-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathconsistenthash.go
350 lines (306 loc) · 8.75 KB
/
consistenthash.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// Package consistenthash provides an implementation of a ring hash.
package consistenthash
import (
"bytes"
"hash/crc32"
"math"
"sort"
"sync"
)
// HashFunc hash function to generate random hash
type HashFunc func(data []byte) uint32
type node struct {
key uint32
pointer uint32
}
// ConsistentHash everything we need for CH
type ConsistentHash struct {
mu sync.RWMutex
hash HashFunc
pool sync.Pool
replicas uint // default number of replicas in hash ring (higher number means more possibility for balance equality)
hashMap map[uint32][]byte // Hash table key value pair (hash(x): x) * replicas (nodes)
replicaMap map[uint32]uint // Number of replicas per stored key
blockMap map[uint32][]node // fixed size blocks in the circle each might contain a list of keys
totalBlocks uint32
totalKeys uint32
blockPartitioning uint32
}
// New makes new ConsistentHash
func New(opts ...Option) *ConsistentHash {
var o options
for _, opt := range opts {
opt(&o)
}
ch := &ConsistentHash{
replicas: o.defaultReplicas,
hash: o.hashFunc,
hashMap: make(map[uint32][]byte, 0),
replicaMap: make(map[uint32]uint, 0),
}
if ch.replicas < 1 {
ch.replicas = 1
}
if ch.hash == nil {
ch.hash = crc32.ChecksumIEEE
}
if o.blockPartitioning < 1 {
o.blockPartitioning = 1
}
ch.blockPartitioning = uint32(o.blockPartitioning)
ch.blockMap = make(map[uint32][]node, ch.blockPartitioning)
ch.pool = sync.Pool{New: func() any { return make(map[uint32][]node, o.blockPartitioning) }}
ch.totalBlocks = 1
return ch
}
// IsEmpty returns true if there are no items available
func (ch *ConsistentHash) IsEmpty() bool {
return ch.totalKeys == 0
}
// Add adds some keys to the hash
func (ch *ConsistentHash) Add(keys ...[]byte) {
ch.add(ch.replicas, keys...)
}
// AddReplicas adds key and generates "replicas" number of hashes in ring
func (ch *ConsistentHash) AddReplicas(replicas uint, keys ...[]byte) {
if replicas < 1 {
return
}
ch.add(replicas, keys...)
}
// Get finds the closest item in the hash ring to the provided key
func (ch *ConsistentHash) Get(key []byte) []byte {
if ch.IsEmpty() {
return nil
}
hash := ch.hash(key)
ch.mu.RLock()
defer ch.mu.RUnlock()
// check if the exact match exist in the hash table
if v, ok := ch.hashMap[hash]; ok {
return v
}
v, _ := ch.lookup(hash)
return v
}
// GetString gets the closest item in the hash ring to the provided key
func (ch *ConsistentHash) GetString(key string) string {
if v := ch.Get([]byte(key)); v != nil {
return string(v)
}
return ""
}
// Remove removes the key from hash table
func (ch *ConsistentHash) Remove(key []byte) bool {
if ch.IsEmpty() {
return true
}
originalHash := ch.hash(key)
ch.mu.RLock()
if _, ok := ch.hashMap[originalHash]; !ok {
ch.mu.RUnlock()
return false
}
replicas, found := ch.replicaMap[originalHash]
if !found {
// if not found, means using the default number
replicas = ch.replicas
}
ch.mu.RUnlock()
nodes := make([]node, replicas, replicas) // todo avoid overflow
nodes[0] = node{originalHash, originalHash}
var hash uint32
var i uint32
for i = 1; i < uint32(replicas); i++ {
var b bytes.Buffer
b.Write(key)
b.Write([]byte{byte(i), byte(i >> 8), byte(i >> 16), byte(i >> 24)})
hash = ch.hash(b.Bytes())
nodes[i] = node{hash, originalHash}
}
ch.mu.Lock()
defer ch.mu.Unlock()
if found {
delete(ch.replicaMap, originalHash) // delete replica numbers
}
for _, n := range nodes {
ch.remove(n.key, n.pointer)
}
expectedBlocks := ch.totalKeys / ch.blockPartitioning
if expectedBlocks > 0 {
ch.balanceBlocks(expectedBlocks)
}
return true
}
// add inserts new hashes in hash table
func (ch *ConsistentHash) add(replicas uint, keys ...[]byte) {
var hash uint32
var i uint32
var h bytes.Buffer
nodes := make([]node, 0, uint(len(keys))*replicas) // todo avoid overflow
for idx := range keys {
originalHash := ch.hash(keys[idx])
// no need for extra capacity, just get the bytes we need
ch.mu.Lock()
ch.hashMap[originalHash] = keys[idx][:len(keys[idx]):len(keys[idx])]
ch.mu.Unlock()
nodes = append(nodes, node{originalHash, originalHash})
for i = 1; i < uint32(replicas); i++ {
h.Write(keys[idx])
h.WriteByte(byte(i))
h.WriteByte(byte(i >> 8))
h.WriteByte(byte(i >> 16))
h.WriteByte(byte(i >> 24))
hash = ch.hash(h.Bytes())
h.Reset()
nodes = append(nodes, node{hash, originalHash})
}
// do not store number of replicas if uses default number
if replicas != ch.replicas {
ch.mu.Lock()
ch.replicaMap[hash] = replicas
ch.mu.Unlock()
}
}
ch.addNodes(nodes)
}
func (ch *ConsistentHash) addNodes(nodes []node) {
expectedBlocks := (ch.totalKeys + uint32(len(nodes))) / ch.blockPartitioning
ch.mu.Lock()
defer ch.mu.Unlock()
ch.balanceBlocks(expectedBlocks)
for i := range nodes {
ch.addNode(nodes[i])
}
}
func (ch *ConsistentHash) addNode(n node) {
blockSize := math.MaxUint32 / ch.totalBlocks
blockNumber := n.key / blockSize
nodes, ok := ch.blockMap[blockNumber]
if !ok {
ch.blockMap[blockNumber] = []node{n}
ch.totalKeys++
return
}
idx := sort.Search(len(nodes), func(i int) bool {
return nodes[i].key >= n.key
})
// check for duplication, ignore if it's duplicate
if idx < len(nodes) && nodes[idx].key == n.key {
return
}
ch.blockMap[blockNumber] = append(ch.blockMap[blockNumber], node{})
copy(ch.blockMap[blockNumber][idx+1:], ch.blockMap[blockNumber][idx:])
ch.blockMap[blockNumber][idx] = n
ch.totalKeys++
}
// balanceBlocks checks all the keys in each block and shifts to the next block if the number of blocks needs to be changed
func (ch *ConsistentHash) balanceBlocks(expectedBlocks uint32) {
if expectedBlocks < 1 {
return
}
// re-balance the blocks if expectedBlocks needs twice size as it's current size
if (expectedBlocks>>1) > ch.totalBlocks || expectedBlocks < (ch.totalBlocks>>1) {
blockSize := math.MaxUint32 / expectedBlocks
newBlockMap := ch.pool.Get().(map[uint32][]node)
for blockNumber := ch.totalBlocks; blockNumber >= 0; blockNumber-- {
nodes := ch.blockMap[blockNumber]
var j int
for i := len(nodes) - 1; i > 0; i-- {
targetBlock := nodes[i].key / blockSize
if targetBlock == blockNumber {
newBlockMap[blockNumber] = nodes[:i]
break
}
for j = i; j > 0; j-- {
if nodes[j].key/blockSize != targetBlock {
break
}
}
// shift and prepend nodes to the target block
newBlockMap[targetBlock] = append(newBlockMap[targetBlock], make([]node, i-j)...)
copy(newBlockMap[targetBlock][i-j:], newBlockMap[targetBlock])
copy(newBlockMap[targetBlock][:i-j], nodes[j:i-1])
// newBlockMap[targetBlock] = append(nodes[j:i-1], newBlockMap[targetBlock]...)
i = j
}
if blockNumber == 0 {
break
}
}
ch.blockMap = newBlockMap
ch.totalBlocks = expectedBlocks
ch.pool.Put(newBlockMap)
}
if ch.totalBlocks < 1 {
ch.totalBlocks = 1
}
}
// remove removes one key from a block
func (ch *ConsistentHash) remove(hash, originalHash uint32) {
blockSize := math.MaxUint32 / ch.totalBlocks
blockNumber := hash / blockSize
nodes, ok := ch.blockMap[blockNumber]
if !ok {
return
}
ln := len(nodes)
idx := sort.Search(ln, func(i int) bool {
return nodes[i].key >= hash
})
if idx == ln {
ch.blockMap[blockNumber] = ch.blockMap[blockNumber][:idx]
} else {
ch.blockMap[blockNumber] = append(ch.blockMap[blockNumber][:idx], ch.blockMap[blockNumber][idx+1:]...) // remove item
}
ch.totalKeys--
if originalHash == hash {
delete(ch.hashMap, originalHash)
}
return
}
// lookup finds the block number and value of the given hash
func (ch *ConsistentHash) lookup(hash uint32) ([]byte, uint32) {
// binary search for appropriate replica
blockSize := math.MaxUint32 / ch.totalBlocks
blockNumber := hash / blockSize
var idx int
var fullCircle bool
for blockNumber < ch.totalBlocks {
nodes, ok := ch.blockMap[blockNumber]
if !ok {
blockNumber++
continue
}
// binary search inside the block
idx = sort.Search(len(nodes), func(i int) bool {
return nodes[i].key >= hash
})
// if not found in the block, the first item from the next block is the answer
if idx == len(nodes) {
if blockNumber == ch.totalBlocks-1 && !fullCircle {
// go to the first block
blockNumber = 0
fullCircle = true
} else {
blockNumber++
}
continue
}
// lookup the pointer in hash table
return ch.hashMap[nodes[idx].pointer], blockNumber
}
// if we reach the last block, we need to find the first block that has an item
if blockNumber == ch.totalBlocks {
var j uint32
for j < uint32(len(ch.blockMap)) {
if len(ch.blockMap[j]) > 0 {
blockNumber = 0
firstKey := ch.blockMap[0][0].pointer
return ch.hashMap[firstKey], blockNumber
}
j++
}
}
return nil, blockNumber
}