diff --git a/set.mm b/set.mm index e8351f7807..2fd097e4e9 100644 --- a/set.mm +++ b/set.mm @@ -28964,6 +28964,18 @@ Such interpretation is rarely needed (see also ~ df-ral ). (Contributed ( cv wcel wi nfcri 19.21 r2allem ) ABCDEBGDHCGEHAICCBDFJKL $. $} + ${ + $d x y $. + nfraldw.1 $e |- F/ y ph $. + nfraldw.2 $e |- ( ph -> F/_ x A ) $. + nfraldw.3 $e |- ( ph -> F/ x ps ) $. + $( Version of ~ nfrald with a disjoint variable condition, which does not + require ~ ax-13 . (Contributed by Gino Giotto, 10-Jan-2024.) $) + nfraldw $p |- ( ph -> F/ x A. y e. A ps ) $= + ( wral cv wcel wi wal df-ral nfcvd nfeld nfimd nfald nfxfrd ) BDEIDJZEKZB + LZDMACBDENAUBCDFAUABCACTEACTOGPHQRS $. + $} + ${ nfrald.1 $e |- F/ y ph $. nfrald.2 $e |- ( ph -> F/_ x A ) $. @@ -28976,6 +28988,17 @@ Such interpretation is rarely needed (see also ~ df-ral ). (Contributed GRACDSUAACERUJGTUBABCUCUJHTUDUEUF $. $} + ${ + $d x y $. + nfralw.1 $e |- F/_ x A $. + nfralw.2 $e |- F/ x ph $. + $( Version of ~ nfral with a disjoint variable condition, which does not + require ~ ax-13 . (Contributed by Gino Giotto, 10-Jan-2024.) $) + nfralw $p |- F/ x A. y e. A ph $= + ( wral wnf wtru nftru wnfc a1i nfraldw mptru ) ACDGBHIABCDCJBDKIELABHIFLM + N $. + $} + ${ nfral.1 $e |- F/_ x A $. nfral.2 $e |- F/ x ph $. @@ -32738,8 +32761,8 @@ Such interpretation is rarely needed (see also ~ df-ral ). (Contributed substitution. (Contributed by NM, 9-Nov-2012.) $) rspc2 $p |- ( ( A e. C /\ B e. D ) -> ( A. x e. C A. y e. D ph -> ps ) ) $= - ( wcel wral nfcv nfral cv wceq rspc ralbidv sylan9 ) FHNAEIOZDHOCEIOZGINB - UCUDDFHCDEIDIPJQDRFSACEILUATCBEGIKMTUB $. + ( wcel wral nfcv nfralw cv wceq rspc ralbidv sylan9 ) FHNAEIOZDHOCEIOZGIN + BUCUDDFHCDEIDIPJQDRFSACEILUATCBEGIKMTUB $. $} ${ @@ -40126,7 +40149,7 @@ disjoint classes (see ~ disjdif ). Part of proof of Corollary 6K of $( Rearrange restricted quantifiers. (Contributed by NM, 26-Oct-2010.) $) raaan $p |- ( A. x e. A A. y e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ A. y e. A ps ) ) $= - ( wa wral wb c0 wceq rzal pm5.1 syl12anc wne r19.28z ralbidv nfcv nfral + ( wa wral wb c0 wceq rzal pm5.1 syl12anc wne r19.28z ralbidv nfcv nfralw r19.27z bitrd pm2.61ine ) ABHDEIZCEIZACEIZBDEIZHZJZEKEKLUEUFUGUIUDCEMACEM BDEMUEUHNOEKPZUEAUGHZCEIUHUJUDUKCEABDEFQRAUGCEBCDECESGTUAUBUC $. $} @@ -40175,10 +40198,10 @@ disjoint classes (see ~ disjdif ). Part of proof of Corollary 6K of -> ( A. x e. A A. y e. B ( ph /\ ps ) <-> ( A. x e. A ph /\ A. y e. B ps ) ) ) $= ( c0 wceq wb wa wn wo wral rzal adantr wne df-ne sylbir dfbi3 adantl nfcv - pm5.1 syl12anc r19.28z ralbidv nfral r19.27z sylan9bbr jaoi sylbi ) EIJZF - IJZKUMUNLZUMMZUNMZLZNABLDFOZCEOZACEOZBDFOZLZKZUMUNUAUOVDURUOUTVAVBVDUMUTU - NUSCEPQUMVAUNACEPQUNVBUMBDFPUBUTVCUDUEUQUTAVBLZCEOZUPVCUQFIRZUTVFKFISVGUS - VECEABDFGUFUGTUPEIRVFVCKEISAVBCEBCDFCFUCHUHUITUJUKUL $. + pm5.1 syl12anc r19.28z ralbidv nfralw r19.27z sylan9bbr jaoi sylbi ) EIJZ + FIJZKUMUNLZUMMZUNMZLZNABLDFOZCEOZACEOZBDFOZLZKZUMUNUAUOVDURUOUTVAVBVDUMUT + UNUSCEPQUMVAUNACEPQUNVBUMBDFPUBUTVCUDUEUQUTAVBLZCEOZUPVCUQFIRZUTVFKFISVGU + SVECEABDFGUFUGTUPEIRVFVCKEISAVBCEBCDFCFUCHUHUITUJUKUL $. $} ${ @@ -41655,11 +41678,11 @@ will do (e.g., ` O = (/) ` and ` T = { (/) } ` , see ~ 0nep0 ). rexreusng $p |- ( A e. V -> ( E. x e. { A } ph <-> E! x e. { A } ph ) ) $= ( vy wcel csn wa wi wral wsbc cv wceq nfsbc1v nfv sbceq1a imbi12d ralsngf nfan nfim wrex wsb weq wreu eqidd dfsbcq2 anbi12d eqeq2 mpbiri nfcv nfs1v - nfral anbi1d eqeq1 ralbidv mpbird biantrud reu2 syl6bbr ) CDFZABCGZUAZVBA - ABEUBZHZBEUCZIZEVAJZBVAJZHABVAUDUTVHVBUTVHABCKZVCHZCELZMZIZEVAJZUTVNVIECK - ZVIHZCCMZIZVPCUEVMVRECDVPVQEVOVIEVIECNVIEOSVQEOTVKCMZVJVPVLVQVSVIVOVCVIVI - ECPABECUFUGVKCCUHQRUIVGVNBCDVMBEVABVAUJVJVLBVIVCBABCNABEUKSVLBOTULBLZCMZV - FVMEVAWAVDVJVEVLWAAVIVCABCPUMVTCVKUNQUORUPUQABEVAURUS $. + nfralw anbi1d eqeq1 ralbidv mpbird biantrud reu2 syl6bbr ) CDFZABCGZUAZVB + AABEUBZHZBEUCZIZEVAJZBVAJZHABVAUDUTVHVBUTVHABCKZVCHZCELZMZIZEVAJZUTVNVIEC + KZVIHZCCMZIZVPCUEVMVRECDVPVQEVOVIEVIECNVIEOSVQEOTVKCMZVJVPVLVQVSVIVOVCVIV + IECPABECUFUGVKCCUHQRUIVGVNBCDVMBEVABVAUJVJVLBVIVCBABCNABEUKSVLBOTULBLZCMZ + VFVMEVAWAVDVJVEVLWAAVIVCABCPUMVTCVKUNQUORUPUQABEVAURUS $. $} $( There is a set being the element of a singleton if and only if there is an @@ -67203,13 +67226,13 @@ ordered pairs (for use in defining operations). This is a special case Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.) $) mpoeq123 $p |- ( ( A = D /\ A. x e. A ( B = E /\ A. y e. B C = F ) ) -> ( x e. A , y e. B |-> C ) = ( x e. D , y e. E |-> F ) ) $= - ( vz wceq wral wa cv wcel coprab cmpo nfv nfra1 nfan wb nfral rsp pm5.32d - nfcv eqeq2 eleq2 anbi1d sylan9bbr anass 3bitr4g oprabbid df-mpo 3eqtr4g - syl6 ) CFJZDGJZEHJZBDKZLZACKZLZAMZCNZBMZDNZLIMZEJZLZABIOVBFNZVDGNZLVFHJZL - ZABIOABCDEPABFGHPVAVHVLABIUOUTAUOAQUSACRSUOUTBUOBQUSBACBCUDUPURBUPBQUQBDR - SUASVAIQVAVCVEVGLZLZVIVJVKLZLZVHVLUTVNVCVOLUOVPUTVCVMVOUTVCUSVMVOTUSACUBU - RVMVEVKLUPVOURVEVGVKURVEUQVGVKTUQBDUBEHVFUEUNUCUPVEVJVKDGVDUFUGUHUNUCUOVC - VIVOCFVBUFUGUHVCVEVGUIVIVJVKUIUJUKABICDEULABIFGHULUM $. + ( vz wceq wral wa cv wcel coprab cmpo nfv nfra1 nfan wb nfcv nfralw eqeq2 + syl6 pm5.32d eleq2 anbi1d sylan9bbr anass 3bitr4g oprabbid df-mpo 3eqtr4g + rsp ) CFJZDGJZEHJZBDKZLZACKZLZAMZCNZBMZDNZLIMZEJZLZABIOVBFNZVDGNZLVFHJZLZ + ABIOABCDEPABFGHPVAVHVLABIUOUTAUOAQUSACRSUOUTBUOBQUSBACBCUAUPURBUPBQUQBDRS + UBSVAIQVAVCVEVGLZLZVIVJVKLZLZVHVLUTVNVCVOLUOVPUTVCVMVOUTVCUSVMVOTUSACUNUR + VMVEVKLUPVOURVEVGVKURVEUQVGVKTUQBDUNEHVFUCUDUEUPVEVJVKDGVDUFUGUHUDUEUOVCV + IVOCFVBUFUGUHVCVEVGUIVIVJVKUIUJUKABICDEULABIFGHULUM $. $} ${ @@ -513385,11 +513408,11 @@ Real and complex numbers (cont.) Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) $) untsucf $p |- ( A. x e. A -. x e. x -> A. y e. suc A -. y e. y ) $= - ( wel wn wral csuc nfral cv wcel wceq wo elsuc elequ1 elequ2 bitrd notbid - nfv vex rspccv untelirr eleq1 eleq2 syl5ibrcom jaod syl5bi ralrimi ) AAEZ - FZACGZBBEZFZBCHZUJBACDUJBSIBJZUNKUOCKZUOCLZMUKUMUOCBTNUKUPUMUQUJUMAUOCAJU - OLZUIULURUIBAEULABAOABBPQRUAUKUMUQCCKZFACUBUQULUSUQULCUOKUSUOCUOUCUOCCUDQ - RUEUFUGUH $. + ( wel wn wral csuc nfv nfralw cv wcel wceq vex elsuc elequ1 elequ2 notbid + wo bitrd rspccv untelirr eleq1 eleq2 syl5ibrcom jaod syl5bi ralrimi ) AAE + ZFZACGZBBEZFZBCHZUJBACDUJBIJBKZUNLUOCLZUOCMZSUKUMUOCBNOUKUPUMUQUJUMAUOCAK + UOMZUIULURUIBAEULABAPABBQTRUAUKUMUQCCLZFACUBUQULUSUQULCUOLUSUOCUOUCUOCCUD + TRUEUFUGUH $. $} $( The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) @@ -629625,29 +629648,6 @@ standardize vectors to a length (norm) of one, but such definitions require OUNUPUQURUS $. $} - ${ - $d x y $. - nfraldw.1 $e |- F/ y ph $. - nfraldw.2 $e |- ( ph -> F/_ x A ) $. - nfraldw.3 $e |- ( ph -> F/ x ps ) $. - $( Version of ~ nfrald with a disjoint variable condition, which does not - require ~ ax-13 . (Contributed by Gino Giotto, 10-Jan-2024.) $) - nfraldw $p |- ( ph -> F/ x A. y e. A ps ) $= - ( wral cv wcel wi wal df-ral nfcvd nfeld nfimd nfald nfxfrd ) BDEIDJZEKZB - LZDMACBDENAUBCDFAUABCACTEACTOGPHQRS $. - $} - - ${ - $d x y $. - nfralw.1 $e |- F/_ x A $. - nfralw.2 $e |- F/ x ph $. - $( Version of ~ nfral with a disjoint variable condition, which does not - require ~ ax-13 . (Contributed by Gino Giotto, 10-Jan-2024.) $) - nfralw $p |- F/ x A. y e. A ph $= - ( wral wnf wtru nftru wnfc a1i nfraldw mptru ) ACDGBHIABCDCJBDKIELABHIFLM - N $. - $} - ${ $d A y $. $d x y $. $( Version of ~ nfra2 with a disjoint variable condition, which does not @@ -637394,12 +637394,12 @@ group element in (1,2), contradicting ~ pell14qrgapw . (Contributed by $( Set induction scheme without Infinity. See comments at ~ setindtr . (Contributed by Stefan O'Rear, 28-Oct-2014.) $) setindtrs $p |- ( E. z ( Tr z /\ B e. z ) -> ch ) $= - ( va cv wtr wcel wa wex wi wral nfsab1 cvv setindtr dfss3 nfcv nfral nfim - cab wss weq raleq eleq1w imbi12d vex elab ralbii abid 3imtr4i chvar sylbi - mpg wb elex adantl exlimiv elabg syl mpbid ) FLZMZGVGNZOZFPZGADUFZNZCKLZV - LUGZVNVLNZQVKVMQKKFVLGUAVOELZVLNZEVNRZVPEVNVLUBVREDLZRZVTVLNZQVSVPQDKVSVP - DVRDEVNDVNUCADESUDADKSUEDKUHWAVSWBVPVREVTVNUIDKVLUJUKBEVTRAWAWBHVRBEVTABD - VQEULIUMUNADUOUPUQURUSVKGTNZVMCUTVJWCFVIWCVHGVGVAVBVCACDGTJVDVEVF $. + ( va cv wtr wcel wa wex wi wral nfsab1 cvv cab setindtr dfss3 nfcv nfralw + wss nfim weq raleq eleq1w imbi12d vex elab abid 3imtr4i chvarfv sylbi mpg + ralbii wb elex adantl exlimiv elabg syl mpbid ) FLZMZGVGNZOZFPZGADUAZNZCK + LZVLUFZVNVLNZQVKVMQKKFVLGUBVOELZVLNZEVNRZVPEVNVLUCVREDLZRZVTVLNZQVSVPQDKV + SVPDVRDEVNDVNUDADESUEADKSUGDKUHWAVSWBVPVREVTVNUIDKVLUJUKBEVTRAWAWBHVRBEVT + ABDVQEULIUMUSADUNUOUPUQURVKGTNZVMCUTVJWCFVIWCVHGVGVAVBVCACDGTJVDVEVF $. $} ${