forked from EcoForecast/PhenologyForecast
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate.FM.model.R
139 lines (116 loc) · 5.45 KB
/
create.FM.model.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
create.FM.model <- function(site.number,current.year = as.numeric(format(Sys.Date(), "%Y"))){
# The function create.FM.model takes output from the state space model and
# makes an initial (data free) forecast through the end of the year.
# The forecast is plotted in a pdf begining with ParticleFilterForecast,
# (with a site number and date appended). The output from the
# current forecast is saved in a file begining with ForecastModel.X.out (with a
# site number and date appended).
## set up model time frame
source("global_input_parameters.R")
model.start.DOY=global_input_parameters$model.start.DOY
cur_date = Sys.Date()
print(current.year)
# current.year = as.numeric(format(Sys.Date(), "%Y"))
# if(!is.null(global_input_parameters$training.end.date)){
# start.year = (as.numeric(strftime(global_input_parameters$training.end.date,"%Y"))+1)
# } else {
# start.year = current.year
# }
time = model.start.DOY:365
num.ensembles = global_input_parameters$num.ensembles
model = global_input_parameters$model
### read in output from State Space Model for X and r
file_name = paste('Jags.SS.out.site',as.character(site.number),model, 'RData',sep=".")
load(file_name)
# There are now two new variables loaded:
# SS.years is a vector of the years of the SS model
# out is list:
# parms N_mcmc x N_parm array which are MCMC samples of the parameters
# ci Year x Day x [hi, median, lo] matrix for the 95% CI and median for the historical state estimates
# initial conditions for X
X.bar = median(out$ci[,1,2])
X.sd = diff(range(out$ci[,1,]))/(1.96*2)
X.ic = pmax(0,pmin(1,rnorm(num.ensembles,X.bar,X.sd)))
### Analysis step:
# No data! So none to be done yet!
### Resampling step:
# No data -> no likelihood -> no resampling yet!
# The matrix X will hold all of our values for all ensemble members
# and all days:
X = matrix(numeric(),length(time), num.ensembles) ## initialize output
X[1,] = X.ic
## for convinience, pre-convert precision to std deviation
out$parms = as.data.frame(out$parms)
sigma_add = 1/sqrt(out$parms$tau_add)
###### Forecast loop:
print(paste("Forecasting for initial particle filter for site",
as.character(site.number)))
source("SSLPM.R")
params = list()
if(model == "LogitRandomWalk"){
for(t in 2:length(time)){
X[t,] = pmax(0,pmin(1,
rnorm(num.ensembles,X[t-1,],sample(sigma_add,num.ensembles))))
}
} else if (model == "Threshold_Day_Logistic"){
k = sample(out$parms$k,num.ensembles)
r = sample(out$parms$r,num.ensembles)
params$k = k
params$r = r
for(t in 2:length(time)){
mu = ifelse(t>k,X[t-1,]-r*X[t-1,]*(1-X[t-1,]),1)
X[t,] = pmax(0,pmin(1,
rnorm(num.ensembles,mu,sample(sigma_add,num.ensembles))))
}
} else{
print(paste("Forecast for model not supported::",model))
}
##### end of forecast loop
print("Initial forecasting complete.")
# Date of the last data point used in the forecast:
date.string <- paste(as.character(current.year),
format(as.Date(model.start.DOY-2,origin="2001-01-01"),
format="%m-%d"),sep="-")
# Complicated! But just a date string to put in the file name. For the create FM
# model it's the day BEFORE the first day of data.
## Plot our forecast!
X.ci = apply(X,1,quantile,c(0.025,0.5,0.975))
#### save plot produced to PDF
## saves as PDF
# Make a directory hierarchy to save pdfs in:
dir.name <- paste("pdfs/site",as.character(site.number),sep="")
dir.create(dir.name,recursive=TRUE,showWarnings=FALSE) # doesn't do anything if already created
## name of output file
pdf_file_name = paste("ParticleFilterForecast",as.character(site.number),model,
as.character(date.string),"pdf",sep=".")
pdf(file=paste(dir.name,pdf_file_name,sep="/"))
## plot forecast:
plot(time,X.ci[2,],type='n',main=paste("Particle Filter Forecast:",date.string)
,xlab="Day of Year",ylab="Pheno-state",ylim=c(0,1.2))
source("ciEnvelope.R")
ciEnvelope(time,X.ci[1,],X.ci[3,],col="light grey")
lines(time,X.ci[2,],main=paste("Particle Filter Forecast:",date.string)
,xlab="Day of Year",ylab="Pheno-state")
## ends plot output to PDF
dev.off()
source("ForecastThreshold.R")
p = matrix(NA,nrow(X),5)
png.file.name = paste("ThresholdForecast",as.character(site.number),model,
as.character(date.string),"png",sep=".")
png(file=paste("png",png.file.name,sep="/"))
p[1,] = ForecastThreshold(X)
dev.off()
### save output (not sure if we want to save all of it... maybe just the most recent day's?)
dir.create("forecastRData",recursive=TRUE,showWarnings=FALSE) # doesn't do anything if already created
output_file_name = paste0("forecastRData/",paste("ForecastModel.X.out.site", as.character(site.number),model,date.string,
"RData",sep="."))
save(X,params,p,file = output_file_name)
## name of initial ensemble forecast file
print(sprintf("The particle filter forecast for site Num %.f is saved as %s",site.number,pdf_file_name))
#### Save a file that contains the date of the last forecast:
last.date.filename <- paste("last.update.site", as.character(site.number), model,
"txt",sep=".")
sink(last.date.filename, append = FALSE)
cat("\"",date.string,"\"",sep="")
sink()
}