forked from EcoForecast/PhenologyForecast
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathglobal_input_parameters.R
21 lines (21 loc) · 1.4 KB
/
global_input_parameters.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
global_input_parameters <- list(
data.start.date = "2000-01-01", # the first day to look for phenocam and MODIS data
# should be a january 1st
training.end.date = "2012-12-31",
season = "FALL",
model.start.DOY = 182, # the day of year that our model uses to define the begining of fall phenology
number.of.SS.model.iterations = 2500, # the number of iterations per chain used in JAGS for the state-space models
number.of.SS.model.chains = 3, # the number of chains used in JAGS for the state-space model
x_ic = 0.99, # state-space model JAGS input for the initial phenological state each summer (between 0 and 1)
tau_ic = 5, # state-space model JAGS input for the precision of our initial x state
a_ndvi = 3.16, # state-space model JAGS input for gamma shape parameter for ndvi prior
r_ndvi = 0.316, # state-space model JAGS input for gamma rate parameter for ndvi prior
a_gcc = 3.16, # state-space model JAGS input for gamma shape parameter for gcc prior
r_gcc = 0.316, # state-space model JAGS input for gamma rate parameter for gcc prior
a_add = 1.41, # state-space model JAGS input for gamma shape parameter for process model
r_add = 0.71, # state-space model JAGS input for gamma rate parameter for process model
burn.in.iterations = 10000, # Number of iterations for JAGS burn-in
model = "Threshold_Day_Logistic",
useMODISTools = FALSE,
num.ensembles = 5000
)