Skip to content
This repository has been archived by the owner on Sep 18, 2024. It is now read-only.

ModelSpeedup error: assert len(set(num_channels_list)) == 1, possible incorrect layers in dependency set #5736

Open
saravanabalagi opened this issue Jan 17, 2024 · 1 comment · May be fixed by #5751

Comments

@saravanabalagi
Copy link

saravanabalagi commented Jan 17, 2024

ModelSpeedup does not alter the model successfully for a model with 3 successive conv blocks.

Environment:

  • NNI version: 3.0
  • Python version: 3.8.16
  • PyTorch version: 1.13.0
  • Cpu or cuda version: CUDA 11.6

Reproduce the problem

  • create a model and config with desired sparsity_ratio
  • obtain pruning masks using L1NormPruner
  • call ModelSpeedup with batch_size parameter
Minimal Code
# %%
import torch
import torch.nn as nn

from nni.compression.pruning import L1NormPruner
from nni.compression.utils import auto_set_denpendency_group_ids
from nni.compression.speedup import ModelSpeedup

# %%
class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 40, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(40)
        self.relu1 = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(40, 80, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(80)
        self.relu2 = nn.ReLU(inplace=True)
        self.conv3 = nn.Conv2d(80, 1, kernel_size=3, padding=1)
        self.bn3 = nn.BatchNorm2d(1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.conv3(x)
        x = self.bn3(x)
        return x
    
model = ConvNet()
num_params_unpruned = sum(p.numel() for p in model.parameters())
dummy_input = torch.randn(1, 3, 32, 32)
dummy_output = model(dummy_input)
print(dummy_output.shape)

# %%
sparsity_ratio = 0.5
config_list = [{
    'op_types': ['Conv2d'],
    'sparse_ratio': sparsity_ratio,
}]
config_list = auto_set_denpendency_group_ids(model, config_list, [dummy_input])
pruner = L1NormPruner(model, config_list)
_, masks = pruner.compress()
pruner.unwrap_model()
model = ModelSpeedup(model, [dummy_input], masks, garbage_collect_values=False).speedup_model()

# %%
num_params_pruned = sum(p.numel() for p in model.parameters())
print(f'Number of parameters before pruning: {num_params_unpruned}')
print(f'Number of parameters after pruning: {num_params_pruned}')

num_params_diff = num_params_unpruned - num_params_pruned
prune_ratio = num_params_diff / num_params_unpruned
print(f'Number of parameters pruned: {num_params_diff}')
print(f'Parameter ratio: {(1-prune_ratio)*100:.2f}%')

Error:

Assertion error: number of channels in same set should be identical

Error Trace
---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
Cell In[108], line 1
----> 1 model = ModelSpeedup(model, [dummy_input], masks, garbage_collect_values=False).speedup_model()

File /usr/local/lib/python3.8/dist-packages/nni/compression/speedup/model_speedup.py:429, in ModelSpeedup.speedup_model(self)
    427 self.logger.info('Resolve the mask conflict before mask propagate...')
    428 # fix_mask_conflict(self.masks, self.graph_module, self.dummy_input)
--> 429 self.fix_mask_conflict()
    430 self.logger.info('Infer module masks...')
    431 self.initialize_propagate(self.dummy_input)

File /usr/local/lib/python3.8/dist-packages/nni/compression/speedup/model_speedup.py:243, in ModelSpeedup.fix_mask_conflict(self)
    241 def fix_mask_conflict(self):
    242     fix_group_mask_conflict(self.graph_module, self.masks)
--> 243     fix_channel_mask_conflict(self.graph_module, self.masks)
    244     fix_weight_sharing_mask_conflict(self.graph_module, self.masks)

File /usr/local/lib/python3.8/dist-packages/nni/compression/speedup/mask_conflict.py:296, in fix_channel_mask_conflict(graph_module, masks)
    294 num_channels_list = [len(x) for x in channel_masks if x is not None]
    295 # number of channels in same set should be identical
--> 296 assert len(set(num_channels_list)) == 1
    297 num_channels = num_channels_list[0]
    299 for i, dim_mask in enumerate(channel_masks):

AssertionError: 

The same code works fine without self.conv3 and self.bn3.

@saravanabalagi
Copy link
Author

The error is thrown specifically when the output channels of the last layer is 1, even when there are 2 successive conv blocks:

class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.relu = nn.ReLU(inplace=True)
        self.conv1 = nn.Conv2d(3, 6, kernel_size=3, padding=1)
        self.bn1 = nn.BatchNorm2d(6)
        self.conv2 = nn.Conv2d(6, 1, kernel_size=3, padding=1)
        self.bn2 = nn.BatchNorm2d(1)


    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.bn2(x)
        return x

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

1 participant