-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathsetup.py
163 lines (144 loc) · 6.65 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""Setup files for Google Refexp Toolbox
This script has the following functions:
1. Download Google Refexp Data
2. Download and compile coco toolbox
3. Download coco annotations
4. Download coco images
5. Align Google Refexp Data with coco annotations
"""
import os
import sys
import json
import numpy as np
import logging
import copy
logger = logging.getLogger('DatasetRefexpGoogle')
FORMAT = "[%(filename)s:line %(lineno)4s - %(funcName)20s() ] %(message)s"
logging.basicConfig(format=FORMAT)
logger.setLevel(logging.INFO)
## Step1. Download Google Refexp Data
while True:
ch = raw_input('Do you want to download Google Refexp Datset? (Y/N)')
if ch == 'Y':
os.system('mkdir google_refexp_dataset_release')
os.system('cd google_refexp_dataset_release && '
'wget https://storage.googleapis.com/refexp/google_refexp_dataset_release.zip')
os.system('cd google_refexp_dataset_release && '
'unzip google_refexp_dataset_release.zip')
os.system('cd google_refexp_dataset_release && '
'rm -f google_refexp_dataset_release.zip')
print 'Google Refexp Dataset is now available at ./google_refexp_dataset_release'
if ch == 'Y' or ch == 'N':
break
else:
print 'Please type Y or N'
## Step2. Download coco toolbox
while True:
ch = raw_input('Do you want to download and install MS COCO toolbox? (Y/N)')
if ch == 'Y':
os.system('cd ./external && git clone https://github.com/pdollar/coco.git')
os.system('cd ./external/coco/PythonAPI && python setup.py build_ext --inplace')
print 'COCO toolbox is installed at ./external/coco/'
if ch == 'Y' or ch == 'N':
break
else:
print 'Please type Y or N'
## Step3. Download coco annotations
while True:
ch = raw_input('Do you want to download MS COCO train2014 annotations? (Y/N)')
if ch == 'Y':
os.system('cd ./external/coco && wget http://msvocds.blob.core.windows.net/'
'annotations-1-0-3/instances_train-val2014.zip && '
'unzip instances_train-val2014.zip')
os.system('rm -f ./external/coco/instances_train-val2014.zip')
print ('COCO train2014 annotations are downloaded at '
'./external/annotations/instances_train2014.json')
if ch == 'Y' or ch == 'N':
break
else:
print 'Please type Y or N'
## Step4. Download coco images
while True:
ch = raw_input('Do you want to download MS COCO train2014 images? (Y/N)')
if ch == 'Y':
# Download images
os.system('mkdir ./external/coco/images')
os.system('cd ./external/coco/images && wget http://msvocds.blob.core.windows.net/coco2014/train2014.zip && unzip train2014.zip && rm -f train2014.zip')
print 'COCO train2014 images are downloaded at ./external/coco/images/train2014/'
if ch == 'Y' or ch == 'N':
break
else:
print 'Please type Y or N'
## Step5. Align our dataset with MS COCO
# Check whether MS COCO toolbox are installed
assert os.path.isdir('./external/coco/PythonAPI'), ('Please download MS COCO'
'first (run this script again and choose "Y" for MS COCO downloading)')
assert os.path.isdir('./external/coco/PythonAPI/build'), ('Please install'
'MS COCO python API first (go to ./external/coco/PythonAPI/ and run setup.py)')
assert os.path.isfile('./external/coco/annotations/instances_train2014.json'), ('Please'
'download MS COCO train2014 annotation first')
# Create a symbolic link from pycocotools to google_refexp_lib
pycoco_dir = os.path.join(os.getcwd(), 'external', 'coco', 'PythonAPI', 'pycocotools')
os.system('cd google_refexp_py_lib && ln -sf %s pycocotools' % pycoco_dir)
# Load MS COCO data
logger.info('Start to load MS COCO file')
sys.path.append('./external/coco/PythonAPI')
from pycocotools.coco import COCO
coco = COCO('./external/coco/annotations/instances_train2014.json')
# Align our dataset with MS COCO
logger.info('Start to align Google Refexp Data with ms coco annotations')
dataset_template = './google_refexp_dataset_release/google_refexp_%s_201511.json'
split_set_names = ('train', 'val')
for set_name in split_set_names:
logger.info('Start to align Google Refexp %s set with ms coco' % set_name)
dataset_path_o = dataset_template % set_name
dataset_path_n = dataset_path_o[:-5] + '_coco_aligned.json'
with open(dataset_path_o) as fin:
dataset = json.load(fin)
# The new dataset that concatenates coco and refexp.
coco_aligned_dataset = {}
# Maps image id to image object that concatenates the image info from both coco and refexp.
images = {}
# Maps annotation id to annotation object that concatenates the annotation info from both coco and refexp.
annotations = {}
# Maps refering expression id to refexp object that contains refering expression info from Google refexp.
refexps = {}
# Annotations from GoogleRefexp.
googleRefexp_annotations = dataset['annotations']
googleRefexp_refexps = dataset['refexps']
for ann in googleRefexp_annotations:
if images.get(ann['image_id'], None) is None:
# Take image object from coco.
img_coco = copy.deepcopy(coco.loadImgs(ann['image_id'])[0])
# Extend with the region candidates info from GoogleRefexp.
img_coco['region_candidates'] = ann['region_candidates']
# Change id to more specific image_id
img_coco['image_id'] = img_coco['id']
img_coco.pop('id', None)
# Add the new image object to the dictionary of image ids to image objects.
images[ann['image_id']] = img_coco
if annotations.get(ann['annotation_id'], None) is None:
# Take annotation from coco.
ann_coco = copy.deepcopy(coco.loadAnns(ann['annotation_id'])[0])
# Change id to more specific annotation_id
ann_coco['annotation_id'] = ann_coco['id']
ann_coco.pop('id', None)
# Extend annotation with the Google refering expression ids.
ann_coco['refexp_ids'] = ann['refexp_ids']
# Add the new annotation object to the dictionary of annotation ids to annotation objects.
annotations[ann['annotation_id']] = ann_coco
else:
anno_coco_o = annotations[ann['annotation_id']]
anno_coco_o['refexp_ids'] += ann['refexp_ids']
# Set key in refering expression dictionary to be the refering expression id.
for ref in googleRefexp_refexps:
refexps[ref['refexp_id']] = ref
# Set the images field to the dictionary of images created above.
coco_aligned_dataset['images'] = images
# Set the annotations field to the dictionary of annotations created above.
coco_aligned_dataset['annotations'] = annotations
# Set the refering expressions field in the dictionary of referering expressions created above.
coco_aligned_dataset['refexps'] = refexps
# Write data to file.
with open(dataset_path_n, 'w') as fout:
json.dump(coco_aligned_dataset, fout)