-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsolver.py
234 lines (208 loc) · 9.17 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from model.build_gen import *
from datasets.dataset_read import dataset_read
# Training settings
class Solver(object):
def __init__(self, args, batch_size=64, source='svhn',
target='mnist', learning_rate=0.0002, interval=100, optimizer='adam'
, all_use=False, num_k=4, entropy=False, checkpoint_dir=None, save_epoch=10):
self.batch_size = batch_size
self.source = source
self.target = target
self.all_use = all_use
self.num_k = num_k
self.entropy = entropy
self.checkpoint_dir = checkpoint_dir
self.save_epoch = save_epoch
self.use_abs_diff = args.use_abs_diff
if self.source == 'svhn':
self.scale = True
else:
self.scale = False
print('dataset loading')
self.datasets, self.dataset_test = dataset_read(source, target, self.batch_size, scale=self.scale,
all_use=self.all_use)
print('load finished!')
self.G = Generator(source=source, target=target)
self.C1 = Classifier(source=source, target=target)
self.C2 = Classifier(source=source, target=target)
if args.eval_only:
self.G.torch.load(
'%s/%s_to_%s_model_epoch%s_G.pt' % (self.checkpoint_dir, self.source, self.target, args.resume_epoch))
self.G.torch.load(
'%s/%s_to_%s_model_epoch%s_G.pt' % (
self.checkpoint_dir, self.source, self.target, self.checkpoint_dir, args.resume_epoch))
self.G.torch.load(
'%s/%s_to_%s_model_epoch%s_G.pt' % (self.checkpoint_dir, self.source, self.target, args.resume_epoch))
self.G.cuda()
self.C1.cuda()
self.C2.cuda()
self.interval = interval
self.set_optimizer(which_opt=optimizer, lr=learning_rate)
self.lr = learning_rate
def set_optimizer(self, which_opt='momentum', lr=0.001, momentum=0.9):
if which_opt == 'momentum':
self.opt_g = optim.SGD(self.G.parameters(),
lr=lr, weight_decay=0.0005,
momentum=momentum)
self.opt_c1 = optim.SGD(self.C1.parameters(),
lr=lr, weight_decay=0.0005,
momentum=momentum)
self.opt_c2 = optim.SGD(self.C2.parameters(),
lr=lr, weight_decay=0.0005,
momentum=momentum)
if which_opt == 'adam':
self.opt_g = optim.Adam(self.G.parameters(),
lr=lr, weight_decay=0.0005)
self.opt_c1 = optim.Adam(self.C1.parameters(),
lr=lr, weight_decay=0.0005)
self.opt_c2 = optim.Adam(self.C2.parameters(),
lr=lr, weight_decay=0.0005)
def reset_grad(self):
self.opt_g.zero_grad()
self.opt_c1.zero_grad()
self.opt_c2.zero_grad()
def ent(self, output):
return - torch.mean(output * torch.log(output + 1e-6))
def discrepancy(self, out1, out2):
if not self.entropy:
out2_t = out2.clone()
out2_t = out2_t.detach()
out1_t = out1.clone()
out1_t = out1_t.detach()
if not self.use_abs_diff:
return (F.kl_div(F.log_softmax(out1), out2_t) + F.kl_div(F.log_softmax(out2),
out1_t)) / 2
else:
return torch.mean(torch.abs(out1-out2))
else:
return self.ent(out1)
def train(self, epoch, record_file=None):
criterion = nn.CrossEntropyLoss().cuda()
self.G.train()
self.C1.train()
self.C2.train()
torch.cuda.manual_seed(1)
for batch_idx, data in enumerate(self.datasets):
img_t = data['T']
img_s = data['S']
label_s = data['S_label']
if img_s.size()[0] < self.batch_size or img_t.size()[0] < self.batch_size:
break
img_s = img_s.cuda()
img_t = img_t.cuda()
imgs = Variable(torch.cat((img_s, \
img_t), 0))
label_s = Variable(label_s.cuda())
img_s = Variable(img_s)
img_t = Variable(img_t)
self.reset_grad()
feat = self.G(imgs)
output = self.C1(feat)
output_s = output[:self.batch_size, :]
loss_s1 = criterion(output_s, label_s)
loss_s1.backward()
self.opt_g.step()
self.opt_c1.step()
self.reset_grad()
feat = self.G(imgs)
output = self.C2(feat)
output_s = output[:self.batch_size, :]
loss_s2 = criterion(output_s, label_s)
loss_s2.backward()
self.opt_c2.step()
self.reset_grad()
feat = self.G(imgs)
output1 = self.C1(feat)
output1_s = output1[:self.batch_size, :]
output1_t = output1[self.batch_size:, :]
output1_t = F.softmax(output1_t)
output2 = self.C1(feat)
output2_t = output2[self.batch_size:, :]
output2_t = F.softmax(output2_t)
loss = criterion(output1_s, label_s)
loss_dis = self.discrepancy(output1_t, output2_t)
loss -= loss_dis
loss.backward()
self.opt_c1.step()
self.reset_grad()
for i in xrange(self.num_k):
feat_t = self.G(img_t)
output1_t = self.C1(feat_t)
output2_t = self.C1(feat_t)
output1_t = F.softmax(output1_t)
output2_t = F.softmax(output2_t)
loss_dis = self.discrepancy(output1_t, output2_t)
G_loss = loss_dis
G_loss.backward()
self.opt_g.step()
self.reset_grad()
output = self.G(img_s)
output1_s = self.C1(output)
output2_s = self.C1(output)
output1_s = F.softmax(output1_s)
output2_s = F.softmax(output2_s)
output = self.G(img_t)
output1_t = self.C1(output)
output2_t = self.C1(output)
output1_t = F.softmax(output1_t)
output2_t = F.softmax(output2_t)
loss_dis = self.discrepancy(output1_t, output2_t)
entropy = self.ent(output1_t).detach()
loss_dis = loss_dis.detach()
loss_dis_s = self.discrepancy(output1_s, output2_s)
loss_dis_s = loss_dis_s.detach()
if batch_idx > 100:
return batch_idx
if batch_idx % self.interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss1: {:.6f}\t Dis: {:.6f} Dis_s: {:.6f}'.format(
epoch, batch_idx, 100,
100. * batch_idx / 70000, loss.data[0], loss_dis.data[0], loss_dis_s.data[0]))
if record_file:
record = open(record_file, 'a')
record.write('%s %s %s\n' % (loss_dis.data[0], loss_dis_s.data[0], entropy.data[0]))
record.close()
return batch_idx
def test(self, epoch, record_file=None, save_model=False):
self.G.eval()
self.C1.eval()
self.C2.eval()
test_loss = 0
correct1 = 0
correct2 = 0
size = 0
for batch_idx, data in enumerate(self.dataset_test):
img = data['T']
label = data['T_label']
img, label = img.cuda(), label.cuda()
img, label = Variable(img, volatile=True), Variable(label)
feat = self.G(img)
output1 = self.C1(feat)
output2 = self.C2(feat)
test_loss += F.nll_loss(output1, label).data[0]
pred1 = output1.data.max(1)[1]
pred2 = output2.data.max(1)[1]
k = label.data.size()[0]
correct1 += pred1.eq(label.data).cpu().sum()
correct2 += pred2.eq(label.data).cpu().sum()
size += k
test_loss = test_loss / size
print('\nTest set: Average loss: {:.4f}, Accuracy C1: {}/{} ({:.0f}%) Accuracy C2: {}/{} ({:.0f}%) \n'.format(
test_loss, correct1, size,
100. * correct1 / size, correct2, size, 100. * correct2 / size))
if save_model and epoch % self.save_epoch == 0:
torch.save(self.G,
'%s/%s_to_%s_model_epoch%s_G.pt' % (self.checkpoint_dir, self.source, self.target, epoch))
torch.save(self.C1,
'%s/%s_to_%s_model_epoch%s_C1.pt' % (self.checkpoint_dir, self.source, self.target, epoch))
torch.save(self.C2,
'%s/%s_to_%s_model_epoch%s_C2.pt' % (self.checkpoint_dir, self.source, self.target, epoch))
if record_file:
record = open(record_file, 'a')
record.write('%s %s\n' % (correct1 / size, correct2 / size))
record.close()