-
Notifications
You must be signed in to change notification settings - Fork 0
/
Missing.Rmd
407 lines (275 loc) · 9 KB
/
Missing.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
---
title: "Missing Variables"
author: "Bryon Langford, Matthew Hoctor"
date: "8/6/2021"
output:
html_document:
number_sections: no
theme: lumen
toc: yes
toc_float:
collapsed: yes
smooth_scroll: no
pdf_document:
toc: yes
word_document:
toc: yes
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
if (Sys.info()["sysname"] == "Windows")
knitr::opts_chunk$set(engine.path = list(stata = "C:/Program Files/Stata17/StataBE-64"))
if ((Sys.info()["sysname"] == "Darwin"))
knitr::opts_chunk$set(engine.path = list(stata = "/Applications/Stata/StataIC"))
```
```{r libraries, include=FALSE}
library(Statamarkdown)
```
# Examining Missing Alcohol
## Creating the missing alcohol variable
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
ta AL_cat AL_miss,m
```
## Al_miss vs MJ
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): ta MJ AL_miss,col percent
```
## Al_miss vs BP_cat
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): ta BP_cat AL_miss,col percent
```
## Al_miss vs gndr
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): ta gndr AL_miss,col percent
```
## Al_miss vs race_eth
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): ta race_eth AL_miss,col percent
```
## Al_miss vs SMK_cat
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): ta SMK_cat AL_miss,col percent
```
## Al_miss vs EDUC_cat
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): ta EDUC_cat AL_miss,col percent
```
## Al_miss vs sddsrvyr
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): ta sddsrvyr AL_miss,col percent
svy, subpop(if include==1): ta sddsrvyr AL_miss,row percent
```
## Al_miss vs HEI2015
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): mean hei2015, over(AL_miss)
```
## Al_miss vs BMI
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): mean bmxbmi, over(AL_miss)
```
## Al_miss vs Age
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): mean ridageyr, over(AL_miss)
```
## Al_miss vs Income
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
svy, subpop(if include==1): mean indfmpir, over(AL_miss)
```
## Results
Those with missing alcohol use data are:
* less light MJ use
* slightly more stage 2 htn
* Slightly more male
* Very similar race/eth
* Slightly more moderate-heavy smokers
* Slightly less educated
* Disproportionately in 2017-2018 cycle
* slightly lower HEI2015
* Similar BMI
* Similar Age
* slightly lower income
Most importantly: Very similar results with or without those with missing alcohol data.
# New key results
## T1 alcohol use re-tabulated
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat .=3, gen(ALC_cat)
label define ALC_cat 0 "None-Light" 1 "Moderate" 2 "Heavy" 3 "Missing"
label values ALC_cat ALC_cat
label variable ALC_cat "Alcohol Use Category"
svy, subpop(if include==1): ta ALC_cat MJ_cat, col percent
ta ALC_cat MJ_cat if include==1,m
```
## T3 Model 2 result
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
xi: svy,subpop(if include==1 & AL_miss==0): logit BP_abn i.MJ2 gndr ridageyr, or
```
## T4 Model 2 result
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat 0=0 1=0 2=0 3=0 4=0 .=1, gen(AL_miss)
label define AL_miss 0 "Not Missing" 1 "Missing"
label values AL_miss AL_miss
label variable AL_miss "Alcohol Use Missing"
xi: svy,subpop(if include==1 & AL_miss==0): mlogit BP_cat i.MJ2 gndr ridageyr, rrr
```
# Examining Excluded in Age 20-59
## Age
### Exclusions vs age criteria
Most observations (44k / 70k) were not in the correct age range.
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
ta AGE_exclude include,m
```
### Mean
mean ages are quite similar
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if AGE_exclude==0): mean ridageyr, over(include)
```
## Gender
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if AGE_exclude==0): ta gndr include, col percent
ta gndr include if AGE_exclude==0,m
```
## Race
Included participants were a bit whiter than excluded.
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if AGE_exclude==0): ta race_eth include, col percent
ta race_eth include if AGE_exclude==0,m
```
## Education
Included were slightly more educated; note difference in less than 9th grade education.
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if AGE_exclude==0): ta EDUC_cat include, col percent
ta EDUC_cat include if AGE_exclude==0,m
```
## Tobacco Use
Similar
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if AGE_exclude==0): ta SMK_cat include, col percent
ta SMK_cat include if AGE_exclude==0,m
```
## BMI
Similar
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if AGE_exclude==0): mean bmxbmi, over(include)
```
## Income
Excluded had slightly lower income.
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if AGE_exclude==0): mean indfmpir, over(include)
```
## Alcohol
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
recode AL_cat .=3, gen(ALC_cat)
label define ALC_cat 0 "None-Light" 1 "Moderate" 2 "Heavy" 3 "Missing"
label values ALC_cat ALC_cat
label variable ALC_cat "Alcohol Use Category"
svy, subpop(if AGE_exclude==0): ta AL_cat include, col percent
svy, subpop(if AGE_exclude==0): ta ALC_cat include, col percent
ta ALC_cat include if AGE_exclude==0,m
```
## Diet Quality
Similar
```{stata}
use "data\NHANES0518_new.dta", clear
svyset sdmvpsu [pw=wtmec12yr], strata(sdmvstra)
svy, subpop(if AGE_exclude==0): mean hei2015, over(include)
```