This repository has been archived by the owner on Oct 10, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 261
/
Copy pathutils.py
executable file
·71 lines (55 loc) · 2.49 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env/python
import numpy as np
import tensorflow as tf
import queue
import threading
SMALL_NUMBER = 1e-7
def glorot_init(shape):
initialization_range = np.sqrt(6.0 / (shape[-2] + shape[-1]))
return np.random.uniform(low=-initialization_range, high=initialization_range, size=shape).astype(np.float32)
class ThreadedIterator:
"""An iterator object that computes its elements in a parallel thread to be ready to be consumed.
The iterator should *not* return None"""
def __init__(self, original_iterator, max_queue_size: int=2):
self.__queue = queue.Queue(maxsize=max_queue_size)
self.__thread = threading.Thread(target=lambda: self.worker(original_iterator))
self.__thread.start()
def worker(self, original_iterator):
for element in original_iterator:
assert element is not None, 'By convention, iterator elements much not be None'
self.__queue.put(element, block=True)
self.__queue.put(None, block=True)
def __iter__(self):
next_element = self.__queue.get(block=True)
while next_element is not None:
yield next_element
next_element = self.__queue.get(block=True)
self.__thread.join()
class MLP(object):
def __init__(self, in_size, out_size, hid_sizes, dropout_keep_prob):
self.in_size = in_size
self.out_size = out_size
self.hid_sizes = hid_sizes
self.dropout_keep_prob = dropout_keep_prob
self.params = self.make_network_params()
def make_network_params(self):
dims = [self.in_size] + self.hid_sizes + [self.out_size]
weight_sizes = list(zip(dims[:-1], dims[1:]))
weights = [tf.Variable(self.init_weights(s), name='MLP_W_layer%i' % i)
for (i, s) in enumerate(weight_sizes)]
biases = [tf.Variable(np.zeros(s[-1]).astype(np.float32), name='MLP_b_layer%i' % i)
for (i, s) in enumerate(weight_sizes)]
network_params = {
"weights": weights,
"biases": biases,
}
return network_params
def init_weights(self, shape):
return np.sqrt(6.0 / (shape[-2] + shape[-1])) * (2 * np.random.rand(*shape).astype(np.float32) - 1)
def __call__(self, inputs):
acts = inputs
for W, b in zip(self.params["weights"], self.params["biases"]):
hid = tf.matmul(acts, tf.nn.dropout(W, self.dropout_keep_prob)) + b
acts = tf.nn.relu(hid)
last_hidden = hid
return last_hidden