forked from MaoXu/Joint_Bayesian
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJointBayesian.m
135 lines (127 loc) · 4.12 KB
/
JointBayesian.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
function [mappedX, mapping] = JointBayesian(X, labels)
%LDA Perform the LDA algorithm
%
% [mappedX, mapping] = lda(X, labels, no_dims)
%
% The function runs LDA on a set of datapoints X. The variable
% no_dims sets the number of dimensions of the feature points in the
% embedded feature space (no_dims >= 1, default = 2). The maximum number
% for no_dims is the number of classes in your data minus 1.
% The function returns the coordinates of the low-dimensional data in
% mappedX. Furthermore, it returns information on the mapping in mapping.
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% Make sure data is zero mean
% mapping.mean = mean(X, 1);
% [COEFF,SCORE] = princomp(X,'econ');
% X = SCORE(:,1:400);
% X = bsxfun(@minus,X,mapping.mean);
m = length(labels);
n = size(X,2);
% Make sure labels are nice
[classes, bar, labels] = unique(labels);
nc = length(classes);
% Intialize Sw
Sw = zeros(size(X, 2), size(X, 2));
cur = {};
withinCount = 0;
numberBuff = zeros(1000,1);
% numberInvert = zeros(1000,1);
maxNumberInOneClass = [];
for i=1:nc
% Get all instances with class i
cur{i} = X(labels == i,:);
if size(cur{i},1)>1
withinCount = withinCount + size(cur{i},1);
end;
if numberBuff(size(cur{i},1)) ==0
numberBuff(size(cur{i},1)) = 1;
maxNumberInOneClass = [maxNumberInOneClass;size(cur{i},1)];
end;
end;
disp([nc withinCount]);
fprintf('prepare done, maxNumberInOneClass=%d.\n',length(maxNumberInOneClass));
tic;
u = zeros(n,nc);
ep = zeros(n,withinCount);
nowp = 1;
% Sum over classes
for i=1:nc
% Update within-class scatter
u(:,i) = mean(cur{i},1)';
if size(cur{i},1)>1
ep(:,nowp:nowp+ size(cur{i}, 1)-1) = bsxfun(@minus,cur{i}',u(:,i));
nowp = nowp + size(cur{i}, 1);
% C = cov(cur{i});
% p = size(cur{i}, 1) / withinCount;
% Sw = Sw + (p * C);
end;
end;
Su = cov(u');
Sw = cov(ep');
% Su = u*u'/nc;
% Sw = ep*ep'/withinCount;
% Su = cov(rand(n,n));
% Sw = cov(rand(5*n,n));
toc;
% F = inv(Sw);
% mapping.Su = Su;
% mapping.Sw = Sw;
% mapping.G = -1 .* (2 * Su + Sw) \ Su / Sw;
% mapping.A = inv(Su + Sw) - (F + mapping.G);
% mappedX = X;
% end
oldSw = Sw;
% Gs = cell(maxNumberInOneClass,1);
SuFG = cell(1000,1);
SwG = cell(1000,1);
for l=1:500
% tic;
F = inv(Sw);
ep =zeros(n,m);
nowp = 1;
for g = 1:1000
if numberBuff(g)==1
G = -1 .* (g .* Su + Sw) \ Su / Sw;
SuFG{g} = Su * (F + g.*G);
SwG{g} = Sw*G;
end;
end;
for i=1:nc
nnc = size(cur{i}, 1);
% G = Gs{nnc};
u(:,i) = sum(SuFG{nnc} * cur{i}',2);
ep(:,nowp:nowp+ size(cur{i}, 1)-1) = bsxfun(@plus,cur{i}',sum(SwG{nnc}*cur{i}',2));
nowp = nowp+ nnc;
end;
Su = cov(u');
Sw = cov(ep');
% Su = u*u'/nc;
% Sw = ep*ep'/withinCount;
fprintf('%d %f\n',l,norm(Sw - oldSw)/norm(Sw));
% toc;
if norm(Sw - oldSw)/norm(Sw)<1e-6
break;
end;
oldSw = Sw;
end;
F = inv(Sw);
mapping.G = -1 .* (2 * Su + Sw) \ Su / Sw;
mapping.A = inv(Su + Sw) - (F + mapping.G);
mapping.Sw = Sw;
mapping.Su = Su;
% mapping.U = chol(-G,'upper');
% mapping.COEFF = COEFF;
% mapping.y = mapping.U * X';
mapping.c = zeros(m,1);
for i = 1:m
mapping.c(i) = X(i,:) * mapping.A * X(i,:)';
end;
mappedX = X;