-
Notifications
You must be signed in to change notification settings - Fork 2
/
enkf.bak
882 lines (776 loc) · 26.2 KB
/
enkf.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
!
PROGRAM ENKF
!
! ----------------------------------------------------------------------
! THIS IS AN IMPLEMENTATION OF THE ENSEMBLE KALMAN FILTER FOR MPI
! PARALLEL COMPUTING. MULTI-SCALE MEASUREMENTS ARE ACCOMMODATED BY
! STORING ALL THE MEASUREMENTS IN A SINGLE ARRAY UNTIL THE
! UPDATE SUBROUTINE. IN THIS IMPLEMENTATION, THE SAME NUMBER OF
! ENSEMBLE MEMBERS ARE STORED ON EACH OF THE PROCESSORS, AND THE UPDATE
! IS PERFORMED USING 'REDUCE' COMMANDS IN THE KUPDATE SUBROUTINE.
! THUS, THE NUMBER OF REPLICATES N_R MUST BE DIVISIBLE BY THE NUMBER
! OF PROCESSES NPROCS. FOR MEMORY CONSIDERATIONS, ONLY THE KEY ENSEMBLE
! STATISTICS ARE STORED AT EACH TIMESTEP, AND ONLY ONE COPY OF THE
! ENSEMBLE IS CREATED IN MEMORY. THE ENSEMBLE STATISTICS ARE WRITTEN
! EVERY FOUR HOURS TO A BINARY FILE. COARSE SCALE NOMINAL FORCING
! DATA ARE READ IN, AND RANDOMLY DISAGGREGATED WITHIN THE
! THE MEASUREMENT LOOP TO AVOID STORING THE ENTIRE RANDOMIZED FORCING
! ARRAY IN MEMORY, THOUGH THE PARAMETERS ARE RANDOMIZED AND STORED ON
! THE LOCAL PROCESS. IN ORDER TO AID IN DEBUGGING, ALL OF THE ENSEMBLE
! INFORMATION IS WRITTEN TO FILES ON EACH PROCESSOR AT THE MEASUREMENT
! TIME SPECIFIED IN THIS SOURCE CODE. MEASUREMENT INNOVATIONS ARE
! WRITTEN OUT TO A FILE.
!
! NOTE: THIS CODE WAS LAST UPDATED TO THE RUN_PARAMS SUBROUTINE IN JULY
! 2007, AND IS LIKELY OUT OF DATE, AT THAT POINT.
!
! KEY VARIABLES
! N_Y ~ NUMBER OF PIXELS TIMES THE NUMBER OF STATES PER PIXEL
! N_R ~ TOTAL SIZE OF THE ENSEMBLE
! N_RL ~ NUMBER OF ENSEMBLE MEMBERS STORED ON EACH LOCAL PROCESSOR
! N_X ~ NUMBER OF AUXILIARY STATES AT EACH PIXEL
! N_Z ~ TOTAL NUMBER OF MULTI-SCALE MEASUREMENTS
! N_T ~ TOTAL NUMBER OF FORCING TIMES
! N_YS ~ NUMBER OF STATISTICS CALCULATED FROM THE ENSEMBLE (MAX,MIN...)
!
! Y ~ ARRAY OF STATES: N_Y x N_RL
! X ~ ARRAY OF AUXILIARY STATES: N_X x N_RL. X IS NOT UPDATED, BUT
! NEEDED TO ALLOW STATE MODEL TO RESUME EXECUTION CORRECTLY
! Z ~ ARRAY OF MEASUREMENTS N_Z x N_RL
! YSTATS ~ ARCHIVE OF STATE VARIABLES OVER THE ENTIRE EXECUTION TIME,
! INCLUDING BOTH PRIOR AND POSTERIOR STATES: N_Y x N_T+N_M+1 x N_YS
!
! CALLS: INTERFACEY, INTERFACEZ, KUPDATE, COMPILEYSTATS
! SET UP FOR MPI - MD - AUG 2005
! INITIALLY IMPLEMENTED FOR SNOW MODELS - MD - DEC 2005
! ADJUSTED TO DISAGGREGATE FORCING - MD - JAN 2006
! SET UP TO INTERFACE WITH NEW RUN_PARAMS - MD - JUL 2007
!
! OUTLINE:
!
! 0) DECLARATIONS
! 1) INITIAL SETUP (BEFORE MEASUREMENT LOOP BEGINS)
! 2) MEASUREMENT LOOP TO PERFORM FILTER OPERATIONS
! 3) COMPUTE ELAPSED TIME
! 4) ON HEAD NODE, WRITE YSTATS AND YTIME FROM FILTER RUN TO FILES
IMPLICIT NONE
INCLUDE 'mpif.h'
!INCLUDE 'mpef.h'
! 0.1) DECLARATIONS FOR PART 1
! 0.1.1) INITIALIZE MPI/MPE
INTEGER::RANK,NPROCS,STAT(MPI_STATUS_SIZE),IERR,N_RL
DOUBLE PRECISION STARTTIME,ENDTIME
! 0.1.2) READ SIZES OF ARRAYS FROM FILE
INTEGER::N_Y,N_YR,N_T,N_M,N_YP,N_YS,N_Z,N_ZR,N_R,N_U,N_A,N_X,N_C,I,N_PF,N_RP,n_ypp
INTEGER,DIMENSION(:),ALLOCATABLE::RTM_CTRL,N_ZP
CHARACTER(32) :: N_ZRC,step
! 0.1.4) GET RUN PARAMETERS
INTEGER :: MEAS_SWITCH,SPATIAL_PIC,ATM_SWITCH,GEN_SEEDS(5),ENS_NUM
INTEGER,DIMENSION(:),ALLOCATABLE :: MEASTIMES,ISTART,IEND,ZUSE,MSTART,MEND
REAL :: PRECIP_SCALE,CVEG,LAM_VEG,DUMMY_INV_PRCP,RANGE_U,&
RANGE_A,DUMMY_B_1,DUMMY_B_2!,F_RADT
! LAM_RADT,C_RADT,PSCALE,RANGE_B,RANGE_RADT,RANGE_CHI_P,C_CHI_P,&
! LAM_CHI_P
REAL,DIMENSION(:),ALLOCATABLE:: ALPHA_BAR, FREQ, THETA,tb_output
REAL,DIMENSION(:,:),ALLOCATABLE::CV,Y_IN,X_IN,TBRAW,LAM_U,LAM_ALPHA!,tb_output
REAL,DIMENSION(:,:,:),ALLOCATABLE::ALBEDO,CU,C_ALPHA
LOGICAL :: GEN_SWITCH
! 0.1.5) READ FROM FILE
INTEGER :: M,J,N_BDRF,rp
INTEGER,DIMENSION(:),ALLOCATABLE::VEG_MAP
REAL,DIMENSION(:),ALLOCATABLE::ELEVATION,VCOVER
REAL,DIMENSION(:,:),ALLOCATABLE::ZMEAS,ZS,ZF,BDRF
CHARACTER(32) :: N_TC
! 0.1.7) INITIAL CONDITIONS
INTEGER :: R,XI,XF,SEED0
REAL,DIMENSION(:,:), ALLOCATABLE :: Y0_IN,X0_IN
REAL :: T0(5),TF(5)
! 0.1.8) CREATE ENSEMBLE OF PARAMETERS
REAL,DIMENSION(:,:,:), ALLOCATABLE :: ALPHA,FALPHA
INTEGER :: KGLOBAL
! 0.1.9) CREATE STATIC ENSEMBLE OF FORCING PERTURBATIONS
INTEGER :: SEED
INTEGER,DIMENSION(:),ALLOCATABLE :: MAP,run_pix
REAL,DIMENSION(:,:,:),ALLOCATABLE :: F_U
! 0.1.10) CREATE STATIC ENSEMBLE OF VEGETATION PERTURBATIONS
REAL,DIMENSION(:,:),ALLOCATABLE :: F_VEG ! MATCHES DIMENSION IN MVNRND
! 0.2 MEASUREMENT LOOP
! 0.2.1) INDICES
INTEGER YINDEX1,YINDEX2,UINDEX1,UINDEX2,N_UT,N_S,FIRST
! 0.2.2) DEFINE INITIAL CONDITIONS
REAL,DIMENSION(:,:), ALLOCATABLE :: Y0,X0
! 0.2.4) STATE MODEL INTEGRATION
INTEGER :: YI,YF,P,K,MONTH,IFLAG
LOGICAL :: LIMIT
REAL,DIMENSION(:), ALLOCATABLE :: Y0_RAW
REAL,DIMENSION(:,:), ALLOCATABLE :: Y,Z,V_OUT,ALBEDO_IN,YPRIOR,F,X,FT_1
REAL,DIMENSION(:,:,:),ALLOCATABLE::YT,U_NOM,XT,U_RTM,U_DISAG,U
! 0.2.6) DEFINE TIME VECTOR
DOUBLE PRECISION,DIMENSION(:),ALLOCATABLE :: YTIME
! 0.2.8) UPDATE
REAL,DIMENSION(:),ALLOCATABLE :: INNOV_2MOM,TR_ERR,REL_L1_NORM,ABS_TR_ERR,&
NU_BAR
! 0.2.9) RECORD STATE STATISTICS
REAL,DIMENSION(:,:,:),ALLOCATABLE::YSTATS, DUMMY
! 0.4) WIRTE OUTPUT FILES
INTEGER :: T
LOGICAL :: OUTPUT
DOUBLE PRECISION :: TOUTPUT(6), DIFF
!0.) DECLARATIONS FOR FILE NAMES...
CHARACTER(9):: FNAMES
CHARACTER(22):: FNAMES2
!INTEGER :: UPDATE,MINUPDATE
! 1) INITIAL SETUP (BEFORE MEASUREMENT LOOP BEGINS)
! 1.1) INITIALIZE MPI AND MPE VARIABLES
CALL MPI_INIT(IERR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,RANK,IERR)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,NPROCS,IERR)
!1.2) CODE USED TO OPEN FILES FOR EACH PROCESS
!FNAMES= "123456789"
!FNAMES2="1011121314151617181920"
!I=RANK+1
!IF(I.LT.10)THEN
! OPEN(FILE=FNAMES(I:I),unit=100-I,status='unknown')!ELSE
! J=I-9
! OPEN(FILE=FNAMES2(2*J-1:2*J),unit=100-I,status='UNKNOWN')
!END IF
!OPEN FILE FOR INNOVATIONS
OPEN(UNIT=15,FILE='innovs.out',STATUS='UNKNOWN')
! INITIALIZE MPE
!CALL MPE_INIT_LOG()
! START TIMER
IF(RANK.EQ.0) STARTTIME=MPI_WTIME()
! ENTER MPE PROPERTIES
IF(RANK.EQ.0)THEN
! CALL MPE_DESCRIBE_STATE(1,2,'PROPAGATION','white:gray')
! CALL MPE_DESCRIBE_STATE(11,12,'CALCULATION OF MEASUREMENTS','green:gray')
! CALL MPE_DESCRIBE_STATE(13,14,'UPDATE','cyan:gray')
! CALL MPE_DESCRIBE_STATE(15,16,'COMPILE STATS','yellow:gray')
END IF
! 1.2) READ SIZES OF THINGS FROM FILE, DEFINE SECONDARY SIZES
OPEN(UNIT=1,FILE='sizes.in',STATUS='OLD')
!NUMBER OF STATES AT EACH PIXEL, N_YR
READ(1,*)
READ(1,10) N_YR
!NUMBER OF TIMESTEPS, N_T
READ(1,*)
READ(1,10) N_T
!NUMBER OF MEASUREMENT TIMES, N_M
READ(1,*)
READ(1,10) N_M
!TOTAL NUMBER OF Y PIXELS, N_YP
READ(1,*)
READ(1,10) N_YP
!NUMBER OF Y STATISTICS TO BE RECORDED, N_YS
READ(1,*)
READ(1,10) N_YS
!NUMBER OF FORCING DATA REQ'D FOR EACH PIXEL AND TIMESTEP, N_U
READ(1,*)
READ(1,10) N_U
!NUMBER OF REPLICATES: DIVISIBLE BY NPROCS IN THIS VERSION, N_R
READ(1,*)
READ(1,10) N_R
!NUMBER OF MEASUREMENT TYPES AT EACH PIXEL, N_ZR
READ(1,*)
READ(1,10) N_ZR
!TOTAL NUMBER OF MEAS. FOR EACH RESOLUTION (MUST BE N_ZR VALUES HERE),N_ZP
ALLOCATE(N_ZP(N_ZR))
WRITE(N_ZRC,*) N_ZR
READ(1,*)
READ(1,'('//N_ZRC//'(I4,1X))') (N_ZP(I),I=1,N_ZR)
!NUMBER OF PARAMETERS, N_A
READ(1,*)
READ(1,10) N_A
!NUMBER OF AUXILIARY VARIABLES FOR STATE MODEL, N_X
READ(1,*)
READ(1,10) N_X
!NUMBER OF RTM CONTROL VARIABLES
READ(1,*)
READ(1,10) N_C
ALLOCATE(RTM_CTRL(N_C))
RTM_CTRL=0 !INITIALIZE ARRAY
!NUMBER OF AUXILIARY INPUTS FOR SNOW RTM
READ(1,*)
READ(1,10) RTM_CTRL(5)
!NUMBER OF SNOW INPUTS FOR SNOW RTM
READ(1,*)
READ(1,10) RTM_CTRL(6)
!NUMBER OF INPUTS FOR CANOPY RTM
READ(1,*)
READ(1,10) RTM_CTRL(7)
!NUMBER OF INPUTS FOR ATMOSPHERIC RTM
READ(1,*)
READ(1,10) RTM_CTRL(8)
!NUMBER OF PASSIVE MICROWAVE CHANNELS
READ(1,*)
READ(1,10) RTM_CTRL(9)
!NUMBER OF NLDAS FORCING PIXELS
READ(1,*)
READ(1,10) N_PF
!NUMBER OF RUNNING PIXELS
READ(1,*)
READ(1,10) N_RP
10 FORMAT(I5)
CLOSE(1)
N_Y=N_YR*N_yp !COMPUTE TOTAL NUMBER OF STATES
n_ypp=n_yr*n_rp
N_Z=SUM(N_ZP) !COMPUTE TOTAL NUMBER OF MEASUREMENTS
write(step,'(I3)') n_m
!running for # of limited pixel,n_rp, % Oct.9 RK
allocate(run_pix(n_rp))
! 1.3) CHECK TO BE SURE THAT N_R IS DIVISIBLE BY NPROCS, COMPUTE DIMENSION OF
! LOCAL STATE VARIABLE, THEN ALLOCATE Y,Y0,Z AND V_OUT ARRAYS
IF (MOD(N_R,NPROCS).NE.0) THEN
PRINT *, 'ERROR IN ENKF! NUMBER OF REPLICATES MUST BE DIVISIBLE BY ',&
'NUMBER OF PROCESSES. ABORTING'
STOP
ELSEIF(N_R.EQ.1) THEN
PRINT *, 'FOR THIS CODE, 1 REPLICATE IS NOT A VALID OPTION. SPECIFY',&
'TWO OR MORE REPLICATES'
ELSE
N_RL=N_R/NPROCS !NUMBER OF REPLICATES ON LOCAL PROCESS
END IF
! 1.4) GET RUN PARAMETERS
!ALLOCATIONS
ALLOCATE(MEASTIMES(N_M),CV(N_Z,N_Z),ZUSE(N_Z),CU(N_YP,N_YP,N_U),&
LAM_U(N_YP,N_U),ISTART(NPROCS),IEND(NPROCS),ALPHA_BAR(N_A),&
FREQ(RTM_CTRL(9)),THETA(RTM_CTRL(9)),MSTART(NPROCS),MEND(NPROCS),&
C_ALPHA(N_YP,N_YP,N_A),LAM_ALPHA(N_YP,N_A))
GEN_SWITCH=.FALSE.
! THE DUMMY_INV_PRCP ARGUMENT IS TO HANDLE THE RUN_PARAMS INVERT_PRECIP
! ARGUMENT THAT IS USED TO IVNERT THE LAPSE RATE IN THE GENERATOR. IT
! IS PASSED TO THE DISAGGREGATE SUBROUTINE, BUT IT IS NOT USED
CALL RUN_PARAMS(N_YR,N_T,N_M,N_YP,N_Y,N_YS,N_U,N_R,N_ZR,N_ZP,N_Z,&
MEASTIMES,CU,CV,LAM_U,ISTART,IEND,NPROCS,N_A,ALPHA_BAR,ZUSE,RTM_CTRL(9),&
FREQ,THETA,MSTART,MEND,C_ALPHA,LAM_ALPHA,PRECIP_SCALE,MEAS_SWITCH,&
GEN_SWITCH,SPATIAL_PIC,CVEG,LAM_VEG,DUMMY_INV_PRCP,RANK,&
ATM_SWITCH,RANGE_U,RANGE_A,GEN_SEEDS,ENS_NUM,DUMMY_B_1,DUMMY_B_2)
RTM_CTRL(3)=ATM_SWITCH
! 1.5) READ MEASUREMENTS, LATITUDE/LONGITUDE DATA, VEGETATION AND FORCING DATA
! 1.5.1) READ MEASUREMENTS
ALLOCATE(ZMEAS(N_Z,N_M))
IF(RANK.EQ.0)THEN
OPEN(UNIT=2,FILE='zmeas.in',STATUS='OLD')
DO M=1,N_M
DO I=1,N_Z
READ(2,20) ZMEAS(I,M)
END DO
END DO
CLOSE(2)
20 FORMAT(F12.4)
END IF
CALL MPI_BCAST(ZMEAS,N_M*N_Z,MPI_REAL,0,MPI_COMM_WORLD,IERR)
! 1.5.2) READ STATE PIXEL LAT LON PAIRS
ALLOCATE(ZS(N_YP,2))
OPEN(UNIT=3,FILE='state_pixels.in',STATUS='OLD')
DO I=1,N_YP
READ(3,30) ZS(I,1),ZS(I,2)
END DO
CLOSE(3)
! 1.5.3) READ NLDAS (COARSE FORCING) PIXEL LAT LON PAIRS
ALLOCATE(ZF(N_PF,2))
OPEN(UNIT=4,FILE='nldas_pixels.in',STATUS='OLD')
DO I=1,N_PF
READ(4,30) ZF(I,1),ZF(I,2)
END DO
30 FORMAT(2F12.4)
CLOSE(4)
! 1.5.4) READ ELEVATIONS AT STATE PIXELS
! THIS FILE IS ARRANGED BY PRINTING THE 25 VALUES OF THE LOWERMOST ROW
! ON THE FIRST LINE, ETC.
ALLOCATE(ELEVATION(N_YP))
OPEN(UNIT=5,FILE='state_elev.in',STATUS='OLD')
DO I=1,N_YP
READ(5,40) ELEVATION(I)
END DO
CLOSE(5)
40 FORMAT(F12.5)
! 1.5.5) READ BDRF LOOKUP TABLE FOR INTERFACEZ
OPEN(UNIT=60,FILE='bdrf_lookup.in',STATUS='OLD')
READ(60,*) N_BDRF
ALLOCATE(BDRF(N_BDRF,2))
DO I=1,N_BDRF
READ(60,47) BDRF(I,1),BDRF(I,2)
END DO
CLOSE(60)
45 FORMAT(I10)
47 FORMAT(2(F12.6))
! 1.5.6) READ VEGETATION DATA FROM FILE FOR SSIB
ALLOCATE(VEG_MAP(N_YP))
CALL READ_VEG(N_YP,VEG_MAP)
! 1.5.7) READ VEGETATION COVER DATA
ALLOCATE(VCOVER(N_YP))
OPEN(UNIT=7,FILE='veg_density.in',STATUS='OLD')
DO I=1,N_YP
READ(7,50) VCOVER(I)
END DO
50 FORMAT(F10.4)
CLOSE(7)
! 1.5.8) READ FORCING DATA FROM FILE ON 0 NODE, READ NLDAS DATA, BROADCAST
ALLOCATE(U_NOM(N_U,N_T,N_PF))
IF(RANK.EQ.0)THEN
WRITE(N_TC,*) N_T
OPEN(FILE='nldas_forcing.in',UNIT=8,STATUS='OLD')
DO I=1,N_PF
DO J=1,N_U
READ(8,'('//N_TC//'F12.4)') (U_NOM(J,K,I),K=1,N_T)
END DO
READ(8,*) !PICK UP THE BLANK LINE HERE...
END DO
CLOSE(8)
!1.6) SCALE AND ADJUST PRECIP FOR SYNTHETIC TEST / BROADCAST
DO I=1,N_T
U_NOM(3,I,1:N_PF)=U_NOM(3,I,1:N_PF)*PRECIP_SCALE
END DO
END IF
!if (rank.eq.0) then
! print *, (u_nom(3,k,1) ,k=240:312)
!end if
!stop
!SEND TO OTHER PROCESSES FROM 0
CALL MPI_BCAST(U_NOM,N_T*N_U*N_PF,MPI_REAL,0,MPI_COMM_WORLD,IERR)
!IF SPATIAL_PIC PARAMETER IS SET TO 0, ALL NLDAS FORCING WILL BE USED
!OTHERWISE, NLDAS FORCING WILL BE SET TO THE FORCING FROM SPATIAL_PIC PIXEL
IF(SPATIAL_PIC.GT.0)THEN
DO I=1,N_PF
U_NOM(1:N_U,1:N_T,I)= U_NOM(1:N_U,1:N_T,SPATIAL_PIC)
END DO
END IF
! 1.7) ASSIGN INITIAL CONDITION OF STATES, AUXILIARY
ALLOCATE(Y0_IN(N_Y,N_RL),X0_IN(N_X*N_YP,N_RL),Y0_RAW(N_YR))
Y0_IN=0. !INITIALIZE ALL SNOW VARIABLES AT 0.
DO I=14,N_Y,N_YR
DO R=1,N_RL
Y0_IN(I,R)=265.
END DO
END DO
!INITIALIZE X0 AS IN THE GENERATOR
X0_IN=0.
DO K=1,N_RL
DO P=1,N_YP
XI=1+N_X*(P-1)
DO I=XI,XI+3
X0_IN(I,K)=270.
END DO
DO I=XI+4,XI+6
X0_IN(I,K)=0.15
END DO
X0_IN(XI+9,K)=0.5E-3
X0_IN(XI+10,K)=4.3
END DO
END DO
! TIME DATA BASED ON MIDNIGHT UTC DATA...
T0(1)=18
T0(2)=9
T0(3)=30
T0(4)=273
T0(5)=2002
!T0(1)=18 !HOUR
!T0(2)=10 !MONTH
!T0(3)=31 !DAY OF THE MONTH
!T0(4)=304 !JULIAN DAY
! 1.8) CREATE ENSEMBLE OF PARAMETERS
ALLOCATE(ALPHA(N_RL,N_YP,N_A),FALPHA(N_R,N_YP,N_A))
! FOR RANDOM NUMBER GENERATOR SEED SCHEME, SEE Reports/Models/EnKF/seeds.odt
DO I=1,N_A
IF(C_ALPHA(1,1,I).EQ.0.)THEN
! MVNRND CANNOT BE CALLED WHEN THE COVARIANCE HAS ZERO DIAGONAL VALUES,
! BECAUSE IT IS SET UP TO CALL CHOLESKY, WHICH CANNOT WORK FOR ZERO
! DIAGONAL VALUES IN ITS' CURRENT SETUP. SET F_ALPHA TO 0.
FALPHA(1:N_R,1:N_YP,I)=0.
ELSE
CALL MVNRND(LAM_ALPHA(1:N_YP,I),C_ALPHA(1:N_YP,1:N_YP,I),&
FALPHA(1:N_R,1:N_YP,I),N_R,N_YP,1,N_YP,N_YP,40+I)
END IF
END DO
! 1.8.3) FORM PARAMETER ARRAY
DO I=1,N_A
DO J=1,N_YP
DO K=1,N_RL
KGLOBAL=RANK*N_RL+K
ALPHA(K,J,I)=ALPHA_BAR(I)*EXP(FALPHA(KGLOBAL,J,I))
END DO
END DO
END DO
!LIMIT ALPHA_5
DO I=5,5
DO J=1,N_YP
DO K=1,N_RL
ALPHA(K,J,I)=MIN(ALPHA(K,J,I),1.0E-3)
END DO
END DO
END DO
!1.9) CREATE STATIC ENSEMBLE OF FORCING PERTURBATIONS
ALLOCATE(F_U(N_R,N_YP,N_U),MAP(N_YP))
! FOR RANDOM NUMBER GENERATOR SEED SCHEME, SEE Reports/Models/EnKF/seeds.odt
DO I=1,N_U
IF(CU(1,1,I).EQ.0)THEN
! MVNRND CANNOT BE CALLED WHEN THE COVARIANCE HAS ZERO DIAGONAL VALUES,
! BECAUSE IT IS SET UP TO CALL CHOLESKY, WHICH CANNOT WORK FOR ZERO
! DIAGONAL VALUES IN ITS' CURRENT SETUP. SET F_U TO 0.
F_U(1:N_R,1:N_YP,I)=0.
ELSE
!FOR MODIFICATION OF RANDOM NUMBER SCHEME, SEE JOURNAL ON OCT 09, 2006
SEED=50+I+1000*ENS_NUM
CALL MVNRND(LAM_U(1:N_YP,I),CU(1:N_YP,1:N_YP,I),F_U(1:N_R,1:N_YP,I),&
N_R,N_YP,1,N_YP,N_YP,SEED)
END IF
END DO
!1.10) CREATE STATIC ENSEMBLE OF VEGETATION PERTURBATIONS
! FOR RANDOM NUMBER GENERATOR SEED SCHEME, Reports/Models/EnKF/seeds.odt
ALLOCATE(F_VEG(N_R,1))
CALL MVNRND(LAM_VEG,CVEG,F_VEG,N_R,1,1,1,1,60)
!2.) MEASUREMENT LOOP TO PERFORM FILTER OPERATIONS
! 2.0) INITIALIZATIONS AND ALLOCATIONS FOR MEASUREMENT LOOP
ALLOCATE(Y(N_Y,N_RL),Z(N_Z,N_RL),V_OUT(N_Z,N_R),X(N_X*N_YP,N_RL),&
YPRIOR(N_Y,N_RL),Y0(N_Y,N_RL),X0(N_X*N_YP,N_RL),&
YTIME(N_T+N_M+1), YSTATS(N_Y,N_T+N_M+1,N_YS),ALBEDO_IN(N_YP,N_RL),&
INNOV_2MOM(N_M),TR_ERR(N_M),REL_L1_NORM(N_M),ABS_TR_ERR(N_M),&
NU_BAR(N_M))
! INITIALIZE STATE ARRAY AND 'FIRST' INDEX
Y=Y0_IN
X=X0_IN
FIRST=0
OPEN(FILE='tbraw_t.out',UNIT=9,STATUS='UNKNOWN')
allocate(tb_output(n_zp(1)*n_yp))
!MEASUREMENT LOOP
DO M=1,N_M+1
IF(RANK.EQ.0) PRINT *,'BEGINNING MEASUREMENT INTERVAL ',M,'/',N_M+1
!2.1) COMPUTE INDECES
!2.1.1)DETERMINE NUMBER OF FORCING STEPS FOR THIS INTERVAL (ALL NODES)
IF (M.EQ.N_M+1) THEN
N_S=N_T-MEASTIMES(M-1)
ELSE
N_S=MEASTIMES(M)-FIRST
END IF
!DETERMINE INDECES FOR STATE ARRAY Y AND FORCING ARRAY U (ALL NODES)
IF (M.EQ.1) THEN
YINDEX1=1
ELSEIF (M.EQ.2) THEN
YINDEX1=YINDEX1+(MEASTIMES(M-1))+1
ELSE
YINDEX1=YINDEX1+(MEASTIMES(M-1)-MEASTIMES(M-2))+1
END IF
IF (M.EQ.N_M+1) THEN
YINDEX2=YINDEX1+N_S
ELSE
YINDEX2=YINDEX1+N_S+1
END IF
IF (M.EQ.N_M+1) THEN
UINDEX1=MEASTIMES(M-1)+1
UINDEX2=N_T
ELSE
UINDEX1=FIRST+1
UINDEX2=MEASTIMES(M)
END IF
N_UT=UINDEX2-UINDEX1+1 !NUMBER OF FORCING STEPS
!2.2) DEFINE INITIAL CONDITIONS
Y0=Y
X0=X
IF(M>1) T0=TF !USE PREVIOUS UPDATE TIME TO INITIA
! CALL MPE_LOG_EVENT(9,M,'BEGIN PROP.')
!2.3) ALLOCATIONS FOR MODEL INTEGRATION
IF(M<N_M+1)THEN
ALLOCATE(YT(N_Y,N_S+2,N_RL)) ! N_S PLUS I.C. AND POSTERIOR
ELSE
ALLOCATE(YT(N_Y,N_S+1,N_RL)) ! N_S PLUS I.C.; NO UPDATE
END IF
ALLOCATE(XT(N_X*N_YP,N_S,N_RL),ALBEDO(N_S,N_YP,N_RL),U_DISAG(N_U,N_UT,N_YP),&
U(N_U,N_UT,N_YP),U_RTM(N_U,N_RL,N_YP))
!2.4) REPLICATE LOOP FOR INTEGRATING MODEL
DO K=1,N_RL
!2.4.1) DISAGGREGATE FORCING
ALLOCATE(DUMMY(N_U,N_UT,N_PF))
DUMMY=U_NOM(1:N_U,UINDEX1:UINDEX2,1:N_PF) !UINDEX1:UINDEX2 2014/9/9 by R.Kim
CALL DISAGGREGATE(N_YP,N_PF,N_U,N_UT,DUMMY,ELEVATION,ZF,ZS,U_DISAG,&
ALPHA(K,1,7),ALPHA(K,1,8),MAP,GEN_SWITCH,DUMMY_INV_PRCP)
DEALLOCATE(DUMMY)
!2.4.2) PERTURB PRECIPITATION AT THE DOMAIN SCALE
! SET FORCING EQUAL TO NOMINAL DISAGGREGATED FORCING
U=U_DISAG
! CALCULATE GLOBAL REPLICATE NUMBER, KGLOBAL TO INDEX F_U. THIS VARIABLE
! USED IN SECTION 2.4.2 AND IN SECTION 2.4.3.4, CALL TO SSIB
KGLOBAL=RANK*N_RL+K
! MULTIPLY BY F_U AND FU_MEAN
DO T=1,N_UT
DO P=1,N_YP
do i=1,n_u
U(I,T,P)=U_DISAG(I,T,P)*EXP(F_U(KGLOBAL,P,I))
END DO
!APPLY LIMIT TO PRECIPITATION
IF(U_DISAG(3,T,P).GT.0.0.AND.U(3,T,P).LT.1E-9)THEN
U(3,T,P)=1E-9
END IF
END DO
END DO
!2.4.3) PIXEL LOOP FOR INTEGRATING MODEL
! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
! run_pix=(/137/)
! do rp=1,n_rp
! P=run_pix(rp)
! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DO P=1,N_YP!PIXEL LOOP
!2.4.3.1) COMPUTE INDICES
!COMPUTE YI and YF, INITIAL AND FINAL STATE INDECES AT THIS PIXEL
YI=N_YR*(P-1)+1
YF=N_YR*P
XI=N_X*(P-1)+1
XF=N_X*P
!2.4.3.2) APPLY LIMITS TO INITIAL QUANTITIES, ONLY IF THERE IS
! ACTUALLY SNOW (G.T. 0.01 MM) IN THIS PIXEL, REPLICATE.
! THE SECOND CONDITION MAKES SURE LIMITS ARE APPLIED IF
! SNOW DEPTH IS NEGATIVE.
LIMIT=.TRUE.
IF(Y0(YI,K).LT.1E-5) LIMIT=.FALSE. !TESTING FOR ZERO SNOW DEPTH
DO I=YI,YF
IF(Y0(I,K).LT.0.) LIMIT=.TRUE. !IF STATE < 0, DO LIMITS
END DO
IF(Y0(YF,K).LT.200) LIMIT=.TRUE. !APPLY IF TGS IS TOO LOW
IF(Y0(YF,K).GT.285) LIMIT=.TRUE. !APPLY IF TGS IS TOO HIGH
IF(M.EQ.1) LIMIT=.FALSE. !DON'T APPLY ON FIRST INTERVAL
IF( LIMIT.EQ..TRUE. ) THEN
Y0_RAW=Y0(YI:YF,K)
!SNOW DEPTH
IFLAG=0
IF(Y0(YI,K)<0.05) THEN
IF(Y0(YI,K)<0.0) THEN
Y0(YI,K)=0.0
IFLAG=IFLAG+1
END IF
END IF
IF(Y0(YI,K)>4.) THEN
Y0(YI,K)=4.
IFLAG=IFLAG+1
END IF
!SNOW DENSITY
DO J=YI+1,YI+3
IF(Y0(J,K)>400.)THEN
Y0(J,K)=400.
IFLAG=IFLAG+1
END IF
IF(Y0(J,K)<100.0)THEN
Y0(J,K)=100.0
IFLAG=IFLAG+1
END IF
END DO
!SNOW TEMPERATURE
DO J=YI+4,YI+6
IF(Y0(J,K)>273.16)THEN !TEMP MAX = MELTING TEMP
Y0(J,K)=273.16
IFLAG=IFLAG+1
END IF
IF(Y0(J,K)<240.00)THEN
Y0(J,K)=240.00
IFLAG=IFLAG+1
END IF
END DO
!SNOW LIQUID WATER CONTENT
DO J=YI+7,YI+9
IF(Y0(J,K)>0.02)THEN !
Y0(J,K)=0.02
IFLAG=IFLAG+1
END IF
IF(Y0(J,K)<0.0)THEN
Y0(J,K)=0.0
IFLAG=IFLAG+1
END IF
END DO
!SNOW GRAIN SIZE
DO J=YI+10,YI+12
IF(Y0(J,K)>3.0E-3)THEN
Y0(J,K)=3.0E-3
IFLAG=IFLAG+1
END IF
IF(Y0(J,K)<0.1E-4)THEN
Y0(J,K)=0.1E-4
IFLAG=IFLAG+1
END IF
END DO
!GROUND TEMPERATURE
IF(Y0(YI+13,K)>285.00)THEN
Y0(YI+13,K)=285.00
IFLAG=IFLAG+1
END IF
IF(Y0(YI+13,K)<240.00)THEN
Y0(YI+13,K)=240.00
IFLAG=IFLAG+1
END IF
! IF(IFLAG.GT.3.AND.M.NE.1)THEN
! PRINT *, 'FOUND MORE THAN 3 ILLEGAL INITIAL STATES, RESETTING I.C.',&
! 'M=',M,'RANK=',RANK,'P=',P,'K=',K,'Y0_RAW=',Y0_RAW,'YPRIOR=',&
! YPRIOR(YI:YF,K)
! Y0(YI:YF,K)=YPRIOR(YI:YF,K)
! END IF
END IF
!2.4.3.3) SET INITIAL CONDITION IN YT
YT(YI:YF,1,K)=Y0(YI:YF,K)
!2.4.3.4) CALL TO SSIB TO PROPAGATE STATES.
CALL SSIB3(VEG_MAP(P),N_U,N_S,U(1:N_U,1:N_UT,P),ALPHA(K,P,1:6),&
T0,X0(XI:XF,K),Y0(YI:YF,K),ZS(P,1:2),YT(YI:YF,2:N_S+1,K),P,N_YR,N_X,&
XT(XI:XF,1:N_S,K),ALBEDO(1:N_S,P,K),TF,K,RANK,M,6,F_VEG(KGLOBAL,1),&
VCOVER(P))
!2.4.3.6) ISOLATE FINAL VALUES FROM TIME SERIES
Y(YI:YF,K)=YT(YI:YF,N_S+1,K) !ISOLATE FINAL STATE VALUE
X(XI:XF,K)=XT(XI:XF,N_S,K) !ISOLATE FINAL AUXILIARY VALUE
U_RTM(1:N_U,K,P)=U(1:N_U,N_UT,P) !ISOLATE FINAL FORCING VALUE
END DO !END PIXEL LOOP
END DO ! END REPLICATE LOOP
!2.5) DEALLOCATE VARIABLES USED ONLY FOR INTEGRATING MODEL
DEALLOCATE(U,U_DISAG)
!2.6) SET TIME VECTOR
!NOTE THAT THE T VECTOR IS INDEXED AS HOUR, MONTH, DAY OF MONTH, JULIAN, YEAR
!FIRST COMPUTE SERIAL DATE OF INITIAL TIME
CALL SERIAL_DATE(INT(T0(5)),INT(T0(2)),INT(T0(3)),INT(T0(1)),YTIME(YINDEX1))
!COMPUTE REST OF SERIAL DATES FROM SUM OF PREVIOUS DATE AND ONE HOUR
DO I=2,N_UT+1
YTIME(YINDEX1+I-1)=YTIME(YINDEX1+I-2)+1./24.
END DO
! CALL MPE_LOG_EVENT(10,M,'END PROP.')
!2.7) UPDATE STATES
IF(M<N_M+1) THEN !NO UPDATE ON LAST MEASUREMENT INTERVAL
! CALL MPE_LOG_EVENT(11,M,'START MEAS CALC.')
!2.7.1) COMPUTE PREDICTED OBSERVATIONS, Z
ALLOCATE(TBRAW(N_ZP(1)*N_YP,N_RL))!,TBRAW_T(N_ZP(1)*N_YP,N_T,N_RL))
MONTH=12
ALBEDO_IN=ALBEDO(N_S,1:N_YP,1:N_RL)
CALL INTERFACEZ(Y,Z,N_RL,N_R,N_Y,N_yP,N_YR,N_Z,N_ZP,N_ZR,N_C,N_X,RTM_CTRL,&
FREQ,THETA,X,N_A,N_U,U_RTM,MONTH,TBRAW,ALBEDO_IN,M,RANK,VEG_MAP,IERR,&
F_VEG,BDRF,N_BDRF,MEAS_SWITCH,VCOVER)
! print *, 'TBRAW===',tbraw
do i=1,n_zp(1)*n_yp
tb_output(i)=sum(tbraw(i,:))/n_rl
end do
write(9,'(6(F10.4))') tb_output
OPEN(FILE='tbraw.out',UNIT=19,STATUS='UNKNOWN')
write(19,*) tbraw
! CALL MPE_LOG_EVENT(12,M,'END MEAS CALC.')
deallocate(tbraw)
! !2.7.2) SAVE PRIOR STATES
! YPRIOR=Y
! !2.7.3) COMPUTE KALMAN GAIN AND UPDATE STATE AND 'FIRST' INDEX
! CALL MPE_LOG_EVENT(13,M,'START UPDATE')
! CALL KUPDATE(Y,Z,ZUSE,CV,ZMEAS(1:N_Z,M),V_OUT,N_RL,N_Y,N_Z,N_R,&
! MPI_COMM_WORLD,RANK,IERR,M,MEAS_SWITCH,RANGE_U,RANGE_A,N_ZR,N_ZP,&
! N_YP,N_YR,INNOV_2MOM(M),TR_ERR(M),ABS_TR_ERR(M),REL_L1_NORM(M),&
! NU_BAR(M))
!2.7.4 WRITE OUT UPDATE DATA TO FILES ON THE LOCAL NODES
! IF(M.EQ.1)THEN
! I=RANK+1
! WRITE(100-I,*) 'PRIOR STATE...'
! DO K=1,N_RL
! WRITE(100-I,'(8750(e12.6,1x))') (YPRIOR(J,K),J=1,N_Y)
! END DO
! WRITE(100-I,*) 'PREDICTED MEASUREMENT...'
! DO K=1,N_RL
! WRITE(100-I,'(1262(e12.6,1x))') (Z(J,K),J=1,N_Z)
! END DO
! WRITE(100-I,*) 'RANDOM ERROR ...'
! DO K=1,N_RL
! KGLOBAL=RANK*N_RL+K
! WRITE(100-I,'(1262(e12.6,1x))') (V_OUT(J,KGLOBAL),J=1,N_Z)
! END DO
! WRITE(100-I,*) 'POSTERIOR STATE...'
! DO K=1,N_RL
! WRITE(100-I,'(8750(e12.6,1x))') (Y(J,K),J=1,N_Y)
! END DO
! THESE LINES CAN BE UNCOMMENTED TO STOP EXECUTION AT THIS POINT
! CALL MPI_FINALIZE(IERR)
! PRINT *, 'STOPPING...,RANK=',RANK
! STOP
! END IF
!UPDATE 'FIRST' INDEX - modified RK 2014/3/4
IF (M.LT.N_M+1) THEN
FIRST=MEASTIMES(M)
END IF
! CALL MPE_LOG_EVENT(14,M,'END UPDATE')
END IF
!2.8) COMPILE STATISTICS AND DEALLOCATE YT,XT
!CALL MPE_LOG_EVENT(15,M,'START STATS')
!NOTE THAT ONLY 0 PROCESS HAS COMPLETE STATISTICS, BUT THEN THIS IS THE ONLY
! ONE THAT WILL WRITE THEM OUT.
IF(M<N_M+1)THEN
YT(1:N_Y,N_S+2,1:N_RL)=Y !ADD POSTERIOR STATES TO YT
! USE A DUMMY ARG TO PASS ARRAY... NOT SURE WHY IT DOESN'T WORK OTHERWISE
ALLOCATE(DUMMY(N_Y,N_S+2,N_YS))
CALL COMPILEYSTATS(YT,DUMMY,N_R,N_S+2,&
N_Y,N_YS,N_RL,RANK,MPI_COMM_WORLD,IERR)
YSTATS(1:N_Y,YINDEX1:YINDEX2,1:N_YS)=DUMMY
DEALLOCATE(DUMMY)
ELSE !FOR THE LAST MEASUREMENT INTERVAL WITH NO UPDATE
ALLOCATE(DUMMY(N_Y,N_S+1,N_YS))
CALL COMPILEYSTATS(YT,DUMMY,N_R,N_S+1,&
N_Y,N_YS,N_RL,RANK,MPI_COMM_WORLD,IERR)
YSTATS(1:N_Y,YINDEX1:YINDEX2,1:N_YS)=DUMMY
DEALLOCATE(DUMMY)
END IF
! CALL MPE_LOG_EVENT(16,M,'END STATS')
!2.10) DEALLOCATIONS
DEALLOCATE(YT,XT,ALBEDO,U_RTM)
END DO !End measurement loop
!3) COMPUTE ELAPSED TIME
IF(RANK.EQ.0) THEN
ENDTIME=MPI_WTIME()
END IF
! 4) ON O NODE, WRITE YSTATS AND YTIME FROM FILTER RUN TO FILES
IF(RANK.EQ.0)THEN
PRINT *, 'WRITING YSTATS FILE'
!4.1 DEFINE THE TOUTPUT VECTOR, WHICH CONTAINS THE HOURS AT WHICH YSTATS
! VECTOR WILL BE WRITTEN TO FILE
J=0
DO I=1,24,4 ! I=1,5,9,13,17,21
J=J+1
TOUTPUT(J)=DBLE(I)/24.
END DO
!4.2 OPEN OUTPUT FILES
OPEN(FILE='ystats.out',UNIT=13,STATUS='UNKNOWN',FORM='UNFORMATTED')
OPEN(FILE='ytime.out',UNIT=10,STATUS='UNKNOWN')
OPEN(FILE='ytime_all.out',UNIT=11,STATUS='UNKNOWN')
OPEN(FILE='innov_stats.out',UNIT=12,STATUS='UNKNOWN')
! OPEN(FILE='tbraw_t.out',UNIT=14,STATUS='UNKNOWN')
!4.3 LOOP OVER DATA, WRITING OUTPUT CORRESPONDING TO TOUTPUT
DO T=1,N_M+N_T+1
!ASSUME THAT WE ARE NOT AT AN OUTPUT TIME, THEN IF THE FRACTION PART OF
! THE SERIAL DATE IN YTIME MATCHES AN OUTPUT TIME, SET OUTPUT = .TRUE.
OUTPUT=.FALSE.
DO I=1,6
! THIS REPRESENTS THE DIFFERENCE BETWEEN THE FRACTION PORTION OF YTIME
! AND THE TOUTPUT TIME. TO BE USED IN THE TEST OF WHETHER IT IS AN
! OUTPUT TIME.
DIFF=ABS(YTIME(T)-INT(YTIME(T))-TOUTPUT(I))
IF(DIFF.LT.1E-5) OUTPUT=.TRUE.
END DO
IF(OUTPUT.EQ..TRUE.) THEN
DO I=1,4
WRITE(13) (YSTATS(J,T,I),J=1,N_Y)
END DO
WRITE(10,*) YTIME(T)
END IF
WRITE(11,*) YTIME(T) !THIS CONTAINS ALL OF THE TIME INDECES
END DO
!4.4 WRITE OUT SOME INNOVATION STATISTICS
DO I=1,N_M
WRITE(12,'(5(E14.6))') INNOV_2MOM(I),TR_ERR(I),ABS_TR_ERR(I),&
REL_L1_NORM(I),NU_BAR(I)
END DO
!4.5 WRITE OUT ZOUT AND TBRAW
! DO I=1,N_RL
! WRITE(9) (Z(J,I),J=1,N_Z)
! END DO
! DO I=1,N_YP*N_ZP(1)
! WRITE(14,'(F10.3,1X,F10.3,1X,F10.3,1X,F10.3)') (TBRAW(I,J),J=1,N_RL)
! END DO
CLOSE(9) !CLOSE
CLOSE(10)!CLOSE YTIME FILE
CLOSE(11)!CLOSE FILE FOR ALL YTIME INDECES
CLOSE(12)!CLOSE INNOVATIONS FILE
CLOSE(13)!CLOSE YSTATISTICS FILE
END IF
! do i=1,n_zp(1)*n_yp
! write(14,('//trim(step)//F15.7')) (tb_output(i,j),j=1,n_m)
! end do
CLOSE(15) !FILE FOR MEASUREMENT INNOVATIONS
close(14)
deallocate(run_pix)
!CALL MPE_FINISH_LOG('enkf_mpe')
CALL MPI_FINALIZE(IERR)
END PROGRAM ENKF