-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
122 lines (91 loc) · 4.12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
def __init__(self, hidden_size, batch_first=False):
super(Attention, self).__init__()
self.hidden_size = hidden_size
self.batch_first = batch_first
self.att_weights = nn.Parameter(torch.Tensor(1, hidden_size), requires_grad=True)
stdv = 1.0 / np.sqrt(self.hidden_size)
for weight in self.att_weights:
nn.init.uniform_(weight, -stdv, stdv)
def get_mask(self):
pass
def forward(self, inputs, lengths):
if self.batch_first:
batch_size, max_len = inputs.size()[:2]
else:
max_len, batch_size = inputs.size()[:2]
# apply attention layer
weights = torch.bmm(inputs,
self.att_weights # (1, hidden_size)
.permute(1, 0) # (hidden_size, 1)
.unsqueeze(0) # (1, hidden_size, 1)
.repeat(batch_size, 1, 1) # (batch_size, hidden_size, 1)
)
attentions = torch.softmax(F.relu(weights.squeeze()), dim=-1)
# create mask based on the sentence lengths
mask = torch.ones(attentions.size(), requires_grad=True).cuda()
# mask = torch.ones(attentions.size(), requires_grad=True)
for i, l in enumerate(lengths): # skip the first sentence
if l < max_len:
mask[i, l:] = 0
# apply mask and renormalize attention scores (weights)
masked = attentions * mask
_sums = masked.sum(-1).unsqueeze(-1) # sums per row
attentions = masked.div(_sums)
if attentions.dim() == 1:
attentions = attentions.unsqueeze(1)
# apply attention weights
weighted = torch.mul(inputs, attentions.unsqueeze(-1).expand_as(inputs))
# get the final fixed vector representations of the sentences
representations = weighted.sum(1).squeeze()
return representations, attentions
class MyLSTM(nn.Module):
def __init__(self, embedding_dim=768, hidden_dim=128, lstm_layer=2, dropout=0.2):
super(MyLSTM, self).__init__()
self.dropout = nn.Dropout(p=dropout)
self.embedding_dim = embedding_dim
self.lstm1 = nn.LSTM(input_size=self.embedding_dim,
hidden_size=hidden_dim,
num_layers=lstm_layer,
bidirectional=True)
self.atten1 = Attention(hidden_dim * 2, batch_first=True) # 2 is bidrectional
def forward(self, x, x_len):
x = self.dropout(x)
x = nn.utils.rnn.pack_padded_sequence(x, x_len, batch_first=True, enforce_sorted=False)
out, (h_n, c_n) = self.lstm1(x)
x, lengths = nn.utils.rnn.pad_packed_sequence(out, batch_first=True)
# print(x.shape)
x, _ = self.atten1(x, lengths) # skip connect
return x, _
class AdvRedditModel(nn.Module):
def __init__(self, embedding_dim=768, hidden_dim=128, lstm_layer=2, dropout=0.2, eps=0.05):
super(AdvRedditModel, self).__init__()
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.dropout = nn.Dropout(p=dropout)
self.eps = eps
self.fc_1 = nn.Linear(hidden_dim * 2, hidden_dim * 2)
self.fc_2 = nn.Linear(hidden_dim * 2, 5)
self.historic_model = MyLSTM(self.embedding_dim, self.hidden_dim, lstm_layer, dropout)
def get_pred(self, feat):
feat = self.fc_1(self.dropout(feat))
return self.fc_2(feat)
def forward(self, tweets, lengths, labels):
h, _ = self.historic_model(tweets, lengths)
if h.dim() == 1:
h = h.unsqueeze(0)
e = self.get_pred(h)
adv_ex = None
if self.training:
pred_loss = F.cross_entropy(e, labels, reduction='sum')
h.retain_grad()
pred_loss.backward(retain_graph=True)
grad = h.grad.detach()
grad = F.normalize(grad, dim=0)
adv = h + self.eps * grad
adv_ex = self.get_pred(adv)
return e, adv_ex