forked from victorchall/EveryDream2trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
optimizer_dadapt.json
52 lines (52 loc) · 2.61 KB
/
optimizer_dadapt.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
{
"doc": {
"base": "base optimizer configuration for unet and text encoder",
"text_encoder_overrides": "text encoder config overrides",
"text_encoder_lr_scale": "if LR not set on text encoder, sets the Lr to a multiple of the Base LR. for example, if base `lr` is 2e-6 and `text_encoder_lr_scale` is 0.5, the text encoder's LR will be set to `1e-6`.",
"-----------------": "-----------------",
"optimizer": "adamw, adamw8bit, lion, dadapt_adam, dadapt_lion",
"optimizer_desc": "'adamw' in standard 32bit, 'adamw8bit' is bitsandbytes, 'lion' is EvoLved Sign Momentum, 'dadapt_...' are D-Adaptation methods",
"lr": "learning rate, if null will use CLI or main JSON config value",
"lr_scheduler": "'constant' or 'cosine'",
"lr_warmup_steps": "number of steps to warmup LR to target LR, if null will use CLI or default a value based on max epochs",
"lr_decay_steps": "number of steps to decay LR to zero for cosine, if null will use CLI or default a value based on max epochs",
"betas": "exponential decay rates for the moment estimates",
"epsilon": "value added to denominator for numerical stability, unused for lion, also used as d0 for dadaptation",
"weight_decay": "weight decay (L2 penalty)",
"d0": "for dadaptation only, scale of initial steps (def: 1e-6)",
"decouple": "for dadapt_adam only, whether to decouple the learning rates of the two distributions, suggested true",
"momentum": "for dadapt_sgd only, the momentum factor",
"------------------": "-----------------",
"freeze_embeddings": "whether to freeze the text embeddings",
"freeze_front_n_layers": "if not null, freeze the front N layers of the text encoder (you can pass eg -2 to leave only the last 2 layers unfrozen)",
"freeze_final_layer_norm": "whether to freeze the text encoder's final layer norm"
},
"base": {
"optimizer": "dadapt_adam",
"lr": 1e-1,
"lr_scheduler": "constant",
"lr_decay_steps": null,
"lr_warmup_steps": null,
"betas": [0.9, 0.999],
"epsilon": 1e-8,
"weight_decay": 0.80,
"d0": 1e-6,
"decouple": true
},
"text_encoder_overrides": {
"optimizer": null,
"lr": 1e-1,
"lr_scheduler": null,
"lr_decay_steps": null,
"lr_warmup_steps": null,
"betas": null,
"epsilon": 1e-8,
"weight_decay": 0.80,
"d0": 1e-6,
"decouple": true
},
"text_encoder_freezing": {
"unfreeze_last_n_layers": null
},
"apply_grad_scaler_step_tweaks": true
}