-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
115 lines (99 loc) · 4.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from reader import CoupletReader
from model import Model
import numpy as np
import tensorflow as tf
import pickle
import configparser
def print_hardware():
print("GPU: {}".format(tf.test.gpu_device_name()))
print("CPU/GPU Type: {}".format(tf.python.client.device_lib.list_local_devices()))
def print_config(config, sections):
for section in sections:
for key in config[section]:
print("{} = {}".format(key, config[section][key]))
if __name__ == "__main__":
# print the hardware
print_hardware()
# load and print the configs
print('Loading configs')
config = configparser.ConfigParser()
config.read('baseconfig.ini')
print('Done')
print_config(config, ['model', 'io', 'training'])
# read the couplet data
print('Reading the couplet training data')
couplet_reader = CoupletReader(
input_file=config.get('io', 'input_file'),
output_file=config.get('io', 'output_file'),
vocab_file=config.get('io', 'vocab_file'),
max_len=config.getint('model', 'max_len'),
max_char=config.getint('model', 'max_char')
)
print('Done')
# save the vocabulary file
print('Saving the vocabulary to file')
char2idx_path = config.get('io', 'char2idx_path')
idx2char_path = config.get('io', 'idx2char_path')
char2idx = couplet_reader.char2idx
idx2char = couplet_reader.idx2char
pickle.dump(char2idx, open(char2idx_path, "wb" ))
print('char2idx saved to {}'.format(char2idx_path))
pickle.dump(idx2char, open(idx2char_path, "wb" ))
print('idx2char saved to {}'.format(idx2char_path))
# set up the parameters for the model
param_dict = {
'vocab_size' :config.getint('model', 'max_char'),
'embedding_dim':config.getint('model', 'embedding_dim'),
'units' :config.getint('model', 'units'),
'num_layers' :config.getint('model', 'num_layers'),
'dropout' :config.getfloat('model', 'dropout'),
}
# create the encoder-decoder model
print('Creating the encoder-decoder model')
model = Model(char2idx, idx2char, param_dict)
print('Done')
# train or load a pre-trained word2vec model
if config.getboolean('training', 'word2vec_pretrained'):
print('Loading the word2vec model')
model.load_word2vec(word2vec_path=config.get('io', 'word2vec_path'))
print('word2vec model loaded')
else:
print('Training the word2vec model')
model.train_word2vec(
train_data=couplet_reader.data_padded + couplet_reader.target_padded,
iter=100,
word2vec_path=config.get('io', 'word2vec_path')
)
print('word2vec model trained')
# transfer the word2vec weights into the embedding matrix
print('Transferring word2vec model weights to the embedding matrix')
model.transfer_embedding_weights(couplet_reader.idx2char)
print('Done')
# load pretrained model if needed
if config.getboolean('training', 'train_from_scratch'):
print('Training from scratch')
else:
print('Load pretrained model weights')
model.load_weights(checkpoint_dir=config.get('io', 'model_weights_dir'))
print('Done')
# train the model
print('Start training')
model.train(
train=couplet_reader.data_encoded,
target=couplet_reader.target_encoded,
start_epoch=config.getint('training', 'start_epoch'),
num_epoch=config.getint('training', 'num_epoch'),
log_dir=config.get('io', 'training_checkpoints_dir'),
checkpoint_dir=config.get('io', 'training_checkpoints_dir'),
batch_size=config.getint('training', 'batch_size'),
learning_rate=config.getfloat('training', 'learning_rate')
)
print('Done')
print('Saving training weights')
model.save_weights(checkpoint_dir=config.get('io', 'model_weights_dir'))
print('Saving config file')
with open('{}/config.ini'.format(config.get('io', 'model_weights_dir')), 'w') as configfile:
config.remove_section('io')
config.remove_section('training')
config.write(configfile)
print('Done!')