diff --git a/set.mm b/set.mm index c2a005a6ff..7ff85f55ae 100644 --- a/set.mm +++ b/set.mm @@ -16998,9 +16998,9 @@ variables and no wff metavariables (see ~ ax12wdemo for an example of ${ $d y z $. $d x y $. $d z ph $. $d y ps $. alcomiw.1 $e |- ( y = z -> ( ph <-> ps ) ) $. - $( Weak version of ~ alcom . Uses only Tarski's FOL axiom schemes. - (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, - 28-Dec-2023.) $) + $( Weak version of ~ ax-11 . See ~ alcomw for the biconditional form. + Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) + (Proof shortened by Wolf Lammen, 28-Dec-2023.) $) alcomiw $p |- ( A. x A. y ph -> A. y A. x ph ) $= ( wal cbvalvw biimpi alimi ax-5 wi weq biimprd equcoms spimvw 2alimi 3syl ) ADGZCGBEGZCGZUADGACGDGSTCSTABDEFHIJUADKTADCBAEDBALDEDEMABFNOPQR $. @@ -17013,8 +17013,9 @@ variables and no wff metavariables (see ~ ax12wdemo for an example of $d w x $. alcomw.1 $e |- ( x = w -> ( ph <-> ps ) ) $. alcomw.2 $e |- ( y = z -> ( ph <-> ch ) ) $. - $( Weak version of ~ alcom . Uses only Tarski's FOL axiom schemes. - (Contributed by BTernaryTau, 28-Dec-2024.) $) + $( Weak version of ~ alcom and biconditional form of ~ alcomiw . Uses only + Tarski's FOL axiom schemes. (Contributed by BTernaryTau, + 28-Dec-2024.) $) alcomw $p |- ( A. x A. y ph <-> A. y A. x ph ) $= ( wal alcomiw impbii ) AEJDJADJEJACDEFIKABEDGHKL $. $( $j usage 'alcomw' avoids 'ax-8' 'ax-9' 'ax-10' 'ax-11' 'ax-12' @@ -18385,7 +18386,8 @@ scheme is logically redundant (see ~ ax10w ) but is used as an auxiliary preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. This axiom scheme is logically redundant (see ~ ax11w ) but is used as an auxiliary axiom scheme to achieve metalogical - completeness. (Contributed by NM, 12-Mar-1993.) $) + completeness. Use its weak version ~ alcomiw when it allows to avoid + dependence on ~ ax-11 . (Contributed by NM, 12-Mar-1993.) $) ax-11 $a |- ( A. x A. y ph -> A. y A. x ph ) $. ${ @@ -18395,7 +18397,9 @@ scheme is logically redundant (see ~ ax10w ) but is used as an auxiliary ( wal ax-11 syl ) ACFDFADFCFBADCGEH $. $} - $( Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 30-Jun-1993.) $) + $( Theorem 19.5 of [Margaris] p. 89. Use its weak version ~ alcomw when it + allows to avoid dependence on ~ ax-11 . (Contributed by NM, + 30-Jun-1993.) $) alcom $p |- ( A. x A. y ph <-> A. y A. x ph ) $= ( wal ax-11 impbii ) ACDBDABDCDABCEACBEF $. @@ -49121,16 +49125,17 @@ although the definition does not require it (see ~ dfid2 for a case $( Define the transitive class predicate. Not to be confused with a transitive relation (see ~ cotr ). Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see ~ dftr2 - (which is suggestive of the word "transitive"), ~ dftr3 , ~ dftr4 , - ~ dftr5 , and (when ` A ` is a set) ~ unisuc . The term "complete" is - used instead of "transitive" in Definition 3 of [Suppes] p. 130. - (Contributed by NM, 29-Aug-1993.) $) + (which is suggestive of the word "transitive"), ~ dftr2c , ~ dftr3 , + ~ dftr4 , ~ dftr5 , and (when ` A ` is a set) ~ unisuc . The term + "complete" is used instead of "transitive" in Definition 3 of [Suppes] + p. 130. (Contributed by NM, 29-Aug-1993.) $) df-tr $a |- ( Tr A <-> U. A C_ A ) $. ${ $d x y A $. $( An alternate way of defining a transitive class. Exercise 7 of - [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.) $) + [TakeutiZaring] p. 40. Using ~ dftr2c instead may avoid dependences on + ~ ax-11 . (Contributed by NM, 24-Apr-1994.) $) dftr2 $p |- ( Tr A <-> A. x A. y ( ( x e. y /\ y e. A ) -> x e. A ) ) $= ( cuni wss cv wcel wi wal wa dfss2 df-tr 19.23v eluni imbi1i bitr4i albii wtr wex 3bitr4i ) CDZCEAFZUAGZUBCGZHZAICRUBBFZGUFCGJZUDHBIZAIAUACKCLUHUEA