diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 7368c0254..09e0b23ca 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -317,6 +317,7 @@ jobs: pip install gymnasium==0.28 ls -al pip install -e . + pip install numpy==1.24 python -m metadrive.pull_asset cd bridges/ros_bridge diff --git a/.gitignore b/.gitignore index 765ba3bfc..1af8ad5c1 100644 --- a/.gitignore +++ b/.gitignore @@ -53,3 +53,7 @@ /documentation/**/**.gif /documentation/source/img.png /documentation/source/demo.png + +# ignore documentation build output +**/filtered_dataset +**/semantics.png diff --git a/documentation/requirements.txt b/documentation/requirements.txt index b0d853a2f..ee5f051d0 100644 --- a/documentation/requirements.txt +++ b/documentation/requirements.txt @@ -24,7 +24,7 @@ jinja2==3.1.2 # via sphinx markupsafe==2.1.1 # via jinja2 -packaging==21.3 +packaging>=22.0 # via sphinx pygments==2.12.0 # via sphinx diff --git a/documentation/source/debug_mode.ipynb b/documentation/source/debug_mode.ipynb index b812c4ba1..d5e6f8d05 100644 --- a/documentation/source/debug_mode.ipynb +++ b/documentation/source/debug_mode.ipynb @@ -140,17 +140,6 @@ "In addition to the errors raised from MetaDrive, sometimes the game engine, Panda3D, will throw errors and warnings about the rendering service. To enable the logging of Panda3D, set `env_config[\"debug_panda3d\"]=True`. Besides, you can turn on Panda3D's profiler via `env_config[\"pstats\"]=True` and launch the `pstats` in the terminal. It can be used to analyze your program in terms of the time consumed for different functions like rendering, physics and so on, which is very useful if you are developing some graphics related features." ] }, - { - "cell_type": "code", - "execution_count": null, - "id": "7b3e2ecb", - "metadata": {}, - "outputs": [], - "source": [ - "# launch pstats (bash)\n", - "!pstats" - ] - }, { "cell_type": "code", "execution_count": null, diff --git a/documentation/source/obs.ipynb b/documentation/source/obs.ipynb index 28a2d4721..d4792c4cd 100644 --- a/documentation/source/obs.ipynb +++ b/documentation/source/obs.ipynb @@ -4,7 +4,6 @@ "cell_type": "markdown", "id": "72c167e8", "metadata": { - "editable": true, "slideshow": { "slide_type": "" }, @@ -237,6 +236,80 @@ "More details of how to use sensors is at [Sensors](sensors.ipynb)." ] }, + { + "cell_type": "markdown", + "id": "ffe431f5-111f-417f-ac42-12d883c565bd", + "metadata": {}, + "source": [ + "### Using semantic camera as observation" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "90719dd3-d1e9-4741-9db9-dce5e2addf9c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'image': (128, 256, 3, 3), 'state': (19,)}\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAB5CAYAAAATQNr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBuklEQVR4nO29eZhcV33n/bl77VW9L5Jaa0u2LLxpB4xtLOKFeAFeEggzOISBgdjDyzgDg58EePKQxJkkkzAsgTyTCSRvGJYEL2DA2MiAbSxLlizbsrVbS7fU+1p73e28f9yuklprd6uXavl8nqfVqrq37j2n+nvP/Z7f+Z1zFSGEQCKRSCQSiaSKUOe6ABKJRCKRSCRnIg2KRCKRSCSSqkMaFIlEIpFIJFWHNCgSiUQikUiqDmlQJBKJRCKRVB3SoEgkEolEIqk6pEGRSCQSiURSdUiDIpFIJBKJpOqQBkUikUgkEknVIQ2KRCKRSCSSqmNODcrXv/51lixZQigUYuPGjezYsWMuiyORTBipXcl8RWpXMl+YM4Py/e9/nwceeIAvfvGLvPTSS1xzzTXceuut9PX1zVWRJJIJIbUrma9I7UrmE8pcPSxw48aNrF+/nq997WsA+L7PokWL+C//5b/wuc997oKf9X2frq4u4vE4iqLMRnEllyFCCDKZDK2trajqxL261K5krpHalcxXJqNdfZbKNA7bttm1axcPPvhg5T1VVdmyZQvbtm07a/9SqUSpVKq8PnnyJKtXr56Vskoufzo7O1m4cOGE9pXalVQTUruS+cpEtDsnBmVgYADP82hqahr3flNTE/v37z9r/4ceeog//dM/Pev9b//RO4hYc1IFyWVAvuTy+//zGeLx+IQ/I7UrqQakdiXzlclod16o7MEHH+SBBx6ovE6n0yxatIiIpRMJzYsqSKqYmQxXS+1KZhKpXcl8ZSLanROV1dfXo2kavb29497v7e2lubn5rP0ty8KyrNkqnkRyXqR2JfMVqV3JfGNOZvGYpsnatWvZunVr5T3f99m6dSubN2+eiyJJJBNCalcyX5Halcw35ixO98ADD3Dvvfeybt06NmzYwJe//GVyuRwf+chH5qpIEsmEkNqVzFekdiXziTkzKL/7u79Lf38/X/jCF+jp6eHaa6/liSeeOCuBSyKpNqR2JfMVqV3JfGJOM53uv/9+7r///rksgkQyJaR2JfMVqV3JfEE+i0cikUgkEknVIQ2KRCKRSCSSqkMaFIlEIpFIJFWHNCgSiUQikUiqDmlQJBKJRCKRVB3SoEgkEolEIqk6pEGRSCQSiURSdUiDIpFIJBKJpOqQBkUikUgkEknVIQ2KRCKRSCSSqkMaFIlEIpFIJFWHNCgSiUQikUiqDmlQJBKJRCKRVB3SoEgkEolEIqk6pEGRSCQSiURSdUiDIpFIJBKJpOrQ57oAEgmAKP9HqfxT+TXxD59rwzmOpSh4UYtSSptUGSWSczFeu+P+M57T376gZs/xodM+K3QNJ2xNvIASyQQ4ryQnwQUlPrZRKBNt2KVBkcwRQgEvFsYPm3ixEF48hJeK4oct/JCBHzJAHS9koWv4hg4CFCFQXA/GfiueH+zk+Si+qPwWmooIGfiGhrAMhKEH72kq+VwJPvXwHNReMp8RgB8yESEj0G3EwktG8eJhfEtHmHrQCKsKKAr4fqA7XQVVBT/QpuL64JU1HOhXEQLFdlEECE0NdBsy8MvaNTSEoZHP2fCZH8/tFyGZtwhAWDpeNIQfNgM9Gxq+pQeaLaMoCFPHN3QUEbSrAIrnobj+WBvMqfc8ASJod1EVfMvAj1hBm6sHx88qCvz51gmVUxoUyYwiVAUvFsKPWLjJKG5dHLcmgpuM4sdC+KaOHzZBn/1ohvCno88guVwRCvhhK9Bv1MKtieHWRHHqE3ixUNCgh02EebaZnmn8CYcXJW9WhEJgbM3ANPthC6c+jlsbw6mL40dDQWfQMhCGBpo63pxMBV8Q9CCV8x6rlC5M+HDSoEhmBDcVwW6uobSojtKSJtya6NmN+KVeDBLJDOBFLZyGJHZrDYWVrTgNiaDxPh2pXUkVEkTddPx4iNy1S7CbUpUotbCM8TvPhIZVhYmPzV8caVAk047QVUbfcRWFKxacCnNLJPMAocDoO1aTX9MWDMfMcmREIpkqAshds4TsumV48UgQFZnnbe9la1AEgKYgVDUIcelaMC6mKKi2g1J0gjE0IcP8040XC2MvqD271ymZFEJVgmEEQw9ulgqoJQel5ErdzhBePIK9qH5OhhwlkktBGBqFFc24tfF5b0zKzGuD4iYj2MkwwtBwa+P4loGXDOPFw3ixMEILEtWEriHKvSFFCZIqHRfFG0u09AV4XhCYGjMtiu1WEoHUgo1asNEyBbRcCVwvSHLzfPB8VNsNjuNNz8iwgKDc5TFBVTlVfsayoBWCBCZ1LBlPcCo51PVQfH+sfEHSUpnZkG2prR4vEZmFM81f3HgIJxFCGDpuMoIXj+CHDLxEKNCuZQR/27HksvLfXHU8lLEfyolq5Vwaz6skDCu2i+IL1KKNli6g5YqBsfH8IEnTE4G+Ha9yDUyXNir6VRVQ1UC7Y3o9PSJR3g6Mlck/VRbPn9YyTRSnIYFbE5vls84vBOCbQcKuP5bfIHQNLxnBi1gIM8hp8CJmkNhrBrcZNV9CyxZRSy647qkO4lhCu+J5KLYb/N3dMW2XteyOabu8/xz6cwHjtezPbXnKuLUx7AV1l405gXluUAZ+ZzNWYwJhnKMaE/0jTbYn6ougUT+tcVfzJdSig5YpYAyk0YdzwQ0ExmaXCHzTwA+ZeIkwXiIcZE1ryqmL0PXHsv2D2Sa+oSH0IHFJqGowA0DXKo0/ioJQqNzAyo264niBYXJOXdR4AhQq59EH0pi9I2gjedSiHdRjct/C+b9OBQrtLbPjhOYxg+/dhNWYCBKEzzeMcA4Ne+X/TCGCUjY2Fe3aLmrJQc3b6CM59KEs+nAWpegEKySJsfNoKn4khBezcJMR/LAFugpeeQZVcDMRuoYfMfENfUy7ylj2vg4qFZNdmWY4NpsKqNyIVNsNjJbjoRadUw2/8FFKLsZgBqN7GC1XDPZ1py9dVAD5qxZJ7V6E4XdfT74xgR8y8SMm3gwluSvumEbzdhA5tJ3AWNsuaslFyxbQ0nn0oSxaujDWMTv7uihHIt1kFBEyEJoatLu2UzFGvhnMkvLDY79NHXQ1MGBaMFQi9DG9lttdNehAKraDWnJRSk5QTsdDy5dOzbP1/aC86TxarjStndnTKS5pRFjz+pZ+FvO6Nl4iEmTQXwqTdZvlRpczzlu+YQhxxgTwsdfl85SjH9NdrolQKSPBRVO0MXtGCB3uweocQB/OBdGksf2mUgK3No7TlLqsXPxM4NbHMWKhqR9gCt9vOZv/7A1naPdc5qei2/Po97QlZ6ZavnOW6Vzv+wItW8Q8MUjoeD/WsX60bKFS/qme2YuHcJpTUrsXoXDFAkiEZ/w8wbRqHT96xnVyejs21r4qthtECR13fPs7NhOrPNX13CcSp7XPp31w3OvTj3nGm6dr9bQynfUxx0UfymIMZrE6+rE6BtDS+bGZL5fmi4WmUlzefAlHqE7mtUGpKk43INXK6RehquHHwhRXhCkuaUS1XbRMAfPkUKXhV7PFSV00ArBba/Au5cYrmX2mQ7vTLfvzlUVRQAUvFaWQjFC4YgFavoQ2ksfsGcY63o/ZMzIl7TrNNbhJOTRZ9YwzE2PD3mETN2zObXkqxTm38oRm4rTW4rTUkL9yAWrRwewZxjwxiDGYRe8fRR/JTWm4yG5M4tYnqvv+MwWkQZGAruHrGn7EwmlKkbt6MfpILjArfaMYvaNo6TzqWHjyvJeAqgTDOzI5VjIbKAroGl4igpeIYLfVk7t2KdpoHqujH7NrCH00jzaSD0LuFwqrKwqFla0yOVYy84zp1o9pFFe0BJEPz0fLFLA6Bwkf7EIfyQW5j7nSRRPiBWAvqMWPzJFBm0GkQZGcja7h1idw6+LkATwffTSPPpzD7BrCOtaHPpSt5OCUG303GQmStCSSOUKYOm5DArc+Tu76ZeD66CNZ9KEsZvcI4cPdaJnCWJLxKcMiLJ1SW/2cll3yJqVstGti5FNR8mvaUEtjOY19oxjdw5Uh+PIQ1jijranBsNtlFj0BaVAkF6IseF0LVoCtjVFc1oSyeSXaaB6jP43RNxr8fzBDaXFDkPQpkcw1Ze0aGm5DEP4utreS2dQe5AH0pzEGMmijOYzBDHZrLd6ZuQ4SyWwzluvlh038sBksErh6EYrrYXQPY/YMY/SOYgxmguEg28NpTOLWx+e65DOCNCiSiTN28QhVr0RYCqsWBNPsHC8Y2pHDO5JqpKzd0Kk8AMSpmW9BL1ZqV1JllHVr6tiLG7Db6k8tJeF46OkCeD7+mavEXiZIgyKZOpX1WDRQdIRaBYsBSCQTYexZIUJVz71MgURSjYwNBwldQ4TAjs/8bKq5RF6Z1YoAfFB8FcVTgsxuoZz6v6+g+GMZ7GPGQPEUfMdHcRRUW0V1VBRHRRc6FBQUR4GSQHHUYDsqCPBUD8VTEZqPUAWqq0JewRt28RwP4QuEI/DxUezgnKqm4ns+vjm2Msd6KN1YkGtISALKzwwr69RXUMb0XH4/eCq1AohgTR+AEgghUEoqmh1ENLSCjuIrqI4GtkApKuCd0rivl5+wquDrfnBOEwzHxB6wsQsO2AKBj3BBVTT0iAp5cEoOzkYb52Y7WPtFIrkYZf36ZR0H2kYogZ7L2wGhiODJ1CrBb2fsIaUCBCL4nEKlTVYY07YXHEspqlACxR2LpAjQbBWBQFM13JhH9vrRy1a70qDMFOUGekyw+Epw7/YVVEfFHDXRMyZaSUPLaOh5Az1noBZU9LyOr/uopooyCPmeAgIf3/RRUHAGHbyMiygFF4Bv+qBCxAmT6clS8ooIPPywh6d7RJrClDybUn8Jz3fxcCnZJcyIie8LXNtB+AIrauGUHHzPJxQNIXyBUxx7HQtRzBUr8/sj0QhKWiPmxjHjFqXfyqFchklab0oEZ+tXnDLJWklFzxsYaROtqKFldfScPqZfDS2nBVrVFdxBB2fYAYfAPKDg5VyUooKdt/FLAqEKhBasv+OfFOghjXwhj4OLF3bxDR9f90BX0H2N9FAagcDDRTFVNF3FLtgV06ygYEZMQMFzXNySO6564VgEXdGIFRNo6JTeWhoLBkr9XnacrmWUc+padZWg/R01UEtB+6s6GlpBQ8vpKM6pu7+mahR7CvgFD98WMNY59HWBltMoDhbwhAdFgs6aDpZpURIlKIIYEDglG+EKFE0hFoszOjSKp9sIXeDrPsLwCdeF0TSNdGeGUr4YmGtAaIJQyEKoweeV9yiErw9fttqVBmWynDmK4YM1FBprrHXMEQtzxETPGoT7IhijJpqtYXkW+ZN5KAA25ApZ7ISNZqoM9PbjxNJojRrDnUMITWAXS5gxE7fkYpeC3l2sMUZ2JIOmaxRzJayoiWM7ABimgRACV3PRwzpO0cGyLIqZIoWhCIVMoWJCSmOrHBZzxXFVKeVLaLqGoioUMuMfiV3MFxFj091a2xew6vAaFvUsQxM6IwsH2S9eYVgMnvrA5Xm9zG/OMQKnlrQxs2xgpk3MEQs9Z2AOWViDYYyMgSJAGVBxh1wUT8HNORS9Ik69A57PUP8QdqqIb/kUh4oU7PxYrpJAeAJf+AglaMwVQ0FV1cAIC39cWcywiaM6GIqBltCwi0FDrqs6dsZGMzQiyQi+5aEZGnbGIxKyKKQLQdRFV0g1p3Btl8xgBjNkjlX7VMWb2ptYdGQ5q7quwnQtMqtG2VO7i1ExFOwgdVv9nEvHtoo5aqFnjKAdTptoeR0ja2CMmJijFr7uY4waOD2BYdZsjVJ3Cc/wcFMOpdES+UKOopXDjToIU5DpzuDijD+96xNKhMin84HGFQKjIoLoX7w+TmY4g+/6hOKhwIh7PoZlYEZMbGHj+i6qojLsDFIQBXBA9VU0oYED+VIO4Qvsgl05r6ZrLPKXsOjkUhJuCrHY59V3voij2FyuSINyITwwsiZaQUPPBRGOUH+Y6IkYoZ4Ika4o4e4oelFHUaBQKuB7HvlIDtd2GKCPol5gMD8AESgWC4iYQNVVnJBN2AqTGczg4UEWtJKG53hoaHiKh6KD4zo4anCBjA6OIPygwUcRgdGAivAR4BQdPNdDCEExExiQ/GgegGgqihkxKeVK56yu8AWaoWGZFoVMAd/1x20rUyjlGblukEg4Ru1wPXXHGlj3326ge0sHQ9cNkG/NYdcWsVMl3Ih72YYfqx21pKJnDfR8EN0wMiaRzhjhvjCRrhjhk1GsoRCY4Bc9XM+hZBcRtT693b0M1wyRyY2S03L4vocrPNSkQt7NoVka3qCHN/ZIB0ZOO7FCRY/hRJjR3tHgfUHQEGtqxZxYUYtYbYxCulAxzq7jjmuYbddG0zUQUMqV8BwPpxhcE2VtA8GQo+dTzAaRvtOPUcYIG5hrdYpqAT2nE+9Osu6zb+P4+w+Tbh+h2FyglCriJO0gMikNy9wiQM8aGFkj0HLOINQXJtQXIdQXJtwTITQQRvM0REZgKzalQoFSXYnCUI6MmkY1CwyO9FM0ioDAFS6EwUwY5Mw8xWwBcqedMx/8hGIhin7x7DKpUMqWUA2VcDyM7/soilLRYmYoU+nMFTNFzLAZRKtdn0K6MDZUI/Acj4ITdAStqEWiIcHQicAol/V9Ok1XNbGs2M6S/e1o/Rp+h0/oc2EOfex1sosz2KkSXvjyam/fvAZFBK5btTVUW0WztUDw3VHCPRHCXcFvazCEkTEDJ54z8UoenuGRXZQm72Xp4CgFL0/ByDOqD2OHSpXIhKqrCDvoNSZSCfJ9OXRHR1d1VE1lpGdkXJE8x0M3dUKxEK7jYpjGqRsAQQNc3q+MGTFZcOUCOl/rrISyT99+OqVCiWhttBIKP+c+Y+bFMA0iDRFG+0YRQowzKMMdwwx37OT12KvEFySoU+ppiDbTcLKJ2q0NhJwwTq1DKVUkvyBLun2U9MoRcm0ZvIiLG3aD3JXL6EKadXxOabekoRU1wt1RIidjRLqiRLqiWP1hrGELI22iF3W0jI6LSyGRx62z6aWbopWn3+6lqBbIh3IU/ALeoAcmlUY71Zgi2x80upZv4XkeXv7cGtMtnWgqil2wKWaL2L1nmARBxfiqmkpLewuDJwbHGQ3hnt1FVjSFhsUNDBwfOK92y+ZEVVVqWmrIDGYAcO1TQzwnXj3BSeUk0boo4dootUo99XojzVtbWfKtdrDAri9RqiuSXZpm9IphRlcNY9cEjb9neQj9EtbTl5xCUMmTU20VzdHQswbRzhjh7ijRjjiRrmgQzRu2gmGYtIHv+xSiOcQij46R43g1Dj2Zbmy7RDaWIe/lED0CVVNRhILICXzVJxwNU0gX0E0dXdHJdKfHFcewgih0rDZGZiCDZpx/0T5FUUi1pNB0jf7j/eOiOmfqUzM04nVxeg71VIzLmbgll8xABitmVYbWT9ctQM9rPWQbshxcspfWVQtp1Joxj4e55gvr8VIexVSB3KIs6ZUjjK4eotCUDzQb9vCN+Wm2L0+DclqCXjmxVM/rhLuihAbCxI7FsQbChPrDhHsjhHqC/2t2IEghRBCubs5j6yX6rW5G9GHyjTkG6aOklUj3j924y8q0A9GWo4GJxgTCFxSzRZyiUzEjTsnBKY13x4oWjIfG6+Loll5x0eUIyPlQVIW6hXX0HOo5a5z9XJQvgpaVLfQf6z9nDxNOmZRSoUQ4Fsb3fDRTw7CMU71hwM7aDGYHGGSAQwMHUBSFcG2EmmQtLdoCavJ1RA7HqN/WRGgkjBd2KTQUyC5Nk1uUIbNilOziTMW4CC3IR5iPF9K0Us5ZqiTjKVhDFqHeSBDB64xhDYUId0exBkJEO+JYQ6FTi44JQSlZxG/0GHQHKNbm6fN7KDUVGbYGyWdyFNMlguTUsWeZqAoiG2jZilqomhr09iDQ7pjMzxz6UxQFIQTRmsCUOEVnnEbOh6IqLLluCd0Hus865rlwSy7FbJEl1y3h0AuHzrvf6dqtaa7B93xUXaWYLVbqI4QgO5AlS5Z+ejmo7CUUDRFeFSFRSNJas4h6r5EFL7bR9oPlaK5Oqa5Adkma/IIcmeWjZJemySwfpVRbCpLLtTHdvtm1ezpnJJMqrhpEnbuihHsjwU930AkM9QdRESNjogjwhcCN2aiLVDoLxxBxjy79JE6jzUhoiMxgGrvfDiJxfVT0qYwqJJuSjPSMYEUtDMvAKToUMoXK39+13XE3/7J2Ew0J7LxdaatzwznOR+2CWnzPp/9E/0W/hkK6QLwuTrw+Tro/fc59PNfDy46ZfgXq2+opZorkRnKVoSPf80n3pEmT5oTSgaIoRBIRkgtSNLhNNPhNNHcuoO6FRiK9UZykQ6E1R7YtQ3ZpOtDs0lEKLXl8w0doQe5iNWt2fhuUMSOillSswTDmqIk5FMIasoh0RQn1Rgh3R4kfTQTCd1RUT6m4dqEJ3AYHEfXore0iH8+SMUYZtobwIy49J7pxbQ/PcfE9H5E5/zTaUCxEOB7GCBv0HekjO5QdN0RyPnRTp3lFM5nBDJnBzIQ+A0Hv88p3XEnHno7KhTcRCukCfXYfdQvr6D3SOy4ychbi1A1JLamUsiU0QyPVlCI3kgtC6eVdhUAIQW44S244S5d2AlULZgo1XdlMqqaWpnQL8f4UNcfqqN/ehJE18E0fO2EHkZZVI2SWjZJflKXQlCffmsOLnGG8qvhimhTl5D1AK2pYA2GsISv4PRAi2hkn1B8m0hVoWM8aqK6K4o5l+/sKXsTFSdjk9RyDrb2M1o7gREsM0Ec6O0pmNI0rXERa4Nnnjnioqko4ESZeF6f/eD+e451tXM8jkVhtjHhDPDAZ6cKFtXQaiqqwYsMKsoPZCZmTMsNdwwA0LW+i70jfeXuj5TIPdwf765ZOvC5OKRckhrul8TcoIQSFbIFCtsAQg3SOHEfVVZKJJNbVYVriC2jINxHPJKl/sYmFjy9BEQpu2KXYWKhEWnJtGfILssEQZ8quJFAGlZ5wNecHZ371YiwXb9TEGrYwhwLTETkxFtE7ESPcE0F1gplXZS27EQcv4ZEzMqQbh+huO4kf8ehTesimM2SzWWzfhtExDWdPnVJRFKI1USBo13zPRwhBZiBTea/AufVlhAxSzSlGekYq2h3sHDznvmfSsKSB2gW1HHj+wIS/rv7j/Sy+ZjGlXKkyNH9eBAx0DKCqasUIjfaOjo/MjJmW3EiO3EiObqULzdTQlSACX7e6gQa/iZahhdTvb6DpV63oRR3f9CnVFcktzDKyZrDSWcwvyOEkxoY1y1SBZhVxwau8Okmn0ySTSX7xwLM0DDQRGgij53S0oo5W0NHHpiUC+KqPn/LwNJe8liffkMWttenSTiAUn57uLmxs8l4O3/XPCqudiRW1gotCBBfI4ImJifp0ojVR6hbVUcgU6D96cQd+JoqisHz9cvKjeboPdl+4oT7P52O1sSBUOnZhTxRVUwnFQthFG7fkYlgGqq6eN6/ldMywiR7SCZsRauI1NLe1EuqI0dDVhJmx0DI6RtbEjbi4MZtSXZH8ghzp9hFG1gxSaCxg15SCcHvo0sdaC+kC/7XuvzI6Okoikbi0g02QsnZ/9D9/RlN3axDCHg4SU/VCMBtGLWmVrHw35KIkBAW9gKe6DCeGoMnjaPYItldkOD2Erdq4BJG5C5kETdcIxUMkGhL0He3DczwUVUE39XOOeZ8LM2xSu6CW/mP9aKYW9PzOY37OhaIoNLc345ZcBjoGpqTdhVctpJgtMtg5OCntQtCRqGuro2t/F6FooOPzDYmeOimE42E0Q6O+voFIJMYifTGhI1FS2RrUrIY+NJYDlrBxEjaF5nyg27cMkm/NUaovYKfsIPlSv/Qmdy61+3+e+zYpP0X0WJxoZ5zIySAXrzyrSy/oaHkddWz2ixfyUBJQFAVspcRAqg+1RuFI/jBKVDAwOICtlhCGT2H03IZCURXCiXDFQAs/iFiVE6Evpn0ItBuKh4I2byyBtZgp4rkT12+iIUFNaw0nXj8xqc9BcP2tvmk1R3cfJTuYvfgHzqD1ilZc26XvaN95Ow2no+pB50MXBnW19dSlGkgUUtQcrydhJ1F6NbSShhO3cZI2xboi6VXDpNtHyKwYpVRbxK4t4sSnR7NlJqPdeW1QDi3tIq4mEKqPH/JBh4JfoNCUxY27DOi9+DGPE4MdOJpDRk9DKXCdF8MIBSvzaYZGvD5eMRKRZATP8S7ugk9DMzSsqEWyMUnf0T7C8TClXOmsoZ6JoCgKLataMEMmx145NiGhnvtA0L6xHVVTOfCbifcEzsSMmCx+y2Lsgk3Hno5J33CsqEW0IUaIEAsXLaIluhAOqsQPpwjlwyh5BbUUDL25UYdiU4FCc47s4kxlrLXYUMCNnJqSOlHjMpeNfEW7iODit8DXXFzNZXjhIGaNToc4jqc79KX7yGppPFxyg7mLmmhVU9FNHSHEOOOhmzqheGhyjePYzdm1XZyiQygWCmZ5TSJqVznUmHZTzSn2P7t/0uaijKqprP3ttRzfc5y+I31TOgYEYfqa1hrSA+nJdxQUiDZEiaZitNS3klCShIai1HY2EhuMo+RV1IKK6qn4hkehOU+xIdDu6BUjpFcNk12cwYnbeBEXz/RgEs8pnEvt7l1zjNrC+OcW+ZqPCAl81cMxHbINafRWhWP5o3hRh/6hPnIiS5EChdHCRSPFhmXgOi7CFxghg/q2enIjucpQ30S1o2oq6tjq1guvWkh2MEtmMDOhDtWZxOpitG9oZ99z+y46/H6h8lx181V07OmY0FDoOVGgbU0biqrQd7SPUq404e/DjJhYdRZ1NfU06E2krFpifQkinXHCwxGUnIJqa/imh50qUWjJU2jMk1kxyuiqYbLL0tg1weSHqXYS3zQG5ZX3H6DkF3FqS5zIdeJFHLoyJ8BWyI1kT+WHTKKGZtikaXkTxWwwrTbdnw5C3lP8lqyIRXN7M6qu0vFqx8V7axdh4eqFJBoT7Pv1vkmbgbNQIJqMEk6EGegYuKTjKAS5CIZlUNdWx0jPCKVcacJh/8pxFIVYKkZ0YZSGVBO1bj11WgPaMYPYgSRG2kDxgrwM1GAdGDfmkF2cIbskTa4tQ3bZKJnlafILsvimfyq3ZewcZeaykd99y35qWmro1booWQUGS4NkrFEK5BjtHqWQLUxav/Vt9RhWkEQofIHnehMOW5+LukV1pJpTAIx0j0wpWng6tQtrWXrdUl76yUuT08U5UNRg/D2cDDNwfOraVRQl+J5F0PlINiXpPdIbNPgTLeKYbg3LoG5pHdHaGDV2HZFSjEbRjLk3TKQnijI2NAeBbr2wR6ElFwxrLsiRaR+p6NiNOYFuy7ktZzCX2j3YfoKIHqXQmEdvU+nOdeHW2nQXT1IyimSNNJmTmWBpgglquDxcE62JBrNcPMFw1/CpTpxy8WOMO56q0Li0kYYlDXQf7A6ug0ke43SMkMGad65h3zP7xg1tT4X6tnoiqQgnXj8xZZOuKArxhjj1bfV07e8KksM1Fd+fvG4TDUmiS6KkIjW0uouw+sNEemPEjycx8gbCG1s3RhF4VmC2s0vTZJdkyC4NJkAUmgrYqRJC90/lEZ5niGgy2p3XOSiPDH0XXdUhy4SSRE8nkopghsyzZtI4RYeeQz1Tim5AEFZLNiQr4992webE3hOXbEwgGPtctnYZ2x/efunmBIKQtO2w4V0b2P2T3Wd9F5M5TrkhcmyHzECG9g3t5EZzE06CrBxHCDJDGTJDGXrVXjRTQ9VVmhY1UfOeWsxCiKZ8K6nRWpQ+FetYGCNtUvNqHTWv1oEKvuHhmT5u1CG7bJTRVSPkFqfJL8yRb81VjMuUo0/TwNM1P8Xpd3AVB3wuGhU5k0RDgkKmMC5CMtw9jKIo+L4/4VymM0k2JXFtl9xwjpGeEdL96QkP/1ywvI0J2ta0sfdXey/ZnEAw7d0Mm9z8Bzfz4iMvcuzlY1M7zmnXUSFTINGYYOWmlXiuR//xfka6RyZwkOA4dsGme283AKr+BoquEE3GWLhhAUbIIpGroTHdTDQdRzmmYg2EiR9OEj+cBAgWpDN9nLhNoSVHeuUImeWj5NoyFJrz5BcE63Ncyo12Onh5ywtkyFAcLJDpS+P4Lkp28ho+nWRTEt/zK4b6rGNNsr6p5hTFbJGD2w5i5+0pHaOMYRlcccMVdL7WecnmBIL8kng+zg3/8QZ2/2T3eRNnL4QQgnRfmnTfqc+2XtFKJBFhoGOA4e7hi19nY7od7R1htHeEbrWLQ+YBUKFpYROx9XEatWa0DpMWdwFKh0bkeJTY0QSxo4Gx8A0f3/LwLI9cW4bMsnQwY3NxhkJrjkJTHicx9XVa5rVBKZaKhPSLP4HUCBlEEhF8zyfZlMSKWuRGcudsfIQQkzYniqpQu6CWVHOKeF2cE/tOjDvedJiTZFOSxVcv5sXHXpxSePJ82HmbbT/YdkmNyzhEkP2+Z+seQvHQJR1X+AK3GHy+c18nnfs60S0dK/4aRtSkeXUz4U0REkowrhrvTiJGITQQLDBmZkwiPVEan29FqD5u2MOJ29ipEvlFWbrbTk5PnadAf0/fhLQLgZkuT4FsWNyAEILeN3rPGgOfks6UYH2cZGOSpmVNpAfTdO7prBxvOrQbrYmy8X0b2fHwjkklxV6M4e5hfv71n0+5F3omwhf0HOqh93Av8Yb4qRvbFPBdH1xIF0fZOxbKt6IWekKntr6O5LIkqfpaYl1J6joaUHt09LSBOWph5AwiPVHqdjcGK+aGPZyYjV1Tqswi6l7cOS11ngov7dk5Ye1CkKQcSUQQQpBqTjHaO3rWTXnKnSOCZO1kcxIzbHL0paNBgvRYQvWlomoq1//29QwcH7i0KPMZZIeydL7WiRWxpu2YJ/eeJFYXC2YM1Z1/xtD5KE9vBjhx8AQchMPWIVRLxUpYLLq2jZp31qIPWtRlG0j01CD6wOy30LMGocHwaZp1ceIOTtwmvzAbDBFdOUxuUQZVG5lwmeb1EM/n3v65CV0oZsQkXhfHcz3Sfelpa9DKqJpK49JGSvnS2dnW00C8Ps7m39nMjkd2TKxHNwWSjUlu+A838PITL3Ni74mLf2AK1C6oZenapfQf7Wegc4BiZuJjyRfCsAySC5KocY2FSxbRWruQ/IECNV31pI7XwqiCWtBOPetijIyfpv1o65yEySeiXU3XaG5vxnM93JJLPp0nP5K/4GcmS6IhQeuqVjKDGXrf6J0+ozqGFbG45rZrOPrSUfqPTT4hfCIkm5JsfO/G4Pq4hBvd+VBUhZb2FhoWN9C5t5PsYPa8U/QnS6o5hVlvkUqmaG5tJSGSqAcNkvtrMEYt1Fywxo0ixsfLq127AA2LG4g3xHFLLtmhLJ7rkR/NT0tEDoJ2ceXmlRTSBYa7hyuJ39OFoiqseusqSvkSx14+Ni2Rv7POoSgkGhPkhi+eWzZVVC1IlnVtd1o6t5FUhGhLlHAyTH2igZiWRO82ae5eQORkFJEJnp+leuMTVIQicCMOg/EBrv3Nyst/iAclGFIBLjhmbOdtBvOXNn5eprx4z5kLqPUc7pmW45+JGTa5/t3X89JPXpoxcwKQHkhzZNcRNr53I8PdwxdcA2CqDJ0cIjuUpXVVK1e87QpUXeX4K8cv+cbllBwGjgS9m75Xe9mt7CJaG6N2eS3J65JEnRhJrZZwfxRrf4TYsThqXkPY02skJ0s5ee/MhfDKeK7Hyf0npy2cr2oqiqKMi7yk+9OkB9IzMmRghk3W37OegY6BS8oTuRiZwQzFXJHbP3U7j//t45VpptOF8AVdB7sY7Rtl8TWLCV8Xxik67Ht23yXfbEd6RqAH+ujlkHoQ3dSpXVSLucmiqbGZVnMB7kkf42SYmv11mEMmOMqM3Cynm/7j/cFMrbEcn+kmM5AJ8pnEDBxfgStuuIL6RfU8//3nZ+z71i2dd3/63fQd7ePX//zrKacWXAgzbLJw9ULi9XGGu4bpfaOX/Gh+yp3D/MipjlKH0hGMILTWcmL1EfS1BvFikpaaBYg3FBJ7U1hdwfRyxVMwcibRTGzC55rXEZT/9Qf/i1QqhfAFfUf7xq1GOd3EamMsX7+cREOCgc4B9j+zf3ryQC6AYRlsfN9GBjoG2P/c/hk9FwQ9BitqVZ4dMZOomooRMnBtd1p7PWeiKAqaoaGYwaJ2TcubUaIqsWKcWCHJpj++fk56oX/34b+jsbWxMqNgukLS58IMm7SsbKFxSSP5dJ69v56ePJCLsfl3NpNP53n1yVdn/Hy6qbNs7TIGTw4y2DE9nZHzUU4E1wyNnkM9M6ZfzdDQLR3VUll05SIiy6LUUkf0ZBK6YO033jIn2v3zu/+c1sWtFLIF+o/1z/jfNhQL0bKyhVKuRNfBrlnJv1m4eiHtm9p59l+fnbHIRplEY4IbP3wju368i64DXTN2Ht3SSTQkWHrdUpyiwxs735j+jqgS6FYLabS2L6B+RT121qFJtAQzv97QsA85XLOtfULanfQkoWeeeYY777yT1tZWFEXh0UcfHbddCMEXvvAFWlpaCIfDbNmyhUOHxq/8ODQ0xIc+9CESiQSpVIqPfvSjZLOTnxc+fHKYoy8d5djLx2bEnIQTYZZcu4RN799E++Z2et/oZccjO6ZnBs1FUDWVG/7DDRRzxUktCHQpCF9Uhl1CsdCMLtTje37luSpnEoqFMCxjWs4jhAimyGYdXnjhBf77X36W//jpD7HlgZv52hN/e9a+s6Xd7FCW468cp+dQz4yYEyNk0LS8iavfdTWbf3czCNj/3H72PbNvxm8oiqJw1U1XoSjKtCXFXgzXdjm47eCMmxMIInY9h3o4uffkjJprz/EoZUsUBgs8+fiTfPYzn+Hdn7ydtZ9/C197Y+60W9NSw0jPCNmh7Iy1g5qu0biskavfdTXr7l6HoigzFuk7k+YVzax62ype+slLM25OANJ9aX7+9z+f1hyXc+GWXIZODLHrx7s4vOPwtA1TjkOAZ3vYaZtju46y8/sv8vqTe3h+xzP8ouunvLpqBwc/+MqEDzdpg5LL5bjmmmv4+te/fs7tf/VXf8VXvvIVvvnNb7J9+3ai0Si33norxeKp7OcPfehDvP766zz11FM8/vjjPPPMM3z84x+fbFHOehrvdFOetvXa1tfY/ZPd9BzumdYE1fOhqApX3HAFwhe88vNXZj2cq+kab/3dt3Ljh2+c1iSuiRJJRbj+zuvZ9P5N1C6oxYpOTxkcz6Ep2sQd7XcAkB8Yb2pnU7u5kdzMNBAACiy5ZgnNK5rpOxaEjo+/ejxYqXiGI2OKorD6ptUsXLOQFx97cdryDSaKpmtsfN9G3rLlLXOi3VhtjLV3rmXl5pXE6+Mo6vS4/Ip2VwTaHe0cv4bGbGq347UORvtGgzD/NDdNuqmzfP1ybviPN9C6spW+Y308/73nObLryJQWN5ssdYvquPHeG9nziz1TX6dkCth5G7toE6uNVVbHnUnOlQukKAqRVIRYbWxaO6ee45EbyDF4YJB9T+1l1w92Tvizk85Buf3227n99tvPuU0IwZe//GX+5E/+hLvvvhuAf/mXf6GpqYlHH32UD3zgA+zbt48nnniCF198kXXr1gHw1a9+lTvuuIO/+Zu/obW1dbJFmjFyw7kZycW4EIqisOada1h8zWJ+/vWfz3oDD0Huw95n9vL+L74fM2zy63/+9czdTM/B0Ikhdj66k/rF9SzfsJxkY5Ku/V10vt5Jbjg35Ztse1077XXt59x2WWlXwKEdh+ZkKmpzezPL1y/nV9/61Zxpt/eNXu767F1EkhF2PLxjxqOdp5MdyvLKk6+wcvNK1tyyBlUN8qx63ujBs70pl+XNot3yIpbb/m0bpezMdwbHnTsRZt2d69j2b9uC1VpnGVVVue7d13HlDVfy2P94jN43emf3/LpK8/JmmpY3AdC1v4sT+8ZWzJ2jRJBpfZ7s0aNH6enpYcuWLZX3kskkGzduZNu2bQBs27aNVCpVuUgAtmzZgqqqbN++/ZzHLZVKpNPpcT+XKyvfupL2Te088y/PzEkDX6bnUA8//psfc/W7rubGe29Et2Y3n7p8o3nx0Rd59v97lkKmwNs/9HZu+NANrNiwYtqiKmUuO+3OhTlZ0czbf+/tbPvBtimt7TBddOzpYNsPtrHp/ZtYc8uaWT+/W3LZ+6u97PjhDl7/1es0r2jmxg/fyPp71tOwuGHaz3c5aTczmOHE3hNzYk7e9Yl3MdA5QOdrczOF2/d8djy8g4GOAe7+7N0VozBbeI7HkV1H2P7wdvb+ai8NSxp46wfeyqb3baKmtWZWy1JmWg1KT08wk6WpafwX29TUVNnW09NDY2PjuO26rlNbW1vZ50weeughkslk5WfRokVTLqOmayxcvZDrf/t6bvnYLSy5bsmUjzXdNK9o5ro7ruOFf39hThv4MsdePsb/ffD/0nWga8oLf10yAkr5EkdfOsqTf/8ke7buITeSo6Zlei+Y+aBdCNYUueKGK7ju9uuoX1x/8Q/MEqnmFDd95CZ2PrZzxqYTTxTf83np8Zd4/rvP076pnfq2ufmePNdjpHuEnT/eyfPfe57+4/2svnk1V73zqiDHa5qYL9pFCfSbak6hm9UzgVTTNa674zoGjg/w8s9entMZUqVciZ995We4jstdn7mrspLzbOK7PqN9o+z80U52PrqT3iO9XHvrtdz8BzezYsOKWRmCKlM9KrkADz74IA888EDldTqdntTFoukakVSk0lgJITjwmwO8/svXZyWnZCI0r2jmnR99J9t+sI2u/TOXyT1Zug92032we66LAQQOf+jk0FwXY1JcqnYhmIXTsKSBZdcvI5KKMNo3ysFtB2d02vlkCCfCvOPD7+DgtoMc3X10rosDBObgxcde5MXHXpzrolSeCn70paPBQmLzhOnQLgTrUKWaUyxfv5yalhoO/OYA2eGZzyeZCJqhse6uddS01rD1f2+d9AMAZ4JCusAjf/EIdYvqsIuzN7R+zrKcptv6tnqSTclgeYRZWs14Wg1Kc3MzAL29vbS0tFTe7+3t5dprr63s09c3fnzPdV2GhoYqnz8Ty7KwrEmG9BUwTIO2q9tYuXklCOh5o4cdD+9gpHdkTpeKPpNoTZR3feJdvLb1tapp4N9sVJV2GVtcKRnmLbe8JXjydbrA4e2H6Xy9s6rWwAjHw9z+qdvpP9bPK09MPDtfMn1Um3YhyGcwQyZXvuNKWla2UMgUOLLzCNv/ffuMJ2pPhqvfdTUrN6/k4T9/eMoPAJwJhruGZ3Tpgakw0DG9q+lOhGk1KEuXLqW5uZmtW7dWLox0Os327dv55Cc/CcDmzZsZGRlh165drF27FoCnn34a3/fZuHHjJZdB1VTq2+pZvm45LStbSPen2fXjXeMfPFVFlMc+39j5Bq/+4tW5Ls6blmrQLgQ3/AVXLmD5uuWEEiFOvH6Cp//x6Uk9sXS20AyNTe/fhO/67HhkR1X0Pt+MVIt24dSaO6tvXI2qqXQd6OKZf3nmkhYGmymWrV3GlTdcyc+//vNZnwwhmRiTNijZbJbDhw9XXh89epSXX36Z2tpa2tra+PSnP82f/dmf0d7eztKlS/n85z9Pa2sr99xzDwBXXnklt912Gx/72Mf45je/ieM43H///XzgAx+Ylkzy5vZmahfUMtwzzGu/eo3sYLaqepynE06Eue3+2/Bcj52P7ZzRNRWmg3AizD2fuwfDMvj53/981rPMJ0v94npW37iacDxM5+udHHn1CEePn4pQjRRHAOjs7OSqq66aU+3qls6VN1zJkmuXMNIzwqu/eJWhk0NVMwR5JpquseG9G1i4eiH//qf/XrXlPJ2W9hasqEXvkV4K6el7JtBMEa2JUr+oHrto03mok/70qdyeatJuuVO4bO0yFq1ZRP/xfl57+jX6jvRRylenLpavX85Nv38Tz/7rs3MyY0cyMSZtUHbu3MnNN99ceV0eo7z33nv59re/zWc/+1lyuRwf//jHGRkZ4e1vfztPPPEEodCppLDvfOc73H///dxyyy2oqsr73vc+vvKVr0xDdYKpUdWUw3E+NENj43s3oqgKT37jyVmdxjtVCukCe7bu4dY/vJV7PncPj/7lo1VtUgaOD/Cb7/6GuoV1XPmOK8nEMnzu4c9Vtj999GkA/uIv/oLvfOc7c6pdRVE4uf8kR186SnaoOsbnz4eiKqx/z3pWbl7Jz77ys2l9AOCMocCKTSt4+++9nYPPH+Sn/+unVW9SFFUhXh9n+brlqHtU/uy//1llW9VoV4GN79uIFbVI96V58htPku5PV22nEIKE7hv+ww3seGQHB7cdnOviTIj2Te2seeca9j2zj0PbD1V9Zxbg+ndfj27plQcjZocmHyyY10vdT/ShVdWGZmhseM8GrnzHlfz4f/6Y/qNzO+thsmx6/ya2fHwLg52D/PBLP5w3PZBwIsyiqxaxfN1y4g1xDr18iLs/dXdVP3Ct6lCC0Phv/9ff5uE/f3jGHiw5ExiWwY2/fyOb/p9N7H9uPz/5u59UvUmBIFpVv6Seq268iqblTQyeGGT31t3c9w/3VYV2FUWZseftTDfJpiR3/be7OHngJM/8yzOzslLsdBCvj/N7D/0eNa01PPqXj7L/2Zl/9Mmlops6zSuaWbFxBc3LmxnoGODA8wc4tu8YX9r6pTfBwwLnIZoemJMN793A9//k+/POnAC89PhLxGpibHr/Jm788I08/nePz4uGvpAucHDbQd548Q0iqQjL3758ros071h2/TLe9Z/fxdZ/3MrJfSfnujiTwik5vPDvL9C6spUr3n4FhdECT3ztiarPnfFcj97DvfQd6SOSjND2ljauuvkq+Ie5LlnAfOnjWlGL2z91O5mhDM9957l5Y04geDDiE197gvc8+B5uu+82SrlS1c8Ic22XE3tPcHL/ScywycpNK1l/z3quf9/1fGnrlyZ0jGldB0VycZauXco1t17DL/7hF/Qeqd7hkQthF2x+873fcOzlY6x62yru+NQdhBPhuS7WhPFcj8xAhhf+/YW5Lsq8omVVC3f8v3dw4DcH2P/szD8scybIDmb50V//iN43ern61qvZ8N4NaLo218WaEMIX5IZz7HtmH09986m5Ls68wgyb3HjvjSiKwi//zy/nxZD6mXS82sFz332OUDzEXZ+5i+Xr5kcHS/iCUq7Enq17+PHf/Jgnv/HkhD8rDcossmzdMm79w1t59alXef1Xr1f1OO3FKKQL/OivfsTJ/SdZfdNqbv/U7XPy7BPJ7JBqTnHLf7qFgy8c5Dff/U3VRx0uxEjvCE9+40kK6QI3/f5NrH/PejRjfpiUMvP5+59tNEPjpo/cxPJ1y9n6v7cy2jd7z9iZToQQvPT4Szz7r88Sq42x5T9vmZOF3C4Fp+hMavq0NCizxJJrl3DnA3ey/7n97Hhkx7wYr70Y6f40T//j0xz4zQFa2ltoWdly8Q9J5h2JxgR3feYuELDtB9uqcrr+pBBw/NXj/Pqff43netx0700sXz8/eqOSyaGoCle/62pWbFjBT778k3mTL3c+fM9n1493sffXe2lc1shdn72LZFNyros1Y8gclFmgvAx4zxs9PP/953FL82fs82Ic33Ock/tPouna/L9xSc7CsAxu+U+3EK2J8r0/+R6ZgcxcF2l6EPDKz18hM5Bh8TWLMUMmiqrM66imZDyKqnDVzVdx4703su0H2+jY0zHXRZoWitkiW/9xKzWtNSy+ZjF3f/ZuHvsfj83byNCFkAZlhqlpreHOP7oTgCe++sS8SCadFCJIhppPCWeSiWGGTd750XfSuqqVx//28apZWn+68D2fwzsOc3jH4YvvLJl3rNiwgtvuv43tP9zOzsd2XhZR6zLpvjQP/9nDLL1+KYZlzMucmokgDcoMYoQMbr3vVpLNSX74pR9elg5XcnmiqAo33nsja25Zw1PffIrjrx6/rBp4yeVNy8oWbv6Dmzm0/RA7f7TzsszZGekZYfdPd891MWaUeWlQyrMHSm51rlIIQQP/tg+8jXBDmO9/6ft0vHZ5hBcvJ8r6mc3ZKPNBuwCr3raKxRsW89S3nmLHT3fMyxk7lzNSu+enbmEd7/zkO8lmszz25ccoZqvnGTuSyWl3Xi7UduTIEZYvl0ltkumhs7OThQsXzsq5pHYl04nUrmS+MhHtzssISm1tLQAdHR0kk5dnBnP50eadnZ2ztlLkbDPXdRRCkMlkpuUZUBNFavfyYK7rKLU7M8z133U2mOs6Tka789KgqGowOzqZTF62IiqTSCRkHWeQ2W5opXYvL6R2L0+kdmeWiWpXroMikUgkEomk6pAGRSKRSCQSSdUxLw2KZVl88YtfxLIu36XVZR0vT94MdZZ1vDx5M9RZ1rG6mJezeCQSiUQikVzezMsIikQikUgkkssbaVAkEolEIpFUHdKgSCQSiUQiqTqkQZFIJBKJRFJ1SIMikUgkEomk6piXBuXrX/86S5YsIRQKsXHjRnbs2DHXRZowzzzzDHfeeSetra0oisKjjz46brsQgi984Qu0tLQQDofZsmULhw4dGrfP0NAQH/rQh0gkEqRSKT760Y+SzWZnsRbn56GHHmL9+vXE43EaGxu55557OHDgwLh9isUi9913H3V1dcRiMd73vvfR29s7bp+Ojg7e/e53E4lEaGxs5DOf+Qyu685mVWYEqV2p3fmK1K7U7qwj5hnf+973hGma4p/+6Z/E66+/Lj72sY+JVColent757poE+KnP/2p+OM//mPx8MMPC0A88sgj47b/5V/+pUgmk+LRRx8Vr7zyirjrrrvE0qVLRaFQqOxz2223iWuuuUa88MIL4tlnnxUrVqwQH/zgB2e5Jufm1ltvFd/61rfEa6+9Jl5++WVxxx13iLa2NpHNZiv7fOITnxCLFi0SW7duFTt37hSbNm0Sb33rWyvbXdcVa9asEVu2bBG7d+8WP/3pT0V9fb148MEH56JK04bUrtTufEVqV2p3Lph3BmXDhg3ivvvuq7z2PE+0traKhx56aA5LNTXOvFB83xfNzc3ir//6ryvvjYyMCMuyxHe/+10hhBB79+4VgHjxxRcr+/zsZz8TiqKIkydPzlrZJ0pfX58AxK9//WshRFAfwzDEv/3bv1X22bdvnwDEtm3bhBBBY6Kqqujp6ans841vfEMkEglRKpVmtwLTiNSu1O58RWpXancumFdDPLZts2vXLrZs2VJ5T1VVtmzZwrZt2+awZNPD0aNH6enpGVe/ZDLJxo0bK/Xbtm0bqVSKdevWVfbZsmULqqqyffv2WS/zxRgdHQVOPQl1165dOI4zro5XXHEFbW1t4+r4lre8haampso+t956K+l0mtdff30WSz99SO1K7UrtVidSu9Wr3XllUAYGBvA8b9wXCNDU1ERPT88clWr6KNfhQvXr6emhsbFx3HZd16mtra2678D3fT796U/ztre9jTVr1gBB+U3TJJVKjdv3zDqe6zsob5uPSO1K7VZbHSeK1K7U7lzVUZ+Ts0reFNx333289tprPPfcc3NdFIlkUkjtSuYrl5N251UEpb6+Hk3Tzso87u3tpbm5eY5KNX2U63Ch+jU3N9PX1zduu+u6DA0NVdV3cP/99/P444/zy1/+koULF1beb25uxrZtRkZGxu1/Zh3P9R2Ut81HpHaldqupjpNBaldqd67qOK8MimmarF27lq1bt1be832frVu3snnz5jks2fSwdOlSmpubx9UvnU6zffv2Sv02b97MyMgIu3btquzz9NNP4/s+GzdunPUyn4kQgvvvv59HHnmEp59+mqVLl47bvnbtWgzDGFfHAwcO0NHRMa6Oe/bsGdcgPPXUUyQSCVavXj07FZlmpHaldqV2qxOp3SrW7pyk5l4C3/ve94RlWeLb3/622Lt3r/j4xz8uUqnUuMzjaiaTyYjdu3eL3bt3C0D87d/+rdi9e7c4fvy4ECKY7pZKpcRjjz0mXn31VXH33Xefc7rbddddJ7Zv3y6ee+450d7eXjXT3T75yU+KZDIpfvWrX4nu7u7KTz6fr+zziU98QrS1tYmnn35a7Ny5U2zevFls3ry5sr083e23fuu3xMsvvyyeeOIJ0dDQcFlM1ZTaldqdj0jtSu3OBfPOoAghxFe/+lXR1tYmTNMUGzZsEC+88MJcF2nC/PKXvxTAWT/33nuvECKY8vb5z39eNDU1CcuyxC233CIOHDgw7hiDg4Pigx/8oIjFYiKRSIiPfOQjIpPJzEFtzuZcdQPEt771rco+hUJB/OEf/qGoqakRkUhEvOc97xHd3d3jjnPs2DFx++23i3A4LOrr68Uf/dEfCcdxZrk204/UrtTufEVqV2p3tlGEEGJmYzQSiUQikUgkk2Ne5aBIJBKJRCJ5cyANikQikUgkkqpDGhSJRCKRSCRVhzQoEolEIpFIqg5pUCQSiUQikVQd0qBIJBKJRCKpOqRBkUgkEolEUnVIgyKRSCQSiaTqkAZFIpFIJBJJ1SENikQikUgkkqpDGhSJRCKRSCRVx/8PUNU6MSvbDEAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from metadrive.envs import MetaDriveEnv\n", + "from metadrive.component.sensors.semantic_camera import SemanticCamera\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "\n", + "size = (256, 128) if not os.getenv('TEST_DOC') else (16, 16) # for github CI\n", + "\n", + "env = MetaDriveEnv(dict(\n", + " log_level=50, # suppress log\n", + " image_observation=True,\n", + " show_terrain=not os.getenv('TEST_DOC'),\n", + " sensors={\"sementic_camera\": [SemanticCamera, *size]},\n", + " vehicle_config={\"image_source\": \"sementic_camera\"},\n", + " stack_size=3,\n", + "))\n", + "obs, info = env.reset()\n", + "for _ in range(5):\n", + " obs, r, d, t, i = env.step((0, 1))\n", + "\n", + "env.close()\n", + "\n", + "print({k: v.shape for k, v in obs.items()}) # Image is in shape (H, W, C, num_stacks)\n", + "\n", + "plt.subplot(131)\n", + "plt.imshow(obs[\"image\"][:, :, :, 0])\n", + "plt.subplot(132)\n", + "plt.imshow(obs[\"image\"][:, :, :, 1])\n", + "plt.subplot(133)\n", + "plt.imshow(obs[\"image\"][:, :, :, 2])" + ] + }, { "cell_type": "markdown", "id": "eea5bce5", @@ -341,7 +414,6 @@ "execution_count": 4, "id": "ff7a70aa", "metadata": { - "editable": true, "slideshow": { "slide_type": "" }, @@ -470,7 +542,6 @@ "execution_count": 45, "id": "3562290f", "metadata": { - "editable": true, "slideshow": { "slide_type": "" }, @@ -518,7 +589,6 @@ "execution_count": 12, "id": "995d5314-92a7-4e68-8bb8-05f1bd8ab718", "metadata": { - "editable": true, "slideshow": { "slide_type": "" }, @@ -545,7 +615,6 @@ "execution_count": 13, "id": "7f20c293-77f9-451c-a552-882def3d6257", "metadata": { - "editable": true, "slideshow": { "slide_type": "" }, @@ -638,7 +707,6 @@ "execution_count": 10, "id": "9ea9966f-f123-40e8-a432-1ac19f396431", "metadata": { - "editable": true, "slideshow": { "slide_type": "" }, @@ -667,6 +735,95 @@ "source": [ "Image(open(\"demo.gif\", 'rb').read(), width=100*5, height=100)" ] + }, + { + "cell_type": "markdown", + "id": "0d1782e5-d45f-4bfa-a5ea-1b2a1ce2bb0a", + "metadata": {}, + "source": [ + "## FAQ" + ] + }, + { + "cell_type": "markdown", + "id": "01cfd2ff-0371-4584-abe5-5a5cc318e56e", + "metadata": {}, + "source": [ + "### Can I use LidarState observation but also render the images at the same time?\n", + "\n", + "Yes! You can stick to the original observation by passing `config[\"agent_observation\"]=LidarStateObservation` but still maintaining the RGB camera with `config[\"sensors\"]=dict(rgb_camera=(RGBCamera, ...))`. See this example:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4a5b07f6-1261-460e-a44e-e8a504000448", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\u001b[38;20m[INFO] Environment: MetaDriveEnv\u001b[0m\n", + "\u001b[38;20m[INFO] MetaDrive version: 0.4.2.3\u001b[0m\n", + "\u001b[38;20m[INFO] Sensors: [lidar: Lidar(), side_detector: SideDetector(), lane_line_detector: LaneLineDetector(), rgb_camera: RGBCamera(512, 256)]\u001b[0m\n", + "\u001b[38;20m[INFO] Render Mode: offscreen\u001b[0m\n", + "\u001b[38;20m[INFO] Horizon (Max steps per agent): None\u001b[0m\n", + "\u001b[33;20m[WARNING] You have set norm_pixel = False, which means the observation will be uint8 values in [0, 255]. Please make sure you have parsed them later before feeding them to network! (metadrive_env.py:113)\u001b[0m\n", + "\u001b[38;20m[INFO] Assets version: 0.4.2.3\u001b[0m\n", + "\u001b[38;20m[INFO] Known Pipes: glxGraphicsPipe\u001b[0m\n", + "\u001b[38;20m[INFO] Assets version: 0.4.2.3\u001b[0m\n", + "\u001b[38;20m[INFO] Known Pipes: glxGraphicsPipe\u001b[0m\n", + "\u001b[33;20m[WARNING] You are using too large buffer! The height is 256, and width is 512. It may lower the sample efficiency! Consider reducing buffer size or use cuda image by set [image_on_cuda=True]. (base_camera.py:49)\u001b[0m\n", + "\u001b[38;20m[INFO] Start Scenario Index: 0, Num Scenarios : 1\u001b[0m\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Observation shape: (259,)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAEoCAYAAAB2ENolAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9S6xtyXIWjH6ROeZce1edOsf2xTqWLza0MA8JkAwcLEEHGVk0kBBuIDcQQjR/u8GBBr7SxVi6klv3QgPoIWghHtK9LSQauIlsIZkWDSOgw8PYYP7f51FVe605MuM2Ir6IyDHm2lX7gDlnw8pS7TXnmGPkyEdkxJfxSlFVxUt5KS/lpbyUl/JSXsp3YGnf7ga8lJfyUl7KS3kpL+WlPFdegMpLeSkv5aW8lJfyUr5jywtQeSkv5aW8lJfyUl7Kd2x5ASov5aW8lJfyUl7KS/mOLS9A5aW8lJfyUl7KS3kp37HlBai8lJfyUl7KS3kpL+U7trwAlZfyUl7KS3kpL+WlfMeWF6DyUl7KS3kpL+WlvJTv2PICVF7KS3kpL+WlvJSX8h1bXoDKS3kpL+WlvJSX8lK+Y8u3Faj8rb/1t/Dbf/tvx6tXr/CVr3wF/+Jf/ItvZ3Neykt5KS/lpbyUl/IdVr5tQOUf/sN/iK9+9av4mZ/5GfzLf/kv8ft+3+/Dj/3Yj+G//Jf/8u1q0kt5KS/lpbyUl/JSvsOKfLsOJfzKV76CP/gH/yD+5t/8mwCAOSd+4Ad+AD/1Uz+Fv/JX/spbn51z4ld+5Vfw0UcfQUT+ZzT3pbyUl/JSXspLeSn/nUVV8Y1vfAPf//3fj9Y+n65k+01u093y9PSEX/qlX8JP//RPx7XWGn70R38Uv/ALv3C6//HxEY+Pj/H9P/2n/4Tf/bt/9/+Utr6Ul/JSXspLeSkv5X9s+Q//4T/gt/7W3/q57v22AJVf//VfxxgDX/7yl5frX/7yl/HLv/zLp/t/7ud+Dj/7sz97uv4X/h//H1xfvQZgKO1tqqFF71K1MHeeW7U0CojVz6/L36xm+YHfRfKzAlBp9ulQ3fFetkChUFG/JlB/1vqr2d5SUTxbrj03OgIAKhCUYWHzSrWq9r0JMKdajX7NbrJx2lqHqmLOiS4NvTdAgKnwa4qPXl/xpVcbxhj45ptH9L7h4bLh0gVo1retWZtUp7enYUy+Tq2tAugEWgNaF+z7xONt4uNHxce3gTmtjdPnWFrDmIqh8868AQKFQLGJ4PXW8eFV8D0fXvHhQ8Ora4NA0Jvg0gWXraG1BmmCJgKIj6WIzY1OzGnDYu1QTAWGAmPa7+pzp1Oxj4mpNoaQBgFwaYLWBFsTbL1BxOaoifh77fn436dDDu3J/sVkPVsqGSfN339G3/Lt3pXfHNXtM20rbebno/JYg4DFu2j0Emus/FXNV2l+uD8Gel/L+7b+n9Yn21y+63K/FSnt4BPqHEAVmDOX51AtvEhtXSii7zP6OTGdAcwhGCr49DbxzccdHz8qvrlPfHpTDM0BkDu9kyDCdezfpgU/cN6V3R7r0ML/4qbP0LCXgWObop3LoJ7b9Nz8RXeE/9g4yok+1kq5HltrMUlk5ayzNaD3hgsED03RAGwNuGwNl97QO/mA/b8JsDXjU1RW7APYh823CCBNoAO4jYnbBJ7GBGTi9XWDQDCmFp5VhEHrUAjGnMFbAeM9vSlas7U0FXi67XhzGxARfOEq+ODVFVsDpAFPbz7B//v/+Zfx0UcfvX2uSvm2AJV3LT/90z+Nr371q/H961//On7gB34A11ev8eBAJcpR2NZS0cPnLhpEHIwgFmcyhHr/c6AFQqASPwUzjLYfFouxj3OzNcBKWVciEFVIEUlaGF6sYzLh6J5gWZ2fYQ0UB0kGvKS0o2Hrgq0B3cfn0hukmbDuDbiI4qNXG77rwwt6E+xjAmLCuItgACG0dU5fXA1wwd57c8bk/VRboRTU+5j4+psn/J+fPOHxaaJvFyiAx9vAVGCfwI0IQhWjDH/zcWgApE28kYavjY59b5i944NLg/QGbPb3em3oBCvNgYTP2RyK4VKCwmDCGAYZwT4m9n3gBkC7ATkI0HvHq63hYRNsIuitofUVnCRI8e8twaZA4m8wT1nI6m45kPGzQCUo6s4a0zufKlkr5PT78Zsc/p7vvv/SAO68ROFehPz9tZlAxa65sCedVwFfKjqCi6zjPMr6zPXzjef7yCNmvDHHXrzHXOuUK6p2jQJFAbSYU115gwI6EZyGvMJuFcwpaFeF9ifoBujTQLso3gzFVBundmq1z8I7WuaPUJozuvBJINbaYaBOrfhWyhHgW90HCiy/P7sJ1Gz/sW5pPnuqtlkBABWI2OizehHgsnVcBNig6AJct4brBbh047fNeTB0GlDZBE0arhvctCK47RP7mMavIdChaGPiKoIv+Fh2sXHmZsr4h2AMxb4beFUAFwcjY1ofegdaU3+2QScA2fBwBR56w6vN+NPw1T/b8L59/rn6tgCV3/Jbfgt67/i1X/u15fqv/dqv4fu+7/tO9z88PODh4eFz1U3wgDuErLIugwAakkI77tXDBQohlc+AynfaVAE/JqrUaLi3MPPLsvYKD6OAuqfoUagJUCQxENhM1uH9s52JOAmtKEmI8APfSfzKuocqpDdbrNPeMYZCmuDSga0pHjaB9IapA9fWsG2CfeyACi7bhtYaTJmi2GBEOaZCti0QPKQ5I05theqEoIWQbr6L+OBhgwjweJmYzuQeRfDJ08QE0JuYdkYUmwOIHDtgCHDzi4+fKn7j04GLDHzxdcPrS4cC2ETxhYcNH73e8HBpeHXZcNlshyPw3Yx0zDmTXKaP55y4TcXjbcdtn5hqVLA1Qe/Nd0R14l2oqEAPmz/SxFR1oAWnz7xRkN+fJdujhDiU5wDJ8W/9FmQbYNl3m+eVefp2b4P7XPPkoMHg21awUtp6qIhrw8q0Na4U5hTYKZBCG7FUcGh97K5LW+7CsfV6aHbQKJ79+npP3sdJtXunKiYKQOFfNT5XAVcI//wTgMpYpYHqmwKPQ3EbwE0V2kzQtpEz/ZzI+QyyOpUTL/S5bQeGzuFdtGTOmo/1vFN5tiPJ+ypdctx4UYAAbbPcF5sIEQMXvWGfvi41X2GXDLCMOe0CFNul47IJrlvD1hTXTQyIlMXRxECLaWDtXvGNcZOG3m3jN2eC3l39Fa3h5pun4TQjaHbPVKhr3SGCCdcMO1h/2osMxcTWBF942Ix+VTGmYB8I/vPp07tPy7cFqFyvV/zwD/8wfv7nfx5/6k/9KQC2m/z5n/95/ORP/uTnrocq7nLlrfc3txccEbCUD0GEhSIX9iLGGMnE7rTKaVoPv3uFRwDkC/A5Jca6u5RcmFw4x5UpzRG6X5h1n0nm52gZ1L0c3ikm9GdBNdy9Rx8huGyCV74quwAYEwMCSDMTz0PHd330gE0Uj/vE2K39m5gp43rpaGJqyjldlQxg2zq6WsUK4NI7bjrx9Lhjn4CioYlgnxNvnnYzKTXBZesOpiaaKh625gtrYmuuJn2cuKkxiTmAXQpFFHlz0wYMwLYHijcAvnHbsfUGTEWH4vW14cOHjo9edXzPh1d89LrjwdWxNMeYKWhCXYsyxsQ+B/bdtDsTDSqK7sxl66ba7W72WdXazxRHs0qaIC4hQKAG6pk69J40KRx4EfhSbzmLX7/1vMoKWHm7kfbzlHX9nEw6SJBxekrvfK6CX21NTRfkehiDWbSJEz7GNK+ExDHGvgIQvWNSvg/BTCik1oPvzt/tEWpNoj26mnM4Bra2sIASIDVFw++TEPzW1jEVuyo+edrx5ib49Mm0KLdpQOq62T1jzMU0ljhN/PPKC+M378xz1EABf3jSx86vSILKun4/q0RNASjvP7ls9vwF9RrU4bf3ua6xLg4e3DwceudmYKY3CS0FfC46taa9YWqDOv/pYpuc3oBXl45Xl2Z8QgystGY8UWBal+TXBrxFuGGx/3cFnqbi8TZwm4Ixh2lOpuI2zFzfm0J9qzdhgEakLfJqgrRtG62t2eZ5n6ZlU01t5W03enra0/T+ecu3zfTz1a9+FX/uz/05/IE/8Afwh/7QH8Lf+Bt/Ax9//DH+/J//85+7DlOBV53E24FKPHfnvirOwRp9ETy3o3v7biHfEXbHZ9on5Z9l2Uo+w3ed2+KAQ1LbsEadJyOnhuTE3EnEXIhO/N229Q5rXBtTnlEfm9dbw8PWsTXBmzGxT8WrS8MXHzquDRgGvyEieHXpeLh0XLcWWp8xduhUAygd6K0Dvui4KK6z48F9TPahuO0DExPXi0DkAoKnAdPoUKg2MXjWXcPzcGmQQcbhQgnArhNjHmdunaMJwdOgEAI+fTPwyT7x5mliv03cxgXXBmy947p1bJu41muaNmuqa4IETRSvrj12861bG3s37dLmjKdBD2adOgEowi6LIsEKr/hoJoepgEOPD6MAlZXGF+UBgmRwXAmLBqC85O1iKeu5d9f91XOgy3LdtA1yfqsTxyzqhdDWxfcCxJy5GybJ3whWCHDira51PY45fWJyr1EErv+b9cwytmz32YRlfk/Z9vgdgjmBfU73D/M2Fg0r/+6abZteF9CM3veJbz4qHnfgcQBPAxgTmGpb5Kb4HApmuUemHIQE1MsT/m8yx+jZ6ebnqz7fuzDSOvgLAj+VanoSKTxVJLXizjvDR0SArQsuvWPqxHBtBmdKi4a0i/mk9WZj1bo4eOxoDRA36zy4VuXSBdfqn+LtpFaFHEtL29gFBfA0Gz59vOE2DYpMNIzm5h0x3xK7ns8NTVDCERMRdDGz/rUJpDXoNDAi8M2uNgM6PinzGR+ut5VvG1D5M3/mz+C//tf/ir/6V/8qfvVXfxW///f/fvzTf/pPTw62byt1h3++liUm6tmKKkL2f46Lr9pADu9ZZL7Uz4UpIQn0CFgqiKG9MsFFaeNyZQUwivTT4BXWwJ0S3yMwjUksrtoPXyQigs3rhRoxd7HnRBWtdbQmeHUBPtjczNMFr3TDPqcvJFuAQwxAqDPVoTN2nA0C6R19A/rWsTlir+JFMW1xOGK/bMCra8OYG6ajixCgYjuR6cBgTGCMiTeuWWqi2MzlBUNMgwEIdJ/LfK+kZa3pko65phloeJxAuyl6m9guA5cGNAxsvYXD7ZimQm/OxGhb7q2hNwOn9DtpzcAVnXSTLpK2Kv+VoL9knFpuEv/pSP4pEJerC0AhSlxxzPnBesc9zWCCFn3mngr5Qxqcaif7PdX/7IV1J18uhzYhPE0Omovq2zVjVZHxV1CT45/Cn2Y4PdDxurWJttUd+71SQAgFJs07fH+dtqn1fxMWk6BpZhtVDaTfirM3tTEDE1Db8ffWIWLGgum0zM6PAx/6lkoxq6z9Pn14roLTBm6pUY7r2e+9Q0zcECSYeetr7V4xTTVUHXCY4H5opnWWpni8mRnagIWZVIabgjcBPrhuuMrExTeH3KSJb0JFeph0NrH3dKHmdu3TjP6ak66K0wJMA/bmNvHJ08SuQO8bLkQ62oCryawxbON2G24eggHrKpXEN0siAkzgpsDczXQEcX/CZvdMc1yxzdg7+KawfFudaX/yJ3/ynUw9x0LmrodrsbC1oM3D2JyY5YpKbEekWHYgR+F11MJ8ZntRl1Q+eXpejKlNPQKf5+sOpsntTQFJix0LaUOFEzl7QaU2x0xggnVtr+0KBBbVA0fMoopra7heNvR+gWmi1CN1TC1oSkyNSITWBJdmOw6LnGn++0ywpjn2W7e22K7WFq0hjWRPVNePMXGbE7fdfEQuXfABBNdmZp83MvDpbeC22867txbalTnNDq/cqguCqzVf9IxymFPxCODTOfHJ08AHDw2X1vA4Jj69DWcO5lkvAF672vZhE1z7MJtz77aAW+6QODcJPgvF0KzEzwfhl9MtBwrVGKOgmfLpnFKpCvo0gyzvwbqW1irKeyjMzz/H9dpPChHrb23vvRX0+Qs1WKStifxM1JejVDQcAQhW5HM0afDrWN4qdz593gZnzRWM8PIRiNHJMaLMZkb+zJkmolhb/tyYtmOeE7gNxW0ksDeHc9fqNbgGRRdJH838ljt6YlPPBU+Vew43iIP8QuN2+RlzY6XhWgnI7DnudCytbU2AIFCoAL01bL7ZEAGkS/DSS+9ok3QsUAy7V4APrx1fuALX3iGtGbD0tpljv4azfhPb/HXyZcmeUZrQJCg+wUMFtzEdoOyANFw78Gq7QMQ3iz7+T0OxTzMxabPAiMehuE2rp8pSwmvzY0rT83SlvuwDm5jm5+obsGsTXB/6MxP7fHkvon6eKybbnLAq0xOEkFkZ5zOU/3nQsz8fgt2fqX6LS5WUccfmAQdb9ZHRa4CELjn50Xp/V3MihqRmRF2AE6RpWZ4L4y/yV5CLLgSBd6qhOZoXDz1zgCBifhVi4GHbOi4bsG2mIRBn9kPNjwRi94wIazYO3zg+0U6zdc9l0hw+VU0GBUTI6sIwGVEzZ+wKhjuFSbN6dlUMEWgTtA7Myf0HbcI+Jq36BGkIhshRpMYErx3YxDQnUxt2NA/hc+HvuwuqiG87oGNiXgH05upzNxlAXZNS5qmVufNtHOctd105lglQcgx5IT0sUvgRhKR62+lIEXNVZymaUUFDXUMhACuAOgiKsiZWM+SZ3oMyFwa5Ms36yyJ2DsJ8XYmBPkrfS08PJgnNS/fEXiIVEUDf6iZ/p81lfg8/E6hbjW4u8DaL0PgkyQNgPgLTgQc1evvMUHkSlTRgTAPTu9/zdJvmt8B3OiodpGel8L/TGynzUpHV0q0DusP9e+/6VJFpFSdUXX5aqMN/12fa4e8QRvwlDzy3dNWEcxNBrZTJAPP9gCIj9Rz8mpnbx64BIooupl29buJ+JQBkonUBLGI4TMKtOwCC834hEHF+78hG2CkFAHOefRqmRRnasDX7XxpBj0DUQOrTMEg2IVAx003vgouY+V7nXKbAxqBh6wQ4ZuLuHgXpAZK4iAGeh83qevPuLirvP1AhwwSSMQoAVCFjP2L9ssDjhQnGbuGZxSX1H0EI5rjsbauM7R4TihoFS/sohOvdIiEr0ZqEH4PAzCm+Hiz8zJnbnNP8Q+CMzBcXNIFcvLDs0i1Ph4UzsqGq6k5hrlUQcwpTAG9uOwQdW5sR2kazyz7MbEPHUHNqbRhoeBpW7/QdA0pUQh0zBTBcqDC23wRJ7gTYzn0MPO22I9zdGXD3nAG7mmbj09vA0xB3IktBPHVi4uj0SFeydV4BmmkEH1wEX3h1waUB3/x0x23YeDYx0Nd9Z4Jm75M23FnZ2rtbbQsBdYF7/3s/WxXQnMsivA8M2IbDuabmWmD+HQWFjrgw9PEFPCxcIrJqLn4eGsCoiQNZVLBYQI8g31mRZTYw/mQIsN3HaAX2MebZgTPpPTWmh0Xk10/0VPT6d1rkY+D3iHi4v/c7tKvufxJrVAMotEbAkH3PXpVy0JSVFq6sCaQ5CTYxyQeoNZ2ZkqAKd4u4MPCxD8XjSG1m0PHuoH6aet/+CnYIbkPNtKqAYhidFGZ1N5fJof1r73Jci2E6wPwJ+Uh97vC7LCOPe6N5pwHl0ftPRDNk/R78nTR3XHCa94X2zSuyEGEFxM2/vaHJxVI4eDW7Oogc9ozaQgSmWrSPlF66aiX7YYQ45zQ+iRxf8uJLyzpozm+i6JBwpr7twKe74nGafGhOUFNJ8zYedPTvkrlaHjbFvgNvbkZHHea7sgmwdcWl23dpwDjoGz9Pea+BCoBkWsDpL7UIJ402sDDOZW8gEowYwTjtOjXEK6rgb+eXBKDxutTrKY34zP5VFbu4eQAoYWkw9L68t5lWYkhD7/Ziqn1ZD7pAJwXEdP4hZ4DUxJlf2VvQROMN7E0wIPjmkznZ1RA3c74yE9K1N6Dbu2wBTeBiasCWxnMOqpuDfI4KkhTvz5gDimbfCTY8wmGfMMCipsp+2g2oWPIjseihQ9REGXUA05iBN8eEApmjtXVrgofecd0A0YkxTcX6NCwXyvTFPefEbJb3wGyVBtp6N8GwN2UICWjLNA8YF3phzjOtzxnEFiIrPSDRhT8CwYiDgunzev/ezAUzkbQvHn3QIGh9ulastuZA08q15qaUWFsJnFKwF98PtNDk8R2xixW7d41Z01UALcigIFkk+LHhaAGQCLCK4txa4niuQRzIItsuycQXgOFzQroUH7vnSqXvRDmnoXTayNwZima7X2XfGVQ60kfL1wPnXGHAfaqlF+CmZUzr/eBnRYT31/aIo2QFpbY3nIAD9+mBoAKARU4ekcIdtE0O/dyYfGYRtnet8xlMdOd6AcW8Uje2YoJb1TXMDbh2DxEWQYei6TA+6j5p5reRbwrfoIGMHvJ3mV+cYB/iJndg2+DrmDzTaHgow9Ml1tyMDakAmmv94lq/XY1HvtmBTwbwZgoehyeWE6C7/w0NFwQq5iTsaRRUMafghhabV0DRwFQLamsIxn+f9necQ/wvAFSA3LXc22kFv1rwgdxhNvGr1eXE3SrlSkHMFXKDWQ/iBfWRBZE/W5x4j0h9gSCqsZuKoDFFSTaWNtHemMDHWqBTAqwwdFa79X/uLqDmNIbczGo5uYtvDO3WMqAU5xo2UEHDGEzSls69E+qx+JYzRGHJiy5Nnenazry5k5m6q3niFO4ETD1tA2s/jjGx7xO729RNE+QOwwLIVNN4qUUsUNNiWsy3M0C+uuaPoRKCizaEYzNP/C/IBfv0JE4uKLqHRhMUTLWoJVPJd9ulXQUbemgozEfJxvSoxq7QPLUQx1JMZgozifFz/CVY8ZY5cSsZnqr7LWSyJ9/MQX2nxSy5pHR1Oi0jVrQK1RflsLDKNJgAnhB35mxCDY5pWuqOdsEjBByLdsWNFFVWhSokwU9sJgjkoKkpjeoEvQputrf2RrWEezMCA7hnxxDJeVyKM/9YZ/QNCL6i8VKCiemAg1FA4UgLfvbvamvoaczQ/EU9mrk/RgEldazVh4++IBxOKFIDGHOB1OAiaSKGZ3JeWmRlDm1hzN4d7APyYCTfvTOMZ9hznq9790i0/XDdeRo1y3yY4cYXOsqL/+6gYcDkiMAEdVPFpXRw36lNFDP7eASnhXWLazfF+HAr61bFtChzZJi1uPM0Iww56uSlVg0mmkVPenbaxyF4GrDQYW/bhLVVQMfd3HReuvkvWTdNMwPP/6TO+1RN66pq/oIi1pd93hv1t5f3HqjU6JhjUqS70BmZphhAqNaTKZBKzWdgFlIO18QlJJpvTwZcnfDinfFErqiT+vDw/ailmYAnDaMQ88UzpiN783foLc03tC/D49ulLGgTCqYNmW5frOPCcYodrbdpekXijIZ2UKFQUkUHncqcuWtGvWzNMhZeejqQxuJHgzYl/su+L0Nho9mcIZBhTlVglFThzRiZTLbfM9IWQdeklV2HhtA6K7vE+1o+i2W5lWEL91VveHUxbjAgeNrhQEXQNwtTFk3zWYgFF8DstJB+vB21LbErL6SyghXvOzVMgT+YFptzmAwvTTOsh6CWWobyiwuz+Ox0QKG7AH6tU6jnFRPaMq5DyvcUblAPsnRB2AWORn0aCKCWjUIZnuJsWN/PvpkGtWQCpaDUbBhpUWufFGFipUY11hruaAtS5B6W+X1fD3aMGiglsPZ+TBjgGKrpg+KZYveiSRlu9rkNM4EOBypjOm+bWR//SiQLzHmNF1fAV/oyK2PBep+U5IXUUB6jVZY0E5LQnKNT5zbrT75bTY3JYg+N5c+UGXr+WWLyV/5MGjVWmnmlxAX/Js2iWdT4z+5tmrANmFu2Abh2oWkBoEUgKTdvNTW+hixTdWdVb6ugR0CJwjXnk0ndONa5XjmbT8M02nOanGtq5ppNJKKGmrc3jucQM/d0iGcyhq8vidxibONtkFf6ltrnZKiZlt61vPdA5UhoB55druvpxhPxlxrJcPXwL1nFHS1lPF+J3dYP7dm6tqTygLrI+PMzwOWOzI6zdJoIxgC6ItWMBp1MYKKhA+6pPdO7vEvsyNjmhgxHJsG3RhBWwJbW0c0dkyoW3wqzzwKvr83zqJTdVTAgOpNmDorp7YzoDKQQZhu4KZ46Q7grQaMveOYqEFhoMhH/FI26KRRn7GocuJBgmk2WvcsDVgXoXfBwbXhoST+vNlfXOmg07QRNGcbALptltA3G5AKQPFZR+i0CDRWfz2vZwhKEJGCQAkoydX8FKdyJV7BStY0LSFL6sIQ8TrDMBOxFoN8TElFX2S2k5iwXrqiUvkn5N17i85KXKJykAqbDIufXDDO3wTiamNi5wIWcVxR/sGVjlJqYI8g9tj6/mnam5nMhYqt1qNOlTol5G5qhwrcBfPo08bSbmW6omXYUHs0zp4MZ8XwWEv2YYrtrapZb6WNiK0dkxy4U/tQDiKRk1DKn90mhgAIymEPRZdb19HulwVgZb6E7tvveLXLnU3zz9dlbDklosR2QzGRIOWdqqQsk1r3dcvMeWSZZ758qtikRNURHQaWgh2mLJ2wNej7wQzi6r/NcjGVdkEfy6AMfXzU6UOdj3D/lhso2vp08SfMoEOkSzr8MYjD6zLnjmjDtO/B4uzOPn1Hee6DyeUrdCd0jYk364gP2Z2Gey0/lSxUcWWIpLAcK5p2kn4jGoXA48IR1N10Eu5TX+80WWmv26n2WvByukhOBhbr5jnSqmU7Mt0nRujdXmXaZTAAh+OyALGMqs0bIiCA2Tq41kNbcomW7h94ED5vZLSHMSuHoXG3R0heAzpQ87+cW6MNS6g91cxLgGTSZkEjc1l7n1XYol247mzZyxwlflzUJkSlmWp7VAzpPplmmucrDUlW7rVbM6Vfd3PMQHIhz1MNPRDxJUnMNk3n0l12arPQY6nVdQXLVYFR5F0BNCU648/ZcNsOikphSu+YVCbDBsWtA3ffTCZd0es/3QsBEdXVdJGHfiwIy5sxJy7lLabTcDu4+E0g6SDm1JsGe+rMRlkxBo1xfRqunLGaadB6CipXBzU2VOR8AUjZ+ZTITgg7uTquvmwQQni4EQDDkJhya8m5T8clt4ONb/nabCWayXQRrEnk17B0z5uk4dsGrFjX0+Z64lKqp9WbVw81HvnoPpBzfIW8Hv8//9NZSZPnpxQQpcW/htznHdc41cB1cW7trdtvWNf2IbO1s6pGEatE1MjUiZszx1oMnRMyEH3RKAIAEpcqEfLWtuVYDSLdCT2CUmESb6pozuSEhD/ie27ROt+JeONQjyNTzZYHgOjgKvgWc8n4DldyJpdCuBFfXximIp6BDJqWJR6PeQpUUuPGyrFjvLrPyovopFjwJtbS/9osPjPzdhAKZMUXm8S1kxkaQYyAIfzbB7MDumvMGyysyZNp9aKtTjGqYb4LJq2kbtiZufzRkv3VL6czFaHlJJEwcTEjXYQ6qc2gK9sLUd6Wq1COapqWfD0cxmi8mwwJlcRrkYkAIXoSQ6R7JJCLAcE0CHCRM9V2zDUBXYHdGwzo4BwrYjt+/d0GoQ3fMmL+Rp+8Azowukj4XnZFQvUUiJNOCEayJ0yn/UnDXUs02BtQ05ioZUaRXB0o6f3XAl0Jv+Nzwu2XLTRt1C01hrg0znaSToTW7xa+Vrk+LND66JsPriP5XvKCpzlakD1Nr2Q7Sf10L/KCumZuq8ZfQv3ejfZ6zcoJYZBbKjpBuq1Qr4v6gDYpPhSaNjrzvwcjXZ9RBCkFl5EgBTTrue6XmIL7HvCYoqwNNWpnSwiwIrUefcr2fpYnISn+V7pK33esFljQL1aewlpgNPbb63I7yUPw5g4pDn4C1/oKpjm05vdPf4Xu6xYSe77M7Oe5SJoBzPilbXG40qb4gEs+ZNkNx6TMObA1NCzLTtbj2WZC+SdyM7JptocN3c/7jJwcmvwi6BjqKKbRoqxWKKcbXpgi0+QGyQ1MZKLbpuy38GODm97T2P2d5v4HKZ/0uIVbWRVOYwgIKtACaMnFkf0uOAPB+Tfvc6f3H9Z4XTrsDYUtzdo2wahvYTNoM18bEQi2Ljsd0M/HTPhStzRSKTl18j5BR+2IKQBfjNs3+qoprM+dPdX+GHHPXkESr7P/p12/qy0d8VzczBn+fgMgMB2EuyH0obnN6noJU01PdTnWjiJl3mJiNEQ0EBlNhIIWLkQyncY5tzJtSpVv7QOFv8w6RcqQ67cqWo4A5WDhuACBqodmXbvkJaPrafB7oV0SBUKe3UYjfoXqO01J8iIMJBYEjgFswIIFrWDLXxuLDAmC2ZHLVBGdAwSIE2O5ghoe2GvA6CzKa5loBOz3WR/p7GRNWjGEmPojnmRh5cjV3rAW6xdvM7JH+HHXI+pjYG9X7Nj8Ey6znBD3uLfr1jlw8rEFzE2G04TReALv6oOQyMUqc6lFr0x0gd8XT7qBkmmaGB8WtGMoGmI61iL9JH7nfXTdetYpDz0ofq6ZXzs8CkSY/+VN1uI5OH6t9/p0I8kiQ8tx9cvz+2YIygU9p3vGOlSnn/JEvkQcWu74FWCqnBHCAGaHmXhnNLkNtkykNwPBnQ36ph8+nqdw2G84P2W4npMXvJXhaBXOa5k/keqTWbp8zDyMMBy3yVwukGNAwPzIlhnU3B+vdYcp7DlQAhIIizzbJYbizHPyZFCLxm1dEWBA0s85l1lEpmfMRULq8/TgrS+a1QuvC163tP4YdiRweiq+HF/k66qQnLya8TZNhETEAjxangGm+o8/wWECaYpPmsfqATtMcbCIl9A4eVTDd7k5brTWaoCNAXxMA048QJ8G7tVtG2EcVpmZ8utmBaPT7AKEEmb63fziAiLkTP5MEqy+Gvc8AArU1nD8tv3NkeT4Qx9Gc3pwW1A5GvG4tdrxwAGEmuIZrb3i1dTMV9RTo1S8iPouzHl4HAFEsorMItjQt5k7f/JY0zhiZCj8Ucbp2pYCXSlbeLxXTqG0986WQzrgDJ42IWLpsUuSMsUbMtzpNNU94FctH0nSYAIqgzOZx+uIylbPlB1JRtCl2Ko0gznRq4ZtVBklIm6Zen67qZjSbqtquVhSKZpsB34UmaKwak6g2EYffk7RVhleTRxhgYGSGMX2OPfmSeBsIZHgC7T4nnsa0s3d24PE23SxKUKnRTkZtBWAu7anaxrh4R4LEZkiDus73HP6mcDqCxizBsyqvZDOE61vr9C310P/02Oxqhfw8gOReOYKzWlqoDviOQ8N8zaepkXJAUqagkoxiDhReZzKjuLug0SeMKzwGRSspJvjld9EYHwutT8Zmc0OeW7aTyzrMTcKYdt7TTYEuimuHnWtGnz8VPI3mQAZ4Uj+8srTvW50P4D0HKiq5+BAoMX4FQEZyEP4VWRSV4LrF5kpbnwScUCR/XgFPvfcY/VOAVWmlFuoJ9uz117C9ioHWvV52sdq4uTcS9tUbEALOkTelqmlSFE15GJ4Jd4Gbc/zsGgAQzRNQupgN1fQthr5vw8KWTVjab9WZEwXdB3iB+2x4qnybmukamzQJ2K7YHWfLAsZMp7Ax3RFYANHMHgkHYj1WdNFONYQZKXcKhaH4XDRfzC6h3S4s2IdGxJXldyPoU2xd8HDpdnhjlzCpHTVrgjT5JM1I+TXnfLka4y9ozQ9YXM5nMRXtPjPBF2uxSDFJ+o+/8OyZNW+H3UdfKJsz94PqDRUfmMku/XxUbYwNCGXWY4l+W28ipLcwXmY3mTqx72NhujzugrzAQLbPnVRhP3G7Tey70WDvRuPdxztBY3YiwvsDzFFg23ubiEXJlF1uFRbsO8D1zIzNitvO7MXwNe6urCphpsqmSPhlmVp9FvAjpm2kWVTd/0yLk2UBpOfd00JMhRfW3xOsLI6r55pSGJ546zP3lnjg9S5ZHlswgSSvq6eG1zbp4am7wOZOk55rKgX5+jDXHjEfsyxJRlpKtoW4kLwTQddR1UGzZjyN/DGLZteOvJ/t0gM48jUiCmiv4s03TUheUjWujNa8dNNKbs201ls3ip3O73uDn8oM6LDN3wAjuhCNaHdH/e3lvQYqgbwLZerb7o9P6t7p/pD/SoRpc08kooVZ8L2+oFRLvRIrpYKTwnPte0GYEHEh6swQQESaeAn7u9C+LPEqLpzpwsWed4bixBrOkXUXkKNwWPgIYNGcq9LTuysgDEGmsJYaamtaj93zM9wGnVRtQKZaDhP6B5DRh1z00j3XCp1LzUHY5quX8y7gfdU63v53OGOWqZH6n2O1dU9YJALslqgocsRgRpvpd0GQUifUHH3dKCSmYt3VQrQtGZJH8TTBg/vuXBpw2Rq2LUHKueR8VdqJUulb6u/ZPpq83B06Z1pMizZ1WnKm3fq6MWOkD4GqJXlqDloF9KXx+eBuXRwQNAPE21aAisCYpEeakKZJK0KQxpwo9xatgwtj4qYRGs7kLluPeVdoyZJpIaLWJ18bPmZDXQPYLRHFnNOTVqmfZ1X4CEo0lY8Jw/IVJTMyCthEFTAaz2TOGtPgKBi6PrEPO5xzdzubBG2JA/GasMuAFTcfcZ5LA7oKnnR6tIdEgj4eRDgJlbybLejoqPFN8VmZWIzFcwDniIGCfnMcKYB5H4XVehTonTpFMuEhsNx98isRUnzJrVJAPJ9ldGyLHidHLCwWHIbWxFPUk5OsjeGGWUQ8dFgTeB/HTLX4RPp6j3rJ12Ulx2xdGSJZxr0CkuO4tGNd/FLkWIAwQWQ3r528NMGrTTKbrnD+jE53tZPlnxxI72onMscr/zu0KcB7D1RkZShSUWcZmAMzPBLjUidW2lJKcDkM9kEFGE9rVqDrL1Fjrb22IwGMLgRYgY3dJ7HyI3cD++QChQuTORHuORoCHo64hAnbHUyUOjUXnLon2YAh7Kn8q5AxQ+03xsqUbEGoL/hkZmS7usyNCdM2JUARhZ4lUuNIaaT5j1mvf8RV30PDb0Gg7kMmlvegZyhzc+fgDoXulpwoTEKaY8edu42zRTBdN+DhInjYbKwmgVFhOPT9YdRGLQEmfcTCmZNzGlxXAkClqYdjWery95lvMDNLiicBnFAMO3xumhWbWjKIp7puLTRGlTZFYOGIrn6KfgFh3rL58Ya3hjnTzFoZplSgJWXiFFwWTjfu6SSA6oA0dYFA4dtc++d+PwVA1yopoKUB24WihEvH++kqGRvBASjNLw66kJsJ8wtxXxld17v1PoMzpwoex8Qtts2Sx0woIqpHleHKHjUxc23YrhaYcwAwMDIBP+F2pAYT6VdU2xRrAhL0afVWoZ6lPn9MqJn1SUzWYnJpgYnc+VqIXX1e0l9G1MYXhXenxroITLnXljMIuCvg7yB+OX3yl5BuAmyxT1LGiPwXy7NkxVIE9FK9kg8gfCFP7z9+y4bGFy1f9d7NdZ7If/xtrd5W1xmfVwXPCRC/Xxo3hG72B4//8ASaaiah24Q75t8BrpyblmP6LuW9BioAFmI50MRCyDE4Rduw0MDyvCCyQx5rpgp0RTOJdqu6c22Mg6lKXXq+987as3Ws8XsSnsQ9gC+uotXREGr2YPxM5lxQEFtStUcKnrGDzI/qTn5zKm7QxS8hmZf1MYePfiEpQCJsLfJvJDizcD4yJET7eUM4lqrG6+ripAOxqahdbPizY6qFPEeoMXNU2IJscKdboJiLcm6MSdjOfhPBpTU8dI0EdrUfUMUYZoAWaZAh6KoL+dCRkjtnJr6zyB9mtfDXS4YI3l3ry7tXuhYxB1W5NHzQTCuxz+lRNALoxEXoTNpWQV/C0Ls7CqfzX64kAx/V38J+o39MgtfUaNpykBBgIbCUrDXnWFoCRzNp5UA08cgJr2cBg2LnTTHVeVVzphm0jrRCZ4KWMOpoRk/t0842GfT3UdKGOO2ZVkqRDuTD18BUtWgJN/vEsQ9qYEZB4OJczIV2bxKmUwp61XSepDxIhoNlPQOpRWBPac5EvS4HOi71ACtdMVZFQrgh5gDwFAClItPEqWtKEUq/yo2XyKLlTYXWnBHK0qDkEdYOiXcWVhe/J5c5yIrS4NwUlgqCfDR+v1cPUMFAqUItqVrBRdFZjh+HbQUi94V88t3UxqdJFdF+KRX00KLw1dbrMGmrXxNEuDHbwzQHBNN0Agie6d+oVar0wM3Ou5b3Gqh0rcpt4Mi+qxqSv6qspPTWITvcm4QqS70qSSBHeibyraHpefheLs789/CqY5sWhrqsEJBHUQivIOTYqFpnXqiMqzKkPPjQo5yCapO5Q1C0F8fqs0cCt1sKIvHQFA3mmIJOV+Hmu6ipdVw0mHhEpMzUajBM2pLGaQwSNepDWjgdSryvCinEas5dh+/0GqBtxo4bs7RLMpQWE7iJtWlT949BOtwNmGAQEbQ50Zr5CQXQTLSG0L4swHUZ7TA1hOQq9EDTyEWBObtF+0AhsnmiPS1+SByF1GqY4JSqxDvQoJuGoBDXXjWx9liuBgpgjd+6OJjzhUIBQI0bs2yOYf/fPKz6yaXzpQOvfKtmOH26WapFLpfevD5NABDrSOHmhXUFLrTI+zQzwT5NxW2nH4j7TVllULUINVOiuEO1D5gdjkltivV2OuDgHE/NtWJL0iKVoDW8OgHgukFKXpR0a67MHPfFtANxx8si0USivcXbLeiP9VPYhVA6vJs7eBE/SqJJOKSKNPeX4mGmZx7Ylm9VsAbBxTxWIb/eVTZIelwvBfDwCjPGVoyysnxvS452L+NRWrve/8znerEmqeVQy1Lp+mQrzx5B0snkA/o5krZDrxj3TQA6crDU6Tl+s8u2uQs12rqegk/wrUd+8S2U9xuoiJ2rQIZig7guwOPIHJbweo28/0CRrHvRQJR6F7Un6PxU3lCeE384/WG0LCcrCRYKqji2SUl2WH6vtljjBxqEmX3NutfFQ4Ii4WXFJGwA4RBJ4MKnLdmUBi8MGFabGV/WZGrcjc+oDcuZLXWXlf463mpbaxCPUrn0FiBH3L9izmaZFGs7FHEKNX0QqrAA6CNkSebEhTSHYZ92CvKYHTxHpYlnOW0Edh23qXiaA3Cr7daamZmce2rRDvUGbL7oqUmTZhmFCXD1MO851kdWqqmKFgShCgRdfIxaAiIKlEqzGrRLbVu6wqXJCnX52DvoQwGkVkqQocFzQmH+Ik0sj0k4P0tSXc15MgYw9uk7ORP4jLq6wTSEzfvTxP2rtGUoO9uSQ+daMzLjIuLKIiJfyURrnop+KN7s06Nx/ARcpcZkYKiDOnhbmkDEDgO0lPYzzpGlCbRqquriXDSdLtAnGVPQQV105VlOrPe3idga9mvU9Ei8qGhGyBMplGmziFelqe0IMgi+Y6wV6YOhQJxV5huQbZPga6Sp4U7FyxiU/62qdVIrfR6MVQFY6v2nZZPDkPWV/h7HlxeSf9Y3FkAsy5/1XazlMIg2Dytt1mm+X8+5jaecNW29JX2pHDAWugqwJMvgplxz4cj+3y/52/9+ph9fTfdo70QMx28HhtV8MRd+HsLwHuMwJpcraNGohMZkJdCVgsUXgc30AnyWfwuh1z7Sj0Vy4a9LMt+Zu6C0nKMwpyCgvAIAyUQ19tT3V5mu4IgzYH4uZ6AV0MeveTq46GflHUe1Yb6WO3Ag8wPYYrDDstryvMTCNNfCMYDpeQmaxeJiTsW2WT6AXcg0rfQ8FtQFF6OKBNKZ5t8U63NKnkw9h93bM7GbnYJq2hVpAsxhwqw106S4RFXvJ5S+EGUAJceBQiJ2zs8yhJw/4X1bzjetIiGUqgpe6SeCAIrBo2KK0hzB3yKMVGyemUX15o7ZBGjSzB7eu/nU1A3HIEhxzRfbChjA6T5Xt13TdMYDN6eaA7AKeEZLNA5AZOEk4mP7XfkQJkrViKKx+ZcAliN8qCzh2u5aG+ff9hssOopb4H2aXT9Cin1euclRuDnSkVvNsxdj63e200RXwUYfq/T3UCeO4GEHuUbTJkPs+RvNoq1oZKqsytPFudUpoAs5hi0ZV6INn4u6G7fw+AaZGu8hPSyaB5bDBdJvO963bHSeKQdmuoCU8lFPv9Vt4aFp8UxuVM9NO0txwymJmsizU5ys/PHEcqW0cxm3FEwEKVrMtMK2Rj+XFb+8O9v2PAr5FvBJlPccqMiifpuH4Xz2sfhUkAMJADz5ErkT1ET4ujxSqYXTWsFFanuKvD1CbnsifEsONto7i68oae8sKEGJVV46HSCi4KeKpzLPgrc44uzXdq+M8jDWnzX4lZQXJmCfctQSECQKKw1xIVLnif4Mw+9JSjBtSG8W5SICSBdMYep0e2t32+nugm3N+Gr1c3fXRHGRlsnlxASPcEc91U4JVRPIfQoetOHiId9NLKeJgRdzRGVUkwk4Nwn4Z8rR4wCLTzf9du7wkrjP6Cz7I4cxPYMUSVBy2tXVF6Qpk6KKkJi0ykRqWzcH7BHOCz6mA9hhjsyKiaHdz6mhT0Y5hNPHr7eGp8kIHpuLLjO0EjqBKTPa3lH4RYllFUd5MXQcRpVAJnR0JYg0nxc7s8qqNO7T3LRhZyh5+8VChWVa/LxK46gkPXMc/SvP42lJ7vfXlUgejuj3HIVgjdoJfsRLNRlZmb/4t0xzrbVqMWydGjgLv6710Xi2Kd9T7TyFZ2tpW+07208TKftR6jf6ODHXc6ls8dnt/WJgL/ef2OqdeugLBZ+bahYpgMZly1IRvx4ARQLqcg3LVwS0YBtrVPDde/03AmvNeeUtUr87sxXnNXqo7zhOxxIbnW8BsrzXQIXqXSARnx4mPIHCauZwsrF/NZkVi3CS3EmMK8kWk6USlrqIFpNT1hXo1gWd87ny9vqUnma4BWjINldmo+UR9R+qIyrrXs6IuQM81nFZPx1aePqFAs8ErICWhuB0d3Yvh3W9zNdxh2DVF+a5MAoFfKeWqke980oFpiVPykgHCQdMU5jYIG+9oYup+hELGGmbHfbmrVuk0BiCp0lXMrhgNuaicJ+CXS1yxBOSWQSOOSt3FWxqau6t2S69N4tAinEM+tOYYyNLnsYqaDTLBCnVcUzzWgUs6ySsc3PvnrymrlUgaKy3iY9B+U1MeaO9Qa+W60WnORszUmDCQ70H8OnthqcdmLoF09067MRuByqCPWji2hWvrx3XBvTG/CgOjhxMassMwqSmlbm27LuPn4hrOUQwx4xIst1DjaWJHwAK9GbRVN07vMPDhZlHCIwMKb4BlfYl/3KzUE9vZ24YdprALRp8mM4qYk6Ty/6Tryx+Gc8JEol1cH7X6r9Sfoq21z7Udf5cCaBQbiNfbji+qkh4Ah9fN/c040dz/fndbxmFzyFnw9TI99X1VV5aN9oCYB53hci1fr+lz79/reX+4/cUS67EQ/VZKqJkAS9HLU6VOcdxii68O055v4HKQxdcO1KQAJHgCSj7ghCY+QcHQo0Bx3HyXINRhbp4Ho6GUPFWbcWyLyEjIuAp9UebWcedxbHdaS89tFOTgEDwtggl381mHdCI+motcgfetVDhJjjC+p0cYJGicOfJwv5DXy3F1yEZR2W0fGVV066gqbDdCii1zr/ew3oJsNSyQCYAMsDJOE++z1LZ0+a62lYv8GPQp4XCjjFxm+bDkqYi3y+7UKQwMo2MAYs+gWsTbCpQ7eEDoWq+D9c+I2z8RBQ+9LQkTDHhmJqwHJtnVcmfg1vokfDujmrWmVqVBOThcOfqeohpVcROxcQuwJudGig79XeooG8NV0xMtYQ8lgOnQRtNaeZj83SzdPITiv3NbmDAmeSlKV414IOL4PXDxQDKBIbvTERsh595dFoOnzRfB2ohzb4unnZr56e33U0qFg/XBNi2jrkDb/aJT/fMyUMnxKYpQKuZ8zCUZXxxmMsi8O5MXwX4sa5UF36zTn3xCZFzlQIu4fzFABfXryxCX4A0Q557krSo5dm6lk8fjj1boeUx6SUOfWD+FfVO64JOVuZWedF0rQ3pv24GP2/h/UdnV5t/LVl4ZfGbqfLn2WV6lwQ494fK7tLW8xUWLrsCqnLvOha2Wan0JseJqHfLu48l8J4DFSbXYlH47sdnmp7z1VHouBiUhExirEQpcIdGiQknezHwYsjA+W9O0B0Ej2DfEgTBtUI7eOwA2BlwV7r6sAC4Y6NNplOZizpIUvHjwRcukowDpe8Vh/AdCd50IcLKOKTdaRPquOV1RpRwt1yGPIFSNb1IfTqbEgsFCVhGEQQL9JP6HBfVKgAUfirzJNio90lknhVh5k9Prda6RYPEa2YyT/HcFQqgZZYFm3OBmI3CMryq7/49ZJUqX9LkjPYiEjMxqaz9T1NL1RqsjIO7+rNZ8TTCMU455GUyC/lgvSPpKejead4faB6D3SG4YGLehgGvaZqh1ifkKrheNrTWMMduQnL2yHg83NQgs2ETM5NMz1eikuGWMgDc3ETUbE4t74v5l5D+W/MTxIV+FJp98lwfrQGXS8MX+hWKCZ3AbVg2ZnhE0m0Aqs25hMZ8Sa3yTsk1IJGr5/QjUuBxoU4KfrhZhGHYZV5zh39YiaT9wgP48Z4bRU59Tn69TeRIPfQbk2Aui2ZXCy+UogmJPpd+1PeC42N9JWjRw/3k3+a1dmCiUui58ABGDwagl+OoHSpZ33i6CqDuU73tkv57pZsShHIYxWVtLiN++P1O02JOqr/jgRmKLMEitZL72lct761zInFH/nPk/u9e3mugQgc9gAzRiy8IYphjgq14vvqe+N/ldziI4Lc64fHMgYglkX4r2XWcZYXQK7fnfB7UdVp+O/ZgBSoOgXyxSQk7YkRDZXwnAaV8WREyWD4cskNK/Jy5SgAt4bkcT5Lpqf1AmInqqwJI6Vp3XWgB6gh0jsuwzKdWYLV2Lt5r9VX1asLRPRMDQGCZVnmK8CY82NGeCnqbiq01XDebj6HAm+FRIcMiVBpsl37tFl67NQWmfU/V+BpJoAAwGQkzY4w6T1/2dPCNgKj17OZbuUMFLUfGUnfkmnMEzlEZWmAJnuFwhqbQnYi7+DEL+3C6bZ4hVvHQp0UAdcXWGDINTO2WUdfTdT8NxZvbBIaFIm+dHMAcp1UnNhFct45Lt3Dhxx24NfdlaabVYvuHnSkQIc1dd4/SkejznPDjIhSU7cOF6T4Vn94Un+yWeK2OZpXLz3Fp8gdOFn2cK18ineUu3dqXTDyfB2pSPLt88dYQsBAU0Ien3quqfrAm2Wny2TUCL/EE11AFxg25PgDEGUxMBmzmas/FUZhFghlZx9A/TKYIQK5fti/Xr28KJKAdBxs0w4cqqYKIGJMc10VbqbkW6j1RfaH/IyuV0qcjqgsIUecj+nQEK+fyrHfmorVKeq5Ar9JmrV2Xp/LHo5bp1CJZICVqxOG3kqX2/QYqyjwFXH4IQnf6f7YEwWgBIHc4Sq1jlgXhLHGZuEVjk01ZF29NyKZ3bj70z346SINoXiFlTU/7JASPpol63ZGtbJViMRWivQusndiUmSSJBrSQcfUj8bcpEdShXwJE+HFlxlVeHp1ZkwHdL7SpGjMvuwcCFx+zWeptpf08cwhIzUVtmIr90AQm/Nz20sUjIlzA9AAIE6ITD03wsNkhcsytMYbipubjMMf0HCPmz3DdBNcuPncSZy4Bao6YCsjsmJav208+FszWMD2luuV1mBEFU3X7FFCn8VP2vExCAJUDCAzQ8hZPA6d7HjjQmh1ZYD6qGm9qotguzIhrUqrh4poowT4JymzcrW7LjSPo6G3D1gDRacfQKyDa8NAbHi4ttAnDk6jx72yAomFMG3eClybADQA1KNQ+0WF560ZbT/v0zM0d1tJh2WOdlhiKexSyyxDdE1Sw+QqeVsK2ebu5HJsPm51cLfGsRUeJA43jS6vAQKzPJdQZCi2nl3OeWX/wTkGstXNkTfYvuVHyw7il8NyVvS1izvl54VuVhwkBclZWeVhPUW/8jexLVp+QqL/J8n6l2p0NzqyZd8o9DcTaETaVvDg02MuAPAdHTm873JjzdK95dS4CUMl693Mrul7lmopH5f5zJ3Aly8XPXd5voMJlo3WY9RkC8nKU+SchqrlTrMBDxB1b7dkeqsziNIVcyMqQOknS0YhLQsnoeupUgIW1G0cv67IDuwMGzmArMwgu5houLDKkhXMegIdSjWt1nEL8pKBzr9u0XrLUw4EVn6tlfRYAl9EMDgo0ZtwHOWckcYzE+Iiv/tBIqO2jeuySk1bqAq7d5/xF8jbncGMHNt9BqmdWsjTnApEU9tet4eKZXvWaZxdNPxLgaQwzE6gd9070t++Is2gu3YSohaq6el8UUg77UihUzPRkCdIEm7pAVin+Mul7c+5xnfakwKP26oiXdRnEQltFI0bNSMPEJsBDEwztnpXVj2EA0NsWa4OOqxb9Y062Qy2093GfuE1P8tasDcyyK7CcHJcex/xh3weePN5+uzhA9HfcxvT5EE/xrQH8AXWtla9gnZ7YTXDzgyhvY+BxtwRvnJsuSY7HUi/VnS2npIllMOaulMub2XttA5CahvCDgtF0E2DLWUkBqL72NefEnilhxP7zjPmTZY6rAjRDvQ+0FN9npA0gpawO3rm+l8fr+HAONDPMhswrN4qrjJfhLmglOJAn3wMkIvhKLTEeZ3hVb5E4SuOdC7tauxzzeudGIAClqqdEeEv1x7V5F7EcZdvxR8m2HO/JUSkelVLeda9Nz1XyDuW9BiqCcE9art5hvXWzsB4MaI8sdWZkRf4PvoVIkvCjlWWsZdfQmYyYWgyEYInsnL5amdaaKD9VmtVRF4eEAGuOgqSZKlxKuzlSlSGhjAWRmaaIIoNR7jYO6/WeKamqyiMJEFtF5l8YShGHy7kewVTDPuxCpADRBc4RMJq7h721CIGqJwogFDlLOHH3d78K27lWnyQLSbacGTI90Zh3YPNIk4sf0ic6Y9e0AZAOyCbY1UwZ0wUwE4m9GcAmCnFzkIo5bzcBLgEKxNJhRhuT7icUqhMYQNOWt7nQqMe63ysJ+px+T7SEGIcDGy+/8jdyMTclSPcMwIruWo05G5724etCPAfNbjqKadqnp33a6cEKP0HYDj+zdPqCazdN007fnqF4EosAEs9Kuw8DiZtrTwxfGmXYuxTTjp2GaJ6WLXDHaO/TVOCmdvrxbfp5J9PTwjsNtIOKoWrnzkI6xKgLI/jhb3mdgGS54O1iWHvwlbKGF1Ozm124OWmt2YZqso3Fnw9In5G6dg5zHANUEATPcxG01ASJnCgm1yGiXwtICa2bgOe4JTg5aC5KGw6wKZlrvZ3zGnQuq6/iQvfFr8bnK86VO7Q5yL32a2nHul5Ozq937o+3HoHYnXL+PTdq9fd2ckBa55fAo9ZnNPUcnLpfFp7+31Hea6CSBFipgzR7R4rz9tPVld3WJbX6gqSQIhVKub4ggQAC6wFpEGc4S54OZ5eCtKlK1l7lcXShgBmW6cJdiqThvWluyUqU4ECX4QvWmccNrKrQeSB7kvgy4gQIzvhSxK+jrbJeYfbmnFL/V4oqnJzVn1NXy6oC2siPj0vTO1ps23AhR5DDOtPkVoS2SKbWZv9EsM+Ba9sAtQignePnOTha13DOU1X0bicpm68D0AfwJIDuE09D8bj7oY8i2MfAdWt4cCLcmmBu5VycbHK0Nk72FTuldyiw74oGO+tGWiualZKpc2EkOZcEmPkl56b6KvGDlNtOHDwgpwmx6cJ1iGKH4nGfQGvYp+Jxd/8drqMm0Cl2VAEs2q97jpStqQM8xePwE5vhaeuZmVjVTgCHhCZMNB2m4doD095MzOHat2baF/FTCM0K0PzE2DzLptX+VXvHYWhznYVEPAu64xpQhMDvPvc01WztIHQkR9nMHAlkjP5dQySuVWvNga23yvmSOd6XTUL8i+xjKbG5KyYoOr+tGrzjwJgvDftaI2+mg6jaBj7eWf0ydg4iytfkgqTYfH8ThFaFoForDz+1ODVMMduCpV3wt4Da1rhWfy/NrY8eKzo24p2Fvdz5xHcX6acr/TzbnGdE6r2f6zXbiL9z45fyfgOVkLBEt3ViDkwgnHkQf1fTnJ4W3/K8P0ThRVV2/MRZpZ4OuVBMjgogJjCSkbGN52lcdl0k6LqjQjKRuA9JdMwJUhTYS/3MiEmVYigVlu2zO+Fq7Xt62NdxCQZRzEXUGsWC9KojMyVyR5yp8ytkqK/Q6HceuCXLcQMCFNMVbb+rWShMzdRoaV4zepDC7AmESh1lLCBAw8V22J52+jYnLiq4NuDauEjT/t0noL3h0jlfZpLpWzN1/xh2Iq42fDoUl33ioQOvN8EHDx3SJnrvC31MNa0MVfYcr9BA+WhbVlGeDJ2ZdVusjUAgyF30kf2431P5zBfw7oXPF1rVSmhsO1wb4Vldx9ixD+CT28RTt3E0OknKuFhufFzFxmFMhQ7gYWtozSNv/MiEfU9d0w4D8Y8ARCY63ITrWdXG9EiiSFFP4nfQA8/BEhJSlxHKHe/i4RADs+6ID/ClCEhuWii4Y6PjRCoAOuslgoGbZEnWAMR9lbYt6yCPYsZjdfA2fX2REnouggMNSPQVnFMAsfEqPDgScJaNV3URjar9Y+s2UKrkFS00H2VkgqaiirI5rGPsqzcgyrIB0TOwuot7NAaef/ydknyk8K+lrsqucRjOs/B4SymbtPs/I/jfCus+q9r79x5Ik6+myR+yPjP1fttEcJYVx/o/Z3mvgUprayheoSMASQ9c8ADWqARJhvwcrTRg1UJoeUdgEl0qLibZYDhrwjL7gTtj06Jklsq6lKU+l5zEFwKZSQ35c9NUebcqrUbpZJY7s9WZNU651bKwGixlv9pgzNKiWsTZAr1nggF6n487iJy1hFFnu3HypQqI8r5Sm5BpSXY+H4txSYZFgVAmX1DaUyREASm8hxVOge/0PYX8rkC3z50aNUWcivy4myljc8fQoYD6/DdRXJrt6ndVPA7LeLtDccPARMNrABf6cUzNDK7TtAA2XuKgOMOXATWNkwsrOF2MoGlNgimjn7+5GnlBzynsIocCKnVoTGDk9FAzTZlGggDB3kSwcINYjhRv6lSJXb6IWmI8MWD2NJun2XfABrG8LCNzVVt307nYaMhONdZdMFXyFOLSfYI3rkUpICK7R6Fd+y05nkhyJF2d+Y1ERIx9zbDy0CbW6qQKjOQYNA9Z5l6PAmNIvNAETY2MBrjN9PfeJ01nZwpsM49ED2ydC5DHPaxT3vx8KraXQMvmKPtJLU/waTFT3JwzAM6ioT1I+rrBbIdMcFy26g1ceJvk3PGH5EbHaBi6BCTXgnV9XQ98vay+izGOOIAJ8uiYwTuggY1dGefptuPzb9OapHiqxPxspVWcHRynPTP3nUcDOuUgntr4ecv7D1QEbqKQUOWu83iYXQpwLjg5P5HlHIS2/pofbNHajA53pgwVKwimEnRQnNMpS1wQnJBUXUilVVqukfmzv7M2zNux3M+6jyp9WEbU472qnh+EvPfAzLX8FUmhtcj1IxioXVSJPqXW6Dz2AQrvlGdA/QI5ArAEUFz9fJY6QrhnO2OEuSP1MrmN9X4z0+rWLaEY1JwBty6mBYAasBnTTw+2OZ0zl7dFltA/w08Nvik6dnTpkG3Guy3Ul06eNEfMyMzKTLdz2oJvPemMWq/IqcudJspYh0+L5iSD00gNCyPMCp1qfkjfCfs8FHgaBtr2fTq4EDx6HpKmgomGxzHDPDjj9OWck9YamppG6+aAZw/AUSfNHHnTz5ngRYLGS4/jNFzEjLj2UbD4dNRSVmte8PfI8XKhJfaF3yUuaDzAyJqkY2oQyf+ykKY2d8DeJPOYzHKPqgFip0g7aMLNRVLuUQcpGRatqZGB+0ShRNqQT1BciS4muJXlSuEZOTjTcx0I3+dflPPKeVnYu2bYMwhGDeQyKzB5eiGL09yXCg88rExU3HZmPGcaWGtNfx1vjdzLtBs9LGuKRPI2qXS/LKDFP7Y7zT/TaZrcnj8fibRx0pedPq+j//nL+w1UwDBUKyFIUYdCF1pOVWIygefGTZCRPiATDjmaDGZR6YofYIdUe2k8DxdaqSLmQlAk/UVtZeEGYwg7TGpCbHdUnF7LTinUwkhbdk02FCafeGVGywQAKxg4o1xXTdZxCGMH5aE77DvvG1Lsw3cqUFaM+pvi+Oneu4/Of8d7pEzWMczxbq2kq7rj5fPwCI91NZoZaDCdutVhESy7OUDCnRkVnpejQcW0CfsgQDT/GzLtXQSKDU/uGEHNgJ0kLHhyJ9PdT5NrqsVpdKA3i0J62ICtW1jrJkZTzM5qNJW0EZYF0QjlNg1NNT3eW0tOP14XT0CeijDzvNmBT2/q5/Xwf1s3Bqwsp8pUCym+TcHTkEXVrDoXOud7ThICwHRTAtsYpigUwOD/rF5Za2lH5JE9BtEDm5jarKyTgjkfKnUIQCbGnxKcpAAuAV/xe3OB3v2d0swJW8AEe5KZnL2Bl9ZjU7E7IOGJjNxcKfyEZSFYat6/w6ZI13UWDvjPyqViCvIOEsxAxLJDR+c1wJkNQhoVqBVuBDNQPwFYA7jPmdQafIntRo5HalFSi5MyY52ssjd8nlrY/trN5WdZbq1AKD4tzPBeLSt+qpqtlDMa9AOhrHneknCs8957JRJwwceTmjuE/Fi16quce5fyXgMVOfz9jFWxTOA6wKWe4y7pIBGV6B43XJvg9fWCD15dsfn2Q2An8Pa+Yd+Hn2WieHMb+OQ2sc88Tiu0DkfiFC4CjVTL+pZexrqriE0QqfQZhtkoeLToGVzIBslV5l0Yz70QM+4MKBZmGde1fWTKDlo0TRIBJLwBR4ZAYERnPTaRNUf7+IOP5ZpNNUY2W3RfTuQQHuniTjnOAfsYQu8IsISHDAKjmF6ehu1nh4ppBtTzZEyE+ntO87H49OkGSMc+TFsigEfCAPsQywniWTamm1Xs1eZ3MHdg6MB12gGJQ+hvpcFUwzHSwZk0o4kJgTTTEjEpVivCKEwBHJHimGm5PSz9+pjA403x6ZPiNgRD7QgCnjw8FFCPvjE6s9TFOwZGo4OlBvEY/VhHO6w/lqcvF0WEyFaGjiNPyIlcALqvpWQ4lTaqMHbal9UUy/eHzGWdUupHwESr1YknkkcehEoAFr9ffB49Ut6z74ppnKogFRTziV9qHmnFBHHgvtcioXbOPXiIp7fBq5jBM6T8ZuPSqWX2BodvBxGjGmCHqkVoiUDEDupkFJM6rVEJXE3PCppU7cVD60GWOeKtpTnaVhvb6RynarJ8vOwoDXsJNXlMy5B85z5oMAFdJrzQlc8Y1ivLbXdKGfg794ZWircCpfeZIoKa4aWqwucFODUizIuHtbOUVvu0YqvYgHt+mnHa8H12ea+BipUDh6k7o/hbCCuEiBOwGLMReDRGF0hr2BW4eVrvbWt4/bChyYSOHQ/XKz54+NBPTqWvSSJxe5Ga7t/c3jBV8TQmnm4DrXVLCz4Vt52pwZkZszsjH3hzG3a8fekLmRPPorDXkY142u6DKpMjoi782MzYGN4BGPE3gNL9RUR/lNq+05qSnAcbowZpWqINCviY9HMp0UVHQRHPOeDzjwFWCoCpLa09CPMBzqr52uYYlcPCBjii59eoaNAXd2VwBsGjDDju021/k3K3tTh9FwK0reVOpFlI89Pg+T5aBBmwNQM1VwimWOizTo02jKl4mtPeNRWzCUa3qBmOmUVbADqnJbBzB1VIRrsJUlNgTqZkikWAuzCcDlBCozKBp13xjTc7Pr0ZyGoq4aPCMOEdAHR6qLKlkF0iLgpztXF2gFi0fOLjGaBU7cEzlG4HAvAzoCSd5l2c3RE0dr/Q5oBCWwtLkkgFcNLehBxoCfaKljY2DAdiy3XpwILvIa2BcwAE+FiEEkG1wNIGq5uDTIMVQt/9r1JzfOS5OSJz5rvMd0EX0M82Qy27cxOgybSQ7Ja+LmPCUg1o0hkf7gACkTlGUk1gYxo5rj+LxsvxMRPhOk+FbskXCWxC0psPlGrP3stKBVmJjy2pJRlJlFZuPoKWekxGjO8BTKwbrdKKZ1BPaszv/Cx3m7j27dDXAyR5azluxN8dpvwvAFSqU9ddE1oBgxRVdDT74LLh1aXh2hUPlw3XS7fEWgDGGBja8HTbsW0btg24dLNck1AqJlkSaCncOTJZoijwune8vm55rwCWALvkGVENB8mnMfDJm4mPH2+Rq6GJxImwionbGNjHxIBg1xZABJASfieAC8802zsg0BliPXeBuQCS6bGsg1wZXzXv2M6piAQl43TGOtf7E4GV6IUyLnBg5iwTeqgbrai175DB2mb2Nyfw5N0kFeyQ6Z1FnAAQPVqYzeHTaESOP0HF8rLAz0bSAlQYccIkXtV1kDu64feOYWM5PWFac58EdedaEaB1a9uciHd4Sk4TYkKVv1o7hoXdNrHDA8dUbMpoF0GNnqOgYT/loNPl7nfOBCljus+NCrRlWyfMHBRaJ58D/qGJIRwQFy5eJ8S+d/+4gHanL+E8+FiQ1qtGg2O5kATeQlucpGxCaAHqG0IAFeFQ/S84bnUMq5A9FjNPI9Y1UxQ0l/gjKiWt2Xt7M/85rp8Jd2CFmx85L1p8gtiHIlhTKPMKNSAU5Gfvi8l6moXhX1oHBA4oxEEK02PS368jgKNrAFURdE1+TF+JzEGTAA3SYjzI0xjQcFBWQKdEJvKg+Oob81wJQKD16wIOgQxuOD7bXTZVEMbnLCu1Bi/NxhYIk45EC98+apDvWUc/C0Tcp305/K3vKwLyv7O850BFghmgEGt8BhwJGhcQKB42wYcPF2xNcd0arpeOrbdwzCUzuWwbFMCHr64AyPBm7twq9HGvpGU67glMzQ8VY2aInymsmwj6RXC5XPDhg+K7xyXsrM2Poq8JqPYJfPOTT/G1T57wyT5xU7Mhx8F6fHEI2jW8NJMeObMjs4kW1uYfvlUGW0GN76LXZ+xvdaij6lWhlifDx6G+n+NfmQkP3VsAqrB+H+E6Jwu6uLcc9f43ZwrPMqe4sYoxyd0tYAJ+ASsOBmAqemrC7JA9DaEkXgOb25qdM0MfCYbSTjXg16ZlY2UW2/DXcHu+6Azfhl3Nh0ZGyaLqA9mYQlwZGTMBaSlgVWNDy3XWGoWDT5wywiK1KbsD8NsEIGZ62ppANmacnRhqfj3iRwWoikXveEp6SKGpxted5ybC7MtcL5EJ5Xr4mx3MO0JEU+a3FbQTKu2Dg1KKM4knM0S3rDNWrbr2gGsDB/bPa7JcCnoxsGEmXqYnaJwDD59vYpuc1qwnc47QZgEWLfV401xDyEZEc7ke5LwuDNC6pq1kvTMfOW+n2nh0sRwun9xG0Gv3sP0ZwKOFI26MqqRjrAjQNwRPNs0KlnWRkVxaNHfJYFKoKqdjGeP4eAgBrfggdU0Hrs/fJNvLtRVvLECwi/mNCWyTwSSIlgwyo5AWaOiZLTUnKP88w7aotYsOlx8SzKx9ETzzTH2J5DjyFUfz2NnX77PLew5UctyaiGlFumCOHddN8Ophw6XTMWyioaF3AybmcJbOWjXV86Iq9mFWbvP9pcmCrJCpHMGjLpQYEsH/CHhEthEBTTf+iFd26YJLed8KlOxQu1dffI3v+eg1FILbPvDJ4xO+9skTPn6a2LWFpmZOwoJkPIPvatmX5VwNlAXlw1BNPvxtiiVvimyStS9eUWy6T3HIuQMIkFEYNtW75Y2g1Kq7A7ILDpEcH1k/+u9t4Ri159VqfxQcZBrHOaejGn2D1nf5nlQ9LHgIKEJn9J8gBdEJUtyugrFrCmzXBtGxbXcH3JUWHYD0PPdGnQFCgOECmMBCpzna7gK0ToCoINiPPCxsp39fCEUojBNMhdaoMFLFRG/Nwmhnc5OXRfJQG3jzJHBzOj2JQBsFhSy+VOCYSI5B0qrEe087aBdOx78rESUEsQG1z4eE0UHjuYRNUzpQzSd1vNbngTJ3yyI730ieP1TjvVNM4Imq241NMHcAl9ZwscOBMOc03yYK8ZnC0Jp2eqlRitTffDPUEkCYOafmf5FYxzQDAvBor6xnSTXhY28Ra9nfSAiH9I2rSeJug9mJCZBtPmgipQamivojxFjWuBx/Lev5KG8FAWQI4HPTsaCasr4RmweBAZKbH8Fe800BOdds1+orY/9KfZNgPRKFtZ2nNX5dSFLW35ZvBIb3fy2g5uC3hjryn7+810CFxLC1hq13bM3sng/XhtfXDa+vm+30VCGwY2nJHEPK4P7AccdQxEWhzLx+FudhMS738qOTExcjkrTu3B2q65NpaVliNDEgzrC59IbX1wd89xceMKfg6Tbw5mnHx083fO3TG97cLISTdah4WOvQEJbH1tQNao20CqAACnNxoVRs4hnP6UKFlZVx0wr2VgyusAUXUKE+zjLvMJrlBnu2THsR5usscibpKV8n5ywvzoKMQIBMPK5LHSt4qOyqKVpmV9ZRUPXD8lw4E8CIwDVtNgMpbGgptzmYU51xFWaqgIr5ZFEDZeNiZgNGUsS8uABvkn4qUtqYZYagUE0QyhB+AyxGFzfVCJW0MFzzE5Op2Oe085KQ/hOq6SBuTrVt3f3FOlfHTIux4pQHIv6Um6QtX+ud+eVAhwTlWn8v5rAmuRNY1gC/L4SQJtGgXNeUyaEhZgahCdwFiBRzmQBbb3hogkuz6DI7Z8rOWRqaYwsHGiowxLNQJCARIeZmmCZ+KCdNMja/DP3nmVah/cPB9wM4gDdbJGaeF8/izBOb7N59TMxpB0KGRlbPAGUqwoxo5O0RYzH0tgCO2tfa43pNj+2u94ivdknuf5QQKM8T/J9kjzf2XvLROJsJKUOCJeoqFSAJbCqvvgsRqnaxdEywpm8gHzg2tzTj0A093fnuEMXKew1UIHZY2EO302m3Zt7ir68bLltzdaMjfRCBcr+fTpTHAbYSLPvtbXBuovUzaeikldDDo1oWyL0pzAW0mj7SQTLs6JKAJnYjwgXf8eoi+OjDDd/z0Wt8/DjwtY/fYFfFtXds0vBm3/H1x4HHATw6Ewjq19qeZDaIhXMcI4Myyy566nJnhWpFOp4jZfxTqu3T5z+jl+7ihSUMTuuFshrrsX4S/97rE06koIeenBY8Fzo5RxFQCwN4hsTqWTOUYxVYkXFalIumAyF8R4tkeOr2+RqZRSEewFkBkQY6pU4oxlidSYHqlxItPaX1p7mH5psIs24V/LhwHeZ3Y+SumHN6gkG2c6BJc3OfxrNMVkfBcI708uLEccobcWC8S4bT5TZZ7wnN6PFFpS5KheM8S7Z3ASzAkhWac84dud2vdwVY1RqJmA9bnB/WLLHgQzeTjzk3A7cxzdmaUg42oSHkAESsKfmkOCgRgHNu2Y7dTOcNpZmPJ4XvI3ps7S18l9l+t+YHbTajQcsF43400weC7Z/ubAuaes5aO7iPXBWkCxisY1ulM6pmk2221goUd60Wsvqzce5OyEBJP4fHc5hNO+nr4ijnTzQeCEniCAfz/TEfq+Wke6zVHeBTyKcjyR43S7W9ZbmctUs4dfOZOj9f+R8OVP7aX/tr+Nmf/dnl2g/90A/hl3/5lwEAb968wV/6S38J/+Af/AM8Pj7ix37sx/C3//bfxpe//OV3fpe4KqD1iYtI+JtctuZOsbmwF7SJFGw1eZecpun0RgCFgBdg8tlgxS/ceQPfe5Ssa0kzgu0TatI6Exy29NcKHNQ0UyVeN8vz8uH1lR9t79ks5QGP+8RvfHLDr3/zEZ/cgNtonu209E9KWypjFfZBQqBGXgPngxnixyWVzayC0DFLqTdfrMsQ3fFB8ZdX0CL1HlkfqJ4EBxmeffMLp1x8pT1avxxLqXiea17Y4b33kp6O/kQcZ9IFfX9yJyULY1SfI85BMPEqe1XD2ZH91GOHHakwAdvwNjUXbDGervHIg+5M6IwK1jQ1K+JRH2MCNSm5DgAYJiqmonVqiVJI137VYa9MlBuDykFbmQCFhu8TfTySfjRU7bErBtLstby3tKJIysp7wN09hZLfG83zOal+HnX+Fmbvwq01M8HwAEuBorWGh96w+Zk+u5om5ebJARs0fKhEPNFdNxf/eLUk+O3SFh5WaZAHawZgiD6ufIK8t7uPUu8SxxmE87MYXagKdGgR4FJeTOEtC0ipzvYFa5m5SNzUzcF+zksZ5/W4/EZpndMLYOU79cN9rk8ftvX7c+XkM3J4R5VnstxAM9lR67y+7Zh8sLbzCNvu3XfkXSt4y5u/BReV3xyNyu/5Pb8H/+yf/bN8yZav+Yt/8S/in/yTf4J//I//Mb70pS/hJ3/yJ/Gn//Sfxj//5//8nd9DJP7qYcOrS8fWxW2lZ3ZVDwAEKDwLQgymrnFkeL1/rS+JJkCKrr8dvy/P63EBkKW+DSSVu8mctbTf1a4iJkiYwEvYHuQCNgbIg8noPKnYroKH7RU+en3Br3/9Ed94nHjaB/YJPPqu5gCnClDQaANgYd6qlnMjdz4eseLtZ7KutIojPklb1fm5Jut8+JhJ9UfIexJipeCtq63ac48v4k4zZqUl4CqDHky7gqtzo89MpvwCjf1QuU9W5mbkmuHIBKZJ694WxZJqPmaEc60NGkAXqOwrtT1sQ64VCvxWrln+E41EaubEqClkVy6czCqEm0EW5ngAHSAFi99JAiqbjzGKUKprqQ4Fcr5Wxlp/zChXtt/MZjWEvIxPTk18aLAMwOGAHGNa5s//NLihV2m2gvMCDQFDx2auTfabK10hoSnmnAlsLfdm4IKaVMujIgG+ptoBlU+TmrVVMG6ucrITmcXT0a88EkI/D1upqggn6Rl0geh/9VdrrbmWz51G/QyiTZy2xUx+CnOtCR+vBjdrOoQWM6NNT+o2HFyjCOmq4eHcBwAspBJ/NbBPFqfZBKbPA4nQYJVSeWXSxlpmuTyl1HNkF0f2VWkZeVHYTqlyRgMQZROOfNTrP0Tusd2r8TR+ibZU/E9tEGk0ti5+w3huEN9SflOAyrZt+L7v+77T9a997Wv4O3/n7+Dv//2/jz/2x/4YAODv/t2/i9/1u34XfvEXfxF/+A//4Xd7TwN652mrdpjbdXMrd7EFJDPP2SavavSjLIRsjPR50LCErCFV1EdAcgIoRXDWdmC9+jlLCWn2v7yOKb7Tk2DCCzOPYbDOmi+CgYPeFB9eG67f/RpvbhOPTzs+edzxye4hiwA+ue24ObUx1bgyKiTa4uGy8DDpudqNbTfcYydmjHS12Vbb9UlolX+5ZhPDlF+13HUHC1Kwn9bOkWnp+r0kKV7HU4FVFZz0lXN2fBXBnC4PiZRmky59PKuAzQfyPTUUtvoOWAh3BHHmIBxKjF3h5AYqbF4tMkx8V57h1LPBQ0trSHFpGiTyXTBsp0mwUghMSNekXkwaxnGgL8XRH9vWNBl0znes1jpn/mkvEmrRvpIoog6rU3mZfYuIlHQeJyiow5rCTmOquk+iOr8SYzyWE8eQKPY5wxTRxMzbCaxmMDJpYtGLHEO/x5IL2j27H7PAkGx1UNhgfDQAk/exg2bz7AsVJPxOM8xwKRjpD8THEIVX8rembmLMcWlN3OxjNykdp9kaRWhn2B47J4qRcsddu0Q7lrPgBHYvN29S19ZKTWxfCGTSRi7zQkmfXZblfcIYcgcpxbCl8qcAluB73gHy+9QKnhjN4WsBKOXaAmH4EqxjcaxQivA8grJNsr0inuzyHctvClD5N//m3+D7v//78erVK/zIj/wIfu7nfg4/+IM/iF/6pV/C7XbDj/7oj8a9v/N3/k784A/+IH7hF37hWaDy+PiIx8fH+P71r3/dGu8zOIctxs0D0BfVdoAVgAmVlsl3AiANGK0sJJSVOffOhevsVJN6FpuzHITPuxYS5x0Um6w937sK5hJCGu732Wdrt6lWAVu8LaSj4tIFm3R8eGn40usNCtOGDFX8h9/4BP/t4x1NGq4N2AE8zSBnNj1arbC5EbUMl6ZViRmKHdF01HBU4VsdNEjQDOLvKtPDQoa/MKL8EZzM4w55ARfKejin6+Kq/ZP4nsKWdChBWysTSvZdQjgjuzFpMY2RkYpd4GpwfwaeofYQehKMI/q4NCaFOhAVrzkaij/R0m47N4WfAYsaGiP9pmJsSE7sTw5svtbvb17f5g9YjhYKMwdB0840KlOIUL94fcmkUaZMFoBQ+yV3pM1RKNt4JvCDMvzWo1IoS3m/SvXDD+YfmVdLW+XwXjrDdtg5PCLu8cW17K0PzaSSzziAi3OZAPFcOTKt4xnhA5BjTIhpUqC+UbAWNwAyEeNf+d7uAAGS/hyUsaRbBSBN0Tw7MetovoFi33vhbwy7n4WfkWZoCORmhzle+JyS4Ar/yRIrMlm5MoxByjzl2KQmYS3sh6wPHL9wYparseYlN5l+Ie716pMueY1y6VAnShWm2fPI0VNUJVkfQarEc7Ykk5uluDj1Ptb8scdVrp7eK/fAz7uV/+FA5Stf+Qr+3t/7e/ihH/oh/Of//J/xsz/7s/ijf/SP4l/9q3+FX/3VX8X1esV3fdd3Lc98+ctfxq/+6q8+W+fP/dzPnfxeAMvE+WoTPFzML+XCfCjLXSQCXyzFSzwSeGkhoGCkFCxO2qE14bX1s32qHC7eHiKJv4XJQdZ7j4VCmW3I81XytVEXAYdq+I9MEsSkXTgXXwKW1MhYdtzUxuQCMrtHg+2EP3zY8I2PH/H6YcMXrh2fjoFvPA7cdmvNpTdsW4fOaVEaAkvs5UPbRQrz0yDCCbFES0w0hTzXJbPuIuenDoRNoP1RlNWgdfpKEd/VsP4KtJSbQT8yIabu+KpY8HGN8wAKlnU+DYtUtWkKrwCW0Y4kQVOd268MDQbgob0I7RUFC+c2Qnqj1/kSpeQp75Lm/wTZu5ZAcxwjbNxVFNV0FwDUd+sor+DSEnhnQ2rcGWC/HCdCUwvjErsjwdkSgkk8do8ZenSQgrk8CMlQBsRHqQjeJsBFxM/L8XBcpGARV12oSvRfY6w12tRinuyZxqN+54w2CCROlKY5gx1Tdf8Pn19qJpv9AwyBtjQfUWsQETjBM7KPIrKAAPLFEMgOFiHmHzQ5LqSF0kbOEXkbh5MaQCAdfbtklCIdQNVNibtnxeXwkTSo0cokdClUCUGUtK/JK0NR4e2t5lUAOFg7os11oxBnVqGAFclqTnW0FOpB4pXWnUgXbU826VSMPxyi21hNy5Bw07QlIMvw6rWuZWNTzERSxvy0hmStqWpfpiC2kidn2Trc3wJIAX4TgMqf+BN/Ij7/3t/7e/GVr3wFv+23/Tb8o3/0j/D69etvqc6f/umfxle/+tX4/vWvfx0/8AM/gEsXXDtw7QZSesvA2RQkSA4ZyD4pJtk0EGG0FaAkqWZ9AUhqLazjDFaOpTqMva2Y2A8uXrLOrmK6/s93J8jxftX4/iAkErETKsfHhY84RZNBMrX/vA186VXHd3/0gIdup95+YQO+9kYxx8Dra8dHrzfIHF674JMd+PqbHR/fJvaxmi+CYcCYZOsS5xSJ8XEf7OxDDnEBCneHnc+c50OAcAStixoidphgbZwmk842FEZz+L62LKCmMQFPHLWq2iWYTTu9h4DI75Rk/rbjzpDPyiRUJXappFOJf12cum8FyZpCKSg/gJcLSh/k7Kac6I8C7DgX1Dgo1h8j9b2kA7aNZY7ekmjRCYPTP/O20FQYbVXAZuQzAwDkMpcDuIRYEjxpgq2ZOWVrmZY9m38AOqFGcQ0MG6QrkGThIaHqSf9E3P9mWu4jvieyjaiBMmoVHArFuT5Ve8WkasxOXbWCvG9rubvmmUz2e4vFSWA1DfGYD5L3ie8B3J+EY3FY140mPngkj7eBvJo+bDffLNHZtUnz8dUARtb3yheTPpJTHv5XticnnaaWVgaEwI5rsaaECOf/GCP6h0mEZmdrSjsKEMmBKfw7tA0VxSQ/qTWSR9FXi4BDHESL0gE538W6o3WVKXEpLfdmM2NjrKXpmvdVWua645vWfq888jPE3t3ymx6e/F3f9V34Hb/jd+Df/tt/iz/+x/84np6e8Bu/8RuLVuXXfu3X7vq0sDw8PODh4eF0/dKbmRTCKTZVcgvZaJ1qfirMOu8s9/LKHRDyzHc+c6hxqXut787jtXWC08Qf37Ewc7a9CJMkXBSCkzgg6tgf7pynwilrxmI3pjQsmV7b8LpPXLeOJh1fuDR86ZXi8TaA1vD62nDtDZszkNsEPrg0/JdvPuH/fKN49AOMai4OY6yFJVCzgzJzhUnFzioYEA7Q7s6YJgSId0AQO8EEDodcLgEg1jFbFqvfx8VceU1oE6TcXFgUf6sCh4CEcxNsRVzNW2qQWvmRrsh0Y4wQ4xbv0nxesLYpxgA0T600WZl4ApQyE+XHqglIjYsEQC7yNBofzuABcnLskifrAigUiGysc+bOuAqlk+CQpMeHDjxs3fKO6IQ2cUCjKTBR6AZJOzXZWWVI1QGfmirPRe39Ez9hG9g1bKlF+3mgXqFmYl1HHKf0uQk3+gCz9GFyiBRzEjOnScs0OTDbcPqaaY6BrJyPNVX6qmY2AxYpwOg8OxyMhm8MfM0RGCEBVR0RWeQ8/anKeJU11cu8L6aMAkwkb0HowIVhwD7WS6rkpI0VcJwd9sXH43TxgGJk/RHHryLIrL2FvsR/jNUspxqQOrw7bQuVCjzPUhm/wrNqO4+J5SovQXkeYAK/dyu/6UDlm9/8Jv7dv/t3+LN/9s/ih3/4h3G5XPDzP//z+PEf/3EAwL/+1/8a//7f/3v8yI/8yDvXfbk0bB1ozUlYYbsBYJlMXsjkaQBiobqatzACst9KYW/1NSm/1U8VRMS/ByC01KrJfpMX14WUfVmuUTBwzaid/yIKYEqkxFfneCriGVFX5h0l7JvuE1JaKwK8ugBzdjzuA6qeObc3fPgAfPDQvV0Si10guIjii68aIFeIPOHrj4o3u8YBYaYZmAFMeI1fOyrRW0cpe8MnxYVtMDgyWc5tHU8tc10FX5Ff+XuZv5yqFH7RtgSY0DQfLc8kBitX8/00jx3fwzuYAVbq9eCq1qIVDOX12v60vCStVcbGd9ezchJQlnGPVxAM5LXQ1NVWaM5L0pXETXl9xovMBFjmlGp9zfbwILpLN3A7XQM2PLy+5lARfzDEuKrn7Ghooti64NXGPB4AuLNXLe2UMJXAx6K1mpenxboLYR59EM9T5KYceM4hb+Pw6xTugT9LfwliGTVzPPaA4y0gMGlmMuJLfFfT3FQkMwML6jKJnEmabagHTQ5ubgoNkFjY5841KwaIOvIlFLIEfjhoS+p8K7JvdD6n+z23XQZESBM21tV8y4GJuT+svyoTVq5o7e9VULONIgtdn9+V3jF1aeY6OpcD6491VH3NqIGt65Rtp6kt61nl1xErJC/huLBvBXQtXIcd0GjLqd/lWuYzU+i3gFT+hwOVv/yX/zL+5J/8k/htv+234Vd+5VfwMz/zM+i94yd+4ifwpS99CX/hL/wFfPWrX8X3fM/34Itf/CJ+6qd+Cj/yIz/yzhE/gKkut97SnlgEWxDjactrH4PR3aOSYzmBFF3r8XsKS1/uOwq44/XK0G03I9G4da/KTvgnyYXOX0Jg+naVaakV8GyOWt6vdhZGcbzijqAu5KWdQEQIGVOdZhsHLDxc7qlBzTfjYRN8CQ0dHV+4THyyA197M/HxntkkR+lLHYO6i6q7o+h33cVGD3xEZ2bcXUZzAQXp/0LhUgvv11LzCbiwgvh9nXyOad5hpQPpEyqIA+XgwiAASgERnA1SSEbw1JoPznwH0AD4mJcGCkpIM4D0wXHhpzmna99W4H+vBAMV73DUXICK04GSAYsBgjzaTs9pwV1AWrr1ZKfUHjTRSLLKgyuzwzbOpplQz3LN81ZSSAdNuwmHRBDjI9TiOC1DIhtrCFnOgeoB5OTuf7pdKgRN8WGi8A3w7qHHvdF/oYQ9EwD4oJqfijU6Dqxs9r7mvkaZPJL0Zs629pQufAJwkFUyQic/lUVjMLNaNCDS2i/8WL3vShDCMa+8iYckriCRdN7E/HVEEAcuqtdHELcAieMH0ksOX5aiLeO6LJl+Clwq3F8ySizfmpyVGtqqva3nfBkvyv43p1cBzC+F9zgPmCjJGJ1GY/vgRFNFmcQ/OcwRdYUEhwUCGZ3r8oDLIOVX0MRJ8BLh9GI9nf3zCN21/A8HKv/xP/5H/MRP/AT+23/7b/je7/1e/JE/8kfwi7/4i/je7/1eAMBf/+t/Ha01/PiP//iS8O1bKSLOmOTgQc/FwptYuCU5lNXPIJlxXZbLfFZmjRTuKfwKaCmVrOFlulRYBWj+Vk08eUcIPCfKZcuVb8v1R8bWm+U1KSpogUB3S0m99Ck/BpMP0SiAyLTzWdxGGj4MXjHHPuCCM6vegC9cOx468NEAPrwAH++Kpyl4fBpA63gaik+e7MALy8Oi2N3SbYJqXfyL+cgnKxwCVaHFwbpsPEJg2GfxRc/+F0KRGIC8VOamjDh7m4MnR5Lj7/lD+AY4zTI0d0mk689oxFJX0e3jEn309PUi8WQ6WWf/qXmIBFiluyHsEbIc5x4fWucM68jkbf7X84FibByIxpEAzK6rNYy5MEddp4PCm0704oIKQsCHDCH2EPllX8vn4U6zffVxCR8PCjwKcsAdQK0dQ017c5vM8VIOjPSm71hTuIeJBl63rL4//Mv+GNOXMgDG+HlGj63BBNy2YUEAPWFf4JsXV1q1LjHJFO6kA443NQYx34X3LMDe7xH/r7Xsc/OsxJHev/BCqz8MVEmLfBl58kLCh/uA0CoH7S4OX3mn+nwH3QlbvNYX9XMj7O3ncRLB8zk/xaR+THZXudaSPiOHzXlQ3l5D5kWLlprjD8oMiTkOIA2CmeyNHj5FjwuyNDlVNitLHTZoNWrI/jbnKT4OkmuTf1nX7Ti4n6OI/nfFz357yte//nV86Utfwv/v//uP8NEXPvTdwbqTT2a4skwtv1WCPpZM2nbvenVWrcICheLqR/9e5d29Z+Mdx89n2yd7yV3j+lyCGocWd+vnop9DMXkWDPtddma0cPM3Ojw2yWyYIi2ieaSsIkag1CR4tnvKU3Wpnh8KoDU87cA3H3c87oqnfUJaxzceJ3a/b9l1IBdvXlvBkTF4By9YF1iMhTOQGJMyXvVgwcrzbJieWT4Bip9ZlQvQkagwGA1bVYQGVcitqtFwpFOnKU2Tn6AKA13qg3gOjBXDBDunhkw4JoXG6v2tOSDgdQoAVJfJdTQYXRbgxQ8SaiLo0HDgZnVH1XquXxOIlobdNAScQ3U/laHrDriu/SbAVZjNGp5bxE+hbign8Ipn/9VIyGZ0qwFS9lmATawz0ndGtN3jT4KV1vgzHVoB05wE8bmgXbSeSvO2JHiLwSojpxq8o3eJNT39vBwuYdsdG1KhT1hoP31+8mwdDX4B5E7a6qF5jYnkkoLYqun0GfmfCn+jaYypDTi+BDa2Y1fU0VgztOpSJ+DRhwWoBHV4Pw6iGrxS4UfVikUgwlQcN795lxGYll1IbI40gdb6rNF1dwHCMaltCbNk8MZiMiwtOEUNFVATbTvJGefjy5X8VnlEze9E8J/RdVbHp59+gv/X//Hn8LWvfQ1f/OIXT++6V97rs34CtR3GGqiklYtBpZpSFhB5t3AnYRUu0738PU7gUazx39gNaKGoaB1OAicFOwn5BGkWZniuz8nDBVsKZ1meDSRMUOHqZy4ABc/tMT+gAQknK/OFERcOAuktFq14cirbvdX+21++s0MBz5uhAnzQFR9dOh53xad7w9M0tfDXnxQ3dzxsmIuWZA2J8zl3RGMRCYqmyFwxWmagClSnpR51W0bNaieP6CjV8wIOQFaEv6JQwmGexB3byKFCyuf7Q8aoetbkyuCrmFqqPWhBvL2F1mrbyOdrCwXiO9/MK8GHTqtBGSnlY06Bma+2OgqdiljSRhHELhV6Nu1wx87M0VpoGUAkcstIKJ+TCafd51aq9z2WYyyQELpbYeSRxK4kTJvKvCJ+svWkfwklmOS7VDOCZ52uuyXxfpoQqInItbvSVLIryy9FoeEoJDQD7LdAse8aoFH9HczDQZCRJkYkSNAUTuyHHv6fqos2R8T4S62nbtarvE2+rgHKLGCO/nh2Z0M6uq/WqYxm6zAfJmrggQRE9V4LwbaXHTczwVccGEsZ8MzYrNDI2598tlC90xeW605WPubHFBsVIuVYi4jnprIBpoaLfCma9zZdRKV7NhuSPI6X/V31O9damHORMlUAN0kmb2afO969vNdAhbRwf6HrMgm2MM8TdhQdRzZy/4lsQEZjHNiFlrtDyFV7bhEgx6fLwqiaCPvt+BxCywOgLK58lgzP8nBo+U3DJl5XHTfs6U3RIDrRpCFORg7btABTMBzkiFpCrtYaZKZDJFBt9NVwkUxrekp9caF2aQLdFHIb+K4HwdY7vnZTPDEWEuLHvesKPJCzXtchfQd4yX5LoV/zHsQxJ6nbjNaGOvakyUKmf1erSco1QDFP3i+1taWe+KlFXhz4uC3BBt5ukohCQ0WcIbpOo1UilNLyVQemmvSmSBNLamniJhfafiwDPC+G50DhrpzOoZUm7b2mvYAnKOMxFr01qNhpuTpr+xFj0bhLFyyHVCKELoGKJBOGxhwpjJT2CujELoYJTjx8d6ibWCSiU1T9jJuZGgGjA+5Mdcl+uoDB2BU7I4+m5+hq+Z0zd3fPtH7EQiDsBwDMsiYk6xOOe6FFW751la7rJCtAzrmPL6OCgj2KbRJ2zj0kQprZ8UyE5vPbpoEQ1TAJLufihOaFieOyTm64CHjswFo3VQe4SDoOYC0eFdRzbXNOW2suZOm7VzS0ZbBba872DMDGZtL/Df8WqfwcQR/s0ykfSe17efMC2oOX3y91fk/VU3aUd+fsVy0b1x2KA7n7gc11TghkQmMt36FRP7/pxXdg4p+Po1+F2D1cWSfi7g84MwaNa295hrVq/l2BSt4r9aTYvHpu66EhR41LtFXDVx/hmwCFDKs3BexMZ7gioJgjgAyNCH966HADoK0mY1MXVgJ1XX2kwy/CMRi0M5Tj8Nmui21yxys1B7FXDcDFHBS/uQNDtmSwy5zUsWPfnFOirET+0fOireBmGf8jGirjxTtExX1ocqGH05sCwhysZQcmLlSWvDqS/emSbVfv6FlvJyFoQpOhnEuCuRTWdcz5Hpok6lqpO/Bjf9syFvZ+mqY6DPgE7TkN1c0m6+4NnqzR2wH1511D0dbdvLWRbZBoe7jvEIBonrRL8CPsdBm9oYAOxYBpBqu5RIcJ8O72lzntUEWddKz03b0LnQyJlVjzCZ7Yd0ECQHFMYRNhTS10dkitXDVb4s/FreQxx3XFv0oB77xEcw4XPljXk2Z9FIwnT9gYUokvAkWb8cSSqVdB52HO6yLJo70EbuEbVNZ1+BXR/0xNkDIdAs8GoEaHGYTFB0KAoGs6PLP20LoIsI+Z5ivvI8eurqNz6opVbmSfD2zP64w5qjiDAK9siNa9huRaKo8kr0gzEaeLJnxbC2dQYyexZwMOLAmAm6FahsYTtkWTqi8N5S/bAUT26Xcp7zVQUZgqVTjwlesuar1ngAVSnV+fW7Qd6xpCBQgnQXvnDc80fG0D33EgdiGRcoGUzpDglsWgGsRYe2i+JzPaeAZzYmYdgpYgMhK5EXUlxvpOBZl0cZnah/fB/FdSBS7IFnJ8nfgBdBeuNzJ5zaiYh6b47leCV65VedyBJyWD9ldojVQS73sK+pW98AoriOHFQJlP/lPW9TqEBQiRjzNKfgGAhdmzLWInIi/BNYJnaWkQjJRepKaKgqKyq/JJ7oAU/qy1b/4Gqd9L+8p9i6gMTYB1IpLX+RjQHwVAZMbcRHARIJ2fJ141yzDNrLRdEOBvivsrTIkosdigSc4LBfZQwcR0YIEyVZnsi6CGUVupqjYQ09xPhQ1fwL1qaG3or0EIAticlCVs/VYCE4b/UpPkbVfghFrr8JNGVmct0BRyXw6khqfWlxFW6qaybEMVjNX0cwQUQEYJxU7fhbu9TmMAGMG3KBIWzaQUIOGiTt3kVeiago9+EDx+AvytITTG0phrpqxT2LrhSd4CQFombxPnm/Vd5HMLZoqJWceUw0TNCemC30mzLdIrk8OvwNOGjRsIrkmJsYiEjpryI7S5gvifnczsxHXNrqXOeTKvdIw1uVRNc/Zv4zMHIVHpMnye3rG810DlM8szqOGkvKiYY5X8z1RxBimfr1DVS4JaK6m+KBTwUiY5xVfZYQKemIlaCI1kPlZf7vFqaHJtk6of7uWRP2E+8GyZ4Kv5xyUcvcPr2DFyQXOVISE1qiSx9jKMGpa/ggm7zEygsQUfaOHA93oTzzUhGCp43Acedxi4EXjmSvttH+aEC+Xapgbu/mIh4FlY+oE51LErrL1cluWW9U333lvvTy7H1OdSf/PxzhzMBHJ2o3XRmRcoANLHoDaViqZgvC5ZmHdCIcGM6F9StStBCxU2SR2TFEL8ffpYNlFcBJHuXT005dKA62Z+TzcKODWt0q48qTcV70gSiTkOUVTaXqdEFRa1VYh7itKX18ZEJHwpMMVPtk1AMQ3dOKiVACsTa/+BFA6V/qeP5ZmVHBYckl8sNMv15xUsGo1DCSAf7dGYu7pOq2Yj+QvnLyc+BKmsddYcSHYScgK86DrBa4yS8JU+HtZSCsKIQCjD0mBm4c1NOUx4l6I++031WBhLilCva8WaJkEr3AhSBhDEhK/UcYzL+EfeKm9wYhjzkwPHtbS7+fuz6mJq4f+F16ajcNI73dzI8asWiFNTTe4nepHzVWnV0Fc1JfWh9VT3qiRYkvzh9PDnLv/LApX7YxEkHN9Xn4/1sy73vq0qTkZGjrA2KmjIlBhyuZprUiwer8cCru2LuaeaU5ffYyEqQQMi2iBVzr4IlSryiak02wBwJ1m+r6oJ11FcyDg6HLskKdCqxAMGS5GGJs1k8DTzUtNciNxwdL9/KDCbhtlnApiXhl3Foi4UeBrAm33izRC0rWHz/tN2zj6jtJwq75xSyZTaueqyxzHcZ8F0EOXl0zOe81LvRJpi/Lf6TKrDj8DI31A4dYRnn6T0WmfG5ZgmqQrGVd18oM9KAcuCW1ffMR8GmfDW7Zwiar24ux9qoIGROgMZ/pvh5Dl+Wjo0/TqjckTMP6EKp9NYy3p1jOyzARFDBdI8tT48bL65WakIdgLw9DfBOqEEdhSKBeTFib/NNEGpuS0tPgxlFcqLMhh3ninznrfxYmpNef8xW/CRehMYkHcZTZipRNmpcrt9zvwf8I1FMS8J4iyguuu3QyrNl+naBdfewteB9dgX9yeas6yrAkb83gH2MQdD1TSWHg4QGzGIbX4YUVa1hIoEFwqN0Ouq8azJ/pai6QfVvJ3pmFzNTdnudZkdpZzEkFfeLBwkwLTbd2VbgpnKvRx3xN+claSkduCLUr8crh/X3+ct7zVQWeyWZdIC/ReGrYtgwp2JquW562S6fldl4s5QUoVLSjZyTsIOllZMN0d3OhemzjEzO+WZmPLtCYDoexLhhJNAZAVJtqBddT1nqizLuJ4IS2Thm+uv6xzUUOUmBD5ld8vxaRSeCnWwQbtw5CUQQETtyHC3208ATW2329UON5xQPAhwEWATxZOqMf1OnxcTeKMkgTMBLBHKWh2/cgyqX0EuVzmNUAr5s9am0KAUZlY4g5kK0reGzDCY6aFKDRo7jr/nEVlaoaAVTiQPh+xQ7GNGluC59C06DAEWAZysSouDYuFI3rQwO/K30h5VCUCiO6AduA3FpZkweTPt1N8x1AVL0jWF/brBNRrb3fEgoxMOAu3wBNs6VSNZ2AoI7L1bhOH7qdENltXVbz+aNUhf8UX53Wh+k/DbNMHFNkAj2V1K2KWLS+uDqyz4xNeNj9tRRLDKRWtHir63rEUWpWI0bdEgGs1m7hYt92sAkVxfkgccUpgiTQvwubs0wUMXXDdExI14Q60P/l73k5KG9Ek6DNssgCA0JwuwKE8wGR7BNc6+JqSpCVmvPy9Glqms46Ni5tAU/gl5qrYugQNQmx9Ttbxt5QsKgUo524l/JWkhNScScwaCf79eE+PVpR0aIKdxcS/9e33+vOW9BipWiOaL+DguVtRJ9ZmoK2N55OyMVst0ALLgk+U595BQ/i0gwt/PUN31mdIdACSj4dqJ1pp5k1eYpQQ7BCczGN2cs5h0tORIYdSO/R6LS7mzRbTpOYqaQZQH4HSQAgQqIuZbYN7w9MugIKe5yheKmPPa9MWhKtHv4HllGySSZ5WIwMZ2GqB5tTXIAG4eMRLz1LGkvY6ojZZRIjQfweeszk29ZjvI6DFCcGjeHs8LDuOVoAgFjERVZRrUQUy9Jd9xJtgjA6yto0XNHA3VtFgiFirsoEGQQqaajXppf2WgMz57mzUFEs1Vqp4TREyQPc1qkrGO7h4oNsaEeLZVaAFIFewehDXXorXdmKMA60mxz4wT22RaHbVIk4oIXNA/zao+Fx8/p/WZDSCLWQaK+VAUnlzODjwU5wPTx5w+WVVLwhDUGK3j2tQDuFh/ijE7Wi+rkFEAxdUDKmdeeA+/BNMtUUNsbhVm7aRZy85E0ka/maaQVkDKhY2blbhScMIdoSMKTpxepNCFUktXtKjCtaTJ3EquE4FHt/hPTQEtmiJqacNUK16XJHBlHh72njQkPlA1Yd5tWtj+tpmZi0815Jqv5F83VAu9rYO8zAujK+HjXH+rAC+CFcSAySb5bqMb8bktZOAPMxmoLA3Ed0Zm2v+ZRctfWT4VISskYgMzUv8CwSSqfbaghYKQV5Egh7CVI0jJqipIcaFFdFlUnglu6j0aVCgyM6ldWe8VqDCvA4HJXDQrJsCZRp+hlNkub0V0Kf1HSgft/hOdUaXOc368Bu4K8oJrSpp77UsQcoIa1u9CZgJNZvzeyn1kQJy71oygVWHOk54A/DYtjJljFpoar+MCQGIl5Om00+uZkGAQQ3NHn2wsx07LJT3cUYYxnTPLeJUrUWf+e+/GGlB9p4a1Gp/r9JMiIIkTiyVFMxmRVZM7qbqzovN1rpFk+IdXUywAyN0i5U0wbQoM9cPpgtio4SqC2gk360cAhHixC8Y50zG4HYaKy33ZVLu8Yg4hasd49o8C6/oBNTwZvg3k/FfRbDk/DFxHhArH2yuhqUzF6F+bhcwaYEmn9hoQFNqHAhVCEDfOffbxPsVo0G9QrhzulXJn6Vgc8VBpXoAKXVoHeBZbDQSo2sVNgGsDrs2ACbUnE5q5XbyBR+2yKM9mUqh4p8N3K2+2qJc0kQxvI0lOoCcneErgSAbHNaDZ1xh31QyjVgJQKWah/O00Fw5mdlXobhFIXdx3DyvvrYrU03onDZcb0yRkRGFmK119qNhfWasj6AyH2gJQbE0jeERoVPx/pklg2Y+L8HOU9xqosMTg3PktmE2hujQFFUZD5GhPJfMCF/kKVyS/5LMEF/biBCOl7tBoIMFFrHenwkXZw4VRCGrxcSGznNORe2pFeBbHnNMdvIp2JcYGSz1Qjkq7h0gy/XUZe34qssEXNRd5tnXAQBc3Lmbvd02LZ7hl5lXLnWHRGOY415z4XeVft9XhAGqe9F0QqeEngCfXoQcjH9biODCtME0TSmqZSbvPtiaoncjEXlPdbOSCnynTNUbkfkkNX+6m1ruzP7jzu9H82fDE0vz9IkDrqT1aAZbRxCggLgSAYAGqR0c4m9vUiNQdoT8cAjwdDcnc1sWqkKATEQPaT1PS6VNDtxUNWMdGD2Pjwv6oDuDvkuss6qXQkWxvZKV1ZmD1tloRBH6uzPRIMa+kJsxiV7vznNhrTDNRKABxwRy+1D6Ot6A5e1/376MIhfoOm3NJflOmVpYxP1ITlhtrfXfHsL600g/MdBm7ab+N2gCBCR07o42zqK4BcyfrluGv1ndfUzWazQU/6658ZjW6+gz7q8h3eMjpDh/TgjYqywp645ytIwagAACSZyE9bsS47kIrEtFfhYoJrPwFEwi62qeieWRcEzcZdol1Ho7MQduadbL+7E1xMnCwIkgZgJw7PlhBSJf1VPuV9pCJ4FoeRUHLo8DO6HvX8p4Dlco5E/mdODcnQFDjs+I5+3vf653EVP06YjJDIzEXoGLX+N7y3KkOjWcCJPGv2zLUHSdqGwAsmV4Xs5LmuwIYFRBD05B9txdJWTCROM48QEDUTebABWT3pL+K/ZnGEZwBndyuYvEyx0qOo4hC/FChiHhyziAwvxKZY2H++bmYEARQ7BaJgQ6IJ44DsMf0KlsbAITtsy5m+yxsVkNtzhDb3rPvdAZVGHAxUGgstM57TUZV6a+DtJIl6K9wx/PyFs/TW3/nv+qgIHfbAYAZwh0LJl8UTTsgoAC/ERa5MrM83Voya3Hpc22zqmkIKFx2IHbLtf/WZvV5kCUJK8OVbb2sizmiHhhu6kADkiaopUXsR5IkKt+vGY6huvIY9Wig5sCD75B1CCmDqunFfFFKZd6OADliO2r1MFk6uU8BWqKscD4HioAqa+cO4WAhNq6AGIel1ev9ueM71GMvNPOAJwPjWPgdXdJR1rLCmom2iaXxh/cjd+3WgYYMJZ91nWgVnN4Grc2q/5Yx8f5ZaiYj1gkLRQ+e06qgLvy6XKPmK0RKALMc8OF9Ie9lbqEO8snkYer8mHKg8k8FcPP+iQKPAGSYmbAL0JtGEjaJ8S0h+aUeIAW/wG46ZDbIDWEwA+SRCLzhUNZEkwzB5tzlI+3Os59V3mugQqHL6Q5NCSe5jIf4A6GArsAkpMHx76E4t05QwO9aviewWTUtWD8Dlt+hbHUrEw3HTiXhrnWC9fkzM9pQmJVmuyg8azutijRlIBaL/yZFxHARF3X1MrZi7lWxSEOQ0VxVVdLlQxlyY+7OnGTGYqkTWcMdM68C/1ZRbSN8gWW3fNUahgOvAclzg8oKmof5WZNMufBn1JJkzoiWBOjdkuAKNnfFDyjewzF24Bjjmlqb1S9lHb/87NcDYGZh9EmRaYtatzrpZg+zYXdWABFC0BoZ00SCuFD5Oj0NRREw1vqB9WThSvuhKfIxpfmyoaXjZaA3164t6K80Nwj6TB3s8VkrUccr+ciqVc37qulqRvuyjbkmWq4jJPiTiK+u/VdEULlk/hlzIE9hizLe/MKINjmtVS3PSP5VtpIm4bmwQOVLgPQ3KDXGThrmd3PtzJ+jEUXG2emtuXnG3mhJ/hRjDPTe0ZqsKdaXNaie/HAtlKWrWdwHWssNmrTK5yJMGJbDKehO2Ua7oLmLWTaMXPYMW9a4JouZhzmFHAVZvqg6hpK0tQJ7Nl0iUqkCMIWZrsYkCJxL6vqiQ85NqABMCRqApHRI6xuUv2ffFPDNpYScTY2Jd7qltjf8B5/r3+co7zdQmQODmQPd0YqDnwKd5FgDxlamk/dWTQf46XAvEjRoMd9U4BLgpYAWCi5dw4Sh5SwSghV3dAU8/JHt0kTb8d0/sw7Nrngds+yka180xiF214VVL3WlOATVAVJvr0ACmoSvKDvL4mWuKeih6inmi9BsmXCNCH8KQdTKeoOpQMJpUqBoccywYCPDh53jMaTh1i0vx6jMpCUwqP/neMuyI+YddQfD2rgbEV/FFJK91MnhvGkFSYfdzYrTCl0ePt8RqNWMUJsdWYeB4DycT47U/XIGm/XgQBGGphoj6812ypdmYzfoLwVTZUshohTucIFi9NFE0LpF/RjgXt9vnz2/y0IfRi9NGjoU3aNRGhTXbn4QDcawn8bE4wQGGpiRrSkO84rgtgGokCAhgBkd2q2WaEe0usxlPIsEGuHLyXmgAND0ryFZVDRRZTRzWiho/sz7Kw+kkEoHacEGagM1hNb0dUxaPmqkuJPfWsNG3xLxtTXnAgzEk9WYNlY9yiqB09TS4dNaK9GAqGCt5Pfxtpaz1p24XKCK5x1Sbu5iNBKYqPGSRcALytrkhg/hN9X9N55izdQCpelG18E709eIWhCrKk2Lcpix0ASXjQ/nsb6umtwqT6pnMmX7JDSrrZFKbK0R4vDfNCfL8j6+IQB47QB/V0HKtOc5zHPlvQYqqS0AMNNWuPL2tPVrucY/Wq9UFV8weQ0G+Bw4SfPKwfRCoo3vSAChCWJWoFJADxAgg86wJFdGH61+MTYOvGuWPqliVa/z/TEyleyQ72Ah75JQxK6PkRHU+sVfDO4OvSJxZugLRQJGCoaHhdD/ROBLV8k0iyCVFMaCiHIGwDwJVDsSqLpnIoDmSnc2NhbjMgzOSoTMmgyiAj7TWgytYgOQmWCgMtRFUPk/XekoR7Zi0VgzFn4hVDlEK/CdJIEDs7jPTHLXvZRgfMGxD6Kttt0ZLefRaXoqzRYNcxjQ3pqZMDae0ss+qp2dw+R9FIpTOe4SQq1vyiQvAQRmaV1utG0Wmguza5v44rXhw0vD6w24drPv83BKhWBXwce74v/6ZMfjVDzuir0IKXUksQHBzCsoai3fLd30AXNSaCXdLBOF4l9EAVJ27rEzDVV70kFsPAKkpOmTZjfyGp4kvcxd1cbk6x1ISACY1py+Z87XQncEBQQpgsgzEuuot+RRPg4DDuHUNiACBw/ONCb9zcqCYjurQAQ0AwwO3D34nfrT4gI4xqCYH7Nb8bIFIFCgO1gJVaK/p5qjWjPNhyp5U+HjkhFy5Hg2HgSiyScE6aC6FeABrBpAWRmW59+x2g1saNAPAZLx1EJXlW/Dk9IFTSXtVvoAkuYCW5brwe3Lbiki2fDu5b0GKmO6gFAbkOmTaHZOWdRp98sBkNiH/DWEvOb3E0Ax4DL1CFSQAAap5l7ABe9DcYKtQKVcA2AJ2eJ5CbARoINSK2zqBfgACBLRqsYT85BncUK2383zoGzWDahIW9R+KG0sbzmP9fILPUESpACCod3yR5CRq4RJYcKYwIi3JEMX+GJHgpJGgMKVFMJnYkBwQ8NjMCkjpB7gSBdP9kwR7szbnWCDKSrH299RF3EBAPKc3lPOX5h9toE7Oc714SFZR5e0QaC57sp4JZW54QRcFgoFCfvR1qnzPwwBdsadPAlktkM9gdqgv4yN69ZtPDYx4BBVO/3urEds/secNveTIag5Djwojqi1i+CDzU7hftWBhz7NGVssBNvm1RN+i2DDwENTfOnSsGvDPoHHATzeBh6HmS8eh2KfeTov+QyQa4mzIPDQTKVgdgbdZMkuWrfEfAYuYChfVzdiAQ9WjQ0M50sKyBbAEujRwTunzXV2BS6RGgp9SPLOJsDDxde9ErBQQBuNMckeYIClNT+p3AFLHGGRJIIk5zz9txXhx8+2kjmqXM8Gomg2KiSZPDxAYgxebhSRRbyvnblZZKUtYF0/fCbkxlxTPCjsxG2+S8g/yyZn6sSjn7u25GSZeS5RYjHXBHoWXtsoph9IHUd1Oshc5H6HBtzI5wqfX4ssn0LrWcBh8lGOx6mSuB60JTkf34Iv7fsNVB53xeVm08yoES6OFqDF7pVloP1TWWDl4wGMoNxv77J1QE9uiohGWJB1wJeWlvpZHxmN5tkXq1NsBVEV/JQFV9tG4BILUcAzPGoYo/8EEl8yqmRfAtoRBczh0lsy9ripAKR7PkHrpv04GR1Ubxfdg12bFPYCHj92I4uVAhIUOKohq0huUA9RngscmirY0XDzX2qbl4gmN7txsXYkA7VEaUCeY0I2SodlRP+WIgVU+lPHlids08O4kkFIeafGXJWuF5HpQx/gZ31vToksTNzaKPXW6CPJBzDhS3BX19tRYZOM3B2bObYAeM5Pg0VbtQZcnCFSGNkhmGYm25msT2w+LpKCE/AQV1E8bA0P3SjN+jMj62xr02mngbtHS+tvgufVBPRiT1IzclPBJzfFN54m3uzipiKBuW1LpNjn2JMhd+ftx1wo6+f086BqWJHrMHbuBz1/bmTs+cjoKjnWCvgpvoQ7CFOZLnRQJUhuUEI0CcOr/f6y0VLvvfFfS8jDs7u0qD2zTbmupIyFRvczwsV8nbKd9YDB4+qpPDJ+573kp8HoTevVxCaHBxwK21efReEzUl7Ysu6Fh/N+t0BLY7SbmUCvXZZsyzRBs2rKMaZl0Jb00Xytsp1cC3y/8f6yyVaCDnfohSS4L2SY41N5UJp/qvZpoUGsRR0YcYPFd5Hu/rdzpv2NR+DRvZK6ABvUPaDt+2WT8DSXQlw2TgWwxIdiJglAMHNBB+AoGpPCICe5QjB488ygU9xJNpXvuc9RWLQIkyuHd4U33hqWMiSWqO8eBNBWQAcXeFnWhZkFGS7qUwnVOIR2+sogJcwD90hOpaVAoxrS1ezVeXUZhqr1KfeqNPNPQXMNgSDU4SzCxSXFXEUQUrN9FYbpH+uv6WUSbozxHoEJKjIwUS2RK7USCUbjX8/jgwJekTugVUxw7lZiqWp+9rn6YlZmU5+uwEGW70WVLDkGDRI7u6hHXbVcelI/aunvKo/PHI19F581e6eBjIeDN+UAoA4MNxUDLcgIKgHQevN+GR3tqvj648RTBz7YgOvW0MXOk2pu1mDoZAoW5eozk4Kr0W9DcRsTcx+Ys2GonTu1YeKLF8F3v96wbR1PY+DjNzs+3aclrmtGtwOmDaymyWNpp/VJToBY15yD/GPtndoWemllTlmfhcMyhwnir6riRsfwGI/kRDH/mqI69KCu7Uo/NI+I83E2gOR87KRJbNGHpLsDkfo7oBoanoX2RRbzCscxBDTHVYDI+KzLACJAIODBFr72mmUeFE3aSCCeQjfbSw1zgipVBb1myRMEApUNo9O/yyIFme5AlSBSg7YBWAqHlpKkRhgx4imiEL1/1QEYQRnZ/QrYuA74PPmiaJ4mTnA4pYSMazVLrX8VaRpete/vXt5roPL1XXDb3fkNTJtuauUuisvMo6hpJ88MiCngAZpNcvnX6BjmI+ECyIWuCSioBYFCR94X1SodxZLpBxgqJU/AJak46JBm51eoeproZFao9UqCKq+I2AIRMCYFaCyAg8REdl2RyLrz4ed8TkydLkhgos2FMBm2uKBjvQFHjBmtV9wktZqGWD/yio+btzKabCznpNVB3ne3kJlULsHaDsBsUdsiuhSLMZklag+WHczbdhiEhwk2UmPHV6U0OfeNXRA2ghf9JpHivOg/VUbG9O1khL0JHoyrhXbk+FwK25Vh19wpNNcliWbb6QHFcR0KPFUQ668wxp8Du/katxGzNbmJaVQemh12uLnWlQLHyFU9KVeOjyoix4kIcNmA1gV9u2J+OjDbwP/9u1/htUy8ujT0buYOSId+2E3zcxt4c5t4GoJPboJvDs3cQRw/CkggtEoB4Q40EVli62XSWVmjlQiOAiYBiM+bADobHqSYc/yHudTo8xjAIPlamlZkIThVo5veu6UW6Jx5Tf6HCozq9sDnt+ThUH/oCBCqJsia4P1uKy0bi/L1GHxkGeEyLro494uYN1T6bqjTN18taSYtDMdOdE7NFIEdFObsL+aHNhXQjVqzTHfAgbDnuWaSp8QYOCMhN+4cEslx4egRnO6c0wNRcfStqwWwSp6PNNQ2DwwAMLCUW+bQOnsdQyVqbVi11p+3vNdAReN/ce2G4CZAU8OOXRSXZgdYXWFnwTCGvw4sF8FSr3MAVfGEaVbirxKMSACao3lmBTT2f5ysGb+51kWLkFYq/d1sE9qUIpdAHQxBilVqi1KKBqkCjKoB4D0JABCPrNxwJd58O3cQBnzMn0UlYYQUkDGluaqcs2YmnTCP1FcGvz6IvyLoVEvf4Iye99bQnCrp36FUQbFqIyQAxtK2+prDO08J8g7fa06MtYrVzAJncrU7NCNZ5JRfKcIkK0u4l5dkubHWa6cOmMQZXu/udRDshwCM3V1WzvbXYvXP4KGWOdN36P6OJ5gjahWR3Kkr0nwSaz8ErNV+cfX9RSaureEC28BYVlTSiTPS0m+jKVkqnZ5YQwS4NgM9r/oFb24drSmuF8H1YllDpXXnAbaWL73h4aq43QSXPnF7s+PNoHBwYdl42Ka9f6PJR1Nk80yWWNd1nvS4dhLGUgPCPCWmISM4NWEDCLQlTWcUTPpchAlTiym7zGeEpRYSZgp2HiTYOvvldQtCG02CWc3qADOjRRTZIphZf9GsEjjAQ5jr+hXfbPr6ocN2Icq11GuSAMEiEakpzlEwk9eq5a24Db6W6nMETV3gAMgnUuHnksHlT2r5o2ni6Qs05zt00I4qlvYkwYT5ieZakvwEIirPX4HIabMMRcocbhTsd7oGUEOW4xPaypB5d8b8M8p7D1QmBZarhiPsFaaevU2zBd52S4pz6YJrU3Oqg4bgzAlHDCyIdgEoWiyEhAapNjawUU5pvQdcQGCi0XarMl1AqY2AO6wCiEUMT84GWPhtONwm23Z61wVhC6yuCDEEkDteD8k8ERfif441CZvjzXGGeJsdiDgZI2fCY+mB4ri7iLZlVrlm0xSzxt5nO1KYUvi1qKXIHPn8WKVqI5aO19YWMOajcYRUAFByPqTJKGhIs/2VT01NnKPeEN981RYUis3rdb5Q6qlAZN2oJ1Oq1dWxi0FxpjhhtmdROzySvi0c+ya289QiuZh7g5qZzeVInBEUHN1o8sa8gaV7FNGLMCi/SfnNlo9r9wRJ93wHKMiPY1g4qcA1mAgNZBNFb4ovvGpoTbBtgu7nV1FqV1q12obxnE3x8Zh+bICbngrlXBpw7QZWpqbvwk0Rxziwv0ykJfTfWd7HvlY9ZIIAaXbqcNcU5joPwMHRh22sxP0nbITZNo72hMb8chx2tcy5+xRsXdG789twqrVIoruRZ5L+ODI97WRD8htNIRqTXeb9qJ0M+a8Sx18IAJmuEQ3fnTqGSWvJRZNnV61PGOwnzfFc2JUeBcrzyhaeDuePBM4SfJqKjjy+o0ISDe1Xyp8cT1EzfWYbOWa+iZekJY5pF9M4IuQEQGDcoIW4aorJZdWcAZX/beRwXs3TPbb/GeW9BipZbOIGJBK5+VKDoUhPOayWkvppemIc8R2YNM/g5yxaAHhEgxFES2JxO+/EiOROxLNGOCvjMOBBULXaf0lKdPWkT4a2ZrtUDwUOY8icyExwnlFWzfxk9kC4ExVrLkstdhncheV3lDauAkudafMvQnDHUq4CBTZuUxpmuLE2DC44v6N4epyI/iSIluu6/KJs46kkeznWdSzz8PyJd7pgWNqp6/fViz1VwhSepjsSV4jYzj3Ca0XQXbTNw2BwjHM3GzIEx7E7PZh/EjSzf4IlA6W6MKZjN8FSJo0pf6U56BS+LcLH52EczI8BRQ3sjpYE16phFqOT6EQLhs/2kml2SKQgiNXjWgX6eEQILSyxX5OJBwCvgLKR4dhWwEmOUYRW7H7t+nQ7h8wB83noS/6c3JRoCNvbUDwORZOGV9vEPo02Hxrw0AYuXXHdOrpnmr7BgNomiAg38U6PnOGkKWQyuBgTSfBQ14yzDaSPg/3WuoQQZfj4nB42Pt005sOakTzpI0Rt8VA43yLPUXN8npbgb9tQfAYtx46q+bHUTQZpe/cFsamPgWSPKPzSd+YAYFDvJQ2KAy/zQRo67YBSTSGaWhCnBV8vPJcsNkyqAWARsiHBgVNEtGN4siE2r2XSJ1BTCkF5YuVFNayfpRcesMqZlC7BN/yLQiJHlarmqyeDUHwtFPogprW9R/WKzDmJDSKBGH84bOoAYHwLqOO9BipVGCnqrluQB5gxn4jdM4YxA4E5C157w9Y0mC20pnimkMi/kb8klGLTF2zLfCnlP+YMUWgQUv5vEz21QaUHcOACiKgEwHonBmsMpGjuCoM5w80eyaz9omtp7P9WwpHXiJGyWsp6lxxFezeXi7eXAteYl4GTSSfYIhBz1rgHtndSy5DvytYA6eNRhXPgyuhzpYE0DeTi9wVUmcmRlz9TFnjkjCUX/tpmaw/vb3ET79tai6gGb5AzF/u9e9K5WteozPDIzA7ILsa7XhYK28M12Gxs3Z67zYSAHLsYokMno9+a94X9OYBQmiqoEcpQVQ0gVDV9vYCUGFnN+gUw/wNVNBV0z8ymvssfE9jRoNM0qK+2sp7C7EQHxAaq120qyiZizgAzlsNout+V0i5mvgRTsW3NNDgutMc0sHHbB3YdUCheNcGHrxo2vw86jRa6bycc2FxUsA/gqSnmrh4JJRBtAaq5ox5YzXkcMQMdilZ+5dRx1819sa3bWTSk/rtbabVZFtWhjEwhCCs8DMD0s5mm0pdB0VXL2ToCHcBsmpFJcNDTEowbrSpqrqnd13P6Pjh9cAmVvsOF72L60Rwj8XomTLMwy4/Ze3XwkMKW5z3Rd1Bq5YW+F3tPmZHD7Rhq4AwKTFFsrZ+AmpZa7m7I5P7XVatc31+SbvpvdGHgcx2mdakbjKibGwvKRucCglgS0cdjaxXTwHUmHXqn8p4DlTOCrr/VTztMHWa5Nmzh2O5xWkgkmZeSkQndSQGY8Eiv7FREa0x0cGfLd8JJI7mRUQcRmt+GTWoFVukLErZ/BRTd7ZrF1VDzDbFI2eVCOHCQtWhQ/G93oalIggXgEQpp5rJIJFuo0XeP7qE5J00FCPum9a/FOzKtdIoiKdkuNTqAuMu80Hl/EaV+29HcI1qXZ95fgUsygFyNFEy1BXVXI4e/OMzZiZkcGCnDEXkiKvtOOo6MmQVAcW5Ne0e7cvEXKML13Ma8mv1d14a9V7FtHTImnpjRd2k7tXW1c1QfJ/ObGq4FweT43gbOk6Ky+oNMKbXnnIefAjx0WRjy6MweDbuY9oJrhtEnDE2eyoypq64tNYnscFmvIqG1nEMh3c08nnOD4c4qan5GPm5jKnQYZL9uwAMcgDmPMTbRgx6htt3RYcKQu2fTMni0kPBcIM12a2l2+Z+DPgo90gxLzQXN25ZVtgX/MFlb6JisDZnBFgQqs1B8Q/C2qdy0ZPsmTCE8fOe+eR4UgWcNJjAQeC6Q9JeYM+lpWdOCdS6zueW+wmcgScMVGOWQgf5vkg/5c6mftkGawc+So8OdtcWo3Ce4xYatcj4aw228b2P3NBD3RTLXMzeEpNsDbEqaijVfe1evpCwi4DWyn7ax9pxdwU+o8TwS2dLGewuZZlnBcJodeue+zyjvNVBBaB2yLIts+QEgmKBOwBYNTSwIhAtN4BI2SAAaYb8NWy51d3MxEwwADHGlXMnKZ00gSIBrHZJYjkIlyVgOi5SlL9JUgSVfwb2FGjo8oACjeKQIDX9Gk4BjYcdOxwWX8K8roTUXRS6I/Fu0nNl2BfSYBUhSrRtMZgENfvgfmXkIwKycmVqyasHutulqiqrtUTYyPucoHtjB0hZ+sscLwsjJiEKBbvRWacBuz37YgxTwtotehRNt+vX5mCAcQZm3VsMLCzuAholLa/igCy7DBA3zOoQWw/+/uXBkO0irdWTyTJJ1nk0oGUjjzjecCWvzy5jTYZfmAs6z+bl4j2RgE8GDh3wqqOGzTcgmzZ0HaeJ4hk8UQRzT5mAFvnmxvEISO04zG9M3bca5RIoME27S4uRvvmRSzev9EhXoBG4DuI2Jp9mwQ8LcY+BCo1225HIeYy4qxlDSOufJ3k1A3GuiRwd0ouZbxTO2JiuXYhKEk2a3xW+alAII6OOC5qB7BbMQO76iTVubPcY1BaLAHKD5envW5pbh+C0mCT7enBOaZGxcySdYDCw2NE2/kgQSsixvLf/HoMaYk8hb0T7UtZybkAAP5GkSh2n4WxO0cOyrRgNA9Ds0e3xj4dlAbUeaWOs4Qlxr4m2jBld93mapjeslKy+SqPAdavjYqthULczVHKxvA+9c3mugUll8OiUWPcCBAVJgUoBONYdAouXlbrW6WuxvEGpCAXBL1uGyQcGTXNIDoy7cIuCjRQC3qkcdQM5tqgGlzjiKU1ONcin9PV90giwUVt9FtM6FkowxW1wjajimTQo1uhAqB++sO7+VD9h7YlvDhZuCn+tCdfUFiey83pcEc9wpMYFYCltiENr+19QOqckC6kJFvIO7g8WzQbPFlRnGXJV+sV6FORxKvQgCF3vGIhv8i0dmUGBnQjANDYw6J4qZEpoquSYq082zsS8y8Wpr+J6L4v/2QUeXhtsUvLntEBFcLx2iw51GgW8+Km5jYFex+/aJj/eJN+60XnMwnOYZxsB43IDATk5ugtwYCCDTtZs+Dg3ccVufbrEaGprMJeKkjv7WGq4duHTXpjTXRrqGhtzbcpVIERJImnLAcwR/OXWK4cdnRHZpByp8PkOiUwNbTZDSxPM+NYw5MRvwAEuYdtP1PCqoLffNHXuZIp9AhZ+n5iF2pjVsMf7T1zW35qYR8nloPCWHNJ6RH7HOg7RtzHaFgQKnKQNIlj8qABT5c1sba9EmVre0NSsrDQyt0H/MGxD+SJGB3IWuOvATWJ0Ucgs9EjhgFab2mXCoblLdf8t9rCCCHvKgaDbrEDnNjnKRZpNq/q20q3q4XnkeknkqbxagTosoQ8w9Izrp7AAwAI1M5zEkS9vO+pGoIwVGgkjxLC0lrJp/Role2hV4+t/trJ9VKZCSlwBT6rxIER6cvEbHvpAPtSYAZ2FGFfiuKRDjxUWI8QrBVCwyb1hlKkdyvcfg156S6O6R+rkEiRYiZ51MkMQflE3kWzTfZW9pBlaqcK3vAOKAyBhxSYCiKJl4Tw3lG7LhIU9qLCkAiOKiGkKOTFKETDoXRjnTmXI/jFEjNBrW3gpCRAgGpNDSYZ4K8KpjsDCYQqjRH+Tssa7qu5rQVcNhVAA3MSDGSSUjHQKku6AiaAgGyjFqpgW8yMQXXnV836uJ168ulmdEgNcAvvT6igRoWwjZDy+ABfrbsRBPY+Jrb3b8+qcD37gJnkoOjnWgTBBemArc1+eY5jQ5psZ8M6ldF8szYeaPdLxtCkwKLzWfn17mmLxy83uhHtEyhuW2kOoD5kLONaKLBaiAI5uUFjg8Ivpk5DqmkAn+IglgpC2UM+f0DK4CqLk3NgGumyW1s7OCgDdD8aR0+raX8xBAM1kTb6SgjIMIm/W/wyOIYHmMbP25eQUKnaYt6sVpV4IZuIMttVcA6uYJsHnaVC1yqRmwG2Na5JJnEZ7IyEbLCO1AWo0qhwLidCAVmIvEadF1O1f9aYJ3c4gmMGWuuUYgh41OXavJu80Xq2zN1HsqdDR1+nGhrKWOSD9R+XuRKgaorR1T2cO1EBTdK+w3tdIsSxxlLHZyl1bkZAUR9e2SvJY0LN4OpdMw9brryykvXHcdgGTpk/9OLez+v5vpJ9VSPtAED6j/5II7D6A60a2FzN2Iv0LOMkexTqrEtosRiqtwtXAROuU+IXUAp7ZlI+9PamUbn6fkolGynvLuJK4qZFo8mcOQoty/L8Pj4+n9Za6aupscCg9fJQBBysNSf21f1VlWx1lLW66hsaItdHO/iR001KX+qZqi6GRcmW5kXIzBkdixPTfeVYtH7UW0V7M/KsfnV86ZEEm9LX5HZMyUEEw5RnZBHLWwxi12PzleTRQPDXh9sbTz19bwcBF8cL1i6y2cHHMEDqaB8m5VeKp74EuvGh42wTefJr72CLyZEj0YKtDZIKL44hX40quOS6j4BZ/uEx8/2SnoA4LHAXw6AMDSCwzR0Io10EwkduhjmGPUNJ/xeeLaPMlbQwpZSV+XFDJ6Up0j+EqsUvetWnegocFy5k7GzjKH8yURiJRnfYqna0Qis6hPZ2eKhTFxFUXvUhxZXVUvcD8Ojxr006gbmPjOFf8NUDTsYwJTXGC0CDNv3qy9WdTONu1kaTuAEdiagbsQYoo4SHKomdHT5AIbf5+zMRRTJig2aWLY1BzEd20BbK3t6v4cBgL3siLMbJjvCX2y85gOAZzX2u4+/UfiDCG1++f0NA8tvIHSB4U0rgCjYvKsJOZ2lVifBuyYH0tjjEyrlXxaBDGO09sRoilqTy0RN7PkRBl5WBEWgs+miVbjPKgVnzgwLxvrynsXJhivSXDNKLLDLStvhi7yo25G69/PJ7HW8l4Dlc1Vuow0qJOO8jlSlOs6SImj15lfgModgMP97YIdC1jV9VLZDRS7Y9iHndko23J4Szu3G0AQo7/gbs9rMZTsJ+dItgXqu29Nob4QsPdnBoDwUTl2ErlYeJ32ca4toVAQLI555U+o8WNZqAnICUnB4IWaBGtfAo4OxSZ2boulgE5GO6GY0izXQ+kA/11ntQLKdWQrzZxoqDC2+hiBBc1FUY8P+lwWfYn3ChCjFgEEJIPgb4PRUWS4nnJe7MTghokPNsEXroKHjULIQ/MbmZ3EOoqdUxlzmppiHKczfaidqfPQ8apP3HaaPYCbKvah6A340uuOD64tfFQMNG72/5wYCvzG48SvffOGbw64ScXMBjyYsgoK0olkshQITFBvHGt3uGXKfBBQ1NmLodQYWuV3X5cx5KHiZz3p3xBAJeiyrMuFP/E2ag3YJworH+OpEenDUwUIx8kz6G/FcOUuM0xZIwSWOXBvMB+YoRZJQ1+VJ9i626bi1QX46NKwYeLSG7bNx9XfN3w+xzQfvwkc/Jkk56UxCtA0Z+LmyK37ipz0V5q4dsVDt0jMOYHbVNzUItHoG5Pz7StTEhTYBTuItDmzl3ByTnd88TUS8sIy3i1rkrTFldAJ9qcZTcvKDWocXB8oAEWC60Gl+bxOBzwJivhMpsHwuvx3HpCaMmeVb/aqkuoenvOHFGOOfMmjlNrEwuPrOK7CtCCZWGYc8GiNrrcVfupO3UU+/m93KOGVqkb/Tr+TLI7yNMMmQ6VbSr0UAyniJ2MmWcYmlXbKkCsJTyYEcVovd9NCRFqcq/huPdh+D4I7e7ICoCPg+qzC3bgxLQo1Z5gzwVkEH/uCzrDBKpgrgXN8zFdClABCQ+XHjnLHV22gmdY6x2nxifEX0VyUCZDMvFMyvyHXgyfDK/BhQjxDpbjXuUQfqxbk6F6Yg+0wMoSsLrDmCHHuT4z3tZjbApQV3qD1OpyZF4HKsaT/wPGUXIBaLcWri+KLFwMnD5v4+Vfih6S1zCFU+kzzUZC4my/m1GC2DGtM51FbexsU2yXznbwCnMtM6D7xyLBM2DqS1sKUIVB86VXH1gS//gb4jU9MIzPFhCHXMKlHCk0BHq7sDNvzJMe99DHgWC8rSHOylP3yflYBxo/K3/yBONqggJjk2snQj0DFJn2W+4pPR8SD07HfNzlO1zwEcUIiBLg5JGeStjG5AbKRuC2O5A1DLbXCgJvTBFAtK0IY3cNIMLt+aYpNAO1+2TUJHAtbWA1jWmswp224WgedXKevg819VnrT4p9CcKN4cmBVpsh5tBHYrvDjTdLEDgCikyMKczqePr6uUVJjVg0zeDOpX0Bz0/RnObeaUwUEEEigYQCRYwxpARh3P/OIGdON/tPHMsxj4UukmHUuIaG1cWpf6EiE2ditri5+6jRZ1jTuPr1NjGglsKxaWvpXkbcSeM3oPznmao048i8Ctxg3v37MXfV5ynsNVBjmltn+krkqPKGPmspNnVmRmSzRQj75R6et4XwkDoCSFMK5coxIqNa0HYZPY+zyEgnzrSRGTlkv4X15bhAsx0phlCE3D8CBrbn3PVtqfaGauvaLD/IwwpoMaPr1GfVIgr6oX8LvADAbe5gQxEeVffI+si80ifF5CmAbWwQD4m88uXpSTez15Vg37GAQZr5HwbVHeuCYZBsVEtqqYArCBcaxleVT/hXv7zoPx1L3IVWLdsDPCcLKWECBiyiuzUwEBsQFTxO4YdU8Wa4I4NVF8MFV/EC+HrQfp+CCNIGgDes/adQcRqf7HNSeURUPNSapzRfhojnSqH/MEXQo/tykygMAdOKhKb7rCswnwaN23GQHRXGdF7jvEGmpi5lKXjc738dOSLYmqLRCIzkTOXuVzaoDEvs7Pc9I9lxjnAK0TF3GEPyLqM6eC4BC6pxJv+RRcMDggCqBSogVhGnA1w3QzAThnavJKIEEeg2Cq5gj5XShdtEE2bc5MbShScdtUCPhfDPC/HLY7KA8VMt3OkLDDmQUv6F76C41xOYiqMFIlH5K1Pw2j+7KbpTJM1ocU7HLtEy30QsDCzc1TQZTUqSbmx+JIsnvfNSCT3Ztbq6rGrQkkXWtOmD2cSSIhipUJhoyG3MXyyrOTMMRaCHcIM6QF7YZs0jFoXbiO/PZcHMCADzw1cnBdUdmiOFYKwyQ7krzvvMqpGkpkgBqaqE53dPvDlrgQCDlra2zlI98b938GY3hncv7DVRgBw32ZtqPEQOVk2FqJ2OiKECGiWv85xAYJMAmwLV1aEtcyDC6VJMV4FHq3moDQcHO57SQkd3fnREp8sAnqlMtz0kySTLmJRKAbXhuoBSuRtQAA1QrkhArmw5NEIxxbA3gmUZB2hRqTtBby/NYhv8leKtAjcy6vo/hmSkvitOc0Bk2OYMxPs0spWT63pGpCU/YtwXV+yRHBEJ5ly1Sb5t4j5Scyd8R4ZfsnZTxP8LFOq5OZ+zqcosszzAUkU83GJ1cZeJVUzx0ChY7tE+kQSezHBtDvAosmaHQ4Xht21TEDj0Eb2mnzaGbX6blV8jMsBSuFCSVQdEMkvMlIEOFJU+DQNQ8JZr02GWNMc3UNSa+eBWoTOw6MNBdM0rTR22r1b/BQZz4mSYlxGxaZ09M0zsS/anmrdgwlI0DwVdqXhQMSwaBS6HxFbQkA09yLOtBJa6rI6qaZ8fmsEeWAfIDkL+E8LP7L00g0kyD6Ddzg9KahQjv04Du1hSve8PrzXOcBPTWMFEIJLXTPm7GT8p7SWMKi8jqCEQcmkSFJ9RLR88ws3H3gFx2rUVHc8rggEbU+VPZBMHWwQ7TRuzOt5qq59aZ2ERD+8u0Eiy21GfRJJDuuMVhJJQufU7RzzY6fPCNEED/EafD6JPRqtQ1yM0EFBex3EETE1PNt2fX1LQMSU3Z8MXQQdOPYKqlwrhp+jqxJ2xpmKJg67Rp+h6JkyaytfE96Zw8OBYcBDdAJ1R3iN4AfULDG7SnX8e7lvcaqCzhgK4qU82DrLpInMHAhRQJoWKlo+z+iphRD5WTkugNyY+BUifNOgvzSCbCZ6Zoyjy4ZsAJisq0HWajHYykPPSZooHq9qqV0bwhGhE7PDjYABksLCwxmNsKFPjiavKiynbWF/ljm5uTcqxy8XJBU2OlWlT5SNWiaHkn6y5zRC6e8GfpcIx7JygEfWT0vNiCnybzPCAHbzuFQPaDbQmaCUbOxgLHmasAp3mwR+SoIB0UDVGHJywTE+ibM+TXfm6KBcI3o52pkGZ+OdM1Ya824HUTvLoIrpvRgO2oJ2rmW2vpXIVrARuhNYBL7wAwKczBq4tw1jo1BaxSKJEh++4w8kqYCvuDrpaxFNPTCAzzWwAzqVSDXdrku1gCu3roKCdA58Sgo2rQd2n324CK0wi1gfV/0nGMR2KSGKsQhWU9RrtiHBOoDLTwTyONGWiHS24zE0DFzpFxIHDtgmuHhZM7sNhV0BXYHaW92hquW8eY0x1eTXPxwaXh0h22Ks1Pzi9g9Gt5bzTaZONYOJB3OqOqeE8V5tOENw+xKmCl8jPOMLWElUkvy9X/MicLYGv9ouZHs6uHUHvsUXOTi6XEb9jnsHmdIe4hmCEXOOcZu+QOvawnmtHcBGS0pjqc9mlgU0B3QHpop8w8s6GShEXqNJhzMKm822YECtFmSfrUMkg1ZWqAovUTg2xTNtzmxA0dOz2dOIdlXsys44lKdWKqxYTRkAVMM6fpDZCR312Pa+b2N/CDbIx36hNUb5beAArMNwC+gXn7v/Cu5b0GKjTvjJGC1kVICkpXqVVGwXtaIbG6PHh5zFne5bZQciwtzmOSvjEUVjyplKAJWloltAumYAtfEJVMKV7lXulL3bXUlpsKPFFSLBrXhkSKa/KTJp7lM8cqBKcLEEQf7X2mak0wEepbX7B24FkyEltKBorgwtnMpfZ8HkmA6D94v7rZLuZVlvFQSjqKx+RjMY+NE4U09yw05MzyCAiPY0vxcsyzEe8TPdZQ2pj3AkkT4pXIJCjyoE0RXMR8AS5i4IIaQEaEkD1euuWZuLqQtRBg4GGzUODefI6ktmcuffSP4BEQ9D/RWYBFHRj4ieJHDQKf421I+rEddYJ0GxPXFrTciZnZQF07lALTluLEBQq4xoTaIq6zFgApQRCPi6BZIQCJptaH7U8QVjYBTsgKC8e+D+IIMBL0Sum90b7HLZVxCcKfRb8qzr8IeMRdJDUdUwUNKpsBFWmYrbsGWLF1AyJbY9WCh1g2pnm7bs2d2QWWONLaRp4FhZ/1o5FNVgogoam0tXBTB7muacuQ834Cuja/uR6SduiH5gsNbOFkvPWJFpP3VPpmwkXTCExg3iBzYswnjPlN7PoG0CdMvcF8dYbT8nCQNhxk+LwqzZszxpEa3Zxn67+lknd+4kDFhPjwzt3QpAPNXQQmALkEw4wU88pjGRrCu0Wp/RHw0FppLdLeq28GIpRYzAyOqdhkw8X9U6ACDEDcKWjqKFqxAQXbOgEfE/pSSaQhtIMNWgUz+gaiu2W6lS2ATpcLWuuYYuO3yxXvWt5roMLjy9UZfisEzlLzKyREQTCoUIkTiRdmFVEhApjbdDrmijOTiDEv60c8p4Fr5z2sLlNQS2kHH4uskQ3A9J2BAtJ0qTu1KGxX9o7aGtqzuaYViLwMtHcaE7e22WFttPfn4ptq45vhiYoxmUjKXtZbCq3U4lC5mKCBzq8ESi1AiyzMx/k2nMchBCMKk1qEv8Qc8Z1x0qzmaOfclM8QSC/jh1oOYFALS6YU9AlU7t7l9PRyLd+T6nyB78wEEEYtiPkRbEIPeY5rAXTiauwGE94QiEw3hSITqLEZHJzYtSYIIb2ns6z5MNgO08GCTwrfb7vxFEoGbBzsYN0oZEK35lldJYSdyADDxFOrxzZlng0LSbXREwzrd0/fjZwMqtl9sqXZgXBC0IFsnxA3WC8Y1UIn+gBfPpHMjxWmp0KfHGjx94Y7R2gfBFMuNk/QMrYKtOlmsARaEu3i6cwCNNei9A3auvndeC6WKbBjBNRNZz7upCFbwyWpnmDlW0UDa2MI561z0QByPYscfJw0tbykOQNyMwFf0Jw/AwJF+NgWswnNxlr5SKmXKylYwsCcN4z5BNVHqD5ijt8A9ObCfcfQG8b8FPv4/5P3d6G6bttdL/hrrffned8x5lxr7a9kJ9Fo5VC5EAr0oBBEb8SAxhu/bgJeiIIBIYIIJSUoIgiCeqHxQsEblVKoulGQokKJXngTUppTFhR6qirHKGXMTjR7rzU/xnjfp/feWl201p/nGXPvnJNVWFVn4bv3mnPM8X49H/3j3/7t3/7tOZgBLK5riu9lGvwQY/k0NKI4yGGWh9tkhebIy3EfdyyZjrw2lt8T43+kMd1IRnUP+fI6CMFKaNjr+GEiGoL2HIQTLO4GdFOk7kwpecybrJiTEnOAFucwHKxS0ByvwYTEuJ2WinO2L3MG7HdiqmxKfvYE8kZGRRLHoFKo5Xi/cKIJP8fjCw1UVhUuRfMGJFXp7Jvm3HSjxj4nxYm2PwXHp+j4yOMem21G/3IisP2YPmdh6Fz93ILsKxJ6kqPRYXzjXND2ibp/bkTIU1MzqdFhGe3mogCHGJbz+0kgcGxFx1rqc2OcxxKLYhTvHSBFVZnR+Xx9oCan6LFd7F845fr5WXPRkWMvjwmcIK/m+yKN5CyqRyWBCM2U923w1O3U9ybuwtQT7Wl3jufnpjB5sKmZmXd23pu59x/i3fPfsv880VK4Xb4Elp6L1iH6OcYSp3uxf5JwWsQDFOx6j1lKyewuG/d5Ywolc2R5XKMiHmyCTn1TLgICsxnd3Oj8dGz7tZvPTQaF0KDYBBrumA3O1T3D5gYe5z5O7Ms8wrPgcM4bFbAJnDDU9bjGk22cP3OkC84l/ec0zpnF+vaUoe8l6zvwxjNwcGQu5hIqA5mLv++KA2QMhhhimYYFLJJJeDk2UtvXmQRjeb7x/yN1OTfjuCBlIiNIAW5skrA3GmWW157G7Dx7VdDZvFT372L/Xt9N4OZY2HUPngHVecXYB3P8cVyzGGsaiyeaoCHWpPldzDPOtdfZBfgntmnX7uyjeN63E8jwOWOO4zuvyfOGSwIf88YYd4Y9Y3Zn2Ge4PeHeGb6BN/DGGO+Z4tR5zZSofus2GKODVKoUulmOtQBnqOGusd5lIOEWnaAnFNkXkV0ZE2wMDML1NfRXYT0QqR+zafQwwTh7cCLiWC5a6pJFIDBDrylGDhJ4lhsk0EgWZO5bM1U0xbTmjliNHV8alB7MERXVykz76LT7yGMTKZQEOUhWU7pQKMm+Sa5WUEqsV/P9sc/U0NbQoo+RGy6f30P/Cw1U5nw9b0A+nzgj+Dmd98jr2Iz8g//YXzEXy4PdmK84FNJTF/GSQdjb9uViszfXyo94QYPma4+ulPEtnVCLTwQ/7CUtPSstpiB3VsLMo9nPNX+5a3LmZHQ/lOMip8WeiOznNcoFYj73op7/vAZzWqB3i/djscTDuXJe11kS6x5unOsURRPW7IsU3JybHe3t5/dOobQQ1R2vamzuNxPe97mpzyNOICnHHZ5A0/Dj3HyOCYnfJWCQeX1IYDcBL3645eamscMTn949B1w5YOM54pyH6LtJHsRxhc9LQdwpYtFbytOVFE5KjeO+zXu9A5ETRfZtGpE5lnIcuJ2Ai83ojR2MTKfbmf6cgkX0ACSTkrOk/5VTWW3ed9GjL8ps4CZkGuEUHJRSjmP2eG8pxxiJig+jD8NnKeq+OedY3VMZqS3IcujTTdk35bzNMddFAly5MFwxampojk30XBF2MAE7bEBO934HZcfARAIB7EDxLKSc42COl/mOl1Va89uOR0GoWqjFmAZzcw66n8tLZ5Azv81eHPsJicRaJsd5z9/L6VqwX78T+AHAdnZZ4LTmpIZsZ6hezMxjIx/PQAO7M0aAEfwZcLrdce8BAPwJuO/noR4aEM0UdlTeLOw93bwgLtSyMGQL9jAPcnhW+pigWncAIWIMSazpyZCQFXQyWaNjpbJ9LkbljfpMQUZKRNPdOcDLvK4eJI/D8JEO33k7ZrosTmDfcWZJuu+A6QBb+elgmYCf0bMokv3onJ7Hmr3vUNyTExJFqfu9Ng9P4eg6ndcRwb3lSCmUWVThc6go0c+8xJiXEf99zscXGqg47J014YTAT5HfRJP4TMFMtmESWwkUiNscVTeT6o9nR37bLirTcHRkBwSnKg1PJLlHPDOa2bf3OERkjwjj/Vm7z8F4oMdSFMd9PkmZ+CysqvcN5eV035cemfjtWBB9XqMTwJmLURilnXL/8yGHt0wYLElEHTY1KjEhZ/+TkiWGVaICRcSpCUokP7+USftPsGW8qg6r0V25m/K2pd5GjFXCQ+dxKTwuwkOJY70P+PTWedunY6aErXcRNndu+/yIbRZguO7XIiad5aJ63I8dXshxPee9Rtivx75tyAFKc5fl/Dhb8s97NDg3gIuyTvOMrj3EysHK2cGg+AESDwbL9010lu+eb9/cWOZ3HQzKyyh4ejbsY8plF1ciATKqSHZ8nd4sqVE4dWA+MyczzepzPKeHSrwwQsnJ4OAgRahadwBVVFhq2cdXMUUY9NHDgv9AfgGjzmuDpyJtjGNjnHT9nA/OTq8b0L3QPCzfh+RqcL7J84K+uL0HEyScdGxM4Hu+8bKntCRu1z5mzoZc581/ApWJQuZnB7knYEa3+Zwf9wsnBJYvj3R+5ovKHXkBQ77t/OKZY5z5vGenYzzditO1JdMDmWYbDWMj0kMbbnfcbrj9p/z8jal/6P2ZMTaQlvMzz0Ai5emn9W7foHPjjrloqFoEgCZA6HrC6XhQteCmqCyQQtI4t7Ry8xkepQQgm3QEmNFgeiw2a5DsCB2etbNizt2RIhSm303Y7s15i5cIDhJ0HBqpD8fE1HYpRt/Pd9+DJoO4p5VGgDSZWpL8DDnS+zEHou3BLoT2vI4u7JElhZHnFPuUsjsl24g9QwOQDHd89LxG5Brfo1XD53x8oYHKbRg6/OUk49ii979O/5x6kQSvBy5NAJPlMEd3WMm0C7OES/ZIUcVzw5XI2fvclAxEdybGZCrF52ZylPl9KHCd1PUUoZ49CWAO6Dgpz4V9r7l0XjIJxEnM85zeJuco7Yhm5rU6LtY+SUQx8RAuzxVoHq87eOgMBBA7eVcAxULkJztYgVIiW3RE3DuK2tmPpTofa0FV6UN4vMfAL6pcF+VasyRaFckNtxbnUgpf9blVBCiqKjQzbi3BU60ZFRhPzbkN4V2zrAyY1z8XYZlbz0v6+twDaf7ufB2//SHf8XmH3dLcc6Upfnr2VIMt+wIWrEuzWXkwGSrfN6UdWPkJnE78cgIDU2vxoZB2ghPPMe2QwDnz3kUpWlCVbI53uMfuR+9+0qTsl+u0uU8G0fKYknbPYxpjpDV8nMuwSBsGyJnal0KtEvYESauXUqKs341hg9YHfZ6vpf6G47rsLJFnStGjGsRQmghNonJkIPv8mmmOl3d+sm7HNZgg5GAm572Kc9qfJzbNmNpndsMPpm9+y45M8t8+jyDrSwapbZszn/0e5lDiSAflZ881SiXvKS+/7yVaefk55zlwHkPGPu6GG729Z4wnhv8ifXwL8YL5BtopPLK191QD1Y6Is40NLR3VBVFLjV+kD2wYfYx9U8Y0GIgUeU7LA/FIlYW7s+AWEtBSYmPeRs+EkAaT7EKhgjqmI9blXNNmefjkS2WmQyTWF5iFCVE1I3sJdFTpGBKbeWq1dLJefoD4hNiYSQKJEezLrElnZFo2brx5y0A89EoCkVJM75/J+tuMSOewicU67lHKXGZCy6TTd8ZtIFIi/Sd9H9Expo1hLYNCzTkrqFnuH5HqtWG45vWXAKif9/G5gco//+f/nL/yV/4KP/MzP8Mv/MIv8A//4T/k9/2+37c/7+78+T//5/nbf/tv8+mnn/Lbfttv42/+zb/JD/7gD+6v+eY3v8mf+BN/gn/8j/8xqsof/IN/kL/+1/86r1+//lzH0h1aLjYCFDty3HM1jFs/gcIhMpw3bLZbnzXjtcRAHu7JVATQcLIRWHYXdc9eGXOxKMLCidbmWORnZHu2A9jL6AgHyWG++4+YR48T8VOaSWa8kKv9CyyWFCeeDcmS5s6FtySwYIIkpsLeP6juOa7bac/eEfwEXucFL4S1R5TsH1RKgXAb8LqEFmUHhOfP9yM6m4ucSOQ8FdDifPIQC08pGt1wy3Es5jMyEtZadrBHuqCGsLjwei1zVcjvhY+rs5nyviuf3RrdQ5h473ODDp8C9k1qXhEgQcKLIccJvrxgUubEn2Pv2NLPKSIk48B98Ypr0Qk/BE1mINIURklWa0plDsdJO/ayHaAczEH8+yReBMJ9AcgqnJEb9vzciBJj0d1ZsR0wnP7O45tiw2N1ZL9nxzULpL2nPcb0hcgUFBZzrpQ8plP7BTyt8WORrK47w1qLUkrFHXrv9D5oI0FJfm0A/UxVeUSoI4Xhg8ptBKvS04civnGireO+HWcp+7yY6MGOAQHpTTGnr+QYOtJB870vR835mw/Qc3xj4JZgpFqK5dfpgzFBmR9zfgYa8xtUskOxBItYLPV4L7HJdwbiOzt7YuQmWDHY2husfxPr/4nWnyi1YvoZbbyjcAntAsGa9ds76rJCv9LlCZMem/GsinNFtUfEXpTqkbLsNvYo/3hMTnXs13NYXJPhGbSpI6NiDER6BC8MjIa5RPk0gogyxa8iLc822BMzxXxE5QyxV+z9pwRC5wIhcE2mRiZArCDQ9zaQzmyySY7r0HR5an4dKEE+JuuJVxYpHOmnWaBQ9gDOLYW7kvWdE4TMMW0h3rU9qR7eOlOTNHwwEpRFsFQQ9dThSJyHGkj8O5gpjd97nIyY4DoYPmjjHM786h6fG6i8f/+e3/gbfyN/9I/+Uf7AH/gD3/b8X/7Lf5mf+Imf4O/+3b/LD/zAD/Dn/tyf43f9rt/Fv/7X/5rr9QrAH/pDf4hf+IVf4J/8k39Ca40/8kf+CD/2Yz/GP/gH/+DzHbzIUVrLXBwnRR4T90XZ48TCPtMzsFu4n5BmROIBWkQOunI+4v7JnloKPDL9G0L5PMjyvrnj5wfs1Kr7/vNepcHLNE5LIHAwZSmW8oykM0qa37OLIUVP+oUcjPkZtr/+TJYe4MMmUo+vi+/H07I7gdV+IQ4AFJ+xL5v7Ii6cn8u35SJmEv8dK6C/2OzPn7NqlO7tjNjpwOd1xOfmMWnS03eq7AZIM4pxFApcxFmK8Hqp+3FuLZrkbcPpLty7824Y9jIRdjrW8w8TUH74+E6/O29Bx8XcGy26YBTsg3cLTnGjuoUl94t0z/GJ+z3YkWcyahILyFngm18cY55gerrs5uMUgUVG5sBnnvrYcPfIXF5qG16e/n5HOKdC91sqJ0B3AgSWjrY2ZlTr+/vOTNF+Tc2xFH+vy8JSK9fdQXbO22Qz02ROS9LYxDy4d+PWo+vwNqL/TLhsZPoi7c7P/YeO85yTYnKYnJjPfcIksDnuwPzhO46xfJvmk3M+hrA9zusO3KywePT2qSIUd6Zo1/10wfLdiqM2A7noJxU/n67n/Du/Z37Gnv7JX0WgYbTxnu3+H7lvP89VFKGztRuFAiUY2EGLhMUQhr1hKY+M1BN1v2FlVomAeKFIZZhRa4Ioc0ZxVl2RGq7HZ93SDqI85hGSfWcIgDOZqF1YjYEV0BC/xvNH+Y9K4VhZI6BxOshIUBKss2toN4YF4xfwJMsbtOKMKE12RaQy5fMz+BUInxSN8t5phd+B2S9hsiBTA6hTgiIGNn2RMjVLwYjrIqzsYoZM99gQgjkJxrRosFMDx6UlsMk5PUuu53rik60i140B3ukmwIKIBxAVT6ZHEV/4vI/PDVR+5Ed+hB/5kR/5js+5O3/tr/01/uyf/bP83t/7ewH4e3/v7/H1r3+df/SP/hE/+qM/yr/5N/+Gn/zJn+Rf/It/wW/5Lb8FgL/xN/4Gv+f3/B7+6l/9q3zf933fr/pYLjUars0Nc6YcIj0TNd5VYa2zPfvsgRGll0WVadoz0zsyFSxSeKwxYfswtjEwm06OUEvJiT+FfGHkNUMqcUUtVP6+dxCVFwvF9NeZvR8OMBTLsJnH4IxXx0DPBWSyJNPrIt8W73WnJ9W5p4+Oj9kXwinImk/7+XXz334AGCEG5QtwccIM4hZVKPtvPMufA8TdW4jU1qKRLlDZc79HRRSniZD/lGMhjP4+g+LleNGxYnM2p5owbGaW4LzQTrASu20hUlKTdn/ICg9LQWXrxreew6YelNuwo/Pr6ZrNe/jyUsrplD7cgs4nffp5Aq9J4+R5TZH0jMznY46tfeM6AcX5/ZIwLK6lYhIeDZ7sW0Sh7Av4XoaOpgVWejlIjOnpfhnW/Gc28Xxw590uj8kj5z9LgOcmPCGEeRiRHSxbppZUaWOcFkbJ1/tpc0+gJaBmWNE9vahBQ52uV3zHoqcKIo5ruBbn9RrPteG0AW10GsrmsM20FJEa2iWpE7f4yzk12bcddEj+bsc5xw2N44t7tutPvuNVfZlSnMFC80wh7DA3A7cY1QfcnlE4AVLwEI7qLOR7OciOtCHxdx/PtP6fEJ5xGsIT5nf6uHNvT1Rx3F/jRaFumFwYw7nUhTYMZKGPTmFQVejmdHlCy4pzRykpvo00w/CBLIZ7DQ2EGFo8vDq8UB0u89h6p42GWTDM+/VzEpoE4+KTgdAA2uaW+o7YH0ymDmRw1EgCJnl/U8OSDQ4jtRF3qKhDD1Zk1RBQt2Hhg8NgWAfXvXrPvYdBnwpiYHTMDlfiqTMKV1/dM8MWEAHxh0ha6oZnGk8MCoqWGGjdB1ikxVQ10lypyxljMHqCOw6vlr0AQkDEQkibweAcmW4FlQsUI6qQRrL2OXAwugco+ryP/6IalZ/7uZ/jG9/4Bj/8wz+8/+6TTz7hh37oh/ipn/opfvRHf5Sf+qmf4ktf+tIOUgB++Id/GFXlp3/6p/n9v//3f9vn3u937vf7/u83b94AcCnCtRwbqe8LQyDQa1pCr2VGXkFnD4t8N7OTpQimQjdjjDABijKrWICLCivKUEeHh3+EzUmdFGFGK0KyM25o5sznYnXEcvsdJzD7seGFKPLIJ8+txZm6mVhVjlQQ+9/CTOtMRuQUWeeGcJJWnN6rzO2N/XczvREzIYru8jw+xEZ5XPvmedqw3NlTJ+bQunMbznXRKFNOncXZ32HvspYbyYzQPW0foqwwvDRmg72dQTktpPtxTBC0A56p10i6FWeWmM6t4GgcmAdZ4GtXAENKoZny3I1bd96NsLQOsvnQ6Hx4kc76oe/0+A5b+/HchxvZiWmZIysz50xPnhefc7onkRKUZP4OxiSWQkvzqOMTLJ81ksDOlKFoRuxyLFbH1pZJCz8pGHwea26OyR6eD9IswPfsnZMnG+NvdKbRmOZgmYZfkvNplw9mxU+x4/VlapqEiBJ8pk3mvTm+c2pX5pksml25VSkW6ZGLpHswKajOAKmb01HOPViA3R5gx5FzHs5x/2JO/0rjxI/3nl738hrn771E6fU+7oNpCPlKzyAhvHvc47gh1jYZx1x5+fV+SiEaffuP2Ph/UEqkCEoGH1u7g0OVKyY9709UgASoUAjIh0tB/EqnoaPQ1w03qLXmWLujInRR1kUpUmgORkMpFF1De+IDEYubaUqtF5blkum90HX0EWX3iCHmL+5P3P0JhJVZJSWUTGUkINlX8gwG92vskSKCvS9WsPuEf4oJgxEdx2VLs8y4+d1jHfScZSEEj5SSe0E1qm/MUvy/L+oBqCKQHJQycl6sObcEE2NYR7xQRVhZMTQYRLmjaARjfmdWZjEyaPcahRKpUZxGnNM5d19bR+5AMhDzuL6pgREtiEPxhaqVzW+/wtj+lR//RYHKN77xDQC+/vWvv/j917/+9f25b3zjG3z3d3/3y4Oola985Sv7az58/KW/9Jf4C3/hL3zb7y9FeKglUyV+SsUEnfmwVK4lKiX2/S8nWqlzSYtNarjAkLi4HjfGHWwMal1isRs9LriAmyCZN+/9KI+MRwqtyuAsi3v5mngdIvsmOwHU8Oju6Qhj6ing0JYwFfRTKHveWF4uLPvmJx8CjNPWcvYIOb3oUJmfw0JJenKCoAB60fXT9ujMyYI1iT4VVeKexH4iezmuFtk3iTEyXpnXJMFnCNCgFI0IQGYcOcPTGelNevvleQM7EDp0Bce52tykVD6ING2/7pDrLCA+wjE200YPxXjf4cli8z9Q4HGNJd+/36EP1v9vu85kes89ZZ3zDoeo02QfvR+ca9yfaQR+Bj/zOCaLOGOz8+bpWXG0C3IJu6fJ5hWX/f3qcXzTW2KmXqdB2Lw/c011sWOOwqnKZYLH89hzJnUPp/vmjg8Lcez+HDtjEqxFzmXNzsISlWmNKRQ9LbCcKp8+WEMmJvCT2R0YiyhrSZdgnWDX0oNC2HrY1k8Ecr4HH6YEz8Zy+4tOr9pXjj2dJ6d7fb4CLx/72bmcyuhL/GfG6J6Or7kBCwxTzCybuTqzxcc+EYFZnQVg1jG/AyGoFHSvGIu1rkSpsJC/K8CIDr9usalRMFHUV4bfWJaF5gX3hlIZshFVPZUinaphmhdpjwApZpLNLrPyxRUbTucNKjXFq455YS2CSgUEG5HEGxbVLuS90BzI6tPRaJbhxh2bK5xOy4NMo870p+b+UXQWPGyRXjmlNadB3hTegtJyHLk3allQCdChyfIcvdMikEahWYtjTobZPATRpQhYDzCuoKyhz5rghwARqoUtnWmrXCk11hcvlntdScDk6VIcXxwMqjISAIrEOBOf+0ZkKUQV9RDhujSCRfr/M1D5/9bjz/yZP8Of+lN/av/3mzdv+P7v/34glo8iGVnnSmwI2ECsI7Xs5VARfKVNce4Wkl1VPUurahVqrRTNfsG5YJmHKnqtNRTs3eh9MGxKYMkx+4EIbX5PHOyRiz9t9I7uEaoAWHriulKsJ3oOdsdSoY4ARfYOwtFfwncK+0Ddx8Y9N4wJFohP2rOu830vjeQO4HH+eT430ych2ovjwaMaaBHnsQoPVU4uqzBzq6pzd4yDLeXEJO2R+FFdEVGuvbi+xyJ/jvRePk8uxHMjnQfvsXvuvxzD9xz2kW6a1/XYuMjNMNgtgwErs8IldB+bR3ogWLmpGznMlM5XcS4/5yB5ArkgqONaFgZlp/TzEz4YT+ZCoyTMeLkpnu/p8bs5OE6bag4U/+B9cR0nEwODQfEIYM9mezJTYidfiX3zn/fxxHp9uM+GZ4ru4GWvJMkbOoHFy5MKEe5+ziJItmkQEfqZrZCZDnx5jY7x4y+BytyL5rFpRKN192k5TmTqdrCOS9rT57Xd0z6nR/ngxnwI4E5Xb7/H4Luw208v3al4eXnnT5g5Hqp4SR7oNJ9Kjt+qetjj55t9H4+ADYY5t9tGv9/2zy7JIJkZNmApCyIFU2dIp5ZCGxurFu72PnxMCHHF4Abe6foUfatYcCKFooCogTm9RzWOeXbUdmEbDfPBTAarOM02tG4IF5yoImotruJlAfE7Wh4xc2opLKXEdyApkM0ydcu0E3NG+FHxN9d6n+xL3IlIkYRWMNqrjBDnkgLZLG8edrA3s2qS9E7yaXYpjqUlQXB6E0Rmq1adgzPkBi6OeUcT2DhxP2tqTpo5NiwE6BJ6RfGCe08AD9WdoeAULNP5tVS6bZMeR3CGb7QEIYpSPEW2wwnhrkSwYfM8Ivhrn7/o578sUPme7/keAH7xF3+R7/3e791//4u/+Iv8pt/0m/bX/NIv/dKL9/Xe+eY3v7m//8PH5XLhcrl82++nNu28wO/5eU1Bq4WgTjUEYyYC6cK5W5hnGLiX02UepiRjYrlKzgqhMQ5Tq/nlc0N8Ec77sYzsFhSnRQ1ycfGxU+HuuUkZzJg20GrQ/FPc6Lnq7aA+L4Duq8lxKDM9YM7pYkU0HExepozkqAwQYZcsTmdplYiuM97YI4hjnT3SJRXnosZaovdMEUlgEq+eLMZ+A0+LtezHPO+r7Avz8avz55y21fnXh5R1xCrHV36Idjg2qPm/+GWCpyxrza09SrWn94gJbqfOvKWwSAUKQ6ZjywSGx5g4tJUnIH2c8h6dBM8z8BnhyVQcnKpMEiR2lCEl0z9+vqznWw+zlPH0++Pvl6mf4y+ZdUE4heERS8e5zy7N7GP227blM0Oyg5Dj3/O+zNTQS0AVG8Ysszzu1fnz9z/iuxO4yHdACGfO4gRhmCPJPhg/E5iKSFQUWaFrfn6O2KkT6hbuFuYVchzIBDWne7KXj3L8fr6Gc3WST6CSBmp72sojst3nlQYImRPq/D4/0plO3CgPivmo+hPhWitFy+FtBPt5www2QtQ6+meY/Ty1VGCKrOP7SqlUdRrvIewKgca1Vi6lsPWOs2DW8eEM3Xh9eY3ZO4zKRYWbG+LKUoXeBTw8R4Y5RqHqCl4xf8Zo4Neo9OJGdOVeqbLSetjWi+Q18A2HcFfVtzy3ziv5GlIEkZ4lzeQ5lNS59Fxvl4O5PQZdzEcXcDv2BhwbpxTyZBoyJSModTcSnLPOEqie3udhAHcYyh0zVEecV6ef1q0MmHzKeKPkpKTJnKT53VKUbi3fpXQ7BQAemYhSnGEbvU9lk1Kkxvrhuq/4xStFF2BQqqd7bq4Yk/7J0ada+LyP/6JA5Qd+4Af4nu/5Hv7pP/2nOzB58+YNP/3TP80f/+N/HIDf+lt/K59++ik/8zM/w2/+zb8ZgH/2z/4ZZsYP/dAPfc5vHMgLYc4h4yQXuz5CJIlNwVxswuEblVu4TxowEK+5c28db75jjZETvfWOuWWFju2bzDkCnamL80SfxxNUoJ/SNpM0nYM1Acosb8yFOczO/LSpR0nmBB9nkDBn0ZF2SkpSjsRHLmvZ5O6IBubEK8jLhS0XoebRlkqy2mQ6pF6KcylyWh9TlGYQ9uMHOJlJi/1enTaRmaKaCysq2RxSDu8MPTmhzqP2ec/PKYTz835a9I/zPMRpL0bOrk/YmQKbkX1sllE+G6+dPdMiTx607LIK1xrXzZglm8JsgeB5X89LlGRdr+d4i5LzWY4cCw+jM3VPM8aOdE1S08IuaH7RTfV0dgfyOEXePp1u57vOtSwpRiVktZnEi5JpInetIxkf8XB11ZluO+aHpQngGQzEdTjV/+Q9mhHqy9J1w0+/m6zHLG8+369jPMn+94uCl/1On/61jyE4YOcB1mZF0t5HSQSy8gcJmjsWZqWUlVVjQZ9muLsj62RuTlud28BGDzbVPUuuDwAxAYx/8P2zT9QE4lGXlmOFyZbmKNiXD8HN0BPjJcB1XViWspv3/UppJsdprYE/U0sNV3/PRTapyKINrYU+2H2kHKdwoY+OsNBHmKsLCyoNfCBSWfO1SgW5ZznjI7CE1kTCPyX6+ozc/wWXHlE/HckqmGBSL2zjGZElQVvlUl5z55vx3cNg2QK4+RL7hhvX5RH3Gy6NTkOscFHB1Fl0xczo3rERZybiSFGqlgREPW33nTnL3QiWBpAsF3aJCHFe791eQaLmUmapb+4dL9fMeWUFXAI8zHEsIVgH8FFz/xggG92N0Yjgx2cpddndcGNej8we1QBVOZCjd1FH1VlyvbJ5L9ILaabKiipFK2adzoh02ssp+qt6fG6g8u7dO372Z392//fP/dzP8a/+1b/iK1/5Cr/u1/06/uSf/JP8xb/4F/nBH/zBvTz5+77v+3avld/wG34Dv/t3/27+2B/7Y/ytv/W3aK3x4z/+4/zoj/7o56r4gegOu+5+GiGEmgvrTAk0c8bduBSh1DQcTnCnGpyBiONL3Sf8TDH0MbUg4GOwzdr1xKnAHvnMYWZzMM2Fcy58eySYn4kcmyEk1e/HBqTBoIQJWJrsJD24YNnW+xA6nu/9Ttn68Zu5QU0TIuGoNioYVaIkW/P7xUdi4KgMiShAuUjkZqOEjR0UqcKS3WxrCaHVsDBV2ztIT57E5cU8+yDYjYX5XGo/ZR+S3iofpNcO860EBjtte2hW5uv29xxXfo90JtA5f+4Lx9a5ifqRfjhvdSKKasLP7hRd05lXchM7bsmRb54qgXjMpn7TELBbAKLI9sVCovFlx6azX4wDAoaz7XG2Z3ZtP5d5PD4/zw/Q7LN8H5jOnztDcbABnjfIsN3Wvlj6LZw294n4fd6HF4DyuMaxaTt+BiV8kP7ZS4w95/7Y14AD73ywGs4p4fOqJ/jZ77xkI7q5Sdh+T2f1AzKvQYDBosKyVtbLJVMl8fodFKjs12x+7C769+Nn3CMF46f0zizzDix0fA7H3zNVt78eKB7XTvdrv5/+MUeIzXApJVMTB8tj0Yo+2YbjXvPiegYrMfo7NL0zpjvr6IaNxlrTwdRBxCgUii9YRvfighRF+sC4seoC7pgoi1QaN0p9wLswxmNs5Bor3vDoKm4YWgpoYbRGlYHqhW6WukSlueF0luWCe8OtIlIYPCFUblvjWlekFu63iugTJjUAJxuO0PoGySQUXRB5ZhjcmqBSqLrgPnYNVkh/nGGNEKReqXWw8BFDOqUqnWe8G65K48bD+gmiSvM3GWA38OiqLB7BGT5TPaF9jHE1W08cmjKffaS8pKYsxLguI0rCvYTrts72rZ66ldgfDEetYbbM0Rhr3hgv9WdOpJtwik4Di7ID/mD7U1UnUH3BJYDk5318bqDyL//lv+R3/I7fsf97akf+8B/+w/ydv/N3+NN/+k/z/v17fuzHfoxPP/2U3/7bfzs/+ZM/uXuoAPz9v//3+fEf/3F+5+/8nbvh20/8xE987oMXH1FxMyOM840iUhmei72bcBUNb5Sk5kLvMJfmXDhz39JslGcZEaiUoPpnBGMSRm0jxFh2XhJ8llhumLVcdLMJlA/MNsboRAeXhaIXalm5LFfKsmIEwFIvGAt7Z1lStEcg4T0HeNqg5oJUspQhoqxYtmeN/vSQUZG9auFahFUjv7z1FoZ3WUrmnpU5RVhUqaXs5Yv747R5j119mhUheT1jw7E9wnT7cDvJzeBYfmEed16DWIB/hZQGGa3m5n5G7i8i53mvfYoZX4KTuaOdQabbscnvYMWOzWz/Fvcj0nZnjJENCIVlKUfVyaT9ZUa85/OYUU3cZzsBF0sDhclwnDew/b2J6iYo2I3dcqwE0D6Blf27gu2JG36+HrP8OMHMDlhm6jQBgy64DpqN2Hin69cOiU7yXjm2XTy0Nft19nkpfb/WZ9DyEuRkRPkBCHWOiqDj3so+KPzFa+Nz4hoF/EM1+g1pSfDITqGrCGVZWJaaAu/yQqB7gIL4OhEJl91cXDQPu8gBWkZuOs78JXmtz2DDmSm7M9KfrOu8N3t/pd3bJl4Zvz9N3DwvmQyP7+HMMe49NX07kI/19enpl3jz7n9IV2AL4bKHwHZWV229IxKdqUQWxBYQYcjARkU0QZEaaxHaNii1YN7Z3HnEaK4woNSo6mmjI7qg7pg0VHNlEwepkZ7whSI9PExGD08sv0aaUhaczrAbzWDJpnneazKTUbobPNkaawCFWgrVF0Q3xBfuw+lduC5lHzJOlhhnZc+wWFtHG1zLFbXwDzFvwXj2j3gq3+RxWSjyEVLvwAPwDrYI9hZVzBc0izxGd2bPojGifUQMW8Os5fhbYiyk+NCkopKankwdB7TpOariXYWaZnIGmqAo73l4z+YYdHJ9E5ASVhEyMO6YtyP2o6RjNEwHG0nh/ed9iH97Mv9/9o83b97wySef8L/73/9veXx8BGIj3NmSfUIdQGVYRPtrLdRadofKY9bazgbEZhg6lq3duW9PjLGx9Weip0PHvNH7jT7umTe+Y37HfTDGNxP9zmA9F3IZbL3hI7o9IFkS6B552gFaXnN9+DpL/RLbcMyvlPoQC2e9RAdKDKcguuRCwB4xih4ipv0J1UwRSYq5YpNUERaMRUOhHo0LLfu1JGMzJt0YlVJLDaByRNbHNdw3vWxhT0avu1xU5qtIt0Y4Q46XgCGPXo73zmPemVE5RdV+pBKiNNCOF81b8CJCj++02SF4puL8GD8zSjcj886+j5uZRpwR+vxbVEOMXfSD1B+sy8r1sp6o3f1yvDinD/U4c0PhdEv9fM1fvPgEWl686fzLD1IewJ4T38GL7599sBD582mTnIZTL8BlgrioCDglJZNd+/BxAJATMELoIzrc2hSs+wfoc87gHXz4Pg4msDvDl5l6+eAkXoKWeT+1stSK6uF0PEX2pUgIFGsAlLIHEuwgd16r8P+YgFY+mDcJCiD1T6QQ9Rz2+DG3Z+XP+bvmD35oXFSOyriZNor5M8fkOZW0DwBOn5as5ukoTszWtt355qf/PW/e/StqqVnBE2tH21po2S6V5tkR2gtVVmKFLrg0mjdUBgONppseDIzoinOjiKG2sLlRbIkAphhbd4ooixaGOpflkW6d5/t7lnpJYNt5WEIU27tR5JEiwm28pdSFa2ncerK95SPUnrlZI9IrBixUqZRSaeMdSOOqV9wLyxLOqrcWgtilZNWpKFUW3DdcNrrBIgs+GvQrV14R5TfhfCu68PxuwKtvUnnE5IFaBuvi3FpjeGcpMbOKXFAUY0PcQpibbQ6iP1C0E+i9MXrfq9eEyuyDFJ2cdU/pheh/6l48PQhTD7dPCAEXTDpa8vvI342yA57JNp7F6Pva6dETSbyE2Z/A8+3G/+Z//X/ks88+4+OPP/629eA7Pb4QVT+/0uP53pDSd8ARpl1KrXPBzMUny6qaGVsfLEsN5fW4YXbfWY5te0frb4E7z7d/z7ANXBHpdB+or6iCZYppF7smxel5Y4vmwjOyqRrsNxI0q3vipi6aWhNxtDjuz2zbv+P5ORarMfN+boyRAGAuPKJ7hL5XpUyTndPiM0vbNMvsLIVXIBR9jWplWV4BhVIeKLOFuK6oXBCBtX6EqnK9vEaL8nD9CNXKulwQNJilHOA7UDmg9WmDib8n6zL9LWRXyJ9YjP0cZKccY9Dn4jvZjx0IxYIdJaizs+kBFtyd1nuaiU3wMXZAu/e92dM9h57IdzDjJwZiplfmQp7nujW0FNZliRgmmbuZ6rusC0uJGgXZUclpA/+2H3M7m+fy8iUvH/tG6ZOs+LaHv3h3VAucGZSgkk/A5AxU8o/D12VyCC+PatLA+7e8vFXfdhLznh9PxmOM3b0nQGWOrfNi6MP3ktqRKZTKLGU/jtv8uBe1FA4QnALYPg72ZgoLreMSlYBLSUbJo3KiWY+2ciXSJDVZmP0a5AnPRp0Hi3R+Ph4qik/hP4LbuWLqAHLIyyDkdFeYN9wTOE7g9bIS0Q/wI8fnT18a3IPBBcR8BznT2TtuW2eMd8wu7D5N0tL/SLIFg6Z9fG/C8IpWo48wHFsWp+gFt8YiEqLOAjYaXToXVjYHvFJlQeo9yqe9c1lCgKoi9LHRxhZAyK80exfnPgQbV8QNKYPWHeWBa2kMCsM7sFIQuoenjCtc6hVr4bdSqqJiDF/pw3EdWBOabUjxAA9+ZzBQvxD9hshS60HxB4YIa12xrTOKgN/CLdY/Rl//h7iaDtBAO/deMa8JHApjvIuEuVi2hDDMR7ZrWXCcWh5YZKWXd4yloSh9jAT4kQloLXql2Yi0rJIAPIfTyHS8FNuHV3RPjvN0G2yjI1nhoxKePNH/qlIUogljfF5JgbcS4uOpmuves1L28z2+0EBlzKgtp2vk9DtthIjH7U7Lrpt9PNPGW0b/pWA8diEtwBH9xu/jQhbRXGsL1ULUhPcokxux+c+NJH4IsyG3iViNu93i/VnPXyVpylzcp+Pr3C1ny+0ooQ774Wj6V/Blpk9GNOTyGEAjN9u5cMm+qJzhlGPW93VuUujN3uI49/svs0eop+VPpVBqCXW6zkhROKCWUPUT1uVrrOvHLMsDqiu1XKn1Got41txHV81gdWYiamA0FyRbf7/YzF7sZBFF7CXN87LvtZx57i9seOMsJoewizH3je4MRGa6aGpQbHcrNpusSrIp5zLwBC3zkIxMUfXIE1/WJfLoRDqvP9/oo/P6euWy6Gnf/k6Q4oicfY+9/0dAygQMMu8R+3teXpEPfjpRODPSTulfXFU5XePvxIh8cFS7W/N5G/1OJMB3ONV46DG2Sjk96af/mGiJ6fcx7/MxGl6yJfNrvhOJHE3uzixQ6pvMDhG4x/yZDUOnKV1zEK1Ql+x9dKQCZypmXtUX37mzfvGHZbnqrg3K9zNZkBMgn6lgn5EYB2R8UZ6c77XU/cwX6hTL5lhvGUSRzAgpUq2lsNRI9Sqhh2rtU968+1nqIuANCAFwHxIbqoZOQVnCeZULyGDrd4p+HK/hwq0/s5QKY4R2Q1bMjaoLo0f/nos+RvpDlXs3SlmD6ejPLEXDs2Y4hazuoaNS6Rb6w5m1UhZMOmbwtIXlw2Vd2XrD6CzlNbUqVZ232zNLEaw1hpc8bwIQYyAjOwI7I93HFQ8XWlOGNYorjY2ijm0d94rRA0D7SuMZlxtFvobRqOWGyCNt5Oi1CPwuyzXXokhpdVeqXFNEvSC+4nZBaNzajTGER/mYVd8zloVKAVbsEqZ7nVumIWOc9y6M4Uzholnq1DR9WcgKM/cc15kGpoDXnCeDYZpj3EOf4/E8kB3PjWB1rmzl2+ff/9TjCw1Unp7/Pb1HLs3sDrbR7VPMvsXuc3FAiT2EmPULs+4m8pFjLyEuFEQKljfTzaKV/NgmJCIozLnoGfVUIhhWx5IL2hI50OzvEAxNvnaPagp1bgvSk44TbLcezpp5NBp1mbDUeiBfCMV6npuo7cxA7AglB9Bx7WLDPaowZityOAK2MLMyendcbdeKVK0pzprMw1u2/p6tB9V3CsP3xXmP2HCEC1Cp+gmiC0v9CNVL/vyAlgtLvaJaWDLdZSLhi6FTJzGrgPSgsc+U+4xASfBB1PePMbKFQoKRjJ53wLL/3naGZWQqw01Ogtq8vnJcz7O+wcsBGpcygWym3lS59xbXoBZ2M7cX+9j5H5M94MTAnO/k6V8eG9IEohC6AbMsscQZ457RVu5L+W1jNERCBDiFuNbvyUbMY9SseLsDnTHegBt9vGXYO3b7YK3gK6V8hOoDtb6m1EdquVDKQ4zmslBL3HcctESqZVZDHGNoL9/IGTbP3HFmmXwO9bM0ef/rPK4zijxBw8lYGAdjqQilHqwLnsyCZnn6GIwxclHf6ShmZdjLlOgRmBz3yPf1SRJ8DwvWtIjvjst7s0fNzu8IU2k+MsX5spSffaydx4ieLlwAMUltShzHZGvDPn6myFOPloduOGM0bvc3R8AgSmFJkeYW4lrVNMmLeTWGU0oDLmzjzrqGVb4S2pYxBPcl9ECyUX1gXFnUAoCYRRUmykNRMHINWigF2riDtzh2lt1yAemIBgvh2UywdcdlIFxY+Zjn/rNo+YjremXQebq/IXyLXtNojGHpILsAFeMW5elqISkYlVJiDosbbkvoXFxBjJVXiChNBxvPFH0MF1h5RuTLDApm71nqwr3fiRJsDd0ignph9EG3G1Kik7KnoHi7b/gwlCdc7ozR0fuXsKtRpMDoiHyEsaF2pV4E9yfadqUsoHJjWZzhd4o+IFLpLdoU4IYPoTUJBnsWA0g2z/W+pyvDM2UcI87ItjE33LPyVqPsY7j+18eoPD39d/jDesxNZEeAM1hR1SyBk/SliAgtKmymQDMn/4xcPGgqdQuDHBsMk3Tpi6gBJPwjojYvN6oSRlX70qHM5n8RfVt+LkQduqQ4NyY8aulEusyYDafHZmnpjGFz8TsYIaUiZS6GR4vwKMGexxbpo8koTPo3XEWDtjY3sEN4GakYOzZjA1IMF4vd7KNyCPTEUyOTS398je5bQSzmN0Bo/T3dekSWe1OUmXogQY9Q9CPWy9d4vH6ddf2Ix+uXWJawx56l4DN9s5/xznjYqbR4siOTQTlSBlElNBftyaSkiR0JSG32p5nMV0O5QQLdYIWSOjXF7TU+Hukprah1QcoFcw0Pkk1ZauG6LJSyHPfV2cGEWcM8gAZAb+8YYwt3Rzfa+Ay809ovA4oWCc8gjmsRI2Nv4k5uITkONMH0wKVniXWeQ266+JmFOKcRzjSJsDdwEMA6cKP3tziwbckC7LfZk92bG+QE1sQcKV9C9TVVH1BRLusnLOXCul4RCefmbnOzMO5bw01ZFuF6WSn1guqSAUV0JbosjxHtn4OXBAgqcF0WTugmNAyqJzB8nHstC2N03J1aa6b25pyMMQTs71NNQzUketyctWB9ApLYENwir+9GClOzZ0uuT3Ps9mRgAkTJfh0FooJIZNckuMhethrHZDuomt+DRzXTMp1NiSogO82n1p54fv5l8KjfCcBiuBWKrJEW8+hIXJIJRgdahG3rYRUxHJM7JsrYKuaNUh5RabFSDMXEWPUKrpg8Y125LJJrQoh071uPsmGpuU711PAt4OE23rtSs4OyW9rb+0LlgXe3NxS9Ei6xDR8b6msUAtvGsIoQbrjDwa0FQ2MO3jFb9sKAsFNwmvZg4qUnqHaa3nnmOcaSV565AYPCBZHOw/IRSOgeC6HpEbmikmujFopcmaURRct+/8LtdcPlzlo+Znm8orS001gj4BhCkYV2f09z5b7deLUubPaE6yOLDqRe6O0ZrRfwHkDHOuulJuM64vpl08e9kp7ssiyKSehdgqmb9ajR885HODAtWrLfz+d7fKGBSjwO1mRS1b6nVxx8UIiBn3HjzmRMq+S5eJoRrprScY+NoWilyCVKbvdoqUYEqC+jIoHMxUdUGxNcj00zjzicKMIzQGQCndgQlEDiMSFh3/iw7KwctarT7yXISI2S+4wuJ68+i88AUEcoYe+cx2Lu+H4OUKn7okRu/GW/rvmQqAwJ++3pnhgM0KScd3O7c0R8iigPL3qLLqGT/fLwGnGC3Sky7cXesW3vuN1/7qgAUqXoxzxefw3r5SsUvVLKSi0PYducvShmVOd2BiNx7nE9J2t2aGOCSYkSTJcnwFDuiN6oPAFPIO/YI31gVpoxWTwX7A5Pt+8URee4lUnV6355zvyI5MU8RMAzog6gPTcpSxZFCI3E3GTm62eqYLYliPGQHaFcgS3TYjOXPEV1R/JwCkJV5j2dQIP5LblZZi31vNvzuD3u91HVxcugf75fEkyOzzD7jOdt8K1vveF2a4wO3/U9H/PVj7+G8YzKgvjC+3fv+KVv/SLf/PSZL3/5Y77/+7+LWtYEcIPn5xtv3wjL+uv56le/n08+/m7W9ZHL5REp9dBI7eeQ1/mksXkxfvPeyNSj5HoSbrpxzkXhV0qT1VKgFGwMtm2L9KU7pD+QFN1dUiEiUvpcB+YY8v36HuzxHEO+jy/1D+4/ZHl33scsNID0J9KsMksB81FxFcf+/PTLfPruv2e9rOGfknPVbYLUS4wVj742wwzVSwBg2TAbdBVEDPcLlr11FtnS2+XK0Bv4JdZS3TIFO4J1kSj/rSTF5Uu4iuc1VwrOwvBngkne6KIBWovTxxbW8KpsfIvWlY8fFsyecKngDdUH7nZjs8GrGuC1uNLlhsgKmsyXVsaIhp6zOGBwo3gwDmv5mD7u9NIZfqPaa5o2nHcoF4bdUS04jWEVeMvWC9d6iXWRC80bw58wjwCkChS/04ZjvmQdWkN8ZeU1Wget3QI02CPSN6oIXhr3/kSX97x6vIJvdAqFgfKKbXti+MJVYQyBEqYD2wh2r5ANfItTywW9RNVPVDVGSm0YORZDSzRXrJ5MZbB/lvU/n+/xhQcq7tF98my8MdmGY5lQCsogDHiiN40zW29Xnb0csgelC6GYJhA9bf+cPTeci3xE/3YwOHNzFY1mVbOaIhE2IsnqeAIU3xdzJxgVzDMNE9qOMHFaQVs0DJMsFpNBkYXZnXmyJPFhJS+AZyOpFOlppns8OmoikuccC1IhN59d6zEXxMmMgMvctHKFFjsYlujIeGySJ77LKXsqjTT+iUUtv0pmNdBJkHgCkjU3wKMH0Xtu2/+TrZ8XYg8qUtbE8+T9sYn1j89lDWYrFz0h+maI3Hazu+MeyQ64zr4SB1iZUUSAlimyjc3PEZ1Hc2CZGc2PMcGt8/R8o3fjell49erK+6c73/zsUz775sYYg6qFjz9+5JMvv+b5dudbn76ntTsBSyvLonz0ySOtGW8/e0/vAxfn+rDw1S99HALEHscsNXxAxmi8/ewdrUGtYdD0ta9+hNERr4l7B9fLhVsTPvvsPb3fAaGuyqtXF7ZbdlQtnXUNrcH75xs4XNYL1+vK2zdv+exb7+jDWdbKd331SxgX3j+/5VKU6yvjtlV6e2KRFa3C+nDl/b3z2afvqFLxX3I+fvxqCAslFkNTY6lXatl4frrx9s17Pv4k6GhVR0qh23v+8y/8n/n5b/w0rx8XzOB6+Rq/5tf8r/jyl76X9fI1lvUV4b18iHBzwM2p8PJ3MpGl76myOT5fyma//e0RDStSl2AtzCgWQZSmGFWI4D3Gm+Y4DmBdNUToY3gyM7mG7GtJiiFTuD+P80VKaqZKE3xOv6jDw2YC91gFxmi8f/5ltIYYPCJmQ6Qk+M9yYRXElDEaqksECQoqnYVCl4FLxa3ifMayTGZ24e7v2Fy5aoPxAOXGGNG5SlkwV8xuuCgkIBEXii7xXRSGb4im+zgjQavjPih0mi90eQKcx7VyWS5s241t3HmoD2zWed6Eh4tgcqdwxWiR+qWl0eVjdh9/ZhVY9JHmAQqKFUTCVqJpi4aAQ3EtNO4BiHTFvaE+QmYg71EV1nXlcXlNVEkbjEYfkW4SeYhqJ3OGR5k2dIYtLP4xbs7Wn3NpWcF6CGF9sOkdVlj6xxRRnvw5hduR+hFqCPwlshKrLmwNKsJFryDPDBfcC46iNVNwZUFlYRCVTsqCCrQOrbfQw0x94e7C+yJZ+at6fMGBiqDR1BtMMWkEtX14KARp4rtecN/Hk6UQybTKvvklAJmbapbe2Q5OiEV+F7MdFRLB0GR7a+J7KQcjIQk8gFNKIqNYcYa3dPYDcUV1MHz2Kmp7FLtvtqXCLPnUSbTNyDm+cff7eAGKDhZq0tJmsdFBoOZZ/WFEVcg5Py9Ss4RbD4Agx8InTHo6rugB1uazySCk+jxSJXk95Ch0jZ4qUcGjp6g3wF7e1z16P/ijyLtvpzOMdutnhiGOq+3VO+LC2MtfJyOXDSr3Y8/EiU8/F3Zgwv7ZhMbC5xiLezxGgEGZHUk03vf23Tt++Zeeef98i14Y5ixV+PijFfGv4KZs3ZL5EUwGb9+/pcvg8XKllsroG6M7g8bwBX9z57quLHXFRmOI8fS8sZRnPnp8Fefn4RJ5vz9jtuJeeL6/RzZBrNLa4JMvPcAIulx00DYPn5S28f79jdYGWgrb3bnUBbc7qNNbMHVbSz+JYWwtWbJaaaOzbZ1PP3vm1asb93bD+xVUaOPGtoEug3sTmj2zaKGWqITZto23z9/iKx9/hBPVSkGeRQDy/Hzj/dN7Hh4v1EynVRGqLqGx2AatxHx7Gv+J//SL/5Iqn3Dvd2r5Lh4efi2U7+J6/Spar9R6SXbuBD4mdTqHxQcB4q8mXpweQpOBCc+jHMlmKVycKdo5731P0WgyuHX2MRON6o4x6D1bDbC3QAY/yrNjfpCMXrAbIue5kYq4evZPMdw2vH/KUkp2DLbYuPK7tOTm6k51w8UYI9jjMQANK/vAgQX8zlCjpibQvdEI19frUhl90KxjGoZx4hEUiRIbNQ5sFH0MLQoEKFAD39AimF9CoCvhNhvXbqH7G9blS1Q2tvacq9KVZVl5/3RDSoBf3BgtghlVMNlQqWix0JQQepc2Qiu0p751oflG9xSoypUx7mjtkGXQVQy60KWDFwpXHuSKjYayBEPkoDXKiFf5mGFG3zUjs9r0GgFz6XS/04dwLSulOVoLvmw0BpghfuXOOwR44AHTHoJhXyle6X5jKSu39pYiStFCXZRtqwxTtvGcPa6EqmHPX2tJZmWwlseAIqroukR17c5oD8yEtn3+Zj9fbKDiUZPuuwGYEhgwxDqeQEKcQwIhcFQlaFZpxIUkGZSzsM5TADudKgHMNTtjTrvxCTyyb2gk6XFs16AYoZpW951NANJIzHKzK8mU9GBxLCqFsI5hVFkwdeYuGJbGBZUAa/ntDJsRVZpxaar+k70I35exW4qbOViYv3mK96aSYZY0kyLWJRdI0YmOj2X5EKBKskJxgs40cp6L4PwZOOXmS5oaYcFMhcjcTxS6gZQ9L5xXMKJQpsPm/DzZv09lJrAmm+RMc+lYcOMeDx9JYQ+CHUqeyyczEsMgFU47ABluuGl8j4P5Fg66WrjdO599+p5PP3tH6y3s9S+Vjz66cn28cHvulKwIg4GrM7rx6adPbPfGl7/0ZWopkUHsRutCU6O/a6EtqAvaCi21TOJOaz1K9asjDWb/tndPN4qvXC7KYIMtNDpIoZaVqs/c2uC6wO25o8sT12VFvdICBuEaDpyqStEoFb8/bchFKSU0VbMnkrWZNhC2sTEbRkUUrrx7uqFp5GVubPcAEGbO03an6sJ2C93UpVae74PenV/+9A0fv76ypB+SSGh3RZ0+Brenje3eKJclSinVkHIY1fVtIKsgDN7e3vPl+ytkAcYb3rz7v/J8e2J7coa95stf/W/58pe/n2V5ZL28QktlsnwCsfEeuc7zX995ycoXmFsyKQFgC57zDkKgyl6OGozWnKu5Lp2Cq8lahnA7qlRG2hl4zg8Q6j6PJHUUUGrNSsQ5HSPIGMP2taCooEV4fn7i009/gXUtdG+Qa9cUqIvWZHoUpOBedw1bZ1DkGmkvaURqCKJ8VniohXfbM0jlUmPMdLnlKhxsSoh0G86KykDohBlaze7IPbQxFMwHwgLWcIEh4b/SpND9LZU1Ut0jBMD3AUuBbRjGRnSZblT9iIZFl2JNPcxwXILFLNToEizZDmBEYz5RSzYhUiOqK+u6YN6hXLFxT9b2Sq0tSpv7A1aF5kaho2PBC1R9QJxIm/nsdwVOw+kUHhAbbLIxJATK6kZZFmRRnj2Aj9tK1yesdx7KCpZtCtRxMbq/Ba24PaNikcKSzm080z39YiwLG/SOlqjUiuIE5WH5iOIl5mD/DK0VpUfmwuFSHzAqH3GYv/5qH19ooPKii+pMC0z+QsJkRnQGP+d4W/JGHwzDwTGEk+LIT9wd/iZoEQ9BGD1TRZoM8NzUciM8aRGEoweIyXxtim6TPtbcLH0yFXvS4p5gCUiTH5H4rLl5BvuhgXqEnLRJ5+40rjEFrSOrWybQUAXE6FguYAW1rKZQ0ihId0DA1CJ4qNstTa08K4d2MfHc4DmBmh015jNhhZgaH6VqAEiFABsiIEkfnvLsU0NQJMMOEeq+RVimu2Lhjcq7EvoXCSDipvvzTnQCLcXxImmmGqnC6VpM6pM0vpxhg21rvPnsmc/evOP5uQW4Koao89HjAx999CrEezaoRek9KzWeG96EMWAtF2q5o1VgcPQNAp6fnVqeKCtcFuXWB4sIwxdaa9yehVePUCtsLTaYIoqZs23GskafKzdhuGJjcL/fWWqh+QjGSwzkhphHc7k+GMNYVLk9bZSHisg9fH7YYBTEF0R6ltOG9mDc4GFdEB1YpiQXWejeGKPnPSKibAwZBrby/AxanG55z/YIPpqVihRUKmSqwc3Znjrvn25c1wWXMOqq2VzIEN4/d969vYcwsta459pRzdYCQygZGLTWePeZ8eqryiYDMcs0wuD2/J/5d//2/8TPyeBy/S6++7v/W777u349y/qKWq9ZpVRzPLIDFj/9+SKFtK8IjpYUy2eFxVwnlAh6OjBGj75NE8yLhH5FOGniMu00x41DKXMjy/VHch5w2AROZoXTeJt/CLDU6MQb7qcOZjw9fwstFacTvXiXCERyHaxSg+lxpdmICi7tsZ54VLBM0zofhsmgSuUiV8LAsuZKYWAV93eoVgoXoGTTvJLVftF9uLDEGpDi5GgAqdTyGOZzOiiaafyuNL8h0lF5zeg3VKBbo5SCyaC3EM9GtZIgXYEOujGsRRiskhVXEkZmVVOIPvu2KeYNQaj1wnAJUC8twNLYQnRsj9TaUX+kb0ZRp81KGrvQvKNVsCGYLcAWfie6ImL0seXNM9yfafqEsLIo2HjC9YFhGyZb9F0u4SBb2zW0Nj6ASPt4Gbh32hioGlUKLoboFgUlYuFPVSrrGq1rhAeEgsidVR/AF7ax0XgTcoKxoEsNF2E2Sn1FwbmPd982J/6nHl9ooAKSjIknqpgSsbmhkqyBZU8C2UOayT5MijXeOR1Xc1JLbqyTKoVcABKkWFCQmhStu2ZH3VyfnDRPmr1sPTff+VFRTHlUN/bY1OVUskouTHvzMThSWXKkdbwzVfx9MieQg3iCtWR1BFxzkUqg40Tp7GyoRUZRB4wjjat8T3V4FlVP1sJk0pGH+HN6rhyUMmiJ5TDK8ObP7M+TC+s0JBJWpuB0T9HZ1MNEBYUxwNZ8je7Xa/b8wWczwQAqoRUsyS4l0Mt7LVSGd6Lde/at8SxTlIig3r698a1vfsbbpzsysnTTerYugM8+a2ztHdfHoKSlRIlpBNDhuvru/ROvLgWVwlKEe89Sc4Wwzh+8v3UuY6GqoDq9GOL4Rp/6hIrKwBj0LC0ecGxqoqnMhz42tl4jVehRGloWpdnzC22FqtG7cn82dA1Qs65hpDY8wQNbjq1Ct41tePg2qNO8UVLvNbLkFY0Sb8keWypG34zLJao53CSNpAJsY5UQUUbH4lpinPbReXp3w19F3xS1CCnCxA3a1nn3/sZSKg8Pl+zxVVhqZWh2Kt8EXeK+38db1vZIJaqECgWX5zQyG/iA56dv8HP/9v/AL/7HK+vl+/jSV/6XfPLJ13j9+iuUcqWWSbDogQABAABJREFUC6Q4Xr6tO+whRj+XSjuC1gpWcwzPKrQon88aRkrRBCwBcKIX0ww+0rzghX9Q/DzZzb3SjaPabx5EsIwl//lh0ioXMonS9fv9m3F/bIBcUNJZ2yRbCWiyGZ7VUpN1UtwbRnQVFxOGGLU41VcK4edhDBZWvFfQCOr2snQHt0otxuAec9Piu8Q8XqZCKaGRGBZ6N0+vj2ILN48KvYf6QB/G5m9Y5UofyqrC6J3uMRaLRqUMM03tuRZ7rLfmkqmo0K2YtbCNyCA5UmuKtc7KwkVXRFv4jXjH+oVSn1jKx9w2jw7zpbENuBSlZWNFfAEr0falWjBLdNx6gtrQRA5pkY5J+4Naw3a/jxt12l2ogzkPD+GYK8XoHqX2sjwjfqHygPe36ApLWTHXMOgrjliP1J5UxiistWJi2FBsGFijLEZzS++UsPwvDK7rx4hegqWS/8oYFSW1Ahobjnmgf5VKkRhwoReYupCYqkHdpjjND1t2kehNE5Xi2WiLTreBeKUWZVjPOvPDh2WKJ8V2RJCpJOHcBybcG8OCO8Z/lHbFVl+YlmfTIEqlZFpr6k6AZACY7MLUgiSdPBzEplg3FrKB7eBJs/rHPdIJAch0p7LLOR8v6Y7LpPAnPZVRnFlqLQ5AEkI62dmXuZByAluH4Db0QEWnoBWCFxG0zGqggcqSN3xGoJopKQvGCDnux7wFIXzZGa5Z2ieEh0OwWUeZteTib8N5enrizZsn7veNp+d7bj7Geil88smXWRahbffQzpTCsI2KRg480z+Ocb8N3CvLOlFrXKdhIDoYzRDe81Afcxw7NgK4docqCj4wq9lArjOMndWhOFsfcV8kxsbe6FIGwzw1DOG7gEfJ932DsgjdjeJXGMIwZUEjb04CVDXuDS41dAgtejywVxfVBduCsUEDfHmWb4rHGC8UpiGZjwBHRRTTTu/RBddtDUavO5rulmoBmWxIdOXO+dDN2O6Dz948U+sDtSxht64e7S9UsQHb/cZtC7FwXBpP19geaVgviMEQ43a/sd4KVo1FlgCw5txHo5mxMJvDKffbxtb/A09PP8+bbxW+9tWvsl6+yrJ8CS1fQuonlPoRy/qaZXlMS4PzmsUxT9LUUcoECZECirRQ5m8zFUYCNBl9Nz6cacxgTXL+nSmSXCumUWEQrkcwNw3r3MceWfkRvxyBgRutveF2+3fUZaBSUK84G5KO2lKiaZ+6YkRao4qBCEM6Ys5aFtQLboOqjhRBekP8Y7o4yJWKUmxhyHsYNRxeFcTrXnId82jaTlSMuK+wUOex29SXLVg3TIzhjaJQdOHeO1UecXeWcqVg3AjWRClhRAdAZxB92URGrIkSnx/M274LsHghPE7CXM57ZfgzVV5ReWC40ccTvS8UBsIr2m2h8cR1LbTRYrWUQhvwsCrDn7EE4jYiIFcM8QEsNHeclpYE1wOMumJ2Z+FCF2WIgT+x6isKxpBggG+dMDNdVqAiPvDSWcoDIi2yEqnJi+C85Jod88ORAKrD0XKPjIEBEk0mBeFh/QSnIr7hUrj3/x80Jfyf02P4wCngI3QZNiNCy4Z6M/rPlUI8TY4O0emem8V2hJyKB+bEFSKCFMaeUiC1ChHNhFOt5cYHobZ3PNG5JvhIYazEBmsuSW3HxlakZHQfE3GCqsAEBl6SgfBkAiK6MTfUo3xs+MbwQtV1ztgAXwls9q6q+7lOkBbRqxJAIva7sEqORXKk4HYGWUFDz6ZlA0M9NiJK/D0BSQDB5Kdd9gKtk7w1AY0GlS6DKNmbiZeeACAi88FAJBbycJO14/7S2ZvwMVL5T0THBp69i6axleGUEiOi343n941vfvqGN2/eB7BxjTb1ajzf7myb8erVK1aprFUoMhjaERcWLSG6lkMoOdrISrCowppllm4xDra2IQI1WbSBpm18Qahg4RGiVygVxhafP+nlcANdSYlLALxc1NxiYXMJLYSiAbq7sGpmj3MznLBy0UrrofVAJJQpQ5EiWX3R0UxZlrLQZTttaIqNHmycZ6t7PcBsgHDHKIzemUZtZgMpJVmDQve0wk/+QTTmt5ZIX7nD/dbZNqNWoSyWC+nYQYkNo/WBeYu1YLab0NC8jNTtlAL3++D+1PGrwuJc6kM0ZPMYc6Y534h5xAhR6P1uPD8/ZSO9b+HmPN823j8bDw//DV/65H/B69ffzXr5iLpcmFYEcz0KMLBHKjkXZrVOCllPLIfZcjCVU6SI7UBwZ8NOAZIzN7fQIbgPLBupzo8ffrLr34FKMroiuHduz98kZGkphqfFqpli/kJBfWF46CZAI9WdHiVY3AM8QSI3CjXWFF3ovIsNT1dKUW6+hceTJMtIVDn57vUk6TkTbLLKbCxb9jmOL+Hoqo1tDC4qCJVhA5U1L/pGUXhqbzCpoDVmnhYYhW00ugwGsGqsyGaFRZSiC8NqiIzdgTU6L5cRbA/3HdRt/Ybrhmv6fpUVswvGnSJOH43GM6t8zHM3sOXwyhkgdSRjMmJd0xpVOGwxTnCgRdpLV9y2yM5rhGcIXLjm8SxI3bj1DUZFFqHqhftwSrnlPIyy+dEHxRVMwVfELxFoy6C1nsG90mULQDwKsKA0zIyqX6Z7T4f1lbs97R5Dn+fxhQYqQkQiBpAmZ8MjmpupBPwAI0EhDI76mKBH4z56UqolGBXJHGTmjQcpfkuK2j3QpuP4pNYpeJ3KctmFaVPQFosuJBeU6Z0Dkc+uzp6LcUCtnKw5ICKKEjzR/a7TSPakanRfDnCSBlBeYNe0TKYlU1sJt5DIqU7B3vQZ3MuuvZ50LzAFuQfIyCZVmYJjX+j0uFnz4RCyQcvy13gyRKktWaa0KMvNPXLQkgZ1k+FJAWJS4D6Pa363x/l0G2ytsW2N7d6iZNcdsYWujYeHhevlgb45961Ta6GuSrtPC+5KHxtFhPvtFj1B9MJHD5XLKphV3HoCyvS1SEW+mTF6VFAsZWFILB46ezxZ+OFQCqoLjBDsYYIUofW4X6Nlt1mPCzh7B7lGuqRIoSVLJNmA7DCiP4B3XOdwSbZhDBlUjf4dxqAsThtpglZClBjMTM00agBjE4ddtxQpNdk3kizjnyaDZDn0HNESDdyaB1tlHi6vj5eoGPDR6VkyX2WJDuY+xxaIOdaN7Ta4LMKmnZ7pXxWh26APpfdBH5GeyuCeaT8QlD1cNF7f+uAyCnVZuPfI/ZcSVHr4ikiaaymVggH3Bu+eN64PG3UJRs0Y2Ljzn3/p/8I3fv6/4/VHv54vf/m/4eNPvs7j45dZLx9RyhrOzhwpocmF+OlfQYocVXAvUkrJju4zWI7PmX/P9KlIMDW1gJvReqOPABh9DJ57XKujUev89gC7YzRa+2WWGkJJl6l1i4BBtYKXGFdMFjt7k2lJDxUBI80iG6VEeoux8CzvEAbFlzA4rD3GkCpCP9LC2qOru0VaOh5Gms+AW3qTzMatMQ/D9j7Am/tCt40qlWYbSqXZAF0w36Lc1h2xNRxmyxZ9ftgwkTC1g/ATcoKtwUBWhixA+ONgkYqxEUDUyj0Dyyibj9RV6GWW6qCdxR+5bxulBKjtfqOP0MMtDKoIaynR88hi/a3ZZ0o8UiyRflM2uyO+hqOtSqR0PObhJjdUhfu44XpFarj5rgIMYwj07ohf6N0pGYDFXlNwU7pENehcN0DoHuvXWhS8ZkagRLBrF95vb8OzyP8rS/2Yp8kMUeIbufjIy+oUbYruFCockZ0nIzHTHLMyBxlhJZ5VH3MzlKxjraJ0GbGpeGSRI30QqSGbIliH8POwqXzBZifL/M7ZE2T29wkanPzc2GiNGPCIItr3hSTYhYQJorugLq5DajGmZT9T4JryYH/pUxJFSrkLZF58x3bz2mWJMj57PhzVODszlUwLCTTyE4K9gT31lll1hBLRNyRlGIvLyBDck4HZfVb3ANMyjSQJUqYuRnNHC1q798bzbePdu2fevH3idrvH8VNxhIf1glTj9vyey7VzXa90Ig9bS2VIuJ+SUekwoZgwbo1tMZ408uGLFu6jxcKGspv94RHRm1FYkLIkwxQOtqq5gafnhJSCjJEsUdw+LR5aDQuwI1p2LyBEdqty0ZILyplxc8yC3St+3LOeYu+4VwP3NfQPhGeQqKbCP8bTBKaRqoh01lGBckagI4dxQTUq2IbPzscxV6IbsUOF+0aWL2a1S1bLQaT7VAeVEJjjA6FQZLB5UOTbFoJKHYWtx3cXEXqa5PVubJuxrpFOCiYtXD3DME/TyM6yXU2ntwUrwVggFlomIZ0+I9ngGtVi3Yyn2zNv3xeuDxdQo3tu5B7+FZ9+9nN8+um/Z7284ksffR+ffPJreHj8hI8/+V6kPEYVUbrlxsI+GcYj6nwRtPict8T9z3+fi/NVomx5rcJSCCCagVLk5iJB4kAfnVsLUNF638GSZw81N+fp+T03finmF3GM0xhRvIAGze/SY3yQjJATKRrzEOF6xz0qatwUHwFGeh598y3tGTpFrwgbsDBG2ysCVZxSiXXdYsy5B1NYJhz3Cfq2AErirCyR4lKiSsYhHGw7m99QLVTNNKHWHKsZfIyBEkzQTB0NH8F20II58SXWfoGRBHBBGA7FO4s6dxOw2NjFtwDsa0GsR8Vkit5j0BnDbkFE1Z4tFFbUHzA65u+DgfYC3lEKVQjXXw8DNpM7SAQZhqQPzJ1SF/rYIgUqUD38kmQ4ZivohpvQh6BySU3SRvEa4aVsoVmRQhshjQDHZYmV2gazTY3KRhud0d/QaRS7oOXzw44vNFAJhJiLpUwBWs2Na/4+8mEx0S31KnNXneZGs7fIjAqTbRlRiRANobKLpKSo1JUhU38REUb37LEAzPbac/GYzMVZaR+vy8+YS1GGRiUB1Ujzs6lbid96RCgIw0eKqkh6dX6fs4vjdjCWHI5Pyl0OcEHmSJjA5uQfeGKWQgk+U2JZGZRAZUKcmYkJHZDnwJ13AcjPPiqb5mJcODux7pvp+RpKbMSjD8bI1EBgHyC8WFrr3O4b794+8ebNe27b0bumZHWRmfHUnqHFprV1oT/0kAdn6TZSERp9NIo6mw1EVlZX3Dv3LUSeyoIUiTT5FF/bZNQ63QxNipssUlKEZtERVTSAjWhFymSxkpERjzy4OIsqS9HQKuQ4mteoqFAKWJeIdPFZ7B5l6pO1io+ONB1TvDqY5mDusclEFGwUjUollexzhMXYHnrsoDl+3dNpmMqskItxmGPBAsSItKgIQY5x4M4YG1oKPa3XtYQmJaaGIaospdJ7LOyjG73dKWWNqiEPz52SroXWnd46l+WSWrRILQ4LoIOFGFSyuqW1sP1fS0lPmziHQlYOSYkKDDwqPcZg25z37xu4crko1QpCi/ngls1DB+PpM0Z7z7c+/bfUCr/21/4g11dfZ62vQWv6jDywrl9hXV9nef4hcvU5/0/Vb573dhKYqk5VWBTWQuhACOH94UHkcwXZS53XqpjCUpZdFGs2dkDStue4/2Z71RZ+zGd3z8+1LLmdwVowPTFHKi4t0y6K9QiiunfMe6Z9Y/4oC6M7y1KwAd0XSq2RTmBq9qBZrN8qE+lOl++G+cE4V13wHgFsKU7xC/e+oSUYIAvMj+DhcCsPuDdMO83qHmwWjb4+5mG4hhru4XQrVtP9PFNuEvOwyEpVpfUbwxXxjouxCKBLzFOtdEJtb5nKqXpjWEdLjPk4x4VtOBvPYa7HFS0adgFeQhtmsXJ3veMIq4a4fYxU8nhondCGqHNBqAJmLVIyKhgdHxd8CCLGoEXlmZYI9LRnubREE2AGQqVIVoiKUXiFSGcbTwzrOCuOU5ZkwD7n4wsNVM5bWBIVMXn1AAS73XQuzDOnOzufuJOi24g68EDPeKD92fdkpjZmxjS+P0nZXAQtN5e5GMwce3ADltFMlshOdsFnG7XT2chO/LKnqVJUN83SJDfzPfpKNfouFp6L0jz/3Ejmse/iV09NRSAYMjPFZEYyn7LHeNMmPaKW3P33z/D9uOOZgZ8WNZnPzDXXU60/r6azf88MFYcZrW+4OW1zeu+00RKklr2Mbr2GT8Hog+ftmdt94751zDzpxjS78rFTlW5+RL93w3hiEVhrlDyWbPq5ULCsyGpDWLziNHrZWJYrUg3tJdmGWcUVbIarI8NpzahLOI+ahy31LOW23IRFepZPa4BBjJGgRVzBClodaVPIXSLl4sZCDVX/HArqWRI8y36nOdS8h8lsAN02lnKJKFIkDJzuBacjEvn2ONaRo9FS51SiUZ6DEFVw61KiFDvbPcgESQ4uIVINPdayVw4JC+YR3VeRfQzPXjhjWB6bRdVLUcaIRqG9K9I9mbWCFqXocwDWHuDDLb4vxLZCP6ZZcGBDab1TthXVgY0eaV8tDG6or8FsEWmgsBGIazVGsDbX1aEGMIx8fINcuCdjOiwa8bXmvPns/0Xzb7DqIyaddtt4d1Mu6/fy6uHrIIVXr7+HdX2gLo+I1EyFCFpi3M+WFWEZZFSFWmLjUTk2dGAvrd/L8UewKFOMPnVd962l10lc996fefv+f4iVU/qRcmVSfhOU5nog04cqUuKx8QKm4dTqxsoETpFyrtIJS7eKa+jgig4WqTzZE2Y13IzTPHN68+xtKxBqph1DQzgY3lg0NBmxgIdzsuY4i4Uu0jlmPd4PLPKIjErnhlZleGj8Vn3MppDRHblbCHTNNZgGiZ5G4LhuRAJGUDo+00viuAxUrhRZ6T6wLjRxKCXGaSFY2GForRTtkbjtoecZcgcdewEIaqivsY8NRRk0njGZMgBPbWFIF1pEKagbi76itw3xC1t/i/AY1aCj0E0Ig/5wqnZzmrbUyHSG11inJK+7L5me6jG3TKFAH8+IXokwdFCXSD1+3scXHKjoDk7mf0yAgu8b317SmgJW3Tf33CIF9pxmAr4JfoIuP54nhZggu39KwpX9dZnM4NjKU7xKRh4+N+94Yyx+ExBwYiTslHqZqZB5lvv2fkxYP6G101WaxMoEb7OJ326m5hNQTRA1T35+kOH7dT6u7yD1QMgOCneAg50PYgcxk/DZmwS67cLPPoIC3u7h0dExRu883Z8RU7Yno22B8EWiu+0iF6QMrtcLr16vUGYnWHKjKMz+siIpvg04e4A1FLMQVVoRFgk3U63w3AJszA7XLcvB2wZliby+qKcQOoBocl2x+Kbg0Yw8rhQ6Skxdsx6LigQ7JrvT5/TCyRLpYQl87glmBJlgxQeiYdAUVWvRMELwqJqQGUFHZiwiZqg1AEs3Z0lmBQ+GQUWwUbCygWcreHXwjBwlzP9MDc1GllEKC1Yi/THcc0PNFg/ieI+qK6lGKYXRo2xSMFzKnk5wicZ8pUa+3AbhSGrH5tSH8bx1fImQOBiTZEUNbDhtM7bWuK4LtSprFdpdGBqdTmaDw2HQm3MvI8u6DZWIxm20UxWhxvUww6SH2Ho4o2deX6fIlRTMe0p5BOjRoBJ49/bGchF02VjWlVE6vb/n6d3/jU/H/51tdD7+6Pt5fP0xn3z5u1jqI7U8oPqKZXlNXR8ppVKmTb7E9cUFSz8mjhl3pE2SpZn+KJ5z04wAl2PQSqYIW+d2/4y+fSOYVJnM8uR/kw/zkqmypDYzUCuSqQzPEDEDOpEUqbMhaf7mEmOnFM3S29DEdQvNVkifPHvjGK1H9eIEwqpOsx4QKdfnaCZoqIy0no/rMHBE7zuTG35Q0Ragjke6RxPF0SvKnSIPVLmEu7UZPfS8kQ5kAQ//mAjwwmxR5YJ4pyywdUtbCsW8oEPwqmBx7tlHHfceICQdXPHB6oAvtAGiDZEt11NNRmcJAauTidtw28auFL1kkcOdKis3a3gNRnQtV+iO+cqwgbli5Q5Nw7TvlH5Xj7SmlC10QgYeBluYD2zUuMdlNm28ImXQ7H2klYkeTUXBfDmY/s/x+EIDFXb2gD1SFUZuwnCwBztcoOxiiti8phvkzGvqzpj4Hn3uG/QJlMzvnFvd7DIbkhjbb/J87O6sWWo49SnzJft7JvuQuMYTDBxJpAmwkiFgKvb3wkdmLls+AC2hb5zxznyNJxNzAKCJd4QTDzIvqk+QlEeU9HAfAxtR3hsgMZs/IqkfIUSqdYEU8fVt4/ne6Hfjfm+01hDgfgsBZ2OLNAyhK1GrVK0hxLROb407dxZd6N3pvlHW6PtBAtSlrpg7W98y+pwagIiwbAIviwhdbAmwUnJhpHJPQZoIUQWTnzFM2LbBssRCOQWyEAZPI3saMdkTm+A6I28J0fIwZy0Vkejfcee+q3gigusUDddNN0dKlDE7xjTg7dMvh1nFFUyfjdRYkfRQPoZZGORJpK/cDU3g4wyKTg1HVLuNYVH1MSZFH8yaaDQZm52Du4+97DV264isIl0Z+qZgjwKMFLLzrR4z7NAhxeYuIvggy++zWk6jou5+L9SLsSyVUpQhI7RdHte+9RE6lSVjdtVMyxwVg86SG4OGOV3eI5fO4+UV754/C9bNPXs2xTozW2V4dpTt5unEIpkqyzGgIBINQXMKcd9uvH+njEcQnQ67cR17v+OmvH37H3h6Vsx/nlcPj9RywfwV+AMqr1jWj/no1Xfx6vETSil7CnaOL3Jds1wD94DLA8z3dLeNcyA9oBy1QSkK3tm2b6IavidTPKnqkRbQuSJ5rqcBOFUIy/TgVSgJtk0iZRnXpmDylOtSbOqx+uZ1lUr3DTOl6kJRhxTqKoW7N6bvU/idOCI9190Qa7s3jvQkkF2WBzcWmWtYYa2RlqhyifGowuYB9bWs6LigQ8G3SHsRFZbBhUehQoh7PUHTgg/HPbRA5g3RiupCcUFYEHmmiCMK1aMTt2n0NEKCyQxWZg2AJQPVhhTFuiOsuCu9LbFKeOfutwAU/RHVS2iDtFD1EiCoZFUQ0dTxPp6w8TVc3uCs4I3qTpGKi1DIhp0siAT7FOtLYQxhWE/H81gvS6loWRCpmN3pHkLraDkQ+0V1j2P5nI8vOFAxDny/JzwmtXEwKRHCs7dJJyYzHOP43B8n9ho/feLc7U+8jUw79rk4HNjozNb4iz/9YB/2uDD+mKmUPTDJh5BAKyO5c5QUL9ADrB28COeXcPq34C8/wc9Y5nRMOzia7FNc796N1qJktrWRPR6iWVq0s8lWAm4xyGelhhQeLhfWyyVU5nRa23i63ejPQrs59/6cIc6CsmR/jntWcZUQI0uk7VwFeuRTm4TvRH921hHeBkvN8u6aTcL61OzULNeMxJRE4EIpUXWEwRhZIZHU6n3rrF72qH0Q1Ku7YkMYGsxQVWUbLSKsfF0om2bpbci+Jdu0T0hsFvnepVSkrDzTg7r3mQ6Le9DGlmMj6NagzmevpmB3LA46b9dR+TWZmT09KJEqActmZHN8WOqNUvbsK+gtNiIPvrBaVLtZBJFBg3uwSqTB2CDE3lo8NTnHLChoiPckIrDQA8+S5KNibhiU9GRRyYo+gkFE5oYYTR3XWqKqqsyurfEYIzflEIFQtO5eK26GWuh/oldYbBRtwEXXWAMWp7YaplhzndlTpbPuOuzSuymLLFECqrOuMFs75ByuCfDGgNt9w/ceVmF/f5MSpeQmDDpjRBPIpRRYO61/xv258fxkOBceH77G46uv8MnH38NHH303tVxzc5i0PJny82QoPJnlOS7yrtg+86Nv0hDENp5u/w7zcBruORbFhe49NudkDDXTwyqgWsIwEUEzSHE6Lh1B6ANcQ0yqY6FXCYM4E6oCLNGywaK0vKKgjel75RaBQRHJubVgdOq8rxiXZcV9i7Huyj3XpuGDqpab98BtYV2VNhoyKpvfculeMW4Uv7DKBbVG54ZrCGqj2KEm0xep+RDbLrERm7MNZ0jDGYgucV+sQLEIMCWYpKoLVp4pc+/xghahyqyyIlhC8QSTCyJrBC3uLBjD32NyD3GzVVQbOCyl4kMxv6OlECXgF3p7R5Qtt/BYkjCVrLvTsqKyJIvW6NYYvoEYzUp6icV8XRdlUWVdFhatEYSaYVKoFC4Z9I0RWkHz/8pSP4hyVJ5obsGzRuS8U8vpn7mt7wIw2T8DDlAT7oMjoYXuXid7SyCfn+Sndx5pkBebPhKL3p5q8D3C+TaQsIOryRedENAZaJ1B0/F2IrLw/RPmefvpU+fvVdi/Zb4qcvuBlGf7922L0t4AJY1tg9vWGT38OWzE+Xma55HUdwj/B6pCrQv3e2ddNi7rlcslotroyxPAovfw5Rg+sv9IWsITdGQ3J8zFg/51URa54IQ4cvROp1GLMOwSwlTxLJmcADFv3mkczLFTyaSdG20knSsd72BLGCytKaaTAtVrpA+8AFv4z2Sn10JNLYdTWJJBiU1NauSgd6BLOJIWoIqzpg+CaqFbp2jZgUn46SQ4GYK6gPeo0nCdCUymcFKYRfC5MaVuJLw/Ut4tKUgUQvtkg26FIp4MRGF2zI70wmxKOUXHp2ubl/eI4PO78aT7g5637vF+dWTEZl5SexCgL0pVo7zRqYuCSYKYkbR7jmWPCrKiyrpW6pIiXNMoK949i4S6FC6L0ntoyooRbQ+oMIiKvg7XVdIRFuyy8vx8S5ZzMoyCMK9D9Ge6t42aHdW1pI9QXhhN6mukvsNFaZuBDkQ3lhLppFLSdCtTGCKV2/Od9++esMfLvmZ029juT7x7/y3km8KXPvluvutrv4aH66u0WH9E5BW1fozquq8YY65xp1VH7BCtC5kyG4N7+5Qx/nMAM0qKrac2TjP6l9wcg1lApulgJYxQLeafjvS6ifFYSscsWKA2BtdS59uJUuOn8KbKcRSgVHGruCsqjd0B23usAZJeIxrmiFOHbRZMSus3Smlcl1fhjTSCsyD9o0bvdJWIHMoaiiQbFAZt3AgnBaPIwIegNnVCmmvHBYwY45M5kM6yAHIFBhUY8oyNSH26P2IMlmUJ7UaPcbIur6mysY2ewHNWYdUQtWoUE9Rk7gfRe8ilsqxbmJMOifnuNcGcZ685YxtxjiY3hl1YNMqygwAtiFQQZ7CB3Bhi9AF9FFyglvT0ygrbWgIUj9Foo9MsVtTLWhDdsKE4lVIvPFTl8z6+0EDloLjh7NNwBgP7RpybvWP78/gxQecEPGiRSV9PDgJmbHts7vN7jmOaP8r+x/m3mTR5iZv24wwTujN4mems+e7Tz4mWnCmmOx/nvg2TdEZEdPlzRKGR050lnM+3hluI67YWyvPeoNSwlr7dG+4jSqRHlMGKFWZvwvBriSOoaRjn7kdzNIvPvW3Cq77BWJGqVFuwiB2zsiCMzFpevkpMhJ420CNLYlWi0ZhmlYlJZbjRWkO9zhU4rr1mim+3CgfQ9JopuE6hddnz9bFhwmVZWdSAW4SdcjKeSpfKVRa6DLqPPa0gZ72KTzV86EbMoWV+OpxLQ/BnptylgUYKICzdp2YqfWU0N133YACkZMslj008Ae2M+j0BQipeMxQMsOMGFAmNxtiote5zASKCq+KoLhkZOlLCR2iRC6aelTE5JlOYWSTaAoRnEYRr8DRDIU3bImU51TYRDKR+whpLrVQNR93iIaAN/6Lwfek9gKrnmIjKJ8cXWJYSzyPZ10oS3Cl1CY8cuWcVKFH5NBtS9jG4EOOnFAkAsXGsJwJYjBHVqNhwPHUqziYjFn1Rlqq0Fvb4hSgLn5F0kYF7wUawk7KG4HJkuiTE27rP16enOyhc1yVE/smMuYdI8u2bX0R4z+vXD5S6Iqy0pgxbefX4CevlS5g8BojRh7BXiJqwuQLmshfnGR2ufz5M0pJ9LlIZvgUA2H1gEjRPs0eLex0JsNA3ifT83SW29OKx+bpy55ZzsRLuxMG+jLjMXOpK1RDPD2sIK+GNMnKsOcOeQaMZoWpa8o8ttYQ1mA9/BjauS0FlYdiIasbSGaOFWZ0Ouud52o2iS1TKjDujNMKScYs5Zg/4iNRKKYp6RVxodseIQA+NxolFL+ko3UECFFGyr5pWNg/xrdl7lrJmZVTBPCrYRMMhPfpqzRTf1LAFmHCNNFQEfsGIRgemS+wxqkiLhqLdNzaP1E4bd1SuqIyovhrX+F51SjW28Z6At2uuifdkz9Z9z5oFJ923fU53c6415mQzpbXCskpYHLyUL/6qHl9ooEJGpIFD/JSOjBuYwT3AzjIcaYwToMn3yP7rA468ZCSEY2Kffyenf02WJo9iRzEn9iN/iqiM2DScnZWYX3t+59SszC+XBB2TpBeZBcTzcI43uAc70nvfTc+27c5963gXtubcW8vmUdAt+0xY5EiKei7qhW4NTXt23Fj9giRzINSILun7QddsAzDb2g93nnmmuLOuK2oV9UItjXvZkJEmQmMgZcnoZF7j6UCa6R9poKGunxZ1s4/OWsJbILwCJKO1uH9gMEtgJV5TtBKWd5kn1niulMJyLWyb7t480ck6fCJCyBpRSEzUVCP5kdpBI7Trw9HCCTTG3YscfuTox7BweyVYvZKCNdnZqYh4U9OLzwqcBF6mIdzdScJUZu+jNrUWbjPKJzc8jeZzgPolPEPcIr2jEc1qzpaZ1ol5FRVKYiMAGaEDE52pVZujEIzox+JrVEhIpbdO8aiPEAmh77DwN6llCeM5q9HLJDvVKjJtkQjPCAExSonvvVwqbTPaGBiWDeQGl6XisrCsC6q3TLnBKlFy7NrZRuPSL7ADLqg12jy0YcGGmMb5ywgBNBrlsF1oOii6UMvKWh1WY+tRLquazRcJTVAl0jzWAnyFx06llJH0eI2gAmPbGsuW7rqSrr+ejfjE6X3w9u0Tw5xXj04pjefbM0/v77x/X/jkky9Rl48otdJNQpgrV4YVzK8s9Ss8vvoKqmuwEu3GdvsPWI3+Tm4h0NUcTcZkqWKMh3FmZ3hJAG64jKiGEUG84qYxb4phVIpHj5qqj5EOtexETtzHKvFf0WgNEldu2igEFyISJnKkCLtIDZGuRnAwxkKzG8aNujgqF9rooV/Ja24j7rXpPfr0zT0izSU7LYTcvlGIst0wpAu/kxm4GTeaN8yC9S17u5IF9w2zLSp55Ar+HGuJhAt1kTtVO6oXtlaw0kIvtKQPkq3BGmkkbMcgROziDJl6yiUUZhYdkC/1gQo0GbSxgVe63+NaShZ4yMrDIlTtjBG6mLBFEcJ9ONjLYR5FDDoibWgSdgqi0akZpzvch2Fpn6CqNHNGD5ZwDGc059YOJ+Rf7eMLDVQCethBUeybeD7vAVBkrmqcmQY9XrnvG1PQd3zYXMrPMMOTmfGTDqWcWJLwhZiffXpiPwzJklFOC35Gv4mWg5GZqFnyOT3K0iAjHc186fHt7s62dVqL9My2De7bndvW2Npg9A2yL5L4LsbIGCUMolwaiDBGyckUEaSZZlljHFW4MnpuHEG9thAAREXOrLFK9sPEGcO598bAworaL5S6Ur3RuuNWooU4DdGImNWjRFazjBALBsEyfWfTT8EjjdCsI6YBIrTSZeRCFyurS5Zszh5BMhKc5XU0xWvDTCjV8S1MqqJZnmIaIEJVo0FgsjC7U7JnClJiMZq+NNGZdexiSzfHtDP5sKqFrRfMN9z6DhIlUECwCWmxX2aXbMmxQZSljp01PGbJPq5Kgm3PEmmmOWL0U9q8czGFpK975qLN4LpUNp8geux4f2qihATce1oz5snIvlcqA2WheNiaS24wbiGjVKI7eBtZqrwsOX8KnpE3QPMAxr6fdzrvSmgEHi7C7Xlw3yIXHnYhoU1wqVyWC9f1mfc9/E8kr5vJ2McPtnBZYu6ul8G6PdCenhgWnaUjSMqKrExZDIPW71zWaIDYTakenbpvvWc5ePjJuITJ2xjh/XNZQmxelsJYa7odH+GPDWibo8Uo1VMXMW9xXOmtd3gO19F1XZlC7ndP7+m28frxxuPjEi0/TFFd6X1wu3WwB96/eeDjT76b6+XLuG0sOnAbiFzyuH3X46kczQc9e9zEytlDPxGcSOpUpni87GugGzS/4zjqC908wXGkBPcGjzREV9QdtVmRFutrpNl7evcs4MqwZ0Rapl6V+xhs4y11UWpZ0m08SmxVLrQWAUjL4KIKiBrV1hD2Ei63wz0qc6zQepT3Sgp8sRpaMGkZGISHS3gFJdgm7n2k0wcj+2PhA5WO2Z2Zvq6yhFhXImUj5og33MKI1EUxa7mFhXaqoFmavYJXalm5lsfwUOnBZrkaw9IgTlZUlKKFdRn4cKqswS5axyls487I9cxoQAeJ64EKw+4IzrV+gmvBR9j999EpNcb3vd+p1GhS6itwwf8/gB1faKASi+/Mdx2Jn10tIt/2jj0X7x+wKjOCnQ0Go3laTWX79Bs40j57V2DIyevsJc5nFuV0DBFkxi9sB0J5PPvh5CaTWGn2UMHTjZSgRNu2sbWI2ocZt9udp+ctG945ow0Yual5iC23Ef1znMF0BC3qx2Jd/Lh2aKRjtGSxa2dYVEPUEhbv3UZyEJHiUcIITZLpinJbSWYjNyZVkEIzw0bBtfOgl9AolMJSC97CswGfDFGIaMUlotmSGoXZUkBgjI5KyXxsAKhuFg0PJahqtGe36/TQyUZlAfRi8Y3utZI0bqdYoRaQqthm0TRNSPM3yf4xAj0oZYVMC3nk0om0Q1jSp6eIZNdmG1mRIxmFxhJ6XSrv+0bzES0a1fdeN5EfVrqHSNVPzTFNpvA5KlrmnRQLM7hFyeoSUlg46ewYiVVXig8YUKvT747LoPfI4yPs3aEpluCALCsJVsN3vxpJej5LdD1y3ohBFVxHUPkS1vNLqZFa9KjMGW67uFYyRTuYpf+RfiM3l51xE0WkRrO77HlUdKZbAozWWqimXK8L99sIoy5rTG5VqFFN1O+sxVnXj2E4ax3cS2Ubd1BHbPbvOo5jjAB/4qBlUJZ0My4LOvo+6yWoNKgBYoyOjUGtK2Ut+Fiw3rO/VhpNunC/JyOnFmmsGvb0EQF7pK6acb9F2qgUKMUZd+f23FG/4zJ49RiC4gCOd6p33j5/xrs3xu3pP/L6o1cslys+4hwtgZjPfhq7T1QYZQZvFRU3goTRnFjqGQaVS1x7CkOF+2hUg67RGM+HhWfNyU9o6yC2gWbpqwQjNe+p+Aw4JFkLCVZSRgqZo6oPaVG6rxqmiBZduO8jevZABAB9NC4SWrNhgvqg6AUs0p1GYVhUxDVrLKJZBRXpYpcNlYGo0zx6ZgmPWTl3Y6kD6kq3lmt7dFUvCG6ZpvLXuN1ivnunSKXYNXKUNdYiG5WeZm3RQiEEtYWCs1D8gsidKhdCSB1gKcTvd1TCvLDoJaqmanRNb61GGvuy0L3T7Bn3hnn0X9ISgDpcgsM/yfBIW0ukyeMYnkPbtbcxaNy9xfhohSbK1u7/o/v6d3p8oYHKd3rEshHLwTntM70pZpXOjPeiXC9ZkBQfaoqEki9A8T31MrmVvcx1RgjANHQ7jPfkIFGcPcKZR8hkTjj8YOZJmDlb67QewsvWBtu9M7aBeuFuzzSzEGdt4dbZPXuwSHhniIVHhqSZUywztjM+QvSRKAAyaBY+ESUXxsiL3rBBupU64VY5WGRFNfp9zF4QYTJUgYEPUEtL8FxMug+0G7VIukEqzQelPIfoUaEsyuILd7tjDIpckKz0mZssKKojBF/ecFuY1SrRCuCI5gtRvVGLMUqUq0bqJhgVISo0fEAoK4lUmfSceKE3ERoUzxhxRofGrd15KIIXR9KNdiG6vvosBVM/2JYUaDvpr5Eg0bN3R5HovHqpK2OM7GsSi/kYHVlqlgd3hgvKgmXFWvi4RD47WKaDMYzUkOI6cohp5MI1MtnTYTmaCj5QKPs4LbLQaLRurHVJt9hwh00UuKdWzaNUvaa2cm9B4ZpjwJFKVIYR+oYuAbjELSoW0gCsDeOCIjOfXwoy0o/BHGavrZHNQMUpNZJ3dVFKLWEL7w2XJazvq1C9sl6vlHLHLXQsRYXqK10bNRt0khU83StVoCyktXxoLEQaahLHoSmOTndlFeWyRNnx6FBGzKnZTFOJKi7VJe7F5ui6UopHFUq/sj2/xacxn0u459431stK0egMXcTYNtKDKDQ293tYrl+u4aS6lIXeBm27I09GVWe5hId3uK2GsPP51hhvn2njma9+7auhu9CFqd2afDMEOAndaQRRS4k1t49AriKhDykCUTYcrTGGCuqGWrCCamHmZ2Pjsj4w/I6zcG+f8lg+yiaFwlOLUuW1kIFW3QNLJ+aDSoiPVQTxwTZCzLou1+jFNqILOgLDVpYqNGs4JZoQ+sAl26COSM1Bi9TtqFluHs09VdaEzAudwfANtQAPtQBeM13SY24kE7VodJ1udqVW3feebsKwLT5TowppqQVLc7SQM18QDZ1IzRS2SWdVQbhmBdITwobYx6nnKwyvjLLFXiYWzRdNKdW4aGG0EpVz5YJbDbDOO/CwKKh5/8xCqFxFkyV6CK+azC6EnuWOyitGV8oaAtpOdGMeHQZ3av38IpUvNFDxpM5n8y1/8b8sGz5Nrl2V7lkKmZUAwWgY0+MkEMn8WXA58vOSi26o54U9Wb6nXk6AA/YIcL5ugqbeo839GCMYDVfut8b9HkxJKc5zu6dGQxndwQTbBsUqm9xxbSyy0sYdTNECXWYPICLi9TC0UlWqh324l5GbsGfuV1hK5DkDyYfQLii6FKcaSBkoFdeSNu5R1uueqQuLxWhajs9SYgDJNgVSYuOKctCBlkKzFvoCNKzJ2WAjGCHbEgwOop4/OqWOFDmX9C6prnku4flRNcSQYVTlIQ4TZfPo31NqiDdDaBn3P4x7y94eqkqUSVr203GR8FMBZMw0T6eN6FbtHloGt+xKTDB+YT2eqviZFsnKHabXCsbocF1hy+ORBMwisSkCbF1YKilSi3SHKvROdule9nPZheMz8Jeg4adqxDDGSHGexuLjAi6dYjVFkGAS98CGEHrkbNTn6T7LUYrr+fsJjnTOCy2UHEcRoQeTYclc5oSOip+yApaN12BITx3zQOtCpXAf48XcDvBtMT6KcL0sbEuLeZbdgt0jr16KsSwLZdWsLMkGjhLiSC3OUqNcGO0sa0WGsXrh3hZmZRLpe6KaxmOTPcyKoFqFtYMtG60LozlVHUuAVdLdk0x5xLkMSoHrQ6GNQrsLbTRWWVlEozt6rzw+hEFZ04Z59ujxCCZa26jVWRallsLD9cLNGtvYsFunhtc5KmGbv9Qrj1eh9cG7t41X5RFIDYaszGak0wF3ZOAjsx0FIB56slmG75O59dA2VFaGRKsCnYGAhJ+KZqWO+R0152m0JOpmT6JgTIquu4jUvKdnidJ6rFtrjTTgiDwsgxBk1xrVKjYcL8a9a4BvG1liL6wjvENchSIN6sokkBbJtiwSgv7Ckh2gg+F0zZQhAQyu9UrrikukTetSg8m2QS3CvS84FR9Zxi4bN9+C+XaF2igl3JplDLx2SFPMwTPFyX5ET1S9E2mv6d00ECtUrhiCF2XbGiVyWoyuiETJdbEn+lCKvQLfUFuwHmlZ14bZBZkFB+4IC6or5hsztT18wFiSnR5UfYggWCsuhWEhoMY3SlWKDtblvzKgEkC17DnqndKG3Hxmcmfa38Ms0CuzCoJZ4jydIyR+x1ERlB9yEuROEWx+R0aR7jD6oI/gYXrv+AjF3r3fo3eDK90HW7c00/KoADBQL8GejGNzLCpIScvmZB2iAsbC5bOM9OzwIxdqaacuUCdtm9bU1uP5yOcHM9CJKFEKlBGMiOBhRMRsD+D4CAFa8egZofTIdR+taXELFiDYkobKjaWE/qFMgj3BlJEeARLq9tE7xR5oqY9AB4yInqL/Uqpo3JLhiXtnKWicEpO9L5N3mj3FpM72AVEiPILWLlEO5DZFqx7t13tHilHXS1j4D6N6ZbMO4oz0h6m2xCKpfWduijpbtEgOFiCZnVi4wxHWd+q8pog2XhMAtYeORCJxUpIBFA0tR+vOuqRFO+FfE3H8ggPLIgyvUf4os3wz/osy7Mg4i5YAq0NYL5E7VydEjxoCvdmJ2iF1FaH9QRS1Ja6jt4xoxw6QcULbo7JrqqJEtbBo2OtTRuS11egS3x1N3iKyVnXGCNFp94ZKDVZG456VzInP/lnDO6pXonuscbksrGvlfu90ixYGI5u9lSI8XC58/NEj//n2fp/73TpaIxVmNig15nxdSoBhi67UfTjqWfJOjL9wBdY9kIkUlLOuCzhs2xbBRpb5RofhAEiWQYMRKQrEWFW4rCvWOm0onY4jrCLc++DqlaUW8BLPp+GiSnxWeBzFJrlcCO+SPmit8e75CeqVWpTreo3sigqP48IYg48+foVKaLuMngFHdNilRKppLqfBPBX2pLgYNjVbOV8jRSuhexvxyl4CVCnRQFGyMsxZGPZE0Qc8N+DWWwiIfWDdw3yOcOAV0dBkiVL1Eq+3HjoLDaOx2WnYpYCve6nvvd3opjyuRi0Xnr1Tk2H3ITHuCmxGGC4OQ1N3F6Lf8EMxklUWx4fTPFuvEIBDbKRDdGUQ+jORjTEWLsW49ScWLSAX0Du1XPBxwfqIvUE8hLhagtwZgquxlHAL7gMKHVWhtQG3R1gFXZU34xmtwTxt406VK8qKjcZ6WfB+xbvzWB/CPqC8w3iP+oXhkeZ367TeQa4Eyz4oXjMLEI0XxcMbqepKkUobxugNaKzFiCqhwlqdN2+/9bn3+i80UDGJXChJMeNHJc1OiGSUclSOyE5zH78LULCnXzxKCIcP7rdo8y0Z+fRmPN9u3J9n06to2d1HD+dBkdg8PEFTl0y9DHpGPnikHzxL+oIWT+GZKDIUU0G7clejjNjUZi8Jy2i9lih5VCx1hkGH1xLmVcM7Q9grCtqIZmlSYnFXvTDb3vchjBFRayUEZpplhgZUKQxvNNsYXkMgZYOlRBqpW9g0q6+R9iA0JGZGkxZaEcIq3oVYbKbm2BXJxo9RNhhA476FcNESeJgqhaCMh4WFe1yK2RE3Yv1tRO6/yELxEmZdDoXQWMzrHYxH5Fid6eUxKLXONDzLGhoKM8FbiFElRS1RBVGxPmKDKyCtUcvIdAy7xb6khiN0pUHZh/Ij00AIJkIfG2tdKWWhbXccixQBno6rDfcV0YKa0z1LV0RQix40zgizNMkKpwTwmr1orGejSxWkSN4TYSnKtoVFuLizyMJ9DFRDfzDcKVaiWW4uzrinyVaY72mRnWkpLMkkzvNruwBcVFgFhFgIQWGUJDVHMGwi3BssUnAi7x1GYk4pEnb0WUp7b41X/hAb1mIsdWU0eH4ejGaZRosrfVnTeh7nW7/8FBtRsnNmBawDNdIItSLmrNcL69iCmSw9rnVqasNLJRmy0oNm1yX67hAbaOsbvW/BimrL4MLSrC/Yvmada97bS7nAgyB+p79JDZjCyNJ0PHQ4RSqLLSHKncBNYny7Ze+mpUYQsy1g2Vbg7tg1GemyUHTl8THAe6kk25E+L6T4WtmN3BapezFBMNKd8PoJZso0nGyLOoWV4TXE37Hy0Yft7rCFSgMW+5jOjSqOc80xF5Un0SoChNBukGx6ZyAYq17BC/e20axx7+95uMaa6KwgG6UuNCsscmXjOSzhXbnyEb1scZ8vhfdPsGplsy3mjUiyjdGfOcTxKRGIjSgr6EqOiWeQZWf5xiwlx/drtOqC1PL/Ju/fYq3Ztrte7Nda71U1xphzfvd12WtfbGwfzOUYTgIniEhJBEbYJolk7BdHKIeLBA+RUSIiIUGeEEg8gBQBD/CGeEHKE9HhPDgiQg5HRz4EcSBPXGTjvb33Xutba33XeRljVFXvveWh9V5V81vLlneUg7xFba39zcuYVb169eqttX/7t39DxDs8awxY8vxQmgPYmUEvSXqse5tAcR0VqqMWOLi2SXJ0yYnLe0J04cNzGWszU+Pu/Jrd8J4HVExeqVRRmotu7w0e40zixFx6KDMKpLmQy0QWd4xCdYRVnE+ECJYMMd8PWjNNSa4AHEMVF0yBvlOm8byirN/D8X3tqDhc2xTy3Olw2N6ax0GV9WONAdbUTMqFNDs0jGRyTpzPZ+ZUc8Ilk1MlQqqT5By0yuTJ4eelp0qBbLXLZCWIqdQ0gziik7LhbHB3NkqBYK07cnTiomVChl4Hyk6QfHaY1rwfxLEkgjoXRTTQWaDkDGpoCJRUN0/1ypRsqSIPLj+OQa9gjN4US9wjNg1ojmQ7UaT3ahZKRRuCv9RFmcYTUQeCOHkqF69UiTrQhQqFiywRfAyxtkS32nCuqqfW1vPeAiMiZUAYMRmJIaIpeERnyedICqUqyFolac7F0zqYuMEGgtZ8c+UQLUiLOq+iOZyuWCnkyrUQOjw6nvG+I4W7EfoBdwK0I8hMslpyzYwQFv0GwMtKa+kwWpASatmyb6ZqSs7mOh1h9us7/le5PM6bU4mVy1ArCYqCRB+HuNE1cSNVtMH+nnRrHX+36js0TpKoc2vEy0lL5RHllAmeWGcIXmqbs3CxGyjnqTpIrqJaivfvcUl57xeUTVDpGcudV4mYVC0aXJvFWhWSd6v1VImLd/VdRykwz4UuBuY8U0r2tWKFTh2N69QdHMTl1VUgSuScJlJx/ZycZ4xIHy/oJMJV5Ob6yDR7KbKn3cQJqQSuDg+4unzNi+uRnI3DXsjJqtHxPcNE6PpQEboLbrqJIoFawEMpNaKUmtasQYFZIsje00ZmpHLgPM7kJITSgwaKnTDUjZa2yKpH40wfhL7buXjdPJPmiGiugU2ujmJH1+0Yuj19OPLWjqRUSe14FF9IDHFPdxHJQ+YuKMfT6E0Ji/83dIGUhCHu6OKAyZmoPbN5FJ+zO0muAdRg+1D5Yy6MWEr2wMiSv19WiLXKSyrh2zkUiWRGpHcirxy8srCStbVygzAIYcJFBrra8aTUuXfEWiS6jlPxfWrMxpSLV6OI0ld1YRNx59x65nQGDSQ5UiyzE0Vsx8wtu77HitKJO/d96GsgNwHJS6htIlvwCpaqpRRVUQZEZkeuLVE408mOLgR/xy0ypuQcFlzzaUfHWIwiyjy7JsxUq6YvZI+pV1DlfPb0v92RLNDFniCFNFUWZU17a1FKGRENnEthFiV0MM8nkIE+9szTyFxORHZYUdJ8S5ZAiicSZ3KugotVwn8CJB5cK7h42XwUIcaIUAPxmuL2wgFFrCeEkURyxL5AkD3YmTHPhNh/z7b++9pRWTpwwsYPaZLyxjzPzLWDLrjWwHlMnpKxJjnuJDgXLZqwVGou3jereXIOCSV4RKmNDJlJJXmOtbiyZQjeREtj8g602duKF5IbZXKF4bUaX3ckYm3w1FH7U9Az2wwlE0ICCUy5MGhkH4QxucMzS6YLPa0xmgHerTRAUkQHwKuFsnkpppkwF2fmJ5uh5ohzMUQjvR0wO5MsEsQdABVlzB4J7IaBPAsi3g/EZZi9NNhZ4LX/jHmU3WCTnDJocWeq8kKKZGf5YxBntMBc3KAVhBggZUXzgMUTIplzSuz7PSVPZCt0we/FUsUlioEEclJy9JbkIfgaSTXiVdG62StSnMcSrGCqRInMOZEM+mLEPniFSfQoP1t1hk2ZJRPMnU4rqUYKsqJD4lUsUpSiGUf2QMTXS2ZyQqIZMThfaC5GSpOLTWlXdTIgGQziXJdcMn0fXak3+fPxc3pKLQQvKXd4vJZhq9QGdj2JsULxQpHEOBkXQ4doIwKbG5Mo3sSvOKImC/LlHZabXovFRCzOCZhq40XFm+C5I+oOlKdfE51AQivqmNkNvu6nycsvz1Phaug9clTDLHoVGOq9olIrJ1YkFZTk+fviOX6paMh+p1xcXHA6+bvkCqqGmBOSReHhowMvb66dK0ZCO5cRL2QvMTZPb+5jz8UucvXgjts3M4gSKq8rleq1SCUmV0fKCcCetjvowN2x43xMzu0wRWJkTolBe6xzZVFIRA304cKVdncn7sYT041r2sSOqsPjqZYuGiFEhuEhJsr1zR1eJRMJMdTnLnRDj0pg2HWkl28B76kDrkXTx0gpgjKTiqe/nKyunkJk9vSyeXrJe6o1EUapFWyunTJbQnB1YSnB/y4LomffQ9kzxEzO3vTxXDKD1I7FVoAL0OTE6JyQIhRcCHLlJNbEfn3n5ty0VlxWoY8DUnvNuBz+iWk+IyUw6w3U8XW4GnYprvJ8TsaOnsTEaLnSChpB2veYgDufpgmxzp2WIkBHNm83EUXp9YLMDUEiSsesRywHombmEjilCcKESgf0HqTFSGcO1VjVsxKG6uKbdw/HtVsgkCWiONKZCUjoHQHG30dLriY+dBdMp4lJT763RuWcr9nLFcdyDZYdzdKBLuygDEy5uAK3+HuKGl041Go351JSeqI478t5omfn7klBrcOS8+tyOQIJ2K8SEN/D8X3tqJwnR0PMAFXOpxPn84mcjSZFn1Lx9tdB0dAcBYe8xqmsk6ajl9uK92yQrEz5xJgyFGUfIyL7Kl6WKdlJl71kLAbIbpCjepfcyc6+yItLtxZ1p8pf4kxUYwiQihs2AETYyQ4ZOlIRini5caAgNnPKGReFqjya3NIuLhSlVLJwcY2ATqL335FMjF5GXEp0vokZvUQnZGJeWof3ZonWMZkbyK7CyL1UBVMKJom5RIbgYwa84qUp0kot06xpJRXvJ5Nq9KnBZbMlVfJvl6pSa4fX3Aoakn9WhZlbegYn66kyzpO3ui/en8dKLVWmkqPNquFum4xXkogUNGRSrsqxFZYNVZTOsZrkaTZmcnE2vmrB5tZ+3uW/Owbm6YzEULUDXIhJQkBCwSoy0OF8BKvS9YKQyswuXpDL7MgYjnuU6timLHS7zK7fM02zk9dwgS2KR59mAYmCJYfEoxizJUIWNLomR0mtrYSjaVoyu9CRQ6zqsP78SvZrq3R0OjDoRAiJzEzXCZJ3TOkI4qkHzYVun5gTFV1y0T3vUBucByVgxe851l5CfjmhU6ULgdM8YtlTLodLYX7r6YWSnYwpUenFkZBxzuz7XXUOvDw4SOCwU+7OZ6w4B6oPATMvIY3ac3V14O31LdPs68SFAWs5pXQ8efSU73z8mtM8choTjx7vURzxofh4ogSmMtLpgQdXl0ynN8xzJkShjzvmlJ3EqJ1zuCr8HUNtwKhC6JXLq0eojSgH+r4jMzJOxqF7QOyVbJmL4eAl1KGvGkCBrzz7GuddIudCV5VVTWDoO0J07RiJEB9nHh4KTW9IVQhBiKE6LRK4GOCiz+QEXQCNEWXVJ7qd/jmlCAnzZpXUMvvgEgAuqNbQx6bB445TqXyNVrgs1pElUmxE1AOAqD0dHaUkxAJz8XNkOUFycjDSuyRCCnQKuaj7cIo7nLKrQGH29HrtK0NNIpmIa4jI5IFFmaucfnC0KARSDjWl1XEsmb523A4FxDo0ZJgTmZGhGyjssOL9waJ0SBirsnWrrqSmykBlj9Ixzl7KrtYTojtvJgV0T6+FsRSGcCDnmcREzsIQDZ1hjp6WYi6YCnNpFWIBs8CUMyGciZoWHZdYycDkCUTpJEEtFy6WyZxcZDAqwkgoA9bPtYeWp9ei7pGy4zwn5nLL0PXAEUOrAxOxciYxUqxHVB2JKbOnOUPPVO6ckM+lZyVQEjNmE5KeYrUD9PdyfF87Kp99fsMQA1rV/ZLBlDN5dnZ13S0pppymylzXAlXzQ2reXTVSUmBOXsJl5lG3EnEKjFAsorUleTJxGBZhykagoGH0qpsCc57xBJQriapER2GK0iPu9WOkUslqWrCikL0EUpiQYK7xwImMv7AlBYo6J8bTEU60GrpAmZVQQKN70iL+wsZOnZSYXR1QJS9QoUnCxNn/nu915cwsQq+uJ1E000lk0RqxSNTMeUoE2aFhdAMeKqGuOoEFZ+RT+RmqxiCeKkqWqzQ6WAlV+yViCVR2zOlEH3qO87luSD1ROnJJTqSUQEreTM4NU9OGqWk3cc2blApYZti5wmwuhTz3CLMrbTqQVUXG1JsgloJqJpiS8oTlvmqhGX0fGEffkBInx/JKqRL8E0ZHF0A6YSpezlfU71MrjyYAZTZChKEbqriSE2VlwQILahHtxaFgc00Cr7BwBLAUZej9uc9TIikIBTIMXaTbdZzPTlA28+dbciHFmWEfnHCYM8E8cTXnxL7viNHTDxcGp1zoOmEgMo2Bmcl5TcXrhroh0JVAoMdU6WJAVTneTRiZORW6bHT7HinClM5eJRQ7DkPn66A6YN2wY78LnE63dHFgShO7fUcvA+dpptPBEYYhkEmUVOg0cDVc0Z1GKD3CAbUL+rDHyeKRh1eB8v6HnM+Jw2HPoe/ZxZ0TE6UDyfyuH/7h2oeqJ3ZCF3dQ12/Xd1CJk0F6Dh083nlFUlBfV6WqLntKyz0yUa1iaF56awYXjyBd5YVAF6L/PufC1dV7xG7H21cv6fo9OaVKjnc9lIfPOrpu4HS8I4TIPLfN3ujj4MFLPtHvPe3aegWVXOiGC54+fco4jbx++TkI7IaOw+EJJRvHuzsyxswnbtgJeLrQ+WGGoxrOjRhQnPhveANSkYq+aERKIZKhrVWZSMnA5praFGI/e2BSBrIa2OSl80CmI0gmSvTAyYyJE61MWzz3686QCKYeoFBcfC+qIBwQ2zlZexaCOlqKjQhzdXKVPgsWCpGCxj2We4IlisyoekfgnT5gtDNTPgE7kB6TiSCJlL0s3+/fS+4FT98mE+IgpKpybNkRD6/M6jBN7PQKs7OnG0W8r5YpSYzzPLILAyZCYqLrBKyiWNYxdEoIHTm77dIqIZCmEzH63hWjeGk4A+SJLvbM3KBcoATnwZExO6HaY7lKDpQJ7I4+BIK6MngMAy7y5w7WnIUgOwSliz1RIznBVBzX76T3VK5Mrk813biD2c3Y/J8YojKej4R9wMpASkdEeooIMQrjNJKTl72BUWaPBrseRIwxTTWX63ChiRHD4AvNAsFwYSLZeSkcQpDey3vxCoKCR4tmvnlaSe74a0ByIGqkydebeGkvBKIAlKVvjRufCSxgc79UoohOROnrtaRqCOzJYSQll2aGkbnU1BUBKR1dN3sfHnU9CM+RUtEiQUrxhlUlLOV1IhGxguVIktk3cvOOxeda+lrwiHgXdszzmWSJwQKoOx8tKhOpm5jJKhJltbpGfL6KzaSSyZM33doN0edSzs49ssDQD5zPE0UyE2dExefDptocUB19UO8k4tPpedFc3PgC9CU5goPRRfONU6gpG6mRq9uPIJ7iA0/RjOORfThAsEoOBEqpZdwwiHLGZaGTGg8OA0MfmbPr4BRb+3s78c5RtjlPDF1X88az64tQRfiKExG7wRB6bm9H1BQItU1PYJ4L/TBwuR+4KbeM2QmaKpFgzv0wm12t1EotMXT0pB8Grq6Um5s7d2AMSvb0Ubfv0NxzPDmJNkaP2p883vHJqxuKjpACOfdcHHo6U8o4YOyJu8jVRc957+rDXTww9P451Vg7v3qOve8Dj2Yv5wzSIUEIX4mkBDF0WEl0/QAU15YphRB7T9NWo+bkeUf/Xa00u07NwonxFOl7TwpBJ64e/AC3N6e6e1Rhxmxc7ApXh1BJ8IZGJaXZ5f1DDyjjdPLgRzoeXr3POE2cjyfvTWO2lrAblZ9V0T0CIh0tN92YKCJCSizjfPUy84M//IxPP7nhPFUORktrI0yjITIiEpmTO5PtOJ3atfbLz5opCArTCLc3meNxBq7A4IOHv8LHLwea9o7jn9+q6LQb31IdNE/BZUryyg1ICzrWuIBGpuRcJf7b/TvZ2pgIXaSXjlyMsUz+3lVuSLRCMO8npQoaXIMlp1tchp9avZM8oLGza5yUQLZQHaJI0BGlJ8jAlA0rgUFgthkrE9lmX1v49VBZhRS5wrslF4iZKeW6d+NVhapY6b0TuM4uIOk4g4u6WULF1ZNzAYlHcknkcqCQQEdEeigdmcxFeMzp9IpQ+984uT4xnjpssMozG8ni5GvXSSxo2FX0JpCn1nMqMpEcMenVK4QCaHU4zbx7+zlPEC4J2e3PbGdMZ4LusJKIslueY5BAjAOpjHThAX0QIHHS0dFYXOslBCFYJBVHTbuYiLUvULITMwWxM/tuT9ArjvmOY/pPrHtykMDxLKhNxM4oefT+HXOmi5DIVSraIfnOFDE3XgKVRNsh4qQzrImTGRoG9gqndCbEjjGPDPXlC/jC1SJMJbMLgSC+iTr46GW3mUQgElXAXF/BCc9e3tbKEQORNPdkzq4MWnqc2B7IJXu7bxOmAp0AGKq+KZO9aZdLrM+YuphRIRFqTjdbxrRyR0S9tGzRQCguFlX5CbMUeg4uLpY7NCSKFCbL7qyYMadC7DpPcXsYVAucXcFWYSkV9wXr0tpR/L7dOHlFSspVyr9k+n5HMkh4yW7JxdNAGl1LIkQsBEryLVzFaht5pQ9CmnC+SQSCMSe8pNF04Y9EhTHMrvoqkaAdc5mwqqETQyFNrv4KQppdBG0YBu+MbCPzBL123tSxrsPZlHmeq8rqzNAH5ikypwzic1JqOi0YYK56/ODBgevrW3RWF6gyj85PUyZ2yuFwIOXAeDy5gcOjLq8FF5dEDwdevSqYOZnPcBLrg12HSOHu7kwXDuyGR4Q4cLG75PLykumBUGYhhJ6gysXFA7pBa1QYUfGoLQTflH/o685PiJUMF2N0Z7jYGsWXVk2la5oVT1mmeazIgwCFR0+/Aha4vn5FyQb0BEnEsCOVY00jeUfbnBPzcWS3u+LRo/d58/rtgkxQU34iQtf3HA47zqeR8/lMcw1yhtevE9A5brVwjY2rh1c8evyIX/vmtwFvLih0XuWS/IOd7rg4HLi9u+Pt2zt3hpbqhVrxAxUd8/t++t4z7m7vOB2Py57jKTBPTyLw5OENfdfz/EXHt/7DN5eUNXXky9ernj59HLk63PDy+pmjlqycFYSlbPq9958CwqtXr7m5uV3GIMB3P/+h9SriIo6F17XnjosoZikUJnrpKhk1gCkaEpCcAKp+vVISIs4/U509RSmFsbhMfi/FkeGgHNORQfZknVCZMM0UOkxdKDBnJQTFCMxlAjq6qBQ611xS16zJEmrgA7mcibjmRzEjSCGbp/vL7GJw6I7JRnoikoVJvO9xAoYyURiJGjmXa4TAPu6ZU4EAajtKDmhwVdVioZJrFUqpzow7NhIcPcrmcvJ9dKejpKvqQAykfHSfj4zIhEkiTVegPehbYiXZhhBJqbYOUBedK8UoeEdiJWDULs2avEWHDqRiHvymjhgHzua8N28BUQn3Zcc8AV2kDwFhZMxewRNjx5ROiHSICSnNXv3HySUVrOqp5MTEgOqOIEpOJzQOnoIiEIIwT4mu23FKJ7yNyfAl1vw3Pr6vHZVTOtLHngKMc23URu2Nkp15nxiREmtuL7vqinp6wFtP1AZS0rtjkxN9cDKVM7p3DqHpSLGzywkbTMmJi4MKUx4xC+yaiqpFMk5INDk7pK8dnXjZsBDQ4qJlc8kEBO18oyllpDfnfFgwEoGpSYmTvFqmVOUHcZQiZ8+BWi1zLDqScmHMxdkDUsgZECXWag0p0c9Fog+uNhq62qvDImGKoEa0gZnRSZTiTcNKVUHtMUqpufjs+hyAl0xXhUfACZ4aEcm0hnzZYNDoKqDFyMWZ+RKh75zBbsm1NibzUuDRMl3pMFFSyajV9JQUuhgJESx3WPYXO4g3khtTYq+df0YDF6qcxpkyO99Igdk6uurA7MLgzlJrPJgg7GcOuwN2EN6+nUhTBmaSwyReKl6U4ylxGHr2w0AnPbd3J6aUFg4KKoh6B9NSIqIDj5485vrtHcebkaDOW7KcIB3YP7zk4eVXubmeUQZCcLKbqLDfXdEPHvnkr/kct/RDjO5gNMFBqaRdoUX8WqkF3rCv9cPxCiJP1ufsRiblkSePvsbN9VhbAew5H++4uz0R+paWKohG9vtHlKwcTyc8Umd1CrgEWjW1cH3dCJkHr6AxRwpSESQ88HXqynnE+ABv7ixcv72rfIO1tqmZ4GmaGM9O6KOhGtXAl0rE9BRlG5dwc33LzfVtPc36eVk9C0zg7u6WfX9EOHN7frJxVNoQvIx+fzhSSnBnCgixq7y4Up23VfDqxevD8vU3fvDrHI9HPv/08805q45OdWCGoefps6/w/JNPF+eoHa3asT3XT59/vsz9hx99hXmaePP6DaU0xGbzt/JdpDaiFLwjN7EqXOPcBzN/GZoQIep7aAgKqa96GsXFyiiuzyQ+L0F6TyvbTK8DSu/FPSlgjK4QG7KT52XHMR1dlsEu6PuBXVTOaUJKgZIpOiBBKcyue4RhNtDkDN0h9vRXKyP2mj9dOiWTD4Sh1nGWG09NhzvSPLMLuDq2usCf5Y4uJlS9gofq5JQinMsZdPQq6uIcPKMnJxAtSBgpuffUlQEoWW6c84VXuM1lwCxA7w0sB+koaqQ00lN1SGTnZHDcKZRQK1HLjHReoeV6Xh5k6HxAxPV0JHQuaFjunBpQAjASo2sPlXLrQpJpqsihB8qdFIqNQMBsZp7PlOwOWqzpTQ0KWRnnE7vuwMyEiQd7ZhND94RTukGkQ2tm4Hs9vq8dlfM5M/dnlMBF7Kt4WXEeijMXXeIar5WMEiF7uTFBQF0AzMXiAqF0jAJjnhg01BzviIRQeSbmpCYJdEFIs1Cy0Ec3AudpoguhkvFqd9hSKGXyyKTb0QdhtrIolHbq1RNazElkWpxgKGCLIFjtlimRuVaS0NIEmIu6lcGh9aRYSAQriLogmOIibWJaiWdGF8WrH2TwBnGaXXBL1F8ErWhGqD0tansBcGcwUzvrgjchDIJQCBTvReMUfAKB1ok3GZX4WjAxMooEJefkvIdygYrSh56cYdgrXTA4F05Wr5tnYnT11p1CV4SxFPJctQoWifgmMOeN31KBHqXrIofKTzgz1r4TApK9jA7vCRTN++kErUJo2R2qw0VHLsLt7UQ6hypm5ZUTUdXJyzbQ91d0F7DfPyRNO7w88ECsJaB9NxA7ZTdc0PUD9lEgp+Jy3xpQbW+zGyp7v8qFL0bU522xRLEsUH1KZ+Y5cZ4SF4dLhv4xx+PMNE7kkhB1GN3TlTMffeV38NmnLzFrCrHtGhftC168mOu1omsGyY7LBw95+vQpn3zyyTKu86lg5vo7j588ZJpnbm/uqPE+W+u49sQStkiCIDx97ynj+czN9R0tpeIpE0dyHj95zGfPP/NHt5im+vdVHdiKQ+hSdXKoCM+ThyPXt4OrgG6vKsLl8Bk35/fubzTS0IrAebrEuKTJorf5spaGwrg77ysy63+r1VJ+8NWv8PLFK+Z5Xgj9xcqCwHzzV7+1SRltLt6+EmGeE59+8lnladC8KQ6HA7vdwM3NLeM43p9o4JPvfOzGW7zE36ueWiXLxKn8f5y7licvtQ0FY6LTHXPO9NFTrVIbaELlcmmoZauVh1XJr1Ygy0gXvbRfxYnOt+PIIVwu8gSzubZMH9zpLBYonMCMImd6HiEVxc2zOtcjeGXagCJMnjrJUvVXnJSMGB0DxUZiNFQuHB2lKigp7DpPGffWMaZE0jNd3BHDjPMPlcLRpettpkii4MFrkN73tFJIZaIPkRh2BJnw+sgJwXsNzcV7XeWs7OMl1r0l55kiyiCJIjDlSIzKjO89Iq5BFAWQS0CZkyPkMTjvxfu1uSDf0Lvg/2QwlsQgPSF48DjKSLGdp9VlIBdXbpZSKGlmTLDfBSKB2Ds5f5ojnbj2Uc7QdcY5nyhNtdxwoUCEWPauqRL39NGrHZ1MfEuMe1SVfb8jlyNTysT4jof9mzi+rx2Vi34P0XNmcxmrvxzJs8shl5idMFfES4BxifCIkMtcpYKcDe9NrIwez9tOaaSvzc3SDJ0MmJ5IyZuLBfFcemDng5GZvneIzMJEqFLmQ+i847A5ajALCJ6GUXN9lC64Zx1wAbhz1UsgF/a2I1nhjPNVKEJhIogwdIFxyq4lgytJCu7tF5lqNVFx1n6VfKY2snJNldn5OThiYeaoRmGsPSmU0U6ea8bLgEM5UORMSYVkmX1QJAhTWZvD2VwNRFBEXA7bpa3X6poAlNzKto2SI3O4Yc+e3SCczh4dZvVSu6gVUmd2T9/62kNCGdSrLtRc36JI7WpruLIvmVwSiZ5BYbdTtDMveRRhnl0UqeAOYafKmJPzdGqPj7kYj3fvczU85sFhT3oUvHIiHoixJ4aeLg6IKF3XVbLmGjosvAXVymcoS6kl4oa11H4xucDxfOMIhzhy8+TxV3n14gwSXFsjjZQyknLmybOvYkk53zn/QuSyyn8bd7dwh8tzGxHMHSKzfkkDfPrJ51Ryxco9gMX5aBLqsmBkfkzTzO3tnfNDmmH2vwTg5cs39e+qPd0a9hr6N7l9oDak83fg5eevWPpzrTGyIzwp8flnK1og3DKEl5g84TRfLQ7Q1WUiJWWcmjK1/8HraxcTa1yKBbVAuBvfd3L5vZ3GCEF57/33+OTjT9xYdJHHTx4B8PlnL+pcSk2jtLmsCEedz+cfP1/OJ+bGUqwRpOGH/rMf4pf/3S/XaxuPnjxCUN68egVSOVW2jqw5RwDj6eRBhejy/EJ0vp5Wjkf4UvtgvB7/B9dCsYxqJIrz5lT2i0SA5ylKFcVzQ+yoaahomtbGdV6yjDpS6Q3zXIVadQcooRwwvcMqr011TxcDae49LcK1CzuKoyKzHbG889RimEB21UGaQRJk1/Hxbt+JJEaXrygyIsGwckCrEreVkSKja5akSCkjOQhdCATZkWymjwpzrCJPVtOZiql5J2gTRKcq9GbsXKgJsYIEI4ojzRJ2mJw4TjODKn0UtDtzqt2Li3kp9SlVvRTLaJkxU8Zww5AHVC44zbfMJvRhoAtOdRacvGvB2HUXCNntRJkYghHNycfncMd5Fsp0YnfRMZ+EYZ+QvAcmMoF+UIJMCMlBIevYxeDtGiQj4pydjPdUMyk1tX5CGTwjKBBiIlXybLGJIUROaaJgDDowaOLq8IDjyb5sIf6Gx/fsqPyzf/bP+Bt/42/wL//lv+STTz7hH/2jf8RP//RPL7//U3/qT/EP/sE/uPc3P/ETP8Ev/MIvLN+/evWKP//n/zz/+B//Y1SVn/3Zn+Vv/a2/xeXl5fc0lnOZGfLglCF1db6cMyEaUTsSXS3PrdVt4lonxVLlNngqI1mA4mqVUQqxBObSMWeh62XJA6td0OmZIEbs3C0a04nSRNu00HeublkwYvB8KQE6FMnCaZwoZLog9DGgOPHSTJwBjxBKR6IgVT8i5shgB1zkCcz2WLjzuvbeOS2pGnMR7w5Mdml7ocrPq49PrZb0Yq5gaQWyd3B1cm4g0JGzM9G1aj4g4u0AmJ3UqkIqkRmjwxnr0zzRhQGrehKeCYquMuo+EsmK/9eE4mIgZ+M4nYn9gTy7euuw7wl2wTiPdKq8uT2Sy0TQ2mVXvdfQVLx3iEhtTlbRJg1VlAvDsrcCyN1cUSjl4cUljy4+YhwPiHQE9vTdBTF6TreLg3ezDbH2nln5EM1w+k9k+d0W0i+lMOXJ59lgHO8wMhrh4vCEq6v3+ez5Z8x5RMQoZaSUwHvvfYPj3QnVvRM769nfvAGNV5X7I7X76QUxwN21V4A0boJv8NXZKKVW6XjU/sGHH/D27VvG87h6Il+I4vnC91sD2aACqd/YxihfPbzi6uqS1y9fc3d0x8lTLbZE/80paD26/Ge6OAgiHvE30V2k8NHTf8N3P//dzkPpJp4++oznL7/mc80Vp3xVx+NOgqhyGnfVOSwLmtLG4F3OqXPg9/b1H/gqH3/nk3tkWGupypzd0ajpnnnOfP7ZS5rYVXMutJWAvDN3pTqBH331Qz7/9EWF6P3aWhU+f+2b32a329X0k3G8O1cScVedH5Z7/CLysjxK+s4jYE8N/fpGwTBO+dcwe12DJ+9V1XPBaNdcdHum+USgZ0qTl47XwCdlL19u9+UPQmsJM0hQ+nBAysk1huTAmEY6OxB61zC8m+5Q27lzpIFszlMpOdJ3PXM+V4fH04vFzk74J9WKzURTbC16xiSRJSK2A4wimaDFA1NLFEuITN6E0rw4oJCIZMQGD+5E6UjcWSZZ56LXktwQ43oomVI1tPBUPz2qg3NU5ICSXOE4ZKZ0RBkoOdH3gWM5efoJ156aDEgXXpU5zB7YSSHmC7p4haqQwokIDFGcv5jVCfDRHUsvJlfG4po6USI675h46cRbZoadI51xiGiJaOwR3pBNKWVX22NkLxfPCQuJrFUvp2pkORfIRTvndEMxIYYLZjJaEjE0AvCA5ZFSOm/QKBOlHCEeyDaS5vzrrslf7/ieHZW7uzt+7+/9vfyZP/Nn+Jmf+Zkv/cxP/uRP8vf//t9fvh+G++SZP/En/gSffPIJ/+Sf/BPmeeZP/+k/zZ/7c3+Of/gP/+H3NJacZ3J0xn+p3DbDmM2rKAJCp0I2hQ6Es7e8V+WchXNKYK7wGMWqPoGTp7ra0C4VlxKXSiDzstZa9WPe2E6lkKvokwtTJqhCPJU375wShX3cV2GviXHy3GIfB5KZp3c0UsKIGKQyElBGM/Zxh9EDmSIJyx3ep9A8sqgvnnZQSnaI3ALBXBvEZYybIXDEoYh3Fy7Vacji+iQqAcmJiamS6zI+gcGNXgYIdBWdSTmjAp30dWGr902p6rlCqAJJNSVTjJLNBcum2du2A3enE/EghDnS9+4Q9btIF4Fy6d2kc2IuSsnJmfISMUsoriWwG/Y8vPwGu91jVANDf2DXX9L3B2KIxNjRRYdOW1oF6na+ZiLc/WgR/xLRO6Iwnp0cOSef51LOhE54/OQbYB2fPv+EEF3o7+HD94l6wLjz65hxPsH5dI3ozqW/N4enSZbLrXzRjUMEjj40Yb0QA48eP8LM+PzTF/6MmmFuaYnqSHzy8fPFyOmW5NDSGzSp7/VnqvXzQfnwow+5fnvN9ZtrtpNntUT3+s01b99c+ymXc24uI1J7g0pN5/h7I8BX3/t3fPfFjyIi/NDXr/mVX3tQK8mET179GKHq9mTb8dnrb7ghrobSrJUI6zIur06o41d1BediPHz8kN1+x8sXLyu65M/329/6zurs4R29miNFJQffB4bWKp92lM3Xh8Oehw8f8Pr125qOgeeffLZ8XjZOzTaNs52rEDwI2qaJijV0cSXYXj245NHjS3I6MZ7u7juWv85hJLL9KotYnWV625FlIooxjSPnAqJTXW/mTSwxRB01zCQ3/DUd4AKMnZPrGxemdogWS8RopHRH6CMhKDJfEGRkOnaEkCgyuY6MGEX2LphoysTZSdbJhfTUAlEdiRrt7F3cK3+rZCHEkWyubKskzrnQCZwsIQTS1BG7IyEaViJZMp0qfey5OV+TzQPaQAfqKsg5VbXkSvgtzK70jDq5tXjw1+GaUinPxLDz//AebrswkMvJUzzSKnMChJkYziBCLBe+L9vk/EeMPl5h5qKYEEgyE2iVbsZxLCQKlzEik5Lsjllmb9aoEGIkE+kkEvIVhDtIB5SBThOdjtyNAamqued0JMY9wo4sZ2f+mIvu5TKBBIZ4QUAJtSFkCJksHWiPxVyjDMWyVtFIT6dPRX+DVfnlx/fsqPzUT/0UP/VTP/UbfmYYBj788MMv/d2/+Tf/hl/4hV/gX/yLf8Hv//2/H4C/83f+Dn/sj/0x/ubf/Jt89NFHv/nBmCHFSDmioaCdoviCm1KV7pKIhtp9FS+sE5vpoiGyq4JrNR2jyREL1EWGNCxCaFiAUuiiox9WgkuvN+Cg9eAgEGLrjeICXuryFgBoyF7qXDqKReYMuUyeYrJCSYnaoJagnu3UXpjkWF/avvaRybW82HUCcnYSFvMOkw6YyJrAFCveCA1xTY0mYuVdnKdaRu2bZC4ZgsuId9Y5b0ET2U6uS1C0bt5uyXp6MjNTnlHJ7GLPmJLDvQYpe5t0VYdSWyPJIRRvlGZNbt8/P2bYV6fI+2xAGJTu8cBQPoQweApDBvbdgd1wQd/vXW48dveXx2adbI9SS6a1liSL+lycTreEym0yg2k+MZcjKvD+e78bEeXzF58AI48vlYfPfg8ff/dj14MB3r7yJlzD8HC51vEmI9z4N1tEQbQOze7918xWM/JWnaaPvv4VvvOt7/isqy6fQ7wR5mfPP6vl7vWWy4oU+OOqqFZNrzTSR8u8SIUyHjy84sHDK+Yp8enzT2tw760RUs61Mmad1zaXDVmyNt/v5HoWey9wtb9GGLk5PeNy/4bb0xMM5Tuf/+jymf/w7Yf1fG2A61w1J6veludENmMyWATtROHi8oKrqyvevH7L+Xzmzas3hBjedaGWpSLSELJNKqyuofazdx2BLbpxuDhw9eCS6zfXfPLJp5uztystnvC6RjfOceOsbP0WEVcW9nxKWMZqZjx69JAPPrzku5/8M+5uM5e7H+G+Y7teZzsOpeMy/C+wMJPsml5OzOUa+BgITDZRpKNKeJDU1Vz9Drxq0cdWjbUZXU192qxkbpzcbd7sUHIVhNRMKYLMh9rMsXDMif0gBINBOiY7EkyWkQ8aydYh4l1+VQQJkZK9V46I8+2C9cQgiE3MxdgFIc2FoF4JWmxHnguTnBHzAgcTT+VD5DhOrj8VoOTOg7vg1U8aAj0XtcInMGhfW38YRc+enqvtLTBFZMRqew4n50905UEl6SamEpAcEfHKJiyD9WA9El0ewAs1Oigjat6DrARPo5kWih3JKZEohKyoQZETYxid/pDd2c5WKOWM2VN67TmfR7IYMRSCnLmdSq3qKV7ObQrWIToxRCWVHZkJQQlySad7b/BqVKmIk/Mxa0MRpaOIICVjuZBwjqAxkGzkez3+R+Go/OIv/iLvv/8+jx8/5g//4T/MX/trf42nT58C8Eu/9Es8evRocVIA/sgf+SOoKv/8n/9z/vgf/+NfON84jktEAnB97RHbQXoCxtQdyRK8hb0IlRLpMr4BN6xWKxuc9VWXv2Mdc2kN3yJdUCRkJ5fWTTFIRjF3XrIRO++FotZjZXQnpuaLSzGsDGSZCEFJ5t0qrPiL7FVBIBboam7fc8ClUlXLApUXq5uTOOKBFVI5YsSKJBiRgVxmj0l1JuAaKK0vC5KcK9LakpuXt3Wdi/cEiV6FoaVKh7v4WMvPAngX0+S+kSacVY6PB5eR7oIx5cRpmpoldrXaSgrznHdAVInBe+kMwfkIIcDF5RMeXX6DPh7YDVf0/cDQH4i6q2S8bonC4QvB54ogtB2fZotriq+SK3OaOZ/Hurllip354P332V98neNp4jzf8eDh+zx98iHf/c7zWg4ON9e+EQ3dA8wecDfC3Xc/8Se2MS7gxrGO0v/X0jCshmK/3/Hg4RUvPn9BmjOPnz7m7es3lb/iny5NZ8eMb/7Kt3CDr06k2dz3crV7CEZNFWw4E4jy3vvP2F8cuL2+Ybfb8/yT595Soq691y9f8erFq3sWbU0zNG9jvcSa+lpGtDwLF+iCxw+Eh5fXHI+JlALXxwek7FySN7ePHIWUhuJIFRFrjoOXqW+duVZp8MX0VPs/Tz0owqPHDxERPv/8xdJ/y9QdD5OGnGxSQuv0O59qBdM2Dpin1rZoitCcFWMYeu5u7rhbOEPvODbS5u6+43BveoXKYbr/nLe8lDrb5JIZZyWVAZO3IDNCt3zOtgvvnacl4ohnLw7/R33LKX9CyeKkSPESdw0ds51Q2YENoGfm2pbAVZNaq5LglSHmFWdaXIa/lJFMYdAOQm0/kjp2hzMF6PdGKTOZUjsVQx/UyaIYnV5Q8pld7LC5Kb8EUhlQOdEFYdCeWjrAqZz8Pos7RtGxXlJ26QMJBdRVkr3nfGIqGeOMIZTs5NQQI96WpCpWW6bk2YUlU0CkELoAdBiZXRwoaaAwYXVvHS3VDsLBS3SDAj3ZCrEWc6gmcuW5zIwgd4Arh6scKeWKECKTNiS/dqcvziHZq4vsYcZsGSNiNtFJT+yUKc+E4i0NbspnteQ60IULGlcFboAOwuB3U+6cTkBAbK5p1yvvf5cmsp3Z9UPt1TaD+OfmaWbo96RyjWLcpUQfdlgKjBa8seL3ePz/3VH5yZ/8SX7mZ36G3/bbfhu/8iu/wl/+y3+Zn/qpn+KXfumXCCHw/Plz3n///fuDiJEnT57w/PnzLz3nX//rf52/8lf+yhd+bsHo4oCWjBVvMNcEhwgwaLeU1GoT9SpV+Ar35JFcY4PgC7TESnRLKJ66cDl1QbtQ83W1tTyJKAOFGYIjLf7HnjtN2avGzVKNoAWsOUleZYMoGoIrxRr+stnIvGyCRl95XVY6ojiJVVFKcHVdKSBx9j21eNm0Qk2FuXOCNkl5AGXO2buZBsN7o3QsHVAt1nLkxDhPdF1w75rJVUxLJco2REIyHYqpkmkieF6mJ6KEqPR95OHFV7nYf8jQP2C/u2Lo98QwEEK/GNitI/JlUeB6uANghrc0sFI3Sm+QVrITbFM5EfWGx0++wd1dx935jsPlYz784Ou8efWW8zjy9i28ffuSIAdCf2A8GR9/95P7zlCzHtXILNA7VCi8Lco67mrch6HnwcOH3N3ecXtzuxia+e1N1bZw9OTVi1f3DK+IesWWrnLo7gj7fdo9K+QXbobXSnGm/WHPw0ePuL254fbmlpIzn3z3u7SbWM4jUkmY67XZnH7pErtBN5aqls38aJ0EjU5UfXDxKRe7V5zHh3z82fuk3C+pkSW9RCsbpvbAYUFjmuHXsJ0X3pmnd6YBf2++8tGH7Pc7PvnkU07HWkVins6RGiBg5h2HxdPBzalb/1sfe/tnuyYaH6VF/QIMux0PHlxRipFzXkqlV3xrHay1CzQHs36olTC3wGe9V1n+3c7BzfUt85R49Ph/Sj4ceXv9ywTp2fWPKNm8PBUn2roeS33m91CwdUIH/V2cy6cEuyVqAZI3CM2KFE+1Fo6YGUH3lFIbnuKptua++l/i6t7q5PMUEp269AB6RO2S21LotBUpuEil5EiIHSWPBE2kkvyec2BOidgVbHQXCUmI7LwgofTMOTOXxMXgQmTesqTjVGbG+UyMPSKGhtk7hZcBpBC7kXkqBNEqLFeYTYm6A6aqxtuBaHWsFRNjLC5GqRYoeMpHghNNC257ulC4GxV0JDIwc4OUA+jIrAFlhLJDzZvGEiMpB3oVQhiqFMPkKJYok91iNhNS1Y2p3UdgrHSHTGQP4ii9FAEr5FQovREwLF+R05GUJ0Qiwh6TSFfFSWdz8v6cE8KBXJQpg5RMFKMLO0ee0xENA1EUM63q6oU+7h1pj94uYcwjGgXCbwFE5ed+7ueWr3/sx36M3/N7fg8//MM/zC/+4i/y4z/+4/8/nfMv/aW/xF/4C39h+f76+pqvf/3rnEstz5XOiaPmDyhZM2BV3VGEVJn15BU67jWQxbkulgTDm2oJLF1mvSOoa2QEE/rOJ7xYXmSLfZOum7oFchX/KVYqu1spxXObQQ2K68WG4Kz5Yr5ZWs7e34QekrNbsrlMv5cp58WIZBLBdhBmNFSNDAORSBYX6keyl1+bL+ZEqSXZLlznZE0nmal3j/PmfFbAPB20i6Eakg5vqlcYYgDtUDFCCATr6KLwYOg57D5kv3ufvtuxH67YDZfE0BN0Tcvci+je/f4dr8SNQyXzUrCUCbFuJCVTSmEcT5zGV8Ruxwfv/w7evn2JqvH08Ve4ub51uP+Nn+9w+BAx4bPnL1bzUp9dKVtz8u7I3hmbuNMZmrO0pFn87w4XBy4vL3j79prnn3x27++kRsuOOlSxskUxrPEeWKpgyuZnIMu/zhuphkFlSR30w8Cjxw85HU989umL+jkvp1yNFJ5BqOH26jg0XpE7Di4Dv85JcxRaiuLe8zRQzTy8fMODi1ve3Dzl40p4paYywnqbtPKFJrb3hePeI7DNva+9vNZ5WZ/Vbr/DMD777AXn43nhgiwF37KmdZy7levZvziGFXWR5frNvzC5vz4MOB3PfOub3+bRo4dcXF6SUmGa3ult0lKn99JjzcH18Wl9P9t6oKEyDeRZkBz/+/PpzPPTmX7oePjoPyf2huTnvLl+SUoDfXeJhohVVdCg3T1EyIelRB4i4SFD+JpzYuxM4Ui2W0TfVMfuBNLRa3AkGgBvIOlIV4dxdvIqrhgdJLtshIr3xRIja8dM8aaH9bPNfQrsSCl7d2TztIPSe3FBX+hCYRqj7+PdAW8U6BWeUzmhIRDCBUVPhNaqxBL73p2HXEuAU4IujCgzKR8ROWCo8xXNOyFTFAkDgX3tOO1poKCBVM4VBfQgMFXUudPIOM+YzOy6y1pUcUtt7kGUSAreibuUEbEdHcKuS4jMTNLVDvUHSpooVhzR742oGSNVx4SKWOW6NjyYNivECHM5uYMJgLI7REYbSOmM5BNiI2qBXf8Qqam6lI05J4YY6LTHMM5z4jyPXhkrBhpIpphFKJHBhNB1jKWATfS7yJT3zDmg2YNYL5c+Obfmezz+Ry9P/qEf+iGePXvGL//yL/PjP/7jfPjhh3z22Wf3PpNS4tWrV78ur2UYhi8QcgGv1Z+NYIJYh4RAqf14MGWqiqCiTuQMolhQV6TNibk4HBeji5FhoVaQmGsGFDALpDIT1Znn4zRjNWUx5+TeLrUvjBUEJx0WKw57UohaKCJO0KrN60pxsbeoLFGE4YJHMQRiFHIJWMnLxijW1XSO/1dsrI2y5rr3KSKpwsreE2MqxUlbNTUG3uVURDBRcoke4ReIjcNQXN8k2B5nbwVCGIjxISHAkwc/yq7bs9s9ZOgPdHGo6qbvOCNbdGTz9dYcrDyAGo07SQirG5joUIWyJqY5cTq/4b1Hhd2D/wk3N6+5u73mo6/8dt5eX3O8PfLZp288OhAvG/3Cmtlu9mzH5z9ZjJVsqz5alGsLkhC7DlXhyZPH3NzcVrSEKuEON29vuHl7U6NfP6U2VE1AYnMsKmemoRTiKbtSSt2cVgSCjWHZRtUXF3ueffAeQZW3b6958flLnn98+oLxDbqKv7UsRkul+ElZ/sKf38rRsOLCcIann1YcYX12IolHV7/CYbjj+YvfxWkaUM1fQADuZ0G2qbHtvbG0X5A6rkWrpP6r+g4hePucW5fdoAu5+N4aqFfvup4SCmmePaWkX0jIrE7ZBl7ZIi3LzzZ/9ubNNY8eP+Dick+5due/pS5zztXv+uLfba8t9WVpxhtpqeUNiVc29yMwjhOfV+dUdODJ09/Nm7cv6Q8XmI1M8zUldXTDQB87pulMLq44bLARpcNRGL0gcCDyDAJYzBiTcyPsmjm/Rjmjckul81eEpS6wbIR4dkOqg2s5kRi0I6PeniOcMBmwAskUqaRnURfolLofFPHmg4OCi66Z70+lq+/JDLUicIh9Tf0YpUwYrjpt5h2xS/HO285Jc66h5ityid6nuHgfKH9nEiX7PWU7MXTuxKScMIqnuElk64jBO0lPKYC4Ei+WGcuRoKM3amTEUkeRguUzVMQ9m7cIENkjOXpayECkZypQYnDBzgJ98Psfi1c3WfEqVAtGkkKxwJhmRAayZVdTl8JY7jBgCB0xBoJEqLybTCbmEawQrUdtj3LgPL7iOB+hHF33Sw4Ucd2VIDviELA8cR5HCJkH+wssZI7nkUELYfAUsErmOAvTb0UJ/e985zu8fPmSr3zlKwD8wT/4B3nz5g3/8l/+S37f7/t9APzTf/pPKaXwB/7AH/iezt1ZQIqSBK/mMSXKQNbkD12EIp4WCBVtcY/WO2U20TUViDhRrWRBxOjEybLe06V3olGVwI8Y2kVm8QSQmS3pFq/pV4ok79hcAqgrspq5uFuWptxa9T7ILoymO1JbKDIgZMSyQ4w40ayTnllGZ9dY8aZo2RESz3kCNvmLqO71U6Fk0ap1IqE6VIGh6wA3uiFEug52w3tcHj6kizu6br+kaPp4cW/+7Z3n0YzbVuxq/dwmIm7RcMmLYQ+9KyTm4jLQ5+nI5e4tw+V/wc3NG8r8LZ4++wNcX1/z8u0dvP0MEFQOPH/+6WLwFuB5s/m/i9LUny4IBFArW9b8jZkrbqq4SF7Oa+dtUeXpsyfc3R359rc/ZiXBrvD8+gMWBO/LykkdwXAj7KmYVdRtW62zVpM4ioU58XkYBh4+fsTLF6+4fnO9GLcGE9UzVAdRqwGTukGv6RVPZa0G3B18T3F6NYOPUxuqsMygX05D5vHlNznsrvn8zY8xzrvVAaz5o6YS23rx6MZQ3wOzFrThvoPbnKzt9+3ZbZGV0/FEyZlHTx5xeXnB65evq5z+9vHX+67Pzjt/F9/wRZe1VKGTWvXg2BOyOuKrbskyKctzfvP67fL11dWlIz1mnoYrhXlOX+JAtdJjP3cjK2+5KT629g6tjvQWEdTK8neNF+HlZ552/NrX/nNub94w7HZEfcvd+YYgF/RDTzGh5ImcJryCMS7pQW+G57wQkQMqezqeMoQfdB6JzRTOYLfM5TXKdU0NZQyXTg914oxExjtEZxuxUogdpERNwrvEgVmG0nljvFLJz0WAyJhHDCW00jeUnHPddzuCBkppIoXmDVhxfS011/sUC3g02jGnEdIDiozEGEnZ0BIRjJkzQTpSmdj1Pu/zLPV9aqTsKiQgZ0SVnDL7/hIscS5vyTbSyZ7MmSgX3m07uL5U3zsSJLYjckGy4hzLnFmIyuEMFkgJNHYIUGxCuuI2IglZhayJcTaXomCoel1WEVtH+Xv1nmARo6SeYpFSzs7bseKtAnCdmtP4ljGfqibVUPmdilnHTEDLTMFTp6HzdE+IF9zNb0k202liTBErJ4awJ0oHtH5bv/nje3ZUbm9v+eVf/uXl+1/91V/lX//rf82TJ0948uQJf+Wv/BV+9md/lg8//JBf+ZVf4S/+xb/Ij/zIj/ATP/ETAPzO3/k7+cmf/En+7J/9s/y9v/f3mOeZn//5n+fnfu7nvreKH6ilVd4bJnTO/KYUOu3xunt3CKLUjV58OeUqXCR4UyorrlAYpbgss03Mpfj0BP8LpPOOySVxmgt96VGUqWpnKIqqgXpvl65u6BIKIl45b0XJ4kJGVlUFS8E1CdQL6WJo5DUQCvOo3irb1HkoxR0NxdVgi0EXnXQVQnTdBfEuokF7gu4cYVAhBqGLgb7rOeyfsRuesOsf0XU7+m5P1MHr8rfR728w/7L9TEMe2u9qFG5Wauqi9sPAVVfnNJHnjIQZI/Pg8Qd0seNb3/03fPWD30W2Cz5/fYDXtWpCvsHd6fl6Qdl8YRsYvn29BpnVsL7rJLQKmQ3iodV4159dPbgixsj5NPL61evFkJdS+O63P16+12ZEtRq5jbHK2Z0cQZAg9w3TBjlpU2gbh6SeFVHoYoeqK+u+/8H73FWp9Zwy3/3Ox4ttX669QSGWe1ocuRWhWZ6bLS5NRQb91w2NuJdquTdCEMk8uPg2jx58lxevfzen89CAowVNaWTcslrzpaLJNuOoJ1zX0DK+dtENwoR59cjCr1nPMY4TaU5cPbni5voGGde5WM7TxiXQhyoYlmojybJZPG2NmF9XWjWK4a04WipNmsNZlvttY7q+dk7Sk6dPePb+M9Kc+PT5iixvHa11mHnj+FbHc5uqaWu2cuZ0cWY26FsdM+Jo6cdVdO7mxlMWH37lR5nnmdhnTscjc3qNykAMO7puYJpPCIE8p+psVkL+BtkSOlQ7IgfgCX34Bk7y9bRRKq/w1p13UDLBIiXFWok408c9KWeygFrE1CfACGDZX7DsnBAxmM0dZw0sCKSYVbl+V0X1KsyA2URQr+xRu4SQoBTXRqrIz5xdNdziRBeUOQdgQtljMtMHF5TLdkY0MCerKFTCyATrPbCJLnVRsjt6lOJFFbGDFChFq4MXkHDGtPdgLXuz01J65myux2KJJJ07dzIy55FgLohXkjGFkyuKS33+2jOLIcWD0yhGsIiVI50md0bwxoOxVlRaviDJiZk7bySYIyl3xLCjD4GbdEuyI10Ao6b0xDzFRkBkqM8JrLj45RAfkNKJcZocwWJgzBOWOrIGdkNHF98JGn4Th9hvpuB+c/ziL/4if+gP/aEv/PxP/sk/yd/9u3+Xn/7pn+Zf/at/xZs3b/joo4/4o3/0j/JX/+pf5YMPPlg+++rVK37+53/+nuDb3/7bf/s3Lfh2fX3Nw4cP+d/973+U/bAnlQmR4J0xay8ah9GSIybqiIszs2vzNoxU8GoQqGJvRtRh6QE0Z8FweXfBuyEL5gxqcZVPUV/soWqMdHXhqPp1PZHoRNtSaqM2STRxMK/Xr0qGmHMeKoQaxMlpZlDILrAjyj4MxL6Vt+6IXaxtaYQ+7tAQ6ePAYf+Mw/B4QUa6ODh5Vb2pnC3/92Wow3ZZrIqkSwxd9+BSm6WVGiV7eiC7IqxEpmlinl22PZUjh/17PHjwjNu71wS94OryAa9fvyGlvG58G0O/jOZeLl1WH2UTaX7xaFHu6oysTk6zVasRunxwyTD0hOAv8vF44vrNzSY9tRqehtp4RC5LJL01rvci7HvjtQVpKBXJaJFxS4OsoIKP79Hjh+z3e4bdwPHuyPPnn32JF2nr/Lz7m+290ubEHZhtWml1clYHYvs3X0A4MA67V7z3+N9xe3rMi9e/Y9FdWYzr+uRYDXFzfOydc7YS6vtjh4YYrGdCWNAPzChfshBUA/3gFWPTOC0IxTsLenE2DHcuU5Ur16C/bnppi9y5c7uuiXuf26yLBQlp4wvqvbLEEYEtn2U7T21+tu/Hl637+/NmX0BaWEbA8g7XVwQR4YMP3/M1qSfUlNdv/j373ZNaAbPDykguHSKRkpNrNiFYW/fNMbJ1La7DLBSbSPmImaMvyV5WDb2ZbIbK5E1UTX0fESFqYcrFe/Mo3j9NagFnEKwIlq15xkTZefFEKM7RwNEPsx1FTp7WEMh24nR2ccg+9qAnVAZS6ihlcmcnZA9gRchkOh1IqZCyV1thRgjeD2johBALpzGDHRBGLDg519O5RowBVcPKhCtFj16FGZWUL+iiC4KlkjDpUDLJEhSnG4gNIBOEs4u1uQuBsCdq5xWbFHadUkpCOJKLkS2CdRzCHgkj5ymC9SQdccXhyDwVBr1kv8+c54nJTgRNULzHV5aA67oPODvUFdejCUMIDF0EAmM6kmSkUxfNG1PCsgt/Xl7suLu94f/0f/ivefv2LQ8ePPjSd+sL6/p7dVR+KxzNUfm5/+qH6YcDFIfLRX3jMlyWWnEdElcP7LyaJXqTJa8ScYjPsMofyDUiVrrovWgsZebsEuy73h+QlKZoC9kiUbwxXhRXHBRxoMpz+XjPHTOovJFWLWLFO1UShJRhUVVVQLPzYqSj63Z06v0tQujY9zv6PhJCYN8/Yz88JcYdMQ7s+itUuwoZrrocfqyb1ZbrsF0B2kq3l+huRUrckFXhLPVOmaUUhn4gFW8fAJlsE32MPHzwPjd3E2nOPHr0Aedx5Hw6b8ay2Xm31mqLOjQj2r5re66sDoOtt7WeuzkJyzmdVxKCLs5BmtMipLXs1tsNfWNol/O0396HkxYjv2zMbcPeHPeqdaBGyCua0s7Z911tLoiXUrONzTdIg62E0Hu3X3+2NYzNcWgpBU9HbdAO+yJXZutQ3b/p9dtd/4bHD/4tc3rEize/c5m3LYfl/i3bvX/bXDclXWBJbTQEqGycOuD+uLdzyReHut/vefb+M4ah5/nHz7m782qVlXPCQmheCLbVmZnGCREhdu8Cz/402l02h2/r5N3/dHUQvwQVubi6YL/bMewGSil8/tlLpnEEadVQsnGEV+dxOUNbbJsFIttnCAvnqY2F9aP31veW66IaUFUuLw/s9h1WXoJ0lPRrzPkpXbwAy8yTd5f3Xmg1qKoOjI9F33n+HtA03x3z/dg4k8pIKa9BTiRGlMb5OoIJZgENhtlYpXO8a3XJhlEIMWCpJ0YXcItkFyeLAZl3JJ0ZYmDQHancOuctJZSDN8rTGeiZEggTqFSk21NUgvchmxeb4C06gnq3ZwlCLkdK3iMoc76l04MrLFcEP9Yq0lTOtWpsRiQRdI/ZAUhQAmhCxJiLMM/FHURTOgJED47NCiFAlMHRJwJahH3okBiYpltHbiRA8d/F0JNFOc2zF0PoQEqZXo2cdwxDZs5HZoQoQieJUo6MFIocsKJgYWMPjF4G150pM+B8UDSjkpmyEPRAKcIu+nv+9u0N/+f/4z/+nhyV7+teP87OLphWbcui7gWLyzsjgiQvD05WEJmQjLsvtUw5qNXeBKzwq2XmGQwn2EbpGPoAWpY0UanXLpbJVSwtWaJXwTvCStsxQKpirb96jpeoa5GUHAix50G3w/O/0VM2wbxr6PAeh+HZoqga40AXhuqMVIdoOyf3jFYTYG/ztX52iWg3f+uVQ7IYvlKbBaYyYWau/Nj1jPOISMBkopTM48NDslwyT0cOuz2pDByPJ169nuoYO97Wspt7+/iyWTWnqW1k7YPLB+5Hgfc27PsQSRPK8pr/ziuEwCOe/Z7YRaazRwjzODn3pM1HNV5b+yeqztcQKp9ovQvDKj/iflnrkgKwQslldVpaBLsZ4+p0FIb9nq7ruLq6RFWZp4nj3V01cv4srfIlrDQuSzV87xhuq9dZnq804qngaS/BCwXWCNv5N/fgpgVpeHcBqcJ+uObJg/8euOH52/95/UAzxK2SyJa/XeaoXaumR7znTi0BEqm8g3oPm0W6VDbdWzP302lbhwfgdDrx6fPPOBx27A57TqcTc5PwrumdhgY0HpI7ScowDKuztaTA3uEzvSPcJ8vQ6vyBIwZbL2p9JBxvj9zdeOfmp8+e8ujRA16+eImZ0fURBFLKFSyoc1rvv9rqe+eV9q4YFNcnWN6Vpa3C1vncPNsFsaE5VKV2lvZ1EkLh4vJHicF7oYkkxnTk0F0ROt/PUpowcyTEm5pWOYiK6pTa0sGftXM8guyBPVEFsw+hFhYUZnK+ppQ3GMk7jtuI128lRKpCOJk+Oscom89VLmPVblI0HUAnQpiJ1jHPLsSWilAsEFW8fNpgygXLidjhqfwaeJoVFC88cDl+T7sE6eljxCQzZ+fEdCKgrqAt1oMpuZxqBehEMSNn9SKOMGIWsWxkm1wiX8GYENM6xokiufbUKo7yia/JTrxsPON90w59rGTeM6YTuYCYEilk6yDtKJLJcksfBlL2ANvIhO5ElqlqtwxEVbCRuRhZOu+nREM7Z4yJGLztQiozZtHVzsWrZkUG4IwZDAG62HM63jKO/xEk9H8rHYbQKmAQ38TBHQKtPWFMgZpWgVx7UwiYVrRFaw8Hqca3dfr1RY8lz/lpRERJZHLxnSfEgFfOQykdGjIx+kaWixO1uhjRKATt6MKBoD0aIjF0dCE6NN0/YNc/JoaBLu7ou0tEvH7/Pl/EN5gvQvsrOtE2xmWzbBtmFT1ZYf6yOiR145jnM6oubLffX2Ai3B1P7C4COSX6+JDd4QoTJYY9w+6SaRx59foOszsQuLs9IZwqmnEfz4EvOkhLhUf94QJscJ9ceg/s2Dx/Nw4Nzag9jUSIIbI77On7bjEitzdeqryNplsQXG3m5hqlRnFlGduiAVKruwCKrvfYIv97WhzcNwqL4W/2u6ypj4cPH3B5dcXd7S3Xb99ye30NDTGStrk3kufqcCzkyk06Z+sUbZGRLUq0RNL1BpyjQ4WPbfn7qlXvxrrebZAjzx7+EvCKT1/8bx1l4x3niE2UvkESvK+PV+T42Zoh8/ux8o4Tx31uzbb6x+OA+0Tle2gQMJ7PTOeRr3z1Qx48fMDd7R3jeVxg8+0zW1NSK/cEccfF0yjZV54oyyxunJBia5l7k/MXM9aZ21QqLWvPv3/18vWyMESEYbfjcNhzHs9g1DTq7K80WweJ5mE4orE4IrK8X3XmFodnSc/xbmVb4245sbg+PNyxzd46ob5vXddxuPiBilJmNJ4xmZHghs6KYDaCKCEOVUvFyKnU9abL+Et9jx2hchG6QE8IFxC/glAF4cwrjoxbkt2Ry4mgZ5AJKRCjd/x1TahMYIBidDujZO8rdpqvEYlMpXYp1tm7yqs4mT8kghwo3GEWMJpoJ4w2Vn0sR+FD8LGmui46GarRFoToiJDOvt6lEELBZkGtq+uuI+rAVCYUYy5nJLjTVSqvr6i5hktJFAmoQK9K0B4zZQIkQR+cIjBxdntYrCqyF4pGbI4kC5T+WO9/wvJIjDtSyUS8NYkQIQUQZaaQRGtgrJt172hSFzsKrlqNUQMdA+sxCSiKZGPOgoo3chTuK4j/Zo7va0dFcMKUqkeZooliE4gTUA3xvjjipVtNkErEFu4IUjyHKRGxHpWEikcEY/YXN1txsmoNSDV4p2JVoau9hoSO/e4RMQ6uLaI9GpQ+eEqm6w4M3WO67kAX9oTQoRoJVXEVNvZM1pjdI1QWA9SiUb8PWf/Af7BGgM3QAFhx5ylnUpopxSOCGM50/RNEIqfjia4LhGic7jIPhitUldPJePzwq4zjxN3tHW/GI0Jkkpnj3WsfV0UdvoButFtYQmJZesK0US5frQNvibFNWanci2KlOkH7g4tNTXMl5jYEC6+Iub1Z+SXtAm48mnFuRqaNfWMAN+MzXKZ+GaJtKjNa1LoxApsH6L9v3y6PSzgcDj6/x9PijL347CWff/qibtYg2i2bwuLNVePpAMvanbmNqzkzsEEgFpRNFmO2rU6SrbFaeCAtclodm0agVJ15cPFvGfp/zze/+6eZ0kXlibz7MN2JwKrYWhvXBk1apmVZq1ZJ8LJZz9WYbcqMV8eiclqqs7JNZX0x9VZ4+uwpXdfx2fPPsFwoTX3ZfD20d6xNThurkwjFAyCaw7RxxDbHMo72dZ17o6EiLHO9vsvrtLVZOR5P7A57Li4uiJ2Tum9vbhnP44J8LWm7jbPVUmSr79YccyffS41m2ppFNj2NWJ2HNs9bYvA2/TTPM29fv6Ehevv9nsPFewydkc1F11K5IyfjcOEtLsbpc5COqD0hxuoYBS/ZxiDPi5PVIghHIxXVHqwjcoHI+1h1XsxOFLlzh8Mmsr3xfZ8JJbjgGBHLibmcvSMwvp9YqOl3hVKCa8M0BxMlZfWmqiaghZytutPepd5Mmes6ClVzBDWKhfrKFkS9L5pXjnpXaxHIOpOnSBy8CEIBgjc0nGlNJZ34a8VIlgmhI2pwna9cmHGl2qCBGApFYMye1hHzgCCoV/ZY6cg6UmSm4CXNIq7lotajRSnqX6PCXCZmlCI95IzIVAsGOndAGCgGqQhRLjFNaJhQDYRcKGWuQTyIZObZgYOu/y2gTPsf9xCQQAheDoaoy85DRRcEqY5IqQtftG4+mEcl1l7egmpxCX33lwkFUt3AVIUYlH3/BCTSxT1d7IjBRYei9uyGx+yGhwR1FnwXeu9yW/VF2vvXtq17W1yLfDYdeBe/ZXFkbAmBvdysesBSxdBKI+a2r7MTquTEfn9J6B6Qy63nVGUgyJm+34NeMM/K5dUTYuxI8xtu3rqiZgh7Xrx4uSAI727+21RTMypbQ9EyKg0WKUvKYhMR17TGQjptj7alK8xJcxeXl2BG7CIlFy6vLjjenQDjnNxRKS3qrxDMFpJ34bhmEIy1pLD9TKiJ8cWZEXDHM3beidhs0fdoZbHrvawGymBJF7Sj6zv2hwN933NxeeB0OjvB01ZV1O25mh+yRQea8WuppWWhSFtD1Sy+4wxs/cXGq3BDtXFy33HqDPH0pLGgKaqZZ4++yXuPP+bzV/8rjuMeqWKLjachm7lr1lJrSXXjcWh9Fu1oTp/oxrFbFru/FrkK/DVE4v69bdblxl/e/vDNm7ecTifAK44WRGf7ftXnuxB6NyiVqCypi5yyO+i6Ihvbe7HmKFXl2+0bvyCErGvx3rOydg7j5ecvEREOhz390BO7jtPpjCwOpSzO3Yqu1DSl3OchLZya6uSUpbGheEXPskRkiYzF5P5NsY6tXb6tyXlOvHl97crQxRh2O3b7D0g2exM/E4oYMXQMux6RgTJ/hzFdolWhWufiSro1clcNK+G8bX+biE6lB+2JPFzGmG3GbMJF5yawGyyPqIxkTqgWcn3BVRXLgsaeMp7Y6Z6MUXSuNgVUegIB0wxFCcGLKoL4O9KwKqOQzLVSqA0ksyiDKEEqf68ARExGb51iglcqeQE3BEzOlOLaV10YvO2DzKh09CFWLmQkyVSFRyNDFEQy45xIBXo1OhWUHTH0HOcTEoXQldofyytDITPlI6EUYjigEqt2Vmay2Qm9KoCXoAtKpwFFqq0RokWvvgsQRbxwJXu1ljspVuvSenf2fqv0+vmPdZgUsk3erEncM1ftXdAMQyQRRAgSyEWrwXHnRahlwxrA/DNBA7thxxD3IBEkItq7YY8dKsquf8bQXdDFC7TCbyqeFmob89aUyyZS90GzbqKLQdjuq+/ssA2mr2kElUDKfl9mxTv5ipLzSCkTGpTLyw9c5KgU0Et3OGKHhAv6MqK6R+MDjndPuL52Rwb6tXMvds8YNEPfJMjXKghbosK1MmYTsW+4G/Umls0T7iMTS2uBFYzwyEWEBw89Fba/2HO8OxJjx5RHXr96w93dcTG2pazpLNnM22oZqo5Muy5USeFKqGxPIDRUYjN2NgXNzcjKGn/fJ3dadSZlSaPs9nsury7Z7/cIcDp5c7y86WuzPH1p6Z56mVqC2tbCEvtuBNzav8tz2Eak9R6WdWnmZLx67a1DvE3VgFeltb9VyTx79G/58Nkv8dmrn+Dl2x9gAVKq3yd1824GZakab/NYHRIHmtZ1oNWBEalqu+ug2kojxogFW5xXV07dOIgLYiP376W+f+fTmfPpzDAMXF5egMHd7d16DbMa2S9PsZaYrvweDR5xp7re2udXh6UZ0o0jsdzB8mTW90pA6ja+Jc2u68//+ng8cTy23kFSkS3X4AgxMk8z4zh6FF4Vr1tQ9CVQ7WbMRi278fG0937z+fZ8Fwe/Pqvtz1a9lRUFPZ/OzJN3Xp5G//3Dhz8AAjmPzAn2Oze63kojcBpfYSXTxR0q0QX5Sl6dZSvk2q8H1tRgjSfr/Dp/T+SiOmce3Vs4IzKB3DGXGeRcn8aJYieinOnCgMkdUxnJZaYLkSDmuiLmopmqjnYouNZW8Sa0os5nETpKGUlF0GBAdk5KiE6sRUiWkDIQw5mSD4QQQRSpvXsO8XJJ4am649dJRIoTWE2qw2FK1EjQwjl5v7WUjV4DQ7hErWOWgHFL15v3n8uFSESYXMVWZhc9bBo2lknmjnjQGVQXxE1RR0dKQvAydrXMJDNCgmyoZUdwrGCMIAO5OICQ81bp+jd/fF87KkG11uILXYi4MJMQNC+0VREIXVeNXiRGpe96+nhBCHti7D0Vo73zRrqLyhEJqHSuuCqdq66+G/FvNqH7rsZ2o6o/2+4XZiCrIyDqpYl1b6JUcSWruT9ByLlgxSHKabohROHqwdcYDhccT0e64dIlk+eJEC8J5t2M0SvS/JjzeWSejwj7OnYXB1vb2N93kN6tEiib+9mKULUIWbivH7Kdl61DwOYz91JYwuq4mS3VOA04N4y3r9+6Y7Js8psotEWYG9SgXbv9SlSd5Lc8E7n3HLf8iiW6hgUZWTbjeoWg4Z5zcq8MtI4t1D41ITq8/frla06nkzfaY11S0u5HnShXKka/Rrn1tJt5b1H/r/feb6PPhZuy+bCnTGSJVBenZjMH7VohKJf7Wz56///Jzd3v4MWbH3x3ydx3etg+Z0dmVk9w+974URbUSxZHd3GwlnFXhKAaUN2kApcAv867R6Ft9qT2u2FxlJ8+e0rfdbx+/YbXL19XtMibmpZSyMVVS1taLGePMpvDEoI/+1zL6ouVirDU9Wq2eS62PM82D+33uswRC/mThkpZxUC2jgbrs3KRxsDhsGd4/JBpmkkpcXd7t3BZNn72MhdNJ4cFfVud2jZj1ga1/Uv3mpcfWPtfc87M3S0nezanyM/YXPq3b6+XtQVgj74OCGlOoJnQXSB98dSQCtiRcToSdE8I7rwsc7LsA6uT2PYMq4FRXf2OvNATowDvMQTDpScSEmbm8haJE10ImF2T7QbV69oJ2JEDCARzjojKjD+xVOX9AXqkdIhWDS41ghaKQbAOsyoeyURURQLsh4g3GRyY5jNBA2Y7Ot2TUgYdMfPOyb4vlFq+nSB0ROnpQ08pM2MpmLiYY8eBPEc0dpglTxe1QhPx3m5TPi1zaFbI5ejrvBhFelQMswksOOiGO8Au69Ex6EAQJVWHJ6dcz10wTcx2qk2CZ0IwMh0paQUVvrfj+9pR2feRLioh9o6M4EY+qHEYHhHCAdVI3+08txd6Qujowo4+XhLj3h0S7Z1zIqvY2RIlAp679h+sr+69AswlSmfz+3unqJvP1gEoJddGbMo8T6gIKSXXcMAhslROvPf4fZAHiBjjVNhfHJjmM1Y6NPSEKHTdJV3XkfOZm+vTEukj18toQrjPaWiH+Rt+7+7uRaNf8vlthNzu913Ddc9qLZ1gnafSDz3DbiCGwM31zULGQlanoxmitrl5vrUa53tkwubgrOPxHk8+hqWp3n1/ckGIGmH2nmFsaBHUNga2bIqrBg4LMmMVhTpceGrHexCNS4nr6e7E6e70xfEuR3UIHStdLYzK8i2s0faKZLHM670zNXThnefRnvKWTNnWb0tpbR70cs3L3S0fPv0Frm9/lE9f/Dil2BKRy8Zlbw9Bg25OvUa9fj65d4nlsUhNTRhVFbc5iX4nsu2tIywUo+VCyzkNWxCy1altx+l05s3rN7z33jOuHlxxd3u3lIHHGJnnRE7JUbYNerhFT4RaljqEBVkx807PIQTX4mFdnx40bea8eocNSVkJwH4tawgCq/Pm9CqhIXmlFE6nMzkXyuWBru849AdCCLx9c808zctaXue9udkrVNL4bPfXSZvmFozIvTWxTTM152/rULrz3c4vlduwWY3Vibh+e7OcT0S4evAARLyxIJnDfk/XC/vdnpQKJb3lPF8TwyVd2OPtPeLiLDWEMufk87dUGK333+ZUrAOJiOzYxQd1m0p0NhHCGZMj2OTVTKVgZUbkjDACd2QSpYwYGTT6GjV1pBJl6CJWRhTnZkw5OlKB6251AkLHvjtgpqQyeTsU20HuCFocOSmRKN5DDo0Y3gcqEBylITHmXNNASid7QjnUtSsIs/eYoxBU6Isyy5nMiNoAdAQJJCaKnYk6EENENHt/IRPvh2c9WaCIEugQVWZLTKWQ80ykw4hMdiZzqlwe72UHkVSM0CXSu/vMb+L4vnZUHj14xuXFE7puX3vReD+gqN6Eqwt7J6yGjiARkYBI2KAZbLxu2H6x3ez9+GIUuFoPEPW+PFIl69sLseh01L/POS0GbxxHwBsYTvMNzx4/od8/JOeMMmH6BGOmZPe4rToDQTuCzJyOLdcXOaeRsW62qvc3wzbIew3mbBXIWpGF9bbu5cu/4KqwOhX1G9vc4/Yz7Ty7/cBuv3OIE5eBH88j8+yM+1aJI1Y3bWqbgQ3M3FAX29zXAveHNRpshrsZ/W2cuAAvFbVpX6/RpC0btVV9lWYo7z/2+ozN6GLg0ZMn7A87drsd59PZOyNv5vrdqpT7hyzOjyFI8z4WFKHJz9fI3AyvcludgObArFUem/Eu1TqrWffzrKmfeyOS9dmpCvv+DV957/9O1018+9Of5jy5YGBzulVYUjn3UmBtHjcnXaNfawG93y8b4iorcbbN9dLRebGXaxnul83p8kylYXLroSJcv7muXAgXeMPc8TLwknZxsnwjX5dcKDkvaaemqutz5C0pcskbtWFbntv9tOCyJNb1quIIW0VmWo5xAwhttqI2CeuzTinx5vVbTwUNXU0jsJHa3+5ZgOoyr02rxSris02VbpHLds9bpHNxZjYRQuPCLO9TCwYWgu9atv5l6brbmzs8rVWvX/Zo2DOejTmdGfpLdhcuXIkZ4/kNUxrp4kNi2CMaN9IPiUzluVhzMoMLtdUl2RAzs+KOlHn/miA7RJ/U2SsEqW0CyggyYXKH2An0FrEzMRQ6AkVxyXkNhEq+zdXJaI5cJ75WVDJl7tnFjjEfQTMlQ7Cd948LJ08dlw6r6WixHiESgt9DsUJOydP+onQ2EPBKphh2mGQsz96hPiRyNuY01c7IIGS6cOVOZRJUMyH09DFVBMgRpFA6CoFCqHv0TCoTCSHlTCmZSM9YZky82zbFCbeCIcH70AVVYvhPrDz5qx/8z7i6eOSdLKWvpFVxQtC9KMKPLRS7/NMi0rbBbxyXdwljS6QAleTlm0tQ14CY80TAy/hKSZh5A7Kc8wLX5Xzm4rDj4vJ9hsMFQRKqHak8paRCSRHoQXqwAUW4vbtDtClWCvPUdE1WxczFdrfNfrXYgN3bEO6lAzbHYlcbmXTZgNaNbjk3LBul2RrttnN2Xcfl1QVdt5aipZR87IDZxPHu6PBmvXizz60vRSPjWhOiWEkivlXXaNeVg++PyQ9dI8oWudfn+24FSavpbhUndm9S/XDFWjdAjp7subg4cHF5QYyR4/HEm9dvOB6PjOdpiZ6bX+OGuCFC1VlaJl4qSiENSMEQdzKaAFp7hipYtmXdNudNW1TOZg7qvDYCrbIa2VYGzBJ1y3IelrEWvvrB/41hCHz7+f+aOe09724VkWqb/daibu9vybvdr/pZDdv69XaNrf+uTow/DlnW5uIENaO3WalbRHB7LGtf1fkpm5+tPDBFo7LtqQOOtgg1vZAr+tMi9vaOqQsK5nkmBCXE+y0pVrBsvWYpTcPFFbI3bClamWm7Z61VVMusbc5dSuF8GoHxC/N4DwEVF0ozF3Ty38v6rt/nEMjyj4+1kdU3zSzroQ3FbNduS2JxauzefS/PYvNM28Wak3p9fUs7UQjKvBtQ3TNTiFEYds8IodDFQC7CfH7ujWNLTwh7AkqMPSm70mzse2SefM9SJc0zIYSKYrf7bbagjthApQPtUT1UJ8uIJNcqYULMORpZzmS9RsNMyXeIDGTJVXK/oFobEFaZi04jaZ5IdsSCa8Do3GFDLYMvHSIJ1eClzwkwresCVwI31xGL1iFFKDKBBAozcxp9jWrXHj2zHSkYfVBK7rDs7SOiCkUTQ6fsonCcDbOIFCVaTyZ4pZBOmCZ3koqTsXsixY5kRqLuvElk6hDZEYMHz53OdHRI+I/Q6+e30nG1/4jdMCyb+Lt+CLTF335wX5p7+bC1WLq9ZboYKSccBpCV8e+VEMo8z14JEgO5wPl0RwiBeT6TywmRwm7/mEeP3meaRzBhGHqPgmYlJ4fRvC364M3USlorDnCp6BACm/1y3YDq/32B67H5THvJ13l4VzdhnSyzjdGvBr8ZzMVktDd4Of8mEt6cq5TiiMnknTJdHnxmnp0I14yb1M8uJZUqSIVvixVovXOQpSJkicY3Bnq53yXq25B8mx4LrEagTkdzIlaF2LWU9t45a9Tlpdi6oFPjOHkvppQ5nc6udtvmt83PZn7bmmJx+OwL61V1VfN0nQZZ/r6lpLblvtvodXV82qk3z7d+tpmXssh5yD1nb3VEjY+e/b/ZDzu+9clPcHP3lQXCt2JstdVkWQfrz9rz+QJZ2Fh/3oZqmzVxL7j4YiSurAZyAZ6+xFlZbvrdG9sEIwI8fvKYi8sLRODVq9fc3tzW6BrnMFdHYdtY0tdVqU5he+9W58uo7TlqCmnVTvHPNme4rc022JLLvfW8pG1sRZoWx22Zv/uBxDpvi2eCCDx89ICLywtyLszzzOuXrxfHfXs01GvtWbTuFUuzxi/8jXzh68UJfWeMy2faeq7PZPvsfJ9t2jW+76ZZmKZ5CRRijJVM3KOS6bpI6N/jch8QmSkl8vL1d5A5EyQydA89uCsu/64huoHuvDcc9R1P2Yi1jcZmZpfBNYxO6UEGapISs4xqJoYEkilyppBI5cRsJ9ATmefM5YSoB9aCMOWZuHMnI+f2FiTXoaF4KbIpudRaVTUsBcSUwolks79/BTIJLNBZ59VPnDF2YAW13jk1AoewAxJzekBoMgg6YxaIRMyUOY305eDPSbUGpHjbmFrBJEWqhH+h6IxSCGokM68CQolBKGTm1GMRAl9OQfiNju9rR8VfeN1+u/lis2nYaqh9r2oRo4B4TtGl9+tGsDHkaXYBIzFIVYdEANQlioud0GCIXPDee9+gWGYczxz2l+SSmMbC+SyY9YgEpjEsG8XCV5G8GMYY9d6G68ZxuwHbvY3i3Rd+4Vzci4ru90l5dxKb71EaPIkb0xhCdRakOi71Fd06he8c7bppTk7oW5/E8jwaf6Q9O7W2Ia3GZu0XUw20lUpodDRr6XZrINiSMmqE1yV1sNGqWHLxzVepG2gjXyLeWbXUMljnGjQ1V1vQJEc9jGmaarrNVuu0LDr/8btKqdt0Bhsj1zZ3J4s21KVxaGyJ7BaDwbrMt6ZjWSfWnK77vW0Ws3TPWMv6LDbextc/+O95/PC/4fOXf4bru6/4X+dcq5lsc+12/4uHs/zr3NC6sVeEwg3gOuAlBbe53y8zhqpanTznsazOWnXAN5/dcs2aE7WgT5vfiwjn85kPPnyf2EWG3cAn333uhOeakmzpDFVBKpKaa/PCoGsFWPUEEZEFSbRqZF3ufIOuNM5GQx3UuU9bh39dr3WN2Lpm/d9y7z5k83xb+qWtGRFxRzpnnjx9wn6/43CxZzyNHE8nbq5v7q2h5pgtvK13HMj1cy1FY6ujvIkCRGRVO37n+TRHZuEBmTf7a+T1XBW+RWTpZL78nfh7ej7n5XwhJEJQYgwIhdBFLi+/xjBE8pzQEPjs+b8jxkLfPWa3e0gIga6LWI6+NkqmWCHGQEqpOkVxaQlQlvlfGqGsz1C85UloaSv1595rIeuMyYyFb5DLRME7C8/zNSGC5RcEGXwf648YHgBJ7Sc9p4xYR9+5JlhKgcKExeLaPhkyXpDRSQ+S8L52SpaJfdhTRDinO8QCUZWb2x39fEHcz4w2ETFv4JuMOY+UKWK5A52QMKHiIqaZGcsKTZjRAhIaQjOSSmY22MVMFEeQUjGMCbMT5+nXsx6//vF97ah8Mde/khGXF7c5KeKbcYMug7fe9Fr3nChFXdo4TY4sVGM/jjWXp2dSHrnaveXB0/8lxTJDuKDIFSUnjqeZ49FXbCk7jndgxJo/THWsiSS5bsw1hw0bwh40i1JKufcCLzFXdbjaBi1FNqTPFqlvjSHLhrHd/dtmqNVQlGrUl7QHKxekVFi6RZTabJK087RqhjVytLKSBJsta4bo3XFYTXlo1BrZy0L8dSheFqcul0IuRkvCaVCsgFleDWR1bJbXQdb7bQ4Rtm68/kKvwlYLWbZWYkm9r8X/tY2RXjbbtdLAI/EtDrX1YWRpote+Xio/mqEuK7m3iawtTlurBmpRd10Hy7XreRwWLsva30zFMp4FqWk/F5/Pkgvf+Mp/y+MHv8BnL/83vHj7tQVBKGaouSOltHtZbm51YjeIVrtiKSui2Ya1IjnC2gWZxalY1Uvre2HQiga+PLbfrKuNo9jub1kHxeozM06nM9/81W/xjR/8Orvdjo+++hU+//wlb16/uXcf5mUX1aHwc5acarWP7ychbITy6hpa9Hdg5a7UMbaO3UsAxfpO+R6wLLovBAf3g5E6Z0uqbfu0fcLHcWSavKu0iPDw8SO6oeeDh1c8efqYu9sjn3/2YvV2NyjHggBtrtmecymrY7m9d8OWd09FappgjRQWR3Mh0q/PKoSwBi7S1ovcu632DizBUUqk5J2zPTWeCSFwjh7Q7HaBJ89+O0Lm4dWB4zTD/Dmfv/73BLmkiwevNgrRdZNwOYgQO3IyDEVqcOTr1t4hoLc9Rih5RVabEnnJGZFL+igY3stHGRExSvkqZpk+zKCvmcs1mHdIRmZMggP9kjiPQpkKMkyE4NIa4zyR80hkIA5KYWTOSsboukAXlHOesSwEi5zSjI17hr2Q9cROCxqqtopk7k6OZmeZMBJDUGJwro0S3VlRIRdFNDDEjiDGyRJzGmtgHr0aqLWviTNzKUxl5ns9vq8dle3LvX2RfQFX3Ym2qFQowJy8f02srPycHQERKmKSr0EmHl7cEoYf49GTJ1weAud5wKzQhcSr1448jBqhOh4lB+bkLHuXEx+dOxPCmsqpL2PrdNzGim2JrRuj2sqAN1tUezHXUth3csrbjaSsLefvk9bW6y6kNjNsDfB4/4P3iX3kcNgzz4nT8cztzQ3H45l3wZnFGGw2mu2Ocg++N1s6nTabj6zEzHYC78GzicpklVxP+R2ovCpJ3uec2DJPqwz+Fj1Zy8NbtNTm/8HDhzx79pR+6J1XMye++2vf3TyblrZqTo0sRq85NfBOKqxtWuqR4Rqt2mIA7jlRGx2bLQl65alsReJ8HCVv53DryKwObtvwWVy95uDWiB548nDi8YP/huP5j/HJ5/8FBVd/RoXQlHab4Sqt7FcXNGZxejbReIuMt46LtSUsy1JZ16PIF1oSaC3/XU4hzXi1YGRrSL/cidm+C1sjcz6d+dY3v72UnE/TtHhT7Uy5ZNKcSDkx9MOiuot4lYk7Kt5JdwFOVL0CyaymQ8/EGIldtzyfFnS0obcgo51js3UsR52ae79vxtPFBCqvadteQBxxPJ9HzIx5TkuJs4gwzfMy1+/yhBoqtaLTbJ7nZg/aBEiLg2dQFp++7j/IGkAZTcql3s/6O12iovtrRsQJyOu6YQG22kTlXHVuJh/LeJ6JXUCA0/FMyokPP/gGjx894cHVwPXdiXG849Wrf8Gh/4gYLhn6h6gOECImitbUW+Nn5XlaEFijlfDWgHGZP6ha9i1UQ6R3FEi7+jAPQCEEQ/QD+uDNGlO5w+zWuxjLCcu3HjiGEQ1G1Oj3KMWlEAxMJrIZohkNkS7iRQuWibYjifN1+r5w5DM6MaJe0EmPaOI8FZIFhg6kc7E2rwACI2HkxblWMToJ7KRn5oRKIUqgiwMlC1md19UFJTFQhIUI/L0c39eOim+WXgrWlnIuBavsfCterpbTTEvzjKMv0BAzZhPFTlxefsTDhx8gAml2zYuhh5cvzpyOyng2zJIbJ1NycplnZ5TPvs5quWYpRuycY+DR1bLN1Ei3NuXa7qcNbaiicWXhSywB87JRLca+nr/NwzonLOe2IGtOuW7o9S1fHJXmUDx98ph+6DlcHFxOv+/49PlnvH39doF155QWpyS0DfCeIaxHHfha8dRu1a/vzQ/rmHRNOyxpkC3qsmyc7oyUPK3Xq/eQW6t57vNR1koDXcqat0NsY25VEh9+5QMePnpAFzvO5zOn85lXL17VTcgfQuO+0FCtamjb8/f0QIuYly2bsExPNb7NONuqBeGE5Nrvpn5+WwXSxq01sm+boTvHFRVqY3jHcfNHvZKLm0u5ph89pfbs0cyHz/4G8/wNfvU7/yXI3svCg5IzsCFNu5NX/37hD5V7c9uuLwhSDeIaIW/IzvVofCznaYTF0bZ1Mt1ZWSpj6lppUb1QDVhb4zV6r/fcjLCvkfYs/bNrZ+/7Do1szhU7H8s4TQzD4AJwIpSK1s5z9ve+OYIb50lEXJxtbl2Zu41Q3DtO9upGemS/QV2XfYE1HliCj4pM2aLm2lagPzoNspxjnmdUnfcBrAKAZqS0Vic2B6E5ie/yjrbHNhBaHMKNw7ruhyypL6l6Piu0xz3kcJsKXFW3y+ro1D1DNvoty7PfjMHMlpLtcfSih+9MrzEK1298f3/vw69x2D+k6/eM51vG8RXH03/Hefoau+F9uu7SRT5pqH3xtEttdhs0Ukqi5OLka1FPqeNcjurWOeKyKCA3hzIsVWU1giDyCKTU9erk3WE3kzlh8grsDaWcEPHUVs5CskJQZcwTg+whB855ZM5nehViSKh0nOSEklG98nJjEaa5cJdnTPbeJ4/Eus0ZpYCpVBTNCKLstKfIiam8qXt756XSFhGbqlMWkTIzyEDi8kvXzm90fF87KiUn5okaKfjCnedpU0ufyWUm5RtUE4eLJzz94BuELhAkLtVBKQnHuxPzlKrHmwAhJa/U8cWUNwuI5YVyIbYvI6Stm/i9F3sTdW//6n5Est0cDZNKGG3mRbeR6Rq9wbpxbcfRHJX6aYZh4KJW5OwPO6bRK3E+/eQzPv/sxaIXkVLyvHBNT7SoQXABLT+xpxk2wBbrsl6NC5j3XBJZnJz7DlZLZ7BskC3n7ZF1qb2KEkvn2navdRPccjIEVzhdNu93kac6JZdXlzx7/xn7/R4w0pz55q99iznNlFqxBW5g1hQNa7S9GNH7Blxq9IqVZZNsA3bkYi053j6bdm+5phTWBVf/vy2jOoYWSZdmyBeEpRngd4zgukqW9Rmi5+cfXV7zlWf/V+DH+A8f/2HmtKeU7Omgslx1iXi3/mR7/xwurynNrbG6d2WW97M9B39ChZwqYbOm/hZDJbI821zbJTSy5fb8bVDNDyxWlvFAS2HcRwS+YHIbElA/U96ZP9XAPM2UWJYIQmAxkl723NbGarxVFIk+snEcKaXQdf3C4VgQksYBWsbDgh4sa78hGQ2RsBWREWmGvq2esgQOUla0oSEWC5Gd1fCvmktt/teASNomY7aZm/tP4T4CKCx9lKylf1vQtFx5M9772i1bpzuEgGnjsbA4zlbMRePa+Jp13f59nZc23xqUObkwXvvbTz9+Wd+rESi89/7X6B98SN/vGc9vOY+fc3fzb5jzRwzDEzrdLUiv4urnObuTGGNANZLmAupib1G9wshL+tf3fdmlSvEYRFufntZTqHLn2BHF5fHhQ4zM0M2kdCRzIvEWsYTJW4IEpjHRBaXohFmh73osB0JUTmHEUFLeoSaMnCk6Y7mni0aQwhCEOdXO0G1N4x2SRSJaOzfncIeRiHLhPK6cCTLWhxGY0xmVgWLesPF7Pb6vHZXj8USI7SE6NJbymRDhB77+I1h4Sqeu2TGnSMnG8Thy+/aMiLfkBpYXfTG8+Pz2fbd8ZrXD24oVfwGytKjUv48htFCqvs9rRLEYuPqyrsDA6v00VrSnFXQVfkLuOSlSjf5SMrh1EGBBetqxP+y4enBF3/eEEHj18hWfPv9sib7mad4gBrgyZ/RIi7imsNrG1jgQLc12z4urxqfNmmqoEf8XEZRmcKT1JannTCXR+qpsN2Iw3xyqMWmXEYS4UYtdIzqfR9ncm4rw3gfvMexcuvvN6ze8efWGlNO64bFxEUom1yhKlxeWe1HR+hSMkqshaU5Me+61PlhYqypaJLsdszds2zxHbHmWRfye8qY0djnyet7mpC6OlV/gCw5b+91XP/ibxPgJ3/n4T3E6P/D1VQnVjdfQNmWkpRo2nlNzODYy6u1oxqOlalYH+76z2v4ti1hXVYyt79AWoTP/wXJeaKjA/d5JXkGycfJLWy2Opm17MoVqUB4+esjF5R6VwDxNfP75C1QjGDWdWxVsc/LUiTZUV2gQ2JZzsz7XsBjkafIUTIhdRWNXp3ZbcaMbZ2mVAVj3FTbXWBzzTTpWaqqxBSwC0G/SNkvZ//adsc1zMPrdwPvvv0cumfE88vbNW0SUUN/Ldf/cHuu52vt/DyFjXZ9CJcd/YS0s2+iyB2zRppJX/tb28suea5v0dv3csh5qunJ1FItXKcqK3Dz/+BVdFxE9EWPg0ZPfxrMPfhANA6fzLS/f/Cq3N99miAeG7in74SGqkUisXJeIleT6WikRu56UM323q05tIqeJzVJGNdCyiimnZX48bVwbORqI7KqTDyE+IFumk7lKECSKnkh6RHQi2aeo3DGNE93e0+cSe3oJ6BzI3URKQk4d2inKTCAz58QpZVS7ioBlgnlDXTNF1CjBkcghPCLNiZJnLAe63QUihWxGJztyuaUUYUr/iTkqp+nX+PqTB1w9+S9BjV1UzrPn/I53Z46n8wZRcDg0Je/LQG26RV0c97qR1iNX/kPLj8MaORSz2nMCcjVKTSCqkcaWF2jTGrs5KUtEXKxJeLC0lq8buL+Enr5qkaCY3uNzrM6CN1ds5FPfvG2BGs2oAmtp2TDaf5jfvwalJEcR2nabcl5VNivpFdbeJlIrMdZUTLuPZiDrmKpR1dqYTOrfqrYyZM85N+NXykSpEG8zMjF6WeHCPcnZdSrquRqs3Pg727lpFGF3hvy6vtlKFZwrlTzrUWZzntp9NZ4TIp7/pWWbv1jG6aqsa6WVNcPRDEqbO1udD7NtWXStiDKWtFO7VnOOlrm14lfYpgaKbw4tNdWcBN2MUdbFTCmFH/nGf0vffcbzF/8XXlx/VAfaLuhfi274MlbTmNYqtNYKkXa9e1wG7rkkm981R6xVgd3/Gx+fO7Eheolmi+S3SGUb05rK8me1LSluCMfKc1nfScwWpE9Vub255evf+Opy7t1hx6998zvL2o+xq4htrtVtskTBbY6K5dXZ2KRpY3BFUQ3K8fYOnWf2h4slVbxwldgY2ub0NgfP1l5Py6xK66O12dsqYrI02KsWUDeIia/VQpDVWdqmmkRc4v7li1d88NH7PHr0iKfPnjCeJ96+eevK0e39r8dSDWVtb/WFtOzHbC4PeFPVtRhApFV44QRm2ju+/p3PddzER+t6aNw00OW9XsZW9ZDae5RSqnO9uvxtL7HZluofEeF0Ghc0fBgGnlz9dj58+ruIYfbCifSC5y/+B3Lu2e3e57B/39/nENBii2px13X13g1KS9clpjnX4Lvts2GZj8aJ8nFKmwZ8dTg7pul7KQMhHOi79wBjZ7+NYolSzuRyy5SOHPo7QiqkfvaeXkAUgATMzHmsnZH3xLAn2wQIUSLZiq/v4IFJKB1FvJda0A5Jl2CZLLeIdAg7cnJl3hjv6+/8Zo7va0flh3/4D7Pb7/js+SsMiKr3lUebBw+I5IWv0XKiK6qxRrwLr2GRGF8ji2XB22oYnLBV9VVUUS01EtV11ZNZlVsrMrBEu+vGvKaHqIZhjSaWDcxWJv6S27TtBtAIZ1v4uuWZrVbw+FhiCFhYK23A/bc1yqFGfGHZRBsEbdYMri3cg5Jr5U2N9nRBC3ThbbTba4cLvjXkoc7W4jAoXQzVKLUUUJXJbs+xzmETwWtO3v2c/ppkaxoMIp7a2zp97gT436cNSrWMuwlv1e+3aabtXaVKqm6duluJq8+vUqgqmSFgLf2hSsCpJ2ZGKi7ytE0PrimlXB2CNUqsN1oRJs+H02wW67w2ZGJxiEX4z77+X3N1+f/i7c1/xacvv4YRfBPfrIVlc18ccEfzmnFpTlEueSlb3KJqjUCs9b3Y8idWTkdz1GpwcI/TUnk20tK8m5nZnK853jGuEfw9Am6bR6qD2pwuM0qZN9G18fF3P+FrX/8qZsbFxQWXlxe8ef32XlATQliI+WzW35pWqQ66eEPDbS+gQV0DahzPnE5HDhcXbI9tyrAhJaseS7uhtTKqDgFYO5R7E7saZC1zZBirJALYGgixBh+rvqJ/bp5nPv72J3Rd5OGjB1w9uOLi6sCTZ495++aa67fXjKOv/cR9wuSCslWUw1EoT/+ta6tuHzXI0lDvK4Q18NuMyf+m1LW+LnYRJQQ86i+2rIWUMiK6VmoFD177YQCsktHNUTZWpKjkXFt8GFrC8gxKOnE+nqsTahwu9jy4+jpf//oPMnTG3enIeJ75zov/B6qPGeITHoWvVcelOqUlQgkgAVMIxeh7V36epjMY3lBW1XvwLM+b6pjborQbVJd3USqy3GyCSEDoUN3R6WM6zd4KsytEJnKZsHDE4mum8oKJG8QKvQwEDAku8CZJvSBFBNEdpQgpj3Tq81MA0p4oHXM5+jXnB8xSkSE1dvX+vpfj+9pR+eTjF+x2u+X7qfJFgBpNrRG28f8l79+CLdu2q0Cs9THGnGut/cydeU5mnsc9V1cUBZKRsSyL0jWEAAclhREEBCLscIURhKmPUl3JgBwYQ/ADDlAUdhh/Af4o82GHPooqY1VIpbJVlJEMCFEoisBIoPd9npPvzL1z773WmnOOMfzRe+tjrLyK8j0iwhUntODq3tx77bXmHHOM/mi99dYr6tIHBYctwTyMlNP2TJzlCBG3+xKDt84NNmyu5Izdbo/VSh/COKaGOkiAcLQs4EJZtaqqrarXFkcyJAhiiHZQzdibAfTr1w/QwIN30UHltRbvMPFwyL4/pgGt5BCUbxgaATiEgGVZUIoeboosqVgdUSJ4ScYNJbMhdJmsr4EZ3j5TRAuIxDI7Gnl9T0H2rmNx5MYJydDYP+dsw9yaYy3kCfjza51Xmq0eSrSDe0KYxDVDpYFGU4GU7lnQGWcass6h16XV9hlUFSPLkuwt9t/ajmnMfYFrxtDUtK4ieDbO9Yd9R30jC+e1sXW6iDiKU+2ef/On/wvcOf0JTNN/D7/ypf8u5qU44TJasBgs6PL15zNnkEdnCqj2TmkEUD4XvkGHMdraloKYosPsYs5Sp9O2P2IgTaSQwYgjf4a8ESEUAPPSkJQQWkdS6M+zEDnTYCshgkhOzhmvXrxCSgkP33mAGCPe+9S7CCGo5ogw0UEXJBQ4ClYrgKDIhQdMAXkpHugJjLgva9zeXGN7e4v1ZmNnx1C0EFBKBstZXEw6fg3q+MwpBtcXXa0sbnZjWTRhU7W/4ufCy7l5ad9j96bXfijSdXV1DRHB6dkJ3nnvIR6++wBvvX0P29sdnj19ju3tFkR3NQFo5auctWxZFrV5KVbERHSoBYr9i2RbrmMp2uW25EWRXtM80rKsCUZmeGIXYkCMwUtFKZqUvjA4Un6Jj0kQRWxyzkDSZ/hmqzyg96TCnxXztODq1Y3Z7aICe8fn+Ibf/O9AQsR29xKvLp8hLP8ZHj//LdiMb2E13tEgPgbUEhGj6e2gokQVWUsxQmICSsayFEBit0YVocD9ESA2jJN7hOsXEWKzj0GC+boCQcQQjlHrORDewWoAqnUcATcI8TWmfI2yvESUaCHoCFRgKXtFcEV0eG+NQB0w4wZ1qUj1BEUmlLDFOGi4sUx9S/fX9vpEByo5K3+BkTHh9YMaqKg+BwDP0hk91zc+r9aKYUjggK0+U5NuA5Su7XdesiMqRB1Sip1hgQcN/A4eRhp7/k7bBOF1U2Y/9x+8jWFIGEaVOr5+fY3nz14cZhiAs97158Fr6G9mk6UsjihJACB6gPnGNKSDks40zSZSpyqbShKT7jPk4Fq8ltw5NqImtfaERvFnx5dOG9Z6fwhailI0hVouDRVTOx4sY9L/fXHvAkdHR9alkvHq5SW2263du0JU7BhwvkpkQAd38CgAqvKNSN4chgG11hZEaLTogQYdEtwpBr/evk7e1qp6pJY5SgAtSA5BUKVxC0q3V5qUuf4VOSTc+/1kZEca/Dzo39w9u8Xp8U9gnj+Lf/X5P4hcV1YbbyjivOh8DlXNbFk4n1nrbPOr1yCDqqI2F8YDV2llrRobesJRPqi6FoazadDDNbXryjnb3i4Ow7e5Q7Z3oEkAf18rLEiDjrb37L3ZBhEccI5yKXj29AXWmzU2mzWGYcD5xTlevrz0MlroEBgPYqU9cwaTItr+y33isa797vTsDNM0YZ5njMPgZMtmF/R/+z6Rr0a5DtSF0f0PC3yjI5/F1qDCmwUsEAgxtpKLrUsyDk7PuWEJaXe7xa/84q9ivV7h7PwMm6MNPv2ZT+HF8xd48fylPiONFJTPAuX+KVJRlBwf1GnSsSphXpwL1M5Nsy+ABnnR0BIA1vF3KLLotkKXWt9f2u9RFdVVPiLUFtJuhSYjUAHvhGq2XAO9YRia4J0lUgDw6sUVXr24dJt/9607OD/5ACcnfwq1ClCe4WYfcf30/4yr2w8Q4jFSuos0JgxpbUGuIMaEkBJqMTkE8lSgXa4QICV2ABag5K4rDlB55YqcK5Zl0jUR1f4JMZnd0qYBnk3BEcZwrGenZIxlwRAmVOyQ0xa5XmHKr1BqgmAGakCpCVGAvcwoNWOoK4RYUeMWdZmRcwRCwO3yG6w9OQTBuBo1SEnNkLm+AZp+hT1Fz3wBOMLQYHkcZEjavkejlQ+0K5Tdne1/BwBJiXIGO3Mza7ZvzsOuzSNyRulA59QExyfHOL84x3q9wmq1wtXla5Do9dGHH4KkFv4tnWUtFfNBRqBZioRGDqOB0xvX/6IWSeW90+AGwTgOUP2HyYTeKnLWOit/t1B/oVvLFiziIGMTaQGfiHbZiIgqMoYAKsv210itDl5viEZaHgbkJWO1XuFTn/4AKUWs12vM84wnj5/i2ZNnvk/0+zOXvQugxES4qgkySWfoKlzcy+AYPu+Se2MgtIhIsRlF/p064lb64ssDXm8n7gyrXZujF4YoMCPyZ2SfmixbaWWN3EpVbHd3ByQ4O36F9x/8daT4HP/8l38flqzEPELy/OSBwXnWQFxnITWUhEEQy1F+DdI4Jq1c0xF9QzhAA1n+QVfKCMGCYmmdKfqWAfM8Y7/fIwRgHFeGiMkBGgpzyqiHAdVhgG/3Z4gEHSX3QM4LPv+rXwDxVAbfC/f2AWm1KSPzOR5K5Kt4os//MVRIr6PZlnmeDwKoYg6Rz75XtO45OG9OR+/vl3pOOWdLpMSDBd9/tl9CSp5tH87zUQ6CJ2C6AQAR7HZ77PfPGi8Mh9pBPULSI37DOKD0gX6tGAe91lIPFbWZ/JDLxYSS91bZAeTPFoCdq77bp2kUGZqUc6fJokkUu8VYKq3MCnSL2bUVoGaEbM8OtSU8YEDDhA64vrrG1avXeBrU5mgCOuDsrX8fH1zcwe3rL+J2qfiVX/1JIFxhTA+xjhc4O34HEZo8qpRCRK0sARYEKbanAuZ5h1IXoEu8SlmAoIHJOIzut2BBSJ/glFoPFJQV1a4IcQBqQq1HSKKluaNYUJCR6zVEtpjrJeZ8CYQFKUQkBGQUDQxjxDQHIAGC32ClH88i6BSrEU87o9Zqwh2xssvGe+NGAhOnHRPBUEfTw21dVB9ZC28j3nNuhDSd1cI4qbr+hX6PHui3rT12HEesNytcX9+glIJf/sVfUWNWWgYvRCFqcQPojhJw467GrKEkAYAQCeHfVEWk9G1imaCgFiMHAqg5oywzBiNNAQofa0lo8vUnkbhHDQitawB56CBQydVBC3JqAbvAS258Aa6Ve2j7rvPzc5yeneLOxR3UWnFzfYPPf/h5XF1eOmJWaoVYAO/kYd4/TAGXJZNiasDWlcN15B5pInvBuCatbTYYBH9ApGbZglwaD476TczHZNfA/WjX6eRikmZxyGVyp2wYVd9qqtkQ3HIT3TgZH+PT7/yfMAyP8dGT/w1KvVBkquNaUEnVojrf428K1fFZ7nfabvvVaKKWJzwA6n4eU7Q9S0jdrpXoCdR5LpXlMvHMFQBWq1VzxmiOCYCPqCB5MRruTWfd78UQginOttEN/T4RtC4k59bURpB1tMouRKDiksW6x1jWm6dJbUKhVo6uY/Tz2iEyJsTWD8gMnhy1EkR7/uj29ZvBuAXMJKWKcuhYLuAUaS9JMZmR2Mp7oClRB03Uw4ck8nrsafSoxleVcUwzSEs2ASH011gtuKgI6AJbCHItQGUwVv258Hq4plpSDx3HqQUpbd8edla5MnfgKIkO6eXmqi0gjaCsv66ZlqN1A4ufaTvDS5tHxuaEIIKnj5/orqkFzx49RQiCu/ffwm/9N/4wTs+OMW1f4sXlI7x6/vexXwasV+9glS6wGu8ixtET0iriwUUtEaUmKKaoycp+ylivrdxvGivVnkMHU7mvICrElWLwVWCjL8xwhzAgyogBRwAqRlSUUFDTjFxvUestMl5hP79GrjsAW6Sw8iD/47w+0YEKI8M+Ow5W/mlRPH8WXF+Fu64RKVvm2j6z1d9rhXc88L3kMPCAj2NSBz7PSFYiKKWbBQJ9X4gB53fOcX5+js3RGjEl3FzfYJkXfPHzX8B+P3lwZRcAaiGZN1fSqgdQoZELLQv1rptaXU2zORFx460Xb8gPW1DNEc7L5JlRGkdEBnnSyjW+fv47/acfWP1XF9xxuavdFzUhgArjHZQK1+gnb4ERjWhm9Jt/y2/B2fmZ//vxo8f4wq9+QQMlNCKjq6aiy0LRldwiJZi0DVCT3NL2SW5BrMKwba8U463Q8AcRZcCbtMayqCZPZG3/1zqc0rgEbwZxKaUObVG5emahLUQwoygA6qHCLvdLKcUF8RgAvP/+/wXj6iN85dEP4MmLTznJ09U17X36QRmQVnro5f2dK1DKAVeML3aWcH24QdrOhjt9D+5EjJPRJACCBftEH6o9Q3QBBT+nFO1aW+a525eCUmYPGBTdDE5odKK4E+YPidjtecFKgna2rOys6EHxOTBEL6n6WktWx7kaD4Ih3kO/BwqDVNv3FSReMqgTy3UOu6oYXLbrpq5N21t03LyZ1sHXgmpdixZoMriFrT+fDdCSEmbivBeeD9heImrTJ3nuuOd8QDoPbi/VRvelHx390xImDd7CgSDiYZCsPyNpnp/DNSOqoN9d/Hr1O1qJ2hO70AIaoLtnITfPt/JBABm6tQz+rPrARsuCecl4+Uo7qNIwYL1Z4d33vw7nZ78JR0crTLtLXF0/wc3rn8eTl0+xXj3AOFwgxROk4RwhJoQSLZgzXyXKAUopQfV/blFFsEwTVqsjMKqi0i7QOg29ZFxbOZdr5wRt2/Niz0zLvGtErFFxAeB9bGIFpGIptzpEUT7Cx319ogOV1WrUHneBMbrNKOWMZW7DqhZ7PzdcX7vn4Sm5OHLhqqtQI5F8MB1glgbkKuicmZbxhTGZYVYtjHEccHbnDJvNBqvVCuv1Crutqp5+4Ve/iN126w+bmU1/7Q3G7m7crr2wnRm8F9CfNwjWD71gWQjfLzrkSlo3RK1qoLOVjpLP2nH/Zpegf5BrQTIeiP5Cv1zXrSMVgkiGwqvBsgm2GlLfwcsbhha5Xof9/YN33sHbD9/GOI4QCG5vbvDRVz7E82fPO/Qho9rzJ/mPSI/nemIISGht3iUvmpEQEu5cKdexlSzM0BF57YxQmRTl6o1i65wgJIxGHO2cAMmtzPhmy1ipOAsw24bvUQbOJOAyuOH1aoAdMHinCPB17/5jnBy9wLL8Lry+/QBpWPv3i5guTzeioNYWrPHZewnUgl8gamt55yibQ1TDXqzUE7pWfZ+B80Ym56iMReicr3LgmAFTzLV9WqqTqkMKGMexcQl6tAJNG8afnf0tPwdS/Lv9umB8JWQTtGrIaIWehfZ5xYUNiXLxLAaBccmCB4VEeHj2oiMB7fMq8gFax3JNXoopnx6uOQDvmvF7q+137nwtiIxGGF3mxQNEb+XnegfxSbt9+RpQbh+DHS/62X4WqR3y3OnDRNXh8K44gY8hIVKjyq4UNKxdm7cCoT700ddYHNVStMZamO36adB4LUxMsyEi85LVqYug0D4xcRS0hKRWxNpQVq4HA10ReBdksyeH+wndObWfaEIsula3tzv80i/8kq/z0fER7j98gPsPP41PfXqF19cvcXX9DPP+p/HoxQ2AB1jFc6yHU4zDCQCBxIgQjWwcIkpUiYccFh0nINrenee9CtHF0Xhqxe+H19xlRV4N0PUO+j0AEMshMsMgtgIpnAA4wlE8wsd9faIDldBl8eSBkOioBrRlccoSz74xiwcXTTgsGtHWwml9JKVgzg2Gt6jASjrV0JvoBjPEgDsXd3BycoLVeoWUIrbbLW5vt3j25Blurm/caDGw6A8Zz78EMcduP2MgAnjUwMGKIiwRmAEKoqO6AcsulQSWrM2YSayWL5iRthr1NO0gEoxrE/3gcdMyC2hZhN6IHv62sXm9QQRxGIChkWEb+VGvOUYGDtWuUR3uB1//m3D3rXt+1J89fYqb62s8f/xED7kFJX1baQhBy0PScTzsenQmTsZS2tCwWoF52fvEW+CQ8+GTnEGUoLVGwsxyKUpQ1E4UaUFjZxj1uQYnMtLhF/JJ7PdBBGnQ54cYDJ1BMwDgLCQGVR5FgpL8gV6RayKCD975r3D3/EcwT1+HX/rSH8Bu2gB1sb+3e/LyVrtXQPV06PgTD11km/fi66BIlZ6FvHQEXyPrcdinr21XS08pOmJDx9aXkHq+l6Mx/jKumAA6VqWTGug7j4BGpjbkokfb6LArf4DWaVIBDOOIu/cusDnauNO9vrrG06fPIELuhGWztibB2nBLzjrjx66Dg/o4UsJnGxGpFDl4HiwdlNzKvimlFqzVdr+aAKtFCIYm9whYTwgPIUCWxRMIVIP5s0BHlAh6ng33LTkiRL/0Otmubtw+JkRMAmPUzzIS9cN3HnjAVHLGk8daAlkW3W8lZ3WyaIEsbN/HKEbWFUhqwpf99+WcD7iGSnxvJTs+VyVeM2ldUEU08M8ZJbd1asmYBfdBIAjd2nJPCuC+pfr+1SC08ZEq6MN84yoPxb7BP0uAaZrx5S98ibEC7ty9wPmdd7B5638GCLBMT3F1fYWbmx/Gh88LYn2Io9UDjPEeKkaEMKANz4x2LYb4Rp0QzdbsaT9jtd5AgqKT0p0f51kyYc4T5llF/VSc0LpXJdjZs/eXDO0y6s/t1/b6RAcquZSGpKBF/ZpdVdTakAmWPLxrohYTGGNk0JxnGlIzsoGaKx2nBQ3tOCBpWRBz+fIVnj99rodcxNEFz3IZpEDoI9SJlqbHgoIuw4dF5sa54EYxJIPM8/a5+iJLPcaAcRzc+DMrUcNG50BjB0Mt2nrQGBE615+VlhkASFH76/leGrJwsMMbusIgp1TlESzznnfK8wqg4vO/8K/w+V+wPw+tyyEYIhOjZehVn0lMsWs5DcheouoIqxIwDMEcgTpWPaQRKSUsy+LdFbpmJFo3hMNJv0kzSXUoASkpUYxBFx8HDdl+u7MsTwNdQuASe3Gy6i3EfH4sf4l1JTTBPQtPzRAyG4YEmy2iDuTd+/8cF+c/CpHn+JUv/wlsd+cw1QPXj+BZiMl4VRa4CgMnuyYfn1DVqGumD8s4rSzIZxRiM3J2DmJKvh59MELORHCxr0Piehvwqe/XycTVOz/4TEi25l7loEHf4DCXanuQwQ/PmLeSW+JzgNxU7bq7e+9C9TeqCn8ty4Lr19cHATNq60BJIQFGohWWmIuqQXvXXIUjU734W140wKlFO5lIPJ3nCduba6zWGwzj4OXpHlcRABJZUtJJzixVc5+JBUzTvHSdNsHQFlgwLb5HyqLvywW+D3OHAkOqiZa1ckK7oo5TVSs++vAjfPDpD5CGhPV6jYu7F9jtdnjy6Am22513H/KvQyTh3jpuUkSth0EtYNUgC9BHDoAEgIgDG1IsL+WvBa1k6aVt329MpFpJE7Viydo5FULAMHCfqY1kQhGMM1NrRelKUbXbb/q8WnecIlQWAFYLvgGUrDb88vIKV1evfV8fnxzj/M4DnL/7p/D1X7/GvH+E7b7g//OL/yXy1Yc4W7+L9fAWNuNd1JrAMrmihxGltESWgYxKDQCb9bHb77zMKDYBmYF4FKKAAQEReZmN0K98x2EYIFHFWMtuwsd9fbIDlbyg1MG0jw4NEQB3AsrAbhuIv1MmtG2P0Nc2K4Jl1/o2acJkRvbSAxrZ0g5Or53npak+MuLsDLJzXcyxOrFXU4aON2PATghmLIOm57nBqD2BFSDLXrsG2Lrp/7GuipKzkyIJTVdpEDGvU+Hwvt+dRqYjD0pAhRry2dQdD1r3LBPwrFofmq13i6pYdqiVw9D0EKc4+IF1h3zwHYYEUIQOVg9HPej88qDSnb2hIRXefRKMUa/dDs0xgYiBvXeZZ78vgPuiPa+Y9HP0s7L/XrN9MUVK8dJRTIMJ4+naL/NiJFNyfJraMZGd2HVtAOxSiRjG0YMOseUSCM6OZ5yd/BSCPMaHj78H++kDR8xqBWpseho9gbDfE5o5UYEYDo9X2PRdtFk8WjYIXsaAQNvMYXOFUDFNE5J1l/SKt9FQHAltDIWXOKkWjA65iK30ScfBZ861i73jsaCD98R1DF0g4sM+PehOHiwBmtl++JWP8OnPfBoCYLNZ4/6Dt1FKwW67swBTl5EddRqHVEMCgqMDaUiYpwnDOIIwHINiRhrDONivpHWciWAYVkhpRM6zTmUeBgSbHaSJQON3DFFHMlRHBO0MJz3rKQUke0/J2s2RbIxDj1z1vBRFihpqxgAECKot0gVqvB9KNRD5AASf/9XPI4SIe2/dxeboCCcnx/jgMx+gVuDl8xd4+uQZRGB6U9kduep3wP/twYbwHwz6gb48z3WNJqjY2/1enLHYfmxnrdlyzo+iEJz/h4bArkOVZYt/dkOlNWECGtfROUTd9fTva2dEfP8Q0y6l4soCl5TUrZ/fOcPJyQm+9Zv+J1itV5hun+Fm2uPVk/8Ej18D6+09HG3ew2bNoYQckGhE4RARY1PTBVGlWsB5eLWyo1RtncRg7w8INaBI8SWpDOgOgtev7fWJDlQANJgW0Aymj0ekwbxLWRqS5m9n9qmbUA9pNliZ5QhgnlsXDwmORHL4+YTnQD4A4AZWjSCdZNvPDKJKZl2vOcje2KhtUdRoXK28RdJbpy34oCHWDca6LMm2egBi6uH84vetG656iUyvv7raIYieVI36CQUH1x1oAQEPqAFGRrxt0vxam+b8EWZXgEhFGqJzFxBSV6qikByslppUJMoy6WCHk+RRlEMOTnuJO3B9BgFxaG2huqWKP/++vlxKRkza1SX2jBhcakBoWYVVECmVzTHwzpux0lZeMpbJRs8HVabtjWRKg+8v8qTo1POSHXEbhtFr7LkWR2xQK04213h474dwtP5nePbyf4HL62+FhIQU4BmeGhwLGjtjX3LGkBLSMGgASWgdXenLHGjrEmpHgSiPto7aHqoaRKZBHe7QldiifY92W2VHNZS8DXeORFqqOQcJwY0zA/2cs+oBdffWUBG7xy6Y5atXsa21Zd+Zgbh9xm67x5NHT3D/wdsQEeMP3Mfjjx7j9vbWn78KJxYPpqq09D2mCGRBDgEvnj3D3Xv3UKoOrguWzZK8qqiPBfBpUH0k0QcWZXAkb14WdzIADrp2SBLniIi+9Vd4JqIGsHSoeckIqSMhB6KSOrKjVKNtSjePCMXPNZMdLUU10rKIN9shhohlnrULxgLJh++9i81mjbv37uLi7gW22x1evniBy5evUIuisMrrAhonhs+N9rRPKo1obUmaQJBrdpvFkRmu+yPB+FpUnKy+r7iX+oRJxylwPamCy8Au+JqJnc1lWdwOEQ1kwEV7wlIS16RW8Wvknqa/60c0UApA1YJfW04lODk9wenZKd779L+Hz4wj9tsn2O4mLNMv4wsf/jOEmLAaP4UxXSCFIwxQXSUmxGxyqEbYJcKjPy6YJh16GIwWQXJ2Nf/IslOIHz/s+EQHKnyALNNUVOgz6mBAM6AHXSpo0SozxMO6YBOVYpmFhkpEEGpoGzZFQyhaTTyjOmETgMOtKmvSjGwtnGPT6p50Gr0IWogq8FNLxWRdQXq9pqRrmYJC9uboipKDScDTIIORuhlzU5+FtOmhKakIEB1F1dQa8zy7M1BIvx2MGDhGEZ6N1mLIjiEFelKJ3Chy4JG7CAgxlFw9SJvnReFIK8e06cUaQLZgLfo6aMBFJKvB0TFGd8xObLVafa1dGcL3hBIVl0XnWxCu1yzTjK7N1YhDK0kEdzJGrIUiVmzF1e801dbI561We7FyEbtBQhAsE7sszFHRuLvzsH8bt2XQaj4qgOP1DR7c+49xdPQz2E/fgsvrr8e0NCLpMk2+91hO4PeLCNJ6jR4RDCGqs/O93rJoBtWa2ZrRF3Vi1L0AOu4PBIWk9g5xTIOiFxFm3Ineheooj+6zyNF/3oWWS/Y9ElM6KAUJ+pZjRTQX59BYScrKfEDrJuG/e/2jWoF5XvDq1RWGccTFxTkA4PjkGA8e3sejR0+w2+5tDENr0df9nT0zzqaUnYaE+w8eAAJcv77G7TTj7M65j4rQa1Y74GXoOCIY2qdgr3UIgVy9bJw7WJmmYLRuROAQOXLyZKB0PksjgjQq4qd4MiwwZALUkK3e4fciadw/S61AXTwzZ2IGaPmU4zgUVZzx5c9rF9/5xQVOTk9wcnqC9z71Hh4+fIjLy0tdp9tbvR7RNVm68077xP0wzzM4CZ7BCAPrWkqT/Lf9LEHcdrXuxNpQ6FKRjVpAMnbj7TBQ189brFSm5yUcoCoM+FnSFQT3Z345EGSzaagtkBEBiv2ec45YspbQ7k+fseDq1RWuXl25vs/ZnTNd2/N/C9/81u8C6g1eXF7i9dUjPHv5/wau1lgPD5DiHQzDfQRZ60ShAE/KgGr6W22cBJV1p7wFJCAvE2JaNZTXxz987a9PdKDiCEhVZnntIk1U6KAlczo9WVEECBIPdBCYsemfHg6Z83ZJZldZVVJV5bDBofws7ZpJ7eeuXWbqoua4vI5ejUUdqAvQyjP6s37zVcxzQe46CRyefMN5MJKGNH5LQ0+yBymA1VC9No1u6JrqRyiEaZwQ+xttvW0wp6WgqNCyHFA9CGEmzGhfEq9HfKaMhIBxGE2PxoynZWLO3I9iQRWdvcH6zNaBg4CEQYea8NYtUQibVsuSihpqWAZEYqYYobiWavoXSqikg+PaETJHqVoOCwJVgtCW62wy5jCHr1EK5yPZHkJXkxbBNM0awHV7ke/JBqMCaKRQoeMRbMZrvH3xf8PJ0T/Gfv4f4NHzP4z9/B5iKiqJb3vTh3RqwUKNOYPGjozKAZd85ikNHoCXWnwUBK8TRAod9dMgbJ5nDMOAYRwUdbBMjbLqundKQ2vQROh6zkw79y3IDsFza11nIc+ERPIWaAkESeBlGrG9xIREhSHhZZoekhfzAPM04dXLVzg6WmO1WgEAVus11usVbm+3VoZsqIwiCcEGgzZpBCXc75BSQkqDoXC6v6dpQgKQIUiDoM6LiRyusRh/wPk+pSsxLAtCtPNUq+955zcZAsJjy+F3fN5eXrDz7KUvQwVYIukR19C1BksIjXSN6rwlEfhzpN0gGlPNEMQUVFKhAi+ePcfLFy8xjgPefnAfR8dHuHvvLu5c3MG0n/Dq1StcvboyLkiD04UIuXWZsbQmISgviOuWG4/Q4UCYXAHM5rL0yP3l+9B4VQEIlSKLQC3wtnW1kxoW6Xz1FiDC9jqTH5KTwxAVrcqNaC2Mmis8SKm1NXhQBqFXCW/8Sdre2s5RrXj54hVePHvhz5kk8YuLfxPvv//NWOYt9tMzPH/5eVzd/jheb+/gaHyAVTrCEHXoYaBasXQ0gxARrNMLEpBnS2aDIMQRKS34uK9PdKAitSCgIETTF7CHEZOOY/eDZ05WzOmtxhGnZ6fIpeLVy1eY9nuIwCdIqkYAwMw0xcG7hPRVu6BAf1yhpL4kuqT9oK0WNbfsb1lma0fuN1aBWEYeYo8Y6K5ccjfjZj8ZeUvr1yVny/qaAN6b308OACPzEJsujCaZZmSg3QVt/VoLMTd6rRW5Lm1dDcakDkStVQlUdvgu7l7g7M45njx6gisbEZ8seEkpeQksL8o8z8VIaIjofJaT0yCty0RCUO6LQ4y2npYp9jA1nZvOXuq0DxwlMnjWEBj9oAq06p0/FxqSTP4SWhDU778gAnSInQdKtTjSwr01GP/E4d/uGVo450ENv0NHyavx1BrwgtPjz+N48yVM8zfgyfPvwvX2vTegfupmtC6XFBW9Um7N4ntBg04iloYMmBqxEwIteACUr8RgI1npiKUuAHZGraVZimesRABoeHVvGQ8CTYCL37tYJw15KHNH6OzPVTBHVCxw5ikm16qUjLwsWKw7xInKHiBqFsgRDI1CroqsTx4/w/0HbyENA2KKePv+21jmjKur1xqcMIj2jNuupyOyjjZHq6I21E702nfbLVbrDfKswQef0ZutsY3zoHbk9eUljk9OuvlBbA4IqDY/iNLpyzx7QtMCeb353K0FbC3fXGMWBdW2tLZ7ljP8Tw1uoNpwrRUhBUdpaQPUViZI1ABvnjO+8qWvYLVe487FOU5PT5GGhLfuv42Luxe4fn2ttnyaQfE1DbKUQ0JSdKlLQ0YqvISk6FRxfhDtSrNrxTVUqiHVveBmED275GcwMGUDApERLkYpRPFaglhytlpO0CEi9CFAE11jMmiIFxM0/lyvp7b1ry2h6qdPq8aTtmCzi+zF85fA85du31brFe4/fBtv3f0WbDa/E3m5Rc43uL75r/HyxU9hWh5gHO9hCEeIYUSpERUDRJikk+cSEYMmf2Lr83Ffn+hAZT0K1usB1eqtkgOAgiAKC8cYsFqtcHHvAsM4YhxH1FIwzTOm/YSrl6+w309onXcNfVDH3IhU/ClRCjpDd0xgZt0y7DYHBABaPVNi64ZxiLRwqBqneOr35GV22fIQSVAMkHHwa2G2R6i1F66zH6qzKxVznl1Ai1mE1/uh8sluzM1h5EL12lY6C0bq4/1V+ywRhYtPTk7x7nvvYFyP2h6ZF9xc3wJQLoKupkePWOYJAjVO+2lWxMkcwTCkhjhlIiWKVEx2P2ytLNW0IOx6imVynhVDERdKZtOQBgmQWpyXQoSklOw1bXbyiATksng2m5cGP+vvqX3BdFVvk8RRQUNBWgDS7xczPtDrWkqDgnWvdKXNzvjrGyacn/xLvH3xIwjhES6v/xButg/c+DNw5D5h19OyLCi1Yt7tPBOj42ziTvwe8SCOAll5WXwvptQCnpQ0kxJJ1n1hF43WReYzo2zdFZ3RZ0hIfYhKzGMZCrYOug+6teyC++bA9fsC18oWq53TFpw418t+D0fOxPc7kYQqirYSUj85O8Gdi3O8enmJ16+v/XNbiZdBPcsD1bqp2HlWvPPMr30cfa0abyHTJ7W1ALCYGi8DiNPzOxCok1bNp+xBop7nxQIlm+ZtaKqUJsdAZe2cyTfQbroDZ1P5tx36a1sfwt1tQW/JLqvAs0I7Vg6So9iCGhvQuiwZ037Ck0dP8PijxwAU3Tw9O8Fut8duu4Mnj2hdXWy5ZgCiOjqWxESq76rvWJbiPD7aNXYperAZEzy/IFcvsEOqouTFibjqj6ysWDLGMQB1wVJGlDpoAlUqSlXOoDp2TQZpp82E6161hSVxvS8rRic/d1o1nW5RjxiRXycSMIzJ760lHBqUPX38zP3H+miNs9NTHB39bty7953Y73eYdreYtj+HZ1c/h+00Y5XfwTqdYDWeoVZBChtQl4hlQp61j/P6RAcqU05YYYAgYFgla98LOL84RwgRm6M1lmXBfjepMbl6jZubW39eIi1S1THaLYtAaBlDa1MDerE4zfY4UVc8SLGtBRgz3A1daRF4b2CY1Sjkqn9LuLaKCs6RLU+iXA/b87tLyer0l8UDk5ZD0/DyVhjYlAODqmshFtNXn07qBifrHIkgAQjRiVYpJYyrEXcu7uD0VDVklpwxTzOurl7j2dNnDXK1DqZa4NBhYuueIR7ZiK29wBNfLLsojBo7w0sRIu1GAgJKmdtawkonlo32TqrC5LwRULPyY8S5DcpNgVBptIkY0TE7UsNas0iDRaGZ22rFSdsFNQhCNDiWax6Cl0j6IZs9pE4DD7CtVn+sW7bgzumv4OHbPwoJX8ar138QT178Hmz3ETGJOZLi+5abgxNgGZA5tB9bcBRiQCjiiMJB5xXUYaRaW3lABONAAbo2a8fPjdXtD4bgSQvShmHANM2IIah0ulgHCdufi3bMOHJY1IgHkixr9VZWDXqsk0rEKnxycD3tjLTzzWDizffwvlleFEM/r69e4/b6xhOPas8uxOBBal+yYsk2V6YxDd1xnlKMkLBgnrVLitfREBBm6G3PLVntQi1Fy0j2TChZXw1h0HVOfj/K8VDjSL4OETQKOwYLRtheTZsiING4Bdt6PULTqcEOuQ2dYTrsLgTSMPgIDCYceSFnDmZXDWmZZkUCALdnUps0QpOJNzI+y6OivI9lWcwWWrDWtx5Dyz59C7wnf57kREfHyBepJi1RiyUlNWAp5ksmYIh6z8X3sgU1LlJYfR4UZ9O5D1Jn4xwh3ne/J/u8ZXElYXb2VV9/Jkss2RKdpK0M3XkMIWDaTXiyfQZ2UJ2cHGFztMHJxe/A3fu/EyXf4GZ/i9tX/xCvbn8JOUcM6T5iPUaRLYa6wRCKolof8/WJDlTWR0e4uHsX681ahY9SxDIv2O/2uL6+xuPHT7C93dpGaiqplYm8CCAmUITqpRCiDIpkdJlkKViyQZzQzI9wWko6ZXc2mDwE0cDHkRUaedM3MdjWyzQwvIYZqzmu6ARchWfn+TATTCQNFtYzs31XcUizZWLa/aNBeVcigsLvQlJibhkWnbg6eQAdyjSuBqzXuvb3TTU2BA2Urq5e48XzF3h9+bqVDGoXOHlwV72jJISIkmfEFEwbyAwDDVuFZ5u9DgcRqFo1C0miug/FHF5fwuLfRHPCjUSqpMaGlPUGOOi6mfEruWjrnZHgFHlqn03ujJiho2GBOahhiMadWBqJE21OUIgBCGpIVGhNPBfyEuIbZMGQBCebp3jrzj9ADF/EzfZ34fmrb8Nu30i8Fa3Nkg/CSYeBJNwGGxO+5v/uX/0EcQAodWlGnEidvZfljWAt0f6znBHss1VLZ/G/cvQqBEQ0x8Yghc+CXydJeS4+dwmtk0L0W9B4QJwkHBBCI9XyupoQYlG0LBxOjmYXDwMyXu+beh88pyz56DoHC1YrQrCumtCCcbbuEh2qUF0jfRZ6t+M4YhxXWIysrvekNglBv5voyjzPrlujz1H5YzobRlutkyNbVvoU3bdt8Kp1MBZlWoiaNnfWLIUxCOORDTF6hwr3KQNZPku+j/YmJkM0g+1DOl9UC8bFeBd67vRZiNsT23HW0Uh+CLlKGRLVTmu5WaUNxBJQ22Hm6A0dEtMQqvoeKb7BfR/09wyRg+4miCjHJOg1LRnYT8PBfCc7QB5Aqm8qfk2uVGw2hGcxxnZGeR5ZEiQny4qBJlfRkmJPeHW5tNRsKDkRfJZyaSd61KXWipcvL3F5eeXBzfmdM6zXG9x98AfxdhCU6Qr7JWO/v8XTV/8FyrTCsD/BtPsNpkz7znsPMQ4jpmnG66vXmOcZr15eHsBkLoLkDkiNg0PzxpPQ4CB4UMGpp/NSfINQ/4SQmc9h6TLRWDn1kxAs3MCgulltB7QqiWzJ2Q91NJEsTlNmPT6lhMWcGw3ZUqtnWlItA6hEhmCfqffK+TStfijoBZX4flNLQkFxxKVBkBXr9QppGHB6doq33r6HYdBptrvtDtvtFq9eXuLm+sbW26SshcS/RiLuSXX6/cUDgVrV4A4xAAhYlhk+cbcq75VMeurE8JBJsJpo/9G15+uQdBssOLKME0xY1MiMw+DzYOi8YwwosR14DZSs7VrEeRDkqwgsM7X7Kzlj6TMzNMG1GKP1+qlxKfYQ9fFYZ0DORuIu7ihjFKzHV7hz8hNYr/4r7Kbfjqcvfycur08B9sY4KtPxSrqgXERJp5Ft0PZc1KDDERBdm8MAhpkz+Q/uXN4IbtRJWhBMxwmVL8fCQXhoQXwIxlmK5hQDQlUSey9mqN1hFox6MEZiOyFnok9NGwNQuL3WNlvJPsSdFWxicLC9J911M8B1rgZLRfYzRlFE/g7PH8urwR0MoLIHw5DMMXfBlljpyhBBnaJ7mLRUBmO5IKxWKDljnidIEUdpkog7KOW4mQvIcN0pSFNLJtonQgGw4oEY0DgTdKSBXTXSaRGBSKMhx2YrEVqywuC7FkV2YlRbq/xasWQzo8Zmg1H5afY+/87W8luy6VrZffXDPvHG/mRCq4mHJg9BpEuYbH8Bbc/DLTpYRj506Ojm+ghdjZ+B+sZZoZ0KAagZ8MGGpUAM2elLJw2dE//fRM76FxHNIMmTkVq1U44oca4aJHG8AwPJCkAy52/BJTw04bUJ4ah49fIKIld+2DdHG6zXa2yO7uHf+PT3aACEl/j8l5/i474+0YHKRx8+wrSbfdMEn6Fhmpvc5HxVCyqSOqIlL1gWdXwpJSDZQDQwwu5q8V7nNI5Ewwb0IUvX8VBJUGrZlFjo6pAiGD2LXVf0zURYkxlVKdWJiCRx1lox5+z9/2zv0/9vDggVlZCtyRvzAKvT4GEpnQNqk2VFWsSeUsJ6pYjJO596F+dnZ8g5Y5pm3N5e4tWLS7x4/gLstGkGjo5X7/+AN2BnyZ0eNHuNiBbgaW19GKJLj2c/YJqRVpgQVMlKBqXB43fwGXXBgSNYQog4+dOkgZSgOgq9QF+IwY0Iumckoe0H1vkD1w+KZnh3Ab2gX4f+ZWSAXJtRbAFPI99xBk0xRykxYEivcPf8v8T56Y9hmr4OT59/O15evt8IlPYcVewqABR6sWerLZcBas/1+nJpirAh6Poza6118b1E4+zXbghQX95Evx8ZmzLjXBrSCX8G8RChqNq2SV2LAMFgSCIAJ6jzuQKwe/I+kPa9aGUSz/QDW8uD73+xv4HQFRnnoUORuKYMgPg9RK3aBGE+16492s5HKdkdPc9F4JrWavO0ipdsggRwWB7RQM/giVYMPOMJaUhY5gXb/Q2Ojo/1usQGMYY2/Vf3rvhz4bTpKMmzae8YqvDF1KCDpO/q54D25ACFElWEVuQLVtLWr19MDoLPhGsqjo4VKxUGRzcAoBpfR4myTYWaCceB/fbrKm5/xJ6HByK0o5YoUrG6fz5SGazo/fN5+O8pnlirnfsuOG3bCZpkia9jqbQnTeSRFQDnnVh1rp8GDWndV/25a8g9OYVGH+g6vBpaIwilC0C99Navi605uG66ztr4UCGlIb0CwfX1La6vb8DFOjk9xsnJMU6P3sLHfX2iA5XrqxscbTa+IWvVeSsAI1x7ox1+z+ZicCc61Rko1aFNP6y5ePbUP3zW7vOcXROiEQLRHnoIvvGqoSYMv6sHFGp44tBnqiQ9Nk0HwAIUogHOIbH67gJIaCQ6oi1+753D8s4X4yEQYqcBk4MaLXB0fITVaoWj4yPce+suxnHENM/Y3m5xc3OLly9e4ery0p+JSNOU8SyJWYKtTSkdKbJqcMCOKxIrAYW8W+tpI++GIODc42ifJ1azZZACtKBROqMKaYdRAypBSMZlWBYUaVnakjNClUZuzvopPdu/wdIts2yZKYBiCsKm+olKATPygYKvzewoQfTMzuFlW5NSKqp0pGbc4u7ZP8X5yY8g5zNcXX8Trq4/1TJ2WDu03nBHEA0Ow5dSrFOOgXHp+DL67WVphFWW45hB20e3rB5yEHh4kM7tLIrQOBLAsmUXAPA/DJQAeCdSC2zEO77ckFtWnGvbCy2Wauej584wuCi5ifLZgvk10WEBOCgDobtXIlb8u/7nja8vfsZLtjVM6rByLiDAESRgqQ1pK33QxpZ82xvkdzEoFgtyiDAoWpQx7feo0DL1OK4QeJZCcI2VFpRYYEWOR+E+asik83mAg2dHWwY0rgVf2d6vJeLWKo1+j1eg+NDU2Z9JrcYdY+LlwT33T4deo6EbvCY3p13ihIP/VvvVV2QYVNKO+Xnonq0/doHvCZbPeK8MVgWiuiOgnSw+z4gfVEsFNWcZ9BzMB6rV5jDxhgBqebV9aOVoMUHMEPVRMsApcDFJt9Md0gOIl815hlhi6tdC0HfLwveOR6BMHmrF5ctLXL66xO12i4/7+kQHKrVSSTCgUv/gDdJRlQqwDZgbknsZsIVWZ09BL4fJSKhFFzEbxEauhEgjU/YHthlSUSluBgtAy9Jqy8CIrjA4qc0CQKcJR1SrLauQmKINSgzNNgPEDHNgIGbDyezwAKrswfZhZm1vXtu4GrFaryAQvHX/Hk7PTlGyOo1XL1/h9fUNtjdbbLdbY9EHD+48i6axMiOiGUqLttv38ZlZ6cVq9+o8o2VT2krZMmyY/Lo62hCjk+fUYNHYNnValqAaxIqGcjji0JUjrN5eyiFc7FkoWlDaGykGt9nunXtC0Ix4y2J5vdUl8mnQ6AQIh/elzFY+mXHn9BdxfvozqDjG9fbb8ezyf4yljGojbI+57LjduIA/awFg33HBoNjLOaiodhaydV15G2ftWujt2bpjqK1tktOeS27PpI2CaBm73n8TV9TPbVO9AUqpl+7valtLRy253mYK6Nw7sq/ze6Sfets6sQTwwLrtDZZ6eY57VJL5Acntug7DkLy0xMCbey9FlpyCBzS1VCx5boFtqB2K0HEUOoFHqvN6SSOJQe26DsfHx1iWjO3tjY2BgLY8LwXVNNjIn/Hn+Ab6x2fCTpfmn6rvW18PaFBVNQrXzL50WTqMuGw2iUh4P+nZ96eVIDjxXZGOjiMlTBK1GYH7Tp9RQK1KYJfIgYjtmWrArmdvc7QBULHb7j254t1Rc8pjEgYVlK3w89UlRhbEVHumYmeG2km1ViPNtwngEHjJTc+/2YQexqoWyAiJ3+SfkLwvnuxKKQhB13U1jv75Bby/FngyOO1LUryPWi0pZpIizd622WUtAHN9sC7qqwAzZXzc18fqE/rBH/xBfOu3fitOT09x//59/OE//Ifx8z//8wfv2e12+NznPod79+7h5OQE3/3d343Hjx8fvOeLX/wivuu7vgtHR0e4f/8+/uyf/bOeLX2cFx90KUqi43TVYDoYfs6MbMpgwzM2VHNyJmEek4+YZz98im3GQS/BTbIcADfYpRTNyjO/qwUE7qy6684lY1lmzNNsKrGaGTYn2TQAZtOt4PwYqr6KiOtPsEatyrWtlEQiWc52faXpDPi01KJw/2q9xvnFHdy//zbeff8diAS8fPEKT588xeNHj/GFz38JTx8/xfX1NWpnePqWakLf8P8Ln4M0L4u31pl18fPXSjH63/v9XsmR5CjYmtNI8P6Yi+WOu+MthcXxFTMAlpV4cFRtHo9pJXgrZ7GWceW9uEQ8uoArNF4TO3NoOFH7FkK1ViQq55xVpwaNQOcGj9dnjoliZ8Og3U10SCkW3Dv/l3jvwY8ihl/Fdv/b8ezl78VuGvkxihYFjgFo7ZYa4KrIIQl/RBgsfTNeCA0tId2GLviqdsE2HRPXwDsIDEErBu9/9V6Byd3rc3LJboHzr+j4+X0MIlp5qeNYgNuLATrLiO26aQfspv38tlZ2Oon2zHu0rNge45nlWnCvcT8fHR/hrftv4Z13H+D+w7dxfnGO0/NTDzjnedY2+Fy8wyOE3ulHPyPMyPOiOjclt3XNy9IkCXjN/ZkyZGVzdIz15gjTfsI8TxY8zT68kyum+6Hdl5dE2uId/DdVpr2UAHOI1jWoyVWHPjIoIdk2aDkv2OcMQ/Rp7+xUYVmy+to3EqmfcdqeLhhiycgFLQF/viKKqo2rAW+9fRfvf+o93L13gXv3LnD37gVOTo/VwdtjbX8n3mwAdHwVQ8EO9pLvLwaeAf1GdsTZkhMfn+Kdp21viwAcP8I9Rv/ltvFgfZo/qd3ejiaRwSGXHEaZUvTvcgHBLmjxQLM2xWr3fVRztzUKUXW+0jBgXI0YRxUzjAeo5df2+liIyk/8xE/gc5/7HL71W78Vy7LgL/yFv4Dv+I7vwM/93M/h+PgYAPBn/syfwY/+6I/i7/ydv4Pz83N83/d9H/7IH/kj+If/8B8C0Mzlu77ru/Dw4UP8o3/0j/DRRx/he77nezAMA/7qX/2rH+vi+8jZW3FLgwF1zxL2E9Slb7VtGR8FemIffAAouaJK9oy/1TeV33GAtMBKGNTnMEDEOxO4cXntHRkRgB8gbuxiHQylc7TKU1i6kg3eyCiaY2roBjeZtDV5cx27LE2Cdhc9f/YCALDf77G93doGDx6RhxhMA0A5CVxTTyfsHqtn1qWJD3XvKZ12iQaa0dZIM3m2SVbLVFuWonBmCjqLiYcymrErNhfDs6AKqHqx/wO1NJE4nZ3T3uzdYXQala3QOlRPDfIba1i060qMjNZa/dD2iZGYNVBoBpWZfF8u8/JBbdmuohwVp5uv4FMP/zOE+CG2+2/Ek2e/G9fbO25EbTM1aL3CAlvbrXavAZqdBiPU6RFiXbyiqmqeytO/UQrlNTYEw1aidjmgiLcgE3FSI69GnX/vHRLoP7PpEYm0qbl+DQy27Za41kTJmtGu1sUD9AgO11XPaSsZauBSWiCPxmuxr2plj9oy734/wJ7/OA44OTnGZrOGiODu3Qssy4LHQ8LTJ89bibm2DhLtkJKmdwTL6jvtH6ktAKt9cCZtD/dBC1WevQPoRPd8UcYmIoCStWXeZ1bZec55Meci7TvQrTfgTk3J+XB+haLN7MDRbjeKuClKNhj/JBxcL+0h717PQVd+NM4LQrP/jfNWLbDt9ES4llHQAl6Wx1TBlzpP9x+85bo12iCww83tLab9ZGiLSQj4tbYz0bKE2mklNcl8iCLs3B9M8tqa6r3zM/XZ9fur7cGCFojyQXiyYTaLgYkm4G2TahJj5Txxk9jOuK+fPYGOCO77nlcj8KSV9gS2l6kJo0gsy3SH7ehfy0tqvzs+5uvp06e4f/8+fuInfgLf/u3fjsvLS7z99tv4oR/6IfzRP/pHAQD/6l/9K3zDN3wDfuqnfgrf9m3fhh/7sR/DH/gDfwAffvghHjx4AAD4W3/rb+HP/bk/h6dPn2Jk9Prf8Lq6usL5+Tn+gx/869is1m3xPRLsSF2AG0d41mcHn+QtkiW93m5iO74xemev/1mW2bUugiEw7C4SwBVa9fMAtMfqgYGXotC2PQ2oGiZOCm2lAyJBzJbZWkkicZvD0sHF/v3wdfLvrfANBEMV2NLMeyZcHoJYSaM6qY0ZsJgz7PVFPJAUW0M6ozcNK5h9ZXesfTdD7oKyN4OtaHwPXlc/aI4IEypbzYMbep/4XA/XQztqGnGQjoP/1pb0hvy0TpHGf+ihU5ZuDq6H9w4VwGLJgxs2htgFxOyg0Gc9DAmb4Tk+9fA/wnr9M5jmt/HFD78HL69+E4Zx8GyN+5QkOBos39FmaHidTR+m51s04iGvR8+WHDiW1vp62LLMz2PwkGJsmja2bv0k49rtFS2ZjKbvwple2SHww0Cp7Qca0XYPDeLmNQYJHgx4oFT74FM804eYY7Pyo8OiHgvq57cJzeaUzGHUWvHg4dt4+8Hbig7Zdeac8Su/9Kuq62SWIKWImZys2Mppqj/SzoUHIdKcLe+RPKx+n3lS44lE9etecvZWZtj5XK1GQIISvIWaN8lvqyFOnE8jZtPaQ6CIXEqqSoza2WH7JA1Q0kHAql1eDalmubDfW1SwbUem44RxzwIIUfyaOKSzdnaQvI6219X+nJ2fYRwHHJ8cYRxGDKMOy9xtd7i6eo3ddof9fvKJ8fLGfmz7ovFQLEo4CHDp+N/0WSxJ8Tn1z7Lta/h7IeKDbSvaWSo2lkJA6YXDbiEm5wCvsQUiLKPy/LjWEQ9AbcEoS8SOUPoZqoYccoir7t3dfof/1f/6f4nLy0ucnZ3ha3n9a3FULo1EeffuXQDAz/zMz2CeZ/y+3/f7/D2/9bf+VnzwwQceqPzUT/0UvumbvsmDFAD4zu/8Tnzv934vfvZnfxbf/M3f/FXfs9/vsd/v/d9XV9oCFUPwCan9IiM0rRRuDs9sa3XRLWavru1g/7fUJi2ezUER4RCJLXsw59wi+YwY2qh0z4rJ5qaT7gIOAJ1Ra5ks8EbGAvj19hs61OBBC7evQ+/2dxzCBWhmlbt753exDswgiY6/wiBLI5nR2VKorNSCWtpnuR6DZxPqhGMMKOg5IorQlA5V0OvgoQbmaa96CFVndXCeiiMj7nk1Q5fIrLsRCekUpXY1Z3uuqG9kXgIlJot0ugrwvVHNAEcE5CqoHfIhB8/Q7tFInX1Ayhb0N42PGidtna/SHHa0EgjnxmzGl3h470ewXv8McjnGi8vfjReXX49aK+ZpQUzBAk3T/C+Ne8FrOshMaKwsiO/3kP6HeiD6GeRYsKuGdonIBg1xIzXq711Y0b6zD4DeXIceTqYxJ+mbxp97tns63b97R9ANnOwzXwZq+kGuvFoKu4yZGes2yxUA7UIXIKjDtu/3JKNxZUIQvHp5iTQMuHv3wm1NjBEP3nmAp0+eYXuzBa2B8k64UIedVS2h4O/1fzADL9Z9YVPiGvdMPN0Cg0CIyugzeJrnBbnq/KIYg3Z5dR2FOhm5IRFc7yDKA2znuXjwwufGta+ZHJMWdDGw8/U09Iycn97B6T7SB1JRFVUSPVNmBVFx2GXTApqWuvY2iM+b+6nWgpcvXyFIwPX1NVarNTabNY5PjrA53mBztMFut8Nuu8d2u8XNzRbTfvJ95fu1wlCv6gEr+SZuv9ACqXZSGnrEoPwwGNe/B4yvVg7nSdnx0i5REdtv4nwgV7VmgIuG+oOJLaoOH1RDoJ/5BlG3Vu3yKaWbhdW9n+9l4lOrTT7j8/+Yr193oFJKwZ/+038av/N3/k78tt/22wAAjx49wjiOuHPnzsF7Hzx4gEePHvl7+iCFv+fvfq3XD/7gD+Iv/aW/9NUXbygGkYSWQRlTm4z1zvAVy3KpVVLBmmNz9Myk+oyxzx5ECKVJe69BkQJCcnDYONTQCKz2uyjBuSNEV9zsSrcpugDV/2EBQ6v1+x+6ERZYlNtpUqiDOMxcAUNBunvX2Is6HvZyApbVTqGwodbJq3dA2ae4MaNxVVDG0CZX56wH9yrB5m50pFtC4ClFz3haSygNmQV0wYbnHQQZer1su6B0dEUjjRJGFxpAEc/0y9KVGgDnmABtD8SgYnlAK1VxbVGrs+kZPDM7JiIXTdJfr1+5MTFF6FRo5R/EFHGy2eLB3f8Yp6c/jVKO8PLyD+LZi/+hZ/Pu0H1NdYViCkgheJbLZ+zXVwyyt/UkihWNl3VIsNS/zJ2MO5+zhNCmOwfN74FmZB2Gd1KoGbAQfIhbT5ht5vvQ4PWQPTN1/arifAiHxA8Mvfjzjyl6ptfKbB2h2vYqDTdb1SuAmktzln0GXVqnBqXnK7RT5fnTFxjHAWdnp/4d/N8fffgI+93eAv/mbOxSu8Ase1DP/ds7XtqQUitisKDGUcTgxHcP0t8oIQ/jiFIq9vs9UtJ2dC+BHvih1tWDIJ1N0WBSgLYf5CAPsefUB5bNxnIdyS+TKjavyxAcI9z2CtpuP9ASPCZzLMO3Dkzacgvia9XkJhcIrB0+CFAFGQtuXmfc3mxxGSOONmus1iscH7eA5XQ5wfZ2i+vXt5pM7/ZO8Gcrvd0wSlkO+Bv877Z2LTiulQkNQB0frr+FKJYctUCfCrq6LsGDlKaTRaS/IZ48G71MRlMJNsQlRRV/eyPBEdEZbXxm/dnsS8hMwEC/IR8/SAH+NQKVz33uc/gX/+Jf4B/8g3/w6/2Ir/n15//8n8cP/MAP+L+vrq7wqU99yqPAgoJQW7sao1LT4nS5Z8pGpxQt0mzIBaRB5n10StVQGiCGE2KcgUrEpVavPXJ4lUiXZVkmzQgW0APcz21hBNsiTtvAZuwVgu7IY/ydG2Mxo96gUm4w38RizhCGkLjT1nVzAhcEgVOkLfPRCcbV1T810xKkLnPjbj5QDpUIoQEjykEn1cHp2j7Xsv+wWZszCI2QWTL09ikQ1SDLvnREKFWNrKXFpiTbCMTZo3wXdUJvNGGBSCd1b/uj2J4i4pTq4bOrpYnWEbVRIx5QhYx54+2QPGceoc/8U9K5NyIV9y/+Oc5OfhqoCdP038eTF9+OpQ4IocuUqznvzrOUUjD3CAc9YPfy4IxIWKnuJMBzVrOjjnzefI4alxpSUbuglB1LB7C/rVVnnMG1AlV+W6Di5RQohK8lA96fnRP7DDfl0oIkHwQIU9ysFB6Dn9dgZNFqKXbJLHeYkySPyvebfX1tjjQGltpg54T7SXlfz54+xzgO2JikAgCcnBzjnXcf4Mmjp8YFs86yHk3h+ooJefmaFy9pgMtojQNLbtojEpTL4Z0rHsQBOc/Q4ZG6T1erFZZZ17wvK3NIn6r2tg403xyeObSf99yJvnutmJouEWQ6ySUv6sgC7SLAxm5yzXnfRPsOEh10qJrZXNR2BmqpQCKComc39EbLEIeeOA4oOnF5+RrpRhGU9WrE8ckRTs9OcX7nHMfHx5imGbvdDvvdHpevrprasSgnpZRWnnPevP2XBiUtGGlcMFtWPyfND7GszqCT7xdIQ2FLQezR1K9CPgpQNRFpw1Hh7+XgSIm1+24iM3x2fQcggC64jDFgyVkTUg48687dx3n9ugKV7/u+78OP/MiP4Cd/8ifx/vvv+88fPnyIadLR2z2q8vjxYzx8+NDf80/+yT85+Dx2BfE9b75Wq5XD/gcXn5L1ejd5cNYL86IkWEL/nrUxExOYwzMRJUAzX8sYnPCIjisCRvylBSWlolYq9TWmNNEX/g3cWRqqAQovtRq9w7Td+edL2e36vpxzxxFojhMCU7uFfwAnvrIzqjuTTqjUDhdBTIO+XxhcwRxKQBoUQhQ0dVGF8wSBm7zL1Bsq0vRTuB49/M739e2ClK4m/6caKsG14rNw1MNVYpsasPtN+z4RUdJhbQc2BJX4DkEl0wXUTBCfueOznUp2Zj3LFoqwsB0enRNozoqcA38Js3hpqp6lzRIh6U2gM1uq6NCwh3f/CU6O/3MAEfvpW/Dlx9+B/azEYSU2k7Bo5TSRdi1m0BhYSWmZqAfNXWbdl158q4Q26PLXgm410OLahk6fRM9hza31lPvDxetqg+u9tdH3EJV+WSsn18bwCgs4GfxqcFL9HLUstT0//h2JtL2zU2PbiWxVQ2urrScEeYEjS3ZE0IIjngOuK4MDYHu7xaMPH+Pd99/x9n8AOD45xt17C750fWMB1yHi1c5Oy1zFgsnFFGeDfUkIGsyxu6+iIsmAvGiAtcxU+lUnlFIA0FDKkgtiWFtQsGCZJ6zTBhw/wWCHkgRuF81m+AiD2sQE3Q7a/xNYUJqbjo4PRrREqaCVBhUxrOjLqjxfrkgsPOd+0DRpQ5s/xfPJsQCA6rW059gH0m2f1lKtmlaw3+6wvd3i9fU1Xr++wWq1wsnpsaqwblbIS8bxyTGmacLtzRavr157wMrOmj6JYnBJ5IGBv5YhGdHwPJqfQPYz6R2fjsqw07NYOb+dObdbtrf7dvQDfiAFITt/1peh2JasnbrFFb5brMruOL38wjlX/KzDHOlren2sQKXWiu///u/H3/27fxd//+//fXzmM585+P23fMu3YBgG/L2/9/fw3d/93QCAn//5n8cXv/hFfPaznwUAfPazn8Vf+St/BU+ePMH9+/cBAD/+4z+Os7MzfOM3fuPHunga6VrYnl1sxHxTcdVOHG6Sw3ZJGhk6Qp8ZAziUyMNJKLPUqv38yC4c15MlURUWL9abT9VSQuLqoBtx1QpFIKRAQ8Xr4EbkUDOUNseBn8e6NFUYUeETMENMANTxsoWWbY3UWNDuHD0YIRqxyjdUhSTCjBl9oADAJZ3ZRqy3V9449O1wcI2IQuVSkGJCjE3wzgmdQeHFvJh6Z4wQobFrRE9tr9Ps14O+0Lo4PAtBh0ZVHrzgP3O0pJihyN0eAZTnYu8T4wSleJh9eQlAiL21A05XU0sxvR5FB+ZODp58AyA74vL+g3+BOyf/KUJ8hJw3+MKHvx9XN/eRTNOn+n0TPVD0MEXlb1Uh6Q7uEOgMs2XKPbrAAIcD/RTpoENgNmdBqEHp1T6TQTgygw1BJYmrtjOln2UtkaKoUc4LUFvwyIShtT2SC6WGtJV61Sm1BOSwJNP0WWy+EjVY0BtNImos58KCIJ335ZAFdE+WHg0g8lML4JmxPXcj1xMJeH11javLa7w1jgc8qA7kkS4AAJsiSURBVNOzU7zz3jt4/NHjDs43B8eOJ+5oy2BDF0C9+YopWWJ2SHRmApXRSg5DGizoqBjSiBAE0zR3+0D/bhgGeBfaMOg5FOM4SIf4WuIWa1NAddl1wOxEtT1YvcyXhsGvv0/yvLRgv+s1V3h/vaaKS79XHUcyL7O/j0hHDAHZ5AJCijrzh/wotBPNZ+HKr/a7PC94fXWF25hwe3ODYdSRIienxzg7O0UpBSenJzi/c4ab6xsbnGj71bJAkn3fDFLI01qW3J2VpnbLaEzLL038r3bfQBS+/8wWzFtQSXKyUJvJEoWaPXEkj+fwGkzeokMuAQZ1xVEiFZWrHhTrWQq/5n79//X6WIHK5z73OfzQD/0QfviHfxinp6fOKTk/P8dms8H5+Tn+5J/8k/iBH/gB3L17F2dnZ/j+7/9+fPazn8W3fdu3AQC+4zu+A9/4jd+IP/bH/hj+2l/7a3j06BH+4l/8i/jc5z73a6Im/00vqonO8+Kb39ETEavz25aXblH5vzuny2iVh6GY4S/ZkBl7KO6o+D4fahW8RS4YfOmZfKXRISufh7BrYa3Va340QuUNJwIISqdAK8JIOHoWDTTjKYAP1AIW/2ygR24EaRj08JcCshAqWidDn+E1Z9oQDEBU1ZcIB9DdMzpItoXSpXJoIh1GV24zMbfA7wC7iQqGcbAymx60NCRvUWfW1w4kyXdGvKzV17J2z5+OzYmKfNa1tb+7ZLx9j2shoCE7vK9sbc8VvYw6/PkAJLvpz1z6nMGcwAJLwf2LL+Pi9D9CCI9Q6oBnL/7neH3zoJUka9fV0d1TZYRFa2VPlh1uEOWA+3Rc41hR54QJgK6d/juapocrswYS6YKhZr5dDs5KoOPujKLPzKmNqyRCAangWW/fXUQ1XZYKGHhqecLaZwUazFbuN35nU8LVAXGLfydLFNqm3RIP2HWXNkfPn2eS1J556XSJBCDMfWCQa0U1ccZnT59hWWY8fPeBGm5osH1x9wIpJXzxC1/yDqBSCiQbGbK0x0mkT2x/25dYcJV9X/rPbZ1SUvE5WODy+vUNsAFCTMZfydBxChYwSkIuqr+EacIwjjayQpMZdWbadSeAk3M1AG7NAHr8DZlYmoZQjPbcDTmZ51kDqZy1UUAEJNc6NykpYqSdW/CAr+TGzyKvMMSIWIly9/tIESbuoVor6pLb3x1wpQ5tfguICjIybrc7yHaL3W6PVy8vMYwJd+7cwXqzxnq1wtHRBmdnZ5iXGa9eXOL11WtUtK5T3q/bTBGURSdgMxGqfk/Np/SIUiuxqjZKgWXvAi/ptmSOe6XZBe6TeZ79uUr3bHoyuxgyxYaTXnqDQEA0TlzOBeQWNi4ZPvbrYwUqf/Nv/k0AwO/5Pb/n4Od/+2//bfyJP/EnAAB//a//dYQQ8N3f/d3Y7/f4zu/8TvyNv/E3/L0xRvzIj/wIvvd7vxef/exncXx8jD/+x/84/vJf/ssf++K3u63LRwOmzPhGt0bjaHBqbkMiABxAs7pBssNxrdWWMt9qzGPUYWll6VoxOSzPHK+3KhsnRA8R+3A66N3f13NN3rjR2glghcEDqGLOpRoSEUJ0vQA93DiIlJktKtKT9J54DRI8wHDoDiTh2nVI+wzlkkR3jA715yYCxLyIJEOXia5wpyZ0oBKQa25Ig3U/TNNeRc5iatG4ZZdpSLq+tXgw6egWA039km4t4c+nAm78dK+wXdEGVxpBLVedfeLEMssGKbgXHH1pmQzhEyZAB8FEtzfpOOigdaiiQErFyfoF3rr4DxHCh6g14NGT78Gzy2+2DKWTdO+4COzqUXE4wq1dScycHI1RP0ROz0dCMA5TiK1TrlbNRrnn9LOytfrmdob8xbJmC/64L3pV55xnLD7NVq8t+PC76iJ+zOx5ZgBDGSG+10Ws/u/ZZO26nMSh9750mHPGkJIKEWYlU2qgVLAsMzhlmLaDa9wCYn464AqjerfOiQNaiS3GhGm/x/PnL3B6dorj4yMv7YQoODs/xfufeg+PP3qsQ0jnRQeSwuycBH9+OmajWHDS9ldKqUNFldficgu2H5dFSeGr9UoDF3O+syEpulZJEQhoq3jJKlAZ0wCYc+0dOXl67EB0dKAUVLNPFYdKyR4Um9BlnzgU60qqPXG7wmcFAbZ3rZTZVKKbnao5I6ZkBH51thy4GK0jpuRiXDB+b+O2tICgTxC7bib+HIJd3mGLLVJK2N7skFLCxd1znJyd4OT0GKUUbI42eHt+C9evr/H40VO3x2qj1W6HIAiDCh0SyfGmC+lmFamh64IHorFo58TOJQX7aI/YFr7Mi36H7Q89E4v6wM42MvAvmQMPWb4vntDVCgcFaiRHSq8hmr1lZePjvv61dFT+23pRR+Wv/eD/ASfHJxrFM7tDawcOtig8xD30yUFmVKsUC04WEmRj9I6TXi2WaoSlFh3RHol4NKSmBSH2kNFrGbSXBhRiCErwB+1oCuCfuTne4OTkxFvxIIJ5nnF7c4PdducZjma3BoETnkaDflm/1JMullXYRqzAMCQ/HP6qrU2bBgmA1Z+JPvUOv2U/b/6nh/5h999mp3RoBeCKrdT4qObECVsmQtF+mWpgNNMKDrEy0o+Bw8fU0HOIGdvPmbXwHg46XqS1zgLwjp3+PiBNz4DPHd1nwtaZk3+1JTZisIALqP587p7u8fCtv4b16ksABPvpd+MXv/g/xZIHCzxCt27imQyDFu5LZlzJ9GE0w9JAu0dF+B816k1Aj+2NFUoWXbxDoEHvxRwJ93Mj5h0SJjltnBkkn1mMEcOomik8e1FaJ1ctVCAlgRlflXC066y+/k14qtO6gTinic4wWrcZAxyqOEfLAitsBEBsXV79nKRGLORX62e1MhwHnWrQH4x/sF6v8cFnPoX1anUQ9JRa8ZUvfojXr1+bTVo6BE98rwGtTODlzlr9fZyDhS5IDSFgv9tjnies1qpB1Q8mpM0p3bMlL2VZFkz7CSVnrFYrFz8EWvs5x3jotGZx7oIHIW4Xmm0JMWKZFwzjYPy7aEGxOscYkyU6LEdm/x4mQbSTbl9sPVjiC3ZeIiUMSuMtVkMyOdmd6E2MyROC1iAhdn3zAUoTgkplVG+HbqrVKSUcn9istNUIEW3z3+8n7KcJtze3ePr4qSOzaRg8GO7tBwOSPmjrOzZ9P9i6MlDk5G7vOqK4YaU4avAgpXaIXF60UkFKxAGKxydfq6+5I+KdBpATum0vxRix3W7xp37g3///n47Kf9uv9XqjD9UOJxclxaQGIYgbE0bJXEBqqbgwkQkapRQhSO0AAyjVCEahkRMF2s7H86YGQf83H1hejFeCBhv6q6LLZIEifceKvv/k7BSbow3Ozk/hw8XMGV++usLzp8/0/SAyoZuYZRVeCztpyGcQUQIsNSGW2aDYUqybpdgwMbZqVjuIg3IWRGz2T3HBoEMho8Osg3wDGnWHarssRaXSAUADsL7llo5DAC8xoeOW+JLWTuVR2powUGN2zn97lMYgE8Ayz2aArZ4NZiOHz5ZBK+1EyVqy8Sm+ted6tAxc7ynYYV484ChlBgAMw4Dz4yu89+D/iCF9GRXANP1u/MIXfj+WnNxQkQzX2kfrwT53BMCczjKrw/J5MEQQ7W/c8fOZBEEKivQss14bhm6WjN6IEZ7jV+9vYSeVOakgQBHnKgTnbgBAgcyLrqdxlWLSe0uAcgiWDEHAsswHyQfLnF5Oqt1e4Ah751e131Exla3YbcK5XlNKiiashqEZZONfhGFsAUIfdFugRE0iQXAUjqUOh+Jrxbws+PwvfwESAu5caPk8BMFXvvQVLCarH6NqJcXOYTC7bUG/BSKdGrW+dJ1yLn62Qgy4ev0aR0cbf94laFt5MD2dQ9mDVoauRfdUELEREIbGQrB4Rxg8CJ/nAtTJE0agcT2maTaUJWCQgGjrXTJHWvDZmnaPAJhhPBZxm9WXZKqtg5+JmkG0KVrnymIlVYgmNCx56hfWAxkJBtPkBxIN+rVGMVS0dVNyrJ7R11e3uLp6reMLNivcuXsBEcH5+Rk2RxukEHD9+toHALKtXe+/nW9dP+75Tm8ot068hn4SgWzJYyOyCxD0OSxzb5Nawujny5If9yXZ0EObvK2cvRbg0q5TtI9z0XitQbT7reRG8P1aX5/oQGUx4my0ybQD4WNRgzHPy0ENUl/yVf8WEVeqJNQvIsj8rNoOROt8aA80d+Uiz4zsIasgW9tAntEDbS4RM69lAUTw7nvv4OhYmeTU6BAA8zxje7vDo0ePsMwLpmny0sEytxlDbGHMRaF5nzosFKvSuqFYPZMbKa0Gz2rVoSvqsORsOiYtCAkGHzfjDz0DFngt5GDU5jT0ewukaPaRUnJ5dY/K/cAVk9xWdOTXyh5Egk3hheuRiPSlKl5bdefAgwg05IeOO0hA7jJbpsnVBPPUYIrtoYy6aPYQBKrdYuUrXl+vfEpiNzkgFa0EsiyUxtffP3zrv8aQvgIA2O+/Fb/4hT+I7X6DnHcHpHB1Iq28EmxmR5/h0GA4WuNZWteeb1ccQzR9lHoY4KNl+gz2vaNDGt+LiFc0vohEQ7diW28l0AaUZcEwDF4+2+8nb4MNIWCy7y5RoXsBuwfeEA0EZeHbOeaLSBygRr/nCynJnklKxJI1g48sh5XiE4XzsmApWf9dKnZZS85pGA5QtgINRMhxqGglFq5PTEnvNQh2ux0CtKPu2ZNnBskA0zS5naKN6BFLOuOlcyzVOhgrmCGLdwSNY2paGQAuLs4BsAwcrHTZgi4KkgXA/o8AVboyjD7PaT8BKSENg3Gl9HcSAgZOCJfGAdLv0306zzNW67WXYZWTFlAwY73eKLl6WWyqNzyRqBV+3qRzxj1ii1rVZjLzd5OrjhJ2/sVKfLUulgA0lJI2NcYAMcQnpWhlSbVSRJPFOkRRGopTTJ4iDQPu3rsLIofzpIH2yxcvcfnqUhG8WZ8Tib6lew7UatJuzK9Ozhq/x5B0Bq0MON3m0a41PTEtyWiJeDZ14qErAwo6Xp6Il3wgjVLAkr9I5AUhhNaMkGtB6Oy2ErzxsV+f6EClGmzVamECqVDGOklHLHEAjmLw38yoGE0uOTeOB9AhBhbd24YXAKg2K8NFtNAcZG0tzX0mrVmVkpo82zWl2DsX5zg+Ocb5+RmGcfBoVERwdXmFm5sbXF9dY8kZ035S42AGaZ50sBlJqIuPQjdODHuvzdHU2jJaPYDJs4UgAUX03jMsIBPtGtrvbnB0vME8zSbJrDD/Ms+AACkOnm0kq7F6UFg5lqDpVRSh4BGF+CyrrRUqOVc7DpGYiBW6soM4osa9INLIW22PtKyhQfHSRJUsAyzS+DUhCIbV2CEW9mwtoCmidd5lWVwRt1TtLlBlXiAYaZHf7YrAxsEAdJ/EIIbiCD7z7o9hs/l/+mZ6/OT3YppPMIwRebvzLH5esndJtFJjC+ZanklIProBS9x7RUX8QopKGpeWsdNIeZDuxl0/mckB/PfWSl60VV6geyMOSbsXaiNeulZJbWczRutiicnvZxiSG8o+uKdKqsLw6lyWRZ0EjXMaVDBPE4g3jbsqsTJ7VVG97GRwleo/7JBQgciAbJOdF7MXTHS4N4jmkd+kwYY+zRAZMOrHRuugyktGjdWQxAHjOBpyFRi7gE5Bz5chnPadrUW1lbdDjBgMpdjt9xhWKz2DVs46mJRbKkpeMIyjl2C8PbbTLAqlQCR58BdTwm67xe3NHuv1GuO48qCNe8ZHWphNKaUgAk6wzkuGDIbAZrWNxco/RPmWZVHuS+TE9IYokNzPkipL5gx4G7qr604CKEB5C/38IQ0otWC9XmFZFivJDl4m5BnSAG/ugrxkZ4+tvHbqzIHH2FquK+ABzDQtXhoiElJKVaSpl5Ews82Bj2rbxYN/Jit8eZDjsgWAuA0ULPOk6+LNJxllJjXCUGdDjYZhQIrJS9TVKBUVMGI9z1MLoEMIsDhWS2FzC6bsag+FRL/G1yc6UElpANsXc65dHU4cUeAisU+8n8lRq6DkBcuyKFnTOBewujiNhAccFk2qea3doVQhOG9FhJjhpQMzwxqib5BstfG33rqH8zvnODraeClGoBnmbrfD4w8fO2ycc0aeF9PEKBCL0LOx1ef9HjEp56ENBUsHGia1VojV10NMiEkMHs4HTpUiZ7AyAzO8eVqc4wAA4NTrWrFMk7drV1A51ESVojAxQ6MMEG4PCK1GcxAc9pwf55xYFknYn9FXNu4HP1cZ/7redELLrO+p5oB0LygXZhhWHgA1cl+wltZFCYWloEbtksjFdHYMNhcjPXNtehi5XS/XUw1YXK10bwXB17/7kzg9/s8hcgsI8PjZ/xavbu8ziVEEIi+WxbHjplVi6DRplJ3IaGvE4Y8QwcRyDvcEpHGznO1vaIVd92wBcPTyUfW/STEZ87+V8w6g8tr0QNgN5UiEGfglF51W3pctLZvMWTkP4zhiss6QeZ6d78N79ZHzhijA1oqvhhK1c+36ETEecDPeAPAcCeFz9Pk3taFVPT8rhIDBzh+vY551UvowDkjWradlg3ww52yZZ3vGxboBKVevyB1Qta3YMmc6Ow5WJddjGAc9OSVjMYfDLJ3dkcuyuJ3gFHpyNpTPF/tNhjioRPwgQDg+Ur7FboeKinFcWaBge86yc/2O6Osz2r5PQ/ISPGdcKVRhKJ2VVLTbr7h9bOgJl4PkcJJGa7N59n9ZpqJY52icmM1mg91u74hbLQVhGDq+mT5PnTtlXY8masbvVX/TEjInFHM8Bchx0eRkGFKH9ukaMUhSAWIdG+J7mIF6N6GachHkoFRDrd4k3tbaxAclRL3OoudmtRqBjhpADo7zVWp/FlVjiwkjuxUFgFjyRWFMWPKfUgui+Nm/ntcnOlBpUKXNSXGyVNEaZm3D8ygr7BG3RbAhRKxWrdXw8HObcwfMUVobsPJVDa5D23Di7xcrf3QZFwRpSDg62uD45Ajn5+dYr1fNGQtw/foGly8v8eL5CwDiBmc/7TWLihHrzdo+X41ZCQrPJzt4yO17c84INmMnhohxNVqZKGtNWxRqZpxACNIDOjMiJ6cnKKVgmvZYr1edGF7jNGgGJhjGZGshHny5DLhr1ZgyqR2SRnRuB5f1d1//0omNMUipGjmqsw9ufGHwOAdzJQsqcl7cUUVzTDFGlKUgZ+1wGMcBixklQLRFMI5NR2eavBzRoDS269nnWsBccEguZuBaLTstWctJ79z5Fzg9/rsI4RYA8Ory38Oj5w+N86xBmMDaPy37FFFDQmPA7xgG/Te5Pilot0s2KB5mCNkKGjrn1pAP3ee1aumPWg8MMPgfOsZif8sAWoKqUmbfH42rA0MRxqE5Zh9EB2vN9iBf0RmWMXa7SRMQMINLIEmQiJGSjXUNvC0SasiHIYGtnI3DctjdMK4G5EzxQSY54vpFByhpF8j7WA2Slq37ploWyiA4pgHUZyEXABLUXtSKWmf/HOUvWbdi5d7V611qX3KGI8qaCBWIBSClAMsyK/oIYLef7CyJr3Xe7ZEGKyHbuWOXVLHhnYtNn19v1rbOQM4VKQ2Y44wnjx5jvRpx7+37KsdvqBNHndAesT2a+4YjLmKKqEsTP4MlNUSSiAqwHBfteYQgkBQhTBAqeWimdmvBOQDXmhoGK3NXtvSKI9Kr9VoDtSgYxjWKtdmituQUxUrsIv58eYaynRdXPLaMl/cRk9oJngsGIzFFlCDQ0RmH3W5pGBwxir6ng6KoXfCdF/V7aUi+txVFTW6rD5sZAkpdUOx8lVIhhsyWUlCMxxLtOhj0s2w6joMjxLQbpWSgcNBpcV+U7L43mzU+7usTHajkko0n0REHC9UTDY5CizydEQ34Ayw0NNIyeEvt9e/lkADIn9EgDoPWULWdsQVKrOE5UVEEp6fHePjOfRyfHHmro0ADhe12h48+fGRjxCuyGRaJKrkeYzpwSLWqAXWW/Lz4/yazvljG3XQvBNN+8iy0GtpBxn51h5s8O5qnCeN67WWwlFTrpumz6L33xijFhCVnlKI8BD3MjRCmiLqiLtpG2QIIljPIng9RibvMyAE9mOOohMbJjE21ChdjQqJqGqCxpVgzimBqvc34VYzj6BkSyaNtDfU5Tvs9hjQgrsaWNUfjyYgcGFOIEg5jDBjHoetWESALgrUkl1px/27GW2/9XyHyGgCw2/8+fP6j3+4dNuOQtLzHIBv0bYIxDi0QAgNwdTRtpo5lWyR5RjUa7DRLqcmbszRHWL5/abZWkYbg+7eW1lYaQkC1vcTr9SCmNKRMja3ObnJxvULSZzgMvHDYNQahAJsJOqaIMreOBouvWmmtVgQTqAI4n0n3AnlDgAYwqrSpgSg7yohM9dfA+3aHiuCoE8XpQggAZdTtWkcrJRYrhS2Lormceu0k0iAYkjqAabLA2cS/VuvRnxUAn1nk6FQ2O2DcN3IrVuuVr2lKih7P8wwJBSvrOiqlYLNZIwTtaiGimMyZrjidG0pwRgWyrd9ms8Hdu/fw6uULPHvyGGd3LrBarRF9InQFS0gxRixZ28IzrPwp4p1oitIZGdP4E0SNWbIeumvh/mYJiGMIFEWMNsFZf04eSPKuMbVf87L43+/3ez1342ABcEApi5ezWSpUC8YkFH5vXNtlUYL4uBr8s/XvFZXIpaimjPmmybgqtOMsHS7W+EEb7UguRUA7u9dLHWinX3EEdKGQprS1AtQ+rkwfB+ZXDLdqwblRC4jiMhHoUUkP0oySME0zYgiY5wnTNGG9XmMYBux2bcDw1/r6RAcqNMbFiGRiEXgQQa6cC2PTY0MjIvUbrKJ4fV0/UrwTiIfGv83afpnRUEAHouLrIVTvFiD8tVof4a37b/nk1IauADfXN3j16hLPnr5QoR0BAkykaBj9vfv9hBi0HESjpUZEP6eU6vXlaVoMrlfY2KIC5JIxz7kZXpYJagEFt6JB5tOkjprcExHlZcgwtOuvunYpJYyrANTihKz9TlGC5sz0QJC3E0SMcZ/dYXjmW6tn4X2m6+tvP1tyRpkmzdAG7YbJpUCK1YRrI0sSFifUqjBzMCKvZdqWTVE1FhagUmFYSYkrzeSEXBv9dM2cq2f6/D5B21ds4SYqJlbzPzm5wjtv/QdI4TkgwG73e/HzX/wjkDAioXotOqaEJIImF6+QeONswEqC2YylwbcgX6q1LCvcn70FvwLY7bYQCdDRMepUkgXYQHPqmvUrByNybwR1ltOkDqnU1gGh/qBaVrr4uWF5LkYNesuyoIggpYDVaoVpv1dUIgbr+KqOwGVzTNM0A9Pk0DtVMGNsnTpEDditEiSo3HtgEtOMbBAt1URTQ2ZyQMjfkZTSOqvUIagZnVlWNOFH7gm9poDddmdrEj3DpL1goLlar1TozVSJhyGZSmwLSsTOT0qNOF0y7Z2W0WIUD3ySDI7MDEPyEqktkQ5E7NBNlV1vpdFlyRiGESTDT9OMeZ6NyK8E03nJGFYj7t2/j6tXl7h5/RopKdcuGddov9+7XaTtUSQhuZ3VsyNmx5osQRwSVquVk+fb9VfXemHpnahsP05Eg/boqDEDRU1EqyFP2jnGBgX97KyIWoxeAoshQIbWCt0aOgxpUGKGl1B6e8bkbsnZuH/ZS0XT1JAuGViyD1gNet3Ub+LwTArk0c6TGB3szM/ks9jfpTR4CfXwVcFytAb+rXTEoD+YrlU1f+JEaduLBAuSadaUqmWlUgrGMBgK1wj4H/f1iQ5UnF1fFlgEgUUHcTg6QMcIANWdnxl/aTWzbJNJBf2sFmbmBoO7lgclrYv/jcSIalBnqcC4WeODT7+Pk9OTluVbKWe73eHDr3yEm+tr+w7NzCg4RcJTYfZiBluz+snqhNFQimgEKBVBkmAqnN7VExS5sEOSYnT2NgmTNMCVKFTU7GaIQ7c+xTuEcs5IY/Iyi6oZAuO4wjRNCEaOI1zYl9VUIKwZSaIW+u/WYm7nwbs4XKFXsU6QRe9tzKnVnlmnJR9CoHwCSVYiyvC221orxmHEfs8ov0Iyi3maaW+3O83yLVNgO6srAtv1BbsH9AhfrUBu91+sNBJDwMnxNd67/79HSk9tfwAfPvq3UErSrF9YimtDJlErCkyIruiUZYgiUMoBMHgccERGOon70D2TUrI9c/H2yGKZqQYXKvoGcyp5r6hXiNE67uycdM9Xs1VFAXNH2ExdkFvNyXIWF+xa+VHb7VZJnYYkSRDLYIExNuc+2meSV0FxNhFRHRbC6tDgYFkWwBAPJg3cLwAwz1MLIqwVO9vf84yQp8NnQ4SFa0t0SdEBE7iK7NxgwNwm0frPKneftWMbnE+eRCnaxUi9GF4L17wRkykc1kpZyzJ7cLDMS+PsVO1eGcbBrqkhcORyECWmsm+10tNqtfIgmuT9GJOWptdr3N7c4sXzZ1iv1jg5PUWwoIzroChFdV2RaT/5WWe5LISAaZlBour2dutIoNrCpi6cS0GeFg88+VyYOPSo2JLVXxAFLzljXI0Y7Zkv84I5HqJAUouWfD3Ibi3bej25E0TU71ut1piX2bS3jEybibIpGjuEwda7Yhw12BHggHDPcxGkbx5o6Bj3rJLKlUNIxDsl3ffKb2MJtxHjl2nSpE0EIYkF201vq+ZqnMTF14KJTPBA387wotymZLw2R19gPB2z567A/jFen+hAheUCJX0Wr3dmXzzN5BUqDwfdCISsW01eN0NZDPZ3sSJ+vlqSwUoEhVIU1A+xTXX/wdsq7DMaImKXsSwLnj9/gQ+/8sgj+VooGz05HyIXJZhZTQrZ4L9qNVGNzAvEpqYqUrI45IiiWhOIEcgtUoa5bVdfDeJdATlXiAUxMOOKlQZoxWrKDGIAeLljZuBmZlf5PitIZKtdQC0kUxq5E1kJXbnNYyLpityLxYSGBkLephKqUKSx7A0lO0RcOEzSAh8ve3ANNQsYhgHFYMmcM6b9ztAETtXWDIxoCDPCktU5VrvX2TQBOJNoIMkUDYqlzgANJcsd2+0Wn3nvf4cUH9Ee4sNHfwmX24eanQ4sh0wQQ/DYMlmtDXIzjo00PQ4NaSnF9mdBZCYZNDvl8EMU68Jgp5uIbblWEmPWDCufNrKingOKemmgzZKRZawwwjaTCXsWev0FWeDcCw0kg3Z8FEUG1kdruk1DCLQLo0KDMv8+EYzDyq+7Vg0uFiYXXXBGI1tLwTxXk3tn+U6RqMnGceiJYZlNz6prNnX7rViSwHvv+ThaasgmzW7PzxAplpqZMIhogw0dQtUUWksn5iCV76B7PyYGyXof4wB3VIApjHLPE32z812s7Zd6RBxXwfO/GKJTAe889HJW0NlOtBPzPLd5X6W4PZ32kz7rtaEHtbokAc+kANjvdkhpUE0qk5tYHa2wTIvKAdSKZWmigaVoqcodZm2BCFKC2H5GbSRqQdWy7TiYCm3qUAATtcsFS6iYpn1DzsxWzMbp0wAWjiz1qG8wAjaD6Hmx0qfoWcj5sDFAp1UrTyyIQFJCSgMm8t+k6UnphOzGfWOiwdI9JTiULza4gB8TW/4+mTaWT8aGnveY9FwVk0mIKR0kSUzSXfmXIEBQVep5NwEA1us1gOAdQ5yrNaxGR3/1Ht4Y1Po1vD7RgUpF9YNJ6XvU1vnAKA6okEDyVnHykn5IVcjNDo6TO7ONUIfWk9wB7HZGOBLPnEsp+C3f8G/i7M4ZPCQ2973f7vHhVz7C86cv/JqZdXOS5jiMqKgISYlX86QiSRICUgCAaMP5FjP+yZxki95VDjl7WxrLW6VWr/22yHcxcpbWIodRB4wRjeJGI4S6J7wu8Kh8yVqzDRAn3yYbhDbPM3KumPLsGSCghrtURbJaTZPt4uJ1X9bTVRRKDcIwqLgev58qlgCaTox1tbiBqF3ZDvAa6zxN7iTHcaUwOzpVWgY3tj/y0rKlalngtN9pic46GZi18PmyjEbUiqUvIge/6VM/jc3q0r3hq1d/Es8uH0BCxHo1HMDlLDMAWoMmXFzB7jXlhHhdO5tTLYJcm1JklYppP3mbeCmLOapD8ngyddpkiJX+vA0/C9JpN9iZgpchi0PTib8v7fPdUaFivV6BGXyKqg4bbXp0ooG2v4uR6rEADB3R0gJlAop1NSksv3inUcvmqNMikSqvVpoJTSk3xojddufEyp58O8+3baCeX9ehQjCRH2bFElpXE88Vg3hHa2pRTgqqPwtYcDpPGej2Monxs2mtQOCEcDEnU20/ZitbKqly0aBVBBLU7OfO4cUUdThmKb6PF7sXclqWedbAuFZLpBoKSs0RiJZMj443qHVBtdJssOREpHSOPiCm0b8rm8jdPM2aNBpXBTmbLkpwoT7aDNok2m7qMukSNjmAo+NjzNaVyHJ2KVqecNtYi3bBoBHghxQh9sxqLRhHDhPt+BghGMF+sLIxPHkttc1wWxaVq9/vJ01God+73e1xfJKw2+1RcsY0zW6L8pKVS0QUJrQmBZ6tvJ89qZumCahV7bf5AvJRdD8AjhJJI8bnxXyHlcXKklHr4iiOTrM2zpdQe0cDIWps7fd7Q7wi9vu9ze7L2gjAEngpmOffYIJvMAiKWRM7TEo2aWBYNgSSrdSaOtMcFlH29WdYNhwEN9fXSIOWP/a7nX9mCAHDMODuvQu8/8H7zmL2ummpuL6+xodf/giXry69lstDrOxpRtc2qj0GHUm+LIbSVOR51oNTYV0oKliUrV2TUuWVdetcMMShIyNqRrRerTBbR0FK0R22l2UssApBDSvJv5mDsVLCMIwqu73SUearuNLsyxw0A5qyU0MXY2uhJDTPF7+XNVoOj7SY0MspSs6U9hxrddXYaZqduY9aPSOoRqSuUMMVpbVf58UOXhrMqBORiSZpvW+Hl9dqs0gSAzeKO0kAJfYpNEdUjg4ZFvDWkpHSoBnfkvGpBz+N85P/FCKXAIB5+f14/PJ3YFgdOZGXzm8YBg9QvVvJ1kCz3IgY0RwOyXwm8S3SlE2ZhdIZaidJ0WuTNrtFeS4BaRhBoTQDKNQIUu7eskm9R2ttDk0voz8TMKcex2jdI/r7xcZQeLcWgFw50p5llMWzT5b71OAZ+gnN8XIuhirMECjqIx0CMu0nkJBZDfoH7GyZFo5AeRzjatUC4aIcEaKpS9ctBYgPU+0h+CYM2da8kewNsRt1/65X69YRZMlRzovv4WpaSwIBgpapqaQdhEMWs18TCeCr1WgBtiI6ar8OgxuWIivgzkrnZpHLtGAWse4Olm2rjwGAOWSWKkpRYvo4roBTRQVurq8RYsJshMrN0ZEi4IaCa0CpJXp2Qc7zjALViKF9ptxBDAFLZieddZ6EoA0FtXFe+DzmZUENaudStLMfmkKwz6FJ0ZO5aT+ZHYuOvKCasqrdbxrGhrSTfA1gHEeklHB7e+uOn8rbtVasNyMYLIzjiM161c63KF+uEYSVMJ+X2dbeuukKp4kryrG93UIT8tj2gMVr4xDcp6i/LKA57lvsuS/znDGuVr6+4qdMjHOm5zmkiLWsNJg1P6xnVNeDemZBVOsrFxVv7EUZv9bXJzpQYb2wFIOvjSHuAQMAFGo62DjxarX5XB2eB8SjX2XQ68/2+z3GUo01v8Y8zXj3/Ye499Y9nJ2dujPj9+Vc8OTxE3zxC1/GYsP0CGcrPCmtq6VoOyxEnJBGjY9kcCOht7x0k15FjIei3x1ixAA1MmlQ3QO2HAaBBzNksFOQC4A7IHJCmO0B8Lq2vk+DjiBK+BIR1YCo1i3Dg5sG7HY77HeKNgzDgN1+B/IUGFRWokmwriQnBxvFmeiVeX6JwWfYsIV4mWcsc2u5ZLBCSJokU6JXzLhq0Zp9iBF5MvKrlebEWhRJTAxmJNMw6D2lwVEE6teQ1Mh1Gi2TKaVY1gtDPzTNev/+T+P85D9BCM8BANPyh/ALX/i3UeqIvOwsgIq+Rv06DFbemXbTQeBnt68OzIxcCNF5JwyG+UYRoOTq91thXTo5K7pmhpWEbUVuipXVMqrdF8AOrMHfk9KIGEv7Pitx5CW3DiGIcR9aazX3I9B4YylF7PcLgg1QI6GTaAF1OdxhGmqyGleKUHpJ1wT8hlZ20Gtv5aJo04NFNGOfDEVUp6blLVQic00QrZSsUvHo2o+Ng1TR2jwB7fTw/TbP7tDIhYkpYRgG7Hf7xhkqBQCz5+r7uykAt8CYk95dXiEEK9HZ4MdBz42XifWPPcBdrUdHNfj70QisFO0TACkaipoSJAXkxUp7ooMVGcwHs3+DNQaobUvIeXFnNQ4DtrsdhmAdNXb92+1Wg7kS/Gx5olkKguiYBRJVOZ9qGAZFF4xIWmv1556XgqVM1n6sAUpKScstVnrkPKP1Zn3wfSwZ8nzB/s25W4qu2rPMBcuyc/8UqnYMRkOVtBNSl38i78W4Qqlo2WqeZ7Ml5NYAsZJvF7zsp8/QkEgLQp3DY8hMCBHzbvYzxTbjZVkc1WNZTgeERsQgqpnl3LJ+LYoLqYrCLChVbfjYlaCHcbB2aft8mGbO8hsMUVnygrEoyRO1c3hWjiBMWznUC3A9FSckmeP2KM+cZQiCO3fOva779V//dVhv1tiYhgAAr/Ftt1t89OFjvHz+EoB+5rBaY7PZ6PRTqweWpQBlQe4EvwA7ZJ4haGaQuoM5WCcAAKRRA53YzV3hIWlzZmCiPIciaCEGh3HpnIH230Ea8ThSmt0gu9126zBiCAEhJSy7vZEeB9xc37h40ziMTrjUV8CyqLEm72O2DhGKc6lcOceFK2QvlHOvGmjlZcF6vXZEiugJDTW7jkouKAbvMosQQ7Oo7Dla8KWGABgHban2oNCMPGHRaKjYfrf3EkQQCgiqIVmWGT7ELFPt0bRgSsHdC+D46B9D5KkFV4Jf+sK3otQjDcBCm8WjIlpm1KCaOexAgohBx7Z/jU2/TmtHK9IwOJdIRI0ba9TLsiBjgViLMCoUKXMEYfHOr5x1eF4t1YiDrS0ZgMPaYlEiuxACMzsTgEqmUKscMWqf6L3stlt/rjlrKXa9WWOa1cEOo0q856wl2pW1h2vgixYEQwNnARwu54C5XEiUbx1TEJLN20gCMRtwMCEZbEuWg0RG718F1QCWlqpr8BCZGFIyQbHgKEKMSaFyOzM9GjOYjk8jvTIYIcemzXXifpmmvaFNyXQ2yAfQWT4hVNeDUeG8AdO0OLLCSC8GRXVcuVcEw2qF0ukPbTZrpGE0REsQXbwsmz3JzsNT57zg+OQY4zha2zP5QgXzMltQVpBLxTLtMU+qdEtxusX4Qzkr8VVLSTrxmnZUS1T6XdP1HkGUUJpLMXmDYgGvdqUNadC2WeNw1ArsdjqiYr1Z+xRp8qCild5n06YBOGG9aonEuFheQq7s1otYZi3v52JCb6goS0FMum+pbu7IcFGRxlIrovkYkltJaSCqCrTAhDaceyXYOeVzP3h/LvY8WH4Epv2sts18CIJgmvZd91Q9+IyWVNSOqEsbZnSDoXVQhhAQVxHz0sQmv9bXJzpQIYGOEeJss28KO0JSNKeV3KFoRDd7FiFBiZGJXA/TdYgp4sHDB1hv1ri4e4cBsG+aWiueP3uOz//yF7RuRx4A1JDSSYSgXRAhRq2dz7NqHMReEwUHdd5+JkRMEfv9ZFlJuwY+eEL2gCEJCAfCPjQ2yv7X4Xc+mK6SWBssg9Z5Jyzd1CrWuihYbdbY7/bYHGnL2bTbQQRIQ0SpGau1lgk43nuap4OyiHfJ1Gp1z+SwtEBJWXp4bIJqShiGFaiyWsz5av2amUSnl1FaNkvUh+UECYBWawRRtJ46z7N1dlDBmC2D1Nao2N7eYrPZqMEzjgpLi6MZ6mmetK3VoN8wBue0EPoPSXB2ssO90/8QY/pnVsOO+NKX/13s9neQy2Qoh5ZhFkNqaPDHcXSIn+qmqGiZmetq6FqlUctUDd7PxuNo3IpaK8S4OfMy+/pXVNOdKF0AOB1wikie1N+ZLkVSp1KhIxVKNbEoVCAlK2lpGacYslklYnu7tX8r+rDfG5rgZEflHGw2a+dKTfvJz6ieB3ISxI14j5wQ8dltd6Z7pOeVKGayoDrE4EPz5kmnBMMMsqpXR6xWI/JSXB2YxEL9fpJ+U+P9dKR+iAa37FxZ5oYCRdMeWkx/ZrVe2ZovWOZ+SjuAjqfAMglLtzwXADBPk5YPgp43dlvN04ycF3PsFlTkFsyv1yOONiN2u0kTIkugYjSkcG6dUDonhzytueM0tVLk5ujE3k+iLwMwluUpVjZjb4hsSgnrzRpDSghBy2CrYe22jmfdCZrQFvwYIyazkagV69XKZ3RRj0WvpWqJ0xIltqMTfSxFW7JzyU6S52gD7xQTWHdL66LKtRoHTwNf8n8AIKLZ/GEzYLvdGm+IBOlkml2WHBnPi80HtWoCBrTgRIQS/TZKgvxCiRgG6plMIHdzNQ5d2UzsvWorwhBN3NG4hpMmCiFXR9OIkHL91VZliO0zcnl0m9aD7qWWuH781yc6UMlLRkmW9RRlgyv6Je74WebwqbowJEMOI+AlLwYvD3j3vXdwdufU4L/gjO8KrV2+eP4Cz58+VynvGDDa8Dyy95nZMHunYVdeBqcQZ2+P5YTJ6LNllFDKeRyTZWPrzVph00wtAcpcN6lyMYOVbYbPuBo1QPEDanwCad0JMKNOaB2AO6DVauXZ+3qtNdmyLAAU4kxBo/LVeoV54nAvp7p5Vkt4fhiScwu0FtsE6oJ1KkDENGEUHi+5GJIkiIMeqv1uD69LiCr5q9E1LRSDMr3cVQoQAsY0NOiTM4qMZY9a3VhVxVC1vm2BE3UOFFbW+nK1v2OJZr+fWiYMRf02eIl7Z38Hm9XP2E8DHj35d/Hs6r+DeRGkCK+xs2VdgxPx/awGInhWuV6vMdtclnE1YpkWX1edHxS9vZTGIxnheRgHbJcFyzTpGoqAbfnUtgCDQbs3CTofJBkax7kkqBWLGe+RXUi2zxdDMmfj/6SkA+zy0iQEWG7a7XfIy4JxtcK4GhGC4Ob1tZegZgGWacEwJgSpWObJJ133JOplma2k2Jw5kRHVICKRngJ38PIAtZWYla7Wyj3Tll4NuCcjLY/DgP1+j8n1RFpwpCZHDLHSEuBo87sAYJoWDEOwrFjX9/bm1mZ8CTbrDab9HuvNGkEGm76sgenR8QYXdy9wcnoMcl+m3R7zPOPly1e4fHXpGfE4jogxYLfbqeT9MEAF+waTidcAm51FtI3kP1CnxXkoqYk6iu/N6FuFKEUIwcW9dE8q58h1RZasgWw95FWR+wSzUSpi2dpfp/0eHFJaXLdIMNTBAgZ13CmqFo82C1Qj+BvZF9HPuggnZyvvQ6w5gQNqp2nCuBo7dE5J37lWXweW9vi/UZuuC7l3bWK5Z5qg0vIwjo447I0Iy8YOlhVzUWLqarXW62OgBEWltHzETjVrMS5K2GUFIVonlH6H+oHzO2e4uHtHEdOq5/n25sZLQM+fPUfOhtjtJ6MpJEe38jxrdxqs7zM3GQCWkELOPv2aQeyvJ2D5RAcq6hGtX96cXbbskfCWt9VZMFA1dVP+CB21QZQMKD768BFSUvZ/LgVf+OVfVWKecLpsk2fXCcdGKARMj0MAZMQhIluHjWbZyong1OdSC1AqZuNDuGLkNHsWUMqCs4szL9XM8wSS5mJUSJldTgJgXClRC1G7J+ZpOSDwqSNWuDGmaO8nx0aJiIOpvhJyHlcjbm+2mPY7Q4silkXb2ugQ9rvJnQLLAiy9HQgBdShPKQVxSACJh1RvNBQiGOITUjMW2dQ8+TwJ+VNMC6JdTOMwOFmX968DthbvDFBV0NFFz1QYDA41s7Or1IoUghH/1OBTJwDouo4CWyYbMa0sGRfnP4aTIwtSJGK3+xa8uPoA8xLV8Nk1JjPs/OwQ2ziDGKJN1YXPHKKEeC2mN2PPS4KoonElbwL+Gcm6WIp3W9nj5+wSwGeqhK7TRo0nG9E7ZAZtPoiT0dEGrfE/6two/keUQbyER6muRngvbmT1Q4NfrgSFyBpXoHqmh2rtvmhtmwD3SrVuMNMfsavQ4Dx6CaDnyZDoqV0QVk6FBoLqdBsxuCfjV+fGBFOYnV2aXdHKFkwBivrwWqkIO08zxtXKp88qb0awOVoDfp0Bm+MNNtgAonok29tbRQiXBRAlBu92Oye+a8dUQMmLrZ8GLKjA1pDSUsgfMq6UBSsHmjwUleReh3F5eO7srHOlKxOBJJCSITr21Pf/Jm1wdHzsqNb169cYxhHjaqXyBUEgubVKB1NlzjljsWATZhEYCKiWSkGJAqBNW1YCdduz1XwJUTGW/lTsTmUBKFA5jC2hVFTCRPtI5C/awdk3LJBcT6XYeb93CkLJC2JM3jix2+3AcR2qcVIxT3tQbyuEZCg4FM2pfYOCTf8WU/ReZlQAcRWdkC0mT3H9+gbTNOHs/AxnZ6cYxwHjeMfX5Oz8FNevr3F19Ro3cqP2ZFmwFG0wCIndg21UBu177brCAFIJahdkfbzXJzpQUc5FI6ECCqGFMWLaT00HQoLLqGvmbhm0GfVsddJghDkA+OLnvwQJAdNeVRu3t7cIcbAuoNZqVUvF3qBXrZ1qGWPJM7CHaS8sWKwU4p1DlpVwWjMxiApVYSTbHEgG2YsR4kbXVMlLwdHRkUK8oQ1c9Jc0JjkMLaLzI9kQwvkQFLVqgj4xqfG+vdn6hNZpXrDZjFitGpeilIp5WRBj09rwSbZoEvSq0gmfxpySIj9idfFWpmqoinIeJs/EIK1spu8FqiEMwVRMa8l62N1xiB8SJSjPbpimvaJVwzAoEmVKouvNxgy+BsLb260PUmOgSZcrQd+/3+5cR0IDvID7F7+Iu+dfAh/xdvst+PyHfwi3uwuMo6IFiiC0TpYKwXa79TZtGiLeCwPukgumonLvwbg2NBLaVQaIqehyLcgNGlejdfhUExmcjfwdbX+17hpHNRYd3ikhuHFWZClxu+mzBdG+gNXK5toYJ4FjJ0ge5VqenJ4g54zdbo9aTHPDBh2GmKy01squMQ0Yx8EFqhrCqAE8pPFUdO0ULcrWgeVrBHHEdJ5MEyQSHSnYbfdGYg4e9LEEkUs2p0VuQTXdGureBN/nkrRjZd5PqHa22pA+eKCahsFLZ3k2ZMS6d5Z5wW0pePr4GR48vN+COHudn5+hloKnT55hnhbjGyhyxeem3TDGjciKONSyQGLC9fU14jAoimHKtiEIUlCRRTEhL5bb6W74TAC1d9Sr0gF71jRgZyWmZiMCO+iqOKdNO2razB0dL7JFihFn5+daeiulrTXLKkFt1TIvSCYHz/0JszelLFh13SzUdyJnRuw+dSaNIpLZAhAmDpCGXlNzRAMRm8WTqUTc5t9ka4hwDaLu72CJ2c7OO8eRtKGjAomcu6ZyEiSzegNCCAhW2qGcA8neYmq8UlXZ2dGvUf3IzfUNXl+9xpM04P4797Fer7wyEWPE+cU5zs7PsNvtcXV5hctXVwAsqc0LlnnX0CX/bk2A/VxGztzTjsFV/o2GqECjT86FmacJkT3vpdpB48A1G1wWmraDWAQ9TdpuGAc9dN5aCLRyREjesaPOXEsM+/1ex5ujYr/bO78iRg6RqpjnnW/q2Dkyfg/bl9luqrVlRvrtXlWbImIpCtsHa1MWUVJfGkeN1NEm1DLwKAW++fX7WdJSRXCgGnytJZlpP7vxHoYBt7dbdV6G+KRB+Qkk6w6cp2EIVeFwM2YYMfh0WC23OetHSwGGLDCzpHNlOUuz72DZ0OLt5SStimWTXneqHKYXkVLwbp1SdI5SMac2jCsPjpzXElq9V7upEkYjMYcYcbRadV0GydnzMSVDgQKGoeLu2c/i7tn/HTH+iq5zPsKXH38bpuUBUjSRrdUKKSXsdju//xgT5llbJZd5gURzZJwWbi29rDEXC8I0uIUbU7Hr1TVtre8OeUswRV8aNuNSWPccM8cetqez8/bP0OYmsRRBdLDfdyFW1Go8igoLigI2m7WXB/TfG+y2W4XEQ0GZVS9lv9/D592sRuRF9SYcsTFESDNs41DkbJ082tXEMp+2vdemT1FN/h5W0topOlcMDQQAypkrUqGjOfxoSists1uMZFcKcs1Lxmq1wrhe270sJqPAadO6rvN+UtQvRKR18v3OzkbUilevLnF0fITT0xNHmfQkVdy5uAOI4Onjp6YHo5yUcRwOOF656NymWhXZCFGHDaqImwaPycquVDjO1uabc9ZkSsiXIuHUupOy7osBnEOlYwA4joCIZWW53MpqrqskgmEcXdJhsznCfppwu90i7oMGmiop2ATZCmeRaZDTOqeaFAIn/E77PcT4PLqvgWnaOyqvKIrKKlDPiFOzyQ0kJ61HCLT7x9AjOyNVVAk3WXddKRWxNPFBoqRUOxexVvOi6057lgwhJ3eNgRPPppbpYImoIbTUvzEbzSFZpRSU3d4SnGjlogmPPnyMWguOj49xducMJycnen4MxdscrfHW/Xu4eX2DZ89eoGwLBBz1YiNSuiBUuTtinK2MGIeGOn/M1yc6UFFWudYXAdWOgISuoyQcku6KZtsMLZd57gi4FcWY3oyYh5SQxsZpUJnpinlSYxmsHJCzZaMpIQ6DG+6eCa7TirNF6Tr3JMaodd+ow/VgWR43v7bLsSzUAi6WUuZFEYcYVKypoALCibbpQNhuMGelvJHgol0UjRtMM2OeZ+x2e2w2G3VWJGz2sDu0xKVZiHjJRmFHJavGFBAlGuJRHEFSZ1JBdrlG4AkxKQqmpbOAnPegMjDF7nIpGEwyPhiakobWRqttwTaLI0YEdkEB1nXUglXJ5lRjQbSsiygFs6BhGLTuvsw6FsGMVhQtTaW0auJdpdp4ggjUjNPNv8Rb5z+MlH4FAJDzCV5c/jtYym9zNA+wQATadcP5HITbV6sVUkzY7ff2HDMyVXeX6s6VmRUF93oF5lKKdpzY866Ak4xrqZiXGdHbfweF60UscLZ1JYpB0in3YafwrAZphMjiAQMhpzz3U8Qb8ZdRFbukVJGzarkjBgxp9DJEMKibCGMF7DwJaskWBCmKN2Px8hmdYojsEFIUJRcNYhvRvENlbU9LrQiG2CrnyUTPuG/7hMcIkJV/3/GU1GFQoM+GxC3ZzqQ6tGzIiuocrRxdI8+KAaGigDM++spHiB+8j6OjDViC43rfuXMOEcHTJ0+x22qJYV4yplk7bkbTB1EeRvESRK2w4GbAOI4+LmC9WmmwYigFRDDvJwzjiGgDDJmQIKpUAUvUzjupBcvckjRNCpS3s9/tMc+Tczn69QRMq4kIBIxBZoJ503TrHBdyKfpGhSBo3WcixqfbWIlV/0a1W+DPmQFxrQVz5nyy0M6I8cSUxGtcSS/fxwNC/7IsWK/WAIojtrUWTHt7tua4G8fJSkqBKtC6DnNdXISzjUtQv6B8luqJE+fpaHNEcHSepaPZNLl0fbWzsyIY6RZ4Ob3Czc0tUkq4c3EHxycbrNZr07SJWio6P8Ptdosnj55it936vs82ckGTLRWDG4YBtze3SCli2u9/4wUqeVnUmFn/OwmPgDL/2XK53+4wjOyv12ibWV/caGvoYhlosr9brA2NWetgG1iDmAVzECy5579Ez6CoL1Iy+TLiZZiAComCWoA5L65GSaRjnhasxlE7AIwQyy6mxQwX528A1TPq1TiA02czCUxQIinhuBSi+UcriYR++i3skOgBpPgZeRorK3tQ36HBtsYTgrY2U5+DQlUxBJ+xRIVPAO6sS1auDNthfb4M+RASMFsGMY4DQkqI0FKFBmmNLMYMwstHgLeH8xpZL48pIqBNu41W9hCItfxWb4Vcrdaeyeg4AbiRm2cTF0vR9BoKVsNLnB39U8T0y+pQyzFeXv1RvHr9bYhxhYoZrG1zXSgkxVo8GfXM3ogcBMCNombJyTO9ZZmxLLOvA2qnGWIBWxDx7GspiwXVxlVIOgl8KRnjoK2kKUbfmz1hFCI+rI/ckmmaLJBhB1Bri2dbO2pFEZuqzFKsCQ3SfGmQL9jZGcxLq+e3BKRpPuh1V+fzVADTPGvt37J8nTG1IGdYCRFeClUl3+St6Zz+qvuxYFyp3sneMnG2iTPe6iF4tSGdo4yq1LnkGWLCh8Mwotr9a7kptTZnL+e0wPDNEqbOvcn46CuP8N6n3jXByRYEigiOjjYYxxH73aQorPFeYjS1auNCrdZr7LZbZOPbITSxPnbAqaZJtGDTyt72nKKVQ0opOtAxNqkELd0quq331/YuOSAwdGEYEnbbnfPGliVjt71FEMHRyak+51JtKntrjBjG0UrG8BJNI7BWFAEGluNgCOzQ2SAbpqpJz2B7qysr2yPxMmLVPQYRTEY5oHgn9wE/m7ZJuVIVS25K2zEN/vyJZAFKxCbHKyXlN5WUD84WdZpgmkIa4HLmj5Y4tRwULBgxXZMORZqnCRDdE2xtN8aWJsGTTjy+ubnFer3C+Z1zbI7WOD4+cvtytNng6z7zAZZlwe3tLS5fXeH25tY7/MSGlZailYbbm1srDf5GE3yzzR9DQBZmVAqRq3T84pmgZm2286rNs7BSi7ZWDl67JKxWLUVhBgkzRqpTEP3BKzqi0S6Jm+y5V9TAZJUBl4mvRoYjmU5rxsX/xW4cEWA1jp4dk+i42+0QjdUtpZiQk3VUoLpQGZVOmR0ACiMy+JEgCFBWvE8hhQ5H5OZdrMxB/ZJpN3nWTF4JkSMRa3GNOiBPJ1EbH4gcCssgSq2okUJw5K6o8StKdFA1Q4vOOUtDV0sPpyuczovLrwvUMc3+/JN3ZZEwzAxyGAZUqX5dlERHNUGpJSPp47P9YkEX2E6sraizdd2cHl3h3tmP4/z0/6XPsa5xfft78ezFN2E7FcSoSJGiKcxQbT9H1ViouRqHAT4SnQEwszAazyVTTbYgxeQzpkppcv1qRIvvqWVpku/DoOW4aZ6tNXi0s6LoHx3DYF0uJFmyTl6l+l7gM+GL87Y0wFAuAsdV9MKHXPtigSAh/ArtsoMb7jY2Qe+rjT2AweJKUIVJoyuxPOeCXLUkG0JAjhkcqEfCX4wBw3ptk4qpwxSagbW/ZadKP1iw1uqD7ng9LG16aaBWTz709wFUZeaU9xgVVUzDgP1+QYyWyRtZmFPIFbGYsd1ucfnq0lVjIZ2TGwa88+47KOVDXL++9jWrFajGraGkPEml7PyZF+0mi1GRWrEBqII29ReAldjbHKUlZ59VE2NSfRUrOXjwE9ucL6YNbFcfV6s2dK9kbK+vsT460pKHBVoMnCGCkA5HNJCwzynW0fh/09Q68Vh6cLJ0AapztqujJY5+Wcl4n7UlfghNyZU2MQlngRXMZXakGYDr56QUnYwfrQSWrSTEMSIhiJ9NJnE826Oti/sUSwBFAqqNHSixYMLciLV2DRRBXZbFpx2XqvYiBI7Y0CciboMTgqGpIoJXL1/h2dMFx8dHuHP3DjbrNcbVys/q6dkpTs9Osb3d4cnjpz7igdpWWtpSrk7+jRaoECloJZEAGUfMS5usqhCydrosy6LZcNSBd6zla/cNBd+oR2LDmSqHQ7UMkCULboZaTVgr6KRi9sKLbQoK3DDajpFKidkVcWNQAhKzvXFsWhKsA6fBSimmAQJokEYnRYJTDMGNrAc3Ge7E6LyJErHUQULmfpqwWq/cqfBQs4WWZZ40JiciaoAYfRQ9pxGLCUwx21FivHidVQlgphhsTo1ifc25Ll4aAUxTJUYUBiIh6k6uwDKr4mkwPRo6rlrJG2jqwAKxmUeLCz9hUA0cFFUrzcvkUCudUPbry1bSUuN+tL7G2xc/jrOTHzcndor9/lvw9OXvwO3+DCLsguFzpaS7QaKxOtMf2ZxpNUG3NLhzXKzzSWW9C8YhIhvE20i3sO6SFvQOKaleSqlAaQPkyIMIMbghZGAk9tx9HpYEd04+4NDgdY5yaGhEaz+d5xlTUbSTwyrV8QNA9RLafr9Draan4t1n7J6Ad3ZkIy2S+wDAh7kR6qgVncaIQjYa+DSRsJKJKAqqlQZVO4QjAOBOp9oP+H0a0BoPyIJ/opDVAhMtfzQ+Q9/VxCBJIG5bNscb5YUZskbSZEzs2MpW2tN7e/n8JYZhwJ2L8xZ82e4bhoT3PvUOHn34GJevrjzQDqLlgWplapYTNIBMGERJmbMRfEk8ZgAPaWeBaBttCxsG+iGWItR6MY5GavOIHAkIFCpTZGmeKsb1GtubGxydHIOTsZVInRTRLY1v1/A4Q1ooeNgFiixHbrc7637KXnZrJZu92xcNkIoR9JVvQr2mPthnAEDkBFCp/mVeHJ2rVSeED8bt07lBKrkwTTNK3roqdLAOt9n2tpP3bb8ojNcFyvZ8NLjKLiCYq3gCMVDlNgjYclEsKBNRP8Iz4fpW5isaCTtit93jo688wmqlKMvR8UaRXaIsRxt83dd/gHmacXu7xeura+x2e29aCCLdPv3aX5/sQMWykgpry7WMs4eaRcRLB8z8EQBmekPi3BSD1qVXPA1t/osFICRqMlAopfgQs/V6hbxQqjjp7AwribBEVCxCjjECsc0o0oOu98VIe6lajx2H0Q2cQGWnOTUXVQOQvGj3yGo9OlufCAgW1idpCNTIUqafzjDEYPM2Wk0zmly2QnZKGh2Hwe9Fy10Ap0hnQwhcjAjJa81epiiNnxJCQAGMBAyrL/cHjBODTZWxZMzzhNkg+kzehanELnkBRA2l8x+qlZ0s8PO23trtAzMaQGPauxO2a86lmBGvgM2zYPY1pIzzk5/D+emP60OswJJ/G56+/AN4dXWKUrOXXLR+HZr4XbL2R0MxIHAibSnqLCQEmz+jAUoQG24XMqIIJJkOiFj12kqFTjYFujMA6NCY7HvBnbHtqyKa7w6GfNFgCuBog3+2JQy5tnX3swYYqqYBWrTy0jwpr2u11tbZIKpwuiy6L1fjqGMSjJBOkna2Vk4Ge6VULLa/VeWVWWjl49T3ShuvQZlvQtAsHUQji7tUeqmQQbDfd/OIUjzIzkuxEQK1rS+z02hdMsXar7UUrZ1wjgyJ2Qe0tvhsyKrvPy9navCVS21EyZzx4sVLpCHi7OzM0Tm+hmHAu++/g2XO2G63tmeCl6KHYXDUbLVaucAkaps6rSXrVhqlbk0u+aALSLsE4X/T9ofGNzFGpKgbtHZrKOGQBKrrG3D33j3s93uVaxAtcYQYgK0mIquVtntzn+l3KiLL50UuSTLbME+Lo6NiZfBp2mO1OoWI2lYS7b1rJ2enEZBLBbQ5YMKg3gLwiuolYVjQut9Pvi/Ih2oKvdUQ0myieS0oyxqTtGtyuxxAnS3SABhcDKbOzOerAQLMLym5WqLu8xAiVpsV8qJBLBFt8hir2QQOG5znGdUS0efPXuDVS8Hm6AhnZycYVytH4oZhwPn5gHPrGHr54iWWacZ2u3tzi35Nr090oFKrZj8wZIOLTefPUysCG2EuDmHq5rLWuCAAimdC6iSNjFQzhjhApGK1GT0r06mRLfNKMWCZVHW2gr3+ApiRUUvG+rXxJKJ2dsSkJCtv+6v1YHBTCEpyHUdr+YLYPTfDoAiCGqDRjKPKlqnBJPdinvaAkaooO08eDgXqyLfhtGMAPiOEU0MJdfM5iIiPBuB3ZssEvA06E6LVzg+t+SvfIBgpT0yBtbHDG2rGGu1gTgzSuClq+DtRqZxdTbZB9GiE26jPnbolWjfXFXNWvYivMY1utmA1zwtg5YkgE+5e/Arevf9P3TkuywVeXH4G17fHasyIxqEfBGZIn5Wt8j4j2HUq0ZlEPsLCTe02m9OvIiiSQBlurZ+rc+beIWGv1mozrjQI6XUkOFiSCJyALcuCuhQj8dqwRxEXBASs9ApFONjqTifgmTcA8hsYjDLYUTRNXLgqhIj9NGnQUI14bWdI4fhqqE/AnPcQSS7xTgdffR9SbLG48SehFbl13XH96Jj0mlWjJRjCEEzYre/24OA+D64ty+Z/KmDlAzFHoFwnlk+qlXKcaJ6JeljpyMoPFQzM1UYo7Uqd13a7w/NnL5FSwtHRkSZZbiT1nu6+dYHHj7QcTSSBdgWGLOZSMO+yOjUGR0SGHXVqAVkMwVuF2VrshG27BqKgFFKcjVe03yu6pmWolU941+CRz0oDxnEcPThclowXT5+i5AV37t7FaKJ8bittb+UlYyqTJ4B8ptG4LkxIahSkqoHvPGUrL8dWyvazA+t0nD3ALxaAEykAlLvDLkeeRdSGvrNzM5t/UFSoTTMeBqKC0GSpqD5Mqxy0YZci2nbf+C2U4lfTTGHRUnRieCkVYiMgBDrHaZoml5igThCq+j4ZBvMLiyGurbsv2XnMueL11RWurBPt5PREBy0erd2mrNcrvPPeQxv8OqF88TdY6Qe1YuWscquPC5D32rrLaJelDcKDEhVuD2JEwRiAJfvBWGZVtyx5McTFRKWq1TUBoCpxtG9hrLCol62KlciMeNbfAqRqhlsaCdCcCTeuKpO234eg3SWKEmSIcSsI4c2VcvLVDzZb/ChiNC+zGqLaDisMudG/7RycaEmCtX2BZkKcdyJWw8xLRg1tdgtqdSdL5yfSpiJ7dmjP0J2MEVS9TdBKKxUVxQSaVDI7OfrkaqJmUPg8dKS6law8Gy3eEcD7dATBhPy0vq8oUBUNuKa9zq+BiLU9jrr+JWMcgfPjX8KDuz+KEH7BYPRzXF7/j/DkxWcx54hkDjla+3fOSjAMhuzl0kos5MDwWuZZDQMPPUtFMem0aGbw3IMUE8smmEbS89wFOSW39u9kE2PpfFimQGVLZ+iMRPQMlg6/GmKRJy3d9AiLzrCidL+hAELhvAqB7indz8A8T9hsNhhHYLfbOpmT2fY8zR68QEw/woSkKiqkqoQ5bB84uiGt60MRiYK6n3x/KhxvqI2vH0X/NLvkGQDgSpvKo6k++qJHkRjsDhwCJwIJFthyvcFZON0k4w4JplMYRm0jXeZZEzOglXaNeHx7c4vnz14gPVTHzuCcB+Xs7BQlZzx58gy77b5TMxUP9F17xP7MExlDXdmCr2dz8QSM6LImVxqplwqQ5ZcSBR5rt2+KNyvwWr3NPyZD4eCImBSuQ8GwWuH2ZsbNzY1fD514zi3YLIa+pjR4iTcGLTED8A67lWnhiMBnLzEQj1Ldf1DFlirGS4cqUt6AiRIniRfTJBqGI12XUrA5WmvJsbQJ0IAOvwxhsFKzBvZsNhhs+GrdW1lNxOe+NWmL0Owx1I/s9zNSTFgKlXG107QsC4b14GvFAFw1bCYLnoOX7GCJrppsfa7ZhN7IhdnvJ9zePoUAuHPvAkebDVbr0RSSo6uFf+qD9/BxX5/oQGUY0kFvuIRgszTSwYbRwzM7J8XLP7bBltnaOyMH6alA0jRNGMfkkr/7nbL+gwRINLSmClK0gXqWWcAQHOoesJNAYXklr1JwrRkkOOISQ/RMWCXzs85ziUllyWNnXKhya5utAp6hsb2t5IwSOAk2mrEMWGbtYGL2ySzJJ77WVtssOZvaqR4sHQSppMgsixtjx3kBD9LYIVHr0kSUDIWhUmYxz8zOFzo3GrGcMzarlZcD2PooEJ23Y5A9D+pgLaHZauWAIJRi2iqKKChCIxjSYIZDS3UCHbzWZ8bzNGG92VjXRkKpEfO0wyo9x4N7P4YYfsFu/Qg329+BF5e/C/t51O1pzoLXTWSHe1HRD3GiLGXEAQaMRuY2hxzG4FwJryOjBWtEARigkguRjKzb/4wTVj1wm1u5QUfF9yhBRSnBA1TqWSjyFeHk6iBOGVDjTY4SRzMolC25BUglNxSTiCj3kwb4xQ0kUQfdRzp0jsNDyYXiq5QKWXLjmRmvgbyPgPYccrGJs7FNnj5IdsyRz/OMcTX6Hu3Xjy/f94ANbNTOrhQDqvExSDT0XV7ZFZNaeVQ/DeSPlFwQV0qArkU7qGBrcnN9i1cvL3H37oUHD1bMBKAaKzFGPH/2QmX1rUFgtRqNt7FCXji3Z3Eb4xLwMCTLkh4KBAp0VIQvQRXUmlENWeU4kVIykrWu1sEMHqDhqu19zu6pk/49544FIxoHEetA0TED16+vsEwTVpsjnJydqf6OrVvOehZKLpjr3OySnYFSWsA9rkbl1RXbs0EMWVQ7HMamoKu8DfHggZ/bz1/jj/OSEYbgRHjuP0UnjejPhbMAuQ3OpYpx8YBBWB2wPUbf5wgpAERTUy46x05L+s2ukzvpZW40srOeP1IV4EiXG2KzBTC0uxqqQv0dcr1ePn+JF/UFjo6PsNkounJ6dqJicr+O1yc6UOmhRqHhCsGzZtbeFd5tI9vpHJS4KFgWnccBm0isEuUN8qS+hG7wYL3iETEGg8Qiig1EqxbtCuAMa7EMkNmTR78WPAToBiRHhAJomsVkO3Rdt4rVFvUlNna+OQpquZCwq2PX+26JBuGSoa4gT/UuIk6iXq1W4DjznBuvpC9PSQioOXuHDgDrZmBW2yaEHkDeoR+oxom81ZwTsEyadXFmxn6/d4XcnDMwa7ZAp1y6a+KU5ujaBUq6jSwDOIrQCwIKVuPK6/es+wLsLtHTyhb4o9Ur3Dv/fyCGnzUE5Ajb3bfg6cvfhevtidaro3FNHImwejNIxLOpokmVd6Xqd6p6q7YuElHTMl3w9nTKxGub/tBxMgytq20GkUA8+CBiwuC+J3lONvgvmb4Pa9UM6nQtBKp4qxmaclqKE3y9dAjVsaCjylZSbUq1up7echqCtvyXVrpZFpIIYWUU7USBzRISCYiDdIJas+85Rv/V0By9xcM5NqUaIkJV6SW3NROBmINhUEGHq6TvWc+tlSW5T7RFl2qiBZDq7ezgGfN1bN8ZYo9uKfQfgo6wYHdbXpTQmi2Y0LPbxnc8e/pcSz33Lhxl04Rdz/zp+RlyLnj86AlgiCyFEoNCc26XYkoY7OwzMPF2aWGn36FwpZgIpQ8e7M6SdoioVL+f2VI9OB06sv9qtVYlZCvtK/KmnYyl6uDXXUq4fv0a2+0Wk5WmA4A0jmoDYShNyZAqjVNWO26VlXlQdZigc/8kYUjk1BW/rt73AG1+jZfqBW6HiwmREkXz8pnvS/JqWts2AwGWWCGi6t3S0OhctQOKEhAiGqQEGNnX9lUaAtLSBAvroohTTFQ+h5f8+/shokh+ZbX7IhDAEpFzskCUUJ/RNGXkrBoq29stbq5vUEvF3bcutCkCv8FKPz5G3dpwY2pkLxXnGS1YILm0OgGUNVxuCBrDEJJvNoqJDYMqypKR7QJhFgikSPgsWj6uBhDkm+QM1AW10pnYRi0ZGgv3h0DcgAoDARFIFDOKnKeQLFsNnXFoA7fofEkqIxeg1lYKIVQpXs6pHngxkAFgXVTJygni6wUAe1PxdFKZdavoILWmedBrH5BrQS0Jiik5X8c6QPgcYxz9s1nWAVrdWSDY3t66pgLQ2sBjbaS1JoFNEprVs3Pxz+KaUbm1FiBXnapMOH+ZJ5ydvMZ7D38MZ8c/yZIw5vktPH/17Xh59a6iTomTWZUUa5vNyg/5jXINS4qq8puztpBycGSMwR2WBl3BoWNm//OcvTMjpcGDRQZhHPjoGTENjaNRur/oxMUMH1vV2W7MUmGv2uulFUMZ2PJYbbs7Ub2SH2QTYYt2TEgit0gVRwGgWKBIRM+7+0xUUPcNGpJpL5bQmGl64AYGSADFBDmwspqjo4Olw+LEbxJ3zWLbc1NugAbv0Yi8pSUffSmP6JbtMdhAUYrOwc8b+Qr6t2xp1sCIirttHIXAnKY5uN1Og5XVaoWT02MvRcH2KACcnJ5gu93ixfNX2O91uOM4jq6SquVlFWJjQhdCS1C8VF0KkIIhWZQIsHKOrV/ObIWN9pxai/ZoUveKkk0YTHxynmYbHyHekScCJc8C1glVLPA6x+b4GLvtFrc3N7h5fYWzi7s4PjnWgNRKprRlKpPPIF3sGkyWISiXLBoaWzSS0MRhVGRHO+1ggSwc1WYQXSsamRuNoE2fUvWPPTDQ6zjcAx4Ygcmklc4syI1ov2OwB2RHSp3sDWCzXuP2dgtJLUEIIqhBh1US1WcCyoR3v987yk5dJyI2xUY485pD0AoBi3hEerVEBl+zVy9fuX/+uK9PdKACqw8PgwYXKTS4mIaJJYVqQUqQZkDJmg4xYk2Fx6oZakq6mBKVV8B+96VTNOTJp4QznWEtitRkq+MyeKBWQhVgWWbbNKrJol8mB6UbRuaAOj1G/V4eAICI7nvg18+SF5GdKm22x+J6Leqkq6EuhLaTNE4LAxq2Ckttir8lixvx1XoNl3xnCQLwA1ABz6r5c2ZnGZodarQNcE4QOQBcC4iYCrE6Gh6gXpeBcLwTcu0XPBy1WqzovJCmcOtdXThUwxyMWyIAQkqo5QbvvP3DODv+x74TS72H19t/G69v3rXR7Yba2WfGxGGQLcigGmlrdWxD3moBJAbv3CmlQirbYYMHiiGqwNZ+t3cUrRqRmuRMkq31HGhmnIYBc23tw0Q1SGz2ABvaVTOOhGy11KbZUzx4HnoiLdOqzZiytKXBeYFEG0cQqN/QjG4/HkDF7wY/WzTiVDlmsvCmTVBdEh6pYNkqDFks/l0CdPaiGV7tPtFEhUTaxVSAtaswNqTSHBL3Gq+RzsbJuQvHVahjYvAxjoOXU5SrUlBtbksaVHgrh8b9AZgdH5IwtTNK33N7u8Wjjx7jnfAQx8dHvnb8+2FIuP/gbQCCr3z5Q9XogHbDaWtr+x6pre0cIt7hpHpDxZ10CNZmazajWHBvmw5A9M6yYRx8FhvVjVkKIxqlAVbjCQVzmOy8YRBJHY9kHVbb21vcvH6tXJDNUSeB3yFaIr7vFmsVjmbnORuIqJUiMKWzY3oWacupCEspen6+oyqlAJHPXZDnjJXNbtKS8h5SW7mchGu1AYZypOQdagVGvu4SZ23aaAR3Ka1DiMRe8oF0/zM9NvsPTY50PWYPBjm8kEKPi5VtuV81MGMCakmNrTX3IlFoCQFlVmLwfr/Dx319ogMV9mQTlkVVYhRVRNl50zaqEfqMfATLIsXgW0aQTgQN0eFZn58wJCxza8cbbHR8k23uM6loB0wPbM+Wjx3SUavyQTQL5dRjnUczWFswaoPKq2VZdFCEXVGh91Yr6tLIjT20D8CVV0lCRG2chGBM85CUQKgw66ojGLcsXoIg1OAHvxfyYYDVlx54PRxbD2QPWkaWXCxbo5Jqrdrat1jbNzt+aoUNCaz+v1GtLGZlMwDu/NmVYLer5bSimWmIaugymNVoBphS1Hki44DddodxGBFixYMHP4vzs3/cPidf4PL6j+DZq2/Dfs4QVCifQzkxFcpTcKhUdFAmRzLkrFnTMKikuXZ5NE5Lzsq5EQgQWus7CdbzftLMJSUkSV9V0lEiLpyHsSyLGjNDSUqpgAS7DrZmEsGgHH0j4DJLd/E7+ywJwZRzrXMoiJfq5q4spH9HwrkazWVRQbZxRRVeC16sTh9HVS4tha2pK29dBqoTI3lGAqF3FpFEW62nYnoeWSXJ9YEr9K7nfLHAUc/JUlkKECfyatdVRV76FtzOzmQKXJWmOxSjr1kI6vDbnJfGhVIzZgRkacP2UmxyCCEEYGhT2MfVCAnV0Cb93pvrG1y+usRqtcIw9IiNvlJK+P+296bBmpZXufB1D8/07qEHmu7dHQIhIZKDDEaStJ2UaB36gIRK1OOPVKSUUr/EYGMFpfJl0EiipR21yir1WPGHJXxVGim1IPGLSQwydEQJJEjLZDBwIE1y6G6mHvb7PtM9nB9rrft5d4IndE6lmw7PonbRe+937/28z3Dfa13ruq61ZeVUxBhw6LlD9LeMYTSjJFSTESZKSMgGP8ZBpGDMoJCz1qIsS97QeqhokGUGbUsFGSV9NOS1qMrUuuRska4BPyvGCFeFKvwsowGUcq+6ONgtCJpI3D6NvCjpvLses+kUC0uLiVQfAk92j2AvpQFZFZQ3JbMgVDIaPYDgUJywDgRaSqxU+h2pkFAxFUc++GTPL+Z2A0eJaAnDoEXmr8wh0aQAHNzLKaHitkyUVrJes8bLfdL1fUJ+sjxDM2sgrScw34XuIwfAJL6WsaKSHRCe9Ov5uOR4ACHV09pJ36c2kxSkWsscKA/nBhrCi42TOlGRlgnBv1SBd8lYSKygRRqo0+YBz0oJNh4aoLYIrZgEyyc4DZ/ijU7m2iil0Ldkf+1TxcF290rcIW2q/obFNwB6kLPRMZGtvqhjkiW3kJVCRPSe7en5fYPNrDhrFU+U0PNizXB+ZCggEaK4kpSviWxZuAmp8udFjdClgQ9DBYdiREjaAVQJO5HTQhCrkG70JFPlTZScT4dpybKRileDZZfZGBXby/vkoirr7Xy1LpWISg9RoGowuITQeEZpJEEU7oHA0jLtU9QJfUfyRs9ka+97rGz6V2xc99kEo4eQYTZ7Hf7XwR9E03bpXiSehgzq8+l9UUVGqIBmzwYoBdf1rMqi+RxZlpHDsqBqCUVgroY1ZOCWkuphqrTcR5avpbRBZH1CRLKLhzKJfCsVlCxIhCpQxd/35J9jMkM8gXmzQk4KaPSDQ9e0w70FbiHxtbFGknbqoBhth8WRVV2eDe0EpfHOweic588Mz3dCaTDwPaBokGZkdZw8e8F7eEkmBLnUBm3TQOYWeU/+NsRVceijS1Omy6qE63qQ/1CfkkRqeQ3IVJKQyuKuDQ831WkOE/i1Ga8PgpDJsdJ192kPl4VdiJFyfQUN7NlYbJ6UCUQcPnQE1mbYtGljQhb4MQZAicnK1i2oZ81QCAi/DUD0DjEOBRyUmGAOs8wkOeQSilqHWcbr5eBeLaRSpRU6mWrP66g2NvF95H32TJSWZETUbPQabmFwwUfPHL2fsqIp6k3doJ5OcfTIESwuLhKKaExSLYY4IHPEyQk8yqNLQy+99zThPISEMAiCKwm7JDGpGFTUBpS2b/DskK5k7VOouV0ubfambVMyJYkfIkm5Y4jQ3IqLXGSlwa+UTQ+oHT8PA19RQ5y2g/foO/arYXNHOYeyNyRrfggCPLQW5f3RuqxT4Zf2Nu5YWBk8m9b7mJ6RXIQTYShoX2yc1IkKAOrHZ5ZhS3KZtZYmewK8GYtqAkhZ3TzcKkPDALBslAc9AXDdYG4F0I1kuQ0TlEeEkJmoChXres2JgBDJxDLe9cI70YCK0NrCgG+GIATgwXtF1AnGGLSuI0hdDYZeAxnKI7iQOCvSOwe3g+bnK4gFe0xIikvyS5kdJH1mLws/L/ZikR7lxqYxOsm+PPVee5cIyFppBITEG1FhyPglKzdJHkekMDlAk+k0sEwbzY6ahB7JA0hyTJE0y4wm/n2ZJVUPo2xyD7i0GbK6qm1gDNm3951D1zcoqxLeDWPTt2z8IjYu/z202s/JUo663Y4nD1yE3llk2aAMkEVYHmJlVHp4AV5wklmVSpuqLJKyKMdIRlyZtYTOBLbLz7KhXWAHFYAkCN5JuyewIZpCCHMSZa7gpAc+oCeGUgttEFwP78Dnk5ISxwo04S3ADU64sill3B4IjHBFRB5uSc9QIlnzOYiBTNMck4W1IoRMEto8z9KATFEXhNClRJjuMW7h8CZBBFVe4NmsL8oGqRT7HdF1sGwAJ/105wLy3KLrXEoqUrsJgwEboYaOq9354gj8fX5WMEi5vac1Qp5Hr0JqE4o0WEjM84R1QKVBd5jzyKGde+j7RxCPITC345mnn0WWZ1i/ft0cwRWCyMMYg22nbcXBA09jNp2laybog5F2pFLwnga3GjYuFO6PMWpO0ksFGiVGgDHUOjE2T8knY52pPSuuxxCUV8tIEJnUnqXiBBGsXkNajyHtGH7mvPNzoyQCZrMZpkcO4dSVbdSy4LlOXU8EcaVJMUYEUjDCrADQviHJsQ+smmSzQdnslR7aVmuQh7n2bNrs9WBElxc0CFZcWwXh67oOAay4BKGOAxrLRSCjPkoePr7nYiAbfYAK2cDFRu8cTETyiHHOYTKpUrtIrrv4WElyShOuh7WFrC8GJBEY+Dbgv0/3h+JnfSAW98rN0TKOLU7qRMU5h5wzOOFhWM0tEG2gteWKRCzHTTJc896Bhq4xAxoM9bp+jh0OIIZELgthIC7azKKoCmoxWRrBPgwQY6t4IPE1ZKOUSiSoYeowwZ7EeQkhwPc8qIzhdJpDFJIkD0A6BqkuJDERQhdZoAdG+FSCKwHmWoj/xFwVJgvUPB8AIcDKkMaMesuRh16RXFfIdoOWPxEW+RpBU3IiWXkAD67L7MBT8bKxGDaOY0g9iNcM8Qbo4SaprFURfVQQjcj8hk+IToTRQO96KCgYSzwNUU+Be9OYO35e9yHQRYgRvutw2soBnLrx09D6QFqA+n6CJ77+3zBrNwMQRUgYWltRbN25GgQSKS2yb4tixEvkkVppVAsV2qZN1TutQ5SouRDSogdgzSKW2jNaA2KFrzVnpApRfib52bARFy+AGibB72DESe4vxRwM1ztOxum8IdPpfpLWmuZkgmByGu9g2dRQqvkQPCZVia53SXkjM2yyzMIodpINNPZAFjdrLdquo+TD+cFpORA5HWoYby+hzTB7xWZ2mAnEnYdMNl5GekgZRK0BIfGShJ4LgW9S7wF0ryuwBQFvRCEw5ysjWaqCWNDPoYd6UBFmWcYIj0/Tu40Z7BG0MYg+pLVFCKXzXAnZ/B1fw67rcPDA0yjLAtWkZNYaZyp8H1dVic0rp+Ib+76Bum7YuVcnDo74dITg0LVt8vQRpFVajeBjMiayVxUl50Ybvn7UCq2qkhC6PGekNEvT2CNzuugZHtDRpu45IY9pzVSM8NC1H66FAtK6VpYlFICuKAkFDpG9aOjYXN9B+G7U/mUk0Q48wYzbRCSH93NIHVIhIhwQGeUSnE/3i9gxaK3YeJSfIxUhyiubWSituK0dmLtICaD4GQ1cQY9hUr204nlgKF9fcbAVlRvNqnOpcNDaoK4bdG3P/jQ67U3JFJJRT0DUTTTw0LuQWs2EBGoutAdzTcwho+TDA/hu2OOONU7qRAUgyanvyCNFM7dBzJecH+zqBQmQKaDOOQQf0Yc++QFIshJjRO9CqgqUoiF7PVuae+G2aPLX0NqwURGTEFkNQdWTWLj7lPyQEqNfkyVrnmxsrE3eJfLgSeXveoKeJUPXc71tGeEtSo0+zPmaAMP/wQiLtCXcoAxKniwhpBvT2AzQg7RVbPBJZdKnJIMk3QSRQgvhk3u4okaiSwbhxiTpNc83Slk6u64SDEqJY8+cHKlaKUHVUIa8L+YnDAvaI2oUgDZGqy3KqkTf9zyp1UNrz0gKTceNIaSNsGlaFGWJheJ5bN74/8HoA+BWNXyocODZd+Do7BQAPlU+CRJmSNtoDeRUafS8CHkXUtLsQ4BjLxPnPMqK5Jt5QR4xMrW67Voe3w5+P0PVCzWMHABERSStAPHyiGnDlXsm3VupncCbuRmqLkkSBSFKsDc9GHOJCfnbiGGcggwvHAbHkTGaYcdMh1ndouMKPUQg8MJmrcVsVqdjoBZq5I3FzSWX1JbQRlRKSO0/WXy11ui7Lt3T0vrxPkBHpPM+v1DLBpDnpLLKsgxN10KGYJK0fXj9UCCws6wCDCOdw+8lxYQ15JSaRggwLyT18tkzhHgUlp9nWuDJv2kguXsuJCS5XMsfYj+UvoeqFb6+7xs48zWvIjLs3AoqLe+yLPCK07ahf+JJzFaniFEEBA7B6zR3qSjyYToyc3mgBomq/D4aIjq4IAsfx2i95rrIvKgYaJZZy1wRQlFCeh+CagtiqK1OxZ+aG4w5r6bp+TlWWmNhcQnTo0eQ5RXQalRVRW05m1HhEgJslqd2f4wx8VbEzVYcvkVmb3O6H7quS+RS4b2AnzxRKGXZ4LArPKu2aUlNZGmeUlTUYpVnKLBaEUrBWp14WMJHVIrGTlDhMkjIhb+itUbgQoV8vpgv433yq7GW1Xf8PHVshBiCT4IMo+fEFFyIxwgoN3jseL4XyD5gaF8N6zh/nmXouvaYd/qTOlFRmgaBOZ6qa6yBjpGzUY1MiRyVp1Yak4aSGWOgS27hcJZJEP0wv0MeDpF42symn5eEIcuLBIFJbzr4AM9IjleDQ2sa5c5/381l2rIJKwBFUUAp6uUOfdDBItly6yPxa2SBCHQuwEmUcFkkxPBrcGONiUkPrB1PLwuVzAeRzWCetxNChHc9b1TdsFDoYU5NIm6t4RMNBnshhmSeZ61lWRwtNDkv9kqpNLBRKhlEoPcDB6ZtGoIeY4TRgVoH0PCuS9C1JB/ULmEWfKSKrWcY2Dtyjc0yi4WlRRTqAF657eOw9mt0zwHwocDX/9c78czhcxi9o81FzyUqwpTvnVvj0isJTd3UMNokZRMiMJlUAIgbQ4sVJXJ5niVPHoRB0USwuE3XTzgqPd8382ZSSrNTbCCeEwKPnfAeOuhUzWV5jq5rUU0mEIm0TDwtysGQTipQ8XeQcyBD/mhjJZi8YcK3EDNjdIPiA0QYpd6/w8LCApzzWFhcpHvBe2SWOAp5UcBnnh1MPXzn54YHxkS+lOfTe58Q0xDj4D/DiV3fd1RxK0WzWDTB8HmRc0uBUIOmpePvPY8U4Ko5bQZsa5/QUkYBtDYoyiIphDQnWsnOnYsfItb2c5UmtT1pqB3JPD0nepJMKkTkvA4kl1jw/C0M8muRatd1g6cPPoOVrZtTchXFm4NT3GpSYdsrVvDE//wago/Icgvt6NnrO5kKrNG7HsHzz2raFJPZVyRDyyGJkIJBCiedioQYI7Qz3BYk9KZ3DnXTwhiNpaWlNJ9J2mjOyWwb0M9wYRWSS6pO7W9tLGQGmTEWWV4hKgXXdlAxIi+rlJAqUMvF8wDYMOcoHHqxtRhMFgGFyEiXPPNyX0o1obWCArfNQkTb9RAeXFmWRA6PZEff9w7KMYLLbTRx76V1FynR9yqkRCUhTLz2zc+M0nrww6JWM3NH5o7RzfHDeh52S39bqAF0zZIPDBcGsm869sGSkPtACtu27ZLyCEBShR5rnNSJSlHkiWi4UFU8P4Kgfsp+WT3jCV7USiFgIL1Jzw2Re3+JGhEZbmxhGLaWqrQoCzKHi7JJ05wRy3NXPIakQ3gvIsP0LHUDkNAIqiZ06k+TiqhnDw9RbwzENKU1fE++MPMTbcVS2xiDnNEN+dshDDJZBYUoNubMnZCs2DkxZjIJvREYUhZjmYsyn5xR1uxSmyMwPEmtmLmBYXP9e/E00Uo2L+7z82JTFWX6O8EHqhw8mc7FEBGyIXFTAJQxpFboe/R9j9lshswSjyO4wDB4zw8MPeAihZ3NGl6I1YCsASjUU3jl1v+Bovh6Is0BGm37Q3j2yAWIyJHnNnFEpOKhc8kGaVL588Lg/SBblAmtMo9EkuWu75Oyomk7LGY2yYCJYc8IWPAInYdhue88EiZ/T5JKxwkTAG5JGW5jzFVuXBVKEi2VVYL5uaK1lloDfe+4Fan4/gvpdwcfSHrJKCFVhuAFzsMYItZaU7CTtEaIjIxooG1qyNBCpajFRXNJSCkhC7k2JlkCBOpw8eeSwAQ+5xZRDbPABGmTSlJM7QxzWPqOzfb470nLUbhDnlu1VLAOXCvF3i40m0sDMNAG6fmTtokxhsmdZC8gU6Hblg33jEncFsXHEwJLpvXgTKy1geqZD8DHpkCtAsvW667vEWLEoecPwxiNUzdvGlBOqWT455aXl/GqV5+BJ7/2DSbWYs15onvMIrOKuT5sPeB8IuDLMy88EZmuO7ggA0oHWnBBBV3fdfDeIc8LWBuwenQV3h1Czmt817WMulhqfcXUo4XwgfKc+FHe07gFQaZlU7U5rYumIFXLdPUoyqpK5NsYI2DEkZmSIuKOGAQZjxICI+uRi+Ph3kOM0DJiwJFEPiGgzE0SPkzXdUm40DZNQsRI5UhWA87PjVaAQlEWSVFGa4lP7x9q8EIpCssICpPEuSUbhaNS0lw1+psaZVVS4ccFTlHkNDpFK2jDv9cYWH6PpD4UjtkwQmZo/SuI0KLrBs8tay0VbvXLrPXT9z0yS+O0j7jVtMEm0psaZi9I+0f6fmJprCM5IyqlBlgZax9MAHyTcV9TUfVZmJz7jwTDygMii4BUcnIBM4HpGFKXREQWicDtAc/VLvX9PHMlaFEWZ1WByCXhMXow6xGYFQyhytclGQCYNMgojbDAyaSIJs3Se2ZFSK5TW0T6oTTMz6c5Dn3XwXUdbJ5zRSXtAp0gc8rsv6my9URO9o43MEsjCqRKjCAEyRgLXWkelMczMLSC2IPneZGuRVEWcD2137QZ2iXD9VT8PgQGV4hZTK+jwWAaW069H3n+9bk7TqFt/yv+59d/DNoskBTXe4RAyoSOORVGD/1tqVZoIi3LeBWhJ5TkZbTZ832Q5Tknun44d9KuCJ6TK7o/i6Ik+HxONQIMbZ3AcLDWw/0PRchaiEOCEniKdx8CIwoFYiRCa9/3bLDm0TRNaqGKvwvkvuUqW4japP4wc8gO3fOG30/gzVkbm9qaipE4rRSyskjJu1w7UZJ4TwaEtLAO9vKS1A7DLy0/K+RjkmU2JbqDgZ1C13YJ3aGrTIPUYiQiYtd16PuO7L8VtVmtIpJ3FDslRYu+qC/ICTsyFymmRE0bA6uQXKq1ERWVS/d5YDlrBBVjbUeGZ2VZQubhEEzfw5iQ+DeB5bHQfH14p8yyDE3TQpuIZ595Hs45LCwuAFDYsGEdYnrnYJkq81JiRJbn6PtuDsnhhBqKvTyQODTJn0MN6hDhnsnQw8jXxRgi0BulMJ3NEgpJpGqHDadsAEJEzUZu1mbYsGE9IzqDAlNa/daQWaC0LgQhkMm/CkDgBDUq4jT1zqOIEfXqFM57RseRuH/zHK2qqriwogLRdR2hH8yTkjVWpqGLTFxUN13bYTqdoppMWPoLTBi1BLesjZVhqj6t9xLCCUvIopCx/TDZmzcSatG6IbGqyhLikSV7H11Maut0bZsM6rz3KMuSz1+XrqcSFoFCSkQAURgO0nxqAUdUlWWuz9ACtRkVAd+Jjf4xJSq7d+/GTTfdhK985SuoqgpvfvOb8bu/+7s4++yz02t+9Ed/FHv27Fnzc7/4i7+IP/3TP02f79u3D1dddRVuv/12LC4u4sorr8Tu3bvTIvhiQzLKsiwSm74oFpJMVohG1EfskzpEhmtRlaPSjYLIEJ/36BgGN9JjzjKqzKB4nhD1FlUMiYWeWVKYOO9SbzUhClFklNQ3FHmoEP9CJBdVgUc9y3+l50uVMR2neKhEgFAEeR8gmFhrShxijHBdB68UJ0xxuGEAroYUwFUdEXiLlI0rAJOFijJ+dqXNsowHPIpSKcBGUJ81xtQaE2MouQZKKxiYAdUJkYzeegfN5LV0XUOA7wi2l35xXdcIPiTugQtiWoR0DvM8Jy6HMXAuoJ7VSfopXjvWWpLcBuobW2MRjWafBk1QZQz4L69+GAvV/08HRPsxIgz2Hfzv6H0G57qUpCmt0LYNVeW8adosI26Ed6Ahq4FbhVl6n3mepyGTXuzCwbwRRYTh5eVFNE2bFF5BhSRlpPt4MLyjal2n73leOOOcZTXXQQl5IQmm4YRnmETdisRYDfL6nJNe8RPq2o43/4BMWZqzwn9DXGw1Ez37ntpq0gaR85ZlFl3b8vh4RxWpoa8J7yPLc2TWYuZm3N4pSM6qud3pyB20KIo0YVzGyUuiKP8XtFRmcylu0U4WJ/DTmpMEVi54ee4I8h78mjAs3hoIbhjMFxm6l+eD9ne6gbrGwVpKmIjQDSjvyQNIgavwmJ7nGOh9yGYpxQYg84kMtELiSSQGt4uMNFHh5npBlUuEEPHM08/h8KEjMNbgySf2oVqYoCgKzGazOS4ebTK969Gxc60kp7IphkjE/9TqUENRQOdCWqEDhTcEmuTbdT2ACM/nMi/ylARoRWo1KIXFpUVUkxIxAtPZjIsyWkcCWL4rvlhziNX8OA4FhajZa0l1aaqwPItd0+L5557D8vISNLcZbWbhAqF2PnjZJtAHn+5JKUKJfAz4AORZjrYjOwXi8QjPxbLlABUNnWvgHPn5kEigSMN1CVGzMDxRvhd0kM+rEI+VQuKYyHR74jgNgxplPZHkk6bUO1JwyX3G19QyMt51XULDhFNHKC619gIT1yNi+huR15RMZQhe3IuHtQjGoGdvpaLMcaxxTJnBnj17sGvXLrzxjW+Ecw4f+tCHcMkll+Dhhx/GwsJCet273vUu/OZv/mb6fDKZpH9773H55ZdjZWUF//Iv/4KnnnoKP/uzP4ssy/A7v/M7x3Twk7KC0RpZUQwS2sBzTZSCMjwwyzmqPGjtTFBv5I1LG3LYFIIouHqh7LBHlpGXQlPXKKsSIQ726BqDFr3v+9Qzp0tHLpPW2mSEBdAwPYFwJQGwhiDavmtRFAU618OWtLEJCddHqlxc36N3PRYWlxKyQooRBUSDzjN50NqkOiJ76MA/T79nWLhjUk+1LRG8LM+Ocb2H88Q7KcsSIRLsLr4dMRCy0YvZkZyLjmdsMHdBAcklWGlyVpTZRkohVa4yL6TrWubFBD6+LMmL+75LyBcibYzeOX7QI4y4D8fILQy6RmVZpFaIgplrRwyKpKLIccaWv8NC9Y9Q6igAWodDUPjak1ej9wswxnO1wf49hohys1lNLaa2TShdjAzJa4JgfdMmcypp21HyRBVT2zYQkzqblVwt0/UTGb4kGDLDhBBDqmaGTZK5IzzjKsnrOQnvuQ2WZcT96dlttijyROTsux6LS4sQm/CkngmK3ZwnvCEQqte1LWSOTWRpCpEPCTUTib4wp5q6TaRMsgnI0v0ucs22bdHUNZyVydM9oWvMl/CsRgNE3ecRvONNke7NycIkmeS1bZPs4uW5ybIMNV+7nAuSLMvQw3F7FaS6COTgqfRQ3BhtoDOTpPhZlsFmSK1T17cghRsl7oL6OedQTSoIIiUon4zC6Pse3gXkRcZEyQhtkQoWKPHpoHYWGeDx9GOF1AoQzgRxj3iwHZ//6dEpDCecTd0kebFWmrlPju6BhUWQ6RwlPl3XAUomeQ/qIDGBFLWHSGGpddOxDNfAM8oWo/DjmFuWZSjKEk3TwhpqX4mihgpJkqkfPXIYSikixPIaNk+c79kTSlDqCIWmaVBVJYoiT0gnGBHU1uCUzZvRTKewFujaBlm+RIlNCPDepQQ0CEJjNLsNzxGFjUHbtpR4cFEMLoC7vofNC8xmNWIImCwsMEphESIlk5ZVX4KYUHGdJV8vabUQyimeNkR+t1XJkvxhbImQj+eJ8rPpDFme8VpOY2a6pknjaKT4cizld9weF4sAQUccnxNJiIRoHJm3SOM7CGXM8ow6DSDp//y4ixcbx5SofO5zn1vz+Q033IDNmzfj3nvvxUUXXZS+PplMsLKy8oK/4/Of/zwefvhh/OM//iO2bNmCH/iBH8Bv/dZv4f3vfz8+8pGPpA3zxQSN7TZQiqZqtgwFe09Dq4Q97kOAVfRWLVfoCuCKjDYB33VrOA+y6CuFpHMHyCZafEoik40IEqdsVciRMUY47+BDRAh0XMIlocWcSV+WeuNtXXOlRZVwVVVpNDk9VAGWDaOW16+jlk+kMfJQwMLChBdAD8/VsRyzVELkb8FWyGKPrIj74bjSrSYVImhSdJZZdH039OvZer+sCs7CDWAIip0nCWrDZmSB4OhsUqWWE7Wm2uRXI1VQ1/VwPS3ePS+GtJnTRp+x2qht26SEEaVVkIeXFRFIDydYxieznwhyzvIsmdzFGNj+nxxeV055GIsL/wClZpCbIQTga1+/Fs8cOQMRM3bRJda+1tTjlUVM5MfSN44AjFEwJmMUgyqjvnOJuNm1hA4sLS0Rt8P15LDsHFomcscYsXp0yhL1GW+IWVJqAZhr/4D66omnERPaJTJ64Wl459lsi0mP7CVhjUW+wCTeVEWzRDMEQKploxACtzoBTvp4IRIuDLdgjCHn2p6vNfXIe1ZDUEI/mVSo6xb1bJoIteKQ7L2DzXJWUhDBWxLbYWJzhAO1/7yn9lbXtqjrmsjHXIEKKbgoioRMyXR03zt4RpSk/56znX/PC7j3pCoJsUWWEcfI83BTuQcAsEkdOX/OTyHO8ywVSpyKQmu6vyeTBRRFiU5Ru6lnozlJbsUqIfAmL5O1Rb0UQW0/xa22vusQrUGe52jYbExkt03bomOy82RhQiNJSlL4SFuR2n4tb6yKE0NFya2OQBhUaJb5SZYRhL7vqbUAIvgKGte2TWqxaW5hU8u2B6JHCJyEcjKZZyRuKG2FalKl9+kY/WlbPldcrAgK6rqeEVeVrndZVahnNbWlvKNJ6VDIGY1p6hlc12FhaQmuJ9O/um7o2JRCCIMhpqg8hX+VFzmsNamdKxL0GCOampIUESYAQNd2g28V29d75vOJ+EP8g6Ig2IzKCHE9L3I2VAS3BTlBFLI1t1VJDUetxbYlFVszm0GG1tL+E5jrOHAbjR74boOCU6wqWNHaBUT2utLMuaTCw3BblZJ7awzq5jirfg4fPgwA2Lhx45qv/+Vf/iX+4i/+AisrK3jb296GD3/4wwlVueuuu3Deeedhy5Yt6fWXXnoprrrqKjz00EN4/etf/y1/p21bIhhxHDlyBADbtCvMQXA5oyfMQbB2aCfFAG0sMbs5S9RBnB37OdIg+ZdIxZWsvoMY/JAETdj+UuUrIUgx/EZummITrdLDEgKpOmRzGLgDZDxUlBXDkgWauk6bKlWYeSJh0UNK/iAaMviObv4Ef/LiDqVguYJQUCwxps899SWgNGvlwVBsRkhTURSwhhcW7tWK8RQhDYQKZNzXVVwt2czC5hltFNyGImdZcaNke2yWS0oV29S0kJZlyUoHj6Kkxb7lMe9t26aqSCp4ec8eSItAVhRESpQsKYKRhEAkTacQPVBPZyjLEqds6LDplD+H1pSkaAWECBw6/B4cmn0ftKFz1NQzxBhRVhWI/NZB/CAi3wtSlRD0Kz10l5IZazWsreCcw+LSIpxzqOs69a/n25cLCxNK5IznhNLAByEu8iI8Z8Ql7PxBQq7TyASEQSlWslV6WRbQhjZqYw3yLEPTNJjVHQqWpRLSQSgRGVFxvz8GYRknu/wsKxNykjOBsW27hE6IE7HINQFasF3fo57WyTDuuWefIzSAuWXeDRNmbTbMABLEjpJw4nQ1dZuee6WyoTIHHa6JVMwIgiqqm9WjR1M7VZ5NqZQR2PSOE+SyLKi9ZAxmszqREREiIjxvanRuLCMx0p8Xeaq0Dpq65Uq3YFQlR1EWaJqGUBtDi7+QbasJzfBxToYpGmgzKKKsGWbrpASeq3vx9vAhpHO7sLiQ5qbFiDlfkoi2aUiMYAj9k+MW7pkxBtmkIvS6d1BGI88y9Hy/SEJtyoJm/HQ9FhYmkPlEzWxG6AiGadkiT9da0zrO3ieSdEtiFILneyxiOpvBdeQ7NFlYQPABZVXR+sz3mTY6IS5aa9Rs5tbUNapJBecDFhaX0NU1poefR1FNQJRClaZZk7mcT+syDVAEe+0QopsxIZUUWBrLy8vwgTiMzvk0D0wbg8j3U7pOc+e2mlQIMaKpZxDZvYIMEWXybd0gKzIYbWh2FKhlg0C+NULMJ8RMU8EbAxf1gGFCrePWExit8Y6SNGBACCUJgkKy7xDFFVgMECMrFZnb5htSgMqzgXgcLfRDCLjmmmvwlre8Beeee276+k//9E/jjDPOwLZt23D//ffj/e9/Px555BHcdNNNAID9+/evSVIApM/379//gn9r9+7d+OhHP/otXycXRpXaH0VRJBKq3IghDNUGRM8NqmglCRF+SpYTxNi0bfI2SFbDzAaPCIncajML75AcQlNy0A8yLu89tAJ8cPB+qHgH/gZt9pJQFawuMDpSps+bFbHSscYgTfqDoojRBryYq8E3RtAHzo7FICzyzSLSUPHCqJtmMIEDD1uLJF2kBWcwEPKezhMUUOQF8qLgyssjeJWq5izPEbwj/XwEX6eBuR65Ly8Jp/ceeZanJND1njfWgs8dVZOpdQUkFEXuTbr+JslU551Fndjme1FMKSwUz2LllI9Bq0OJwElJ7Ntx4NB2BN8SZBkzTBYX+e9rzGZ1ciMWPo5IcPO8QFTsfxMis/aJWBcxjH0Q50upjIRJLwRSgotJOg/E1I+mxCSgnnXDkEqwlFvFuQRRo8hzTl6onaAVz/3hxUfaR+BrUFUVw8A6cR0g0G70Ca0sONno2p5USGGY8qu1TtJkUWYQ30PDFkSk7XsyUpssLCSfGfpZxQPy+G9zQTJdnWKyMIHJMuanOOggBm6KkRUZwIlkViamaApIKNysbpClAoI4DqJOEUhf1ChlNeFEukbbEc8hJcfCd7JDUizPjchrlaKsVySn9awGFBUYq12HqiIkse+Iq0R/u0+tSmMtnA/IeZ5OXdeJDAyEgdvC7aeFSYVe5p1xa5U2UiA6GWMRYHODtutgZuLTIXQ3hclkAuccyskEvaAiGRFl67pPqAxV9z5ZEtCmyLw4vg4dI2OG7+G+d4xqDzyKyLPNxDW1banF27YtQtOnawRuVVubpba8ArAwqeB5vet7MvScTWeYLEwgPlM9c+iguJUdioHfoTV82yJqA5PniMFjdXVKCSvzFWNk/g90Um5prTGbzeCdY+QXiJGKYPE1mfF0d6mZSLpNyUIfAnL+PdLmSohKNzwT3ntWeKnkYqu4OPQ+oG6bhB5b9iYiNB7cuiM/nMOHDiMvChhj4XqHtmuTSaUCUBbl3Bo4IHViaidtRVlfpXAf1l4ZTkvJZJbnad2gQZVzRKYXGd9xorJr1y48+OCDuPPOO9d8/d3vfnf693nnnYetW7fi4osvxmOPPYbXvOY139Hf+uAHP4hf/dVfTZ8fOXIEr3zlKyFvuGDfg6Zp0mbl/SBLBAZSJ+UkEYghSetks/N+YNBrO2yColNXkTgwJO20c+614GpAxoWTlKxlmLVnBjb17sk9tCwKmEyMtbh65rkQJrP0M0J0UjK8MIIoC1RJlGWJtqNK1RoyYVJqgFh7tqHW2qb3IBu2VCQxBvQdoS4hElxcTibDdFOWEfedA0CbVtN0KMuCIXA6l97T+RfIkMiQtAl0TUNkK37Q24auRVHm0Eqj9Y77vJSM9F2PDl2CyrvkdzE46orSiQywCDnyLEOXxNP1hD7lbN8u14oq/BbOEaFuqTyAV277Q1j7LKStrBTQtP8NX/3629F1BGNGTj6buk5VXQwBUXMCkOekhlBAkefpOMqyBECL9dLyErIsw2w6g5pTaeUsI8Vcu0GmN4svibQxpL0oQ82oaFeJN+DZ0l3ORZbnQAiMNGoimjIxelJVzKtpGOXJOOlRKAubEEB6hiJVXsyFiL0jngknvzIBWwZuei/eIgohSmuGW64gZGxQ2QUEJnQvLi7gyOGjMMyvKblaN4Zm82gt80vYDVjNj7GYl4drABZFSWqObjZjtZml86H1sCZwdby4uAgoavG2TcMJqeWePcHe1WSCejajTbyquA05jOXQsqFpkxb3EDy1TJTCdDqF2B4453iYX0hJSV6QDHVhYQExBKxOp8i0TSpGx2gtFM/cUmSOZjQN99SGELc0aI8LG5l+K20DQafKsiTydy8IiGUuyBFUkwlPeCbOxOFDh5HleUKGuq7HrK1TkqcNIXIA0ExrRF4bsjxjJ2uPyJ5HRUFrpGUuHamrKLnIMlKotW1LyY5G4mEJ6VZa88KR0FFz24U4UVVV4LlnnsfRI6vQmlAW8H3kfYA4ludFgaIsEbxnIzi679qmQRYjDj9/CEvLS6gmE0ApNHWTxpp4T22UIs+gywI+BB4oy7JdRl6zLMPqdJoSaud9sidYWlqkAbNty61/jzwvBhUhJ9mElIDbniSFt7zOREYIBe12LiDLTGp3SfHQdT2WlpdIueQ6ABELiwvILPG0hJsm5O6cbT1I1DEYv/GKk1pba6wdAhvQgfh6ZI6XkatykBldxxbfUaJy9dVX49Of/jS+8IUv4LTTTvs/vnb79u0AgEcffRSvec1rsLKygnvuuWfNaw4cOAAA/ymvpSiKF5Q0kdKDLoL09sT5EEqRDDNV13Thqe1joAy1cETOljPJivrqFoEXa+ERqCDTY4Fm1kArMsUKIWC6epQcBo1GRKBmjFLIeeowEfsGfwxjyM/FNV1S0BijmSC7iJIN36arU2Kfe4+ios2u7VqqigBWqMSkhKG+NWvmoaENEWLFMhwAt3vIw0PmBAm51tqM4eWWP2dejzUInqo/YoQTca3rZDInVWhZLje1ZoTDI/qQFDVitS+VcPBkUEeQZYG2bVDzIpAm2wLUr28bFGWZ+vp118EDyPMCWU7TVXtH3AfK/gcVEYBUFfDFQFbkyAvqW69s3gtrp8KrTXFo9ccxW6WN2FSTdD2XlpfQNg1tGl1PRGZjyFMnBPR9i7ZpU0tPqgxrDOrZDEqJP4hGPZvC6AENErlt35EfTFVVCYrvujZVuWm2CCKqMkdRLqPrOlYEGEFwicOlFZyPcJ0MnrOJpZ82sXQfUrWa8XRf3ztyBZbedGrz0CKrMwMi9Q/3k3jFSGtTNj/HgwyNNemec2x41jP3yHuPejZjLgltRMvLi+hah+l0SomctfBdl8jFRNajtpLWdL8YazGdzga1l6EhgGIulto0AEQGL1wYatn5OZKygzYWhw8fIeLiJEM1maDrOtS8GVtGV4IX+4FhEjmtDTx8cU5yLkiPDMJz3qOsKkJzQe0IramoCWHgmAFULBEPhC32oxQoAb0bNvC8oGq2dz3LziMZDtZNQvMoCQeqhUmaUC2zyLwPOPzc8xjauhqKUT2liWSZ8/nv2GlWa81tQnr2q6rCbFajnk6J+JvnqJsGfUdJvet7lGWe2vUbN27AdDpNhZnlVqC0zsQdW4rDpmnQdy2861FVE773qShbt34J3ns8++zztEkvLSL1Z8GtuBjQpzXPoO89+rbhtrvBZHEJxmZ4/tnnELzDhk2baC1uasjYD0KPyCgN3BYH8+uOHDkCI+ZzTH42lkjMlgnIYqRpeEAjDfPzyeSSFHW08JNaaRjM6LxH03U88Z2SPmtlTwjJwsJyqz2EgMlkktatjCXEC0sLPCLBwPmQEOBhWKHMkRp8uaBofAQhSJGnRMuEdNoLxKVYszmgFcO+Y4hjSlRijPjlX/5l3Hzzzbjjjjtw5plnftuf2bt3LwBg69atAIAdO3bgt3/7t3Hw4EFs3rwZAHDLLbdgeXkZ55xzzjEdfN938KFgpQ2TkxIBLKITHgVnnDKTwNBTTQ+CJWloPZuhmkwwyLpoHtACKwak1XD48BQAoIzBdDqDzS0mixP0XcdusBpVVWI6JZ4DKTqIO1NxlRA50/Cc5RprkBcF8phDYZAn2pwmmYpkmpwXefAV9/oBSmhI+mbT3BCRPyv2QpGMWnHfua6boT0WhaAX0uZijCXiXYzwHcmCgyNot2eCWpbnUMokma9UBEQQpIyfpqXSQmqMRtBhaA/EyJubowcxFqk1JVBjXddQKiY1AGJENZnAZhkWFhdg+Tp0XZsGcIlcT0iyUICxYCM6suN2nAScsfVWLC/8A5RqEiwLAI89/v/i+VmGvm+QM5yrQNesEbdercnjQstmL46wvEnzXClaVGgTIcQErJDBIJXMMiIvNw2I3RHR1S3EGyWKF4X3mE6niTuhuaLpmXMgCAUb55P8WcfUVqLnhpQzzhOfw2YWE27z1HUNa2wahhcVXT/DC03D/IQQQuIxQSGRRavJAtqWiOkRKnleZKlg4HknDF9H4RkUeULQhOC+YeN61LMaR48cZbI2EY2JaM0tS0VyVZeGkBLfxdfEq1B8nmSDF16DsRrBDwMxF4sCbdNi9ehqei5mq6tYWF4iMuW05oIpT8RxazPaGGNIqkHigGSAoKCMtqiMk5johwSOK3cDIq8XZUFyX3h4lkYTgslkfpbnyxpF5o8ytwroWWlDRHZ6zrq25QROpzUAIKmu0eSUG5h0HEGD/QpOKouyIBfenCwLnPM87oCQZsuIgjGabQvomRYUgKSwHtNZgzwvuPVMDq2TxUVCJoyB5mNN6Hbwg7EmJ5GK1wNS1ZBjcl4U0DxuQ1CsXnytvMcRVthZa1GWJT1jeZ5I1YpvGO+pFa5Z2eVdj2phwu2/HkWRwViL5Q0b0DYNFRCTKpF/Z7MaXduhrEriffnAqkB2ZOXkEC5icWkRs2nNJHZqEdd1A2sMypKGFBLvScF7BWVFaiwDAUVOrKAVErorHMRAXAKaFcUFoqBokqBLcWJ47W8YpeyntK433B7TiU9nWeBAP5tlGWxZslKQTQYVCKlVNHOPWoEdPSMLE+a/CUK+ekz7PHCMicquXbvwiU98Ap/61KewtLSUOCXr1q1DVVV47LHH8IlPfAJvfetbccopp+D+++/Hr/zKr+Ciiy7C+eefDwC45JJLcM455+BnfuZn8Hu/93vYv38/fv3Xfx27du160UYw0geODA0659F1bWI2G8V+EEEMd0SRIQPu2NWSFwof6AF6/tlnESMpaATGarsOZVlhVs+I3a/5qmiCXfumQ5EVqOsZvI8oKyLACataa3IQjdxfJevtwT4/sxaZyhG7FkYptE2X4HKlTfJkKcuc/h01dNTJNI3aPQpt12E2myXoOd2IYX5ooE8VlbUZXO8TC917uoknTNwEOjqvLcnlyBWU2jPaGrR9R4sh8xXIMChy3ztHzgZo4uEghDqaZ1OmBCn2dC1JIRVSBk+D4hwQQ+r3RlCi1rYNtDZ49plnuHqijaWpZwizmFoPvWMIVltCsRIngwalrWz4PHT8B0ynU8wBTnj+8P+Dg4dPQ4gdqZ5cBxm3JZyXCKCePU8PqjaoqipVd2s8O6is4raYSVNTQwRcSx4ViIOqRtoFbUtulbOaODCZteg7Jm7zPdi0beIECCJjbbamZQaQt4NhLoaMECjyHL1zWJiUaOo+tStjCGhdSzLmpklOrZ4N/EIMSboYQ0EmdIE8b7z3mM1mxM1w/Zxnik1W51opVAsljM3wzNMHmfsCaCYPdm2H9RvWw3lPlag25DStqb9ujMHq6iqgFYqWNp5ZXSeEKblf+kGq2XUt8qwgMqiZm22S/k3XXnE2Kso7KGC6OqVEy1rMZlP0fTfnkspcnzhwusQUkaT3OiFabdemQoASB5VQloRsMrH2yOFVqjwzi2pSoZ7NECK1hOq6TtwvQWGlJSQOpmKDTmsHbeDWGDJwxCA9l5/x3qd7hdQpM+J/eKr6iyInBU/Xoa49b0wD/tg2NRFUmRDath0rU2gdUjGg6yITqluUZYX2kIgjFKEpiDhy+CiKkngcw3TgxJZAw0WbrNltW6eWiUzKJoIotV984AGb3HYOLRP7AaAFrO3gXY8s5+S+I4n04sIEFbc4jx7x6HsPX9fIrEFZlejaHgefOoCISMhsliMgYnW6ChmqmUzpHJ//LEM9m4JGTvAIjL5FXTssLi0BACOAdB6FQ2a56AmRrim1C4n3KC7hjtVf4qGUFKdHj8Cy67WS/1h96hyp7erZDDbLIXYKC4sLqZ0l4hL5nT49Tza1NOm1PFaGic3tlIp5beg9PPfcsyiLMsm8ybV82MdfVMRjCL4zv+Xj+uuvjzHGuG/fvnjRRRfFjRs3xqIo4llnnRXf9773xcOHD6/5PU888US87LLLYlVVcdOmTfHaa6+Nfd+/6ON48skn/9NjGT/Gj/Fj/Bg/xo/x46X98eSTT77oPV9xAnJSRQgBjzzyCM455xw8+eSTWF5ePtGH9LILITSP5//ExXgNTnyM1+DEx3gNTnwcyzWIMeLo0aPYtm1b4ol9uzgpZ/1orfGKV7wCALC8vDzenCcwxvN/4mO8Bic+xmtw4mO8Bic+Xuw1WLdu3TH93mOn344xxhhjjDHGGGMcpxgTlTHGGGOMMcYY4yUbJ22iUhQFrrvuuu9oZPQY//cxnv8TH+M1OPExXoMTH+M1OPHx3b4GJyWZdowxxhhjjDHGeHnESYuojDHGGGOMMcYY3/sxJipjjDHGGGOMMcZLNsZEZYwxxhhjjDHGeMnGmKiMMcYYY4wxxhgv2RgTlTHGGGOMMcYY4yUbJ2Wi8id/8id41atehbIssX37dtxzzz0n+pC+Z+ILX/gC3va2t2Hbtm1QSuGTn/zkmu/HGPEbv/Eb2Lp1K6qqws6dO/HVr351zWuee+45XHHFFVheXsb69evxC7/wCzRIboxvG7t378Yb3/hGLC0tYfPmzfiJn/gJPPLII2te0zQNdu3ahVNOOQWLi4v4qZ/6KRw4cGDNa/bt24fLL78ck8kEmzdvxvve974103PH+M/j4x//OM4///zksrljxw589rOfTd8fz//xj4997GNQSuGaa65JXxuvw3c3PvKRj0Aptebjda97Xfr+cT3/L3oq0EskbrzxxpjnefzzP//z+NBDD8V3vetdcf369fHAgQMn+tC+J+Izn/lM/LVf+7V40003RQDx5ptvXvP9j33sY3HdunXxk5/8ZPy3f/u3+Pa3vz2eeeaZsa7r9Jof+7EfixdccEH84he/GP/pn/4pnnXWWfGd73zncX4nJ2dceuml8frrr48PPvhg3Lt3b3zrW98aTz/99Li6uppe8573vCe+8pWvjLfeemv88pe/HH/oh34ovvnNb07fd87Fc889N+7cuTPed9998TOf+UzctGlT/OAHP3gi3tJJF3/3d38X//7v/z7+x3/8R3zkkUfihz70oZhlWXzwwQdjjOP5P95xzz33xFe96lXx/PPPj+9973vT18fr8N2N6667Ln7/939/fOqpp9LH008/nb5/PM//SZeovOlNb4q7du1Kn3vv47Zt2+Lu3btP4FF9b8Y3JyohhLiyshJ///d/P33t0KFDsSiK+Fd/9VcxxhgffvjhCCB+6UtfSq/57Gc/G5VS8Rvf+MZxO/bvlTh48GAEEPfs2RNjpPOdZVn8m7/5m/Saf//3f48A4l133RVjpGRTax3379+fXvPxj388Li8vx7Ztj+8b+B6JDRs2xD/7sz8bz/9xjqNHj8bXvva18ZZbbok/8iM/khKV8Tp89+O6666LF1xwwQt+73if/5Oq9dN1He69917s3LkzfU1rjZ07d+Kuu+46gUf28ojHH38c+/fvX3P+161bh+3bt6fzf9ddd2H9+vV4wxvekF6zc+dOaK1x9913H/djPtnj8OHDAICNGzcCAO699170fb/mGrzuda/D6aefvuYanHfeediyZUt6zaWXXoojR47goYceOo5Hf/KH9x433ngjptMpduzYMZ7/4xy7du3C5ZdfvuZ8A+NzcLziq1/9KrZt24ZXv/rVuOKKK7Bv3z4Ax//8n1TTk5955hl479e8cQDYsmULvvKVr5ygo3r5xP79+wHgBc+/fG///v3YvHnzmu9ba7Fx48b0mjFeXIQQcM011+Atb3kLzj33XAB0fvM8x/r169e89puvwQtdI/neGN8+HnjgAezYsQNN02BxcRE333wzzjnnHOzdu3c8/8cpbrzxRvzrv/4rvvSlL33L98bn4Lsf27dvxw033ICzzz4bTz31FD760Y/ih3/4h/Hggw8e9/N/UiUqY4zxcopdu3bhwQcfxJ133nmiD+VlF2effTb27t2Lw4cP42//9m9x5ZVXYs+ePSf6sF428eSTT+K9730vbrnlFpRleaIP52UZl112Wfr3+eefj+3bt+OMM87AX//1X6OqquN6LCdV62fTpk0wxnwLs/jAgQNYWVk5QUf18gk5x/+n87+ysoKDBw+u+b5zDs8999x4jY4hrr76anz605/G7bffjtNOOy19fWVlBV3X4dChQ2te/83X4IWukXxvjG8feZ7jrLPOwoUXXojdu3fjggsuwB/+4R+O5/84xb333ouDBw/iB3/wB2GthbUWe/bswR/90R/BWostW7aM1+E4x/r16/F93/d9ePTRR4/7c3BSJSp5nuPCCy/Erbfemr4WQsCtt96KHTt2nMAje3nEmWeeiZWVlTXn/8iRI7j77rvT+d+xYwcOHTqEe++9N73mtttuQwgB27dvP+7HfLJFjBFXX301br75Ztx2220488wz13z/wgsvRJZla67BI488gn379q25Bg888MCahPGWW27B8vIyzjnnnOPzRr7HIoSAtm3H83+c4uKLL8YDDzyAvXv3po83vOENuOKKK9K/x+twfGN1dRWPPfYYtm7devyfg2OmAp/guPHGG2NRFPGGG26IDz/8cHz3u98d169fv4ZZPMZ3HkePHo333XdfvO+++yKA+Ad/8Afxvvvui1/72tdijCRPXr9+ffzUpz4V77///vjjP/7jLyhPfv3rXx/vvvvueOedd8bXvva1ozz5RcZVV10V161bF++44441ssDZbJZe8573vCeefvrp8bbbbotf/vKX444dO+KOHTvS90UWeMkll8S9e/fGz33uc/HUU08dZZkvMj7wgQ/EPXv2xMcffzzef//98QMf+EBUSsXPf/7zMcbx/J+omFf9xDheh+92XHvttfGOO+6Ijz/+ePznf/7nuHPnzrhp06Z48ODBGOPxPf8nXaISY4x//Md/HE8//fSY53l805veFL/4xS+e6EP6nonbb789AviWjyuvvDLGSBLlD3/4w3HLli2xKIp48cUXx0ceeWTN73j22WfjO9/5zri4uBiXl5fjz/3cz8WjR4+egHdz8sULnXsA8frrr0+vqes6/tIv/VLcsGFDnEwm8Sd/8ifjU089teb3PPHEE/Gyyy6LVVXFTZs2xWuvvTb2fX+c383JGT//8z8fzzjjjJjneTz11FPjxRdfnJKUGMfzf6LimxOV8Tp8d+Md73hH3Lp1a8zzPL7iFa+I73jHO+Kjjz6avn88z7+KMcbvGAsaY4wxxhhjjDHG+C7GScVRGWOMMcYYY4wxXl4xJipjjDHGGGOMMcZLNsZEZYwxxhhjjDHGeMnGmKiMMcYYY4wxxhgv2RgTlTHGGGOMMcYY4yUbY6IyxhhjjDHGGGO8ZGNMVMYYY4wxxhhjjJdsjInKGGOMMcYYY4zxko0xURljjDHGGGOMMV6yMSYqY4wxxhhjjDHGSzbGRGWMMcYYY4wxxnjJxv8Gm5lTvHyFQM0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from metadrive.envs.metadrive_env import MetaDriveEnv\n", + "from metadrive.obs.state_obs import LidarStateObservation\n", + "from metadrive.component.sensors.rgb_camera import RGBCamera\n", + "import os\n", + "test_doc = os.getenv('TEST_DOC')\n", + "sensor_size = (84, 60) if test_doc else (200, 100)\n", + "\n", + "env = MetaDriveEnv(config=dict(\n", + " use_render=False,\n", + " agent_observation=LidarStateObservation,\n", + " image_observation=True,\n", + " norm_pixel=False,\n", + " sensors=dict(rgb_camera=(RGBCamera, *sensor_size)),\n", + "))\n", + "\n", + "obs, info = env.reset()\n", + "\n", + "print(\"Observation shape: \", obs.shape)\n", + "\n", + "image = env.engine.get_sensor(\"rgb_camera\").perceive(to_float=False)\n", + "image = image[..., [2, 1, 0]]\n", + "\n", + "if not test_doc:\n", + " import matplotlib.pyplot as plt\n", + " plt.imshow(image)\n", + " plt.show()" + ] } ], "metadata": { diff --git a/documentation/source/sensors.ipynb b/documentation/source/sensors.ipynb index cf6a75534..0e0089353 100644 --- a/documentation/source/sensors.ipynb +++ b/documentation/source/sensors.ipynb @@ -26,12 +26,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "d07cb731-8a81-4fbe-827e-1ca2d4b150e8", "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available sensors are: dict_keys(['lidar', 'side_detector', 'lane_line_detector'])\n" + ] + } + ], "source": [ "from metadrive.envs.base_env import BaseEnv\n", "\n", @@ -70,14 +78,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "425d66f9-118f-4b91-a343-ef1385281ba8", "metadata": { "tags": [ "skip_execution" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available sensors are: dict_keys(['lidar', 'side_detector', 'lane_line_detector', 'rgb'])\n" + ] + } + ], "source": [ "from metadrive.envs.base_env import BaseEnv\n", "from metadrive.component.sensors.rgb_camera import RGBCamera\n", @@ -102,14 +118,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "1dd842e2-c89f-4715-af17-4a2d00f7bdd9", "metadata": { "tags": [ "skip_execution" ] }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAACACAIAAABr1yBdAAAgAElEQVR4AYTBXY9t6Xrf5d//fsaYs2qtftuOjUDmM4IQSiw4QJwhYhC2kkgRB0nwTiCyHMSXAskh2i/dvapmzTGe+8cYs9bq7r1zwHXlv/gf/yUQkM8C8jPlQYgKQgCVh1aIfBEDBI2iBpMAIpIAAZGfhFgcWvEERCaIEWrQc60sI5c1I1WI2dvZ1NLDtEy5Tbe9G1qiyFK5Xvjqsv7ph/zprz5ey3UZozJG5USIona30rL3nG23l5F1qVQtI2NUUiMkQBJ+ooACclJACMhBCCc5iPwR5SQnFfABAnhCBVRAEfABQgA5CQH5QkSUhJOAIs52b9HutOz27N6bH17m3/8wf/PaP9x2k7KVBBKgu0eVCiQBVBIBDUEBTcIvKQmHAAlgRCqpcBkFuW27hHfhslSk7Qnr4Nt1+XjluqQqo3Jdxlpu7X1Pd69r7d1vW6/rsJ17UhnpUUEhU6a57xL/5MP6dCH/5T/+VwnKL6lJeKdJRPnM5sEDRCWRiAhBCViNUUQxEBLwAPIgxSFgkyAHbRAqXKoKxlLgt9fxJx+X2zafL4uJds/ZLTXGSJoa+fS6/9+/f5HlNhX2fTanNB/W+tOvlj//7vK0jA/X8XRdUqlEet+1nXLf597uu9ucVJ7X8bSMdUlVRmWM1CGphJAE+YmIqByUB/kiKCAgPwufyWcqDz4AngL4GW1r8IGDEA5ieBDDSQERT5yEttvqpqcTlT5Ia9vdue/1//5w//sf9x830YCQcFArkVM4CYKAVPjM8EeEcAgISVDeBQJERZIoKQIhhMRl5ONS1+LjtS5LjZG1uCysS9039/Zw25n2dRnb7G66ndbUbXcdVYOteX3bv7qOj0+jYv6rv/zfVAIkQPhMCCLyhYKCKA8qKoEAETAqYDWEBxVISAIo3R5C2RCToEIgOpYUKCm+eRrfPo3bvn9Yl++el2VdylYaW+7Tbmd3TytVlU9v29683vffvvZt0nNOmKRgScX+7nkslT/7ev0HX12/+2pdKtLd7tOX2/7D63afLMXzdXm61KUyRo2lRqhTKoxKKMIhhCAHEXzg5IGfCMghKgEEQgJyUIgBPOABUFABaRsz2xO2djcikpMth4QHkVO1Imh7oM3U2XY7m4PaByMJ7Pb3t/mbl/7h3m8z29bhlAAKAfksIGAIIUQOHsIvhC8CJPxCaEUCgapKWEaqsk855NBtf3tZvnkeXz/VWiyVEdaRdYxd7rO3fX6699657267VbXPNpHs7cTES+WpqmXq1uS//p//RjkkvFMSlFMEPHBSEeWgJCigICQoEOWUBhQJ4aAmKA9RA6i4jCoCCpVclnz3vCzF2z7/7KuL+nrvbz8sz5fF7lG5LKMq0vfNbe+3bd73JjXtOVVuc/7+ZX+b9Xafm/02RZBDR62R/k8/rn/+3XJZxsfnRbE9kKhVuay1jiqoSlUOo5LUKBIq4QshQTkJKjYHAZUHFdDwM/kiBBTkpICABm0PaKstrXY3HrpRA0k8EB7CIfKggtrSzdSG7myzt9lQauvWts7ObH/3uv/+5tsuosgpxU8C8qAkGN5FDoKQ8AuGdyWHJPwkaF8qT0td1uU+Z4ugeRo+r0WoYsSvn5avr+MycqgyBN3lbZu/v/WPb9OMvZ3TvZ2diULBKNZRiKSbVmP+4f/yaw8QonIKoHKIBDxwEBDlJ574Y4lKBHLgpHgAkYdBDoJ0wjWVQu3mutavPtSvPqzLMrr7be/XfT6N+u55/XBdqqrbU3eD0sqD8rbtr/d+ue+3nU/3+buXbe9Mss/uJuAB0PVS//k346uny7bN++zAV0+Xr1Y+Pi+XZSxLDhUC+ayqzEMRQBAFFRURD4ASMMhBFFABFZCDOZAIKQ7hM3mYjdpt2xxUmKJT7VawhWiAIO+SEBDiARtm0624Nfvu3uzNPnvOJrXrfefTfSLT/Lh526ZNeMhBTiEip/BOOSTQ4V04hPAgkqAkkVNADlUxVHEd+biypPYGIf1hzXdPI2PYVrEuGXGpVAVIioO+bP39bSa1xJHcp/etm/ywuTVqwtSto1byvOap8jSSv/jrf62ASiuIUUBIFQQFVEBFQIUkiAfeBQ+oSSyKjMElJ7BJ6z5bIcEDhFFJLFNFFYPU4rXqm6faOvsk7FV5Xpfn6/phzah0Wwkwu1tnmwO5b9unt75NX7b5tvm727xPtbsRNCpqXFJ/8mGsle9f92WMy8LTmusyPl7z1XU8reOy1FJjDKoSKkUVEAgIKHa3tkLsnrP3aStQSVWqeOcBbUjwQCtIxghV5B2QB0wCtKdu2xMqqFNbUBCiICpIwkMSvlAks9He2/v0bfdt69vWt3s3NWGfvU1uM/dtb5XYEBAh4V0IkQeRU8JnIcrPghqSIJ8JBCRQCWAQnwZfX5brkhFSLMUIlUiQMfr5UgPWdYzEzja7QXu2GMJauU/+w+t8ubtUNkWWkXWpEd82X+5eF65rngYh+Ud/9WuS8Jkn3imgmKQgkrCroIg2INAcwhcCCgSqslQKRh2soLS0pspm33d1VHVliQFSpK9L0dgmJS7x+bJ8dc23H5YxSi0o0rJ17+1tm7f7XlX77tvk97f9h7d+23qqtPIQQIv4VPnmw/JhYWvm3uqysKQq/c2H9Vcf1utljGQZGSOVkZCQRAFbu+3p7G6xo932NnufiqMyiqoSgTTiCQkhQCukwkiNMSpJJUACkgSSoBwSpLu120Pw0A2e0CQQeUiAcLBbIC092dute++83ufr1q/3fr33bbpNWmbTZLYnMCQcGgKRd5HWSjoESEo5BJskyin8RIy8E0KAJMtSKQdcBh+WQhvGyCjWQtPTGgGvS11GlmJdsu+zidQ+uw2hQiX7Nj/t+f7eU9dRS6hwWbIUaaV2MqcB7I3kH/3Vr/lCQES+sCEgCS1i5YAC2gHloJzkZ8q7xEqEJVlHjUHCNdXtrbWdvYeRpWIPDJXYGAIulZEK/WffXJ/WuoysI6mEdLv1gd2+b32799YHNvnxdX/Z5zYzzexWpidg0jiW9LdP48+/vQzSLbDbOfnx6fLhkutIVY3KYRmpCgTQ7lYzu7c5ZzObuU8kRXcrrUIlIxG7m5CEhwA5kBhzqGRUqioJIYSfSGMrsIxUIoQQEP8QCRACNLYC2i090+19et/93aftbeZt7tO87b3P7LpNJ+UBUEH+QEBOagxIIp8FBDmFPyYEIgchECBZijGqgHioqmkHRqWSQV/GIl4qlzXrcCRLZam0zGZr9xY7CbJ3aHdym+zdax1YK5Dbfb9cljn7be9JhClbk7/461/zoBwEhOCJEN4FUAEB5WR4F0BQaEiAMDkFMOEgIAnL8LqM6xht3/dOAkSTAq6DVCo+LTXCuozQoZaKaQj0NMsYvc97u8+ebZP7tDtgt7O75XVnm92apGXbu3XCnLkM/+yr8c1lJH29rHYvqaVYRtaRyzrWkao8UDmBiqLOdu++727bfNvmvZ3NtjfJZbAUAUnoUZWwVFUCikmEKkaoFKdAwDokQQkgzu59qozKZamqnCAJAUUBQQgBPCBm7xa6e5tue++z9+a28e8/7T+++dbKw7TJlO4WKhHQVCA+JEEBoRIPEDBRVCAJGJB3AdQkKkn4LBIgIRwSEhQDREGrEliKUYQs8brkulQlbaNJbc023YzdqVSBmU1glCOMUZfB28Ztz9s+K5i6zW45BPIX/+TXEQUihIfEFiQJtAJyCqByspOg8qCkoEAOkUPCQ0QeFJUQUqFwjKwDSCKw69MYa3hea+u2bSN0u4za7fs+K0uVyMs2b1sXo5kNo/K0DKQgxaf7nIK0XaltdiBJtyHfPfOnX62ggD4vyzcfLuugUqNCUTlAKAKoyOzeu/d2393m3Pbep697v93nbKrydCmgZye5DNZ1lHYCDBijqkyoqgFVFWrvfr33tpuycF3GqPCwdd+3lgoWfVlrXUaSIoQQbCGBgEBaZvc+UVtDtbxt8+W+/fDm97dpc5t9b/ZpkwZFozMJkAPIg6bCQwhEPCQB1NYkahKgkYcY/v8EgqkgJmJLER6MRVUQKo6QWrBFJGQCYqVgVMCQKtdiIZXs3T9ujPBxzZLcdm7drxMlkMN/80//jcgXSuQ/EiOoBJB3Eg7yEw8xpBIQSCgCGFoD3RxEpAUiVjHCwMtSKS7FZYTw6TbfOsp9n1sjVkCvy1IVuwO7bNMpapGRLCPgugTYtiTce84m2G1CVcTnZfzqyvN1uS71PPjwtFzWkSIWkJPkQOQnjfvsbZv3vW9v+w+3mcoobrtlqrwslWTvHmQZXi6XKnq6zzlgjIxRFSAHdMo+fdvmbIFlZF3G0xLJPn3d9vu9n65ZRyAJEKR1KqEosKXbw5TdvLzNfYqpqn2yd1eQed/7bc/vb/u9mWZvW6nEREUgCZ8JSUAIh0BVJUxRsFuScAgqSSuHMESDsTwARfhDgYSDYNIYwrsQeVeGEBCCJELCQZAsYSQpR6roUVkqI1yKtTIqhPvuy9Y/bt66lILW/Lf/7N8oPwsRFUiihhAQMQmgAoqAJFFElAAiB4tDyCDyEFAelIMgKCqQpJLYozKiSbcKYbZTZjvbQ0jlgJgQQJIogpoi8LTUbJTDfTYwZ89wqTwt4+unfHWttj8s4zr4eF2WMZKIsxnFqHBIKlQVqBy67Xaf3e3Lvd/2OVKmL2MkoFWsY4AhKQTM3KccrEBOYJGW2d577rsk15HLOkI1zkNPEKIg0JJupuzdt7utUyBLmPCyt2a2963vzdt0tsBStc+WbO3eTm0DKF1UU0E5yGcJSE6AFUIAYVT2VgpUwMlBpSqRQwgHmYUPVcVDNQkhKuEgGE6SgJAYwqlEPks4COQBKpQkVBhJQcIyXKoqdvdkvG3em4atFQKBquS/+2f/hwg0fyAgD4pAQMJBPjOoQORdK1+IyiGGU4hiEkIIrdIKCHISMSCSAySxJWiH8kSHL0wCBtdRVdhdqQlzWmLSZHa3JrQiI1kWv13H19fUyFoFWcslGSNKkmXJOqjUGBUkCaeEVhshEaonYhXhneSEStSGbty97fNt25EK61pBk9nO5u3er7vid0+1jByu61IotIdu39FN675z6/79rW9379PdvE0Dl0qTl21OUROmhFNLNwqYVCMiBASCnAKVqJBwqiIIAZKMyqUItc2exgO2CoEJciohHCYkRBRCIJJEJeEh/JGAMyThDyUEkvAuDAkhVACTdLM3KocgQggIASFUAuS//+f/FlBaAXnQJEJCkQIfIK0dQgCxlT8kHiBtAyEdQ4AQROUUJCAm8QAeIEBojVEOEZVf6KgkVIWHJGulQiVgYBl09z5JFfq2d1Pg7EaeLzwvPK0L5m2fkA+XcRkMWJdcRtaRURmVBORQlaokQoCcgPBFVZJSeVCxW7rdJ3v3Nvs3P95vWwcSqzI72+ytBSo8L3UdtY66ro5lVGoJItgKqN1su2/T+/S2zU93f7zzutkwpxwq23Tv5kFNis+CJhxaTtqVAyhBOYSQgiUJCK0NBOQwkhhClEoloqJu4RApeRDCSQiQoPwkQTkkEQTDu4TwLnIwkAABknCyiEB4p3bTHSDhXULCIeEhCYf8D//rvxWaCIoYTgJSgBwMhAChPSDGAIInAg2CIA6VU4dDA4ImUT6TkwesICJKgiAHgZYHsRKgOclBQgitmERNkCQCg1QQklQIis6sg62zz1mVSwWocBm5DC7rWCvXhaclqYQIhaMyKlU5VCUhqST8QhKVz3yg29k9Z+/Nbe/71re3/XX6uvfL1vueKpYi4b73ZdR1qTHyYeHjpZ7XhbJi5YFg9u6X+/zd63bfkXrZ+vtbvzXbpDWchFZghkNJJSEiQggohy4OyrsAAoZUOCRpUIskHMIpJw4hKgEhBxQwQRGUkwJJFEFNSKJCgCSNhAjhkANMJYQc+IWEnyRRDmq3IcYQICEJfyghJP/Tv/jbgEEQ8MBB8MQhpEFAPEAgCS0BEYUEiXJQEhFCIyDGBFoFQUAiIAQQFCMQUHnoDggoJqByEFARsDm0tnIIEBBSQVDDaVRGslTaqOB1hHCbXotreF7r+VLXhSVUFaEl9qixLhnFqBqjqkgqiQokHJSDBwiIitDtnD2n9723Ztv79T7vu8vi02Xt7tvWr5s/3ueSbLN38vWlvrrW06h1ZFTAlEtVJcDb3p827f701r99y29e3LvFQEROIqSLCKFCCYR3CQpM5BROIsiDQFV5gIJKQqoSTOIhAQOBBIKWiICikpTyoJIgh6g8iJCASkCScAghwAwHMSQhhHASApIg79LdEBAIkAABIQESIIRT/vG/+FvlkKByCD8JCAE5eaIJoJYBkxCISjh5AiKfiQISENQmhEhA5SAiB9PKISKNbRBRaR48IMhJxYiAGtIoKkhAbSAgUCN8vNay5FpcCvC61H13b+5T5brk44WnUddLLaVmTluTrGOsI8vCWGqkkqh8puKBPyZ0093b3m/bbFNhDEJts99279OXe2/NGoVKvrrUhG32UiS5b71UqgocI8F7c9vm25bfvM5PO/sUCBAQQg5QHKyQpLFgJMIUIYnNIUERW0lQYCSEIgGEUAHMiYMEDTE+MAkghrJNGKElsBMQlQI88Jnyx8LklHBQEg45AAnKu4STiPwkPCQgp/AuhEA45C//5d/ZJgjIoTGSEAhpTECSiIFAggpIQggJrUiQIKghclDSgqKQ1gZECcq7CCogAhpQwYhyiAo08tAJNjTEpsUYoshBG0QUFKFMyFj6MvI8+HAZT0uNeFhHIK9b33ZvWz+v+XgZ1zXXpQKC2gisNUZlGalKBQggiogCSQiScIpga3vYpi9ve2dMp81t69fdt70TlsqnNynWgqR316UGTbI3+xQcowp387LP+8beNjGEgzyYgUKPHBhJEXWMjMpsFTVVwaoAMY2zFdAkYAigSagyUAkBaaMktL1PBQGTIGhCQCMCthEmIgqoOQCtSQCVB6FDCEFJeJeAEH4h4RAQUDlUeJCDkHASCOGQhPzlv/pbIMYmQU7hs0QeBIlaUIkYCBEMFQqT8EWiJkBQDh5AUQEJ0G2LirRIRPlMVA67ltKQzLYDIgImwYCIkVMroAItkAQV8NBFTKgk9nXNh5FlEL0sWUe13HZ++7JvnbX81Yf6k4/LOmpOt71bgVEVXJeMyhhVIQEJiAESoKoSTiJ0N+0ut60/vc2X3R/f+mkwiboMIG+bt93bnm4TDhUGtE6ze4C45CTORlAIgUAF+VlipRISkApJgOBSdRkhQrrTICoqIKckGGcLBmICBGmpkGLu7MYHEFCrBigI3SptCK0t4Q8ILQkNzUkFKuEUAiICSYDwEE5yCiEiYDiEAIGEFjklhEPA/NXf/J1yCCcBAZMAKg+i0AIpQKtqMkcSAgIFSUgQwkEFWiHdLekWUiEh0Arhne5q6IkHMEGEbtHALodWOXkIBxUCaiAgD60hKocohmiBVfEBXSojLIPrqOhSSr3cZzs+7b0U/9lX9fXTaHl5m7dpy1q5DC6D58tyGZBwEDAhsVI5kQNRtGfb3a8739+2ret2d8rWPeVtb2VUtsm92VseiiZgTKFIQRLSkISTQBISKwkkAUNSEEMGBJIAqRSsg2VkrTQo3R6mQLptMQmnxm4OLRXGwtwV1JAabLsNlYixPMCIU6ZsHUUFxG4hQEhCQmvLO4nhIO8SIPxMxAAhBCgQBEL4WRIF5JSAEEgQ5JS//pu/U74QEoSoJEHUpEwxLX718enDmqfLMpIMaO77/P7lzSytt/s+Zz9dL5/etiYQdKfpKK0tLWIhkAqgiDQCQZPgCTmF+LBHxUOnUfAdYBTCQR4kB+SLgAhBTmlIQgx0wlJZKkXPzm3j1h4q+QfPeVoYVffpbWsq+z7HqEvlw1rPay2Jwe6R1DCVSkZYAgGCmbr1fNv97Y/ztmez36ZzRmi4twcEDewUISRROUk4JYxEJIRAC0hCkiKHCoQAgVikOASEjGIJY+Sy1EiUOZug3GdPsu1us5OQALYJDy5LARo0MGKNmjJnV1W3ghgym9lCpgJTPHFIXJZS9ml35BROHRpDgEBAMBwCyqESNAkPEYOBEJFT+CLhYCeB8CAEhPz13/w7EFASIElDfVjrP/n6+nyptRDnTIplJCEBw6lbJDwkPFTPfZIfX+63zTFq4JS///71dceEJkHQQIdTYyyhMSCnRhvlIAKNCogB1CaeEDzRgMhngYTwLgnQyiEGTFEJBykcQ83s7M2uQiVfrSxFN61LITTYiJdR68gILYHLwlqpHBzJKJIA6i777Ne7P2zuzd5u0s2cdmP4hQQBlaBgICKQIkQFEqKEQyWpKg5C+ElACXIqsoyMuKSWhW6BZdSAvXmdvr7N3QOBQKAqh+6upQIjSEZYCm2pvU0cVQngnEAaIcp9m6ZueyNV4UHxQAAlCQ+NBiEwCHK4LFbigUxFHsIpHeQ/kqAcEg42hEMSTkKF/JNf/zvkaR3XwdfPy4frgl3JMipFVQoSQIgQwoNftLwLpAIo3SYkQJLCbqHqh0+vt7u/u/VvX95mQ6I0ilBBQEDUJlNbuk3CQR6Uk9oETdKKJIgBQoiICQgCHqgEFGPAJHIwCfJOaKkgVBK6km6XwRKqOPQMCZBEbHuQdVCFMpIRKwcOymx3adinqUCUyJStmdOJkFYOKqc2YhK+CAgJCDiS1kog3aY4qJwSUAlJhIQcMLjUWNKQ52XUqNu+b8199771FBAYFXGpLFUJo0rtdu8mUaqsSuBpCVCp+1TU3Lbe2tkM2GWXJSRBCLaCoCFySBTCKRwGn5VUBUgihjTdisHMSkH4TCEQFCGcEg5KEh4SlPzTf/1/XgffPi0fruPDZVQFabsqlaSSECAcQpSDIh66BQGVUxIOCoiQQ1UgJ7DbbrfJb358HSlS/8/3r//hdWJATgkooGTbe0J3C00AoRSFGFSg+CIkKISQQCABOSlEBJIQEHkIgop8FgIkETRJFRXWhIjeGyUnIksFTTiMJIVaSWCz58xsCSMBJNNuOYyqQONsbVoNhyQKIYB8pkKAJBAiqAkHQRGRBIE2hKIqQAAZo56qGP3VOggvm9s+G2azTw6BpVJFFUW6nbK121RJWbCOcRlUUcWwCK0ve2v2vbdWIggtUyLh1KEVUrEgQdIkIAZEYCEJIZUAahIRgQjBKrQUlSDv0uEQIIAhnJR3AULyz//3/+vra33zPK7ruJQkCgjWIZWQCkI4KIqftQqoIAR5Jwd50AAJSdWoYMts5+yqVOzO7z7d//6H+e8/3U1pq0BV8aDuzWzb3psmxWdKODVUAspDRMCRFJ81chBCCAoI8k4lQYJpJSYgayqHQiwIViphEDWpSdMSciKQyr5rEthnjxFaCGF271NJo4aDBnbRiAqEQ0hEwEpAEgzYEAhcBkmERiVQoNGuqoQlaVSSjErrOrKOrMUyaq163ebL5oixSC+VUeFhdkv9f3TB266ta3pY5dber4+55iqX7QQ5SGxuGBQOOYpACKIIUMjGGxHZXAfHiE1Ioijyply15hj9fxt/H3OV4xzwPN8+9hnPdvO6mvGMX45fTm/C+IzdHSd65rf3/ViEoBssXktRKYHijeTfK4KEuB0J1DfdIr5TA+KMDrsEFUpykwXkJkWjIFTcRoGZ8b/7n/75sV/+OD++Pd6OcxyteGlmVEiMl4qIbkR0g4pbxW8FChH2QtxURqONSjznFLtc28b//q//8lp/CpbvZjxyLdDGtV0XWyi0BQHxIgRtvFhAQfx7xW812HArAkIZEDAQOjMPOXIGP1UEAhZBW0AviDPXUiHdYGAQXdolXoY9M8W3575fbUJqBohGEMSLUQEehYfzw4Nrd2tDPXqGM8pNwPog4DjR89ovj/PD8Bgj9aePlltfjltHH75sfHs+l3leLTy5dVNHvz7O2+wXWf12rbm18X7tRss6VLwsXNuFhYCNAsJA/AfiRVheZnxkpQYRnw48HufaW4EjKG4JKSEkAnJb1hsMjoD+j//kn/749vjFD28jiuNMIlALcjMaXiogoKKAgAKWiL+xBXGLcKFld+PFT0UFOI5ufnu//s1f/fQHv/vjx/P9X/3l8+/88scv+405/+rX/btfPx8HUV4Wn9duNz4FBIRaQcBCIMhLsCAv8anUiBit1IHH4A0C9ciRETUofha3QJiRAjauuC19YilgKZJiaxxoC6SCZLfRM8hce+NZQUsk/PA2b+PbmWILqRRpRkUQleLjue/Lwm7qVWfmB31Mji/tNtmMu+zu25mvR/G9Pq4+rl189qIODHw5M8OI8LELQy0+t91uysVc25ZYLYRCIJ2xGzedhhErIOKTWKkUKCBx64xnKK8L5CYkt0CllJsIDCAr3xmQtz/84z8849uZMyoKKiojt6sX4mcVP+tGBBQEFCByk4oXeam4tufude1u4+BLBYTR1vPiyO/88KbgDZ3ffHv+H//u27/81XXhsaPA6BmEa3fBKMDdsnjZSIQpodoZCAQUQqhAQRNGuemxsXGOTjkCQQhUyi1eBoUKUPlbFqrR3a4tIYomcuHatoIjX9+mel58PHvGsy1HHuPvfDlfB4ei2Nh6G5XgWVsbuzzrWj721sxUozO8Hd8cInqcOfSxYDOYFfplPPBT/ub9et+2ABEZOeObPo5Oz8trU1qCj92WinFgYyN5iU8p3gAdFIRga7cU5CYTn9QAMbqdw4y7tSIqf4ukCAuBSKiAk4AOjID+i3/xx4/jGfGGCFTAeKPYtqCAbty6ARUvRkVU3IpPAeMLEPFi0La127dvT4S4LQU658zty+iMiIk/fVy/fn/+m7/ev/jp+rbz07OBQVhUmGFkRqCtuG1sN5CkT0DFJ7UC+Vmj48uEMjJyZqCw2kqra3e0uFIZHe0GFC/rKIwTPfQINEogV12xCxWMPo5HoM2P7XlxU468TRtgutgAACAASURBVD+cUYrijMrCt+e+r9eyddVzK4YWdxtlOvBwwDPOcG3RY4YCr90ZvjzcEMYbz6tvVz9dPbfiNjrDyA8zjzHapVCEK75du0HonLPKSwMBI+qoIC9Hlz7qilmUIiHQ4WdLyk0YPCNybcCooFLc5LuiSMC4pYyOHDnDOIF/9qd/coaZERARA0KJ+K7ot7YibhVQwRIBAsWttheUW6UWtTMD7HLb2q1t66pr15zhPM5jflZcu0VJ1xmX+fX79Rff+L//8uM3zbCD3OQlBs5wk+8CF7biJSpe4lZEkRCGQnQDvGGFUOBuKnETViFC8AbdQH17GLuLSkSjb2dklYdccQWlgG8zXx7cPq6uZbkFfD3zZbzqy0PgY5WE92u/XT53idtz+7hSAXFLGXGUlwjYEgcVUFOOL9dewMxsXNV6XT0rrY4+hsdYAQnLQxnEjau2fZu5aEsceztn4DGACxXyszgzxRmva5EKDK4N6OYNYnTgjNWCCojbAoUC8knlJWHGEUU8dI7Vgv/bn/3x8QVFIEMFgohbFBXQzxYI+ht8J1Tcqt0gsLb47tqkGcvrukJAGUl293l1c8YYx1FnM7CAYG/Mt+f1m+f8y1/vT0+DgNBuo8ZNQW6CIKx8JyBFS4FFwMYVcjPiFlC5Ug2ckUDlJV4qPo0aau0M5/jcBQ8OqY/jl2P00I94f241enToDIsfV89tFNg6zhmPPIYZPp59gFh9XF1xEVBdW4kDFcrfEJCi4mcOYMpNRHYjEhAQkWA34QyO5fNCqZzeZDQYecwMOexSvI2PI626Gzhntt3tnGmpBGnGjee2sbhEIBN+ggaPAis3IQIiAhSRFeNFHvI2PGSJ9XE8EgT+2Z/+0cg4gMrPArrxUnGLW0REQNBvbQEVn9SjaFF7q3Y3fF63jUTg2q7dQPyEcEVAVr4MmhbmY3wMF7E8mW/PfnPx64/96XLhGR8XLcEodAPUCnACFSJQCKSolJcMjO8uEIJggwLipRhdbikjgwKBKBCgVoL6GL4M5/jjYZxffVwflx/btQUDirCxxScV+HLmMbN7ecNvretze9bGrXJIrq0EAjMgbooC8SKwJYnASvHdbt5AVJQztlDnkJQbgXBEqZQfzrwd3obdZtzdM6NWzzBHR557zQjuEvEp2Ai3NpQzmpSCDQjqjCwLCw5CUZHIz2RgdORhwuANUhwB/+xP/2h0VERuat8REbeKm/JdAdVGbVtXtd0gQj2jjpDstp+e13Vtz2uva2uvuq69djdBQ0UKVERFRme84czjYW/TjHOTYmvzGd8u/vK9X13nefWsjyt0o7hJvAR4I6AYBCJuIgTVLiEQt/gkcktAdwS13rdLxAc3gUgabxQ3BfnxMScu/OHR4F8/99uTakskgdwzo+4uSikHHjNb6ttAvNfH5fu1C0F8l/AQsVi8olDiu3gRCCS+i1uQvIRxU25zGBGBQ+rSrsJjUL8cfnzz6zEoLrh2CfTgBde2Gzq6JZzhViwsbGxstEXe4KGPURleFhShCPlOxG0jVAiHRkZHBo4I4w1EBPyzP/0jdVDxZ/SzLSJiCeRWvPRC7W5t7G61QQu0AXPmjMV+unafu8/nXtdet90rWq5ugBSy8p0MqMxvnWZGZ8408pibjiJw4bcn3577Vx/+1ENWjZvX7jOvZbcrtoIhqIDhJeQmxM82yuUlIm7ySaUDY0evJRlBBHVrMagm+vT2OA5H5Jb4vnxcCRuQiExTO4f/UMeBxDMKW+/bM55LxU2PvI3HNnaBNjcuTCpF3FIh4jsVqJCNASECFejIQ8+oFaHwNnw983Z4G9kYvlOKIjGe9bFsbchA2tsZi5lrC9oWrti4Qv7GfDm8TWckoAClhAUhXjYjQUbAHsNDR8THoMx45Cb6Z3/6xyMjOhB/y7a9UNuy9EIEvWzfbbXt1rZk0ApXBex2221rt2v3uvbafV4t0QtYw6cVAZUZx9vw3Yzjy8xjhHqMM+rgDfR9+YuPx5+/mw6MCerIKDbLwuJzubarG1GwEVRCkJXkDbQgcOgMt80+ibykQjNKZyYShau2wtEjUFB9MLXCLmIFxM0jECIvyk0Fioeo0ea1PHfjxRiYcQ6jE7eP7RnFVcggn5aCQECLT0IgBHEL4hwe48CRt/HLYx42+pDHsHkRhRwdMW4Vcq0XXbWx4Q0qFVArQCieeVV8J3Gxg6AifTkeeoxnRgK5FRAk381IO/pwvEHt43j0jALi//ov/vDIKCKi00a8uNGNbrtb7a3dbXdra7da9tZtt1rarm7bbSsu2mhrd2O327YbYLgEiIg30OPLOIo3REd0dEZdpPg0KhA4y1yeb/nM1dYg2BpQxDEVULctiuKqC7auAIES6AZyawARlUqEwI2bfLIB8YxOA1ddccXm1kimPq9gtuSlEI4cSNSRWlBRhwhUGNm6ooibQjSjMFotldeyAY3ciisSwhcGuxH0jHHaEOHL8RePiX2vA1/OOfZlEN7OjOxyU0ahERKhLgqqKxUKLIQg6AYbC0FxEwcw5TYO3bhgQRSOPQYRMBJsnFEoGH0MAyogjBxRg8I/+uN/fgZHbWQQISIi6NMWtbV7XdfuXtdeu+21V9uy1e5VG23btm0vW203Yrel3YAiSsAQ/DQ6gogICKOML4Oj83Ee65xUPracMeOYNCQIl19+vbOOIMwoFVdsXLEEGIrc8hbhUhgv3YiIfy8oiCBe5EVQ+STtBugcezw8MMNSeW1XzHht19WVL7x8nevv/uDvfz0/Ht4O4Pu1f/6b66edv/7oKe0oN0UBr21jQaiAGQmkCKK9QM4IbF7bEiAvJ5AZzzC6sXUV8cNjvk6jH714g4ec8egZNqUjj+Gcwahr2zUooFFAfktuYS97wUYxuHBtz6xmHHnIQx/jGUYUIrwiEkYF5ZO23pBPikooM0LFlv/wH/+zMz10hrfxHEZuWnHb9tYC3bb22qtrd9u9rq7djbbda+uqtr3ldtW2VsDmBpUEfuJT4cyZcQbk3zMIc3TKEFkfmzsnjXkGIi+CrjXwzCcCinETwqNHtCIRt5Bii0iFAQIRq4WkgALiU+AM8jJKXUugDikjINJWoCPKj2cH0OC5fMTtYPU2/d4Xf3H4Mr09HAWCzeL92r/84F//dev8wS/O9dxffVwhEBY3QUOEzYUK2EAOjAZLrVHbigqMvI0DwkhAfXmMtMstCBT1wOM0TOwZ38aKF6/dxWK3SDzOyEyKqNwUsdqohDkC71fvVx+LcXSGt4dvo3FbCre25GUcRewmg4NjQfxMGD06Evj3/+E/gwa+jF9PXw6/fPOMY9pvbdu1t5Z2293a66LdatvdNrauIoqFfbk2agOS71S8zYh8EhAR0RkdnXQ5H80H5wJvxU2vSEOklP8/BULxXVAo3wXFbeQmKPIygNKNWxSoUdyUgGLjJgjqyMjIJqSVgAjLTYd+HLXncvGd4GP4epDrdx/z9a23cQYlbLlaGeD98jeXf+cHvn55ILv85n3//Df9m5+eR4lV2wFkAQ0qPlXqyBdFNjaWNjcWKJGbeasfjm+H0V2CPi0KXx68zcQlHl+AIiIuurayUAzlph2/Q/A7kEYHt11Y2I3YQG460Ag6KAnh1lJ4dXPkDMbH8mzFwTMqoDLkf/E//DPgoUeooS+HH9/8enqYilFt1+5G9dxrt72utt2tdveqKzY3OwePSBd7e7ZFES/qqCDeBopbFKKOcxDPju28O+8cJOST/KxCgXDY4WUjBCIgUF4iXorbhXwaEIStjceZ2o1bgRBBoLzErXIgbmIRPwu0kdGRh8oK6iGkTHfLgNEBMRj68fDD6U1/+YVzlCSdrd322nPOHEe//vA2M8B17fuzv/qJ/+tXPz13fvHwh7M/6AXP7aeL9xRGR6NoyBiZcWYAA217bh/b6nO5ujky8hjfZr/MjD6Xa1sita9nHifijDdgAOXTVR+711IRtwEJhQaE2hEGcUZQOc5RmOCKbrAVFAsRKByYQS2OAsqIBCMRQYR8svK//If/nE9ilDziDKfrF2++DbQPPbJ1FbS71+517W7bVhuLGxcnD94GnZBlr1o+RUCIgyeo+K1aWEFHp7yc1c2FAKWCgcobBXJroQDRbshLN+UmL3ITgokK1Dr4eGif4IrbFVfclpZPMUoBKwcHvsz85rouXioQ8AZDZzxy4IyCBsgnIQ6cYdiH8759rOIvf+jvvPHlwdGoLdpt9xI90/Z2Hl+/PmCeV7/5+Pi49sx58DLDts/LX33sr5/zwRBXRQI2KAQDZxh5jEq8PPO5FVc3t55JDTyGhzzOibZVKvLtMUeGRODAzEADi8/dJ7tBlIoESCLtCASohZCNnjnjI6hVqXB5qTZSuQVeFY0eUoeIURQcXqJg5DH69//RHxZKcavkRRJmBISHW2wcGailFoelLS685lxxC0RQkECIyLwBEaIQMIJS7LYJKylOBYQbCRFUKCAQwtLCg26P4Q2kj/xolltAEC8TL0KzkFggLz1ECVSguAXBtbsFSsETq8nk9x/8vV+cv3oPeDPk3/71del7KhVCKEcfcuTIyMiBo1+mH2Zxi0U4b9Mv387bA2Hb3YBtIWL0nJnxzLm2a3fbx8w5U1yb+nxef/Vtf7rmPbfRHmYthLs94wN1HvblzGMaOk7wsS1QMNfuc0PLq5LBoSNnPCO0YI4dRaC38TgDEdiNioi4LVQLuzveqMQR+WSEOvNQAXmJAMUItiBAJCDgCl94URK4ohAWswH/q3/0hxAY8Ukm6AYBFQwv8hIvRSQdGLktBAXy0vBSWgFCIIhAIETAKLcSElEYoUaUjWeFWyKk3AIKeKNpRz7wgkcgweYTF0ogAgJCKW46FRIUEJ8mZgSGBHyptsInTPvAP/jF+c9/b95mxiAQCJ5X//pXH//vX/eXTyCYN/cXb+d5Xd8uwOQx80UeNvQ4jL052MN+eXh7+DieGV7a3QraXRyKT9uLcmZ0oOKMMR8Xz+f1q48+kvoiM20tXuvKc+fXO+BjeujjeMw4KoUXbH0d3mbfP54fVzEfzDM/GmTs6PHWDI8Gr9GDo2c43mhXDYiFaisIwerZBhvBgHIQRK74G94IeYhRG+mgAqETyFbjhEAQlFsrxcYV/tf/8x9fW1agbFd2g8gb6NALKtWqwVXixJg3WLjit6SCSuVvE+mo8NyKIK34W0aOHI0EZQgQLGHbbeJTLUJfvI47zLW9c55MuHBFvIh8iviZBPKdsBUQILQDMbwMjH6dfvnoD37k65fzduZxZnCB2l6uel67Vz9dfHs29tMHv/uV3/36BjJnd/+fv3z+n3+1yugx7KgNXn/vS7//hfPgbabiZ+22u0Gx242urZBPCQEeQzeupQI2r+YCnbcpuJZl/uo5v9rzBtjvvfUff/Xrl5lx8/25z2ufizAsXR/btcS878z4izcHvl386slNeAzPOPqwN/cxa8kw4iPkZrawXYsUV3zEM5dZDIeVhG8717YOdDRuAmOHfcibq4cZUCiDiAjyBiEsAkI3KfwH//iPjgYbVz0XdXd9oTo68tyEx5FQ6cZHqXwqqi1k4dp2DYWEQqlAmHHMepx5PjfcUK7aACvgKBIJwhhSnPGgrCDEXLBtQUJDSRGGo8jWBrUYCMun+C4SI0FcKvk09MvHlr++eGes//Tr/me/d97ezuiouLVtde0+n7sFdAMiqLbEeTnnzPvVv/pVf/6xMEEFSL+c/YOv/XBw5nGAIBK6rr12u+G2bXtd28v2ApXgttuN8MiZM5gkcXBynpyPnW87C+9A/vLsf/LLt8NzbFfAwRtp1/b8uM7jjKC7Kx6FlO/Cj2vfn9cVV6wzMLF26Iy1Dx37BARsBJs1OdAxSLZkTvXkvK/fdt7XxeDL7Bd3WJh3ztOhjo4MDbOwRsStC4NixLj5D/7xH73NbDeQ9/YgcJSIAPFx3N3RCiUqwBeKYOuMxvvucxsEgo2ljRAogqVdzjhSQIrc/Nioo2f4WJ5x4jxg+4iN26A244iAcQvidsVC8Z3cEm/AEj+z+NtGoC11ty/yGL5w/d4Xjvz66V8/vZhfvvV3v/LjF48vQJ+u2N0KIq4N2igqASmKcc45Vxfb4k+X3/aRIx154/lwHyMk60BQW1u7bW20bXvtrXarhdroRuxyuxj1zDiHeeThPH7nza+PufJ9eb/297++SRu/+4NHn9dee5WRoHxKlFtBu+rW7qJn5FOw23V1JM/7+tPVdL25O4/3FRhi3IAOvdmwVz6DTBSMJgSsNCyqZ75zPuL2xr7JX+/jgxl+piRDgTIIgRvxUgSC/83/8ie16kB4UQERjxlqISLQpd2OOlIzfpHH8YAQBFdtPAADicUKGFE3Ft6f1wWP8UFqUZyZ3X3G6LUXuqUjfLTX+r5ctSHGjgIV4A02bjP8lgp0A8FqiwQxhUCK29iIdWrod84+hvBhjm8TzNvx7TiDCvRp69qu69qXwOfu87p22bp2xTM+5pzj6IznDLDxvLjW25cHbw9v7SrO+fh49mnbrWv3ebUR7OXSbtyKEa1l3mJq22d71dUihznNo8cPzeHM7831H3312LnJjDqAsPW89tqtkMdMuLu97K0bN1ueQQTDS4FbwS4jSTGQCn7befcNGBpAheF5PZ+LzuAQQQx69ACiFlsf2xM2HhQV6XsuA4gRsEpEYEAEMhGVxIv//T/9k8dx67q4IhAqJYz4pB58ts/NG0SDIwNHIxHRjh2I+djdHEI3K+W7awG3jQYe421I0VOrDl1RMGsexQ77O1+8ePzLv3z+xRUJhb+YfTv+xQcGmAlyS3qcUblFrA5xdeOWqAUl+7Av7Nh7j4Ev7A+zv3j09mBgxt8CrHb32n1e+7xue20f17XLYt64rh14nBl9zMxxnHNG58zZ9syc47V8PJ/ikRlm3Os5c9Rrr2vbeD6vn/Z840vMwpY4OvIplD7RVjTMcnM0UMO/e/Z3f1hY5THHGUAZBfpOBWLh+bxqr+duRddy1RVgjXJMoWtjdytQjAK5hYQw57w9Hm8zjgK7bQucc6rdRcW4ySdBgcCKm5RbixuLW8DGbSMENq64aGMxuCIYEPxv/8mfCEqxsAm9yW1h9Ln7bYtGgYcelX3G2/jQrQMLV1wBvtnbmSO0Ssxzr4/1ucStYgvduMXLwIEPthTOKMjLj6ffefTl0duZtznJc6/3J+/X/PlP19eHv/+DXx5n219/cK1v01Xvyxl+eu6//amriRe5BagrLxGJETF2oJCAY7/j9aPXD6dzHEUUcdv6/xiDu13b8u0+y++v/XsfY65VVXvHQSQSEjeGhDnhciLjJMYJlpVTiAPGJoCVS+IIxd5VNefovbU3fcy56mt7++N5GJmenumxhxkHSKVq37Z9ZVWK6NSqqqiVAKPdg1nbCrzcttHznJ4e2Vad53GcM2M74Iw9tjy4f5vbsAjvBBKKFCxISFghEpIyEMK7iHDPfN4eaMIAAqmk4rZVQrgE8IKjM87YY4/ncAopoGrp4GTOAkdxYFWBCpgUZGbUbdsqUUlVrW3b1loCUUlQLknQEJ5MAggSUPmRhIvIJYLayrtc+CJBIuAFIX/yf/zfgzGrUgQsqKKSGXG2Vany7E4qKZwE2YPJMTMmWpXwdA7nzFbsVeGp4inHeDQJRdSBhnMcVAyBXVKcw3CJMCps+N98yjc3qVRqvIySd/uqrSKMJISnpAR1eh7Nbx7Hab12/ubwVVBIwruEL0R+ZsPCaEIx93R0xcJAQGcoEoTUkDeXeK+5V20r+2KrrMoKhIsS8IKPY84Zddu2l9seSFBmXCv7tk2fj+Mk1TPH2anVw18f+XbW96cmwyUEEBCRIlHCF+HDgpDgUIv5XH3nwJlRnva4Flsl4ckL4jvOUemhdabY9rXvK9V9zkyYVRZxBqSqxpkBnBAok1RqrTWalASoUKmqrFUrASVAAoR34QthCMg75ckQLiJPCcgX4V3CRQEJKIzkf/u//p9Thkv2+Ksbe3FMHudZWMmjJ1mf9pw9j7PPFqhQSWvP1oGIJUiGDI6XaoRUQBObzFikwmiLXCIKQhTSEJ4Kt6S0KjtzX/l8r9grF9TAqggVViVh5JJ34KhDQuVpnOPk29dzsv6m89cHEwLIRRASLkpCkejQRTa802AToXgqlBysDssOjmVW4HP60zaf99oWFZJwEZkZZyScZz/OESu1LhVAqSTFtta2aqsCxplRUJwZ8nbwm5PTCgFazoR34akgIYnKRS7hSZ4kMDjaNe2cpcxJBAFlZhQv4AXGjGjWtu23+75SyaqVSiVVFVBDCKPOJBkdAoEAFQNVAQMkgUBCIEjCU0DeVcoLEJS/T8JvMSIiT3IRkMpf/tVfAerIlvn1SyU8Wkmgx57eqnBq7cdx9nicZ/e5quQiJFAhTGq1eTtsVicmzRoz2GOrPAVCgEBCkhnUgUFIYYUWyT3++paNBm6rKjOjBJjuKlalKqsCzCBCqpIwCjhWJaDTMpPgyHeHf9M15GGNVAUBeQoYXcyNs+QkCVFTry6JASk0AYGCQAJyz/m5+r7VqqyVlRDGeRLFuTg6zsV3QJKVolZgrSS1rQooPaOOFwir1r4tMfH1kdPl2ipEwEEFQgIJxkkCckmFiGBI99nHG3COQigxMN1H99kNbGslRUhy32+3fUusqrw7zj7P8+V+C5eAIJSACsqAw6XK8CRgxPAUIhIhwPQkEAJ5qoD8tiBJeJIQIOFJQJ7kKciPouY//tX/CygmOF/f67Z8NN2zKt2ePbd9S3EcM3Icx+lcopWEJ6Myilx6mFE8sz/q1llAQEQkaMfSJYHBhMqlRkgWbuFewCzPl73WSigZA4LOeElqVaqA+DQqBGJAQPDSM5gZW3umx3OYobad7X6wehTjQEJAedrpbU5Tk7RpqinREJGLIcUgppIsrLjZL+lV7uVaBXFmnNFxEMHx0tNzcRwUEMg7CUjCRUaUXIqtLknK0FZtd7ITJGAI07ExKkyYwlVFLWtLwsxKB3pyHG/tfPXp07ZWVdAEsIfXt8c5KqRCgH3fBHFfqxJ1NFAJT0ISQJB3KkRAfk4IjI70dAhJiE5WIQkQngIoA2IMkPAhAcIlIB8ERRAVKUEIArn8p//0HwMk4IzH5L7lvq2ZSVViFc48zjlOzmmhe7qFyCi+K3j09GQVA53NupEs58w6ZSjiksGBwoo7vtTcK+d5QnrcttpXVSWYuFUNVAB5pxACypPZVlL4gZznOYMiPoGigqPTtsxMd5tLSd1fPqm32y2QkAsXz/YcBhgTKoFKGBlQ2xlpkeAEkMSqWgmh0D6YM3YwKAM4jk47zhdeRgE/8E4DDgzRQNbaIaRu2/p03z9//px3QMIM8jRDnw/sQFWqEkwChEtSWSFQVSpPQkj2bSUBdXp8HHN0n6fbtm/blqTCpR1HYNuWTgjIz4gohCclCAiE8EG5BEH5iZgoTxECyJMibEXgHEiFd4nyTgIiUUQJpGEUFGLE/MVf/u8jq2rbCpjxcc6+at93nYSK26oZz+4elBl7pscRNcnn++2bz/eZfpx2d611tG+nhzkscKGUYTkNQyDJbMytXBhn2su+537bCkh66D4hEBBMZaXAHpUkFapS4TI642gI4TjOHme6Z87BmZ6LPdNDi0SybdvL7Xac5/12++brryqgSbhoQH4iH+SdXCIggqBghAEkmUBIzxlAQUBEITNz9qkzc0434HhO9yQBcvZs21ZVZ3cPI6na1vb55R7YVq2qfd8qUXo6kKQSg+NM2y1WzIWnQCWVpEhSqSRgwoeqCqhn99FznL6dfYyr1m3V/bbPzL5tgDwdx3nOrKp9bVWAfOEFEJAPSgXkiwARAeUiIJchgIrOdDKkKrXCJYzQAquqIO1okqrYRkLkXQhPAaMESUj+7M///QxIcNsWcswcw31bn+83MEDs7jzR7Tlz9nS3lhLIqlR9vq3bVkr3GEK2tR3yOPogskTJFrbK69m3VSvEs8LRtsS5lduigkPb00oITwrFk0CgKlWVsFZWAsiTOuPbcZxnX86ebs/pnj7bbs/hHIWRqnW/37/5+rPOy+3+1X3bKkAS+YXw2+Qi8kE+hIsRiOF3EXkSIRBsQOKFBCWKoEPS3cd5zkyBWkUl53mmatv2237jZ8ZJqrunz62osIqkknS3UklVUAlIUsnZpwZm39Z9X1U149FPId8/+rtH3/etwr5ddlCBADMt1CX8SEQQEVABeVKScDGAIPJOEBAI74SZBuKUx1YhQKkkKyYBBKVqW1sVHK6jEUkihcbCFbe19dgmf/4Xf9YzXtpRMPDa9lDhfrsl7NvaCgVt7ZlKiQznTA9qhars+0LPduSybWvVetm3uoRa2Strsa3NdzOz1gaeZ3/7dr6dzPkGQmY8pxFxsta6kZq8E+Yoz9gBQoUQkYszTvecPT2el5numfFsW2dso0Clam371199+tXnl32rVRndt21fxQ8UUAIECOGDvFO+SJBLj4/jOHqS3PZtVSpAAmJAslUqrlQVawU9mtdj9lUVg+fkGDHiQE+HCIEQEqC711rgzChVCQme3Y9jViVOMre9ViKc3TMmQWCqUlUJik43VdlXCCoXbelhZt6OPsfbvu1rrXpKIp5nC8lKarrXCu+SJSYl6KgQARUkAYKAQOQHQviREjtYwTmnT7BWrezjXEgFK6y1hNfHY2BV3ddOVarOtlZtziAziY6pguQv/vLf93icPTPdM+M502OPCknIqlpr3W/bvkLoc46z1RSSHme4rJWEgFTPAEmqasWvXm6//urTCibbWokhQLhkvDAzPT0QMvKfX+dhEJwwSZGEVFUgMHPOefR5nH06gklQIjB9sfWcp27PPs9hBpFU1b5vG1W1asGvv/70zVef1loq7xJvVcrZ3dNAJT2uS5VgCuWXEp4EJQEhIAhIdPaIJq61Xh9HWHCuNYRAWAAAIABJREFUtbonqW1daq1EH6ctIwMzmECQpwAqRCCEi3yYmcdxMsfKJEVSiXNuazndznFOOyuFqLyTgVJTOXq6e9+2275VTCKprG2lQggJweHsUdBUOTM4YxKSEBJqDUsFIYIwCghySaCAhKcgTx4brWjjxCHRSYIkAXwiSVWtWj2TVWef0wOEpCphJdu2dJIAPSo95j/8n/8B4oxEWJEYMjOVVEFYuSxgFWvVcRyP0998+/roObsVYlVBQUKqAkqeSMX7bbtv9em+r6qZvt9u2yoQZ7QHU912u6q2ldbH6VtzylZJFSqgSRRyUScE2xlnIN2nOtMjJGtt032cZxLHWmvVGlir9m3vGfU4jlXZVm5r7fs+UhUCToSwVhVua83M6+PscVtFcpwDkaRWkAjVI3ippxRCQFM8GWQyfWqHMYRULogOebJS26oEEocZehg42hY1awOSAoHwIYBxjuM8XzeKctWqoMKsqiSamT57xgGjSarWBRlHrMqqctSGEC6Ksm+rKsfZj2OOmemRVCoxQZwRs1X2baXokdTDNQLrqBIiF0EIHwIIJuFp0ctByhMbu5IiVakQ6JnRngGSQC5VcWZELm5VlVQVME+OnNoakv/1z//stm2rlqS79+K2ARnncZxV2bfaqhx7Rp1xHEfFkMrMPF4fbb4/+hx5p5GoXHQV+76+ut8+3ffbXvuqSmAqNXr0dPM4WznHkPttw/TM0V21Xs+53fbbXkUq1T0DFSTvDCpnDxiekqjHcXafVZXEmTFrv922Cp6WfQI9l3MlaiUVt22tijryJG1ebluVx2nPQGaGsKqUULWi08PR1FoVKkmFi4pjpk/U6UpWhUuxCsSfIQRDnTM9JiKSkYQCjWSU2lhbkVpLLoYQBGZw7B6mz3MLW2VVagUnKVCYsVveaQ+FigkE5FIJmEREZkbT7dlzziAJiEFNslYqJVYqREVOOutO7QprmUDGhB+ZkIAEEpK8bBXsbmy7C7zgcAkpHKdDY7odBZMMlKly29a2tkpGhUpGlCGCkn/xh//DeTYE/dWvfk/2x1vfb59fXtbb6/Grr//bz1/9U1PT0xedcWZQAhaQJ2rVkPOYt8fjmBmDCknui/ueyFpbhbXVWrVVJeHd2R7nnD09M6KOZD297PWybS2vb4/PX738+vNn7ITHMW8DSUjCxXEkIYnaZxOqyrFiAlSPPVbYN94OehQqwfOiBlcF0AEkQbTHIfu2vdy2JOrRc/ZUJQSoRBiFrGTftnHAl32bcJxzTEaLi4oDWHFldHqci86MPE17dJ89ExwuqVy2tbaqfdXIKKlK7vt2v+1QTSQCIYPIU1BxNKG7K6AhpMKEfn197fGcU1EKiEqPFVeVchHkkqAyAiFPVevsFitr3xYJOv00zAwJq2qrgLVWrW3b9pDRW/nVjUr1OFCwb2tVhBm+f3vbt+2c+e7tmCEklZBaJfXt65tkZqoCWQVY+32l7jlXRh3pnh5HZ2xAQkzyP//b//Hb714fb71W1aoZb7f19nauqoTR89z3/Z999fU///qr/2pt+8y0pEKqMLit9Xmvfd+cOXrezvNxdKq2VEVSj6Pfjsc5Ok8yiIrOIBcVzMA5GiAhq0iyraqV+7bf9/Vy27/+dE+M1CplDBFD0qOUuBW3rVYZUBJDzvH1cbw+Zt9SePSoM3QPuN/2aQNr5XGcCuWqCq6qfRXQ4+M4j56Wx+n0ua26AJVKpZJVtSpbLTEJMNrjaNW2ti0pL6AzfWIv++h5HOfRfcyc5xw9M8xoCqxs21aJlay17vv26bav4jgOMbjWum37qoKA5xRrmQzh3WgShASpUOG++Lxzv92cY0aT71/P43ik/P7tsa99WwsUNT2jVrLWflivp1QkIcEEZEiF0MkGg7ZBJrxUv2yBej36MUlqmJEouGd2zlXpmePsfa1t1Vo1zTlDZGzz1j0jULiq9m1VVZImQ2Qp3dPdqRTOTE+fZ4+MjJoEZgTRqsq/+MP/PuQ4+7vvHp8+3YB9W1UhHEef56wq4OxZq/b9n718+q+3/fP90+9tt5diXUaDeCYpIUC61bmtHD2PmVrbtu2ral+L8HbOECA442gAx2ln0C2CsUjAsx++C9m3WsW+balUggrKjK09mAIruW0rzqeXG4iew+M8H+fMiCRRtxWdMTD3fV8FoZvH2WcPCahM99k+zu6ZUciMl1SSSthSVdm3VLKK+37bt8zYkxnH6aGdfdVt3xKckYykVq0ldM9FWWu9HQcJM1W5r6oKF+e+72CFY9CWvD0e0zPT3SN5VyTAWmVq2244JEKRl9teoTKf9rXKqgJX0vo4zpmcPYlnz9vRUFv51ad9X6sqlZqZcxT2tapynP3dY747E5Lyqy2f9oCkwG6Pnm3VKvcqwqVnepjx20cfzQxboeeYZa/y6D7bs2ckUJVRqpRRCIIDxlQlK1VLrVohlZBa206AGGMCJoDzpKbi05k/+Je/3z09rpXbvtWqmXHctjXj6MxU1eNxAsp59O22dc/t/vW2/5Pt9uv99s1t/1TrJVlr7aFOZ1UBhdFV2apa95V9OcPrwcNsqyqe1lCggAZx7jW3Eqeb1kFHyJjuHnl0QxdoWnqo2j59ulcRSbLivnD68ji7nVDHOW9HjxNcVfdtu+9rraRYtUYfR78d/XacPY4BV7Iq50yybvuq8EEhdZwzDHhf+yrCzCgklcRLMiNQiVrhq8+fIODZcwxb3FatVUiPb+dcwFU5e8Tf+3y/bYycbY+EldJ5PXouaI8YUFowSBIzQmpbqXa2Wi+3tRZbLiRWygsBu+ccZzzPWYtV6+werfDVy20FcdUaPdqeqUsKPM5OMmPCvi+Gs8/7ba+yoKqQnh4vnD2jSSWcZz9apeKKpeKj/e4xx4zOjJUlVGpf3LZNqLXOGWeRKQaq1rpv+7atEILyIU9W6O6ZpDJ2n795e/3/u/+/mdfxFcn/9K9/n3dJzrO3bc24VgFrVVUqeX07znPOsx+Pvt3Wec79vm+rgCTitFUh6d63be37r1Nfb9vL7X7f1teV1f1K4hzM9zP1dmTw5fb1basma7tta2fdzj4/reyVVVRZVZCe0Ryt1uM8K0BmJIRLhLXycr91d1J9TpKBdtCk5jzv+7ZWHWc/uhWd6bPlw74WuoqESgnneVYVFYeKhIKjgUnqGGdYtcnc7/fUmu6iX/b1/dvjcXjO9My2KuFJGqrqtm8hqKTCVjnnZNQBj56z3bdtVaScTgV7VZ1n96izrUqi04KQaGNmPMZUjTyOBhKS3G93iFhw2/LptqZ7HDVkZMZTx5HBChnnOOyZJLdtgTKVkPAUTSUVhEAqIduqmUlQR0cUcIQAUQO3ZVWd1mhSK9nWZgUmQBJYQLgEQsQkGnVmUlXhvhV69pxj9+z7ruhU3FdeH9+9HY+Ztz5/0/392X+z1nfds29rHCSJSsgf/tHvO16SEJBLVYlKgJCkEqHPPnsqpFgrVczMcXSYnu4eYK2176XzOE5Ep969vNyAv/7rb5N8880nyG9+833C96+P4+hfffO5e+73HV7W+ifffP3P9+2bff/m7Hk7Wre1su/7tuW+7cpx2uOorB6rXCu3VS97zQyJBiJ2H4/j+9MtWVvVtlbIqCCsbQcy7byd51v3b2bOs7+dedO9FrCd54NsjpVHd7btV4/eTu+yrW2777eXfb+tWpW1VZGKx3mOnJbMy77dt018nP169FapOCTknQwzva0FnjPfP85H++n+Evu+L/D1OM9BTdiq9m3tVchMb9taldfj7fP9VqnH6XEOYNxX9Uxlkcw44LTdSq31OA/lnH49OrLvW1Vta5+LdrtWARUJCMnZZyUkgOM4lUxbxVZ5uVWRx3GqI6cezeM8ewCTbLWoFDru+9qqbvsqUGsVUnFV1LUtJAmShKec3QMDIZlHOJxznMfx2vOY/l7Ps7/t/s9JQKESgrqtJQIhCRchMJo/+Ff/HbBWgaCSCIJAAgHtnnoHs1Z9//3b7bYfx/n6dmzb2rZ6/f44e3SAl5d937Zvv3376qv7efZx9tvb+c3XL7fbnsrj7Vhrnd0zE6haOr/5zfdJ3W5brVpVtSqBoWfOs7tH2bY6zt63XWutta2NpGqpa33iyZBaa+b7SkZBIIlaySjcK49Uuqcqyd153fY14/QQtrVkuqcqlaipoEBPz9jdSM+F7lnbV+Tr1DefXr75tH+1bV+tbTtHzMGGWatSrlTBo9mLbRXJ2SNZFZJVpUkAE6aPtsZRoRKq4szCGQmrICiao+3x020LUxUoZ1bVturoGRVWBQWCwSfSLVHWqZWQbFX327ZV3o5Wt8ptr9uKenRDjTH1+njroXVbW1XhTE/iLe4b2sP6/sHb2ShOwKRxdKWCSdpxCEYSQTz1bIVJZfq1oPt15oHncMLB/A25oPiuEnWtIiBeeArvQkDxwkVELiqB/Ot/+QdVSUqZ6bU2MJU+ihw6ylpLEi4Ca63jOLqnVgI97ts2M6n1eDtut22mk6y1juNYa80MoO77fnavqlSQGfs8TcBKkTCOfbu96CSlPTNiyBMlrm07jkelkjg9UhUlIVkJ53lUFaACSUYrAWYUt7VUSFWmz23fux1FE5J0T1UIq9bM6PCU0VUL6D5gwWz77XgcVfhurU1NBaNdtWa6au8htSU1M1VBUyXhYqNrW0kQZdu28+x6ihqmZ/atgHOoqkB3JyFMDwQnIVU9rso0AzpVBalQUZEIKCBCbfsWnFFnVSWZ7p7Z9t0Rm2TV9vZ4U5KYqEXWYiVcEkjPrIqaEBgh1aPOqnX2uaqcoZJU94QRnXP6TCrJzABqVc2c23abMREYRQl4Ydv2mU6YsaoA8VLJzFTV2m59Pka2tZ19QNCq6pmqzLhqA0GS/Js/+tPwOwjhC/kiPAnhHya/W/gQfiIgv1v4+8hPwhfyu4UfBeQH8gvhJ/Iz8hQuIYQP4UlAwAuggBBCCLkQQviJHxBRvggh74AQwpOACqiAfBEu4RLCJSA/UL4Iv4P8buFDQP4R5HcLH8JP5J38buFDeJJfkn9A+DvJLwTyb//oT+XvFC7hC3kKvyAgf59wCV/IL4QvBOQn4RKeBOQfEJ7kKUDCu/AkP1BAQOUXwiWED0mAEMJvUwGfABVQuSThEnIhF0L4uRBQQAEBn2aGD0n4EELeQRJ+NxXwiXcKKIRLEkiAEMKPwhfyAwXknYB8EcKPwiWEL5R38hQuAQH5hXAJyN8i/7Dwc+FJQL4IX8hvCz+RL/Jv/uhP+duE8CEg7+QpXAIk/EhAfhLCFyrvBATkKVzCk/wkhEsI4ecC8hQ+BBQQEBBQAS88hRDCkxCSQMIPQgiX8HdRUUDAL/hREj6EAEmAvOMnKgTIExcVUAF55xcz8pR3fBECJAGSEEL4Qgg/FxBQAZV3XtDhiyS8C+GSC+FH4RIuISAgCRcBBZR3XgABeQohfCGESwghhH8UAQXkBwohhF9QCOESLiF8oYD8JCBf5H/543/Hz6n8jAI+AXJJeBcu4Un5IkAChPCkXJJwyYWAQhIuKu+US8I7P8zwgwRF3skl7wAREt6FEAIk4efCJaA8hS/knco78YIBf8C7vCMJCMgXIalKCJckgIpC+BDyDlR8FyBRUZKA2j06QAIkASLv5CnkAyGEEEJELkL4UQjhJyqgXILiZQS5JCjvVEBACPkRIXwI4UP4URJA5QfhC9/xTuWXVN4JCCFcQgi5EJ7kKVyS8PdT+YECAsoXyR//qz+BgPIUQkgCSfilgEAI4UcB+RkF5J1CCB9UBBRQfqCAghqSkIQkQIJ8ESAJkIR/LHkKAXmngoryM/4MkATyVAkB5Z0QQkiAhBDCb/MC4ZJ3/Ejlg5CZUZNUAqg9T2gCBEgCJAHkQxIuSfhBCLnwJE9B5SKEEEII4QsFBFRACE8CPoGKCgFCRJ5U8o5wCXkHKB8ChA8hvBOBEMIlCaDyW1RQUSFcAvID3/FLSSCEEMLvkoRLSP7kj/+d/EAIlxDCB5V3ISI/EhACKl4wfAgohN8SEBDUEMKHEEIIIQkQQvigclEIH3IBIVwCgsrfoibhooKjiIhIwock5AkvgIqoXBJCyAfyjh8EBHwiCREBFUmlklSUi5eRJ0kAFQgIuQBJd0+PjlKVC5BECFSVH8BRhCTkQlK58C6E8BPlkswMkISfJOGSgMiTihcIP0oCOILvUHmXQBIQkEsCROQHIYRLCCEXwoeAiPwtai6ES/iRinwRUHmnQnhSQN7pf+ELDpQuWa8CuWbuOn3FBK8+jpgBCcEg2X5ID6Db59vpOvV3Xwkc4bV4VCD+8fd/GkUhkIIKaLdzjqAiX4SguKn8pIKIGH0BRLwhIiLyX4gQKj9UKCAgBAICQrVFIPKTELcK2AegqPQDNwXloXx4Q4iIiA+FQsdBRxGicuRR8RBQAqkAvwBK8ai2AAERe/A3KqRtdyEe8kWEiC9yEzHiITryEG/8Rm4qXwL5qPjBG6D8JB9xi6j4TwKKvpAIgVT8Jiq+yN8IRERE1NFAbkIBgdx8cItbJCJ/S+U3xU2IW0QgX/zjP/6ptlBAPuKngIiICp2bAvHhByAgH3ErEG8Q/4ncKiLiQ1EBFRAjoID4qeIhVCi3uKnbVkQ3ko8KVFQe8VEBOgJCIMWM4wBxq7j5gG4zA1SggHzZszcVuanjRN4gPvpA+Y2A7tZuIKAzEtFocc7Z3bglKreKRzGjM6PxQ8UPCshDJRCVh/xVoEIFRETconEQIf6z+BAhfiN0IyICuYlQ0AZERAUVX1TEG3KTURSoiAi88UUEEQEhAvkhkP9//vH3f+I/EyPiQwHlbwgoDxUCuVXcKiCQSoxA5SYiDxUC+Y1KBT24RUSoCOF4a9u2B3HblohERxFwHHUG6MEtohvhjDeIQEBRQQislJuIFJB8BOo5Z3fHUYFAEZGbyt8oborahghb55xK/HJdA8RHdc62u20FeMNbBTjOjDceCuyDQESECJRrJuShFCoEQjzEiN9EBIjb8qEichOVh1rxm4hu/FT5IJAfImrbti0QAsEREFDxBqFUQAHxUYGQDxBQHgrIT0I8/Kd//JO3UVSKL8p/UQEiQkA3lIgoZwRUQIR4VNAHHwUot+IWEMg4QKUiezZS2wUCuu1uAt4gouLWA525ZvxCKCiBqEQE8lFRzYObCIWi8iWiGw8Brc77PTPOEJE/USpQARUQt4ifQmCqPQdEVMAHUKnAOWfPbqtSfCQqwW7CFlCoM+M4DkJ8COH4hYqPYnermbmuSyluflDxoXKreLS3AEcePgCVWwFRISAEQkQEpBbdgNryJ0AoIkLppy1KBSoIKJRid+d2XSpQEcGo4xf+hv/8hz+rQMWjAgQVFQIiIpBxIpX/TB5CdINKhALBUT76GwRSnbOAgIgVVCDe+OhjwVt8iB9jUalgBEI3IphxHAjo4cc48iV2V43Ua0YnIqIbIPjYmpkeaiUiN5WHSgGOwtZuX0QgGp0ZpO0GFfIRUefslgrduBUqt4AKvPGDiBASkQrekC9C0QNRAfmonPEnboG03ZBRlFsg1JZf+JgZYKtNRfyBtvhB/qobH+ec4rpG5VaREAj04QzQ7vuc9/uMH5CKCET8EFTqOKgQEfFD4L/80//JbyIibo6g8rdUfqj4IaBArQgIBXooRDB+xE8F7G6BUIAKtBv4ExAIBUJAN5RHH0CFfKgR4AMQ+aLXNSq3QnsQjreKAoKKCtR5nPebm+4uHyoqqMxYEEi3zbHioVYqIA+lztnIG/RQgcqZUcfbOft+v9WKUitgZtTd5cOPEWg38MZHtUVEu80MFQiOtzZHArn5tzACevgA5COg0IpyphK7EdCmonzkDRGVx+4C3iB+qHiMAgGFFHv27HldlxqBBAT401a73YBSgYpHIPgv//R/KSJyU8BKKSoibj1QvojRTXQE1AJSeVR0oxuB0ANqdxV0/CAcwahddHRmnKG2pVQw6HHO+kGhVmq7juMgt5kBCkhHUXsA3rjpyGN3Afmo3u/3XJd6Xdc5p7pm0N2g3dRqxhswM2rFreKH3a1EYFtgNBCRHuCMNx5tiFoJ3aAv29nTNjPA7r5e18wAFQ8VCMYPbkIE8rFFbFsRwWjlDIWMPxSRCj74/1L5Ujx2FwVmJG5BpfaYGaCAdhd8va5KBeQjflNR8Tf6sjk3RaQCKgEdBYLqnOMN+qDyT//yf4NABYH7IGZGQQGhiChUBM6u8hGO1zVtPLbOObtBQFs0zozcROQWgRIIKgoIPrYPbrW7aMVP4hYw442fRAQEFBFRqaDyBvgBFVR8VNfMtm06EVh73u/Xt28q0HZ2gRkBHzPeiEABufWA3W5KAfngUQFtSCVuzThzQdcMuufMzNnttu1uj91FxqmA67pm7AaEAgLbirfrmrlmt92lVB5b9LFbIDjjBxUPEREDFVAB5b8QUAoFKkgEIrEPzh5/4hZIJUYqHyqjiIgClVLsLreIABEhIgrlpz37PmfGb9++eQMU8J//8Gcf/cBIsLvXXGqktvERKuAHFb3fp02toA8gVOjmo1LBUUYCoea6KKAHoKJE3PrYbohOrRiMVt7GG4H8RmdGoOI3BTgDqD34qd33Odd18ZjH3s7ONeput9EIKGYkIHxAsLuVjwqoABGIAG9QILcewHVdKtAW7a5KodcMUKlnt+3L2bNn58MKmAcV7C6gzowzwGhtUc1YfCh97IY3io8+UGpm1EpxRigiwhk/+KISEQ8VENB2gXj0A+DMOBFQCSiPtrilAt4ABRSwohvbFpQjER8CchORLyoP//kPf6727O26Zq4Rtyh+o+PMNYCwbdvu8lPlA6h4dANhZnSUqA2Ij0p0rHa3aDeggplRKUBFAaVNjcapAMcvIDAaqdXuCvgB+KCf+BgNfv311+u6xnG85tr2vN8VDlABM1Y+gGLGmQEqQK14KDdxC6golId8xF+dc3YT1FqdSlErQMWPa0atzu77/RYRCpwRKiofQKXykwr0QAV0d0UeeysK5dGGeANE5CYq5QwRcQvHuTkIEQFCUKmVD27FY4u4RUQwIw+V2HY3lVsFigroKCowilb8UEFxU0CtgIryf/3Tn//93/9ydv/b3/1uZiqECChAjYgeM+7WbnzMg4eKtre+8FcBzogz48gtohu4u0I3IKKboOIXBGconcqRQG7eAO22+z6756jAjM6l6EBqWzSOI492HWdGBN7n7O7runaLxOjmo+InEbmNosDuAqPBPt7vo14zzk1utZvjzCjEFjUzSjcQdldnd3nstqVc16X2sW2RCChFtefgf9UHKrR9CLvdAEVHmbmQWxs3hYCih7IbIETgjOOo24rAjCjgg5/arbbO2d0DjHNdg/KYGRBQVB6VOjMVtBtEIl+KWwWokApUgEpE4i0SIyrwf/z33+8uoELjIN5Q+UHpA1D5MKICb+hIqcWHAhUIOFJxU0B8tFvctiWCa/xS8VO1uz5QMVKJuQYQgvM+QK3zcGbc4hbR7lZARcyIP4wGxIzB7vIolJlRRyt0xt12V36oUB5+IALdYD+iUEAhInVmBLUHBFT8EHGr1Oqc8/19CkhwBgJ0RnZDZqZdFVCKYLSIdhcYP/CDUHs4gkAF6HATkZ+imxids8DoXHPjVkC7Zz9mBkSu65oZEboBu6ty091tm2tugI9qd4kIqIgIGEXHD/wBqHi0Reo4SDUzfFR8add//D9+v60KtFurjD8EfUDNdRVbM1PtpgI+8IMPzznc9JoLQike3cAbONOGVHIz4iGoBXLzAQLKzQfQhhTyMddUPoB20UqpCMdxtnaXL+F4O+/3nvPL734BgT6IzvvMNTOKu+t4zYV446Pi4VhUym5CsW0bj0D+ynEcRd3tvN/RbioEQoAIOIrb3tTR3Z1riHNOP+1uNeMohBiPdg/Izdtwc9q2AMdxHMcJ2s4eQIcPA8qZ65o9B1ABtVILRyJqF38A9mzlKCIq+OCmAmqlAhWg8lD5qwponEoBgT7YEiJAPhxFoEIpvijg//zv/1gB1esaZ3YX8NHudmN357qAahwE3BIhZ/wYQHCshOu6dlcFvM0AlUpAWzNDRDdgtz0HBWZ8vb5FwDgq8hEfQvFXKjd1d4EeQKXuWWVmgL/85S+//O538wC+//odGZ0ZhABrK3V3uen4Ee0mOSP0UAGl8ANwd/tC4q0CdpdbBeME/YaP0UKdy2L84DEzPWaGRz/9+uv3aiSoeLxeV3Xebz6i8AdA3IKK2t2cD7Avuyg6zlwflQq1OVLexmLG3dRRFFB2A9ocgba4RVQoqHgbr+sibgraVquCEKgEQiT24EtEwO7yaHu9LmfaHCuidmZ4OPr7//HPYrK7FQEFwu6+z2kL1Ou65nbN67oAlegxM0G7+DGKfIRjMWPhBxWBEPFR23bbbWs+nJnrupTiQ/ZsxWPG67p47G41M94g6ANoN8ERUCvg/T5Adc4ZnWvaHG+ViIiIOn4gxE2F4ovC7omP0S0i4kOgouJRsOp1+ZrwOutGUQvubpsjcXNu8lBBCFB3l/r11+9z3eYGnLPQbvQDPqCPrYCZAdSZqXZXfb/fILS7M1PtLXYX0rmuua7XKN4QI1ConA8KiFui441A5cOx2l2iGxG3cxapZua6LuD1egHdqA3ZTR3RUWuBcSK1UgvoRlRo7ShKOO5utdv7/R519A//818qdHcr4LoubhEVt5m5rrmua2aA3aX4cNtbRSBqGzAz3kag0oGAtkCFgKJyptvm+GUEnBnl7O45oOINnAH6AQpvEIg/7S63ApwZ3Vu1+x9/+Yv67fVtZqLdZqZdbgKOXq+rgAjkNjOAsLuVWiC7S0Q3MdIBFLWAeFRifEmdx/v7++xCOgpIRQVUCOh1XRC3OHuua8TqnDPXNbp9od2APpSbuhvEwwdCqIB6zgEqNRgN9iw3hVRQ0Xldl7cZZTfoBuxTw9kvAAAgAElEQVQufaBANXNRjsU5Z8aZ4aHyYW1xq5xRa0GhQsZRKWd2V6kAdTRQ20V7qJUKSiix7cwoBLrn+E//+L+IrXF215ECAwoIrhnA2yhfjICiUqFzllJf314ESjm23RyBClTAaM/ycGZ0d+caSgWK2mI+5EvcHN/vt04FVEqlXjMosS0wM9cMEOzu+/3+/uuvr2/frusCeVTUXFMoDxV0z9by4YxfiGh3QUApalVgNwWcsbgphVop/cCMwDgRsNvuVt6g8tGNdqslZuZ6XeMgbdzkNjPqPrhFdc7ZWymv6+X4/v59ZkCIh7cZ+gBnrM5Zx0rwwU2B3VX5qQ2o0PHjuiYQESqsBXZTwAoQ0NfrUvtAqYDdVAgEAmp3fQDzgG67ATOCEF9irtkNKqDd1Mof2F3/+I9/6kbjbNttcyS23dO3X75dI1rxodJtQ2tB4X3e4rdfvs0MhR8VIAS7qZW6u4A6YwGpPHaDwHYRAr2uue1DrOYasFYF1HbVgHCmVqeaa/Zs9X6/d1eYa267eQO0omYmEh1vPHYX8KfdrcAZb0C1m2N7SwWUW6FUanFd18jZrdSZaXeuIQK19v39ANHujtNDRQGFmNs1+1G7M6OAZ496XVe1uzzabtvuNoqOQjdUUM9ZR7qxJSCEitZe1+zWBs1cFfB6XVuA3AS2FVAiAtQ2x9vMnHNUYq6rB3TOCug1fkFHd3dmUKCo3bN4A6zU6rou5ba7/GDtbn6gFiqkArtbzPjxL3/4M7DFo9jdSji71cyogDqj6NhtCxR1ZtS9nVVQPnQUlS0ROOdc1wWpM9NtQyugAiq19rouYGaAc041c/WYcWZ2l/Kx7TXX+5zruqpzTnVd14zn7Pv797lGnJmg3S0fFTAOcmtDZqYHHwKKN4gPtQ8q5VaBkLoboAIzAludRWf8CSKoZqbHnrNRjQKOgEoFAlrNzHWNTvX9+/fzPr/87ptOpUJ7dmt3z1kBISo1omYGBeQH9ZyjglDhONpjZpTguq7zPkSkAtX1unZXvK6Ln6rtg9hHfMxY3FTquq4IhIibY0U4Nyu52Q0qHwhRzYiK0MzsbkABKlhB531mxvFWQDPjH/7hX6FCqVSguKnU1jnnui4eM6P2eL0uH0AfdIPRQFB3l5vu7i/fXlvXzPt9qrlG0NndHpBaCHONWuyuAu7uzOyuel3Tti0xM9HM7Fnk5uO8z/f3uxKu61KqmWsLEoEKrdQewDWzpQJ+0Ad+8FBReagFBBS1PirCGYjYVgwqSJjrUoFqdyux2hZUbrs7jiNQzYzK45qP4D/+/T+Ab798A6qZ4Rbbfv/+rrzB2R0fM7sL6QDtXteoETEzlbrVfqgzA/gx0E0FdHYPD3Vmzi7lTLtomyNwzpmZbtsNb4DtqlvAdV27W81YVCoqHzN+AW/VbrtHneuiG46UHxRf1B4z7nbzg938p3/414i4zcwWoEJgNeOeDXZ31BlhZhzb4kMFqhkLpagg8AYoxa0WmBlA3bOBUs0MUPjBdV3nnD3LF5kZtduut3G3PWeuAcbZmhni11//cs759u2bjmO73LTyAaht2xKOc1NnlF9//S46Vj64FeDMOau060zb9br2I7UCFJCa61K67RbX6zrnVCJwXersrdoQYltAqHbXGUCs5ppb21yjzgz1b//27+/3++///u9/+d0v5xz1nOMN3meh3W483u/v4wCVWgGOt92UQlFnpts2Y4W0qYBO7TlHnbkgdWaq67ogFT/atiW+BCq0Z885KIWK6O5RZ6YtAhUQqHZXrWbGL4AQjsXuAvMhGO3ZisfMKOC2FFgp/uEf/vW6BuiD28wAu2ec6AE1lzpAG1opN7VQdHqoMxZflDbHc3ZGsLqueb/f43gbeVTn7HVNBewuIEbjzHh2Kx4q5QyP3aB2//Iff/n2yy/qt2/fdlfZW8wMtcWXmmuq3dQZZ652kd0gca4plEqcGUQFrus677djpVMB1TnHGzreAEVEbm3vc3ZXrQQcyrHNEXh/f3sbd9tzZgZpe71eiDdQwe/fv7/PeV3X69vrVu3DB4V223YX+bJbuxUKCNWWD2Af1Iwb419VMxO0H8HoXBd0XddcFzUzwjnn9Xo5nnPASgjUdoGZCXa3/UDbnesaPftB+ECv62o3fhCiYsbdKMcbFe6uurvXNcU1s60OQqh8BH788fd/BnrMuLsqgdyKa8axh1rMWM2MuhvQY8aZodDdBYEZq3POdV08dte/UQnonrN1zeW4u21bwut18RFwzvFjUGB3+XDPUc+e3SXmmmvG34znvdWGAo3OdfUT8O3bq1DP+yi367qQcw4IzLhnUUDtMSNQfFGBona36xpAnZnd0wZUMwPEh1pRPM7egoDd9py55kYEtXxIRa/X69vrNddVKSBwzrmua3fVc1babtTq7DnO1BJI2213zy41427fv7+Bb798G2+A7TofCojc2m5zXe06o4i7e71eSjUzKqBS0e2cVQE/8FGo++VsNZdt3BRom2v27FwXVAiV4+6ec8ZBhet1CejujoJnz8wlzDW7qTx2F/CPv/9T8X6/ZwTU67rU0bMLjHN2RwHHW4USEaHcKlA5Z6HrunjsbqUzYwWoMwOo+1B5VESkA40fZ4+oFNDMBOpu532CSiGiPXtd83q90OqaOec4c85W1zWVD6DdYB7qOYfHjNV1XecsxIe3NmRmdnfGNmcqoFJAoHq/z3UNMDPANXN26QGKupvKlwKC/SG1OucIr9fL8ZwVHNvU3YVer9f1evkYjR+67QZ9oOx246M2x90l1N0N9hy0ljrnhG2vby9lHGR3idfrhRDo7noLR8fdBYWZC1HUuWbPmblUHvsAhOiay5/e51C7OQLv7999bMnNs8cbzjWgAu4eEQXadWxTt329Xmq7lc7WKODcPGf94+//tGdndIZbROfsjLvNDDAzUOFIVDPDTzMWkM7uKZSZ2U2Ibv7Ugw+VandnptsWzYyP3a2omdkaBbZe17Ubsmcd/+1//9uMv/vd3801QrG3Fryuq93qfc51XbUz1+62OQrodV3A7lHP+1yvC5wRhIDiukaFwBnBc97X9TrnraPsxuOcVWcEfABCNddU7/fpoe45eJvacbbVmXFvZxGwOufMeGt3Zq7rAlT8qM457+/v67rmmtfrpdbuBqiAEBW77a5ajUa72xbQx8x0o9t41caHcM6ZmQpveMNbMAq8z2kXmJnq27dvjjxmRnRUbjrQ7oKVCii7QSKgvs/ZsyrS3poZ5ZxzXdeGoqMQW4A6455FwB7cai51gIpHcfOff/9nR/HsaUNmrrmmXfXs7qmWxzwAxz0LqbsBM4I3QOm2eRtvu80I7Dbjre3sIaqZART8qH1/f891AeqeBRxHg2q0+v79/W//+//5b3//97/88sueMzPAbtBc157jjOjIo1LbEB8zo0Lfv78BEamu69oN4jEzu1upQKUCr9dr9xTFbXf9oA9mBGfcXaB6vV7v93s3hUCua8Z5v49jH0Rs2xLROFHbXEOoUDA617W7xLdvry31vM9f/vIX5e/+7u9er9eW2m4Ecquz22Nmzllqd4GKL8qtnIGuuc45wJa3UdpNRGdGGT3n7C4YjM117VkCrdTrdVXCzEA61+tSdxeoCOS8D+BYtDvX1W61tefMDKCjnF212t1r/l+a4GDZluxICqi7R+S5VWXAgCl8NdBqSUh06+8whm0mvXdzR7iT50haq4I3iQBtk8RbCO4uSAAkAEoUSTGBbf7rv/wZAUgA4t8BYBLbSfAhiUQAJABJzCw/8JEEjyRAEnxIAsCPJLarlMRrlRJISlxVebOoJPhwQoIUiSSSSAK0Hfv7+zvAdb1IiLSNNwZ5lMpeVdkmCGLXSUiKBFBdtkkBSAKAZGKRTiQBSMJ/2l0Asak3OyRtk0hA0WsA/EhCoqqS4O8SEAAT2AtAKsSSQObvnDdEVBKKsYPE+YAkxwBESQSIj6qyDUIPcu1z3wCv1/XYXQTrRUDxkSB/50dAPOYcVZHEB4G1CSQAgSRIVZFMIgmJpKqaHUl7NkBgUSSTqIqA3wLAyXU18UYyD7zFpigqSBxJQeyQKNXa/MiH7bwBiCgnBAIQAJEHUCp85ENiHCd2YlOURBCE3sjf/c8/SQJgmxQI2yRLIgmAotdB+ACT8MN2EtsSHwjWS6qq+AY7QBIAkWSHxMMOCVJAbIvCg0hCMgGJOEHOfV5fL0okvU58zpz7ri6pxDd7JYEEEEelBElslwQSSAKSdpCQBEEyNiWStkWqandJ2gbQ3Um+v39W1XVdVWWbpG0+wCCk7AWQhBQQkMRbHJVI2t5dAJIS5M0ACFAkJRJ823VigPYStA2CIABJSXaHFEVRIOZMdfEBgG8ARFZXnN2975OkryZBKgnJ7gZwzgGw690BKJJSbABJKAJEAuJBMglBEEgkleQEgKTdobSzkpIgWC+Aqto1ia4GARJAbEn5J1IkEgAhQTIgEtuUAJDMwwGZmGAQgkFsJxCZhGICiXYeJEgmILkfVQ2Eb5CK5O4CSMI//v7fAdomApAEQLwlAIIgIvHGh+05p7oSSASQgAQpIJJI2tldiZRsI4kThKQkfthGQhIkgXzwI4kkED9//LxeL5EBvD7nkFAVAdv8JztOkIAgKHFtkapKIumckQSARFUl2dkgpEjYriqAsUFKTCIpiaTEdkgC2HWV7JAg4IQfCIJHEkhMIFFSEjs7A4JvSgKEH7EpASCwtqQ4IBAAcR4gAL7ZJpFEFIhHEpIIqisJH4AkEA+Cts+Zx+t1USKZILGkJLZFOpmZXRMAQTAxSACkCDhGIolkdQMgibxR3F2CjsUCQjH2rAk4EQWEpCQAkvhhe3eT4B9IgSCAkozEJimJFAgkAG3jQcYBkDeD9PqhqiRI+GF77TggRILsrgRV2l2CAAIg4e//5c8Au8uOxMfuJpFkO0lVJSGZNyR+SJVEIgCpSO4OySQkkwBMUlIQAKTiJQkgcVUnsQ0CgSQQthOI2l2KSapEkOJ9H8QAAfTVAOLMLIAqAbBTXX6sJYEEQoBkEidSJSYFhODslIqibQAiAxCQFACJk66aNYAkJBBQxIdtUklsE1gbQHfxY9cSE/ydbUlACFJ8ACCJhCRI71IimQSJ7fXGAQXEjsgg3Y0EpEgASWxX1e6SdEJQEsUqkfRj8+Pnz66H+uoEu1tVJO0FsGMQuxuHZBCSXoP4O68l2ZYoCSRBe3ctCUiArrJN0nnzpkq7c10vil6rRCAfAEgmIQmAEhKQsUtKYodFBCCRgCgVCSeinJBM4jXFOCRB2ut1HgDygOOqIilx1xKlsl0lAHxTYv7pD38hsHYSSQSc7BqApCQkkpCyN4Ekkom7r8QfkUQitiRKtkklJplEpKTZJYEgSAJ+ACB5zhBIUt1AJIG8v28Q5z4iQZSkqiSkbCOhRIASEABxApBIQCJJVdkmmaBKJCXNDIDY4JtEgEl2lwAlknZISCLpD0kAktiOoxKCACRI2nmQxMfuSgKQhGRVkfi7JABIJikpMSWRuwZRVUkQ2LtrkLubAEmAqiKwO3yoSCZOIikJgodKJKuKZJJ5nJEoqbtAJiEYJMHDNoB8EAThdeIEQQDYIUGKJAASj50FQFIiyDgEnFRpdxP8HQlKsUkmqFKC3aVEBIDEBAQCeC0piUoEA5PaXQAqxVFJlBPbIpNUdx62E3yQ3DWB+xwE3dXdIB6S5kx1AQQgEYDX/MPv/i0JycQAHzOnqnaNhFJighRJkahqe22Tsi0JgL1eq6q6dhZAlUiRyAcAkklI2iFBEiCJJAAlAQmQwLtOzn3Ofb++rq/Xl20AAXa3qvAxM/oAkqC7AOwuSUkkRQZIAmB3SSYRCb4BEUVp104I2AuwJJWS4CPJ7koFhKQd24m7L9sgiAdtJ64q26QeiROQAFil3SWJjyTdnfhBsLrsACAAEoDX602CNyJZu6tA7i4SSU6qyjYJURSTkEwiqap2ZnZ3tt6URFVJbCfZNYmuDiIp9q4pErQXD9I2gvWSBPgAIBLIrikSoEQSydoIbJNUyWsAJJM4iU1Skm1JAUgmQdJX7y4Agg/beCQ/f/ysrt9++w0EpdgAnAe6K4nXQGwnsVNVKhGcHYC72/VGPWhb5OwSUFWcIFXF3//Ln6tq10hAAASQmGSCqrLdVUEeAGwnkWQbYFXZBhBbUhAAJGOrioCTktYGQLKqnCAgkUSSbZL4pwAze39/x66u7pZkWyrb3RUneMTr9V59OZFEwDFJSbH5kBLsjqQ4AIJUFQIQSQCQSizJjiS8BSAA23gLSATrRfAgaVtiApEUCToBQjJJVdmmRLC6YudjZwEEIFFVAGJTBIgElG0gJHf9AJCEZBIAsUkCIOn8g9cqAZAUmxIJryXNrm1REpPoUbIDBGASe6/r6m6S3k1ih2KcB0kA+bANIgESPEgCVUUyMUDbFAmQBGCbZBJVxY+QdCIJcXUlmDNVWlsqe0UGIBHDdkkkA4BEApJAdc1sHBKq8k6C7gKwNgDbVUUqfktAsUuPJCRtU8IHASf8w+/+D8AkQADwIwEQgqpKTDIJgHyQtC1VYoBJdlcSAYoAgSAAQbx19/oRfgAhiUcCgCSA9dv3z2+JAK+rAaoEcHdISdzZ6kpiu6oS7G53kyBpe3e7ihKSdSQBedjOh1RJqgQgCUkAkgDsLoCq2l1SSUiQwodjr6uUAIgdkY5FBSDxEJUHUlW2KSEgsTYcigATk9z1A0B3kezuJLZ3LRGgbbzFTuIEfABJVIVHQjIJiCR2SCBIAuJBMEl9qOSPBCRIIpDoBIHjKgEE4F2QsfmQvAbhtUq2d/bhhADJ1+tFcc4AIJEACACSAG2TlFRVsdXl3QBegxDfEsQOkEQlAElICgRBMomqbPMNCGyvTbC67vu+ukHGJjUzAAISAGkbgMSu6qvnTF+dBABBx7FVxT/+678RoJQEAEnbkmx3tx9rECTPGX5ImhmSAETOLoAqxVGJZAKRs0PQtkqlciypqkjurkgnfABJfvz4sTPdrWqVRAbY3aoGkMQ2CYIgJAEgaZsPcO3E13XZpoRgd5JUFT5mtqrwFkkkkaxd3XF217bER4IkIAgmIbHrKgFIQjIOJTwIr7srbwBiB4mqEgOUiH9KkNiOxASS8DEzAElcV9sBgjfaBmCbBMCHbUm2+QCqa3dJJpEEgOTO3ufsWmKpXq++Xi/bkpLMDB/gevmRBEBVAZSY5NwnD0DiIx92JO3MObO71UWypNfXi+TuxrEXH/wngLtTVbtLECQAFW0DiCMVAEr24i18gOecqgIJ20l1IbEtCeCuqyoIyZkh3qo7CYIkqgLyABAngG0CKpEsFUUABEDyj7/7N5WSACTxSGKHxD8EFJMAfOxMdc8cqRJLAkCQolRAbOdhkwSQQKWqAlAlgDNjW1IS29/f3z/++tevr6/X15eqSCIIQnJ3CYIg6IRkACS7S7K6vft6vWwTWJsUAJKzEyexqkQmAUASQHcB2F1JtpM4QUASQBJJtil5V1ISigiqBHBmkpAACKCqKMZ5gMQjAUEAgeMEEgECSZAEAIkESSQBkCjJjnerK4G9XoMMEJvk63WRtL2zTkiKBCEqyK6RfN83AH1cVycg4XV1764kIn01QARnDkkEJBJIovihxDMrKQnesrsE73O+f35TvLolBSHQ3SBF7tpxbAKqSkzKNqWdBUGyVIHxCB4Ek1TX7H59fSXZmd0hGBIJSZVIepbkmVFVHJIgRVLcXVFAqtu7AeKQILU2EFLdZSexpARIVPJuVfFPf/gLyZ2p7iR2dpcEqSQASNgBIhWBxEm62w6IB0mJpGKTzAMRObOSqnt3zzm//vrLruec7j5nAPz48WPO/fXLL31dBPtqArav6/q+b0mkEucDACmSQBJISizVIwlI7yaRlMReUkBIJiBCwkFJKu2u1ySTgCJhGwCBALYlSjWzRGamupNIAggEgB2JABNLRcIOPhJLBYTEzIqiuLPVZRtgYgB8UxIgVSUxztozk6SrVUpiRx8kbCeoUhJRs5s4wX0fAiSrCwARUCRj44MiwN1FolJJQbwOwI849zlfX6/uToIPO/buOh+2AVzXlSAx8jCyYJG0LVUSEnnDQ6KkJPhIoioCu0tCKj5AlZKcOZLieBckxSTdTdBO4upOMjMEQc7M7r5el0hVxQYZB6TE3dXH7gKoqjh9NUkAJAEksJd/+sNfdgZkEoCSbAMgWVLiAAQCxKkukgBsV9Xukjz3TdLO6+uVOA6Avi4AtkWCiKOq3bU3xu7annP/8utvQaQC4McuHoRIkFXlD5JJ+OF1dXl9vV5JgCBIQpEgxZ0hCUAfFG3vbveVBMDu8sO2JAD5ILmzIPIGkvYCBFJVM1MqEPxIIgn/JMkOiZkBQApvSdBdu0sQxCOBvZLwUaUEVaJ0f98InCCZmaoCSfyDSrZJxrnve3ZLlfh6vaoqCQASCCg+RDkGUFV4BPe55wyA19dLRIIHSZAzs7OvrxeBeFW9ttf52DWQ62pVeTcByN0RCTBJVc1MVQEBsGvHxEcC0rtJVCWJDxAkCDh6I0TbXT0zSUAmjo0QpD3dTQrAOjPT3d6lWJKqvEsJYOI8nCAAJQIkCKIeUl9NisQjAX//v/6s0uOcUyq8BRSRBCAkAUFAUqX7npKAUAKwu0kQXK8+ZxD01XMOqCqdMwTODIk4Dyczp1SUqopkVdkG4nV1kdxZSogTVNfuSiVpZkT21QDiUOzuJCRnBoCk3e1uEpJ2TRKIHSBzprvzAAjkAVxXJ0gyMyTjPEACiUM9ODPEg6pKLMlrABQftiUBIGkbIAknSAAm6aq1AZBIAIIASQAJSHbXw7tOdr27QOxIqpLXVaI0Mwlm5rouJHiQ3bXrv5OYgAQC6q1KeCR2QDy6amZ3Bx9VejjZ9c4+fvn1l6pKHOfMxglS0vW68nHOQUAySZVmFkB1iQQZO8FjvcgDVQKQBEASAgFU6moAjne3VCrtTPc1M3FAJEZAanb0AfCcex0B19crNkmpHO+axCNOEK8p7W5J1+uaGamcEKgqkt0tKTH/9Ie/JOnu3cVb4thRCQCBAJKSnHO87i4nr9eLpD+QXNeVxAnJmeluSfc5cRDf96muc8/svF6v2KqHbAOUNHNIAZAYp7pt7wwlkUmcdFV1xZZ0ZgDUx85UlW2QSRBQlATgujqOEyQgvauPEHsmCR7EjkkEqWqSOwOAEhCA55zu3t3u3l1JuyvVI3EeNt6YBESS7t41gCrtbgKSQKqK4HqrCkCSqgpAIAnJ+75fr9eccUzQye5KSiJpdwGI1Ed1xQFB8pxDMjYeFEkA13XtrneBVDcQBA/b1T1nHIuQFFDk2gkIgEyyu/i4rkuiH7uqirO7VSVxd70r1doSZ7a6kajktSQQcT4sCcB1NaU4TgCI3N0qJTjnEAhCSZTtAKW6zy3Su5sQTPL6egHweneSAOCHbYAzA0ISwN0FQIBkdQP5+uWX2CCBkOL//v2/S9pdSbaTkEzg3e62vbYkErGrKkDekPi6LgA7a/uc8/XLL0DmzDlnd19fX3MG5O4mLrJfryqRFBVgZkgABGCbBKlHEpK7212SCJ4ZkbarSiXbXbW719VJSO0uCD7AJBQBkExim1Rsko5Jluq+b4qiSK4XVNYUCVC0TVLkOvioUpy1AZCUaudQsh1bKhJOAMamCCB2XxcSEAQo5WGDjC3JTl+XRIBJAJxzbCOQFGB3SdouSVWJd1bS2gT0KO2sE5EgCYB4EFSpu2e2qhLjIwkAkjPTXUnmjJ3u3jWIJPyQWNXVun9+r0Mytkq2CdqmuLMkJSUBkYBkd537UOruOcd2PooI2d27290Busp2ACSzK9KJSCdAunpm+rqQ+JEQmJkAJe3acauMEJCURKqZk2DtnVkb4BtAcma7G0CV6k3nzPW6+Kc//EWSbQAEKX5/31VKAKK77+975vzy9aXSzF6v185c13Xfd3eT/PG3H6+vl52ZASJp16R2JzalnenuqqIIYHdFBpjZ67r8WINA0t3r7b52hkRV8QOEqLVJigxCUAIoEglikwS5swBUAuIxAEpJQPABOgYQBwipJCC8lkhidkkRlDQzKgKcc67rNbsIQCYBgkfwoPgAIMkOEElAlHM2UpECEk8VfnvNL6+ffzv/da0NbCTZWQCkZgakRDwCkDODRFUiVYqzu6oqybZKcaobAMndJTkzVdXd9pIiQVLSOWfXr9eFj92JQ2J3z5kEa3dfEq+ru2vX1eXd7k5y30fSrncXyIOkHZJJACZOgkT1trslAZmZ7j7nJJEqMSUCu9vXZXt3RVUVxdjVLdX9/R1PX68EswvifB+KOyOqWgGyCawqArv7+vryboDv7++uXntmdjdBdwVvBEB0XwSkqhJ//y9/lmp3+QZJAHcHAcUEQCQhkeTE6+t14ePcR1UU5wwASTsDvp1zZmZ3v76++IbX69rx2iS7e2aqZJt4U9XukiwJ5O5IBYCkiAQUH6J+fv8sqap2t6qcN5F2VGWvyO4+Z0Ak0YMKIhWAOUfinKMq2yCr6nzfr6/X+o3EQywAtkFI4gfA+75JAKwq2wl2x7YkAHqQie0tPUhid6p4XR2vJJIBvQ64Cwd2dt3dtgNc15WEpO0E576rOzZIAn11nLWBlApEgu5KYlsSPkhJ9FtIeC2xr2t3kwCYMxR3NgkASt/f3/oA8HpdO3O9XiS9DkISQOy1RZ1zSJxzui9VxVbVzOxsd/V17a4epJPdEQUkQeJdAyG5M9WdAIiq5j7qQqASgaoiwKpdByG4u6racwBUt70E1iYIJIBIibt+7K5tPlS7SxIk/ilJVanE//37f5d0zkgCkiAJAL7BDsmZeV1XYFJJJJ37XlsqvVHSrknEcUISgB/7GAC//vqrpKqyDcJrSY7tiEwgcXedxJZISSRAPAgEqrJNMgOXJvYAAA7ySURBVIntkijurigQpTpnyIAEQAABpcROJL2u18yxnaSvvr/v6/WaOd0dp7vnHFXNudchRXF3SpWHwxJJAN117gOAUhK+AaD3DcA5x3aJFEVJvK6WRGRtkklIUfIuKNszKxU/AEhaG0CcXQNQ1cxBQDJASTPDj+CNwPW6SNrpbgC2k3iXYh7Ozqiqu+1NwIfkXYqv1wvIfZ9zZndJdtd1XfggOTNd5UTSzCRBoEfp/r6r2x9JdreqkhAIEJsPURLB3SXxkBgg67cEQHd7l9J19dpx+IHk9cuXbYIz09f18+fPkpKQ3B2CSSg+kEj6299+fH29Akjyer1S7W5V2wbQVyewFwB/9z//BGB3k4gEaXtnKHVVdT2SgPSa5Mw596H09fXV3bb76jj2kvRaJSden3P/v//7f//bf//vfV2SYjt5vTpeoHeH0u4C6G7bsUk6Jrh2SQBs8yMAEpAAumtn60273h2QXZWA4s70dSVOEGe9WddVc5YEyaoCQNFrAJJAep0EH7tru1qlomibIBAncUgGQULKXuoNSWxKSarqvm/v4CMP4OvrlQDJdV0zkzdU1cxQSkLyer1iz0zAnQUZB0SVSMUJggAkkvWWiuLukiyJlEQnJBOQeJBCcmbOfYBcVych1d0gdtb263Wp6pxDcs6cmZJer5ekIA9JJOcckAkSz+zrdSXZNZCuTrJ2d9smOefMLgIgkqoEMHFV7ZoMgO4meX/fQbr7++c3AIpVPecAuF4vJCAJOE4iCYG9fV0A4wU5507Q10VA0sxI2t0Eqkpiu6psA6huibuZGT7+9X/9GUCS6jr3LRJkbCBS/8d//Md/+S//GaBKtqt7Z6oayMO73RdFSbbv+yaJoKq+v392d3V1t9ePJN0dBCSCh0jb/PB6vVKp5N0kAEiuLZISAUqxJZG0XV22EYCMvXaSrlLJNgCSO9Pd931IABEVEMic83q9HFc1yJ3NmwF0tyR7AZAiIcnJ/fO7unbXtiTbVbVriU6IkOKbQNqbpCSSZyb27hLZtT5I2e7r8m4QqVTl3ZkVeb1e39/f+vj+/iYJgJTtJFWlEgKKcw4plUQCoASAVGKAALqbwO76kZDMw05SVSTtJdCvy86DgJ3H9bpsk+wugN4FIMmJP5IQXG+c9YriQ0QAEoB3nTckVSUJgEQ8SJH2igyy491JoiokjhO8rtfuzKztr9crMUtVLXLXZOwAPPf99cuX7dkV+fr6Oud4BqSdxAAf6/Wa0uv1hdgxgID80x/+/ZwRWVUg7u9v1ZsdJPd977lfv/4m0klXgawSgJ39T//5P83MfZ/dlWq9O4MEwK+//koxQZzqyq4DMLtbVQBBxG9JEFTXzoKQ5HWSqtrd6iagqt21TbK7bXf37pKcGdsiq2rmkEzSfc2cmSHQr8u7kmyTqiqJpO77u6/r3Ke7E+9u90VRpBMABCl6lyQAVc2Z3REVwN7YoGanq6vLawpSAdgZG1VFwDGCKp1zEiSR5DxAhGR1JZG068fudpcdkrsrEcDMVvXuXld7t69XYgA7S/FNSiKSUhKvH19fXySTIKEIMs7sxKkqEqo69wFCUlJ1IZBYXQgeJGdm10nOOfXo5pts7+79/b07UiEJUo/uOCRsJ/j+/nldL5IgRFYVSZD4hxCwfd93HJB4i3fxIONIIqBSX01g17sDkET3paq//fWvX18vO0EIkgIM0DZAIAFi764dVX19fcVOcr2av/sff7xeV/f1t7/+9fX1SpD46v7x48eur+siRZHAdV2721dTEpV4Zs4ZBCrZjl3dtrvK3l9/++3H33509+5W1TmnqkgBue9zXZ2PmaluAlLtDoAkkgJIur+/bX/98oukOUeiqmyTOvcN4L7v7ivx6/Xa3SQSq9v2dfWcI8lrfFAEMDOSvHtdF0lVJZFkL0Db+JAEIMnukrSjR2lmvFvdcw5I219fXwBIzjlSeU3xkbiqdzZJde3unAECioTXu75eV95QJRJ2dreqAJxzCHY3xDlHVQRAxiBRXTPjNUkA3UXS9nW91vuIraqumhlV7cx1vSQFARi7umInmZnr6r4ur0nay48E/Pj+/gZAMjZL5z56VBH4vm9Jc+bcN6WvrxdJfxBUac6p69qZ7pa0NoEkkkhWVRKJ39/fc2btOECqZAeJ435UCce4kkh87A4pAFTZ21W2z5mvX77sSDVzEAeQ6vv7W5TjOaf7UklVAAjyj//6b911zsSemeq+v7+R9HVVt+0Ev/32632f6+oHyDl3gsQASezau0ler9fMkJR0zumrEVQ3QXvxEZuSHSTVfc5JUl1zjiSSAWyf+1bV6/V1399XvwEJQmrXIm0HmTMkqgqAJNtVtWuJFOecrgaRRJLX4AME8jEzfEiJr+vq7p09c6SSlGR3+7pIJplz1pZKYlWdc6p6d/Rxf98AruuKvbt9Xd7lx8+fP0mR7K6ZdYxAEhC9FR/S98+ffV0A9+HtbonnPt01s3zT/f39+vpKQlHSue/qq6p2HqdUELo7b+ADnB2Ar9dFEmBiiQhIJCGJNyZ+fX3NmSD39+kuINf1AnHOVNXu2ouElEo7m8S2pOq6v29/gCTgXZBVtbuzIwqARIJVBVLiuU+QqiJZEoCZA3Bm4oC4rv7/NcHhjiXpUQTQiIys6plZrTGPbiFbMiD5By9oYdbbt77MCO404pw5R90kd7avlsrOeR5WAZk5RF33nZ9cfCt+CYCEVc/rpau9BpgYIBAAdgBI4t/+87/Omf/5xz/O8/zLv/6RoLpjOyEJoKqu6zpn+uqdeZ5HktcgruuaGSQOqtgtgM/rIfHW3WtLAuAZlpKQtFcSwSC7Jrk7JAMEPxGoKgC2SVQJCQDHSUhKso0vRXbLzhsBVgXxuoq7CxAAyapKnIRVJOIAmHO6myoEUiWwXUXbJc3YuyAIgEVC0vM8AKrU0ut5xf749m1mCHoX/AIGQfBWVTMnCesnAKqaGRIBAZCM83q9ultSSbtTau9WaeZIIjm7JL173ffukBXbSRwk3e2kSJD2AgHIonclAeyr7SBmFQHbkkDe94d3HasKwO48z5D1+fn7t28fVQKhKpAzQxYB233pnOnumVOUvSTtnHNs78513UmqKjES/r+Z5VvRdmyS9vINKMk2ySQA7d0dVakbgCQAu4ukSrsj6Xm9dF2xSfZ1OSmyWOe86k0i8Ho9APtqAM/zFGt3QXYrDkj++U9//fz99x+//NJX27jvK8HMqSqv1wuAgLrtqLi7AYH899///usf/gASSam62+uq2t0qJrAtyc5Pdkm7S6AkIN1tZ99mWLzu6/V6kJREEgB/wvM8VzdIlXa3qkAUubtJupuk7VKplPicw3pTvHNOqZ29rzvJmem+ELOKxNuccdIt75YUZ71SS7LjeM6RGoidKr6dcwBW1e5W1X1duwugqrxeb5VIFhnENoCqsvNGslus2nNmpqoSXPcVG1Wvz0+yACQG2FcneX2+JDlWab3FerMX4JtKQEA+r6eqrvtCoBaL55zYVRVAkndtA1DLa4Clektir1jqyzESkg5i//bbb/d9x/74uHe3JLJY3N0iHVTxnPEcqYH4p5Bwcs4g6e7YJe1uFW3vDsnurqrn9QJRpZ0DsKpI3h93ACTnOeuNLQmAVPqp84XEnOMk3m/ff0g655C1u6pKcmaSdLe9AKUGuTusirMz133vjGP+5d/+o1tegwSolu3YVZUEQFXtTF+Xd9V9zpzn9fr8lPTLr79KIn6ac677ju0YgQMSJJE4kXp37U0g1czGdlJS8Q1fggCkJJCJ45RqdwmSYDHGG4vnee6PD9uSAPTV3o3jhEAQ2ySLtF2S7aoCkC9SvSV5nmMvWW/dIgtA4rddk6wqvyVeS2RpZ6XKetd9te3uJokvMwPguu6ZQxJgECQAgdiWuop2bLfEYt7sIAhYRfL1+dndZO2OvbtO0n2xyrtV2t3rvj8/P6vqurqq9oukvnpn7vuyMzMJ1NoZAFLvDsmZJfnxcc9Md6/36mYpyc4E9O7n60Xg+4/v3i2V1Ps2YwfAdV8EkpAE4N1zhoT6mnNsJ5GKpONW2545IFs655REYGdZBLA7xXJMsopkgZD6eT3xkoxNgMWqAoFk5thRi0Bft3dLaml2JSUEkHhmCO5ugr6uBEGq6r7vnXHCv/7lb0AIzo5KAUh4XVJ3n3Pyhfjp93/+drVK+v79h2OCJZ1zrvtCYPu6rp1Zm0CAJCQSxJYaxZ3ZWbIcf3x8ANhdvCUkWDXnPM+jVnd7t0qsUstrSWB2tr7sDksAdoYEQUpAqmQ7dpXOHElAvL4/bpK2d7ava87xDkt9XSTmzOxcfdlmMQmCkoDsrrp3JgGS3e3uqvLuzNwfH0lYVaRtAGTtjp0iHZN13TeA2PgSx96Pj/ucM+dxUqW+ru7reV6Sipydqpq3M1LbBmh7d0tC4uS6enelUjcASbaTEDgzSPq65hx9OecAkBRgzrCqJXv7uqpKqtjr4C2w9/V6dl3FltS6riuJnd3pbv4Er6u4DsmdDUBid2Nf9/37P3+TRDIAAdsgCQbhG3jOqS/qOs8DQBIAfgFg5zwvlYCwiMRedRcLyMzY3jlVpRZA/ERJZO1uVYG0Yzs2EDt9XU4kIXjjn//0791dquf1gPz2/dt5jlS7e1+X7XNmzrHXuz9++fH9x/dd5wvAOee6793t7t0l6V0HtkkC6e4kTuA42V2CH99uAFVlGwBJALsLIAF/wv+RKsnzPCqViiQSVgEgaTtJkSyqe85c9zXnqPv1+Vr7vm8CIEBe3Ul21nFV7RoJSKl2nTgJQCBS7+7MAunu2ACqBGRm7VSVVDMjNRCpZpZVz+shOTOSukXACcm+rufzs1pFOkHSVyMpaWe6L+/sriQ7ANXtXQBSneexg2LwxvP2PInV18fHPTPFuj7unSEZB0ipz/NcV+8XSaWq0s6CkJTE9swg6BZYVewWyTjnHO9WyW9xbFX9+odfPz9f3XrbtZP7umbfxmuQ9tpWVYKZsRdAvbGMxCYrMQCSM0OyqnaHZJLrunYX5HVdCOwFIGl35xwyBJPwrRgHCEivScRLEogdSXZASr07UrMKXxLsTElAVNJ178z/Ak5U5mN43UJQAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "from IPython.display import Image\n", "Image(open(\"img.png\", \"rb\").read())" @@ -120,36 +148,205 @@ "id": "a15f6912-500b-433e-a69a-74660028b3d6", "metadata": {}, "source": [ - "The log message shows that not only the `rgb` is created, but a `main_camera` is provided automatically, which is also an RGB camera rendering into the pop-up window. It can serve as a sensor as well. More details are available at\n", - "Main Camera." + "The log message shows that not only the `rgb` is created, but a `main_camera` is provided automatically, which is also an RGB camera rendering into the pop-up window. It can serve as a sensor as well." ] }, { "cell_type": "markdown", - "id": "c5311f1d-dc65-4f8e-840d-a46698571252", + "id": "8caacfa8-0d10-4dc2-8a6c-494dc7524b0d", "metadata": { "tags": [] }, "source": [ - "## Physics-based Sensors" + "## Graphics-based Sensors\n", + "\n", + "We provide the following sensors:\n", + "\n", + "* Main Camera\n", + "* RGB Camera\n", + "* Depth Camera\n", + "* Semantic Camera" ] }, { "cell_type": "markdown", - "id": "8caacfa8-0d10-4dc2-8a6c-494dc7524b0d", - "metadata": { - "tags": [] - }, + "id": "e4a9ad44-4beb-473d-9870-dcb76be25643", + "metadata": {}, "source": [ - "## Graphics-based Sensors\n", + "### Using semantic camera as observation" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "fda11246-5c14-44ed-8e20-b6054940b51e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{'image': (128, 256, 3, 3), 'state': (19,)}\n" + ] + } + ], + "source": [ + "from metadrive.envs import MetaDriveEnv\n", + "from metadrive.component.sensors.semantic_camera import SemanticCamera\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "\n", + "size = (256, 128) if not os.getenv('TEST_DOC') else (16, 16) # for github CI\n", + "\n", + "env = MetaDriveEnv(dict(\n", + " log_level=50, # suppress log\n", + " image_observation=True,\n", + " show_terrain=not os.getenv('TEST_DOC'),\n", + " sensors={\"sementic_camera\": [SemanticCamera, *size]},\n", + " vehicle_config={\"image_source\": \"sementic_camera\"},\n", + " stack_size=3,\n", + "))\n", + "obs, info = env.reset()\n", + "for _ in range(5):\n", + " obs, r, d, t, i = env.step((0, 1))\n", + "\n", + "env.close()\n", + "\n", + "print({k: v.shape for k, v in obs.items()}) # Image is in shape (H, W, C, num_stacks)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "450f8f1a-c062-4d1f-953d-cee030617bf2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAB5CAYAAAATQNr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBs0lEQVR4nO29eZhcV33n/bl77VW9L5Jaa0u2LLxpB4xtLOKFeAFeEggzOISBgdjDyzgDg58EePKQxJkkkzAsgTyTCSRvGJYEL2DA2MiAbSxLlizbsrVbS7fU+1p73e28f9yuklprd6uXavl8nqfVqrq37j2n+nvP/Z7f+Z1zFSGEQCKRSCQSiaSKUOe6ABKJRCKRSCRnIg2KRCKRSCSSqkMaFIlEIpFIJFWHNCgSiUQikUiqDmlQJBKJRCKRVB3SoEgkEolEIqk6pEGRSCQSiURSdUiDIpFIJBKJpOqQBkUikUgkEknVIQ2KRCKRSCSSqmNODcrXv/51lixZQigUYuPGjezYsWMuiyORTBipXcl8RWpXMl+YM4Py/e9/nwceeIAvfvGLvPTSS1xzzTXceuut9PX1zVWRJJIJIbUrma9I7UrmE8pcPSxw48aNrF+/nq997WsA+L7PokWL+C//5b/wuc997oKf9X2frq4u4vE4iqLMRnEllyFCCDKZDK2trajqxL261K5krpHalcxXJqNdfZbKNA7bttm1axcPPvhg5T1VVdmyZQvbtm07a/9SqUSpVKq8PnnyJKtXr56Vskoufzo7O1m4cOGE9pXalVQTUruS+cpEtDsnBmVgYADP82hqahr3flNTE/v37z9r/4ceeog//dM/Pev9b//RO4hYc1IFyWVAvuTy+//zGeLx+IQ/I7UrqQakdiXzlclod16o7MEHH+SBBx6ovE6n0yxatIiIpRMJzYsqSKqYmQxXS+1KZhKpXcl8ZSLanROV1dfXo2kavb29497v7e2lubn5rP0ty8KyrNkqnkRyXqR2JfMVqV3JfGNOZvGYpsnatWvZunVr5T3f99m6dSubN2+eiyJJJBNCalcyX5Halcw35ixO98ADD3Dvvfeybt06NmzYwJe//GVyuRwf+chH5qpIEsmEkNqVzFekdiXziTkzKL/7u79Lf38/X/jCF+jp6eHaa6/liSeeOCuBSyKpNqR2JfMVqV3JfGJOM53uv/9+7r///rksgkQyJaR2JfMVqV3JfEE+i0cikUgkEknVIQ2KRCKRSCSSqkMaFIlEIpFIJFWHNCgSiUQikUiqDmlQJBKJRCKRVB3SoEgkEolEIqk6pEGRSCQSiURSdUiDIpFIJBKJpOqQBkUikUgkEknVIQ2KRCKRSCSSqkMaFIlEIpFIJFWHNCgSiUQikUiqDmlQJBKJRCKRVB3SoEgkEolEIqk6pEGRSCQSiURSdUiDIpFIJBKJpOrQ57oAEgmAKP9HqfxT+TXxD59rwzmOpSh4UYtSSptUGSWSczFeu+P+M57T376gZs/xodM+K3QNJ2xNvIASyQQ4ryQnwQUlPrZRKBNt2KVBkcwRQgEvFsYPm3ixEF48hJeK4oct/JCBHzJAHS9koWv4hg4CFCFQXA/GfiueH+zk+Si+qPwWmooIGfiGhrAMhKEH72kq+VwJPvXwHNReMp8RgB8yESEj0G3EwktG8eJhfEtHmHrQCKsKKAr4fqA7XQVVBT/QpuL64JU1HOhXEQLFdlEECE0NdBsy8MvaNTSEoZHP2fCZH8/tFyGZtwhAWDpeNIQfNgM9Gxq+pQeaLaMoCFPHN3QUEbSrAIrnobj+WBvMqfc8ASJod1EVfMvAj1hBm6sHx88qCvz51gmVUxoUyYwiVAUvFsKPWLjJKG5dHLcmgpuM4sdC+KaOHzZBn/1ohvCno88guVwRCvhhK9Bv1MKtieHWRHHqE3ixUNCgh02EebaZnmn8CYcXJW9WhEJgbM3ANPthC6c+jlsbw6mL40dDQWfQMhCGBpo63pxMBV8Q9CCV8x6rlC5M+HDSoEhmBDcVwW6uobSojtKSJtya6NmN+KVeDBLJDOBFLZyGJHZrDYWVrTgNiaDxPh2pXUkVEkTddPx4iNy1S7CbUpUotbCM8TvPhIZVhYmPzV8caVAk047QVUbfcRWFKxacCnNLJPMAocDoO1aTX9MWDMfMcmREIpkqAshds4TsumV48UgQFZnnbe9la1AEgKYgVDUIcelaMC6mKKi2g1J0gjE0IcP8040XC2MvqD271ymZFEJVgmEEQw9ulgqoJQel5ErdzhBePIK9qH5OhhwlkktBGBqFFc24tfF5b0zKzGuD4iYj2MkwwtBwa+P4loGXDOPFw3ixMEILEtWEriHKvSFFCZIqHRfFG0u09AV4XhCYGjMtiu1WEoHUgo1asNEyBbRcCVwvSHLzfPB8VNsNjuNNz8iwgKDc5TFBVTlVfsayoBWCBCZ1LBlPcCo51PVQfH+sfEHSUpnZkG2prR4vEZmFM81f3HgIJxFCGDpuMoIXj+CHDLxEKNCuZQR/27HksvLfXHU8lLEfyolq5Vwaz6skDCu2i+IL1KKNli6g5YqBsfH8IEnTE4G+Ha9yDUyXNir6VRVQ1UC7Y3o9PSJR3g6Mlck/VRbPn9YyTRSnIYFbE5vls84vBOCbQcKuP5bfIHQNLxnBi1gIM8hp8CJmkNhrBrcZNV9CyxZRSy647qkO4lhCu+J5KLYb/N3dMW2XteyOabu8/xz6cwHjtezPbXnKuLUx7AV1l405gXluUAZ+ZzNWYwJhnKMaE/0jTbYn6ougUT+tcVfzJdSig5YpYAyk0YdzwQ0ExmaXCHzTwA+ZeIkwXiIcZE1ryqmL0PXHsv2D2Sa+oSH0IHFJqGowA0DXKo0/ioJQqNzAyo264niBYXJOXdR4AhQq59EH0pi9I2gjedSiHdRjct/C+b9OBQrtLbPjhOYxg+/dhNWYCBKEzzeMcA4Ne+X/TCGCUjY2Fe3aLmrJQc3b6CM59KEs+nAWpegEKySJsfNoKn4khBezcJMR/LAFugpeeQZVcDMRuoYfMfENfUy7ylj2vg4qFZNdmWY4NpsKqNyIVNsNjJbjoRadUw2/8FFKLsZgBqN7GC1XDPZ1py9dVAD5qxZJ7V6E4XdfT74xgR8y8SMm3gwluSvumEbzdhA5tJ3AWNsuaslFyxbQ0nn0oSxaujDWMTv7uihHIt1kFBEyEJoatLu2UzFGvhnMkvLDY79NHXQ1MGBaMFQi9DG9lttdNehAKraDWnJRSk5QTsdDy5dOzbP1/aC86TxarjStndnTKS5pRFjz+pZ+FvO6Nl4iEmTQXwqTdZvlRpczzlu+YQhxxgTwsdfl85SjH9NdrolQKSPBRVO0MXtGCB3uweocQB/OBdGksf2mUgK3No7TlLqsXPxM4NbHMWKhqR9gCt9vOZv/7A1naPdc5qei2/Po97QlZ6ZavnOW6Vzv+wItW8Q8MUjoeD/WsX60bKFS/qme2YuHcJpTUrsXoXDFAkiEZ/w8wbRqHT96xnVyejs21r4qthtECR13fPs7NhOrPNX13CcSp7XPp31w3OvTj3nGm6dr9bQynfUxx0UfymIMZrE6+rE6BtDS+bGZL5fmi4WmUlzefAlHqE7mtUGpKk43INXK6RehquHHwhRXhCkuaUS1XbRMAfPkUKXhV7PFSV00ArBba/Au5cYrmX2mQ7vTLfvzlUVRQAUvFaWQjFC4YgFavoQ2ksfsGcY63o/ZMzIl7TrNNbhJOTRZ9YwzE2PD3mETN2zObXkqxTm38oRm4rTW4rTUkL9yAWrRwewZxjwxiDGYRe8fRR/JTWm4yG5M4tYnqvv+MwWkQZGAruHrGn7EwmlKkbt6MfpILjArfaMYvaNo6TzqWHjyvJeAqgTDOzI5VjIbKAroGl4igpeIYLfVk7t2KdpoHqujH7NrCH00jzaSD0LuFwqrKwqFla0yOVYy84zp1o9pFFe0BJEPz0fLFLA6Bwkf7EIfyQW5j7nSRRPiBWAvqMWPzJFBm0GkQZGcja7h1idw6+LkATwffTSPPpzD7BrCOtaHPpSt5OCUG303GQmStCSSOUKYOm5DArc+Tu76ZeD66CNZ9KEsZvcI4cPdaJnCWJLxKcMiLJ1SW/2cll3yJqVstGti5FNR8mvaUEtjOY19oxjdw5Uh+PIQ1jijranBsNtlFj0BaVAkF6IseF0LVoCtjVFc1oSyeSXaaB6jP43RNxr8fzBDaXFDkPQpkcw1Ze0aGm5DEP4utreS2dQe5AH0pzEGMmijOYzBDHZrLd6ZuQ4SyWwzluvlh038sBksErh6EYrrYXQPY/YMY/SOYgxmguEg28NpTOLWx+e65DOCNCiSiTN28QhVr0RYCqsWBNPsHC8Y2pHDO5JqpKzd0Kk8AMSpmW9BL1ZqV1JllHVr6tiLG7Db6k8tJeF46OkCeD7+mavEXiZIgyKZOpX1WDRQdIRaBYsBSCQTYexZIUJVz71MgURSjYwNBwldQ4TAjs/8bKq5RF6Z1YoAfFB8FcVTgsxuoZz6v6+g+GMZ7OrYOieugu/4KI6CaquojoriqOhCh4KC4ihQEiiOGmxHBQGe6qF4KkLzEapAdVXIK3jDLp7jIXyBcAQ+PoodnFPVVHzPxzfHVuZYD6UbC3INCUlA+ZlhZZ36CsqYnsvvB0+lVgARrOkDUAIhBEpJRbODiIZW0FF8BdXRwBYoRQW8Uxr39fITVhV83Q/OaYLhmNgDNnbBAVsg8BEuqIqGHlEhD07Jwdlo49xsB2u/SCQXo6xfv6zjQNsIJdBzeTsgFBE8mVol+O2MPaRUgEAEn1OotMkKY9r2gmMpRRVKQduOMrYska0iEGiqhhvzyF4/etlqVxqUmaLcQI8JFl8J7t2+guqomKMmesZEK2loGQ09b6DnDNSCip7X8XUf1VRRBiHfU0Dg45s+CgrOoIOXcRGl4ALwTR9h+ESKUbI9WUpeEYGHH/bwdI9IU5iSZ1PqL+H5Lh4uJbuEGTHxfYFrOwhfYEUtnJKD7/mEoiGEL3CKY69jIYq5YmV+fyQaQUlrxNw4Ztyi9Fs5lMswSetNieBs/YpTJlkrqeh5AyNtohU1tKyOntPH9Kuh5bRAq7qCO+jgDDvgEJgHFLyci1JUsPM2fkkgVIHQgvV3/JMCPaSRL+RxcPHCLr7h4+se6Aq6r5EeSiMQeLgopoqmq9gFu2KaFRTMiAkoeI6LW3LHVS8ci6ArGrFiAg2d0ltLY8FAqd/LjtO1jHJOXauuErS/owZqKWh/VUdDK2hoOR3FOXX311SNYk8Bv+Dh2wLGosa+LtByGsXBAp7woEjQWdPBMi1KogRFEAMCp2QjXIGiKcRicUaHRvF0G6ELfD1oy8N1YTRNI92ZoZQvBuYaEJogFLIQavB55T0K4evDl612pUGZLGeOYvhgDYXGGmsdc8TCHDHRswbhvgjGqIlma1ieRf5kHgqADblCFjtho5kqA739OLE0WqPGcOcQQhPYxRJmzMQtudiloHcXa4yRHcmg6RrFXAkrauLYDgCGaSCEwNVc9LCOU3SwLItipkhhKEIhU6iYkNLYKofFXHFcVUr5EpquoagKhcz4R2IX80XE2HS31vYFrDq8hkU9y9CEzsjCQfaLVxgWg6c+cHleL/Obc4zAqSVtzCwbmGkTc8RCzxmYQxbWYBgjY6AIUAZU3CEXxVNwcw5Fr4hT74DnM9Q/hJ0q4ls+xaEiBTs/lqskEJ7AFz5CCRpzxVBQVTUwwsIfVxYzbOKoDoZioCU07GLQkOuqjp2x0QyNSDKCb3lohoad8YiELArpQhB10RVSzSlc2yUzmMEMmWPVPlXxpvYmFh1ZzqquqzBdi8yqUfbU7mJUDAU7SN1WP+fSsa1ijlroGSNoh9MmWl7HyBoYIybmqIWv+xijBk5PYJg1W6PUXcIzPNyUQ2m0RL6Qo2jlcKMOwhRkujO4OONP7/qEEiHy6XygcYXAqIgg+hevj5MZzuC7PqF4KDDino9hGZgRE1vYuL6LqqgMO4MURAEcUH0VTWjgQL6UQ/gCu2BXzqvpGov8JSw6uZSEm0Is9nn1nS/iKDaXK9KgXAgPjKyJVtDQc0GEI9QfJnoiRqgnQqQrSrg7il7UURQolAr4nkc+ksO1HQboo6gXGMwPQASKxQIiJlB1FSdkE7bCZAYzeHiQBa2k4TkeGhqe4qHo4LgOjhpcIKODIwg/aPBRRGA0oCJ8BDhFB8/1EEJQzAQGJD+aByCaimJGTEq50jmrK3yBZmhYpkUhU8B3/XHbyhRKeUauGyQSjlE7XE/dsQbW/bcb6N7SwdB1A+Rbc9i1RexUCTfiXrbhx2pHLanoWQM9H0Q3jIxJpDNGuC9MpCtG+GQUaygEJvhFD9dzKNlFRK1Pb3cvwzVDZHKj5LQcvu/hCg81qZB3c2iWhjfo4Y090oGR006sUNFjOBFmtHc0eF8QNMSaWjEnVtQiVhujkC5UjLPruOMaZtu10XQNBJRyJTzHwykG10RZ20Aw5Oj5FLNBpO/0Y5QxwgbmWp2iWkDP6cS7k6z77Ns4/v7DpNtHKDYXKKWKOEkb3/SlYZlrBOhZAyNrBFrOGYT6woT6IoT6woR7IoQGwmiehsgIbMWmVChQqitRGMqRUdOoZoHBkX6KRhEQuMKFMJgJg5yZp5gtQO60c+aDn1AsRNEvnl0mFUrZEqqhEo6H8X0fRVEqWswMZSqduWKmiBk2g2i161NIF8aGagSe41Fwgo6gFbVINCQYOhEY5bK+T6fpqiaWFdtZsr8drV/D7/AJfS7MoY+9TnZxBjtVwgtfXu3tm9egiMB1q7aGaqtothYIvjtKuCdCuCv4bQ2GMDJm4MRzJl7JwzM8sovS5L0sHRyl4OUpGHlG9WHsUKkSmVB1FWEHvcZEKkG+L4fu6OiqjqqpjPSMjCuS53jopk4oFsJ1XAzTOHUDIGiAy/uVMSMmC65cQOdrnZVQ9unbT6dUKBGtjVZC4efcZ8y8GKZBpCHCaN8oQohxBmW4Y5jhjp28HnuV+IIEdUo9DdFmGk42Ubu1gZATxql1KKWK5BdkSbePkl45Qq4tgxdxccNukLtyGV1Is47PKe2WNLSiRrg7SuRkjEhXlEhXFKs/jDVsYaRN9KKOltFxcSkk8rh1Nr10U7Ty9Nu9FNUC+VCOgl/AG/TApNJopxpTZPuDRtfyLTzPw8ufW2O6pRNNRbELNsVsEbv3DJMgqBhfVVNpaW9h8MTgOKMh3LO7yIqm0LC4gYHjA+fVbtmcqKpKTUsNmcEMAK59aojnxKsnOKmcJFoXJVwbpVapp15vpHlrK0u+1Q4W2PUlSnVFskvTjF4xzOiqYeyaoPH3LA+hX8J6+pJTCCp5cqqtojkaetYg2hkj3B0l2hEn0hUNonnDVjAMkzbwfZ9CNIdY5NExchyvxqEn041tl8jGMuS9HKJHoGoqilAQOYGv+oSjYQrpArqpoys6me70uOIYVhCFjtXGyAxk0IzzL9qnKAqplhSartF/vH9cVOdMfWqGRrwuTs+hnopxORO35JIZyGDFrMrQ+um6Beh5rYdsQ5aDS/bSumohjVoz5vEw13xhPV7Ko5gqkFuUJb1yhNHVQxSa8oFmwx6+MT/N9uVpUE5L0Csnlup5nXBXlNBAmNixONZAmFB/mHBvhFBP8H/NDgQphAjC1c15bL1Ev9XNiD5MvjHHIH2UtBLp/rEbd1mZdiDacjQw0ZhA+IJitohTdCpmxCk5OKXx7ljRgvHQeF0c3dIrLrocATkfiqpQt7COnkM9Z42zn4vyRdCysoX+Y/3n7GHCKZNSKpQIx8L4no9mahiWcao3DNhZm8HsAIMMcGjgAIqiEK6NUJOspUVbQE2+jsjhGPXbmgiNhPHCLoWGAtmlaXKLMmRWjJJdnKkYF6GJSsLvm5pyzlIlGU/BGrII9UaCCF5nDGsoRLg7ijUQItoRxxoKnVp0TAhKySJ+o8egO0CxNk+f30OpqciwNUg+k6OYLhEkp449y0RVENlAy1bUQtXUoLcHgXbHZH7m0J+iKAghiNYEpsQpOuM0cj4UVWHJdUvoPtB91jHPhVtyKWaLLLluCYdeOHTe/U7Xbk1zDb7no+oqxWyxUh8hBNmBLFmy9NPLQWUvoWiI8KoIiUKS1ppF1HuNLHixjbYfLEdzdUp1BbJL0uQX5MgsHyW7NE1m+Sil2lKQXK6N6fbNrt3TOSOZVHHVIOrcFSXcGwl+uoNOYKg/iIoYGRNFgC8EbsxGXaTSWTiGiHt06SdxGm1GQkNkBtPY/XYQieujok9lVCHZlGSkZwQramFYBk7RoZApVP7+ru2Ou/mXtZtoSGDn7UpbnRvOcT5qF9Tiez79J/ov+jUU0gXidXHi9XHS/elz7uO5Hl52zPQrUN9WTzFTJDeSqwwd+Z5PuidNmjQnlA4URSGSiJBckKLBbaLBb6K5cwF1LzQS6Y3iJB0KrTmybRmyS9OBZpeOUmjJ4xs+QvODTmIVa3Z+G5QxI6KWVKzBMOaoiTkUwhqyiHRFCfVGCHdHiR9NBMJ3VFRPqbh2oQncBgcR9eit7SIfz5IxRhm2hvAjLj0nunFtD89x8T0fkTn/NNpQLEQ4HsYIG/Qd6SM7lB03RHI+dFOneUUzmcEMmcHMhD4DQe/zyndcSceejsqFNxEK6QJ9dh91C+voPdI7LjJyFuLUDUktqZSyJTRDI9WUIjeSC0Lp5V2FQAhBbjhLbjhLl3YCVQtmCjVd2UyqppamdAvx/hQ1x+qo396EkTXwTR87YQeRllUjZJaNkl+UJd+aC3oAkTOMVxVfTJOinLwHaEUNayCMNWQFvwdCRDvjhPrDRLoCDetZA9VVUdyxbH9fwYu4OAmbvJ5jsLWX0doRnGiJAfpIZ0fJjKZxhYtICzz73BEPVVUJJ8LE6+L0H+/Hc7yzjet5JBKrjRFviAcmI124sJZOQ1EVVmxYQXYwOyFzUma4axiApuVN9B3pO29vtFzm4e5gf93SidfFKeWCxHC3NP4GJYSgkC1QyBYYYpDOkeOoukoykcS6OkxLfAEN+SbimST1Lzax8PElKELBDbsUGwuVSEuuLUN+QaBdO2VXEiiDSk+4mvODM796MZaLN2piDVuYQ4HpiJwYi+idiBHuiaA6wcyrspbdiIOX8MgZGdKNQ3S3ncSPePQpPWTTGbLZLLZvw+iYhrOnTqkoCtGaKBC0a77nI4QgM5CpvFfg3PoyQgap5hQjPSMV7Q52Dp5z3zNpWNJA7YJaDjx/YMJfV//xfhZfs5hSrlQZmj8vAgY6BlBVtWKERntHx0dmxkxLbiRHbiRHt9KFZmroShCBr1vdQIPfRMvQQur3N9D0q1b0oo5v+pTqiuQWZhlZM1jpLOYX5HASY8OaZapAs4q44FVenaTTaZLJJL944FkaBpoIDYTRczpaUUcr6Ohj0xIBfNXHT3l4mktey5NvyOLW2nRpJxCKT093FzY2eS+H7/pnhdXOxIpawUUhggtk8MTERH060ZoodYvqKGQK9B+9uAM/E0VRWL5+OfnRPN0Huy/cUJ/n87HaWBAqHbuwJ4qqqYRiIeyijVtyMSwDVVfPm9dyOmbYRA/phM0INfEamttaCXXEaOhqwsxYaBkdI2vijt147Zoi+QU50u0jjKwZpNBYwK4pBeH20KWPtRbSBf5r3X9ldHSURCJxaQebIGXt/uh//oym7tYghD0cJKbqhWA2jFrSKln5bshFSQgKegFPdRlODEGTx9HsEWyvyHB6CFu1cQkicxcyCZquEYqHSDQk6Dvah+d4KKqCburnHPM+F2bYpHZBLf3H+tFMLej5ncf8nAtFUWhub8YtuQx0DExJuwuvWkgxW2Swc3BS2oWgI1HXVkfX/i5C0UDH5xsSPXVSCMfDaIZGfX0DkUiMRfpiQkeipLI1qFkNfWgsByxh4yRsCs35QLdvGSTfmqNUX8BO2UHypX7pTe5cavf/PPdtUn6K6LE40c44kZNBLl55Vpde0NHyOurY7Bcv5KEkoCgK2EqJgVQfao3CkfxhlKhgYHAAWy0hDJ/C6LkNhaIqhBPhioEWfhCxKidCX0z7EGg3FA8Fbd5YAmsxU8RzJ67fREOCmtYaTrx+YlKfg+D6W33Tao7uPkp2MHvxD5xB6xWtuLZL39G+83YaTkfVg86HLgzqauupSzWQKKSoOV5Pwk6i9GpoJQ0nbuMkbYp1RdKrhkm3j5BZMUqptohdW8SJT49my0xGu/PaoBxa2kVcTSBUHz/kgw4Fv0ChKYsbdxnQe/FjHicGO3A0h4yehlLgOi+GEQpW5tMMjXh9vGIkIskInuNd3AWfhmZoWFGLZGOSvqN9hONhSrnSWUM9E0FRFFpWtWCGTI69cmxCQj33gaB9YzuqpnLgNxPvCZyJGTFZ/JbF2AWbjj0dk77hWFGLaEOMECEWLlpES3QhHFSJH04RyodR8gpqKRh6c6MOxaYCheYc2cWZylhrsaGAGzk1JXWixmUuG/mKdhHBxW+Br7m4msvwwkHMGp0OcRxPd+hL95HV0ni45AZzFzXRqqaimzpCiHHGQzd1QvHQ5BrHsZuza7s4RYdQLBTM8ppE1K5yqDHtpppT7H92/6TNRRlVU1n722s5vuc4fUf6pnQMCML0Na01pAfSk+8oKBBtiBJNxWipbyWhJAkNRantbCQ2GEfJq6gFFdVT8Q2PQnOeYkOg3dErRkivGia7OIMTt/EiLp7pwSSeUziX2t275hi1hfHPLfI1HxES+KqHYzpkG9LorQrH8kfxog79Q33kRJYiBQqjhYtGig3LwHVchC8wQgb1bfXkRnKVob6JakfVVNSx1a0XXrWQ7GCWzGBmQh2qM4nVxWjf0M6+5/ZddPj9QuW56uar6NjTMaGh0HOiQNuaNhRVoe9oH6VcacLfhxkxseos6mrqadCbSFm1xPoSRDrjhIcjKDkF1dbwTQ87VaLQkqfQmCezYpTRVcNkl6Wxa4LJD1PtJL5pDMor7z9AyS/i1JY4kevEizh0ZU6ArZAbyZ7KD5lEDc2wSdPyJorZYFptuj8dhLyn+C1ZEYvm9mZUXaXj1Y6L99YuwsLVC0k0Jtj3632TNgNnoUA0GSWcCDPQMXBJx1EIchEMy6CurY6RnhFKudKEw/6V4ygKsVSM6MIoDakmat166rQGtGMGsQNJjLSB4gV5GajBOjBuzCG7OEN2SZpcW4bsslEyy9PkF2SDNWLKuS1j5ygzl4387lv2U9NSQ6/WRckqMFgaJGONUiDHaPcohWxh0vqtb6vHsIIkQuELPNebcNj6XNQtqiPVnAJgpHtkStHC06ldWMvS65by0k9empwuzoGiBuPv4WSYgeNT166iKMH3LILOR7IpSe+R3qDBn2gRx3RrWAZ1S+uI1saoseuIlGI0imbMvWEiPVGUsaE5CHTrhT0KLblgWHNBjkz7SEXHbswJdFvObTmDudTuwfYTRPQohcY8eptKd64Lt9amu3iSklEka6TJnMwESxNMUMPl4ZpoTTSY5eIJhruGT3XilIsfY9zxVIXGpY00LGmg+2B3cB1M8hinY4QM1rxzDfue2TduaHsq1LfVE0lFOPH6iSmbdEVRiDfEqW+rp2t/V5Acrqn4/uR1m2hIEl0SJRWpodVdhNUfJtIbI348iZE3EN7YujGKwLMCs51dmia7JEN2aTABotBUwE6VELp/Ko/wPENEk9HuvM5BeWTou+iqDlkmlCR6OpFUBDNknjWTxik69BzqmVJ0A4KwWrIhWRn/tgs2J/aeuGRjAsHY57K1y9j+8PZLNycQhKRthw3v2sDun+w+67uYzHHKDZFjO2QGMrRvaCc3mptwEmTlOEKQGcqQGcrQq/aimRqqrtK0qIma99RiFkI05VtJjdai9KlYx8IYaZOaV+uoebUOVPAND8/0caMO2WWjjK4aIbc4TX5hjnxrrmJcphx9mgaervkpTr+Dqzjgc9GoyJkkGhIUMoVxEZLh7mEURcH3/QnnMp1JsimJa7vkhnOM9IyQ7k9PePjnguVtTNC2po29v9p7yeYEgmnvZtjk5j+4mRcfeZFjLx+b2nFOu44KmQKJxgQrN63Ecz36j/cz0j0ygYMEx7ELNt17uwFQ9TdQdIVoMsbCDQswQhaJXA2N6Wai6TjKMRVrIEz8cJL44SRAsCCd6ePEbQotOdIrR8gsHyXXlqHQnCe/IFif41JutNPBy1teIEOG4mCBTF8ax3dRspPX8Okkm5L4nl8x1Gcda5L1TTWnKGaLHNx2EDtvT+kYZQzL4IobrqDztc5LNicQ5JfE83Fu+I83sPsnu8+bOHshhBCk+9Kk+059tvWKViKJCAMdAwx3D1/8OhvT7WjvCKO9I3SrXRwyD4AKTQubiK2P06g1o3WYtLgLUDo0IsejxI4miB0NjIVv+PiWh2d55NoyZJalgxmbizMUxvIIncTU12mZ1walWCoS0i/+BFIjZBBJRPA9n2RTEitqkRvJnbPxEUJM2pwoqkLtglpSzSnidXFO7Dsx7njTYU6STUkWX72YFx97cUrhyfNh5222/WDbJTUu4xBB9vuerXsIxUOXdFzhC9xi8PnOfZ107utEt3Ss+GsYUZPm1c2EN0VIKMG4arw7iRiF0ECwwJiZMYn0RGl8vhWh+rhhDyduY6dK5Bdl6W47OT11ngL9PX0T0i4EZro8BbJhcQNCCHrf6D1rDHxKOlOC9XGSjUmaljWRHkzTuaezcrzp0G60JsrG921kx8M7JpUUezGGu4f5+dd/PuVe6JkIX9BzqIfew73EG+KnbmxTwHd9cCFdHGXvWCjfilroCZ3a+jqSy5Kk6muJdSWp62hA7dHR0wbmqIWRM4j0RKnb3RismBv2cGI2dk2pMouoe3HntNR5Kry0Z+eEtQtBknIkEUEIQao5xWjv6Fk35Sl3jgiStZPNScywydGXjgYJ0mMJ1ZeKqqlc/9vXM3B84NKizGeQHcrS+VonVsSatmOe3HuSWF0smDFUd/4ZQ+ejPL0Z4MTBE3AQDluHUC0VK2Gx6No2at5Ziz5oUZdtINFTg+gDs99CzxqEBsOnadbFiTs4cZv8wmwwRHTlMLlFGVRtZMJlmtdDPJ97++cmdKGYEZN4XRzP9Uj3paetQSujaiqNSxsp5UtnZ1tPA/H6OJt/ZzM7HtkxsR7dFEg2JrnhP9zAy0+8zIm9Jy7+gSlQu6CWpWuX0n+0n4HOAYqZiY8lXwjDMkguSKLGNRYuWURr7ULyBwrUdNWTOl4LowpqQTv1rIsxMn6a9qOtcxImn4h2NV2jub0Zz/VwSy75dJ78SP6Cn5ksiYYEratayQxm6H2jd/qM6hhWxOKa267h6EtH6T82+YTwiZBsSrLxvRuD6+MSbnTnQ1EVWtpbaFjcQOfeTrKD2fNO0Z8sqeYUZr1FKpmiubWVhEiiHjRI7q/BGLVQc8EaN4oYHy+vdu0CNCxuIN4Qxy25ZIeyeK5HfjQ/LRE5CNrFlZtXUkgXGO4eriR+TxeKqrDqraso5Usce/nYtET+zjqHopBoTJAbvnhu2VRRtSBZ1rXdaencRlIRoi1Rwskw9YkGYloSvdukuXsBkZNRRCZ4fpbqjU9QEYrAjTgMxge49jcrL/8hHpRgSAW44JixnbcZzF/a+HmZ8uI9Zy6g1nO4Z1qOfyZm2OT6d1/PSz95acbMCUB6IM2RXUfY+N6NDHcPX3ANgKkydHKI7FCW1lWtXPG2K1B1leOvHL/kG5dTchg4EvRu+l7tZbeyi2htjNrltSSvSxJ1YiS1WsL9Uaz9EWLH4qh5DWFPr5GcLOXkvTMXwivjuR4n95+ctnC+qqkoijIu8pLuT5MeSM/IkIEZNll/z3oGOgYuKU/kYmQGMxRzRW7/1O08/rePV6aZThfCF3Qd7GK0b5TF1ywmfF0Yp+iw79l9l3yzHekZgR7oo5dD6kF0U6d2US3mJoumxmZazQW4J32Mk2Fq9tdhDpngKDNys5xu+o/3BzO1xnJ8ppvMQCbIZxIzcHwFrrjhCuoX1fP895+fse9bt3Te/el303e0j1//86+nnFpwIcywycLVC4nXxxnuGqb3jV7yo/kpdw7zI6c6Sh1KRzCC0FrLidVH0NcaxItJWmoWIN5QSOxNYXUF08sVT8HImUQzsQmfa15HUP7XH/wvUqkUwhf0He0btxrldBOrjbF8/XISDQkGOgfY/8z+6ckDuQCGZbDxfRsZ6Bhg/3P7Z/RcEPQYrKhVeXbETKJqKkbIwLXdae31nImiKGiGhmIGi9o1LW9GiarEinFihSSb/vj6OemF/t2H/47G1sbKjILpCkmfCzNs0rKyhcYljeTTefb+enryQC7G5t/ZTD6d59UnX53x8+mmzrK1yxg8Ochgx/R0Rs5HORFcMzR6DvXMmH41Q0O3dFRLZdGVi4gsi1JLHdGTSeiCtd94y5xo98/v/nNaF7dSyBboP9Y/43/bUCxEy8oWSrkSXQe7ZiX/ZuHqhbRvaufZf312xiIbZRKNCW788I3s+vEuug50zdh5dEsn0ZBg6XVLcYoOb+x8Y/o7okqgWy2k0dq+gPoV9dhZhybREsz8ekPDPuRwzbb2CWl30pOEnnnmGe68805aW1tRFIVHH3103HYhBF/4whdoaWkhHA6zZcsWDh0av/Lj0NAQH/rQh0gkEqRSKT760Y+SzU5+XvjwyWGOvnSUYy8fmxFzEk6EWXLtEja9fxPtm9vpfaOXHY/smJ4ZNBdB1VRu+A83UMwVJ7Ug0KUgfFEZdgnFQjO6UI/v+ZXnqpxJKBbCsIxpOY8QIpgim3V44YUX+O9/+Vn+46c/xJYHbuZrT/ztWfvOlnazQ1mOv3KcnkM9M2JOjJBB0/Imrn7X1Wz+3c0gYP9z+9n3zL4Zv6EoisJVN12FoijTlhR7MVzb5eC2gzNuTiCI2PUc6uHk3pMzaq49x6OULVEYLPDk40/y2c98hnd/8nbWfv4tfO2NudNuTUsNIz0jZIeyM9YOarpG47JGrn7X1ay7ex2KosxYpO9Mmlc0s+ptq3jpJy/NuDkBSPel+fnf/3xac1zOhVtyGToxxK4f7+LwjsPTNkw5DgGe7WGnbY7tOsrO77/I60/u4fkdz/CLrp/y6qodHPzgKxM+3KQNSi6X45prruHrX//6Obf/1V/9FV/5ylf45je/yfbt24lGo9x6660Ui6eynz/0oQ/x+uuv89RTT/H444/zzDPP8PGPf3yyRTnrabzTTXna1mtbX2P3T3bTc7hnWhNUz4eiKlxxwxUIX/DKz1+Z9XCupmu89Xffyo0fvnFak7gmSiQV4fo7r2fT+zdRu6AWKzo9ZXA8h6ZoE3e03wFAfmC8qZ1N7eZGcjPTQAAosOSaJTSvaKbvWBA6Pv7q8WCl4hmOjCmKwuqbVrNwzUJefOzFacs3mCiarrHxfRt5y5a3zIl2Y7Ux1t65lpWbVxKvj6Oo0+PyK9pdEWh3tHP8Ghqzqd2O1zoY7RsNwvzT3DTpps7y9cu54T/eQOvKVvqO9fH8957nyK4jU1rcbLLULarjxntvZM8v9kx9nZIpYOdt7KJNrDZWWR13JjlXLpCiKERSEWK1sWntnHqOR24gx+CBQfY9tZddP9g54c9OOgfl9ttv5/bbbz/nNiEEX/7yl/mTP/kT7r77bgD+5V/+haamJh599FE+8IEPsG/fPp544glefPFF1q1bB8BXv/pV7rjjDv7mb/6G1tbWyRZpxsgN52YkF+NCKIrCmneuYfE1i/n5138+6w08BLkPe5/Zy/u/+H7MsMmv//nXM3czPQdDJ4bY+ehO6hfXs3zDcpKNSbr2d9H5eie54dyUb7Ltde2017Wfc9tlpV0Bh3YcmpOpqM3tzSxfv5xffetXc6bd3jd6ueuzdxFJRtjx8I4Zj3aeTnYoyytPvsLKzStZc8saVDXIs+p5owfP9qZcljeLdsuLWG77t22UsjPfGRx37kSYdXeuY9u/bQtWa51lVFXlundfx5U3XMlj/+Mxet/ond3z6yrNy5tpWt4EQNf+Lk7sG1sxd44SQab1ebJHjx6lp6eHLVu2VN5LJpNs3LiRbdu2AbBt2zZSqVTlIgHYsmULqqqyffv2cx63VCqRTqfH/VyurHzrSto3tfPMvzwzJw18mZ5DPfz4b37M1e+6mhvvvRHdmt186vKN5sVHX+TZ/+9ZCpkCb//Q27nhQzewYsOKaYuqlLnstDsX5mRFM2//vbez7QfbprS2w3TRsaeDbT/Yxqb3b2LNLWtm/fxuyWXvr/ay44c7eP1Xr9O8opkbP3wj6+9ZT8Pihmk/3+Wk3cxghhN7T8yJOXnXJ97FQOcAna/NzRRu3/PZ8fAOBjoGuPuzd1eMwmzhOR5Hdh1h+8Pb2furvTQsaeCtH3grm963iZrWmlktS5lpNSg9PcFMlqam8V9sU1NTZVtPTw+NjY3jtuu6Tm1tbWWfM3nooYdIJpOVn0WLFk25jJqusXD1Qq7/7eu55WO3sOS6JVM+1nTTvKKZ6+64jhf+/YU5beDLHHv5GP/3wf9L14GuKS/8dckIKOVLHH3pKE/+/ZPs2bqH3EiOmpbpvWDmg3YhWFPkihuu4Lrbr6N+cf3FPzBLpJpT3PSRm9j52M4Zm048UXzP56XHX+L57z5P+6Z26tvm5nvyXI+R7hF2/ngnz3/vefqP97P65tVc9c6rghyvaWK+aBcl0G+qOYVuVs8EUk3XuO6O6xg4PsDLP3t5TmdIlXIlfvaVn+E6Lnd95q7KSs6zie/6jPaNsvNHO9n56E56j/Ry7a3XcvMf3MyKDStmZQiqTPWo5AI8+OCDPPDAA5XX6XR6UheLpmtEUpFKYyWE4MBvDvD6L1+flZySidC8opl3fvSdbPvBNrr2z1wm92TpPthN98HuuS4GEDj8oZNDc12MSXGp2oVgFk7DkgaWXb+MSCrCaN8oB7cdnNFp55MhnAjzjg+/g4PbDnJ099G5Lg4QmIMXH3uRFx97ca6LUnkq+NGXjgYLic0TpkO7EKxDlWpOsXz9cmpaajjwmwNkh2c+n2QiaIbGurvWUdNaw9b/vXXSDwCcCQrpAo/8xSPULarDLs7e0Po5y3Kabuvb6kk2JYPlEWZpNeNpNSjNzc0A9Pb20tLSUnm/t7eXa6+9trJPX9/48T3XdRkaGqp8/kwsy8KyJhnSV8AwDdqubmPl5pUgoOeNHnY8vIOR3pE5XSr6TKI1Ud71iXfx2tbXqqaBf7NRVdplbHGlZJi33PKW4MnX6QKHtx+m8/XOqloDIxwPc/unbqf/WD+vPDHx7HzJ9FFt2oUgn8EMmVz5jitpWdlCIVPgyM4jbP/37TOeqD0Zrn7X1azcvJKH//zhKT8AcCYY7hqe0aUHpsJAx/SupjsRptWgLF26lObmZrZu3Vq5MNLpNNu3b+eTn/wkAJs3b2ZkZIRdu3axdu1aAJ5++ml832fjxo2XXAZVU6lvq2f5uuW0rGwh3Z9m1493jX/wVBVRHvt8Y+cbvPqLV+e6OG9aqkG7ENzwF1y5gOXrlhNKhDjx+gme/senJ/XE0tlCMzQ2vX8Tvuuz45EdVdH7fDNSLdqFU2vurL5xNaqm0nWgi2f+5ZlLWhhspli2dhlX3nAlP//6z2d9MoRkYkzaoGSzWQ4fPlx5ffToUV5++WVqa2tpa2vj05/+NH/2Z39Ge3s7S5cu5fOf/zytra3cc889AFx55ZXcdtttfOxjH+Ob3/wmjuNw//3384EPfGBaMsmb25upXVDLcM8wr/3qNbKD2arqcZ5OOBHmtvtvw3M9dj62c0bXVJgOwokw93zuHgzL4Od///NZzzKfLPWL61l942rC8TCdr3dy5NUjHD1+KkI1UhwBoLOzk6uuumpOtatbOlfecCVLrl3CSM8Ir/7iVYZODlXNEOSZaLrGhvduYOHqhfz7n/571ZbzdFraW7CiFr1Heimkp++ZQDNFtCZK/aJ67KJN56FO+tOncnuqSbvlTuGytctYtGYR/cf7ee3p1+g70kcpX526WL5+OTf9/k08+6/PzsmMHcnEmLRB2blzJzfffHPldXmM8t577+Xb3/42n/3sZ8nlcnz84x9nZGSEt7/97TzxxBOEQqeSwr7zne9w//33c8stt6CqKu973/v4yle+Mg3VCaZGVVMOx/nQDI2N792Ioio8+Y0nZ3Ua71QppAvs2bqHW//wVu753D08+pePVrVJGTg+wG+++xvqFtZx5TuuJBPL8LmHP1fZ/vTRpwH4i7/4C77zne/MqXYVReHk/pMcfeko2aHqGJ8/H4qqsP4961m5eSU/+8rPpvUBgDOGAis2reDtv/d2Dj5/kJ/+r59WvUlRVIV4fZzl65aj7lH5s//+Z5VtVaNdBTa+byNW1CLdl+bJbzxJuj9dtZ1CCBK6b/gPN7DjkR0c3HZwroszIdo3tbPmnWvY98w+Dm0/VPWdWYDr3309uqVXHoyYHZp8sGBeL3U/0YdWVRuaobHhPRu48h1X8uP/+WP6j87trIfJsun9m9jy8S0Mdg7ywy/9cN70QMKJMIuuWsTydcuJN8Q59PIh7v7U3VX9wLWqQwlC47/9X3+bh//84Rl7sORMYFgGN/7+jWz6fzax/7n9/OTvflL1JgWCaFX9knquuvEqmpY3MXhikN1bd3PfP9xXFdpVFGXGnrcz3SSbktz13+7i5IGTPPMvz8zKSrHTQbw+zu899HvUtNbw6F8+yv5nZ/7RJ5eKbuo0r2hmxcYVNC9vZqBjgAPPH+DYvmN8aeuX3gQPC5yHaHpgTja8dwPf/5PvzztzAvDS4y8Rq4mx6f2buPHDN/L43z0+Lxr6QrrAwW0HeePFN4ikIix/+/K5LtK8Y9n1y3jXf34XW/9xKyf3nZzr4kwKp+Twwr+/QOvKVq54+xUURgs88bUnqj53xnM9eg/30nekj0gyQttb2rjq5qvgH+a6ZAHzpY9rRS1u/9TtZIYyPPed5+aNOYHgwYhPfO0J3vPge7jtvtso5UpVPyPMtV1O7D3Byf0nMcMmKzetZP0967n+fdfzpa1fmtAxpnUdFMnFWbp2Kdfceg2/+Idf0HukeodHLoRdsPnN937DsZePseptq7jjU3cQToTnulgTxnM9MgMZXvj3F+a6KPOKllUt3PH/3sGB3xxg/7Mz/7DMmSA7mOVHf/0jet/o5epbr2bDezeg6dpcF2tCCF+QG86x75l9PPXNp+a6OPMKM2xy4703oigKv/w/v5wXQ+pn0vFqB8999zlC8RB3feYulq+bHx0s4QtKuRJ7tu7hx3/zY578xpMT/qw0KLPIsnXLuPUPb+XVp17l9V+9XtXjtBejkC7wo7/6ESf3n2T1Tau5/VO3z8mzTySzQ6o5xS3/6RYOvnCQ33z3N1UfdbgQI70jPPmNJymkC9z0+zex/j3r0Yz5YVLKzOfvf7bRDI2bPnITy9ctZ+v/3spo3+w9Y2c6EULw0uMv8ey/PkusNsaW/7xlThZyuxScojOp6dPSoMwSS65dwp0P3Mn+5/az45Ed82K89mKk+9M8/Y9Pc+A3B2hpb6FlZcvFPySZdyQaE9z1mbtAwLYfbKvK6fqTQsDxV4/z63/+NZ7rcdO9N7F8/fzojUomh6IqXP2uq1mxYQU/+fJP5k2+3PnwPZ9dP97F3l/vpXFZI3d99i6STcm5LtaMIXNQZoHyMuA9b/Tw/Pefxy3Nn7HPi3F8z3FO7j+Jpmvz/8YlOQvDMrjlP91CtCbK9/7ke2QGMnNdpOlBwCs/f4XMQIbF1yzGDJkoqjKvo5qS8SiqwlU3X8WN997Ith9so2NPx1wXaVooZots/cet1LTWsPiaxdz92bt57H88Nm8jQxdCGpQZpqa1hjv/6E4AnvjqE/MimXRSiCAZaj4lnEkmhhk2eedH30nrqlYe/9vHq2Zp/enC93wO7zjM4R2HL76zZN6xYsMKbrv/Nrb/cDs7H9t5WUSty6T70jz8Zw+z9PqlGJYxL3NqJoI0KDOIETK49b5bSTYn+eGXfnhZOlzJ5YmiKtx4742suWUNT33zKY6/evyyauAllzctK1u4+Q9u5tD2Q+z80c7LMmdnpGeE3T/dPdfFmFHmpUEpzx4oudW5SiEEDfzbPvA2wg1hvv+l79Px2uURXrycKOtnNmejzAftAqx62yoWb1jMU996ih0/3TEvZ+xczkjtnp+6hXW885PvJJvN8tiXH6OYrZ5n7Egmp915uVDbkSNHWL5cJrVJpofOzk4WLlw4K+eS2pVMJ1K7kvnKRLQ7LyMotbW1AHR0dJBMXp4ZzOVHm3d2ds7aSpGzzVzXUQhBJpOZlmdATRSp3cuDua6j1O7MMNd/19lgrus4Ge3OS4OiqsHs6GQyedmKqEwikZB1nEFmu6GV2r28kNq9PJHanVkmql25DopEIpFIJJKqQxoUiUQikUgkVce8NCiWZfHFL34Ry7p8l1aXdbw8eTPUWdbx8uTNUGdZx+piXs7ikUgkEolEcnkzLyMoEolEIpFILm+kQZFIJBKJRFJ1SIMikUgkEomk6pAGRSKRSCQSSdUhDYpEIpFIJJKqY14alK9//essWbKEUCjExo0b2bFjx1wXacI888wz3HnnnbS2tqIoCo8++ui47UIIvvCFL9DS0kI4HGbLli0cOnRo3D5DQ0N86EMfIpFIkEql+OhHP0o2m53FWpyfhx56iPXr1xOPx2lsbOSee+7hwIED4/YpFovcd9991NXVEYvFeN/73kdvb++4fTo6Onj3u99NJBKhsbGRz3zmM7iuO5tVmRGkdqV25ytSu1K7s46YZ3zve98TpmmKf/qnfxKvv/66+NjHPiZSqZTo7e2d66JNiJ/+9Kfij//4j8XDDz8sAPHII4+M2/6Xf/mXIplMikcffVS88sor4q677hJLly4VhUKhss9tt90mrrnmGvHCCy+IZ599VqxYsUJ88IMfnOWanJtbb71VfOtb3xKvvfaaePnll8Udd9wh2traRDabrezziU98QixatEhs3bpV7Ny5U2zatEm89a1vrWx3XVesWbNGbNmyRezevVv89Kc/FfX19eLBBx+ciypNG1K7UrvzFaldqd25YN4ZlA0bNoj77ruv8trzPNHa2ioeeuihOSzV1DjzQvF9XzQ3N4u//uu/rrw3MjIiLMsS3/3ud4UQQuzdu1cA4sUXX6zs87Of/UwoiiJOnjw5a2WfKH19fQIQv/71r4UQQX0MwxD/9m//Vtln3759AhDbtm0TQgSNiaqqoqenp7LPN77xDZFIJESpVJrdCkwjUrtSu/MVqV2p3blgXg3x2LbNrl272LJlS+U9VVXZsmUL27Ztm8OSTQ9Hjx6lp6dnXP2SySQbN26s1G/btm2kUinWrVtX2WfLli2oqsr27dtnvcwXY3R0FDj1JNRdu3bhOM64Ol5xxRW0tbWNq+Nb3vIWmpqaKvvceuutpNNpXn/99Vks/fQhtSu1K7VbnUjtVq9255VBGRgYwPO8cV8gQFNTEz09PXNUqumjXIcL1a+np4fGxsZx23Vdp7a2tuq+A9/3+fSnP83b3vY21qxZAwTlN02TVCo1bt8z63iu76C8bT4itSu1W211nChSu1K7c1VHfU7OKnlTcN999/Haa6/x3HPPzXVRJJJJIbUrma9cTtqdVxGU+vp6NE07K/O4t7eX5ubmOSrV9FGuw4Xq19zcTF9f37jtrusyNDRUVd/B/fffz+OPP84vf/lLFi5cWHm/ubkZ27YZGRkZt/+ZdTzXd1DeNh+R2pXaraY6TgapXanduarjvDIopmmydu1atm7dWnnP9322bt3K5s2b57Bk08PSpUtpbm4eV790Os327dsr9du8eTMjIyPs2rWrss/TTz+N7/ts3Lhx1st8JkII7r//fh555BGefvppli5dOm772rVrMQxjXB0PHDhAR0fHuDru2bNnXIPw1FNPkUgkWL169exUZJqR2pXaldqtTqR2q1i7c5Kaewl873vfE5ZliW9/+9ti79694uMf/7hIpVLjMo+rmUwmI3bv3i12794tAPG3f/u3Yvfu3eL48eNCiGC6WyqVEo899ph49dVXxd13333O6W7XXXed2L59u3juuedEe3t71Ux3++QnPymSyaT41a9+Jbq7uys/+Xy+ss8nPvEJ0dbWJp5++mmxc+dOsXnzZrF58+bK9vJ0t9/6rd8SL7/8snjiiSdEQ0PDZTFVU2pXanc+IrUrtTsXzDuDIoQQX/3qV0VbW5swTVNs2LBBvPDCC3NdpAnzy1/+UgBn/dx7771CiGDK2+c//3nR1NQkLMsSt9xyizhw4MC4YwwODooPfvCDIhaLiUQiIT7ykY+ITCYzB7U5m3PVDRDf+ta3KvsUCgXxh3/4h6KmpkZEIhHxnve8R3R3d487zrFjx8Ttt98uwuGwqK+vF3/0R38kHMeZ5dpMP1K7UrvzFaldqd3ZRhFCiJmN0UgkEolEIpFMjnmVgyKRSCQSieTNgTQoEolEIpFIqg5pUCQSiUQikVQd0qBIJBKJRCKpOqRBkUgkEolEUnVIgyKRSCQSiaTqkAZFIpFIJBJJ1SENikQikUgkkqpDGhSJRCKRSCRVhzQoEolEIpFIqg5pUCQSiUQikVQd/z9GbDwxfYZSDwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.subplot(131)\n", + "plt.imshow(obs[\"image\"][:, :, :, 0])\n", + "plt.subplot(132)\n", + "plt.imshow(obs[\"image\"][:, :, :, 1])\n", + "plt.subplot(133)\n", + "plt.imshow(obs[\"image\"][:, :, :, 2])" + ] + }, + { + "cell_type": "markdown", + "id": "e57901be-8953-4b50-9a91-c79aad9d4f92", + "metadata": {}, + "source": [ + "### Retrieve semantic images" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "2df2fb16-8252-493c-b8f7-fc643dbd21b9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Available sensors are: dict_keys(['lidar', 'side_detector', 'lane_line_detector', 'sementic_camera'])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAACACAIAAABr1yBdAAATwklEQVR4Ae3BUWxbV54f4N+hfC+VS4m0XHk1NuPh34k3kJKOdRaL0WaB7R4OZkAE2xbYIkXnYYAeA4v2YZ7Kt6IvvuF7wYf2gW/VQR9m0T50MeBgCkwW4e0WnbFbIEcJJhIm2emhM7StWA59SYomeSy6hQABMSaOJVuyJN7zfaxUqcNxkoqVKnU4TlKxUqUOx0kqVqrU4ThJxUqVOhwnqVipUofjJBUrVepwnKRipUodjpNUrFSpw3GSipUqdThOUrFSpQ7HSSpWqtThOEnFSpU6HCepWKlSh+MkFStV6nCcpGKlSh2Ok1SsVKnDcZKKlSp1OE5SsVKlDsdJKlaq1OE4ScVKlTocJ6lYqVKH4yQVK1XqcJykYqVKHY6TVKxUqcNxkoqVKnU4TlKxUqUOx0kqVqrU4ThJxUqVOhwnqVipUofjJBUrVepwnKRipUodjpNUrFSpw3GSipUqdThOUrFSpQ7HSSpWqtThOEnFSpU6HCepWKlSh+MkFStV6nCcpGKlSh2Ok1SsVKnDcZKKlSp1OE5SsVKlDsdJKlaq1OE4ScVKlTocJ6lYqVKH47ws3vTYS4+D3A6+jj89BuClxwC86cd2wLDLDlMARoMUdtlhCnvsgGGXHabwFV567E0/9tJjf3rspccAvOnHXnoMIDj7KMjtZHKPgtwOK1XqcJwjcPGNh156HOR25gvDTO5RkNvBycNKlToc54VdfOOhlx4HuZ35wjCTexTkdnAasFKlDsc5CG96fPEPHwa5neDsoyC3c/7bQ5xarFSpw3H25+IbD5f+rJNbsJgUrFSpw3G+0T/60b2zf2C96TEmDitV6nCcp5v/9vDPf3QPE4qVKnU4ztNd/cGDK9/tYUKxUqWOFxDkHgHwph976TEAO0z14yk7SMGZFO/8+E6Q28GEYqVKHU8R5B6dXbBeehzkdgAEZx8FuR0/Pfamx176MQBveoyvYwcpO2R2kAIwGqbsIIVddsiwxw5SAOwgZYcp7LIDZoep0SBlh6l+PGUHKTjHbf7bwz//0T1MLnbtr/8rAC89DnI7AIKzj4LczvlvD3Hc7CDVj6e24zMA7JDZQQpAPz5jB2w7PmOHKTtgdpiygxReOm96DMBLj4PcDnb502Ps8dJj7PKmH3vpMfbYYcoO2HZ8xg5TAPrxFAA7SOEEu/qDB1e+28PkYjVbw6llByk7ZA82/X48tXUrvR2fsQPWj8/gKYLco7ML1kuPg9xOcPaRl37sTY+xxw5SdsgA2EEKu7zpcZDbAeCnx970OMjt4LDZQQpAP57Ck0bDlB2k7JA1P8rYYSre9HAc3vnxnSC3g8nFaraGiWYHKQDe9BinmR2kHnzhbTXTtz99pR9P2UEKR+/iGw/ffvc+Jhqr2RqcU8UOUs2Pg+bHmX48ZQcpHJmrP3hw5bs9TDRWszU4p5MdpO7dSseb3r1b6fgLzw5SOFTv/PhOkNvBRGM1W4Nz+tlB6sEX3q2PgtufvmIHKbywi288fPvd+5h0rGZrcCaIHaTu3Urf+c30gy/8fjxlByk8l6s/eHDluz1MOlazNTgTyg5SD77wtprpe7fS8ReeHaSwb+/8+E6Q28GkYzVbw4k37o1TMyk4Lybe9O7dSjc/zvTjKTtI4ekuvvHw7XfvIwFYzdbgJIwdpG5/Oh1v+vdupfvxlB2k8KQ//idfFr7TRwKwmq3BSTA7SD34wuvHU/0HZ+IvvHu30naQ+qfl2970GAnAarYGx0kqVrM1OE5SsZqtwXGSitVsDY6TVKxma3BODL/jAfC6Hnb5HQ+A3/UA+B0Pe7yuh11+xwPgdz3sGs1av+uNZi0Av+uNZi2eNMrahc/O3/3sLnYNUiO/42HXMDUE0P+rYafYQ2Kwmq3BeV5+x/O6nt/x/K4HwO94ALyu53c8v+thl9/xvK4HwO94AEZZiz3ZbHb777fbn7W9rjdMDQEM2QjAKGsBjGYtAJu1AEazFoA/5d9fuz9gI+wapoYAhqkR9hCnu5/dHfQG+AriZLTBNyJORhs2w87/5/OpmRQSg9VsDQ7gdzyv6820Ar/jAfC63kwrAOB3PK/r+R3P73oAMq0AgJ21AEZZm81mWx/fGfQGnakugFHWjmatzdrRrAWQeZgxv70FoHOmi69DnIw2eDriZLTBNyJORhsAxGnQG9z97C6+EXEy2uBJ2Uezf2D/gf2LR8N/9whJwmq2homWaQV+x5tpBV7X8zue3/UyrcDveH7X8zue1/VmWgF2jWbtKGvbi/FFdnH9lxudqS6AXr6/ne/Pstn+YND8bXOYGmHP4p8tbvzPDXwFcTLa4Elnv3X2wd0H2EOcjDb4PcTJaINdxMlogyP2x93vXHl4Obszm3s0C2A0a//L//4ZEobVbA2nXKYVnFvPeV1vphUAyLSCmVaQaQUzrQBP6uX72/l+NpvdvvfwN//3016+v53vp7PTv/tlq3Omi69DnIw22EWcjDZ4Cv4O1/9dYx+Ik9EGx0dIcTnOz/+HLL5ic2Xr8+/f2VzZai/FSAxWszWcBn7Hm9vIZVrBTCvwO97cRg7Aws15fJ1evt9ejC/nXvsf7/9dL9/fzvenht5vzKfYH+JktMGzTM9MD3oDIUWkIjwLcQJgtMH+ECcARhvsD3Ey2mB/iNPrf3WZ/u235jZyeFIv34/+443tfH+UtUgAVrM1nDCZVnBuPed1vZlWsHBz3u94cxs5PF17MU69eWZ76+GHw7V0dvrBdNdog30QUkQqIk5GG+wPcQJgtMFBCCkiFeEgiJPRBgdBnAAYbbA/xGnHsz9cenfzF7fn1nN+18Oe0axtL8XtxbiX72+ubG3n+6OsxSRiNVvD8Vm4Oe93vLmNXKYVzLSCTCuYaQX4Rr18/36h7Z1J3/D/z4NBPDuXM9rggIQUkYpwQEKKSEU4ICFFpCIcnJAiUhEOTkgRqQgHQZx2PPvDpXf//pPPzq3n5jZy+IrRrN3O9zdXtnr5/ubK1na+P8paTARWszUcvUwrOLee87reTCvItIKZVrBwcx770Mv324vxa29d+ZsbP00tndm+/9Bog4MjTgCMNjg44gTAaIODE1I015pGGzwXIUWkIjwX4gTAaIMDElJ8HH/0L5be/e0nn116/0KmFfhdD18xmrXb+X4v328vxZsrW+3FeJS1OJ1YzdZwqBZuzvsdb24j53e8uY1cphXMtALsTy/fby/Gr7115W9u/LSX77/25pVIRTg44oQ9Rhs8FyEFgEhFeF7ECYDRBqeWkGKrs/Ut//zOjdHr9wqZVuB3PfyeXr7fXozbS/HmylYv39/O93FKsJqt4blkWsG59ZzX9WZaQaYVzLSChZvzOIhevt9ejF9768rPfvHz9lL82ptXIhXheQkpmmtNow1eDHECYLTBiyFOheVCpCK8GFmVkYqMNngBxKmwXGiuNY02eF7EKXM58y3//IJ/fur9x3PrOb/r4euMZm17KW4vxpsrW718fzvfH2UtTiRWszU8S6YVnFvPZVqB3/UWbs5nWsFMK8AB9fL99mI8Zb1evv/re5/svIL/z2iDFyakaK41jTZ4YUKKSEV4YcRJSKHKCoeBOAEw2uAwCCmaa02jDV4AcfKv+gvp83+Uvvr5r5rn1nNzGzk8xWjWtpfi9mLcy/c3V7a28/1R1uJkYDVbw55MKzi3nvO63kwryLSCmVaQaQUzrQAH18v324vxa29d+fW99V/f++TVtwvNtabRBi+MOBltcHiIk9EGh0pIEakIh4Q4yapUZWW0wWEgToXlAoBIRXhhxKmwXOhc7izcnB979tL7FzKtwO96eIrRrN3O979cituL8ebK1na+P8paHBP2v6qNhZvzfseb28jhefXy/fZi/MqbmeyruZ/94udTf+KPPhoZbXAYiFNhudBcaxaWC5GKcEiIU2G5AKC51jTa4PDIqoxUZLRB8hCnwnKhc7nzR+mrv/tVc+Hm/Nx6zu96eLrRrN3O93v5fnsp3lzZai/Go6zFy8J6r9/FAfXy/fZinH317CtvBj/7xc+n/sS/wC5EKoIDyKqMVGS0wWGTVQlAlRUOm5ACuyIV4VAJKW53Wm9/f2Xnht25MZppBXMbOTzLaNZurmy1l+LNla3RrG0vxTgyrPf6XXyj0azdXNlq339w9R8v/7cbP/18+vaf8j+NVITDJqRorjWNNjgaxKmwXIhUhCMjpAAQqQhHQ0jRXGsabXAEiFNhuRCpCEdDSPFL/csf/qt/Hv8uHt8YLdycn9vIYR9Gs7a9FLcX4y+X4vZivJ3vj7IWh4T1Xr+LJ33+/TvZV8/mXs19OPzo8/TtC+xCc61ptMEREFI015qF5UJzrWm0wdEQUmBXpCIcGeIkpFBlBedZhBR3Ht9565+9uXPDDta3L71/IdMK/K6HfRjN2u18f3Nlq5fvb65sbef7o6zF82Lr//rDUda+/uaVD4cffThc+07uanOtabTBERNSNNeaRhscJeJUWC4015pGGxwl4iSkUGWFI0acZFUabVRZ4SgRp8JygThFKjLa4MgIKQCc+8u5zl8/mBpg4eb83HrO73rYn9Gs3c73e/l+eyneXNlqL8ajrMW+sdV/s2q0gfMCiJOsyve+9x5eCuIkq1KVldEGR09IQZyMNpGKcMSEFM215txfzv3D+aXPf9Wc28idW8/NbeRwEKNZu7my1V6KN1e2RrO2vRTj6VhYDHEEhBQAIhURJ6MNXgriVFguECdVVniJZFVGKjLa4GURUgCIVISXhTgVlgvNtabRBi8FcSosF+5fvf+Hr13ZuWHHN0YLN+czrcDvejiI0axtL8XtxfjLpbi9GG/n+6OsxR4WFkMcEiEF9kQqwkskpCheKzZWG5GK8HLJqoxUZLSBc2SIU2G54C/7M5czGz/55NLw4qX3L2Ragd/1cECjWbud73+5FLcX482VLRYWQ7wAIQX2RCrCy0WchBQAIhUZbfDSyaoEoMoKx4Q4GW1wTIiT0QYvF3EqLBf8ZX/mcmaw3n/4yfalv70wt57zux4OjoXFEM5zEVIQJ1VWOCbESVal0UaVFY6JkKJ4rdhYbTTXmkYbvFzEqbBcIE5bV7fOrec+/1VzbiN3bj03t5HD/rCwGMI5OOIkq/K9772HY0WcZFUabVRZ4fgQJyEFAKNNpCIcEyFFc6351r9/6/bf3T7zEHMbuUvvX8i0Ar/r4SlYWAzhHBBxklWpyspog+Mmq5I4GW1UWeG4CSmK14qN1UZzrWm0wfERUgCY+ZczfscbrPd3bowuvX8h0wr8roevYGExxB4hBQDiZLRprjWNNjhuQgriBCBSkdEGJwBxklWpyspoA+c0EFIAeEO+sRXf2/jJJwv++Ut/e2FuPed3PfbBf/oAe5prTaMNTgDiVFguFK8VG6uNSEU4SWRVAlBlBecUElIA8Jd9f9nf+MknLCyGOEmEFMQJgNEmUhFOGFmVAFRZwTn9hBQsLIY4AYiTkII4NVYbzbWm0QYnj6xKAKqs4EwKFhZDOPsgq5I4qbIy2uCkklVJnACosjLa4EQSUhAn4tRYbUQqwrFiYTGE8yzESValKiujDU42WZXEyWijygonGHEqLBeK14pGm0hFRhscBxYWQzjfiDjJqmysNiIV4cQjTrIqARhtVFnhxBNSECfi1FhtRCrCy8XCYgjn6YiTrEqjjSornBLESVYlAKONKiucBsSpsFwoXisabSIVGW3wUrCwGMJ5uusfXDfaqLLCqSKkKF4rAjDaqLLC6SGkKF4rAmisNpprTaMNjhILiyGOhpACAHEy2kQqwikkq5I4qbIy2uC0EVJgV6QinDbEqbBcANBcaxptcGRYWAxxqIhTYblQvFYE0FhtRCrC6SSrkjipsjLawJlQLCyGOCRCCuJEnIw2kYqMNji1ZFUSp8ZqI1IRnMnFwmKIF0OcCsuF4rUigMZqI1IRTjniJKvSaKPKCs5EY2ExxPMSUhAn4mS0iVRktMHpR5xkVRptVFnBmXQsLIY4IOIkpCBOABqrjUhFmBTESVYlgPe+9x6cBGBhMcS+CSmK14oAjDZGm0hFmCzXP7gOQJWV0QZOArCwGOJZiJOQgjgBaKw2mmtNow0mjqxK4qTKymiDSUScCssFAM21ptEGk0hIgV3NtabRBs/CwmKIZyFOAIw2mFyyKomT0UaVFSYUcZJViV2qrIw2mERCCuJEnAA0VhuRivB0LCyGSDxZlcTJaKPKChNNSFG8VsQuVVZGG0wo4lRYLhSvFQEYbSIVGW3we1hYDJFsxElWJYD3vvceEkBWJXHCLlVWRhtMNCEFcSJOABqrjeZa02iDPSwshkgw4iSrEoAqK6MNkkFWJXHCLlVWRhtMOuJUWC4UrxUBGG2MNpGKALCwGCKpiJOsSgCqrIw2SAziJKsSu4w2qqyQGEIK4kScADRWGywshkiq6x9cB9BYbUQqQsIQJ1mV2GW0UWWFJCFOQgrixMJiiESSVUmcjDaqrJBIsiqJE3YZbVRZIXlYWAyRPLIqiZPRRpUVEkxWJXHCLqONKiskDAuLIRJGViVxAqDKymiDZLv+wXXsUWVltEGSsLAYIkmIk6xKAKqsjDZIPOIkqxJ7VFkZbZAYLCyGSAziJKsSQGO1EakIzi7iJKsSe1RZGW2QDCwshkgG4iSrEoDRRpUVnCcJKbArUhESg4XFEMlw/YPrAIw2qqzgOLtYWAyRALIqiRMAVVZGGzjOLhYWQ0w6WZXECYAqK6MNHGcPC4shJpqsSuIEQJWV0QaO8xX/Dxjp6JBMnEXgAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from metadrive.envs import MetaDriveEnv\n", + "from metadrive.component.sensors.semantic_camera import SemanticCamera\n", + "import cv2\n", + "import os\n", + "size = (256, 128) if not os.getenv('TEST_DOC') else (16, 16) # for github CI\n", "\n", - "### Main Camera\n", + "env = MetaDriveEnv(dict(\n", + " log_level=50, # suppress log\n", + " image_observation=True,\n", + " show_terrain=not os.getenv('TEST_DOC'),\n", + " sensors={\"sementic_camera\": [SemanticCamera, *size]},\n", + " vehicle_config={\"image_source\": \"sementic_camera\"}\n", + "))\n", + "env.reset()\n", + "print(\"Available sensors are:\", env.engine.sensors.keys())\n", + "cam = env.engine.get_sensor(\"sementic_camera\")\n", + "img = cam.get_image(env.agent)\n", + "cv2.imwrite(\"semantics.png\", img)\n", "\n", - "### RGB Camera\n", + "env.close()\n", "\n", - "### Depth Camera\n", + "from IPython.display import Image\n", + "Image(open(\"semantics.png\", \"rb\").read())" + ] + }, + { + "cell_type": "markdown", + "id": "fc44367c-90e9-4e70-b8fb-41788205e2e0", + "metadata": {}, + "source": [ + "### Demo on RGB camera" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5ca9f335-a128-4767-b2d2-813968e43b96", + "metadata": {}, + "outputs": [], + "source": [ + "from metadrive.envs.base_env import BaseEnv\n", + "from metadrive.component.sensors.rgb_camera import RGBCamera\n", + "import cv2\n", + "import os\n", + "size = (256, 128) if not os.getenv('TEST_DOC') else (16, 16) # for github CI\n", + "\n", + "env_cfg = dict(log_level=50, # suppress log\n", + " image_observation=True,\n", + " show_terrain=not os.getenv('TEST_DOC'),\n", + " sensors=dict(sementic_camera=[RGBCamera, *size]))\n", + "\n", + "env = BaseEnv(env_cfg)\n", + "env.reset()\n", + "print(\"Available sensors are:\", env.engine.sensors.keys())\n", + "cam = env.engine.get_sensor(\"sementic_camera\")\n", + "img = cam.get_rgb_array_cpu()\n", + "cv2.imwrite(\"semantics.png\", img)\n", "\n", - "### Semantic Camera" + "env.close()\n", + "\n", + "from IPython.display import Image\n", + "Image(open(\"semantics.png\", \"rb\").read())" ] } ], @@ -169,7 +366,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.13" + "version": "3.10.13" }, "mystnb": { "execution_mode": "force" diff --git a/metadrive/component/map/pg_map.py b/metadrive/component/map/pg_map.py index e6fce04fb..98ad32c36 100644 --- a/metadrive/component/map/pg_map.py +++ b/metadrive/component/map/pg_map.py @@ -87,6 +87,7 @@ def _config_generate(self, blocks_config: List, parent_node_path: NodePath, phys render_root_np=parent_node_path, physics_world=physics_world, length=self._config.get("exit_length", 50), + start_point=self._config.get("start_position", [0, 0]), ignore_intersection_checking=True ) self.blocks.append(last_block) diff --git a/metadrive/component/map/scenario_map.py b/metadrive/component/map/scenario_map.py index 8be0400f3..35195ee22 100644 --- a/metadrive/component/map/scenario_map.py +++ b/metadrive/component/map/scenario_map.py @@ -12,10 +12,12 @@ class ScenarioMap(BaseMap): - def __init__(self, map_index, map_data, random_seed=None): + def __init__(self, map_index, map_data, random_seed=None, need_lane_localization=False): self.map_index = map_index self.map_data = map_data - self.need_lane_localization = self.engine.global_config["need_lane_localization"] + self.need_lane_localization = need_lane_localization or self.engine.global_config.get( + "need_lane_localization", False + ) super(ScenarioMap, self).__init__(dict(id=self.map_index), random_seed=random_seed) def show_coordinates(self): diff --git a/metadrive/component/navigation_module/node_network_navigation.py b/metadrive/component/navigation_module/node_network_navigation.py index 1ee2bc75a..596d08358 100644 --- a/metadrive/component/navigation_module/node_network_navigation.py +++ b/metadrive/component/navigation_module/node_network_navigation.py @@ -199,12 +199,12 @@ def update_localization(self, ego_vehicle): ego_vehicle=ego_vehicle ) + self.navi_arrow_dir = [lanes_heading1, lanes_heading2] if self._show_navi_info: # Whether to visualize little boxes in the scene denoting the checkpoints pos_of_goal = checkpoint self._goal_node_path.setPos(panda_vector(pos_of_goal[0], pos_of_goal[1], self.MARK_HEIGHT)) self._goal_node_path.setH(self._goal_node_path.getH() + 3) - self.navi_arrow_dir = [lanes_heading1, lanes_heading2] dest_pos = self._dest_node_path.getPos() self._draw_line_to_dest(start_position=ego_vehicle.position, end_position=(dest_pos[0], dest_pos[1])) navi_pos = self._goal_node_path.getPos() diff --git a/metadrive/component/pgblock/first_block.py b/metadrive/component/pgblock/first_block.py index 158a35404..fa564a205 100644 --- a/metadrive/component/pgblock/first_block.py +++ b/metadrive/component/pgblock/first_block.py @@ -1,5 +1,8 @@ +from typing import Sequence, Union from panda3d.core import NodePath +import numpy as np + from metadrive.component.lane.straight_lane import StraightLane from metadrive.component.pg_space import ParameterSpace from metadrive.component.pgblock.create_pg_block_utils import CreateRoadFrom, CreateAdverseRoad, ExtendStraightLane @@ -30,6 +33,7 @@ def __init__( render_root_np: NodePath, physics_world: PhysicsWorld, length: float = 30, + start_point: Union[np.ndarray, Sequence[float]] = [0, 0], ignore_intersection_checking=False, remove_negative_lanes=False, side_lane_line_type=None, @@ -48,9 +52,15 @@ def __init__( ) if length < self.ENTRANCE_LENGTH: print("Warning: first block length is two small", length, "<", self.ENTRANCE_LENGTH) + if not isinstance(start_point, np.ndarray): + start_point = np.array(start_point) + self._block_objects = [] basic_lane = StraightLane( - [0, 0], [self.ENTRANCE_LENGTH, 0], line_types=(PGLineType.BROKEN, PGLineType.SIDE), width=lane_width + start_point, + start_point + [self.ENTRANCE_LENGTH, 0], + line_types=(PGLineType.BROKEN, PGLineType.SIDE), + width=lane_width ) ego_v_spawn_road = Road(self.NODE_1, self.NODE_2) CreateRoadFrom( diff --git a/metadrive/component/road_network/edge_road_network.py b/metadrive/component/road_network/edge_road_network.py index 172c27380..e161e1a2d 100644 --- a/metadrive/component/road_network/edge_road_network.py +++ b/metadrive/component/road_network/edge_road_network.py @@ -24,10 +24,10 @@ def add_lane(self, lane) -> None: assert lane.index is not None, "Lane index can not be None" self.graph[lane.index] = lane_info( lane=lane, - entry_lanes=lane.entry_lanes, - exit_lanes=lane.exit_lanes, - left_lanes=lane.left_lanes, - right_lanes=lane.right_lanes + entry_lanes=lane.entry_lanes or [], + exit_lanes=lane.exit_lanes or [], + left_lanes=lane.left_lanes or [], + right_lanes=lane.right_lanes or [] ) def get_lane(self, index: LaneIndex): diff --git a/metadrive/component/scenario_block/scenario_block.py b/metadrive/component/scenario_block/scenario_block.py index 6a9a7e86e..bd89d4ef5 100644 --- a/metadrive/component/scenario_block/scenario_block.py +++ b/metadrive/component/scenario_block/scenario_block.py @@ -81,7 +81,7 @@ def create_in_world(self): def _construct_continuous_line(self, points, color): for index in range(0, len(points) - 1): node_path_list = self._construct_lane_line_segment( - points[index], points[index + 1], color, PGLineType.BROKEN + points[index], points[index + 1], color, MetaDriveType.LINE_SOLID_SINGLE_WHITE ) self._node_path_list.extend(node_path_list) @@ -92,7 +92,7 @@ def _construct_broken_line(self, points, color): for index in range(0, len(points) - 1, 2): if index + 1 < len(points) - 1: node_path_list = self._construct_lane_line_segment( - points[index], points[index + 1], color, PGLineType.BROKEN + points[index], points[index + 1], color, MetaDriveType.LINE_BROKEN_SINGLE_WHITE ) self._node_path_list.extend(node_path_list) diff --git a/metadrive/component/sensors/base_camera.py b/metadrive/component/sensors/base_camera.py index 61e2ec1e5..752573926 100644 --- a/metadrive/component/sensors/base_camera.py +++ b/metadrive/component/sensors/base_camera.py @@ -97,9 +97,9 @@ def _make_cuda_texture(self): def enable_cuda(self): return self is not None and self._enable_cuda - def save_image(self, base_object, name="debug.png"): + def get_image(self, base_object): """ - Put camera to an object and save the image to the disk + Put camera to an object and get the image. """ original_parent = self.cam.getParent() original_position = self.cam.getPos() @@ -107,6 +107,13 @@ def save_image(self, base_object, name="debug.png"): self.cam.reparentTo(base_object.origin) img = self.get_rgb_array_cpu() self.track(original_parent, original_position, original_hpr) + return img + + def save_image(self, base_object, name="debug.png"): + """ + Put camera to an object and save the image to the disk + """ + img = self.get_image(base_object) cv2.imwrite(name, img) def track(self, new_parent_node: NodePath, position, hpr): @@ -152,7 +159,7 @@ def perceive( if position is None: position = constants.DEFAULT_SENSOR_OFFSET if hpr is None: - position = constants.DEFAULT_SENSOR_HPR + hpr = constants.DEFAULT_SENSOR_HPR # return camera to original state original_object = self.cam.getParent() diff --git a/metadrive/component/sensors/semantic_camera.py b/metadrive/component/sensors/semantic_camera.py index afb56ea80..de4a4f0b7 100644 --- a/metadrive/component/sensors/semantic_camera.py +++ b/metadrive/component/sensors/semantic_camera.py @@ -37,10 +37,25 @@ def _setup_effect(self): label, Terrain.make_render_state(self.engine, "terrain.vert.glsl", "terrain_semantics.frag.glsl") ) else: - cam.setTagState( - label, - RenderState.make( - ShaderAttrib.makeOff(), LightAttrib.makeAllOff(), TextureAttrib.makeOff(), - ColorAttrib.makeFlat((c[0] / 255, c[1] / 255, c[2] / 255, 1)), 1 + + if label == Semantics.PEDESTRIAN.label: + # PZH: This is a workaround fix to make pedestrians animated. + cam.setTagState( + label, + RenderState.make( + # ShaderAttrib.makeOff(), + LightAttrib.makeAllOff(), + TextureAttrib.makeOff(), + ColorAttrib.makeFlat((c[0] / 255, c[1] / 255, c[2] / 255, 1)), + 1 + ) + ) + + else: + cam.setTagState( + label, + RenderState.make( + ShaderAttrib.makeOff(), LightAttrib.makeAllOff(), TextureAttrib.makeOff(), + ColorAttrib.makeFlat((c[0] / 255, c[1] / 255, c[2] / 255, 1)), 1 + ) ) - ) diff --git a/metadrive/component/vehicle/base_vehicle.py b/metadrive/component/vehicle/base_vehicle.py index 943bfdfdf..f6890b89a 100644 --- a/metadrive/component/vehicle/base_vehicle.py +++ b/metadrive/component/vehicle/base_vehicle.py @@ -232,13 +232,37 @@ def before_step(self, action=None): return step_info def after_step(self): + step_info = {} if self.navigation and self.config["navigation_module"]: self.navigation.update_localization(self) + lanes_heading = self.navigation.navi_arrow_dir + lane_0_heading = lanes_heading[0] + lane_1_heading = lanes_heading[1] + navigation_straight = False + navigation_turn_left = False + navigation_turn_right = False + if abs(wrap_to_pi(lane_0_heading - lane_1_heading)) < 10 / 180 * math.pi: + navigation_straight = True + else: + dir_0 = np.array([math.cos(lane_0_heading), math.sin(lane_0_heading), 0]) + dir_1 = np.array([math.cos(lane_1_heading), math.sin(lane_1_heading), 0]) + cross_product = np.cross(dir_1, dir_0) + navigation_turn_left = True if cross_product[-1] < 0 else False + navigation_turn_right = not navigation_turn_left + step_info.update( + { + "navigation_command": "forward" if navigation_straight else + ("left" if navigation_turn_left else "right"), + "navigation_forward": navigation_straight, + "navigation_left": navigation_turn_left, + "navigation_right": navigation_turn_right + } + ) self._state_check() self.update_dist_to_left_right() step_energy, episode_energy = self._update_energy_consumption() self.out_of_route = self._out_of_route() - step_info = self._update_overtake_stat() + step_info.update(self._update_overtake_stat()) my_policy = self.engine.get_policy(self.name) step_info.update( { diff --git a/metadrive/engine/core/engine_core.py b/metadrive/engine/core/engine_core.py index 4ba39f498..cdd529939 100644 --- a/metadrive/engine/core/engine_core.py +++ b/metadrive/engine/core/engine_core.py @@ -30,6 +30,8 @@ from metadrive.engine.logger import get_logger from metadrive.utils.utils import is_mac, setup_logger import logging +import subprocess +from metadrive.utils.utils import is_port_occupied logger = get_logger() @@ -121,9 +123,21 @@ def __init__(self, global_config): self.pid = os.getpid() EngineCore.global_config = global_config self.mode = global_config["_render_mode"] + self.pstats_process = None if self.global_config["pstats"]: # pstats debug provided by panda3d loadPrcFileData("", "want-pstats 1") + if not is_port_occupied(5185): + self.pstats_process = subprocess.Popen(['pstats']) + logger.info( + "pstats is launched successfully, tutorial is at: " + "https://docs.panda3d.org/1.10/python/optimization/using-pstats" + ) + else: + logger.warning( + "pstats is already launched! tutorial is at: " + "https://docs.panda3d.org/1.10/python/optimization/using-pstats" + ) # Setup onscreen render if self.global_config["use_render"]: diff --git a/metadrive/envs/legacy_envs/mixed_traffic_env.py b/metadrive/envs/legacy_envs/mixed_traffic_env.py index 17b6db6e9..61a03983e 100644 --- a/metadrive/envs/legacy_envs/mixed_traffic_env.py +++ b/metadrive/envs/legacy_envs/mixed_traffic_env.py @@ -23,7 +23,7 @@ def setup_engine(self): { "rl_agent_ratio": 0.5, "manual_control": True, - # "use_render": True, + "use_render": True, "disable_model_compression": True, # "map": "SS", "num_scenarios": 100, diff --git a/metadrive/envs/metadrive_env.py b/metadrive/envs/metadrive_env.py index 04c5ac890..56446e4b5 100644 --- a/metadrive/envs/metadrive_env.py +++ b/metadrive/envs/metadrive_env.py @@ -29,6 +29,7 @@ BaseMap.LANE_WIDTH: 3.5, BaseMap.LANE_NUM: 3, "exit_length": 50, + "start_position": [0, 0], }, store_map=True, diff --git a/metadrive/examples/drive_in_single_agent_env.py b/metadrive/examples/drive_in_single_agent_env.py index d4d12aec7..52007c684 100755 --- a/metadrive/examples/drive_in_single_agent_env.py +++ b/metadrive/examples/drive_in_single_agent_env.py @@ -66,6 +66,7 @@ "Keyboard Control": "W,A,S,D", } ) + print("Navigation information: ", info["navigation_command"]) if args.observation == "rgb_camera": cv2.imshow('RGB Image in Observation', o["image"][..., -1]) diff --git a/metadrive/manager/scenario_light_manager.py b/metadrive/manager/scenario_light_manager.py index 90648d43a..e696667e7 100644 --- a/metadrive/manager/scenario_light_manager.py +++ b/metadrive/manager/scenario_light_manager.py @@ -13,6 +13,8 @@ class ScenarioLightManager(BaseManager): CLEAR_LIGHTS = False + OBJECT_PREFIX = "traffic_light_" + def __init__(self): super(ScenarioLightManager, self).__init__() self._scenario_id_to_obj_id = {} @@ -41,12 +43,15 @@ def after_reset(self): ) lane_info = self.engine.current_map.road_network.graph[str(scenario_lane_id)] position = self._get_light_position(light_info) - name = scenario_lane_id if self.engine.global_config["force_reuse_object_name"] else None + name = self.OBJECT_PREFIX + scenario_lane_id if self.engine.global_config["force_reuse_object_name" + ] else None traffic_light = self.spawn_object(ScenarioTrafficLight, lane=lane_info.lane, position=position, name=name) self._scenario_id_to_obj_id[scenario_lane_id] = traffic_light.id self._obj_id_to_scenario_id[traffic_light.id] = scenario_lane_id if self.engine.global_config["force_reuse_object_name"]: - assert scenario_lane_id == traffic_light.id, "Original id should be assigned to traffic lights" + assert self.OBJECT_PREFIX + scenario_lane_id == traffic_light.id, ( + "Original id should be assigned to traffic lights" + ) self._lane_index_to_obj[lane_info.lane.index] = traffic_light status = light_info[SD.TRAFFIC_LIGHT_STATUS][self.episode_step] traffic_light.set_status(status) diff --git a/metadrive/manager/sumo_map_manager.py b/metadrive/manager/sumo_map_manager.py new file mode 100644 index 000000000..b423c71f0 --- /dev/null +++ b/metadrive/manager/sumo_map_manager.py @@ -0,0 +1,42 @@ +from metadrive.component.map.scenario_map import ScenarioMap +from metadrive.manager.base_manager import BaseManager +from metadrive.utils.sumo.map_utils import extract_map_features, RoadLaneJunctionGraph + + +class SumoMapManager(BaseManager): + """ + It currently only support load one map into the simulation. + """ + PRIORITY = 0 # Map update has the most high priority + + def __init__(self, sumo_map_path): + """ + Init the map manager. It can be extended to manage more maps + """ + super(SumoMapManager, self).__init__() + self.current_map = None + self.graph = RoadLaneJunctionGraph(sumo_map_path) + self.map_feature = extract_map_features(self.graph) + + def destroy(self): + """ + Delete the map manager + """ + self.current_map.destroy() + super(SumoMapManager, self).destroy() + self.current_map = None + + def before_reset(self): + """ + Detach existing maps + """ + if self.current_map: + self.current_map.detach_from_world() + + def reset(self): + """ + Rebuild the map and load it into the scene + """ + if not self.current_map: + self.current_map = ScenarioMap(map_index=0, map_data=self.map_feature, need_lane_localization=True) + self.current_map.attach_to_world() diff --git a/metadrive/policy/idm_policy.py b/metadrive/policy/idm_policy.py index 8026d8472..1b9c9c791 100644 --- a/metadrive/policy/idm_policy.py +++ b/metadrive/policy/idm_policy.py @@ -459,7 +459,7 @@ def steering_control(self, target_lane) -> float: lane_heading = target_lane.heading_theta_at(long + 1) v_heading = ego_vehicle.heading_theta steering = self.heading_pid.get_result(-wrap_to_pi(lane_heading - v_heading)) - # steering += self.lateral_pid.get_result(-lat) + steering += self.lateral_pid.get_result(-lat) return float(steering) def act(self, do_speed_control, *args, **kwargs): diff --git a/metadrive/tests/test_component/test_lane_line_detector.py b/metadrive/tests/test_component/test_lane_line_detector.py index c6b8f1ad1..09d0211de 100644 --- a/metadrive/tests/test_component/test_lane_line_detector.py +++ b/metadrive/tests/test_component/test_lane_line_detector.py @@ -444,112 +444,112 @@ def test_pg_map(render=False): nuscenes_gt_1 = [ - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 0.5260612368583679, + 0.09075836837291718, + 0.09217655658721924, + 0.09512815624475479, + 0.09983516484498978, + 0.10680326074361801, + 0.11676304042339325, + 0.13101108372211456, + 0.15133066475391388, + 0.1828141212463379, + 0.23759107291698456, + 0.3464219272136688, + 0.5152920484542847, + 1.0, + 1.0, + 0.7216349840164185, + 0.4785699248313904, + 0.3620630204677582, + 0.2945554852485657, + 0.2518192529678345, + 0.22320537269115448, + 0.20315533876419067, + 0.18915221095085144, + 0.1796053946018219, + 0.17358174920082092, + 0.1705060601234436, + 0.17026464641094208, + 0.17269740998744965, + 0.17804943025112152, + 0.1867835521697998, + 0.1997312605381012, + 0.21826286613941193, + 0.24478337168693542, + 0.28362220525741577, + 0.3439479172229767, + 0.44482824206352234, + 1.0, + 0.2166164666414261, + 0.3294956684112549, + 0.5083940625190735, + 0.6360813975334167, + 0.2537195086479187, + 0.1899668127298355, + 0.1564241647720337, + 0.13358616828918457, + 0.11820273101329803, + 0.10741100460290909, + 0.10005706548690796, + 0.09534399211406708, + 0.09228239208459854, + 0.0907929316163063, + 0.5260613560676575, 0.4140831232070923, 0.5, 0.5, 0.5, - 7.98985729488777e-06, + 5.327035069058184e-06, 0.09075836837291718, - 0.09217660874128342, - 0.09512805193662643, - 0.09983530640602112, - 0.10680267214775085, - 0.1167638823390007, - 0.1310119777917862, - 0.15133075416088104, - 0.18281413614749908, - 0.23800653219223022, - 0.34642189741134644, - 0.515292227268219, - 1.0, - 1.0, - 0.13423746824264526, - 0.08499415963888168, - 0.06419597566127777, - 0.17124240100383759, - 0.2518191933631897, - 0.1298043578863144, - 0.11819353699684143, - 0.18915213644504547, - 0.031741853803396225, - 0.0306671354919672, - 0.030122023075819016, - 0.030061837285757065, - 0.03048192895948887, - 0.03141561895608902, - 0.03294506296515465, - 0.03521399199962616, - 0.03834167867898941, - 0.2447834461927414, - 0.2836225926876068, - 0.3439478874206543, - 0.2683734595775604, - 1.0, - 0.21661706268787384, - 0.3294958174228668, - 0.508394181728363, - 0.6357858180999756, - 0.25371864438056946, - 0.18996702134609222, - 0.15642258524894714, - 0.13358451426029205, - 0.11820243299007416, - 0.1074109822511673, + 0.09217655658721924, + 0.09512815624475479, + 0.09983516484498978, + 0.10680326074361801, + 0.11676304042339325, + 0.13101108372211456, + 0.15133066475391388, + 0.1828141212463379, + 0.23759107291698456, + 0.3464219272136688, + 0.5152920484542847, + 1.0, + 1.0, + 0.13423743844032288, + 0.08499369770288467, + 0.0641968622803688, + 0.17124241590499878, + 0.2518192529678345, + 0.12980437278747559, + 0.11819363385438919, + 0.18915221095085144, + 0.03174185752868652, + 0.03066714107990265, + 0.03012210875749588, + 0.030061468482017517, + 0.030481763184070587, + 0.03141583874821663, + 0.032944608479738235, + 0.03521450608968735, + 0.03834288939833641, + 0.24478337168693542, + 0.28362220525741577, + 0.3439479172229767, + 0.26837339997291565, + 1.0, + 0.2166164666414261, + 0.3294956684112549, + 0.5083940625190735, + 0.6360813975334167, + 0.2537195086479187, + 0.1899668127298355, + 0.1564241647720337, + 0.13358616828918457, + 0.11820273101329803, + 0.10741100460290909, 0.10005706548690796, - 0.09534407407045364, - 0.09228227287530899, - 0.09079291671514511, + 0.09534399211406708, + 0.09228239208459854, + 0.0907929316163063, 0.5623959898948669, 0.5623959898948669, 0.5956567525863647, @@ -569,7 +569,7 @@ def test_pg_map(render=False): 0.8258141875267029, 0.8258141875267029, 0.5182746052742004, - 0.5082992911338806, + 0.5082993507385254, 0.0, 0.0, 1.0, @@ -585,111 +585,111 @@ def test_pg_map(render=False): ] nuscenes_gt_2 = [ 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 1.0, - 0.39886173605918884, - 0.3929330110549927, - 0.5, - 0.5, - 0.5, - 0.00012117374717490748, - 1.0, - 0.7808146476745605, - 0.4016971290111542, - 0.4970487654209137, - 0.21977421641349792, + 0.7808130979537964, + 0.4014144241809845, + 0.497048556804657, + 0.21977420151233673, + 0.1833307445049286, + 0.2741309106349945, + 0.24397589266300201, + 0.22296150028705597, + 0.20816059410572052, + 0.19839195907115936, + 0.19227449595928192, + 0.18942095339298248, + 0.1900409460067749, + 0.19369441270828247, + 0.20063060522079468, + 0.1172584742307663, + 0.12590330839157104, + 0.13827820122241974, + 0.15608078241348267, + 0.18244224786758423, + 0.2237718254327774, + 0.2953447997570038, + 0.4444361925125122, + 0.9753275513648987, + 0.11675211787223816, + 0.04168549180030823, + 0.038301981985569, + 0.035907551646232605, + 0.034303370863199234, + 0.033339571207761765, + 0.03293364867568016, + 0.03305203467607498, + 0.035654980689287186, + 0.0451875701546669, + 0.06304079294204712, + 1.0, + 0.9279412627220154, + 0.47582244873046875, + 0.3268144130706787, + 0.25280630588531494, + 0.20891083776950836, + 0.18038643896579742, + 0.16094817221164703, + 0.1473899632692337, + 0.1379445493221283, + 0.1312660276889801, + 0.1269902139902115, + 0.12537911534309387, + 0.1267208307981491, + 0.3988616168498993, + 0.39293304085731506, + 0.5, + 0.5, + 0.5, + 0.00011851061572087929, + 1.0, + 0.7808130979537964, + 0.4014144241809845, + 0.497048556804657, + 0.21977420151233673, 0.1833307445049286, - 0.2741360664367676, - 0.24397584795951843, - 0.22295309603214264, - 0.20816056430339813, - 0.1983921080827713, - 0.19227470457553864, + 0.2741309106349945, + 0.24397589266300201, + 0.22296150028705597, + 0.20816059410572052, + 0.19839195907115936, + 0.19227449595928192, 0.18942095339298248, - 0.19004100561141968, - 0.19369380176067352, - 0.20063059031963348, - 0.11725883930921555, - 0.1259033977985382, - 0.13827748596668243, - 0.15607935190200806, - 0.18244585394859314, - 0.22377735376358032, - 0.2953443229198456, - 0.44443684816360474, - 0.9753272533416748, - 0.11670814454555511, - 0.041685495525598526, - 0.038300298154354095, - 0.03590720146894455, - 0.034303367137908936, - 0.03333956375718117, - 0.03293337672948837, - 0.03305184096097946, - 0.03565486893057823, - 0.045187562704086304, - 0.06304076313972473, - 1.0, - 0.927940845489502, - 0.47582200169563293, - 0.32681402564048767, - 0.252807080745697, - 0.20891286432743073, - 0.1803870052099228, - 0.1609482318162918, - 0.14739003777503967, - 0.13794484734535217, - 0.1312611699104309, - 0.12699010968208313, - 0.12537787854671478, - 0.1267206221818924, + 0.1900409460067749, + 0.19369441270828247, + 0.20063060522079468, + 0.1172584742307663, + 0.12590330839157104, + 0.13827820122241974, + 0.15608078241348267, + 0.18244224786758423, + 0.2237718254327774, + 0.2953447997570038, + 0.4444361925125122, + 0.9753275513648987, + 0.11675211787223816, + 0.04168549180030823, + 0.038301981985569, + 0.035907551646232605, + 0.034303370863199234, + 0.033339571207761765, + 0.03293364867568016, + 0.03305203467607498, + 0.035654980689287186, + 0.0451875701546669, + 0.06304079294204712, + 1.0, + 0.9279412627220154, + 0.47582244873046875, + 0.3268144130706787, + 0.25280630588531494, + 0.20891083776950836, + 0.18038643896579742, + 0.16094817221164703, + 0.1473899632692337, + 0.1379445493221283, + 0.1312660276889801, + 0.1269902139902115, + 0.12537911534309387, + 0.1267208307981491, 0.4396708011627197, 0.4396708011627197, 0.4618304371833801, @@ -709,7 +709,7 @@ def test_pg_map(render=False): 0.6053164601325989, 0.6053164601325989, 0.0, - 0.4675830006599426, + 0.46758297085762024, 0.0, 0.0, 1.0, diff --git a/metadrive/tests/test_functionality/test_memory_leak_engine.py b/metadrive/tests/test_functionality/test_memory_leak_engine.py index 7293a440c..0bd743608 100644 --- a/metadrive/tests/test_functionality/test_memory_leak_engine.py +++ b/metadrive/tests/test_functionality/test_memory_leak_engine.py @@ -86,7 +86,7 @@ def test_engine_memory_leak(): ct = time.time() last_lm = cm = process_memory() last_mem = 0.0 - for t in range(500): + for t in range(300): lt = time.time() engine.seed(0) @@ -102,6 +102,7 @@ def test_engine_memory_leak(): # ) last_lm = lm if t > 100: + time.sleep(0.1) assert abs((lm - cm) - last_mem) < 10 # Memory should not have change > 1KB last_mem = lm - cm finally: @@ -113,7 +114,7 @@ def test_config_memory_leak(): ct = time.time() last_lm = cm = process_memory() last_mem = 0.0 - for t in range(1000): + for t in range(800): lt = time.time() default_config = MetaDriveEnv.default_config() @@ -129,6 +130,7 @@ def test_config_memory_leak(): # ) last_lm = lm if t > 500: + time.sleep(0.1) assert abs((lm - cm) - last_mem) < 10 # Memory should not have change > 1KB last_mem = lm - cm diff --git a/metadrive/tests/vis_env/vis_sumo_map.py b/metadrive/tests/vis_env/vis_sumo_map.py new file mode 100644 index 000000000..caba831d4 --- /dev/null +++ b/metadrive/tests/vis_env/vis_sumo_map.py @@ -0,0 +1,109 @@ +"""use netconvert --opendrive-files CARLA_town01.net.xml first""" +import logging + +import numpy as np + +from metadrive.component.lane.point_lane import PointLane +from metadrive.component.vehicle.vehicle_type import SVehicle +from metadrive.engine.asset_loader import AssetLoader +from metadrive.envs import BaseEnv +from metadrive.manager.base_manager import BaseManager +from metadrive.manager.sumo_map_manager import SumoMapManager +from metadrive.obs.observation_base import DummyObservation +from metadrive.policy.idm_policy import TrajectoryIDMPolicy +from metadrive.utils.pg.utils import ray_localization + + +class SimpleTrafficManager(BaseManager): + """ + A simple traffic creator, which creates one vehicle to follow a specified route with IDM policy. + """ + def __init__(self): + super(SimpleTrafficManager, self).__init__() + self.generated_v = None + self.arrive_dest = False + + def after_reset(self): + """ + Create vehicle and use IDM for controlling it. When there are objects in front of the vehicle, it will yield + """ + self.arrive_dest = False + path_to_follow = [] + for lane_index in ["lane_4_0", "lane_:306_0_0", "lane_22_0"]: + path_to_follow.append(self.engine.current_map.road_network.get_lane(lane_index).get_polyline()) + path_to_follow = np.concatenate(path_to_follow, axis=0) + + self.generated_v = self.spawn_object( + SVehicle, vehicle_config=dict(), position=path_to_follow[60], heading=-np.pi + ) + TrajectoryIDMPolicy.NORMAL_SPEED = 20 + self.add_policy( + self.generated_v.id, + TrajectoryIDMPolicy, + control_object=self.generated_v, + random_seed=0, + traj_to_follow=PointLane(path_to_follow, 2) + ) + + def before_step(self): + """ + When arrive destination, stop + """ + policy = self.get_policy(self.generated_v.id) + if policy.arrive_destination: + self.arrive_dest = True + + if not self.arrive_dest: + action = policy.act(do_speed_control=True) + else: + action = [0., -1] + self.generated_v.before_step(action) # set action + + +class MyEnv(BaseEnv): + def reward_function(self, agent): + """Dummy reward function.""" + return 0, {} + + def cost_function(self, agent): + """Dummy cost function.""" + return 0, {} + + def done_function(self, agent): + """Dummy done function.""" + return False, {} + + def get_single_observation(self): + """Dummy observation function.""" + return DummyObservation() + + def setup_engine(self): + """Register the map manager""" + super().setup_engine() + map_path = AssetLoader.file_path("carla", "CARLA_town01.net.xml", unix_style=False) + self.engine.register_manager("map_manager", SumoMapManager(map_path)) + self.engine.register_manager("traffic_manager", SimpleTrafficManager()) + + +if __name__ == "__main__": + # create env + env = MyEnv( + dict( + use_render=True, + vehicle_config={"spawn_position_heading": [(0, 0), np.pi / 2]}, + manual_control=True, # we usually manually control the car to test environment + use_mesh_terrain=True, + log_level=logging.CRITICAL + ) + ) # suppress logging message + env.reset() + for i in range(10000): + # step + obs, reward, termination, truncate, info, = env.step(env.action_space.sample()) + current_lane_indices = [ + info[1] for info in + ray_localization(env.vehicle.heading, env.vehicle.position, env.engine, use_heading_filter=True) + ] + + env.render(text={"current_lane_indices": current_lane_indices}) + env.close() diff --git a/metadrive/utils/sumo/__init__.py b/metadrive/utils/sumo/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/metadrive/utils/sumo/map_utils.py b/metadrive/utils/sumo/map_utils.py new file mode 100644 index 000000000..fcee0abf7 --- /dev/null +++ b/metadrive/utils/sumo/map_utils.py @@ -0,0 +1,359 @@ +from __future__ import \ + annotations # https://stackoverflow.com/questions/33533148/how-do-i-type-hint-a-method-with-the-type-of-the-enclosing-class + +import logging + +import numpy as np +from metadrive.scenario import ScenarioDescription as SD +from metadrive.type import MetaDriveType + +logging.basicConfig(level=logging.INFO) +logger = logging.getLogger(__name__) + +from dataclasses import dataclass +from typing import List, Dict, Optional +try: + import sumolib +except ImportError: + raise ImportError("Please install sumolib before running this script via: pip install sumolib") +from shapely.geometry import LineString, MultiPolygon, Polygon +from shapely.geometry.base import CAP_STYLE, JOIN_STYLE + + +def buffered_shape(shape, width: float = 1.0) -> Polygon: + """Generates a shape with a buffer of `width` around the original shape.""" + ls = LineString(shape).buffer( + width / 2, + 1, + cap_style=CAP_STYLE.flat, + join_style=JOIN_STYLE.round, + mitre_limit=5.0, + ) + if isinstance(ls, MultiPolygon): + # Sometimes it oddly outputs a MultiPolygon and then we need to turn it into a convex hull + ls = ls.convex_hull + elif not isinstance(ls, Polygon): + raise RuntimeError("Shapely `object.buffer` behavior may have changed.") + return ls + + +class LaneShape: + def __init__( + self, + shape, + width: float, + ): + """ + Lane shape + """ + shape = buffered_shape(shape.getShape(), shape.getWidth()) + self.shape = shape + + +@dataclass +class RoadShape: + left_border: np.ndarray + right_border: np.ndarray + + def __post_init__(self): + """ + post process + """ + self.polygon = self.left_border + list(reversed(self.right_border)) + + +class JunctionNode: + def __init__(self, sumolib_obj): + """Node for junction node.""" + self.sumolib_obj: sumolib.net.node = sumolib_obj + self.name = sumolib_obj.getID() + self.type = sumolib_obj.getType() + self.shape = sumolib_obj.getShape() + self.area: float = 0.0 + self.route_dist: float = 0.0 + + self.incoming: List[RoadNode] = [] + self.outgoing: List[RoadNode] = [] + self.roads: List[RoadNode] = [] + self.lanes: List[LaneNode] = [] + + +class LaneNode: + def __init__(self, sumolib_obj): + """ + Node for a lane + """ + self.sumolib_obj: sumolib.net.lane = sumolib_obj + self.name: str = sumolib_obj.getID() + self.edge_type: str = sumolib_obj.getEdge().getType() + self.index: int = sumolib_obj.getIndex() + if len(self.edge_type.strip()) and len(self.edge_type.split('|')) > 1: + self.type = self.edge_type.split('|')[self.index] + elif (sumolib_obj.allows('pedestrian') and not sumolib_obj.allows('passenger')): + self.type = 'sidewalk' + elif sumolib_obj.getEdge().getFunction() == 'walkingarea': + self.type = 'sidewalk' + else: + self.type = 'driving' + self.width: float = sumolib_obj.getWidth() + self.length: float = sumolib_obj.getLength() + + self.shape: LaneShape = LaneShape(sumolib_obj, self.width) + + if sumolib_obj.getEdge().getFunction() == 'walkingarea': + shape = [[p[0], p[1]] for p in sumolib_obj.getShape()] + shape.append(sumolib_obj.getShape()[0]) + self.shape.shape = Polygon(shape) + + self.road = None + self.left_neigh: Optional[LaneNode] = None + self.right_neigh: Optional[LaneNode] = None + self.incoming: List[LaneNode] = [] + self.outgoing: List[LaneNode] = [] + self.function: Optional[str] = None + + +class RoadNode: + def __init__( + self, + sumolib_obj, + lanes, + from_junction, + to_junction, + ): + """ + Node for a road + """ + self.sumolib_obj: sumolib.net.edge = sumolib_obj + self.name: str = sumolib_obj.getID() + self.type = sumolib_obj.getType() + if sumolib_obj.getFunction() == 'crossing': + for lane in lanes: + lane.type = 'crossing' + self.lanes: List[LaneNode] = lanes + self.from_junction: JunctionNode = from_junction + self.to_junction: JunctionNode = to_junction + self.width: float = sum([lane.width for lane in lanes]) + self.length: float = max([lane.length for lane in lanes]) + self.priority: int = sumolib_obj.getPriority() + self.function: str = sumolib_obj.getFunction() + + # leftmost_lane = list(filter(lambda l: l.left_neigh is None, lanes))[0] + # rightmost_lane = list(filter(lambda l: l.right_neigh is None, lanes))[0] + # road_shape = RoadShape( + # leftmost_lane.shape.left_border, + # rightmost_lane.shape.right_border, + # ) + # self.shape: RoadShape = road_shape + + for lane in self.lanes: # Link to parent road + lane.road = self + lane.function = self.function + + self.junction: Optional[JunctionNode] = None + self.incoming: List[RoadNode] = [] + self.outgoing: List[RoadNode] = [] + + +class RoadLaneJunctionGraph: + def __init__( + self, + sumo_net_path, + ): + """Init the graph""" + + self.sumo_net = sumolib.net.readNet( + sumo_net_path, withInternal=True, withPedestrianConnections=True, withPrograms=True + ) + + xmin, ymin, xmax, ymax = self.sumo_net.getBoundary() + center_x = (xmax + xmin) / 2 + center_y = (ymax + ymin) / 2 + self.sumo_net.move(-center_x, -center_y) + + # self.tls = self.sumo_net.getTrafficLights() + + self.roads: Dict[str, RoadNode] = {} + self.lanes: Dict[str, LaneNode] = {} + self.junctions: Dict[str, JunctionNode] = {} + + for edge in self.sumo_net.getEdges(withInternal=True): # Normal edges first + lanes = [] + lane_index_to_lane = {} + for lane in edge.getLanes(): # Create initial LaneNode objects + lane_node = LaneNode(lane) + self.lanes[lane_node.name] = lane_node + lanes.append(lane_node) + lane_index_to_lane[lane.getIndex()] = lane_node + + for lane in lanes: # Setting left and right neighbors + if lane.index - 1 in lane_index_to_lane: + lane.right_neigh = lane_index_to_lane[lane.index - 1] + if lane.index + 1 in lane_index_to_lane: + lane.left_neigh = lane_index_to_lane[lane.index + 1] + + junctions = [] # Create initial JunctionNode objects connected to current road + for i, node in enumerate([edge.getFromNode(), edge.getToNode()]): + name = node.getID() + + if node.getID() not in self.junctions: + + junction_node = JunctionNode(node) + self.junctions[name] = junction_node + else: + junction_node = self.junctions[name] + junctions.append(junction_node) + + # Create RoadShape for Road + name = edge.getID() + road_node = RoadNode( + edge, + lanes, + junctions[0], # from_node + junctions[1], # to_node + ) + self.roads[name] = road_node + + for junction_id, junction in self.junctions.items(): + junction.sumolib_obj.setShape( + [(x - center_x, y - center_y, z) for x, y, z in junction.sumolib_obj.getShape3D()] + ) + junction.shape = junction.sumolib_obj.getShape() + + for junction_id, junction in self.junctions.items(): + + for incoming in junction.sumolib_obj.getIncoming(): # Link junction + junction.incoming.append(self.roads[incoming.getID()]) + for outgoing in junction.sumolib_obj.getOutgoing(): + junction.outgoing.append(self.roads[outgoing.getID()]) + + conns = junction.sumolib_obj.getConnections() + for conn in conns: + from_lane_id = conn.getFromLane().getID() # Link lanes + to_lane_id = conn.getToLane().getID() + via_lane_id = conn.getViaLaneID() + + from_road_id = conn.getFrom().getID() # Link roads + to_road_id = conn.getTo().getID() + if via_lane_id == '': # Maybe we could skip this, but not sure + self.lanes[from_lane_id].outgoing.append(self.lanes[to_lane_id]) + self.lanes[to_lane_id].incoming.append(self.lanes[from_lane_id]) + self.roads[from_road_id].outgoing.append(self.roads[to_road_id]) + self.roads[to_road_id].incoming.append(self.roads[from_road_id]) + else: + via_road_id = self.sumo_net.getLane(conn.getViaLaneID()).getEdge().getID() + self.lanes[from_lane_id].outgoing.append(self.lanes[via_lane_id]) + self.lanes[to_lane_id].incoming.append(self.lanes[via_lane_id]) + self.lanes[via_lane_id].incoming.append(self.lanes[from_lane_id]) + self.lanes[via_lane_id].outgoing.append(self.lanes[to_lane_id]) + self.roads[from_road_id].outgoing.append(self.roads[via_road_id]) + self.roads[to_road_id].incoming.append(self.roads[via_road_id]) + self.roads[via_road_id].incoming.append(self.roads[from_road_id]) + self.roads[via_road_id].outgoing.append(self.roads[to_road_id]) + + junction.roads.append(self.roads[via_road_id]) # Add roads/lanes to junction + junction.lanes.append(self.lanes[via_lane_id]) + self.roads[via_road_id].junction = junction # Add junction reference + + lane_dividers, edge_dividers = self._compute_traffic_dividers() + + self.lane_dividers = lane_dividers + self.edge_dividers = edge_dividers + + def _compute_traffic_dividers(self, threshold=1): + """Find the road dividers""" + lane_dividers = [] # divider between lanes with same traffic direction + edge_dividers = [] # divider between lanes with opposite traffic direction + edge_borders = [] + for edge in self.sumo_net.getEdges(): + if edge.getFunction() in ["internal", "walkingarea", 'crossing']: + continue + + lanes = edge.getLanes() + for i in range(len(lanes)): + shape = lanes[i].getShape() + left_side = sumolib.geomhelper.move2side(shape, -lanes[i].getWidth() / 2) + right_side = sumolib.geomhelper.move2side(shape, lanes[i].getWidth() / 2) + + if i == 0: + edge_borders.append(right_side) + + if i == len(lanes) - 1: + edge_borders.append(left_side) + else: + lane_dividers.append(left_side) + + # The edge borders that overlapped in positions form an edge divider + for i in range(len(edge_borders) - 1): + for j in range(i + 1, len(edge_borders)): + edge_border_i = np.array([edge_borders[i][0], edge_borders[i][-1]]) # start and end position + edge_border_j = np.array( + [edge_borders[j][-1], edge_borders[j][0]] + ) # start and end position with reverse traffic direction + + # The edge borders of two lanes do not always overlap perfectly, thus relax the tolerance threshold to 1 + if np.linalg.norm(edge_border_i - edge_border_j) < threshold: + edge_dividers.append(edge_borders[i]) + + return lane_dividers, edge_dividers + + +def extract_map_features(graph): + """This func extracts the map features like lanes/lanelines from the SUMO map""" + from shapely.geometry import Polygon + + ret = {} + # # build map boundary + polygons = [] + + # for junction_id, junction in graph.junctions.items(): + # if len(junction.shape) <= 2: + # continue + # boundary_polygon = Polygon(junction.shape) + # boundary_polygon = [(x, y) for x, y in boundary_polygon.exterior.coords] + # id = "junction_{}".format(junction.name) + # ret[id] = { + # SD.TYPE: MetaDriveType.LANE_SURFACE_STREET, + # SD.POLYLINE: junction.shape, + # SD.POLYGON: boundary_polygon, + # } + + # build map lanes + for road_id, road in graph.roads.items(): + for lane in road.lanes: + + id = "lane_{}".format(lane.name) + + boundary_polygon = [(x, y) for x, y in lane.shape.shape.exterior.coords] + if lane.type == 'driving': + ret[id] = { + SD.TYPE: MetaDriveType.LANE_SURFACE_STREET, + SD.POLYLINE: lane.sumolib_obj.getShape(), + SD.POLYGON: boundary_polygon, + } + elif lane.type == 'sidewalk': + ret[id] = { + SD.TYPE: MetaDriveType.BOUNDARY_SIDEWALK, + SD.POLYGON: boundary_polygon, + } + elif lane.type == 'shoulder': + ret[id] = { + SD.TYPE: MetaDriveType.BOUNDARY_SIDEWALK, + SD.POLYGON: boundary_polygon, + } + elif lane.type == 'crossing': + print('hello') + ret[id] = { + SD.TYPE: MetaDriveType.CROSSWALK, + SD.POLYGON: boundary_polygon, + } + + for lane_divider_id, lane_divider in enumerate(graph.lane_dividers): + id = "lane_divider_{}".format(lane_divider_id) + ret[id] = {SD.TYPE: MetaDriveType.LINE_BROKEN_SINGLE_WHITE, SD.POLYLINE: lane_divider} + + for edge_divider_id, edge_divider in enumerate(graph.edge_dividers): + id = "edge_divider_{}".format(edge_divider_id) + ret[id] = {SD.TYPE: MetaDriveType.LINE_SOLID_SINGLE_YELLOW, SD.POLYLINE: edge_divider} + + return ret diff --git a/metadrive/utils/utils.py b/metadrive/utils/utils.py index f53d15a0c..2b58aba0a 100644 --- a/metadrive/utils/utils.py +++ b/metadrive/utils/utils.py @@ -4,13 +4,26 @@ import os import sys import time - +import socket import numpy as np from panda3d.bullet import BulletBodyNode from metadrive.constants import MetaDriveType +def is_port_occupied(port, host='127.0.0.1'): + """ + Check if a given port is occupied on the specified host. + + :param port: Port number to check. + :param host: Host address to check the port on. Default is '127.0.0.1'. + :return: True if the port is occupied, False otherwise. + """ + with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: + result = sock.connect_ex((host, port)) + return result == 0 + + def import_pygame(): os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide" import pygame