forked from datasciencecampus/pygrams
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pygrams.py
273 lines (217 loc) · 12.9 KB
/
pygrams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import argparse
import csv
import os
import sys
import time
from scripts.pipeline import Pipeline
from scripts.utils.argschecker import ArgsChecker
from scripts.utils.pygrams_exception import PygramsException
predictor_names = ['All', 'Naive', 'Linear', 'Quadratic', 'Cubic', 'ARIMA', 'Holt-Winters',
'LSTM-multiLA-stateful', 'LSTM-multiLA-stateless',
'LSTM-1LA-stateful', 'LSTM-1LA-stateless',
'LSTM-multiM-1LA-stateful', 'LSTM-multiM-1LA-stateless']
def get_args(command_line_arguments):
parser = argparse.ArgumentParser(description="extract popular n-grams (words or short phrases)"
" from a corpus of documents",
formatter_class=argparse.ArgumentDefaultsHelpFormatter, # include defaults in help
conflict_handler='resolve') # allows overridng of arguments
# suppressed:________________________________________
parser.add_argument("-tc", "--term-counts", default=False, action="store_true", help=argparse.SUPPRESS)
parser.add_argument("-ih", "--id_header", default=None, help=argparse.SUPPRESS)
parser.add_argument("-c", "--cite", default=False, action="store_true", help=argparse.SUPPRESS)
parser.add_argument("-pt", "--path", default='data', help=argparse.SUPPRESS)
parser.add_argument("-nmf", "--n_nmf_topics", type=int, default=0, help=argparse.SUPPRESS)
# help="NMF topic modelling - number of topics (e.g. 20 or 40)")
# Focus source and function
parser.add_argument("-f", "--focus", default=None, choices=['set', 'chi2', 'mutual'],
help=argparse.SUPPRESS)
parser.add_argument("-fs", "--focus_source", default='USPTO-random-1000.pkl.bz2', help=argparse.SUPPRESS)
parser.add_argument("-tn", "--table_name", default=os.path.join('outputs', 'table', 'table.xlsx'),
help=argparse.SUPPRESS)
parser.add_argument("-j", "--json", default=True, action="store_true",
help=argparse.SUPPRESS)
# tf-idf score mechanics
parser.add_argument("-p", "--pick", default='sum', choices=['median', 'max', 'sum', 'avg'],
help=argparse.SUPPRESS)
parser.add_argument("-tst", "--test", default=False, action="store_true", help=argparse.SUPPRESS)
# end __________________________________________________
# Input files
parser.add_argument("-ds", "--doc_source", default='USPTO-random-1000.pkl.bz2',
help="the document source to process")
parser.add_argument("-it", "--input_tfidf", default=None,
help="Load a pickled TFIDF output instead of creating TFIDF by processing a document source")
# Document column header names
parser.add_argument("-th", "--text_header", default='abstract', help="the column name for the free text")
parser.add_argument("-dh", "--date_header", default=None, help="the column name for the date")
# Word filters
parser.add_argument("-fc", "--filter_columns", default=None,
help="list of columns with binary entries by which to filter the rows")
parser.add_argument("-fb", "--filter_by", default='union', choices=['union', 'intersection'],
help="Returns filter: intersection where all are 'Yes' or '1'"
"or union where any are 'Yes' or '1' in the defined --filter_columns")
parser.add_argument("-st", "--search_terms", type=str, nargs='+', default=[],
help="Search terms filter: search terms to restrict the tfidf dictionary. "
"Outputs will be related to search terms")
parser.add_argument("-stthresh", "--search_terms_threshold", type=float, default=0.75,
help="Provides the threshold of how related you want search terms to be "
"Values between 0 and 1: 0.8 is considered high")
# Time filters
parser.add_argument("-df", "--date_from", default=None,
help="The first date for the document cohort in YYYY/MM/DD format")
parser.add_argument("-dt", "--date_to", default=None,
help="The last date for the document cohort in YYYY/MM/DD format")
# TF-IDF PARAMETERS
# ngrams selection
parser.add_argument("-mn", "--min_ngrams", type=int, choices=[1, 2, 3], default=1, help="the minimum ngram value")
parser.add_argument("-mx", "--max_ngrams", type=int, choices=[1, 2, 3], default=3, help="the maximum ngram value")
# maximum document frequency
parser.add_argument("-mdf", "--max_document_frequency", type=float, default=0.05,
help="the maximum document frequency to contribute to TF/IDF")
# Normalize tf-idf scores by document length
parser.add_argument("-ndl", "--normalize_doc_length", default=False, action="store_true",
help="normalize tf-idf scores by document length")
# Remove noise terms before further processing
parser.add_argument("-pt", "--prefilter_terms", type=int, default=100000,
help="Initially remove all but the top N terms by TFIDF score before pickling initial TFIDF"
" (removes 'noise' terms before main processing pipeline starts)")
# Time weighting
parser.add_argument("-t", "--time", default=False, action="store_true", help="weight terms by time")
# OUTPUT PARAMETERS
# select outputs
parser.add_argument("-o", "--output", nargs='*', default=[],
choices=['graph', 'wordcloud'], # suppress table output option
help="Note that this can be defined multiple times to get more than one output. ")
# file names etc.
parser.add_argument("-on", "--outputs_name", default='out', help="outputs filename")
parser.add_argument("-wt", "--wordcloud_title", default='Popular Terms', help="wordcloud title")
parser.add_argument("-nltk", "--nltk_path", default=None, help="custom path for NLTK data")
# number of ngrams reported
parser.add_argument("-np", "--num_ngrams_report", type=int, default=250,
help="number of ngrams to return for report")
parser.add_argument("-nd", "--num_ngrams_wordcloud", type=int, default=250,
help="number of ngrams to return for wordcloud")
parser.add_argument("-nf", "--num_ngrams_fdg", type=int, default=250,
help="number of ngrams to return for fdg graph")
# PATENT SPECIFIC SUPPORT
parser.add_argument("-cpc", "--cpc_classification", default=None,
help="the desired cpc classification (for patents only)")
# emtech options
parser.add_argument("-emt", "--emerging_technology", default=False, action="store_true",
help="denote whether emerging technology should be forecast")
parser.add_argument("-pns", "--predictor_names", type=int, nargs='+', default=[2],
help=(", ".join([f"{index}. {value}" for index, value in enumerate(predictor_names)]))
+ "; multiple inputs are allowed.\n")
parser.add_argument("-nts", "--nterms", type=int, default=25,
help="number of terms to analyse")
parser.add_argument("-mpq", "--minimum-per-quarter", type=int, default=15,
help="minimum number of patents per quarter referencing a term")
parser.add_argument("-stp", "--steps_ahead", type=int, default=5,
help="number of steps ahead to analyse for")
parser.add_argument("-cf", "--curve-fitting", default=False, action="store_true",
help="analyse using curve or not")
parser.add_argument("-nrm", "--normalised", default=False, action="store_true",
help="analyse using normalised patents counts or not")
args = parser.parse_args(command_line_arguments)
return args
def main(supplied_args):
paths = [os.path.join('outputs', 'reports'), os.path.join('outputs', 'wordclouds'),
os.path.join('outputs', 'table'), os.path.join('outputs', 'emergence')]
for path in paths:
os.makedirs(path, exist_ok=True)
args = get_args(supplied_args)
args_default = get_args([])
argscheck = ArgsChecker(args, args_default)
argscheck.checkargs()
outputs = args.output[:]
outputs.append('json_config')
outputs.append('report')
if args.term_counts:
outputs.append('termcounts')
if args.n_nmf_topics > 0:
outputs.append('nmf')
docs_mask_dict = argscheck.get_docs_mask_dict()
terms_mask_dict = argscheck.get_terms_mask_dict()
doc_source_file_name = os.path.join(args.path, args.doc_source)
if args.input_tfidf is None:
pickled_tfidf_folder_name = None
else:
pickled_tfidf_folder_name = os.path.join('outputs', 'tfidf', args.input_tfidf)
pipeline = Pipeline(doc_source_file_name, docs_mask_dict, pick_method=args.pick,
ngram_range=(args.min_ngrams, args.max_ngrams), text_header=args.text_header,
term_counts=args.term_counts, pickled_tfidf_folder_name=pickled_tfidf_folder_name,
max_df=args.max_document_frequency, user_ngrams=args.search_terms,
prefilter_terms=args.prefilter_terms, terms_threshold=args.search_terms_threshold,
output_name=args.outputs_name, emerging_technology=args.emerging_technology)
pipeline.output(outputs, wordcloud_title=args.wordcloud_title, outname=args.outputs_name,
nterms=args.num_ngrams_report, n_nmf_topics=args.n_nmf_topics)
# emtech integration
if args.emerging_technology:
from scripts.pipeline import PipelineEmtech
if 0 in args.predictor_names:
algs_codes = list(range(1, len(predictor_names)))
else:
algs_codes = args.predictor_names
if isinstance(algs_codes, int):
predictors_to_run = [predictor_names[algs_codes]]
else:
predictors_to_run = [predictor_names[i] for i in algs_codes]
term_counts_data = pipeline.term_counts_data
pipeline_emtech = PipelineEmtech(term_counts_data, m_steps_ahead=args.steps_ahead, curves=args.curve_fitting,
nterms=args.nterms, minimum_patents_per_quarter=args.minimum_per_quarter,
outname=args.outputs_name)
for emergence in ['emergent', 'stationary', 'declining']:
print(f'Running pipeline for "{emergence}"')
if args.normalised:
title = 'Forecasts Evaluation: Normalised Counts' if args.test else 'Forecasts: Normalised Counts'
else:
title = 'Forecasts Evaluation' if args.test else 'Forecasts'
title += f' ({emergence})'
html_results, training_values = pipeline_emtech.run(predictors_to_run, normalized=args.normalised,
train_test=args.test,
emergence=emergence)
# save training_values to csv file
#
# training_values: csv file:
# {'term1': [0,2,4,6], 'term2': [2,4,1,3]} 'term1', 0, 2, 4, 6
# 'term2', 2, 4, 1, 3
#
filename = os.path.join('outputs', 'emergence', args.outputs_name + '_' + emergence + '_time_series.csv')
with open(filename, 'w') as f:
w = csv.writer(f)
for key, values in training_values:
my_list = ["'" + str(key) + "'"] + values
w.writerow(my_list)
html_doc = f'''<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>{title}</title>
</head>
<body>
<h1>{title}</h1>
{html_results}
</body>
</html>
'''
base_file_name = os.path.join('outputs', 'emergence', args.outputs_name + '_' + emergence)
if args.normalised:
base_file_name += '_normalised'
if args.test:
base_file_name += '_test'
html_filename = base_file_name + '.html'
with open(html_filename, 'w') as f:
f.write(html_doc)
print()
if __name__ == '__main__':
try:
start = time.time()
main(sys.argv[1:])
end = time.time()
diff = int(end - start)
hours = diff // 3600
minutes = diff // 60
seconds = diff % 60
print('')
print(f"pyGrams query took {hours}:{minutes:02d}:{seconds:02d} to complete")
except PygramsException as err:
print(f"pyGrams error: {err.message}")