-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils_ncb.py
313 lines (286 loc) · 10.9 KB
/
utils_ncb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch
import numpy as np
import random
import os
from sklearn import tree
from matplotlib import pyplot as plt
from datetime import datetime
import argparse
def save_args(args, writer):
# store args as txt file
with open(os.path.join(writer.log_dir, "args.txt"), "w") as f:
for arg in vars(args):
f.write(f"\n{arg}: {getattr(args, arg)}")
def set_seed(seed=42):
"""
Set random seeds for all possible random processes.
:param seed: int
:return:
"""
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def get_args():
args = Args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
set_seed(args.seed)
args.log_dir = os.path.join(*args.checkpoint_path.split(os.path.sep)[:-1])
# set seed
torch.manual_seed(args.seed)
return args
class Args:
seed = 0
batch_size = 1
num_workers = 0
image_size = 128
image_channels = 3
checkpoint_path = "logs/sysbind_orig_seed0/best_model.pt"
data_path = "/workspace/datasets_wolf/CLEVR-Easy-1-old/"
log_path = "logs/"
lr_dvae = 3e-4
lr_enc = 1e-4
lr_dec = 3e-4
lr_warmup_steps = 30000
lr_half_life = 250000
clip = 0.05
epochs = 1
num_iterations = 3
num_slots = 4
num_blocks = 8
cnn_hidden_size = 512
slot_size = 2048
mlp_hidden_size = 192
num_prototypes = 64
temp = 1.0
temp_step = False
vocab_size = 4096
num_decoder_layers = 8
num_decoder_heads = 4
d_model = 192
dropout = 0.1
tau_start = 1.0
tau_final = 0.1
tau_steps = 30000
use_dp = False
# arguments for clustering
cluster_type = "kmeans"
num_clusters = 12
num_show_per_cluster = 20
num_categories = 2
clf_label_type = "individual"
clf_type = "dt"
model_type = "bnr"
n_gen_samples = 500
name = datetime.now().strftime("%Y-%m-%d_%H:%M:%S")
def print_clf_tree(clf, idx, args):
# with open(f"{args.log_dir}/tree_structure.txt", "a") as f:
# n_nodes = clf.tree_.node_count
# children_left = clf.tree_.children_left
# children_right = clf.tree_.children_right
# feature = clf.tree_.feature
# threshold = clf.tree_.threshold
# values = clf.tree_.value
#
# node_depth = np.zeros(shape=n_nodes, dtype=np.int64)
# is_leaves = np.zeros(shape=n_nodes, dtype=bool)
# stack = [(0, 0)] # start with the root node id (0) and its depth (0)
# while len(stack) > 0:
# # `pop` ensures each node is only visited once
# node_id, depth = stack.pop()
# node_depth[node_id] = depth
#
# # If the left and right child of a node is not the same we have a split
# # node
# is_split_node = children_left[node_id] != children_right[node_id]
# # If a split node, append left and right children and depth to `stack`
# # so we can loop through them
# if is_split_node:
# stack.append((children_left[node_id], depth + 1))
# stack.append((children_right[node_id], depth + 1))
# else:
# is_leaves[node_id] = True
#
# print(
# "The binary tree structure has {n} nodes and has "
# "the following tree structure:\n".format(n=n_nodes),
# file=f
# )
# for i in range(n_nodes):
# if is_leaves[i]:
# print(
# "{space}node={node} is a leaf node with value={value}.".format(
# space=node_depth[i] * "\t", node=i, value=values[i]
# ),
# file=f
# )
# else:
# print(
# "{space}node={node} is a split node with value={value}: "
# "go to node {left} if X[:, {feature}] <= {threshold} "
# "else to node {right}.".format(
# space=node_depth[i] * "\t",
# node=i,
# left=children_left[i],
# feature=feature[i],
# threshold=threshold[i],
# right=children_right[i],
# value=values[i],
# ),
# file=f
# )
fsave = os.path.join(args.log_dir, f"tree_structure_{idx}.pdf")
print(f"Tree structure saved to {fsave}")
tree.plot_tree(clf)
plt.savefig(fsave)
def get_parser(device):
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--image_size", type=int, default=128)
parser.add_argument("--image_channels", type=int, default=3)
parser.add_argument("--data_path", default="data/*.png")
parser.add_argument(
"--perc_imgs",
type=float,
default=1.0,
help="The percent of images which the clf model should receive as training images "
"(between 0 and 1). The test set is always the full one (i.e. 1. is 100%)",
)
parser.add_argument("--log_path", default="../logs/")
parser.add_argument(
"--checkpoint_path", default="logs/sysbind_orig_seed0/best_model.pt"
)
parser.add_argument(
"--model_type",
choices=["ncb", "sysbind", "sysbind_hard", "sysbind_step"],
help="Specify whether model type. Either original sysbinder (sysbind) or neural concept binder (ncb).",
default="ncb",
)
parser.add_argument("--use_dp", default=False, action="store_true")
parser.add_argument(
"--name",
default=datetime.now().strftime("%Y-%m-%d_%H:%M:%S"),
help="Name to store the log file as",
)
# arguments for linear probing
parser.add_argument(
"--num_categories",
type=int,
default=3,
help="How many categories of attributes for classification?",
)
parser.add_argument(
"--clf_type",
default=None,
choices=["dt", "rg"],
help="Specify the linear classifier model. Either decision tree (dt) or ridge regression model "
"(rg)",
)
# Sysbinder arguments
parser.add_argument("--lr_dvae", type=float, default=3e-4)
parser.add_argument("--lr_enc", type=float, default=1e-4)
parser.add_argument("--lr_dec", type=float, default=3e-4)
parser.add_argument("--lr_warmup_steps", type=int, default=30000)
parser.add_argument("--lr_half_life", type=int, default=250000)
parser.add_argument("--clip", type=float, default=0.05)
parser.add_argument("--epochs", type=int, default=500)
parser.add_argument("--num_iterations", type=int, default=3)
parser.add_argument("--num_slots", type=int, default=4)
parser.add_argument("--num_blocks", type=int, default=8)
parser.add_argument("--cnn_hidden_size", type=int, default=512)
parser.add_argument("--slot_size", type=int, default=2048)
parser.add_argument("--mlp_hidden_size", type=int, default=192)
parser.add_argument("--num_prototypes", type=int, default=64)
parser.add_argument(
"--temp",
type=float,
default=1.0,
help="softmax temperature for prototype binding",
)
parser.add_argument("--temp_step", default=False, action="store_true")
parser.add_argument("--vocab_size", type=int, default=4096)
parser.add_argument("--num_decoder_layers", type=int, default=8)
parser.add_argument("--num_decoder_heads", type=int, default=4)
parser.add_argument("--d_model", type=int, default=192)
parser.add_argument("--dropout", type=float, default=0.1)
parser.add_argument("--tau_start", type=float, default=1.0)
parser.add_argument("--tau_final", type=float, default=0.1)
parser.add_argument("--tau_steps", type=int, default=30000)
parser.add_argument(
"--lr", type=float, default=1e-2, help="Outer learning rate of model"
)
parser.add_argument(
"--binarize",
default=False,
action="store_true",
help="Should the encodings of the sysbinder be binarized?",
)
parser.add_argument(
"--attention_codes",
default=False,
action="store_true",
help="Should the sysbinder prototype attention values be used as encodings?",
)
# R&B arguments
parser.add_argument(
"--retrieval_corpus_path",
default="logs/seed_0/block_concept_dicts.pkl",
)
parser.add_argument(
"--deletion_dict_path",
default=None,
help="Path to dictionary containing the deletion feedback, e.g., "
"logs/seed_0/revision/concepts_deletion_dict.pkl.pkl"
)
parser.add_argument(
"--merge_dict_path",
default=None,
help="Path to dictionary containing the merge feedback, e.g., "
"logs/seed_0/revision/concepts_merge_dict.pkl.pkl"
)
parser.add_argument(
"--retrieval_encs",
default="proto-exem",
choices=["proto", "exem", "proto-exem"],
help="Which type of encodings from the retrieval corpus should we use? Prototypes, exemplars or both jointly?"
)
parser.add_argument(
"--majority_vote",
default=False,
action="store_true",
help="If set then the hard binder takes the majority vote of the topk nearest encodings to "
"select the final cluster id label",
)
parser.add_argument(
"--topk",
type=int,
default=5,
help="If majority_vote is set to True, then hard binder selects the topk nearest encodings at "
"inference to identify the most likely cluster assignment",
)
parser.add_argument(
"--thresh_attn_obj_slots",
type=float,
default=0.98,
help="threshold value for determining the object slots from set of slots, "
"based on attention weight values (between 0. and 1.)(see neural_concept_binder for usage)."
"This should be reestimated for every dataset individually if thresh_count_obj_slots is "
"not set to 0.",
)
parser.add_argument(
"--thresh_count_obj_slots",
type=int,
default=-1,
help="threshold value (>= -1) for determining the number of object slots from a set of slots, "
"-1 indicates we wish to use all slots, i.e. no preselection is made"
"0 indicates we just take that slot with the maximum slot attention value,"
"1 indicates we take the maximum count of high attn weights (based on thresh_attn_ob_slots), "
"otherwise those slots that contain a number of values above thresh_attn_obj_slots are chosen"
"(see neural_concept_binder.py for usage)",
)
parser.add_argument("--device", default=device)
return parser