-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstreamlit_app.py
117 lines (104 loc) · 4.85 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
from streamlit_chat import message
from src.indexManager import IndexManager, IndexType
import os
def main():
st.set_page_config(page_title="CodePilot", layout="wide")
st.title("CodePilot - AI Powered Codebase Assistant")
st.sidebar.header("Setup")
# Sidebar
with st.sidebar:
repo_name = st.text_input("Repository Name")
project_dir = st.text_input("Project Directory")
if st.button("Load"):
if not repo_name or not project_dir:
st.error("Please provide both repository name and project directory.")
elif not os.path.exists(project_dir):
st.error(f"Project directory '{project_dir}' does not exist.")
else:
load_indices(repo_name, project_dir)
# Chat interface
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
# Display chat history
for message_dict in st.session_state.chat_history:
# message(**message_dict)
with st.chat_message(message_dict["role"]):
st.markdown(message_dict["content"])
if "indices_loaded" not in st.session_state:
st.warning("Please load the indices before starting the chat.")
else:
# user_input = st.chat_input("Ask a question", key="user_input")
# if st.button("Send") or (user_input and user_input[-1] == "\n"):
# query = user_input.strip()
# if query:
# st.session_state.chat_history.append({"role": "user", "content": query})
# with st.spinner("Thinking..."):
# try:
# response = st.session_state['index_manager'].query_index_special(query)
# st.session_state.chat_history.append({"role": "assistant", "content": response})
# except Exception as e:
# st.error(f"Error generating response: {str(e)}")
# st.rerun()
if prompt := st.chat_input("Ask a question"):
st.session_state.chat_history.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
# stream = client.chat.completions.create(
# model=st.session_state["openai_model"],
# messages=[
# {"role": m["role"], "content": m["content"]}
# for m in st.session_state.messages
# ],
# stream=True,
# )
with st.spinner("🤖 Codepilot is thinking..."):
response = st.session_state['index_manager'].query_index_special(prompt)
st.session_state.chat_history.append({"role": "assistant", "content": response})
st.rerun()
# Knowledge graph toggle
if "indices_loaded" in st.session_state and st.button("Toggle Knowledge Graph"):
if "show_kg" not in st.session_state:
st.session_state.show_kg = True
else:
st.session_state.show_kg = not st.session_state.show_kg
if st.session_state.show_kg:
try:
kg_html = st.session_state.index_manager.get_network_graph()
st.components.v1.html(kg_html, height=500)
except Exception as e:
st.error(f"Error displaying knowledge graph: {str(e)}")
else:
st.empty()
def load_indices(repo_name, project_dir):
llm_settings = {
'temperature': 0.2,
'model': 'gpt-4',
'api_key': os.getenv("OPENAI_API_KEY")
}
embedding_settings = {
'model': "text-embedding-3-small",
'embed_batch_size': 100,
'api_key': os.getenv("OPENAI_API_KEY")
}
try:
st.session_state.chat_history = []
st.session_state['index_manager'] = IndexManager(repo_name, project_dir, llm_settings, embedding_settings)
with st.spinner("Loading knowledge graph index..."):
st.session_state['index_manager'].create_or_load_index(IndexType.KNOWLEDGE_GRAPH)
st.success("Knowledge graph index loaded successfully!")
with st.spinner("Loading vector index..."):
st.session_state['index_manager'].create_or_load_index(IndexType.VECTOR_STORE)
st.success("Vector index loaded successfully!")
st.session_state.indices_loaded = True
except Exception as e:
st.error(f"Error loading indices: {str(e)}")
def generate_response(query):
# Placeholder for generating response using the loaded indices
return "This is a sample response to your query."
def show_kg():
# Placeholder for generating HTML string representing the knowledge graph
return "<html><body><h1>Knowledge Graph</h1><p>This is a sample knowledge graph.</p></body></html>"
if __name__ == "__main__":
main()