-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathverify.py
83 lines (67 loc) · 2.93 KB
/
verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#encoding =utf-8
import jieba
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.externals import joblib
import os
import matplotlib.pyplot as plt
import re
import random
import json
from sklearn.naive_bayes import MultinomialNB
def text_process(file_path):
data_list = []
class_list = []
for line in open(file_path,'r'):
line = line.decode('utf-8').strip()
classes = line.split('\t')[0]
content = line.split('\t')[1]
rule = re.compile(u'[^\u4E00-\u9FA5]')
content = rule.sub(r'',content)
word_list = list(jieba.cut(content,cut_all=False))
word_string = " ".join(word_list).encode('utf-8')
data_list.append(word_string)
class_list.append(classes.encode('utf-8'))
return data_list,class_list
def get_stopword(stopword_path):
stop_words = []
with open(stopword_path, 'r') as fp:
for line in fp.readlines():
word = line.strip().decode("utf-8")
if len(word)>0 and word not in stop_words:
stop_words.append(word)
return stop_words
def text_feature(val_data_list,stopword_list):
tfidf_vec = joblib.load('./model/tfidf_vec.pkl')
chi_model = joblib.load('./model/chi_model.pkl')
feature = tfidf_vec.get_feature_names()
vocabulary = [feature[i] for i in chi_model.get_support(indices=True)]
# vocabulary = tfidf_vec.vocabulary_
vec = TfidfVectorizer(stop_words=stopword_list,sublinear_tf=True, max_df=0.5,vocabulary=vocabulary,max_features=1000)
# voc = vec.vocabulary_
# print json.dumps(voc,encoding='utf-8',ensure_ascii=False)
val_feature = vec.fit_transform(val_data_list)
# val = chi_model.fit_transform(val_feature,val_class_list)
# print (val_feature.toarray()==val.toarray()).all()
# print (test.toarray()==test_feature.toarray()).all()
return val_feature
def text_classifier(val_feature,val_class_list):
classifier = joblib.load('./model/classifier.pkl')
predict = classifier.predict(val_feature)
# predict = predict.tolist()
# print json.dumps(predict,encoding='utf-8',ensure_ascii=False)
# print json.dumps(val_class_list,encoding='utf-8',ensure_ascii=False)
test_accuracy = classifier.score(val_feature,val_class_list)
print "val",test_accuracy
print "每个类别的精确率和召回率:"
print classification_report(val_class_list,predict)
return test_accuracy
if __name__ == '__main__':
val_file = './cnews/cnews.val.txt'
stopword_path = './cnews/stopwords.txt'
val_data_list,val_class_list = text_process(val_file)
stopword_list = get_stopword((stopword_path))
val_feature = text_feature(val_data_list,stopword_list)
val_accuracy = text_classifier(val_feature,val_class_list)
print "finished"