kl is not None and approx_kl > args.target_kl:
break
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
var_y = np.var(y_true)
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
writer.add_scalar("losses/explained_variance", explained_var, global_step)
# the first SPS after the recovery is not accurate
if int(global_step / (time.time() - start_time)) < 10000:
print("SPS:", int(global_step / (time.time() - start_time)))
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
# save training data
value_losses.append(v_loss.item())
policy_losses.append(pg_loss.item())
entropies.append(entropy_loss.item())
envs.close()
writer.close()
if __name__ == "__main__":
main()