forked from EcoForecast/PhenologyForecast
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathupdate.particle.filter.forecast.R
155 lines (129 loc) · 5.54 KB
/
update.particle.filter.forecast.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
update.particle.filter.forecast <- function(site_num,inputs.for.updating.forecast){
source("SSLPM.r") ## Super Simple Logistic Model
source("ciEnvelope.R")
source("global_input_parameters.R")
source("update.r.R")
## inputs from particle filter output
nt = inputs.for.updating.forecast[1]
sample = inputs.for.updating.forecast[2]
### See also ph.filter.sd below
### observation data (real thing should be cleaned, rescaled GCC and NDVI from 2013 only)
obs=list()
#obs$GCC= c(rep(NA,182),cumsum(c(1,rnorm(344-182,-.005,.00001))))
obs$NDVI= c(rep(NA,182),cumsum(c(1,rnorm(344-182,-.005,.00002))))
obs$NDVI[210:240]=NA #
obs$GCC[230:260]=NA #
#########################################
#########################################
## set up model time frame
model.start.DOY=global_input_parameters$model.start.DOY
cur_date = Sys.Date()
doy <- strftime(cur_date, format = "%j")
current.year = as.numeric(format(Sys.Date(), "%Y"))
time = model.start.DOY:doy
new.nt = length(time)
#load GCC data
gcc.data <- read.csv( sprintf("gcc_data_site%i.csv",site_num) )
# Current year only
years=as.numeric(strftime(gcc.data$date,"%Y"))
current.year.gcc.data=subset(gcc.data,years == current.year)
# fall only
days=as.numeric(strftime(current.year.gcc.data$date,"%j"))
fall.cy.gcc.data = subset(current.year.gcc.data,days >= model.start.DOY)
#load NDVI data
ndvi.data <- read.csv( sprintf("ndvi_data_site%i.csv",site_num) )
# Current year only
years=as.numeric(strftime(ndvi.data$date,"%Y"))
current.year.ndvi.data=subset(ndvi.data,years == current.year)
# fall only
days=as.numeric(strftime(current.year.ndvi.data$date,"%j"))
fall.cy.ndvi.data = subset(current.year.ndvi.data,days >= model.start.DOY)
### read in output from State Space Model for X and r
#file_name = paste('Jags.SS.out.site',as.character(site_num), 'RData',sep=".")
#load(file_name)
#X.from.SS = as.matrix(jags.out.all.years.array[,5,])
#r.from.SS = as.matrix(jags.out.all.years.array[,1,])
#initial values for each ensemble member (average of all years of historical data)
#X.orig=apply(X.from.SS,1,mean)
#r.orig=apply(r.from.SS,1,mean)
#take ensemble size from the size of the SS fit ensemble
#ne=length(X.orig)
## Create a filter with GCC and NDVI equally weighted (uses only one data source if the other is NA)
GCC=fall.cy.gcc.data[,4]
#NDVI=fall.cy.ndvi.data[,2?]
length = length(GCC)
ph.filter=array(NA,(length))
for(i in 1:length) {
if (!is.na(GCC[i]) & !is.na(NDVI[i])) {
val = mean(GCC[i], NDVI[i])
ph.filter[i]=val
} else if (!is.na(GCC[i]) & is.na(NDVI[i])) {
ph.filter[i] = GCC[i]
} else if (is.na(NDVI[i]) & !is.na(NDVI[i])) {
ph.filter[i] = NDVI[i]
}
}
## just the fall dates
ph.filter=ph.filter[time]
## not sure how we will error for the particle weights, so I'm using 50% of the mean for now
ph.filter.sd = ph.filter*.5
### resampling particle filter
## note sample defined above from particle filter outputs
hist.r=list() ## since we resample parameters, create a record of what values were used each step
hist.r[[1]] = r ## initial parameter conditions
### load output from particle filter
X.output_file_name = paste('ForecastModel.X.out.site',as.character(site_num), 'RData',sep=".")
load(X.output_file_name)
X = as.matrix(X) ## reset state to the initial values, not the final values from the previous ensemble
r.output_file_name = paste('ForecastModel.r.out.site',as.character(site_num), 'RData',sep=".")
load(r.output_file_name)
r = as.matrix(r)
ne = length(r)
## load output from particle filter
output_file_name = paste('ForecastModel.X.out.site',as.character(site_num), 'RData',sep=".")
### concatenate outputs later on
output_old <- as.matrix(load(output_file_name))
output = array(NA,c(new.nt-nt,ne,2)) ## initialize output
###### here's the actual forecast loop
for(t in 1:new.nt-nt){
## forward step
output[t,,]=as.matrix(SSLPM(X,r))
X=output[t,,1]
r=output[t,,2]
## analysis step
#if(t%%(48*1) == 0){ ## if remainder == 0 ####### this peice is here as a template in case we don't filter every single day
sample = sample+1
print(sample)
if(!is.na(ph.filter[sample])) { ## if observation is present
## calulate Likelihood (weights)
Lm = apply(output[t:1, ,1],2,mean) ## model filter over obs period
wt = dnorm(ph.filter[sample],Lm,ph.filter.sd[sample])
## resample
index = sample.int(ne,ne,replace=TRUE,prob=wt)
X = X[index]
r = update.r(r,index)
}
hist.r[[sample+1]] = r
#}
}
##### end of forecast loop
## Extract and summarize ph.filter
ph.filter.pr = t(output[,,1])
ph.filter.ci = apply(ph.filter.pr,2,quantile,c(0.025,0.5,0.975))
#### saves output so that it can appended to as the forecast iterates
output_file_name = paste('ForecastModel.out.site',as.character(site_num), 'RData',sep=".")
save(ph.filter.pr,file = output_file_name)
#### save plot produced to PDF
## name of output file
file_name = paste('ParticleFilterForecast',as.character(site_num), 'pdf',sep=".")
## saves as PDF
pdf(file=file_name)
##plot filter
plot(time,ph.filter.ci[2,],type='n',ylab="NDVI_GCC",xlab="Time")
ciEnvelope(time,ph.filter.ci[1,],ph.filter.ci[3,],col="light grey")
points(time,ph.filter)
## ends plot output to PDF
dev.off()
## name of initial ensemble forecast file
print(sprintf('The particle filter forecast for site No %.f is saved as %s',site_num,file_name))
}