diff --git a/set.mm b/set.mm index 4cfaefb59..37539cdac 100644 --- a/set.mm +++ b/set.mm @@ -250882,6 +250882,17 @@ U C_ ( N ` { X } ) ) -> ( U = ( N ` { X } ) \/ U = { .0. } ) ) $= csca id eqid islvec sylanbrc ) ABCZADEZFCZTNEZBCTGCSAHCUAAIAJKSAUBBABLSOMUB TUBPQR $. + ${ + $d R t u x y $. + $( Subgroup sum of the ring module. (Contributed by Thierry Arnoux, + 9-Apr-2024.) $) + rlmlsm $p |- ( R e. V -> ( LSSum ` R ) = ( LSSum ` ( ringLMod ` R ) ) ) $= + ( vt vu vx vy wcel clsm cfv cbs cpw cv cplusg co cmpo crn crglmod lsmfval + eqid cvv wceq fvex rlmbas rlmplusg mp1i eqtr4d ) ABGZAHIZCDAJIZKZUJEFCLDL + ELFLAMIZNOPOZAQIZHIZEFDCUIUKUHABUISUKSUHSRUMTGUNULUAUGAQUBEFDCUIUKUNUMTAU + CAUDUNSRUEUF $. + $} + ${ $d x y R $. $( Vector negation in the ring module. (Contributed by Stefan O'Rear, @@ -436874,6 +436885,15 @@ orthogonal vectors (i.e. whose inner product is 0) is the sum of the htmldef "PrmIdeal" as "PrmIdeal"; althtmldef "PrmIdeal" as "PrmIdeal"; latexdef "PrmIdeal" as "\mathrm{PrmIdeal}"; +htmldef "MaxIdeal" as "MaxIdeal"; + althtmldef "MaxIdeal" as "MaxIdeal"; + latexdef "MaxIdeal" as "\mathrm{MaxIdeal}"; +htmldef "IDLsrg" as "IDLsrg"; + althtmldef "IDLsrg" as "IDLsrg"; + latexdef "IDLsrg" as "\mathrm{IDLsrg}"; +htmldef "Spec" as "Spec"; + althtmldef "Spec" as "Spec"; + latexdef "Spec" as "\mathrm{Spec}"; htmldef "subMat1" as "subMat1"; althtmldef "subMat1" as "subMat1"; latexdef "subMat1" as "\mathrm{subMat1}"; @@ -461638,6 +461658,32 @@ its graph has a given second element (that is, function value). JUUOYMUMYKYN $. $} + ${ + fvdifsupp.1 $e |- ( ph -> F Fn A ) $. + fvdifsupp.2 $e |- ( ph -> A e. V ) $. + fvdifsupp.3 $e |- ( ph -> Z e. W ) $. + fvdifsupp.4 $e |- ( ph -> X e. ( A \ ( F supp Z ) ) ) $. + $( Function value is zero outside of its support. (Contributed by Thierry + Arnoux, 21-Jan-2024.) $) + fvdifsupp $p |- ( ph -> ( F ` X ) = Z ) $= + ( cfv wceq csupp co wcel wn eldifbd wne eldifad elsuppfn syl3anc mpbirand + wfn wa wb necon2bbid mpbird ) AFCLZGMFCGNOZPZQAFBUJKRAUKUIGAUKFBPZUIGSZAF + BUJKTACBUDBDPGEPUKULUMUEUFHIJFCDEBGUAUBUCUGUH $. + $} + + ${ + $d A x $. $d C x $. + fmptssfisupp.1 $e |- ( ph -> ( x e. A |-> B ) finSupp Z ) $. + fmptssfisupp.2 $e |- ( ph -> C C_ A ) $. + fmptssfisupp.3 $e |- ( ph -> Z e. V ) $. + $( The restriction of a mapping function has finite support if that + function has finite support. (Contributed by Thierry Arnoux, + 21-Jan-2024.) $) + fmptssfisupp $p |- ( ph -> ( x e. C |-> B ) finSupp Z ) $= + ( cmpt cres cfsupp resmptd fsuppres eqbrtrrd ) ABCDKZELBEDKGMABCEDINAQFEG + HJOP $. + $} + $( -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- @@ -472151,6 +472197,153 @@ commutative monoid (=vectors) together with a semiring (=scalars) and a $} +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + Subgroup sum / Sumset / Minkowski sum +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + + The sumset (also called the Minkowski sum) of two subsets ` A ` and ` B ` , + is defined to be the set of all sums of an element from ` A ` with an element + from ` B ` . + + The sumset operation can be used for both group (additive) operations and + ring (multiplicative) operations. + +$) + + ${ + $d .+ x y $. $d A x y $. $d B x y $. $d G x y $. $d X x y $. + $d Z x y $. $d ph x $. + elgrplsmsn.1 $e |- B = ( Base ` G ) $. + elgrplsmsn.2 $e |- .+ = ( +g ` G ) $. + elgrplsmsn.3 $e |- .(+) = ( LSSum ` G ) $. + elgrplsmsn.4 $e |- ( ph -> G e. V ) $. + elgrplsmsn.5 $e |- ( ph -> A C_ B ) $. + elgrplsmsn.6 $e |- ( ph -> X e. B ) $. + $( Membership in a sumset with a singleton for a group operation. + (Contributed by Thierry Arnoux, 21-Jan-2024.) $) + elgrplsmsn $p |- ( ph -> ( Z e. ( A .(+) { X } ) + <-> E. x e. A Z = ( x .+ X ) ) ) $= + ( vy co wcel wceq csn cv wrex wss wb snssd lsmelvalx syl3anc oveq2 eqeq2d + rexsng syl rexbidv bitrd ) AJCIUAZFRSZJBUBZQUBZERZTZQUOUCZBCUCZJUQIERZTZB + CUCAGHSCDUDUODUDUPVBUENOAIDPUFBQDEFCUOGHJKLMUGUHAVAVDBCAIDSVAVDUEPUTVDQID + URITUSVCJURIUQEUIUJUKULUMUN $. + $} + + ${ + $d .(+) k $. $d .+ g $. $d .+ h x y $. $d .~ h k $. $d A g h k x y $. + $d B h x y $. $d G h $. $d X g h k $. $d X g h x y $. $d h k ph $. + lsmsnorb.1 $e |- B = ( Base ` G ) $. + lsmsnorb.2 $e |- .+ = ( +g ` G ) $. + lsmsnorb.3 $e |- .(+) = ( LSSum ` G ) $. + lsmsnorb.4 $e |- .~ = { <. x , y >. | ( { x , y } C_ B + /\ E. g e. A ( g .+ x ) = y ) } $. + lsmsnorb.5 $e |- ( ph -> G e. Mnd ) $. + lsmsnorb.6 $e |- ( ph -> A C_ B ) $. + lsmsnorb.7 $e |- ( ph -> X e. B ) $. + $( The sumset of a group with a single element is the element's orbit by + the group action. See ~ gaorb . (Contributed by Thierry Arnoux, + 21-Jan-2024.) $) + lsmsnorb $p |- ( ph -> ( A .(+) { X } ) = [ X ] .~ ) $= + ( vh wcel vk csn co cec cv cmnd wss snssd lsmssv syl3anc sselda df-ec crn + cima imassrn cpr wceq wrex wa copab rneqi wex cab rnopab vex prss biimpri + simprd adantr exlimiv abssi eqsstri a1i eqsstrid wbr w3a anim1i biantrurd + sstri df-3an syl6bbr gaorb syl6rbbr cvv wb elecg sylancr elgrplsmsn eqcom + rexbii syl6bb 3bitr4rd eqrdav ) AUADKUBZGUCZKHUDZEAWOEUAUEZAJUFTZDEUGZWNE + UGWOEUGPQAKERUHEGDWNJLNUIUJUKAWPEWQAWPHWNUNZEKHULWTEUGAWTHUMZEHWNUOXABUEZ + CUEZUPEUGZIUEXBFUCXCUQIDURZUSZBCUTZUMZEHXGOVAXHXFBVBZCVCEXFBCVDXICEXFXCET + ZBXDXJXEXDXBETZXJXKXJUSXDXBXCEBVECVEVFVGVHVIVJVKVLVLVSVMVNUKAWQETZUSZKWQH + VOZSUEKFUCZWQUQZSDURZWQWPTZWQWOTZXMXQKETZXLXQVPZXNXMXQXTXLUSZXQUSYAXMYBXQ + AXTXLRVQVRXTXLXQVTWABCKWQFHISDEOWBWCXMWQWDTXTXRXNWEUAVEAXTXLRVIZWQKHWDEWF + WGXMXSWQXOUQZSDURXQXMSDEFGJUFKWQLMNAWRXLPVIAWSXLQVIYCWHYDXPSDWQXOWIWJWKWL + WM $. + $} + + ${ + $d .x. x y $. $d B x y $. $d E x y $. $d F x y $. $d G x y $. + $d Z x y $. + elringlsm.1 $e |- B = ( Base ` R ) $. + elringlsm.2 $e |- .x. = ( .r ` R ) $. + elringlsm.3 $e |- G = ( mulGrp ` R ) $. + elringlsm.4 $e |- .X. = ( LSSum ` G ) $. + elringlsm.5 $e |- ( ph -> G e. V ) $. + elringlsm.6 $e |- ( ph -> E C_ B ) $. + elringlsm.7 $e |- ( ph -> F C_ B ) $. + $( Membership in a product of two subsets of a ring. (Contributed by + Thierry Arnoux, 20-Jan-2024.) $) + elringlsm $p |- ( ph -> ( Z e. ( E .X. F ) + <-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) $= + ( wcel wss co cv wceq wrex wb mgpbas mgpplusg lsmelvalx syl3anc ) AJKTHDU + AIDUALHIGUBTLBUCCUCFUBUDCIUEBHUEUFQRSBCDFGHIJKLDEJOMUGEFJONUHPUIUJ $. + $} + + ${ + ringlsmss.1 $e |- B = ( Base ` R ) $. + ringlsmss.2 $e |- G = ( mulGrp ` R ) $. + ringlsmss.3 $e |- .X. = ( LSSum ` G ) $. + ringlsmss.4 $e |- ( ph -> R e. Ring ) $. + ringlsmss.5 $e |- ( ph -> E C_ B ) $. + ringlsmss.6 $e |- ( ph -> F C_ B ) $. + $( Closure of the product of two subsets of a ring. (Contributed by + Thierry Arnoux, 20-Jan-2024.) $) + ringlsmss $p |- ( ph -> ( E .X. F ) C_ B ) $= + ( cmnd wcel wss co crg ringmgp syl mgpbas lsmssv syl3anc ) AGNOZEBPFBPEFD + QBPACROUDKCGISTLMBDEFGBCGIHUAJUBUC $. + $} + + ${ + $d .X. x y $. $d B x y $. $d G y $. $d K x y $. $d R y $. $d X x y $. + $d ph x $. $d ph y $. + lsmsnpridl.1 $e |- B = ( Base ` R ) $. + lsmsnpridl.2 $e |- G = ( mulGrp ` R ) $. + lsmsnpridl.3 $e |- .X. = ( LSSum ` G ) $. + lsmsnpridl.4 $e |- K = ( RSpan ` R ) $. + lsmsnpridl.5 $e |- ( ph -> R e. Ring ) $. + lsmsnpridl.6 $e |- ( ph -> X e. B ) $. + $( The product of the ring with a single element is equal to the principal + ideal generated by that element. (Contributed by Thierry Arnoux, + 21-Jan-2024.) $) + lsmsnpridl $p |- ( ph -> ( B .X. { X } ) = ( K ` { X } ) ) $= + ( vx vy co cfv cv wcel cvv csn cmulr wceq wrex mgpbas eqid mgpplusg fvexi + cmgp a1i ssidd elgrplsmsn crg wb rspsnel syl2anc bitr4d eqrdv ) ANBGUAZDP + ZUSFQZANRZUTSVBORGCUBQZPUCOBUDZVBVASZAOBBVCDETGVBBCEIHUECVCEIVCUFZUGJETSA + ECUIIUHUJABUKMULACUMSGBSVEVDUNLMOBCVCVBFGHVFKUOUPUQUR $. + + $( The product of the ring with a single element is a principal ideal. + (Contributed by Thierry Arnoux, 21-Jan-2024.) $) + lsmsnidl $p |- ( ph -> ( B .X. { X } ) e. ( LPIdeal ` R ) ) $= + ( vy csn co cfv wcel wceq wb clpidl cv wrex sneq fveq2d eqeq2d lsmsnpridl + adantl rspcedvd crg eqid islpidl syl mpbird ) ABGOZDPZCUAQZRZUPNUBZOZFQZS + ZNBUCZAVBUPUOFQZSZNGBMUSGSZVBVETAVFVAVDUPVFUTUOFUSGUDUEUFUHABCDEFGHIJKLMU + GUIACUJRURVCTLBUQCNUPFUQUKKHULUMUN $. + $} + + ${ + lsmidl.1 $e |- B = ( Base ` R ) $. + lsmidl.3 $e |- .(+) = ( LSSum ` R ) $. + lsmidl.4 $e |- K = ( RSpan ` R ) $. + lsmidl.5 $e |- ( ph -> R e. Ring ) $. + lsmidl.6 $e |- ( ph -> I e. ( LIdeal ` R ) ) $. + lsmidl.7 $e |- ( ph -> J e. ( LIdeal ` R ) ) $. + $( The sum of two ideals is the ideal generated by their union. + (Contributed by Thierry Arnoux, 21-Jan-2024.) $) + lsmidllsp $p |- ( ph -> ( I .(+) J ) = ( K ` ( I u. J ) ) ) $= + ( co cfv clsm crg wcel wceq syl crglmod rlmlsm syl5eq oveqd clmod rlmlmod + cun clidl lidlval crsp clspn rspval eqtri eqid lsmsp syl3anc eqtrd ) AEFC + NEFDUAOZPOZNZEFUGGOZACUSEFACDPOZUSIADQRZVBUSSKDQUBTUCUDAURUERZEDUHOZRFVER + UTVASAVCVDKDUFTLMUSVEEFGURDUIGDUJOURUKOJDULUMUSUNUOUPUQ $. + + $( The sum of two ideals is an ideal. (Contributed by Thierry Arnoux, + 21-Jan-2024.) $) + lsmidl $p |- ( ph -> ( I .(+) J ) e. ( LIdeal ` R ) ) $= + ( cfv wcel wss syl lidlss cbs eqtri cun clidl lsmidllsp crglmod clmod crg + rlmlmod eqid unssd rlmbas lidlval crsp clspn rspval lspcl syl2anc eqeltrd + co ) AEFCUREFUAZGNZDUBNZABCDEFGHIJKLMUCADUDNZUEOZUSBPUTVAOADUFOVCKDUGQAEF + BAEVAOEBPLBEVADHVAUHZRQAFVAOFBPMBFVADHVDRQUIVAUSGBVBBDSNVBSNHDUJTDUKGDULN + VBUMNJDUNTUOUPUQ $. + $} + + $( -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- Prime Ideals @@ -472322,6 +472515,20 @@ commutative monoid (=vectors) together with a semiring (=scalars) and a XBXAXTRZYARZYHXJYKXKUVOXFYGMZYHXJUVNUVPYAXAXQXTUVPXRCEXFYFGUUAWFSWHYGDXFW IWJUVOXGYJMZYKXKXAYAUVQXTXAXQYAUVQXRCEXGYFGUUAWFSWKYJDXGWIWJWLWMWHWNWOWCW DWRXAXQXOXBXRXOXQXDXEXNRZRXBXDXEXNWPXQXDUVRXBABCDEFGHWQWCWSSWT $. + + $d .x. a b $. $d B a b $. $d I a b $. $d J a b $. $d P a b $. + $d R a b $. + $( Property of a prime ideal in a commutative ring. (Contributed by Jeff + Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 12-Jan-2024.) $) + prmidlc $p |- ( ( ( R e. CRing /\ P e. ( PrmIdeal ` R ) ) /\ ( I e. B /\ J + e. B /\ ( I .x. J ) e. P ) ) -> ( I e. P \/ J e. P ) ) $= + ( va vb wcel cfv wa co w3a cv wo wi wral eleq1d ccrg cprmidl simpr1 clidl + simpr2 wne isprmidlc biimpa simp3d adantr simpr3 wceq simpl simpr orbi12d + oveq12 imbi12d rspc2gv imp31 syl1111anc ) CUAKZBCUBLKZMZEAKZFAKZEFDNZBKZO + ZMVDVEIPZJPZDNZBKZVIBKZVJBKZQZRZJASIASZVGEBKZFBKZQZVCVDVEVGUCVCVDVEVGUEVC + VQVHVCBCUDLKZBAUFZVQVAVBWAWBVQOIJABCDGHUGUHUIUJVCVDVEVGUKVDVEMVQVGVTVPVGV + TRIJEFAAVIEULZVJFULZMZVLVGVOVTWEVKVFBVIEVJFDUPTWEVMVRVNVSWEVIEBWCWDUMTWEV + JFBWCWDUNTUOUQURUSUT $. $} ${ @@ -472429,6 +472636,199 @@ commutative monoid (=vectors) together with a semiring (=scalars) and a $} +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + Maximal Ideals +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- +$) + + $c MaxIdeal $. + + $( Extend class notation with the class of maximal ideals. $) + cmxidl $a class MaxIdeal $. + + ${ + $d r i j $. + $( Define the class of maximal ideals of a ring ` R ` . A proper ideal is + called maximal if it is maximal with respect to inclusion among proper + ideals. (Contributed by Jeff Madsen, 5-Jan-2011.) (Revised by Thierry + Arnoux, 19-Jan-2024.) $) + df-mxidl $a |- MaxIdeal = ( r e. Ring |-> + { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` + r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) $. + $} + + ${ + $d B r $. $d R i j r $. + mxidlval.1 $e |- B = ( Base ` R ) $. + $( The set of maximal ideals of a ring. (Contributed by Jeff Madsen, + 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) $) + mxidlval $p |- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( + i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) + $= + ( vr cv cbs cfv wne wss wceq wo wi clidl wral wa crab crg fveq2 raleqbidv + cmxidl syl6eqr neeq2d eqeq2d orbi2d anbi12d rabeqbidv df-mxidl fvex rabex + imbi2d fvmpt ) FBCGZFGZHIZJZUNDGZKZURUNLZURUPLZMZNZDUOOIZPZQZCVDRUNAJZUSU + TURALZMZNZDBOIZPZQZCVKRSUBUOBLZVFVMCVDVKUOBOTZVNUQVGVEVLVNUPAUNVNUPBHIAUO + BHTEUCZUDVNVCVJDVDVKVOVNVBVIUSVNVAVHUTVNUPAURVPUEUFULUAUGUHCDFUIVMCVKBOUJ + UKUM $. + + $d B i $. $d M i j $. $d R i j $. + $( The predicate "is a maximal ideal". (Contributed by Jeff Madsen, + 5-Jan-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) $) + ismxidl $p |- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` + R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) + ) ) ) ) $= + ( vi crg wcel cmxidl cfv cv wne wss wceq wo wi clidl wral wa crab imbi12d + w3a mxidlval eleq2d neeq1 sseq1 eqeq2 orbi1d ralbidv anbi12d elrab 3anass + bitr4i syl6bb ) BGHZDBIJZHDFKZALZUQCKZMZUSUQNZUSANZOZPZCBQJZRZSZFVETZHZDV + EHZDALZDUSMZUSDNZVBOZPZCVERZUBZUOUPVHDABFCEUCUDVIVJVKVPSZSVQVGVRFDVEUQDNZ + URVKVFVPUQDAUEVSVDVOCVEVSUTVLVCVNUQDUSUFVSVAVMVBUQDUSUGUHUAUIUJUKVJVKVPUL + UMUN $. + + $( A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) + (Revised by Thierry Arnoux, 19-Jan-2024.) $) + mxidlidl $p |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` + R ) ) $= + ( vj crg wcel cmxidl cfv wa clidl wne cv wss wceq wo wi wral w3a ismxidl + biimpa simp1d ) BFGZCBHIGZJCBKIZGZCALZCEMZNUHCOUHAOPQEUERZUCUDUFUGUISABEC + DTUAUB $. + + $( A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) + (Revised by Thierry Arnoux, 19-Jan-2024.) $) + mxidlnr $p |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M =/= B ) $= + ( vj crg wcel cmxidl cfv wa clidl wne cv wss wceq wo wi wral w3a ismxidl + biimpa simp2d ) BFGZCBHIGZJCBKIZGZCALZCEMZNUHCOUHAOPQEUERZUCUDUFUGUISABEC + DTUAUB $. + + $d B j $. $d I j $. + $( A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, + 16-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) $) + mxidlmax $p |- ( ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) + /\ ( I e. ( LIdeal ` R ) /\ M C_ I ) ) -> ( I = M \/ I = B ) ) $= + ( vj crg wcel cmxidl cfv wa clidl wss wceq wo cv wi sseq2 eqeq1 orbi12d + imbi12d wral wne w3a ismxidl biimpa simp3d adantr simpr rspcdva impr ) BG + HZDBIJHZKZCBLJZHZDCMZCDNZCANZOZUNUPKDFPZMZVADNZVAANZOZQZUQUTQFUOCVACNZVBU + QVEUTVACDRVGVCURVDUSVACDSVACASTUAUNVFFUOUBZUPUNDUOHZDAUCZVHULUMVIVJVHUDAB + FDEUEUFUGUHUNUPUIUJUK $. + + ${ + mxidln1.1 $e |- .1. = ( 1r ` R ) $. + $( One is not contained in any maximal ideal. (Contributed by Jeff + Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) $) + mxidln1 $p |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> -. .1. e. M ) + $= + ( crg wcel cmxidl cfv wa wn mxidlnr clidl wceq wb mxidlidl eqid lidl1el + wne syldan necon3bbid mpbird ) BGHZDBIJHZKZCDHZLDATABDEMUFUGDAUDUEDBNJZ + HUGDAOPABDEQABUHCDUHREFSUAUBUC $. + $} + + $( A ring with a maximal ideal is a nonzero ring. (Contributed by Jeff + Madsen, 17-Jun-2011.) (Revised by Thierry Arnoux, 19-Jan-2024.) $) + mxidlnzr $p |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> R e. NzRing ) $= + ( crg wcel cmxidl cfv cur c0g wne cnzr wa wn mxidlidl eqid lidl0cl syldan + clidl mxidln1 nelne2 syl2anc necomd isnzr biimpri ) BEFZCBGHFZBIHZBJHZKZB + LFZUFUGMZUIUHULUICFZUHCFNUIUHKUFUGCBSHZFUMABCDOBUNCUIUNPUIPZQRABUHCDUHPZT + UIUHCUAUBUCUKUFUJMBUHUIUPUOUDUER $. + $} + + ${ + $d .X. a k u $. $d .X. b $. $d M a k u x y $. $d M b $. $d R a b x y $. + $d R a k u x y $. + mxidlprm.1 $e |- .X. = ( LSSum ` ( mulGrp ` R ) ) $. + $( Every maximal ideal is prime. Statement in [Lang] p. 92 (Contributed by + Thierry Arnoux, 21-Jan-2024.) $) + mxidlprm $p |- ( ( R e. CRing /\ M e. ( MaxIdeal ` R ) ) + -> M e. ( PrmIdeal ` R ) ) $= + ( va vb wcel cfv wa cv co eqid wceq syl2anc wss syl syl3anc syl22anc wrex + wb vx vy vu vk ccrg cmxidl crg clidl cbs wne cmulr wo wi cprmidl crngring + wral adantr mxidlidl sylan mxidlnr wn cur cplusg csn simpllr simpr oveq2d + eqtrd oveq1d ad4antr ad5antr simp-8r lidlss simp-5r sseldd simplr simp-4r + ringlidm ringcl ringdir syl13anc 3eqtr3d simp-10l crngcom lidlmcl ringass + eqeltrrd simp-7r eqeltrd lidlacl cmgp cvv mgpplusg fvexd ssidd elgrplsmsn + mgpbas ad3antrrr mpbid r19.29a clsm ringidcl clpidl lpiss lsmsnidl lsmidl + crsp cun crglmod clmod rlmlmod rlmbas lspssid snssd ringlsmss unssd ssun1 + rspval a1i lspss sstrd lsmidllsp sseqtrrd mxidlmax lidl0cl eqeq2d rexbidv + c0g oveq1 adantl eqcomd rspcedvd mpbird oveq2 cgrp ringgrp grplid simp-5l + lsmelvalx ex nelne1 neneqd unitresr eleqtrrd r19.29vva ralrimivva prmidl2 + orrd anasss ) AUEGZCAUFHGZIZAUGGZCAUHHZGZCAUIHZUJZUAJZUBJZAUKHZKZCGZUURCG + ZUUSCGZULZUMZUBUUPUPUAUUPUPCAUNHGUUJUUMUUKAUOZUQZUUJUUMUUKUUOUVGUUPACUUPL + ZURZUSZUUJUUMUUKUUQUVGUUPACUVIUTUSUULUVFUAUBUUPUUPUULUURUUPGZUUSUUPGZUVFU + ULUVLIZUVMIZUVBUVEUVOUVBIZUVCUVDUVPUVCVAZUVDUVPUVQIZAVBHZUCJZUDJZAVCHZKZM + ZUVDUCUDCUUPUURVDZBKZUVRUVTCGZIZUWAUWFGZIZUWDIZUWAEJZUURUUTKZMZUVDEUUPUWK + UWLUUPGZIZUWNIZUUSUVTUUSUUTKZUWMUUSUUTKZUWBKZCUWQUVSUUSUUTKZUVTUWMUWBKZUU + SUUTKZUUSUWTUWQUVSUXBUUSUUTUWQUVSUWCUXBUWJUWDUWOUWNVEUWQUWAUWMUVTUWBUWPUW + NVFVGVHVIUWQUUMUVMUXAUUSMUVRUUMUWGUWIUWDUWOUWNUULUUMUVLUVMUVBUVQUVHVJZVKZ + UVNUVMUVBUVQUWGUWIUWDUWOUWNVLZUUPAUUTUVSUUSUVIUUTLZUVSLZVRNUWQUUMUVTUUPGZ + UWMUUPGZUVMUXCUWTMUXEUWQCUUPUVTUVRCUUPOZUWGUWIUWDUWOUWNUULUXKUVLUVMUVBUVQ + UULUUOUXKUVKUUPCUUNAUVIUUNLZVMPVJZVKUVRUWGUWIUWDUWOUWNVNZVOZUWQUUMUWOUVLU + XJUXEUWKUWOUWNVPZUVRUVLUWGUWIUWDUWOUWNUULUVLUVMUVBUVQVQZVKZUUPAUUTUWLUURU + VIUXGVSQUXFUUPUWBAUUTUVTUWMUUSUVIUWBLZUXGVTWAWBUWQUUMUUOUWRCGUWSCGUWTCGUX + EUVRUUOUWGUWIUWDUWOUWNUVRUUMUUKUUOUXDUUJUUKUVLUVMUVBUVQVNZUVJNZVKZUWQUUSU + VTUUTKZUWRCUWQUUJUVMUXIUYCUWRMUUJUUKUVLUVMUVBUVQUWGUWIUWDUWOUWNWCUXFUXOUU + PAUUTUUSUVTUVIUXGWDQUWQUUMUUOUVMUWGUYCCGUXEUYBUXFUXNUUPAUUTUUNCUUSUVTUXLU + VIUXGWERWGUWQUWSUWLUVAUUTKZCUWQUUMUWOUVLUVMUWSUYDMUXEUXPUXRUXFUUPAUUTUWLU + URUUSUVIUXGWFWAUWQUUMUUOUWOUVBUYDCGUXEUYBUXPUVOUVBUVQUWGUWIUWDUWOUWNWHUUP + AUUTUUNCUWLUVAUXLUVIUXGWERWIUWBAUUNCUWRUWSUXLUXSWJRWIUWKUWIUWNEUUPSZUWHUW + IUWDVPUVRUWIUYETUWGUWIUWDUVREUUPUUPUUTBAWKHZWLUURUWAUUPAUYFUYFLZUVIWQZAUU + TUYFUYGUXGWMZDUVRAWKWNZUVRUUPWOZUXQWPWRWSWTUVRUVSCUWFAXAHZKZGZUWDUDUWFSUC + CSZUVRUVSUUPUYMUVRUUMUVSUUPGUXDUUPAUVSUVIUXHXBPZUVRUYMCMZUYMUUPMZUVRUUMUU + KUYMUUNGCUYMOUYQUYRULUXDUXTUVRUUPUYLACUWFAXGHZUVIUYLLZUYSLZUXDUYAUVRAXCHZ + UUNUWFUVRUUMVUBUUNOUXDVUBAUUNVUBLUXLXDPUVRUUPABUYFUYSUURUVIUYGDVUAUXDUXQX + EVOZXFUVRCCUWFXHZUYSHZUYMUVRCCUYSHZVUEUVRAXIHZXJGZUXKCVUFOUVRUUMVUHUXDAXK + PZUXMCUYSUUPVUGAXLZAXRZXMNUVRVUHVUDUUPOCVUDOZVUFVUEOVUIUVRCUWFUUPUXMUVRUU + PABUUPUWEUYFUVIUYGDUXDUYKUVRUURUUPUXQXNXOZXPVULUVRCUWFXQXSCVUDUYSUUPVUGVU + JVUKXTQYAUVRUUPUYLACUWFUYSUVIUYTVUAUXDUYAVUCYBYCUUPAUYMCUVIYDRUVRUYMCUVRU + URUYMGZUVQUYMCUJUVRVUNUURUWLFJZUWBKZMZFUWFSZECSZUVRVURUURAYHHZVUOUWBKZMZF + UWFSZEVUTCUVRUUMUUOVUTCGUXDUYAAUUNCVUTUXLVUTLZYENUWLVUTMZVURVVCTUVRVVEVUQ + VVBFUWFVVEVUPVVAUURUWLVUTVUOUWBYIYFYGYJUVRVVBUURVUTUURUWBKZMZFUURUWFUVRUU + RUWFGUURUWMMZEUUPSUVRVVHUURUVSUURUUTKZMZEUVSUUPUYPUWLUVSMZVVHVVJTUVRVVKUW + MVVIUURUWLUVSUURUUTYIYFYJUVRVVIUURUVRUUMUVLVVIUURMUXDUXQUUPAUUTUVSUURUVIU + XGUXHVRNYKYLUVREUUPUUPUUTBUYFWLUURUURUYHUYIDUYJUYKUXQWPYMVUOUURMZVVBVVGTU + VRVVLVVAVVFUURVUOUURVUTUWBYNYFYJUVRVVFUURUVRAYOGZUVLVVFUURMUVRUUMVVMUXDAY + PPUXQUUPUWBAUURVUTUVIUXSVVDYQNYKYLYLUVRUUJUXKUWFUUPOZVUNVUSTUUJUUKUVLUVMU + VBUVQYRZUXMVUMEFUUPUWBUYLCUWFAUEUURUVIUXSUYTYSQYMUVPUVQVFUURUYMCUUANUUBUU + CUUDUVRUUJUXKVVNUYNUYOTVVOUXMVUMUCUDUUPUWBUYLCUWFAUEUVSUVIUXSUYTYSQWSUUEY + TUUHYTUUIUUFUAUBUUPCAUUTUVIUXGUUGR $. + $} + + +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + The semiring of ideals of a ring +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- +$) + + $c IDLsrg Spec $. + + $( Extend class notation with the semiring of ideals of a ring. $) + cidlsrg $a class IDLsrg $. + + ${ + $d r b i j $. + $( Define a structure for the ideals of a ring. (Contributed by Thierry + Arnoux, 21-Jan-2024.) $) + df-idlsrg $a |- IDLsrg = ( r e. Ring |-> [_ ( LIdeal ` r ) / b ]_ + ( { <. ( Base ` ndx ) , b >. , + <. ( +g ` ndx ) , + ( i e. b , j e. b |-> ( ( +f ` r ) " ( i X. j ) ) ) >. , + <. ( .r ` ndx ) , ( i e. b , j e. b |-> + ( ( RSpan ` r ) ` ( ( +f ` ( mulGrp ` r ) ) " ( i X. j ) ) ) ) >. + } u. { <. ( TopSet ` ndx ) , ran ( i e. b |-> + ( b \ { j e. ( PrmIdeal ` r ) | j C_ i } ) ) >. , + <. ( le ` ndx ) , { <. i , j >. | ( { i , j } C_ b /\ i C_ j ) } >. + } ) ) $. + $} + + $( Extend class notation with the spectrum of a ring. $) + crspec $a class Spec $. + + $( Define the spectrum of a ring. (Contributed by Thierry Arnoux, + 21-Jan-2024.) $) + df-rspec $a |- Spec = ( r e. Ring |-> ( ( IDLsrg ` r ) |`s ( PrmIdeal ` r ) + ) ) $. + + $( -.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- The subring algebra