diff --git a/changes-set.txt b/changes-set.txt index 5bcdb507d8..67b3dda9e9 100644 --- a/changes-set.txt +++ b/changes-set.txt @@ -93,6 +93,8 @@ make a github issue.) DONE: Date Old New Notes 4-Jan-25 smorndom smocdmdom + 4-Jan-25 ralimda --- obsolete - use ralimdaa instead + 3-Jan-25 srgi srgdilem 2-Jan-25 frnnn0fsuppg fcdmnn0fsuppg 2-Jan-25 frnnn0suppg fcdmnn0suppg 2-Jan-25 frnnn0fsupp fcdmnn0fsupp diff --git a/iset.mm b/iset.mm index a3ac92189d..41507a23cf 100644 --- a/iset.mm +++ b/iset.mm @@ -4682,10 +4682,26 @@ statements not containing the new symbol (or new combination) should simprl $p |- ( ( ph /\ ( ps /\ ch ) ) -> ps ) $= ( id ad2antrl ) BBACBDE $. + ${ + simprld.1 $e |- ( ph -> ( ps /\ ( ch /\ th ) ) ) $. + $( Deduction eliminating a double conjunct. (Contributed by Glauco + Siliprandi, 11-Dec-2019.) $) + simprld $p |- ( ph -> ch ) $= + ( wa simprd simpld ) ACDABCDFEGH $. + $} + $( Simplification of a conjunction. (Contributed by NM, 21-Mar-2007.) $) simprr $p |- ( ( ph /\ ( ps /\ ch ) ) -> ch ) $= ( id ad2antll ) CCABCDE $. + ${ + simprrd.1 $e |- ( ph -> ( ps /\ ( ch /\ th ) ) ) $. + $( Deduction form of ~ simprr , eliminating a double conjunct. + (Contributed by Glauco Siliprandi, 11-Dec-2019.) $) + simprrd $p |- ( ph -> th ) $= + ( wa simprd ) ACDABCDFEGG $. + $} + $( Simplification of a conjunction. (Contributed by Jeff Hankins, 28-Jul-2009.) $) simplll $p |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ph ) $= @@ -26170,6 +26186,17 @@ practical reasons (to avoid having to prove sethood of ` A ` in every use ( wsbc sbceq1d mpbid ) ABCDHBCEHGABCDEFIJ $. $} + ${ + $d x ph $. + sbceqbid.1 $e |- ( ph -> A = B ) $. + sbceqbid.2 $e |- ( ph -> ( ps <-> ch ) ) $. + $( Equality theorem for class substitution. (Contributed by Thierry + Arnoux, 4-Sep-2018.) $) + sbceqbid $p |- ( ph -> ( [. A / x ]. ps <-> [. B / x ]. ch ) ) $= + ( cab wcel wsbc abbidv eleq12d df-sbc 3bitr4g ) AEBDIZJFCDIZJBDEKCDFKAEFP + QGABCDHLMBDENCDFNO $. + $} + ${ $d y A $. $d y ph $. $d x y $. $( This is the closest we can get to ~ df-sbc if we start from ~ dfsbcq @@ -147999,6 +148026,517 @@ of the multiplicative monoid ( ~ df-mgp ) of a ring-like structure. This $} +$( +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- + Semirings +-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.- +$) + + $c SRing $. + + $( Extend class notation with the class of all semirings. $) + csrg $a class SRing $. + + ${ + $d f n p r t x y z $. + $( Define class of all semirings. A semiring is a set equipped with two + everywhere-defined internal operations, whose first one is an additive + commutative monoid structure and the second one is a multiplicative + monoid structure, and where multiplication is (left- and right-) + distributive over addition. Like with rings, the additive identity is + an absorbing element of the multiplicative law, but in the case of + semirings, this has to be part of the definition, as it cannot be + deduced from distributivity alone. Definition of [Golan] p. 1. Note + that our semirings are unital. Such semirings are sometimes called + "rigs", being "rings without negatives". (Contributed by Thierry + Arnoux, 21-Mar-2018.) $) + df-srg $a |- SRing = { f e. CMnd | ( ( mulGrp ` f ) e. Mnd /\ + [. ( Base ` f ) / r ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. + [. ( 0g ` f ) / n ]. A. x e. r ( A. y e. r A. z e. r + ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) + /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) + /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) } $. + $} + + ${ + $d b n p r t x y z .+ $. $d b n p r t x y z .0. $. $d r G $. + $d b n p r t x y z .x. $. $d b n p r t x y z B $. $d b n p r t x y z R $. + issrg.b $e |- B = ( Base ` R ) $. + issrg.g $e |- G = ( mulGrp ` R ) $. + issrg.p $e |- .+ = ( +g ` R ) $. + issrg.t $e |- .x. = ( .r ` R ) $. + issrg.0 $e |- .0. = ( 0g ` R ) $. + $( The predicate "is a semiring". (Contributed by Thierry Arnoux, + 21-Mar-2018.) $) + issrg $p |- ( R e. SRing <-> ( R e. CMnd /\ G e. Mnd + /\ A. x e. B ( A. y e. B A. z e. B + ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) + /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) + /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) $= + ( wcel cvv co wceq wa cfv vp vt vb vn vr csrg ccmn cmnd cv wral w3a simp1 + elex elexd cmgp wsbc wb eleq1i bicomi a1i cbs wfn funfvex funfni eqeltrid + basfn mpan cplusg plusgslid slotex adantr mulrslid ad2antrr c0g ad3antrrr + cmulr fn0g simp-4r eqidd simpllr oveqd oveq123d eqeq12d anbi12d raleqbidv + simplr sbcied anbi2d eleq1d eqtr4di sbceq1d sbceqbid df-srg elrab2 3anass + simpr fveq2 3bitr4g pm5.21nii ) FUFOZFPOZFUGOZHUHOZAUIZBUIZCUIZEQZGQZXDXE + GQZXDXFGQZEQZRZXDXEEQZXFGQZXJXEXFGQZEQZRZSZCDUJZBDUJZIXDGQZIRZXDIGQZIRZSZ + SZADUJZUKZFUFUMYHFUGXBXCYGULUNXAXBFUOTZUHOZXDXEXFUAUIZQZUBUIZQZXDXEYMQZXD + XFYMQZYKQZRZXDXEYKQZXFYMQZYPXEXFYMQZYKQZRZSZCUCUIZUJZBUUEUJZUDUIZXDYMQZUU + HRZXDUUHYMQZUUHRZSZSZAUUEUJZUDIUPZUBGUPZUAEUPZUCDUPZSZSXBXCYGSZSWTYHXAUUT + UVAXBXAYJXCUUSYGYJXCUQXAXCYJHYIUHKURUSUTXAUURYGUCDPXADFVATZPJVAPVBXAUVBPO + ZVFUVCPFVAFVAVCVDVGVEXAUUEDRZSZUUQYGUAEPXAEPOUVDXAEFVHTZPLFVHPVIVJVEVKUVE + YKERZSZUUPYGUBGPXAGPOUVDUVGXAGFVPTZPMFVPPVLVJVEVMUVHYMGRZSZUUOYGUDIPXAIPO + UVDUVGUVJXAIFVNTZPNVNPVBXAUVLPOZVQUVMPFVNFVNVCVDVGVEVOUVKUUHIRZSZUUNYFAUU + EDXAUVDUVGUVJUVNVRZUVOUUGXTUUMYEUVOUUFXSBUUEDUVPUVOUUDXRCUUEDUVPUVOYRXLUU + CXQUVOYNXHYQXKUVOXDXDYLXGYMGUVHUVJUVNWFZUVOXDVSZUVOYKEXEXFUVEUVGUVJUVNVTZ + WAWBUVOYOXIYPXJYKEUVSUVOYMGXDXEUVQWAUVOYMGXDXFUVQWAZWBWCUVOYTXNUUBXPUVOYS + XMXFXFYMGUVQUVOYKEXDXEUVSWAUVOXFVSWBUVOYPXJUUAXOYKEUVSUVTUVOYMGXEXFUVQWAW + BWCWDWEWEUVOUUJYBUULYDUVOUUIYAUUHIUVOUUHIXDXDYMGUVQUVKUVNWPZUVRWBUWAWCUVO + UUKYCUUHIUVOXDXDUUHIYMGUVQUVRUWAWBUWAWCWDWDWEWGWGWGWGWDWHUEUIZUOTZUHOZUUO + UDUWBVNTZUPZUBUWBVPTZUPZUAUWBVHTZUPZUCUWBVATZUPZSUUTUEFUGUFUWBFRZUWDYJUWL + UUSUWMUWCYIUHUWBFUOWQWIUWMUWJUURUCUWKDUWMUWKUVBDUWBFVAWQJWJUWMUWHUUQUAUWI + EUWMUWIUVFEUWBFVHWQLWJUWMUWFUUPUBUWGGUWMUWGUVIGUWBFVPWQMWJUWMUUOUDUWEIUWM + UWEUVLIUWBFVNWQNWJWKWLWLWLWDABCUBUEUDUCUAWMWNXBXCYGWOWRWS $. + $} + + ${ + $d x y z R $. + $( A semiring is a commutative monoid. (Contributed by Thierry Arnoux, + 21-Mar-2018.) $) + srgcmn $p |- ( R e. SRing -> R e. CMnd ) $= + ( vx vy vz csrg wcel ccmn cmgp cfv cmnd cv cplusg cmulr wceq cbs wral c0g + co wa eqid issrg simp1bi ) AEFAGFAHIZJFBKZCKZDKZALIZRAMIZRUDUEUHRUDUFUHRZ + UGRNUDUEUGRUFUHRUIUEUFUHRUGRNSDAOIZPCUJPAQIZUDUHRUKNUDUKUHRUKNSSBUJPBCDUJ + UGAUHUCUKUJTUCTUGTUHTUKTUAUB $. + + $( A semiring is a monoid. (Contributed by Thierry Arnoux, + 21-Mar-2018.) $) + srgmnd $p |- ( R e. SRing -> R e. Mnd ) $= + ( csrg wcel ccmn cmnd srgcmn cmnmnd syl ) ABCADCAECAFAGH $. + + srgmgp.g $e |- G = ( mulGrp ` R ) $. + $( A semiring is a monoid under multiplication. (Contributed by Thierry + Arnoux, 21-Mar-2018.) $) + srgmgp $p |- ( R e. SRing -> G e. Mnd ) $= + ( vx vy vz csrg wcel ccmn cmnd cv cplusg cfv co cmulr wceq cbs wral eqid + wa c0g issrg simp2bi ) AGHAIHBJHDKZEKZFKZALMZNAOMZNUDUEUHNUDUFUHNZUGNPUDU + EUGNUFUHNUIUEUFUHNUGNPTFAQMZREUJRAUAMZUDUHNUKPUDUKUHNUKPTTDUJRDEFUJUGAUHB + UKUJSCUGSUHSUKSUBUC $. + $} + + ${ + $d x y z B $. $d x y z R $. $d x y z .x. $. $d x y z X $. $d x y z Y $. + $d x y z .+ $. $d x y z Z $. + srgdilem.b $e |- B = ( Base ` R ) $. + srgdilem.p $e |- .+ = ( +g ` R ) $. + srgdilem.t $e |- .x. = ( .r ` R ) $. + $( Lemma for ~ srgdi and ~ srgdir . (Contributed by NM, 26-Aug-2011.) + (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, + 1-Apr-2018.) $) + srgdilem $p |- ( ( R e. SRing /\ ( X e. B /\ Y e. B /\ Z e. B ) ) + -> ( ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) + /\ ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) ) $= + ( vx vy vz wcel w3a wa co wceq cv wral csrg c0g ccmn cmgp cmnd eqid issrg + cfv simp3bi r19.21bi simpld 3ad2antr1 simpr2 sylc simpr3 caovdig caovdirg + rsp simprd jca ) CUANZEANFANGANOPEFGBQDQEFDQEGDQZBQREFBQGDQVBFGDQBQRVAKLM + EFGABDBAVAKSZANZLSZANZMSZANZOPZVCVEVGBQDQVCVEDQVCVGDQZBQRZVCVEBQVGDQVJVEV + GDQBQRZVIVKVLPZMATZVHVMVIVNLATZVFVNVAVFVDVOVHVAVDPVOCUBUHZVCDQVPRVCVPDQVP + RPZVAVOVQPZKAVACUCNCUDUHZUENVRKATKLMABCDVSVPHVSUFIJVPUFUGUIUJUKULVAVDVFVH + UMVNLAURUNVAVDVFVHUOVMMAURUNZUKUPVAKLMEFGABDBAVIVKVLVTUSUQUT $. + $} + + ${ + srgcl.b $e |- B = ( Base ` R ) $. + srgcl.t $e |- .x. = ( .r ` R ) $. + $( Closure of the multiplication operation of a semiring. (Contributed by + NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by + Thierry Arnoux, 1-Apr-2018.) $) + srgcl $p |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) $= + ( csrg wcel w3a cmgp cfv cplusg co cbs cmnd eqid 3ad2ant1 wceq eleqtrd + srgmgp simp2 mgpbasg simp3 mndcl syl3anc mgpplusgg oveqd 3eltr4d ) BHIZDA + IZEAIZJZDEBKLZMLZNZUNOLZDECNAUMUNPIZDUQIEUQIUPUQIUJUKURULBUNUNQZUARUMDAUQ + UJUKULUBUJUKAUQSULABUNHUSFUCRZTUMEAUQUJUKULUDUTTUQUOUNDEUQQUOQUEUFUMCUODE + UJUKCUOSULBCUNHUSGUGRUHUTUI $. + + $( Associative law for the multiplication operation of a semiring. + (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, + 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.) $) + srgass $p |- ( ( R e. SRing /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> + ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) $= + ( csrg wcel w3a wa cfv co wceq eqid adantr eleqtrd oveqd eqtrd cplusg cbs + cmgp srgmgp simpr1 mgpbasg simpr2 simpr3 mndass syl13anc mgpplusgg oveq1d + cmnd oveq2d 3eqtr4d ) BIJZDAJZEAJZFAJZKZLZDEBUCMZUAMZNZFVCNZDEFVCNZVCNZDE + CNZFCNZDEFCNZCNZVAVBUMJZDVBUBMZJEVMJFVMJVEVGOUPVLUTBVBVBPZUDQVADAVMUPUQUR + USUEUPAVMOUTABVBIVNGUFQZRVAEAVMUPUQURUSUGVORVAFAVMUPUQURUSUHVORVMVCVBDEFV + MPVCPUIUJVAVIVHFVCNVEVACVCVHFUPCVCOUTBCVBIVNHUKQZSVAVHVDFVCVACVCDEVPSULTV + AVKDVJVCNVGVACVCDVJVPSVAVJVFDVCVACVCEFVPSUNTUO $. + + $d u x B $. $d u x R $. $d u x .x. $. + $( The unit element of a semiring is unique. (Contributed by NM, + 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by + Thierry Arnoux, 1-Apr-2018.) $) + srgideu $p |- ( R e. SRing -> + E! u e. B A. x e. B ( ( u .x. x ) = x /\ ( x .x. u ) = x ) ) $= + ( csrg wcel cv co wceq wa wral wreu cfv eqid syl oveqd eqeq1d cmgp cplusg + cbs cmnd srgmgp mndideu mgpplusgg anbi12d ralbidv reubidv mpbird wb raleq + mgpbasg reueqd ) DHIZBJZAJZEKZURLZURUQEKZURLZMZACNZBCOZVCADUAPZUCPZNZBVGO + ZUPVIUQURVFUBPZKZURLZURUQVJKZURLZMZAVGNZBVGOZUPVFUDIVQDVFVFQZUEABVGVJVFVG + QVJQUFRUPVHVPBVGUPVCVOAVGUPUTVLVBVNUPUSVKURUPEVJUQURDEVFHVRGUGZSTUPVAVMUR + UPEVJURUQVSSTUHUIUJUKUPCVGLVEVIULCDVFHVRFUNVDVHBCVGVCACVGUMUORUK $. + $} + + ${ + $d B a b c $. $d R a b $. $d .x. a b c $. + srgfcl.b $e |- B = ( Base ` R ) $. + srgfcl.t $e |- .x. = ( .r ` R ) $. + $( Functionality of the multiplication operation of a ring. (Contributed + by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.) $) + srgfcl $p |- ( ( R e. SRing /\ .x. Fn ( B X. B ) ) + -> .x. : ( B X. B ) --> B ) $= + ( vc va vb csrg wcel cxp wfn wa crn wss wf simpr cv cfv wral co srgcl cop + 3expb ralrimivva fveq2 eleq1d eqcomi eleq1i bitrdi sylibr adantr fnfvrnss + wceq df-ov ralxp syl2anc df-f sylanbrc ) BIJZCAAKZLZMZVBCNAOZVAACPUTVBQZV + CVBFRZCSZAJZFVATZVDVEUTVIVBUTGRZHRZCUAZAJZHATGATVIUTVMGHAAUTVJAJVKAJVMABC + VJVKDEUBUDUEVHVMFGHAAVFVJVKUCZUNZVHVNCSZAJVMVOVGVPAVFVNCUFUGVPVLAVLVPVJVK + CUOUHUIUJUPUKULFVAACUMUQVAACURUS $. + $} + + ${ + srgdi.b $e |- B = ( Base ` R ) $. + srgdi.p $e |- .+ = ( +g ` R ) $. + srgdi.t $e |- .x. = ( .r ` R ) $. + $( Distributive law for the multiplication operation of a semiring. + (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry + Arnoux, 1-Apr-2018.) $) + srgdi $p |- ( ( R e. SRing /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> + ( X .x. ( Y .+ Z ) ) = ( ( X .x. Y ) .+ ( X .x. Z ) ) ) $= + ( csrg wcel w3a wa co wceq srgdilem simpld ) CKLEALFALGALMNEFGBODOEFDOEGD + OZBOPEFBOGDOSFGDOBOPABCDEFGHIJQR $. + + $( Distributive law for the multiplication operation of a semiring. + (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry + Arnoux, 1-Apr-2018.) $) + srgdir $p |- ( ( R e. SRing /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> + ( ( X .+ Y ) .x. Z ) = ( ( X .x. Z ) .+ ( Y .x. Z ) ) ) $= + ( csrg wcel w3a wa co wceq srgdilem simprd ) CKLEALFALGALMNEFGBODOEFDOEGD + OZBOPEFBOGDOSFGDOBOPABCDEFGHIJQR $. + $} + + ${ + srgidcl.b $e |- B = ( Base ` R ) $. + srgidcl.u $e |- .1. = ( 1r ` R ) $. + $( The unit element of a semiring belongs to the base set of the semiring. + (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, + 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) $) + srgidcl $p |- ( R e. SRing -> .1. e. B ) $= + ( csrg wcel cmgp cfv c0g cbs cmnd eqid srgmgp mndidcl syl mgpbasg 3eltr4d + ringidvalg ) BFGZBHIZJIZUAKIZCATUALGUBUCGBUAUAMZNUCUAUBUCMUBMOPBCUAFUDESA + BUAFUDDQR $. + $} + + ${ + srg0cl.b $e |- B = ( Base ` R ) $. + srg0cl.z $e |- .0. = ( 0g ` R ) $. + $( The zero element of a semiring belongs to its base set. (Contributed by + Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, + 1-Apr-2018.) $) + srg0cl $p |- ( R e. SRing -> .0. e. B ) $= + ( csrg wcel cmnd srgmnd mndidcl syl ) BFGBHGCAGBIABCDEJK $. + $} + + ${ + $d x y B $. $d x y I $. $d x y R $. $d x y .x. $. $d x y .1. $. + srgidm.b $e |- B = ( Base ` R ) $. + srgidm.t $e |- .x. = ( .r ` R ) $. + srgidm.u $e |- .1. = ( 1r ` R ) $. + $( Lemma for ~ srglidm and ~ srgridm . (Contributed by NM, 15-Sep-2011.) + (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, + 1-Apr-2018.) $) + srgidmlem $p |- ( ( R e. SRing /\ X e. B ) + -> ( ( .1. .x. X ) = X /\ ( X .x. .1. ) = X ) ) $= + ( csrg wcel wa co wceq cmgp cfv c0g cplusg eqid oveq123d eqeq1d srgmgp wb + cmnd cbs mgpbasg eleq2d biimpa mndlrid mgpplusgg ringidvalg eqidd anbi12d + syl2an2r adantr mpbird ) BIJZEAJZKDECLZEMZEDCLZEMZKZBNOZPOZEVCQOZLZEMZEVD + VELZEMZKZUPVCUCJUQEVCUDOZJZVJBVCVCRZUAUPUQVLUPAVKEABVCIVMFUEUFUGVKVEVCEVD + VKRVERVDRUHUMUPVBVJUBUQUPUSVGVAVIUPURVFEUPDVDEECVEBCVCIVMGUIZBDVCIVMHUJZU + PEUKZSTUPUTVHEUPEEDVDCVEVNVPVOSTULUNUO $. + + $( The unit element of a semiring is a left multiplicative identity. + (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, + 1-Apr-2018.) $) + srglidm $p |- ( ( R e. SRing /\ X e. B ) -> ( .1. .x. X ) = X ) $= + ( csrg wcel wa co wceq srgidmlem simpld ) BIJEAJKDECLEMEDCLEMABCDEFGHNO + $. + + $( The unit element of a semiring is a right multiplicative identity. + (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, + 1-Apr-2018.) $) + srgridm $p |- ( ( R e. SRing /\ X e. B ) -> ( X .x. .1. ) = X ) $= + ( csrg wcel wa co wceq srgidmlem simprd ) BIJEAJKDECLEMEDCLEMABCDEFGHNO + $. + + $( Properties showing that an element ` I ` is the unity element of a + semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, + 1-Apr-2018.) $) + issrgid $p |- ( R e. SRing + -> ( ( I e. B /\ A. x e. B ( ( I .x. x ) = x /\ ( x .x. I ) = x ) ) + <-> .1. = I ) ) $= + ( vy csrg wcel cfv co wceq wa wral eqid oveqd eqeq1d cmgp cbs cplusg wrex + c0g wreu srgideu reurex syl mgpbasg mgpplusgg anbi12d raleqbidv rexeqbidv + cv mpbid ismgmid eleq2d ringidvalg 3bitr4d ) CKLZFCUAMZUBMZLZFAUOZVBUCMZN + ZVEOZVEFVFNZVEOZPZAVCQZPVBUEMZFOFBLZFVEDNZVEOZVEFDNZVEOZPZABQZPEFOVAAVCVF + FJVBVMVCRVMRVFRVAJUOZVEDNZVEOZVEWADNZVEOZPZABQZJBUDZWAVEVFNZVEOZVEWAVFNZV + EOZPZAVCQZJVCUDVAWGJBUFWHAJBCDGHUGWGJBUHUIVAWGWNJBVCBCVBKVBRZGUJZVAWFWMAB + VCWPVAWCWJWEWLVAWBWIVEVADVFWAVECDVBKWOHUKZSTVAWDWKVEVADVFVEWAWQSTULUMUNUP + UQVAVNVDVTVLVABVCFWPURVAVSVKABVCWPVAVPVHVRVJVAVOVGVEVADVFFVEWQSTVAVQVIVEV + ADVFVEFWQSTULUMULVAEVMFCEVBKWOIUSTUT $. + $} + + ${ + srgacl.b $e |- B = ( Base ` R ) $. + srgacl.p $e |- .+ = ( +g ` R ) $. + $( Closure of the addition operation of a semiring. (Contributed by Mario + Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.) $) + srgacl $p |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) $= + ( csrg wcel cmnd co srgmnd mndcl syl3an1 ) CHICJIDAIEAIDEBKAICLABCDEFGMN + $. + + $( Commutativity of the additive group of a semiring. (Contributed by + Thierry Arnoux, 1-Apr-2018.) $) + srgcom $p |- ( ( R e. SRing /\ X e. B /\ Y e. B ) -> + ( X .+ Y ) = ( Y .+ X ) ) $= + ( csrg wcel ccmn co wceq srgcmn cmncom syl3an1 ) CHICJIDAIEAIDEBKEDBKLCMA + BCDEFGNO $. + $} + + ${ + $d x y z B $. $d x y z R $. $d x X $. $d x y z .x. $. $d x y z .0. $. + srgz.b $e |- B = ( Base ` R ) $. + srgz.t $e |- .x. = ( .r ` R ) $. + srgz.z $e |- .0. = ( 0g ` R ) $. + $( The zero of a semiring is a right-absorbing element. (Contributed by + Thierry Arnoux, 1-Apr-2018.) $) + srgrz $p |- ( ( R e. SRing /\ X e. B ) -> ( X .x. .0. ) = .0. ) $= + ( vx vy vz csrg wcel cv co wceq wral wa cfv eqid cplusg ccmn cmgp simp3bi + cmnd issrg r19.21bi simprrd ralrimiva oveq1 eqeq1d rspcv mpan9 ) BLMZINZE + COZEPZIAQDAMDECOZEPZUNUQIAUNUOAMRUOJNZKNZBUASZOCOUOUTCOUOVACOZVBOPUOUTVBO + VACOVCUTVACOVBOPRKAQJAQZEUOCOEPZUQUNVDVEUQRRZIAUNBUBMBUCSZUEMVFIAQIJKAVBB + CVGEFVGTVBTGHUFUDUGUHUIUQUSIDAUODPUPUREUODECUJUKULUM $. + + $( The zero of a semiring is a left-absorbing element. (Contributed by AV, + 23-Aug-2019.) $) + srglz $p |- ( ( R e. SRing /\ X e. B ) -> ( .0. .x. X ) = .0. ) $= + ( vx vy vz csrg wcel cv co wceq wral wa cfv eqid cplusg ccmn cmgp simp3bi + cmnd issrg r19.21bi simprld ralrimiva oveq2 eqeq1d rspcv mpan9 ) BLMZEINZ + COZEPZIAQDAMEDCOZEPZUNUQIAUNUOAMRUOJNZKNZBUASZOCOUOUTCOUOVACOZVBOPUOUTVBO + VACOVCUTVACOVBOPRKAQJAQZUQUOECOEPZUNVDUQVERRZIAUNBUBMBUCSZUEMVFIAQIJKAVBB + CVGEFVGTVBTGHUFUDUGUHUIUQUSIDAUODPUPUREUODECUJUKULUM $. + + $d x Z $. $d x ph $. + srgisid.1 $e |- ( ph -> R e. SRing ) $. + srgisid.2 $e |- ( ph -> Z e. B ) $. + srgisid.3 $e |- ( ( ph /\ x e. B ) -> ( Z .x. x ) = Z ) $. + $( In a semiring, the only left-absorbing element is the additive identity. + Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.) $) + srgisid $p |- ( ph -> Z = .0. ) $= + ( co cv wceq wral ralrimiva csrg wcel srg0cl oveq2 eqeq1d rspcv mpd srgrz + wi 3syl syl2anc eqtr3d ) AGFENZGFAGBOZENZGPZBCQZUKGPZAUNBCMRADSTZFCTUOUPU + GKCDFHJUAUNUPBFCULFPUMUKGULFGEUBUCUDUHUEAUQGCTUKFPKLCDEGFHIJUFUIUJ $. + $} + + ${ + srg1zr.b $e |- B = ( Base ` R ) $. + srg1zr.p $e |- .+ = ( +g ` R ) $. + srg1zr.t $e |- .* = ( .r ` R ) $. + $( The only semiring with a base set consisting of one element is the zero + ring (at least if its operations are internal binary operations). + (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) $) + srg1zr $p |- ( ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) + /\ Z e. B ) -> ( B = { Z } <-> ( .+ = { <. <. Z , Z >. , Z >. } + /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) $= + ( csn wceq wa csrg wcel cxp wfn cop cmgm adantr cfv eqid pm4.24 wb srgmnd + w3a cmnd 3ad2ant1 mndmgm syl simpl2 mgmb1mgm1 syl3anc cmgp cplusg mgpbasg + simpr cbs eqeq1d simpl1 srgmgp 3syl eleqtrd fneq1d biimpa 3adant2 sqxpeqd + mgpplusgg fneq2d mpbid eqcomd 3bitrd anbi12d bitrid ) AEIZJZVNVNKCLMZBAAN + ZOZDVPOZUDZEAMZKZBEEPEPIZJZDWBJZKVNUAWAVNWCVNWDWACQMZVTVQVNWCUBWACUEMZWEV + SWFVTVOVQWFVRCUCUFRCUGUHVSVTUOZVOVQVRVTUIABCEFGUJUKWAVNCULSZUPSZVMJZWHUMS + ZWBJZWDWAAWIVMVSAWIJZVTVOVQWMVRACWHLWHTZFUNUFRZUQWAWHQMZEWIMWKWIWINZOZWJW + LUBWAVOWHUEMWPVOVQVRVTURZCWHWNUSWHUGUTWAEAWIWGWOVAWAWKVPOZWRVSWTVTVOVRWTV + QVOVRWTVOVPDWKCDWHLWNHVFZVBVCVDRWAVPWQWKWAAWIWOVEVGVHWIWKWHEWITWKTUJUKWAW + KDWBWAVOWKDJWSVODWKXAVIUHUQVJVKVL $. + + srgen1zr.p $e |- Z = ( 0g ` R ) $. + $( The only semiring with one element is the zero ring (at least if its + operations are internal binary operations). (Contributed by FL, + 14-Feb-2010.) (Revised by AV, 25-Jan-2020.) $) + srgen1zr $p |- ( ( R e. SRing /\ .+ Fn ( B X. B ) /\ .* Fn ( B X. B ) ) + -> ( B ~~ 1o <-> ( .+ = { <. <. Z , Z >. , Z >. } + /\ .* = { <. <. Z , Z >. , Z >. } ) ) ) $= + ( csrg wcel cxp wfn w3a c1o cop csn wceq wa wb cen wbr 3ad2ant1 en1eqsnbi + srg0cl adantl srg1zr bitrd mpdan ) CJKZBAALZMZDUKMZNZEAKZAOUAUBZBEEPEPQZR + DUQRSZTUJULUOUMACEFIUEUCUNUOSUPAEQRZURUOUPUSTUNEAUDUFABCDEFGHUGUHUI $. + $} + + ${ + $d x y B $. $d x y R $. $d x y .x. $. $d x y .X. $. $d x y X $. + $d x N $. $d x y Y $. + srgmulgass.b $e |- B = ( Base ` R ) $. + srgmulgass.m $e |- .x. = ( .g ` R ) $. + srgmulgass.t $e |- .X. = ( .r ` R ) $. + $( An associative property between group multiple and ring multiplication + for semirings. (Contributed by AV, 23-Aug-2019.) $) + srgmulgass $p |- ( ( R e. SRing /\ ( N e. NN0 /\ X e. B /\ Y e. B ) ) -> + ( ( N .x. X ) .X. Y ) = ( N .x. ( X .X. Y ) ) ) $= + ( wcel co wceq wi wa cc0 oveq1 oveq1d eqeq12d adantl vx vy cn0 csrg cv c1 + w3a caddc imbi2d weq c0g cfv simpr adantr srglz syl2anc simpl mulg0 srgcl + eqid syl syl3anc 3eqtr4d cplusg srgmnd mulgnn0p1 mulgnn0cl syl13anc eqtrd + cmnd srgdir 3expb ancoms eqcomd sylan9eqr exp31 nn0ind expd 3impib impcom + a2d ) EUCKZFAKZGAKZUGBUDKZEFCLZGDLZEFGDLZCLZMZWBWCWDWEWJNWBWCWDOZWEWJWKWE + OZUAUEZFCLZGDLZWMWHCLZMZNWLPFCLZGDLZPWHCLZMZNWLUBUEZFCLZGDLZXBWHCLZMZNWLX + BUFUHLZFCLZGDLZXGWHCLZMZNWLWJNUAUBEWMPMZWQXAWLXLWOWSWPWTXLWNWRGDWMPFCQRWM + PWHCQSUIUAUBUJZWQXFWLXMWOXDWPXEXMWNXCGDWMXBFCQRWMXBWHCQSUIWMXGMZWQXKWLXNW + OXIWPXJXNWNXHGDWMXGFCQRWMXGWHCQSUIWMEMZWQWJWLXOWOWGWPWIXOWNWFGDWMEFCQRWME + WHCQSUIWLBUKULZGDLZXPWSWTWLWEWDXQXPMWKWEUMZWKWDWEWCWDUMUNZABDGXPHJXPUTZUO + UPWLWRXPGDWLWCWRXPMWKWCWEWCWDUQUNZACBFXPHXTIURVARWLWHAKZWTXPMWLWEWCWDYBXR + YAXSABDFGHJUSZVBACBWHXPHXTIURVAVCXBUCKZWLXFXKYDWLXFXKYDWLOZXFOXIXDWHBVDUL + ZLZXJYEXIYGMXFYEXIXCFYFLZGDLZYGYEXHYHGDYEBVJKZYDWCXHYHMWLYJYDWEYJWKBVETTZ + YDWLUQZWLWCYDYATZAYFCBXBFHIYFUTZVFVBRYEWEXCAKZWCWDYIYGMWLWEYDXRTYEYJYDWCY + OYKYLYMACBXBFHIVGVBYMWLWDYDXSTAYFBDXCFGHYNJVKVHVIUNXFYEYGXEWHYFLZXJXDXEWH + YFQYEXJYPYEYJYDYBXJYPMYKYLWLYBYDWEWKYBWEWCWDYBYCVLVMTAYFCBXBWHHIYNVFVBVNV + OVIVPWAVQVRVSVT $. + $} + + ${ + $d A x y $. $d B x y $. $d K x $. $d ph x y $. $d .^ x y $. + $d .X. x y $. + srgpcomp.s $e |- S = ( Base ` R ) $. + srgpcomp.m $e |- .X. = ( .r ` R ) $. + srgpcomp.g $e |- G = ( mulGrp ` R ) $. + srgpcomp.e $e |- .^ = ( .g ` G ) $. + srgpcomp.r $e |- ( ph -> R e. SRing ) $. + srgpcomp.a $e |- ( ph -> A e. S ) $. + srgpcomp.b $e |- ( ph -> B e. S ) $. + srgpcomp.k $e |- ( ph -> K e. NN0 ) $. + srgpcomp.c $e |- ( ph -> ( A .X. B ) = ( B .X. A ) ) $. + $( If two elements of a semiring commute, they also commute if one of the + elements is raised to a higher power. (Contributed by AV, + 23-Aug-2019.) $) + srgpcomp $p |- ( ph -> ( ( K .^ B ) .X. A ) = ( A .X. ( K .^ B ) ) ) $= + ( co wceq vx vy cn0 cv wi cc0 c1 caddc oveq1 oveq1d oveq2d eqeq12d imbi2d + wcel cur cfv c0g cbs csrg mgpbasg eleqtrd mulg0 ringidvalg eqtr4d srgridm + syl eqid syl2anc srglidm 3eqtr4rd eqtrd wa cplusg srgmgp adantr mulgnn0p1 + simpr syl3anc wb mgpplusgg eqeq2d mpbird eqcomd mulgnn0cl eleqtrrd srgass + cmnd oveqd syl13anc 3eqtr4d sylan9eqr ex expcom a2d nn0ind mpcom ) IUCUNA + ICGSZBFSZBWQFSZTZQAUAUDZCGSZBFSZBXBFSZTZUEAUFCGSZBFSZBXFFSZTZUEAUBUDZCGSZ + BFSZBXKFSZTZUEAXJUGUHSZCGSZBFSZBXPFSZTZUEAWTUEUAUBIXAUFTZXEXIAXTXCXGXDXHX + TXBXFBFXAUFCGUIZUJXTXBXFBFYAUKULUMXAXJTZXEXNAYBXCXLXDXMYBXBXKBFXAXJCGUIZU + JYBXBXKBFYCUKULUMXAXOTZXEXSAYDXCXQXDXRYDXBXPBFXAXOCGUIZUJYDXBXPBFYEUKULUM + XAITZXEWTAYFXCWRXDWSYFXBWQBFXAICGUIZUJYFXBWQBFYGUKULUMAXGDUOUPZBFSZXHAXFY + HBFAXFHUQUPZYHACHURUPZUNZXFYJTACEYKPADUSUNZEYKTZNEDHUSLJUTVFZVAYKGHCYJYKV + GZYJVGMVBVFAYMYHYJTNDYHHUSLYHVGZVCVFVDZUJABYHFSZBXHYIAYMBEUNZYSBTNOEDFYHB + JKYQVEVHAXFYHBFYRUKAYMYTYIBTNOEDFYHBJKYQVIVHVJVKXJUCUNZAXNXSAUUAXNXSUEAUU + AVLZXNXSUUBXNVLXQXLCFSZXRUUBXQUUCTXNUUBXQXKCFSZBFSZUUCUUBXPUUDBFUUBXPUUDT + ZXPXKCHVMUPZSZTZUUBHWGUNZUUAYLUUIAUUJUUAAYMUUJNDHLVNVFVOZAUUAVQZUUBCEYKAC + EUNZUUAPVOZAYNUUAYOVOZVAZYKUUGGHXJCYPMUUGVGVPVRAUUFUUIVSUUAAUUDUUHXPAFUUG + XKCAYMFUUGTNDFHUSLKVTVFWHWAVOWBZUJUUBXKCBFSZFSZXKBCFSZFSZUUEUUCUUBUURUUTX + KFAUURUUTTUUAAUUTUURRWCVOUKUUBYMXKEUNZUUMYTUUEUUSTAYMUUANVOZUUBXKYKEUUBUU + JUUAYLXKYKUNUUKUULUUPYKGHXJCYPMWDVRUUOWEZUUNAYTUUAOVOZEDFXKCBJKWFWIUUBYMU + VBYTUUMUUCUVATUVCUVDUVEUUNEDFXKBCJKWFWIWJVKVOXNUUBUUCXMCFSZXRXLXMCFUIUUBU + VFBUUDFSZXRUUBYMYTUVBUUMUVFUVGTUVCUVEUVDUUNEDFBXKCJKWFWIUUBUUDXPBFUUBXPUU + DUUQWCUKVKWKVKWLWMWNWOWP $. + + srgpcompp.n $e |- ( ph -> N e. NN0 ) $. + $( If two elements of a semiring commute, they also commute if the elements + are raised to a higher power. (Contributed by AV, 23-Aug-2019.) $) + srgpcompp $p |- ( ph -> ( ( ( N .^ A ) .X. ( K .^ B ) ) .X. A ) + = ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) $= + ( co c1 caddc csrg wcel wceq cbs cfv cmnd cn0 srgmgp mgpbasg eleqtrd eqid + mulgnn0cl syl3anc eleqtrrd srgass syl13anc oveq2d eqtr4d cplusg mgpplusgg + syl srgpcomp oveqd mulgnn0p1 oveq1d 3eqtrd ) AJBGUAZICGUAZFUABFUAZVJVKBFU + AZFUAZVJBFUAZVKFUAZJUBUCUABGUAZVKFUAADUDUEZVJEUEZVKEUEZBEUEZVLVNUFOAVJHUG + UHZEAHUIUEZJUJUEZBWBUEZVJWBUEAVRWCODHMUKVDZTABEWBPAVREWBUFOEDHUDMKULVDZUM + ZWBGHJBWBUNZNUOUPWGUQZAVKWBEAWCIUJUECWBUEVKWBUEWFRACEWBQWGUMWBGHICWINUOUP + WGUQZPEDFVJVKBKLURUSAVNVJBVKFUAZFUAZVPAVMWLVJFABCDEFGHIKLMNOPQRSVEUTAVRVS + WAVTVPWMUFOWJPWKEDFVJBVKKLURUSVAAVOVQVKFAVOVJBHVBUHZUAZVQAFWNVJBAVRFWNUFO + DFHUDMLVCVDVFAWCWDWEVQWOUFWFTWHWBWNGHJBWINWNUNVGUPVAVHVI $. + + srgpcomppsc.t $e |- .x. = ( .g ` R ) $. + srgpcomppsc.c $e |- ( ph -> C e. NN0 ) $. + $( If two elements of a semiring commute, they also commute if the elements + are raised to a higher power and a scalar multiplication is involved. + (Contributed by AV, 23-Aug-2019.) $) + srgpcomppsc $p |- ( ph -> ( ( C .x. ( ( N .^ A ) .X. ( K .^ B ) ) ) .X. A ) + = ( C .x. ( ( ( N + 1 ) .^ A ) .X. ( K .^ B ) ) ) ) $= + ( co c1 caddc csrg wcel cn0 wceq cbs cfv cmnd srgmgp mgpbasg eleqtrd eqid + syl mulgnn0cl syl3anc eleqtrrd w3a srgmulgass eqcomd oveq1d srgmnd srgass + wa syl13anc eqtrd srgcl oveq2d srgpcompp 3eqtrd ) ADLBIUEZKCIUEZHUEZGUEZB + HUEZDVPGUEZVQBHUEZHUEZDVRBHUEZGUEZDLUFUGUEBIUEVQHUEZGUEAVTWAVQHUEZBHUEZWC + AVSWGBHAEUHUIZDUJUIZVPFUIZVQFUIZVSWGUKQUDAVPJULUMZFAJUNUIZLUJUIBWMUIVPWMU + IAWIWNQEJOUOUSZUBABFWMRAWIFWMUKQFEJUHOMUPUSZUQWMIJLBWMURZPUTVAWPVBZAVQWMF + AWNKUJUICWMUIVQWMUIWOTACFWMSWPUQWMIJKCWQPUTVAWPVBZWIWJWKWLVCVIWGVSFEGHDVP + VQMUCNVDVEVJVFAWIWAFUIZWLBFUIZWHWCUKQAEUNUIZWJWKWTAWIXBQEVGUSUDWRFGEDVPMU + CUTVAWSRFEHWAVQBMNVHVJVKAWCDVPWBHUEZGUEZWEAWIWJWKWBFUIZWCXDUKQUDWRAWIWLXA + XEQWSRFEHVQBMNVLVAFEGHDVPWBMUCNVDVJAXCWDDGAWDXCAWIWKWLXAWDXCUKQWRWSRFEHVP + VQBMNVHVJVEVMVKAWDWFDGABCEFHIJKLMNOPQRSTUAUBVNVMVO $. + $} + + ${ + $d a b x B $. $d a b x R $. $d a b x X $. $d a b x .x. $. + srglmhm.b $e |- B = ( Base ` R ) $. + srglmhm.t $e |- .x. = ( .r ` R ) $. + $( Left-multiplication in a semiring by a fixed element of the ring is a + monoid homomorphism. (Contributed by AV, 23-Aug-2019.) $) + srglmhm $p |- ( ( R e. SRing /\ X e. B ) -> + ( x e. B |-> ( X .x. x ) ) e. ( R MndHom R ) ) $= + ( va vb wcel wa cv co cfv wceq srgcl eqid oveq2 syl3anc fvmptd3 csrg cmnd + cmpt cplusg wral c0g w3a cmhm srgmnd jca adantr 3expa fmpttd 3anass srgdi + sylan2br anassrs srgacl 3expb adantlr simpll simplr simprl simprr oveq12d + wf 3eqtr4d ralrimivva srg0cl mpd3an3 srgrz eqtrd 3jca ismhm sylanbrc ) CU + AJZEBJZKZCUBJZVSKZBBABEALZDMZUCZVFZHLZILZCUDNZMZWCNZWEWCNZWFWCNZWGMZOZIBU + EHBUEZCUFNZWCNZWOOZUGWCCCUHMJVPVTVQVPVSVSCUIZWRUJUKVRWDWNWQVRABWBBVPVQWAB + JWBBJBCDEWAFGPULUMVRWMHIBBVRWEBJZWFBJZKZKZEWHDMZEWEDMZEWFDMZWGMZWIWLVPVQX + AXCXFOZVQXAKVPVQWSWTUGXGVQWSWTUNBWGCDEWEWFFWGQZGUOUPUQXBAWHWBXCBWCBWCQZWA + WHEDRVPXAWHBJZVQVPWSWTXJBWGCWEWFFXHURUSUTZXBVPVQXJXCBJVPVQXAVAZVPVQXAVBZX + KBCDEWHFGPSTXBWJXDWKXEWGXBAWEWBXDBWCBXIWAWEEDRVRWSWTVCZXBVPVQWSXDBJXLXMXN + BCDEWEFGPSTXBAWFWBXEBWCBXIWAWFEDRVRWSWTVDZXBVPVQWTXEBJXLXMXOBCDEWFFGPSTVE + VGVHVRWPEWODMZWOVRAWOWBXPBWCBXIWAWOEDRVPWOBJZVQBCWOFWOQZVIUKZVPVQXQXPBJXS + BCDEWOFGPVJTBCDEWOFGXRVKVLVMHIBBWGWGCCWCWOWOFFXHXHXRXRVNVO $. + + $( Right-multiplication in a semiring by a fixed element of the ring is a + monoid homomorphism. (Contributed by AV, 23-Aug-2019.) $) + srgrmhm $p |- ( ( R e. SRing /\ X e. B ) + -> ( x e. B |-> ( x .x. X ) ) e. ( R MndHom R ) ) $= + ( va vb wcel wa cv co cfv wceq w3a srgcl oveq1 syl3anc fvmptd3 cplusg c0g + csrg cmnd cmpt wf wral cmhm srgmnd jca adantr 3com23 fmpttd 3anrot 3anass + 3expa bitr3i eqid srgdir anassrs srgacl 3expb simpll simplr simprl simprr + sylan2br adantlr oveq12d 3eqtr4d ralrimivva srg0cl simpl simpr srglz 3jca + eqtrd ismhm sylanbrc ) CUCJZEBJZKZCUDJZWCKZBBABALZEDMZUEZUFZHLZILZCUANZMZ + WGNZWIWGNZWJWGNZWKMZOZIBUGHBUGZCUBNZWGNZWSOZPWGCCUHMJVTWDWAVTWCWCCUIZXBUJ + UKWBWHWRXAWBABWFBVTWAWEBJZWFBJZVTXCWAXDBCDWEEFGQULUPUMWBWQHIBBWBWIBJZWJBJ + ZKZKZWLEDMZWIEDMZWJEDMZWKMZWMWPVTWAXGXIXLOZWAXGKZVTXEXFWAPZXMXOWAXEXFPXNW + AXEXFUNWAXEXFUOUQBWKCDWIWJEFWKURZGUSVGUTXHAWLWFXIBWGBWGURZWEWLEDRVTXGWLBJ + ZWAVTXEXFXRBWKCWIWJFXPVAVBVHZXHVTXRWAXIBJVTWAXGVCZXSVTWAXGVDZBCDWLEFGQSTX + HWNXJWOXKWKXHAWIWFXJBWGBXQWEWIEDRWBXEXFVEZXHVTXEWAXJBJXTYBYABCDWIEFGQSTXH + AWJWFXKBWGBXQWEWJEDRWBXEXFVFZXHVTXFWAXKBJXTYCYABCDWJEFGQSTVIVJVKWBWTWSEDM + ZWSWBAWSWFYDBWGBXQWEWSEDRVTWSBJZWABCWSFWSURZVLUKZWBVTYEWAYDBJVTWAVMYGVTWA + VNBCDWSEFGQSTBCDEWSFGYFVOVQVPHIBBWKWKCCWGWSWSFFXPXPYFYFVRVS $. + $} + + ${ + srg1expzeq1.g $e |- G = ( mulGrp ` R ) $. + srg1expzeq1.t $e |- .x. = ( .g ` G ) $. + srg1expzeq1.1 $e |- .1. = ( 1r ` R ) $. + $( The exponentiation (by a nonnegative integer) of the multiplicative + identity of a semiring, analogous to ~ mulgnn0z . (Contributed by AV, + 25-Nov-2019.) $) + srg1expzeq1 $p |- ( ( R e. SRing /\ N e. NN0 ) -> ( N .x. .1. ) = .1. ) $= + ( csrg wcel cn0 wa co wceq c0g cfv cmnd srgmgp cbs eqid mulgnn0z sylan wb + ringidvalg oveq2d eqeq12d adantr mpbird ) AIJZEKJZLECBMZCNZEDOPZBMZUMNZUI + DQJUJUOADFRDSPZBDEUMUPTGUMTUAUBUIULUOUCUJUIUKUNCUMUICUMEBACDIFHUDZUEUQUFU + GUH $. + $} + + $( #*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*# The complex numbers as an algebraic extensible structure @@ -165231,6 +165769,9 @@ Norman Megill (2007) section 1.1.3. Megill then states, "A number of htmldef "mulGrp" as "mulGrp"; althtmldef "mulGrp" as "mulGrp"; latexdef "mulGrp" as "\mathrm{mulGrp}"; +htmldef "SRing" as "SRing"; + althtmldef "SRing" as "SRing"; + latexdef "SRing" as "\mathrm{SRing}"; htmldef "1r" as ""; althtmldef "1r" as "1r"; latexdef "1r" as "1_\mathrm{r}"; diff --git a/mmil.raw.html b/mmil.raw.html index f16d0f4766..fd69bfdba1 100644 --- a/mmil.raw.html +++ b/mmil.raw.html @@ -3498,6 +3498,14 @@