From 7eb414de9a1270026d40d883aeefa2d60fcb75bd Mon Sep 17 00:00:00 2001 From: Thierry Arnoux <5831830+tirix@users.noreply.github.com> Date: Tue, 9 Apr 2024 14:21:00 +0200 Subject: [PATCH] Comments wording as per remarks from @savask --- set.mm | 23 ++++++++++++----------- 1 file changed, 12 insertions(+), 11 deletions(-) diff --git a/set.mm b/set.mm index 5ea9b475f7..37539cdac6 100644 --- a/set.mm +++ b/set.mm @@ -472220,7 +472220,7 @@ The sumset operation can be used for both group (additive) operations and elgrplsmsn.4 $e |- ( ph -> G e. V ) $. elgrplsmsn.5 $e |- ( ph -> A C_ B ) $. elgrplsmsn.6 $e |- ( ph -> X e. B ) $. - $( Membership to a sumset with a singleton for a group operation. + $( Membership in a sumset with a singleton for a group operation. (Contributed by Thierry Arnoux, 21-Jan-2024.) $) elgrplsmsn $p |- ( ph -> ( Z e. ( A .(+) { X } ) <-> E. x e. A Z = ( x .+ X ) ) ) $= @@ -472269,8 +472269,8 @@ The sumset operation can be used for both group (additive) operations and elringlsm.5 $e |- ( ph -> G e. V ) $. elringlsm.6 $e |- ( ph -> E C_ B ) $. elringlsm.7 $e |- ( ph -> F C_ B ) $. - $( Membership to a sumset for a ring operation. (Contributed by Thierry - Arnoux, 20-Jan-2024.) $) + $( Membership in a product of two subsets of a ring. (Contributed by + Thierry Arnoux, 20-Jan-2024.) $) elringlsm $p |- ( ph -> ( Z e. ( E .X. F ) <-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) $= ( wcel wss co cv wceq wrex wb mgpbas mgpplusg lsmelvalx syl3anc ) AJKTHDU @@ -472284,8 +472284,8 @@ The sumset operation can be used for both group (additive) operations and ringlsmss.4 $e |- ( ph -> R e. Ring ) $. ringlsmss.5 $e |- ( ph -> E C_ B ) $. ringlsmss.6 $e |- ( ph -> F C_ B ) $. - $( Closure for the sumset multiplicative operation in a ring. (Contributed - by Thierry Arnoux, 20-Jan-2024.) $) + $( Closure of the product of two subsets of a ring. (Contributed by + Thierry Arnoux, 20-Jan-2024.) $) ringlsmss $p |- ( ph -> ( E .X. F ) C_ B ) $= ( cmnd wcel wss co crg ringmgp syl mgpbas lsmssv syl3anc ) AGNOZEBPFBPEFD QBPACROUDKCGISTLMBDEFGBCGIHUAJUBUC $. @@ -472300,15 +472300,16 @@ The sumset operation can be used for both group (additive) operations and lsmsnpridl.4 $e |- K = ( RSpan ` R ) $. lsmsnpridl.5 $e |- ( ph -> R e. Ring ) $. lsmsnpridl.6 $e |- ( ph -> X e. B ) $. - $( The sumset of a ring with a single element is the element's principal - ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.) $) + $( The product of the ring with a single element is equal to the principal + ideal generated by that element. (Contributed by Thierry Arnoux, + 21-Jan-2024.) $) lsmsnpridl $p |- ( ph -> ( B .X. { X } ) = ( K ` { X } ) ) $= ( vx vy co cfv cv wcel cvv csn cmulr wceq wrex mgpbas eqid mgpplusg fvexi cmgp a1i ssidd elgrplsmsn crg wb rspsnel syl2anc bitr4d eqrdv ) ANBGUAZDP ZUSFQZANRZUTSVBORGCUBQZPUCOBUDZVBVASZAOBBVCDETGVBBCEIHUECVCEIVCUFZUGJETSA ECUIIUHUJABUKMULACUMSGBSVEVDUNLMOBCVCVBFGHVFKUOUPUQUR $. - $( The sumset of a ring with a single element is a principal ideal. + $( The product of the ring with a single element is a principal ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.) $) lsmsnidl $p |- ( ph -> ( B .X. { X } ) e. ( LPIdeal ` R ) ) $= ( vy csn co cfv wcel wceq wb clpidl cv wrex sneq fveq2d eqeq2d lsmsnpridl @@ -472324,7 +472325,7 @@ The sumset operation can be used for both group (additive) operations and lsmidl.5 $e |- ( ph -> R e. Ring ) $. lsmidl.6 $e |- ( ph -> I e. ( LIdeal ` R ) ) $. lsmidl.7 $e |- ( ph -> J e. ( LIdeal ` R ) ) $. - $( The sumset sum of two ideals is the ideal generated by their union. + $( The sum of two ideals is the ideal generated by their union. (Contributed by Thierry Arnoux, 21-Jan-2024.) $) lsmidllsp $p |- ( ph -> ( I .(+) J ) = ( K ` ( I u. J ) ) ) $= ( co cfv clsm crg wcel wceq syl crglmod rlmlsm syl5eq oveqd clmod rlmlmod @@ -472332,8 +472333,8 @@ The sumset operation can be used for both group (additive) operations and NEFDUAOZPOZNZEFUGGOZACUSEFACDPOZUSIADQRZVBUSSKDQUBTUCUDAURUERZEDUHOZRFVER UTVASAVCVDKDUFTLMUSVEEFGURDUIGDUJOURUKOJDULUMUSUNUOUPUQ $. - $( The sumset sum of two ideals is an ideal. (Contributed by Thierry - Arnoux, 21-Jan-2024.) $) + $( The sum of two ideals is an ideal. (Contributed by Thierry Arnoux, + 21-Jan-2024.) $) lsmidl $p |- ( ph -> ( I .(+) J ) e. ( LIdeal ` R ) ) $= ( cfv wcel wss syl lidlss cbs eqtri cun clidl lsmidllsp crglmod clmod crg rlmlmod eqid unssd rlmbas lidlval crsp clspn rspval lspcl syl2anc eqeltrd