-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathcrisporOtScores.py
644 lines (569 loc) · 23 KB
/
crisporOtScores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
# a collection of off-target scoring functions from various websites/papers
# - MIT off-target score
# - CropIT
# - CFD
# - CCTop
# the central function is otScores()
# all scores have the property that the higher the score, the more likely is cutting
# one score (cctop) had to be inverted to follow this rule
import pickle, re
from os.path import basename, join, splitext, isfile, dirname
def otScores(guideSeq, otSeqs):
"""
calculate all scores and return a dict scoreName -> list of scores
scoreNames are: mit, cropit, cfd, cctop
"""
scoreDesc = [
("cropit", calcCropitScore),
("cctop", calcCcTopScore),
("cfd", calcCfdScore),
("mit", calcMitScore)
]
scoreDict = {}
for scoreName, scoreFunc in scoreDesc:
scores = []
for otSeq in otSeqs:
scores.append( scoreFunc(guideSeq, otSeq) )
scoreDict[scoreName] = scores
return scoreDict
def findRuns(lst):
""" yield (start, end) tuples for all runs of ident. numbers in lst
>>> list(findRuns([1,1,1,0,0,1,0,1,1,1]))
[(0, 3), (5, 6), (7, 10)]
"""
start,end=False,False
for i,x in enumerate(lst):
if x and start is False:
start=i
if x==0 and start is not False and end is False:
end=i-1
if start is not False and end is not False:
yield start,end+1 #and len is (end-start)
start,end=False,False
if start is not False:
yield start,i+1 #and len is (end-start)
def calcCropitScore(guideSeq, otSeq):
"""
see http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4605288/ PMID 26032770
>>> int(calcCropitScore("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG"))
650
# mismatch in 3' part
>>> int(calcCropitScore("GGGGGGGGGGGGGGGGGGGA","GGGGGGGGGGGGGGGGGGGG"))
575
# mismatch in 5' part
>>> int(calcCropitScore("AGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG"))
642
# only mismatches -> least likely offtarget
>>> int(calcCropitScore("AAAAAAAAAAAAAAAAAAAA","GGGGGGGGGGGGGGGGGGGG"))
-27
"""
if len(guideSeq)==23:
guideSeq = guideSeq[:20]
otSeq = otSeq[:20]
assert(len(guideSeq)==len(otSeq)==20)
penalties = [5,5,5,5,5,5,5,5,5,5,70,70,70,70,70,50,50,50,50,50]
score = 0.0
# do the score only for the non-mism positions
misList = []
score = 0.0
for i in range(0, 20):
if guideSeq[i]!=otSeq[i]:
misList.append(1)
else:
misList.append(0)
score += penalties[i]
# get the runs of mismatches and update score for these positions
consecPos = set()
singlePos = set()
for start, end in findRuns(misList):
if end-start==1:
score += -penalties[start]/2.0
else:
# mean if they happen to fall into different segments
startScore = penalties[start]
endScore = penalties[end-1]
score += -((startScore+endScore)/2.0)
return score
def calcCcTopScore(guideSeq, otSeq):
"""
calculate the CC top score
see http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124633#sec002
# no mismatch -> most likely off-target
>>> int(calcCcTopScore("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG"))
224
# mismatch in 5' part
>>> int(calcCcTopScore("AGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG"))
222
# mismatch in 3' part
>>> int(calcCcTopScore("GGGGGGGGGGGGGGGGGGGA","GGGGGGGGGGGGGGGGGGGG"))
185
# only mismatches -> least likely offtarget
>>> int(calcCcTopScore("AAAAAAAAAAAAAAAAAAAA","GGGGGGGGGGGGGGGGGGGG"))
0
"""
if len(guideSeq)==23:
guideSeq = guideSeq[:20]
otSeq = otSeq[:20]
if not (len(guideSeq)==len(otSeq)==20):
raise Exception("Not 20bp long: %s %dbp<-> %s %dbp" % (guideSeq, len(guideSeq), otSeq, len(otSeq)))
score = 0.0
for i in range(0, 20):
if guideSeq[i]!=otSeq[i]:
score += 1.2**(i+1)
return 224.0-score
hitScoreM = [0,0,0.014,0,0,0.395,0.317,0,0.389,0.079,0.445,0.508,0.613,0.851,0.732,0.828,0.615,0.804,0.685,0.583]
def calcMitScore(string1,string2, startPos=0):
"""
The MIT off-target score
see 'Scores of single hits' on http://crispr.mit.edu/about
startPos can be used to feed sequences longer than 20bp into this function
the most likely off-targets have a score of 100
>>> int(calcMitScore("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG"))
100
# mismatches in the first three positions have no effect
>>> int(calcMitScore("AGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG"))
100
# less likely off-targets have lower scores
>>> int(calcMitScore("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGA"))
41
"""
# The Patrick Hsu weighting scheme
#print string1, string2
if len(string1)==len(string2)==23:
string1 = string1[:20]
string2 = string2[:20]
assert(len(string1)==len(string2)==20)
dists = [] # distances between mismatches, for part 2
mmCount = 0 # number of mismatches, for part 3
lastMmPos = None # position of last mismatch, used to calculate distance
score1 = 1.0
for pos in range(0, len(string1)):
if string1[pos]!=string2[pos]:
mmCount+=1
if lastMmPos!=None:
dists.append(pos-lastMmPos)
score1 *= 1-hitScoreM[pos]
lastMmPos = pos
# 2nd part of the score - distribution of mismatches
if mmCount<2: # special case, not shown in the paper
score2 = 1.0
else:
avgDist = sum(dists)/len(dists)
score2 = 1.0 / (((19-avgDist)/19.0) * 4 + 1)
# 3rd part of the score - mismatch penalty
if mmCount==0: # special case, not shown in the paper
score3 = 1.0
else:
score3 = 1.0 / (mmCount**2)
score = score1 * score2 * score3 * 100
return score
compTable = { "a":"t", "A":"T", "t" :"a", "T":"A", "c":"g", "C":"G", "g":"c", "G":"C", "N":"N", "n":"n",
"Y":"R", "R" : "Y", "M" : "K", "K" : "M", "W":"W", "S":"S",
"H":"D", "B":"V", "V":"B", "D":"H", "y":"r", "r":"y","m":"k",
"k":"m","w":"w","s":"s","h":"d","b":"v","d":"h","v":"b","y":"r","r":"y" }
def complRna(seq):
" complement the sequence and translate to RNA "
newseq = []
for nucl in seq.upper():
newseq.append( compTable[nucl].replace("T", "U") )
return "".join(newseq)
def outMats():
"""
write normalized matrices to out
"""
prettyMat("all", "out/hsuAll.tsv")
prettyMat("row", "out/hsuRow.tsv")
prettyMat("col", "out/hsuCol.tsv")
prettyMat("none", "out/hsuNone.tsv")
def prettyMat(strat, outFname):
"""
wrote normalized Hsu matrix to outFname
"""
ofh = open(outFname, "w")
row = ["pos"]
row.extend(range(2,21))
row = [str(x) for x in row]
ofh.write( "\t".join(row)+"\n")
normMat, normAvg = parseHsuMat("./hsu2013/fig2cData.txt", strat=strat)
for nucl, freqs in normMat.iteritems():
row = [":".join(nucl)]
row.extend(freqs)
row = [str(x) for x in row]
ofh.write( "\t".join(row)+"\n")
row = ["avg"]
row.extend(normAvg)
row = [str(x) for x in row]
ofh.write( "\t".join(row)+ "\n")
rawHsuMat= {('A', 'A'): [0.271959618, 0.697036065, 0.171770967,
0.021754414, 0.005241839, 0.025188071, 0.046859394, 0.267506677,
0.259177567, 0.07797037, 1.286750463, 0.535596183, 1.032247542,
0.643922558, 0.515958107, 1.130955312, 2.870906184, 1.095411389,
1.191602132], ('G', 'G'): [0.496472865, 0.525028618, 0.215301755,
0.226670927, 0.004546068, 0.04966372, 0.089927088, 0.348976795,
1.579071836, 0.707528464, 1.155940112, 0.810035714, 1.016250559,
0.230357513, 0.95239301, 1.205954808, 1.296737018, 1.415685748,
1.323358326], ('U', 'T'): [0.337223457, 0.168000344, 0.115211807,
0.261310401, 0.279295225, 0.266509558, 0.179895816, 0.619215107,
0.356050082, 1.14001417, 0.62100718, 0.299685354, 0.836770787,
0.900417256, 0.738011252, 1.181552961, 1.157934409, 0.821526176,
1.734698905], ('U', 'C'): [0.254333541, 0.085714515, 0.054631234,
0.36587133, 0.016462872, 0.068822052, 0.046215969, 0.09350449,
0.263954537, 0.340470548, 0.214279635, 0.436699042, 2.340127222,
0.54281779, 0.010174614, 1.341048155, 1.646620387, 0.995399409,
1.428913939], ('C', 'T'): [0.440303113, 0.135104168, 0.043264802,
0.242026012, 0.327875553, 0.072221711, 0.137942313, 0.5575506,
0.432695002, 0.904623856, 0.448727403, 0.305879186, 0.863503533,
1.014157582, 0.647532031, 1.086889349, 1.073187004, 0.968782834,
1.671881765], ('G', 'A'): [0.458774127, 0.562057357, 0.317460049,
0.368206347, 0.047756641, 0.022744096, 0.01322757, 0.249708488,
0.195339521, 0.123994188, 1.365452127, 0.688216641, 0.787503713,
0.813153469, 0.60357013, 1.046113038, 2.786745287, 0.454444131,
1.16622155], ('G', 'T'): [0.689780687, 0.282072211, 0.537606185,
0.839891532, 0.716358798, 0.898073668, 0.52549235, 1.043403879,
0.694185851, 1.521066692, 0.711884156, 0.26584025, 1.01625944,
0.963232124, 0.807022991, 0.923530678, 1.597721072, 0.903020898,
1.653312217], ('C', 'A'): [0.166382281, 0.531452139, 0.178570178,
0.414700936, 0.50126924, 0.036677831, 0.116486245, 0.726931853,
0.617817481, 0.35333324, 1.4293465, 0.110193397, 1.065079759,
0.75614004, 0.240529657, 1.622197865, 2.250415945, 0.964947064,
1.018630984], ('A', 'G'): [0.027493368, 0.217519417, 0.100600517,
0.155294081, 0.025303057, 0.059154973, 0.036503049, 0.03030029,
0.820965614, 0.304721275, 1.037514324, 0.602176238, 0.927208246,
0.491187717, 0.976263629, 0.744956324, 1.295205389, 1.082002774,
1.478634617], ('U', 'G'): [0.060056479, 0.134281319, 0.311857733,
0.226053995, 0.054924206, 0.071959174, 0.128509362, 0.416561912,
1.73814687, 0.718418143, 1.53185795, 0.988456707, 1.24449999,
0.779052105, 1.064452173, 1.219746615, 1.268864823, 1.27712259,
1.536590735], ('C', 'C'): [0.059633277, 0.025314601, 0.055185616,
0.211364672, 0.009880719, 0.045811702, 0.010531506, 0.041691214,
0.10261082, 0.136908112, 0.155528383, 0.458455298, 2.080996466,
0.639614156, 0.054046079, 1.407539975, 1.050709161, 1.047816491,
1.428913939], ('A', 'C'): [0.270019825, 0.136179168, 0.181070971,
0.349616508, 0.018107063, 1.022086513, 0.705976348, 0.482360483,
0.48415093, 0.729154118, 0.927047872, 0.773675684, 1.8686911,
0.552164002, 0.024710323, 0.992387533, 1.658152541, 1.159682815,
1.514208159]}
def calcRawHsu(guideSeq, otSeq):
""" raw sum of hsu freqs
>>> calcRawHsu("GAGTCCGAGCAGAAGAAGAA","GAGTCAGAACAGAAGAACAA")
0.0
>>> calcRawHsu("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG")
0.0
>>> calcRawHsu("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGT")
0.0
>>> calcRawHsu("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGC")
0.0
>>> calcRawHsu("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGCGG")
0.0
"""
guideSeq = guideSeq[1:20]
otSeq = otSeq[1:20]
#print guideSeq, len(guideSeq), otSeq, len(otSeq)
assert(len(guideSeq)==19)
assert(len(otSeq)==19)# Hsu ignores pos 0
rnaSeq = complRna(guideSeq)
mismatchPosList = []
score = 1.0
for i in range(0, 19):
rnaNucl, dnaNucl = rnaSeq[i], otSeq[i]
# "In case of a match, both were set equal to 1."
if (rnaNucl, dnaNucl) in [('C', 'G'), ('U', 'A'), ('A', 'T'), ('G', 'C')]:
f = 1.0
else:
f = rawHsuMat[(rnaNucl, dnaNucl)][i]
score *= f
return score
hsuMat = None # dict with (fromNucl, toNucl) -> list of 19 scores
avgFreqs = None # list of 19 scores
hsuStrat = None # loaded matrix has strat
# see hsuMat.py
nuclFreqs= {('A', 'A'): 0.4819440141370613, ('G', 'G'): 0.6571297543038187, ('U', 'T'): 0.4663759334374003, ('U', 'C'): 0.18755561795635842, ('C', 'T'): 0.3917125484856841, ('G', 'A'): 0.472948896301865, ('G', 'T'): 1.0, ('A', 'G'): 0.2796160896968995, ('U', 'G'): 0.787929779020387, ('C', 'C'): 0.0, ('A', 'C'): 0.6804018833297995, ('C', 'A'): 0.5931243444910334}
posFreqs = [0.294369386, 0.29164666, 0.190210984, 0.306896763, 0.167251773, 0.219909422, 0.169797251, 0.406475982, 0.628680509, 0.588183598, 0.907111342, 0.522909141, 1.256594863, 0.693851359, 0.552888666, 1.158572718, 1.662766602, 1.01548686, 1.428913939]
def calcHsuSuppScore2(guideSeq, otSeq):
"""
The Hsu score in a version that only uses the aggregrate frequencies
>>> calcHsuSuppScore2("GAGTCCGAGCAGAAGAAGAA","GAGTCCGAGCAGAAGAAGAG")
1.1258838441954209
>>> calcHsuSuppScore2("GTGTCCGAGCAGAAGAAGAA","GAGTCCGAGCAGAAGAAGAA")
0.14186956352790206
>>> calcHsuSuppScore2("GAGTCCGAGCAGAAGAAGAA","GAGTCAGAACAGAAGAACAA")
0.0
>>> calcHsuSuppScore2("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG")
1.0
>>> calcHsuSuppScore2("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGT")
0.5597235206124074
>>> calcHsuSuppScore2("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGC")
0.0
>>> calcHsuSuppScore2("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGCGG")
0.0
>>> calcHsuSuppScore2("GAGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG")
0.231942405261347
"""
guideSeq = guideSeq[1:20]
otSeq = otSeq[1:20]
#print guideSeq, len(guideSeq), otSeq, len(otSeq)
assert(len(guideSeq)==19)
assert(len(otSeq)==19)# Hsu ignores pos 0
rnaSeq = complRna(guideSeq)
# "Predicted cutting frequencies for genome-wide targets were calculated by
# multiplying, in series: fest = f(1) * g(N1,N1') * f(2) * g(N2,N2') * ... * h
# with values f(i) and g(Ni, Ni') at position i corresponding,
# respectively, to the aggregate position- and base-mismatch cutting
# frequencies for positions and pairings indicated in Fig. 2c"
mismatchPosList = []
score = 1.0
for i in range(0, 19):
rnaNucl, dnaNucl = rnaSeq[i], otSeq[i]
# "In case of a match, both were set equal to 1."
if (rnaNucl, dnaNucl) in [('C', 'G'), ('U', 'A'), ('A', 'T'), ('G', 'C')]:
f = 1.0
g = 1.0
else:
f = posFreqs[i]
g = nuclFreqs[(rnaNucl, dnaNucl)]
mismatchPosList.append(i)
score *= f * g
# "the value h meanwhile re-weighted the estimated
# frequency by the minimum pairwise distance between consecutive mismatches
# in the target sequence. this distance value, in base-pairs, was divided
# by 18 to give a maximum value of 1 (in cases where fewer than 2
# mismatches existed, or where mismatches occurred on opposite ends of
# the 19 bp target-window"
if len(mismatchPosList)<2:
h = 1.0
else:
dists = []
for left, right in zip(mismatchPosList[:-1], mismatchPosList[1:]):
dists.append(right-left)
minDist = min(dists)
h = minDist / 18.0
score *= h
return score
def loadHsuMat(strat):
if strat in ["avgs", "raw"]:
return
global hsuMat
global avgFreqs
#global hsuStrat
matFname = "./hsu2013/fig2cData.txt"
hsuMat, avgFreqs = parseHsuMat(matFname, strat)
#hsuStrat = strat
def parseHsuMat(fname, strat="col"):
""" return the hsu 2013 matrix as a dict rnaNucl -> dnaNucl -> list of scores and a list of 19 averages, one per position
>> parseHsuMat("./hsu2013/fig2cData.txt")
"""
hsuMat = {}
minMat = 99999.0
maxMat = 0.0
for line in open(fname):
if line.startswith("nucl"):
continue
fs = line.rstrip("\n").split()
# the values are in the order 19-1 3'-5' in the file, but our sequences are always 1-19, 5'-3'
freqs = list(reversed([float(x) for x in fs[1:]]))
if line.startswith("avg"):
avgs = freqs
continue
nuclComb = fs[0]
rnaNucl, dnaNucl = nuclComb.split(":")
hsuMat[ (rnaNucl, dnaNucl)] = freqs
minMat = min(min(freqs), minMat)
maxMat = max(max(freqs), maxMat)
minCols = []
maxCols = []
for i in range(0, 19):
colVals = []
for freqs in hsuMat.values():
colVals.append(freqs[i])
minCols.append(min(colVals))
maxCols.append(max(colVals))
pCount = 0.0001 # must use pseudo counts
# normalize
# "Each frequency was normalized to range from 0 to 1, such that f = (f-fmin) / (fmax-fmin)"
normMat = {}
for key, freqs in hsuMat.iteritems():
if strat=="all":
normVals = [( f - minMat) / (maxMat - minMat) for f in freqs]
elif strat=="row":
minFreq, maxFreq = min(freqs), max(freqs)
normVals = [( f - minFreq) / (maxFreq - minFreq) for f in freqs]
elif strat=="col":
normVals = [( f - minCols[i]) / (maxCols[i] - minCols[i]) for i, f in enumerate(freqs)]
elif strat.startswith("none") or strat=="onlyAvgs":
normVals = freqs
elif strat.startswith("limit"):
normVals = [min(f, 1.0) for f in freqs]
else:
assert(False)
if not strat.startswith("none"):
normVals = [pCount+n for n in normVals]
normMat[key] = normVals
hsuMat = normMat
if strat in ["all", "row", "onlyAvgs", "limit"]:
normAvgs = [(a-min(avgs)) / (max(avgs)-min(avgs)) for a in avgs]
else:
normAvgs = avgs
if not strat.startswith("none"):
normAvgs = [n+pCount for n in normAvgs]
assert(min(normAvgs)!=0.0)
avgs = normAvgs
#print "loaded hsu mat", strat
#print hsuMat
#print avgs
return hsuMat, avgs
def calcHsuSuppScore(guideSeq, otSeq, baseDir="./", strat="all", dfh=None):
""" calculate the score described on page 17 of the Hsu et al 2013 supplement PDF
Will ignore position 0 of both the ot and the guide as the Hsu score is only
defined for positions 1-20
# mismatch in 5' part ->
>> calcHsuSuppScore("GAGTCCGAGCAGAAGAAGAA","GAGTCCGAGCAGAAGAAGAG")
0.4509132855355929
>> calcHsuSuppScore("GTGTCCGAGCAGAAGAAGAA","GAGTCCGAGCAGAAGAAGAA")
0.007929899123452079
>> calcHsuSuppScore("GAGTCCGAGCAGAAGAAGAA","GAGTCAGAACAGAAGAACAA")
3.69683024017458e-08
>> calcHsuSuppScore("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG")
1.0
>> calcHsuSuppScore("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGT")
0.4907323091938597
>> calcHsuSuppScore("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGC")
0.00880386936389443
>> calcHsuSuppScore("GAGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG")
0.0016461094044462768
"""
if strat=="avgs":
return calcHsuSuppScore2(guideSeq, otSeq)
if strat=="raw":
return calcRawHsu(guideSeq, otSeq)
guideSeq = guideSeq[1:20]
otSeq = otSeq[1:20]
#print guideSeq, len(guideSeq), otSeq, len(otSeq)
assert(len(guideSeq)==19)
assert(len(otSeq)==19)# Hsu ignores pos 0
global hsuMat
global avgFreqs
global hsuStrat
if hsuMat is None or hsuStrat!=strat:
matFname = baseDir+"hsu2013/fig2cData.txt"
hsuMat, avgFreqs = parseHsuMat(matFname, strat)
hsuStrat = strat
rnaSeq = complRna(guideSeq)
if dfh:
dfh.write("guideDna=%s, guideRna=%s, otSeq=%s\n" % (guideSeq, rnaSeq, otSeq))
# "Predicted cutting frequencies for genome-wide targets were calculated by
# multiplying, in series: fest = f(1) * g(N1,N1') * f(2) * g(N2,N2') * ... * h
# with values f(i) and g(Ni, Ni')
# at position i corresponding, respectively, to the aggregate
# position- and base-mismatch cutting frequencies for positions and pairings indicated in Fig. 2c"
mismatchPosList = []
score = 1.0
for i in range(0, 19):
rnaNucl, dnaNucl = rnaSeq[i], otSeq[i]
# "In case of a match, both were set equal to 1."
if (rnaNucl, dnaNucl) in [('C', 'G'), ('U', 'A'), ('A', 'T'), ('G', 'C')]:
f = 1.0
g = 1.0
else:
f = avgFreqs[i]
g = hsuMat[(rnaNucl, dnaNucl)][i]
mismatchPosList.append(i)
if strat.endswith("_Sum"):
score += f*g
elif strat.endswith("_allSum"):
score += f+g
else:
score *= f * g
if dfh:
dfh.write("pos: %d, RNA-nucl: %s, DNA-nucl: %s -> f=%f, g=%f, score=%f\n" % ( i, rnaNucl, dnaNucl, f, g, score))
#score *= g
# "The value h meanwhile re-weighted the estimated
# frequency by the minimum pairwise distance between consecutive mismatches in the target
# sequence. This distance value, in base-pairs, was divided by 18 to give a maximum value of 1 (in
# cases where fewer than 2 mismatches existed, or where mismatches occurred on opposite ends of
# the 19 bp target-window"
if len(mismatchPosList)<2:
h = 1.0
else:
dists = []
for left, right in zip(mismatchPosList[:-1], mismatchPosList[1:]):
dists.append(right-left)
minDist = min(dists)
h = minDist / 18.0
score *= h
if dfh:
dfh.write("h=%f\n" % h)
dfh.write("score=%f\n\n" % score)
return score
# === SOURCE CODE cfd-score-calculator.py provided by John Doench =====
def get_mm_pam_scores():
"""
"""
dataDir = join(dirname(__file__), 'CFD_Scoring')
mm_scores = pickle.load(open(join(dataDir, 'mismatch_score.pkl'),'rb'))
pam_scores = pickle.load(open(join(dataDir, 'pam_scores.pkl'),'rb'))
return (mm_scores,pam_scores)
#except:
#raise Exception("Could not find file with mismatch scores or PAM scores")
#Reverse complements a given string
def revcom(s):
basecomp = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A','U':'A'}
letters = list(s[::-1])
letters = [basecomp[base] for base in letters]
return ''.join(letters)
#Calculates CFD score
def calc_cfd(wt,sg,pam):
"""
>>> calc_cfd("GGGGGGGGGGGGGGGGGGGG", "GGGGGGGGGGGGGGGGGGGG", "GG")
1.0
"""
#mm_scores,pam_scores = get_mm_pam_scores()
score = 1
sg = sg.replace('T','U')
wt = wt.replace('T','U')
s_list = list(sg)
wt_list = list(wt)
#print mm_scores
for i,sl in enumerate(s_list):
#print i, sl, wt_list[i], mm_scores
if wt_list[i] == sl:
score*=1
else:
key = 'r'+wt_list[i]+':d'+revcom(sl)+','+str(i+1)
score *= mm_scores[key]
score*=pam_scores[pam]
return (score)
mm_scores, pam_scores = None, None
def calcCfdScore(guideSeq, otSeq):
""" based on source code provided by John Doench
>>> calcCfdScore("GGGGGGGGGGGGGGGGGGGGGGG", "GGGGGGGGGGGGGGGGGAAAGGG")
0.4635989007074176
>>> calcCfdScore("GGGGGGGGGGGGGGGGGGGGGGG", "GGGGGGGGGGGGGGGGGGGGGGG")
1.0
>>> calcCfdScore("GGGGGGGGGGGGGGGGGGGGGGG", "aaaaGaGaGGGGGGGGGGGGGGG")
0.5140384614450001
"""
global mm_scores, pam_scores
if mm_scores is None:
mm_scores,pam_scores = get_mm_pam_scores()
wt = guideSeq.upper()
off = otSeq.upper()
m_wt = re.search('[^ATCG]',wt)
m_off = re.search('[^ATCG]',off)
if (m_wt is None) and (m_off is None):
pam = off[-2:]
sg = off[:-3]
cfd_score = calc_cfd(wt,sg,pam)
return cfd_score
#print "CFD score: "+str(cfd_score)
# ==== END CFD score source provided by John Doench
#outMats()
#dfh = open("out/hsuDebug.txt", "w")
#calcHsuSuppScore("GGGGGGGGGGGGGGGGGGGG","GGGGGGGGGGGGGGGGGGGG", dfh=dfh)
#calcHsuSuppScore("GAGTCCGAGCAGAAGAAGAA","GAGTCCGAGCAGAAGAAGAG", dfh=dfh)
#calcHsuSuppScore("GTGTCCGAGCAGAAGAAGAA","GAGTCCGAGCAGAAGAAGAA", dfh=dfh)
#calcHsuSuppScore("GTGTCCGAGCAGAAGAAGAA","GGGGGGGGGGGGGGGGGGGG", dfh=dfh)
#loadHsuMat("none")
#print avgFreqs
if __name__=="__main__":
import doctest
doctest.testmod()