-
Notifications
You must be signed in to change notification settings - Fork 455
/
prepare_train_data.py
888 lines (778 loc) · 35.3 KB
/
prepare_train_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
#
# !/usr/bin/env python
# -*- coding: utf-8 -*-
import jieba
import json
import numpy as np
import os
import re
import random
import pypinyin
import shutil
from pypinyin import lazy_pinyin, Style
from tqdm.auto import tqdm
from utils import special_tokens, get_sentence_pinyin_finals
def get_shuffled_samples(a, b, c, d, e):
length = len(a)
flag = [1, 1, 1, 1]
if b == []:
b = np.zeros(length)
flag[0] = 0
if c == []:
c = np.zeros(length)
flag[1] = 0
if d == []:
d = np.zeros(length)
flag[2] = 0
if e == []:
e = np.zeros(length)
flag[3] = 0
samples = list(zip(a, b, c, d, e))
random.shuffle(samples)
a, b, c, d, e = zip(*samples)
if flag[0] == 0:
b = None
if flag[1] == 0:
c = None
if flag[2] == 0:
d = None
if flag[3] == 0:
e = None
return a, b, c, d, e
def remove_prefix(text, prefix):
while text.startswith(prefix):
text = text[len(prefix):]
return text
def remove_suffix(text, suffix):
while text.endswith(suffix):
text = text[:-len(suffix)]
return text
def segment_text(lines):
# jieba.enable_paddle()
# l = ' '.join(jieba.lcut(lines[0], use_paddle=True))
# print(l)
all_len = len(lines)
k = 0
for i in range(all_len):
try:
line = ' '.join(jieba.lcut(lines[i]))
lines[i] = line
except Exception:
k += 1
print(line)
print(f'{k}/{all_len}')
return lines
def build_files_separate(num_pieces,
stride,
min_length,
lines=None,
finals=None,
sentences=None,
pos=None,
beats=None,
tokenized_data_path=None,
finalized_data_path=None,
sentenced_data_path=None,
posed_data_path=None,
beated_data_path=None,
full_tokenizer=None,
full_finalizer=None,
full_sentencer=None,
full_poser=None,
full_beater=None,
enable_final=False,
enable_sentence=False,
enable_pos=False,
enable_beat=False,
segment=False):
print('Start tokenizing..')
assert len(lines) == len(finals) == len(sentences)
if segment:
lines = segment_text(lines)
path = tokenized_data_path.rsplit('/', 1)[0]
if not os.path.exists(path):
os.mkdir(path)
print(f'#lines: {len(lines)}')
if not os.path.exists(tokenized_data_path):
os.mkdir(tokenized_data_path)
if enable_final:
print(f'#finals: {len(finals)}')
if not os.path.exists(finalized_data_path):
os.mkdir(finalized_data_path)
if enable_sentence:
print(f'#sentences: {len(sentences)}')
if not os.path.exists(sentenced_data_path):
os.mkdir(sentenced_data_path)
if enable_pos:
print(f'#pos: {len(pos)}')
if not os.path.exists(posed_data_path):
os.mkdir(posed_data_path)
if enable_beat:
print(f'#beats: {len(beats)}')
if not os.path.exists(beated_data_path):
os.mkdir(beated_data_path)
all_len = len(lines)
for k in range(num_pieces):
max_length = stride - 2
print(max_length)
for i in range(len(lines)):
line = lines[i]
if len(line) > min_length:
line = full_tokenizer.tokenize(line)
line = full_tokenizer.convert_tokens_to_ids(line)
line_length = len(line)
skip = full_tokenizer.convert_tokens_to_ids('[SKIP]')
skips = [skip] * max_length
if line_length >= max_length:
line = line[0:max_length]
else:
skips[0:line_length] = line[0:line_length]
line = skips
if enable_final:
final = finals[i]
final = full_finalizer.tokenize(final)
final = full_finalizer.convert_tokens_to_ids(final)
skip = full_finalizer.convert_tokens_to_ids('[SKIP]')
skips = [skip] * max_length
if line_length >= max_length:
final = final[0:max_length]
else:
skips[0:line_length] = final[0:line_length]
final = skips
assert len(final) == len(line)
if enable_sentence:
sentence = sentences[i]
sentence = full_sentencer.tokenize(sentence)
sentence = full_sentencer.convert_tokens_to_ids(sentence)
skip = full_sentencer.convert_tokens_to_ids('[SKIP]')
skips = [skip] * max_length
if line_length >= max_length:
sentence = sentence[0:max_length]
else:
skips[0:line_length] = sentence[0:line_length]
sentence = skips
assert len(sentence) == len(line)
if enable_pos:
p = pos[i]
p = full_poser.tokenize(p)
p = full_poser.convert_tokens_to_ids(p)
skip = full_poser.convert_tokens_to_ids('[SKIP]')
skips = [skip] * max_length
if line_length >= max_length:
p = p[0:max_length]
else:
skips[0:line_length] = p[0:line_length]
p = skips
assert len(p) == len(line)
if enable_beat:
beat = beats[i]
beat = full_beater.tokenize(beat)
beat = full_beater.convert_tokens_to_ids(beat)
skip = full_beater.convert_tokens_to_ids('[SKIP]')
skips = [skip] * max_length
if line_length >= max_length:
beat = beat[0:max_length]
else:
skips[0:line_length] = beat[0:line_length]
beat = skips
assert len(beat) == len(line)
lines[i] = line
if enable_final:
finals[i] = final
if enable_sentence:
sentences[i] = sentence
if enable_pos:
pos[i] = p
if enable_beat:
beats[i] = beat
full_line, full_final, full_sentence, full_pos, full_beat = [], [], [], [], []
for i in range(len(lines)):
mask = full_tokenizer.convert_tokens_to_ids('[MASK]')
clss = full_tokenizer.convert_tokens_to_ids('[CLS]')
full_line.append(mask) # start of the document
full_line.extend(lines[i])
full_line.append(clss) # end of the document
if enable_final:
mask = full_finalizer.convert_tokens_to_ids('[MASK]')
clss = full_finalizer.convert_tokens_to_ids('[CLS]')
full_final.append(mask) # start of the document
full_final.extend(finals[i])
full_final.append(clss) # end of the document
if enable_sentence:
mask = full_sentencer.convert_tokens_to_ids('[MASK]')
clss = full_sentencer.convert_tokens_to_ids('[CLS]')
full_sentence.append(mask) # start of the document
full_sentence.extend(sentences[i])
full_sentence.append(clss) # end of the document
if enable_pos:
mask = full_poser.convert_tokens_to_ids('[MASK]')
clss = full_poser.convert_tokens_to_ids('[CLS]')
full_pos.append(mask) # start of the document
full_pos.extend(pos[i])
full_pos.append(clss) # end of the document
if enable_beat:
mask = full_beater.convert_tokens_to_ids('[MASK]')
clss = full_beater.convert_tokens_to_ids('[CLS]')
full_beat.append(mask) # start of the document
full_beat.extend(beats[i])
full_beat.append(clss) # end of the document
if enable_final:
assert len(full_line) == len(full_final), f'line: {len(full_line)}, final: {len(full_final)}'
if enable_sentence:
assert len(full_line) == len(full_sentence), f'line: {len(full_line)}, sentence: {len(full_sentence)}'
if enable_pos:
assert len(full_line) == len(full_pos), f'line: {len(full_line)}, pos: {len(full_pos)}'
if enable_beat:
assert len(full_line) == len(full_beat), f'line: {len(full_line)}, beat: {len(full_beat)}'
with open(os.path.join(tokenized_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_line:
f.write(str(idx) + ' ')
if enable_final:
with open(os.path.join(finalized_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_final:
f.write(str(idx) + ' ')
if enable_sentence:
with open(os.path.join(sentenced_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_sentence:
f.write(str(idx) + ' ')
if enable_pos:
with open(os.path.join(posed_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_pos:
f.write(str(idx) + ' ')
if enable_beat:
with open(os.path.join(beated_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_beat:
f.write(str(idx) + ' ')
print('finish')
def build_files(num_pieces,
min_length,
lines=None,
finals=None,
sentences=None,
pos=None,
beats=None,
tokenized_data_path=None,
finalized_data_path=None,
sentenced_data_path=None,
posed_data_path=None,
beated_data_path=None,
full_tokenizer=None,
full_finalizer=None,
full_sentencer=None,
full_poser=None,
full_beater=None,
enable_final=False,
enable_sentence=False,
enable_pos=False,
enable_beat=False,
segment=False):
print('Start tokenizing..')
assert len(lines) == len(finals) == len(sentences)
if segment:
lines = segment_text(lines)
path = tokenized_data_path.rsplit('/', 1)[0]
if not os.path.exists(path):
os.mkdir(path)
print(f'#lines: {len(lines)}')
if not os.path.exists(tokenized_data_path):
os.mkdir(tokenized_data_path)
if enable_final:
print(f'#finals: {len(finals)}')
if not os.path.exists(finalized_data_path):
os.mkdir(finalized_data_path)
if enable_sentence:
print(f'#sentences: {len(sentences)}')
if not os.path.exists(sentenced_data_path):
os.mkdir(sentenced_data_path)
if enable_pos:
print(f'#pos: {len(pos)}')
if not os.path.exists(posed_data_path):
os.mkdir(posed_data_path)
if enable_beat:
print(f'#beats: {len(beats)}')
if not os.path.exists(beated_data_path):
os.mkdir(beated_data_path)
all_len = len(lines)
for k in tqdm(range(num_pieces)):
sublines = lines[all_len // num_pieces * k: all_len // num_pieces * (k + 1)]
if k == num_pieces - 1:
sublines.extend(lines[all_len // num_pieces * (k + 1):]) # put the last documents to the last piece
if enable_final:
subfinals = finals[all_len // num_pieces * k: all_len // num_pieces * (k + 1)]
if k == num_pieces - 1:
subfinals.extend(finals[all_len // num_pieces * (k + 1):]) # put the last documents to the last piece
if enable_sentence:
subsentences = sentences[all_len // num_pieces * k: all_len // num_pieces * (k + 1)]
if k == num_pieces - 1:
subsentences.extend(sentences[all_len // num_pieces * (k + 1):]) # put the last documents to the last piece
if enable_pos:
subpos = pos[all_len // num_pieces * k: all_len // num_pieces * (k + 1)]
if k == num_pieces - 1:
subpos.extend(pos[all_len // num_pieces * (k + 1):]) # put the last documents to the last piece
if enable_beat:
subbeats = beats[all_len // num_pieces * k: all_len // num_pieces * (k + 1)]
if k == num_pieces - 1:
subbeats.extend(beats[all_len // num_pieces * (k + 1):]) # put the last documents to the last piece
for i in range(len(sublines)):
line = sublines[i]
if len(line) > min_length:
line = full_tokenizer.tokenize(line)
line = full_tokenizer.convert_tokens_to_ids(line)
if enable_final:
final = subfinals[i]
final = full_finalizer.tokenize(final)
final = full_finalizer.convert_tokens_to_ids(final)
assert len(final) == len(line)
if enable_sentence:
sentence = subsentences[i]
sentence = full_sentencer.tokenize(sentence)
sentence = full_sentencer.convert_tokens_to_ids(sentence)
assert len(sentence) == len(line)
if enable_pos:
p = subpos[i]
p = full_poser.tokenize(p)
p = full_poser.convert_tokens_to_ids(p)
assert len(p) == len(line)
if enable_beat:
beat = subbeats[i]
beat = full_beater.tokenize(beat)
beat = full_beater.convert_tokens_to_ids(beat)
assert len(beat) == len(line)
sublines[i] = line
if enable_final:
subfinals[i] = final
if enable_sentence:
subsentences[i] = sentence
if enable_pos:
subpos[i] = p
if enable_beat:
subbeats[i] = beat
full_line, full_final, full_sentence, full_pos, full_beat = [], [], [], [], []
for i in range(len(sublines)):
mask = full_tokenizer.convert_tokens_to_ids('[MASK]')
clss = full_tokenizer.convert_tokens_to_ids('[CLS]')
full_line.append(mask) # start of the document
full_line.extend(sublines[i])
full_line.append(clss) # end of the document
if enable_final:
mask = full_finalizer.convert_tokens_to_ids('[MASK]')
clss = full_finalizer.convert_tokens_to_ids('[CLS]')
full_final.append(mask) # start of the document
full_final.extend(subfinals[i])
full_final.append(clss) # end of the document
if enable_sentence:
mask = full_sentencer.convert_tokens_to_ids('[MASK]')
clss = full_sentencer.convert_tokens_to_ids('[CLS]')
full_sentence.append(mask) # start of the document
full_sentence.extend(subsentences[i])
full_sentence.append(clss) # end of the document
if enable_pos:
mask = full_poser.convert_tokens_to_ids('[MASK]')
clss = full_poser.convert_tokens_to_ids('[CLS]')
full_pos.append(mask) # start of the document
full_pos.extend(subpos[i])
full_pos.append(clss) # end of the document
if enable_beat:
mask = full_beater.convert_tokens_to_ids('[MASK]')
clss = full_beater.convert_tokens_to_ids('[CLS]')
full_beat.append(mask) # start of the document
full_beat.extend(subbeats[i])
full_beat.append(clss) # end of the document
if enable_final:
assert len(full_line) == len(full_final), f'line: {len(full_line)}, final: {len(full_final)}'
if enable_sentence:
assert len(full_line) == len(full_sentence), f'line: {len(full_line)}, sentence: {len(full_sentence)}'
if enable_pos:
assert len(full_line) == len(full_pos), f'line: {len(full_line)}, pos: {len(full_pos)}'
if enable_beat:
assert len(full_line) == len(full_beat), f'line: {len(full_line)}, beat: {len(full_beat)}'
with open(os.path.join(tokenized_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_line:
f.write(str(idx) + ' ')
if enable_final:
with open(os.path.join(finalized_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_final:
f.write(str(idx) + ' ')
if enable_sentence:
with open(os.path.join(sentenced_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_sentence:
f.write(str(idx) + ' ')
if enable_pos:
with open(os.path.join(posed_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_pos:
f.write(str(idx) + ' ')
if enable_beat:
with open(os.path.join(beated_data_path, 'tokenized_train_{}.txt'.format(k)), 'w') as f:
for idx in full_beat:
f.write(str(idx) + ' ')
print('finish')
""" Processing Lyrics Data """
def process_lyric(ins_path='data/lyrics/RAP_DATASET_LYRIC/', out_path='data/lyrics/RAP_DATASET_LYRIC_valid/', invalid_songs=set([])):
"""
preprocssing lyrics: remove non-lyric symbols, remove empty lines.
homepath = '/ssddata/lxueaa/controllable-text-generation/data'
lyric_base = f'{homepath}/lyrics/RAP_DATASET_LYRIC'
:return: list of invalid song path
"""
i = 0 # total num
j = 0 # number of empty songs
# enumerate singers
for rap_name in os.listdir(ins_path):
rap_path = os.path.join(ins_path, rap_name)
if os.path.isdir(rap_path):
# enumerate album dirs
for s_name in os.listdir(rap_path):
s_path = os.path.join(rap_path, s_name)
if os.path.isdir(s_path):
# enumerate songs
for song_name in os.listdir(s_path):
i += 1
lyric_path = os.path.join(s_path, song_name, f'{song_name}_content.txt')
if os.path.exists(lyric_path):
finals_path = os.path.join(s_path, song_name, f'{song_name}_finals.txt')
with open(finals_path, 'w') as of:
with open(lyric_path) as f:
for line in f:
r = line.index(']')
time = line[:r+1]
content = line[r:]
finals = get_sentence_pinyin_finals(content)
finals = ' '.join(finals).rstrip(' \r\n')
of.write(f'{time + finals}\n')
else:
j += 1
invalid_songs.add(lyric_path)
print(f'End. Total songs: {i}, invalid songs: {j}, left songs: {i - j}')
return invalid_songs
def read_lyrics(root_path, reverse=False):
out_path = os.path.join(root_path, 'train')
if not os.path.exists(out_path):
os.makedirs(out_path)
# check whether preprocessed cache exists or not
lines = []
finals = []
sentences = []
pos = []
beats = []
reverse_str = '_reverse' if reverse else ''
out_content_path = f'{out_path}/content{reverse_str}.json'
out_finals_path = f'{out_path}/finals{reverse_str}.json'
out_sentences_path = f'{out_path}/sentences{reverse_str}.json'
out_pos_path = f'{out_path}/pos{reverse_str}.json'
out_beats_path = f'{out_path}/beats{reverse_str}.json'
# read cached data
if os.path.exists(out_content_path) and os.path.exists(out_sentences_path) and \
os.path.exists(out_finals_path) and os.path.exists(out_pos_path) and \
os.path.exists(out_beats_path):
# load cached data
with open(out_content_path, encoding='utf8') as ins:
for line in ins:
lines.append(line)
with open(out_finals_path, encoding='utf8') as ins:
for line in ins:
finals.append(line)
with open(out_sentences_path, encoding='utf8') as ins:
for line in ins:
sentences.append(line)
with open(out_pos_path, encoding='utf8') as ins:
for line in ins:
pos.append(line)
with open(out_beats_path, encoding='utf8') as ins:
for line in ins:
beats.append(line)
return lines, finals, sentences, pos, beats
# If not exists, to preprocess data
# process new data
print('Start to read processed lyrics from dataset....')
ins_path = os.path.join(root_path, 'lyrics.json')
with open(ins_path, encoding='utf8') as ins:
# enumerate each line in the file
# each line is an article
i = j = 0
for line in ins:
song = eval(json.loads(line))
# print(type(song))
if song['valid']:
if not reverse:
lines.append(song['lyric'])
finals.append(song['vowel'])
pos.append(song['pos'])
beats.append(song['beat'])
else:
lines.append(song['lyric-reverse'])
finals.append(song['vowel-reverse'])
pos.append(song['pos-reverse'])
beats.append(song['beat-reverse'])
sentences.append(song['sentence'])
i += 1
else:
# print(l)
j += 1
print(f'valid: {i}, invalid: {j}')
with open(out_content_path, mode='w', encoding='utf8') as f:
for line in lines:
f.write(f'{line}\n')
with open(out_finals_path, mode='w', encoding='utf8') as f:
for final in finals:
f.write(f'{final}\n')
with open(out_sentences_path, mode='w', encoding='utf8') as f:
for sentence in sentences:
f.write(f'{sentence}\n')
with open(out_pos_path, mode='w', encoding='utf8') as f:
for p in pos:
f.write(f'{p}\n')
with open(out_beats_path, mode='w', encoding='utf8') as f:
for beat in beats:
f.write(f'{beat}\n')
return lines, finals, sentences, pos, beats
def get_beat_token(cnt, line):
lines = line.split()
beat = ['0'] * len(lines)
for idx, item in enumerate(lines):
if item == '[BEAT]':
cnt += 1
beat[idx] = str(cnt)
beat = ' '.join(beat) + ' '
return cnt, beat
def get_inner_pos(line):
lines = line.split()
pos = ['0'] * len(lines)
cnt = 0
for idx, item in enumerate(lines):
if item in special_tokens:
pos[idx] = item
else:
pos[idx] = str(cnt)
cnt += 1
pos = ' '.join(pos) + ' '
return pos
def parse_lyric(l_content_path, l_finals_path, with_beat=False, beat_mode=0):
lyric = ''
lyric_reverse = ''
sentence = ''
with open(l_content_path) as f:
num_line = 0
valid = False
for line in f:
# line format: [00:12.338]rap god rap gpd
if ']' in line:
j = line.index(']')
line = line[j + 1:]
if beat_mode == 1 and num_line == 0:
tempo = line[:3]
line = line[3:]
# ignore begin lines
if ':' in line or ':' in line:
continue
if with_beat:
line = line.strip(' \r\n').lstrip(' ')
if beat_mode == 1:
line_reverse = '[BEAT]'.join(line[::-1].split(']TAEB['))
if num_line == 0:
line = tempo + line
line_reverse = tempo + line_reverse
elif beat_mode == 2:
line_reverse = line[::-1]
line_reverse = '[S]'.join(line_reverse.split(']S['))
line_reverse = '[M]'.join(line_reverse.split(']M['))
line_reverse = '[F]'.join(line_reverse.split(']F['))
else:
line_reverse = '[BEAT]'.join(line[::-1].split(']TAEB['))
else:
line = line.strip(' \r\n')
line_reverse = line[::-1]
line = re.sub('\s+', '[PAD]', line)
line_reverse = re.sub('\s+', '[PAD]', line_reverse)
assert len(line) == len(line_reverse)
if len(line) == 0: # end of block
if len(lyric) > 0: # not start of the file
continue
else:
line_reverse += '[SEP]'
line += '[SEP]'
nSEP = len(re.findall('\[SEP\]', line))
nPAD = len(re.findall('\[PAD\]', line))
if with_beat:
nBEAT = len(re.findall('\[BEAT\]', line))
if beat_mode != 0:
nSMF = len(re.findall('\[S\]', line)) + \
len(re.findall('\[M\]', line)) + \
len(re.findall('\[F\]', line))
else:
nSMF = 0
nids = len(line) - 4 * (nSEP + nPAD) - 5 * nBEAT - 2 * nSMF
else:
nids = len(line) - 4 * (nSEP + nPAD)
ids = [str(num_line) for k in range(nids)]
sentence += ' '.join(ids) + ' '
num_line += 1
lyric += line
lyric_reverse += line_reverse
final = final_reverse = ''
innerpos = innerpos_reverse = ''
beat = beat_reverse = ''
cnt = rcnt = 0
with open(l_finals_path) as f:
num_line = 0
for line in f:
# line format: [00:12.338]rap god rap god
if ']' in line:
i = line.index(']')
line = line[i + 1:]
if beat_mode == 1 and num_line == 0:
tempo = line[:4]
line = line[4:]
# ignore begin lines
if ':' in line or ':' in line:
continue
if with_beat:
line = remove_prefix(line.strip(' \r\n'), '[SEP] ')
line = remove_prefix(line, '[PAD] ')
line = remove_suffix(line, ' [PAD]')
line = remove_suffix(line, '[PAD]')
line = remove_suffix(line, ' [SEP]')
line = re.sub('(\[SEP\])', '[PAD]', line)
line = re.sub('(\[PAD\]\s)+', '[PAD] ', line)
if line == '[PAD]':
continue
line = ' '.join(line.split())
else:
line = line.strip(' \r\n')
line_reverse = ' '.join(line.split()[::-1])
if beat_mode == 1 and num_line == 0:
line = tempo + ' ' + line
line_reverse = tempo + ' ' + line_reverse
if len(line) == 0: # end of block
if len(final) > 0: # not start of the file
continue
else:
line_reverse += ' [SEP] '
line += ' [SEP] '
num_line += 1
if with_beat:
cnt, lbeat = get_beat_token(cnt, line)
rcnt, lbeat_reverse = get_beat_token(rcnt, line_reverse)
lpos = get_inner_pos(line)
lpos_reverse = get_inner_pos(line_reverse)
final += line
final_reverse += line_reverse
if with_beat:
beat += lbeat
beat_reverse += lbeat_reverse
innerpos += lpos
innerpos_reverse += lpos_reverse
lyric, final, sentence, innerpos = lyric.strip(' \n'), final.strip(' \n'), sentence.strip(' \n'), innerpos.strip(' \n')
lyric_reverse, final_reverse, innerpos_reverse = lyric_reverse.strip(' \n'), final_reverse.strip(' \n'), innerpos_reverse.strip(' \n')
if with_beat:
beat, beat_reverse = beat.strip(' \n'), beat_reverse.strip(' \n')
len_lyric = len(lyric) - \
4 * (len(re.findall('\[SEP\]', lyric)) + len(re.findall('\[PAD\]', lyric))) - \
5 * len(re.findall('\[BEAT\]', lyric)) - \
2 * (len(re.findall('\[S\]', lyric)) + len(re.findall('\[M\]', lyric)) + len(re.findall('\[F\]', lyric)))
len_final = len(final.split())
len_sentence = len(sentence.split())
try:
assert len_lyric == len_final == len_sentence
except Exception:
print(len_lyric, len_final, len_sentence)
print(lyric)
print(final)
print(l_content_path)
return
if num_line > 4:
valid = True
return lyric, lyric_reverse, final, final_reverse, sentence, innerpos, innerpos_reverse, beat, beat_reverse, valid, num_line
def prepare_lyrics(ins_path, out_path, with_beat=False, beat_mode=0):
if not os.path.exists(out_path):
os.makedirs(out_path)
out_path = os.path.join(out_path, 'lyrics.json')
if os.path.exists(out_path):
while True:
ins = input('Found cached files...Continue to overwrite? (Y/N)\n')
if ins == 'Y':
print('Start to reprocess raw data...')
break
elif ins == 'N':
print('Use cached files.')
return
else:
print('Invalid inputs.')
with open(out_path, 'w', encoding='utf8') as outs:
l_info = {} # lyric info
# enumerate singers
i = 0 # total num
j = 0 # number of empty songs
max_num_lines = 0
for s_path in os.listdir(ins_path):
l_info['singer'] = s_path
s_path = os.path.join(ins_path, s_path)
if os.path.isdir(s_path):
# enumerate album
for a_path in os.listdir(s_path):
l_info['album'] = a_path
a_path = os.path.join(s_path, a_path)
if os.path.isdir(a_path):
# enumerate songs
for l_path in os.listdir(a_path):
l_file_name = l_path
l_path = os.path.join(a_path, l_path)
if os.path.isdir(l_path):
# enumerate lyric
for l_song in os.listdir(l_path):
l_info['song'] = l_file_name # remove '_content.txt' extension
if with_beat:
if beat_mode == 0:
if l_song != 'mapped_final_with_beat.txt':
continue
l_content_path = os.path.join(l_path, 'lyric_with_beat.txt')
l_finals_path = os.path.join(l_path, 'mapped_final_with_beat.txt')
elif beat_mode == 1:
if l_song != 'mapped_final_with_beat_global.txt':
continue
l_content_path = os.path.join(l_path, 'lyric_with_beat_global.txt')
l_finals_path = os.path.join(l_path, 'mapped_final_with_beat_global.txt')
elif beat_mode == 2:
if l_song != 'mapped_final_with_beat_local.txt':
continue
l_content_path = os.path.join(l_path, 'lyric_with_beat_local.txt')
l_finals_path = os.path.join(l_path, 'mapped_final_with_beat_local.txt')
else:
# if l_song[-5] != 't':
if l_song != 'mapped_final_with_beat.txt':
continue
# l_content_path = os.path.join(l_path, l_file_name+'_content.txt')
# l_finals_path = os.path.join(l_path, l_file_name+'_mapped_finals.txt')
l_content_path = os.path.join(l_path, 'lyric_with_beat.txt')
l_finals_path = os.path.join(l_path, 'mapped_final_with_beat.txt')
if os.path.isfile(l_content_path):
l_info['lyric'], l_info['lyric-reverse'], l_info['vowel'], \
l_info['vowel-reverse'], l_info['sentence'], l_info['pos'], \
l_info['pos-reverse'], l_info['beat'], l_info['beat-reverse'], \
l_info['valid'], num_lines = parse_lyric(l_content_path, l_finals_path, with_beat, beat_mode)
# print(l_info)
if max_num_lines < num_lines:
max_num_lines = num_lines
l_info_str = str(l_info)
outs.write(f'{json.dumps(l_info_str, ensure_ascii=False)}\n')
if not l_info['valid']:
j += 1
i += 1
if i % 1000 == 0:
print(f'Processed songs:{i}', end='\r', flush=True)
print(f'End. Total songs: {i}, invalid songs: {j}, left songs: {i - j}, max line in song: {max_num_lines}.')
if __name__ == '__main__':
prepare_lyrics(ins_path='data/lyrics/lyrics_with_finals_large',
out_path='data/lyrics/lyrics/lyrics',
with_beat=False,
beat_mode=0)
read_lyrics(path='data/lyrics/lyrics',
out_content_path='data/lyrics/lyrics/train/content',
out_finals_path='data/lyrics/lyrics/train/finals',
out_sentences_path='data/lyrics/lyrics/train/sentences',
out_pos_path='data/lyrics/lyrics/train/pos',
out_beats_path='data/lyrics/lyrics/train/beats',
reverse=True,
with_beat=False,
beat_mode=0)