-
Notifications
You must be signed in to change notification settings - Fork 447
/
demo.py
124 lines (99 loc) · 4.2 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import tensorflow as tf
import numpy as np
from PIL import Image
import os
import glob
import platform
import argparse
from scipy.io import loadmat,savemat
from preprocess_img import align_img
from utils import *
from face_decoder import Face3D
from options import Option
is_windows = platform.system() == "Windows"
def parse_args():
desc = "Deep3DFaceReconstruction"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--pretrain_weights', type=str, default=None, help='path for pre-trained model')
parser.add_argument('--use_pb', type=int, default=1, help='validation data folder')
return parser.parse_args()
def restore_weights(sess,opt):
var_list = tf.trainable_variables()
g_list = tf.global_variables()
# add batch normalization params into trainable variables
bn_moving_vars = [g for g in g_list if 'moving_mean' in g.name]
bn_moving_vars += [g for g in g_list if 'moving_variance' in g.name]
var_list +=bn_moving_vars
# create saver to save and restore weights
saver = tf.train.Saver(var_list = var_list)
saver.restore(sess,opt.pretrain_weights)
def demo():
# input and output folder
args = parse_args()
image_path = 'input'
save_path = 'output'
if not os.path.exists(save_path):
os.makedirs(save_path)
img_list = glob.glob(image_path + '/' + '*.png')
img_list +=glob.glob(image_path + '/' + '*.jpg')
# read BFM face model
# transfer original BFM model to our model
if not os.path.isfile('./BFM/BFM_model_front.mat'):
transferBFM09()
# read standard landmarks for preprocessing images
lm3D = load_lm3d()
n = 0
# build reconstruction model
with tf.Graph().as_default() as graph:
with tf.device('/cpu:0'):
opt = Option(is_train=False)
opt.batch_size = 1
opt.pretrain_weights = args.pretrain_weights
FaceReconstructor = Face3D()
images = tf.placeholder(name = 'input_imgs', shape = [opt.batch_size,224,224,3], dtype = tf.float32)
if args.use_pb and os.path.isfile('network/FaceReconModel.pb'):
print('Using pre-trained .pb file.')
graph_def = load_graph('network/FaceReconModel.pb')
tf.import_graph_def(graph_def,name='resnet',input_map={'input_imgs:0': images})
# output coefficients of R-Net (dim = 257)
coeff = graph.get_tensor_by_name('resnet/coeff:0')
else:
print('Using pre-trained .ckpt file: %s'%opt.pretrain_weights)
import networks
coeff = networks.R_Net(images,is_training=False)
# reconstructing faces
FaceReconstructor.Reconstruction_Block(coeff,opt)
face_shape = FaceReconstructor.face_shape_t
face_texture = FaceReconstructor.face_texture
face_color = FaceReconstructor.face_color
landmarks_2d = FaceReconstructor.landmark_p
recon_img = FaceReconstructor.render_imgs
tri = FaceReconstructor.facemodel.face_buf
with tf.Session() as sess:
if not args.use_pb :
restore_weights(sess,opt)
print('reconstructing...')
for file in img_list:
n += 1
print(n)
# load images and corresponding 5 facial landmarks
img,lm = load_img(file,file.replace('png','txt').replace('jpg','txt'))
# preprocess input image
input_img,lm_new,transform_params = align_img(img,lm,lm3D)
coeff_,face_shape_,face_texture_,face_color_,landmarks_2d_,recon_img_,tri_ = sess.run([coeff,\
face_shape,face_texture,face_color,landmarks_2d,recon_img,tri],feed_dict = {images: input_img})
# reshape outputs
input_img = np.squeeze(input_img)
face_shape_ = np.squeeze(face_shape_, (0))
face_texture_ = np.squeeze(face_texture_, (0))
face_color_ = np.squeeze(face_color_, (0))
landmarks_2d_ = np.squeeze(landmarks_2d_, (0))
if not is_windows:
recon_img_ = np.squeeze(recon_img_, (0))
# save output files
if not is_windows:
savemat(os.path.join(save_path,file.split(os.path.sep)[-1].replace('.png','.mat').replace('jpg','mat')),{'cropped_img':input_img[:,:,::-1],'recon_img':recon_img_,'coeff':coeff_,\
'face_shape':face_shape_,'face_texture':face_texture_,'face_color':face_color_,'lm_68p':landmarks_2d_,'lm_5p':lm_new})
save_obj(os.path.join(save_path,file.split(os.path.sep)[-1].replace('.png','_mesh.obj').replace('.jpg','_mesh.obj')),face_shape_,tri_,np.clip(face_color_,0,255)/255) # 3D reconstruction face (in canonical view)
if __name__ == '__main__':
demo()